
Advanced Data Analysis

from an Elementary Point of View

Cosma Rohilla Shalizi

3

For my parents
and in memory of my grandparents

Contents

Introduction 11

Introduction 11
To the Reader 11
Concepts You Should Know 14

Part I Regression and Its Generalizations 15

1 Regression Basics 17
1.1 Statistics, Data Analysis, Regression 17
1.2 Guessing the Value of a Random Variable 18
1.3 The Regression Function 19
1.4 Estimating the Regression Function 23
1.5 Linear Smoothers 28
1.6 Further Reading 39

Exercises 39

2 The Truth about Linear Regression 41
2.1 Optimal Linear Prediction: Multiple Variables 41
2.2 Shifting Distributions, Omitted Variables, and Transformations 46
2.3 Adding Probabilistic Assumptions 55
2.4 Linear Regression Is Not the Philosopher’s Stone 58
2.5 Further Reading 60

Exercises 60

3 Model Evaluation 61
3.1 What Are Statistical Models For? 61
3.2 Errors, In and Out of Sample 62
3.3 Over-Fitting and Model Selection 66
3.4 Cross-Validation 70
3.5 Warnings 74
3.6 Further Reading 77

Exercises 78

4 Smoothing in Regression 84
4.1 How Much Should We Smooth? 84

4

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

Contents 5

4.2 Adapting to Unknown Roughness 85
4.3 Kernel Regression with Multiple Inputs 92
4.4 Interpreting Smoothers: Plots 94
4.5 Average Predictive Comparisons 95
4.6 Computational Advice: npreg 96
4.7 Further Reading 99

Exercises 100

5 Simulation 113
5.1 What Is a Simulation? 113
5.2 How Do We Simulate Stochastic Models? 114
5.3 Repeating Simulations 118
5.4 Why Simulate? 119
5.5 Further Reading 125

Exercises 125

6 The Bootstrap 126
6.1 Stochastic Models, Uncertainty, Sampling Distributions 126
6.2 The Bootstrap Principle 128
6.3 Resampling 139
6.4 Bootstrapping Regression Models 141
6.5 Bootstrap with Dependent Data 146
6.6 Confidence Bands for Nonparametric Regression 147
6.7 Things Bootstrapping Does Poorly 147
6.8 Which Bootstrap When? 148
6.9 Further Reading 149

Exercises 150

7 Splines 152
7.1 Smoothing by Penalizing Curve Flexibility 152
7.2 Computational Example: Splines for Stock Returns 154
7.3 Basis Functions and Degrees of Freedom 160
7.4 Splines in Multiple Dimensions 162
7.5 Smoothing Splines versus Kernel Regression 163
7.6 Some of the Math Behind Splines 163
7.7 Further Reading 165

Exercises 166

8 Additive Models 168
8.1 Additive Models 168
8.2 Partial Residuals and Back-fitting 169
8.3 The Curse of Dimensionality 172
8.4 Example: California House Prices Revisited 174
8.5 Interaction Terms and Expansions 178
8.6 Closing Modeling Advice 180
8.7 Further Reading 181

Exercises 181

6 Contents

9 Testing Regression Specifications 191
9.1 Testing Functional Forms 191
9.2 Why Use Parametric Models At All? 201
9.3 Further Reading 205

10 Weighting and Variance 206
10.1 Weighted Least Squares 206
10.2 Heteroskedasticity 208
10.3 Estimating Conditional Variance Functions 217
10.4 Re-sampling Residuals with Heteroskedasticity 225
10.5 Local Linear Regression 225
10.6 Further Reading 230

Exercises 231

11 Logistic Regression 232
11.1 Modeling Conditional Probabilities 232
11.2 Logistic Regression 233
11.3 Numerical Optimization of the Likelihood 238
11.4 Generalized Linear and Additive Models 239
11.5 Model Checking 241
11.6 A Toy Example 242
11.7 Weather Forecasting in Snoqualmie Falls 245
11.8 Logistic Regression with More Than Two Classes 257

Exercises 258

12 GLMs and GAMs 260
12.1 Generalized Linear Models and Iterative Least Squares 260
12.2 Generalized Additive Models 266
12.3 Further Reading 266

Exercises 266

13 Trees 267
13.1 Prediction Trees 267
13.2 Regression Trees 270
13.3 Classification Trees 279
13.4 Further Reading 285

Exercises 285

Part II Distributions and Latent Structure 291

14 Density Estimation 293
14.1 Histograms Revisited 293
14.2 “The Fundamental Theorem of Statistics” 294
14.3 Error for Density Estimates 295
14.4 Kernel Density Estimates 298
14.5 Conditional Density Estimation 304
14.6 More on the Expected Log-Likelihood Ratio 305

Contents 7

14.7 Simulating from Density Estimates 308
14.8 Further Reading 313

Exercises 315

15 Principal Components Analysis 317
15.1 Mathematics of Principal Components 317
15.2 Example 1: Cars 324
15.3 Example 2: The United States circa 1977 328
15.4 Latent Semantic Analysis 331
15.5 PCA for Visualization 334
15.6 PCA Cautions 336
15.7 Random Projections 337
15.8 Further Reading 338

Exercises 339

16 Factor Models 342
16.1 From PCA to Factor Analysis 342
16.2 The Graphical Model 344
16.3 Roots of Factor Analysis in Causal Discovery 347
16.4 Estimation 349
16.5 Maximum Likelihood Estimation 354
16.6 The Rotation Problem 355
16.7 Factor Analysis as a Predictive Model 356
16.8 Factor Models versus PCA Once More 359
16.9 Examples in R 360
16.10 Reification, and Alternatives to Factor Models 364
16.11 Further Reading 371

Exercises 372

17 Mixture Models 373
17.1 Two Routes to Mixture Models 373
17.2 Estimating Parametric Mixture Models 377
17.3 Non-parametric Mixture Modeling 382
17.4 Worked Computating Example 382
17.5 Further Reading 401

Exercises 401

18 Graphical Models 403
18.1 Conditional Independence and Factor Models 403
18.2 Directed Acyclic Graph (DAG) Models 404
18.3 Conditional Independence and d-Separation 406
18.4 Independence and Information 413
18.5 Examples of DAG Models and Their Uses 415
18.6 Non-DAG Graphical Models 417
18.7 Further Reading 421

Exercises 422

8 Contents

Part III Causal Inference 423

19 Graphical Causal Models 425
19.1 Causation and Counterfactuals 425
19.2 Causal Graphical Models 426
19.3 Conditional Independence and d-Separation Revisited 429
19.4 Further Reading 430

Exercises 432

20 Identifying Causal Effects 433
20.1 Causal Effects, Interventions and Experiments 433
20.2 Identification and Confounding 435
20.3 Identification Strategies 437
20.4 Summary 452

Exercises 453

21 Estimating Causal Effects 455
21.1 Estimators in the Back- and Front- Door Criteria 455
21.2 Instrumental-Variables Estimates 463
21.3 Uncertainty and Inference 464
21.4 Recommendations 464
21.5 Further Reading 465

Exercises 466

22 Discovering Causal Structure 467
22.1 Testing DAGs 468
22.2 Testing Conditional Independence 469
22.3 Faithfulness and Equivalence 470
22.4 Causal Discovery with Known Variables 471
22.5 Software and Examples 476
22.6 Limitations on Consistency of Causal Discovery 482
22.7 Pseudo-code for the SGS Algorithm 482
22.8 Further Reading 483

Exercises 484

Part IV Dependent Data 485

23 Time Series 487
23.1 What Time Series Are 487
23.2 Stationarity 488
23.3 Markov Models 493
23.4 Autoregressive Models 497
23.5 Bootstrapping Time Series 502
23.6 Cross-Validation 504
23.7 Trends and De-Trending 504
23.8 Breaks in Time Series 509
23.9 Time Series with Latent Variables 510

Contents 9

23.10 Longitudinal Data 518

23.11 Multivariate Time Series 518

23.12 Further Reading 518

Exercises 520

24 Simulation-Based Inference 544

24.1 The Method of Simulated Moments 544

24.2 Indirect Inference 551

24.3 Further Reading 551

Exercises 552

Bibliography 552

References 553

Acknowledgments 574

Online Appendices 579

Appendix A Big O and Little o Notation 579

Appendix B Taylor Expansions 581

Appendix C Propagation of Error 584

Appendix D Optimization 586

Appendix E Relative Distributions and Smooth Tests 612

Appendix F Nonlinear Dimensionality Reduction 638

Appendix G Rudimentary Graph Theory 662

Appendix H Missing Data 665

Appendix I Programming 693

Data-Analysis Assignments 3

1 Your Daddy’s Rich 4

2 . . . But We Make It Up in Volume 9

3 Past Performance, Future Results 12

4 Free Soil 15

10 Contents

5 There Were Giants in the Earth in Those Day 18

6 The Sound of Gunfire, Off in the Distance 22

7 The Bullet or the Ballot? 25

8 A Diversified Portfolio 30

9 The Monkey’s Paw 33

10 What’s That Got to Do with the Price of Condos in California? 38

11 The Advantages of Backwardness 41

12 It’s Not the Heat that Gets You 45

13 Nice Demo City, but Will It Scale? 48

14 Fair’s Affairs 55

15 How the North American Paleofauna Got a Crook in Its Regres-
sion Line 57

16 How the Hyracotherium Got Its Mass 61

17 How the Recent Mammals Got Their Size Distribution 64

18 Red Brain, Blue Brain 67

19 Brought to You by the Letters D, A and G 70

20 Teacher, Leave Those Kids Alone! (They’re the Control Group) 75

21 Estimating with DAGs 78

22 Use and Abuse of Conditioning 82

23 What Makes the Union Strong? 84

24 An Insufficiently Random Walk Down Wall Street 88

25 Predicting Nine of the Last Five Recessions 92

26 Debt Needs Time for What It Kills to Grow In 94

27 How Tetracycline Came to Peoria 96

Introduction

To the Reader

This book began as the notes for 36-402, Advanced Data Analysis, at Carnegie
Mellon University. This is the methodological capstone of the core statistics se-
quence taken by our undergraduate majors (usually in their third year), and by
undergraduate and graduate students from a range of other departments. The
pre-requisite for that course is our class in modern linear regression, which in
turn requires students to have taken classes in introductory statistics and data
analysis, probability theory, mathematical statistics, linear algebra, and multi-
variable calculus. This book does not presume that you once learned but have
forgotten that material; it presumes that you know those subjects and are ready
to go further (see p. 14, at the end of this introduction). The book also presumes
that you can read and write simple functions in R. If you are lacking in any of
these areas, this book is not really for you, at least not now.

ADA is a class in statistical methodology: its aim is to get students to under-
stand something of the range of modern1 methods of data analysis, and of the
considerations which go into choosing the right method for the job at hand (rather
than distorting the problem to fit the methods you happen to know). Statistical
theory is kept to a minimum, and largely introduced as needed. Since ADA is
also a class in data analysis, there are a lot of assignments in which large, real
data sets are analyzed with the new methods.

There is no way to cover every important topic for data analysis in just a
semester. Much of what’s not here — sampling theory and survey methods, ex-
perimental design, advanced multivariate methods, hierarchical models, the in-
tricacies of categorical data, graphics, data mining, spatial and spatio-temporal
statistics — gets covered by our other undergraduate classes. Other important
areas, like networks, inverse problems, advanced model selection or robust esti-
mation, have to wait for graduate school2.

The mathematical level of these notes is deliberately low; nothing should be
beyond a competent third-year undergraduate. But every subject covered here
can be profitably studied using vastly more sophisticated techniques; that’s why

1 Just as an undergraduate “modern physics” course aims to bring the student up to about 1930

(more specifically, to 1926), this class aims to bring the student up to about 1990–1995, maybe 2000.
2 Early drafts of this book, circulated online, included sketches of chapters covering spatial statistics,

networks, and experiments. These were all sacrificed to length, and to actually finishing.

11

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

12 Introduction

this is advanced data analysis from an elementary point of view. If reading these
pages inspires anyone to study the same material from an advanced point of view,
I will consider my troubles to have been amply repaid.

A final word. At this stage in your statistical education, you have gained two
kinds of knowledge — a few general statistical principles, and many more specific
procedures, tests, recipes, etc. Typical students are much more comfortable with
the specifics than the generalities. But the truth is that while none of your recipes
are wrong, they are tied to assumptions which hardly ever hold3. Learning more
flexible and powerful methods, which have a much better hope of being reliable,
will demand a lot of hard thinking and hard work. Those of you who succeed,
however, will have done something you can be proud of.

Organization of the Book

Part I is about regression and its generalizations. The focus is on nonparametric
regression, especially smoothing methods. (Chapter 2 motivates this by dispelling
some myths and misconceptions about linear regression.) The ideas of cross-
validation, of simulation, and of the bootstrap all arise naturally in trying to come
to grips with regression. This part also covers classification and specification-
testing.

Part II is about learning distributions, especially multivariate distributions,
rather than doing regression. It is possible to learn essentially arbitrary distri-
butions from data, including conditional distributions, but the number of ob-
servations needed is often prohibitive when the data is high-dimensional. This
motivates looking for models of special, simple structure lurking behind the high-
dimensional chaos, including various forms of linear and non-linear dimension
reduction, and mixture or cluster models. All this builds towards the general
idea of using graphical models to represent dependencies between variables.

Part III is about causal inference. This is done entirely within the graphical-
model formalism, which makes it easy to understand the difference between causal
prediction and the more ordinary “actuarial” prediction we are used to as statis-
ticians. It also greatly simplifies figuring out when causal effects are, or are not,
identifiable from our data. (Among other things, this gives us a sound way to
decide what we ought to control for.) Actual estimation of causal effects is done
as far as possible non-parametrically. This part ends by considering procedures
for discovering causal structure from observational data.

Part IV moves away from independent observations, more or less tacitly as-

3 “Econometric theory is like an exquisitely balanced French recipe, spelling out precisely with how

many turns to mix the sauce, how many carats of spice to add, and for how many milliseconds to

bake the mixture at exactly 474 degrees of temperature. But when the statistical cook turns to raw

materials, he finds that hearts of cactus fruit are unavailable, so he substitutes chunks of

cantaloupe; where the recipe calls for vermicelli he uses shredded wheat; and he substitutes green

garment dye for curry, ping-pong balls for turtle’s eggs and, for Chalifougnac vintage 1883, a can of

turpentine.” — Stefan Valavanis, quoted in Roger Koenker, “Dictionary of Received Ideas of

Statistics” (http://www.econ.uiuc.edu/~roger/dict.html), s.v. “Econometrics”.

http://www.econ.uiuc.edu/~roger/dict.html

Introduction 13

sumed earlier, to dependent data. It specifically considers models of time se-
ries, and time series data analysis, and simulation-based inference for complex or
analytically-intractable models.

Parts III and IV are mostly independent of each other, but both rely on Parts
I and II.

The online appendices contain a number of optional topics omitted from the
main text in the interest of length, some mathematical reminders, and advice on
writing R code for data analysis.

R Examples

The book is full of worked computational examples in R. In most cases, the
code used to make figures, tables, etc., is given in full in the text. (The code is
deliberately omitted for a few examples for pedagogical reasons.) To save space,
comments are generally omitted from the text, but comments are vital to good
programming (§I.9.1), so fully-commented versions of the code for each chapter
are available from the book’s website.

Problems

There are two kinds of problems included here. Mathematical and computational
exercises go at the end of chapters, since they are mostly connected to those pieces
of content. (Many of them are complements to, or fill in details of, material in
the chapters.) There are also data-centric assignments, consisting of extended
problem sets, in the companion document. Most of these draw on material from
multiple chapters, and many of them are based on specific papers.

Solutions will be available to teachers from the publisher; giving them out to
those using the book for self-study is, sadly, not feasible.

To Teachers

The usual one-semester course for this class has contained Chapters 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22 and 23, and Appendix and I
(the latter quite early on). Other chapters and appendices have rotated in and
out from year to year. One of the problem sets from Appendix 24.3 (or a similar
one) was due every week, either as homework or as a take-home exam.

Corrections and Updates

The page for this book is http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/.
The latest version will live there. The book will eventually be published by Cam-
bridge University Press, at which point there will still be a free next-to-final draft
at that URL, and errata. While the book is still in a draft, the PDF contains
notes to myself for revisions, [[like so]]; you can ignore them. [[Also

marginal
notes-to-
self]]

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

14 Introduction

Concepts You Should Know

If more than a few of these are unfamiliar, it’s unlikely you’re ready for this book.
Linear algebra: Vectors; arithmetic with vectors; inner or dot product of

vectors, orthogonality; linear independence; basis vectors. Linear subspaces. Ma-
trices, matrix arithmetic, multiplying vectors and matrices; geometric meaning
of matrix multiplication. Eigenvalues and eigenvectors of matrices. Projection.

Calculus: Derivative, integral; fundamental theorem of calculus. Multivari-
able extensions: gradient, Hessian matrix, multidimensional integrals. Finding
minima and maxima with derivatives. Taylor approximations (App. B).
Probability: Random variable; distribution, population, sample. Cumula-

tive distribution function, probability mass function, probability density func-
tion. Specific distributions: Bernoulli, binomial, Poisson, geometric, Gaussian,
exponential, t, Gamma. Expectation value. Variance, standard deviation.

Joint distribution functions. Conditional distributions; conditional expecta-
tions and variances. Statistical independence and dependence. Covariance and
correlation; why dependence is not the same thing as correlation. Rules for arith-
metic with expectations, variances and covariances. Laws of total probability,
total expectation, total variation. Sequences of random variables. Stochastic pro-
cess. Law of large numbers. Central limit theorem.
Statistics: Sample mean, sample variance. Median, mode. Quartile, per-

centile, quantile. Inter-quartile range. Histograms. Contingency tables; odds ratio,
log odds ratio.

Parameters; estimator functions and point estimates. Sampling distribution.
Bias of an estimator. Standard error of an estimate; standard error of the mean;
how and why the standard error of the mean differs from the standard deviation.
Consistency of estimators. Confidence intervals and interval estimates.

Hypothesis tests. Tests for differences in means and in proportions; Z and t
tests; degrees of freedom. Size, significance, power. Relation between hypothesis
tests and confidence intervals. χ2 test of independence for contingency tables;
degrees of freedom. KS test for goodness-of-fit to distributions.

Likelihood. Likelihood functions. Maximum likelihood estimates. Relation be-
tween confidence intervals and the likelihood function. Likelihood ratio test.
Regression: What a linear model is; distinction between the regressors and

the regressand. Predictions/fitted values and residuals of a regression. Interpre-
tation of regression coefficients. Least-squares estimate of coefficients. Relation
between maximum likelihood, least squares, and Gaussian distributions. Matrix
formula for estimating the coefficients; the hat matrix for finding fitted values.
R2; why adding more predictor variables never reduces R2. The t-test for the sig-
nificance of individual coefficients given other coefficients. The F -test and partial
F -test for the significance of groups of coefficients. Degrees of freedom for resid-
uals. Diagnostic examination of residuals. Confidence intervals for parameters.
Confidence intervals for fitted values. Prediction intervals. (Most of this material
is reviewed at http://www.stat.cmu.edu/~cshalizi/TALR/.)

http://www.stat.cmu.edu/~cshalizi/TALR/

Part I

Regression and Its Generalizations

15

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

1

Regression: Predicting and Relating
Quantitative Features

1.1 Statistics, Data Analysis, Regression

Statistics is the branch of mathematical engineering which designs and analyses
methods for drawing reliable inferences from imperfect data.

The subject of most sciences is some aspect of the world around us, or within
us. Psychology studies minds; geology studies the Earth’s composition and form;
economics studies production, distribution and exchange; mycology studies mush-
rooms. Statistics does not study the world, but some of the ways we try to under-
stand the world — some of the intellectual tools of the other sciences. Its utility
comes indirectly, through helping those other sciences.

This utility is very great, because all the sciences have to deal with imperfect
data. Data may be imperfect because we can only observe and record a small
fraction of what is relevant; or because we can only observe indirect signs of what
is truly relevant; or because, no matter how carefully we try, our data always
contain an element of noise. Over the last two centuries, statistics has come
to handle all such imperfections by modeling them as random processes, and
probability has become so central to statistics that we introduce random events
deliberately (as in sample surveys).1

Statistics, then, uses probability to model inference from data. We try to mathe-
matically understand the properties of different procedures for drawing inferences:
Under what conditions are they reliable? What sorts of errors do they make, and
how often? What can they tell us when they work? What are signs that some-
thing has gone wrong? Like other branches of engineering, statistics aims not
just at understanding but also at improvement: we want to analyze data better:
more reliably, with fewer and smaller errors, under broader conditions, faster,
and with less mental effort. Sometimes some of these goals conflict — a fast,
simple method might be very error-prone, or only reliable under a narrow range
of circumstances.

One of the things that people most often want to know about the world is how
different variables are related to each other, and one of the central tools statistics
has for learning about relationships is regression.2 In your linear regression class,

1 Two excellent, but very different, histories of how statistics came to this understanding are Hacking

(1990) and Porter (1986).
2 The origin of the name is instructive (Stigler, 1986). It comes from 19th century investigations into

the relationship between the attributes of parents and their children. People who are taller (heavier,

faster, . . .) than average tend to have children who are also taller than average, but not quite as tall.

17

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

18 Regression Basics

you learned about how it could be used in data analysis, and learned about its
properties. In this book, we will build on that foundation, extending beyond
basic linear regression in many directions, to answer many questions about how
variables are related to each other.

This is intimately related to prediction. Being able to make predictions isn’t the
only reason we want to understand relations between variables — we also want to
answer “what if?” questions — but prediction tests our knowledge of relations.
(If we misunderstand, we might still be able to predict, but it’s hard to see how
we could understand and not be able to predict.) So before we go beyond linear
regression, we will first look at prediction, and how to predict one variable from
nothing at all. Then we will look at predictive relationships between variables,
and see how linear regression is just one member of a big family of smoothing
methods, all of which are available to us.

1.2 Guessing the Value of a Random Variable

We have a quantitative, numerical variable, which we’ll imaginatively call Y .
We’ll suppose that it’s a random variable, and try to predict it by guessing a
single value for it. (Other kinds of predictions are possible — we might guess
whether Y will fall within certain limits, or the probability that it does so, or
even the whole probability distribution of Y . But some lessons we’ll learn here
will apply to these other kinds of predictions as well.) What is the best value to
guess? More formally, what is the optimal point forecast for Y ?

To answer this question, we need to pick a function to be optimized, which
should measure how good our guesses are — or equivalently how bad they are,
i.e., how big an error we’re making. A reasonable, traditional starting point is
the mean squared error:

MSE(m) ≡ E
[
(Y −m)

2
]

(1.1)

So we’d like to find the value µ where MSE(m) is smallest. Start by re-writing
the MSE as a (squared) bias plus a variance:

MSE(m) = E
[
(Y −m)

2
]

(1.2)

= (E [Y −m])
2

+ V [Y −m] (1.3)

= (E [Y −m])
2

+ V [Y] (1.4)

= (E [Y]−m)
2

+ V [Y] (1.5)

Notice that only the first, bias-squared term depends on our prediction m. We
want to find the derivative of the MSE with respect to our prediction m, and

Likewise, the children of unusually short parents also tend to be closer to the average, and similarly

for other traits. This came to be called “regression towards the mean,” or even “regression towards

mediocrity”; hence the line relating the average height (or whatever) of children to that of their

parents was “the regression line,” and the word stuck.

1.3 The Regression Function 19

then set that to zero at the optimal prediction
TrueRegFunc:

dMSE

dm
= −2 (E [Y]−m) + 0 (1.6)

dMSE

dm

∣∣∣∣
m=µ

= 0 (1.7)

2(E [Y]− µ) = 0 (1.8)

µ = E [Y] (1.9)

So, if we gauge the quality of our prediction by mean-squared error, the best
prediction to make is the expected value.

1.2.1 Estimating the Expected Value

Of course, to make the prediction E [Y] we would have to know the expected value
of Y . Typically, we do not. However, if we have sampled values, y1, y2, . . . yn, we
can estimate the expectation from the sample mean:

µ̂ ≡ 1

n

n∑
i=1

yi (1.10)

If the samples are independent and identically distributed (IID), then the law of
large numbers tells us that

µ̂→ E [Y] = µ (1.11)

and algebra with variances (Exercise 1.1) tells us something about how fast the
convergence is, namely that the squared error will typically be V [Y] /n.

Of course the assumption that the yi come from IID samples is a strong one,
but we can assert pretty much the same thing if they’re just uncorrelated with a
common expected value. Even if they are correlated, but the correlations decay
fast enough, all that changes is the rate of convergence (§23.2.2.1). So “sit, wait,
and average” is a pretty reliable way of estimating the expectation value.

1.3 The Regression Function

Of course, it’s not very useful to predict just one number for a variable. Typically,
we have lots of variables in our data, and we believe they are related somehow.
For example, suppose that we have data on two variables, X and Y , which might
look like Figure 1.1.3 The feature Y is what we are trying to predict, a.k.a.
the dependent variable or output or response or regressand, and X is
the predictor or independent variable or covariate or input or regressor.
Y might be something like the profitability of a customer and X their credit
rating, or, if you want a less mercenary example, Y could be some measure of

3 Problem set 27 features data that looks rather like these made-up values.

20 Regression Basics

improvement in blood cholesterol and X the dose taken of a drug. Typically we
won’t have just one input feature X but rather many of them, but that gets
harder to draw and doesn’t change the points of principle.

Figure 1.2 shows the same data as Figure 1.1, only with the sample mean
added on. This clearly tells us something about the data, but also it seems like
we should be able to do better — to reduce the average error — by using X,
rather than by ignoring it.

Let’s say that the we want our prediction to be a function of X, namely f(X).
What should that function be, if we still use mean squared error? We can work
this out by using the law of total expectation, i.e., the fact that E [U] = E [E [U |V]]
for any random variables U and V .

MSE(f) = E
[
(Y − f(X))

2
]

(1.12)

= E
[
E
[
(Y − f(X))2|X

]]
(1.13)

= E
[
V [Y − f(X)|X] + (E [Y − f(X)|X])

2
]

(1.14)

= E
[
V [Y |X] + (E [Y − f(X)|X])

2
]

(1.15)

When we want to minimize this, the first term inside the expectation doesn’t
depend on our prediction, and the second term looks just like our previous opti-
mization only with all expectations conditional on X, so for our optimal function
µ(x) we get

µ(x) = E [Y |X = x] (1.16)

In other words, the (mean-squared) optimal conditional prediction is just the
conditional expected value. The function µ(x) is called the regression function.
This is what we would like to know when we want to predict Y .

Some Disclaimers

It’s important to be clear on what is and is not being assumed here. Talking
about X as the “independent variable” and Y as the “dependent” one suggests
a causal model, which we might write

Y ← µ(X) + ε (1.17)

where the direction of the arrow,←, indicates the flow from causes to effects, and
ε is some noise variable. If the gods of inference are very kind, then ε would have a
fixed distribution, independent of X, and we could without loss of generality take
it to have mean zero. (“Without loss of generality” because if it has a non-zero
mean, we can incorporate that into µ(X) as an additive constant.) However, no
such assumption is required to get Eq. 1.16. It works when predicting effects from
causes, or the other way around when predicting (or “retrodicting”) causes from
effects, or indeed when there is no causal relationship whatsoever between X and

1.3 The Regression Function 21

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●

●
●

●
●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

plot(all.x, all.y, xlab = "x", ylab = "y")
rug(all.x, side = 1, col = "grey")
rug(all.y, side = 2, col = "grey")

Figure 1.1 Scatterplot of the (made up) running example data. rug() adds
horizontal and vertical ticks to the axes to mark the location of the data;
this isn’t necessary but is often helpful. The data are in the
basics-examples.Rda file.

Y 4. It is always true that

Y |X = µ(X) + ε(X) (1.18)

4 We will cover causal inference in detail in Part III.

22 Regression Basics

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●

●
●

●
●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

plot(all.x, all.y, xlab = "x", ylab = "y")
rug(all.x, side = 1, col = "grey")
rug(all.y, side = 2, col = "grey")
abline(h = mean(all.y), lty = "dotted")

Figure 1.2 Data from Figure 1.1, with a horizontal line at y.

where ε(X) is a random variable with expected value 0, E [ε|X = x] = 0, but as
the notation indicates the distribution of this variable generally depends on X.

It’s also important to be clear that if we find the regression function is a con-
stant, µ(x) = µ0 for all x, that this does not mean that X and Y are statistically

1.4 Estimating the Regression Function 23

independent. If they are independent, then the regression function is a constant,
but turning this around is the logical fallacy of “affirming the consequent”5.

1.4 Estimating the Regression Function

We want the regression function µ(x) = E [Y |X = x], but what we have is a pile
of training examples, of pairs (x1, y1), (x2, y2), . . . (xn, yn). What should we do?

If X takes on only a finite set of values, then a simple strategy is to use the
conditional sample means:

µ̂(x) =
1

{i : xi = x}
∑
i:xi=x

yi (1.19)

Reasoning with the law of large numbers as before, we can be confident that
µ̂(x)→ E [Y |X = x].

Unfortunately, this only works when X takes values in a finite set. If X is
continuous, then in general the probability of our getting a sample at any par-
ticular value is zero, as is the probability of getting multiple samples at exactly
the same value of x. This is a basic issue with estimating any kind of function
from data — the function will always be undersampled, and we need to fill
in between the values we see. We also need to somehow take into account the
fact that each yi is a sample from the conditional distribution of Y |X = xi, and
generally not equal to E [Y |X = xi]. So any kind of function estimation is going
to involve interpolation, extrapolation, and de-noising or smoothing.

Different methods of estimating the regression function — different regression
methods, for short — involve different choices about how we interpolate, extrapo-
late and smooth. These are choices about how to approximate µ(x) with a limited
class of functions which we know (or at least hope) we can estimate. There is no
guarantee that our choice leads to a good approximation in the case at hand,
though it is sometimes possible to say that the approximation error will shrink as
we get more and more data. This is an extremely important topic and deserves
an extended discussion, coming next.

1.4.1 The Bias-Variance Tradeoff

Suppose that the true regression function is µ(x), but we use the function µ̂ to
make our predictions. Let’s look at the mean squared error at X = x in a slightly
different way than before, which will make it clearer what happens when we can’t
use µ to make predictions. We’ll begin by expanding (Y − µ̂(x))2, since the MSE
at x is just the expectation of this.

(Y − µ̂(x))2 (1.20)

= (Y − µ(x) + µ(x)− µ̂(x))2

= (Y − µ(x))2 + 2(Y − µ(x))(µ(x)− µ̂(x)) + (µ(x)− µ̂(x))2 (1.21)

5 As in combining the fact that all human beings are featherless bipeds, and the observation that a

cooked turkey is a featherless biped, to conclude that cooked turkeys are human beings.

24 Regression Basics

Eq. 1.18 tells us that Y − µ(X) = ε, a random variable which has expectation
zero (and is uncorrelated with X). Taking the expectation of Eq. 1.21, nothing
happens to the last term (since it doesn’t involve any random quantities); the
middle term goes to zero (because E [Y − µ(X)] = E [ε] = 0), and the first term
becomes the variance of ε, call it σ2(x):

MSE(µ̂(x)) = σ2(x) + (µ(x)− µ̂(x))2 (1.22)

The σ2(x) term doesn’t depend on our prediction function, just on how hard it is,
intrinsically, to predict Y at X = x. The second term, though, is the extra error
we get from not knowing µ. (Unsurprisingly, ignorance of µ cannot improve our
predictions.) This is our first bias-variance decomposition: the total MSE
at x is decomposed into a (squared) bias µ(x) − µ̂(x), the amount by which
our predictions are systematically off, and a variance σ2(x), the unpredictable,
“statistical” fluctuation around even the best prediction.

All this presumes that µ̂ is a single fixed function. Really, of course, µ̂ is some-
thing we estimate from earlier data. But if those data are random, the regression
function we get is random too; let’s call this random function M̂n, where the
subscript reminds us of the finite amount of data we used to estimate it. What
we have analyzed is really MSE(M̂n(x)|M̂n = µ̂), the mean squared error condi-
tional on a particular estimated regression function. What can we say about the
prediction error of the method, averaging over all the possible training data sets?

MSE(M̂n(x)) = E
[
(Y − M̂n(X))2|X = x

]
(1.23)

= E
[
E
[
(Y − M̂n(X))2|X = x, M̂n = µ̂

]
|X = x

]
(1.24)

= E
[
σ2(x) + (µ(x)− M̂n(x))2|X = x

]
(1.25)

= σ2(x) + E
[
(µ(x)− M̂n(x))2|X = x

]
(1.26)

= σ2(x) + E
[
(µ(x)− E

[
M̂n(x)

]
+ E

[
M̂n(x)

]
− M̂n(x))2

]
(1.27)

= σ2(x) +
(
µ(x)− E

[
M̂n(x)

])2

+ V
[
M̂n(x)

]
(1.28)

This is our second bias-variance decomposition — I pulled the same trick as
before, adding and subtracting a mean inside the square. The first term is just
the variance of the process; we’ve seen that before and it isn’t, for the moment,
of any concern. The second term is the bias in using M̂n to estimate µ — the
approximation bias or approximation error. The third term, though, is the
variance in our estimate of the regression function. Even if we have an unbiased

method (µ(x) = E
[
M̂n(x)

]
), if there is a lot of variance in our estimates, we can

expect to make large errors.
The approximation bias depends on the true regression function. For exam-

ple, if E
[
M̂n(x)

]
= 42 + 37x, the error of approximation will be zero at all x if

µ(x) = 42+37x, but it will be larger and x-dependent if µ(x) = 0. However, there
are flexible methods of estimation which will have small approximation biases for

1.4 Estimating the Regression Function 25

all µ in a broad range of regression functions. The catch is that, at least past
a certain point, decreasing the approximation bias can only come through in-
creasing the estimation variance. This is the bias-variance trade-off. However,
nothing says that the trade-off has to be one-for-one. Sometimes we can lower
the total error by introducing some bias, since it gets rid of more variance than
it adds approximation error. The next section gives an example.

In general, both the approximation bias and the estimation variance depend
on n. A method is consistent6 when both of these go to zero as n → ∞ —
that is, if we recover the true regression function as we get more and more data.7

Again, consistency depends not just on the method, but also on how well the
method matches the data-generating process, and, again, there is a bias-variance
trade-off. There can be multiple consistent methods for the same problem, and
their biases and variances don’t have to go to zero at the same rates.

1.4.2 The Bias-Variance Trade-Off in Action

Let’s take an extreme example: we could decide to approximate µ(x) by a con-
stant µ0. The implicit smoothing here is very strong, but sometimes appropriate.
For instance, it’s appropriate when µ(x) really is a constant! Then trying to es-
timate any additional structure in the regression function is just wasted effort.
Alternately, if µ(x) is nearly constant, we may still be better off approximating
it as one. For instance, suppose the true µ(x) = µ0 + a sin (νx), where a� 1 and
ν � 1 (Figure 1.3 shows an example). With limited data, we can actually get
better predictions by estimating a constant regression function than one with the
correct functional form.

1.4.3 Ordinary Least Squares Linear Regression as Smoothing

Let’s revisit ordinary least-squares linear regression from this point of view. We’ll
assume that the predictor variable X is one-dimensional, just to simplify the
book-keeping.

We choose to approximate µ(x) by b0 +b1x, and ask for the best values β0, β1 of

6 To be precise, consistent for µ, or consistent for conditional expectations. More generally, an

estimator of any property of the data, or of the whole distribution, is consistent if it converges on

the truth.
7 You might worry about this claim, especially if you’ve taken more probability theory — aren’t we

just saying something about average performance of the M̂n, rather than any particular estimated

regression function? But notice that if the estimation variance goes to zero, then by Chebyshev’s

inequality, Pr (|X − E [X] | ≥ a) ≤ V [X] /a2, each M̂n(x) comes arbitrarily close to E
[
M̂n(x)

]
with

arbitrarily high probability. If the approximation bias goes to zero, therefore, the estimated

regression functions converge in probability on the true regression function, not just in mean.

26 Regression Basics

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8

0.
5

1.
0

1.
5

2.
0

2.
5

x

y

1 + 0.1sin(100x)
y

â + b̂sin(100x)

ugly.func <- function(x) {
1 + 0.01 * sin(100 * x)

}
x <- runif(20)
y <- ugly.func(x) + rnorm(length(x), 0, 0.5)
plot(x, y, xlab = "x", ylab = "y")
curve(ugly.func, add = TRUE)
abline(h = mean(y), col = "red", lty = "dashed")
sine.fit = lm(y ~ 1 + sin(100 * x))
curve(sine.fit$coefficients[1] + sine.fit$coefficients[2] * sin(100 * x), col = "blue",

add = TRUE, lty = "dotted")
legend("topright", legend = c(expression(1 + 0.1 * sin(100 * x)), expression(bar(y)),

expression(hat(a) + hat(b) * sin(100 * x))), lty = c("solid", "dashed",
"dotted"), col = c("black", "red", "blue"))

Figure 1.3 When we try to estimate a rapidly-varying but small-amplitude
regression function (solid black line, µ = 1 + 0.01 sin 100x+ ε, with
mean-zero Gaussian noise of standard deviation 0.5), we can do better to use
a constant function (red dashed line at the sample mean) than to estimate a

more complicated model of the correct functional form â+ b̂ sin 100x (dotted
blue line). With just 20 observations, the mean predicts slightly better on
new data (square-root MSE, RMSE, of 0.52) than does the estimate sine
function (RMSE of 0.55). The bias of using the wrong functional form is less
than the extra variance of estimation, so using the true model form hurts us.

those constants. These will be the ones which minimize the mean-squared error.

MSE(a, b) = E
[
(Y − b0 − b1X)

2
]

(1.29)

= E
[
E
[
(Y − b0 − b1X)

2|X
]]

(1.30)

= E
[
V [Y |X] + (E [Y − b0 − b1X|X])

2
]

(1.31)

= E [V [Y |X]] + E
[
(E [Y − b0 − b1X|X])

2
]

(1.32)

1.4 Estimating the Regression Function 27

The first term doesn’t depend on b0 or b1, so we can drop it for purposes of
optimization. Taking derivatives, and then bringing them inside the expectations,

∂MSE

∂b0

= E [2(Y − b0 − b1X)(−1)] (1.33)

0 = E [Y − β0 − β1X] (1.34)

β0 = E [Y]− β1E [X] (1.35)

So we need to get β1:

∂MSE

∂b1

= E [2(Y − b0 − b1X)(−X)] (1.36)

0 = E [XY]− β1E
[
X2
]

+ (E [Y]− β1E [X])E [X] (1.37)

= E [XY]− E [X]E [Y]− β1(E
[
X2
]
− E [X]

2
) (1.38)

β1 =
Cov [X,Y]

V [X]
(1.39)

using our equation for β0. That is, the mean-squared optimal linear prediction is

µ(x) = E [Y] +
Cov [X,Y]

V [X]
(x− E [X]) (1.40)

Now, if we try to estimate this from data, there are (at least) two approaches.
One is to replace the true, population values of the covariance and the variance
with their sample values, respectively

1

n

∑
i

(yi − y)(xi − x) (1.41)

and
1

n

∑
i

(xi − x)2 ≡ V̂ [X] . (1.42)

The other is to minimize the in-sample or empirical mean squared error,

1

n

∑
i

(yi − b0 − b1xi)
2

(1.43)

You may or may not find it surprising that both approaches lead to the same
answer:

β̂1 =
1
n

∑
i (yi − y)(xi − x)

V̂ [X]
(1.44)

β̂0 = y − β̂1x (1.45)

(1.46)

Provided that V [X] > 0, these will converge with IID samples, so we have a
consistent estimator.

We are now in a position to see how the least-squares linear regression model

28 Regression Basics

is really a weighted averaging of the data. Let’s write the estimated regression
function explicitly in terms of the training data points.

µ̂(x) = β̂0 + β̂1x (1.47)

= y + β̂1(x− x) (1.48)

=
1

n

n∑
i=1

yi +

(
1
n

∑
i (yi − y)(xi − x)

1
n

∑
i (xi − x)2

)
(x− x) (1.49)

=
1

n

n∑
i=1

yi +
(x− x)

nσ̂2
X

n∑
i=1

(xi − x)(yi − y) (1.50)

=
1

n

n∑
i=1

yi +
(x− x)

nσ̂2
X

n∑
i=1

(xi − x)yi −
(x− x)

nσ̂2
X

(nx− nx)y (1.51)

=
n∑
i=1

1

n

(
1 +

(x− x)(xi − x)

σ̂2
X

)
yi (1.52)

In words, our prediction is a weighted average of the observed values yi of the
regressand, where the weights are proportional to how far xi and x both are from
the center of the data (relative to the variance of X). If xi is on the same side of
the center as x, it gets a positive weight, and if it’s on the opposite side it gets a
negative weight.

Figure 1.4 adds the least-squares regression line to Figure 1.1. As you can see,
this is only barely slightly different from the constant regression function (the
slope is X is 0.014). Visually, the problem is that there should be a positive slope
in the left-hand half of the data, and a negative slope in the right, but the slopes
and the densities are balanced so that the best single slope is near zero.8

Mathematically, the problem arises from the peculiar way in which least-
squares linear regression smoothes the data. As I said, the weight of a data point
depends on how far it is from the center of the data, not how far it is from the
point at which we are trying to predict. This works when µ(x) really is a straight
line, but otherwise — e.g., here — it’s a recipe for trouble. However, it does sug-
gest that if we could somehow just tweak the way we smooth the data, we could
do better than linear regression.

1.5 Linear Smoothers

The sample mean and the least-squares line are both special cases of linear
smoothers, which estimates the regression function with a weighted average:

µ̂(x) =
∑
i

yiŵ(xi, x) (1.53)

These are called linear smoothers because the predictions are linear in the re-
sponses yi; as functions of x they can be and generally are nonlinear.

8 The standard test of whether this coefficient is zero is about as far from rejecting the null hypothesis

as you will ever see, p = 0.89. Remember this the next time you look at linear regression output.

1.5 Linear Smoothers 29

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●

●
●

●
●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

plot(all.x, all.y, xlab = "x", ylab = "y")
rug(all.x, side = 1, col = "grey")
rug(all.y, side = 2, col = "grey")
abline(h = mean(all.y), lty = "dotted")
fit.all = lm(all.y ~ all.x)
abline(fit.all)

Figure 1.4 Data from Figure 1.1, with a horizontal line at the mean
(dotted) and the ordinary least squares regression line (solid).

As I just said, the sample mean is a special case; see Exercise 1.7. Ordinary
linear regression is another special case, where ŵ(xi, x) is given by Eq. 1.52. Both
of these, as remarked earlier, ignore how far xi is from x. Let us look at some
linear smoothers which are not so silly.

30 Regression Basics

1.5.1 k-Nearest-Neighbor Regression

At the other extreme from ignoring the distance between xi and x, we could do
nearest-neighbor regression:

ŵ(xi, x) =

{
1 xi nearest neighbor of x
0 otherwise

(1.54)

This is very sensitive to the distance between xi and x. If µ(x) does not change
too rapidly, and X is pretty thoroughly sampled, then the nearest neighbor of
x among the xi is probably close to x, so that µ(xi) is probably close to µ(x).
However, yi = µ(xi) + noise, so nearest-neighbor regression will include the noise
into its prediction. We might instead do k-nearest neighbor regression,

ŵ(xi, x) =

{
1/k xi one of the k nearest neighbors of x
0 otherwise

(1.55)

Again, with enough samples all the k nearest neighbors of x are probably close
to x, so their regression functions there are going to be close to the regression
function at x. But because we average their values of yi, the noise terms should
tend to cancel each other out. As we increase k, we get smoother functions —
in the limit k = n and we just get back the constant. Figure 1.5 illustrates this
for our running example data.9 To use k-nearest-neighbors regression, we need to
pick k somehow. This means we need to decide how much smoothing to do, and
this is not trivial. We will return to this point in Chapter 3.

Because k-nearest-neighbors averages over only a fixed number of neighbors,
each of which is a noisy sample, it always has some noise in its prediction, and is
generally not consistent. This may not matter very much with moderately-large
data (especially once we have a good way of picking k). If we want consistency,
we need to let k grow with n, but not too fast; it’s enough that as n→∞, k →∞
and k/n→ 0 (Györfi et al., 2002, Thm. 6.1, p. 88).

1.5.2 Kernel Smoothers

Changing k in a k-nearest-neighbors regression lets us change how much smooth-
ing we’re doing on our data, but it’s a bit awkward to express this in terms of a
number of data points. It feels like it would be more natural to talk about a range
in the independent variable over which we smooth or average. Another problem
with k-NN regression is that each testing point is predicted using information
from only a few of the training data points, unlike linear regression or the sample
mean, which always uses all the training data. It’d be nice if we could somehow
use all the training data, but in a location-sensitive way.

There are several ways to do this, as we’ll see, but a particularly useful one is

9 The code uses the k-nearest neighbor function provided by the package FNN (Beygelzimer et al.,

2013). This requires one to give both a set of training points (used to learn the model) and a set of

test points (at which the model is to make predictions), and returns a list where the actual

predictions are in the pred element — see help(knn.reg) for more, including examples.

1.5 Linear Smoothers 31

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●

●
●

●
●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

mean
k = 1
k = 3
k = 5
k = 20

library(FNN)
plot.seq <- matrix(seq(from = 0, to = 1, length.out = 100), byrow = TRUE)
lines(plot.seq, knn.reg(train = all.x, test = plot.seq, y = all.y, k = 1)$pred,

col = "red")
lines(plot.seq, knn.reg(train = all.x, test = plot.seq, y = all.y, k = 3)$pred,

col = "green")
lines(plot.seq, knn.reg(train = all.x, test = plot.seq, y = all.y, k = 5)$pred,

col = "blue")
lines(plot.seq, knn.reg(train = all.x, test = plot.seq, y = all.y, k = 20)$pred,

col = "purple")
legend("center", legend = c("mean", expression(k == 1), expression(k == 3),

expression(k == 5), expression(k == 20)), lty = c("dashed", rep("solid",
4)), col = c("black", "red", "green", "blue", "purple"))

Figure 1.5 Points from Figure 1.1 with horizontal dashed line at the mean
and the k-nearest-neighbor regression curves for various k. Increasing k
smooths out the regression curve, pulling it towards the mean. — The code
is repetitive; can you write a function to simplify it?

32 Regression Basics

kernel smoothing, a.k.a. kernel regression or Nadaraya-Watson regres-
sion. To begin with, we need to pick a kernel function10 K(xi, x) which satisfies
the following properties:

1. K(xi, x) ≥ 0;

2. K(xi, x) depends only on the distance xi − x, not the individual arguments;

3.
∫
xK(0, x)dx = 0; and

4. 0 <
∫
x2K(0, x)dx <∞.

These conditions together (especially the last one) imply that K(xi, x) → 0 as
|xi−x| → ∞. Two examples of such functions are the density of the Unif(−h/2, h/2)
distribution, and the density of the standard Gaussian N (0,

√
h) distribution.

Here h can be any positive number, and is called the bandwidth. Because
K(xi, x) = K(0, xi − x), we will often write K as a one-argument function,
K(xi−x). Because we often want to consider similar kernels which differ only by
bandwidth, we’ll either write K(xi−x

h
), or Kh(xi − x).

The Nadaraya-Watson estimate of the regression function is

µ̂(x) =
∑
i

yi
K(xi, x)∑
jK(xj, x)

(1.56)

i.e., in terms of Eq. 1.53,

ŵ(xi, x) =
K(xi, x)∑
jK(xj, x)

(1.57)

(Notice that here, as in k-NN regression, the sum of the weights is always 1.
Why?)11

What does this achieve? Well, K(xi, x) is large if xi is close to x, so this will
place a lot of weight on the training data points close to the point where we are
trying to predict. More distant training points will have smaller weights, falling
off towards zero. If we try to predict at a point x which is very far from any of
the training data points, the value of K(xi, x) will be small for all xi, but it will
typically be much, much smaller for all the xi which are not the nearest neighbor
of x, so ŵ(xi, x) ≈ 1 for the nearest neighbor and ≈ 0 for all the others.12 That is,
far from the training data, our predictions will tend towards nearest neighbors,
rather than going off to ±∞, as linear regression’s predictions do. Whether this

10 There are many other mathematical objects which are also called “kernels”. Some of these meanings

are related, but not all of them. (Cf. “normal”.)
11 What do we do if K(xi, x) is zero for some xi? Nothing; they just get zero weight in the average.

What do we do if all the K(xi, x) are zero? Different people adopt different conventions; popular

ones are to return the global, unweighted mean of the yi, to do some sort of interpolation from

regions where the weights are defined, and to throw up our hands and refuse to make any

predictions (computationally, return NA).
12 Take a Gaussian kernel in one dimension, for instance, so K(xi, x) ∝ e−(xi−x)2/2h2

. Say xi is the

nearest neighbor, and |xi − x| = L, with L� h. So K(xi, x) ∝ e−L2/2h2
, a small number. But now

for any other xj , K(xi, x) ∝ e−L2/2h2
e−(xj−xi)L/2h2e−(xj−xi)2/2h2

� e−L
2/2h2

. — This assumes

that we’re using a kernel like the Gaussian, which never quite goes to zero, unlike the box kernel.

1.5 Linear Smoothers 33

is good or bad of course depends on the true µ(x) — and how often we have to
predict what will happen very far from the training data.

Figure 1.6 shows our running example data, together with kernel regression
estimates formed by combining the uniform-density, or box, and Gaussian kernels
with different bandwidths. The box kernel simply takes a region of width h around
the point x and averages the training data points it finds there. The Gaussian
kernel gives reasonably large weights to points within h of x, smaller ones to points
within 2h, tiny ones to points within 3h, and so on, shrinking like e−(x−xi)2/2h.
As promised, the bandwidth h controls the degree of smoothing. As h→∞, we
revert to taking the global mean. As h → 0, we tend to get spikier functions —
with the Gaussian kernel at least it tends towards the nearest-neighbor regression.

If we want to use kernel regression, we need to choose both which kernel to
use, and the bandwidth to use with it. Experience, like Figure 1.6, suggests that
the bandwidth usually matters a lot more than the kernel. This puts us back
to roughly where we were with k-NN regression, needing to control the degree
of smoothing, without knowing how smooth µ(x) really is. Similarly again, with
a fixed bandwidth h, kernel regression is generally not consistent. However, if
h→ 0 as n→∞, but doesn’t shrink too fast, then we can get consistency.

34 Regression Basics

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●

●
●

●
●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

h = 2
h = 1
h = 0.1

Box Gaussian

lines(ksmooth(all.x, all.y, "box", bandwidth = 2), col = "red")
lines(ksmooth(all.x, all.y, "box", bandwidth = 1), col = "green")
lines(ksmooth(all.x, all.y, "box", bandwidth = 0.1), col = "blue")
lines(ksmooth(all.x, all.y, "normal", bandwidth = 2), col = "red", lty = "dashed")
lines(ksmooth(all.x, all.y, "normal", bandwidth = 1), col = "green", lty = "dashed")
lines(ksmooth(all.x, all.y, "normal", bandwidth = 0.1), col = "blue", lty = "dashed")
legend("bottom", ncol = 3, legend = c("", expression(h == 2), expression(h ==

1), expression(h == 0.1), "Box", "", "", "", "Gaussian", "", "", ""), lty = c("blank",
"blank", "blank", "blank", "blank", "solid", "solid", "solid", "blank",
"dashed", "dashed", "dashed"), col = c("black", "black", "black", "black",
"black", "red", "green", "blue", "black", "red", "green", "blue"), pch = NA)

Figure 1.6 Data from Figure 1.1 together with kernel regression lines, for
various combinations of kernel (box/uniform or Gaussian) and bandwidth.
Note the abrupt jump around x = 0.75 in the h = 0.1 box-kernel (solid blue)
line — with a small bandwidth the box kernel is unable to interpolate
smoothly across the break in the training data, while the Gaussian kernel
(dashed blue) can.

1.5 Linear Smoothers 35

1.5.3 Some General Theory for Linear Smoothers

Some key parts of the theory you are familiar with for linear regression models
carries over more generally to linear smoothers. They are not quite so important
any more, but they do have their uses, and they can serve as security objects
during the transition to non-parametric regression.

Throughout this sub-section, we will temporarily assume that Y = µ(X) + ε,
with the noise terms ε having constant variance σ2, no correlation with the noise
at other observations. Also, we will define the smoothing, influence or hat
matrix ŵ by ŵij = ŵ(xi, xj). This records how much influence observation yj
had on the smoother’s fitted value for µ(xi), which (remember) is µ̂(xi) or µ̂i for
short13, hence the name “hat matrix” for ŵ.

1.5.3.1 Standard error of predicted mean values

It is easy to get the standard error of any predicted mean value µ̂(x), by first
working out its variance:

V [µ̂(x)] = V

[
n∑
j=1

w(xj, x)Yj

]
(1.58)

=
n∑
j=1

V [w(xj, x)Yj] (1.59)

=
n∑
j=1

w2(xj, x)V [Yj] (1.60)

= σ2
n∑
j=1

w2(xj, x) (1.61)

The second line uses the assumption that the noise is uncorrelated, and the last
the assumption that the noise variance is constant. In particular, for a point xi
which appeared in the training data, V [µ̂(xi)] = σ2

∑
j w

2
ij.

Notice that this is the variance in the predicted mean value, µ̂(x). It is not an
estimate of V [Y | X = x], though we will see how conditional variances can be
estimated using nonparametric regression in Chapter 10.

Notice also that we have not had to assume that the noise is Gaussian. If we
did add that assumption, this formula would also give us a confidence interval
for the fitted value (though we would still have to worry about estimating σ).

1.5.3.2 (Effective) Degrees of Freedom

For linear regression models, you will recall that the number of “degrees of free-
dom” was just the number of coefficients (including the intercept). While degrees
of freedom are less important for other sorts of regression than for linear models,
they’re still worth knowing about, so I’ll explain here how they are defined and

13 This is often written as ŷi, but that’s not very logical notation; the quantity is a function of yi, not

an estimate of it; it’s an estimate of µ(xi).

36 Regression Basics

calculated. In general, we can’t use the number of parameters to define degrees of
freedom, since most linear smoothers don’t have parameters. Instead, we have to
go back to the reasons why the number of parameters actually matters in ordinary
linear models. (Linear algebra follows.)

We’ll start with an n×p data matrix of predictor variables x (possibly including
an all-1 column for an intercept), and an n× 1 column matrix of response values
y. The ordinary least squares estimate of the p-dimensional coefficient vector β
is

β̂ =
(
xTx

)−1
xTy (1.62)

This lets us write the fitted values in terms of x and y:

µ̂ = xβ̂ (1.63)

=
(
x
(
xTx

)−1
xT
)

y (1.64)

= wy (1.65)

where w is the n × n matrix, with wij saying how much of each observed yj
contributes to each fitted µ̂i. This is what, a little while ago, I called the influence
or hat matrix, in the special case of ordinary least squares.

Notice that w depends only on the predictor variables in x; the observed re-
sponse values in y don’t matter. If we change around y, the fitted values µ̂ will
also change, but only within the limits allowed by w. There are n independent
coordinates along which y can change, so we say the data have n degrees of free-
dom. Once x (and thus w) are fixed, however, µ̂ has to lie in a p-dimensional
linear subspace in this n-dimensional space, and the residuals have to lie in the
(n− p)-dimensional space orthogonal to it.

Geometrically, the dimension of the space in which µ̂ = wy is confined is the
rank of the matrix w. Since w is an idempotent matrix (Exercise 1.5), its rank
equals its trace. And that trace is, exactly, p:

tr w = tr
(
x
(
xTx

)−1
xT
)

(1.66)

= tr
(
xTx

(
xTx

)−1
)

(1.67)

= tr Ip = p (1.68)

since for any matrices a,b, tr (ab) = tr (ba), and xTx is a p× p matrix14.
For more general linear smoothers, we can still write Eq. 1.53 in matrix form,

µ̂ = wy (1.69)

We now define the degrees of freedom15 to be the trace of w:

df(µ̂) ≡ tr w (1.70)

This may not be an integer.

14 This all assumes that xTx has an inverse. Can you work out what happens when it does not?
15 Some authors prefer to say “effective degrees of freedom”, to emphasize that we’re not just counting

parameters.

1.5 Linear Smoothers 37

Covariance of Observations and Fits

Eq. 1.70 defines the number of degrees of freedom for linear smoothers. A yet more
general definition includes nonlinear methods, assuming that Yi = µ(xi)+ εi, and
the εi consist of uncorrelated noise of constant16 variance σ2. This is

df(µ̂) ≡ 1

σ2

n∑
i=1

Cov [Yi, µ̂(xi)] (1.71)

In words, this is the normalized covariance between each observed response Yi and
the corresponding predicted value, µ̂(xi). This is a very natural way of measuring
how flexible or stable the regression model is, by seeing how much it shifts with
the data.

If we do have a linear smoother, Eq. 1.71 reduces to Eq. 1.70.

Cov [Yi, µ̂(xi)] = Cov

[
Yi,

n∑
j=1

wijYj

]
(1.72)

=
n∑
j=1

wijCov [Yi, Yj] (1.73)

= wiiV [Yi] = σ2wii (1.74)

Here the first line uses the fact that we’re dealing with a linear smoother, and
the last line the assumption that εi is uncorrelated and has constant variance.
Therefore

df(µ̂) =
1

σ2

n∑
i=1

σ2wii = tr w (1.75)

as promised.

1.5.3.3 Prediction Errors

Bias

Because linear smoothers are linear in the response variable, it’s easy to work out
(theoretically) the expected value of their fits:

E [µ̂i] =
n∑
j=1

wijE [Yj] (1.76)

In matrix form,

E [µ̂] = wE [Y] (1.77)

This means the smoother is unbiased if, and only if, wE [Y] = E [Y], that is, if
E [Y] is an eigenvector of w. Turned around, the condition for the smoother to
be unbiased is

(In −w)E [Y] = 0 (1.78)

16 But see Exercise 1.10.

38 Regression Basics

In general, (In−w)E [Y] 6= 0, so linear smoothers are more or less biased. Different
smoothers are, however, unbiased for different families of regression functions.
Ordinary linear regression, for example, is unbiased if and only if the regression
function really is linear.

In-sample mean squared error

When you studied linear regression, you learned that the expected mean-squared
error on the data used to fit the model is σ2(n − p)/n. This formula generalizes
to other linear smoothers. Let’s first write the residuals in matrix form.

y − µ̂ = y −wy (1.79)

= Iny −wy (1.80)

= (In −w)y (1.81)

The in-sample mean squared error is n−1 ‖y − µ̂‖2, so

1

n
‖y − µ̂‖2 =

1

n
‖(In −w)y‖2 (1.82)

=
1

n
yT (In −wT)(In −w)y (1.83)

Taking expectations17,

E
[

1

n
‖y − µ̂‖2

]
=
σ2

n
tr
(
(In −wT)(In −w)

)
+

1

n
‖(In −w)E [y]‖2 (1.84)

=
σ2

n

(
tr In − 2 tr w + tr (wTw)

)
+

1

n
‖(In −w)E [y]‖2(1.85)

=
σ2

n

(
n− 2 tr w + tr (wTw)

)
+

1

n
‖(In −w)E [y]‖2 (1.86)

The last term, n−1 ‖(In −w)E [y]‖2, comes from the bias: it indicates the dis-
tortion that the smoother would impose on the regression function, even without
noise. The first term, proportional to σ2, reflects the variance. Notice that it in-
volves not only what we’ve called the degrees of freedom, tr w, but also a second-
order term, tr wTw. For ordinary linear regression, you can show (Exercise 1.9)
that tr (wTw) = p, so 2 tr w− tr (wTw) would also equal p. For this reason, some
people prefer either tr (wTw) or 2 tr w− tr (wTw) as the definition of degrees of
freedom for linear smoothers, so be careful.

1.5.3.4 Inferential Statistics

Many of the formulas underlying things like the F test for whether a regression
predicts significantly better than the global mean carry over from linear regression
to linear smoothers, if one uses the right definitions of degrees of freedom, and one
believes that the noise is always IID and Gaussian. However, we will see ways of

17 By using the general result that E
[
~X · a ~X

]
= tr (aV

[
~X
]
) + E

[
~X
]
· aE

[
~X
]

for any random vector

~X and non-random square matrix a.

1.6 Further Reading 39

doing inference on regression models which don’t rely on Gaussian assumptions
at all (Ch. 6), so I won’t go over these results.

1.6 Further Reading

In Chapter 2, we’ll look more at the limits of linear regression and some ex-
tensions; Chapter 3 will cover some key aspects of evaluating statistical models,
including regression models; and then Chapter 4 will come back to kernel regres-
sion, and more powerful tools than ksmooth. Chapters 10–8 and 13 all introduce
further regression methods, while Chapters 11–12 pursue extensions.

Good treatments of regression, emphasizing linear smoothers but not limited
to linear regression, can be found in Wasserman (2003, 2006), Simonoff (1996),
Faraway (2006) and Györfi et al. (2002). The last of these in particular provides
a very thorough theoretical treatment of non-parametric regression methods.

On generalizations of degrees of freedom to non-linear models, see Buja et al.
(1989, §2.7.3), and Ye (1998).

Historical notes

All the forms of nonparametric regression covered in this chapter are actually
quite old. Kernel regression was introduced independently by Nadaraya (1964)
and Watson (1964). The origin of nearest neighbor methods is less clear, and
indeed they may have been independently invented multiple times — Cover and
Hart (1967) collects some of the relevant early citations, as well as providing a pi-
oneering theoretical analysis, extended to regression problems in Cover (1968a,b).

Exercises

1.1 Suppose Y1, Y2, . . . Yn are random variables with the same mean µ and standard deviation

σ, and that they are all uncorrelated with each other, but not necessarily independent18

or identically distributed. Show the following:

1. V
[∑n

i=1 Yi
]

= nσ2.

2. V
[
n−1∑n

i=1 Yi
]

= σ2/n.

3. The standard deviation of n−1∑n
i=1 Yi is σ/

√
n.

4. The standard deviation of µ− n−1∑n
i=1 Yi is σ/

√
n.

Can you state the analogous results when the Yi share mean µ but each has its own

standard deviation σi? When each Yi has a distinct mean µi? (Assume in both cases that

the Yi remain uncorrelated.)

1.2 Suppose we use the mean absolute error instead of the mean squared error:

MAE(m) = E [|Y −m|] (1.87)

Is this also minimized by taking m = E [Y]? If not, what value µ̃ minimizes the MAE?

Should we use MSE or MAE to measure error?

1.3 Derive Eqs. 1.45 and 1.44 by minimizing Eq. 1.43.

18 See Appendix ?? for a refresher on the difference between “uncorrelated” and “independent”.

40 Regression Basics

1.4 What does it mean to say that Gaussian kernel regression approaches nearest-neighbor

regression as h→ 0? Why does it do so? Is this true for all kinds of kernel regression?

1.5 Prove that w from Eq. 1.65 is idempotent, i.e., that w2 = w.

1.6 Show that for ordinary linear regression, Eq. 1.61 gives the same variance for fitted values

as the usual formula.

1.7 Consider the global mean as a linear smoother. Work out the influence matrix w, and

show that it has one degree of freedom, using the definition in Eq. 1.70.

1.8 Consider k-nearest-neighbors regression as a linear smoother. Work out the influence ma-

trix w, and find an expression for the number of degrees of freedom (in the sense of Eq.

1.70) in terms of k and n. Hint: Your answers should reduce to those of the previous

problem when k = n.

1.9 Suppose that Yi = µ(xi) + εi, where the εi are uncorrelated have mean 0, with constant

variance σ2. Prove that, for a linear smoother, n−1∑n
i=1 V [µ̂i] = (σ2/n) tr (wwT). Show

that this reduces to σ2p/n for ordinary linear regression.

1.10 Suppose that Yi = µ(xi) + εi, where the εi are uncorrelated and have mean 0, but

each has its own variance σ2
i . Consider modifying the definition of degrees of freedom

to
∑n
i=1 Cov [Yi, µ̂i] /σ

2
i (which reduces to Eq. 1.71 if all the σ2

i = σ2). Show that this

still equals tr w for a linear smoother with influence matrix w.

2

The Truth about Linear Regression

We need to say some more about how linear regression, and especially about how
it really works and how it can fail. Linear regression is important because

1. it’s a fairly straightforward technique which sometimes works tolerably for
prediction;

2. it’s a simple foundation for some more sophisticated techniques;

3. it’s a standard method so people use it to communicate; and

4. it’s a standard method so people have come to confuse it with prediction and
even with causal inference as such.

We need to go over (1)–(3), and provide prophylaxis against (4).
[[TODO: Discuss the geometry: smoothing on to a linear surface; only projec-

tion along β matters; fitted values constrained to a linear subspace]]

2.1 Optimal Linear Prediction: Multiple Variables

We have a numerical variable Y and a p-dimensional vector of predictor variables
or features ~X. We would like to predict Y using ~X. Chapter 1 taught us that the
mean-squared optimal predictor is is the conditional expectation,

µ(~x) = E
[
Y | ~X = ~x

]
(2.1)

Instead of using the optimal predictor µ(~x), let’s try to predict as well as
possible while using only a linear1 function of ~x, say β0 + β · ~x. This is not
an assumption about the world, but rather a decision on our part; a choice,
not a hypothesis. This decision can be good — β0 + ~x · β could be a tolerable
approximation to µ(~x) — even if the linear hypothesis is strictly wrong. Even if
no linear approximation to µ is much good mathematically, but we might still
want one for practical reasons, e.g., speed of computation.

(Perhaps the best reason to hope the choice to use a linear model isn’t crazy
is that we may hope µ is a smooth function. If it is, then we can Taylor expand2

1 Pedants might quibble that this function is actually affine rather than linear. But the distinction is

specious: we can always add an extra element to ~x, which is always 1, getting the vector ~x′, and

then we have the linear function β′ · ~x′.
2 See Appendix B on Taylor approximations.

41

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

42 The Truth about Linear Regression

it about our favorite point, say ~u:

µ(~x) = µ(~u) +
p∑
i=1

(
∂µ

∂xi

∣∣∣∣
~u

)
(xi − ui) +O(‖~x− ~u‖2) (2.2)

or, in the more compact vector-calculus notation,

µ(~x) = µ(~u) + (~x− ~u) · ∇µ(~u) +O(‖~x− ~u‖2) (2.3)

If we only look at points ~x which are close to ~u, then the remainder terms
O(‖~x− ~u‖2) are small, and a linear approximation is a good one3. Here, “close
to ~u” really means “so close that all the non-linear terms in the Taylor series are
comparatively negligible”.)

Whatever the reason for wanting to use a linear function, there are many
linear functions, and we need to pick just one of them. We may as well do that
by minimizing mean-squared error again:

MSE(β) = E
[(
Y − β0 − ~X · β

)2
]

(2.4)

Going through the optimization is parallel to the one-dimensional case we worked
through in §1.4.3, with the conclusion that the optimal β is

β = v−1Cov
[
~X, Y

]
(2.5)

where v is the covariance matrix of ~X, i.e., vij = Cov [Xi, Xj], and Cov
[
~X, Y

]
is the vector of covariances between the regressors and Y , i.e. Cov

[
~X, Y

]
i

=

Cov [Xi, Y]. We also get

β0 = E [Y]− β · E
[
~X
]

(2.6)

just as in the one-dimensional case (Exercise 2.1). These conclusions hold without
assuming anything at all about the true regression function µ; about the distri-
bution of X, of Y , of Y |X, or of Y − µ(X) (in particular, nothing needs to be
Gaussian); or whether data points are independent or not.

Multiple regression would be a lot simpler if we could just do a simple regression
for each regressor, and add them up; but really, this is what multiple regression
does, just in a disguised form. If the input variables are uncorrelated, v is diagonal
(vij = 0 unless i = j), and so is v−1. Then doing multiple regression breaks up into
a sum of separate simple regressions across each input variable. When the input
variables are correlated and v is not diagonal, we can think of the multiplication
by v−1 as de-correlating ~X — applying a linear transformation to come up
with a new set of inputs which are uncorrelated with each other.4

3 If you are not familiar with the big-O notation like O(‖~x− ~u‖2), now would be a good time to read

Appendix A.
4 If ~Z is a random vector with covariance matrix I, then w~Z is a random vector with covariance

matrix wTw. Conversely, if we start with a random vector ~X with covariance matrix v, the latter

has a “square root” v1/2 (i.e., v1/2v1/2 = v), and v−1/2 ~X will be a random vector with covariance

2.1 Optimal Linear Prediction: Multiple Variables 43

Notice: β depends on the marginal distribution of ~X (through the covariance
matrix v). If that shifts, the optimal coefficients β will shift, unless the real
regression function is linear.

2.1.1 Collinearity

The formula β = v−1Cov
[
~X, Y

]
makes no sense if v has no inverse. This will

happen if, and only if, the predictor variables are linearly dependent on each
other — if one of the predictors is really a linear combination of the others. Then
(as we learned in linear algebra) the covariance matrix is of less than “full rank”
(i.e., “rank deficient”) and it doesn’t have an inverse. Equivalently, v has at least
one eigenvalue which is exactly zero.

So much for the algebra; what does that mean statistically? Let’s take an
easy case where one of the predictors is just a multiple of the others — say
you’ve included people’s weight in pounds (X1) and mass in kilograms (X2), so
X1 = 2.2X2. Then if we try to predict Y , we’d have

µ̂(~X) = β1X1 + β2X2 + β3X3 + . . .+ βpXp (2.7)

= 0X1 + (2.2β1 + β2)X2 +
p∑
i=3

βiXi (2.8)

= (β1 + β2/2.2)X1 + 0X2 +
p∑
i=3

βiXi (2.9)

= −2200X1 + (1000 + β1 + β2)X2 +
p∑
i=3

βiXi (2.10)

In other words, because there’s a linear relationship between X1 and X2, we
make the coefficient for X1 whatever we like, provided we make a corresponding
adjustment to the coefficient for X2, and it has no effect at all on our prediction.
So rather than having one optimal linear predictor, we have infinitely many of
them.5

There are three ways of dealing with collinearity. One is to get a different data
set where the regressors are no longer collinear. A second is to identify one of the
collinear variables (it usually doesn’t matter which) and drop it from the data set.
This can get complicated; principal components analysis (Chapter 15) can help
here. Thirdly, since the issue is that there are infinitely many different coefficient
vectors which all minimize the MSE, we could appeal to some extra principle,

matrix I. When we write our predictions as ~Xv−1Cov
[
~X, Y

]
, we should think of this as(

~Xv−1/2
)(

v−1/2Cov
[
~X, Y

])
. We use one power of v−1/2 to transform the input features into

uncorrelated variables before taking their correlations with the response, and the other power to

decorrelate ~X. — For more on using covariance matrices to come up with new, decorrelated

variables, see Chapter 15.
5 Algebraically, there is a linear combination of two (or more) of the regressors which is constant. The

coefficients of this linear combination are given by one of the zero eigenvectors of v.

44 The Truth about Linear Regression

beyond prediction accuracy, to select just one of them. We might, for instance,
prefer smaller coefficient vectors (all else being equal), or ones where more of the
coefficients were exactly zero. Using some quality other than the squared error
to pick out a unique solution is called “regularizing” the optimization problem,
and a lot of attention has been given to regularized regression, especially in the
“high dimensional” setting where the number of coefficients is comparable to, or
even greater than, the number of data points. See Appendix D.3.5, and exercise
7.2 in Chapter 7.

2.1.2 The Prediction and Its Error

Once we have coefficients β, we can use them to make predictions for the expected
value of Y at arbitrary values of ~X, whether we’ve an observation there before or
not. How good are these?

If we have the optimal coefficients, then the prediction error will be uncorrelated
with the regressors:

Cov
[
Y − ~X · β, ~X

]
= Cov

[
Y, ~X

]
− Cov

[
~X · (v−1Cov

[
~X, Y

]
), ~X

]
(2.11)

= Cov
[
Y, ~X

]
− vv−1Cov

[
Y, ~X

]
(2.12)

= 0 (2.13)

Moreover, the expected prediction error, averaged over all ~X, will be zero (Exer-
cise 2.2). But the conditional expectation of the error is generally not zero,

E
[
Y − ~X · β | ~X = ~x

]
6= 0 (2.14)

and the conditional variance is generally not constant,

V
[
Y − ~X · β | ~X = ~x1

]
6= V

[
Y − ~X · β | ~X = ~x2

]
(2.15)

The optimal linear predictor can be arbitrarily bad, and it can make arbitrarily
big systematic mistakes. It is generally very biased6.

2.1.3 Estimating the Optimal Linear Predictor

To actually estimate β from data, we need to make some probabilistic assumptions
about where the data comes from. A fairly weak but often sufficient assumption
is that observations (~Xi, Yi) are independent for different values of i, with un-
changing covariances. Then if we look at the sample covariances, they will, by
the law of large numbers, converge on the true covariances:

1

n
XTY → Cov

[
~X, Y

]
(2.16)

1

n
XTX→ v (2.17)

6 You were taught in your linear models course that linear regression makes unbiased predictions.

This presumed that the linear model was true.

2.1 Optimal Linear Prediction: Multiple Variables 45

where as before X is the data-frame matrix with one row for each data point and
one column for each variable, and similarly for Y.

So, by continuity,

β̂ = (XTX)
−1

XTY → β (2.18)

and we have a consistent estimator.
On the other hand, we could start with the empirical or in-sample mean squared

error

MSE(β) ≡ 1

n

n∑
i=1

(yi − ~xi · β)
2

(2.19)

and minimize it. The minimizer is the same β̂ we got by plugging in the sample
covariances. No probabilistic assumption is needed to minimize the in-sample
MSE, but it doesn’t let us say anything about the convergence of β̂. For that,
we do need some assumptions about ~X and Y coming from distributions with
unchanging covariances.

(One can also show that the least-squares estimate is the linear predictor with
the minimax prediction risk. That is, its worst-case performance, when everything
goes wrong and the data are horrible, will be better than any other linear method.
This is some comfort, especially if you have a gloomy and pessimistic view of
data, but other methods of estimation may work better in less-than-worst-case
scenarios.)

2.1.3.1 Unbiasedness and Variance of Ordinary Least Squares Estimates

The very weak assumptions we have made still let us say a little bit more about
the properties of the ordinary least squares estimate β̂. To do so, we need to think
about why β̂ fluctuates. For the moment, let’s fix X at a particular value x, but
allow Y to vary randomly (what’s called “fixed design” regression).

The key fact is that β̂ is linear in the observed responses Y. We can use this
by writing, as you’re used to from your linear regression class,

Y = ~X · β + ε (2.20)

Here ε is the noise around the optimal linear predictor; we have to remember that

while E [ε] = 0 and Cov
[
ε, ~X

]
= 0, it is not generally true that E

[
ε| ~X = ~x

]
= 0

or that V
[
ε| ~X = ~x

]
is constant. Even with these limitations, we can still say that

β̂ = (xTx)
−1

xTY (2.21)

= (xTx)
−1

xT (xβ + ε) (2.22)

= β + (xTx)
−1

xT ε (2.23)

This directly tells us that β̂ is an unbiased estimate of β:

E
[
β̂|X = x

]
= β + (xTx)

−1
xTE [ε] (2.24)

= β + 0 = β (2.25)

46 The Truth about Linear Regression

We can also get the variance matrix of β̂:

V
[
β̂|X = x

]
= V

[
β + (xTx)

−1
xT ε | x

]
(2.26)

= V
[
(xTx)

−1
xT ε | X = x

]
(2.27)

= (xTx)
−1

xTV [ε | X = x] x(xTx)
−1

(2.28)

Let’s write V [ε|X = x] as a single matrix Σ(x). If the linear-prediction errors are
uncorrelated with each other, then Σ will be diagonal. If they’re also of equal
variance, then Σ = σ2I, and we have

V
[
β̂|X = x

]
= σ2(xTx)−1 =

σ2

n

(
1

n
xTx

)−1

(2.29)

Said in words, this means that the variance of our estimates of the linear-regression
coefficient will (i) go down as the sample size n grows, (ii) go up as the linear
regression gets worse (σ2 grows), and (iii) go down as the regressors, the compo-

nents of ~X, have more sample variance themselves, and are less correlated with
each other.

If we allow X to vary, then by the law of total variance,

V
[
β̂
]

= E
[
V
[
β̂|X

]]
+ V

[
E
[
β̂|X

]]
=
σ2

n
E

[(
1

n
XTX

)−1
]

(2.30)

As n→∞, the sample variance matrix n−1XTX→ v. Since matrix inversion is

continuous, V
[
β̂
]
→ n−1σ2v−1, and points (i)–(iii) still hold.

2.2 Shifting Distributions, Omitted Variables, and Transformations

2.2.1 Changing Slopes

I said earlier that the best β in linear regression will depend on the distribution
of the regressors, unless the conditional mean is exactly linear. Here is an illustra-
tion. For simplicity, let’s say that p = 1, so there’s only one regressor. I generated
data from Y =

√
X + ε, with ε ∼ N (0, 0.052) (i.e. the standard deviation of the

noise was 0.05). Figure 2.1 shows the lines inferred from samples with three dif-
ferent distributions of X: X ∼ Unif(0, 1), X ∼ N (0.5, 0.01), and X ∼ Unif(2, 3).
Some distributions of X lead to similar (and similarly wrong) regression lines;
doing one estimate from all three data sets gives yet another answer.

2.2.1.1 R2: Distraction or Nuisance?

This little set-up, by the way, illustrates that R2 is not a stable property of the
distribution either. For the black points, R2 = 0.92; for the blue, R2 = 0.70; and
for the red, R2 = 0.77; and for the complete data, 0.96. Other sets of xi values
would give other values for R2. Note that while the global linear fit isn’t even a
good approximation anywhere in particular, it has the highest R2.

This kind of perversity can happen even in a completely linear set-up. Suppose

2.2 Shifting Distributions, Omitted Variables, and Transformations 47

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

X

Y

● ●

●

●

●

●
●

●

●
●

●

●● ●

●

●
●

● ●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●●

●
●

●

●

●

●

●●

●

● ●

●

●
●

●

●
●

●●

●

●

●

●

●●

●● ●
●

●

●

●

● ●
●
●●

●

●
●

●
●

●
●

●
●

●

● ●

●

●

●

●

●

●

Unif[0,1]
N(0.5, 0.01)
Unif[2,3]
Union of above
True regression line

Figure 2.1 Behavior of the conditional distribution Y |X ∼ N (
√
X, 0.052)

with different distributions of X. The dots (in different colors and shapes)
show three different distributions of X (with sample values indicated by
colored “rug” ticks on the axes), plus the corresponding regression lines. The
solid line is the regression using all three sets of points, and the grey curve is
the true regression function. (See Code Example 1 for the code use to make
this figure.) Notice how different distributions of X give rise to different
slopes, each of which may make sense as a local approximation to the truth.

now that Y = aX + ε, and we happen to know a exactly. The variance of Y will
be a2V [X] + V [ε]. The amount of variance our regression “explains” — really,

the variance of our predictions — will be a2V [X]. So R2 = a2V[X]

a2V[X]+V[ε]
. This goes

to zero as V [X]→ 0 and it goes to 1 as V [X]→∞. It thus has little to do with
the quality of the fit, and a lot to do with how spread out the regressor is.

48 The Truth about Linear Regression

x1 <- runif(100)
x2 <- rnorm(100, 0.5, 0.1)
x3 <- runif(100, 2, 3)
y1 <- sqrt(x1) + rnorm(length(x1), 0, 0.05)
y2 <- sqrt(x2) + rnorm(length(x2), 0, 0.05)
y3 <- sqrt(x3) + rnorm(length(x3), 0, 0.05)
plot(x1, y1, xlim = c(0, 3), ylim = c(0, 3), xlab = "X", ylab = "Y", col = "darkgreen",

pch = 15)
rug(x1, side = 1, col = "darkgreen")
rug(y1, side = 2, col = "darkgreen")
points(x2, y2, pch = 16, col = "blue")
rug(x2, side = 1, col = "blue")
rug(y2, side = 2, col = "blue")
points(x3, y3, pch = 17, col = "red")
rug(x3, side = 1, col = "red")
rug(y3, side = 2, col = "red")
lm1 <- lm(y1 ~ x1)
lm2 <- lm(y2 ~ x2)
lm3 <- lm(y3 ~ x3)
abline(lm1, col = "darkgreen", lty = "dotted")
abline(lm2, col = "blue", lty = "dashed")
abline(lm3, col = "red", lty = "dotdash")
x.all <- c(x1, x2, x3)
y.all <- c(y1, y2, y3)
lm.all <- lm(y.all ~ x.all)
abline(lm.all, lty = "solid")
curve(sqrt(x), col = "grey", add = TRUE)
legend("topleft", legend = c("Unif[0,1]", "N(0.5, 0.01)", "Unif[2,3]", "Union of above",

"True regression line"), col = c("black", "blue", "red", "black", "grey"),
pch = c(15, 16, 17, NA, NA), lty = c("dotted", "dashed", "dotdash", "solid",

"solid"))

Code Example 1: Code used to make Figure 2.1.

Notice also how easy it is to get a very high R2 even when the true model is
not linear!

2.2.2 Omitted Variables and Shifting Distributions

That the optimal regression coefficients can change with the distribution of the
predictor features is annoying, but one could after all notice that the distribution
has shifted, and so be cautious about relying on the old regression. More subtle is
that the regression coefficients can depend on variables which you do not measure,
and those can shift without your noticing anything.

Mathematically, the issue is that

E
[
Y | ~X

]
= E

[
E
[
Y |Z, ~X

]
| ~X
]

(2.31)

Now, if Y is independent of Z given ~X, then the extra conditioning in the inner
expectation does nothing and changing Z doesn’t alter our predictions. But in
general there will be plenty of variables Z which we don’t measure (so they’re

2.2 Shifting Distributions, Omitted Variables, and Transformations 49

−3

−2

−1

0
1

2

−2

−1

0

1

2

−2

0

2

X
Z

Y

library(lattice)
library(MASS)
x.z = mvrnorm(100, c(0, 0), matrix(c(1, 0.1, 0.1, 1), nrow = 2))
y = x.z[, 1] + x.z[, 2] + rnorm(100, 0, 0.1)
cloud(y ~ x.z[, 1] * x.z[, 2], xlab = "X", ylab = "Z", zlab = "Y", scales = list(arrows = FALSE),

col.point = "black")

Figure 2.2 Scatter-plot of response variable Y (vertical axis) and two
variables which influence it (horizontal axes): X, which is included in the
regression, and Z, which is omitted. X and Z have a correlation of +0.1.

not included in ~X) but which have some non-redundant information about the

response (so that Y depends on Z even conditional on ~X). If the distribution of
~X given Z changes, then the optimal regression of Y on ~X should change too.

Here’s an example. X and Z are both N (0, 1), but with a positive correlation
of 0.1. In reality, Y ∼ N (X +Z, 0.01). Figure 2.2 shows a scatterplot of all three
variables together (n = 100).

Now I change the correlation between X and Z to −0.1. This leaves both
marginal distributions alone, and is barely detectable by eye (Figure 2.3).

Figure 2.4 shows just the X and Y values from the two data sets, in black for
the points with a positive correlation between X and Z, and in blue when the
correlation is negative. Looking by eye at the points and at the axis tick-marks,
one sees that, as promised, there is very little change in the marginal distribution
of either variable. Furthermore, the correlation between X and Y doesn’t change
much, going only from 0.75 to 0.55. On the other hand, the regression lines are
noticeably different. When Cov [X,Z] = 0.1, the slope of the regression line is 1.2
— high values for X tend to indicate high values for Z, which also increases Y .
When Cov [X,Z] = −0.1, the slope of the regression line is 0.74, since extreme
values of X are now signs that Z is at the opposite extreme, bringing Y closer

50 The Truth about Linear Regression

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

3

X
Z

Y

new.x.z = mvrnorm(100, c(0, 0), matrix(c(1, -0.1, -0.1, 1), nrow = 2))
new.y = new.x.z[, 1] + new.x.z[, 2] + rnorm(100, 0, 0.1)
cloud(new.y ~ new.x.z[, 1] * new.x.z[, 2], xlab = "X", ylab = "Z", zlab = "Y",

scales = list(arrows = FALSE))

Figure 2.3 As in Figure 2.2, but shifting so that the correlation between X
and Z is now −0.1, though the marginal distributions, and the distribution
of Y given X and Z, are unchanged.

back to its mean. But, to repeat, the difference is due to changing the correlation
between X and Z, not how X and Z themselves relate to Y . If I regress Y on X
and Z, I get β̂ = 0.99, 1 in the first case and β̂ = 0.98, 1 in the second.

We’ll return to omitted variables when we look at causal inference in Part III.

2.2.3 Errors in Variables

Often, the predictor variables we can actually measure, ~X, are distorted versions
of some other variables ~U we wish we could measure, but can’t:

~X = ~U + ~η (2.32)

with ~η being some sort of noise. Regressing Y on ~X then gives us what’s called
an errors-in-variables problem.

In one sense, the errors-in-variables problem is huge. We are often much more
interested in the connections between actual variables in the real world, than
with our imperfect, noisy measurements of them. Endless ink has been spilled, for
instance, on what determines students’ test scores. One thing commonly thrown
into the regression — a feature included in ~X — is the income of children’s

2.2 Shifting Distributions, Omitted Variables, and Transformations 51

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

x

y
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

Figure 2.4 Joint distribution of X and Y from Figure 2.2 (black, with a
positive correlation between X and Z) and from Figure 2.3 (blue, with a
negative correlation between X and Z). Tick-marks on the axes show the
marginal distributions, which are manifestly little-changed. (See
accompanying R file for commands.)

families. But this is rarely measured precisely7, so what we are really interested
in — the relationship between actual income and school performance — is not
what our regression estimates. Typically, adding noise to the input features makes
them less predictive of the response — in linear regression, it tends to push β̂
closer to zero than it would be if we could regress Y on ~U .

On account of the error-in-variables problem, some people get very upset when
they see imprecisely-measured features as inputs to a regression. Some of them,
in fact, demand that the input variables be measured exactly, with no noise
whatsoever. This position, however, is crazy, and indeed there’s a sense in which
errors-in-variables isn’t a problem at all. Our earlier reasoning about how to
find the optimal linear predictor of Y from ~X remains valid whether something
like Eq. 2.32 is true or not. Similarly, the reasoning in Ch. 1 about the actual
regression function being the over-all optimal predictor, etc., is unaffected. If we
will continue to have ~X rather than ~U available to us for prediction, then Eq. 2.32
is irrelevant for prediction. Without better data, the relationship of Y to ~U is just
one of the unanswerable questions the world is full of, as much as “what song the
sirens sang, or what name Achilles took when he hid among the women”.

Now, if you are willing to assume that ~η is a very well-behaved Gaussian with
known variance, then there are solutions to the error-in-variables problem for
linear regression, i.e., ways of estimating the coefficients you’d get from regressing

7 One common proxy is to ask the child what they think their family income is. (I didn’t believe that

either when I first read about it.)

52 The Truth about Linear Regression

Y on ~U . I’m not going to go over them, partly because they’re in standard
textbooks, but mostly because the assumptions are hopelessly demanding.8

2.2.4 Transformation

Let’s look at a simple non-linear example, Y |X ∼ N (logX, 1). The problem
with smoothing data like this on to a straight line is that the true regression
curve isn’t straight, E [Y |X = x] = log x. (Figure 2.5.) This suggests replacing
the variables we have with ones where the relationship is linear, and then undoing
the transformation to get back to what we actually measure and care about.

We have two choices: we can transform the response Y , or the predictor X. Here
transforming the response would mean regressing expY on X, and transforming
the predictor would mean regressing Y on logX. Both kinds of transformations
can be worth trying. The best reasons to use one kind rather than another are
those that come from subject-matter knowledge: if we have good reason to think
that that f(Y) = βX + ε, then it can make a lot of sense to transform Y . If
genuine subject-matter considerations are not available, however, my experience
is that transforming the predictors, rather than the response, is a better bet, for
several reasons.

1. Mathematically, E [f(Y)] 6= f(E [Y]). A mean-squared optimal prediction of
f(Y) is not necessarily close to the transformation of an optimal prediction of
Y . And Y is, presumably, what we really want to predict.

2. Imagine that Y =
√
X + logZ. There’s not going to be any particularly nice

transformation of Y that makes everything linear, though there will be trans-
formations of the features. This generalizes to more complicated models with
features built from multiple covariates.

3. Suppose that we are in luck and Y = µ(X) + ε, with ε independent of X,
and Gaussian, so all the usual default calculations about statistical inference
apply. Then it will generally not be the case that f(Y) = s(X) + η, with η
a Gaussian random variable independent of X. In other words, transforming
Y completely messes up the noise model. (Consider the simple case where
we take the logarithm of Y . Gaussian noise after the transformation implies
log-normal noise before the transformation. Conversely, Gaussian noise before
the transformation implies a very weird, nameless noise distribution after the
transformation.)

Figure 2.6 shows the effect of these transformations. Here transforming the
predictor does, indeed, work out more nicely; but of course I chose the example
so that it does so.

To expand on that last point, imagine a model like so:

µ(~x) =
q∑
j=1

cjfj(~x) (2.33)

8 Non-parametric error-in-variable methods are an active topic of research (Carroll et al., 2009).

2.2 Shifting Distributions, Omitted Variables, and Transformations 53

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
6

−
4

−
2

0
2

x

y

x <- runif(100)
y <- rnorm(100, mean = log(x), sd = 1)
plot(y ~ x)
curve(log(x), add = TRUE, col = "grey")
abline(lm(y ~ x))

Figure 2.5 Sample of data for Y |X ∼ N (logX, 1). (Here X ∼ Unif(0, 1),
and all logs are natural logs.) The true, logarithmic regression curve is
shown in grey (because it’s not really observable), and the linear regression
fit is shown in black.

If we know the functions fj, we can estimate the optimal values of the coefficients
cj by least squares — this is a regression of the response on new features, which
happen to be defined in terms of the old ones. Because the parameters are out-
side the functions, that part of the estimation works just like linear regression.

54 The Truth about Linear Regression

●●

●

●

●
●

●

●

●
●

●●

●

●

●

●● ●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

−6 −4 −2 0

−
6

−
4

−
2

0
2

log(x)

y

●●

●

●

●
●

●

●

●
●

●●

●

●

●

●● ●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
6

−
4

−
2

0
2

x

y

●●
●

●
●●

●

●

●

●

●●

●

●

●

●● ●

●

●

●● ●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●
●

●

●

●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●
● ●

●

●●
●

●●

●

●
●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

x

ex
p(

y)
●●

●

●

●
●

●

●

●
●

●●

●

●

●

●● ●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
6

−
4

−
2

0
2

x

y

●●

●

●

●
●

●

●

●
●

●●

●

●

●

●● ●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
6

−
4

−
2

0
2

x

y

Figure 2.6 Transforming the predictor (left column) and the response
(right) in the data from Figure 2.5, shown in both the transformed
coordinates (top) and the original coordinates (middle). The bottom figure
super-imposes the two estimated curves (transformed X in black,
transformed Y in blue). The true regression curve is always in grey. (R code
deliberately omitted; reproducing this is Exercise 2.4.)

Models embraced under the heading of Eq. 2.33 include linear regressions with
interactions between the regressors (set fj = xixk, for various combinations of
i and k), and polynomial regression. There is however nothing magical about
using products and powers of the regressors; we could regress Y on sinx, sin 2x,
sin 3x, etc.

To apply models like Eq. 2.33, we can either (a) fix the functions fj in advance,
based on guesses about what should be good features for this problem; (b) fix the

2.3 Adding Probabilistic Assumptions 55

functions in advance by always using some “library” of mathematically convenient
functions, like polynomials or trigonometric functions; or (c) try to find good
functions from the data. Option (c) takes us beyond the realm of linear regression
as such, into things like splines (Chapter 7) and additive models (Chapter 8).
It is also possible to search for transformations of both sides of a regression model;
see Breiman and Friedman (1985) and, for an R implementation, Spector et al.
(2013).

2.3 Adding Probabilistic Assumptions

The usual treatment of linear regression adds many more probabilistic assump-
tions, namely that

Y | ~X ∼ N (~X · β, σ2) (2.34)

and that Y values are independent conditional on their ~X values. So now we
are assuming that the regression function is exactly linear; we are assuming that
at each ~X the scatter of Y around the regression function is Gaussian; we are
assuming that the variance of this scatter is constant; and we are assuming that
there is no dependence between this scatter and anything else.

None of these assumptions was needed in deriving the optimal linear predictor.
None of them is so mild that it should go without comment or without at least
some attempt at testing.

Leaving that aside just for the moment, why make those assumptions? As
you know from your earlier classes, they let us write down the likelihood of the
observed responses y1, y2, . . . yn (conditional on the covariates ~x1, . . . ~xn), and then
estimate β and σ2 by maximizing this likelihood. As you also know, the maximum
likelihood estimate of β is exactly the same as the β obtained by minimizing the
residual sum of squares. This coincidence would not hold in other models, with
non-Gaussian noise.

We saw earlier that β̂ is consistent under comparatively weak assumptions
— that it converges to the optimal coefficients. But then there might, possibly,
still be other estimators are also consistent, but which converge faster. If we
make the extra statistical assumptions, so that β̂ is also the maximum likelihood
estimate, we can lay that worry to rest. The MLE is generically (and certainly
here!) asymptotically efficient, meaning that it converges as fast as any other
consistent estimator, at least in the long run. So we are not, so to speak, wasting
any of our data by using the MLE.

A further advantage of the MLE is that, as n→∞, its sampling distribution is
itself a Gaussian, centered around the true parameter values. This lets us calculate
standard errors and confidence intervals quite easily. Here, with the Gaussian
assumptions, much more exact statements can be made about the distribution of
β̂ around β. You can find the formulas in any textbook on regression, so I won’t
get into that.

We can also use a general property of MLEs for model testing. Suppose we have
two classes of models, Ω and ω. Ω is the general case, with p parameters, and ω

56 The Truth about Linear Regression

is a special case, where some of those parameters are constrained, but q < p of
them are left free to be estimated from the data. The constrained model class ω
is then nested within Ω. Say that the MLEs with and without the constraints
are, respectively, Θ̂ and θ̂, so the maximum log-likelihoods are L(Θ̂) and L(θ̂).

Because it’s a maximum over a larger parameter space, L(Θ̂) ≥ L(θ̂). On the
other hand, if the true model really is in ω, we’d expect the constrained and
unconstrained estimates to be converging. It turns out that the difference in log-
likelihoods has an asymptotic distribution which doesn’t depend on any of the
model details, namely

2
[
L(Θ̂)− L(θ̂)

]
; χ2

p−q (2.35)

That is, a χ2 distribution with one degree of freedom for each extra parameter
in Ω (that’s why they’re called “degrees of freedom”).9

This approach can be used to test particular restrictions on the model, and so
it is sometimes used to assess whether certain variables influence the response.
This, however, gets us into the concerns of the next section.

2.3.1 Examine the Residuals

By construction, the errors of the optimal linear predictor have expectation 0
and are uncorrelated with the regressors. Also by construction, the residuals of a
fitted linear regression have sample mean 0, and are uncorrelated, in the sample,
with the regressors.

If the usual probabilistic assumptions hold, however, the errors of the optimal
linear predictor have many other properties as well.

1. The errors have a Gaussian distribution at each ~x.
2. The errors have the same Gaussian distribution at each ~x, i.e., they are in-

dependent of the regressors. In particular, they must have the same variance
(i.e., they must be homoskedastic).

3. The errors are independent of each other. In particular, they must be uncor-
related with each other.

When these properties — Gaussianity, homoskedasticity, lack of correlation —
hold, we say that the errors are white noise. They imply strongly related prop-
erties for the residuals: the residuals should be Gaussian, with variances and
covariances given by the hat matrix, or more specifically by I − x(xTx)−1xT

(§1.5.3.2). This means that the residuals will not be exactly white noise, but they
should be close to white noise. You should check this! If you find residuals which
are a long way from being white noise, you should be extremely suspicious of
your model. These tests are much more important than checking whether the
coefficients are significantly different from zero.

9 If you assume the noise is Gaussian, the left-hand side of Eq. 2.35 can be written in terms of various

residual sums of squares. However, the equation itself remains valid under other noise distributions,

which just change the form of the likelihood function.

2.3 Adding Probabilistic Assumptions 57

Every time someone uses linear regression with the standard assumptions for
inference and does not test whether the residuals are white noise, an angel loses
its wings.

2.3.2 On Significant Coefficients

If all the usual distributional assumptions hold, then t-tests can be used to decide
whether particular coefficients are statistically-significantly different from zero.
Pretty much any piece of statistical software, R very much included, reports the
results of these tests automatically. It is far too common to seriously over-interpret
those results, for a variety of reasons.

Begin with exactly what hypothesis is being tested when R (or whatever) runs
those t-tests. Say, without loss of generality, that there are p predictor variables,
~X = (X1, . . . Xp), and that we are testing the coefficient on Xp. Then the null
hypothesis is not just “βp = 0”, but “βp = 0 in a linear, Gaussian-noise model
which also includes X1, . . . Xp−1, and nothing else”. The alternative hypothesis
is not just “βp 6= 0”, but “βp 6= 0 in a linear, Gaussian-noise model which also
includes X1, . . . Xp−1, but nothing else”. The optimal linear coefficient on Xp will
depend not just on the relationship between Xp and the response Y , but also on
which other variables are included in the model. The test checks whether adding
Xp really improves predictions more than would be expected, under all these
assumptions, if one is already using all the other variables, and only those other
variables. It does not, cannot, test whether Xp is important in any absolute sense.

Even if you are willing to say “Yes, all I really want to know about this variable
is whether adding it to the model really helps me predict in a linear approxima-
tion”, remember that the question which a t-test answers is whether adding that
variable will help at all. Of course, as you know from your regression class, and
as we’ll see in more detail in Chapter 3, expanding the model never hurts its
performance on the training data. The point of the t-test is to gauge whether
the improvement in prediction is small enough to be due to chance, or so large,
compared to what noise could produce, that one could confidently say the variable
adds some predictive ability. This has several implications which are insufficiently
appreciated among users.

In the first place, tests on individual coefficients can seem to contradict tests on
groups of coefficients. Adding multiple variables to the model could significantly
improve the fit (as checked by, say, a partial F test), even if none of the coefficients
is significant on its own. In fact, every single coefficient in the model could be
insignificant, while the model as a whole is highly significant (i.e., better than a
flat line).

In the second place, it’s worth thinking about which variables will show up as
statistically significant. Remember that the t-statistic is β̂i/se(β̂i), the ratio of

the estimated coefficient to its standard error. We saw above that V
[
β̂|X = x

]
=

σ2

n
(n−1xTx)

−1 → n−1σ2v−1. This means that the standard errors will shrink as
the sample size grows, so more and more variables will become significant as we

58 The Truth about Linear Regression

get more data — but how much data we collect is irrelevant to how the process
we’re studying actually works. Moreover, at a fixed sample size, the coefficients
with smaller standard errors will tend to be the ones whose variables have more
variance, and whose variables are less correlated with the other predictors. High
input variance and low correlation help us estimate the coefficient precisely, but,
again, they have nothing to do with whether the input variable actually influences
the response a lot.

To sum up, it is never the case that statistical significance is the same as
scientific, real-world significance. The most important variables are not those with
the largest-magnitude t statistics or smallest p-values. Statistical significance is
always about what “signals” can be picked out clearly from background noise10.
In the case of linear regression coefficients, statistical significance runs together
the size of the coefficients, how bad the linear regression model is, the sample
size, the variance in the input variable, and the correlation of that variable with
all the others.

Of course, even the limited “does it help linear predictions enough to bother
with?” utility of the usual t-test (and F -test) calculations goes away if the stan-
dard distributional assumptions do not hold, so that the calculated p-values are
just wrong. One can sometimes get away with using bootstrapping (Chapter 6)
to get accurate p-values for standard tests under non-standard conditions.

2.4 Linear Regression Is Not the Philosopher’s Stone

The philosopher’s stone, remember, was supposed to be able to transmute base
metals (e.g., lead) into the perfect metal, gold (Eliade, 1971). Many people treat
linear regression as though it had a similar ability to transmute a correlation
matrix into a scientific theory. In particular, people often argue that:

1. because a variable has a significant regression coefficient, it must influence the
response;

2. because a variable has an insignificant regression coefficient, it must not influ-
ence the response;

3. if the input variables change, we can predict how much the response will change
by plugging in to the regression.

All of this is wrong, or at best right only under very particular circumstances.
We have already seen examples where influential variables have regression coef-

ficients of zero. We have also seen examples of situations where a variable with no
influence has a non-zero coefficient (e.g., because it is correlated with an omitted
variable which does have influence). If there are no nonlinearities and if there are
no omitted influential variables and if the noise terms are always independent of
the predictor variables, are we good?

10 In retrospect, it might have been clearer to say “statistically detectable” rather than “statistically

significant”.

2.4 Linear Regression Is Not the Philosopher’s Stone 59

No. Remember from Equation 2.5 that the optimal regression coefficients de-
pend on both the marginal distribution of the predictors and the joint distribution
(covariances) of the response and the predictors. There is no reason whatsoever to
suppose that if we change the system, this will leave the conditional distribution
of the response alone.

A simple example may drive the point home. Suppose we surveyed all the cars
in Pittsburgh, recording the maximum speed they reach over a week, and how
often they are waxed and polished. I don’t think anyone doubts that there will
be a positive correlation here, and in fact that there will be a positive regression
coefficient, even if we add in many other variables as predictors. Let us even
postulate that the relationship is linear (perhaps after a suitable transformation).
Would anyone believe that polishing cars will make them go faster? Manifestly
not. But this is exactly how people interpret regressions in all kinds of applied
fields — instead of saying polishing makes cars go faster, it might be saying
that receiving targeted ads makes customers buy more, or that consuming dairy
foods makes diabetes progress faster, or Those claims might be true, but the
regressions could easily come out the same way were the claims false. Hence, the
regression results provide little or no evidence for the claims.

Similar remarks apply to the idea of using regression to “control for” extra
variables. If we are interested in the relationship between one predictor, or a few
predictors, and the response, it is common to add a bunch of other variables to
the regression, to check both whether the apparent relationship might be due to
correlations with something else, and to “control for” those other variables. The
regression coefficient is interpreted as how much the response would change, on
average, if the predictor variable were increased by one unit, “holding everything
else constant”. There is a very particular sense in which this is true: it’s a predic-
tion about the difference in expected responses (conditional on the given values
for the other predictors), assuming that the form of the regression model is right,
and that observations are randomly drawn from the same population we used to
fit the regression.

In a word, what regression does is probabilistic prediction. It says what will
happen if we keep drawing from the same population, but select a sub-set of
the observations, namely those with given values of the regressors. A causal or
counter-factual prediction would say what would happen if we (or Someone)
made those variables take those values. Sometimes there’s no difference between
selection and intervention, in which case regression works as a tool for causal
inference11; but in general there is. Probabilistic prediction is a worthwhile en-
deavor, but it’s important to be clear that this is what regression does. There are
techniques for doing causal prediction, which we will explore in Part III.

Every time someone thoughtlessly uses regression for causal inference, an angel
not only loses its wings, but is cast out of Heaven and falls in extremest agony
into the everlasting fire.

11 In particular, if our model was estimated from data where Someone assigned values of the predictor

variables in a way which breaks possible dependencies with omitted variables and noise — either by

randomization or by experimental control — then regression can, in fact, work for causal inference.

60 The Truth about Linear Regression

2.5 Further Reading

If you would like to read a lot more — about 400 pages more — about linear
regression from this perspective, see The Truth About Linear Regression, at http:
//www.stat.cmu.edu/~cshalizi/TALR/. That manuscript began as class notes
for the class before this one, and has some overlap.

There are many excellent textbooks on linear regression. Among them, I would
mention Weisberg (1985) for general statistical good sense, along with Faraway
(2004) for R practicalities, and Hastie et al. (2009) for emphasizing connections
to more advanced methods. Berk (2004) omits the details those books cover, but
is superb on the big picture, and especially on what must be assumed in order
to do certain things with linear regression and what cannot be done under any
assumption.

For some of the story of how the usual probabilistic assumptions came to have
that status, see, e.g., Lehmann (2008). On the severe issues which arise for the
usual inferential formulas when the model is incorrect, see Buja et al. (2014).

Linear regression is a special case of both additive models (Chapter 8), and of
locally linear models (§10.5). In most practical situations, additive models are a
better idea than linear ones.

Historical notes

Because linear regression is such a big part of statistical practice, its history has
been extensively treated in general histories of statistics, such as Stigler (1986)
and Porter (1986). I would particularly recommend Klein (1997) for a careful
account of how regression, on its face a method for doing comparisons at one
time across a population, came to be used to study causality and dynamics. The
paper by Lehmann (2008) mentioned earlier is also informative.

Exercises

2.1 1. Write the expected squared error of a linear predictor with slopes ~b and intercept b0
as a function of those coefficients.

2. Find the derivatives of the expected squared error with respect to all the coefficients.

3. Show that when we set all the derivatives to zero, the solutions are Eq. 2.5 and 2.6.

2.2 Show that the expected error of the optimal linear predictor, E
[
Y − ~X · β

]
, is zero.

2.3 Convince yourself that if the real regression function is linear, β does not depend on the

marginal distribution of X. You may want to start with the case of one predictor variable.

2.4 Run the code from Figure 2.5. Then replicate the plots in Figure 2.6.

2.5 Which kind of transformation is superior for the model where Y |X ∼ N (
√
X, 1)?

http://www.stat.cmu.edu/~cshalizi/TALR/
http://www.stat.cmu.edu/~cshalizi/TALR/

3

Evaluating Statistical Models: Error and
Inference

3.1 What Are Statistical Models For? Summaries, Forecasts,
Simulators

There are (at least) three ways we can use statistical models in data analysis: as
summaries of the data, as predictors, and as simulators.

The least demanding use of a model is to summarize the data — to use it for
data reduction, or compression. Just as the sample mean or sample quan-
tiles can be descriptive statistics, recording some features of the data and saying
nothing about a population or a generative process, we could use estimates of a
model’s parameters as descriptive summaries. Rather than remembering all the
points on a scatter-plot, say, we’d just remember what the OLS regression surface
was.

It’s hard to be wrong about a summary, unless we just make a mistake. (It
may not be helpful for us later, but that’s different.) When we say “the slope
which minimized the sum of squares was 4.02”, we make no claims about any-
thing but the training data. That statement relies on no assumptions, beyond our
calculating correctly. But it also asserts nothing about the rest of the world. As
soon as we try to connect our training data to anything else, we start relying on
assumptions, and we run the risk of being wrong.

Probably the most common connection to want to make is to say what other
data will look like — to make predictions. In a statistical model, with random
variables, we do not anticipate that our predictions will ever be exactly right, but
we also anticipate that our mistakes will show stable probabilistic patterns. We
can evaluate predictions based on those patterns of error — how big is our typical
mistake? are we biased in a particular direction? do we make a lot of little errors
or a few huge ones?

Statistical inference about model parameters — estimation and hypothesis test-
ing — can be seen as a kind of prediction, extrapolating from what we saw in a
small piece of data to what we would see in the whole population, or whole pro-
cess. When we estimate the regression coefficient b̂ = 4.02, that involves predicting
new values of the dependent variable, but also predicting that if we repeated the
experiment and re-estimated b̂, we’d get a value close to 4.02.

Using a model to summarize old data, or to predict new data, doesn’t commit
us to assuming that the model describes the process which generates the data.
But we often want to do that, because we want to interpret parts of the model

61

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

62 Model Evaluation

as aspects of the real world. We think that in neighborhoods where people have
more money, they spend more on houses — perhaps each extra $1000 in income
translates into an extra $4020 in house prices. Used this way, statistical models
become stories about how the data were generated. If they are accurate, we
should be able to use them to simulate that process, to step through it and
produce something that looks, probabilistically, just like the actual data. This is
often what people have in mind when they talk about scientific models, rather
than just statistical ones.

An example: if you want to predict where in the night sky the planets will be,
you can actually do very well with a model where the Earth is at the center of
the universe, and the Sun and everything else revolve around it. You can even
estimate, from data, how fast Mars (for example) goes around the Earth, or where,
in this model, it should be tonight. But, since the Earth is not at the center of the
solar system, those parameters don’t actually refer to anything in reality. They
are just mathematical fictions. On the other hand, we can also predict where the
planets will appear in the sky using models where all the planets orbit the Sun,
and the parameters of the orbit of Mars in that model do refer to reality.1

This chapter focuses on evaluating predictions, for three reasons. First, often
we just want prediction. Second, if a model can’t even predict well, it’s hard to
see how it could be right scientifically. Third, often the best way of checking a
scientific model is to turn some of its implications into statistical predictions.

3.2 Errors, In and Out of Sample

With any predictive model, we can gauge how well it works by looking at its errors.
We want these to be small; if they can’t be small all the time we’d like them to
be small on average. We may also want them to be patternless or unsystematic
(because if there was a pattern to them, why not adjust for that, and make
smaller mistakes). We’ll come back to patterns in errors later, when we look at
specification testing (Chapter 9). For now, we’ll concentrate on the size of the
errors.

To be a little more mathematical, we have a data set with points zn = z1, z2, . . . zn.
(For regression problems, think of each data point as the pair of input and output
values, so zi = (xi, yi), with xi possibly a vector.) We also have various possible
models, each with different parameter settings, conventionally written θ. For re-
gression, θ tells us which regression function to use, so mθ(x) or m(x; θ) is the
prediction we make at point x with parameters set to θ. Finally, we have a loss
function L which tells us how big the error is when we use a certain θ on a
certain data point, L(z, θ). For mean-squared error, this would just be

L(z, θ) = (y −mθ(x))
2

(3.1)

1 We can be pretty sure of this, because we use our parameter estimates to send our robots to Mars,

and they get there.

3.2 Errors, In and Out of Sample 63

But we could also use the mean absolute error

L(z, θ) = |y −mθ(x)| (3.2)

or many other loss functions. Sometimes we will actually be able to measure how
costly our mistakes are, in dollars or harm to patients. If we had a model which
gave us a distribution for the data, then pθ(z) would a probability density at z,
and a typical loss function would be the negative log-likelihood, − logmθ(z). No
matter what the loss function is, I’ll abbreviate the sample average of the loss
over the whole data set by L(zn, θ).

What we would like, ideally, is a predictive model which has zero error on
future data. We basically never achieve this:

• The world just really is a noisy and stochastic place, and this means even the
true, ideal model has non-zero error.2 This corresponds to the first, σ2

x, term
in the bias-variance decomposition, Eq. 1.28 from Chapter 1.
• Our models are usually more or less mis-specified, or, in plain words, wrong.

We hardly ever get the functional form of the regression, the distribution of
the noise, the form of the causal dependence between two factors, etc., exactly
right.3 This is the origin of the bias term in the bias-variance decomposition.
Of course we can get any of the details in the model specification more or less
wrong, and we’d prefer to be less wrong.
• Our models are never perfectly estimated. Even if our data come from a perfect

IID source, we only ever have a finite sample, and so our parameter estimates
are (almost!) never quite the true, infinite-limit values. This is the origin of
the variance term in the bias-variance decomposition. But as we get more and
more data, the sample should become more and more representative of the
whole process, and estimates should converge too.

So, because our models are flawed, we have limited data and the world is stochas-
tic, we cannot expect even the best model to have zero error. Instead, we would
like to minimize the expected error, or risk, or generalization error, on new
data.

What we would like to do is to minimize the risk or expected loss

E [L(Z, θ)] =

∫
L(z, θ)p(z)dz (3.3)

To do this, however, we’d have to be able to calculate that expectation. Doing
that would mean knowing the distribution of Z — the joint distribution of X and
Y , for the regression problem. Since we don’t know the true joint distribution,
we need to approximate it somehow.

A natural approximation is to use our training data zn. For each possible model

2 This is so even if you believe in some kind of ultimate determinism, because the variables we plug in

to our predictive models are not complete descriptions of the physical state of the universe, but

rather immensely coarser, and this coarseness shows up as randomness.
3 Except maybe in fundamental physics, and even there our predictions are about our fundamental

theories in the context of experimental set-ups, which we never model in complete detail.

64 Model Evaluation

θ, we can could calculate the sample mean of the error on the data, L(zn, θ), called
the in-sample loss or the empirical risk. The simplest strategy for estimation
is then to pick the model, the value of θ, which minimizes the in-sample loss.
This strategy is imaginatively called empirical risk minimization. Formally,

θ̂n ≡ argmin
θ∈Θ

L(zn, θ) (3.4)

This means picking the regression which minimizes the sum of squared errors,
or the density with the highest likelihood4. This is what you’ve usually done
in statistics courses so far, and it’s very natural, but it does have some issues,
notably optimism and over-fitting.

The problem of optimism comes from the fact that our training data isn’t
perfectly representative. The in-sample loss is a sample average. By the law of
large numbers, then, we anticipate that, for each θ,

L(zn, θ)→ E [L(Z, θ)] (3.5)

as n → ∞. This means that, with enough data, the in-sample error is a good
approximation to the generalization error of any given model θ. (Big samples are
representative of the underlying population or process.) But this does not mean

that the in-sample performance of θ̂ tells us how well it will generalize, because
we purposely picked it to match the training data zn. To see this, notice that the
in-sample loss equals the risk plus sampling noise:

L(zn, θ) = E [L(Z, θ)] + ηn(θ) (3.6)

Here ηn(θ) is a random term which has mean zero, and represents the effects
of having only a finite quantity of data, of size n, rather than the complete
probability distribution. (I write it ηn(θ) as a reminder that different values of
θ are going to be affected differently by the same sampling fluctuations.) The
problem, then, is that the model which minimizes the in-sample loss could be one
with good generalization performance (E [L(Z, θ)] is small), or it could be one
which got very lucky (ηn(θ) was large and negative):

θ̂n = argmin
θ∈Θ

(E [L(Z, θ)] + ηn(θ)) (3.7)

We only want to minimize E [L(Z, θ)], but we can’t separate it from ηn(θ), so

we’re almost surely going to end up picking a θ̂n which was more or less lucky
(ηn < 0) as well as good (E [L(Z, θ)] small). This is the reason why picking the
model which best fits the data tends to exaggerate how well it will do in the
future (Figure 3.1).

Again, by the law of large numbers ηn(θ) → 0 for each θ, but now we need
to worry about how fast it’s going to zero, and whether that rate depends on
θ. Suppose we knew that minθ ηn(θ) → 0, or maxθ |ηn(θ)| → 0. Then it would

4 Remember, maximizing the likelihood is the same as maximizing the log-likelihood, because log is

an increasing function. Therefore maximizing the likelihood is the same as minimizing the negative

log-likelihood.

3.2 Errors, In and Out of Sample 65

0 2 4 6 8 10

1
2

3
4

5
6

regression slope

M
S

E
 r

is
k

n <- 20
theta <- 5
x <- runif(n)
y <- x * theta + rnorm(n)
empirical.risk <- function(b) {

mean((y - b * x)^2)
}
true.risk <- function(b) {

1 + (theta - b)^2 * (0.5^2 + 1/12)
}
curve(Vectorize(empirical.risk)(x), from = 0, to = 2 * theta, xlab = "regression slope",

ylab = "MSE risk")
curve(true.risk, add = TRUE, col = "grey")

Figure 3.1 Empirical and generalization risk for regression through the
origin, Y = θX + ε, ε ∼ N (0, 1), with true θ = 5, and X ∼ Unif(0, 1). Black:
MSE on a particular sample (n = 20) as a function of slope, minimized at

θ̂ = 4.37. Grey: true or generalization risk (Exercise 3.2). The gap between
the curves is the text’s ηn(θ).

66 Model Evaluation

follow that ηn(θ̂n) → 0, and the over-optimism in using the in-sample error to
approximate the generalization error would at least be shrinking. If we knew
how fast maxθ |ηn(θ)| was going to zero, we could even say something about how
much bigger the true risk was likely to be. A lot of more advanced statistics and
machine learning theory is thus about uniform laws of large numbers (showing
maxθ |ηn(θ)| → 0) and rates of convergence.

Learning theory is a beautiful, deep, and practically important subject, but also
a subtle and involved one. (See §3.6 for references.) To stick closer to analyzing
real data, and to not turn this into an advanced probability class, I will only
talk about some more-or-less heuristic methods, which are good enough for many
purposes.

3.3 Over-Fitting and Model Selection

The big problem with using the in-sample error is related to over-optimism, but
at once trickier to grasp and more important. This is the problem of over-fitting.
To illustrate it, let’s start with Figure 3.2. This has the twenty X values from a
Gaussian distribution, and Y = 7X2 − 0.5X + ε, ε ∼ N (0, 1). That is, the true
regression curve is a parabola, with additive and independent Gaussian noise.
Let’s try fitting this — but pretend that we didn’t know that the curve was
a parabola. We’ll try fitting polynomials of different degrees in x — degree 0
(a flat line), degree 1 (a linear regression), degree 2 (quadratic regression), up
through degree 9. Figure 3.3 shows the data with the polynomial curves, and
Figure 3.4 shows the in-sample mean squared error as a function of the degree of
the polynomial.

Notice that the in-sample error goes down as the degree of the polynomial
increases; it has to. Every polynomial of degree p can also be written as a poly-
nomial of degree p+1 (with a zero coefficient for xp+1), so going to a higher-degree
model can only reduce the in-sample error. Quite generally, in fact, as one uses
more and more complex and flexible models, the in-sample error will get smaller
and smaller.5

Things are quite different if we turn to the generalization error. In principle, I
could calculate that for any of the models, since I know the true distribution, but
it would involve calculating things like E [X18], which won’t be very illuminating.
Instead, I will just draw a lot more data from the same source, twenty thousand
data points in fact, and use the error of the old models on the new data as their
generalization error6. The results are in Figure 3.5.

What is happening here is that the higher-degree polynomials — beyond degree
2 — are not just a little optimistic about how well they fit, they are wildly

5 In fact, since there are only 20 data points, they could all be fit exactly if the degree of the

polynomials went up to 19. (Remember that any two points define a line, any three points a

parabola, etc. — p+ 1 points define a polynomial of degree p which passes through them.)
6 This works, yet again, because of the law of large numbers. In Chapters 5 and especially 6, we will

see much more about replacing complicated probabilistic calculations with simple simulations, an

idea sometimes called the “Monte Carlo method”.

3.3 Over-Fitting and Model Selection 67

●

●

●●

●

●

●

●
●

●

●

● ●

●

●
●

●

●
●

●

−2 −1 0 1 2

0
10

20
30

40
50

x

y

x = rnorm(20)
y = 7 * x^2 - 0.5 * x + rnorm(20)
plot(x, y)
curve(7 * x^2 - 0.5 * x, col = "grey", add = TRUE)

Figure 3.2 Scatter-plot showing sample data and the true, quadratic
regression curve (grey parabola).

over-optimistic. The models which seemed to do notably better than a quadratic
actually do much, much worse. If we picked a polynomial regression model based
on in-sample fit, we’d chose the highest-degree polynomial available, and suffer
for it.

In this example, the more complicated models — the higher-degree polynomi-
als, with more terms and parameters — were not actually fitting the generalizable

68 Model Evaluation

●

●

●●

●

●

●

●
●

●

●

● ●

●

●
●

●

●
●

●

−2 −1 0 1 2

0
10

20
30

40
50

x

y

plot(x, y)
poly.formulae <- c("y~1", paste("y ~ poly(x,", 1:9, ")", sep = ""))
poly.formulae <- sapply(poly.formulae, as.formula)
df.plot <- data.frame(x = seq(min(x), max(x), length.out = 200))
fitted.models <- list(length = length(poly.formulae))
for (model_index in 1:length(poly.formulae)) {

fm <- lm(formula = poly.formulae[[model_index]])
lines(df.plot$x, predict(fm, newdata = df.plot), lty = model_index)
fitted.models[[model_index]] <- fm

}

Figure 3.3 Twenty training data points (dots), and ten different fitted
regression lines (polynomials of degree 0 to 9, indicated by different line
types). R notes: The poly command constructs orthogonal (uncorrelated)
polynomials of the specified degree from its first argument; regressing on them is
conceptually equivalent to regressing on 1, x, x2, . . . xdegree, but more numerically
stable. (See ?poly.) This builds a vector of model formulae and then fits each one
in turn, storing the fitted models in a new list.

3.3 Over-Fitting and Model Selection 69

●

●

● ● ●

● ● ●
● ●

0 2 4 6 8

1
2

5
10

20
50

10
0

20
0

polynomial degree

m
ea

n
sq

ua
re

d
er

ro
r

mse.q <- sapply(fitted.models, function(mdl) {
mean(residuals(mdl)^2)

})
plot(0:9, mse.q, type = "b", xlab = "polynomial degree", ylab = "mean squared error",

log = "y")

Figure 3.4 Empirical MSE vs. degree of polynomial for the data from the
previous figure. Note the logarithmic scale for the vertical axis.

features of the data. Instead, they were fitting the sampling noise, the accidents
which don’t repeat. That is, the more complicated models over-fit the data.
In terms of our earlier notation, η is bigger for the more flexible models. The
model which does best here is the quadratic, because the true regression func-
tion happens to be of that form. The more powerful, more flexible, higher-degree

70 Model Evaluation

polynomials were able to get closer to the training data, but that just meant
matching the noise better. In terms of the bias-variance decomposition, the bias
shrinks with the model degree, but the variance of estimation grows.

Notice that the models of degrees 0 and 1 also do worse than the quadratic
model — their problem is not over-fitting but under-fitting; they would do better
if they were more flexible. Plots of generalization error like this usually have a
minimum. If we have a choice of models — if we need to do model selection —
we would like to find the minimum. Even if we do not have a choice of models,
we might like to know how big the gap between our in-sample error and our
generalization error is likely to be.

There is nothing special about polynomials here. All of the same lessons apply
to variable selection in linear regression, to k-nearest neighbors (where we need
to choose k), to kernel regression (where we need to choose the bandwidth), and
to other methods we’ll see later. In every case, there is going to be a minimum
for the generalization error curve, which we’d like to find.

(A minimum with respect to what, though? In Figure 3.5, the horizontal axis
is the model degree, which here is the number of parameters [minus one for the
intercept]. More generally, however, what we care about is some measure of how
complex the model space is, which is not necessarily the same thing as the number
of parameters. What’s more relevant is how flexible the class of models is, how
many different functions it can approximate. Linear polynomials can approximate
a smaller set of functions than quadratics can, so the latter are more complex,
or have higher capacity. More advanced learning theory has a number of ways
of quantifying this, but the details get pretty arcane, and we will just use the
concept of complexity or capacity informally.)

3.4 Cross-Validation

The most straightforward way to find the generalization error would be to do
what I did above, and to use fresh, independent data from the same source —
a testing or validation data-set. Call this z′m, as opposed to our training data

zn. We fit our model to zn, and get θ̂n. The loss of this on the validation data is

E
[
L(Z, θ̂n)

]
+ η′m(θ̂n) (3.8)

where now the sampling noise on the validation set, η′m, is independent of θ̂n. So
this gives us an unbiased estimate of the generalization error, and, if m is large,
a precise one. If we need to select one model from among many, we can pick the
one which does best on the validation data, with confidence that we are not just
over-fitting.

The problem with this approach is that we absolutely, positively, cannot use any
of the validation data in estimating the model. Since collecting data is expensive
— it takes time, effort, and usually money, organization, effort and skill — this
means getting a validation data set is expensive, and we often won’t have that
luxury.

3.4 Cross-Validation 71

CAPA <- na.omit(read.csv("http://www.stat.cmu.edu/~cshalizi/uADA/13/hw/01/calif_penn_2011.csv"))
half_A <- sample(1:nrow(CAPA), size = nrow(CAPA)/2, replace = FALSE)
half_B <- setdiff(1:nrow(CAPA), half_A)
small_formula = "Median_house_value ~ Median_household_income"
large_formula = "Median_house_value ~ Median_household_income + Median_rooms"
small_formula <- as.formula(small_formula)
large_formula <- as.formula(large_formula)
msmall <- lm(small_formula, data = CAPA, subset = half_A)
mlarge <- lm(large_formula, data = CAPA, subset = half_A)
in.sample.mse <- function(model) {

mean(residuals(model)^2)
}
new.sample.mse <- function(model, half) {

test <- CAPA[half,]
predictions <- predict(model, newdata = test)
return(mean((test$Median_house_value - predictions)^2))

}

Code Example 2: Code used to generate the numbers in Figure 3.7.

3.4.1 Data Splitting

The next logical step, however, is to realize that we don’t strictly need a separate
validation set. We can just take our data and split it ourselves into training and
testing sets. If we divide the data into two parts at random, we ensure that they
have (as much as possible) the same distribution, and that they are independent
of each other. Then we can act just as though we had a real validation set. Fitting
to one part of the data, and evaluating on the other, gives us an unbiased estimate
of generalization error. Of course it doesn’t matter which half of the data is used
to train and which half is used to test.

Figure 3.7 illustrates the idea with a bit of the data and linear models from
§10, and Code Example 2 shows the code used to make Figure 3.7.

3.4.2 k-Fold Cross-Validation (CV)

The problem with data splitting is that, while it’s an unbiased estimate of the
risk, it is often a very noisy one. If we split the data evenly, then the test set has
n/2 data points — we’ve cut in half the number of sample points we’re averaging
over. It would be nice if we could reduce that noise somewhat, especially if we
are going to use this for model selection.

One solution to this, which is pretty much the industry standard, is what’s
called k-fold cross-validation. Pick a small integer k, usually 5 or 10, and
divide the data at random into k equally-sized subsets. (The subsets are often
called “folds”.) Take the first subset and make it the test set; fit the models to
the rest of the data, and evaluate their predictions on the test set. Now make
the second subset the test set and the rest of the training sets. Repeat until each
subset has been the test set. At the end, average the performance across test sets.
This is the cross-validated estimate of generalization error for each model. Model

72 Model Evaluation

cv.lm <- function(data, formulae, nfolds = 5) {
data <- na.omit(data)
formulae <- sapply(formulae, as.formula)
n <- nrow(data)
fold.labels <- sample(rep(1:nfolds, length.out = n))
mses <- matrix(NA, nrow = nfolds, ncol = length(formulae))
colnames <- as.character(formulae)
for (fold in 1:nfolds) {

test.rows <- which(fold.labels == fold)
train <- data[-test.rows,]
test <- data[test.rows,]
for (form in 1:length(formulae)) {

current.model <- lm(formula = formulae[[form]], data = train)
predictions <- predict(current.model, newdata = test)
test.responses <- eval(formulae[[form]][[2]], envir = test)
test.errors <- test.responses - predictions
mses[fold, form] <- mean(test.errors^2)

}
}
return(colMeans(mses))

}

Code Example 3: Function to do k-fold cross-validation on linear models, given as a vector (or
list) of model formulae. Note that this only returns the CV MSE, not the parameter estimates
on each fold.

selection then picks the model with the smallest estimated risk.7 Code Example
3 performs k-fold cross-validation for linear models specified by formulae.

The reason cross-validation works is that it uses the existing data to simulate
the process of generalizing to new data. If the full sample is large, then even the
smaller portion of it in the testing data is, with high probability, fairly represen-
tative of the data-generating process. Randomly dividing the data into training
and test sets makes it very unlikely that the division is rigged to favor any one
model class, over and above what it would do on real new data. Of course the
original data set is never perfectly representative of the full data, and a smaller
testing set is even less representative, so this isn’t ideal, but the approximation is
often quite good. k-fold CV is fairly good at getting the relative order of different
models right, that is, at controlling over-fitting.8 Figure 3.8 demonstrates these
points for the polynomial fits we considered earlier (in Figures 3.3–3.5).

Cross-validation is probably the most widely-used method for model selection,
and for picking control settings, in modern statistics. There are circumstances
where it can fail — especially if you give it too many models to pick among —

7 A closely related procedure, sometimes also called “k-fold CV”, is to pick 1/k of the data points at

random to be the test set (using the rest as a training set), and then pick an independent 1/k of the

data points as the test set, etc., repeating k times and averaging. The differences are subtle, but

what’s described in the main text makes sure that each point is used in the test set just once.
8 The cross-validation score for the selected model still tends to be somewhat over-optimistic, because

it’s still picking the luckiest model — though the influence of luck is much attenuated. Tibshirani

and Tibshirani (2009) provides a simple correction.

3.4 Cross-Validation 73

but it’s the first thought of seasoned practitioners, and it should be your first
thought, too. The assignments to come will make you very familiar with it.

3.4.3 Leave-one-out Cross-Validation

Suppose we did k-fold cross-validation, but with k = n. Our testing sets would
then consist of single points, and each point would be used in testing once. This
is called leave-one-out cross-validation. It actually came before k-fold cross-
validation, and has three advantages. First, because it estimates the performance
of a model trained with n− 1 data points, it’s less biased as an estimator of the
performance of a model trained with n data points than is k-fold cross-validation,
which uses k−1

k
n data points. Second, leave-one-out doesn’t require any random

number generation, or keeping track of which data point is in which subset. Third,
and more importantly, because we are only testing on one data point, it’s often
possible to find what the prediction on the left-out point would be by doing
calculations on a model fit to the whole data. (See p. 3.4.3 below.) This means
that we only have to fit each model once, rather than k times, which can be a
big savings of computing time.

The drawback to leave-one-out CV is subtle but often decisive. Since each
training set has n− 1 points, any two training sets must share n− 2 points. The
models fit to those training sets tend to be strongly correlated with each other.
Even though we are averaging n out-of-sample forecasts, those are correlated
forecasts, so we are not really averaging away all that much noise. With k-fold
CV, on the other hand, the fraction of data shared between any two training
sets is just k−2

k−1
, not n−2

n−1
, so even though the number of terms being averaged is

smaller, they are less correlated.
There are situations where this issue doesn’t really matter, or where it’s over-

whelmed by leave-one-out’s advantages in speed and simplicity, so there is cer-
tainly still a place for it, but one subordinate to k-fold CV.9

A Short-cut for Linear Smoothers

Suppose the model m is a linear smoother (§1.5). For each of the data points
i, then, the predicted value is a linear combination of the observed values of y,
m(xi) =

∑
j ŵ(xi, xj)yj (Eq. 1.53). As in §1.5.3, define the “influence”, “smooth-

ing” or “hat” matrix ŵ by ŵij = ŵ(xi, xj). What happens when we hold back
data point i, and then make a prediction at xi? Well, the observed response at i
can’t contribute to the prediction, but otherwise the linear smoother should work

9 At this point, it may be appropriate to say a few words about the Akaike information criterion, or

AIC. AIC also tries to estimate how well a model will generalize to new data. It’s known that, under

standard assumptions, as the sample size gets large, leave-one-out CV actually gives the same

estimate as AIC for well-specified models. However, there do not seem to be any situations where

AIC works where leave-one-out CV does not work at least as well. So AIC is really a very fast, but

often very crude, approximation to the more accurate cross-validation. See §D.5.5.3 for more details

and references.

74 Model Evaluation

as before, so

m(−i)(xi) =
(ŵy)i − ŵiiyi

1− ŵii
(3.9)

The numerator just removes the contribution to m(xi) that came from yi, and the
denominator just re-normalizes the weights in the smoother. Now a little algebra
says that

yi −m(−i)(xi) =
yi −m(xi)

1− ŵii
(3.10)

The quantity on the left of that equation is what we want to square and average
to get the leave-one-out CV score, but everything on the right can be calculated
from the fit we did to the whole data. The leave-one-out CV score is therefore

1

n

n∑
i=1

(
yi −m(xi)

1− ŵii

)2

(3.11)

Thus, if we restrict ourselves to leave-one-out and to linear smoothers, we can
calculate the CV score with just one estimation on the whole data, rather than
n re-estimates.

An even faster approximation that this is what’s called “generalized” cross-
validation, which is just the in-sample MSE divided by (1− n−1 tr ŵ)2. That is,
rather than dividing each term in Eq. 3.11 by a unique factor that depends on
its own diagonal entry in the hat matrix, we use the average of all the diagonal
entries, n−1 tr ŵ. (Recall from §1.5.3.2 that tr ŵ is the number of effective degrees
of freedom for a linear smoother.) In addition to speed, this tends to reduce the
influence of points with high values of ŵii, which may or may not be desirable.

3.5 Warnings

Some caveats are in order.

1. All of the model-selection methods I have described, and almost all others in
the literature, aim at getting models which will generalize well to new data,
if it follows the same distribution as old data. Generalizing well even when
distributions change is a much harder and much less well-understood problem
(Quiñonero-Candela et al., 2009). It is particularly troublesome for a lot of
applications involving large numbers of human beings, because society keeps
changing all the time — variables vary by definition, but the relationships
between variables also change. (That’s history.)

2. All of the standard theory of statistical inference you have learned so far
presumes that you have a model which was fixed in advance of seeing the
data. If you use the data to select the model, that theory becomes invalid, and
it will no longer give you correct p-values for hypothesis tests, confidence sets
for parameters, etc., etc. Typically, using the same data both to select a model
and to do inference leads to too much confidence that the model is correct,
significant, and estimated precisely.

3.5 Warnings 75

3. All the model selection methods we have discussed aim at getting models which
predict well. This is not necessarily the same as getting the true theory of the
world. Presumably the true theory will also predict well, but the converse
does not necessarily follow. We have seen (Fig. 1.3), and will see again (§9.2),
examples of false but low-capacity models out-predicting correctly specified
models at small n, because the former have such low variance of estimation.

The last two items — combining selection with inference, and parameter inter-
pretation — deserve elaboration.

3.5.1 Inference after Selection

You have, by this point, learned a lot of inferential statistics — how to test various
hypotheses, calculate p-values, find confidence regions, etc. Most likely, you have
been taught procedures or calculations which all presume that the model you
are working with is fixed in advance of seeing the data. But, of course, if you do
model selection, the model you do inference within is not fixed in advance, but is
actually a function of the data. What happens then?

This depends on whether you do inference with the same data used to select
the model, or with another, independent data set. If it’s the same data, then all of
the inferential statistics become invalid — none of the calculations of probabilities
on which they rest are right any more. Typically, if you select a model so that it
fits the data well, what happens is that confidence regions become too small10,
as do p-values for testing hypotheses about parameters. Nothing can be trusted
as it stands.

The essential difficulty is this: Your data are random variables. Since you’re
doing model selection, making your model a function of the data, that means
your model is random too. That means there is some extra randomness in your
estimated parameters (and everything else), which isn’t accounted for by formulas
which assume a fixed model (Exercise 3.4). This is not just a problem with formal
model-selection devices like cross-validation. If you do an initial, exploratory data
analysis before deciding which model to use — and that’s generally a good idea
— you are, yourself, acting as a noisy, complicated model-selection device.

There are three main approaches to this issue of post-selection inference.

1. Ignore it. This can actually make sense if you don’t really care about doing in-
ference within your selected model, you just care about what model is selected.
Otherwise, I can’t recommend it.

2. Beat it with more statistical theory. There is, as I write, a lot of interest among
statisticians in working out exactly what happens to sampling distributions
under various combinations of models, model-selection methods, and assump-
tions about the true, data-generating process. Since this is an active area of
research in statistical theory, I will pass it by, with some references in §3.6.

10 Or, if you prefer, the same confidence region really has a lower confidence level, a lower probability

of containing or covering the truth, than you think it does.

76 Model Evaluation

3. Evade it with an independent data set. Remember that if the events A and B
are probabilistically independent, then Pr (A|B) = Pr (A). Now set A = “the
confidence set we calculated from this new data covers the truth” and B =
“the model selected from this old data was such-and-such”. So long as the
old and the new data are independent, it doesn’t matter that the model was
selected using data, rather than being fixed in advance.

The last approach is of course our old friend data splitting (§3.4.1). We divide
the data into two parts, and we use one of them to select the model. We then
re-estimate the selected model on the other part of the data, and only use that
second part in calculating our inferential statistics. Experimentally, using part of
the data to do selection, and then all of the data to do inference, does not work
as well as a strict split (Faraway, 2016). Using equal amounts of data for selection
and for inference is somewhat arbitrary, but, again it’s not clear that there’s a
much better division.

Of course, if you only use a portion of your data to calculate confidence regions,
they will typically be larger than if you used all of the data. (Or, if you’re running
hypothesis tests, fewer coefficients will be significantly different from zero, etc.)
This drawback is more apparent than real, since using all of your data to select
a model and do inference gives you apparently-precise confidence regions which
aren’t actually valid.

The simple data-splitting approach to combining model selection and inference
only works if the individual data points were independent to begin with. When
we deal with dependent data, in Part IV, other approaches will be necessary.

3.5.2 Parameter Interpretation

In many situations, it is very natural to want to attach some substantive, real-
world meaning to the parameters of our statistical model, or at least to some of
them. I have mentioned examples above like astronomy, and it is easy to come
up with many others from the natural sciences. This is also extremely common
in the social sciences. It is fair to say that this is much less carefully attended to
than it should be.

To take just one example, consider the paper “Luther and Suleyman” by Prof.
Murat Iyigun (Iyigun, 2008). The major idea of the paper is to try to help explain
why the Protestant Reformation was not wiped out during the European wars
of religion (or alternately, why the Protestants did not crush all the Catholic
powers), leading western Europe to have a mixture of religions, with profound
consequences. Iyigun’s contention is that the European Christians were so busy
fighting the Ottoman Turks, or perhaps so afraid of what might happen if they did
not, that conflicts among the Europeans were suppressed. To quote his abstract:

at the turn of the sixteenth century, Ottoman conquests lowered the number of all newly initiated
conflicts among the Europeans roughly by 25 percent, while they dampened all longer-running
feuds by more than 15 percent. The Ottomans’ military activities influenced the length of intra-
European feuds too, with each Ottoman-European military engagement shortening the duration
of intra-European conflicts by more than 50 percent.

3.6 Further Reading 77

To back this up, and provide those quantitative figures, Prof. Iyigun estimates
linear regression models, of the form11

Yt = β0 + β1Xt + β2Zt + β3Ut + εt (3.12)

where Yt is “the number of violent conflicts initiated among or within continental
European countries at time t”12, Xt is “the number of conflicts in which the
Ottoman Empire confronted European powers at time t”, Zt is “the count at
time t of the newly initiated number of Ottoman conflicts with others and its
own domestic civil discords”, Ut is control variables reflecting things like the
availability of harvests to feed armies, and εt is Gaussian noise.

The qualitative idea here, about the influence of the Ottoman Empire on the
European wars of religion, has been suggested by quite a few historians before13.
The point of this paper is to support this rigorously, and make it precise. That
support and precision requires Eq. 3.12 to be an accurate depiction of at least
part of the process which led European powers to fight wars of religion. Prof.
Iyigun, after all, wants to be able to interpret a negative estimate of β1 as saying
that fighting off the Ottomans kept Christians from fighting each other. If Eq.
3.12 is inaccurate, if the model is badly mis-specified, however, β1 becomes the
best approximation to the truth within a systematically wrong model, and the
support for claims like “Ottoman conquests lowered the number of all newly
initiated conflicts among the Europeans roughly by 25 percent” drains away.

To back up the use of Eq. 3.12, Prof. Iyigun looks at a range of slightly different
linear-model specifications (e.g., regress the number of intra-Christian conflicts
in year t on the number of Ottoman attacks in year t − 1), and slightly differ-
ent methods of estimating the parameters. What he does not do is look at the
other implications of the model: that residuals should be (at least approximately)
Gaussian, that they should be unpredictable from the regressor variables. He does
not look at whether the relationships he thinks are linear really are linear (see
Chapters 4, 8, and 9). He does not try to simulate his model and look at whether
the patterns of European wars it produces resemble actual history (see Chapter
5). He does not try to check whether he has a model which really supports causal
inference, though he has a causal question (see Part III).

I do not say any of this to denigrate Prof. Iyigun. His paper is actually much
better than most quantitative work in the social sciences. This is reflected by the
fact that it was published in the Quarterly Journal of Economics, one of the most
prestigious, and rigorously-reviewed, journals in the field. The point is that by
the end of this course, you will have the tools to do better.

3.6 Further Reading

Data splitting and cross-validation go back in statistical practice for many decades,
though often as a very informal tool. One of the first important papers on the

11 His Eq. 1 on pp. 1473; I have modified the notation to match mine.
12 In one part of the paper; he uses other dependent variables elsewhere.
13 See §1–2 of Iyigun (2008), and MacCulloch (2004, passim).

78 Model Evaluation

subject was Stone (1974), which goes over the earlier history. Arlot and Celisse
(2010) is a good recent review of cross-validation. Faraway (1992, 2016) reviews
computational evidence that data splitting reduces the over-confidence that re-
sults from model selection even if one only wants to do prediction. Györfi et al.
(2002, chs. 7–8) has important results on data splitting and cross-validation,
though the proofs are much more advanced than this book.

Some comparatively easy starting points on statistical learning theory are
Kearns and Vazirani (1994), Cristianini and Shawe-Taylor (2000) and Mohri et al.
(2012). At a more advanced level, look at the tutorial papers by Bousquet et al.
(2004); von Luxburg and Schölkopf (2008), or the textbooks by Vidyasagar (2003)
and by Anthony and Bartlett (1999) (the latter is much more general than its title
suggests), or read the book by Vapnik (2000) (one of the founders). Hastie et al.
(2009), while invaluable, is much more oriented towards models and practical
methods than towards learning theory.

On model selection in general, the best recent summary is the book by Claeskens
and Hjort (2008); it is more theoretically demanding than this book, but includes
many real-data examples.

The literature on doing statistical inference after model selection by accounting
for selection effects, rather than simple data splitting, is already large and rapidly
growing. Taylor and Tibshirani (2015) is a comparatively readable introduction
to the “selective inference” approach associated with those authors and their
collaborators. Tibshirani et al. (2015) draws connections between this approach
and the bootstrap (ch. 6). Berk et al. (2013) provides yet another approach to
post-selection inference; nor is this an exhaustive list.

White (1994) is a thorough treatment of parameter estimation in models which
may be mis-specified, and some general tests for mis-specification. It also briefly
discusses the interpretation of parameters in mis-specified models. That topic
deserves a more in-depth treatment, but I don’t know of a really good one.

Exercises

3.1 Suppose that one of our model classes contains the true and correct model, but we also

consider more complicated and flexible model classes. Does the bias-variance trade-off

mean that we will over-shoot the true model, and always go for something more flexible,

when we have enough data? (This would mean there was such a thing as too much data

to be reliable.)

3.2 Derive the formula for the generalization risk in the situation depicted in Figure 3.1, as

given by the true.risk function in the code for that figure. In particular, explain to

yourself where the constants 0.52 and 1/12 come from.

3.3 “Optimism” and degrees of freedom Suppose we get data of the form Yi = µ(xi) + εi,

where the noise terms εi have mean zero, are uncorrelated, and all have variance σ2. We

use a linear smoother (§1.5) to estimate µ̂ from n such data points. The optimism of the

estimate is

E

[
1

n

n∑
i=1

(Y ′i − µ̂(xi))
2

]
− E

[
1

n

n∑
i=1

(Yi − µ̂(xi))
2

]
(3.13)

Exercises 79

where Y ′i is an independent copy of Yi. That is, the optimism is the difference between

the in-sample MSE, and how well the model would predict on new data taken at exactly

the same xi values.

1. Find a formula for the optimism in terms of n, σ2, and the number of effective degrees

of freedom (in the sense of §1.5.3).

2. When (and why) does E
[

1
n

∑n
i=1 (Y ′i − µ̂(xi))

2
]

differ from the risk?

(Cf. §D.5.4.3.)

3.4 The perils of post-selection inference, and data splitting to the rescue14 Generate a 1000×
101 array, where all the entries are IID standard Gaussian variables. We’ll call the first

column the response variable Y , and the others the predictors X1, . . . X100. By design,

there is no true relationship between the response and the predictors (but all the usual

linear-Gaussian-modeling assumptions hold).

1. Estimate the model Y = β0 + β1X1 + β50X50 + ε. Extract the p-value for the F test

of the whole model. Repeat the simulation, estimation and testing 100 times, and plot

the histogram of the p-values. What does it look like? What should it look like?

2. Use the step function to select a linear model by forward stepwise selection. Extract the

p-value for the F -test of the selected model. Repeat 100 times and plot the histogram

of p-values. Explain what’s going on.

3. Again use step to select a model based on one random 1000×101 array. Now re-estimate

the selected model on a new 1000 × 101 array, and extract the new p-value. Repeat

100 times, with new selection and inference sets each time, and plot the histogram of

p-values.

14 Inspired by Freedman (1983).

80 Model Evaluation

●
●

● ● ●
● ● ●

● ●

0 2 4 6 8

1
10

10
0

10
00

10
00

0

polynomial degree

m
ea

n
sq

ua
re

d
er

ro
r

x.new = rnorm(20000)
y.new = 7 * x.new^2 - 0.5 * x.new + rnorm(20000)
gmse <- function(mdl) {

mean((y.new - predict(mdl, data.frame(x = x.new)))^2)
}
gmse.q <- sapply(fitted.models, gmse)
plot(0:9, mse.q, type = "b", xlab = "polynomial degree", ylab = "mean squared error",

log = "y", ylim = c(min(mse.q), max(gmse.q)))
lines(0:9, gmse.q, lty = 2, col = "blue")
points(0:9, gmse.q, pch = 24, col = "blue")

Figure 3.5 In-sample error (black dots) compared to generalization error
(blue triangles). Note the logarithmic scale for the vertical axis.

Exercises 81

●

●

● ● ● ● ● ● ● ●

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

polynomial degree

R
2

●

●

● ● ● ● ● ● ● ●

R2

Radj
2

extract.rsqd <- function(mdl) {
c(summary(mdl)$r.squared, summary(mdl)$adj.r.squared)

}
rsqd.q <- sapply(fitted.models, extract.rsqd)
plot(0:9, rsqd.q[1,], type = "b", xlab = "polynomial degree", ylab = expression(R^2),

ylim = c(0, 1))
lines(0:9, rsqd.q[2,], type = "b", lty = "dashed")
legend("bottomright", legend = c(expression(R^2), expression(R[adj]^2)), lty = c("solid",

"dashed"))

Figure 3.6 R2 and adjusted R2 for the polynomial fits, to reinforce
§2.2.1.1’s point that neither statistic is a useful measure of how well a model
fits, or a good criteria for picking among models.

82 Model Evaluation

Median house value Median household income Median rooms

2 909600 111667 6.0

3 748700 66094 4.6

4 773600 87306 5.0

5 579200 62386 4.5

11274 209500 56667 6.0

11275 253400 71638 6.6

Median house value Median household income Median rooms

3 748700 66094 4.6

4 773600 87306 5.0

11275 253400 71638 6.6

Median house value Median household income Median rooms

2 909600 111667 6.0

5 579200 62386 4.5

11274 209500 56667 6.0

RMSE(A→ A) RMSE(A→ B)

Income only 1.6215652× 105 1.6078767× 105

Income + Rooms 1.2831218× 105 1.2576588× 105

Figure 3.7 Example of data splitting. The top table shows three columns
and seven rows of the housing-price data used in §10. I then randomly split
this into two equally-sized parts (next two tables). I estimate a linear model
which predicts house value from income alone, and another model which
predicts from income and the median number of rooms, on the first half.
The third table fourth row shows the performance of each estimated model
both on the first half of the data (left column) and on the second (right
column). The latter is a valid estimate of generalization error. The larger
model always has a lower in-sample error, whether or not it is really better,
so the in-sample MSEs provide little evidence that we should use the larger
model. Having a lower score under data splitting, however, is evidence that
the larger model generalizes better. (For R commands used to get these
numbers, see Code Example 2.)

Exercises 83

●
●

● ● ●
● ● ●

● ●

0 2 4 6 8

1
10

10
0

10
00

10
00

0

polynomial degree

m
ea

n
sq

ua
re

d
er

ro
r

● In−sample
Generalization
CV

little.df <- data.frame(x = x, y = y)
cv.q <- cv.lm(little.df, poly.formulae)
plot(0:9, mse.q, type = "b", xlab = "polynomial degree", ylab = "mean squared error",

log = "y", ylim = c(min(mse.q), max(gmse.q)))
lines(0:9, gmse.q, lty = 2, col = "blue", type = "b", pch = 2)
lines(0:9, cv.q, lty = 3, col = "red", type = "b", pch = 3)
legend("topleft", legend = c("In-sample", "Generalization", "CV"), col = c("black",

"blue", "red"), lty = 1:3, pch = 1:3)

Figure 3.8 In-sample, generalization, and cross-validated MSE for the
polynomial fits of Figures 3.3, 3.4 and 3.5. Note that the cross-validation is
done entirely within the initial set of only 20 data points.

4

Using Nonparametric Smoothing in
Regression

Having spent long enough running down linear regression, and thought through
evaluating predictive models, it is time to turn to constructive alternatives, which
are (also) based on smoothing.

Recall the basic kind of smoothing we are interested in: we have a response
variable Y , some input variables which we bind up into a vector X, and a col-
lection of data values, (x1, y1), (x2, y2), . . . (xn, yn). By “smoothing”, I mean that
predictions are going to be weighted averages of the observed responses in the
training data:

µ̂(x) =
n∑
i=1

yiw(x, xi, h) (4.1)

Most smoothing methods have a control setting, here written h, that says how
much to smooth. With k nearest neighbors, for instance, the weights are 1/k if
xi is one of the k-nearest points to x, and w = 0 otherwise, so large k means that
each prediction is an average over many training points. Similarly with kernel
regression, where the degree of smoothing is controlled by the bandwidth.

Why do we want to do this? How do we pick how much smoothing to do?

4.1 How Much Should We Smooth?

When we smooth very little (h→ 0), then we can match very small, fine-grained
or sharp aspects of the true regression function, if there are such. That is, less
smoothing leads to less bias. At the same time, less smoothing means that each of
our predictions is going to be an average over (in effect) fewer observations, mak-
ing the prediction noisier. Smoothing less increases the variance of our estimate.
Since

(total error) = (noise) + (bias)2 + (variance) (4.2)

(Eq. 1.28), if we plot the different components of error as a function of h, we
typically get something that looks like Figure 4.1. Because changing the amount
of smoothing has opposite effects on the bias and the variance, there is an optimal
amount of smoothing, where we can’t reduce one source of error without increas-
ing the other. We therefore want to find that optimal amount of smoothing, which
is where cross-validation comes in.

You should note, at this point, that the optimal amount of smoothing depends

84

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

4.2 Adapting to Unknown Roughness 85

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Smoothing

G
en

er
al

iz
at

io
n

er
ro

r

curve(2 * x^4, from = 0, to = 1, lty = 2, xlab = "Smoothing", ylab = "Generalization error")
curve(0.12 + x - x, lty = 3, add = TRUE)
curve(1/(10 * x), lty = 4, add = TRUE)
curve(0.12 + 2 * x^4 + 1/(10 * x), add = TRUE)

Figure 4.1 Decomposition of the generalization error of smoothing: the
total error (solid) equals process noise (dotted) plus approximation error
from smoothing (=squared bias, dashed) and estimation variance
(dot-and-dash). The numerical values here are arbitrary, but the functional
forms (squared bias ∝ h4, variance ∝ n−1h−1) are representative of kernel
regression (Eq. 4.12).

on the real regression curve, on our smoothing method, and on how much data we
have. This is because the variance contribution generally shrinks as we get more
data.1 If we get more data, we go from Figure 4.1 to Figure 4.2. The minimum
of the over-all error curve has shifted to the left, and we should smooth less.

Strictly speaking, parameters are properties of the data-generating process
alone, so the optimal amount of smoothing is not really a parameter. If you do
think of it as a parameter, you have the problem of why the “true” value changes
as you get more data. It’s better thought of as a setting or control variable in
the smoothing method, to be adjusted as convenient.

4.2 Adapting to Unknown Roughness

Figure 4.3, which graphs two functions, r and s. Both are “smooth” functions in
the mathematical sense2. We could Taylor-expand both functions to approximate
their values anywhere, just from knowing enough derivatives at one point x0.3 If

1 Sometimes bias changes as well. Noise does not (why?).
2 They are “C∞”: continuous, with continuous derivatives to all orders.
3 See App. B for a refresher on Taylor expansions.

86 Smoothing in Regression

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Smoothing

G
en

er
al

iz
at

io
n

er
ro

r

curve(2 * x^4, from = 0, to = 1, lty = 2, xlab = "Smoothing", ylab = "Generalization error")
curve(0.12 + x - x, lty = 3, add = TRUE)
curve(1/(10 * x), lty = 4, add = TRUE, col = "grey")
curve(0.12 + 2 * x^2 + 1/(10 * x), add = TRUE, col = "grey")
curve(1/(30 * x), lty = 4, add = TRUE)
curve(0.12 + 2 * x^4 + 1/(30 * x), add = TRUE)

Figure 4.2 Consequences of adding more data to the components of error:
noise (dotted) and bias (dashed) don’t change, but the new variance curve
(dotted and dashed, black) is to the left of the old (greyed), so the new
over-all error curve (solid black) is lower, and has its minimum at a smaller
amount of smoothing than the old (solid grey).

instead of knowing the derivatives at x0 we have the values of the functions at a
sequence of points x1, x2, . . . xn, we could use interpolation to fill out the rest of
the curve. Quantitatively, however, r is less smooth than s — it changes much
more rapidly, with many reversals of direction. For the same degree of accuracy
in the interpolation r needs more, and more closely spaced, training points xi
than does s.

Now suppose that we don’t get to actually get to see r and s, but rather just
r(x)+ε and s(x)+η, for various x, where ε and η are noise. (To keep things simple
I’ll assume they’re constant-variance, IID Gaussian noises, say with σ = 0.15.)
The data now look something like Figure 4.4. Can we recover the curves?

As remarked in Chapter 1, if we had many measurements at the same x, then
we could find the expectation value by averaging: the regression function µ(x) =
E [Y |X = x], so with multiple observations xi = x, the mean of the corresponding
yi would (by the law of large numbers) converge on µ(x). Generally, however, we
have at most one measurement per value of x, so simple averaging won’t work.
Even if we just confine ourselves to the xi where we have observations, the mean-

4.2 Adapting to Unknown Roughness 87

squared error would always be σ2, the noise variance. However, our estimate
would be unbiased.

Smoothing methods try to use multiple measurements at points xi which are
near the point of interest x. If the regression function is smooth, as we’re assuming
it is, µ(xi) will be close to µ(x). Remember that the mean-squared error is the
sum of bias (squared) and variance. Averaging values at xi 6= x is going to
introduce bias, but averaging independent terms together also reduces variance.
If smoothing gets rid of more variance than it adds bias, we come out ahead.

Here’s a little math to see it. Let’s assume that we can do a first-order Taylor
expansion (Figure B.1), so

µ(xi) ≈ µ(x) + (xi − x)µ′(x) (4.3)

and

yi ≈ µ(x) + (xi − x)µ′(x) + εi (4.4)

Now we average: to keep the notation simple, abbreviate the weight w(xi, x, h)
by just wi.

µ̂(x) =
n∑
i=1

yiwi (4.5)

=
n∑
i=1

(µ(x) + (xi − x)µ′(x) + εi)wi (4.6)

= µ(x) +
n∑
i=1

wiεi + µ′(x)
n∑
i=1

wi(xi − x) (4.7)

µ̂(x)− µ(x) =
n∑
i=1

wiεi + µ′(x)
n∑
i=1

wi(xi − x) (4.8)

E
[
(µ̂(x)− µ(x))2

]
= σ2

n∑
i=1

w2
i + E

(µ′(x)
n∑
i=1

wi(xi − x)

)2
 (4.9)

(Remember that:
∑
wi = 1; E [εi] = 0; ε is uncorrelated with everything; and

V [εi] = σ2.)
The first term on the final right-hand side is an estimation variance, which will

tend to shrink as n grows. (If we just did a simple global mean, wi = 1/n for all
i, so we’d get σ2/n, just like in baby stats.) The second term, an expectation,
is bias, which grows as xi gets further from x, and as the magnitudes of the
derivatives grow, i.e., this term’s growth varies with how smooth or wiggly the
regression function is. For smoothing to work, wi had better shrink as xi−x and
µ′(x) grow.4 Finally, all else being equal, wi should also shrink with n, so that
the over-all size of the sum shrinks as we get more data.

4 The higher derivatives of µ also matter, since we should really keep more than just the first term in

the Taylor expansion. The details get messy, but Eq. 4.12 below gives the upshot for kernel

smoothing.

88 Smoothing in Regression

To illustrate, let’s try to estimate r(1.6) and s(1.6) from the noisy observations.
We’ll try a simple approach, just averaging all values of r(xi) + εi and s(xi) + ηi
for 1.5 < xi < 1.7 with equal weights. For r, this gives 0.71, while r(1.6) = 0.83.
For g, this gives 1, with s(1.6) = 0.96. (See figure 4.5.) The same window size
creates a much larger bias with the rougher, more rapidly changing r than with
the smoother, more slowly changing s. Varying the size of the averaging window
will change the amount of error, and it will change it in different ways for the
two functions.

If one does a more careful second-order Taylor expansion like that leading to
Eq. 4.9, specifically for kernel regression, one can show that the bias at x is

E [µ̂(x)− µ(x)|X1 = x1, . . . Xn = xn] = h2

[
1

2
µ′′(x) +

µ′(x)f ′(x)

f(x)

]
σ2
K + o(h2)

(4.10)
where f is the density of x, and σ2

K =
∫
u2K(u)du, the variance of the probability

density corresponding to the kernel5. The µ′′ term just comes from the second-
order part of the Taylor expansion. To see where the µ′f ′ term comes from,
imagine first that x is a mode of the distribution, so f ′(x) = 0. As h shrinks, only
training points where Xi is very close to x will have any weight in µ̂(x), and their
distribution will be roughly symmetric around x (at least once h is sufficiently
small). So, at mode, E [w(Xi, x, h)(Xi − x)µ̂(x)] ≈ 0. Away from a mode, there
will tend to be more training points on one side or the other of x, depending
on the sign of f ′(x), and this induces a bias. The tricky part of the analysis is
concluding that the bias has exactly the form given above.6

One can also work out the variance of the kernel regression estimate,

V [µ̂(x)|X1 = x1, . . . Xn = xn] =
σ2(x)R(K)

nhf(x)
+ o((nh)−1) (4.11)

where R(K) ≡
∫
K2(u)du. Roughly speaking, the width of the region where the

kernel puts non-trivial weight is about h, so there will be about nhf(x) training
points available to estimate µ̂(x). Each of these has a yi value, equal to µ(x) plus
noise of variance σ2(x). The final factor of R(K) accounts for the average weight.

Putting the bias together with the variance, we get an expression for the mean
squared error of the kernel regression at x:

MSE(x) = σ2(x)+h4

[
1

2
µ′′(x) +

µ′(x)f ′(x)

f(x)

]2

(σ2
K)2+

σ2(x)R(K)

nhf(x)
+o(h4)+o((nh)−1)

(4.12)
Eq. 4.12 tells us that, in principle, there is a single optimal choice of bandwidth
h, an optimal degree of smoothing. We could find it by taking Eq. 4.12, differen-
tiating with respect to the bandwidth, and setting everything to zero (neglecting

5 If you are not familiar with the “order” symbols O and o, see Appendix A.
6 Exercise 4.1 sketches the demonstration for the special case of the uniform (“boxcar”) kernel.

4.2 Adapting to Unknown Roughness 89

the o terms):

0 = 4h3

[
1

2
µ′′(x) +

µ′(x)f ′(x)

f(x)

]2

(σ2
K)2 − σ2(x)R(K)

nh2f(x)
(4.13)

h =

n4f(x)(σ2
K)2
[

1
2
µ′′(x) + µ′(x)f ′(x)

f(x)

]2

σ2(x)R(K)

−1/5

(4.14)

Of course, this expression for the optimal h involves the unknown derivatives µ′(x)
and µ′′(x), plus the unknown density f(x) and its unknown derivative f ′(x). But
if we knew the derivative of the regression function, we would basically know the
function itself (just integrate), so we seem to be in a vicious circle, where we need
to know the function before we can learn it.7

One way of expressing this is to talk about how well a smoothing procedure
would work, if an Oracle were to tell us the derivatives, or (to cut to the chase)
the optimal bandwidth hopt. Since most of us do not have access to such oracles,

we need to estimate hopt. Once we have this estimate, ĥ, then we get our weights
and our predictions, and so a certain mean-squared error. Basically, our MSE will
be the Oracle’s MSE, plus an extra term which depends on how far ĥ is to hopt,
and how sensitive the smoother is to the choice of bandwidth.

What would be really nice would be an adaptive procedure, one where our
actual MSE, using ĥ, approaches the Oracle’s MSE, which it gets from hopt.
This would mean that, in effect, we are figuring out how rough the underlying
regression function is, and so how much smoothing to do, rather than having to
guess or be told. An adaptive procedure, if we can find one, is a partial8 substitute
for prior knowledge.

4.2.1 Bandwidth Selection by Cross-Validation

The most straight-forward way to pick a bandwidth, and one which generally
manages to be adaptive, is in fact cross-validation; k-fold CV is usually somewhat
better than leave-one-out, but the latter often works acceptably too. The usual
procedure is to come up with an initial grid of candidate bandwidths, and then
use cross-validation to estimate how well each one of them would generalize. The
one with the lowest error under cross-validation is then used to fit the regression
curve to the whole data9.

7 You may be wondering why I keep talking about the optimal bandwidth, when Eq. 4.14 makes it

seem that the bandwidth should vary with x. One can go through pretty much the same sort of

analysis in terms of the expected values of the derivatives, and the qualitative conclusions will be the

same, but the notational overhead is even worse. Alternatively, there are techniques for

variable-bandwidth smoothing.
8 Only partial, because we’d always do better if the Oracle would just tell us hopt.
9 Since the optimal bandwidth is ∝ n−1/5, and the training sets in cross-validation are smaller than

the whole data set, one might adjust the bandwidth proportionally. However, if n is small enough

that this makes a big difference, the sheer noise in bandwidth estimation usually overwhelms this.

90 Smoothing in Regression

cv_bws_npreg <- function(x, y, bandwidths = (1:50)/50, nfolds = 10) {
require(np)
n <- length(x)
stopifnot(n > 1, length(y) == n)
stopifnot(length(bandwidths) > 1)
stopifnot(nfolds > 0, nfolds == trunc(nfolds))
fold_MSEs <- matrix(0, nrow = nfolds, ncol = length(bandwidths))
colnames(fold_MSEs) = bandwidths
case.folds <- sample(rep(1:nfolds, length.out = n))
for (fold in 1:nfolds) {

train.rows = which(case.folds != fold)
x.train = x[train.rows]
y.train = y[train.rows]
x.test = x[-train.rows]
y.test = y[-train.rows]
for (bw in bandwidths) {

fit <- npreg(txdat = x.train, tydat = y.train, exdat = x.test, eydat = y.test,
bws = bw)

fold_MSEs[fold, paste(bw)] <- fit$MSE
}

}
CV_MSEs = colMeans(fold_MSEs)
best.bw = bandwidths[which.min(CV_MSEs)]
return(list(best.bw = best.bw, CV_MSEs = CV_MSEs, fold_MSEs = fold_MSEs))

}

Code Example 4: Cross-validation for univariate kernel regression. The colnames trick: com-
ponent names have to be character strings; other data types will be coerced into characters when
we assign them to be names. Later, when we want to refer to a bandwidth column by its name,
we wrap the name in another coercing function, such as paste. — The is just demo of how
cross-validation for bandwidth selection works in principle; don’t use it blindly on data, or in
assignments. (That goes double for the vector of default bandwidths.)

Code Example 4 shows how it would work in R, with a one predictor variable,
borrowing the npreg function from the np library (Hayfield and Racine, 2008).10

The return value has three parts. The first is the actual best bandwidth. The
second is a vector which gives the cross-validated mean-squared errors of all the
different bandwidths in the vector bandwidths. The third component is an array
which gives the MSE for each bandwidth on each fold. It can be useful to know
things like whether the difference between the CV score of the best bandwidth
and the runner-up is bigger than their fold-to-fold variability.

Figure 4.7 plots the CV estimate of the (root) mean-squared error versus band-
width for our two curves. Figure 4.8 shows the data, the actual regression func-
tions and the estimated curves with the CV-selected bandwidths. This illustrates
why picking the bandwidth by cross-validation works: the curve of CV error
against bandwidth is actually a pretty good approximation to the true curve
of generalization error (which would look like Figure 4.1), so optimizing the CV
error is close to optimizing the generalization error.

Notice, by the way, in Figure 4.7, that the rougher curve is more sensitive

10 The package has methods for automatically selecting bandwidth by cross-validation — see §4.6

below.

4.2 Adapting to Unknown Roughness 91

to the choice of bandwidth, and that the smoother curve always has a lower
mean-squared error. Also notice that, at the minimum, one of the cross-validation
estimates of generalization error is smaller than the true system noise level; this
shows that cross-validation doesn’t completely correct for optimism11.

We still need to come up with an initial set of candidate bandwidths. For
reasons which will drop out of the math in Chapter 14, it’s often reasonable
to start around 1.06sX/n

1/5, where sX is the sample standard deviation of X.
However, it is hard to be very precise about this, and good results often require
some honest trial and error.

4.2.2 Convergence of Kernel Smoothing and Bandwidth Scaling

Go back to Eq. 4.12 for the mean squared error of kernel regression. As we said,
it involves some unknown constants, but we can bury them inside big-O order
symbols, which also absorb the little-o remainder terms:

MSE(h) = σ2(x) +O(h4) +O((nh)−1) (4.15)

The σ2(x) term is going to be there no matter what, so let’s look at the excess
risk over and above the intrinsic noise:

MSE(h)− σ2(x) = O(h4) +O((nh)−1) (4.16)

That is, the (squared) bias from the kernel’s only approximately getting the curve
is proportional to the fourth power of the bandwidth, but the variance is inversely
proportional to the product of sample size and bandwidth. If we kept h constant
and just let n→∞, we’d get rid of the variance, but we’d be left with the bias.
To get the MSE to go to zero, we need to let the bandwidth h change with n —
call it hn. Specifically, suppose hn → 0 as n → ∞, but nhn → ∞. Then, by Eq.
4.16, the risk (generalization error) of kernel smoothing is approaching that of
the ideal predictor.

What is the best bandwidth? We saw in Eq. 4.14 that it is (up to constants)

hopt = O(n−1/5) (4.17)

If we put this bandwidth into Eq. 4.16, we get

MSE(h)−σ2(x) = O

((
n−1/5

)4
)

+O

(
n−1

(
n−1/5

)−1
)

= O
(
n−4/5

)
+O

(
n−4/5

)
= O

(
n−4/5

)
(4.18)

That is, the excess prediction error of kernel smoothing over and above the system
noise goes to zero as 1/n0.8. Notice, by the way, that the contributions of bias
and variance to the generalization error are both of the same order, n−0.8.

Is this fast or slow? We can compare it to what would happen with a parametric
model, say with parameter θ. (For linear regression, θ would be the vector of

11 Tibshirani and Tibshirani (2009) gives a fairly straightforward way to adjust the estimate of the

generalization error for the selected model or bandwidth, but that doesn’t influence the choice of the

best bandwidth.

92 Smoothing in Regression

slopes and the intercept.) The optimal value of the parameter, θ0, minimizes the
mean-squared error. At θ0, the parametric model has MSE

MSE(θ0) = σ2(x) + b(x, θ0) (4.19)

where b is the bias of the parametric model; this is zero when the parametric
model is true12. Since θ0 is unknown and must be estimated, one typically has
θ̂ − θ0 = O(1/

√
n). Because the error is minimized at θ0, the first derivatives

of MSE at θ0 are 0. Doing a second-order Taylor expansion of the parametric
model contributes an error O((θ̂ − θ0)2), so altogether

MSE(θ̂)− σ2(x) = b(x, θ0) +O(1/n) (4.20)

This means parametric models converge more quickly (n−1 goes to zero faster
than n−0.8), but they typically converge to the wrong answer (b2 > 0). Kernel
smoothing converges more slowly, but always converges to the right answer13.

This doesn’t change much if we use cross-validation. Writing ĥCV for the band-
width picked by cross-validation, it turns out (Simonoff, 1996, ch. 5) that

ĥCV − hopt

hopt

− 1 = O(n−1/10) (4.21)

Given this, one concludes (Exercise 4.2) that the MSE of using ĥCV is also
O(n−4/5).

4.2.3 Summary on Kernel Smoothing in 1D

Suppose that X and Y are both one-dimensional, and the true regression func-
tion µ(x) = E [Y |X = x] is continuous and has first and second derivatives14.
Suppose that the noise around the true regression function is uncorrelated be-
tween different observations. Then the bias of kernel smoothing, when the kernel
has bandwidth h, is O(h2), and the variance, after n samples, is O((1/nh)−1).
The optimal bandwidth is O(n−1/5), and the excess mean squared error of using
this bandwidth is O(n−4/5). If the bandwidth is selected by cross-validation, the
excess risk is still O(n−4/5).

4.3 Kernel Regression with Multiple Inputs

For the most part, when I’ve been writing out kernel regression I have been
treating the input variable x as a scalar. There’s no reason to insist on this,
12 When the model is wrong, the optimal parameter value θ0 is often called the pseudo-truth.
13 It is natural to wonder if one couldn’t do better than kernel smoothing’s O(n−4/5) while still having

no asymptotic bias. Resolving this is very difficult, but the answer turns out to be “no” in the

following sense (Wasserman, 2006). Any curve-fitting method which can learn arbitrary smooth

regression functions will have some curves where it cannot converge any faster than O(n−4/5). (In

the jargon, that is the minimax rate.) Methods which converge faster than this for some kinds of

curves have to converge more slowly for others. So this is the best rate we can hope for on truly

unknown curves.
14 Or can be approximated arbitrarily closely by such functions.

4.3 Kernel Regression with Multiple Inputs 93

however; it could equally well be a vector. If we want to enforce that in the
notation, say by writing ~x = (x1, x2, . . . xd), then the kernel regression of y on ~x
would just be

µ̂(~x) =
n∑
i=1

yi
K(~x− ~xi)∑n
j=1K(~x− ~xj)

(4.22)

In fact, if we want to predict a vector, we’d just substitute ~yi for yi above.
To make this work, we need kernel functions for vectors. For scalars, I said

that any probability density function would work so long as it had mean zero,
and a finite, strictly positive (not 0 or ∞) variance. The same conditions carry
over: any distribution over vectors can be used as a multivariate kernel, provided
it has mean zero, and the variance matrix is finite and “positive definite”15. In
practice, the overwhelmingly most common and practical choice is to use product
kernels16.

A product kernel simply uses a different kernel for each component, and then
multiplies them together:

K(~x− ~xi) = K1(x1 − x1
i)K2(x2 − x2

i) . . .Kd(x
d − xdi) (4.23)

Now we just need to pick a bandwidth for each kernel, which in general should
not be equal — say ~h = (h1, h2, . . . hd). Instead of having a one-dimensional error
curve, as in Figure 4.1 or 4.2, we will have a d-dimensional error surface, but we
can still use cross-validation to find the vector of bandwidths that generalizes best.
We generally can’t, unfortunately, break the problem up into somehow picking the
best bandwidth for each variable without considering the others. This makes it
slower to select good bandwidths in multivariate problems, but still often feasible.

(We can actually turn the need to select bandwidths together to our advantage.
If one or more of the variables are irrelevant to our prediction given the others,
cross-validation will tend to give them the maximum possible bandwidth, and
smooth away their influence. In Chapter 14, we’ll look at formal tests based on
this idea.)

Kernel regression will recover almost any regression function. This is true even
when the true regression function involves lots of interactions among the input
variables, perhaps in complicated forms that would be very hard to express in
linear regression. For instance, Figure 4.9 shows a contour plot of a reasonably
complicated regression surface, at least if one were to write it as polynomials in
x1 and x2, which would be the usual approach. Figure 4.11 shows the estimate
we get with a product of Gaussian kernels and only 1000 noisy data points. It’s
not perfect, of course (in particular the estimated contours aren’t as perfectly
smooth and round as the true ones), but the important thing is that we got this

15 Remember that for a matrix v to be “positive definite”, it must be the case that for any vector

~a 6= ~0, ~a · v~a > 0. Covariance matrices are automatically non-negative, so we’re just ruling out the

case of some weird direction along which the distribution has zero variance.
16 People do sometimes use multivariate Gaussians with non-trivial correlation across the variables,

but this is very rare in my experience.

94 Smoothing in Regression

without having to know, and describe in Cartesian coordinates, the type of shape
we were looking for. Kernel smoothing discovered the right general form.

There are limits to these abilities of kernel smoothers; the biggest one is that
they require more and more data as the number of predictor variables increases.
We will see later (Chapter 8) exactly how much data is required, generalizing the
kind of analysis done §4.2.2, and some of the compromises this can force us into.

4.4 Interpreting Smoothers: Plots

In a linear regression without interactions, it is fairly easy to interpret the coeffi-
cients. The expected response changes by βi for a one-unit change in the ith input
variable. The coefficients are also the derivatives of the expected response with
respect to the inputs. And it is easy to draw pictures of how the output changes
as the inputs are varied, though the pictures are somewhat boring (straight lines
or planes).

As soon as we introduce interactions, all this becomes harder, even for para-
metric regression. If there is an interaction between two components of the input,
say x1 and x2, then we can’t talk about the change in the expected response for
a one-unit change in x1 without saying what x2 is. We might average over x2

values, and in §4.5 below we’ll see next time a reasonable way of doing this, but
the flat statement “increasing x1 by one unit increases the response by β1” is just
false, no matter what number we fill in for β1. Likewise for derivatives; we’ll come
back to them next time as well.

What about pictures? With only two input variables, we can make wireframe
plots like Figure 4.11, or contour or level plots, which will show the predictions
for different combinations of the two variables. But what if we want to look at
one variable at a time, or there are more than two input variables?

A reasonable way to produce a curve for each input variable is to set all the
others to some “typical” value, like their means or medians, and to then plot the
predicted response as a function of the one remaining variable of interest (Figure
4.12). Of course, when there are interactions, changing the values of the other
inputs will change the response to the input of interest, so it’s a good idea to
produce a couple of curves, possibly super-imposed (Figure 4.12 again).

If there are three or more input variables, we can look at the interactions of any
two of them, taken together, by fixing the others and making three-dimensional
or contour plots, along the same principles.

The fact that smoothers don’t give us a simple story about how each input is
associated with the response may seem like a disadvantage compared to using
linear regression. Whether it really is a disadvantage depends on whether there
really is a simple story to be told, and/or how much big a lie you are prepared
to tell in order to keep your story simple.

4.5 Average Predictive Comparisons 95

4.5 Average Predictive Comparisons

Suppose we have a linear regression model

Y = β1X1 + β2X2 + ε (4.24)

and we want to know how much Y changes, on average, for a one-unit increase
in X1. The answer, as you know very well, is just β1:

[β1(X1 + 1) + β2X2]− [β1X1 + β2X2] = β1 (4.25)

This is an interpretation of the regression coefficients which you are very used to
giving. But it fails as soon as we have interactions:

Y = β1X1 + β2X2 + β3X1X2 + ε (4.26)

Now the effect of increasing X1 by 1 is

[β1(X1 +1)+β2X2 +β3(X1 +1)X2]− [β1X1 +β2X2 +β3X1X2] = β1 +β3X2 (4.27)

The right answer to “how much does the response change when X1 is increased
by one unit?” depends on the value of X2; it’s certainly not just “β1”.

We also can’t give just a single answer if there are nonlinearities. Suppose that
the true regression function is this:

Y =
eβX

1 + eβX
+ ε (4.28)

which looks like Figure 4.13, setting β = 7 (for luck). Moving x from −4 to −3
increases the response by 7.57× 10−10, but the increase in the response from x =
−1 to x = 0 is 0.499. Functions like this are very common in psychology, medicine
(dose-response curves for drugs), biology, etc., and yet we cannot sensibly talk
about the response to a one-unit increase in x. (We will come back to curves
which look like this in Chapter 11.)

More generally, let’s say we are regressing Y on a vector ~X, and want to assess
the impact of one component of the input on Y . To keep the use of subscripts and
superscripts to a minimum, we’ll write ~X = (U, ~V), where U is the coordinate
we’re really interested in. (It doesn’t have to come first, of course.) We would like
to know how much the prediction changes as we change u,

E
[
Y | ~X = (u(2), ~v)

]
− E

[
Y | ~X = (u(1), ~v)

]
(4.29)

and the change in the response per unit change in u,

E
[
Y | ~X = (u(2), ~v)

]
− E

[
Y | ~X = (u(1), ~v)

]
u(2) − u(1)

(4.30)

Both of these, but especially the latter, are called the predictive comparison.
Note that both of them, as written, depend on u(1) (the starting value for the
variable of interest), on u(2) (the ending value), and on ~v (the other variables,
held fixed during this comparison). We have just seen that in a linear model

96 Smoothing in Regression

without interactions, u(1), u(2) and ~v all go away and leave us with the regression
coefficient on u. In nonlinear or interacting models, we can’t simplify so much.

Once we have estimated a regression model, we can choose our starting point,
ending point and context, and just plug in to Eq. 4.29 or Eq. 4.30. (Or problem
9 in problem set 11.) But suppose we do want to boil this down into a single
number for each input variable — how might we go about this?

One good answer, which comes from Gelman and Pardoe (2007), is just to av-
erage 4.30 over the data17. More specifically, we have as our average predictive
comparison for u∑n

i=1

∑n
j=1 (µ̂(uj, ~vi)− µ̂(ui, ~vi))sign(uj − ui)∑n
i=1

∑n
j=1 (uj − ui)sign(uj − ui)

(4.31)

where i and j run over data points, µ̂ is our estimated regression function, and
the sign function is defined by sign(x) = +1 if x > 0, = 0 if x = 0, and = −1 if
x < 0. We use the sign function this way to make sure we are always looking at
the consequences of increasing u.

The average predictive comparison is a reasonable summary of how rapidly we
should expect the response to vary as u changes slightly. But we need to remember
that once the model is nonlinear or has interactions, it’s just not possible to boil
down the whole predictive relationship between u and y into one number. In
particular, the value of Eq. 4.31 is going to depend on the distribution of u (and
possibly of v), even when the regression function is unchanged. (See Exercise 4.3.)

4.6 Computational Advice: npreg

The homework will call for you to do nonparametric regression with the np pack-
age — which we’ve already looked at a little. It’s a powerful bit of software, but
it can take a bit of getting used to. This section is not a substitute for reading
Hayfield and Racine (2008), but should get you started.

We’ll look at a synthetic-data example with four variables: a quantitative re-
sponse Y , two quantitative predictors X and Z, and a categorical predictor W ,
which can be either “A” or “B”. The true model is

Y = ε+ 20X2 +

{
Z if W = A

10eZ/(1 + eZ) if W = B
(4.32)

with ε ∼ N (0, 0.05). Code Example 5 generates some data from this model for
us.

The basic function for fitting a kernel regression in np is npreg — conceptually,
it’s the equivalent of lm. Like lm, it takes a formula argument, which specifies
the model, and a data argument, which is a data frame containing the variables
included in the formula. The basic idea is to do something like this:

demo.np1 <- npreg(y ~ x + z, data = demo.df)

17 Actually, they propose something a bit more complicated, which takes into account the uncertainty

in our estimate of the regression function, via bootstrapping (Chapter 6).

4.6 Computational Advice: npreg 97

make.demo.df <- function(n) {
demo.func <- function(x, z, w) {

20 * x^2 + ifelse(w == "A", z, 10 * exp(z)/(1 + exp(z)))
}
x <- runif(n, -1, 1)
z <- rnorm(n, 0, 10)
w <- sample(c("A", "B"), size = n, replace = TRUE)
y <- demo.func(x, z, w) + rnorm(n, 0, 0.05)
return(data.frame(x = x, y = y, z = z, w = w))

}
demo.df <- make.demo.df(100)

Code Example 5: Generating data from Eq. 4.32.

The variables on the right-hand side of the formula are the predictors; we use
+ to separate them. Kernel regression will automatically include interactions be-
tween all variables, so there is no special notation for interactions. Similarly, there
is no point in either including or excluding intercepts. If we wanted to transform
either a predictor variable or the response, as in lm, we can do so. Run like this,
npreg will try to determine the best bandwidths for the predictor variables, based
on a sophisticated combination of cross-validation and optimization.

Let’s look at the output of npreg:

summary(demo.np1)
##
Regression Data: 100 training points, in 2 variable(s)
x z
Bandwidth(s): 0.08108232 2.428622
##
Kernel Regression Estimator: Local-Constant
Bandwidth Type: Fixed
Residual standard error: 2.228451
R-squared: 0.9488648
##
Continuous Kernel Type: Second-Order Gaussian
No. Continuous Explanatory Vars.: 2

The main things here are the bandwidths. We also see the root mean squared
error on the training data. Note that this is the in-sample root MSE; if we wanted
the in-sample MSE, we could do

demo.np1$MSE
[1] 4.965993

(You can check that this is the square of the residual standard error above.) If
we want the cross-validated MSE used to pick the bandwidths, that’s

demo.np1bwsfval
[1] 16.93204

The fitted and residuals functions work on these objects just like they do
in lm objects, while the coefficients and confint functions do not. (Why?)

The predict function also works like it does for lm, expecting a data frame

98 Smoothing in Regression

containing columns whose names match those in the formula used to fit the model:

predict(demo.np1, newdata = data.frame(x = -1, z = 5))
[1] 22.60836

With two predictor variables, there is a nice three-dimensional default plot
(Figure 4.14).

Kernel functions can also be defined for categorical and ordered variables.
These can be included in the formula by wrapping the variable in factor()
or ordered(), respectively:

demo.np3 <- npreg(y ~ x + z + factor(w), data = demo.df)

Again, there’s no point, or need, to indicate interactions. Including the extra
variable, not surprisingly, improves the cross-validated MSE:

demo.np3bwsfval
[1] 3.852239

With three or more predictor variables, we’d need a four-dimensional plot,
which is hard. Instead, the default is to plot what happens as we sweep one vari-
able with the others held fixed (by default, at their medians; see help(npplot)

for changing that), as in Figure 4.15. We get something parabola-ish as we sweep
X (which is right), and something near a step function as we sweep Z (which is
right when W = B), so we’re not doing badly for estimating a fairly complicated
function of three variables with only 100 samples. We could also try fixing W at
one value or another and making a perspective plot — Figure 4.16.

The default optimization of bandwidths is extremely aggressive. It keeps adjust-
ing the bandwidths until the changes in the cross-validated MSE are very small,
or the changes in the bandwidths themselves are very small. The “tolerances”
for what count as “very small” are controlled by arguments to npreg called tol

(for the bandwidths) and ftol (for the MSE), which default to about 10−8 and
10−7, respectively. With a lot of data, or a lot of variables, this gets extremely
slow. One can often make npreg run much faster, with no real loss of accuracy,
by adjusting these options. A decent rule of thumb is to start with tol and ftol

both at 0.01. One can use the bandwidth found by this initial coarse search to
start a more refined one, as follows:

bigdemo.df <- make.demo.df(1000)
system.time(demo.np4 <- npreg(y ~ x + z + factor(w), data = bigdemo.df, tol = 0.01,

ftol = 0.01))
user system elapsed
29.770 0.121 30.069

This tells us how much time it took R to run npreg, dividing that between
time spent exclusively on our job and on background system tasks. The result of
the run is stored in demo.np4:

4.7 Further Reading 99

demo.np4$bws
##
Regression Data (1000 observations, 3 variable(s)):
##
x z factor(w)
Bandwidth(s): 0.05532488 1.964943 1.535065e-07
##
Regression Type: Local-Constant
Bandwidth Selection Method: Least Squares Cross-Validation
Formula: y ~ x + z + factor(w)
Bandwidth Type: Fixed
Objective Function Value: 0.9546005 (achieved on multistart 2)
##
Continuous Kernel Type: Second-Order Gaussian
No. Continuous Explanatory Vars.: 2
##
Unordered Categorical Kernel Type: Aitchison and Aitken
No. Unordered Categorical Explanatory Vars.: 1

The bandwidths have all shrunk (as they should), and the cross-validated MSE
is also much smaller (0.95 versus 3.9 before). Figure 4.16 shows the estimated
regression surfaces for both values of the categorical variable.

The package also contains a function, npregbw, which takes a formula and a
data frame, and just optimizes the bandwidth. This is called automatically by
npreg, and many of the relevant options are documented in its help page. One can
also use the output of npregbw as an argument to npreg, in place of a formula.

As a final piece of computational advice, you will notice when you run these
commands yourself that the bandwidth-selection functions by default print out
lots of progress-report messages. This can be annoying, especially if you are em-
bedding the computation in a document, and so can be suppressed by setting a
global option at the start of your code:

options(np.messages = FALSE)

4.7 Further Reading

Simonoff (1996) is a good practical introduction to kernel smoothing and related
methods. Wasserman (2006) provides more theory. Li and Racine (2007) is a
detailed treatment of nonparametric methods for econometric problems, over-
whelmingly focused on kernel regression and kernel density estimation (which
we’ll get to in Chapter 14); Racine (2008) summarizes.

While kernels are a nice, natural method of non-parametric smoothing, they are
not the only one. We saw nearest-neighbors in §1.5.1, and will encounter splines
(continuous piecewise-polynomial models) in Chapter 7 and trees (piecewise-
constant functions, with cleverly chosen pieces) in Chapter 13; local linear models
(§10.5) combine kernels and linear models. There are many, many more options.

100 Smoothing in Regression

Historical Notes

Kernel regression was introduced, independently, by Nadaraya (1964) and Watson
(1964); both were inspired by kernel density estimation.

Exercises

4.1 Suppose we use a uniform (“boxcar”) kernel extending over the region (−h/2, h/2). Show

that

E [µ̂(0)] = E
[
µ(X)

∣∣∣∣X ∈ (−h2 , h2
)]

(4.33)

= µ(0) + µ′(0)E
[
X

∣∣∣∣X ∈ (−h2 , h2
)]

(4.34)

+
µ′′(0)

2
E
[
X2

∣∣∣∣X ∈ (−h2 , h2
)]

+ o(h2)

Show that E
[
X
∣∣X ∈ (−h2 , h2)] = O(f ′(0)h2), and that E

[
X2
∣∣X ∈ (−h2 , h2)] = O(h2).

Conclude that the over-all bias is O(h2).

4.2 Use Eqs. 4.21, 4.17 and 4.16 to show that the excess risk of the kernel smoothing, when

the bandwidth is selected by cross-validation, is also O(n−4/5).

4.3 Generate 1000 data points where X is uniformly distributed between −4 and 4, and Y =

e7x/(1 + e7x) + ε, with ε Gaussian and with variance 0.01. Use non-parametric regression

to estimate µ̂(x), and then use Eq. 4.31 to find the average predictive comparison. Now

re-run the simulation with X uniform on the interval [0, 0.5] and re-calculate the average

predictive comparison. What happened?

Exercises 101

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
1.

0
0.

0
0.

5
1.

0

x

r(x
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
4

0.
8

1.
2

x

s(
x)

par(mfcol = c(2, 1))
true.r <- function(x) {

sin(x) * cos(20 * x)
}
true.s <- function(x) {

log(x + 1)
}
curve(true.r(x), from = 0, to = 3, xlab = "x", ylab = expression(r(x)))
curve(true.s(x), from = 0, to = 3, xlab = "x", ylab = expression(s(x)))
par(mfcol = c(1, 1))

Figure 4.3 Two curves for the running example. Above,
r(x) = sinx cos 20x ; below, s(x) = log 1 + x (we will not use this
information about the exact functional forms).

102 Smoothing in Regression

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●● ●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
1.

0
0.

0
1.

0

x

r(x
)+

ε

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●● ●
●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

● ●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

● ●

●

●

●

●●●
●

●
●

●

●

● ●
●

●

●

●
●

●●

●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

s(
x)

+
η

x = runif(300, 0, 3)
yr = true.r(x) + rnorm(length(x), 0, 0.15)
ys = true.s(x) + rnorm(length(x), 0, 0.15)
par(mfcol = c(2, 1))
plot(x, yr, xlab = "x", ylab = expression(r(x) + epsilon))
curve(true.r(x), col = "grey", add = TRUE)
plot(x, ys, xlab = "x", ylab = expression(s(x) + eta))
curve(true.s(x), col = "grey", add = TRUE)

Figure 4.4 The curves of Fig. 4.3 (in grey), plus IID Gaussian noise with
mean 0 and standard deviation 0.15. The two curves are sampled at the
same x values, but with different noise realizations.

Exercises 103

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●● ●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
1.

0
0.

0
1.

0

x

r(x
)+

ε

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●● ●
●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

● ●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

● ●

●

●

●

●●●
●

●
●

●

●

● ●
●

●

●

●
●

●●

●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

s(
x)

+
η

par(mfcol = c(2, 1))
x.focus <- 1.6
x.lo <- x.focus - 0.1
x.hi <- x.focus + 0.1
colors = ifelse((x < x.hi) & (x > x.lo), "black", "grey")
plot(x, yr, xlab = "x", ylab = expression(r(x) + epsilon), col = colors)
curve(true.r(x), col = "grey", add = TRUE)
points(x.focus, mean(yr[(x < x.hi) & (x > x.lo)]), pch = 18, cex = 2)
plot(x, ys, xlab = "x", ylab = expression(s(x) + eta), col = colors)
curve(true.s(x), col = "grey", add = TRUE)
points(x.focus, mean(ys[(x < x.hi) & (x > x.lo)]), pch = 18, cex = 2)
par(mfcol = c(1, 1))

Figure 4.5 Relationship between smoothing and function roughness. In
both panels we estimate the value of the regression function at x = 1.6 by
averaging observations where 1.5 < xi < 1.7 (black points, others are
“ghosted” in grey). The location of the average in shown by the large black
diamond. This works poorly for the rough function r in the upper panel (the
bias is large), but much better for the smoother function in the lower panel
(the bias is small).

104 Smoothing in Regression

0.01 0.02 0.05 0.10 0.20 0.50 1.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Radius of averaging window

A
bs

ol
ut

e
va

lu
e

of
 e

rr
or

Figure 4.6 Error of estimating r(1.6) (solid line) and s(1.6) (dashed) from
averaging observed values at 1.6− h < x < 1.6 + h, for different radii h. The
grey is σ, the standard deviation of the noise — how can the estimation
error be smaller than that?

0.005 0.010 0.020 0.050 0.100 0.200 0.500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Bandwidth

R
oo

t C
V

 M
S

E

rbws <- cv_bws_npreg(x, yr, bandwidths = (1:100)/200)
sbws <- cv_bws_npreg(x, ys, bandwidths = (1:100)/200)
plot(1:100/200, sqrt(rbws$CV_MSEs), xlab = "Bandwidth", ylab = "Root CV MSE",

type = "l", ylim = c(0, 0.6), log = "x")
lines(1:100/200, sqrt(sbws$CV_MSEs), lty = "dashed")
abline(h = 0.15, col = "grey")

Figure 4.7 Cross-validated estimate of the (root) mean-squard error as a
function of the bandwidth (solid curve, r data; dashed, s data; grey line,
true noise σ). Notice that the rougher curve is more sensitive to the choice of
bandwidth, and that the smoother curve is more predictable at every choice
of bandwidth. CV selects bandwidths of 0.02 for r and 0.095 for s.

Exercises 105

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●● ●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
1.

0
0.

0
1.

0

x

r(x
)+

ε

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●● ●
●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

● ●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

● ●

●

●

●

●●●
●

●
●

●

●

● ●
●

●

●

●
●

●●

●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

s(
x)

+
η

x.ord = order(x)
par(mfcol = c(2, 1))
plot(x, yr, xlab = "x", ylab = expression(r(x) + epsilon))
rhat <- npreg(bws = rbws$best.bw, txdat = x, tydat = yr)
lines(x[x.ord], fitted(rhat)[x.ord], lwd = 4)
curve(true.r(x), col = "grey", add = TRUE, lwd = 2)
plot(x, ys, xlab = "x", ylab = expression(s(x) + eta))
shat <- npreg(bws = sbws$best.bw, txdat = x, tydat = ys)
lines(x[x.ord], fitted(shat)[x.ord], lwd = 4)
curve(true.s(x), col = "grey", add = TRUE, lwd = 2)
par(mfcol = c(1, 1))

Figure 4.8 Data from the running examples (circles), true regression
functions (grey) and kernel estimates of regression functions with
CV-selected bandwidths (black). R notes: The x values aren’t sorted, so we
need to put them in order before drawing lines connecting the fitted values; then
we need to put the fitted values in the same order. Alternately, we could have used
predict on the sorted values, as in §4.3.

106 Smoothing in Regression

−3

−2

−1

0
1

2
3

−3

−2

−1

0

1

2

3

0.2

0.4

0.6

0.8

x1
x2

y

x1.points <- seq(-3, 3, length.out = 100)
x2.points <- x1.points
x12grid <- expand.grid(x1 = x1.points, x2 = x2.points)
y <- matrix(0, nrow = 100, ncol = 100)
y <- outer(x1.points, x2.points, f)
library(lattice)
wireframe(y ~ x12grid$x1 * x12grid$x2, scales = list(arrows = FALSE), xlab = expression(x^1),

ylab = expression(x^2), zlab = "y")

Figure 4.9 An example of a regression surface that would be very hard to
learn by piling together interaction terms in a linear regression framework.
(Can you guess what the mystery function f is?) — wireframe is from the
graphics library lattice.

Exercises 107

−2

−1

0
1

2

−2

−1

0

1

2

0.0

0.2

0.4

0.6

0.8

1.0

x1
x2

y

x1.noise <- runif(1000, min = -3, max = 3)
x2.noise <- runif(1000, min = -3, max = 3)
y.noise <- f(x1.noise, x2.noise) + rnorm(1000, 0, 0.05)
noise <- data.frame(y = y.noise, x1 = x1.noise, x2 = x2.noise)
cloud(y ~ x1 * x2, data = noise, col = "black", scales = list(arrows = FALSE),

xlab = expression(x^1), ylab = expression(x^2), zlab = "y")

Figure 4.10 1000 points sampled from the surface in Figure 4.9, plus
independent Gaussian noise (s.d. = 0.05).

108 Smoothing in Regression

−3

−2

−1

0
1

2
3

−3

−2

−1

0

1

2

3

0.0

0.2

0.4

0.6

0.8

x1
x2

y

noise.np <- npreg(y ~ x1 + x2, data = noise)
y.out <- matrix(0, 100, 100)
y.out <- predict(noise.np, newdata = x12grid)
wireframe(y.out ~ x12grid$x1 * x12grid$x2, scales = list(arrows = FALSE), xlab = expression(x^1),

ylab = expression(x^2), zlab = "y")

Figure 4.11 Gaussian kernel regression of the points in Figure 4.10. Notice
that the estimated function will make predictions at arbitrary points, not
just the places where there was training data.

Exercises 109

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

y

new.frame <- data.frame(x1 = seq(-3, 3, length.out = 300), x2 = median(x2.noise))
plot(new.frame$x1, predict(noise.np, newdata = new.frame), type = "l", xlab = expression(x^1),

ylab = "y", ylim = c(0, 1))
new.frame$x2 <- quantile(x2.noise, 0.25)
lines(new.frame$x1, predict(noise.np, newdata = new.frame), lty = 2)
new.frame$x2 <- quantile(x2.noise, 0.75)
lines(new.frame$x1, predict(noise.np, newdata = new.frame), lty = 3)

Figure 4.12 Predicted mean response as function of the first input
coordinate x1 for the example data, evaluated with the second coordinate x2

set to the median (solid), its 25th percentile (dashed) and its 75th percentile
(dotted). Note that the changing shape of the partial response curve
indicates an interaction between the two inputs. Also, note that the model
can make predictions at arbitrary coordinates, whether or not there were
any training points there.

110 Smoothing in Regression

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

curve(exp(7 * x)/(1 + exp(7 * x)), from = -5, to = 5, ylab = "y")

Figure 4.13 The function of Eq. 4.28, with β = 7.

x

−0.5

0.0

0.5

z

−30

−20

−10

0
10

20

y

−10

0

10

20

[theta= 40, phi= 10]

plot(demo.np1, theta = 40, view = "fixed")

Figure 4.14 Plot of the kernel regression with just two predictor variables.
(See help(npplot) for plotting options.

Exercises 111

−1.0 −0.5 0.0 0.5 1.0

0
5

10
15

20

x

 y

−30 −20 −10 0 10 20 30

0
5

10
15

20

z

 y

A B

0
5

10
15

20

factor(w)

 y

●

●

plot(demo.np3)

Figure 4.15 Predictions of demo.np3 as each variable is swept over its
range, with the others held at their medians.

112 Smoothing in Regression

x

−1.0
−0.5

0.0
0.5

1.0

z

−30
−20

−10
0
10

2030

y

−20

0

20

40

W=A

x

−1.0
−0.5

0.0
0.5

1.0

z

−30
−20

−10
0
10

2030

y

−10

0

10

20

W=B

x.seq <- seq(from = -1, to = 1, length.out = 50)
z.seq <- seq(from = -30, to = 30, length.out = 50)
grid.A <- expand.grid(x = x.seq, z = z.seq, w = "A")
grid.B <- expand.grid(x = x.seq, z = z.seq, w = "B")
yhat.A <- predict(demo.np4, newdata = grid.A)
yhat.B <- predict(demo.np4, newdata = grid.B)
par(mfrow = c(1, 2))
persp(x = x.seq, y = z.seq, z = matrix(yhat.A, nrow = 50), theta = 40, main = "W=A",

xlab = "x", ylab = "z", zlab = "y", ticktype = "detailed")
persp(x = x.seq, y = z.seq, z = matrix(yhat.B, nrow = 50), theta = 40, main = "W=B",

xlab = "x", ylab = "z", zlab = "y", ticktype = "detailed")

Figure 4.16 The regression surfaces learned for the demo function at the
two different values of the categorical variable. Note that holding z fixed, we
always see a parabolic shape as we move along x (as we should), while
whether we see a line or something close to a step function at constant x
depends on w, as it should.

5

Simulation

You will recall from your previous statistics courses that quantifying uncertainty
in statistical inference requires us to get at the sampling distributions of things
like estimators. When the very strong simplifying assumptions of basic statistics
courses do not apply1, there is little hope of being able to write down sampling
distributions in closed form. There is equally little help when the estimates are
themselves complex objects, like kernel regression curves or even histograms,
rather than short, fixed-length parameter vectors. We get around this by using
simulation to approximate the sampling distributions we can’t calculate.

5.1 What Is a Simulation?

A mathematical model is a mathematical story about how the data could have
been made, or generated. Simulating the model means following that story,
implementing it, step by step, in order to produce something which should look
like the data — what’s sometimes called synthetic data, or surrogate data,
or a realization of the model. In a stochastic model, some of the steps we need
to follow involve a random component, and so multiple simulations starting from
exactly the same inputs or initial conditions will not give exactly the same outputs
or realizations. Rather, the model specifies a distribution over the realizations,
and doing many simulations gives us a good approximation to this distribution.

For a trivial example, consider a model with three random variables, X1 ∼
N (µ1, σ

2
1), X2 ∼ N (µ2, σ

2
2), with X1 ⊥⊥ X2, and X3 = X1 +X2. Simulating from

this model means drawing a random value from the first normal distribution for
X1, drawing a second random value for X2, and adding them together to get X3.
The marginal distribution of X3, and the joint distribution of (X1, X2, X3), are
implicit in this specification of the model, and we can find them by running the
simulation.

In this particular case, we could also find the distribution of X3, and the joint
distribution, by probability calculations of the kind you learned how to do in
your basic probability courses. For instance, X3 is N (µ1 + µ2, σ

2
1 + σ2

2). These

1 As discussed ad nauseam in Chapter 2, in your linear models class, you learned about the sampling

distribution of regression coefficients when the linear model is true, and the noise is Gaussian,

independent of the predictor variables, and has constant variance. As an exercise, try to get parallel

results when the noise has a t distribution with 10 degrees of freedom.

113

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

114 Simulation

analytical probability calculations can usually be thought of as just short-cuts
for exhaustive simulations.

5.2 How Do We Simulate Stochastic Models?

5.2.1 Chaining Together Random Variables

Stochastic models are usually specified by sets of conditional distributions for one
random variable, given some other variable or variables. For instance, a simple
linear regression model might have the specification

X ∼ U(xmin, xmax) (5.1)

Y |X ∼ N (β0 + β1X,σ
2) (5.2)

If we knew how to generate a random variable from the distributions given
on the right-hand sides, we could simulate the whole model by chaining together
draws from those conditional distributions. This is in fact the general strategy for
simulating any sort of stochastic model, by chaining together random variables.2

You might ask why we don’t start by generating a random Y , and then gen-
erate X by drawing from the X|Y distribution. The basic answer is that you
could, but it would generally be messier. (Just try to work out the conditional
distribution X|Y .) More broadly, in Chapter 18, we’ll see how to arrange the
variables in complicated probability models in a natural order, so that we start
with independent, “exogenous” variables, then first-generation variables which
only need to be conditioned on the exogenous variables, then second-generation
variables which are conditioned on first-generation ones, and so forth. This is also
the natural order for simulation.

The upshot is that we can reduce the problem of simulating to that of gener-
ating random variables.

5.2.2 Random Variable Generation

5.2.2.1 Built-in Random Number Generators

R provides random number generators for most of the most common distributions.
By convention, the names of these functions all begin with the letter “r”, followed
by the abbreviation of the functions, and the first argument is always the number
of draws to make, followed by the parameters of the distribution. Some examples:

rnorm(n, mean = 0, sd = 1)
runif(n, min = 0, max = 1)
rexp(n, rate = 1)
rpois(n, lambda)
rbinom(n, size, prob)

2 In this case, we could in principle first generate Y , and then draw from Y |X, but have fun finding

those distributions. Especially have fun if, say, X has a t distribution with 10 degrees of freedom. (I

keep coming back to that idea, because it’s really a very small change from being Gaussian.)

5.2 How Do We Simulate Stochastic Models? 115

A further convention is that these parameters can be vectorized. Rather than
giving a single mean and standard deviation (say) for multiple draws from the
Gaussian distribution, each draw can have its own:

rnorm(10, mean = 1:10, sd = 1/sqrt(1:10))

That instance is rather trivial, but the exact same principle would be at work
here:

rnorm(nrow(x), mean = predict(regression.model, newdata = x), sd = predict(volatility.model,
newdata = x))

where regression.model and volatility.model are previously-defined parts
of the model which tell us about conditional expectations and conditional vari-
ances.

Of course, none of this explains how R actually draws from any of these distri-
butions; it’s all at the level of a black box, which is to say black magic. Because
ignorance is evil, and, even worse, unhelpful when we need to go beyond the stan-
dard distributions, it’s worth opening the black box just a bit. We’ll look at using
transformations between distributions, and, in particular, transforming uniform
distributions into others (§5.2.2.3).

5.2.2.2 Transformations

If we can generate a random variable Z with some distribution, and V = g(Z),
then we can generate V . So one thing which gets a lot of attention is writing
random variables as transformations of one another — ideally as transformations
of easy-to-generate variables.

Example: from standard to customized Gaussians

Suppose we can generate random numbers from the standard Gaussian distri-
bution Z ∼ N (0, 1). Then we can generate from N (µ, σ2) as σZ + µ. We can
generate χ2 random variables with 1 degree of freedom as Z2. We can generate
χ2 random variables with d degrees of freedom by summing d independent copies
of Z2.

In particular, if we can generate random numbers uniformly distributed be-
tween 0 and 1, we can use this to generate anything which is a transformation of
a uniform distribution. How far does that extend?

5.2.2.3 Quantile Method

Suppose that we know the quantile function QZ for the random variable Z we
want, so that QZ(0.5) is the median of X, QZ(0.9) is the 90th percentile, and in
general QZ(p) is bigger than or equal to Z with probability p. QZ comes as a pair
with the cumulative distribution function FZ , since

QZ(FZ(a)) = a, FZ(QZ(p)) = p (5.3)

116 Simulation

In the quantile method (or inverse distribution transform method), we
generate a uniform random number U and feed it as the argument to QZ . Now
QZ(U) has the distribution function FZ :

Pr (QZ(U) ≤ a) = Pr (FZ(QZ(U)) ≤ FZ(a)) (5.4)

= Pr (U ≤ FZ(a)) (5.5)

= FZ(a) (5.6)

where the last line uses the fact that U is uniform on [0, 1], and the first line
uses the fact that FZ is a non-decreasing function, so b ≤ a is true if and only if
FZ(b) ≤ FZ(a).

Example. The CDF of the exponential distribution with rate λ is 1−e−λz. The
quantile function Q(p) is thus − log (1−p)

λ
. (Notice that this is positive, because

1− p < 1 and so log (1− p) < 0, and that it has units of 1/λ, which are the units

of z, as it should.) Therefore, if U Unif(0, 1), then − log (1−U)

λ
∼ Exp(λ). This is

the method used by rexp().

Example: Power laws

The Pareto distribution or power law is a two-parameter family, f(z;α, z0) =
α−1
z0

(
z
z0

)−α
if z ≥ z0, with density 0 otherwise. Integration shows that the cumu-

lative distribution function is F (z;α, z0) = 1 −
(
z
z0

)−α+1

. The quantile function

therefore is Q(p;α, z0) = z0(1− p)−
1

α−1 . (Notice that this has the same units as
z, as it should.)

Example: Gaussians

The standard Gaussian N (0, 1) does not have a closed form for its quantile func-
tion, but there are fast and accurate ways of calculating it numerically (they’re
what stand behind qnorm), so the quantile method can be used. In practice, there
are other transformation methods which are even faster, but rely on special tricks.

Since QZ(U) has the same distribution function as Z, we can use the quantile
method, as long as we can calculate QZ . Since QZ always exists, in principle
this solves the problem. In practice, we need to calculate QZ before we can use
it, and this may not have a closed form, and numerical approximations may be
intractable.3 In such situations, we turn to more advanced methods (see further
reading).

5.2.3 Sampling

A complement to drawing from given distributions is to sample from a given
collection of objects. This is a common task, so R has a function to do it:

3 In essence, we have to solve the nonlinear equation FZ(z) = p for z over and over for different p —

and that assumes we can easily calculate FZ .

5.2 How Do We Simulate Stochastic Models? 117

sample(x, size, replace = FALSE, prob = NULL)

Here x is a vector which contains the objects we’re going to sample from.
size is the number of samples we want to draw from x. replace says whether
the samples are drawn with or without replacement. (If replace=TRUE, then
size can be arbitrarily larger than the length of x. If replace=FALSE, having a
larger size doesn’t make sense.) Finally, the optional argument prob allows for
weighted sampling; ideally, prob is a vector of probabilities as long as x, giving
the probability of drawing each element of x4.

As a convenience for a common situation, running sample with one argument
produces a random permutation of the input, i.e.,

sample(x)

is equivalent to

sample(x, size = length(x), replace = FALSE)

For example, the code for k-fold cross-validation, Code Example 3, had the
lines

fold.labels <- sample(rep(1:nfolds, length.out = nrow(data)))

Here, rep repeats the numbers from 1 to nfolds until we have one number
for each row of the data frame, say 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2 if there were twelve
rows. Then sample shuffles the order of those numbers randomly. This then would
give an assignment of each row of df to one (and only one) of five folds.

5.2.3.1 Sampling Rows from Data Frames

When we have multivariate data (which is the usual situation), we typically
arrange it into a data-frame, where each row records one unit of observation,
with multiple interdependent columns. The natural notion of sampling is then to
draw a random sample of the data points, which in that representation amounts
to a random sample of the rows. We can implement this simply by sampling row
numbers. For instance, this command,

df[sample(1:nrow(df), size = b),]

will create a new data frame from b, by selecting b rows from df without
replacement. It is an easy exercise to figure out how to sample from a data frame
with replacement, and with unequal probabilities per row.

4 If the elements of prob do not add up to 1, but are positive, they will be normalized by their sum,

e.g., setting prob=c(9,9,1) will assign probabilities (9
19
, 9
19
, 1
19

) to the three elements of x.

118 Simulation

5.2.3.2 Multinomials and Multinoullis

If we want to draw one value from a multinomial distribution with probabilities
p = (p1, p2, . . . pk), then we can use sample:

sample(1:k, size = 1, prob = p)

If we want to simulate a “multinoulli” process5, i.e., a sequence of independent
and identically distributed multinomial random variables, then we can easily do
so:

rmultinoulli <- function(n, prob) {
k <- length(prob)
return(sample(1:k, size = n, replace = TRUE, prob = prob))

}

Of course, the labels needn’t be the integers 1 : k (exercise 5.1).

5.2.3.3 Probabilities of Observation

Often, our models of how the data are generated will break up into two parts.
One part is a model of how actual variables are related to each other out in the
world. (E.g., we might model how education and racial categories are related to
occupation, and occupation is related to income.) The other part is a model of
how variables come to be recorded in our data, and the distortions they might
undergo in the course of doing so. (E.g., we might model the probability that
someone appears in a survey as a function of race and income.) Plausible sampling
mechanisms often make the probability of appearing in the data a function of
some of the variables. This can then have important consequences when we try
to draw inferences about the whole population or process from the sample we
happen to have seen (see, e.g., App. H).

income <- rnorm(n, mean = predict(income.model, x), sd = sigma)
capture.probabilities <- predict(observation.model, x)
observed.income <- sample(income, size = b, prob = capture.probabilities)

5.3 Repeating Simulations

Because simulations are often most useful when they are repeated many times,
R has a command to repeat a whole block of code:

replicate(n, expr)

Here expr is some executable “expression” in R, basically something you could
type in the terminal, and n is the number of times to repeat it.

For instance,

5 A handy term I learned from Gustavo Lacerda.

5.4 Why Simulate? 119

output <- replicate(1000, rnorm(length(x), beta0 + beta1 * x, sigma))

will replicate, 1000 times, sampling from the predictive distribution of a Gaus-
sian linear regression model. Conceptually, this is equivalent to doing something
like

output <- matrix(0, nrow = 1000, ncol = length(x))
for (i in 1:1000) {

output[i,] <- rnorm(length(x), beta0 + beta1 * x, sigma)
}

but the replicate version has two great advantages. First, it is faster, because
R processes it with specially-optimized code. (Loops are especially slow in R.)
Second, and far more importantly, it is clearer: it makes it obvious what is being
done, in one line, and leaves the computer to figure out the boring and mundane
details of how best to implement it.

5.4 Why Simulate?

There are three major uses for simulation: to understand a model, to check it,
and to fit it. We will deal with the first two here, and return to fitting in Chapter
24, after we’ve looked at dealing with dependence and hidden variables.

5.4.1 Understanding the Model; Monte Carlo

We understand a model by seeing what it predicts about the variables we care
about, and the relationships between them. Sometimes those predictions are easy
to extract from a mathematical representation of the model, but often they aren’t.
With a model we can simulate, however, we can just run the model and see what
happens.

Our stochastic model gives a distribution for some random variable Z, which
in general is a complicated, multivariate object with lots of interdependent com-
ponents. We may also be interested in some complicated function g of Z, such
as, say, the ratio of two components of Z, or even some nonparametric curve fit
through the data points. How do we know what the model says about g?

Assuming we can make draws from the distribution of Z, we can find the
distribution of any function of it we like, to as much precision as we want. Suppose
that Z̃1, Z̃2, . . . Z̃b are the outputs of b independent runs of the model — b different
replicates of the model. (The tilde is a reminder that these are just simulations.)
We can calculate g on each of them, getting g(Z̃1), g(Z̃2), . . . g(Z̃b). If averaging
makes sense for these values, then

1

b

b∑
i=1

g(Z̃i) −−−→
b→∞

E [g(Z)] (5.7)

by the law of large numbers. So simulation and averaging lets us get expectation

120 Simulation

values. This basic observation is the seed of the Monte Carlo method.6 If our
simulations are independent, we can even use the central limit theorem to say
that 1

b

∑b
i=1 g(Z̃i) has approximately the distribution N (E [g(Z)] ,V [g(Z)] /b).

Of course, if you can get expectation values, you can also get variances. (This
is handy if trying to apply the central limit theorem!) You can also get any
higher moments — if, for whatever reason, you need the kurtosis, you just have
to simulate enough.

You can also pick any set s and get the probability that g(Z) falls into that
set:

1

b

b∑
i=1

1s(g(Z̃i)) −−−→
b→∞

Pr (g(Z) ∈ s) (5.8)

The reason this works is of course that Pr (g(Z) ∈ s) = E [1s(g(Z))], and we can
use the law of large numbers again. So we can get the whole distribution of any
complicated function of the model that we want, as soon as we can simulate the
model. It is really only a little harder to get the complete sampling distribution
than it is to get the expectation value, and the exact same ideas apply.

5.4.2 Checking the Model

An important but under-appreciated use for simulation is to check models after
they have been fit. If the model is right, after all, it represents the mechanism
which generates the data. This means that when we simulate, we run that mecha-
nism, and the surrogate data which comes out of the machine should look like the
real data. More exactly, the real data should look like a typical realization of the
model. If it does not, then the model’s account of the data-generating mechanism
is systematically wrong in some way. By carefully choosing the simulations we
perform, we can learn a lot about how the model breaks down and how it might
need to be improved.7

5.4.2.1 “Exploratory” Analysis of Simulations

Often the comparison between simulations and data can be done qualitatively
and visually. For example, a classic data set concerns the time between eruptions
of the Old Faithful geyser in Yellowstone, and how they relate to the duration of
the latest eruption. A common exercise is to fit a regression line to the data by
ordinary least squares:

library(MASS)
data(geyser)
fit.ols <- lm(waiting ~ duration, data = geyser)

6 The name was coined by the physicists who used the method to do calculations relating to designing

the hydrogen bomb; see Metropolis et al. (1953). Folklore among physicists says that the method

goes back at least to Enrico Fermi in the 1930s, without the cutesy name.
7 “Might”, because sometimes (e.g., §1.4.2) we’re better off with a model that makes systematic

mistakes, if they’re small and getting it right would be a hassle.

5.4 Why Simulate? 121

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5

50
60

70
80

90
10

0
11

0

duration

w
ai

tin
g

plot(geyser$duration, geyser$waiting, xlab = "duration", ylab = "waiting")
abline(fit.ols)

Figure 5.1 Data for the geyser data set, plus the OLS regression line.

Figure 5.1 shows the data, together with the OLS line. It doesn’t look that
great, but if someone insisted it was a triumph of quantitative vulcanology, how
could you show they were wrong?

We’ll consider general tests of regression specifications in Chapter 9. For now,
let’s focus on the way OLS is usually presented as part of a stochastic model for
the response conditional on the input, with Gaussian and homoskedastic noise.
In this case, the stochastic model is waiting = β0 + β1duration + ε, with ε ∼
N (0, σ2). If we simulate from this probability model, we’ll get something we can

122 Simulation

rgeyser <- function() {
n <- nrow(geyser)
sigma <- summary(fit.ols)$sigma
new.waiting <- rnorm(n, mean = fitted(fit.ols), sd = sigma)
new.geyser <- data.frame(duration = geyser$duration, waiting = new.waiting)
return(new.geyser)

}

Code Example 6: Function for generating surrogate data sets from the linear model fit to
geyser.

compare to the actual data, to help us assess whether the scatter around that
regression line is really bothersome. Since OLS doesn’t require us to assume a
distribution for the input variable (here, duration), the simulation function in
Code Example 6 leaves those values alone, but regenerates values of the response
(waiting) according to the model assumptions.

A useful principle for model checking is that if we do some exploratory data
analyses of the real data, doing the same analyses to realizations of the model
should give roughly the same results (Gelman, 2003; Hunter et al., 2008; Gelman
and Shalizi, 2013). This is a test the model fails. Figure 5.2 shows the actual
histogram of waiting, plus the histogram produced by simulating — reality is
clearly bimodal, but the model is unimodal. Similarly, Figure 5.3 shows the real
data, the OLS line, and a simulation from the OLS model. It’s visually clear that
the deviations of the real data from the regression line are both bigger and more
patterned than those we get from simulating the model, so something is wrong
with the latter.

By itself, just seeing that data doesn’t look like a realization of the model isn’t
super informative, since we’d really like to know how the model’s broken, and
so how to fix it. Further simulations, comparing more detailed analyses of the
data to analyses of the simulation output, are often very helpful here. Looking
at Figure 5.3, we might suspect that one problem is heteroskedasticity — the
variance isn’t constant. This suspicion is entirely correct, and will be explored in
§10.3.2.

5.4.3 Sensitivity Analysis

Often, the statistical inference we do on the data is predicated on certain assump-
tions about how the data is generated. We’ve talked a lot about the Gaussian-
noise assumptions that usually accompany linear regression, but there are many
others. For instance, if we have missing values for some variables and just ignore
incomplete rows, we are implicitly assuming that data are “missing at random”,
rather than in some systematic way that would carry information about what the
missing values were (see App. H). Often, these assumptions make our analysis
much neater than it otherwise would be, so it would be convenient if they were
true.

As a wise man said long ago, “The method of ‘postulating’ what we want has

5.4 Why Simulate? 123

waiting

D
en

si
ty

40 50 60 70 80 90 100 110

0.
00

0.
01

0.
02

0.
03

0.
04

hist(geyser$waiting, freq = FALSE, xlab = "waiting", main = "", sub = "", col = "grey")
lines(hist(rgeyser()$waiting, plot = FALSE), freq = FALSE, lty = "dashed")

Figure 5.2 Actual density of the waiting time between eruptions (grey bars,
solid lines) and that produced by simulating the OLS model (dashed lines).

many advantages; they are the same as the advantages of theft over honest toil”
(Russell, 1920, ch. VII, p. 71). In statistics, honest toil often takes the form of
sensitivity analysis, of seeing how much our conclusions would change if the
assumptions were violated, i.e., of checking how sensitive our inferences are to the
assumptions. In principle, this means setting up models where the assumptions
are more or less violated, or violated in different ways, analyzing them as though
the assumptions held, and seeing how badly wrong we go. Of course, if that

124 Simulation

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5

50
60

70
80

90
10

0
11

0

duration

w
ai

tin
g

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

plot(geyser$duration, geyser$waiting, xlab = "duration", ylab = "waiting")
abline(fit.ols)
points(rgeyser(), pch = 20, cex = 0.5)

Figure 5.3 As in Figure 5.1, plus one realization of simulating the OLS
model (small black dots).

was easy to do in closed form, we often wouldn’t have needed to make those
assumptions in the first place.

On the other hand, it’s usually pretty easy to simulate a model where the
assumption is violated, run our original, assumption-laden analysis on the sim-
ulation output, and see what happens. Because it’s a simulation, we know the
complete truth about the data-generating process, and can assess how far off our
inferences are. In favorable circumstances, our inferences don’t mess up too much

5.5 Further Reading 125

even when the assumptions we used to motivate the analysis are badly wrong.
Sometimes, however, we discover that even tiny violations of our initial assump-
tions lead to large errors in our inferences. Then we either need to make some
compelling case for those assumptions, or be very cautious in our inferences.

5.5 Further Reading

Simulation will be used in nearly every subsequent chapter. It is the key to the
“bootstrap” technique for quantifying uncertainty (Ch. 6), and the foundation
for a whole set of methods for dealing with complex models of dependent data
(Ch. 24).

Many texts on scientific programming discuss simulation, including Press et al.
(1992) and, using R, Jones et al. (2009). There are also many more specialized
texts on simulation in various applied areas. It must be said that many references
on simulation present it as almost completely disconnected from statistics and
data analysis, giving the impression that probability models just fall from the
sky. Guttorp (1995) is an excellent exception.

Random-variable generation is a standard topic in computational statistics,
so there are lots of perfectly decent references, e.g., Press et al. (1992) or ?; at
a higher level of technicality, ? is authoritative. Many of these references also
cover methods of generating uniformly distributed (pseudo-)random numbers as
a fundamental input.

On Monte Carlo: ? is a standard authority on applications and techniques
common in statistics. Newman and Barkema (1999) is excellent if you know some
physics, especially thermodynamics.

When all (!) you need to do is draw numbers from a probability distribution
which isn’t one of the ones built in to R, it’s worth checking CRAN’s “task
view” on probability distributions, https://cran.r-project.org/web/views/
Distributions.html.

For sensitivity analyses, Miller (1998) describes how to use modern optimiza-
tion methods to actively search for settings in simulation models which break
desired behaviors or conclusions. I have not seen this idea applied to sensitivity
analyses for statistical models, but it really ought to be.

Exercises

5.1 Modify rmultinoulli from §5.2.3.2 so that the values in the output are not the integers

from 1 to k, but come from a vector of arbitrary labels.

https://cran.r-project.org/web/views/Distributions.html
https://cran.r-project.org/web/views/Distributions.html

6

The Bootstrap

We are now several chapters into a statistics class and have said basically nothing
about uncertainty. This should seem odd, and may even be disturbing if you are
very attached to your p-values and saying variables have “significant effects”.
It is time to remedy this, and talk about how we can quantify uncertainty for
complex models. The key technique here is what’s called bootstrapping, or the
bootstrap.

6.1 Stochastic Models, Uncertainty, Sampling Distributions

Statistics is the branch of mathematical engineering which studies ways of draw-
ing inferences from limited and imperfect data. We want to know how a neuron
in a rat’s brain responds when one of its whiskers gets tweaked, or how many rats
live in Pittsburgh, or how high the water will get under the 16th Street bridge
during May, or the typical course of daily temperatures in the city over the year,
or the relationship between the number of birds of prey in Schenley Park in the
spring and the number of rats the previous fall. We have some data on all of these
things. But we know that our data is incomplete, and experience tells us that
repeating our experiments or observations, even taking great care to replicate the
conditions, gives more or less different answers every time. It is foolish to treat
any inference from the data in hand as certain.

If all data sources were totally capricious, there’d be nothing to do beyond
piously qualifying every conclusion with “but we could be wrong about this”. A
mathematical discipline of statistics is possible because while repeating an ex-
periment gives different results, some kinds of results are more common than
others; their relative frequencies are reasonably stable. We thus model the data-
generating mechanism through probability distributions and stochastic processes.
When and why we can use stochastic models are very deep questions, but ones
for another time. If we can use them in our problem, quantities like the ones
I mentioned above are represented as functions of the stochastic model, i.e., of
the underlying probability distribution. Since a function of a function is a “func-
tional”, and these quantities are functions of the true probability distribution
function, we’ll call these functionals or statistical functionals1. Functionals
could be single numbers (like the total rat population), or vectors, or even whole

1 Most writers in theoretical statistics just call them “parameters” in a generalized sense, but I will

126

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

6.1 Stochastic Models, Uncertainty, Sampling Distributions 127

curves (like the expected time-course of temperature over the year, or the regres-
sion of hawks now on rats earlier). Statistical inference becomes estimating those
functionals, or testing hypotheses about them.

These estimates and other inferences are functions of the data values, which
means that they inherit variability from the underlying stochastic process. If we
“re-ran the tape” (as the late, great Stephen Jay Gould used to say), we would get
different data, with a certain characteristic distribution, and applying a fixed pro-
cedure would yield different inferences, again with a certain distribution. Statis-
ticians want to use this distribution to quantify the uncertainty of the inferences.
For instance, the standard error is an answer to the question “By how much
would our estimate of this functional vary, typically, from one replication of the
experiment to another?” (It presumes a particular meaning for “typically vary”,
as the root-mean-square deviation around the mean.) A confidence region on a
parameter, likewise, is the answer to “What are all the values of the parameter
which could have produced this data with at least some specified probability?”,
i.e., all the parameter values under which our data are not low-probability out-
liers. The confidence region is a promise that either the true parameter point lies
in that region, or something very unlikely under any circumstances happened —
or that our stochastic model is wrong.

To get things like standard errors or confidence intervals, we need to know the
distribution of our estimates around the true values of our functionals. These
sampling distributions follow, remember, from the distribution of the data,
since our estimates are functions of the data. Mathematically the problem is well-
defined, but actually computing anything is another story. Estimates are typically
complicated functions of the data, and mathematically-convenient distributions
may all be poor approximations to the data source. Saying anything in closed
form about the distribution of estimates can be simply hopeless. The two classical
responses of statisticians were to focus on tractable special cases, and to appeal
to asymptotics.

Your introductory statistics courses mostly drilled you in the special cases.
From one side, limit the kind of estimator we use to those with a simple math-
ematical form — say, means and other linear functions of the data. From the
other, assume that the probability distributions featured in the stochastic model
take one of a few forms for which exact calculation is possible, analytically or
via tabulated special functions. Most such distributions have origin myths: the
Gaussian arises from averaging many independent variables of equal size (say,
the many genes which contribute to height in humans); the Poisson distribu-
tion comes from counting how many of a large number of independent and
individually-improbable events have occurred (say, radioactive nuclei decaying
in a given second), etc. Squeezed from both ends, the sampling distribution of
estimators and other functions of the data becomes exactly calculable in terms
of the aforementioned special functions.

try to restrict that word to actual parameters specifying statistical models, to minimize confusion. I

may slip up.

128 The Bootstrap

That these origin myths invoke various limits is no accident. The great results
of probability theory — the laws of large numbers, the ergodic theorem, the
central limit theorem, etc. — describe limits in which all stochastic processes
in broad classes of models display the same asymptotic behavior. The central
limit theorem, for instance, says that if we average more and more independent
random quantities with a common distribution, and that common distribution
isn’t too pathological, then the average becomes closer and closer to a Gaussian2.
Typically, as in the CLT, the limits involve taking more and more data from
the source, so statisticians use the theorems to find the asymptotic, large-sample
distributions of their estimates. We have been especially devoted to re-writing
our estimates as averages of independent quantities, so that we can use the CLT
to get Gaussian asymptotics.

Up through about the 1960s, statistics was split between developing general
ideas about how to draw and evaluate inferences with stochastic models, and
working out the properties of inferential procedures in tractable special cases
(especially the linear-and-Gaussian case), or under asymptotic approximations.
This yoked a very broad and abstract theory of inference to very narrow and con-
crete practical formulas, an uneasy combination often preserved in basic statistics
classes.

The arrival of (comparatively) cheap and fast computers made it feasible for
scientists and statisticians to record lots of data and to fit models to it, so they
did. Sometimes the models were conventional ones, including the special-case as-
sumptions, which often enough turned out to be detectably, and consequentially,
wrong. At other times, scientists wanted more complicated or flexible models,
some of which had been proposed long before, but now moved from being the-
oretical curiosities to stuff that could run overnight3. In principle, asymptotics
might handle either kind of problem, but convergence to the limit could be un-
acceptably slow, especially for more complex models.

By the 1970s, then, statistics faced the problem of quantifying the uncertainty
of inferences without using either implausibly-helpful assumptions or asymp-
totics; all of the solutions turned out to demand even more computation. Here
we will examine what may be the most successful solution, Bradley Efron’s pro-
posal to combine estimation with simulation, which he gave the less-than-clear
but persistent name of “the bootstrap” (Efron, 1979).

6.2 The Bootstrap Principle

Remember (from baby stats.) that the key to dealing with uncertainty in param-
eters and functionals is the sampling distribution of estimators. Knowing what
distribution we’d get for our estimates on repeating the experiment would give
us things like standard errors. Efron’s insight was that we can simulate repli-

2 The reason is that the non-Gaussian parts of the distribution wash away under averaging, but the

average of two Gaussians is another Gaussian.
3 Kernel regression (§1.5.2), kernel density estimation (Ch. 14), and nearest-neighbors prediction

(§1.5.1) were all proposed in the 1950s or 1960s, but didn’t begin to be widely used until about 1980.

6.2 The Bootstrap Principle 129

data
.00168

-0.00249

0.0183

-0.00587

0.0139

es
tim

at
or

fitted model

q0.01 = -0.0326

parameter calculation

sim
ulati

on

simulated data
.00183

-0.00378

0.00754

-0.00587

-0.00673

es
tim

at
or

q0.01 = -0.0323

re-estimate

Figure 6.1 Schematic for model-based bootstrapping: simulated values are
generated from the fitted model, then treated like the original data, yielding
a new estimate of the functional of interest, here called q0.01.

cation. After all, we have already fitted a model to the data, which is a guess
at the mechanism which generated the data. Running that mechanism generates
simulated data which, by hypothesis, has the same distribution as the real data.
Feeding the simulated data through our estimator gives us one draw from the
sampling distribution; repeating this many times yields the sampling distribu-
tion. Since we are using the model to give us its own uncertainty, Efron called
this “bootstrapping”; unlike the Baron Munchhausen’s plan for getting himself
out of a swamp by pulling on his own bootstraps, it works.

Figure 6.1 sketches the over-all process: fit a model to data, use the model to
calculate the functional, then get the sampling distribution by generating new,
synthetic data from the model and repeating the estimation on the simulation
output.

To fix notation, we’ll say that the original data is x. (In general this is a whole

data frame, not a single number.) Our parameter estimate from the data is θ̂. Sur-
rogate data sets simulated from the fitted model will be X̃1, X̃2, . . . X̃B. The cor-
responding re-estimates of the parameters on the surrogate data are θ̃1, θ̃2, . . . θ̃B.

130 The Bootstrap

The functional of interest is estimated by the statistic4 T , with sample value
t̂ = T (x), and values of the surrogates of t̃1 = T (X̃1), t̃2 = T (X̃2), . . . t̃B = T (X̃B).
(The statistic T may be a direct function of the estimated parameters, and only
indirectly a function of x.) Everything which follows applies without modifica-
tion when the functional of interest is the parameter, or some component of the
parameter.

In this section, we will assume that the model is correct for some value of θ,
which we will call θ0. This means that we are employing a parametric model-
based bootstrap. The true (population or ensemble) values of the functional is
likewise t0.

6.2.1 Variances and Standard Errors

The simplest thing to do is to get the variance or standard error:

V̂ar
[
t̂
]

= V
[
t̃
]

(6.1)

ŝe(t̂) = sd(t̃) (6.2)

That is, we approximate the variance of our estimate of t0 under the true but
unknown distribution θ0 by the variance of re-estimates t̃ on surrogate data from
the fitted model θ̂. Similarly we approximate the true standard error by the
standard deviation of the re-estimates. The logic here is that the simulated X̃
has about the same distribution as the real X that our data, x, was drawn from,
so applying the same estimation procedure to the surrogate data gives us the
sampling distribution. This assumes, of course, that our model is right, and that
θ̂ is not too far from θ0.

A code sketch is provided in Code Example 7. Note that this may not work
exactly as given in some circumstances, depending on the syntax details of, say,
just what kind of data structure is needed to store t̂.

6.2.2 Bias Correction

We can use bootstrapping to correct for a biased estimator. Since the sampling
distribution of t̃ is close to that of t̂, and t̂ itself is close to t0,

E
[
t̂
]
− t0 ≈ E

[
t̃
]
− t̂ (6.3)

The left hand side is the bias that we want to know, and the right-hand side the
was what we can calculate with the bootstrap.

In fact, Eq. 6.3 remains valid so long as the sampling distribution of t̂ − t0
is close to that of t̃ − t̂. This is a weaker requirement than asking for t̂ and
t̃ themselves to have similar distributions, or asking for t̂ to be close to t0. In
statistical theory, a random variable whose distribution does not depend on the
parameters is called a pivot. (The metaphor is that it stays in one place while

4 T is a common symbol in the literature on the bootstrap for a generic function of the data. It may

or may not have anything to do with Student’s t test for difference in means.

6.2 The Bootstrap Principle 131

rboot <- function(statistic, simulator, B) {
tboots <- replicate(B, statistic(simulator()))
if (is.null(dim(tboots))) {

tboots <- array(tboots, dim = c(1, B))
}
return(tboots)

}
bootstrap <- function(tboots, summarizer, ...) {

summaries <- apply(tboots, 1, summarizer, ...)
return(t(summaries))

}
bootstrap.se <- function(statistic, simulator, B) {

bootstrap(rboot(statistic, simulator, B), summarizer = sd)
}

Code Example 7: Code for calculating bootstrap standard errors. The function rboot generates
B bootstrap samples (using the simulator function) and calculates the statistic on them (using
statistic). simulator needs to be a function which returns a surrogate data set in a form
suitable for statistic. (How would you modify the code to pass arguments to simulator and/or
statistic?) Because every use of bootstrapping is going to need to do this, it makes sense to
break it out as a separate function, rather than writing the same code many times (with many
chances of getting it wrong). The bootstrap function takes the output of rboot and applies
a summarizing function. bootstrap.se just calls rboot and makes the summarizing function
sd, which takes a standard deviation. Important Note: This is just a code sketch, because
depending on the data structure which the statistic returns, it may not (e.g.) be feasible to just
run sd on it, and so it might need some modification. See detailed examples below.

bootstrap.bias <- function(simulator, statistic, B, t.hat) {
expect <- bootstrap(rboot(statistic, simulator, B), summarizer = mean)
return(expect - t.hat)

}

Code Example 8: Sketch of code for bootstrap bias correction. Arguments are as in Code
Example 7, except that t.hat is the estimate on the original data. Important Note: As with
Code Example 7, this is just a code sketch, because it won’t work with all data types that might
be returned by statistic, and so might require modification.

the parameters turn around it.) A sufficient (but not necessary) condition for Eq.
6.3 to hold is that t̂− t0 be a pivot, or approximately pivotal.

6.2.3 Confidence Intervals

A confidence interval is a random interval which contains the truth with high
probability (the confidence level). If the confidence interval for g is C, and the
confidence level is 1− α, then we want

Pr (t0 ∈ C) = 1− α (6.4)

no matter what the true value of t0. When we calculate a confidence interval, our
inability to deal with distributions exactly means that the true confidence level,
or coverage of the interval, is not quite the desired confidence level 1 − α; the

132 The Bootstrap

closer it is, the better the approximation, and the more accurate the confidence
interval.5

When we simulate, we get samples of t̃, but what we really care about is the
distribution of t̂. When we have enough data to start with, those two distributions
will be approximately the same. But at any given amount of data, the distribution
of t̃− t̂ will usually be closer to that of t̂−t0 than the distribution of t̃ is to that of
t̂. That is, the distribution of fluctuations around the true value usually converges
quickly. (Think of the central limit theorem.) We can use this to turn information
about the distribution of t̃ into accurate confidence intervals for t0, essentially by
re-centering t̃ around t̂.

Specifically, let qα/2 and q1−α/2 be the α/2 and 1− α/2 quantiles of t̃. Then

1− α = Pr
(
qα/2 ≤ T̃ ≤ q1−α/2

)
(6.5)

= Pr
(
qα/2 − T̂ ≤ T̃ − T̂ ≤ q1−α/2 − T̂

)
(6.6)

≈ Pr
(
qα/2 − T̂ ≤ T̂ − t0 ≤ q1−α/2 − T̂

)
(6.7)

= Pr
(
qα/2 − 2T̂ ≤ −t0 ≤ q1−α/2 − 2T̂

)
(6.8)

= Pr
(

2T̂ − q1−α/2 ≤ t0 ≤ 2T̂ − qα/2
)

(6.9)

The interval C = [2T̂ − qα/2, 2T̂ − q1−α/2] is random, because T̂ is a random
quantity, so it makes sense to talk about the probability that it contains the true
value t0. Also, notice that the upper and lower quantiles of T̃ have, as it were,
swapped roles in determining the upper and lower confidence limits. Finally,
notice that we do not actually know those quantiles exactly, but they’re what we
approximate by bootstrapping.

This is the basic bootstrap confidence interval, or the pivotal CI. It is
simple and reasonably accurate, and makes a very good default choice for finding
confidence intervals.

6.2.3.1 Other Bootstrap Confidence Intervals

The basic bootstrap CI relies on the distribution of t̃ − t̂ being approximately
the same as that of t̂ − t0. Even when this is false, however, it can be that the
distribution of

τ =
t̂− t0
ŝe(t̂)

(6.10)

is close to that of

τ̃ =
t̃− t̂
se(t̃)

(6.11)

5 You might wonder why we’d be unhappy if the coverage level was greater than 1− α. This is

certainly better than if it’s less than the nominal confidence level, but it usually means we could

have used a smaller set, and so been more precise about t0, without any more real risk. Confidence

intervals whose coverage is greater than the nominal level are called conservative; those with less

than nominal coverage are anti-conservative (and not, say, “liberal”).

6.2 The Bootstrap Principle 133

equitails <- function(x, alpha) {
lower <- quantile(x, alpha/2)
upper <- quantile(x, 1 - alpha/2)
return(c(lower, upper))

}
bootstrap.ci <- function(statistic = NULL, simulator = NULL, tboots = NULL,

B = if (!is.null(tboots)) {
ncol(tboots)

}, t.hat, level) {
if (is.null(tboots)) {

stopifnot(!is.null(statistic))
stopifnot(!is.null(simulator))
stopifnot(!is.null(B))
tboots <- rboot(statistic, simulator, B)

}
alpha <- 1 - level
intervals <- bootstrap(tboots, summarizer = equitails, alpha = alpha)
upper <- t.hat + (t.hat - intervals[, 1])
lower <- t.hat + (t.hat - intervals[, 2])
CIs <- cbind(lower = lower, upper = upper)
return(CIs)

}

Code Example 9: Sketch of code for calculating the basic bootstrap confidence interval. See
Code Example 7 for rboot and bootstrap, and cautions about blindly applying this to arbitrary
data-types.

This is like what we calculate in a t-test, and since the t-test was invented by
“Student”, these are called studentized quantities. If τ and τ̃ have the same
distribution, then we can reason as above and get a confidence interval(

t̂− ŝe(t̂)Qτ̃ (1− α/2), t̂− ŝe(t̂)Qτ̃ (α/2)
)

(6.12)

This is the same as the basic interval when ŝe(t̂) = se(t̃), but different otherwise.
To find se(t̃), we need to actually do a second level of bootstrapping, as follows.

1. Fit the model with θ̂, find t̂.

2. For i ∈ 1 : B1

1. Generate X̃i from θ̂

2. Estimate θ̃i, t̃i
3. For j ∈ 1 : B2

1. Generate X†ij from θ̃i

2. Calculate t†ij

4. Set σ̃i = standard deviation of the t†ij

5. Set τ̃ij =
t†ij−t̃i
σ̃i

for all j

3. Set ŝe(t̂) = standard deviation of the t̃i
4. Find the α/2 and 1− α/2 quantiles of the distribution of the τ̃

5. Plug into Eq. 6.12.

134 The Bootstrap

boot.pvalue <- function(test, simulator, B, testhat) {
testboot <- rboot(B = B, statistic = test, simulator = simulator)
p <- (sum(testboot >= testhat) + 1)/(B + 1)
return(p)

}

Code Example 10: Bootstrap p-value calculation. testhat should be the value of the test statis-
tic on the actual data. test is a function which takes in a data set and calculates the test statis-
tic, presuming that large values indicate departure from the null hypothesis. Note the +1 in the
numerator and denominator of the p-value — it would be more straightforward to leave them
off, but this is a little more stable when B is comparatively small. (Also, it keeps us from ever
reporting a p-value of exactly 0.)

The advantage of the studentized intervals is that they are more accurate than
the basic ones; the disadvantage is that they are more work! At the other extreme,
the percentile method simply sets the confidence interval to

(Qt̃(α/2), Qt̃(1− α/2)) (6.13)

This is definitely easier to calculate, but not as accurate as the basic, pivotal CI.
All of these methods have many variations, described in the monographs re-

ferred to at the end of this chapter (§6.9).

6.2.4 Hypothesis Testing

For hypothesis tests, we may want to calculate two sets of sampling distributions:
the distribution of the test statistic under the null tells us about the size of the test
and significance levels, and the distribution under the alternative tells us about
power and realized power. We can find either with bootstrapping, by simulating
from either the null or the alternative. In such cases, the statistic of interest, which
I’ve been calling T , is the test statistic. Code Example 10 illustrates how to find a
p-value by simulating under the null hypothesis. The same procedure would work
to calculate power, only we’d need to simulate from the alternative hypothesis,
and testhat would be set to the critical value of T separating acceptance from
rejection, not the observed value.

6.2.4.1 Double bootstrap hypothesis testing

When the hypothesis we are testing involves estimated parameters, we may need
to correct for this. Suppose, for instance, that we are doing a goodness-of-fit test.
If we estimate our parameters on the data set, we adjust our distribution so that
it matches the data. It is thus not surprising if it seems to fit the data well!
(Essentially, it’s the problem of evaluating performance by looking at in-sample
fit, which gave us so much trouble in Chapter 3.)

Some test statistics have distributions which are not affected by estimating
parameters, at least not asymptotically. In other cases, one can analytically come
up with correction terms. When these routes are blocked, one uses a double
bootstrap, where a second level of bootstrapping checks how much estimation

6.2 The Bootstrap Principle 135

doubleboot.pvalue <- function(test, simulator, B1, B2, estimator, thetahat,
testhat, ...) {
for (i in 1:B1) {

xboot <- simulator(theta = thetahat, ...)
thetaboot <- estimator(xboot)
testboot[i] <- test(xboot)
pboot[i] <- boot.pvalue(test, simulator, B2, testhat = testboot[i],

theta = thetaboot)
}
p <- (sum(testboot >= testhat) + 1)/(B1 + 1)
p.adj <- (sum(pboot <= p) + 1)/(B1 + 1)
return(p.adj)

}

Code Example 11: Code sketch for “double bootstrap” significance testing. The inner or second
bootstrap is used to calculate the distribution of nominal bootstrap p-values. For this to work, we

need to draw our second-level bootstrap samples from θ̃, the bootstrap re-estimate, not from θ̂,
the data estimate. The code presumes the simulator function takes a theta argument allowing
this. Exercise: replace the for loop with replicate.

improves the apparent fit of the model. This is perhaps most easily explained in
pseudo-code (Code Example 11).

6.2.5 Model-Based Bootstrapping Example: Pareto’s Law of Wealth
Inequality

The Pareto or power-law distribution6, is a popular model for data with “heavy
tails”, i.e. where the probability density f(x) goes to zero only very slowly as
x→∞. The probability density is

f(x) =
θ − 1

x0

(
x

x0

)−θ
(6.14)

where x0 is the minimum scale of the distribution, and θ is the scaling exponent
(Exercise 6.1). The Pareto is highly right-skewed, with the mean being much
larger than the median.

If we know x0, one can show that the maximum likelihood estimator of the
exponent θ is

θ̂ = 1 +
n∑n

i=1 log xi
x0

(6.15)

and that this is consistent (Exercise 6.3), and efficient. Picking x0 is a harder
problem (see Clauset et al. 2009) — for the present purposes, pretend that the
Oracle tells us. The file pareto.R, on the book website, contains a number of
functions related to the Pareto distribution, including a function pareto.fit for
estimating it. (There’s an example of its use below.)

Pareto came up with this density when he attempted to model the distribution

6 Named after Vilfredo Pareto (1848–1923), the highly influential economist, political scientist, and

proto-Fascist.

136 The Bootstrap

sim.wealth <- function() {
rpareto(n = n.tail, threshold = wealth.pareto$xmin, exponent = wealth.pareto$exponent)

}
est.pareto <- function(data) {

pareto.fit(data, threshold = x0)$exponent
}

Code Example 12: Simulator and estimator for model-based bootstrapping of the Pareto dis-
tribution.

of personal wealth. Approximately, but quite robustly across countries and time-
periods, the upper tail of the distribution of income and wealth follows a power
law, with the exponent varying as money is more or less concentrated among the
very richest individuals and households7. Figure 6.2 shows the distribution of net
worth for the 400 richest Americans in 20038.

source("http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/code/pareto.R")
wealth <- scan("http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/data/wealth.dat")
x0 <- 9e+08
n.tail <- sum(wealth >= x0)
wealth.pareto <- pareto.fit(wealth, threshold = x0)

Taking x0 = 9× 108 (again, see Clauset et al. 2009), the number of individuals

in the tail is 302, and the estimated exponent is θ̂ = 2.34.
How much uncertainty is there in this estimate of the exponent? Naturally, we’ll

bootstrap. We need a function to generate Pareto-distributed random variables;
this, along with some related functions, is part of the file pareto.R on the course
website. With that tool, model-based bootstrapping proceeds as in Code Example
12.

Using these functions, we can now calculate the bootstrap standard error, bias
and 95% confidence interval for θ̂, setting B = 104:

pareto.se <- bootstrap.se(statistic = est.pareto, simulator = sim.wealth, B = 10000)
pareto.bias <- bootstrap.bias(statistic = est.pareto, simulator = sim.wealth,

t.hat = wealth.pareto$exponent, B = 10000)
pareto.ci <- bootstrap.ci(statistic = est.pareto, simulator = sim.wealth, B = 10000,

t.hat = wealth.pareto$exponent, level = 0.95)

This gives a standard error of ±0.078, matching the asymptotic approximation
reasonably well9, but not needing asymptotic assumptions.

7 Most of the distribution, for ordinary people, roughly conforms to a log-normal.
8 For the data source and a fuller analysis, see Clauset et al. (2009).

9 “In Asymptopia”, the variance of the MLE should be
(θ̂−1)2

n
, in this case 0.076. The intuition is

that this variance depends on how sharp the maximum of the likelihood function is — if it’s sharply

peaked, we can find the maximum very precisely, but a broad maximum is hard to pin down.

Variance is thus inversely proportional to the second derivative of the negative log-likelihood. (The

minus sign is because the second derivative has to be negative at a maximum, while variance has to

be positive.) For one sample, the expected second derivative of the negative log-likelihood is

(θ − 1)−2. (This is called the Fisher information of the model.) Log-likelihood adds across

6.2 The Bootstrap Principle 137

1e+09 2e+09 5e+09 1e+10 2e+10 5e+10

0.
00

2
0.

00
5

0.
02

0
0.

05
0

0.
20

0
0.

50
0

Net worth (dollars)

F
ra

ct
io

n
of

 to
p

40
0

ab
ov

e
th

at
 w

or
th

plot.survival.loglog(wealth, xlab = "Net worth (dollars)", ylab = "Fraction of top 400 above that worth")
rug(wealth, side = 1, col = "grey")
curve((n.tail/400) * ppareto(x, threshold = x0, exponent = wealth.pareto$exponent,

lower.tail = FALSE), add = TRUE, lty = "dashed", from = x0, to = 2 * max(wealth))

Figure 6.2 Upper cumulative distribution function (or “survival function”)
of net worth for the 400 richest individuals in the US (2000 data). The solid
line shows the fraction of the 400 individuals whose net worth W equaled or
exceeded a given value w, Pr (W ≥ w). (Note the logarithmic scale for both
axes.) The dashed line is a maximum-likelihood estimate of the Pareto
distribution, taking x0 = $9× 108. (This threshold was picked using the
method of Clauset et al. 2009.) Since there are 302 individuals at or above
the threshold, the cumulative distribution function of the Pareto has to be
reduced by a factor of (302/400).

138 The Bootstrap

ks.stat.pareto <- function(x, exponent, x0) {
x <- x[x >= x0]
ks <- ks.test(x, ppareto, exponent = exponent, threshold = x0)
return(ks$statistic)

}
ks.pvalue.pareto <- function(B, x, exponent, x0) {

testhat <- ks.stat.pareto(x, exponent, x0)
testboot <- vector(length = B)
for (i in 1:B) {

xboot <- rpareto(length(x), exponent = exponent, threshold = x0)
exp.boot <- pareto.fit(xboot, threshold = x0)$exponent
testboot[i] <- ks.stat.pareto(xboot, exp.boot, x0)

}
p <- (sum(testboot >= testhat) + 1)/(B + 1)
return(p)

}

Code Example 13: Calculating a p-value for the Pareto distribution, using the Kolmogorov-
Smirnov test and adjusting for the way estimating the scaling exponent moves the fitted distri-
bution closer to the data.

Asymptotically, the bias is known to go to zero; at this size, bootstrapping
gives a bias of 0.0051, which is effectively negligible.

We can also get the confidence interval; with the same 104 replications, the 95%
CI is 2.17, 2.48. In theory, the confidence interval could be calculated exactly, but
it involves the inverse gamma distribution (Arnold, 1983), and it is quite literally
faster to write and do the bootstrap than go to look it up.

A more challenging problem is goodness-of-fit; we’ll use the Kolmogorov-Smirnov
statistic.10 Code Example 13 calculates the p-value. With ten thousand bootstrap
replications,

signif(ks.pvalue.pareto(10000, wealth, wealth.pareto$exponent, x0), 4)
[1] 0.0101

Ten thousand replicates is enough that we should be able to accurately es-
timate probabilities of around 0.01 (since the binomial standard error will be√

(0.01)(0.99)

104 ≈ 9.9× 10−4); if it weren’t, we might want to increase B.

Simply plugging in to the standard formulas, and thereby ignoring the effects of
estimating the scaling exponent, gives a p-value of 0.171, which is not outstanding
but not awful either. Properly accounting for the flexibility of the model, however,
the discrepancy between what it predicts and what the data shows is so large
that it would take a big (one-in-a-hundred) coincidence to produce it. We have,

independent samples, giving us an over-all factor of n. In the large-sample limit, the actual

log-likelihood will converge on the expected log-likelihood, so this gives us the asymptotic variance.

(See also §??.)
10 The pareto.R file contains a function, pareto.tail.ks.test, which does a goodness-of-fit test for

fitting a power-law to the tail of the distribution. That differs somewhat from what follows, because

it takes into account the extra uncertainty which comes from having to estimate x0. Here, I am

pretending that an Oracle told us x0 = 9× 108.

6.3 Resampling 139

therefore, detected that the Pareto distribution makes systematic errors for this
data, but we don’t know much about what they are. In Chapter E, we’ll look at
techniques which can begin to tell us something about how it fails.

6.3 Bootstrapping by Resampling

The bootstrap approximates the sampling distribution, with three sources of ap-
proximation error. First, simulation error: using finitely many replications to
stand for the full sampling distribution. Clever simulation design can shrink this,
but brute force — just using enough replicates — can also make it arbitrarily
small. Second, statistical error: the sampling distribution of the bootstrap re-
estimates under our estimated model is not exactly the same as the sampling
distribution of estimates under the true data-generating process. The sampling
distribution changes with the parameters, and our initial estimate is not com-
pletely accurate. But it often turns out that distribution of estimates around the
truth is more nearly invariant than the distribution of estimates themselves, so
subtracting the initial estimate from the bootstrapped values helps reduce the
statistical error; there are many subtler tricks to the same end. Third, specifica-
tion error: the data source doesn’t exactly follow our model at all. Simulating
the model then never quite matches the actual sampling distribution.

Efron had a second brilliant idea, which is to address specification error by
replacing simulation from the model with re-sampling from the data. After all,
our initial collection of data gives us a lot of information about the relative
probabilities of different values. In a sense the empirical distribution is the least
prejudiced estimate possible of the underlying distribution — anything else im-
poses biases or pre-conceptions, possibly accurate but also potentially mislead-
ing11. Lots of quantities can be estimated directly from the empirical distribution,
without the mediation of a model. Efron’s resampling bootstrap (a.k.a. the
non-parametric bootstrap) treats the original data set as a complete popula-
tion and draws a new, simulated sample from it, picking each observation with
equal probability (allowing repeated values) and then re-running the estimation
(Figure 6.3, Code Example 14). In fact, this is usually what people mean when
they talk about “the bootstrap” without any modifier.

Everything we did with model-based bootstrapping can also be done with re-
sampling bootstrapping — the only thing that’s changing is the distribution the
surrogate data is coming from.

The resampling bootstrap should remind you of k-fold cross-validation. The
analog of leave-one-out CV is a procedure called the jack-knife, where we repeat
the estimate n times on n−1 of the data points, holding each one out in turn. It’s
historically important (it dates back to the 1940s), but generally doesn’t work as
well as resampling.

An important variant is the smoothed bootstrap, where we re-sample the

11 See §14.6 in Chapter 14.

140 The Bootstrap

data
0.00168

-0.00249

0.0183

-0.00587

0.0139

es
tim

at
or

empirical
distribution

q0.01 = -0.0392

parameter calculation

re-sampling

simulated data
0.00183

0.00183

-0.00249

-0.00249

-0.00587

es
tim

at
or

q0.01 = -0.0354

re-estimate

Figure 6.3 Schematic for the resampling bootstrapping. New data is
simulated by re-sampling from the original data (with replacement), and
functionals are calculated either directly from the empirical distribution, or
by estimating a model on this surrogate data.

resample <- function(x) {
sample(x, size = length(x), replace = TRUE)

}
resample.data.frame <- function(data) {

sample.rows <- resample(1:nrow(data))
return(data[sample.rows,])

}

Code Example 14: A utility function to resample from a vector, and another which resamples
from a data frame. Can you write a single function which determines whether its argument is a
vector or a data frame, and does the right thing in each case/

data points and then perturb each by a small amount of noise, generally Gaus-
sian12.

12 We will see in Chapter 14 that this corresponds to sampling from a kernel density estimate.

6.4 Bootstrapping Regression Models 141

Back to the Pareto example

Let’s see how to use re-sampling to get a 95% confidence interval for the Pareto
exponent13.

wealth.resample <- function() {
resample(wealth[wealth >= x0])

}
pareto.CI.resamp <- bootstrap.ci(statistic = est.pareto, simulator = wealth.resample,

t.hat = wealth.pareto$exponent, level = 0.95, B = 10000)

The interval is 2.17, 2.48; this is very close to the interval we got from the model-
based bootstrap, which should actually reassure us about the latter’s validity.

6.3.1 Model-Based vs. Resampling Bootstraps

When we have a properly specified model, simulating from the model gives more
accurate results (at the same n) than does re-sampling the empirical distribution
— parametric estimates of the distribution converge faster than the empirical
distribution does. If on the other hand the model is mis-specified, then it is rapidly
converging to the wrong distribution. This is of course just another bias-variance
trade-off, like those we’ve seen in regression.

Since I am suspicious of most parametric modeling assumptions, I prefer re-
sampling, when I can figure out how to do it, or at least until I have convinced
myself that a parametric model is a good approximation to reality.

6.4 Bootstrapping Regression Models

Let’s recap what we’re doing estimating regression models. We want to learn
the regression function µ(x) = E [Y |X = x]. We estimate the model on a set of
predictor-response pairs, (x1, y1), (x2, y2), . . . (xn, yn), resulting in an estimated
curve (or surface) µ̂(x), fitted values µ̂i = µ̂(xi), and residuals, εi = yi − µ̂i. For
any such model, we have a choice of several ways of bootstrapping, in decreasing
order of reliance on the model.

• Simulate new X values from the model’s distribution of X, and then draw Y
from the specified conditional distribution Y |X.

• Hold the x fixed, but draw Y |X from the specified distribution.

• Hold the x fixed, but make Y equal to µ̂(x) plus a randomly re-sampled εj.

• Re-sample (x, y) pairs.

13 Even if the Pareto model is wrong, the estimator of the exponent will converge on the value which

gives, in a certain sense, the best approximation to the true distribution from among all power laws.

Econometricians call such parameter values the pseudo-truth; we are getting a confidence interval

for the pseudo-truth. In this case, the pseudo-true scaling exponent can still be a useful way of

summarizing how heavy tailed the income distribution is, despite the fact that the power law makes

systematic errors.

142 The Bootstrap

The first case is pure model-based bootstrapping. (So is the second, sometimes,
when the regression model is agnostic about X.) The last case is just re-sampling
from the joint distribution of (X,Y). The next-to-last case is called re-sampling
the residuals or re-sampling the errors. When we do that, we rely on the
regression model to get the conditional expectation function right, but we don’t
count on it getting the distribution of the noise around the expectations.

The specific procedure of re-sampling the residuals is to re-sample the εi, with
replacement, to get ε̃1, ε̃2, . . . ε̃n, and then set x̃i = xi, ỹi = µ̂(x̃i) + ε̃i. This
surrogate data set is then re-analyzed like new data.

6.4.1 Re-sampling Points: Parametric Model Example

A classic data set contains the time between 299 eruptions of the Old Faithful
geyser in Yellowstone, and the length of the subsequent eruptions; these variables
are called waiting and duration. (We saw this data set already in §5.4.2.1, and
will see it again in §10.3.2.) We’ll look at the linear regression of waiting on
duration. We’ll re-sample (duration, waiting) pairs, and would like confidence
intervals for the regression coefficients. This is a confidence interval for the coef-
ficients of the best linear predictor, a functional of the distribution, which, as we
saw in Chapters 1 and 2, exists no matter how nonlinear the process really is. It’s
only a confidence interval for the true regression parameters if the real regression
function is linear.

Before anything else, look at the model:

library(MASS)
data(geyser)
geyser.lm <- lm(waiting ~ duration, data = geyser)

Estimate Std. Error t value Pr(¿—t—)

(Intercept) 99.3 1.960 50.7 0

duration -7.8 0.537 -14.5 0

The first step in bootstrapping this is to build our simulator, which just means
sampling rows from the data frame:

resample.geyser <- function() {
resample.data.frame(geyser)

}

We can check this by running summary(geyser.resample()), and seeing that
it gives about the same quartiles and mean for both variables as summary(geyser)14,
but that the former gives different numbers each time it’s run.

Next, we define the estimator:

14 The minimum and maximum won’t match up well — why not?

6.4 Bootstrapping Regression Models 143

est.geyser.lm <- function(data) {
fit <- lm(waiting ~ duration, data = data)
return(coefficients(fit))

}

We can check that this function works by seeing that coefficients(geyser.lm)
matches est.geyser.lm(geyser), but that est.geyser.lm(resample.geyser()
is different every time we run it.

Put the pieces together:

geyser.lm.ci <- bootstrap.ci(statistic=est.geyser.lm,
simulator=resample.geyser,
level=0.95,
t.hat=coefficients(geyser.lm),
B=1e4)

lower upper

(Intercept) 96.60 102.00

duration -8.72 -6.95

Notice that we do not have to assume homoskedastic Gaussian noise — fortu-
nately, because that’s a very bad assumption here15.

6.4.2 Re-sampling Points: Non-parametric Model Example

Nothing in the logic of re-sampling data points for regression requires us to use
a parametric model. Here we’ll provide 95% confidence bounds for the kernel
smoothing of the geyser data. Since the functional is a whole curve, the confidence
set is often called a confidence band.

We use the same simulator, but start with a different regression curve, and
need a different estimator.

evaluation.points <- data.frame(duration = seq(from = 0.8, to = 5.5, length.out = 200))
library(np)
npr.geyser <- function(data, tol = 0.1, ftol = 0.1, plot.df = evaluation.points) {

bw <- npregbw(waiting ~ duration, data = data, tol = tol, ftol = ftol)
mdl <- npreg(bw)
return(predict(mdl, newdata = plot.df))

}

Now we construct pointwise 95% confidence bands for the regression curve.

15 We have calculated 95% confidence intervals for the intercept β0 and the slope β1 separately. These

intervals cover their coefficients all but 5% of the time. Taken together, they give us a rectangle in

(β0, β1) space, but the coverage probability of this rectangle could be anywhere from 95% all the

way down to 90%. To get a confidence region which simultaneously covers both coefficients 95% of

the time, we have two big options. One is to stick to a box-shaped region and just increase the

confidence level on each coordinate (to 97.5%). The other is to define some suitable metric of how

far apart coefficient vectors are (e.g., ordinary Euclidean distance), find the 95% percentile of the

distribution of this metric, and trace the appropriate contour around β̂0, β̂1.

144 The Bootstrap

main.curve <- npr.geyser(geyser)

We already defined this in a previous example, but it doesn't hurt
resample.geyser <- function() { resample.data.frame(geyser) }

geyser.resampled.curves <- rboot(statistic=npr.geyser,
simulator=resample.geyser,
B=800)

Code Example 15: Generating multiple kernel-regression curves for the geyser data,
by resampling that data frame and re-estimating the model on each simulation.
geyser.resampled.curves stores the predictions of those 800 models, evaluated at a common
set of values for the predictor variable. The vector main.curve, which we’ll use presently to get
confidence intervals, stores predictions of the model fit to the whole data, evaluated at that same
set of points.

For this end, we don’t really need to keep around the whole kernel regression
object — we’ll just use its predicted values on a uniform grid of points, extending
slightly beyond the range of the data (Code Example 15). Observe that this will
go through bandwidth selection again for each bootstrap sample. This is slow,
but it is the most secure way of getting good confidence bands. Applying the
bandwidth we found on the data to each re-sample would be faster, but would
introduce an extra level of approximation, since we wouldn’t be treating each
simulation run the same as the original data.

Figure 6.4 shows the curve fit to the data, the 95% confidence limits, and
(faintly) all of the bootstrapped curves. Doing the 800 bootstrap replicates took
4 minutes on my laptop16.

6.4.3 Re-sampling Residuals: Example

As an example of re-sampling the residuals, rather than data points, let’s take a
linear regression, based on the data-analysis assignment in §11. We will regress
gdp.growth on log(gdp), pop.growth, invest and trade:

penn <- read.csv("http://www.stat.cmu.edu/~cshalizi/uADA/13/hw/02/penn-select.csv")
penn.formula <- "gdp.growth ~ log(gdp) + pop.growth + invest + trade"
penn.lm <- lm(penn.formula, data = penn)

(Why make the formula a separate object here?) The estimated parameters are

16 Specifically, I ran system.time(geyser.resampled.curves <- rboot(statistic=npr.geyser,

simulator=resample.geyser, B=800)), which not only did the calculations and stored them in

geyser.resampled.curves, but told me how much time it took R to do all that.

6.4 Bootstrapping Regression Models 145

plot(0, type = "n", xlim = c(0.8, 5.5), ylim = c(0, 100), xlab = "Duration (min)",
ylab = "Waiting (min)")

for (i in 1:ncol(geyser.resampled.curves)) {
lines(evaluation.points$duration, geyser.resampled.curves[, i], lwd = 0.1,

col = "grey")
}
geyser.npr.cis <- bootstrap.ci(tboots = geyser.resampled.curves, t.hat = main.curve,

level = 0.95)
lines(evaluation.points$duration, geyser.npr.cis[, "lower"])
lines(evaluation.points$duration, geyser.npr.cis[, "upper"])
lines(evaluation.points$duration, main.curve)
rug(geyser$duration, side = 1)
points(geyser$duration, geyser$waiting)

Figure 6.4 Kernel regression curve for Old Faithful (central black line),
with 95% confidence bands (other black lines), the 800 bootstrapped curves
(thin, grey lines), and the data points. Notice that the confidence bands get
wider where there is less data. Caution: doing the bootstrap took 4 minutes
to run on my computer.

146 The Bootstrap

resample.residuals.penn <- function() {
new.frame <- penn
new.growths <- fitted(penn.lm) + resample(residuals(penn.lm))
new.frame$gdp.growth <- new.growths
return(new.frame)

}
penn.estimator <- function(data) {

mdl <- lm(penn.formula, data = data)
return(coefficients(mdl))

}
penn.lm.cis <- bootstrap.ci(statistic = penn.estimator, simulator = resample.residuals.penn,

B = 10000, t.hat = coefficients(penn.lm), level = 0.95)

Code Example 16: Re-sampling the residuals to get confidence intervals in a linear model.

x

(Intercept) 5.71e-04

log(gdp) 5.07e-04

pop.growth -1.87e-01

invest 7.15e-04

trade 3.11e-05

Code Example 16 shows the new simulator for this set-up (resample.residuals.penn)17,
the new estimation function (penn.estimator)18, and the confidence interval cal-
culation (penn.lm.cis):

lower upper

(Intercept) -1.62e-02 1.71e-02

log(gdp) -1.46e-03 2.49e-03

pop.growth -3.58e-01 -1.75e-02

invest 4.94e-04 9.37e-04

trade -1.94e-05 8.21e-05

Doing ten thousand linear regressions took 45 seconds on my computer, as
opposed to 4 minutes for eight hundred kernel regressions.

6.5 Bootstrap with Dependent Data

If the data points we are looking at are vectors (or more complicated structures)
with dependence between components, but each data point is independently gen-
erated from the same distribution, then dependence isn’t really an issue. We

17 How would you check that this worked?
18 How would you check that this worked?

6.6 Confidence Bands for Nonparametric Regression 147

re-sample vectors, or generate vectors from our model, and proceed as usual. In
fact, that’s what we’ve done so far in several cases.

If there is dependence across data points, things are more tricky. If our model
incorporates this dependence, then we can just simulate whole data sets from
it. An appropriate re-sampling method is trickier — just re-sampling individual
data points destroys the dependence, so it won’t do. We will revisit this question
when we look at time series in Chapter 23.

6.6 Confidence Bands for Nonparametric Regression

Many of the examples in this chapter use bootstrapping to get confidence bands
for nonparametric regression. It is worth mentioning that there is a subtle issue
with doing so, but one which I do not think really matters, usually, for practice.

The issue is that when we do nonparametric regression, we accept some bias
in our estimate of the regression function. In fact, we saw in Chapter 4 that min-
imizing the total MSE means accepting matching amounts of bias and variance.
So our nonparametric estimate of µ is biased. If we simulate from it, we’re sim-
ulating from something biased; if we simulate from the residuals, those residuals
contain bias; and even if we do a pure resampling bootstrap, we’re comparing the
bootstrap replicates to a biased estimate. This means that we are really looking
at sampling intervals around the biased estimate, rather than confidence intervals
around µ.

The two questions this raises are (1) how much this matters, and (2) whether
there is any alternative. As for the size of the bias, we know from Chapter 4 that
the squared bias, in 1D, goes like n−4/5, so the bias itself goes like n−2/5. This
does go to zero, but slowly.

[[Living with it vs. Hall and Horowitz (2013) paper, which gives 1−α coverage
at 1− η fraction of points. Essentially, construct naive bands, and then work out
by how much they need to be expanded to achieve desired coverage]]

6.7 Things Bootstrapping Does Poorly

The principle behind bootstrapping is that sampling distributions under the true
process should be close to sampling distributions under good estimates of the
truth. If small perturbations to the data-generating process produce huge swings
in the sampling distribution, bootstrapping will not work well, and may fail spec-
tacularly. For model-based bootstrapping, this means that small changes to the
underlying parameters must produce small changes to the functionals of interest.
Similarly, for resampling, it means that adding or removing a few data points
must change the functionals only a little19.

Re-sampling in particular has trouble with extreme values. Here is a simple

19 More generally, moving from one distribution function f to another (1− ε)f + εg mustn’t change the

functional very much when ε is small, no matter in what “direction” g we perturb it. Making this

idea precise calls for some fairly deep mathematics, about differential calculus on spaces of functions

(see, e.g., van der Vaart 1998, ch. 20).

148 The Bootstrap

example: Our data points Xi are IID, with Xi ∼ Unif(0, θ0), and we want to

estimate θ0. The maximum likelihood estimate θ̂ is just the sample maximum of
the xi. We’ll use resampling to get a confidence interval for this, as above — but
I will fix the true θ0 = 1, and see how often the 95% confidence interval covers
the truth.

max.boot.ci <- function(x, B) {
max.boot <- replicate(B, max(resample(x)))
return(2 * max(x) - quantile(max.boot, c(0.975, 0.025)))

}
boot.cis <- replicate(1000, max.boot.ci(x = runif(100), B = 1000))
(true.coverage <- mean((1 >= boot.cis[1,]) & (1 <= boot.cis[2,])))
[1] 0.87

That is, the actual coverage probability is not 95% but about 87%.
If you suspect that your use of the bootstrap may be setting yourself up for

a similar epic fail, your two options are (1) learn some of the theory of the
bootstrap from the references in the “Further Reading” section below, or (2) set
up a simulation experiment like this one.

6.8 Which Bootstrap When?

This chapter has introduced a bunch of different bootstraps, and before it closes
it’s worth reviewing the general principles, and some of the considerations which
go into choosing among them in a particular problem.

When we bootstrap, we try to approximate the sampling distribution of some
statistic (mean, median, correlation coefficient, regression coefficients, smoothing
curve, difference in MSEs. . .) by running simulations, and calculating the statistic
on the simulation. We’ve seen three major ways of doing this:

• The model-based bootstrap: we estimate the model, and then simulate from x
the estimated model;

• Resampling residuals: we estimate the model, and then simulate by resampling
residuals to that estimate and adding them back to the fitted values;

• Resampling cases or whole data points: we ignore the estimated model com-
pletely in our simulation, and just re-sample whole rows from the data frame.

Which kind of bootstrap is appropriate depends on how much trust we have in
our model.

The model-based bootstrap trusts the model to be completely correct for some
parameter value. In, e.g., regression, it trusts that we have the right shape for the
regression function and that we have the right distribution for the noise. When we
trust our model this much, we could in principle work out sampling distributions
analytically; the model-based bootstrap replaces hard math with simulation.

Resampling residuals doesn’t trust the model as much. In regression problems,
it assumes that the model gets the shape of the regression function right, and
that the noise around the regression function is independent of the predictor

6.9 Further Reading 149

variables, but doesn’t make any further assumption about how the fluctuations
are distributed. It is therefore more secure than model-based bootstrap.20

Finally, resampling cases assumes nothing at all about either the shape of the
regression function or the distribution of the noise, it just assumes that each data
point (row in the data frame) is an independent observation. Because it assumes
so little, and doesn’t depend on any particular model being correct, it is very
safe.

The reason we do not always use the safest bootstrap, which is resampling
cases, is that there is, as usual, a bias-variance trade-off. Generally speaking, if
we compare three sets of bootstrap confidence intervals on the same data for the
same statistic, the model-based bootstrap will give the narrowest intervals, fol-
lowed by resampling residuals, and resampling cases will give the loosest bounds.
If the model really is correct about the shape of the curve, we can get more
precise results, without any loss of accuracy, by resampling residuals rather than
resampling cases. If the model is also correct about the distribution of noise, we
can do even better with a model-based bootstrap.

To sum up: resampling cases is safer than resampling residuals, but gives wider,
weaker bounds. If you have good reason to trust a model’s guess at the shape of
the regression function, then resampling residuals is preferable. If you don’t, or
it’s not a regression problem so there are no residuals, then you prefer to resample
cases. The model-based bootstrap works best when the over-all model is correct,
and we’re just uncertain about the exact parameter values we need.

6.9 Further Reading

Davison and Hinkley (1997) is both a good textbook, and the reference I consult
most often. Efron and Tibshirani (1993), while also very good, is more theoretical.
Canty et al. (2006) has useful advice for serious applications.

All the bootstraps discussed in this chapter presume IID observations. For
bootstraps for time series, see §23.5.

Software

For professional purposes, I strongly recommend using the R package boot (Canty
and Ripley, 2013), based on Davison and Hinkley (1997). I deliberately do not
use it in this chapter, or later in the book, for pedagogical reasons; I have found
that forcing students to write their own bootstrapping code helps build character,
or at least understanding.

The bootstrap vs. robust standard errors

For linear regression coefficients, econometricians have developed a variety of
“robust” standard errors which are valid under weaker conditions than the usual
20 You could also imagine simulations where we presume that the noise takes a very particular form

(e.g., a t-distribution with 10 degrees of freedom), but are agnostic about the shape of the regression

function, and learn that non-parametrically. It’s harder to think of situations where this is really

plausible, however, except maybe Gaussian noise arising from central-limit-theorem considerations.

150 The Bootstrap

assumptions. Buja et al. (2014) shows their equivalence to resampling cases. (See
also King and Roberts 2015.)

Historical notes

The original paper on the bootstrap, Efron (1979), is extremely clear, and for
the most part presented in the simplest possible terms; it’s worth reading. His
later small book (Efron, 1982), while often cited, is not in my opinion so useful
nowadays21.

As the title of that last reference suggests, the bootstrap is in some ways a
successor to an older method, apparently dating back to the 1940s if not before,
called the “jackknife”, in which each data point is successively held back and
the estimate is re-calculated; the variance of these re-estimates, appropriately
scaled, is then taken as the variance of estimation, and similarly for the bias22.
The jackknife is appealing in its simplicity, but is only valid under much stronger
conditions than the bootstrap.

Exercises

6.1 Show that x0 is the mode of the Pareto distribution.

6.2 Derive the maximum likelihood estimator for the Pareto distribution (Eq. 6.15) from the

density (Eq. 6.14).

6.3 Show that the MLE of the Pareto distribution is consistent.

1. Using the law of large numbers, show that θ̂ (Eq. 6.15) converges to a limit which

depends on E [logX/x0].

2. Find an expression for E [logX/x0] in terms of θ and from the density (Eq. 6.14).

Hint: Write E [logX/x0] as an integral, change the variable of integration from x to

z = log (x/x0), and remember that the mean of an exponential random variable with

rate λ is 1/λ.

6.4 Find confidence bands for the linear regression model of §6.4.1 using

1. The usual Gaussian assumptions (hint: try the intervals="confidence" option to

predict);

2. Resampling of residuals; and

3. Resampling of cases.

6.5 (Computational) Writing new functions to simulate every particular linear model is some-

what tedious.

1. Write a function which takes, as inputs, an lm model and a data frame, and returns

a new data frame where the response variable is replaced by the model’s predictions

plus Gaussian noise, but all other columns are left alone.

2. Write a function which takes, as inputs, an lm model and a data frame, and returns

a new data frame where the response variable is replaced by the model’s predictions

plus resampled residuals.

21 It seems to have done a good job of explaining things to people who were already professional

statisticians in 1982.
22 A “jackknife” is a knife with a blade which folds into the handle; think of the held-back data point

as the folded-away blade.

Exercises 151

3. Will your functions work with npreg models, as well as lm models? If not, what do you

have to modify?

Hint: See Code Example 3 in Chapter 3 for some R tricks to extract the name of the

response variable from the estimated model.

7

Splines

7.1 Smoothing by Penalizing Curve Flexibility

Let’s go back to the problem of smoothing one-dimensional data. We have data
points (x1, y1), (x2, y2), . . . (xn, yn), and we want to find a good approximation µ̂
to the true conditional expectation or regression function µ. Previously, we con-
trolled how smooth we made µ̂ indirectly, through the bandwidth of our kernels.
But why not be more direct, and control smoothness itself?

A natural way to do this is to minimize the spline objective function

L(m,λ) ≡ 1

n

n∑
i=1

(yi −m(xi))
2 + λ

∫
(m′′(x))2dx (7.1)

The first term here is just the mean squared error of using the curve m(x) to
predict y. We know and like this; it is an old friend.

The second term, however, is something new for us. m′′ is the second derivative
of m with respect to x — it would be zero if m were linear, so this measures the
curvature ofm at x. The sign ofm′′(x) says whether the curvature at x is concave
or convex, but we don’t care about that so we square it. We then integrate this
over all x to say how curved m is, on average. Finally, we multiply by λ and add
that to the MSE. This is adding a penalty to the MSE criterion — given two
functions with the same MSE, we prefer the one with less average curvature. We
will accept changes in m that increase the MSE by 1 unit if they also reduce the
average curvature by at least λ.

The curve or function which solves this minimization problem,

µ̂λ = argmin
m

L(m,λ) (7.2)

is called a smoothing spline, or spline curve. The name “spline” comes from
a simple tool used by craftsmen to draw smooth curves, which was a thin strip of
a flexible material like a soft wood; you pin it in place at particular points, called
knots, and let it bend between them. (When the gas company dug up my front
yard and my neighbor’s driveway, the contractors who put everything back used
a plywood board to give a smooth, curved edge to the new driveway. That board
was a spline, and the knots were pairs of metal stakes on either side of the board.
Figure 7.1 shows the spline after concrete was poured on one side of it.) Bending
the spline takes energy — the stiffer the material, the more energy has to go into
bending it through the same shape, and so the material makes a straighter curve

152

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

7.1 Smoothing by Penalizing Curve Flexibility 153

Figure 7.1 A wooden spline used to create a smooth, curved border for a
paved area (Shadyside, Pittsburgh, October 2014).

between given points. For smoothing splines, using a stiffer material corresponds
to increasing λ.

It is possible to show (§7.6 below) that all solutions to Eq. 7.1, no matter what
the data might be, are piecewise cubic polynomials which are continuous and have
continuous first and second derivatives — i.e., not only is µ̂ continuous, so are
µ̂′ and µ̂′′. The boundaries between the pieces sit at the original data points. By
analogy with the craftman’s spline, the boundary points are called the knots of
the smoothing spline. The function is continuous beyond the largest and smallest
data points, but it is always linear in those regions.1

I will also assert, without proof, that, with enough pieces, such piecewise cu-
bic polynomials can approximate any well-behaved function arbitrarily closely.
Finally, smoothing splines are linear smoothers, in the sense of Chapter 1: pre-
dicted values are linear combinations of the training-set response values yi — see
Eq. 7.21 below.

7.1.1 The Meaning of the Splines

Look back to the optimization problem. As λ→∞, any curvature at all becomes
infinitely costly, and only linear functions are allowed. But we know how to min-
imize mean squared error with linear functions, that’s OLS. So we understand
that limit.

On the other hand, as λ→ 0, we decide that we don’t care about curvature. In
that case, we can always come up with a function which just interpolates between
the data points, an interpolation spline passing exactly through each point.
More specifically, of the infinitely many functions which interpolate between those
points, we pick the one with the minimum average curvature.

At intermediate values of λ, µ̂λ becomes a function which compromises between

1 Can you explain why it is linear outside the data range, in terms of the optimization problem?

154 Splines

having low curvature, and bending to approach all the data points closely (on
average). The larger we make λ, the more curvature is penalized. There is a bias-
variance trade-off here. As λ grows, the spline becomes less sensitive to the data,
with lower variance to its predictions but more bias. As λ shrinks, so does bias,
but variance grows. For consistency, we want to let λ → 0 as n → ∞, just as,
with kernel smoothing, we let the bandwidth h→ 0 while n→∞.

We can also think of the smoothing spline as the function which minimizes the
mean squared error, subject to a constraint on the average curvature. This turns
on a general corresponds between penalized optimization and optimization under
constraints, which is explored in Appendix D.3. The short version is that each
level of λ corresponds to imposing a cap on how much curvature the function
is allowed to have, on average, and the spline we fit with that λ is the MSE-
minimizing curve subject to that constraint.2 As we get more data, we have more
information about the true regression function and can relax the constraint (let
λ shrink) without losing reliable estimation.

It will not surprise you to learn that we select λ by cross-validation. Ordinary
k-fold CV is entirely possible, but leave-one-out CV works quite well for splines.
In fact, the default in most spline software is either leave-one-out CV, or the even
faster approximation called “generalized cross-validation” or GCV (see §3.4.3).

7.2 Computational Example: Splines for Stock Returns

The default R function for fitting a smoothing spline is smooth.spline:

smooth.spline(x, y, cv = FALSE)

where x should be a vector of values for input variable, y is a vector of values
for the response (in the same order), and the switch cv controls whether to pick λ
by generalized cross-validation (the default) or by leave-one-out cross-validation.
The object which smooth.spline returns has an $x component, re-arranged in
increasing order, a $y component of fitted values, a $yin component of original
values, etc. See help(smooth.spline) for more.

As a concrete illustration, Figure 7.2 looks at the daily logarithmic returns3

of the S&P 500 stock index, on 5542 consecutive trading days, from 9 February
1993 to 9 February 20154.

2 The slightly longer version: Consider minimizing the MSE (not the penalized MSE), but only over

functions m where
∫

(m′′(x))2dx is at most some maximum level C. λ would then be the Lagrange

multiplier enforcing the constraint. The constrained but unpenalized optimization is equivalent to

the penalized but unconstrained one. In economics, λ would be called the “shadow price” of average

curvature in units of MSE, the rate at which we’d be willing to pay to have the constraint level C

marginally increased.
3 For a financial asset whose price on day t is pt and which pays a dividend on that day of dt, the

log-returns on t are log (pt + dt)/pt−1. Financiers and other professional gamblers care more about

the log returns than about the price change, pt − pt−1, because the log returns give the rate of

profit (or loss) on investment. We are using a price series which is adjusted to incorporate dividend

(and related) payments.
4 This uses the handy pdfetch library, which downloads data from such public domain sources as the

Federal Reserve, Yahoo Finance, etc.

7.2 Computational Example: Splines for Stock Returns 155

require(pdfetch)

Loading required package: pdfetch

sp <- pdfetch_YAHOO("SPY", fields = "adjclose", from = as.Date("1993-02-09"),
to = as.Date("2015-02-09"))

sp <- diff(log(sp))
sp <- sp[-1]

We want to use the log-returns on one day to predict what they will be on the
next. The horizontal axis in the figure shows the log-returns for each of 2527 days
t, and the vertical axis shows the corresponding log-return for the succeeding day
t+ 1. A linear model fitted to this data displays a slope of −0.0642 (grey line in
the figure). Fitting a smoothing spline with cross-validation selects λ = 0.0127,
and the black curve:

sp.today <- head(sp, -1)
sp.tomorrow <- tail(sp, -1)
coefficients(lm(sp.tomorrow ~ sp.today))
(Intercept) sp.today
0.0003716837 -0.0640901257
sp.spline <- smooth.spline(x = sp.today, y = sp.tomorrow, cv = TRUE)
sp.spline
Call:
smooth.spline(x = sp.today, y = sp.tomorrow, cv = TRUE)
##
Smoothing Parameter spar= 1.346847 lambda= 0.01299752 (11 iterations)
Equivalent Degrees of Freedom (Df): 5.855613
Penalized Criterion (RSS): 0.7825304
PRESS(l.o.o. CV): 0.0001428132
sp.spline$lambda
[1] 0.01299752

(PRESS is the “prediction sum of squares”, i.e., the sum of the squared leave-
one-out prediction errors.) This is the curve shown in black in the figure. The
blue curves are for large values of λ, and clearly approach the linear regression;
the red curves are for smaller values of λ.

The spline can also be used for prediction. For instance, if we want to know
what the return to expect following a day when the log return was +0.01, we do

predict(sp.spline, x = 0.01)
$x
[1] 0.01
##
$y
[1] 0.0001948564

R Syntax Note:

The syntax for predict with smooth.spline spline differs slightly from the syntax
for predict with lm or np. The latter two want a newdata argument, which should
be a data-frame with column names matching those in the formula used to fit
the model. The predict function for smooth.spline, though, just wants a vector
called x. Also, while predict for lm or np returns a vector of predictions, predict

156 Splines

●

●

●

● ●

● ●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●
●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

● ●

●
●

●

●

●
●●

●

●

●

●●
●

●

●
●

●

●●
●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●●

●

● ●●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
● ●

●

●
●

●

●

● ●
●

●●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●●●

●●

●

●

●

●●

●

●
●

●
●

●
●

●●
●

●

●

●

●●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

● ●●
●●

●

●

●

●●

●
●

● ●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●●

●

●

●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●●●●●●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●●
●●●

●

●
●

●

●

●●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●●
●

● ●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●
●●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

● ●●
●

●●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●
●

● ●
●●

●

●

●

● ●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

● ●

●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●●
●

●

●●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●●

● ●

●●●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●●
●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

● ●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●

●
●●

●

●●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●●
●

●
●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●

●

●
● ●

●

●

●

●

●
●

●

●

●●

●

●●

● ●

●

●

●

●

●

●
●

●

●●

●

●●●●
●

●

●●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

● ●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●
●

● ●

●

●

●

●

●

●

●●
●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

● ●●

●

●

●
●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●●●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
● ●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●●

●

●

●

●

●
●

●

●

●
● ●

●

●

●
●

● ●

●
●●

●

●

●

●

●
●●

●

●

●●

●

● ●
●

●
●●●

●

● ●

●

● ●

●

●
●

●

●
●

●

●●
●●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●
●

●
●

●
●

● ●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

● ●

●
●●

●●●
●

●

●

●

●
●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

● ●●

●

●
●

●●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

● ●
●

●
●

●

●

●

●
●

●

●

●

●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

● ●

●

●
●

●

●

●
●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●
●

● ●

●●

●
●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●●●
●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●●

●

●

●
●

●

●

●
●●●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●●

●

● ●
●

●

●

●

●

●

●
●

●●

●
●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●
●●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●●●
●●●

●

●
●

●

●

●

●

●●
●

●

●

●●

●

●

●

● ●

●

●

●
●

●●●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●
●

●

●

●
●

● ●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●●●
●

●

●

●

●

●

●

●

●

●
●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●
● ●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●

● ●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

● ●
●

●

●
●

● ●

●

●

●

●

●
●

●
●●

●
●●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●
●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●
●

●

●
●

●●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●●●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

−0.10 −0.05 0.00 0.05 0.10

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

Today's log−return

To
m

or
ro

w
's

 lo
g−

re
tu

rn

plot(as.vector(sp.today), as.vector(sp.tomorrow), xlab = "Today's log-return",
ylab = "Tomorrow's log-return", pch = 16, cex = 0.5, col = "grey")

abline(lm(sp.tomorrow ~ sp.today), col = "darkgrey")
sp.spline <- smooth.spline(x = sp.today, y = sp.tomorrow, cv = TRUE)
lines(sp.spline)
lines(smooth.spline(sp.today, sp.tomorrow, spar = 1.5), col = "blue")
lines(smooth.spline(sp.today, sp.tomorrow, spar = 2), col = "blue", lty = 2)
lines(smooth.spline(sp.today, sp.tomorrow, spar = 1.1), col = "red")
lines(smooth.spline(sp.today, sp.tomorrow, spar = 0.5), col = "red", lty = 2)

Figure 7.2 The S& P 500 log-returns data (grey dots), with the OLS linear
regression (dark grey line), the spline selected by cross-validation (solid
black, λ = 0.0127), some more smoothed splines (blue, λ = 0.178 and 727)
and some less smooth splines (red, λ = 2.88× 10−4 and 1.06× 10−8).
Incoveniently, smooth.spline does not let us control λ directly, but rather a
somewhat complicated but basically exponential transformation of it called
spar. (See help(smooth.spline) for the gory details.) The equivalent λ can
be extracted from the return value, e.g.,
smooth.spline(sp.today,sp.tomorrow,spar=2)$lambda.

7.2 Computational Example: Splines for Stock Returns 157

for smooth.spline returns a list with an x component (in increasing order) and a
y component, which is the sort of thing that can be put directly into points or
lines for plotting.

7.2.1 Confidence Bands for Splines

Continuing the example, the smoothing spline selected by cross-validation has
a negative slope everywhere, like the regression line, but it’s asymmetric — the
slope is more negative to the left, and then levels off towards the regression
line. (See Figure 7.2 again.) Is this real, or might the asymmetry be a sampling
artifact?

We’ll investigate by finding confidence bands for the spline, much as we did for
kernel regression in Chapter 6 and Problem Set 24, problem 5. Again, we need
to bootstrap, and we can do it either by resampling the residuals or resampling
whole data points. Let’s take the latter approach, which assumes less about the
data. We’ll need a simulator:

sp.frame <- data.frame(today = sp.today, tomorrow = sp.tomorrow)
sp.resampler <- function() {

n <- nrow(sp.frame)
resample.rows <- sample(1:n, size = n, replace = TRUE)
return(sp.frame[resample.rows,])

}

This treats the points in the scatterplot as a complete population, and then
draws a sample from them, with replacement, just as large as the original5. We’ll
also need an estimator. What we want to do is get a whole bunch of spline curves,
one on each simulated data set. But since the values of the input variable will
change from one simulation to another, to make everything comparable we’ll
evaluate each spline function on a fixed grid of points, that runs along the range
of the data.

grid.300 <- seq(from = min(sp.today), to = max(sp.today), length.out = 300)
sp.spline.estimator <- function(data, eval.grid = grid.300) {

fit <- smooth.spline(x = data[, 1], y = data[, 2], cv = TRUE)
return(predict(fit, x = eval.grid)$y)

}

This sets the number of evaluation points to 300, which is large enough to give
visually smooth curves, but not so large as to be computationally unwieldly.

Now put these together to get confidence bands:

sp.spline.cis <- function(B, alpha, eval.grid = grid.300) {
spline.main <- sp.spline.estimator(sp.frame, eval.grid = eval.grid)
spline.boots <- replicate(B, sp.spline.estimator(sp.resampler(), eval.grid = eval.grid))
cis.lower <- 2 * spline.main - apply(spline.boots, 1, quantile, probs = 1 -

alpha/2)
cis.upper <- 2 * spline.main - apply(spline.boots, 1, quantile, probs = alpha/2)
return(list(main.curve = spline.main, lower.ci = cis.lower, upper.ci = cis.upper,

x = eval.grid))
}

5 §23.5 covers more refined ideas about bootstrapping time series.

158 Splines

The return value here is a list which includes the original fitted curve, the
lower and upper confidence limits, and the points at which all the functions were
evaluated.

Figure 7.3 shows the resulting 95% confidence limits, based on B=1000 boot-
strap replications. (Doing all the bootstrapping took 45 seconds on my laptop.)
These are pretty clearly asymmetric in the same way as the curve fit to the whole
data, but notice how wide they are, and how they get wider the further we go
from the center of the distribution in either direction.

7.2 Computational Example: Splines for Stock Returns 159

●

●

●

● ●

● ●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●
●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

● ●

●
●

●

●

●
●●

●

●

●

●●
●

●

●
●

●

●●
●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●●

●

● ●●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
● ●

●

●
●

●

●

● ●
●

●●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●●●

●●

●

●

●

●●

●

●
●

●
●

●
●

●●
●

●

●

●

●●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

● ●●
●●

●

●

●

●●

●
●

● ●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●●

●

●

●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●●●●●●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●●
●●●

●

●
●

●

●

●●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●●
●

● ●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●
●●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

● ●●
●

●●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●
●

● ●
●●

●

●

●

● ●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

● ●

●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●●
●

●

●●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●●

● ●

●●●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●●
●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

● ●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●

●
●●

●

●●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●●
●

●
●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●

●

●
● ●

●

●

●

●

●
●

●

●

●●

●

●●

● ●

●

●

●

●

●

●
●

●

●●

●

●●●●
●

●

●●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

● ●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●
●

● ●

●

●

●

●

●

●

●●
●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

● ●●

●

●

●
●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●●●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
● ●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●●

●

●

●

●

●
●

●

●

●
● ●

●

●

●
●

● ●

●
●●

●

●

●

●

●
●●

●

●

●●

●

● ●
●

●
●●●

●

● ●

●

● ●

●

●
●

●

●
●

●

●●
●●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●
●

●
●

●
●

● ●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

● ●

●
●●

●●●
●

●

●

●

●
●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

● ●●

●

●
●

●●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

● ●
●

●
●

●

●

●

●
●

●

●

●

●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

● ●

●

●
●

●

●

●
●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●
●

● ●

●●

●
●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●●●
●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●●

●

●

●
●

●

●

●
●●●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●●

●

● ●
●

●

●

●

●

●

●
●

●●

●
●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●
●●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●●●
●●●

●

●
●

●

●

●

●

●●
●

●

●

●●

●

●

●

● ●

●

●

●
●

●●●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●
●

●

●

●
●

● ●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●●●
●

●

●

●

●

●

●

●

●

●
●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●
● ●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●

● ●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

● ●
●

●

●
●

● ●

●

●

●

●

●
●

●
●●

●
●●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●
●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●
●

●

●
●

●●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●●●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

−0.10 −0.05 0.00 0.05 0.10

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

Today's log−return

To
m

or
ro

w
's

 lo
g−

re
tu

rn

sp.cis <- sp.spline.cis(B = 1000, alpha = 0.05)
plot(as.vector(sp.today), as.vector(sp.tomorrow), xlab = "Today's log-return",

ylab = "Tomorrow's log-return", pch = 16, cex = 0.5, col = "grey")
abline(lm(sp.tomorrow ~ sp.today), col = "darkgrey")
lines(x = sp.cis$x, y = sp.cis$main.curve, lwd = 2)
lines(x = sp.cis$x, y = sp.cis$lower.ci)
lines(x = sp.cis$x, y = sp.cis$upper.ci)

Figure 7.3 Bootstrapped pointwise confidence band for the smoothing
spline of the S & P 500 data, as in Figure 7.2. The 95% confidence limits
around the main spline estimate are based on 1000 bootstrap re-samplings of
the data points in the scatterplot.

160 Splines

7.3 Basis Functions and Degrees of Freedom

7.3.1 Basis Functions

Splines, I said, are piecewise cubic polynomials. To see how to fit them, let’s
think about how to fit a global cubic polynomial. We would define four basis
functions,

B1(x) = 1 (7.3)

B2(x) = x (7.4)

B3(x) = x2 (7.5)

B4(x) = x3 (7.6)

and chose to only consider regression functions that are linear combinations of
the basis functions,

µ(x) =
4∑
j=1

βjBj(x) (7.7)

Such regression functions would be linear in the transformed variablesB1(x), . . . B4(x),
even though it is nonlinear in x.

To estimate the coefficients of the cubic polynomial, we would apply each basis
function to each data point xi and gather the results in an n× 4 matrix B,

Bij = Bj(xi) (7.8)

Then we would do OLS using the B matrix in place of the usual data matrix x:

β̂ = (BTB)−1BTy (7.9)

Since splines are piecewise cubics, things proceed similarly, but we need to be a
little more careful in defining the basis functions. Recall that we have n values of
the input variable x, x1, x2, . . . xn. For the rest of this section, I will assume that
these are in increasing order, because it simplifies the notation. These n “knots”
define n+ 1 pieces or segments: n− 1 of them between the knots, one from −∞
to x1, and one from xn to +∞. A third-order polynomial on each segment would
seem to need a constant, linear, quadratic and cubic term per segment. So the
segment running from xi to xi+1 would need the basis functions

1(xi,xi+1)(x), (x− xi)1(xi,xi+1)(x), (x− xi)21(xi,xi+1)(x), (x− xi)31(xi,xi+1)(x)
(7.10)

where as usual the indicator function 1(xi,xi+1)(x) is 1 if x ∈ (xi, xi+1) and 0
otherwise. This makes it seem like we need 4(n+ 1) = 4n+ 4 basis functions.

However, we know from linear algebra that the number of basis vectors we
need is equal to the number of dimensions of the vector space. The number of
adjustable coefficients for an arbitrary piecewise cubic with n + 1 segments is
indeed 4n + 4, but splines are constrained to be smooth. The spline must be
continuous, which means that at each xi, the value of the cubic from the left,
defined on (xi−1, xi), must match the value of the cubic from the right, defined
on (xi, xi+1). This gives us one constraint per data point, reducing the number of

7.3 Basis Functions and Degrees of Freedom 161

adjustable coefficients to at most 3n+4. Since the first and second derivatives are
also continuous, we are down to just n+ 4 coefficients. Finally, we know that the
spline function is linear outside the range of the data, i.e., on (−∞, x1) and on
(xn,∞), lowering the number of coefficients to n. There are no more constraints,
so we end up needing only n basis functions. And in fact, from linear algebra, any
set of n piecewise cubic functions which are linearly independent6 can be used as
a basis. One common choice is

B1(x) = 1 (7.11)

B2(x) = x (7.12)

Bi+2(x) =
(x− xi)3

+ − (x− xn)3
+

xn − xi
−

(x− xn−1)3
+ − (x− xn)3

+

xn − xn−1

(7.13)

where (a)+ = a if a > 0, and = 0 otherwise. This rather unintuitive-looking basis
has the nice property that the second and third derivatives of each Bj are zero
outside the interval (x1, xn).

Now that we have our basis functions, we can once again write the spline as a
weighted sum of them,

m(x) =
m∑
j=1

βjBj(x) (7.14)

and put together the matrix B where Bij = Bj(xi). We can write the spline
objective function in terms of the basis functions,

nL = (y −Bβ)T (y −Bβ) + nλβTΩβ (7.15)

where the matrix Ω encodes information about the curvature of the basis func-
tions:

Ωjk =

∫
B′′j (x)B′′k (x)dx (7.16)

Notice that only the quadratic and cubic basis functions will make non-zero
contributions to Ω. With the choice of basis above, the second derivatives are
non-zero on, at most, the interval (x1, xn), so each of the integrals in Ω is going
to be finite. This is something we (or, realistically, R) can calculate once, no
matter what λ is. Now we can find the smoothing spline by differentiating with
respect to β:

0 = −2BTy + 2BTBβ̂ + 2nλΩβ̂ (7.17)

BTy =
(
BTB + nλΩ

)
β̂ (7.18)

β̂ =
(
BTB + nλΩ

)−1
BTy (7.19)

6 Recall that vectors ~v1, ~v2, . . . ~vd are linearly independent when there is no way to write any one of

the vectors as a weighted sum of the others. The same definition applies to functions.

162 Splines

Notice, incidentally, that we can now show splines are linear smoothers:

µ̂(x) = Bβ̂ (7.20)

= B
(
BTB + nλΩ

)−1
BTy (7.21)

Once again, if this were ordinary linear regression, the OLS estimate of the co-
efficients would be (xTx)−1xTy. In comparison to that, we’ve made two changes.
First, we’ve substituted the basis function matrix B for the original matrix of
independent variables, x — a change we’d have made already for a polynomial
regression. Second, the “denominator” is not xTx, or even BTB, but BTB+nλΩ.
Since xTx is n times the covariance matrix of the independent variables, we are
taking the covariance matrix of the spline basis functions and adding some extra
covariance — how much depends on the shapes of the functions (through Ω) and
how much smoothing we want to do (through λ). The larger we make λ, the less
the actual data matters to the fit.

In addition to explaining how splines can be fit quickly (do some matrix arith-
metic), this illustrates two important tricks. One, which we won’t explore further
here, is to turn a nonlinear regression problem into one which is linear in an-
other set of basis functions. This is like using not just one transformation of
the input variables, but a whole library of them, and letting the data decide
which transformations are important. There remains the issue of selecting the
basis functions, which can be quite tricky. In addition to the spline basis7, most
choices are various sorts of waves — sine and cosine waves of different frequen-
cies, various wave-forms of limited spatial extent (“wavelets”), etc. The ideal is
to chose a function basis where only a few non-zero coefficients would need to be
estimated, but this requires some understanding of the data. . .

The other trick is that of stabilizing an unstable estimation problem by adding a
penalty term. This reduces variance at the cost of introducing some bias. Exercise
7.2 explores this idea.

Effective degrees of freedom

In §1.5.3.2, we defined the number of effective degrees of freedom for a linear
smoother with smoothing matrix w as just tr w. Thus, Eq. 7.21 lets us calculate

the effective degrees of freedom of a spline, as tr
(
B(BTB + nλΩ)

−1
BT
)

. You

should be able to convince yourself from this that increasing λ will, all else being
equal, reduce the effective degrees of freedom of the fit.

7.4 Splines in Multiple Dimensions

Suppose we have two input variables, x and z, and a single response y. How could
we do a spline fit?

7 Or, really, bases; there are multiple sets of basis functions for the splines, just like there are multiple

sets of basis vectors for the plane. Phrases like “B splines” and “P splines” refer to particular

choices of spline basis functions.

7.5 Smoothing Splines versus Kernel Regression 163

One approach is to generalize the spline optimization problem so that we pe-
nalize the curvature of the spline surface (no longer a curve). The appropriate
penalized least-squares objective function to minimize is

L(m,λ) =
n∑
i=1

(yi −m(xi, zi))
2 + λ

∫ [(
∂2m

∂x2

)2

+ 2

(
∂2m

∂x∂z

)2

+

(
∂2m

∂z2

)2
]
dxdz

(7.22)
The solution is called a thin-plate spline. This is appropriate when the two
input variables x and z should be treated more or less symmetrically8.

An alternative is use the spline basis functions from section 7.3. We write

m(x) =
M1∑
j=1

M2∑
k=1

βjkBj(x)Bk(z) (7.23)

Doing all possible multiplications of one set of numbers or functions with another
is said to give their outer product or tensor product, so this is known as a
tensor product spline or tensor spline. We have to chose the number of terms
to include for each variable (M1 and M2), since using n for each would give n2

basis functions, and fitting n2 coefficients to n data points is asking for trouble.

7.5 Smoothing Splines versus Kernel Regression

For one input variable and one output variable, smoothing splines can basically
do everything which kernel regression can do9. The advantages of splines are their
computational speed and (once we’ve calculated the basis functions) simplicity,
as well as the clarity of controlling curvature directly. Kernels however are easier
to program (if slower to run), easier to analyze mathematically10, and extend
more straightforwardly to multiple variables, and to combinations of discrete and
continuous variables.

7.6 Some of the Math Behind Splines

Above, I claimed that a solution to the optimization problem Eq. 7.1 exists, and
is a continuous, piecewise-cubic polynomial, with continuous first and second
derivatives, with pieces at the xi, and linear outside the range of the xi. I do not
know of any truly elementary way of showing this, but I will sketch here how it’s
established, if you’re interested.

Eq. 7.1 asks us to find the function which minimize the sum of the MSE and

8 Generalizations to more than two input variables are conceptually straightforward — just keep

adding up more partial derivatives — but the book-keeping gets annoying.
9 In fact, there is a technical sense in which, for large n, splines act like a kernel regression with a

specific non-Gaussian kernel, and a bandwidth which varies over the data, being smaller in

high-density regions. See Simonoff (1996, §5.6.2), or, for more details, Silverman (1984).
10 Most of the bias-variance analysis for kernel regression can be done with basic calculus, as we did in

Chapter 4. The corresponding analysis for splines requires working in infinite-dimensional function

spaces called “Hilbert spaces”. It’s a pretty theory, if you like that sort of thing.

164 Splines

a certain integral. Even the MSE can be brought inside the integral, using Dirac
delta functions:

L =

∫ [
λ(m′′(x))2 +

1

n

n∑
i=1

(yi −m(xi))
2δ(x− xi)

]
dx (7.24)

In what follows, without loss of generality, assume that the xi are ordered, so
x1 ≤ x2 ≤ . . . xi ≤ xi+1 ≤ . . . xn. With some loss of generality but a great gain
in simplicity, assume none of the xi are equal, so we can make those inequalities
strict.

The subject which deals with maximizing or minimizing integrals of functions
is the calculus of variations11, and one of its basic tricks is to write the integrand
as a function of x, the function, and its derivatives:

L =

∫
L(x,m,m′,m′′)dx (7.25)

where, in our case,

L = λ(m′′(x))2 +
1

n

n∑
i=1

(yi −m(xi))
2δ(x− xi) (7.26)

This sets us up to use a general theorem of the calculus of variations, to the effect
that any function m̂ which minimizes L must also solve L’s Euler-Lagrange
equation:

∂L

∂m
− d

dx

∂L

∂m′
+

d2

dx2

∂L

∂m′′

∣∣∣∣
m=m̂

= 0 (7.27)

In our case, the Euler-Lagrange equation reads

− 2

n

n∑
i=1

(yi − m̂(xi))δ(x− xi) + 2λ
d2

dx2
m̂′′(x) = 0 (7.28)

Remembering that m̂′′(x) = d2m̂/dx2,

d4

dx4
m̂(x) =

1

nλ

n∑
i=1

(yi − m̂(xi))δ(x− xi) (7.29)

The right-hand side is zero at any point x other than one of the xi, so the fourth
derivative has to be zero in between the xi. This in turn means that the function
must be piecewise cubic. Now fix an xi, and pick any two points which bracket
it, but are both greater than xi−1 and less than xi+1; call them l and u. Integrate

11 In addition to its uses in statistics, the calculus of variations also shows up in physics (“what is the

path of least action?”), control theory (“what is the cheapest route to the objective?”) and

stochastic processes (“what is the most probable trajectory?”). Gershenfeld (1999, ch. 4) is a good

starting point.

7.7 Further Reading 165

our Euler-Lagrange equation from l to u:∫ u

l

d4

dx4
m̂(x)dx =

∫ u

l

1

nλ

n∑
i=1

(yi − m̂(xi))δ(x− xi) (7.30)

m̂′′′(u)− m̂′′′(l) =
yi − m̂(xi)

nλ
(7.31)

That is, the third derivative makes a jump when we move across xi, though (since
the fourth derivative is zero), it doesn’t matter which pair of points above and
below xi we compare third derivatives at. Integrating the equation again,

m̂′′(u)− m̂′′(l) = (u− l)yi − m̂(xi)

nλ
(7.32)

Letting u and l approach xi from either side, so u− l→ 0, we see that m̂′′ makes
no jump at xi. Repeating this trick twice more, we conclude the same about
m̂′ and m̂ itself. In other words, m̂ must be continuous, with continuous first
and second derivatives, and a third derivative that is constant on each (xi, xi+1)
interval. Since the fourth derivative is zero on those intervals (and undefined at
the xi), the function must be a piecewise cubic, with the piece boundaries at the
xi, and continuity (up to the second derivative) across pieces.

To see that the optimal function must be linear below x1 and above xn, suppose
that it wasn’t. Clearly, though, we could reduce the curvature as much as we want
in those regions, without altering the value of the function at the boundary, or
even its first derivative there. This would yield a better function, i.e., one with a
lower value of L, since the MSE would be unchanged and the average curvature
would be smaller. Taking this to the limit, then, the function must be linear
outside the observed data range.

We have now shown12 that the optimal function m̂, if it exists, must have all
the properties I claimed for it. We have not shown either that there is a solution,
or that a solution is unique if it does exist. However, we can use the fact that
solutions, if there are any, are piecewise cubics obeying continuity conditions to
set up a system of equations to find their coefficients. In fact, we did so already
in §7.3.1, where we saw it’s a system of n independent linear equations in n
unknowns. Such a thing does indeed have a unique solution, here Eq. 7.19.

7.7 Further Reading

There are good discussions of splines in Simonoff (1996, ch. 5), Hastie et al. (2009,
ch. 5) and Wasserman (2006, §5.5). Wood (2006, ch. 4) includes a thorough prac-
tical treatment of splines as a preparation for additive models (see Chapter 8
below) and generalized additive models (see Chapters 11–12). The classic ref-
erence, by one of the inventors of splines as a useful statistical tool, is Wahba
(1990); it’s great if you already know what a Hilbert space is and how to navigate
one.

12 For a very weak value of “shown”, admittedly.

166 Splines

Historical notes

The first introduction of spline smoothing in the statistical literature seems to
be Whittaker (1922). (His “graduation” is more or less our “smoothing”.) He
begins with an “inverse probability” (we would now say “Bayesian”) argument
for minimizing Eq. 7.1 to find the most probable curve, based on the a priori
hypothesis of smooth Gaussian curves observed through Gaussian error, and gives
tricks for fitting splines more easily with the mathematical technology available
in 1922.

The general optimization problem, and the use of the word “spline”, seems to
have its roots in numerical analysis in the early 1960s; those spline functions were
intended as ways of smoothly interpolating between given points. The connec-
tion to statistical smoothing was made by Schoenberg (1964) (who knew about
Whittaker’s earlier work) and by Reinsch (1967) (who gave code). Splines were
then developed as a practical tool in statistics and in applied mathematics in the
1960s and 1970s. Silverman (1985) is a still-readable and insightful summary of
this work.

In econometrics, spline smoothing a time series is called the “Hodrick-Prescott
filter”, after two economists who re-discovered the technique in 1981, along with
a fallacious argument that λ should always take a particular value (1600, as it
happens), regardless of the data. See Paige and Trindade (2010) for a (polite)
discussion, and demonstration of the advantages of cross-validation.

Exercises

7.1 The smooth.spline function lets you set the effective degrees of freedom explicitly. Write

a function which chooses the number of degrees of freedom by five-fold cross-validation.

7.2 When we can’t measure our predictor variables perfectly, it seems like a good idea to try

to include multiple measurements for each one of them. For instance, if we were trying to

predict grades in college from grades in high school, we might include the student’s grade

from each year separately, rather than simply averaging them. Multiple measurements

of the same variable will however tend to be strongly correlated, so this means that a

linear regression will be nearly multi-collinear. This in turn means that it will tend to

have multiple, mutually-canceling large coefficients. This makes it hard to interpret the

regression and hard to treat the predictions seriously. (See §2.1.1.)

One strategy for coping with this situation is to carefully select the variables one uses in the

regression. Another, however, is to add a penalty for large coefficient values. For historical

reasons, this second strategy is called ridge regression, or Tikhonov regularization.

Specifically, while the OLS estimate is

β̂OLS = argmin
β

1

n

n∑
i=1

(yi − xi · β)2 , (7.33)

the regularized or penalized estimate is

β̂RR = argmin
β

[
1

n

n∑
i=1

(yi − xi · β)2

]
+ λ

p∑
j=1

β2
j (7.34)

Exercises 167

1. Show that the matrix form of the ridge-regression objective function is

n−1(y − xβ)T (y − xβ) + λβT β (7.35)

2. Show that the optimum is

β̂RR = (xTx + nλI)−1xTy (7.36)

(This is where the name “ridge regression” comes from: we take xTx and add a “ridge”

along the diagonal of the matrix.)

3. What happens as λ → 0? As λ → ∞? (For the latter, it may help to think about the

case of a one-dimensional X first.)

4. Let Y = Z+ε, with Z ∼ U(−1, 1) and ε ∼ N (0, 0.05). Generate 2000 draws from Z and

Y . Now let Xi = 0.9Z + η, with η ∼ N (0, 0.05), for i ∈ 1 : 50. Generate corresponding

Xi values. Using the first 1000 rows of the data only, do ridge regression of Y on the Xi
(not on Z), plotting the 50 coefficients as functions of λ. Explain why ridge regression

is called a shrinkage estimator.

5. Use cross-validation with the first 1000 rows to pick the optimal value of λ. Compare the

out-of-sample performance you get with this penalty to the out-of-sample performance

of OLS.

For more on ridge regression, see Appendix D.3.5.

8

Additive Models

[[TODO:
Re-
organize:
bring curse
of dimen-
sionality
up, then
additive
models
as com-
promise,
so same
order as
lectures?]]

8.1 Additive Models

The additive model for regression is that the conditional expectation function
is a sum of partial response functions, one for each predictor variable. Formally,
when the vector ~X of predictor variables has p dimensions, x1, . . . xp, the model
says that

E
[
Y | ~X = ~x

]
= α+

p∑
j=1

fj(xj) (8.1)

This includes the linear model as a special case, where fj(xj) = βjxj, but it’s
clearly more general, because the fjs can be arbitrary nonlinear functions. The
idea is still that each input feature makes a separate contribution to the response,
and these just add up (hence “partial response function”), but these contribu-
tions don’t have to be strictly proportional to the inputs. We do need to add a
restriction to make it identifiable; without loss of generality, say that E [Y] = α
and E [fj(Xj)] = 0.1

Additive models keep a lot of the nice properties of linear models, but are
more flexible. One of the nice things about linear models is that they are fairly
straightforward to interpret: if you want to know how the prediction changes
as you change xj, you just need to know βj. The partial response function fj
plays the same role in an additive model: of course the change in prediction from
changing xj will generally depend on the level xj had before perturbation, but
since that’s also true of reality that’s really a feature rather than a bug. It’s true
that a set of plots for fjs takes more room than a table of βjs, but it’s also nicer
to look at, conveys more information, and imposes fewer systematic distortions
on the data.

Of course, none of this would be of any use if we couldn’t actually estimate
these models, but we can, through a clever computational trick which is worth
knowing for its own sake. The use of the trick is also something they share with
linear models, so we’ll start there.

1 To see why we need to do this, imagine the simple case where p = 2. If we add constants c1 to f1
and c2 to f2, but subtract c1 + c2 from α, then nothing observable has changed about the model.

This degeneracy or lack of identifiability is a little like the way collinearity keeps us from defining

true slopes in linear regression. But it’s less harmful than collinearity because we can fix it with this

convention.

168

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

8.2 Partial Residuals and Back-fitting 169

8.2 Partial Residuals and Back-fitting

8.2.1 Back-fitting for Linear Models

The general form of a linear regression model is

E
[
Y | ~X = ~x

]
= β0 + ~β · ~x =

p∑
j=0

βjxj (8.2)

where x0 is always the constant 1. (Adding this fictitious constant variable lets
us handle the intercept just like any other regression coefficient.)

Suppose we don’t condition on all of ~X but just one component of it, say Xk.
What is the conditional expectation of Y ?

E [Y |Xk = xk] = E [E [Y |X1, X2, . . . Xk, . . . Xp] |Xk = xk] (8.3)

= E

[
p∑
j=0

βjXj|Xk = xk

]
(8.4)

= βkxk + E

[∑
j 6=k

βjXj|Xk = xk

]
(8.5)

where the first line uses the law of total expectation2, and the second line uses
Eq. 8.2. Turned around,

βkxk = E [Y |Xk = xk]− E

[∑
j 6=k

βjXj|Xk = xk

]
(8.6)

= E

[
Y −

(∑
j 6=k

βjXj

)
|Xk = xk

]
(8.7)

The expression in the expectation is the kth partial residual — the (total)
residual is the difference between Y and its expectation, the partial residual is
the difference between Y and what we expect it to be ignoring the contribution
from Xk. Let’s introduce a symbol for this, say Y (k).

βkxk = E
[
Y (k)|Xk = xk

]
(8.8)

In words, if the over-all model is linear, then the partial residuals are linear. And
notice that Xk is the only input feature appearing here — if we could somehow
get hold of the partial residuals, then we can find βk by doing a simple regression,
rather than a multiple regression. Of course to get the partial residual we need
to know all the other βjs. . .

This suggests the following estimation scheme for linear models, known as
the Gauss-Seidel algorithm, or more commonly and transparently as back-
fitting; the pseudo-code is in Example 17.

This is an iterative approximation algorithm. Initially, we look at how far each “You say
’vicious
circle’, I
say ’it-
erative
improve-
ment’.”

2 As you learned in baby prob., this is the fact that E [Y |X] = E [E [Y |X,Z] |X] — that we can always

condition more variables, provided we then average over those extra variables when we’re done.

170 Additive Models

Given: n× (p+ 1) inputs x (0th column all 1s)
n× 1 responses y
small tolerance δ > 0

center y and each column of x

β̂j ← 0 for j ∈ 1 : p

until (all |β̂j − γj| ≤ δ) {
for k ∈ 1 : p {

y
(k)
i = yi −

∑
j 6=k β̂jxij

γk ← regression coefficient of y(k) on x·k
β̂k ← γk

}
}
β̂0 ← (n−1

∑n
i=1 yi)−

∑p
j=1 β̂jn

−1
∑n

i=1 xij
Return: (β̂0, β̂1, . . . β̂p)

Code Example 17: Pseudocode for back-fitting linear models. Assume we make at least one
pass through the until loop. Recall from Chapter 1 that centering the data does not change the
βjs; this way the intercept only has to be calculated once, at the end. [[ATTN: Fix horizontal
lines]]

point is from the global mean, and do a simple regression of those deviations on
the first input variable. This then gives us a better idea of what the regression
surface really is, and we use the deviations from that surface in a simple regression
on the next variable; this should catch relations between Y and X2 that weren’t
already caught by regressing on X1. We then go on to the next variable in turn.
At each step, each coefficient is adjusted to fit in with what we have already
guessed about the other coefficients — that’s why it’s called “back-fitting”. It is
not obvious3 that this will ever converge, but it (generally) does, and the fixed
point on which it converges is the usual least-squares estimate of β.

Back-fitting is rarely used to fit linear models these days, because with modern
computers and numerical linear algebra it’s faster to just calculate (xTx)−1xTy.
But the cute thing about back-fitting is that it doesn’t actually rely on linearity.

8.2.2 Backfitting Additive Models

Defining the partial residuals by analogy with the linear case, as

Y (k) = Y −
(
α+

∑
j 6=k

fj(xj)

)
(8.9)

a little algebra along the lines of §8.2.1 shows that

E
[
Y (k)|Xk = xk

]
= fk(xk) (8.10)

3 Unless, I suppose, you’re Gauss.

8.2 Partial Residuals and Back-fitting 171

Given: n× p inputs x
n× 1 responses y
small tolerance δ > 0
one-dimensional smoother S

α̂← n−1
∑n

i=1 yi
f̂j ← 0 for j ∈ 1 : p

until (all |f̂j − gj| ≤ δ) {
for k ∈ 1 : p {

y
(k)
i = yi −

∑
j 6=k f̂j(xij)

gk ← S(y(k) ∼ x·k)
gk ← gk − n−1

∑n
i=1 gk(xik)

f̂k ← gk
}

}
Return: (α̂, f̂1, . . . f̂p)

Code Example 18: Pseudo-code for back-fitting additive models. Notice the extra step, as com-
pared to back-fitting linear models, which keeps each partial response function centered.

If we knew how to estimate arbitrary one-dimensional regressions, we could now
use back-fitting to estimate additive models. But we have spent a lot of time
learning how to use smoothers to fit one-dimensional regressions! We could use
nearest neighbors, or splines, or kernels, or local-linear regression, or anything
else we feel like substituting here.

Our new, improved back-fitting algorithm in Example 18. Once again, while it’s
not obvious that this converges, it does. Also, the back-fitting procedure works
well with some complications or refinements of the additive model. If we know the
function form of one or another of the fj, we can fit those parametrically (rather
than with the smoother) at the appropriate points in the loop. (This would be a
semiparametric model.) If we think that there is an interaction between xj and
xk, rather than their making separate additive contributions for each variable,
we can smooth them together; etc.

There are actually two packages standard packages for fitting additive models
in R: gam and mgcv. Both have commands called gam, which fit generalized
additive models — the generalization is to use the additive model for things
like the probabilities of categorical responses, rather than the response variable
itself. If that sounds obscure right now, don’t worry — we’ll come back to this
in Chapters 11–12 after we’ve looked at generalized linear models. §8.4 below
illustrates using one of these packages to fit an additive model.

172 Additive Models

8.3 The Curse of Dimensionality

Before illustrating how additive models work in practice, let’s talk about why
we’d want to use them. So far, we have looked at two extremes for regression
models; additive models are somewhere in between.

On the one hand, we had linear regression, which is a parametric method (with
p+1 parameters). Its weakness is that the true regression function µ is hardly ever
linear, so even with infinite data linear regression will always make systematic
mistakes in its predictions — there’s always some approximation bias, bigger or
smaller depending on how non-linear µ is. The strength of linear regression is
that it converges very quickly as we get more data. Generally speaking,

MSElinear = σ2 + alinear +O(n−1) (8.11)

where the first term is the intrinsic noise around the true regression function,
the second term is the (squared) approximation bias, and the last term is the
estimation variance. Notice that the rate at which the estimation variance shrinks
doesn’t depend on p — factors like that are all absorbed into the big O.4 Other
parametric models generally converge at the same rate.

At the other extreme, we’ve seen a number of completely nonparametric regres-
sion methods, such as kernel regression, local polynomials, k-nearest neighbors,
etc. Here the limiting approximation bias is actually zero, at least for any rea-
sonable regression function µ. The problem is that they converge more slowly,
because we need to use the data not just to figure out the coefficients of a para-
metric model, but the sheer shape of the regression function. We saw in Chapter 4
that the mean-squared error of kernel regression in one dimension is σ2+O(n−4/5).
Splines, k-nearest-neighbors (with growing k), etc., all attain the same rate. But
in p dimensions, this becomes (Wasserman, 2006, §5.12)

MSEnonpara − σ2 = O(n−4/(p+4)) (8.12)

There’s no ultimate approximation bias term here. Why does the rate depend on
p? Well, to hand-wave a bit, think of kernel smoothing, where µ̂(~x) is an average
over yi for ~xi near ~x. In a p dimensional space, the volume within ε of ~x is O(εp),
so the probability that a training point ~xi falls in the averaging region around ~x
gets exponentially smaller as p grows. Turned around, to get the same number of
training points per ~x, we need exponentially larger sample sizes. The appearance
of the 4s is a little more mysterious, but can be resolved from an error analysis
of the kind we did for kernel regression in Chapter 45. This slow rate isn’t just

4 See Appendix A you are not familiar with “big O” notation.
5 Remember that in one dimension, the bias of a kernel smoother with bandwidth h is O(h2), and the

variance is O(1/nh), because only samples falling in an interval about h across contribute to the

prediction at any one point, and when h is small, the number of such samples is proportional to nh.

Adding bias squared to variance gives an error of O(h4) +O((nh)−1), solving for the best

bandwidth gives hopt = O(n−1/5), and the total error is then O(n−4/5). Suppose for the moment

that in p dimensions we use the same bandwidth along each dimension. (We get the same end result

with more work if we let each dimension have its own bandwidth.) The bias is still O(h2), because

the Taylor expansion still goes through. But now only samples falling into a region of volume O(hp)

8.3 The Curse of Dimensionality 173

1 10 100 1000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

E
xc

es
s

M
S

E

n−1

n−4 5

n−1 26

curve(x^(-1),from=1,to=1e4,log="x",xlab="n",ylab="Excess MSE")
curve(x^(-4/5),add=TRUE,lty="dashed")
curve(x^(-1/26),add=TRUE,lty="dotted")
legend("topright",legend=c(expression(n^{-1}),

expression(n^{-4/5}),expression(n^{-1/26})),
lty=c("solid","dashed","dotted"))

Figure 8.1 Schematic of rates of convergence of MSEs for parametric
models (O(n−1)), one-dimensional nonparametric regressions or additive
models (O(n−4/5)), and a 100-dimensional nonparametric regression
(O(n−1/26)). Note that the horizontal but not the vertical axis is on a
logarithmic scale.

a weakness of kernel smoothers, but turns out to be the best any nonparametric
estimator can do.

For p = 1, the nonparametric rate is O(n−4/5), which is of course slower than
O(n−1), but not all that much, and the improved bias usually more than makes
up for it. But as p grows, the nonparametric rate gets slower and slower, and the
fully nonparametric estimate more and more imprecise, yielding the infamous
curse of dimensionality. For p = 100, say, we get a rate of O(n−1/26), which
is not very good at all. (See Figure 8.1.) Said another way, to get the same
precision with p inputs that n data points gives us with one input takes n(4+p)/5

data points. For p = 100, this is n20.8, which tells us that matching the error of
n = 100 one-dimensional observations requires O(4× 1041) hundred-dimensional
observations.

So completely unstructured nonparametric regressions won’t work very well in
high dimensions, at least not with plausible amounts of data. The trouble is that

around x contribute to the prediction at x, so the variance is O((nhp)−1). The best bandwidth is

now hopt = O(n−1/(p+4)), yielding an error of O(n−4/(p+4)) as promised.

174 Additive Models

there are just too many possible high-dimensional functions, and seeing only a
trillion points from the function doesn’t pin down its shape very well at all.[[ATTN:

More
mathe-
matical
expla-
nation
in ap-
pendix?]]

This is where additive models come in. Not every regression function is additive,
so they have, even asymptotically, some approximation bias. But we can estimate
each fj by a simple one-dimensional smoothing, which converges at O(n−4/5),
almost as good as the parametric rate. So overall

MSEadditive − σ2 = aadditive +O(n−4/5) (8.13)

Since linear models are a sub-class of additive models, aadditive ≤ alm. From a
purely predictive point of view, the only time to prefer linear models to additive
models is when n is so small that O(n−4/5) − O(n−1) exceeds this difference in
approximation biases; eventually the additive model will be more accurate.6

8.4 Example: California House Prices Revisited

As an example, we’ll look at data on median house prices across Census tracts
from the data-analysis assignment in §10. This has both California and Pennsyl-
vania, but it’s hard to visually see patterns with both states; I’ll do California,
and let you replicate this all on Pennsylvania, and even on the combined data.

Start with getting the data:

housing <- read.csv("http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/data/calif_penn_2011.csv")
housing <- na.omit(housing)
calif <- housing[housing$STATEFP == 6,]

(How do I know that the STATEFP code of 6 corresponds to California?)
We’ll fit a linear model for the log price, on the thought that it makes some

sense for the factors which raise or lower house values to multiply together, rather
than just adding.

calif.lm <- lm(log(Median_house_value) ~ Median_household_income + Mean_household_income +
POPULATION + Total_units + Vacant_units + Owners + Median_rooms + Mean_household_size_owners +
Mean_household_size_renters + LATITUDE + LONGITUDE, data = calif)

This is very fast — about a fifth of a second on my laptop.
Here are the summary statistics7:

print(summary(calif.lm), signif.stars = FALSE, digits = 3)
##
Call:
lm(formula = log(Median_house_value) ~ Median_household_income +
Mean_household_income + POPULATION + Total_units + Vacant_units +
Owners + Median_rooms + Mean_household_size_owners + Mean_household_size_renters +
LATITUDE + LONGITUDE, data = calif)
##

6 Unless the best additive approximation to µ is linear; then the linear model has no more bias and

less variance.
7 I have suppressed the usual stars on “significant” regression coefficients, because, as discussed in

Chapter ??, those aren’t really the most important variables, and I have reined in R’s tendency to

use far too many decimal places.

8.4 Example: California House Prices Revisited 175

predlims <- function(preds, sigma) {
prediction.sd <- sqrt(preds$se.fit^2 + sigma^2)
upper <- preds$fit + 2 * prediction.sd
lower <- preds$fit - 2 * prediction.sd
lims <- cbind(lower = lower, upper = upper)
return(lims)

}

Code Example 19: Calculating quick-and-dirty prediction limits from a prediction object
(preds) containing fitted values and their standard errors, plus an estimate of the noise level.
Because those are two (presumably uncorrelated) sources of noise, we combine the standard
deviations by “adding in quadrature”.

Residuals:
Min 1Q Median 3Q Max
-3.855 -0.153 0.034 0.189 1.214
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.74e+00 5.28e-01 -10.86 < 2e-16
Median_household_income 1.34e-06 4.63e-07 2.90 0.0038
Mean_household_income 1.07e-05 3.88e-07 27.71 < 2e-16
POPULATION -4.15e-05 5.03e-06 -8.27 < 2e-16
Total_units 8.37e-05 1.55e-05 5.41 6.4e-08
Vacant_units 8.37e-07 2.37e-05 0.04 0.9719
Owners -3.98e-03 3.21e-04 -12.41 < 2e-16
Median_rooms -1.62e-02 8.37e-03 -1.94 0.0525
Mean_household_size_owners 5.60e-02 7.16e-03 7.83 5.8e-15
Mean_household_size_renters -7.47e-02 6.38e-03 -11.71 < 2e-16
LATITUDE -2.14e-01 5.66e-03 -37.76 < 2e-16
LONGITUDE -2.15e-01 5.94e-03 -36.15 < 2e-16
##
Residual standard error: 0.317 on 7469 degrees of freedom
Multiple R-squared: 0.639,Adjusted R-squared: 0.638
F-statistic: 1.2e+03 on 11 and 7469 DF, p-value: <2e-16

Figure 8.2 plots the predicted prices, ±2 standard errors, against the actual
prices. The predictions are not all that accurate — the RMS residual is 0.317 on
the log scale (i.e., 37% on the original scale), but they do have pretty reasonable
coverage; about 96% of actual prices fall within the prediction limits8. On the
other hand, the predictions are quite precise, with the median of the calculated

8 Remember from your linear regression class that there are two kinds of confidence intervals we

might want to use for prediction. One is a confidence interval for the conditional mean at a given

value of x; the other is a confidence interval for the realized values of Y at a given x. Earlier

examples have emphasized the former, but since we don’t know the true conditional means here, we

need to use the latter sort of intervals, prediction intervals proper, to evaluate coverage. The

predlims function in Code Example 19 calculates a rough prediction interval by taking the standard

error of the conditional mean, combining it with the estimated standard deviation, and multiplying

by 2. Strictly speaking, we ought to worry about using a t-distribution rather than a Gaussian here,

but with 7469 residual degrees of freedom, this isn’t going to matter much. (Assuming Gaussian

noise is likely to be more of a concern, but this is only meant to be a rough cut anyway.)

176 Additive Models

standard errors being 0.011 on the log scale (i.e., 1.1% in dollars). This linear
model thinks it knows what’s going on.

Next, we’ll fit an additive model, using the gam function from the mgcv package;
this automatically sets the bandwidths using a fast approximation to leave-one-
out CV called generalized cross-validation, or GCV (§3.4.3).

system.time(calif.gam <- gam(log(Median_house_value) ~ s(Median_household_income) +
s(Mean_household_income) + s(POPULATION) + s(Total_units) + s(Vacant_units) +
s(Owners) + s(Median_rooms) + s(Mean_household_size_owners) + s(Mean_household_size_renters) +
s(LATITUDE) + s(LONGITUDE), data = calif))

user system elapsed
3.452 0.144 3.614

(That is, it took about five seconds total to run this.) The s() terms in the
gam formula indicate which terms are to be smoothed — if we wanted particular
parametric forms for some variables, we could do that as well. (Unfortunately we
can’t just write MedianHouseValue ∼ s(.), we have to list all the variables on
the right-hand side.9) The smoothing here is done by splines (hence s()), and
there are lots of options for controlling the splines, or replacing them by other
smoothers, if you know what you’re doing.

Figure 8.3 compares the predicted to the actual responses. The RMS error
has improved (0.27 on the log scale, or 130%, with 96% of observations falling
with ±2 standard errors of their fitted values), at only a fairly modest cost in
the claimed precision (the median standard error of prediction is 0.02, or 2.1%).
Figure 8.4 shows the partial response functions.

It makes little sense to have latitude and longitude make separate additive con-
tributions here; presumably they interact. We can just smooth them together10:

calif.gam2 <- gam(log(Median_house_value) ~ s(Median_household_income) + s(Mean_household_income) +
s(POPULATION) + s(Total_units) + s(Vacant_units) + s(Owners) + s(Median_rooms) +
s(Mean_household_size_owners) + s(Mean_household_size_renters) + s(LONGITUDE,
LATITUDE), data = calif)

This gives an RMS error of ±0.25 (log-scale) and 96% coverage, with a median
standard error of 0.021, so accuracy is improving (at least in sample), with little
loss of precision.

Figures 8.6 and 8.7 show two different views of the joint smoothing of longitude
and latitude. In the perspective plot, it’s quite clear that price increases specif-
ically towards the coast, and even more specifically towards the great coastal
cities. In the contour plot, one sees more clearly an inward bulge of a negative,
but not too very negative, contour line (between -122 and -120 longitude) which
embraces Napa, Sacramento, and some related areas, which are comparatively
more developed and more expensive than the rest of central California, and so

9 Alternately, we could use Kevin Gilbert’s formulaTools functions — see

https://gist.github.com/kgilbert-cmu.
10 If the two variables which interact have very different magnitudes, it’s better to smooth them with a

te() term than an s() term, but here they are comparable. See §8.5 for more, and

help(gam.models).

https://gist.github.com/kgilbert-cmu

8.4 Example: California House Prices Revisited 177

graymapper <- function(z, x = calif$LONGITUDE, y = calif$LATITUDE, n.levels = 10,
breaks = NULL, break.by = "length", legend.loc = "topright", digits = 3,
...) {
my.greys = grey(((n.levels - 1):0)/n.levels)
if (!is.null(breaks)) {

stopifnot(length(breaks) == (n.levels + 1))
}
else {

if (identical(break.by, "length")) {
breaks = seq(from = min(z), to = max(z), length.out = n.levels +

1)
}
else {

breaks = quantile(z, probs = seq(0, 1, length.out = n.levels + 1))
}

}
z = cut(z, breaks, include.lowest = TRUE)
colors = my.greys[z]
plot(x, y, col = colors, bg = colors, ...)
if (!is.null(legend.loc)) {

breaks.printable <- signif(breaks[1:n.levels], digits)
legend(legend.loc, legend = breaks.printable, fill = my.greys)

}
invisible(breaks)

}

Code Example 20: Map-making code. In its basic use, this takes vectors for x and y coordinates,
and draws gray points whose color depends on a third vector for z, with darker points indicating
higher values of z. Options allow for the control of the number of gray levels, setting the breaks
between levels automatically, and using a legend. Returning the break-points makes it easier to
use the same scale in multiple maps. See online for commented code.

more expensive than one would expect based on their distance from the coast
and San Francisco.

If you worked through problem set 10, you will recall that one of the big things
wrong with the linear model is that its errors (the residuals) are highly structured
and very far from random. In essence, it totally missed the existence of cities,
and the fact that houses cost more in cities (because land costs more there). It’s
a good idea, therefore, to make some maps, showing the actual values, and then,
by way of contrast, the residuals of the models. Rather than do the plotting by
hand over and over, let’s write a function (Code Example 20).

Figures 8.8 and 8.9 show that allowing for the interaction of latitude and longi-
tude (the smoothing term plotted in Figures 8.6–8.7) leads to a much more ran-
dom and less systematic clumping of residuals. This is desirable in itself, even if it
does little to improve the mean prediction error. Essentially, what that smooth-
ing term is doing is picking out the existence of California’s urban regions, and
their distinction from the rural background. Examining the plots of the inter-
action term should suggest to you how inadequate it would be to just put in a
LONGITUDE×LATITUDE term in a linear model.

Including an interaction between latitude and longitude in a spatial problem is

178 Additive Models

pretty obvious. There are other potential interactions which might be important
here — for instance, between the two measures of income, or between the total
number of housing units available and the number of vacant units. We could, of
course, just use a completely unrestricted nonparametric regression — going to
the opposite extreme from the linear model. In addition to the possible curse-
of-dimensionality issues, however, getting something like npreg to run with 7000
data points and 11 predictor variables requires a lot of patience. Other techniques,
like nearest neighbor regression (§1.5.1) or regression trees (Ch. 13), may run
faster, though cross-validation can be demanding even there.

8.5 Interaction Terms and Expansions

One way to think about additive models, and about (possibly) including interac-
tion terms, is to imagine doing a sort of Taylor series or power series expansion
of the true regression function. The zero-th order expansion would be a constant:

µ(x) ≈ α (8.14)

The best constant to use here would just be E [Y]. (“Best” here is in the mean-
square sense, as usual.) A purely additive model would correspond to a first-order
expansion:

µ(x) ≈ α+
p∑
j=1

fj(xj) (8.15)

Two-way interactions come in when we go to a second-order expansion:

µ(x) ≈ α+
p∑
j=1

fj(xj) +
p∑
j=1

p∑
k=j+1

fjk(xj, xk) (8.16)

(Why do I limit k to run from j + 1 to p?, rather than from 1 to p?) We will,
of course, insist that E [fjk(Xj, Xk)] = 0 for all j, k. If we want to estimate these
terms in R, using mgcv, we use the syntax s(xj, xk) or te(xj, xk). The former
fits a thin-plate spline over the (xj, xk) plane, and is appropriate when those
variables are measured on similar scales, so that curvatures along each direction
are comparable. The latter uses a tensor product of smoothing splines along
each coordinate, and is more appropriate when the measurement scales are very
different11.

There is an important ambiguity here: for any j, with additive partial-response
function fj, I could take any of its interactions, set f ′jk(xj, xk) = fjk(xj, xk) +
fj(xj) and f ′j(xj) = 0, and get exactly the same predictions under all circum-
stances. This is the parallel to being able to add and subtract constants from the
first-order functions, provided we made corresponding changes to the intercept
term. We therefore need to similarly fix the two-way interaction functions.

A natural way to do this is to insist that the second-order fjk function should

11 For the distinction between thin-plate and tensor-product splines, see §7.4. If we want to interact a

continuous variable xj with a categorical xk, mgcv’s syntax is s(xj, by=xk) or te(xj, by=xk).

8.5 Interaction Terms and Expansions 179

be uncorrelated with (“orthogonal to”) the first-order functions fj and fk; this
is the analog to insisting that the first-order functions all have expectation zero.
The fjks then represent purely interactive contributions to the response, which
could not be captured by additive terms. If this is what we want to do, the best
syntax to use in mgcv is ti, which specifically separates the first- and higher-
order terms, e.g., ti(xj) + ti(xk) + ti(xj, xk) will estimate three functions,
for the additive contributions and their interaction.

An alternative is to just pick a particular fjk, and absorb fj into it. The model
then looks like

µ(x) ≈ α+
p∑
j=1

p∑
k=j+1

fjk(xj, xk) (8.17)

We can also mix these two approaches, if we specifically do not want additive or
interactive terms for certain predictor variables. This is what I did above, where I
estimated a single second-order smoothing term for both latitude and longitude,
with no additive components for either.

Of course, there is nothing special about two-way interactions. If you’re curious
about what a three-way term would be like, and you’re lucky enough to have data
which amenable to fitting it, you could certainly try

µ ≈ α+
p∑
j=1

fj(xj) +
p∑
j=1

p∑
k=j+1

fjk(xj, xk) +
∑
j,k,l

fjkl(xj, xk, xl) (8.18)

(How should the indices for the last term go?) More ambitious combinations are
certainly possible, though they tend to become a confused mass of algebra and
indices.

Geometric interpretation

It’s often convenient to think of the regression function as living in a big (infinite-
dimensional) vector space of functions. Within this space, the constant functions
form a linear sub-space12, and we can ask for the projection of the true regression
function on to that sub-space; this would be the best approximation13 to µ as
a constant. This is, of course, the expectation value. The additive functions of
all p variables also form a linear sub-space14, so the right-hand side of Eq. 8.15
is just the projection of µ on to that space, and so forth and so on. When we
insist on having the higher-order interaction functions be uncorrelated with the
additive functions, we’re taking the projection of µ on to the space of all functions
orthogonal to the additive functions.

12 Because if f and g are two constant functions, af + bg is also a constant, for any real numbers a and

b.
13 Remember that projecting a vector on to a linear sub-space finds the point in the sub-space closest

to the original vector. This is equivalent to minimizing the (squared) bias.
14 By parallel reasoning to the previous footnote.

180 Additive Models

Selecting interactions

There are two issues with interaction terms. First, the curse of dimensionality
returns: an order-q interaction term will converge at the rate O(n−4/(4+q)), so
they can dominate the over-all uncertainty. Second, there are lots of possible
interactions (

(
p
q

)
, in fact), which can make it very demanding in time and data

to fit them all, and hard to interpret. Just as with linear models, therefore, it
can make a lot of sense to selective examine interactions based on subject-matter
knowledge, or residuals of additive models.

Varying-coefficient models

In some contexts, people like to use models of the form

µ(x) = α+
p∑
j=1

xjfj(x−j) (8.19)

where fj is a function of the non-j predictor variables, or some subset of them.
These varying-coefficient functions are obviously a subset of the usual class of
additive models, but there are occasions where they have some scientific justifi-
cation15. These are conveniently estimated in mgcv through the by option, e.g.,
s(xk, by=xj) will estimate a term of the form xjf(xk).

16

8.6 Closing Modeling Advice

With modern computing power, there are very few situations in which it is ac-
tually better to do linear regression than to fit an additive model. In fact, there
seem to be only two good reasons to prefer linear models.

1. Our data analysis is guided by a credible scientific theory which asserts lin-
ear relationships among the variables we measure (not others, for which our
observables serve as imperfect proxies).

2. Our data set is so massive that either the extra processing time, or the extra
computer memory, needed to fit and store an additive rather than a linear
model is prohibitive.

Even when the first reason applies, and we have good reasons to believe a linear
theory, the truly scientific thing to do would be to check linearity, by fitting a
flexible non-linear model and seeing if it looks close to linear. (We will see formal
tests based on this idea in Chapter 9.) Even when the second reason applies, we
would like to know how much bias we’re introducing by using linear predictors,
which we could do by randomly selecting a subset of the data which is small
enough for us to manage, and fitting an additive model.

In the vast majority of cases when users of statistical software fit linear models,
neither of these justifications applies: theory doesn’t tell us to expect linearity,

15 They can also serve as a “transitional object” when giving up the use of purely linear models.
16 As we saw above, by does something slightly different when given a categorical variable. How are

these two uses related?

8.7 Further Reading 181

and our machines don’t compel us to use it. Linear regression is then employed
for no better reason than that users know how to type lm but not gam. You now
know better, and can spread the word.

8.7 Further Reading

Simon Wood, who wrote the mgcv package, has a nice book about additive models
and their generalizations, Wood (2006); at this level it’s your best source for
further information. Buja et al. (1989) is a thorough theoretical treatment.

The expansions of §8.5 are sometimes called “functional analysis of variance”
or “functional ANOVA”. Making those ideas precise requires exploring some of
the geometry of infinite-dimensional spaces of functions (“Hilbert space”). See
Wahba (1990) for a treatment of the statistical topic, and Halmos (1957) for a
classic introduction to Hilbert spaces.

Historical notes

Ezekiel (1924) seems to be the first publication advocating the use of additive
models as a general method, which he called “curvilinear multiple correlation”.
His paper was complete with worked examples on simulated data (with known
answers) and real data (from economics)17. He was explicit that any reasonable
smoothing or regression technique could be used to find what we’d call the partial
response functions. He also gave a successive-approximation algorithm for esti-
mate the over-all model: start with an initial guess about all the partial responses;
plot all the partial residuals; refine the partial responses simultaneously; repeat.
This differs from back-fitting in that the partial response functions are updating
in parallel within each cycle, not one after the other. This is a subtle difference,
and Ezekiel’s method will often work, but can run into trouble with correlated
predictor variables, when back-fitting will not.

The Gauss-Seidel or backfitting algorithm was invented by Gauss in the early
1800s during his work on least squares estimation in linear models; he mentioned
it in letters to students, described it as something one could do “while half asleep”,
but never published it. Seidel gave the first published version in 1874. (For all this
history, see Benzi 2009.) I am not sure when the connection was made between
additive statistical models and back-fitting.

Exercises

8.1 Repeat the analyses of California housing prices with Pennsylvania housing prices. Which

partial response functions might one reasonably hope would stay the same? Do they?

(How can you tell?)

17 “Each of these curves illustrates and substantiates conclusions reached by theoretical economic

analysis. Equally important, they provide definite quantitative statements of the relationships. The

method of . . . curvilinear multiple correlation enable[s] us to use the favorite tool of the economist,

caeteris paribus, in the analysis of actual happenings equally as well as in the intricacies of

theoretical reasoning” (p. 453). (See also Exercise 8.4.)

182 Additive Models

8.2 Additive? For general p, let ‖~x‖ be the (ordinary, Euclidean) length of the vector ~x. Is

this an additive function of the (ordinary, Cartesian) coordinates? Is ‖~x‖2 an additive

function? ‖~x− ~x0‖ for a fixed ~x0? ‖~x− ~x0‖2?

8.3 Additivity vs. parallelism

1. Take any additive function f of p arguments x1, x2, . . . xp. Fix a coordinate index i and

a real number c. Prove that f(x1, x2, . . . xi, . . . xp)−f(x1, x2, . . . xi+ c, . . . xp) depends

only on xi and c, and not on the other coordinates.

2. Suppose p = 2, and continue to assume f is additive. Consider the curve formed by

plotting f(x1, x2) against x1 for a fixed value of x2, and the curved formed by plotting

f(x1, x2) against x1 with x2 fixed at a different value, say x′2. Prove that the curves

are parallel, i.e., that the vertical distance between them is constant.

3. For general p and additive f , consider the surfaces formed by the f by varying all but

one of the coordinates. Prove that these surfaces are always parallel to each other.

4. Is the converse true? That is, do parallel regression surfaces imply an additive model?

8.4 Additivity vs. partial derivatives

1. Suppose that the true regression function µ is additive, with partial response functions

fj . Show that ∂µ
∂xj

= fj(xj), so that each partial derivative is a function of that

coordinate alone.

2. (Much harder) Suppose that, for each coordinate xj , there is some function fj of xj
alone such that ∂µ

∂xj
= fj(xj). Is µ necessarily additive?

8.5 Suppose that an additive model holds, so that Y = α+
∑p
j=1 fj(Xj) + ε, with α = E [Y],

E
[
fj(Xj)

]
= 0 for each j, and E [ε|X = x] = 0 for all x.

1. For each j, let µj(xj) = E
[
Y |Xj = xj

]
. Show that

µj(xj) = α+ fj(xj) +
∑
k 6=j

E
[
fk(Xk)|Xj = xj

]
2. Show that if Xk is statistically independent of Xj , for all k 6= j, then µj(xj) − α =

fj(xj).

3. Does the conclusion of Exercise 22 still hold if one or more of the Xks is statistically

dependent on Xj? Explain why this should be the case, or give a counter-example to

show that it’s not true. Hint: All linear models are additive models, so if it is true for

all additive models, it’s true for all linear models. Is it true for all linear models?

Exercises 183

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06
Linear model

Actual price ($)

P
re

di
ct

ed
 (

$)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●
● ●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

● ●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

● ●
●

●

●

●

●

●

●
●

●

●

● ●● ●

●

●
●●

●● ●
●

●

● ● ●
●

●

●

●

●

● ●

●● ●

●● ●●
●

●

●

●

●

●●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●●

●
●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●●

●

●

●

●

●
●●

● ●●

●●

●

● ●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●
●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
● ●

● ●
●

●

●

●● ● ●

●

● ●
●

●

●

●
●

●

●
●

●

●
●●

●●

●

●●
●

●

●
●

●

●

●
●

●

●

●
● ●

●

●

●

●

●
●● ●

●

●

●

●● ●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●
●●

●
●

●
●

●

●

●

● ●
●

●
●

●

●

●

● ●

● ●

●
●

●
● ●● ●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

● ● ●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

● ●●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●
●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●
●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●● ●
●

●

●

●

●

●

● ●

●

●

● ●
●

●

●
●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

● ●
●

●

●
● ●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
● ●

● ●●

●
●

●

●

● ●
●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
● ●

●

●

●

● ●●

●

● ●

●
●

●

●

●

●

●

●●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●

● ●

●

●

●
●

●●

●

●●

●

●

●

●

● ●

●

● ●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

● ●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●
●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●
● ●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

● ●

●
●

●
●

●
●

●●

●
●

●● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●
●

● ●

●
●

●● ●

● ●

●

●

●

● ●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●
●

●●

● ●
● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

● ●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

● ●

●

●

●

●
●

●

●
●● ● ● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●
●

●

● ●

●●

● ●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

● ●● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●● ●
●

●

●

● ●
●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●

● ●

●

plot(calif$Median_house_value, exp(preds.lm$fit), type = "n", xlab = "Actual price ($)",
ylab = "Predicted ($)", main = "Linear model", ylim = c(0, exp(max(predlims.lm))))

segments(calif$Median_house_value, exp(predlims.lm[, "lower"]), calif$Median_house_value,
exp(predlims.lm[, "upper"]), col = "grey")

abline(a = 0, b = 1, lty = "dashed")
points(calif$Median_house_value, exp(preds.lm$fit), pch = 16, cex = 0.1)

Figure 8.2 Actual median house values (horizontal axis) versus those
predicted by the linear model (black dots), plus or minus two predictive
standard errors (grey bars). The dashed line shows where actual and
predicted prices are equal. Here predict gives both a fitted value for each
point, and a standard error for that prediction. (Without a newdata
argument, predict defaults to the data used to estimate calif.lm, which
here is what we want.) Predictions are exponentiated so they’re comparable
to the original values (and because it’s easier to grasp dollars than
log-dollars).

184 Additive Models

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

First additive model

Actual price ($)

P
re

di
ct

ed
 (

$)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

● ●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

plot(calif$Median_house_value, exp(preds.gam$fit), type = "n", xlab = "Actual price ($)",
ylab = "Predicted ($)", main = "First additive model", ylim = c(0, exp(max(predlims.gam))))

segments(calif$Median_house_value, exp(predlims.gam[, "lower"]), calif$Median_house_value,
exp(predlims.gam[, "upper"]), col = "grey")

abline(a = 0, b = 1, lty = "dashed")
points(calif$Median_house_value, exp(preds.gam$fit), pch = 16, cex = 0.1)

Figure 8.3 Actual versus predicted prices for the additive model, as in
Figure 8.2. Note that the sig2 attribute of a model returned by gam() is the
estimate of the noise variance around the regression surface (σ2).

Exercises 185

50000 150000

−
0.

1
0.

1
0.

3

Median_household_income

s(
M

ed
ia

n_
ho

us
eh

ol
d_

in
co

m
e,

5.
03

)

50000 200000

−
1.

0
0.

0
1.

0

Mean_household_income

s(
M

ea
n_

ho
us

eh
ol

d_
in

co
m

e,
6.

52
)

0 20000

−
0.

6
−

0.
2

0.
2

POPULATION

s(
P

O
P

U
LA

T
IO

N
,2

.2
7)

0 4000 8000

−
0.

8
−

0.
4

0.
0

Total_units

s(
To

ta
l_

un
its

,5
.3

7)

0 2000 5000

0.
0

1.
0

2.
0

Vacant_units

s(
V

ac
an

t_
un

its
,5

.8
5)

0 40 80

−
0.

2
0.

2
0.

4

Owners

s(
O

w
ne

rs
,3

.8
8)

2 4 6 8

−
0.

2
0.

0
0.

2

Median_rooms

s(
M

ed
ia

n_
ro

om
s,

7.
39

)

2 4 6 8 10

−
0.

5
0.

0
0.

5

Mean_household_size_owners
s(

M
ea

n_
ho

us
eh

ol
d_

si
ze

_o
w

ne
rs

,7
.8

2)

2 4 6 8 10

−
0.

6
−

0.
2

0.
2

Mean_household_size_renters

s(
M

ea
n_

ho
us

eh
ol

d_
si

ze
_r

en
te

rs
,3

.1
1)

34 38 42

−
1.

0
0.

0
0.

5

LATITUDE

s(
LA

T
IT

U
D

E
,8

.8
1)

−124 −120 −116

−
1.

5
−

0.
5

0.
5

LONGITUDE

s(
LO

N
G

IT
U

D
E

,8
.8

5)

Figure 8.4 The estimated partial response functions for the additive
model, with a shaded region showing ±2 standard errors. The tick marks
along the horizontal axis show the observed values of the input variables (a
rug plot); note that the error bars are wider where there are fewer
observations. Setting pages=0 (the default) would produce eight separate
plots, with the user prompted to cycle through them. Setting scale=0 gives
each plot its own vertical scale; the default is to force them to share the
same one. Finally, note that here the vertical scales are logarithmic.

186 Additive Models

50000 150000

−
4

−
2

0
1

Median_household_income

s(
M

ed
ia

n_
ho

us
eh

ol
d_

in
co

m
e,

6.
74

)

50000 200000

−
3

−
2

−
1

0
1

Mean_household_income

s(
M

ea
n_

ho
us

eh
ol

d_
in

co
m

e,
6.

08
)

0 20000

−
3

−
1

0
1

POPULATION

s(
P

O
P

U
LA

T
IO

N
,1

)

0 4000 8000

−
3

−
1

0
1

Total_units

s(
To

ta
l_

un
its

,2
.8

8)
0 2000 5000

−
3

−
1

0
1

Vacant_units

s(
V

ac
an

t_
un

its
,4

.6
2)

0 40 80

−
3

−
1

0
1

Owners

s(
O

w
ne

rs
,6

.1
2)

2 4 6 8

−
4

−
2

0
1

Median_rooms

s(
M

ed
ia

n_
ro

om
s,

7.
89

)

2 4 6 8 10

−
3

−
1

0
1

Mean_household_size_owners
s(

M
ea

n_
ho

us
eh

ol
d_

si
ze

_o
w

ne
rs

,7
.9

5)

2 4 6 8 10

−
3

−
1

0
1

Mean_household_size_renters

s(
M

ea
n_

ho
us

eh
ol

d_
si

ze
_r

en
te

rs
,3

.0
5)

 −0.8

 −0.8

 −0.6

 −0.4

 −0.4

 −0.4

 −0.2

 −0.2

 0

 0

 0.2

 0.4

 0.6

 0.6

 0.6

 0.8

s(LONGITUDE,LATITUDE,28.47)

−124 −122 −120 −118 −116 −114

34
36

38
40

42

LONGITUDE

LA
T

IT
U

D
E

 −0.6

 −0.6

 −0.4

 −0.2

 −0.2

 0

 0

 0.2

 0.2

 0.4

 0.6

 0.6

 0.8

−1se

 −0.8

 −0.8

 −0.8

 −0.6

 −0.6

 −0.4

 −0.4

 −0.2

 −0.2

 0

 0

 0.2

 0.4

 0.6

+1se

plot(calif.gam2, scale = 0, se = 2, shade = TRUE, resid = TRUE, pages = 1)

Figure 8.5 Partial response functions and partial residuals for addfit2, as
in Figure 8.4. See subsequent figures for the joint smoothing of longitude
and latitude, which here is an illegible mess. See help(plot.gam) for the
plotting options used here.

Exercises 187

LONGITUDE

−124

−122

−120

−118

−116

LA
TI

TU
D

E

34

36

38

40

s(LO
NG

ITUDE,LATITUDE,28.47)

−0.5

0.0

0.5

plot(calif.gam2, select = 10, phi = 60, pers = TRUE, ticktype = "detailed",
cex.axis = 0.5)

Figure 8.6 The result of the joint smoothing of longitude and latitude.

188 Additive Models

s(LONGITUDE,LATITUDE,28.47)

LONGITUDE

LA
T

IT
U

D
E

 −0.8

 −0.8

 −0.6

 −0.4

 −0.4

 −0.4

 −0.2

 −0.2

 0

 0

 0.2
 0.4

 0.6

 0.6

 0.6

 0.8

−124 −122 −120 −118 −116 −114

34
36

38
40

42

plot(calif.gam2, select = 10, se = FALSE)

Figure 8.7 The result of the joint smoothing of longitude and latitude.
Setting se=TRUE, the default, adds standard errors for the contour lines in
multiple colors. Again, note that these are log units.

Exercises 189

●●●
●●●

●
●●●●●●●●●

●●●

●●●
●●●●●●

●●●
●●

●●
●●●●●●●●●

●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●● ●
●

●●●
●
●

●●
●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●

●●

●●●●
●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●

●

●●●●
●

●

●●●
●●

●●●
●●●●●●●●●●●●●●●●●
●●●● ●●●●●●●●

●●
●●● ●●●●●●

●
●●●●●●●

●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●

●●●●●●● ●

●●
●●● ●●
●

●●
●●

●● ●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●

●●
●

●●
●●● ●●●●●●●
●
●●●●●●●

●●●
●●

●● ● ●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●● ●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●
●●● ●●●●

●●
●●

●●
●●●●●●

●●
●●●●●●●●●●●●●●

●● ●●●●
●●●●●●●●●●●●●●●

●●● ●
●●●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●
●● ●●●●●●●●●●

●●●●
● ●

●●●●●●●●●●● ●●●●●●●●●●●
●●
●

● ● ●
●●●●●●●●●●●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●
●●

●

●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●● ●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●●●●●
●●●

● ●●●

●

●

●●
●●●
●●●
●●●

●●
●●●

●●●●●●●●●
●
●●

●

●●●
●●●

●●

●●
●●●●●●●●

●●
●

●●●●●●●●●●●●●●●●●●●●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●●●●

●●
●
●●

●●
●

●
●●

●●

●

●●●●● ●●●●● ●●●●

●●
●●

●
●●

●●
●●●●●●

●
●●

●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●

●●●
●

●

●●●

●●●●●●●●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●
●●

−124 −122 −120 −118 −116 −114

34
36

38
40

42
Data

Longitude

La
tit

ud
e

16200
181000
243000
296000
342000
382000
431000
493000
591000
705000

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●

●●●

●●●
●●●●●●

●●●
●●

●●
●●●●●●

●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●● ●
●

●●●
●
●

●●
●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●

●●

●●●●
●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●

●

●●●●
●

●

●●●
●●

●●●
●●●●●●●●●●●●●●●●●
●●●● ●●●●●●●●

●●
●●● ●●●●●●

●
●●●●●●●

●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●

●●●●●●● ●

●●
●●● ●●●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●● ●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●

●●
●

●●
●●● ●●●●●●●
●
●●●●●●●

●●●
●●

●● ● ●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●
●●● ●●●●

●●●
●●

●●
●●●●●●

●●
●●●●●●●●●●●●●●

●● ●●●●
●●●●●●●●●●●●●●●

●●● ●
●●●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●
●● ●●●●●●●●●●

●●●●
● ●

●●●●●●●●●●● ●●●●●●●●●●●
●●
●

● ● ●
●●●●●●●●●●●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●
●●●

●

●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●● ●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●●●●●
●●●

● ●●●

●

●

●●●
●●●
●●●
●●

●●
●●●

●●●●●●●●●●●
●

●●
●●●

●●

●●
●●●●●●●●

●●
●

●●●●●●●●●●●●●●●●●●●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●●●●

●●
●
●●

●●
●

●
●●

●●

●

●●●●● ●●●●● ●●●●

●●
●●

●
●●

●●
●●●●●●

●
●●

●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●

●●●
●

●

●●●

●●●●●●●●●●

●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●
●●

−124 −122 −120 −118 −116 −114

34
36

38
40

42

Linear model

Longitude
La

tit
ud

e

●●
●●●

●
●●●●●●●●●

●●●

●●●
●●●●●●

●●●
●●

●●
●●●●●●●●●

●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●● ●
●

●●●
●
●

●●
●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●

●●

●●●●
●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●

●

●●●●
●

●

●●●
●●

●●●
●●●●●●●●●●●●●●●●●
●●●● ●●●●●●●●

●●
●●● ●●●●●●

●
●●●●●●●

●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●

●●●●●●● ●

●●●
●● ●●●
●

●●●
●●●

●● ●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●

●●
●

●●
●●● ●●●●●●●
●
●●●●●●●

●●●
●●

●● ● ●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●● ●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●
●●● ●●●●

●●
●●

●●●
●●●●●●

●●
●●●●●●●●●●●●●●

●● ●●●●
●●●●●●●●●●●●●●●

●●● ●
●●●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●
●● ●●●●●●●●●●

●●●●
● ●

●●●●●●●●●●● ●●●●●●●●●●●
●●
●

● ● ●
●●●●●●●●●●●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●
●●

●

●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●● ●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●●●●●
●●●

● ●●●

●

●

●●
●●●
●●●
●●●

●●
●●●

●●●●●●●●●
●
●●

●

●●●
●●●

●●

●●
●●●●●●●●

●●
●

●●●●●●●●●●●●●●●●●●●●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●●●●

●●●
●
●●

●●
●

●
●●

●●

●

●●●●● ●●●●● ●●●●

●●
●●

●
●●

●●
●●●●●●

●
●●

●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●

●●●
●

●

●●●

●●●●●●●●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●
●●

−124 −122 −120 −118 −116 −114

34
36

38
40

42

First additive model

Longitude

La
tit

ud
e

●●●
●●●

●
●●●●●●●●●

●●●

●●●
●●●●●●

●●●
●●

●●
●●●●●●●●●

●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●● ●
●

●●●
●
●

●●
●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●

●●

●●●●
●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●

●

●●●●
●

●

●●●
●●

●●●
●●●●●●●●●●●●●●●●●
●●●● ●●●●●●●●

●●
●●● ●●●●●●

●
●●●●●●●

●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●

●●●●●●● ●

●●●
●● ●●●
●

●●●
●●

●● ●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●

●●
●

●●
●●● ●●●●●●●
●
●●●●●●●

●●●
●●

●● ● ●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●● ●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●
●●● ●●●●

●●●
●●

●●
●●●●●●

●●
●●●●●●●●●●●●●●

●● ●●●●
●●●●●●●●●●●●●●●

●●● ●
●●●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●
●● ●●●●●●●●●●

●●●●
● ●

●●●●●●●●●●● ●●●●●●●●●●●
●●
●

● ● ●
●●●●●●●●●●●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●
●●

●

●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●● ●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●●●●●
●●●

● ●●●

●

●

●●
●●●
●●●
●●●

●●
●●●

●●●●●●●●●
●
●●

●

●●
●●●

●●

●●
●●●●●●●●

●●
●

●●●●●●●●●●●●●●●●●●●●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●●●●

●●
●
●●

●●
●

●
●●

●●

●

●●●●● ●●●●● ●●●●

●●
●●

●
●●

●●
●●●●●●

●
●●

●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●

●●●
●

●

●●●

●●●●●●●●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●
●●

−124 −122 −120 −118 −116 −114

34
36

38
40

42
Second additive model

Longitude

La
tit

ud
e

par(mfrow = c(2, 2))
calif.breaks <- graymapper(calif$Median_house_value, pch = 16, xlab = "Longitude",

ylab = "Latitude", main = "Data", break.by = "quantiles")
graymapper(exp(preds.lm$fit), breaks = calif.breaks, pch = 16, xlab = "Longitude",

ylab = "Latitude", legend.loc = NULL, main = "Linear model")
graymapper(exp(preds.gam$fit), breaks = calif.breaks, legend.loc = NULL, pch = 16,

xlab = "Longitude", ylab = "Latitude", main = "First additive model")
graymapper(exp(preds.gam2$fit), breaks = calif.breaks, legend.loc = NULL, pch = 16,

xlab = "Longitude", ylab = "Latitude", main = "Second additive model")
par(mfrow = c(1, 1))

Figure 8.8 Maps of real prices (top left), and those predicted by the linear
model (top right), the purely additive model (bottom left), and the additive
model with interaction between latitude and longitude (bottom right).
Categories are deciles of the actual prices.

190 Additive Models

●●●
●●●

●
●●●●●●●●●

●●●

●●●
●●●●●●

●●●
●●

●●
●●●●●●●●●

●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●● ●
●

●●●
●
●

●●
●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●

●●

●●●●
●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●

●

●●●●
●

●

●●●
●●

●●●
●●●●●●●●●●●●●●●●●
●●●● ●●●●●●●●

●●
●●● ●●●●●●

●
●●●●●●●

●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●

●●●●●●● ●

●●
●●● ●●
●

●●
●●

●● ●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●

●●
●

●●
●●● ●●●●●●●
●
●●●●●●●

●●●
●●

●● ● ●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●● ●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●
●●● ●●●●

●●
●●

●●
●●●●●●

●●
●●●●●●●●●●●●●●

●● ●●●●
●●●●●●●●●●●●●●●

●●● ●
●●●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●
●● ●●●●●●●●●●

●●●●
● ●

●●●●●●●●●●● ●●●●●●●●●●●
●●
●

● ● ●
●●●●●●●●●●●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●
●●

●

●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●● ●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●●●●●
●●●

● ●●●

●

●

●●
●●●
●●●
●●●

●●
●●●

●●●●●●●●●
●
●●

●

●●●
●●●

●●

●●
●●●●●●●●

●●
●

●●●●●●●●●●●●●●●●●●●●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●●●●

●●
●
●●

●●
●

●
●●

●●

●

●●●●● ●●●●● ●●●●

●●
●●

●
●●

●●
●●●●●●

●
●●

●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●

●●●
●

●

●●●

●●●●●●●●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●
●●

−124 −122 −120 −118 −116 −114

34
36

38
40

42

Data

Longitude

La
tit

ud
e

16200
181000
243000
296000
342000
382000
431000
493000
591000
705000

●●●
●●●

●
●●●●●●●●●

●●●

●●●
●●●●●●

●●●
●●

●●
●●●●●●●●●

●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●● ●
●

●●●
●
●

●●
●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●

●●

●●●●
●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●

●

●●●●
●

●

●●●
●●

●●●
●●●●●●●●●●●●●●●●●
●●●● ●●●●●●●●

●●
●●● ●●●●●●

●
●●●●●●●

●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●

●●●●●●● ●

●●
●●● ●●
●

●●
●●

●● ●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●

●●
●

●●
●●● ●●●●●●●
●
●●●●●●●

●●●
●●

●● ● ●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●● ●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●
●●● ●●●●

●●
●●

●●
●●●●●●

●●
●●●●●●●●●●●●●●

●● ●●●●
●●●●●●●●●●●●●●●

●●● ●
●●●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●
●● ●●●●●●●●●●

●●●●
● ●

●●●●●●●●●●● ●●●●●●●●●●●
●●
●

● ● ●
●●●●●●●●●●●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●
●●

●

●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●● ●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●●●●●
●●●

● ●●●

●

●

●●
●●●
●●●
●●●

●●
●●●

●●●●●●●●●
●
●●

●

●●●
●●●

●●

●●
●●●●●●●●

●●
●

●●●●●●●●●●●●●●●●●●●●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●●●●

●●
●
●●

●●
●

●
●●

●●

●

●●●●● ●●●●● ●●●●

●●
●●

●
●●

●●
●●●●●●

●
●●

●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●

●●●
●

●

●●●

●●●●●●●●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●
●●

−124 −122 −120 −118 −116 −114
34

36
38

40
42

Residuals of linear model

Longitude

La
tit

ud
e

−3.85
−0.352
−0.205
−0.11
−0.0337
0.0337
0.0952
0.156
0.226
0.329

●●●
●●●

●
●●●●●●●●●

●●●

●●●
●●●●●●

●●●
●●

●●
●●●●●●●●●

●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●● ●
●

●●●
●
●

●●
●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●

●●

●●●●
●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●

●

●●●●
●

●

●●●
●●

●●●
●●●●●●●●●●●●●●●●●
●●●● ●●●●●●●●

●●
●●● ●●●●●●

●
●●●●●●●

●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●

●●●●●●● ●

●●
●●● ●●
●

●●
●●

●● ●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●

●●
●

●●
●●● ●●●●●●●
●
●●●●●●●

●●●
●●

●● ● ●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●● ●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●
●●● ●●●●

●●
●●

●●
●●●●●●

●●
●●●●●●●●●●●●●●

●● ●●●●
●●●●●●●●●●●●●●●

●●● ●
●●●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●
●● ●●●●●●●●●●

●●●●
● ●

●●●●●●●●●●● ●●●●●●●●●●●
●●
●

● ● ●
●●●●●●●●●●●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●
●●

●

●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●● ●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●●●●●
●●●

● ●●●

●

●

●●
●●●
●●●
●●●

●●
●●●

●●●●●●●●●
●
●●

●

●●●
●●●

●●

●●
●●●●●●●●

●●
●

●●●●●●●●●●●●●●●●●●●●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●●●●

●●
●
●●

●●
●

●
●●

●●

●

●●●●● ●●●●● ●●●●

●●
●●

●
●●

●●
●●●●●●

●
●●

●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●

●●●
●

●

●●●

●●●●●●●●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●
●●

−124 −122 −120 −118 −116 −114

34
36

38
40

42

Residuals errors of first additive model

Longitude

La
tit

ud
e

●●●
●●●

●
●●●●●●●●●

●●●

●●●
●●●●●●

●●●
●●

●●
●●●●●●●●●

●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●● ●
●

●●●
●
●

●●
●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●

●●

●●●●
●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●

●

●●●●
●

●

●●●
●●

●●●
●●●●●●●●●●●●●●●●●
●●●● ●●●●●●●●

●●
●●● ●●●●●●

●
●●●●●●●

●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●

●●●●●●● ●

●●
●●● ●●
●

●●
●●

●● ●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●

●●
●

●●
●●● ●●●●●●●
●
●●●●●●●

●●●
●●

●● ● ●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●● ●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●
●●● ●●●●

●●
●●

●●
●●●●●●

●●
●●●●●●●●●●●●●●

●● ●●●●
●●●●●●●●●●●●●●●

●●● ●
●●●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●
●● ●●●●●●●●●●

●●●●
● ●

●●●●●●●●●●● ●●●●●●●●●●●
●●
●

● ● ●
●●●●●●●●●●●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●
●●

●

●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●● ●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●●●●●
●●●

● ●●●

●

●

●●
●●●
●●●
●●●

●●
●●●

●●●●●●●●●
●
●●

●

●●●
●●●

●●

●●
●●●●●●●●

●●
●

●●●●●●●●●●●●●●●●●●●●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●●●●

●●
●
●●

●●
●

●
●●

●●

●

●●●●● ●●●●● ●●●●

●●
●●

●
●●

●●
●●●●●●

●
●●

●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●

●●●
●

●

●●●

●●●●●●●●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●
●●

−124 −122 −120 −118 −116 −114

34
36

38
40

42

Residuals of second additive model

Longitude

La
tit

ud
e

Figure 8.9 Actual housing values (top left), and the residuals of the three
models. (The residuals are all plotted with the same color codes.) Notice
that both the linear model and the additive model without spatial
interaction systematically mis-price urban areas. The model with spatial
interaction does much better at having randomly-scattered errors, though
hardly perfect. — How would you make a map of the magnitude of
regression errors?

9

Testing Parametric Regression Specifications
with Nonparametric Regression

9.1 Testing Functional Forms

An important, if under-appreciated, use of nonparametric regression is checking
whether parametric regressions are well-specified. The typical parametric regres-
sion model is something like

Y = f(X; θ) + ε (9.1)

where f is some function which is completely specified except for the finite vector
of parameters θ, and ε, as usual, is uncorrelated noise. Often, of course, people
use a function f that is linear in the variables in X, or perhaps includes some
interactions between them.

How can we tell if the specification is right? If, for example, it’s a linear model,
how can we check whether there might not be some nonlinearity? A common
approach is to modify the specification to allow for specific departures from the
baseline model — say, adding a quadratic term — and seeing whether the co-
efficients that go with those terms are significantly non-zero, or whether the
improvement in fit is significant.1 For example, one might compare the model

Y = θ1x1 + θ2x2 + ε (9.2)

to the model

Y = θ1x1 + θ2x2 + θ3x
2
1 + ε (9.3)

by checking whether the estimated θ3 is significantly different from 0, or whether
the residuals from the second model are significantly smaller than the residuals
from the first.

This can work, if you have chosen the right nonlinearity to test. It has the
power to detect certain mis-specifications, if they exist, but not others. (What if
the departure from linearity is not quadratic but cubic?) If you have good reasons
to think that when the model is wrong, it can only be wrong in certain ways,
fine; if not, though, why only check for those errors?

Nonparametric regression effectively lets you check for all kinds of systematic
errors, rather than singling out a particular one. There are three basic approaches,
which I give in order of increasing sophistication.

1 In my experience, this approach is second in popularity only to ignoring the issue.

191

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

192 Testing Regression Specifications

• If the parametric model is right, it should predict as well as, or even better than,
the non-parametric one, and we can check whether MSEp(θ̂) −MSEnp(µ̂) is
sufficiently small.

• If the parametric model is right, the non-parametric estimated regression curve
should be very close to the parametric one. So we can check whether f(x; θ̂)−
µ̂(x) is approximately zero everywhere.

• If the parametric model is right, then its residuals should be patternless and
independent of input features, because

E [Y − f(x; θ)|X] = E [f(x; θ) + ε− f(x; θ)|X] = E [ε|X] = 0 (9.4)

So we can apply non-parametric smoothing to the parametric residuals, y −
f(x; θ̂), and see if their expectation is approximately zero everywhere.

We’ll stick with the first procedure, because it’s simpler for us to implement
computationally. However, it turns out to be easier to develop theory for the
other two, and especially for the third — see Li and Racine (2007, ch. 12), or
Hart (1997).

Here is the basic procedure.

1. Get data (x1, y1), (x2, y2), . . . (xn, yn).

2. Fit the parametric model, getting an estimate θ̂, and in-sample mean-squared
error MSEp(θ̂).

3. Fit your favorite nonparametric regression (using cross-validation to pick con-
trol settings as necessary), getting curve µ̂ and in-sample mean-squared error
MSEnp(µ̂).

4. Calculate d̂ = MSEp(θ̂)−MSEnp(µ̂).

5. Simulate from the parametric model θ̂ to get faked data (x∗1, y
∗
1), . . . (x∗n, y

∗
n).

1. Fit the parametric model to the simulated data, getting estimate θ̂∗ and
MSEp(θ̂

∗).

2. Fit the nonparametric model to the simulated data, getting estimate µ̂∗

and MSEnp(µ̂
∗).

3. Calculate D∗ = MSEp(θ̂
∗)−MSEnp(µ̂

∗).

6. Repeat step 5 b times to get an estimate of the distribution of D under the
null hypothesis.

7. The approximate p-value is
1+#{D∗>d̂}

1+b
.

Let’s step through the logic. In general, the error of the non-parametric model
will be converging to the smallest level compatible with the intrinsic noise of the
process. What about the parametric model?

Suppose on the one hand that the parametric model is correctly specified. Then
its error will also be converging to the minimum — by assumption, it’s got the
functional form right so bias will go to zero, and as θ̂ → θ0, the variance will also

9.1 Testing Functional Forms 193

go to zero. In fact, with enough data the correctly-specified parametric model
will actually generalize better than the non-parametric model2.

Suppose on the other hand that the parametric model is mis-specified. Then
its predictions are systematically wrong, even with unlimited amounts of data
— there’s some bias which never goes away, no matter how big the sample.
Since the non-parametric smoother does eventually come arbitrarily close to the
true regression function, the smoother will end up predicting better than the
parametric model.

Smaller errors for the smoother, then, suggest that the parametric model is
wrong. But since the smoother has higher capacity, it could easily get smaller er-
rors on a particular sample by chance and/or over-fitting, so only big differences
in error count as evidence. Simulating from the parametric model gives us surro-
gate data which looks just like reality ought to, if the model is true. We then see
how much better we could expect the non-parametric smoother to fit under the
parametric model. If the non-parametric smoother fits the actual data much bet-
ter than this, we can reject the parametric model with high confidence: it’s really
unlikely that we’d see that big an improvement from using the nonparametric
model just by luck.3

As usual, we simulate from the parametric model simply because we have
no hope of working out the distribution of the differences in MSEs from first
principles. This is an example of our general strategy of bootstrapping.

9.1.1 Examples of Testing a Parametric Model

Let’s see this in action. First, let’s detect a reasonably subtle nonlinearity. Take
the non-linear function g(x) = log (1 + x), and say that Y = g(x)+ε, with ε being
IID Gaussian noise with mean 0 and standard deviation 0.15. (This is one of the
examples from §4.2.) Figure 9.1 shows the regression function and the data. The
nonlinearity is clear with the curve to “guide the eye”, but fairly subtle.

A simple linear regression looks pretty good:

glinfit = lm(y ~ x, data = gframe)
print(summary(glinfit), signif.stars = FALSE, digits = 2)
##
Call:
lm(formula = y ~ x, data = gframe)
##
Residuals:
Min 1Q Median 3Q Max
-0.499 -0.091 0.002 0.106 0.425
##
Coefficients:

2 Remember that the smoother must, so to speak, use up some of the information in the data to

figure out the shape of the regression function. The parametric model, on the other hand, takes that

basic shape as given, and uses all the data’s information to tune its parameters.
3 As usual with p-values, this is not symmetric. A high p-value might mean that the true regression

function is very close to µ(x; θ), or it might mean that we don’t have enough data to draw

conclusions (or that we were unlucky).

194 Testing Regression Specifications

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

y

x <- runif(300, 0, 3)
yg <- log(x + 1) + rnorm(length(x), 0, 0.15)
gframe <- data.frame(x = x, y = yg)
plot(x, yg, xlab = "x", ylab = "y", pch = 16, cex = 0.5)
curve(log(1 + x), col = "grey", add = TRUE, lwd = 4)

Figure 9.1 True regression curve (grey) and data points (circles). The
curve g(x) = log (1 + x).

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.182 0.017 10 <2e-16
x 0.434 0.010 43 <2e-16
##
Residual standard error: 0.15 on 298 degrees of freedom
Multiple R-squared: 0.86,Adjusted R-squared: 0.86

9.1 Testing Functional Forms 195

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

y

Figure 9.2 As in previous figure, but adding the least-squares regression
line (black). Line widths exaggerated for clarity.

F-statistic: 1.8e+03 on 1 and 298 DF, p-value: <2e-16

R2 is ridiculously high — the regression line preserves 86 percent of the variance
in the data. The p-value reported by R is also very, very low, but remember all
this really means is “you’d have to be crazy to think a flat line fit better than
straight line with a slope” (Figure 9.2).

The in-sample MSE of the linear fit is4

4 If we ask R for the MSE, by squaring summary(glinfit)$sigma, we get 0.0234815. This differs from

the mean of the squared residuals by a factor of factor of n/(n− 2) = 300/298 = 1.0067, because R

is trying to estimate the out-of-sample error by scaling up the in-sample error, the same way the

estimated population variance scales up the sample variance. We want to compare in-sample fits.

196 Testing Regression Specifications

sim.lm <- function(linfit, test.x) {
n <- length(test.x)
sim.frame <- data.frame(x = test.x)
sigma <- summary(linfit)$sigma * (n - 2)/n
y.sim <- predict(linfit, newdata = sim.frame)
y.sim <- y.sim + rnorm(n, 0, sigma)
sim.frame <- data.frame(sim.frame, y = y.sim)
return(sim.frame)

}

Code Example 21: Simulate a new data set from a linear model, assuming homoskedastic
Gaussian noise. It also assumes that there is one input variable, x, and that the response variable
is called y. Could you modify it to work with multiple regression?

calc.D <- function(data) {
MSE.p <- mean((lm(y ~ x, data = data)$residuals)^2)
MSE.np.bw <- npregbw(y ~ x, data = data)
MSE.np <- npreg(MSE.np.bw)$MSE
return(MSE.p - MSE.np)

}

Code Example 22: Calculate the difference-in-MSEs test statistic.

signif(mean(residuals(glinfit)^2), 3)
[1] 0.0233

The nonparametric regression has a somewhat smaller MSE5

library(np)
gnpr <- npreg(y ~ x, data = gframe)
signif(gnpr$MSE, 3)
[1] 0.0204

So d̂ is

signif((d.hat = mean(glinfit$residual^2) - gnpr$MSE), 3)
[1] 0.00294

Now we need to simulate from the fitted parametric model, using its estimated
coefficients and noise level. We have seen several times now how to do this. The
function sim.lm in Example 21 does this, along the same lines as the examples in
Chapter 6; it assumes homoskedastic Gaussian noise. Again, as before, we need
a function which will calculate the difference in MSEs between a linear model
and a kernel smoother fit to the same data set — which will do automatically
what we did by hand above. This is calc.D in Example 22. Note that the kernel
bandwidth has to be re-tuned to each new data set.

If we call calc.D on the output of sim.lm, we get one value of the test statistic
under the null distribution:

5 npreg does not apply the kind of correction mentioned in the previous footnote.

9.1 Testing Functional Forms 197

calc.D(sim.lm(glinfit, x))
[1] 0.0005368707

Now we just repeat this a lot to get a good approximation to the sampling
distribution of D under the null hypothesis:

null.samples.D <- replicate(200, calc.D(sim.lm(glinfit, x)))

This takes some time, because each replication involves not just generating a
new simulation sample, but also cross-validation to pick a bandwidth. This adds
up to about a second per replicate on my laptop, and so a couple of minutes for
200 replicates.

(While the computer is thinking, look at the command a little more closely.
It leaves the x values alone, and only uses simulation to generate new y values.
This is appropriate here because our model doesn’t really say where the x values
came from; it’s just about the conditional distribution of Y given X. If the model
we were testing specified a distribution for x, we should generate x each time we
invoke calc.D. If the specification is vague, like “x is IID” but with no particular
distribution, then resample X.)

When it’s done, we can plot the distribution and see that the observed value

d̂ is pretty far out along the right tail (Figure 9.3). This tells us that it’s very
unlikely that npreg would improve so much on the linear model if the latter were
true. In fact, exactly 0 of the simulated values of the test statistic were that big:

sum(null.samples.D > d.hat)
[1] 0

Thus our estimated p-value is ≤ 0.00498. We can reject the linear model pretty
confidently.6

As a second example, let’s suppose that the linear model is right — then the
test should give us a high p-value. So let us stipulate that in reality

Y = 0.2 + 0.5x+ η (9.5)

with η ∼ N (0, 0.152). Figure 9.4 shows data from this, of the same size as before.

Repeating the same exercise as before, we get that d̂ = 7.7 × 10−4, together
with a slightly different null distribution (Figure 9.5). Now the p-value is 0.3,
which it would be quite rash to reject.

9.1.2 Remarks

Other Nonparametric Regressions

There is nothing especially magical about using kernel regression here. Any con-
sistent nonparametric estimator (say, your favorite spline) would work. They may
differ somewhat in their answers on particular cases.

6 If we wanted a more precise estimate of the p-value, we’d need to use more bootstrap samples.

198 Testing Regression Specifications

Histogram of null.samples.D

null.samples.D

D
en

si
ty

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030

0
50

0
10

00
15

00

hist(null.samples.D, n = 31, xlim = c(min(null.samples.D), 1.1 * d.hat), probability = TRUE)
abline(v = d.hat)

Figure 9.3 Histogram of the distribution of D = MSEp −MSEnp for data
simulated from the parametric model. The vertical line marks the observed
value. Notice that the mode is positive and the distribution is right-skewed;
this is typical.

Curse of Dimensionality

For multivariate regressions, testing against a fully nonparametric alternative can
be very time-consuming, as well as running up against curse-of-dimensionality

9.1 Testing Functional Forms 199

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

y

y2 <- 0.2 + 0.5 * x + rnorm(length(x), 0, 0.15)
y2.frame <- data.frame(x = x, y = y2)
plot(x, y2, xlab = "x", ylab = "y")
abline(0.2, 0.5, col = "grey", lwd = 2)

Figure 9.4 Data from the linear model (true regression line in grey).

issues7. A compromise is to test the parametric regression against an additive
model. Essentially nothing has to change.

7 This curse manifests itself here as a loss of power in the test. Said another way, because

unconstrained non-parametric regression must use a lot of data points just to determine the general

shape of the regression function, even more data is needed to tell whether a particular parametric

guess is wrong.

200 Testing Regression Specifications

Histogram of null.samples.D.y2

null.samples.D.y2

D
en

si
ty

0.000 0.001 0.002 0.003 0.004 0.005

0
20

0
40

0
60

0
80

0
10

00

Figure 9.5 As in Figure 9.3, but using the data and fits from Figure 9.4.

Testing E [ε̂|X] = 0

I mentioned at the beginning of the chapter that one way to test whether the
parametric model is correctly specified is to test whether the residuals have expec-
tation zero everywhere. Setting r(x;m) ≡ E [Y −m(X)|X = x], we know from
Chapter ?? that r(x;µ) = 0 everywhere, and that, for any other function m,
r(x;m) 6= 0 for at least some values of x. Thus, if we take the residuals ε̂ from our
parametric model and we smooth them, we get an estimated function r̂(x) that
should be converging to 0 everywhere if the parametric model is well-specified.
A natural test statistic is therefore some measure of the “size” of r̂, such as8

8 If you’ve taken functional analysis or measure theory, you may recognize these as the (squared) L2

and L2(f) norms of the function r̂.

9.2 Why Use Parametric Models At All? 201∫
r̂2(x)dx, or

∫
r̂2(x)f(x)dx (where f(x) is the pdf of X). (The latter, in particu-

lar, can be approximated by n−1
∑n

i=1 r̂
2(xi).) Our testing procedure would then

amount to (i) finding the residuals by fitting the parametric model, (ii) smooth-
ing the residuals to get r̂, (iii) calculating the size of r̂, and (iv) simulating to
get a distribution for how big r̂ should be, under the null hypothesis that the
parametric model is right.

An alternative to measuring the size of the expected-residuals function would
be to try to predict the residuals. We would compare the MSEs of the “model”
that the residuals have conditional expectation 0 everywhere, to the MSE of the
model that predicts the residuals by smoothing against X, and proceed much as
before9.

Stabilizing the Sampling Distribution of the Test Statistic

I have just looked at the difference in MSEs. The bootstrap principle being in-
voked is that the sampling distribution of the test statistic, under the estimated
parametric model, should be close to the distribution under the true parameter
value. As discussed in Chapter 6, sometimes some massaging of the test statistic
helps bring these distributions closer. Some modifications to consider:

• Divide the MSE difference by an estimate of the noise σ.

• Divide by an estimate of the noise σ times the difference in degrees of freedom,
using the effective degrees of freedom (§1.5.3.2) of the nonparametric regression.

• Use the log of the ratio in MSEs instead of the MSE difference.

Doing a double bootstrap can help you assess whether these are necessary.

9.2 Why Use Parametric Models At All?

It might seem by this point that there is little point to using parametric models
at all. Either our favorite parametric model is right, or it isn’t. If it is right, then
a consistent nonparametric estimate will eventually approximate it arbitrarily
closely. If the parametric model is wrong, it will not self-correct, but the non-
parametric estimate will eventually show us that the parametric model doesn’t
work. Either way, the parametric model seems superfluous.

There are two things wrong with this line of reasoning — two good reasons to
use parametric models.

1. One use of statistical models, like regression models, is to connect scientific
theories to data. The theories are ideas about the mechanisms generating the
data. Sometimes these ideas are precise enough to tell us what the functional
form of the regression should be, or even what the distribution of noise terms
should be, but still contain unknown parameters. In this case, the parameters

9 Can you write the difference in MSEs for the residuals in terms of either of the measures of the size

of r̂?

202 Testing Regression Specifications

themselves are substantively meaningful and interesting — we don’t just care
about prediction.10

2. Even if all we care about is prediction accuracy, there is still the bias-variance
trade-off to consider. Non-parametric smoothers will have larger variance in
their predictions, at the same sample size, than correctly-specified parametric
models, simply because the former are more flexible. Both models are converg-
ing on the true regression function, but the parametric model converges faster,
because it searches over a more confined space. In terms of total prediction
error, the parametric model’s low variance plus vanishing bias beats the non-
parametric smoother’s larger variance plus vanishing bias. (Remember that
this is part of the logic of testing parametric models in the previous section.)
In the next section, we will see that this argument can actually be pushed
further, to work with not-quite-correctly specified models.

Of course, both of these advantages of parametric models only obtain if they
are well-specified. If we want to claim those advantages, we need to check the
specification.

9.2.1 Why We Sometimes Want Mis-Specified Parametric Models

Low-dimensional parametric models have potentially high bias (if the real re-
gression curve is very different from what the model posits), but low variance
(because there isn’t that much to estimate). Non-parametric regression models
have low bias (they’re flexible) but high variance (they’re flexible). If the para-
metric model is true, it can converge faster than the non-parametric one. Even if
the parametric model isn’t quite true, a small bias plus low variance can some-
times still beat a non-parametric smoother’s smaller bias and substantial vari-
ance. With enough data the non-parametric smoother will eventually over-take
the mis-specified parametric model, but with small samples we might be better
off embracing bias.

To illustrate, suppose that the true regression function is

E [Y |X = x] = 0.2 +
1

2

(
1 +

sinx

10

)
x (9.6)

This is very nearly linear over small ranges — say x ∈ [0, 3] (Figure 9.6).
I will use the fact that I know the true model here to calculate the actual

expected generalization error, by averaging over many samples (Example 23).
Figure 9.7 shows that, out to a fairly substantial sample size (≈ 500), the

lower bias of the non-parametric regression is systematically beaten by the lower
variance of the linear model — though admittedly not by much.

10 On the other hand, it is not uncommon for scientists to write down theories positing linear

relationships between variables, not because they actually believe that, but because that’s the only

thing they know how to estimate statistically.

9.2 Why Use Parametric Models At All? 203

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5
1.0

1.5

x

h(x)

h <- function(x) { 0.2 + 0.5*(1+sin(x)/10)*x }
curve(h(x),from=0,to=3)

Figure 9.6 Graph of h(x) = 0.2 + 1
2

(
1 + sin x

10

)
x over [0, 3].

nearly.linear.out.of.sample = function(n) {
x <- seq(from = 0, to = 3, length.out = n)
y <- h(x) + rnorm(n, 0, 0.15)
data <- data.frame(x = x, y = y)
y.new <- h(x) + rnorm(n, 0, 0.15)
sim.lm <- lm(y ~ x, data = data)
lm.mse <- mean((fitted(sim.lm) - y.new)^2)
sim.np.bw <- npregbw(y ~ x, data = data)
sim.np <- npreg(sim.np.bw)
np.mse <- mean((fitted(sim.np) - y.new)^2)
mses <- c(lm.mse, np.mse)
return(mses)

}
nearly.linear.generalization <- function(n, m = 100) {

raw <- replicate(m, nearly.linear.out.of.sample(n))
reduced <- rowMeans(raw)
return(reduced)

}

Code Example 23: Evaluating the out-of-sample error for the nearly-linear problem as a func-
tion of n, and evaluting the generalization error by averaging over many samples.

204 Testing Regression Specifications

5 10 20 50 100 200 500 1000

0.
16

0.
18

0.
20

0.
22

n

R
M

S
 g

en
er

al
iz

at
io

n
er

ro
r

sizes <- c(5, 10, 15, 20, 25, 30, 50, 100, 200, 500, 1000)
generalizations <- sapply(sizes, nearly.linear.generalization)
plot(sizes, sqrt(generalizations[1,]), type = "l", xlab = "n", ylab = "RMS generalization error",

log = "xy", ylim = range(sqrt(generalizations)))
lines(sizes, sqrt(generalizations[2,]), lty = "dashed")
abline(h = 0.15, col = "grey")

Figure 9.7 Root-mean-square generalization error for linear model (solid
line) and kernel smoother (dashed line), fit to the same sample of the
indicated size. The true regression curve is as in 9.6, and observations are
corrupted by IID Gaussian noise with σ = 0.15 (grey horizontal line). The
cross-over after which the nonparametric regressor has better generalization
performance happens shortly before n = 500.

9.3 Further Reading 205

9.3 Further Reading

This chapter has been on specification testing for regression models, focusing on
whether they are correctly specified for the conditional expectation function. I
am not aware of any other treatment of this topic at this level, other than the
not-wholly-independent Spain et al. (2012). If you have somewhat more statistical
theory than this book demands, there are very good treatments of related tests in
Li and Racine (2007), and of tests based on smoothing residuals in Hart (1997).

Econometrics seems to have more of a tradition of formal specification testing
than many other branches of statistics. Godfrey (1988) reviews tests based on
looking for parametric extensions of the model, i.e., refinements of the idea of
testing whether θ3 = 0 in Eq. 9.3. White (1994) combines a detailed theory
of specification testing within parametric stochastic models, not presuming any
particular parametric model is correct, with an analysis of when we can and
cannot still draw useful inferences from estimates within a mis-specified model.
Because of its generality, it, too, is at a higher theoretical level than this book,
but is strongly recommend. White was also the co-author of a paper (Hong and
White, 1995) presenting a theoretical analysis of the difference-in-MSEs test used
in this chapter, albeit for a particular sort of nonparametric regression we’ve not
really touched on.

Appendix E considers some ways of doing specification test for models of dis-
tributions, rather than regressions.

10

Moving Beyond Conditional Expectations:
Weighted Least Squares, Heteroskedasticity,

Local Polynomial Regression

So far, all our estimates have been based on the mean squared error, giving equal
importance to all observations, as is generally appropriate when looking at con-
ditional expectations. In this chapter, we’ll start to work with giving more or
less weight to different observations, through weighted least squares. The oldest
reason to want to use weighted least squares is to deal with non-constant vari-
ance, or heteroskedasticity, by giving more weight to lower-variance observations.
This leads us naturally to estimating the conditional variance function, just as
we’ve been estimating conditional expectations. On the other hand, weighted
least squares lets us general kernel regression to locally polynomial regression.

10.1 Weighted Least Squares

When we use ordinary least squares to estimate linear regression, we (naturally)
minimize the mean squared error:

MSE(β) =
1

n

n∑
i=1

(yi − ~xi · β)2 (10.1)

The solution is of course

β̂OLS = (xTx)−1xTy (10.2)

We could instead minimize the weighted mean squared error,

WMSE(β, ~w) =
1

n

n∑
i=1

wi(yi − ~xi · β)2 (10.3)

This includes ordinary least squares as the special case where all the weights
wi = 1. We can solve it by the same kind of linear algebra we used to solve the
ordinary linear least squares problem. If we write w for the matrix with the wi
on the diagonal and zeroes everywhere else, the solution is

β̂WLS = (xTwx)−1xTwy (10.4)

But why would we want to minimize Eq. 10.3?

1. Focusing accuracy. We may care very strongly about predicting the response
for certain values of the input — ones we expect to see often again, ones where
mistakes are especially costly or embarrassing or painful, etc. — than others.

206

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

10.1 Weighted Least Squares 207

If we give the points ~xi near that region big weights wi, and points elsewhere
smaller weights, the regression will be pulled towards matching the data in
that region.

2. Discounting imprecision. Ordinary least squares is the maximum likelihood
estimate when the ε in Y = ~X · β+ ε is IID Gaussian white noise. This means
that the variance of ε has to be constant, and we measure the regression curve
with the same precision elsewhere. This situation, of constant noise variance,
is called homoskedasticity. Often however the magnitude of the noise is not
constant, and the data are heteroskedastic.

When we have heteroskedasticity, even if each noise term is still Gaussian,
ordinary least squares is no longer the maximum likelihood estimate, and so no
longer efficient. If however we know the noise variance σ2

i at each measurement
i, and set wi = 1/σ2

i , we get the heteroskedastic MLE, and recover efficiency.
(See below.)

To say the same thing slightly differently, there’s just no way that we can
estimate the regression function as accurately where the noise is large as we
can where the noise is small. Trying to give equal attention to all parts of the
input space is a waste of time; we should be more concerned about fitting well
where the noise is small, and expect to fit poorly where the noise is big.

3. Sampling bias. In many situations, our data comes from a survey, and some
members of the population may be more likely to be included in the sample
than others. When this happens, the sample is a biased representation of the
population. If we want to draw inferences about the population, it can help
to give more weight to the kinds of data points which we’ve under-sampled,
and less to those which were over-sampled. In fact, typically the weight put
on data point i would be inversely proportional to the probability of i being
included in the sample (exercise 10.1). Strictly speaking, if we are willing to
believe that linear model is exactly correct, that there are no omitted variables,
and that the inclusion probabilities pi do not vary with yi, then this sort of
survey weighting is redundant (DuMouchel and Duncan, 1983). When those
assumptions are not met — when there’re non-linearities, omitted variables,
or “selection on the dependent variable” — survey weighting is advisable, if
we know the inclusion probabilities fairly well.

The same trick works under the same conditions when we deal with “co-
variate shift”, a change in the distribution of X. If the old probability density
function was p(x) and the new one is q(x), the weight we’d want to use is
wi = q(xi)/p(xi) (Quiñonero-Candela et al., 2009). This can involve estimat-
ing both densities, or their ratio (chapter 14).

4. Doing something else. There are a number of other optimization problems
which can be transformed into, or approximated by, weighted least squares.
The most important of these arises from generalized linear models, where the
mean response is some nonlinear function of a linear predictor; we will look at
them in Chapters 11 and 12.

In the first case, we decide on the weights to reflect our priorities. In the

208 Weighting and Variance

−4 −2 0 2 4

−
15

−
10

−
5

0
5

Index

0

Figure 10.1 Black line: Linear response function (y = 3− 2x). Grey curve:
standard deviation as a function of x (σ(x) = 1 + x2/2). (Code deliberately
omitted; can you reproduce this figure?)

third case, the weights come from the optimization problem we’d really rather be
solving. What about the second case, of heteroskedasticity?

10.2 Heteroskedasticity

Suppose the noise variance is itself variable. For example, the figure shows a
simple linear relationship between the input X and the response Y , but also a
nonlinear relationship between X and V [Y].

In this particular case, the ordinary least squares estimate of the regression line
is 2.69 − −1.36x, with R reporting standard errors in the coefficients of ±0.71

10.2 Heteroskedasticity 209

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

−5 0 5

−
20

−
10

0
10

20
30

x

y

plot(x, y)
abline(a = 3, b = -2, col = "grey")
fit.ols = lm(y ~ x)
abline(fit.ols, lty = "dashed")

Figure 10.2 Scatter-plot of n = 100 data points from the above model.
(Here X is Gaussian with mean 0 and variance 9.) Grey: True regression
line. Dashed: ordinary least squares regression line.

and 0.24, respectively. Those are however calculated under the assumption that
the noise is homoskedastic, which it isn’t. And in fact we can see, pretty much,
that there is heteroskedasticity — if looking at the scatter-plot didn’t convince
us, we could always plot the residuals against x, which we should do anyway.

210 Weighting and Variance

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

−5 0 5

−
40

−
30

−
20

−
10

0
10

20

x

re
si

du
al

s(
fit

.o
ls

)

●
●

●●●●
●●

●

●

● ●●●● ●
●● ● ●●

●
● ● ●●

●●
●●●

●
●

●

● ●●● ●
●

● ●● ●● ●

●

●
●●● ●●

●
●● ●● ●● ●●

●

●●●

●

●

●

● ● ●● ●

●

●● ●● ●● ● ●

●

●

●

●● ●●

●

●

●● ● ●●●
●

●

−5 0 5

0
50

0
10

00
15

00

x

(r
es

id
ua

ls
(f

it.
ol

s)
)^

2

par(mfrow = c(1, 2))
plot(x, residuals(fit.ols))
plot(x, (residuals(fit.ols))^2)
par(mfrow = c(1, 1))

Figure 10.3 Residuals (left) and squared residuals (right) of the ordinary
least squares regression as a function of x. Note the much greater range of
the residuals at large absolute values of x than towards the center; this
changing dispersion is a sign of heteroskedasticity.

To see whether that makes a difference, let’s re-do this many times with dif-
ferent draws from the same model (Example 24).

Running ols.heterosked.error.stats(1e4) produces 104 random simulated
data sets, which all have the same x values as the first one, but different values

10.2 Heteroskedasticity 211

ols.heterosked.example = function(n) {
y = 3 - 2 * x + rnorm(n, 0, sapply(x, function(x) {

1 + 0.5 * x^2
}))
fit.ols = lm(y ~ x)
return(fit.ols$coefficients - c(3, -2))

}
ols.heterosked.error.stats = function(n, m = 10000) {

ols.errors.raw = t(replicate(m, ols.heterosked.example(n)))
intercept.se = sd(ols.errors.raw[, "(Intercept)"])
slope.se = sd(ols.errors.raw[, "x"])
return(c(intercept.se = intercept.se, slope.se = slope.se))

}

Code Example 24: Functions to generate heteroskedastic data and fit OLS regression to it, and
to collect error statistics on the results.

of y, generated however from the same model. It then uses those samples to
get the standard error of the ordinary least squares estimates. (Bias remains a
non-issue.) What we find is the standard error of the intercept is only a little
inflated (simulation value of 0.81 versus official value of 0.71), but the standard
error of the slope is much larger than what R reports, 0.55 versus 0.24. Since the
intercept is fixed by the need to make the regression line go through the center
of the data (Chapter 2), the real issue here is that our estimate of the slope is
much less precise than ordinary least squares makes it out to be. Our estimate is
still consistent, but not as good as it was when things were homoskedastic. Can
we get back some of that efficiency?

10.2.1 Weighted Least Squares as a Solution to Heteroskedasticity

Suppose we visit the Oracle of Regression (Figure 10.4), who tells us that the
noise has a standard deviation that goes as 1 + x2/2. We can then use this to
improve our regression, by solving the weighted least squares problem rather than
ordinary least squares (Figure 10.5).

This not only looks better, it is better: the estimated line is now 2.98− 1.84x,
with reported standard errors of 0.3 and 0.18. This checks check out with sim-
ulation (Example 25): the standard errors from the simulation are 0.23 for the
intercept and 0.26 for the slope, so R’s internal calculations are working very
well.

Why does putting these weights into WLS improve things?

10.2.2 Some Explanations for Weighted Least Squares

Qualitatively, the reason WLS with inverse variance weights works is the follow-
ing. OLS tries equally hard to match observations at each data point.1 Weighted

1 Less anthropomorphically, the objective function in Eq. 10.1 has the same derivative with respect to

the squared error at each point, ∂MSE
∂(yi−~xi·β)2

= 1
n

.

212 Weighting and Variance

Figure 10.4 Statistician (right) consulting the Oracle of Regression (left)
about the proper weights to use to overcome heteroskedasticity. (Image from
http://en.wikipedia.org/wiki/Image:Pythia1.jpg.)

wls.heterosked.example = function(n) {
y = 3 - 2 * x + rnorm(n, 0, sapply(x, function(x) {

1 + 0.5 * x^2
}))
fit.wls = lm(y ~ x, weights = 1/(1 + 0.5 * x^2))
return(fit.wls$coefficients - c(3, -2))

}
wls.heterosked.error.stats = function(n, m = 10000) {

wls.errors.raw = t(replicate(m, wls.heterosked.example(n)))
intercept.se = sd(wls.errors.raw[, "(Intercept)"])
slope.se = sd(wls.errors.raw[, "x"])
return(c(intercept.se = intercept.se, slope.se = slope.se))

}

Code Example 25: Linear regression of heteroskedastic data, using weighted least-squared re-
gression.

http://en.wikipedia.org/wiki/Image:Pythia1.jpg

10.2 Heteroskedasticity 213

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

−5 0 5

−
20

−
10

0
10

20
30

x

y

plot(x, y)
abline(a = 3, b = -2, col = "grey")
fit.ols = lm(y ~ x)
abline(fit.ols, lty = "dashed")
fit.wls = lm(y ~ x, weights = 1/(1 + 0.5 * x^2))
abline(fit.wls, lty = "dotted")

Figure 10.5 Figure 10.2, plus the weighted least squares regression line
(dotted).

least squares, naturally enough, tries harder to match observations where the
weights are big, and less hard to match them where the weights are small. But
each yi contains not only the true regression function µ(xi) but also some noise
εi. The noise terms have large magnitudes where the variance is large. So we
should want to have small weights where the noise variance is large, because
there the data tends to be far from the true regression. Conversely, we should
put big weights where the noise variance is small, and the data points are close
to the true regression.

The qualitative reasoning in the last paragraph doesn’t explain why the weights
should be inversely proportional to the variances, wi ∝ 1/σ2

xi
— why not wi ∝

1/σxi , for instance? Seeing why those are the right weights requires investigating
how well different, indeed arbitrary, choices of weights would work.

Look at the equation for the WLS estimates again:

β̂WLS = (xTwx)−1xTwy (10.5)

= h(w)y (10.6)

defining the matrix h(w) = (xTwx)−1xTw for brevity. (The notation reminds us
that everything depends on the weights in w.) Imagine holding x constant, but
repeating the experiment multiple times, so that we get noisy values of y. In each

214 Weighting and Variance

experiment, Yi = ~xi · β + εi, where E [εi] = 0 and V [εi] = σ2
xi

. So

β̂WLS = h(w)xβ + h(w)ε (10.7)

= β + h(w)ε (10.8)

Since E [ε] = 0, the WLS estimator is unbiased:

E
[
β̂WLS

]
= β (10.9)

In fact, for the jth coefficient,

β̂j = βj + [h(w)ε]j (10.10)

= βj +
n∑
i=1

hji(w)εi (10.11)

Since the WLS estimate is unbiased, it’s natural to want it to also have a small
variance, and

V
[
β̂j
]

=
n∑
i=1

hji(w)σ2
xi

(10.12)

It can be shown — the result is called the Gauss-Markov theorem — that
picking weights to minimize the variance in the WLS estimate has the unique
solution wi = 1/σ2

xi
. It does not require us to assume the noise is Gaussian2, but

the proof is a bit tricky, so I will confine it to §10.2.2.1 below.
A less general but easier-to-grasp result comes from adding the assumption

that the noise around the regression line is Gaussian — that

Y = ~x · β + ε, ε ∼ N (0, σ2
x) (10.13)

The log-likelihood is then (Exercise 10.2)

− n

2
ln 2π − 1

2

n∑
i=1

log σ2
xi
− 1

2

n∑
i=1

(yi − ~xi · β)2

σ2
xi

(10.14)

If we maximize this with respect to β, everything except the final sum is irrelevant,
and so we minimize

n∑
i=1

(yi − ~xi · β)2

σ2
xi

(10.15)

which is just weighted least squares with wi = 1/σ2
xi

. So, if the probabilistic
assumption holds, WLS is the efficient maximum likelihood estimator.

2 Despite the first part of the name! Gauss himself was much less committed to assuming Gaussian

distributions than many later statisticians.

10.2 Heteroskedasticity 215

10.2.2.1 Proof of the Gauss-Markov Theorem3

We want to prove that, when we are doing weighted least squares for linear
regression, the best choice of weights wi = 1/σ2

xi
. We saw that that WLS is

unbiased (Eq. 10.9), so “best” here means minimizing the variance. We have also
already seen (Eq. 10.6) that

β̂WLS = h(w)y (10.16)

where the matrix h(w) is

h(w) = (xTwx)−1xTw (10.17)

It would be natural to try to write out the variance as a function of the weights
w, set the derivative equal to zero, and solve. This is tricky, partly because we
need to make sure that all the weights are positive and add up to one, but mostly
because of the matrix inversion in the definition of h(w). A slightly less direct
approach is actually much cleaner.

Write w0 for the inverse-variance weight matrix, and h0 for the hat matrix we
get with those weights. Then for any other choice of weights, we have h(w) =
h0 + c. (c is implicitly a function of the weights, but let’s suppress that in the
notation for brevity.) Since we know all WLS estimates are unbiased, we must
have

(h0 + c)xβ = β (10.18)

but using the inverse-variance weights is a particular WLS estimate so

h0xβ = β (10.19)

and so we can deduce that

cx = 0 (10.20)

from unbiasedness.

Now consider the covariance matrix of the estimates, V
[
β̃
]
. This will be V [(h0 + c)Y],

3 You can skip this section, without loss of continuity.

216 Weighting and Variance

which we can expand:

V
[
β̃
]

= V [(h0 + c)Y] (10.21)

= (h0 + c)V [Y] (h0 + c)T (10.22)

= (h0 + c)w0
−1(h0 + c)T (10.23)

= h0w0
−1h0

T + cw0
−1h0

T + h0w0
−1cT + cw0

−1cT (10.24)

= (xTw0x)−1xTw0w0
−1w0x(xTw0x)−1 (10.25)

+cw0
−1w0x(xTw0x)−1

+(xTw0x)−1xTw0w0
−1cT

+cw0
−1cT

= (xTw0x)−1xTw0x(xTw0x)−1 (10.26)

+cx(xTw0x)−1 + (xTw0x)−1xTcT

+cw0
−1cT

= (xTw0x)−1 + cw0
−1cT (10.27)

where in the last step we use the fact that cx = 0 (and so xTcT = 0T = 0). Since
cw0

−1cT ≥ 0, because w0 is a positive-definite matrix, we see that the variance
is minimized by setting c = 0, and using the inverse variance weights.

Notes:

1. If all the variances are equal, then we’ve proved the optimality of OLS.

2. The proof actually works when comparing the inverse-variance weights to any
other linear, unbiased estimator; WLS with different weights is just a special
case.

3. We can write the WLS problem as that of minimizing (y − xβ)Tw(y − xβ).
If we allow w to be a non-diagonal, but still positive-definite, matrix, then we
have the generalized least squares problem. This is appropriate when there
are correlations between the noise terms at different observations, i.e., when
Cov [εi, εj] 6= 0 even though i 6= j. In this case, the proof is easily adapted to
show that the optimal weight matrix w is the inverse of the noise covariance
matrix. (This is why I wrote everything as a function of w.)

10.2.3 Finding the Variance and Weights

All of this was possible because the Oracle told us what the variance function
was. What do we do when the Oracle is not available (Figure 10.6)?

Sometimes we can work things out for ourselves, without needing an oracle.

• We know, empirically, the precision of our measurement of the response variable
— we know how precise our instruments are, or the response is really an average
of several measurements with known standard deviations, etc.

• We know how the noise in the response must depend on the input variables.
For example, when taking polls or surveys, the variance of the proportions we

10.3 Estimating Conditional Variance Functions 217

Figure 10.6 The Oracle may be out (left), or too creepy to go visit (right).
What then? (Left, the sacred oak of the Oracle of Dodona, copyright 2006
by Flickr user “essayen”,
http://flickr.com/photos/essayen/245236125/; right, the entrace to the
cave of the Sibyl of Cumæ, copyright 2005 by Flickr user “pverdicchio”,
http://flickr.com/photos/occhio/17923096/. Both used under Creative
Commons license.) [[ATTN: Both are only licensed for non-commercial use,
so find substitutes OR obtain rights for the for-money version of the book]]

find should be inversely proportional to the sample size. So we can make the
weights proportional to the sample size.

Both of these outs rely on kinds of background knowledge which are easier to
get in the natural or even the social sciences than in many industrial applications.
However, there are approaches for other situations which try to use the observed
residuals to get estimates of the heteroskedasticity; this is the topic of the next
section.

10.3 Estimating Conditional Variance Functions

Remember that there are two equivalent ways of defining the variance:

V [X] = E
[
X2
]
− (E [X])

2
= E

[
(X − E [X])2

]
(10.28)

The latter is more useful for us when it comes to estimating variance functions. We
have already figured out how to estimate means — that’s what all this previous
work on smoothing and regression is for — and the deviation of a random variable
from its mean shows up as a residual.

There are two generic ways to estimate conditional variances, which differ
slightly in how they use non-parametric smoothing. We can call these the squared
residuals method and the log squared residuals method. Here is how the
first one goes.

1. Estimate µ(x) with your favorite regression method, getting µ̂(x).

2. Construct the squared residuals, ui = (yi − µ̂(xi))
2
.

http://flickr.com/photos/essayen/245236125/
http://flickr.com/photos/occhio/17923096/

218 Weighting and Variance

3. Use your favorite non-parametric method to estimate the conditional mean of
the ui, call it q̂(x).

4. Predict the variance using σ̂2
x = q̂(x).

The log-squared residuals method goes very similarly.

1. Estimate µ(x) with your favorite regression method, getting µ̂(x).
2. Construct the log squared residuals, zi = log (yi − µ̂(xi))

2
.

3. Use your favorite non-parametric method to estimate the conditional mean of
the zi, call it ŝ(x).

4. Predict the variance using σ̂2
x = exp ŝ(x).

The quantity yi − µ̂(xi) is the ith residual. If µ̂ ≈ µ, then the residuals should
have mean zero. Consequently the variance of the residuals (which is what we
want) should equal the expected squared residual. So squaring the residuals makes
sense, and the first method just smoothes these values to get at their expectations.

What about the second method — why the log? Basically, this is a conve-
nience — squares are necessarily non-negative numbers, but lots of regression
methods don’t easily include constraints like that, and we really don’t want to
predict negative variances.4 Taking the log gives us an unbounded range for the
regression.

Strictly speaking, we don’t need to use non-parametric smoothing for either
method. If we had a parametric model for σ2

x, we could just fit the parametric
model to the squared residuals (or their logs). But even if you think you know
what the variance function should look like it, why not check it?

We came to estimating the variance function because of wanting to do weighted
least squares, but these methods can be used more generally. It’s often important
to understand variance in its own right, and this is a general method for esti-
mating it. Our estimate of the variance function depends on first having a good
estimate of the regression function

10.3.1 Iterative Refinement of Mean and Variance: An Example

The estimate σ̂2
x depends on the initial estimate of the regression function µ̂. But,

as we saw when we looked at weighted least squares, taking heteroskedasticity
into account can change our estimates of the regression function. This suggests an
iterative approach, where we alternate between estimating the regression function
and the variance function, using each to improve the other. That is, we take either
method above, and then, once we have estimated the variance function σ̂2

x, we
re-estimate µ̂ using weighted least squares, with weights inversely proportional to
our estimated variance. Since this will generally change our estimated regression,
it will change the residuals as well. Once the residuals have changed, we should
re-estimate the variance function. We keep going around this cycle until the

4 Occasionally people do things like claiming that gene differences explains more than 100% of the

variance in some psychological trait, and so environment and up-bringing contribute negative

variance. Some of them — like Alford et al. (2005) — say this with a straight face.

10.3 Estimating Conditional Variance Functions 219

change in the regression function becomes so small that we don’t care about
further modifications. It’s hard to give a strict guarantee, but usually this sort of
iterative improvement will converge.

Let’s apply this idea to our example. Figure 10.3b already plotted the residuals
from OLS. Figure 10.7 shows those squared residuals again, along with the true
variance function and the estimated variance function.

The OLS estimate of the regression line is not especially good (β̂0 = 2.69

versus β0 = 3, β̂1 = −1.36 versus β1 = −2), so the residuals are systematically
off, but it’s clear from the figure that kernel smoothing of the squared residuals
is picking up on the heteroskedasticity, and getting a pretty reasonable picture
of the variance function.

Now we use the estimated variance function to re-estimate the regression line,
with weighted least squares.

fit.wls1 <- lm(y ~ x, weights = 1/fitted(var1))
coefficients(fit.wls1)
(Intercept) x
2.978753 -1.905204
var2 <- npreg(residuals(fit.wls1)^2 ~ x)

The slope has changed substantially, and in the right direction (Figure 10.8a).
The residuals have also changed (Figure 10.8b), and the new variance function is
closer to the truth than the old one.

Since we have a new variance function, we can re-weight the data points and
re-estimate the regression:

fit.wls2 <- lm(y ~ x, weights = 1/fitted(var2))
coefficients(fit.wls2)
(Intercept) x
2.990366 -1.928978
var3 <- npreg(residuals(fit.wls2)^2 ~ x)

Since we know that the true coefficients are 3 and −2, we know that this is
moving in the right direction. If I hadn’t told you what they were, you could
still observe that the difference in coefficients between fit.wls1 and fit.wls2

is smaller than that between fit.ols and fit.wls1, which is a sign that this is
converging.

I will spare you the plot of the new regression and of the new residuals. Let’s
iterate a few more times:

fit.wls3 <- lm(y ~ x, weights = 1/fitted(var3))
coefficients(fit.wls3)
(Intercept) x
2.990687 -1.929818
var4 <- npreg(residuals(fit.wls3)^2 ~ x)
fit.wls4 <- lm(y ~ x, weights = 1/fitted(var4))
coefficients(fit.wls4)
(Intercept) x
2.990697 -1.929848

By now, the coefficients of the regression are changing in the fourth significant

220 Weighting and Variance

●
●

●● ●●
●●

●

●

● ●● ●● ●
●● ● ●●

●
● ● ●●

●●
●●●

●
●

●

● ●●● ●
●

● ●● ●● ●

●

●
●●● ●●

●
●● ●● ●● ●●

●

●●●

●

●

●

● ● ●● ●

●

●● ●● ●● ● ●

●

●

●

●● ●●

●

●

●● ● ●●●
●

●

−5 0 5

0
50

0
10

00
15

00

x

sq
ua

re
d

re
si

du
al

s

plot(x, residuals(fit.ols)^2, ylab = "squared residuals")
curve((1 + x^2/2)^2, col = "grey", add = TRUE)
require(np)
var1 <- npreg(residuals(fit.ols)^2 ~ x)
grid.x <- seq(from = min(x), to = max(x), length.out = 300)
lines(grid.x, predict(var1, exdat = grid.x))

Figure 10.7 Points: actual squared residuals from the OLS line. Grey
curve: true variance function, σ2

x = (1 + x2/2)2. Black curve: kernel
smoothing of the squared residuals, using npreg.

digit, and we only have 100 data points, so the imprecision from a limited sample
surely swamps the changes we’re making, and we might as well stop.

Manually going back and forth between estimating the regression function and

10.3 Estimating Conditional Variance Functions 221

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

−5 0 5

−
20

−
10

0
10

20
30

x

y

●
●

●●●●
●●

●

●

● ●●●● ●
●● ● ●●

●
● ● ●●

●●
●●●

●
●

●

● ●●● ●
●

● ●● ●● ●

●

●
●●● ●●

●
●● ●● ●● ●●

●

●●●

●

●

●

● ● ●● ●

●

●● ●● ●● ● ●

●

●

●

●● ●●

●

●

●● ● ●●●
●

●

−5 0 5

0
50

0
10

00
15

00

x

sq
ua

re
d

re
si

du
al

s

Figure 10.8 Left: As in Figure 10.2, but with the addition of the weighted
least squares regression line (dotted), using the estimated variance from
Figure 10.7 for weights. Right: As in Figure 10.7, but with the addition of
the residuals from the WLS regression (black squares), and the new
estimated variance function (dotted curve).

estimating the variance function is tedious. We could automate it with a function,
which would look something like this:

iterative.wls <- function(x, y, tol = 0.01, max.iter = 100) {
iteration <- 1
old.coefs <- NA
regression <- lm(y ~ x)
coefs <- coefficients(regression)
while (is.na(old.coefs) || ((max(coefs - old.coefs) > tol) && (iteration <

max.iter))) {

222 Weighting and Variance

variance <- npreg(residuals(regression)^2 ~ x)
old.coefs <- coefs
iteration <- iteration + 1
regression <- lm(y ~ x, weights = 1/fitted(variance))
coefs <- coefficients(regression)

}
return(list(regression = regression, variance = variance, iterations = iteration))

}

This starts by doing an unweighted linear regression, and then alternates be-
tween WLS for the getting the regression and kernel smoothing for getting the
variance. It stops when no parameter of the regression changes by more than tol,
or when it’s gone around the cycle max.iter times.5 This code is a bit too inflex-
ible to be really “industrial strength” (what if we wanted to use a data frame, or
a more complex regression formula?), but shows the core idea.

10.3.2 Real Data Example: Old Heteroskedastic

§5.4.2 introduced the geyser data set, which is about predicting the waiting
time between consecutive eruptions of the “Old Faithful” geyser at Yellowstone
National Park from the duration of the latest eruption. Our exploration there
showed that a simple linear model (of the kind often fit to this data in textbooks
and elementary classes) is not very good, and raised the suspicion that one im-
portant problem was heteroskedasticity. Let’s follow up on that, building on the
computational work done in that section.

The estimated variance function geyser.var does not look particularly flat,
but it comes from applying a fairly complicated procedure (kernel smoothing
with data-driven bandwidth selection) to a fairly limited amount of data (299
observations). Maybe that’s the amount of wiggliness we should expect to see due
to finite-sample fluctuations? To rule this out, we can make surrogate data from
the homoskedastic model, treat it the same way as the real data, and plot the
resulting variance functions (Figure 10.10). The conditional variance functions
estimated from the homoskedastic model are flat or gently varying, with much
less range than what’s seen in the data.

While that sort of qualitative comparison is genuinely informative, one can also
be more quantitative. One might measure heteroskedasticity by, say, evaluating
the conditional variance at all the data points, and looking at the ratio of the in-
terquartile range to the median. This would be zero for perfect homoskedasticity,
and grow as the dispersion of actual variances around the “typical” variance in-
creased. For the data, this is IQR(fitted(geyser.var))/median(fitted(geyser.var))
= 0.86. Simulations from the OLS model give values around 10−15.

There is nothing particularly special about this measure of heteroskedasticity
— after all, I just made it up. The broad point it illustrates is the one made in
§5.4.2.1: whenever we have some sort of quantitative summary statistic we can

5 The condition in the while loop is a bit complicated, to ensure that the loop is executed at least

once. Some languages have an until control structure which would simplify this.

10.3 Estimating Conditional Variance Functions 223

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5

0
20

0
40

0
60

0
80

0

Duration (minutes)

S
qu

ar
ed

 r
es

id
ua

ls
 o

f l
in

ea
r

m
od

el
 (m

in
ut

es
2)

● data
kernel variance
homoskedastic (OLS)

library(MASS)
data(geyser)
geyser.ols <- lm(waiting ~ duration, data = geyser)
plot(geyser$duration, residuals(geyser.ols)^2, cex = 0.5, pch = 16, xlab = "Duration (minutes)",

ylab = expression(`Squared residuals of linear model `(minutes^2)))
geyser.var <- npreg(residuals(geyser.ols)^2 ~ geyser$duration)
duration.order <- order(geyser$duration)
lines(geyser$duration[duration.order], fitted(geyser.var)[duration.order])
abline(h = summary(geyser.ols)$sigma^2, lty = "dashed")
legend("topleft", legend = c("data", "kernel variance", "homoskedastic (OLS)"),

lty = c("blank", "solid", "dashed"), pch = c(16, NA, NA))

Figure 10.9 Squared residuals from the linear model of Figure 5.1, plotted
against duration, along with the unconditional, homoskedastic variance
implicit in OLS (dashed), and a kernel-regression estimate of the conditional
variance (solid).

224 Weighting and Variance

1 2 3 4 5

0
50

10
0

15
0

20
0

25
0

30
0

Duration (minutes)

S
qu

ar
ed

 r
es

id
ua

ls
 o

f l
in

ea
r

m
od

el
 (m

in
ut

es
2)

duration.grid <- seq(from = min(geyser$duration), to = max(geyser$duration),
length.out = 300)

plot(duration.grid, predict(geyser.var, exdat = duration.grid), ylim = c(0,
300), type = "l", xlab = "Duration (minutes)", ylab = expression(`Squared residuals of linear model `(minutes^2)))

abline(h = summary(geyser.ols)$sigma^2, lty = "dashed")
one.var.func <- function() {

fit <- lm(waiting ~ duration, data = rgeyser())
var.func <- npreg(residuals(fit)^2 ~ geyser$duration)
lines(duration.grid, predict(var.func, exdat = duration.grid), col = "grey")

}
invisible(replicate(30, one.var.func()))

Figure 10.10 The actual conditional variance function estimated from the
Old Faithful data (and the linear regression), in black, plus the results of
applying the same procedure to simulations from the homoskedastic linear
regression model (grey lines; see §5.4.2 for the rgeyser function). The fact
that the estimates from the simulations are mostly flat or gently sloped
suggests that the changes in variance found in the data are likely too large
to just be sampling noise.

10.4 Re-sampling Residuals with Heteroskedasticity 225

calculate on our real data, we can also calculate the same statistic on realizations
of the model, and the difference will then tell us something about how close the
simulations, and so the model, come to the data. In this case, we learn that the
linear, homoskedastic model seriously understates the variability of this data.
That leaves open the question of whether the problem is the linearity or the
homoskedasticity; I will leave that question to Exercise 10.6.

10.4 Re-sampling Residuals with Heteroskedasticity

Re-sampling the residuals of a regression, as described in §6.4, assumes that the
distribution of fluctuations around the regression curve is the same for all values of
the input x. Under heteroskedasticity, this is of course not the case. Nonetheless,
we can still re-sample residuals to get bootstrap confidence intervals, standard
errors, and so forth, provided we define and scale them properly. If we have a
conditional variance function σ̂2(x), as well as the estimated regression function
µ̂(x), we can combine them to re-sample heteroskedastic residuals.

1. Construct the standardized residuals, by dividing the actual residuals by the
conditional standard deviation:

ηi = εi/σ̂(xi) (10.29)

The ηi should now be all the same magnitude (in distribution!), no matter
where xi is in the space of predictors.

2. Re-sample the ηi with replacement, to get η̃1, . . . η̃n.
3. Set x̃i = xi.
4. Set ỹi = µ̂(x̃i) + σ̂(x̃i)η̃i.
5. Analyze the surrogate data (x̃1, ỹ1), . . . (x̃n, ỹn) like it was real data.

Of course, this still assumes that the only difference in distribution for the noise
at different values of x is the scale.

10.5 Local Linear Regression

Switching gears, recall from Chapter 2 that one reason it can be sensible to use
a linear approximation to the true regression function µ is that we can typically
Taylor-expand (App. refapp:taylor) the latter around any point x0,

µ(x) = µ(x0) +
∞∑
k=1

(x− x0)
k

k!

dkµ

dxk

∣∣∣∣
x=x0

(10.30)

and similarly with all the partial derivatives in higher dimensions. Truncating
the series at first order, µ(x) ≈ µ(x0) + (x− x0)µ′(x0), we see the first derivative
µ′(x0) is the best linear prediction coefficient, at least if x close enough to x0. The
snag in this line of argument is that if µ(x) is nonlinear, then µ′ isn’t a constant,
and the optimal linear predictor changes depending on where we want to make
predictions.

226 Weighting and Variance

However, statisticians are thrifty people, and having assembled all the ma-
chinery for linear regression, they are loathe to throw it away just because the
fundamental model is wrong. If we can’t fit one line, why not fit many? If each
point has a different best linear regression, why not estimate them all? Thus
the idea of local linear regression: fit a different linear regression everywhere,
weighting the data points by how close they are to the point of interest6.

The simplest approach we could take would be to divide up the range of x into
so many bins, and fit a separate linear regression for each bin. This has at least
three drawbacks. First, we get weird discontinuities at the boundaries between
bins. Second, we pick up an odd sort of bias, where our predictions near the
boundaries of a bin depend strongly on data from one side of the bin, and not at
all on nearby data points just across the border, which is weird. Third, we need
to pick the bins.

The next simplest approach would be to first figure out where we want to make
a prediction (say x), and do a linear regression with all the data points which
were sufficiently close, |xi − x| ≤ h for some h. Now we are basically using a
uniform-density kernel to weight the data points. This eliminates two problems
from the binning idea — the examples we include are always centered on the x
we’re trying to get a prediction for, and we just need to pick one bandwidth h
rather than placing all the bin boundaries. But still, each example point always
has either weight 0 or weight 1, so our predictions change jerkily as training
points fall into or out of the window. It generally works nicer to have the weights
change more smoothly with the distance, starting off large and then gradually
trailing to zero.

By now bells may be going off, as this sounds very similar to the kernel regres-
sion. In fact, kernel regression is what happens when we truncate Eq. 10.30 at
zeroth order, getting locally constant regression. We set up the problem

µ̂(x) = argmin
m

1

n

n∑
i=1

wi(x)(yi −m)
2

(10.31)

and get the solution

µ̂(x) =
n∑
i=1

yi
wi(x)∑n
j=1wj(x)

(10.32)

which just is our kernel regression, when the weights are proportional to the
kernels, wi(x) ∝ K(xi, x). (Without loss of generality, we can take the constant
of proportionality to be 1.)

What about locally linear regression? The optimization problem is(
µ̂(x), β̂(x)

)
= argmin

m,β

1

n

n∑
i=1

wi(x)(yi −m− (xi − x) · β)
2

(10.33)

where again we can make wi(x) proportional to some kernel function, wi(x) ∝
K(xi, x). To solve this, abuse notation slightly to define zi = (1, xi − x), i.e., the

6 Some people say “local linear” and some “locally linear”.

10.5 Local Linear Regression 227

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

tr
ic

ub
ic

 fu
nc

tio
n

curve((1 - abs(x)^3)^3, from = -1, to = 1, ylab = "tricubic function")

Figure 10.11 The tricubic kernel, with broad plateau where |x| ≈ 0, and
the smooth fall-off to zero at |x| = 1.

displacement from x, with a 1 stuck at the beginning to (as usual) handle the
intercept. Now, by the machinery above,(

µ̂(x), β̂(x)
)

= (zTw(x)z)−1zTw(x)y (10.34)

and the prediction is just the intercept, µ̂(x). If you need an estimate of the first

derivatives, those are the β̂(x). Eq. 10.34 guarantees that the weights given to
each training point change smoothly with x, so the predictions will also change
smoothly.7

Using a smooth kernel whose density is positive everywhere, like the Gaussian,
ensures that the weights will change smoothly. But we could also use a kernel
which goes to zero outside some finite range, so long as the kernel rises gradually
from zero inside the range. For locally linear regression, a common choice of kernel
is therefore the tri-cubic,

K(xi, x) =

(
1−

(
|xi − x0|

h

)3
)3

(10.35)

if |x− xi| < h, and = 0 otherwise (Figure 10.11).

7 Notice that local linear predictors are still linear smoothers as defined in Chapter 1, (i.e., the

predictions are linear in the yi), but they are not, strictly speaking, kernel smoothers, since you

can’t re-write the last equation in the form of a kernel average.

228 Weighting and Variance

10.5.1 For and Against Locally Linear Regression

Why would we use locally linear regression, if we already have kernel regression?

1. You may recall that when we worked out the bias of kernel smoothers (Eq.
4.10 in Chapter 4), we got a contribution that was proportional to µ′(x). If
we do an analogous analysis for locally linear regression, the bias is the same,
except that this derivative term goes away.

2. Relatedly, that analysis we did of kernel regression tacitly assumed the point
we were looking at was in the middle of the training data (or at least rather
more than h from the border). The bias gets worse near the edges of the
training data. Suppose that the true µ(x) is decreasing in the vicinity of the
largest xi. (See the grey curve in Figure 10.12.) When we make our predictions
there, in kernel regression we can only average values of yi which tend to be
systematically larger than the value we want to predict. This means that our
kernel predictions are systematically biased upwards, and the size of the bias
grows with µ′(x). (See the black line in Figure 10.12 at the lower right.) If we
use a locally linear model, however, it can pick up that there is a trend, and
reduce the edge bias by extrapolating it (dashed line in the figure).

3. The predictions of locally linear regression tend to be smoother than those of
kernel regression, simply because we are locally fitting a smooth line rather
than a flat constant. As a consequence, estimates of the derivative dµ̂

dx
tend to

be less noisy when µ̂ comes from a locally linear model than a kernel regression.

Of course, total prediction error depends not only on the bias but also on the
variance. Remarkably enough, the variance for kernel regression and locally linear
regression is the same, at least asymptotically. Since locally linear regression has
smaller bias, local-linear fits are often better predictors.

Despite all these advantages, local linear models have a real drawback. To make
a prediction with a kernel smoother, we have to calculate a weighted average. To
make a prediction with a local linear model, we have to solve a (weighted) linear
least squares problem for each point, or each prediction. This takes much more
computing time8.

There are several packages which implement locally linear regression. Since
we are already using np, one of the simplest is to set the regtype="ll" in

8 Let’s think this through. To find µ̂(x) with a kernel smoother, we need to calculate K(xi, x) for each

xi. If we’ve got p predictor variables and use a product kernel, that takes O(pn) computational

steps. We then need to add up the kernels to get the denominator, which we could certainly do in

O(n) more steps. (Could you do it faster?) Multiplying each weight by its yi is a further O(n), and

the final adding up is at most O(n); total, O(pn). To make a prediction with a local linear model,

we need to calculate the right-hand side of Eq. 10.34. Finding (zTw(x)z) means multiplying

[(p+ 1)× n][n× n][n× (p+ 1)] matrices, which will take O((p+ 1)2n) = O(p2n) steps. Inverting a

q × q matrix takes O(q3) steps, so our inversion takes O((p+ 1)3) = O(p3) steps. Just getting

(zTw(x)z)−1 thus requires O(p3 + p2n). Finding the (p+ 1)× 1 matrix zTw(x)y similarly takes

O((p+ 1)n) = O(pn) steps, and the final matrix multiplication is O((p+ 1)(p+ 1)) = O(p2). Total,

O(p2n) +O(p3). The speed advantage of kernel smoothing thus gets increasingly extreme as the

number of predictor variables p grows.

10.5 Local Linear Regression 229

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

0.0 0.5 1.0 1.5 2.0 2.5

2
4

6
8

x

y

x <- runif(30, max = 3)
y <- 9 - x^2 + rnorm(30, sd = 0.1)
plot(x, y)
rug(x, side = 1, col = "grey")
rug(y, side = 2, col = "grey")
curve(9 - x^2, col = "grey", add = TRUE, lwd = 3)
grid.x <- seq(from = 0, to = 3, length.out = 300)
np0 <- npreg(y ~ x)
lines(grid.x, predict(np0, exdat = grid.x))
np1 <- npreg(y ~ x, regtype = "ll")
lines(grid.x, predict(np1, exdat = grid.x), lty = "dashed")

Figure 10.12 Points are samples from the true, nonlinear regression
function shown in grey. The solid black line is a kernel regression, and the
dashed line is a locally linear regression. Note that the locally linear model is
smoother than the kernel regression, and less biased when the true curve has
a non-zero bias at a boundary of the data (far right).

230 Weighting and Variance

npreg.9 There are several other packages which support it, notably KernSmooth

and locpoly.
As the name of the latter suggests, there is no reason we have to stop at

locally linear models, and we could use local polynomials of any order. The main
reason to use a higher-order local polynomial, rather than a locally-linear or
locally-constant model, is to estimate higher derivatives. Since this is a somewhat
specialized topic, I will not say more about it.

10.5.2 Lowess

There is however one additional topic in locally linear models which is worth
mentioning. This is the variant called lowess or loess.10 The basic idea is to fit
a locally linear model, with a kernel which goes to zero outside a finite window
and rises gradually inside it, typically the tri-cubic I plotted earlier. The wrin-
kle, however, is that rather than solving a least squares problem, it minimizes a
different and more “robust” loss function,

argmin
β(x)

1

n

n∑
i=1

wi(x)`(y − ~xi · β(x)) (10.36)

where `(a) doesn’t grow as rapidly for large a as a2. The idea is to make the fitting
less vulnerable to occasional large outliers, which would have very large squared
errors, unless the regression curve went far out of its way to accommodate them.
For instance, we might have `(a) = a2 if |a| < 1, and `(a) = 2|a| − 1 otherwise11.
There is a large theory of robust estimation, largely parallel to the more familiar
least-squares theory. In the interest of space, we won’t pursue it further, but
lowess is worth mentioning because it’s such a common smoothing technique,
especially for sheer visualization.

Lowess smoothing is implemented in base R through the function lowess

(rather basic), and through the function loess (more sophisticated), as well as
in the CRAN package locfit (more sophisticated still). The lowess idea can be
combined with local fitting of higher-order polynomials; the loess and locfit

commands both support this.

10.6 Further Reading

Weighted least squares goes back to the 19th century, almost as far back as
ordinary least squares; see the references in chapter 1 and 2.

I am not sure who invented the use of smoothing to estimate variance functions
comes from; I learned it from I learned it from Wasserman (2006, pp. 87–88). I’ve

9 "ll" stands for “locally linear”, of course; the default is regtype="lc", for “locally constant”.
10 I have heard this name explained as an acronym for both “locally weighted scatterplot smoothing”

and “locally weight sum of squares”.
11 This is called the Huber loss; it continuously interpolates between looking like squared error and

looking like absolute error. This means that when errors are small, it gives results very like

least-squares, but it is resistant to outliers. See also App. I.6.1.

Exercises 231

occasionally seen it done with a linear model for the conditional variance; I don’t
recommend that.

Simonoff (1996) is a good reference on local linear and local polynomial models,
including actually doing the bias-variance analyses where I’ve just made empty
“it can be shown” promises. Fan and Gijbels (1996) is more comprehensive, but
also a much harder read. Lowess was introduced by Cleveland (1979), but the
name evidently came later (since it doesn’t appear in that paper).

Exercises

10.1 Imagine we are trying to estimate the mean value of Y from a large population of size n0,

so y = n−1
0

∑n
j=1 yj . We observe n � n0 members of the population, with individual i

being included in our sample with a probability proportional to πi.

1. Show that
(∑n

i=1 yi/πi
)
/
∑n
i′=1 1/πi′ is a consistent estimator of y, by showing that

that it is unbiased and it has a variance that shrinks with n towards 0.

2. Is the unweighted sample mean n−1∑n
i=1 yi a consistent estimator of y when the πi

are not all equal?

10.2 Show that the model of Eq. 10.13 has the log-likelihood given by Eq. 10.14

10.3 Do the calculus to verify Eq. 10.4.

10.4 Is wi = 1 a necessary as well as a sufficient condition for Eq. 10.3 and Eq. 10.1 to have

the same minimum?

10.5 §10.2.2 showed that WLS gives better parameter estimates than OLS when there is het-

eroskedasticity, and we know and use the variance. Modify the code for to see which one

has better generalization error.

10.6 §10.3.2 looked at the residuals of the linear regression model for the Old Faithful geyser

data, and showed that they would imply lots of heteroskedasticity. This might, however, be

an artifact of inappropriately using a linear model. Use either kernel regression (cf. §6.4.2)

or local linear regression to estimate the conditional mean of waiting given duration, and

see whether the apparent heteroskedasticity goes away.

10.7 Should local linear regression do better or worse than ordinary least squares under het-

eroskedasticity? What exactly would this mean, and how might you test your ideas?

11

Logistic Regression

11.1 Modeling Conditional Probabilities

So far, we either looked at estimating the conditional expectations of continu-
ous variables (as in regression), or at estimating distributions. There are many
situations where however we are interested in input-output relationships, as in
regression, but the output variable is discrete rather than continuous. In par-
ticular there are many situations where we have binary outcomes (it snows in
Pittsburgh on a given day, or it doesn’t; this squirrel carries plague, or it doesn’t;
this loan will be paid back, or it won’t; this person will get heart disease in the
next five years, or they won’t). In addition to the binary outcome, we have some
input variables, which may or may not be continuous. How could we model and
analyze such data?

We could try to come up with a rule which guesses the binary output from
the input variables. This is called classification, and is an important topic in
statistics and machine learning. However, guessing “yes” or “no” is pretty crude
— especially if there is no perfect rule. (Why should there be a perfect rule?)
Something which takes noise into account, and doesn’t just give a binary answer,
will often be useful. In short, we want probabilities — which means we need to
fit a stochastic model.

What would be nice, in fact, would be to have conditional distribution of the
response Y , given the input variables, Pr (Y |X). This would tell us about how
precise our predictions should be. If our model says that there’s a 51% chance
of snow and it doesn’t snow, that’s better than if it had said there was a 99%
chance of snow (though even a 99% chance is not a sure thing). We will see,
in Chapter 14, general approaches to estimating conditional probabilities non-
parametrically, which can use the kernels for discrete variables from Chapter 4.
While there are a lot of merits to this approach, it does involve coming up with
a model for the joint distribution of outputs Y and inputs X, which can be quite
time-consuming.

Let’s pick one of the classes and call it “1” and the other “0”. (It doesn’t matter
which is which.) Then Y becomes an indicator variable, and you can convince
yourself that Pr (Y = 1) = E [Y]. Similarly, Pr (Y = 1|X = x) = E [Y |X = x]. (In
a phrase, “conditional probability is the conditional expectation of the indica-
tor”.) This helps us because by this point we know all about estimating condi-
tional expectations. The most straightforward thing for us to do at this point

232

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

11.2 Logistic Regression 233

would be to pick out our favorite smoother and estimate the regression function
for the indicator variable; this will be an estimate of the conditional probability
function.

There are two reasons not to just plunge ahead with that idea. One is that
probabilities must be between 0 and 1, but our smoothers will not necessarily
respect that, even if all the observed yi they get are either 0 or 1. The other is
that we might be better off making more use of the fact that we are trying to
estimate probabilities, by more explicitly modeling the probability.

Assume that Pr (Y = 1|X = x) = p(x; θ), for some function p parameterized
by θ. parameterized function θ, and further assume that observations are inde-
pendent of each other. The the (conditional) likelihood function is

n∏
i=1

Pr (Y = yi|X = xi) =
n∏
i=1

p(xi; θ)
yi(1− p(xi; θ))1−yi (11.1)

Recall that in a sequence of Bernoulli trials y1, . . . yn, where there is a constant
probability of success p, the likelihood is

n∏
i=1

pyi(1− p)1−yi (11.2)

As you learned in basic statistics, this likelihood is maximized when p = p̂ =
n−1

∑n
i=1 yi. If each trial had its own success probability pi, this likelihood be-

comes
n∏
i=1

pyii (1− pi)1−yi (11.3)

Without some constraints, estimating the “inhomogeneous Bernoulli” model by
maximum likelihood doesn’t work; we’d get p̂i = 1 when yi = 1, p̂i = 0 when
yi = 0, and learn nothing. If on the other hand we assume that the pi aren’t just
arbitrary numbers but are linked together, if we model the probabilities, those
constraints give non-trivial parameter estimates, and let us generalize. In the
kind of model we are talking about, the constraint, pi = p(xi; θ), tells us that
pi must be the same whenever xi is the same, and if p is a continuous function,
then similar values of xi must lead to similar values of pi. Assuming p is known
(up to parameters), the likelihood is a function of θ, and we can estimate θ by
maximizing the likelihood. This chapter will be about this approach.

11.2 Logistic Regression

To sum up: we have a binary output variable Y , and we want to model the condi-
tional probability Pr (Y = 1|X = x) as a function of x; any unknown parameters
in the function are to be estimated by maximum likelihood. By now, it will not
surprise you to learn that statisticians have approached this problem by asking
themselves “how can we use linear regression to solve this?”

234 Logistic Regression

1. The most obvious idea is to let p(x) be a linear function of x. Every incre-
ment of a component of x would add or subtract so much to the probability.
The conceptual problem here is that p must be between 0 and 1, and lin-
ear functions are unbounded. Moreover, in many situations we empirically see
“diminishing returns” — changing p by the same amount requires a bigger
change in x when p is already large (or small) than when p is close to 1/2.
Linear models can’t do this.

2. The next most obvious idea is to let log p(x) be a linear function of x, so
that changing an input variable multiplies the probability by a fixed amount.
The problem is that logarithms of probabilities are unbounded in only one
direction, and linear functions are not.

3. Finally, the easiest modification of log p which has an unbounded range is
the logistic transformation (or logit) , log p

1−p . We can make this a linear

function of x without fear of nonsensical results. (Of course the results could
still happen to be wrong, but they’re not guaranteed to be wrong.)

This last alternative is logistic regression.
Formally, the logistic regression model is that

log
p(x)

1− p(x)
= β0 + x · β (11.4)

Solving for p, this gives

p(x;β) =
eβ0+x·β

1 + eβ0+x·β =
1

1 + e−(β0+x·β)
(11.5)

Notice that the overall specification is a lot easier to grasp in terms of the trans-
formed probability that in terms of the untransformed probability.1

To minimize the mis-classification rate, we should predict Y = 1 when p ≥ 0.5
and Y = 0 when p < 0.5 (Exercise 11.1). This means guessing 1 whenever β0+x·β
is non-negative, and 0 otherwise. So logistic regression gives us a linear classifier.
The decision boundary separating the two predicted classes is the solution of
β0+x·β = 0, which is a point if x is one dimensional, a line if it is two dimensional,
etc. One can show (exercise!) that the distance from the decision boundary is
β0/‖β‖+x ·β/‖β‖. Logistic regression not only says where the boundary between
the classes is, but also says (via Eq. 11.5) that the class probabilities depend on
distance from the boundary, in a particular way, and that they go towards the
extremes (0 and 1) more rapidly when ‖β‖ is larger. It’s these statements about
probabilities which make logistic regression more than just a classifier. It makes
stronger, more detailed predictions, and can be fit in a different way; but those
strong predictions could be wrong.

Using logistic regression to predict class probabilities is a modeling choice, just
like it’s a modeling choice to predict quantitative variables with linear regression.
In neither case is the appropriateness of the model guaranteed by the gods, nature,

1 Unless you’ve taken thermodynamics or physical chemistry, in which case you recognize that this is

the Boltzmann distribution for a system with two states, which differ in energy by β0 + x · β.

11.2 Logistic Regression 235

x1

x 2

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−

−

−

−

−
−

+

+

− −

+
−

+−

−
−

−

+

+ +

+

+

+ +

−

+

+ −

+

−

+

−
−+

−

+

− +

+

−

−

+

+

−

−

+
−+

+

+

x1

x 2

 0.1

 0.2
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−

+

+

+

+
−

+

−

− −

−
−

−−

+
−

−

−

+ −

−

−

+ +

−

+

+ −

+

−

−

+
−+

−

−

+ +

+

+

−

−

+

−

+

+
−+

−

−

x1

x 2

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

+

−

−

+

+
−

−

−

− −

−
−

−−

+
−

+

−

+ +

−

+

− +

−

+

− −

−

−

−

−
−−

−

−

− −

+

−

−

−

−

−

+

+
−−

−

−

x1

x 2

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7 0
.8

 0.9

 1

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

+

−

−

+

+
−

−

−

− −

−
−

−−

+
−

+

−

+ +

−

+

− −

−

+

− −

−

−

−

−
−+

−

−

− −

+

−

−

−

−

−

+

+
−−

−

−

x <- matrix(runif(n = 50 * 2, min = -1, max = 1), ncol = 2)
par(mfrow = c(2, 2))
plot.logistic.sim(x, beta.0 = -0.1, beta = c(-0.2, 0.2))
y.1 <- plot.logistic.sim(x, beta.0 = -0.5, beta = c(-1, 1))
plot.logistic.sim(x, beta.0 = -2.5, beta = c(-5, 5))
plot.logistic.sim(x, beta.0 = -250, beta = c(-500, 500))

Figure 11.1 Effects of scaling logistic regression parameters. Values of x1

and x2 are the same in all plots (∼ Unif(−1, 1) for both coordinates), but
labels were generated randomly from logistic regressions with β0 = −0.1,
β = (−0.2, 0.2) (top left); from β0 = −0.5, β = (−1, 1) (top right); from
β0 = −2.5, β = (−5, 5) (bottom left); and from β0 = 2.5× 102,
β = (−5× 102, 5× 102). Notice how as the parameters get increased in
constant ratio to each other, we approach a deterministic relation between Y
and x, with a linear boundary between the classes. (We save one set of the
random binary responses for use later, as the imaginatively-named y.1.)

236 Logistic Regression

sim.logistic <- function(x, beta.0, beta, bind = FALSE) {
require(faraway)
linear.parts <- beta.0 + (x %*% beta)
y <- rbinom(nrow(x), size = 1, prob = ilogit(linear.parts))
if (bind) {

return(cbind(x, y))
}
else {

return(y)
}

}
plot.logistic.sim <- function(x, beta.0, beta, n.grid = 50, labcex = 0.3, col = "grey",

...) {
grid.seq <- seq(from = -1, to = 1, length.out = n.grid)
plot.grid <- as.matrix(expand.grid(grid.seq, grid.seq))
require(faraway)
p <- matrix(ilogit(beta.0 + (plot.grid %*% beta)), nrow = n.grid)
contour(x = grid.seq, y = grid.seq, z = p, xlab = expression(x[1]), ylab = expression(x[2]),

main = "", labcex = labcex, col = col)
y <- sim.logistic(x, beta.0, beta, bind = FALSE)
points(x[, 1], x[, 2], pch = ifelse(y == 1, "+", "-"), col = ifelse(y ==

1, "blue", "red"))
invisible(y)

}

Code Example 26: Code to simulate binary responses from a logistic regression model, and to
plot a 2D logistic regression’s probability contours and simulated binary values. (How would you
modify this to take the responses from a data frame?

mathematical necessity, etc. We begin by positing the model, to get something
to work with, and we end (if we know what we’re doing) by checking whether it
really does match the data, or whether it has systematic flaws.

Logistic regression is one of the most commonly used tools for applied statistics
and discrete data analysis. There are basically four reasons for this.

1. Tradition.

2. In addition to the heuristic approach above, the quantity log p/(1− p) plays
an important role in the analysis of contingency tables (the “log odds”). Clas-
sification is a bit like having a contingency table with two columns (classes)
and infinitely many rows (values of x). With a finite contingency table, we can
estimate the log-odds for each row empirically, by just taking counts in the
table. With infinitely many rows, we need some sort of interpolation scheme;
logistic regression is linear interpolation for the log-odds.

3. It’s closely related to “exponential family” distributions, where the probability

of some vector v is proportional to exp
{
β0 +

∑m
j=1 fj(v)βj

}
. If one of the

components of v is binary, and the functions fj are all the identity function,
then we get a logistic regression. Exponential families arise in many contexts
in statistical theory (and in physics!), so there are lots of problems which can
be turned into logistic regression.

4. It often works surprisingly well as a classifier. But, many simple techniques

11.2 Logistic Regression 237

often work surprisingly well as classifiers, and this doesn’t really testify to
logistic regression getting the probabilities right.

11.2.1 Likelihood Function for Logistic Regression

[[TODO: Standardize notation here for likelihood function compared to theory
appendix]]

Because logistic regression predicts probabilities, rather than just classes, we
can fit it using likelihood. For each training data-point, we have a vector of
features, xi, and an observed class, yi. The probability of that class was either p,
if yi = 1, or 1− p, if yi = 0. The likelihood is then

L(β0, β) =
n∏
i=1

p(xi)
yi(1− p(xi))1−yi (11.6)

(I could substitute in the actual equation for p, but things will be clearer in a
moment if I don’t.) The log-likelihood turns products into sums:

`(β0, β) =
n∑
i=1

yi log p(xi) + (1− yi) log (1− p(xi)) (11.7)

=
n∑
i=1

log (1− p(xi)) +
n∑
i=1

yi log
p(xi)

1− p(xi)
(11.8)

=
n∑
i=1

log (1− p(xi)) +
n∑
i=1

yi(β0 + xi · β) (11.9)

=
n∑
i=1

− log
(
1 + eβ0+xi·β

)
+

n∑
i=1

yi(β0 + xi · β) (11.10)

where in the next-to-last step we finally use equation 11.4.
Typically, to find the maximum likelihood estimates we’d differentiate the log

likelihood with respect to the parameters, set the derivatives equal to zero, and
solve. To start that, take the derivative with respect to one component of β, say
βj.

∂`

∂βj
= −

n∑
i=1

1

1 + eβ0+xi·β
eβ0+xi·βxij +

n∑
i=1

yixij (11.11)

=
n∑
i=1

(yi − p(xi;β0, β))xij (11.12)

We are not going to be able to set this to zero and solve exactly. (That’s a
transcendental equation, and there is no closed-form solution.) We can however
approximately solve it numerically.

238 Logistic Regression

11.3 Numerical Optimization of the Likelihood

While our likelihood isn’t nice enough that we have an explicit expression for
the maximum (the way we do in OLS or WLS), it is a pretty well-behaved func-
tion, and one which is amenable to lots of the usual numerical methods for op-
timization. In particular, like most log-likelihood functions, it’s suitable for an
application of Newton’s method. Briefly (see Appendix D.2 for details), New-
ton’s method starts with an initial guess about the optimal parameters, and then
calculates the gradient of the log-likelihood with respect to those parameters. It
then adds an amount proportional to the gradient to the parameters, moving up
the surface of the log-likelihood function. The size of the step in the gradient
direction is dictated by the second derivatives — it takes bigger steps when the
second derivatives are small (so the gradient is a good guide to what the function
looks like), and small steps when the curvature is large.

11.3.1 Iteratively Re-Weighted Least Squares

This discussion of Newton’s method is quite general, and therefore abstract. In
the particular case of logistic regression, we can make everything look much more
like a good, old-fashioned linear regression problem.

Logistic regression, after all, is a linear model for a transformation of the prob-
ability. Let’s call this transformation g:

g(p) ≡ log
p

1− p
(11.13)

So the model is

g(p) = β0 + x · β (11.14)

and Y |X = x ∼ Binom(1, g−1(β0 + x · β)). It seems that what we should want to
do is take g(y) and regress it linearly on x. Of course, the variance of Y , according
to the model, is going to change depending on x — it will be (g−1(β0 +x ·β))(1−
g−1(β0 + x · β)) — so we really ought to do a weighted linear regression, with
weights inversely proportional to that variance. Since writing g−1(β0 + x · β) is
getting annoying, let’s abbreviate it by p(x) or just p, and let’s abbreviate that
variance as V (p).

The problem is that y is either 0 or 1, so g(y) is either −∞ or +∞. We will
evade this by using Taylor expansion.

g(y) ≈ g(p) + (y − p)g′(p) ≡ z (11.15)

The right hand side, z will be our effective response variable, which we will regress
on x. To see why this should give us the right coefficients, substitute for g(p) in
the definition of z,

z = β0 + x · β + (y − p)g′(p) (11.16)

and notice that, if we’ve got the coefficients right, E [Y |X = x] = p, so (y − p)
should be mean-zero noise. In other words, when we have the right coefficients,

11.4 Generalized Linear and Additive Models 239

z is a linear function of x plus mean-zero noise. (This is our excuse for throwing
away the rest of the Taylor expansion, even though we know the discarded terms
are infinitely large!) That noise doesn’t have constant variance, but we can work
it out,

V [Z|X = x] = V [(Y − p)g′(p)|X = x] = (g′(p))2V (p) , (11.17)

and so use that variance in weighted least squares to recover β.
Notice that z and the weights both involve the parameters of our logistic re-

gression, through p(x). So having done this once, we should really use the new
parameters to update z and the weights, and do it again. Eventually, we come
to a fixed point, where the parameter estimates no longer change. This loop —
start with a guess about the parameters, use it to calculate the zi and their
weights, regress on the xi to get new parameters, and repeat — is known as iter-
ative reweighted least squares (IRLS or IRWLS), iterative weighted least
squares (IWLS), etc.

The treatment above is rather heuristic2, but it turns out to be equivalent
to using Newton’s method, only with the expected second derivative of the log
likelihood, instead of its actual value. This takes a reasonable amount of algebra
to show, so we’ll skip it (but see Exercise 11.3)3. Since, with a large number
of observations, the observed second derivative should be close to the expected
second derivative, this is only a small approximation.

11.4 Generalized Linear and Additive Models

Logistic regression is part of a broader family of generalized linear models
(GLMs), where the conditional distribution of the response falls in some para-
metric family, and the parameters are set by the linear predictor. Ordinary, least-
squares regression is the case where response is Gaussian, with mean equal to the
linear predictor, and constant variance. Logistic regression is the case where the
response is binomial, with n equal to the number of data-points with the given
x (usually but not always 1), and p is given by Equation 11.5. Changing the
relationship between the parameters and the linear predictor is called changing
the link function. For computational reasons, the link function is actually the
function you apply to the mean response to get back the linear predictor, rather
than the other way around — (11.4) rather than (11.5). There are thus other

2 That is, mathematically incorrect.
3 The two key points are as follows. First, the gradient of the log-likelihood turns out to be the sum of

the zixi. (Cf. Eq. 11.12.) Second, take a single Bernoulli observation with success probability p. The

log-likelihood is Y log p+ (1− Y) log 1− p. The first derivative with respect to p is

Y/p− (1− Y)/(1− p), and the second derivative is −Y/p2 − (1− Y)/(1− p)2. Taking expectations

of the second derivative gives −1/p− 1/(1− p) = −1/p(1− p). In other words, V (p) = −1/E [`′′].

Using weights inversely proportional to the variance thus turns out to be equivalent to dividing by

the expected second derivative. But gradient divided by second derivative is the increment we use in

Newton’s method, QED.

240 Logistic Regression

forms of binomial regression besides logistic regression.4 There is also Poisson re-
gression (appropriate when the data are counts without any upper limit), gamma
regression, etc.; we will say more about these in Chapter 12.

In R, any standard GLM can be fit using the (base) glm function, whose syntax
is very similar to that of lm. The major wrinkle is that, of course, you need to
specify the family of probability distributions to use, by the family option —
family=binomial defaults to logistic regression. (See help(glm) for the gory
details on how to do, say, probit regression.) All of these are fit by the same sort
of numerical likelihood maximization.

Perfect Classification

One caution about using maximum likelihood to fit logistic regression is that it
can seem to work badly when the training data can be linearly separated. The
reason is that, to make the likelihood large, p(xi) should be large when yi = 1,
and p should be small when yi = 0. If β0, β0 is a set of parameters which perfectly
classifies the training data, then cβ0, cβ is too, for any c > 1, but in a logistic
regression the second set of parameters will have more extreme probabilities, and
so a higher likelihood. For linearly separable data, then, there is no parameter
vector which maximizes the likelihood, since ` can always be increased by making
the vector larger but keeping it pointed in the same direction.

You should, of course, be so lucky as to have this problem.

11.4.1 Generalized Additive Models

A natural step beyond generalized linear models is generalized additive mod-
els (GAMs), where instead of making the transformed mean response a linear
function of the inputs, we make it an additive function of the inputs. This means
combining a function for fitting additive models with likelihood maximization.
This is actually done in R with the same gam function we used for additive mod-
els (hence the name). We will look at how this works in some detail in Chapter 12.
For now, the basic idea is that the iteratively re-weighted least squares procedure
of §11.3.1 doesn’t really require the model for the log odds to be linear. We get
a GAM when we fit an additive model to the zi; we could even fit an arbitrary
non-parametric model, like a kernel regression, though that’s not often done.

GAMs can be used to check GLMs in much the same way that smoothers can
be used to check parametric regressions: fit a GAM and a GLM to the same
data, then simulate from the GLM, and re-fit both models to the simulated data.
Repeated many times, this gives a distribution for how much better the GAM
will seem to fit than the GLM does, even when the GLM is true. You can then
read a p-value off of this distribution. This is illustrated in §11.6 below.

4 My experience is that these tend to give similar error rates as classifiers, but have rather different

guesses about the underlying probabilities.

11.5 Model Checking 241

11.5 Model Checking

The validity of the logistic regression model is no more a fact of mathematics or
nature than is the validity of the linear regression model. Both are sometimes
convenient assumptions, but neither is guaranteed to be correct, nor even some
sort of generally-correct default. In either case, if we want to use the model, the
proper scientific (and statistical) procedure is to check the validity of the modeling
assumptions.

11.5.1 Residuals

In your linear models course, you learned a lot of checks based on the residuals of
the model (see Chapter 2). Many of these ideas translates to logistic regression,
but we need to re-define residuals. Sometimes people work with the “response”
residuals,

yi − p(xi) (11.18)

which should have mean zero (why?), but are heteroskedastic even when the
model is true (why?). Others work with standardized or Pearson residuals,

yi − p(xi)√
V (p(xi))

(11.19)

and there are yet other notions of residuals for logistic models. Still, both the
response and the Pearson residuals should be unpredictable from the covariates,
and the latter should have constant variance.

11.5.2 Non-parametric Alternatives

Chapter 9 discussed how non-parametric regression models can be used to check
whether parametric regressions are well-specified. The same ideas apply to logistic
regressions, with the minor modification that in place of the difference in MSEs,
one should use the difference in log-likelihoods, or (what comes to the same thing,
up to a factor of 2) the difference in deviances. The use of generalized additive
models (§11.4.1) as the alternative model class is illustrated in §11.6 below.

11.5.3 Calibration

Because logistic regression predicts actual probabilities, we can check its predic-
tions in a more stringent way than an ordinary regression, which just tells us
the mean value of Y , but is otherwise silent about its distribution. If we’ve got
a model which tells us that the probability of rain on a certain class of days is
50%, it had better rain on half of those days, or there model is just wrong about
the probability of rain. More generally, we’ll say that the model is calibrated
(or well-calibrated) when

Pr (Y = 1|p̂(X) = p) = p (11.20)

242 Logistic Regression

That is, the actual probabilities should match the predicted probabilities. If we
have a large sample, by the law of large numbers, observed relative frequencies
will converge on true probabilities. Thus, the observed relative frequencies should
be close to the predicted probabilities, or else the model is making systematic
mistakes.

In practice, each case often has its own unique predicted probability p, so
we can’t really accumulate many cases with the same p and check the relative
frequency among those cases. When that happens, one option is to look at all
the cases where the predicted probability is in some small range [p, p + ε); the
observed relative frequency had then better be in that range too. §11.7 below
illustrates some of the relevant calculations.

A second option is to use what is called a proper scoring rule, which is a
function of the outcome variables and the predicted probabilities that attains its
minimum when, and only when, the predicted are calibrated. For binary out-
comes, one proper scoring rule (historically the oldest) is the Brier score,

n−1
n∑
i=1

(yi − pi)2 (11.21)

Another however is simply the (normalized) negative log-likelihood,

− n−1
n∑
i=1

yi log pi + (1− yi) log (1− pi) (11.22)

Of course, proper scoring rules are better evaluated out-of-sample, or, failing
that, through cross-validation, than in-sample. Even an in-sample evaluation is
better than nothing, however, which is too often what happens.

11.6 A Toy Example

Here’s a worked R example, using the data from the upper right panel of Fig-
ure 11.1. The 50 × 2 matrix x holds the input variables (the coordinates are
independently and uniformly distributed on [−1, 1]), and y.1 the correspond-
ing class labels, themselves generated from a logistic regression with β0 = −0.5,
β = (−1, 1).

df <- data.frame(y = y.1, x1 = x[, 1], x2 = x[, 2])
logr <- glm(y ~ x1 + x2, data = df, family = "binomial")

The deviance of a model fitted by maximum likelihood is twice the difference
between its log likelihood and the maximum log likelihood for a saturated model,
i.e., a model with one parameter per observation. Hopefully, the saturated model
can give a perfect fit.5 Here the saturated model would assign probability 1 to

5 The factor of two is so that the deviance will have a χ2 distribution. Specifically, if the model with p

parameters is right, as n→∞ the deviance will approach a χ2 distribution with n− p degrees of

freedom.

11.6 A Toy Example 243

the observed outcomes6, and the logarithm of 1 is zero, so D = 2`(β̂0, β̂). The
null deviance is what’s achievable by using just a constant bias β0 and setting
the rest of β to 0. The fitted model definitely improves on that.7

If we’re interested in inferential statistics on the estimated model, we can see
those with summary, as with lm:

summary(logr, digits = 2, signif.stars = FALSE)
##
Call:
glm(formula = y ~ x1 + x2, family = "binomial", data = df)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-1.7313 -1.0306 -0.6665 1.0914 2.1593
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.3226 0.3342 -0.965 0.3345
x1 -1.0528 0.5356 -1.966 0.0493 *
x2 1.3493 0.7052 1.913 0.0557 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 68.593 on 49 degrees of freedom
Residual deviance: 60.758 on 47 degrees of freedom
AIC: 66.758
##
Number of Fisher Scoring iterations: 4

The fitted values of the logistic regression are the class probabilities; this next
line gives us the (in-sample) mis-classification rate.

mean(ifelse(fitted(logr) < 0.5, 0, 1) != df$y)
[1] 0.26

An error rate of 26% may sound bad, but notice from the contour lines in
Figure 11.1 that lots of the probabilities are near 0.5, meaning that the classes
are just genuinely hard to predict.

To see how well the logistic regression assumption holds up, let’s compare this
to a GAM. We’ll use the same package for estimating the GAM, mgcv, that we
used to fit the additive models in Chapter 8.

library(mgcv)
(gam.1 <- gam(y ~ s(x1) + s(x2), data = df, family = "binomial"))
##
Family: binomial
Link function: logit

6 This is not possible when there are multiple observations with the same input features, but different

classes.
7 AIC is of course the Akaike information criterion, −2`+ 2p, with p being the number of parameters

(here, p = 3). (Some people divide this through by n.) See §D.5.5.3 for more on AIC, and why I

mostly ignore it in this book.

244 Logistic Regression

simulate.from.logr <- function(df, mdl) {
probs <- predict(mdl, newdata = df, type = "response")
df$y <- rbinom(n = nrow(df), size = 1, prob = probs)
return(df)

}

Code Example 27: Code for simulating from an estimated logistic regression model. By default
(type="link"), predict for logistic regressions returns predictions for the log odds; changing
the type to "response" returns a probability.

##
Formula:
y ~ s(x1) + s(x2)
##
Estimated degrees of freedom:
1.22 8.70 total = 10.92
##
UBRE score: 0.1544972

This fits a GAM to the same data, using spline smoothing of both input vari-
ables. (Figure 11.2 shows the partial response functions.) The (in-sample) de-
viance is

signif(gam.1$deviance, 3)
[1] 35.9

which is lower than the logistic regression, so the GAM gives the data higher
likelihood. We expect this; the question is whether the difference is significant, or
within the range of what we should expect when logistic regression is valid. To
test this, we need to simulate from the logistic regression model.

Now we simulate from our fitted model, and re-fit both the logistic regression
and the GAM.

delta.deviance.sim <- function(df, mdl) {
sim.df <- simulate.from.logr(df, mdl)
GLM.dev <- glm(y ~ x1 + x2, data = sim.df, family = "binomial")$deviance
GAM.dev <- gam(y ~ s(x1) + s(x2), data = sim.df, family = "binomial")$deviance
return(GLM.dev - GAM.dev)

}

Notice that in this simulation we are not generating new ~X values. The logistic
regression and the GAM are both models for the response conditional on the
inputs, and are agnostic about how the inputs are distributed, or even whether
it’s meaningful to talk about their distribution.

Finally, we repeat the simulation a bunch of times, and see where the observed
difference in deviances falls in the sampling distribution.

(delta.dev.observed <- logr$deviance - gam.1$deviance)
[1] 24.86973
delta.dev <- replicate(100, delta.deviance.sim(df, logr))
mean(delta.dev.observed <= delta.dev)
[1] 0.11

11.7 Weather Forecasting in Snoqualmie Falls 245

−1.0 −0.5 0.0 0.5 1.0

−
40

−
20

0
20

x1

s(
x1

,1
.2

2)

−1.0 −0.5 0.0 0.5 1.0

−
40

−
20

0
20

x2

s(
x2

,8
.7

)

plot(gam.1, residuals = TRUE, pages = 0)

Figure 11.2 Partial response functions estimated when we fit a GAM to
the data simulated from a logistic regression. Notice that the vertical axes
are on the logit scale.

In other words, the amount by which a GAM fits the data better than logistic
regression is pretty near the middle of the null distribution. Since the example
data really did come from a logistic regression, this is a relief.

11.7 Weather Forecasting in Snoqualmie Falls

For our worked data example, we are going to build a simple weather forecaster.
Our data consist of daily records, from the start of 1948 to the end of 1983, of

246 Logistic Regression

Amount by which GAM fits better than logistic regression

F
re

qu
en

cy

0 10 20 30 40 50 60 70

0
10

20
30

40
50

60
70

hist(delta.dev, main = "", xlab = "Amount by which GAM fits better than logistic regression")
abline(v = delta.dev.observed, col = "grey", lwd = 4)

Figure 11.3 Sampling distribution for the difference in deviance between a
GAM and a logistic regression, on data generated from a logistic regression.
The observed difference in deviances is shown by the grey vertical line.

precipitation at Snoqualmie Falls, Washington (Figure 11.4)8. Each row of the
data file is a different year; each column records, for that day of the year, the
day’s precipitation (rain or snow), in units of 1

100
inch. Because of leap-days, there

8 I learned of this data set from Guttorp (1995); the data file is available from

http://www.stat.washington.edu/peter/stoch.mod.data.html. See Code Example 28 for the

commands used to read it in, and to reshape it into a form more convenient for R.

http://www.stat.washington.edu/peter/stoch.mod.data.html

11.7 Weather Forecasting in Snoqualmie Falls 247

snoqualmie <- scan("http://www.stat.washington.edu/peter/book.data/set1", skip = 1)
snoq <- data.frame(tomorrow = c(tail(snoqualmie, -1), NA), today = snoqualmie)
years <- 1948:1983
days.per.year <- rep(c(366, 365, 365, 365), length.out = length(years))
snoq$year <- rep(years, times = days.per.year)
snoq$day <- rep(c(1:366, 1:365, 1:365, 1:365), times = length(years)/4)
snoq <- snoq[-nrow(snoq),]

Code Example 28: Read in and re-shape the Snoqualmie data set. Prof. Guttorp, who has
kindly provided the data, formatted it so that each year was a different row, which is rather
inconvenient for R.

are 366 columns, with the last column having an NA value for three out of four
years.

What we want to do is predict tomorrow’s weather from today’s. This would
be of interest if we lived in Snoqualmie Falls, or if we operated one of the local
hydroelectric power plants, or the tourist attraction of the Falls themselves. Ex-
amining the distribution of the data (Figures 11.5 and 11.6) shows that there is a
big spike in the distribution at zero precipitation, and that days of no precipita-
tion can follow days of any amount of precipitation but seem to be less common
after heavy precipitation.

These facts suggest that “no precipitation” is a special sort of event which
would be worth predicting in its own right (as opposed to just being when the
precipitation happens to be zero), so we will attempt to do so with logistic re-
gression. Specifically, the input variable Xi will be the amount of precipitation on
the ith day, and the response Yi will be the indicator variable for whether there
was any precipitation on day i + 1 — that is, Yi = 1 if Xi+1 > 0, an Yi = 0 if
Xi+1 = 0. We expect from Figure 11.6, as well as common experience, that the
coefficient on X should be positive.9

The estimation is straightforward:

snoq.logistic <- glm((tomorrow > 0) ~ today, data = snoq, family = binomial)

To see what came from the fitting, run summary:

print(summary(snoq.logistic), digits = 3, signif.stars = FALSE)
##
Call:
glm(formula = (tomorrow > 0) ~ today, family = binomial, data = snoq)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-4.525 -0.999 0.167 1.170 1.367
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.43520 0.02163 -20.1 <2e-16
today 0.04523 0.00131 34.6 <2e-16

9 This does not attempt to model how much precipitation there will be tomorrow, if there is any. We

could make that a separate model, if we can get this part right.

248 Logistic Regression

Figure 11.4 Snoqualmie Falls, Washington, on a low-precipitation day.
Photo by Jeannine Hall Gailey, from http://myblog.webbish6.com/2011/
07/17-years-and-hoping-for-another-17.html. [[TODO: Get
permission for photo use!]]

##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 18191 on 13147 degrees of freedom
Residual deviance: 15896 on 13146 degrees of freedom
AIC: 15900
##
Number of Fisher Scoring iterations: 5

The coefficient on the amount of precipitation today is indeed positive, and (if
we can trust R’s assumptions) highly significant. There is also an intercept term,

http://myblog.webbish6.com/2011/07/17-years-and-hoping-for-another-17.html
http://myblog.webbish6.com/2011/07/17-years-and-hoping-for-another-17.html

11.7 Weather Forecasting in Snoqualmie Falls 249

Histogram of snoqualmie

Precipitation (1/100 inch)

D
en

si
ty

0 100 200 300 400

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

hist(snoqualmie, n = 50, probability = TRUE, xlab = "Precipitation (1/100 inch)")
rug(snoqualmie, col = "grey")

Figure 11.5 Histogram of the amount of daily precipitation at Snoqualmie
Falls

which is slight positive, but not very significant. We can see what the intercept
term means by considering what happens when on days of no precipitation. The
linear predictor is then just the intercept, -0.435, and the predicted probability
of precipitation is 0.393. That is, even when there is no precipitation today, it’s
almost as likely as not that there will be some precipitation tomorrow.10

We can get a more global view of what the model is doing by plotting the data

10 For western Washington State, this is plausible — but see below.

250 Logistic Regression

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●
●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●●●

●

●●●●●●●

●

●

●

●●

●

●

●●

●

●

●

●
●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●●●

●

●

●●●

●

●●●

●

●●●●●●

●

●

●

●

●●●●●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●●●●●●●●●●
●

●

●●●●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●●

●

●

●
●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●●●●●●●●

●

●

●●

●

●●
●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●●●●

●

●
●●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●●

●

●●

●

●●●●

●

●●●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●

●

●
●

●●●●●●●

●

●●●

●

●

●●●●●●●
●

●●●●●●

●

●

●●

●

●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●

●

●

●

●●

●

●

●
●

●

●●●●●●●●●
●

●

●●●●

●

●●●●●●●●●●●

●

●

●●●●

●

●●●●

●
●

●●●●●●●●

●

●

●

●
●

●

●●●●
●

●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●
●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●●

●

●●●●

● ●

●

●●●●●●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●
●●

●

●
●●●●●●●●●

●

●

●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●

●

●

●

●●●●●

●

●

●

●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●●

●

●

●

●●●●●

●

●

●

●

●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●

●

●●●●●●●

●

●

●

●

●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●
●

●●●

●

●

●
●●●

●

●

●

●

●

●●●

● ●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●●●●●●●●●

●

●

●●●●

●

●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●●●●●●

●
●

●●●●●

●

●

●
●●●

●

●

●

●●
●

●

●●●

●

●

●

●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●
●●●●●●●●●●●●

●
●●●●●●●

●
●●●●●●

●

●

●

●

●

●●●●●●●●●●

●
●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●
●

●●

●

●

●

●

●●●

●

●●●
●

●

●

●

●

●

●
●●

●

●

●

●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

● ●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●

●

●●●
●

●

●

●●●●

●

●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●●●

●

●●●●

●

●

●

●●

●

●●●

●

●●●●●●●●●●●●●●

●

●
●

●●●●●●●●●●●

●

●●

●
●

●

●

●

●

●
●●

● ●
●●●●●●●●●

●

●●●

●

●●

●

●●

●

●

●●●●

●

●

●

●

●

●●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●●●

●

●●●●●

●

●

●●●●●●●●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●●●●●
●

●

●

●
●●●●

●
●●●

●

●

●●●●●●●●●●●●●

●

●●●●●●●●●

●

●

●

●●

● ●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●●●●●●●●
●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●●●●●●●
●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●●●●●●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●
●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●●●●

●

●
●●●●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●

●

●

●

●

●

●●

●

●

●●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●●●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●●●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●●●●●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●●●●●●

●

●●●●●●

●

●

●

●●●●●

●

●

●

●

● ●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●
●

●●●●●●●●●●

●

●

●●●

● ●

●
●●●●●●●●●●●●●●●●●●●●

●

●
●

●●●●●●●●●●

●

●●●●●●●
●

●
●

●

●

●

●

●●●●●●●●●●

●

●

●

●

●
●

●●
● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●●●●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●
● ●

●●●
●

●

●●●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●
●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●●●
●

●

●●●●●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●●●

●

●

●

●
●●●●●●

●

●●

●

●

●

●●

●

●

●

●

●●●●●

●

●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●●

●

●●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●●●

●

●●●●●●
●

●

●

●●●●●●●●●●

●

●●●

●

●

●●

●

●

●
●●●

●

●
●

●

●

●

●●●●●●●●●●●●

●

●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●
●●●●●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●●●●●●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

● ●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●
●●

●

●●●

●
●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●
●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●●●●●●●●●●●●●●●

●

●●●

●

●

●●●●●●

●

●●●●●●●●●●●●
● ●

●

●

●

●

●●●

●

●

●●●

●

●
●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●●●●●

●

●
●●●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●●●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●●●●●●●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●●●

●

●●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●
●

●

●●●●●●

●

●

●

●

●

●

●
●●●●●●●●●

●

●

●

●

●

●

●

●●
●●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●●●●●●

●

●

●

●

●

●

●

● ●

●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●

●

●
●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●

●

●

●

●●

●

●●●●●●●●●

●

●●

●

●

●

●
●●●●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

● ●

●

●●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●
●

●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●●●

●

● ●

●●●●●●●●●●

●

●

●

●●●

●

●

●

●

●

●

●●●
●

●●●●●●
●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●

●

●

●●●
●

●

●
●

●
●●●●

●

●

●

●
●●●●●●●●●●●

●

●

●

●

●

●●●●●●●
●

●●●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●●●

●

●

●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●●●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●●●●●●●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●●

●

●

●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●●

●

●●●●●

●

●

●

●

●●●●●●

●

●●●●
●

●●●●●

●
●

●●●●●●

●

●

●●

●

●

●

●●●●●●

●

●

●●●●●●●

●

●●

●

●

●

●

●●●●●

●

●

●●●●●
●

●●●●

●

●

●

●●●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

● ●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●●●●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●●●●

●

●●●●●

●

●

●●●●

●

●

●

●
●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●●●●●●●●

●

●●●●

●

●●●●●●

●

●

●

●

●

●

●●

●

●●●●

●

●

●
●●●●

●

●
●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●
●●●●●●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●●●●●●●●●●●●●●●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●

●

●●●●●●●●

●

●

●●●●

●

●●●●●●

●

●

●●●●●

●

●

●

●
●

●●●●●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●

●

●●●●●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●●

●

●

●

●

●●

● ●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●●

●

●●●●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●●

●

●●●●●●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●●●

●

●

●●●●

●

●

●

●

●●●●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●
●

●●●●●●●●●●●

●

●●

●

●●●●●●●●●●

●

●

●●

●

●●

●

●

●●●●

●

●●

●

●●●●

●

●

●●●

●
●

●

●●●

●

●●●●
●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●

●

●

●

●
●●●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●

●

●●●

●

●

●

●●

●

●

●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●

●

●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●●

●
●

●●

●

●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●●●

●

●

●

●●●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●
●

●

●

●

●

●●●●●

●

●

●

●

●●●

●

●

●

●●●●●●●●●●●●

●

●

●

●

●

●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●●●●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●
●

●
●

●

●
●●●

●

●

●

●

●
●●●●●●●

●

●

●

●

●
●●

●

●

●●●●●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●
●

●●●●●●●●●●●●●●
● ●

●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●●●●●●

●

●●●●●●●●●

● ●

●

●

●

●

●●

●

●

●

●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●●●●●●●●
●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●●

● ●

●●

●

●
●

●●

●

●
●

●

●●●●●●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●●●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●●●
●

●

●

●

●

●

●
●●●

●

●●●●●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●●

●

●

●
●

●

●

●

●

●●●●●●●

●

●

●

●

●

●●●

●

●●●●●

●

●
●●●

●

●

●

●●●●●●●●●

●

●

●

●

●●

● ●

●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●
●

●●●●●●●●

●

●

●

●●●●●

●

●
●●●

●

●

●●●

●

●

●●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●

●

●
●

●
●●●●●●

●

●

●

●

●
●

●

●
●●●●●●●●●●

●

●

●●

●

●

●

●

●
●●●●

●

●

●

●
●

●

●

●

●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●●●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●●

●

●●●●●●

●
●

●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●
●

●●●●●●●
●

●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●

●

●

●

●

●●

●

●

●
●

●

●

●

●●●●●●●●●●●

●

●

●

●

●

●
●●●●

●
●●●

●
●●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●●●●●●

●

●

●

●

●●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●

●

●

●

●

●

●

●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●
●●●

●

●
●

●

●

●

●●

●

●

●

●

●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●●●

●

●

●●

●

●

●●●●●●

●

●

●●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●

●●●

● ●

●●●●●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●●●●

●

●

●●

●

●

●

●

●●●●●●●●

●

●

●
●

●

●

●

●

●●●●●●

●

●●●●

●

●

●
●●

●
●

●

●

●

●
●

●

●●●●

●

●

●

●●●
●

●

●●●
●

●
●

●●●●●●●●●●●●●

●
●

●●●●●●●●●●●●●

●

●

●●●●●●●●
●

●

●

●●●●●●

●

●●●●

●

●
●

●

●●●●●

●

●

●●●

●

●
●●●●

●

●

●

●

●

●

●

●

●●●●●●

●

●●●

●

●

●●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●●●

●

●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●

●

●

●●●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●●●●●●●●●●●●

●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●
●

●●●●●

●

●●●●●●●●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●●

●

●

●

●

●

●

●

●●●●
●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●

●
●

●
●●●●●●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●●●●●●●●

●

●
●

●
●●●●●●●●●

●

●

●●●●●●●
●

●

●

●●●●●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●

●●●●●

●
●

●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●●●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●●●

●

●●
●

●●

●

●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●●

●

●

●

●

●

●
●●●●

●

●

●

●

●
●●●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●
● ●

●●●●●●●●●●●●

●

●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●●●●

●
●

●●●●●●●●●●

●

●

●●●●

●

●

●

●

●●●●●●
●

●

●
●●●●●●●

●

●

●

●

●●●●

●

●

●

●●●●●●●●●●●
●

●

●

●●

●

●

●

●

●●●●●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●●●●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●●
● ●

●

●●●●●●

●

●

●

●

●

●

●

●
●

●
●●

●●●●●●●●

●
●

●

●●●●●●
●

●

●

●

●

●●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●●●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●●●●●●●●●●●

●
●

●
●●●

●
●●●●

●

●

●

●

●

●●●●

●

●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●●

●

●

●

●

●
●●●●●●●●●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●●●●

●

●

●

●

●●●●●

●
●

●
●●●

●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●●●●●●●●

●

●●●●●●●●●

●

●

●●

●

●●●●

●

●●●●

●

●

●●●

●

●

●●●●●●

●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●●

●

●

●

●

●

●
●●●●●

●

●
●

●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●
●

●●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●●●●●

●

●●●

●

●

●
●●●●●●

●

●

●

●●●●●
●

●●

●

●
●

●
●

●●●●●●●●●

●

●

●

●●

●

●●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●●●●●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●
●●●●●●●●●●●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●●
●

●●●
●

●●●●●●

●

●

●

●

●

●

●

●

●●●●●●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●●

●

●

●
●●

●

●

●

●●●●●●●

●

●●●
●

●●

●

●●

●

●●●●●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●●●●
●

●

●

●

●●●

●
●

●

●

●

●

●●●●●●

●

●

●●●●

●

●

●

●●

●

●

●
●●●●●

●

●●●●●●●●●●

●

●

●

●●●●●●●●

●

●●

●

●

●
●

●●●●●●

●

●

●
●

●

●

●

●

●●●

●

●●●●

●

●

●

●●●●

●

●

●

●

●

●●●●●●

●

●●●●●●●●●

●

●●

●

●

●

●●●●●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●●●

●

●

●

●●

●

●●●●●●●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●●

●

●●●
● ●

●

●●●

●

●

●

●

●●●●●●●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●

● ●
●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●
●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●
●●●●●●●●●●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●●●

●

●

●●●

●

●●●●●●●●

●

●

●

●●●●●●

●

●

●

●

●●●●●

●

●

●

●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●●●●

●

●●●●●●●●

●

●
●

●

●

●

●●●●●●●

●

●●

●

●

●

●●●●●●●●●●●●●

●

●

●●●

●

●

●●●●

●

●

●

●

●

●●●●●●●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●
●

●

●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●

●

●●

●

●

●●
●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●●●●●●●

●

●

●●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●
●●●●●●●

●

●

●●

●
●●●●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●
●

●●●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●●

●

●

●

●●●●●●●●

●

●●●●●●

●

●

●

●●●●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●

●

●

●

●

●

●

0 100 200 300 400

0
10

0
20

0
30

0
40

0

Precipitation today (1/100 inch)

P
re

ci
pi

ta
tio

n
to

m
or

ro
w

 (
1/

10
0

in
ch

)

plot(tomorrow ~ today, data = snoq, xlab = "Precipitation today (1/100 inch)",
ylab = "Precipitation tomorrow (1/100 inch)", cex = 0.1)

rug(snoq$today, side = 1, col = "grey")
rug(snoq$tomorrow, side = 2, col = "grey")

Figure 11.6 Scatterplot showing relationship between amount of
precipitation on successive days. Notice that days of no precipitation can
follow days of any amount of precipitation, but seem to be more common
when there is little or no precipitation to start with.

and the predictions (Figure 11.7). This shows a steady increase in the probability
of precipitation tomorrow as the precipitation today increases, though with the
leveling off characteristic of logistic regression. The (approximate) 95% confidence
limits for the predicted probability are (on close inspection) asymmetric.

11.7 Weather Forecasting in Snoqualmie Falls 251

●●● ●● ● ●●● ●●

●●●●●●●

●

●

● ●●●

●●●

●● ●●

●

● ●

●●

●● ●●

●

●

●

● ● ● ●●

●●

● ●●●● ●●

●●

● ●

●●●

● ●●●

●

●

●

●

●

●●

●

● ●● ● ●●

●

●

●●●●

●

●

● ● ●●● ●●

●

● ●●●●●● ● ●

●●●

●● ● ●●●●●

●●

●

●

● ●● ● ●●●●

●

● ●●●●● ●

●

●

●●●

●

●●

● ● ●

●●●●

●

●●●●●●●

●

●

●

●●

● ●

●●

● ●●●

●●●●●●●●●●

●

●

● ●●

●

●

●●●●●●●

● ●

●●●

●

●●●

●

●●●●●●

●

●

● ●

●●●●●●

●

●

●

●●

● ● ●●●

●

● ●

●

●

●●

●

●●

●●

●●●●●●●●●●

●●

●●●●●

● ● ●●● ●● ● ●

●●●

●● ●● ●

●●

● ●●

●●●●●●●●●●

●●

●

●

●

●

●

● ●●● ●●●

●

● ●

●●●

● ●● ●● ●

●

● ● ●● ● ●● ●●● ●● ● ●●●● ●● ●● ●●●●● ●

●●

●● ●

●●●●●●●●

● ● ●●●

●●

●● ● ●

●●●●●

●

●●

●

●

●

●

●

●●●●

● ●

●●

●

●●●

●●●● ●● ●● ●

●

●● ●● ●●● ●● ●●

●●●●●●●●●●●

●●

●●●

● ●●●●●● ● ●●●

●

●● ●●

●

● ●

●

●

●●●

●

●●

●

●●●●

●

●●●●●

● ●●●●

●

●

●●

● ●● ● ●

●●●●●●●●●●●●●●

●

●

●

●●●●●●●

●

●●●

●●

●●●●●●●

●

●●●●●●

● ●

●●

●

●●●●●

●

●

● ●

●●●●●●●●●●●●●●●●

●

●

● ● ●

●●

● ●●●●

●●●●●●●●●

●●

●●●●

●

●●●●●●●●●●●

● ●

●●●●

●

●●●●

●●

●●●●●●●●

● ● ●●●●

●●●●

●

●●●●●

●

●●●

● ●●●●● ●●

●

●

●

● ●●●

●●●●●●

●● ●● ●

●●●●●●●●●

● ● ●● ● ●●

●●●

●

●●●

● ●● ●●● ●●●● ● ●

●

●

●●●

● ●

●

● ●

●

● ●● ●●●●● ● ●● ●● ●●●● ●● ●●●● ●●●● ●●●

●

● ● ●

●

● ● ●● ●●●● ●●

●●●●●●

● ●● ●● ●●●● ● ●● ● ●

●

● ●● ●● ● ● ●●

●●

● ● ● ●●●●● ●

●

●●●●● ● ●●●● ● ●●●● ●●

●

● ●● ●●

●

●●

●

● ●

●

● ● ●●● ●●

●●●●

● ●

●

● ●●

●●●

● ●●● ●●

●●●●●●●●●●

● ●●

●●

●

●●●●

● ●●

●●●●●●●

● ● ●

●

● ●●●●●

●

● ●

●●

● ●●●

●●

●●

●●●●●●●●●

●●

●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●●

●●●●●●

● ● ●

●●●●●

● ● ●

●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●

● ● ●●●

●●●●

●● ● ●●● ●

●

● ●

●

●

●

●●● ●

●●●●

● ● ●● ●●● ●● ●● ●●● ●●

●●●●

●● ● ● ●●

●

● ● ●●● ●●● ●●● ●●● ●●● ●●●

●

● ●●● ● ●●●● ● ●● ● ●●●● ●●● ●● ● ●● ●

●

● ●

●

●● ●● ●● ●●●● ●● ●●● ● ●●

●●●●

●● ●●

●

● ● ●● ●●●

●●

●

●

● ●● ●

●●●

●

●

●

●●

●

●

● ●● ●●● ●●●● ●●●

●●●●●

● ●

●●

● ●●

●

● ●

●●●●●●●●●●●●●●●●●●

●●

●●●●●●●

● ● ●●

●●●

● ●

●

●●

●

●● ●

●

●

●●

● ●

●●●●

● ●

●●

● ● ●

●●●●●

●

●

● ●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

● ●●

●●●●●●●

● ●●●

●●●●●●●●●●●●●

● ●

●

●● ●● ●●●●●●

●●●●

● ●●● ● ●●● ● ●● ●● ●

●●●●

●

●●●●

● ●

●●

●

●

● ● ● ●●●●

●●●●

●●

●●●

● ●●●● ●●

●

● ●● ●●

●●

●

●

●

●●

● ●●● ●●● ●

●●●●

●● ● ●

●●●

●●●●●●● ●●●

●

●

●●●

● ● ● ●●●● ●● ●

●

●● ●● ●● ●

●●●●

●

●

● ●

●

●● ●

●●●

●

●●●●

● ●

●

●

●●●

●● ●

●●●

● ● ●●●

●●●

● ●●●

●●

● ● ●

●●

● ● ●●

●

● ●

●●●●●●●●●

● ●

●●●●

●

●●●●●●●

● ●●● ●●●

●●

●

●

●●●

●

●● ●

●●●●

● ●●

●●●●●●

●●

●●●●●

● ●●

●●●

●● ●

●●

●●

●●●

● ●●

●●●●

● ●● ● ●

●●●●●●●●●●●●●●●●●●

●●●● ●●

●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●

● ●●●●

●●●●●●●●●●

● ●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●

●

● ●●

●●

● ● ●●

●●●

●

●●●

●● ●●● ●●

●●

●

●

●

●●●●●●●●●●●

● ● ● ●●● ●●●● ●

●●●

●

●●

●●● ●●

●●●●

● ●●●●● ●●

●

● ● ● ●●● ●●●● ● ●●●●●● ●●● ●● ●●●● ●●● ● ●●● ●

●●

●

●●

● ●● ●●

●●●

●

●●●

●● ●

●●●●

●

●●●●●

● ●

●●

● ● ●● ●●● ●●● ●

●

● ●

●

● ●●

●

●●● ● ●●

●●

●● ● ●

●

●●

●●●

● ●●

●

●●● ●● ●●

●●●●

●● ● ●●

●●●

●

●●●

● ●●● ●●●●

●

●

●

●

●●●

●

●

●

●

● ● ●

●

●

●

● ●

●●●

● ● ● ●●

●

● ●●

●

● ●

●●●●●●●●●

●

●●●●

●● ●

●●

●

●●●

●

●●●●●●●●●●●●●●

● ●●

●●●●●●●●●●●

●

●●

● ●●● ● ●●

●●

●●

●●●●●●●●●

●

●●●

●

●●

●

●●

● ●

●●●●

● ●● ●●

●●●●●

● ● ● ●

●●●

●

●

● ●●● ●

●●●●●●●

● ● ● ● ●

●●

● ● ●

●

●● ●●

●

● ● ● ●●● ●● ●●● ● ●● ●● ● ●● ● ●● ● ●● ● ●● ●

●

● ●

●●

● ● ●

●●

●

●●

● ●● ●●● ● ●●● ● ●●●●

●●●

● ● ●●●● ● ●● ● ●●●●●●

●●

●

●

●

●●●●●●●●●

● ●●●● ●●● ●● ●

●

● ●● ●●

●●●●●

●

●

● ●●● ●

●

●

●

●

●●●●●●●●●

● ●

●●●

● ●●● ●●●

●

● ●

●

●● ● ●

●●

● ●●●

●

● ●

●●

● ●

●

●●

●●●●

●

●●●●●

● ●

●●●●●●●●

●

●●

●●●

●●

●● ● ●

●

● ● ●● ●

●●●●

●

●

●● ●●

●

● ●

●●●●●

●● ●

●

●●

●●●●●●

●●● ●

●●●●

●

●●●

● ●

●●●●●●●●●●●●●

●

●●●●●●●●●

● ●●

●●

● ●

●

● ●●

●

●

●●

●

●

●

●●

● ●

●●

●●

●

● ●●●●●● ● ●

●

●

●●●●

●●●

●●●●●●●●

●●●●● ● ●

●●●●●●

● ●●●

●●●●●●●

●

●●●●

●● ●●●●●●● ●●●● ●● ●

●●

●

●●

● ●●●

●●●●●●

● ● ●

●

● ●

●

● ●●●

●●●●●

● ●● ●●●

●

● ● ● ●●●

●

●●

●●●●●●

●● ●● ●●

●●

●

●

● ● ●●

●●

●

●

●● ●●

●

● ●●● ●●

●●

●● ●●●●

●●●●

●

●

● ●●

●

● ●● ●

●●

●

●●

● ● ●● ●●●

●●

● ●

●

● ● ●● ●

●●

●● ●● ●●●

●●●●

● ● ●● ● ●●

●

● ●●●● ●● ●●

●

● ●

●

●

●●●●●●●

●

●●

● ● ●●●

●●●●

● ●

●

●●

●

●● ●

●

● ● ●

●

●●●

●●●●●●●●●●●●

●●

●●●●

● ●

●

● ● ● ●● ● ●● ●

●

●

●●

● ●

●●●●●

● ●

●●●●●●●●

● ●●● ●●●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●

● ●●●●

●●

● ●

●●●●●

● ● ●

●●●

● ● ●

●

● ● ● ●●●

●●

●

●●●

● ●

●●●

● ● ●● ●●●●●● ●●

●

●

●

●● ● ●

●●

●

●●

●● ●●●●● ● ●●●●● ● ●●●

●

● ● ●● ●●● ●

●●

●● ●● ●● ●●●●●● ●

●●●●

● ●● ●●● ●●●●●

●

● ●● ●●● ● ●●●● ●

●●●

● ●

●●●●●●

●

●●●●

● ● ●●● ●

●

● ●●

●

● ●● ●●●●● ●● ●● ●●● ● ●●

●●

●●

●●●●●

●●● ●● ●● ●● ●● ● ●●●

●

●●

●

● ●

●●●●●●●●●●●●●

●

●●●●●

●●

●●

●

●

●● ●●

●●

● ● ●

●●●●●●

●

●●●●●●

●

●

●

●●●●●

● ●● ●● ●

●

●

●●

●●●

●

●●● ●●●

●

●

●●●●●●●●●●

● ●

●●●

● ●●

●●●●●●●●●●●●●●●●●●●●

● ●●

●●●●●●●●●●

●

●●●●●●●

●

●

●● ●

●

●

●●●●●●●●●●

●● ●

●

●●

●●

●●

●

● ●●

●

●●● ●● ●

●

●●

●●●●●●●

●

●

● ●●● ●● ●●● ● ●● ●●●● ●● ● ●●●●●● ●

●●●

●

●

● ● ●● ● ● ●

●●●

●●

●●●

●●

●●●

●● ●●

●●

●● ●●●●●● ●● ●●● ●● ●

●●●●●●

●● ● ●●●

●●

● ●

●

●●

●●

●

●●

●

●

● ●●●●

●●●●●●

● ●●

●

● ●● ●●● ● ●●

●●●●●●●

● ●

●

● ● ● ●●●●●●●

●

● ●● ●●● ●●●● ●●●●

●●

● ●●●

●●●●

● ●● ●● ●● ●●●

●●●●

● ●● ●●

●

●

●●●●

● ● ●

●●●●●

●●

●●●●●

●●

●●

●●

●●●

●● ● ●● ● ●

●●●●●●●●●●●●●

● ●●●

●

● ●● ●●

●●●●

● ●

●●●●

● ●●●

●●●●●●

●

●●

●

●

●

●●

● ●●●

●●●●●

●

●●

●

●●●●●●●

● ●

●

● ●●

●

●●

●●●●●

●

●●●●●●●●●●●●●●●●●●●

● ●●

●●●●●●●●

● ●

●●●●●●●

● ●●

●

●●● ●●●

●

● ●

●●●

●● ●●● ●●

●●●

● ● ●● ●

●●

●● ●

●●●●●●●●●

● ● ● ● ●●

●●

● ●●

●●●

●●●●●

●

● ● ●●

●

● ● ●●

●●

● ●●● ●●● ●● ●●●● ●● ●● ● ●●

●●

●●

●●●●

● ●● ●● ●● ●● ● ●

●

●● ●● ●●

●

● ● ●● ●

●●

●

●

● ●●● ● ●●● ●●●● ●●●

●●

● ●● ●●●

●●

●

●●

●

●

● ●●

●●●●●●●

●●●● ● ●●

●

●●

●

●

●

● ●●● ●

●●●●

● ●●

●●

●● ●● ● ●● ●●● ●●●

●

●

●●●●●

●

●●●●●●

●● ●

●●●●●●●●●●

●

●●●

●●

●●

● ●●

●●●

● ●

●

●●●

●●●●●●●●●●●●

●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●

● ●●

●●

● ●●

●●●●●

● ●

●●

● ●●● ●●● ●●● ● ●●

●

●

●●●●●●●●●

● ●●●

●

● ●●●

●

● ● ● ●

●

● ●

●●●

●

●●●

● ●● ● ●●● ●●● ●● ● ●●

●●

●● ●● ●● ●●

●●●

● ●● ● ● ●●●● ● ●●● ●●●

●

●

●●

● ●● ●

●

● ●● ● ●●● ●● ●●

●●

●● ●● ● ●●● ●●●●● ●●●●● ● ●

●

● ● ●●● ●

●

●●●●●

●

● ●●

●●

● ● ●● ●●●

●●

●● ●● ●● ● ● ●●

●

●

●

● ●●● ●● ●

●●●

● ● ●

●

● ●●

●

● ●●● ●● ●●●

●

●●

●●●●●●●

● ●●●● ●

●●●

●

●●●

● ●●● ●

●

● ●● ●

●●●

● ● ●

●●

● ●●● ●

●●

●

●●●

●●● ●

●●●●●

●● ●

●●

● ● ●● ●

●●●

● ●●

●●

●

●●

● ●

●

●

●

●

●●

●● ●●●●

●●●●●●●●●●●●●●●

●

●●●

●●

●●●●●●

●

●●●●●●●●●●●●

●●

●

●

●

●

●●●

●●

●●●

● ●

●

● ● ●●●●

●●●●●

●● ●●●● ●●●●● ●● ●●

●●●●●●●●

●● ●●● ●

●●

●

●●

●

●

● ●● ●● ●●●●

●●●●●

● ●

●●●

●●

●

● ●

●●

●

●

● ● ●● ●●●● ●●

●

●●

●●

● ●

●●

● ●●●● ● ●●● ● ●●●

●

● ●

●

●● ●●

●●●

●

●●

●

●●

●● ●●

●

● ●●

●●

● ●

●●●●●

● ● ●●●●● ● ●

●

●● ●

●

● ● ●●●● ●● ●● ●●●

●●

●● ●

●

●

●

●

●●●●●

●●● ●●● ●●

●●

● ●● ●●

●●●●●●●●

●

●

● ● ●●●●

●●●●●

● ●

●

● ●●● ●●● ●● ● ●●●

●

●

●●●

●

●●●●

●●● ●

●●

● ●● ●●

●

● ●●●● ●●●● ●● ●

●●

● ●

●●●●●●●●●●●●●

● ●●

●●

● ●●

●●●

●

●●●●●●●●●●

● ●

●●

●

●

● ●● ●●● ●●● ●● ●

●●

● ●

●●●●●●

●●

●●●●●●

●

●

●● ● ●●

●●●●●●●●●

● ● ●●

●

● ● ●●

●●

●●

●●

● ●● ●●

●

● ●●● ● ●●

●

●

●●●

●

●

● ●

●

● ●●● ●●●● ●● ● ● ●

●●

●

●

● ●● ● ●

●

●

●●●●

● ● ●●

●●

● ● ●

●●●●

● ●● ●

●●

●● ●

●●

● ● ●●● ●●● ●● ●● ●● ●

●●●●

●●

●●●

● ● ● ●●● ●●●●

●

● ● ●● ●● ●● ●● ●● ●● ●●● ●

●

● ●● ●●

●●

● ●● ●● ● ●●● ●●

●

●●●

●

● ● ●●● ●

●●

●●● ● ●

●●●●

● ●

●

●● ●●●

●

● ●●

●

● ●

●

●

●●●

● ● ●● ●●● ● ●●●● ●●●●●

●●●●●●●

●● ●

●

● ●●● ●

●●●●●

●●

●

●●● ●

●●●●●●●●●●●●●●●●●

●

●

●

●●●

● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●

●●●●●●●●●●●●●●

● ●●

●●

●

●●●●●●●●●

●

●●

●

●

● ●

●●●●●●

● ●●

●●●●

● ●●

●

● ● ●● ●

●●

●

●●

●●

●

● ●

●

●● ●●

●●●

● ●●

●●●●●

● ● ●

●

●●

●●●

● ●

●

● ● ●●

●

●●● ●● ●●● ●

●

● ● ●

●

●

●●

● ●● ● ● ●● ●●●● ●●●

●

● ●

●●●

● ●

●

● ● ●●

●●●

● ●● ●●● ●

●●●●●

● ●●●●

●●●●●●

●

●

●●● ●● ●● ●● ●

●

● ●

●●●

● ●

●●●●

●● ● ●● ●●

●

● ●●●

●●●

● ●

●

●●● ●● ●● ● ●●

●●●●●●●

● ●● ●●

●

●

●●●●

●

●●●

●●●

●●

● ●● ● ●●●● ●●

●●

●

●

● ●●●●● ●●

●●

●

●●●

● ● ●●●

●●●

●

●

●● ●● ●

●●●●●●

●●●

●●●●●●●●●●

● ●●

●●●

● ●

●

● ●●

●●●

●

●●●●●●

●

●●●●●●●●●●●●●●

●

●

● ● ●●●

●●●●

● ●

●●●

●● ●●●

●●●●

●

●

● ●

●●●●●●●●●●●

● ●

●

● ●

●●●●●●●

●

●●●●

● ● ●

●●●

●

●●

● ● ● ● ●● ●● ●● ●

●

● ●

●●●●●●

● ●

●●●●●●●

● ●●

●

● ● ● ●●●●● ●●

●

● ●●

●●

● ● ●●

●

● ● ●● ●●● ●

●●

●●

●●

● ● ● ●●

●

●

●

● ●●●

●●

●● ●●

●

● ●●

●

●●●● ● ●

●●

●● ●

●

●

●●●●●●

●

●●●●●

●● ●● ● ●

●

●●

●●

●

●●

●●●● ●● ● ●

●●●●

● ●●●● ●

●●●●●●●●

●

●●

●

●

●●●● ●

●

● ●

●

● ●● ● ● ●●●

●

● ● ●● ●●●● ●●●● ●●●● ●●

●

●●●●

●

●

●

● ●●● ●

●

● ●●●●●

●

●

●●●●●●●●●●●●●●●●●●●

●● ●● ●

●●

●●

●●

●

●●●●●●

●

●

● ●●● ●●● ●● ●

●●●●●

●●●

●

●●

●●●

●

●●●●●

●●

●

●

●●●●●●

●

●●●●

●

●●●●●

●●

●●●●●●

● ●

●●

● ●●

●●●●●●

●●

●●●●●●●

●

●●

● ●●●

●●●●●

●●

●●●●●

●

●●●●

● ●●

●●●●

●

●

● ●

●●

● ●

●

● ●● ●● ●●

●

● ●●

●

● ●

●

●

●

● ●●●● ●● ●● ●●● ●● ●●● ● ●● ● ●

●

●

●

●●●●● ● ●● ●

●●●●

● ● ●● ●● ● ●● ●●● ●● ●

●

● ● ● ●●●● ● ●●● ●

●●

● ●● ●● ●● ●●●

●

● ●

●

● ●● ●● ●

●●

● ●

●●●●

● ● ●● ●● ●●●

●

●

●●●

●

●●●

● ● ● ●●● ●●

●

● ●● ●●●● ●

●

● ●

●

●● ●

●●

● ●●

●●●●

● ●

●

● ●

●●●

● ●● ●

●

●● ●

●●●

● ●●

●●

●● ●

●

●●●

●

●●● ●

●●

● ●

●

●●

●●●●●●

● ●●

●

● ●

●●●●●●

●

●●

● ●●● ●

●●

● ●●●

●

● ●● ●

●●●●●●●

●

●●●●

●

●●●●●

●●

●●●●

● ● ●

●

●

●

● ●

●●●●●●●●

●● ● ●● ●

●●●●●●●●

●

●●●●

●

●●●●●●

●●● ● ●●

●●

●

●●●●

● ● ●

●●●●

●●

●

●

●

● ●

●

●

●●

●

●●●

● ● ●●

●

●

●●●

● ●●

●●

●● ●●●

●●●●●●

● ●

●●●

●●

●

● ●● ●

●●

● ●● ●● ●●

●●●●●●●●

● ● ● ●● ●

●

● ● ●●

●●●●

●● ● ●

●

●

●

● ●

●●

●● ●● ● ●●

●

● ●●●●● ● ● ●●● ●●●

●●●●

●

●●

●●●●● ● ●● ●●● ● ●● ●

●●●

●● ●●●● ●

●

●● ● ●●●

●●

●

●

● ●

●●●

● ●●

●●●●●●●●●●●●●●●

●

●●●●

●●

●●

●●

●

● ●●

●

● ●

●●

● ●●

●

● ●

●●

●

●●

● ●● ● ●●

●

●●

●●●

●

●

● ● ●●● ● ●

●●●●●●●●

● ● ●

●

● ●●

●

●

●●●●●●

● ●

●●●●●●●●●●

● ●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●

● ●

●●●●

●

●●●●●●

● ●

●●●●●

● ●

●

● ●

●●●●●

● ●

●●

● ●

●

●

●

● ●

●●●●●●●●●●●●●●

● ● ● ●

●●●●●●●●●

●

●●●●●●●

● ● ●

●●

●

●●

● ●● ●

●

● ●● ●

●●●●●●

● ●

●

●

●●

● ● ●●

●●

●●● ●

●

●●

●●●

● ● ●●● ●● ● ●●

●●●

● ●● ● ●● ● ●

●

●

●●

●

●●●●●●

● ● ●● ●

●●

● ● ●●●● ● ●●● ●●●

●

● ●● ●●

●

●●●

●●●●

●

●

●

●

● ●● ●●

●●●

● ● ●●●●

●

● ●

●

●

●

●●

●●

●

●●

●

●

● ●● ●●

●

●

●

● ● ●● ●●●●● ●● ●●● ●● ●

●●●●●●●●

●

●

● ●

●●●●●●

● ● ● ●●●

●●●●●

● ● ●

●●

● ●

●●

●

●●●●●●

● ●

●●

●

●

●●● ●●

●●●●

● ●

●●●

● ●

●●●●

● ●●●

●●●●●

● ●

●

●

●●●●●

●

●

●

●

● ●

●●

●●

●●

● ● ● ●● ●●

●●

●●

●●

● ●●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●

●

●●

●

●●●●●●●●●●

●●

●●

●

●●

●●

●●●●

●

●●

●

●●●●

● ●

●●●

●●●

●●●

●

●●●●

●

●

● ● ●● ●

●●

● ●

●

●

●●●●●●

● ●●

●

● ●● ●● ●●● ●●●●●●●

●

●

●

● ●● ●●● ●● ● ●●

●

● ● ● ● ●

●

● ●●●● ●

●●

●● ●

●

●● ● ●● ●● ●● ●●●

●●

● ●● ● ●●●●● ● ●●●●

●

● ●● ●●

●●

● ●●●

●●●

●● ●● ● ● ●●●● ●

●●●●●●

●

●●

● ●●●

●●●●

●

●

●●

●

●

●

● ●●●

●

● ●● ●●●●●● ●

●●●●●

● ●

●●

●●

●●

● ● ●●● ●● ●● ●

●●

●●●● ●●

●●●●●●●●

●

●

● ●●

●●●●●●●●●●●

●

●●●

●

●

●

●●

● ●

●●●●●●●●●●●●●●●●

●●

●

●

●

● ●

●●●●●●●●●●●

●

●●●●●●●●●●●

● ●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●

● ●

●●●●●●●●●

●

●●●●●●●

● ●● ●● ●●●●●

●

● ●●●

●●●●

●

●

● ● ●●● ●

●

●

●

● ●●

●●●●●●

● ● ●● ●

●●

● ●

●●

●

●●●

●●● ●

●●

● ●●● ● ●●●

●

● ●●● ●●

●●●

●

●●●●

● ● ●● ●●●●●● ● ●

●

●●●

●

● ●● ●

●

● ●●●●●● ● ●●

●●

● ●●

●●

●● ●●● ● ●

●

●

●●●●●●●●●●

● ● ●●● ●● ●●

●●●●●●

● ● ●●●

●●

●● ●●● ● ●●

●●●●

●● ●● ●● ●● ●

●

● ●

●

● ● ●

●●●

● ● ●●● ●●

●

● ●●

●●

● ●

●

●

●●●

●

●●●

● ●●

●●●●●

●

●

●

●●●●

● ●●

●

●●●

●

●

●

●●● ● ●

●●●●●

●●●●●●

●●●●●

●

●

● ●

●●●

● ● ●

●●●●●●●●●●●●

●●

●

● ●

●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●

●●

●

●●●●●

●

● ● ●● ●●●●

●●

●

●●●●●●●●●

●

●

● ● ●●● ●●●

●

●

●●●●●●●●●●●

● ●● ●

●

● ●●● ●● ●

●

●

●

● ●●●

●●

●

●●●

● ●

●●

●

●●●●

●● ●● ● ●●

●

● ●●●

●

● ● ● ●●●●

●●

● ●●● ● ●●

●

● ●● ● ●

●

● ●● ●●●

●●

●●● ●

●

● ●●

●

●● ●

●

● ● ● ●●●●● ●●●●● ●● ●

●

●●

●●

●

●

●

●

● ●● ●●● ●●

●

●● ● ●● ●●●● ●●

●●●●●●

●

●

●● ●

●●●

● ●● ●●

●●●●●●●

●● ●●●

●●

● ●

●●●●●●

● ● ●●●● ●●●

●

● ●

●

● ●

●●

●● ●● ●

●

●● ●

●●●

● ●●● ●●

●●●●●●●●●●●●●●

●●

●●●●

●

●

● ● ●● ●

●●●●●●●●●●●●●

●

●●●●●●●

●● ● ●●●●●●

●

● ●● ●

●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●● ●

●●●●●●●●

●

●●●●●●●●●

●●●●

●

●

●●

● ●●

●●●●●●●

●●

●●

● ● ●● ●● ● ●●●

●

●● ● ●●●

●●●●

● ●● ●

●●●●●●●●

●

●●

●

●

● ●●● ●●●

●●

●● ● ●● ●●

●●

●●

●●

● ●●

●●

● ●

●

●

●●●●●●●●●

● ●

●●●

● ●●● ●● ●●● ●● ●●● ● ●

●

●● ●

●

●

●●●●

●

●●●●

● ● ●●● ● ●●●● ● ●●● ● ●● ●● ●

●●●

●

●

●●

●

●

●●●●●●

●● ●● ●● ●

●●●

●

●●●●●●●

●●

●

●● ●

●●●

● ● ●● ●● ●

●●●

●

●

●

●

●

●

● ● ●

●●

● ●●●● ● ●●● ●●

●●●●●●

● ● ●

●●

● ● ●●●

●

● ●

●●●●●●●

● ●●

●

●

●●●

●

●●●●●

● ●

●●●

●●●

●●●●●●●●●

●● ●●

●●

●●

●●●●●●●●●●●

●● ●

●●●●●●●●●●●●●●●●

●

●●●●●●●●

● ● ●

●●●●●

● ●

●●●

●●

●●●

●●

●●●●●●●●●●●●●●

●

●●

●

●

●● ●●● ●●●

●●●●●●

●● ●●

●

●●●

●●●●●●●●●●

● ●

●●

● ●

●

● ●

●●●●

●● ●● ●●●●

●●●●●●●●●●●

● ●● ● ●●● ●

●●

● ●●●● ●

●

●● ●●● ●

●●

● ● ●● ●● ●●

●●

● ●

●●

● ●● ●

●

● ●

●

●●

●●

●● ● ●● ●

●●●●●●

● ● ●●●●●●● ●●● ●●● ● ●● ●●

●●

● ●

●

●●● ● ●

●●●

● ●●● ●● ●●●● ●

●●

● ●● ●●●●

●

● ●●●● ●

●

● ● ●●●● ●● ●

●●●●

● ● ●●● ●● ● ●

●

●●

●●●

● ●● ●●●●

●●

●

●●●●

●

●

●● ●

●●

●

●●●●●●

●●

●●●●●●

● ●

●

● ●

●

● ● ●

●●●

●●●

●●

● ●●●●● ●

●

●● ●

●

● ●

●

● ●

●●●

● ●●

●

●●● ●

●

● ● ●

●●●●●

● ●

●

●● ●●

●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●● ●

●●●●●●●

● ●● ●

●●

● ●

●

●● ●●

●●●●●●●●●●●

● ● ●●● ●

●●●●

●

●●●

●

●●●●●

● ●

●●●

● ● ●

●

● ●

●

● ● ●

●●

● ● ●●● ●●

●

● ●● ● ●● ●●●

●

●●●

●

●

●

● ● ●●●● ●

●●

●●● ●●

●

● ●● ●●● ●●● ● ●●● ●●●●●

●●

●●● ●● ●

●

●●●● ● ●● ●●●●

●

● ●● ● ● ●●● ●●

●●●●●●

●

●●●

● ●● ●●

●

● ● ●●● ● ●●● ●

●

● ●● ●● ● ●●●● ●● ● ●

●

●● ● ● ● ●

●

●

●●

●●

●

●●

●

●

●

●

●●●●

● ●

●

●● ● ●●● ●● ●● ●●● ●● ●●● ●●

●

● ●

●

● ● ●

●●●●●●●

●●

●●●●●●

● ● ● ●

●●

●

●

●

●●●●●●●●●●●●●●

● ● ●●● ●

●

●●

●●●●

● ●●● ●●●

●●●●●●●●●●●

● ● ●●● ●

●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●

●

● ●●●

●●●●●●●●●●●●●●●

●●

●

●

●●●●

●

●●

● ● ● ● ●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●

●

●

●

● ●●

●●

● ●● ● ●● ●

●

● ●

●●●●●●●

●●

●●●

●● ●● ●●

●●

●● ●●

●●●●●●●

●

●●●

● ●●● ●● ● ●● ●● ●● ●●● ● ●

●

● ●

●●●●

● ● ● ●●● ●●● ●●

●●

● ●●

●●●

● ●

●●

● ●

●●●●●●

● ●

●●

●●● ●

●●●●●●

● ●●

●

● ●

●

●●●

●●

●● ●

●

● ●

●●

● ●● ●●●

●●●

● ●●

●

● ●●●

●●●

●●

●●●●●●●

●● ●●● ●

●

●

●●●●

●●

●●●●

●●

●●

●● ● ●

●●●●●●●●

●●

●

●●● ●●

●●●●●●

●

●●●●

● ●●

●●

● ●●●● ● ●●

●●●●

● ● ●

●●●

●●

●●●

●●●

●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●

●●

●●●●●●●●

●

●

●

●●●●●●

●

●●●●

●●●●

●●●●●

● ●

●●●

●●

●●●●

● ●● ●●● ●●

●●●●●●

●

●●●

● ●

●●●

● ● ●●

●

●

●●●●

● ●●● ●

●

●● ●●● ●

●●●

●

●

●

●

● ●● ●● ●● ●●

●

●● ●●● ● ●●● ● ●●●● ●●

●

● ● ●

●●

● ● ● ●● ● ●●

●

● ● ●● ●●

●

● ● ●●●

●●●●●●●●●

●●● ● ● ● ●●●● ●● ● ●● ● ● ●●●● ●●●● ●●●

●●●●●●

● ● ●● ●● ● ●

●

● ●

●

● ●●● ●● ●●● ● ●●● ● ●●●

●

● ●● ●

●●●●●●●

● ●●● ●●●●● ●● ● ●●● ● ●●●

●●

● ●

●

● ●●●●●●●●●

●●●

●

●●●

● ●

●●

● ●●● ●●●●●●●

●●●

● ● ●

●●●

●

●●

●

●

● ●●● ●

●●●●●●●●●●●●●●●●●

●●

●●●

●

●●

● ●

●●●

● ●● ●●

●●

●● ● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●

●●

●

●●●●●●●●●●●●

●

●●●

● ●●

●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●

●

●●●●●●●●

● ●

●●●●●

●● ●

●

● ●●

●●

●● ●● ●●●● ●

●●●●

● ●● ● ●●●● ●

●●●●●

● ●● ●●●

●

● ● ● ●●●● ●●●●● ● ●●

●

● ●●

●●

● ●● ●●● ● ●●● ●● ●● ●● ●●● ●●●

●●

● ●●● ●●

●●●●●●●●●

● ●● ● ● ● ●●●●

●

●● ● ●

●●

●

●

●● ● ●● ●●

●●●

●●

●●

●●

●

●● ● ● ●●●●●

●●

●●

●●

● ●

●

● ●

●

●

●●●●

●

●●●

●●

●

●

●

● ●

●●

● ● ●●●●

●●●●

● ●●●

●●●●

●

●●●

●● ●● ● ●

●

● ● ●

●●

●

●●●●●●●

● ●●

●●●●●●●●

● ●● ●●

●

●

●

●● ●● ● ●●

●

●●●

●●●●●●●●●●●

● ●●●

●●●●●●●●●

●●

●●●●●●●

●

●

●

●●●●●●●

●● ● ●●

●

●● ●

●

●

●

● ● ●●●●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

● ● ●● ●●●● ●

●●●

● ●● ● ●●● ● ●

●

● ● ●● ● ● ●●● ●●

●

● ● ●●

●

●●

●

● ●●●●●

●●●

● ●● ● ●●

●

● ● ● ● ●●

●

● ●

●

●

●●

● ●● ●

●

●●

●●

● ● ● ●● ●●● ● ●

●●●

● ●●●● ●●● ●●● ●●●●

●●●

● ● ●

●●

●

●●●●●

●●

●●●●●

●

●●

● ●●● ● ●● ●●

●●

●● ● ●●● ●●●

●●●●

●●

●●

●

●

●●

●

●●● ●●

●

● ●● ●●● ●●

●

● ●

●●●●

●

●

● ●

●

● ●

●

●● ●

●

● ●● ●●●● ●●

●●●●●

● ●

●

● ●

●●●●

●

●●

●

●●

●

●●●●●

●●● ●●●●● ●● ●●

●●●●

●●

●●

● ●

●

●● ●

●●●●

●

●

●● ●

●●●

●● ●●● ●

●●

● ●

●●●●●●●●●●

●●

●●●●●●●●●●●●

●

●●●

● ● ●

●●●●

● ● ●

●

●

●

●

●●●●

● ●

●●●●●●●●●●

● ●

●●●●

●

●

● ●

●●●●●●

●●●

●●●●●●●

●●

●

●

●●●●

●●●

●●●●●●●●●●●

●● ●

●●

●

●

● ●

●●●●●●

●●

●●●●

●● ●● ● ●● ●●

●

●● ●

●●●●●●●

●

●●

● ●●

●

●

●

● ●●

●●

● ●

●

●●● ●

●

● ●●●

●●●

●●●

●●●●●●

●● ●●●● ● ●●●●●

●●●●●●●●

● ●●

●●●●●●

●● ●●●

●●

●● ●

●●

● ●●

●

● ● ●● ● ●●

●●●

● ● ●●●● ●●●●

●

●● ●●●● ●●●● ●●

●●

●

●●●●●●●

● ●●

●

● ● ●● ●●

●●●

●

●●●

●

●●●●●

●● ●●●

●

●

●●

● ●

●

●● ●●●

●●

●

●

● ● ●● ●● ●

●

● ●●

●

● ●

●●

●

●●●●●●●●●●●●

●●●

●●●

●

●●●●

● ●●● ●

●●●●

●●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●● ●●●● ●

●●

● ●

●●●

●

●●●●●●●●

●

●

●● ●

●

● ● ●●

●

● ● ● ●

●●●●●

●

●

● ●

●●

●

●●

●

●●

●

●

●●●

●

● ●

●●

● ● ●● ●

●

● ●● ● ●●● ●● ●● ●●●●

●●●●

● ● ●● ●●● ●● ● ●●●● ●●●

●

● ●●● ●● ●● ●

●●●●

●●

●●●

● ●●

●●

● ● ●● ●● ●● ●●

●

● ●

●

●

●●

●● ●●

●●

● ●●●

●●

● ● ●●

●

● ●● ●●

●●●●

● ●

●

● ●

●●●

● ●● ●

●

● ●

●●

● ●●● ●●

●

●● ●● ●

●●●●●●●

●● ● ●●● ●●●●●● ●● ●

●●●●

●

●●

●● ● ●● ●●●● ●

●●

● ● ●●

●●●

● ● ●

●●●●

● ● ●● ● ●●●●

●●●

●●

●●

●● ●● ●

●●●●●●●●●

● ●●

●

● ●● ●

●●●●●●●●

●

●●●●●

● ●●●

●●●●●

● ●●

●●●

● ●

●●●●●●●●●

●

●●●●●●●●●●●●●●

●● ●

●

● ●●

●

● ●

●

●● ● ●●

●

●

●

●

●

● ●●● ● ●●

●

● ●●●

●●

● ● ●●●

●

● ● ● ●

●

● ●

●

●●●

●●●●●●●●

●

●●●●●●●●●

●●

●●

●

●●●●

●

●●●●

● ●

●●●

● ●

●●●●●●

● ●●●

●●●

●

●●●●

● ●● ● ●●● ●

●●●

● ●● ●

●

●

●●●

● ●●● ● ●●

●●

●

●●●●●●●●●●●●●

● ●●●

●

●●●

●

●● ●

●●

● ●

●

●●

●●●●●

● ●● ●● ●● ●●● ●●●

●

● ● ●●●

●

●● ● ●●●

●●●

● ● ●●●●

●●●●●

● ●●

●●●●●●●●●●

● ●

●

● ●● ●● ●

●

●

●

● ● ●●● ●●●● ●●●

●●●●●●●●

●

●●

●

●

● ●● ●●●

●●●

●

●●

●●

●●●●●

●

●●●

● ● ●

●●●●●●

● ●●

●●●●●

●

●●

● ●●●●

●●●●●●●●●

●● ●

●●

●

●●

● ●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●● ●●

●

● ●

●●●●●●

● ●

●

● ●●●●

●

● ●●

●●●●●●●●●●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●

● ●●● ●● ●●

●

●

●

● ●● ●●

●●●●

● ●●

●●●●●●●●●●●

● ●●

●●

● ● ●● ●

●●●

●

●

● ●●

●

●●

●

●●

●

● ●● ● ●● ● ●●● ●

●

●●●

●●●●

●● ●●

●

● ●

●

●●●●● ●●●● ●

●●●

●

●●●

●

●●●●●●

● ●● ●

●

● ● ●

●●●●●●

●●

●

● ●

●

●

●●●

●● ● ●●

●

●●● ●

●

●●●●● ●● ●●

●

● ● ●● ●

●

●

●●

● ●

●

●● ●●●

●●

● ● ●●● ●

●●●

● ● ●

●●

● ● ●

●●●●●●●

●

●●●

●

●●

●

●●

●

●●●●●

● ●

●●●

●● ●●●● ● ●●

●

●

●

● ● ●

●

● ●●

●

●

●●●●●

●●

●

●

●●●

●●●● ●●

●●●●●●

● ●

●●●●

● ●●

●●

●●●

●●●●●

●

●●●●●●●●●●

●

●

●

●●●●●●●●

●

●●

●

●

●●

●●●●●●

●●

●

●● ● ● ●

●●●

●

●●●●

●● ●

●●●●

● ● ● ●●

●●●●●●

●

●●●●●●●●●

●

●●

●● ●

●●●●●

●●●

●●

● ●

●●●●

●● ●●●

●

● ● ●●●

●●●

●●

●

● ●●

●

● ●●●● ●● ● ●● ●●

●

● ●●

●●●

● ●●●● ●

●●

●●●● ● ●● ● ● ●●

●

● ●

●●●●

● ●

●

● ●

●●●●●●●

● ●

●

● ● ●● ●●● ●● ●●

●●●●●●●●

●●●● ●● ●● ●●● ●

●●●

● ●

●

●

●●●

●● ●

●●

●

●●●●●●●

●

●

●

●●●

● ●● ●●

●

●● ●● ●●● ●● ●● ● ● ●● ●●

●●

●

●●●●

● ● ●●

●●●

● ●

●

●● ●● ●●● ●●●● ●

●

● ●

●●●

● ●●

●●

● ● ●

●●●

● ●

●

●●● ●●

●

● ● ●● ●● ●

●

●

●

● ●●●● ●

●●●●●●●

●

●●●

●●●

●●●

●

●

● ●

●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●

●●●●●●●●●●●●●●●●●

● ●●● ●●● ●● ● ●●

●

● ●●

●

● ●●● ●

●●●●●●●

●●

●●●●●●

●● ● ●●●

●

●●

●●●●●●

●●● ●●● ●●● ●●● ●●●●

●●●●

●● ● ●● ● ●●●●● ●

●

●● ●●

●

●● ●

●

●●

●

● ●● ●●

●

●●● ●●

●●●●●

● ●●●●● ●●●

●●

●●● ●● ●●●● ●● ● ●

●●●●●●●

● ● ● ● ●●●●● ●●●●●

●●

●

●

● ●●● ●

●●●

● ●● ●●●●

●●●●●●●●●●●

● ●●●● ●●

●

●●●

●

●

●●●

● ● ●● ●●●●

●●●●●●●●●

● ●

●●●

● ●

●●●

●

●●●●●●●●

● ● ●

●●●●●●

●●

●

●

●●●●●

●● ●

●●●●●●●●●●●●●●●●●

●

●

●● ●●● ●● ●

●

●

●●●●●●●

● ● ●

●●●●

●

●●●●●●●●

●●●● ●●

●●●●●●●

●

●●

●

●

●

●●●●●●●●●●●●●

● ●

●●●

● ●

●●●●

●

●

●

●

●

●●●●●●●

●

●●

●

●

● ●

●●

● ●

●●

● ● ●● ●●

●

●

●●●

● ●

●●

●● ●●

●

● ●

●

● ●

●

●●

●

● ●● ●

●●●●●

●

●●

● ● ●●●●●

●●●●

●● ●●● ●● ● ●● ●

●●●●

● ● ●● ● ●● ● ●● ●●●

●

●

●●●●●●

●● ●● ●●● ●● ●

●

●●●●●●● ●●

●

● ●●●● ●

●

●

●●●●●●

●● ●● ●●●● ●●● ●●●●

●

● ● ●●●●●

●

●●

●

●● ●● ● ●●●● ●

●●●●●●●

● ●●●●● ●● ●●●●● ●●

●●

●●●● ●●

●●●●●●●

● ●

●●

● ●●

●●●●●

●

●

● ● ●●●●

●●●●●

● ●

●

●

●●

●●

●●●●●●●

●● ●●●

●●●●●

● ●● ●

●●

● ●●●● ●

●

● ●

●

●

●●●

●● ● ●

●●●

●●●

●●

● ● ●● ●

●

●

●

●

●●●●●

● ●●

●

●

●●●●●●●●●●●

● ● ●

●●●●●●●●●●●●●●

●● ●●● ●

●

●●

●●

●●● ●

●●

●

●●

●● ●

●●●●●●●●

●

●●●●●●

●

●

●

●●●●●●●●

●

●

● ●●● ●● ●

●

●

●

●

●●

● ●

●

● ● ●●●

●●●●●

●● ● ●● ●●●● ●

●

●● ●●● ●

●●●

●●

●

●●

●

● ●● ●

●

● ●●

●●

●●

●●●●●●

● ●

●

●● ●

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precipitation today (1/100 inch)

P
os

iti
ve

 p
re

ci
pi

ta
tio

n
to

m
or

ro
w

?

plot((tomorrow > 0) ~ today, data = snoq, xlab = "Precipitation today (1/100 inch)",
ylab = "Positive precipitation tomorrow?")

rug(snoq$today, side = 1, col = "grey")
data.plot <- data.frame(today = (0:500))
pred.bands <- function(mdl, data, col = "black", mult = 1.96) {

preds <- predict(mdl, newdata = data, se.fit = TRUE)
lines(data[, 1], ilogit(preds$fit), col = col)
lines(data[, 1], ilogit(preds$fit + mult * preds$se.fit), col = col, lty = "dashed")
lines(data[, 1], ilogit(preds$fit - mult * preds$se.fit), col = col, lty = "dashed")

}
pred.bands(snoq.logistic, data.plot)

Figure 11.7 Data (dots), plus predicted probabilities (solid line) and
approximate 95% confidence intervals from the logistic regression model
(dashed lines). Note that calculating standard errors for predictions on the
logit scale, and then transforming, is better practice than getting standard
errors directly on the probability scale.

252 Logistic Regression

How well does this work? We can get a first sense of this by comparing it
to a simple nonparametric smoothing of the data. Remembering that when Y
is binary, Pr (Y = 1|X = x) = E [Y |X = x], we can use a smoothing spline to
estimate E [Y |X = x] (Figure 11.8). This would not be so great as a model — it
ignores the fact that the response is a binary event and we’re trying to estimate
a probability, the fact that the variance of Y therefore depends on its mean, etc.
— but it’s at least suggestive.

The result starts out notably above the logistic regression, then levels out and
climbs much more slowly. It also has a bunch of dubious-looking wiggles, despite
the cross-validation.

We can try to do better by fitting a generalized additive model. In this case,
with only one predictor variable, this means using non-parametric smoothing to
estimate the log odds — we’re still using the logistic transformation, but only
requiring that the log odds change smoothly with X, not that they be linear in
X. The result (Figure 11.9) is initially similar to the spline, but has some more
exaggerated undulations, and has confidence intervals. At the largest values of
X, the latter span nearly the whole range from 0 to 1, which is not unreasonable
considering the sheer lack of data there.

Visually, the logistic regression curve is hardly ever within the confidence limits
of the non-parametric predictor. What can we say about the difference between
the two models more quantiatively?

Numerically, the deviance is 1.5895596 × 104 for the logistic regression, and
1.5121622× 104 for the GAM. We can go through the testing procedure outlined
in §11.6. We need a simulator (which presumes that the logistic regression model
is true), and we need to calculate the difference in deviance on simulated data
many times.

snoq.sim <- function(model = snoq.logistic) {
fitted.probs = fitted(model)
return(rbinom(n = length(fitted.probs), size = 1, prob = fitted.probs))

}

A quick check of the simulator against the observed values:

summary(ifelse(snoq[, 1] > 0, 1, 0))
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0000 1.0000 0.5262 1.0000 1.0000
summary(snoq.sim())
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0000 1.0000 0.5176 1.0000 1.0000

This suggests that the simulator is not acting crazily.
Now for the difference in deviances:

diff.dev <- function(model = snoq.logistic, x = snoq[, "today"]) {
y.new <- snoq.sim(model)
GLM.dev <- glm(y.new ~ x, family = binomial)$deviance
GAM.dev <- gam(y.new ~ s(x), family = binomial)$deviance
return(GLM.dev - GAM.dev)

}

11.7 Weather Forecasting in Snoqualmie Falls 253

●●● ●● ● ●●● ●●

●●●●●●●

●

●

● ●●●

●●●

●● ●●

●

● ●

●●

●● ●●

●

●

●

● ● ● ●●

●●

● ●●●● ●●

●●

● ●

●●●

● ●●●

●

●

●

●

●

●●

●

● ●● ● ●●

●

●

●●●●

●

●

● ● ●●● ●●

●

● ●●●●●● ● ●

●●●

●● ● ●●●●●

●●

●

●

● ●● ● ●●●●

●

● ●●●●● ●

●

●

●●●

●

●●

● ● ●

●●●●

●

●●●●●●●

●

●

●

●●

● ●

●●

● ●●●

●●●●●●●●●●

●

●

● ●●

●

●

●●●●●●●

● ●

●●●

●

●●●

●

●●●●●●

●

●

● ●

●●●●●●

●

●

●

●●

● ● ●●●

●

● ●

●

●

●●

●

●●

●●

●●●●●●●●●●

●●

●●●●●

● ● ●●● ●● ● ●

●●●

●● ●● ●

●●

● ●●

●●●●●●●●●●

●●

●

●

●

●

●

● ●●● ●●●

●

● ●

●●●

● ●● ●● ●

●

● ● ●● ● ●● ●●● ●● ● ●●●● ●● ●● ●●●●● ●

●●

●● ●

●●●●●●●●

● ● ●●●

●●

●● ● ●

●●●●●

●

●●

●

●

●

●

●

●●●●

● ●

●●

●

●●●

●●●● ●● ●● ●

●

●● ●● ●●● ●● ●●

●●●●●●●●●●●

●●

●●●

● ●●●●●● ● ●●●

●

●● ●●

●

● ●

●

●

●●●

●

●●

●

●●●●

●

●●●●●

● ●●●●

●

●

●●

● ●● ● ●

●●●●●●●●●●●●●●

●

●

●

●●●●●●●

●

●●●

●●

●●●●●●●

●

●●●●●●

● ●

●●

●

●●●●●

●

●

● ●

●●●●●●●●●●●●●●●●

●

●

● ● ●

●●

● ●●●●

●●●●●●●●●

●●

●●●●

●

●●●●●●●●●●●

● ●

●●●●

●

●●●●

●●

●●●●●●●●

● ● ●●●●

●●●●

●

●●●●●

●

●●●

● ●●●●● ●●

●

●

●

● ●●●

●●●●●●

●● ●● ●

●●●●●●●●●

● ● ●● ● ●●

●●●

●

●●●

● ●● ●●● ●●●● ● ●

●

●

●●●

● ●

●

● ●

●

● ●● ●●●●● ● ●● ●● ●●●● ●● ●●●● ●●●● ●●●

●

● ● ●

●

● ● ●● ●●●● ●●

●●●●●●

● ●● ●● ●●●● ● ●● ● ●

●

● ●● ●● ● ● ●●

●●

● ● ● ●●●●● ●

●

●●●●● ● ●●●● ● ●●●● ●●

●

● ●● ●●

●

●●

●

● ●

●

● ● ●●● ●●

●●●●

● ●

●

● ●●

●●●

● ●●● ●●

●●●●●●●●●●

● ●●

●●

●

●●●●

● ●●

●●●●●●●

● ● ●

●

● ●●●●●

●

● ●

●●

● ●●●

●●

●●

●●●●●●●●●

●●

●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●●

●●●●●●

● ● ●

●●●●●

● ● ●

●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●

● ● ●●●

●●●●

●● ● ●●● ●

●

● ●

●

●

●

●●● ●

●●●●

● ● ●● ●●● ●● ●● ●●● ●●

●●●●

●● ● ● ●●

●

● ● ●●● ●●● ●●● ●●● ●●● ●●●

●

● ●●● ● ●●●● ● ●● ● ●●●● ●●● ●● ● ●● ●

●

● ●

●

●● ●● ●● ●●●● ●● ●●● ● ●●

●●●●

●● ●●

●

● ● ●● ●●●

●●

●

●

● ●● ●

●●●

●

●

●

●●

●

●

● ●● ●●● ●●●● ●●●

●●●●●

● ●

●●

● ●●

●

● ●

●●●●●●●●●●●●●●●●●●

●●

●●●●●●●

● ● ●●

●●●

● ●

●

●●

●

●● ●

●

●

●●

● ●

●●●●

● ●

●●

● ● ●

●●●●●

●

●

● ●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

● ●●

●●●●●●●

● ●●●

●●●●●●●●●●●●●

● ●

●

●● ●● ●●●●●●

●●●●

● ●●● ● ●●● ● ●● ●● ●

●●●●

●

●●●●

● ●

●●

●

●

● ● ● ●●●●

●●●●

●●

●●●

● ●●●● ●●

●

● ●● ●●

●●

●

●

●

●●

● ●●● ●●● ●

●●●●

●● ● ●

●●●

●●●●●●● ●●●

●

●

●●●

● ● ● ●●●● ●● ●

●

●● ●● ●● ●

●●●●

●

●

● ●

●

●● ●

●●●

●

●●●●

● ●

●

●

●●●

●● ●

●●●

● ● ●●●

●●●

● ●●●

●●

● ● ●

●●

● ● ●●

●

● ●

●●●●●●●●●

● ●

●●●●

●

●●●●●●●

● ●●● ●●●

●●

●

●

●●●

●

●● ●

●●●●

● ●●

●●●●●●

●●

●●●●●

● ●●

●●●

●● ●

●●

●●

●●●

● ●●

●●●●

● ●● ● ●

●●●●●●●●●●●●●●●●●●

●●●● ●●

●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●

● ●●●●

●●●●●●●●●●

● ●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●

●

● ●●

●●

● ● ●●

●●●

●

●●●

●● ●●● ●●

●●

●

●

●

●●●●●●●●●●●

● ● ● ●●● ●●●● ●

●●●

●

●●

●●● ●●

●●●●

● ●●●●● ●●

●

● ● ● ●●● ●●●● ● ●●●●●● ●●● ●● ●●●● ●●● ● ●●● ●

●●

●

●●

● ●● ●●

●●●

●

●●●

●● ●

●●●●

●

●●●●●

● ●

●●

● ● ●● ●●● ●●● ●

●

● ●

●

● ●●

●

●●● ● ●●

●●

●● ● ●

●

●●

●●●

● ●●

●

●●● ●● ●●

●●●●

●● ● ●●

●●●

●

●●●

● ●●● ●●●●

●

●

●

●

●●●

●

●

●

●

● ● ●

●

●

●

● ●

●●●

● ● ● ●●

●

● ●●

●

● ●

●●●●●●●●●

●

●●●●

●● ●

●●

●

●●●

●

●●●●●●●●●●●●●●

● ●●

●●●●●●●●●●●

●

●●

● ●●● ● ●●

●●

●●

●●●●●●●●●

●

●●●

●

●●

●

●●

● ●

●●●●

● ●● ●●

●●●●●

● ● ● ●

●●●

●

●

● ●●● ●

●●●●●●●

● ● ● ● ●

●●

● ● ●

●

●● ●●

●

● ● ● ●●● ●● ●●● ● ●● ●● ● ●● ● ●● ● ●● ● ●● ●

●

● ●

●●

● ● ●

●●

●

●●

● ●● ●●● ● ●●● ● ●●●●

●●●

● ● ●●●● ● ●● ● ●●●●●●

●●

●

●

●

●●●●●●●●●

● ●●●● ●●● ●● ●

●

● ●● ●●

●●●●●

●

●

● ●●● ●

●

●

●

●

●●●●●●●●●

● ●

●●●

● ●●● ●●●

●

● ●

●

●● ● ●

●●

● ●●●

●

● ●

●●

● ●

●

●●

●●●●

●

●●●●●

● ●

●●●●●●●●

●

●●

●●●

●●

●● ● ●

●

● ● ●● ●

●●●●

●

●

●● ●●

●

● ●

●●●●●

●● ●

●

●●

●●●●●●

●●● ●

●●●●

●

●●●

● ●

●●●●●●●●●●●●●

●

●●●●●●●●●

● ●●

●●

● ●

●

● ●●

●

●

●●

●

●

●

●●

● ●

●●

●●

●

● ●●●●●● ● ●

●

●

●●●●

●●●

●●●●●●●●

●●●●● ● ●

●●●●●●

● ●●●

●●●●●●●

●

●●●●

●● ●●●●●●● ●●●● ●● ●

●●

●

●●

● ●●●

●●●●●●

● ● ●

●

● ●

●

● ●●●

●●●●●

● ●● ●●●

●

● ● ● ●●●

●

●●

●●●●●●

●● ●● ●●

●●

●

●

● ● ●●

●●

●

●

●● ●●

●

● ●●● ●●

●●

●● ●●●●

●●●●

●

●

● ●●

●

● ●● ●

●●

●

●●

● ● ●● ●●●

●●

● ●

●

● ● ●● ●

●●

●● ●● ●●●

●●●●

● ● ●● ● ●●

●

● ●●●● ●● ●●

●

● ●

●

●

●●●●●●●

●

●●

● ● ●●●

●●●●

● ●

●

●●

●

●● ●

●

● ● ●

●

●●●

●●●●●●●●●●●●

●●

●●●●

● ●

●

● ● ● ●● ● ●● ●

●

●

●●

● ●

●●●●●

● ●

●●●●●●●●

● ●●● ●●●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●

● ●●●●

●●

● ●

●●●●●

● ● ●

●●●

● ● ●

●

● ● ● ●●●

●●

●

●●●

● ●

●●●

● ● ●● ●●●●●● ●●

●

●

●

●● ● ●

●●

●

●●

●● ●●●●● ● ●●●●● ● ●●●

●

● ● ●● ●●● ●

●●

●● ●● ●● ●●●●●● ●

●●●●

● ●● ●●● ●●●●●

●

● ●● ●●● ● ●●●● ●

●●●

● ●

●●●●●●

●

●●●●

● ● ●●● ●

●

● ●●

●

● ●● ●●●●● ●● ●● ●●● ● ●●

●●

●●

●●●●●

●●● ●● ●● ●● ●● ● ●●●

●

●●

●

● ●

●●●●●●●●●●●●●

●

●●●●●

●●

●●

●

●

●● ●●

●●

● ● ●

●●●●●●

●

●●●●●●

●

●

●

●●●●●

● ●● ●● ●

●

●

●●

●●●

●

●●● ●●●

●

●

●●●●●●●●●●

● ●

●●●

● ●●

●●●●●●●●●●●●●●●●●●●●

● ●●

●●●●●●●●●●

●

●●●●●●●

●

●

●● ●

●

●

●●●●●●●●●●

●● ●

●

●●

●●

●●

●

● ●●

●

●●● ●● ●

●

●●

●●●●●●●

●

●

● ●●● ●● ●●● ● ●● ●●●● ●● ● ●●●●●● ●

●●●

●

●

● ● ●● ● ● ●

●●●

●●

●●●

●●

●●●

●● ●●

●●

●● ●●●●●● ●● ●●● ●● ●

●●●●●●

●● ● ●●●

●●

● ●

●

●●

●●

●

●●

●

●

● ●●●●

●●●●●●

● ●●

●

● ●● ●●● ● ●●

●●●●●●●

● ●

●

● ● ● ●●●●●●●

●

● ●● ●●● ●●●● ●●●●

●●

● ●●●

●●●●

● ●● ●● ●● ●●●

●●●●

● ●● ●●

●

●

●●●●

● ● ●

●●●●●

●●

●●●●●

●●

●●

●●

●●●

●● ● ●● ● ●

●●●●●●●●●●●●●

● ●●●

●

● ●● ●●

●●●●

● ●

●●●●

● ●●●

●●●●●●

●

●●

●

●

●

●●

● ●●●

●●●●●

●

●●

●

●●●●●●●

● ●

●

● ●●

●

●●

●●●●●

●

●●●●●●●●●●●●●●●●●●●

● ●●

●●●●●●●●

● ●

●●●●●●●

● ●●

●

●●● ●●●

●

● ●

●●●

●● ●●● ●●

●●●

● ● ●● ●

●●

●● ●

●●●●●●●●●

● ● ● ● ●●

●●

● ●●

●●●

●●●●●

●

● ● ●●

●

● ● ●●

●●

● ●●● ●●● ●● ●●●● ●● ●● ● ●●

●●

●●

●●●●

● ●● ●● ●● ●● ● ●

●

●● ●● ●●

●

● ● ●● ●

●●

●

●

● ●●● ● ●●● ●●●● ●●●

●●

● ●● ●●●

●●

●

●●

●

●

● ●●

●●●●●●●

●●●● ● ●●

●

●●

●

●

●

● ●●● ●

●●●●

● ●●

●●

●● ●● ● ●● ●●● ●●●

●

●

●●●●●

●

●●●●●●

●● ●

●●●●●●●●●●

●

●●●

●●

●●

● ●●

●●●

● ●

●

●●●

●●●●●●●●●●●●

●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●

● ●●

●●

● ●●

●●●●●

● ●

●●

● ●●● ●●● ●●● ● ●●

●

●

●●●●●●●●●

● ●●●

●

● ●●●

●

● ● ● ●

●

● ●

●●●

●

●●●

● ●● ● ●●● ●●● ●● ● ●●

●●

●● ●● ●● ●●

●●●

● ●● ● ● ●●●● ● ●●● ●●●

●

●

●●

● ●● ●

●

● ●● ● ●●● ●● ●●

●●

●● ●● ● ●●● ●●●●● ●●●●● ● ●

●

● ● ●●● ●

●

●●●●●

●

● ●●

●●

● ● ●● ●●●

●●

●● ●● ●● ● ● ●●

●

●

●

● ●●● ●● ●

●●●

● ● ●

●

● ●●

●

● ●●● ●● ●●●

●

●●

●●●●●●●

● ●●●● ●

●●●

●

●●●

● ●●● ●

●

● ●● ●

●●●

● ● ●

●●

● ●●● ●

●●

●

●●●

●●● ●

●●●●●

●● ●

●●

● ● ●● ●

●●●

● ●●

●●

●

●●

● ●

●

●

●

●

●●

●● ●●●●

●●●●●●●●●●●●●●●

●

●●●

●●

●●●●●●

●

●●●●●●●●●●●●

●●

●

●

●

●

●●●

●●

●●●

● ●

●

● ● ●●●●

●●●●●

●● ●●●● ●●●●● ●● ●●

●●●●●●●●

●● ●●● ●

●●

●

●●

●

●

● ●● ●● ●●●●

●●●●●

● ●

●●●

●●

●

● ●

●●

●

●

● ● ●● ●●●● ●●

●

●●

●●

● ●

●●

● ●●●● ● ●●● ● ●●●

●

● ●

●

●● ●●

●●●

●

●●

●

●●

●● ●●

●

● ●●

●●

● ●

●●●●●

● ● ●●●●● ● ●

●

●● ●

●

● ● ●●●● ●● ●● ●●●

●●

●● ●

●

●

●

●

●●●●●

●●● ●●● ●●

●●

● ●● ●●

●●●●●●●●

●

●

● ● ●●●●

●●●●●

● ●

●

● ●●● ●●● ●● ● ●●●

●

●

●●●

●

●●●●

●●● ●

●●

● ●● ●●

●

● ●●●● ●●●● ●● ●

●●

● ●

●●●●●●●●●●●●●

● ●●

●●

● ●●

●●●

●

●●●●●●●●●●

● ●

●●

●

●

● ●● ●●● ●●● ●● ●

●●

● ●

●●●●●●

●●

●●●●●●

●

●

●● ● ●●

●●●●●●●●●

● ● ●●

●

● ● ●●

●●

●●

●●

● ●● ●●

●

● ●●● ● ●●

●

●

●●●

●

●

● ●

●

● ●●● ●●●● ●● ● ● ●

●●

●

●

● ●● ● ●

●

●

●●●●

● ● ●●

●●

● ● ●

●●●●

● ●● ●

●●

●● ●

●●

● ● ●●● ●●● ●● ●● ●● ●

●●●●

●●

●●●

● ● ● ●●● ●●●●

●

● ● ●● ●● ●● ●● ●● ●● ●●● ●

●

● ●● ●●

●●

● ●● ●● ● ●●● ●●

●

●●●

●

● ● ●●● ●

●●

●●● ● ●

●●●●

● ●

●

●● ●●●

●

● ●●

●

● ●

●

●

●●●

● ● ●● ●●● ● ●●●● ●●●●●

●●●●●●●

●● ●

●

● ●●● ●

●●●●●

●●

●

●●● ●

●●●●●●●●●●●●●●●●●

●

●

●

●●●

● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●

●●●●●●●●●●●●●●

● ●●

●●

●

●●●●●●●●●

●

●●

●

●

● ●

●●●●●●

● ●●

●●●●

● ●●

●

● ● ●● ●

●●

●

●●

●●

●

● ●

●

●● ●●

●●●

● ●●

●●●●●

● ● ●

●

●●

●●●

● ●

●

● ● ●●

●

●●● ●● ●●● ●

●

● ● ●

●

●

●●

● ●● ● ● ●● ●●●● ●●●

●

● ●

●●●

● ●

●

● ● ●●

●●●

● ●● ●●● ●

●●●●●

● ●●●●

●●●●●●

●

●

●●● ●● ●● ●● ●

●

● ●

●●●

● ●

●●●●

●● ● ●● ●●

●

● ●●●

●●●

● ●

●

●●● ●● ●● ● ●●

●●●●●●●

● ●● ●●

●

●

●●●●

●

●●●

●●●

●●

● ●● ● ●●●● ●●

●●

●

●

● ●●●●● ●●

●●

●

●●●

● ● ●●●

●●●

●

●

●● ●● ●

●●●●●●

●●●

●●●●●●●●●●

● ●●

●●●

● ●

●

● ●●

●●●

●

●●●●●●

●

●●●●●●●●●●●●●●

●

●

● ● ●●●

●●●●

● ●

●●●

●● ●●●

●●●●

●

●

● ●

●●●●●●●●●●●

● ●

●

● ●

●●●●●●●

●

●●●●

● ● ●

●●●

●

●●

● ● ● ● ●● ●● ●● ●

●

● ●

●●●●●●

● ●

●●●●●●●

● ●●

●

● ● ● ●●●●● ●●

●

● ●●

●●

● ● ●●

●

● ● ●● ●●● ●

●●

●●

●●

● ● ● ●●

●

●

●

● ●●●

●●

●● ●●

●

● ●●

●

●●●● ● ●

●●

●● ●

●

●

●●●●●●

●

●●●●●

●● ●● ● ●

●

●●

●●

●

●●

●●●● ●● ● ●

●●●●

● ●●●● ●

●●●●●●●●

●

●●

●

●

●●●● ●

●

● ●

●

● ●● ● ● ●●●

●

● ● ●● ●●●● ●●●● ●●●● ●●

●

●●●●

●

●

●

● ●●● ●

●

● ●●●●●

●

●

●●●●●●●●●●●●●●●●●●●

●● ●● ●

●●

●●

●●

●

●●●●●●

●

●

● ●●● ●●● ●● ●

●●●●●

●●●

●

●●

●●●

●

●●●●●

●●

●

●

●●●●●●

●

●●●●

●

●●●●●

●●

●●●●●●

● ●

●●

● ●●

●●●●●●

●●

●●●●●●●

●

●●

● ●●●

●●●●●

●●

●●●●●

●

●●●●

● ●●

●●●●

●

●

● ●

●●

● ●

●

● ●● ●● ●●

●

● ●●

●

● ●

●

●

●

● ●●●● ●● ●● ●●● ●● ●●● ● ●● ● ●

●

●

●

●●●●● ● ●● ●

●●●●

● ● ●● ●● ● ●● ●●● ●● ●

●

● ● ● ●●●● ● ●●● ●

●●

● ●● ●● ●● ●●●

●

● ●

●

● ●● ●● ●

●●

● ●

●●●●

● ● ●● ●● ●●●

●

●

●●●

●

●●●

● ● ● ●●● ●●

●

● ●● ●●●● ●

●

● ●

●

●● ●

●●

● ●●

●●●●

● ●

●

● ●

●●●

● ●● ●

●

●● ●

●●●

● ●●

●●

●● ●

●

●●●

●

●●● ●

●●

● ●

●

●●

●●●●●●

● ●●

●

● ●

●●●●●●

●

●●

● ●●● ●

●●

● ●●●

●

● ●● ●

●●●●●●●

●

●●●●

●

●●●●●

●●

●●●●

● ● ●

●

●

●

● ●

●●●●●●●●

●● ● ●● ●

●●●●●●●●

●

●●●●

●

●●●●●●

●●● ● ●●

●●

●

●●●●

● ● ●

●●●●

●●

●

●

●

● ●

●

●

●●

●

●●●

● ● ●●

●

●

●●●

● ●●

●●

●● ●●●

●●●●●●

● ●

●●●

●●

●

● ●● ●

●●

● ●● ●● ●●

●●●●●●●●

● ● ● ●● ●

●

● ● ●●

●●●●

●● ● ●

●

●

●

● ●

●●

●● ●● ● ●●

●

● ●●●●● ● ● ●●● ●●●

●●●●

●

●●

●●●●● ● ●● ●●● ● ●● ●

●●●

●● ●●●● ●

●

●● ● ●●●

●●

●

●

● ●

●●●

● ●●

●●●●●●●●●●●●●●●

●

●●●●

●●

●●

●●

●

● ●●

●

● ●

●●

● ●●

●

● ●

●●

●

●●

● ●● ● ●●

●

●●

●●●

●

●

● ● ●●● ● ●

●●●●●●●●

● ● ●

●

● ●●

●

●

●●●●●●

● ●

●●●●●●●●●●

● ●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●

● ●

●●●●

●

●●●●●●

● ●

●●●●●

● ●

●

● ●

●●●●●

● ●

●●

● ●

●

●

●

● ●

●●●●●●●●●●●●●●

● ● ● ●

●●●●●●●●●

●

●●●●●●●

● ● ●

●●

●

●●

● ●● ●

●

● ●● ●

●●●●●●

● ●

●

●

●●

● ● ●●

●●

●●● ●

●

●●

●●●

● ● ●●● ●● ● ●●

●●●

● ●● ● ●● ● ●

●

●

●●

●

●●●●●●

● ● ●● ●

●●

● ● ●●●● ● ●●● ●●●

●

● ●● ●●

●

●●●

●●●●

●

●

●

●

● ●● ●●

●●●

● ● ●●●●

●

● ●

●

●

●

●●

●●

●

●●

●

●

● ●● ●●

●

●

●

● ● ●● ●●●●● ●● ●●● ●● ●

●●●●●●●●

●

●

● ●

●●●●●●

● ● ● ●●●

●●●●●

● ● ●

●●

● ●

●●

●

●●●●●●

● ●

●●

●

●

●●● ●●

●●●●

● ●

●●●

● ●

●●●●

● ●●●

●●●●●

● ●

●

●

●●●●●

●

●

●

●

● ●

●●

●●

●●

● ● ● ●● ●●

●●

●●

●●

● ●●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●

●

●●

●

●●●●●●●●●●

●●

●●

●

●●

●●

●●●●

●

●●

●

●●●●

● ●

●●●

●●●

●●●

●

●●●●

●

●

● ● ●● ●

●●

● ●

●

●

●●●●●●

● ●●

●

● ●● ●● ●●● ●●●●●●●

●

●

●

● ●● ●●● ●● ● ●●

●

● ● ● ● ●

●

● ●●●● ●

●●

●● ●

●

●● ● ●● ●● ●● ●●●

●●

● ●● ● ●●●●● ● ●●●●

●

● ●● ●●

●●

● ●●●

●●●

●● ●● ● ● ●●●● ●

●●●●●●

●

●●

● ●●●

●●●●

●

●

●●

●

●

●

● ●●●

●

● ●● ●●●●●● ●

●●●●●

● ●

●●

●●

●●

● ● ●●● ●● ●● ●

●●

●●●● ●●

●●●●●●●●

●

●

● ●●

●●●●●●●●●●●

●

●●●

●

●

●

●●

● ●

●●●●●●●●●●●●●●●●

●●

●

●

●

● ●

●●●●●●●●●●●

●

●●●●●●●●●●●

● ●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●

● ●

●●●●●●●●●

●

●●●●●●●

● ●● ●● ●●●●●

●

● ●●●

●●●●

●

●

● ● ●●● ●

●

●

●

● ●●

●●●●●●

● ● ●● ●

●●

● ●

●●

●

●●●

●●● ●

●●

● ●●● ● ●●●

●

● ●●● ●●

●●●

●

●●●●

● ● ●● ●●●●●● ● ●

●

●●●

●

● ●● ●

●

● ●●●●●● ● ●●

●●

● ●●

●●

●● ●●● ● ●

●

●

●●●●●●●●●●

● ● ●●● ●● ●●

●●●●●●

● ● ●●●

●●

●● ●●● ● ●●

●●●●

●● ●● ●● ●● ●

●

● ●

●

● ● ●

●●●

● ● ●●● ●●

●

● ●●

●●

● ●

●

●

●●●

●

●●●

● ●●

●●●●●

●

●

●

●●●●

● ●●

●

●●●

●

●

●

●●● ● ●

●●●●●

●●●●●●

●●●●●

●

●

● ●

●●●

● ● ●

●●●●●●●●●●●●

●●

●

● ●

●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●

●●

●

●●●●●

●

● ● ●● ●●●●

●●

●

●●●●●●●●●

●

●

● ● ●●● ●●●

●

●

●●●●●●●●●●●

● ●● ●

●

● ●●● ●● ●

●

●

●

● ●●●

●●

●

●●●

● ●

●●

●

●●●●

●● ●● ● ●●

●

● ●●●

●

● ● ● ●●●●

●●

● ●●● ● ●●

●

● ●● ● ●

●

● ●● ●●●

●●

●●● ●

●

● ●●

●

●● ●

●

● ● ● ●●●●● ●●●●● ●● ●

●

●●

●●

●

●

●

●

● ●● ●●● ●●

●

●● ● ●● ●●●● ●●

●●●●●●

●

●

●● ●

●●●

● ●● ●●

●●●●●●●

●● ●●●

●●

● ●

●●●●●●

● ● ●●●● ●●●

●

● ●

●

● ●

●●

●● ●● ●

●

●● ●

●●●

● ●●● ●●

●●●●●●●●●●●●●●

●●

●●●●

●

●

● ● ●● ●

●●●●●●●●●●●●●

●

●●●●●●●

●● ● ●●●●●●

●

● ●● ●

●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●● ●

●●●●●●●●

●

●●●●●●●●●

●●●●

●

●

●●

● ●●

●●●●●●●

●●

●●

● ● ●● ●● ● ●●●

●

●● ● ●●●

●●●●

● ●● ●

●●●●●●●●

●

●●

●

●

● ●●● ●●●

●●

●● ● ●● ●●

●●

●●

●●

● ●●

●●

● ●

●

●

●●●●●●●●●

● ●

●●●

● ●●● ●● ●●● ●● ●●● ● ●

●

●● ●

●

●

●●●●

●

●●●●

● ● ●●● ● ●●●● ● ●●● ● ●● ●● ●

●●●

●

●

●●

●

●

●●●●●●

●● ●● ●● ●

●●●

●

●●●●●●●

●●

●

●● ●

●●●

● ● ●● ●● ●

●●●

●

●

●

●

●

●

● ● ●

●●

● ●●●● ● ●●● ●●

●●●●●●

● ● ●

●●

● ● ●●●

●

● ●

●●●●●●●

● ●●

●

●

●●●

●

●●●●●

● ●

●●●

●●●

●●●●●●●●●

●● ●●

●●

●●

●●●●●●●●●●●

●● ●

●●●●●●●●●●●●●●●●

●

●●●●●●●●

● ● ●

●●●●●

● ●

●●●

●●

●●●

●●

●●●●●●●●●●●●●●

●

●●

●

●

●● ●●● ●●●

●●●●●●

●● ●●

●

●●●

●●●●●●●●●●

● ●

●●

● ●

●

● ●

●●●●

●● ●● ●●●●

●●●●●●●●●●●

● ●● ● ●●● ●

●●

● ●●●● ●

●

●● ●●● ●

●●

● ● ●● ●● ●●

●●

● ●

●●

● ●● ●

●

● ●

●

●●

●●

●● ● ●● ●

●●●●●●

● ● ●●●●●●● ●●● ●●● ● ●● ●●

●●

● ●

●

●●● ● ●

●●●

● ●●● ●● ●●●● ●

●●

● ●● ●●●●

●

● ●●●● ●

●

● ● ●●●● ●● ●

●●●●

● ● ●●● ●● ● ●

●

●●

●●●

● ●● ●●●●

●●

●

●●●●

●

●

●● ●

●●

●

●●●●●●

●●

●●●●●●

● ●

●

● ●

●

● ● ●

●●●

●●●

●●

● ●●●●● ●

●

●● ●

●

● ●

●

● ●

●●●

● ●●

●

●●● ●

●

● ● ●

●●●●●

● ●

●

●● ●●

●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●● ●

●●●●●●●

● ●● ●

●●

● ●

●

●● ●●

●●●●●●●●●●●

● ● ●●● ●

●●●●

●

●●●

●

●●●●●

● ●

●●●

● ● ●

●

● ●

●

● ● ●

●●

● ● ●●● ●●

●

● ●● ● ●● ●●●

●

●●●

●

●

●

● ● ●●●● ●

●●

●●● ●●

●

● ●● ●●● ●●● ● ●●● ●●●●●

●●

●●● ●● ●

●

●●●● ● ●● ●●●●

●

● ●● ● ● ●●● ●●

●●●●●●

●

●●●

● ●● ●●

●

● ● ●●● ● ●●● ●

●

● ●● ●● ● ●●●● ●● ● ●

●

●● ● ● ● ●

●

●

●●

●●

●

●●

●

●

●

●

●●●●

● ●

●

●● ● ●●● ●● ●● ●●● ●● ●●● ●●

●

● ●

●

● ● ●

●●●●●●●

●●

●●●●●●

● ● ● ●

●●

●

●

●

●●●●●●●●●●●●●●

● ● ●●● ●

●

●●

●●●●

● ●●● ●●●

●●●●●●●●●●●

● ● ●●● ●

●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●

●

● ●●●

●●●●●●●●●●●●●●●

●●

●

●

●●●●

●

●●

● ● ● ● ●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●

●

●

●

● ●●

●●

● ●● ● ●● ●

●

● ●

●●●●●●●

●●

●●●

●● ●● ●●

●●

●● ●●

●●●●●●●

●

●●●

● ●●● ●● ● ●● ●● ●● ●●● ● ●

●

● ●

●●●●

● ● ● ●●● ●●● ●●

●●

● ●●

●●●

● ●

●●

● ●

●●●●●●

● ●

●●

●●● ●

●●●●●●

● ●●

●

● ●

●

●●●

●●

●● ●

●

● ●

●●

● ●● ●●●

●●●

● ●●

●

● ●●●

●●●

●●

●●●●●●●

●● ●●● ●

●

●

●●●●

●●

●●●●

●●

●●

●● ● ●

●●●●●●●●

●●

●

●●● ●●

●●●●●●

●

●●●●

● ●●

●●

● ●●●● ● ●●

●●●●

● ● ●

●●●

●●

●●●

●●●

●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●

●●

●●●●●●●●

●

●

●

●●●●●●

●

●●●●

●●●●

●●●●●

● ●

●●●

●●

●●●●

● ●● ●●● ●●

●●●●●●

●

●●●

● ●

●●●

● ● ●●

●

●

●●●●

● ●●● ●

●

●● ●●● ●

●●●

●

●

●

●

● ●● ●● ●● ●●

●

●● ●●● ● ●●● ● ●●●● ●●

●

● ● ●

●●

● ● ● ●● ● ●●

●

● ● ●● ●●

●

● ● ●●●

●●●●●●●●●

●●● ● ● ● ●●●● ●● ● ●● ● ● ●●●● ●●●● ●●●

●●●●●●

● ● ●● ●● ● ●

●

● ●

●

● ●●● ●● ●●● ● ●●● ● ●●●

●

● ●● ●

●●●●●●●

● ●●● ●●●●● ●● ● ●●● ● ●●●

●●

● ●

●

● ●●●●●●●●●

●●●

●

●●●

● ●

●●

● ●●● ●●●●●●●

●●●

● ● ●

●●●

●

●●

●

●

● ●●● ●

●●●●●●●●●●●●●●●●●

●●

●●●

●

●●

● ●

●●●

● ●● ●●

●●

●● ● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●

●●

●

●●●●●●●●●●●●

●

●●●

● ●●

●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●

●

●●●●●●●●

● ●

●●●●●

●● ●

●

● ●●

●●

●● ●● ●●●● ●

●●●●

● ●● ● ●●●● ●

●●●●●

● ●● ●●●

●

● ● ● ●●●● ●●●●● ● ●●

●

● ●●

●●

● ●● ●●● ● ●●● ●● ●● ●● ●●● ●●●

●●

● ●●● ●●

●●●●●●●●●

● ●● ● ● ● ●●●●

●

●● ● ●

●●

●

●

●● ● ●● ●●

●●●

●●

●●

●●

●

●● ● ● ●●●●●

●●

●●

●●

● ●

●

● ●

●

●

●●●●

●

●●●

●●

●

●

●

● ●

●●

● ● ●●●●

●●●●

● ●●●

●●●●

●

●●●

●● ●● ● ●

●

● ● ●

●●

●

●●●●●●●

● ●●

●●●●●●●●

● ●● ●●

●

●

●

●● ●● ● ●●

●

●●●

●●●●●●●●●●●

● ●●●

●●●●●●●●●

●●

●●●●●●●

●

●

●

●●●●●●●

●● ● ●●

●

●● ●

●

●

●

● ● ●●●●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

● ● ●● ●●●● ●

●●●

● ●● ● ●●● ● ●

●

● ● ●● ● ● ●●● ●●

●

● ● ●●

●

●●

●

● ●●●●●

●●●

● ●● ● ●●

●

● ● ● ● ●●

●

● ●

●

●

●●

● ●● ●

●

●●

●●

● ● ● ●● ●●● ● ●

●●●

● ●●●● ●●● ●●● ●●●●

●●●

● ● ●

●●

●

●●●●●

●●

●●●●●

●

●●

● ●●● ● ●● ●●

●●

●● ● ●●● ●●●

●●●●

●●

●●

●

●

●●

●

●●● ●●

●

● ●● ●●● ●●

●

● ●

●●●●

●

●

● ●

●

● ●

●

●● ●

●

● ●● ●●●● ●●

●●●●●

● ●

●

● ●

●●●●

●

●●

●

●●

●

●●●●●

●●● ●●●●● ●● ●●

●●●●

●●

●●

● ●

●

●● ●

●●●●

●

●

●● ●

●●●

●● ●●● ●

●●

● ●

●●●●●●●●●●

●●

●●●●●●●●●●●●

●

●●●

● ● ●

●●●●

● ● ●

●

●

●

●

●●●●

● ●

●●●●●●●●●●

● ●

●●●●

●

●

● ●

●●●●●●

●●●

●●●●●●●

●●

●

●

●●●●

●●●

●●●●●●●●●●●

●● ●

●●

●

●

● ●

●●●●●●

●●

●●●●

●● ●● ● ●● ●●

●

●● ●

●●●●●●●

●

●●

● ●●

●

●

●

● ●●

●●

● ●

●

●●● ●

●

● ●●●

●●●

●●●

●●●●●●

●● ●●●● ● ●●●●●

●●●●●●●●

● ●●

●●●●●●

●● ●●●

●●

●● ●

●●

● ●●

●

● ● ●● ● ●●

●●●

● ● ●●●● ●●●●

●

●● ●●●● ●●●● ●●

●●

●

●●●●●●●

● ●●

●

● ● ●● ●●

●●●

●

●●●

●

●●●●●

●● ●●●

●

●

●●

● ●

●

●● ●●●

●●

●

●

● ● ●● ●● ●

●

● ●●

●

● ●

●●

●

●●●●●●●●●●●●

●●●

●●●

●

●●●●

● ●●● ●

●●●●

●●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●● ●●●● ●

●●

● ●

●●●

●

●●●●●●●●

●

●

●● ●

●

● ● ●●

●

● ● ● ●

●●●●●

●

●

● ●

●●

●

●●

●

●●

●

●

●●●

●

● ●

●●

● ● ●● ●

●

● ●● ● ●●● ●● ●● ●●●●

●●●●

● ● ●● ●●● ●● ● ●●●● ●●●

●

● ●●● ●● ●● ●

●●●●

●●

●●●

● ●●

●●

● ● ●● ●● ●● ●●

●

● ●

●

●

●●

●● ●●

●●

● ●●●

●●

● ● ●●

●

● ●● ●●

●●●●

● ●

●

● ●

●●●

● ●● ●

●

● ●

●●

● ●●● ●●

●

●● ●● ●

●●●●●●●

●● ● ●●● ●●●●●● ●● ●

●●●●

●

●●

●● ● ●● ●●●● ●

●●

● ● ●●

●●●

● ● ●

●●●●

● ● ●● ● ●●●●

●●●

●●

●●

●● ●● ●

●●●●●●●●●

● ●●

●

● ●● ●

●●●●●●●●

●

●●●●●

● ●●●

●●●●●

● ●●

●●●

● ●

●●●●●●●●●

●

●●●●●●●●●●●●●●

●● ●

●

● ●●

●

● ●

●

●● ● ●●

●

●

●

●

●

● ●●● ● ●●

●

● ●●●

●●

● ● ●●●

●

● ● ● ●

●

● ●

●

●●●

●●●●●●●●

●

●●●●●●●●●

●●

●●

●

●●●●

●

●●●●

● ●

●●●

● ●

●●●●●●

● ●●●

●●●

●

●●●●

● ●● ● ●●● ●

●●●

● ●● ●

●

●

●●●

● ●●● ● ●●

●●

●

●●●●●●●●●●●●●

● ●●●

●

●●●

●

●● ●

●●

● ●

●

●●

●●●●●

● ●● ●● ●● ●●● ●●●

●

● ● ●●●

●

●● ● ●●●

●●●

● ● ●●●●

●●●●●

● ●●

●●●●●●●●●●

● ●

●

● ●● ●● ●

●

●

●

● ● ●●● ●●●● ●●●

●●●●●●●●

●

●●

●

●

● ●● ●●●

●●●

●

●●

●●

●●●●●

●

●●●

● ● ●

●●●●●●

● ●●

●●●●●

●

●●

● ●●●●

●●●●●●●●●

●● ●

●●

●

●●

● ●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●● ●●

●

● ●

●●●●●●

● ●

●

● ●●●●

●

● ●●

●●●●●●●●●●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●

● ●●● ●● ●●

●

●

●

● ●● ●●

●●●●

● ●●

●●●●●●●●●●●

● ●●

●●

● ● ●● ●

●●●

●

●

● ●●

●

●●

●

●●

●

● ●● ● ●● ● ●●● ●

●

●●●

●●●●

●● ●●

●

● ●

●

●●●●● ●●●● ●

●●●

●

●●●

●

●●●●●●

● ●● ●

●

● ● ●

●●●●●●

●●

●

● ●

●

●

●●●

●● ● ●●

●

●●● ●

●

●●●●● ●● ●●

●

● ● ●● ●

●

●

●●

● ●

●

●● ●●●

●●

● ● ●●● ●

●●●

● ● ●

●●

● ● ●

●●●●●●●

●

●●●

●

●●

●

●●

●

●●●●●

● ●

●●●

●● ●●●● ● ●●

●

●

●

● ● ●

●

● ●●

●

●

●●●●●

●●

●

●

●●●

●●●● ●●

●●●●●●

● ●

●●●●

● ●●

●●

●●●

●●●●●

●

●●●●●●●●●●

●

●

●

●●●●●●●●

●

●●

●

●

●●

●●●●●●

●●

●

●● ● ● ●

●●●

●

●●●●

●● ●

●●●●

● ● ● ●●

●●●●●●

●

●●●●●●●●●

●

●●

●● ●

●●●●●

●●●

●●

● ●

●●●●

●● ●●●

●

● ● ●●●

●●●

●●

●

● ●●

●

● ●●●● ●● ● ●● ●●

●

● ●●

●●●

● ●●●● ●

●●

●●●● ● ●● ● ● ●●

●

● ●

●●●●

● ●

●

● ●

●●●●●●●

● ●

●

● ● ●● ●●● ●● ●●

●●●●●●●●

●●●● ●● ●● ●●● ●

●●●

● ●

●

●

●●●

●● ●

●●

●

●●●●●●●

●

●

●

●●●

● ●● ●●

●

●● ●● ●●● ●● ●● ● ● ●● ●●

●●

●

●●●●

● ● ●●

●●●

● ●

●

●● ●● ●●● ●●●● ●

●

● ●

●●●

● ●●

●●

● ● ●

●●●

● ●

●

●●● ●●

●

● ● ●● ●● ●

●

●

●

● ●●●● ●

●●●●●●●

●

●●●

●●●

●●●

●

●

● ●

●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●

●●●●●●●●●●●●●●●●●

● ●●● ●●● ●● ● ●●

●

● ●●

●

● ●●● ●

●●●●●●●

●●

●●●●●●

●● ● ●●●

●

●●

●●●●●●

●●● ●●● ●●● ●●● ●●●●

●●●●

●● ● ●● ● ●●●●● ●

●

●● ●●

●

●● ●

●

●●

●

● ●● ●●

●

●●● ●●

●●●●●

● ●●●●● ●●●

●●

●●● ●● ●●●● ●● ● ●

●●●●●●●

● ● ● ● ●●●●● ●●●●●

●●

●

●

● ●●● ●

●●●

● ●● ●●●●

●●●●●●●●●●●

● ●●●● ●●

●

●●●

●

●

●●●

● ● ●● ●●●●

●●●●●●●●●

● ●

●●●

● ●

●●●

●

●●●●●●●●

● ● ●

●●●●●●

●●

●

●

●●●●●

●● ●

●●●●●●●●●●●●●●●●●

●

●

●● ●●● ●● ●

●

●

●●●●●●●

● ● ●

●●●●

●

●●●●●●●●

●●●● ●●

●●●●●●●

●

●●

●

●

●

●●●●●●●●●●●●●

● ●

●●●

● ●

●●●●

●

●

●

●

●

●●●●●●●

●

●●

●

●

● ●

●●

● ●

●●

● ● ●● ●●

●

●

●●●

● ●

●●

●● ●●

●

● ●

●

● ●

●

●●

●

● ●● ●

●●●●●

●

●●

● ● ●●●●●

●●●●

●● ●●● ●● ● ●● ●

●●●●

● ● ●● ● ●● ● ●● ●●●

●

●

●●●●●●

●● ●● ●●● ●● ●

●

●●●●●●● ●●

●

● ●●●● ●

●

●

●●●●●●

●● ●● ●●●● ●●● ●●●●

●

● ● ●●●●●

●

●●

●

●● ●● ● ●●●● ●

●●●●●●●

● ●●●●● ●● ●●●●● ●●

●●

●●●● ●●

●●●●●●●

● ●

●●

● ●●

●●●●●

●

●

● ● ●●●●

●●●●●

● ●

●

●

●●

●●

●●●●●●●

●● ●●●

●●●●●

● ●● ●

●●

● ●●●● ●

●

● ●

●

●

●●●

●● ● ●

●●●

●●●

●●

● ● ●● ●

●

●

●

●

●●●●●

● ●●

●

●

●●●●●●●●●●●

● ● ●

●●●●●●●●●●●●●●

●● ●●● ●

●

●●

●●

●●● ●

●●

●

●●

●● ●

●●●●●●●●

●

●●●●●●

●

●

●

●●●●●●●●

●

●

● ●●● ●● ●

●

●

●

●

●●

● ●

●

● ● ●●●

●●●●●

●● ● ●● ●●●● ●

●

●● ●●● ●

●●●

●●

●

●●

●

● ●● ●

●

● ●●

●●

●●

●●●●●●

● ●

●

●● ●

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precipitation today (1/100 inch)

P
os

iti
ve

 p
re

ci
pi

ta
tio

n
to

m
or

ro
w

?

plot((tomorrow > 0) ~ today, data = snoq, xlab = "Precipitation today (1/100 inch)",
ylab = "Positive precipitation tomorrow?")

rug(snoq$today, side = 1, col = "grey")
data.plot <- data.frame(today = (0:500))
pred.bands(snoq.logistic, data.plot)
snoq.spline <- smooth.spline(x = snoq$today, y = (snoq$tomorrow > 0))
lines(snoq.spline, col = "red")

Figure 11.8 As Figure 11.7, plus a smoothing spline (red).

A single run of this takes about 0.6 seconds on my computer.
Finally, we calculate the distribution of difference in deviances under the null

(that the logistic regression is properly specified), and the corresponding p-value:

254 Logistic Regression

●●● ●● ● ●●● ●●

●●●●●●●

●

●

● ●●●

●●●

●● ●●

●

● ●

●●

●● ●●

●

●

●

● ● ● ●●

●●

● ●●●● ●●

●●

● ●

●●●

● ●●●

●

●

●

●

●

●●

●

● ●● ● ●●

●

●

●●●●

●

●

● ● ●●● ●●

●

● ●●●●●● ● ●

●●●

●● ● ●●●●●

●●

●

●

● ●● ● ●●●●

●

● ●●●●● ●

●

●

●●●

●

●●

● ● ●

●●●●

●

●●●●●●●

●

●

●

●●

● ●

●●

● ●●●

●●●●●●●●●●

●

●

● ●●

●

●

●●●●●●●

● ●

●●●

●

●●●

●

●●●●●●

●

●

● ●

●●●●●●

●

●

●

●●

● ● ●●●

●

● ●

●

●

●●

●

●●

●●

●●●●●●●●●●

●●

●●●●●

● ● ●●● ●● ● ●

●●●

●● ●● ●

●●

● ●●

●●●●●●●●●●

●●

●

●

●

●

●

● ●●● ●●●

●

● ●

●●●

● ●● ●● ●

●

● ● ●● ● ●● ●●● ●● ● ●●●● ●● ●● ●●●●● ●

●●

●● ●

●●●●●●●●

● ● ●●●

●●

●● ● ●

●●●●●

●

●●

●

●

●

●

●

●●●●

● ●

●●

●

●●●

●●●● ●● ●● ●

●

●● ●● ●●● ●● ●●

●●●●●●●●●●●

●●

●●●

● ●●●●●● ● ●●●

●

●● ●●

●

● ●

●

●

●●●

●

●●

●

●●●●

●

●●●●●

● ●●●●

●

●

●●

● ●● ● ●

●●●●●●●●●●●●●●

●

●

●

●●●●●●●

●

●●●

●●

●●●●●●●

●

●●●●●●

● ●

●●

●

●●●●●

●

●

● ●

●●●●●●●●●●●●●●●●

●

●

● ● ●

●●

● ●●●●

●●●●●●●●●

●●

●●●●

●

●●●●●●●●●●●

● ●

●●●●

●

●●●●

●●

●●●●●●●●

● ● ●●●●

●●●●

●

●●●●●

●

●●●

● ●●●●● ●●

●

●

●

● ●●●

●●●●●●

●● ●● ●

●●●●●●●●●

● ● ●● ● ●●

●●●

●

●●●

● ●● ●●● ●●●● ● ●

●

●

●●●

● ●

●

● ●

●

● ●● ●●●●● ● ●● ●● ●●●● ●● ●●●● ●●●● ●●●

●

● ● ●

●

● ● ●● ●●●● ●●

●●●●●●

● ●● ●● ●●●● ● ●● ● ●

●

● ●● ●● ● ● ●●

●●

● ● ● ●●●●● ●

●

●●●●● ● ●●●● ● ●●●● ●●

●

● ●● ●●

●

●●

●

● ●

●

● ● ●●● ●●

●●●●

● ●

●

● ●●

●●●

● ●●● ●●

●●●●●●●●●●

● ●●

●●

●

●●●●

● ●●

●●●●●●●

● ● ●

●

● ●●●●●

●

● ●

●●

● ●●●

●●

●●

●●●●●●●●●

●●

●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●●

●●●●●●

● ● ●

●●●●●

● ● ●

●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●

● ● ●●●

●●●●

●● ● ●●● ●

●

● ●

●

●

●

●●● ●

●●●●

● ● ●● ●●● ●● ●● ●●● ●●

●●●●

●● ● ● ●●

●

● ● ●●● ●●● ●●● ●●● ●●● ●●●

●

● ●●● ● ●●●● ● ●● ● ●●●● ●●● ●● ● ●● ●

●

● ●

●

●● ●● ●● ●●●● ●● ●●● ● ●●

●●●●

●● ●●

●

● ● ●● ●●●

●●

●

●

● ●● ●

●●●

●

●

●

●●

●

●

● ●● ●●● ●●●● ●●●

●●●●●

● ●

●●

● ●●

●

● ●

●●●●●●●●●●●●●●●●●●

●●

●●●●●●●

● ● ●●

●●●

● ●

●

●●

●

●● ●

●

●

●●

● ●

●●●●

● ●

●●

● ● ●

●●●●●

●

●

● ●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

● ●●

●●●●●●●

● ●●●

●●●●●●●●●●●●●

● ●

●

●● ●● ●●●●●●

●●●●

● ●●● ● ●●● ● ●● ●● ●

●●●●

●

●●●●

● ●

●●

●

●

● ● ● ●●●●

●●●●

●●

●●●

● ●●●● ●●

●

● ●● ●●

●●

●

●

●

●●

● ●●● ●●● ●

●●●●

●● ● ●

●●●

●●●●●●● ●●●

●

●

●●●

● ● ● ●●●● ●● ●

●

●● ●● ●● ●

●●●●

●

●

● ●

●

●● ●

●●●

●

●●●●

● ●

●

●

●●●

●● ●

●●●

● ● ●●●

●●●

● ●●●

●●

● ● ●

●●

● ● ●●

●

● ●

●●●●●●●●●

● ●

●●●●

●

●●●●●●●

● ●●● ●●●

●●

●

●

●●●

●

●● ●

●●●●

● ●●

●●●●●●

●●

●●●●●

● ●●

●●●

●● ●

●●

●●

●●●

● ●●

●●●●

● ●● ● ●

●●●●●●●●●●●●●●●●●●

●●●● ●●

●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●

● ●●●●

●●●●●●●●●●

● ●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●

●

● ●●

●●

● ● ●●

●●●

●

●●●

●● ●●● ●●

●●

●

●

●

●●●●●●●●●●●

● ● ● ●●● ●●●● ●

●●●

●

●●

●●● ●●

●●●●

● ●●●●● ●●

●

● ● ● ●●● ●●●● ● ●●●●●● ●●● ●● ●●●● ●●● ● ●●● ●

●●

●

●●

● ●● ●●

●●●

●

●●●

●● ●

●●●●

●

●●●●●

● ●

●●

● ● ●● ●●● ●●● ●

●

● ●

●

● ●●

●

●●● ● ●●

●●

●● ● ●

●

●●

●●●

● ●●

●

●●● ●● ●●

●●●●

●● ● ●●

●●●

●

●●●

● ●●● ●●●●

●

●

●

●

●●●

●

●

●

●

● ● ●

●

●

●

● ●

●●●

● ● ● ●●

●

● ●●

●

● ●

●●●●●●●●●

●

●●●●

●● ●

●●

●

●●●

●

●●●●●●●●●●●●●●

● ●●

●●●●●●●●●●●

●

●●

● ●●● ● ●●

●●

●●

●●●●●●●●●

●

●●●

●

●●

●

●●

● ●

●●●●

● ●● ●●

●●●●●

● ● ● ●

●●●

●

●

● ●●● ●

●●●●●●●

● ● ● ● ●

●●

● ● ●

●

●● ●●

●

● ● ● ●●● ●● ●●● ● ●● ●● ● ●● ● ●● ● ●● ● ●● ●

●

● ●

●●

● ● ●

●●

●

●●

● ●● ●●● ● ●●● ● ●●●●

●●●

● ● ●●●● ● ●● ● ●●●●●●

●●

●

●

●

●●●●●●●●●

● ●●●● ●●● ●● ●

●

● ●● ●●

●●●●●

●

●

● ●●● ●

●

●

●

●

●●●●●●●●●

● ●

●●●

● ●●● ●●●

●

● ●

●

●● ● ●

●●

● ●●●

●

● ●

●●

● ●

●

●●

●●●●

●

●●●●●

● ●

●●●●●●●●

●

●●

●●●

●●

●● ● ●

●

● ● ●● ●

●●●●

●

●

●● ●●

●

● ●

●●●●●

●● ●

●

●●

●●●●●●

●●● ●

●●●●

●

●●●

● ●

●●●●●●●●●●●●●

●

●●●●●●●●●

● ●●

●●

● ●

●

● ●●

●

●

●●

●

●

●

●●

● ●

●●

●●

●

● ●●●●●● ● ●

●

●

●●●●

●●●

●●●●●●●●

●●●●● ● ●

●●●●●●

● ●●●

●●●●●●●

●

●●●●

●● ●●●●●●● ●●●● ●● ●

●●

●

●●

● ●●●

●●●●●●

● ● ●

●

● ●

●

● ●●●

●●●●●

● ●● ●●●

●

● ● ● ●●●

●

●●

●●●●●●

●● ●● ●●

●●

●

●

● ● ●●

●●

●

●

●● ●●

●

● ●●● ●●

●●

●● ●●●●

●●●●

●

●

● ●●

●

● ●● ●

●●

●

●●

● ● ●● ●●●

●●

● ●

●

● ● ●● ●

●●

●● ●● ●●●

●●●●

● ● ●● ● ●●

●

● ●●●● ●● ●●

●

● ●

●

●

●●●●●●●

●

●●

● ● ●●●

●●●●

● ●

●

●●

●

●● ●

●

● ● ●

●

●●●

●●●●●●●●●●●●

●●

●●●●

● ●

●

● ● ● ●● ● ●● ●

●

●

●●

● ●

●●●●●

● ●

●●●●●●●●

● ●●● ●●●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●

● ●●●●

●●

● ●

●●●●●

● ● ●

●●●

● ● ●

●

● ● ● ●●●

●●

●

●●●

● ●

●●●

● ● ●● ●●●●●● ●●

●

●

●

●● ● ●

●●

●

●●

●● ●●●●● ● ●●●●● ● ●●●

●

● ● ●● ●●● ●

●●

●● ●● ●● ●●●●●● ●

●●●●

● ●● ●●● ●●●●●

●

● ●● ●●● ● ●●●● ●

●●●

● ●

●●●●●●

●

●●●●

● ● ●●● ●

●

● ●●

●

● ●● ●●●●● ●● ●● ●●● ● ●●

●●

●●

●●●●●

●●● ●● ●● ●● ●● ● ●●●

●

●●

●

● ●

●●●●●●●●●●●●●

●

●●●●●

●●

●●

●

●

●● ●●

●●

● ● ●

●●●●●●

●

●●●●●●

●

●

●

●●●●●

● ●● ●● ●

●

●

●●

●●●

●

●●● ●●●

●

●

●●●●●●●●●●

● ●

●●●

● ●●

●●●●●●●●●●●●●●●●●●●●

● ●●

●●●●●●●●●●

●

●●●●●●●

●

●

●● ●

●

●

●●●●●●●●●●

●● ●

●

●●

●●

●●

●

● ●●

●

●●● ●● ●

●

●●

●●●●●●●

●

●

● ●●● ●● ●●● ● ●● ●●●● ●● ● ●●●●●● ●

●●●

●

●

● ● ●● ● ● ●

●●●

●●

●●●

●●

●●●

●● ●●

●●

●● ●●●●●● ●● ●●● ●● ●

●●●●●●

●● ● ●●●

●●

● ●

●

●●

●●

●

●●

●

●

● ●●●●

●●●●●●

● ●●

●

● ●● ●●● ● ●●

●●●●●●●

● ●

●

● ● ● ●●●●●●●

●

● ●● ●●● ●●●● ●●●●

●●

● ●●●

●●●●

● ●● ●● ●● ●●●

●●●●

● ●● ●●

●

●

●●●●

● ● ●

●●●●●

●●

●●●●●

●●

●●

●●

●●●

●● ● ●● ● ●

●●●●●●●●●●●●●

● ●●●

●

● ●● ●●

●●●●

● ●

●●●●

● ●●●

●●●●●●

●

●●

●

●

●

●●

● ●●●

●●●●●

●

●●

●

●●●●●●●

● ●

●

● ●●

●

●●

●●●●●

●

●●●●●●●●●●●●●●●●●●●

● ●●

●●●●●●●●

● ●

●●●●●●●

● ●●

●

●●● ●●●

●

● ●

●●●

●● ●●● ●●

●●●

● ● ●● ●

●●

●● ●

●●●●●●●●●

● ● ● ● ●●

●●

● ●●

●●●

●●●●●

●

● ● ●●

●

● ● ●●

●●

● ●●● ●●● ●● ●●●● ●● ●● ● ●●

●●

●●

●●●●

● ●● ●● ●● ●● ● ●

●

●● ●● ●●

●

● ● ●● ●

●●

●

●

● ●●● ● ●●● ●●●● ●●●

●●

● ●● ●●●

●●

●

●●

●

●

● ●●

●●●●●●●

●●●● ● ●●

●

●●

●

●

●

● ●●● ●

●●●●

● ●●

●●

●● ●● ● ●● ●●● ●●●

●

●

●●●●●

●

●●●●●●

●● ●

●●●●●●●●●●

●

●●●

●●

●●

● ●●

●●●

● ●

●

●●●

●●●●●●●●●●●●

●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●

● ●●

●●

● ●●

●●●●●

● ●

●●

● ●●● ●●● ●●● ● ●●

●

●

●●●●●●●●●

● ●●●

●

● ●●●

●

● ● ● ●

●

● ●

●●●

●

●●●

● ●● ● ●●● ●●● ●● ● ●●

●●

●● ●● ●● ●●

●●●

● ●● ● ● ●●●● ● ●●● ●●●

●

●

●●

● ●● ●

●

● ●● ● ●●● ●● ●●

●●

●● ●● ● ●●● ●●●●● ●●●●● ● ●

●

● ● ●●● ●

●

●●●●●

●

● ●●

●●

● ● ●● ●●●

●●

●● ●● ●● ● ● ●●

●

●

●

● ●●● ●● ●

●●●

● ● ●

●

● ●●

●

● ●●● ●● ●●●

●

●●

●●●●●●●

● ●●●● ●

●●●

●

●●●

● ●●● ●

●

● ●● ●

●●●

● ● ●

●●

● ●●● ●

●●

●

●●●

●●● ●

●●●●●

●● ●

●●

● ● ●● ●

●●●

● ●●

●●

●

●●

● ●

●

●

●

●

●●

●● ●●●●

●●●●●●●●●●●●●●●

●

●●●

●●

●●●●●●

●

●●●●●●●●●●●●

●●

●

●

●

●

●●●

●●

●●●

● ●

●

● ● ●●●●

●●●●●

●● ●●●● ●●●●● ●● ●●

●●●●●●●●

●● ●●● ●

●●

●

●●

●

●

● ●● ●● ●●●●

●●●●●

● ●

●●●

●●

●

● ●

●●

●

●

● ● ●● ●●●● ●●

●

●●

●●

● ●

●●

● ●●●● ● ●●● ● ●●●

●

● ●

●

●● ●●

●●●

●

●●

●

●●

●● ●●

●

● ●●

●●

● ●

●●●●●

● ● ●●●●● ● ●

●

●● ●

●

● ● ●●●● ●● ●● ●●●

●●

●● ●

●

●

●

●

●●●●●

●●● ●●● ●●

●●

● ●● ●●

●●●●●●●●

●

●

● ● ●●●●

●●●●●

● ●

●

● ●●● ●●● ●● ● ●●●

●

●

●●●

●

●●●●

●●● ●

●●

● ●● ●●

●

● ●●●● ●●●● ●● ●

●●

● ●

●●●●●●●●●●●●●

● ●●

●●

● ●●

●●●

●

●●●●●●●●●●

● ●

●●

●

●

● ●● ●●● ●●● ●● ●

●●

● ●

●●●●●●

●●

●●●●●●

●

●

●● ● ●●

●●●●●●●●●

● ● ●●

●

● ● ●●

●●

●●

●●

● ●● ●●

●

● ●●● ● ●●

●

●

●●●

●

●

● ●

●

● ●●● ●●●● ●● ● ● ●

●●

●

●

● ●● ● ●

●

●

●●●●

● ● ●●

●●

● ● ●

●●●●

● ●● ●

●●

●● ●

●●

● ● ●●● ●●● ●● ●● ●● ●

●●●●

●●

●●●

● ● ● ●●● ●●●●

●

● ● ●● ●● ●● ●● ●● ●● ●●● ●

●

● ●● ●●

●●

● ●● ●● ● ●●● ●●

●

●●●

●

● ● ●●● ●

●●

●●● ● ●

●●●●

● ●

●

●● ●●●

●

● ●●

●

● ●

●

●

●●●

● ● ●● ●●● ● ●●●● ●●●●●

●●●●●●●

●● ●

●

● ●●● ●

●●●●●

●●

●

●●● ●

●●●●●●●●●●●●●●●●●

●

●

●

●●●

● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●

●●●●●●●●●●●●●●

● ●●

●●

●

●●●●●●●●●

●

●●

●

●

● ●

●●●●●●

● ●●

●●●●

● ●●

●

● ● ●● ●

●●

●

●●

●●

●

● ●

●

●● ●●

●●●

● ●●

●●●●●

● ● ●

●

●●

●●●

● ●

●

● ● ●●

●

●●● ●● ●●● ●

●

● ● ●

●

●

●●

● ●● ● ● ●● ●●●● ●●●

●

● ●

●●●

● ●

●

● ● ●●

●●●

● ●● ●●● ●

●●●●●

● ●●●●

●●●●●●

●

●

●●● ●● ●● ●● ●

●

● ●

●●●

● ●

●●●●

●● ● ●● ●●

●

● ●●●

●●●

● ●

●

●●● ●● ●● ● ●●

●●●●●●●

● ●● ●●

●

●

●●●●

●

●●●

●●●

●●

● ●● ● ●●●● ●●

●●

●

●

● ●●●●● ●●

●●

●

●●●

● ● ●●●

●●●

●

●

●● ●● ●

●●●●●●

●●●

●●●●●●●●●●

● ●●

●●●

● ●

●

● ●●

●●●

●

●●●●●●

●

●●●●●●●●●●●●●●

●

●

● ● ●●●

●●●●

● ●

●●●

●● ●●●

●●●●

●

●

● ●

●●●●●●●●●●●

● ●

●

● ●

●●●●●●●

●

●●●●

● ● ●

●●●

●

●●

● ● ● ● ●● ●● ●● ●

●

● ●

●●●●●●

● ●

●●●●●●●

● ●●

●

● ● ● ●●●●● ●●

●

● ●●

●●

● ● ●●

●

● ● ●● ●●● ●

●●

●●

●●

● ● ● ●●

●

●

●

● ●●●

●●

●● ●●

●

● ●●

●

●●●● ● ●

●●

●● ●

●

●

●●●●●●

●

●●●●●

●● ●● ● ●

●

●●

●●

●

●●

●●●● ●● ● ●

●●●●

● ●●●● ●

●●●●●●●●

●

●●

●

●

●●●● ●

●

● ●

●

● ●● ● ● ●●●

●

● ● ●● ●●●● ●●●● ●●●● ●●

●

●●●●

●

●

●

● ●●● ●

●

● ●●●●●

●

●

●●●●●●●●●●●●●●●●●●●

●● ●● ●

●●

●●

●●

●

●●●●●●

●

●

● ●●● ●●● ●● ●

●●●●●

●●●

●

●●

●●●

●

●●●●●

●●

●

●

●●●●●●

●

●●●●

●

●●●●●

●●

●●●●●●

● ●

●●

● ●●

●●●●●●

●●

●●●●●●●

●

●●

● ●●●

●●●●●

●●

●●●●●

●

●●●●

● ●●

●●●●

●

●

● ●

●●

● ●

●

● ●● ●● ●●

●

● ●●

●

● ●

●

●

●

● ●●●● ●● ●● ●●● ●● ●●● ● ●● ● ●

●

●

●

●●●●● ● ●● ●

●●●●

● ● ●● ●● ● ●● ●●● ●● ●

●

● ● ● ●●●● ● ●●● ●

●●

● ●● ●● ●● ●●●

●

● ●

●

● ●● ●● ●

●●

● ●

●●●●

● ● ●● ●● ●●●

●

●

●●●

●

●●●

● ● ● ●●● ●●

●

● ●● ●●●● ●

●

● ●

●

●● ●

●●

● ●●

●●●●

● ●

●

● ●

●●●

● ●● ●

●

●● ●

●●●

● ●●

●●

●● ●

●

●●●

●

●●● ●

●●

● ●

●

●●

●●●●●●

● ●●

●

● ●

●●●●●●

●

●●

● ●●● ●

●●

● ●●●

●

● ●● ●

●●●●●●●

●

●●●●

●

●●●●●

●●

●●●●

● ● ●

●

●

●

● ●

●●●●●●●●

●● ● ●● ●

●●●●●●●●

●

●●●●

●

●●●●●●

●●● ● ●●

●●

●

●●●●

● ● ●

●●●●

●●

●

●

●

● ●

●

●

●●

●

●●●

● ● ●●

●

●

●●●

● ●●

●●

●● ●●●

●●●●●●

● ●

●●●

●●

●

● ●● ●

●●

● ●● ●● ●●

●●●●●●●●

● ● ● ●● ●

●

● ● ●●

●●●●

●● ● ●

●

●

●

● ●

●●

●● ●● ● ●●

●

● ●●●●● ● ● ●●● ●●●

●●●●

●

●●

●●●●● ● ●● ●●● ● ●● ●

●●●

●● ●●●● ●

●

●● ● ●●●

●●

●

●

● ●

●●●

● ●●

●●●●●●●●●●●●●●●

●

●●●●

●●

●●

●●

●

● ●●

●

● ●

●●

● ●●

●

● ●

●●

●

●●

● ●● ● ●●

●

●●

●●●

●

●

● ● ●●● ● ●

●●●●●●●●

● ● ●

●

● ●●

●

●

●●●●●●

● ●

●●●●●●●●●●

● ●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●

● ●

●●●●

●

●●●●●●

● ●

●●●●●

● ●

●

● ●

●●●●●

● ●

●●

● ●

●

●

●

● ●

●●●●●●●●●●●●●●

● ● ● ●

●●●●●●●●●

●

●●●●●●●

● ● ●

●●

●

●●

● ●● ●

●

● ●● ●

●●●●●●

● ●

●

●

●●

● ● ●●

●●

●●● ●

●

●●

●●●

● ● ●●● ●● ● ●●

●●●

● ●● ● ●● ● ●

●

●

●●

●

●●●●●●

● ● ●● ●

●●

● ● ●●●● ● ●●● ●●●

●

● ●● ●●

●

●●●

●●●●

●

●

●

●

● ●● ●●

●●●

● ● ●●●●

●

● ●

●

●

●

●●

●●

●

●●

●

●

● ●● ●●

●

●

●

● ● ●● ●●●●● ●● ●●● ●● ●

●●●●●●●●

●

●

● ●

●●●●●●

● ● ● ●●●

●●●●●

● ● ●

●●

● ●

●●

●

●●●●●●

● ●

●●

●

●

●●● ●●

●●●●

● ●

●●●

● ●

●●●●

● ●●●

●●●●●

● ●

●

●

●●●●●

●

●

●

●

● ●

●●

●●

●●

● ● ● ●● ●●

●●

●●

●●

● ●●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●

●

●●

●

●●●●●●●●●●

●●

●●

●

●●

●●

●●●●

●

●●

●

●●●●

● ●

●●●

●●●

●●●

●

●●●●

●

●

● ● ●● ●

●●

● ●

●

●

●●●●●●

● ●●

●

● ●● ●● ●●● ●●●●●●●

●

●

●

● ●● ●●● ●● ● ●●

●

● ● ● ● ●

●

● ●●●● ●

●●

●● ●

●

●● ● ●● ●● ●● ●●●

●●

● ●● ● ●●●●● ● ●●●●

●

● ●● ●●

●●

● ●●●

●●●

●● ●● ● ● ●●●● ●

●●●●●●

●

●●

● ●●●

●●●●

●

●

●●

●

●

●

● ●●●

●

● ●● ●●●●●● ●

●●●●●

● ●

●●

●●

●●

● ● ●●● ●● ●● ●

●●

●●●● ●●

●●●●●●●●

●

●

● ●●

●●●●●●●●●●●

●

●●●

●

●

●

●●

● ●

●●●●●●●●●●●●●●●●

●●

●

●

●

● ●

●●●●●●●●●●●

●

●●●●●●●●●●●

● ●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●

● ●

●●●●●●●●●

●

●●●●●●●

● ●● ●● ●●●●●

●

● ●●●

●●●●

●

●

● ● ●●● ●

●

●

●

● ●●

●●●●●●

● ● ●● ●

●●

● ●

●●

●

●●●

●●● ●

●●

● ●●● ● ●●●

●

● ●●● ●●

●●●

●

●●●●

● ● ●● ●●●●●● ● ●

●

●●●

●

● ●● ●

●

● ●●●●●● ● ●●

●●

● ●●

●●

●● ●●● ● ●

●

●

●●●●●●●●●●

● ● ●●● ●● ●●

●●●●●●

● ● ●●●

●●

●● ●●● ● ●●

●●●●

●● ●● ●● ●● ●

●

● ●

●

● ● ●

●●●

● ● ●●● ●●

●

● ●●

●●

● ●

●

●

●●●

●

●●●

● ●●

●●●●●

●

●

●

●●●●

● ●●

●

●●●

●

●

●

●●● ● ●

●●●●●

●●●●●●

●●●●●

●

●

● ●

●●●

● ● ●

●●●●●●●●●●●●

●●

●

● ●

●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●

●●

●

●●●●●

●

● ● ●● ●●●●

●●

●

●●●●●●●●●

●

●

● ● ●●● ●●●

●

●

●●●●●●●●●●●

● ●● ●

●

● ●●● ●● ●

●

●

●

● ●●●

●●

●

●●●

● ●

●●

●

●●●●

●● ●● ● ●●

●

● ●●●

●

● ● ● ●●●●

●●

● ●●● ● ●●

●

● ●● ● ●

●

● ●● ●●●

●●

●●● ●

●

● ●●

●

●● ●

●

● ● ● ●●●●● ●●●●● ●● ●

●

●●

●●

●

●

●

●

● ●● ●●● ●●

●

●● ● ●● ●●●● ●●

●●●●●●

●

●

●● ●

●●●

● ●● ●●

●●●●●●●

●● ●●●

●●

● ●

●●●●●●

● ● ●●●● ●●●

●

● ●

●

● ●

●●

●● ●● ●

●

●● ●

●●●

● ●●● ●●

●●●●●●●●●●●●●●

●●

●●●●

●

●

● ● ●● ●

●●●●●●●●●●●●●

●

●●●●●●●

●● ● ●●●●●●

●

● ●● ●

●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●● ●

●●●●●●●●

●

●●●●●●●●●

●●●●

●

●

●●

● ●●

●●●●●●●

●●

●●

● ● ●● ●● ● ●●●

●

●● ● ●●●

●●●●

● ●● ●

●●●●●●●●

●

●●

●

●

● ●●● ●●●

●●

●● ● ●● ●●

●●

●●

●●

● ●●

●●

● ●

●

●

●●●●●●●●●

● ●

●●●

● ●●● ●● ●●● ●● ●●● ● ●

●

●● ●

●

●

●●●●

●

●●●●

● ● ●●● ● ●●●● ● ●●● ● ●● ●● ●

●●●

●

●

●●

●

●

●●●●●●

●● ●● ●● ●

●●●

●

●●●●●●●

●●

●

●● ●

●●●

● ● ●● ●● ●

●●●

●

●

●

●

●

●

● ● ●

●●

● ●●●● ● ●●● ●●

●●●●●●

● ● ●

●●

● ● ●●●

●

● ●

●●●●●●●

● ●●

●

●

●●●

●

●●●●●

● ●

●●●

●●●

●●●●●●●●●

●● ●●

●●

●●

●●●●●●●●●●●

●● ●

●●●●●●●●●●●●●●●●

●

●●●●●●●●

● ● ●

●●●●●

● ●

●●●

●●

●●●

●●

●●●●●●●●●●●●●●

●

●●

●

●

●● ●●● ●●●

●●●●●●

●● ●●

●

●●●

●●●●●●●●●●

● ●

●●

● ●

●

● ●

●●●●

●● ●● ●●●●

●●●●●●●●●●●

● ●● ● ●●● ●

●●

● ●●●● ●

●

●● ●●● ●

●●

● ● ●● ●● ●●

●●

● ●

●●

● ●● ●

●

● ●

●

●●

●●

●● ● ●● ●

●●●●●●

● ● ●●●●●●● ●●● ●●● ● ●● ●●

●●

● ●

●

●●● ● ●

●●●

● ●●● ●● ●●●● ●

●●

● ●● ●●●●

●

● ●●●● ●

●

● ● ●●●● ●● ●

●●●●

● ● ●●● ●● ● ●

●

●●

●●●

● ●● ●●●●

●●

●

●●●●

●

●

●● ●

●●

●

●●●●●●

●●

●●●●●●

● ●

●

● ●

●

● ● ●

●●●

●●●

●●

● ●●●●● ●

●

●● ●

●

● ●

●

● ●

●●●

● ●●

●

●●● ●

●

● ● ●

●●●●●

● ●

●

●● ●●

●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●● ●

●●●●●●●

● ●● ●

●●

● ●

●

●● ●●

●●●●●●●●●●●

● ● ●●● ●

●●●●

●

●●●

●

●●●●●

● ●

●●●

● ● ●

●

● ●

●

● ● ●

●●

● ● ●●● ●●

●

● ●● ● ●● ●●●

●

●●●

●

●

●

● ● ●●●● ●

●●

●●● ●●

●

● ●● ●●● ●●● ● ●●● ●●●●●

●●

●●● ●● ●

●

●●●● ● ●● ●●●●

●

● ●● ● ● ●●● ●●

●●●●●●

●

●●●

● ●● ●●

●

● ● ●●● ● ●●● ●

●

● ●● ●● ● ●●●● ●● ● ●

●

●● ● ● ● ●

●

●

●●

●●

●

●●

●

●

●

●

●●●●

● ●

●

●● ● ●●● ●● ●● ●●● ●● ●●● ●●

●

● ●

●

● ● ●

●●●●●●●

●●

●●●●●●

● ● ● ●

●●

●

●

●

●●●●●●●●●●●●●●

● ● ●●● ●

●

●●

●●●●

● ●●● ●●●

●●●●●●●●●●●

● ● ●●● ●

●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●

●

● ●●●

●●●●●●●●●●●●●●●

●●

●

●

●●●●

●

●●

● ● ● ● ●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●

●

●

●

● ●●

●●

● ●● ● ●● ●

●

● ●

●●●●●●●

●●

●●●

●● ●● ●●

●●

●● ●●

●●●●●●●

●

●●●

● ●●● ●● ● ●● ●● ●● ●●● ● ●

●

● ●

●●●●

● ● ● ●●● ●●● ●●

●●

● ●●

●●●

● ●

●●

● ●

●●●●●●

● ●

●●

●●● ●

●●●●●●

● ●●

●

● ●

●

●●●

●●

●● ●

●

● ●

●●

● ●● ●●●

●●●

● ●●

●

● ●●●

●●●

●●

●●●●●●●

●● ●●● ●

●

●

●●●●

●●

●●●●

●●

●●

●● ● ●

●●●●●●●●

●●

●

●●● ●●

●●●●●●

●

●●●●

● ●●

●●

● ●●●● ● ●●

●●●●

● ● ●

●●●

●●

●●●

●●●

●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●

●●

●●●●●●●●

●

●

●

●●●●●●

●

●●●●

●●●●

●●●●●

● ●

●●●

●●

●●●●

● ●● ●●● ●●

●●●●●●

●

●●●

● ●

●●●

● ● ●●

●

●

●●●●

● ●●● ●

●

●● ●●● ●

●●●

●

●

●

●

● ●● ●● ●● ●●

●

●● ●●● ● ●●● ● ●●●● ●●

●

● ● ●

●●

● ● ● ●● ● ●●

●

● ● ●● ●●

●

● ● ●●●

●●●●●●●●●

●●● ● ● ● ●●●● ●● ● ●● ● ● ●●●● ●●●● ●●●

●●●●●●

● ● ●● ●● ● ●

●

● ●

●

● ●●● ●● ●●● ● ●●● ● ●●●

●

● ●● ●

●●●●●●●

● ●●● ●●●●● ●● ● ●●● ● ●●●

●●

● ●

●

● ●●●●●●●●●

●●●

●

●●●

● ●

●●

● ●●● ●●●●●●●

●●●

● ● ●

●●●

●

●●

●

●

● ●●● ●

●●●●●●●●●●●●●●●●●

●●

●●●

●

●●

● ●

●●●

● ●● ●●

●●

●● ● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●

●●

●

●●●●●●●●●●●●

●

●●●

● ●●

●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●

●

●●●●●●●●

● ●

●●●●●

●● ●

●

● ●●

●●

●● ●● ●●●● ●

●●●●

● ●● ● ●●●● ●

●●●●●

● ●● ●●●

●

● ● ● ●●●● ●●●●● ● ●●

●

● ●●

●●

● ●● ●●● ● ●●● ●● ●● ●● ●●● ●●●

●●

● ●●● ●●

●●●●●●●●●

● ●● ● ● ● ●●●●

●

●● ● ●

●●

●

●

●● ● ●● ●●

●●●

●●

●●

●●

●

●● ● ● ●●●●●

●●

●●

●●

● ●

●

● ●

●

●

●●●●

●

●●●

●●

●

●

●

● ●

●●

● ● ●●●●

●●●●

● ●●●

●●●●

●

●●●

●● ●● ● ●

●

● ● ●

●●

●

●●●●●●●

● ●●

●●●●●●●●

● ●● ●●

●

●

●

●● ●● ● ●●

●

●●●

●●●●●●●●●●●

● ●●●

●●●●●●●●●

●●

●●●●●●●

●

●

●

●●●●●●●

●● ● ●●

●

●● ●

●

●

●

● ● ●●●●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

● ● ●● ●●●● ●

●●●

● ●● ● ●●● ● ●

●

● ● ●● ● ● ●●● ●●

●

● ● ●●

●

●●

●

● ●●●●●

●●●

● ●● ● ●●

●

● ● ● ● ●●

●

● ●

●

●

●●

● ●● ●

●

●●

●●

● ● ● ●● ●●● ● ●

●●●

● ●●●● ●●● ●●● ●●●●

●●●

● ● ●

●●

●

●●●●●

●●

●●●●●

●

●●

● ●●● ● ●● ●●

●●

●● ● ●●● ●●●

●●●●

●●

●●

●

●

●●

●

●●● ●●

●

● ●● ●●● ●●

●

● ●

●●●●

●

●

● ●

●

● ●

●

●● ●

●

● ●● ●●●● ●●

●●●●●

● ●

●

● ●

●●●●

●

●●

●

●●

●

●●●●●

●●● ●●●●● ●● ●●

●●●●

●●

●●

● ●

●

●● ●

●●●●

●

●

●● ●

●●●

●● ●●● ●

●●

● ●

●●●●●●●●●●

●●

●●●●●●●●●●●●

●

●●●

● ● ●

●●●●

● ● ●

●

●

●

●

●●●●

● ●

●●●●●●●●●●

● ●

●●●●

●

●

● ●

●●●●●●

●●●

●●●●●●●

●●

●

●

●●●●

●●●

●●●●●●●●●●●

●● ●

●●

●

●

● ●

●●●●●●

●●

●●●●

●● ●● ● ●● ●●

●

●● ●

●●●●●●●

●

●●

● ●●

●

●

●

● ●●

●●

● ●

●

●●● ●

●

● ●●●

●●●

●●●

●●●●●●

●● ●●●● ● ●●●●●

●●●●●●●●

● ●●

●●●●●●

●● ●●●

●●

●● ●

●●

● ●●

●

● ● ●● ● ●●

●●●

● ● ●●●● ●●●●

●

●● ●●●● ●●●● ●●

●●

●

●●●●●●●

● ●●

●

● ● ●● ●●

●●●

●

●●●

●

●●●●●

●● ●●●

●

●

●●

● ●

●

●● ●●●

●●

●

●

● ● ●● ●● ●

●

● ●●

●

● ●

●●

●

●●●●●●●●●●●●

●●●

●●●

●

●●●●

● ●●● ●

●●●●

●●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●● ●●●● ●

●●

● ●

●●●

●

●●●●●●●●

●

●

●● ●

●

● ● ●●

●

● ● ● ●

●●●●●

●

●

● ●

●●

●

●●

●

●●

●

●

●●●

●

● ●

●●

● ● ●● ●

●

● ●● ● ●●● ●● ●● ●●●●

●●●●

● ● ●● ●●● ●● ● ●●●● ●●●

●

● ●●● ●● ●● ●

●●●●

●●

●●●

● ●●

●●

● ● ●● ●● ●● ●●

●

● ●

●

●

●●

●● ●●

●●

● ●●●

●●

● ● ●●

●

● ●● ●●

●●●●

● ●

●

● ●

●●●

● ●● ●

●

● ●

●●

● ●●● ●●

●

●● ●● ●

●●●●●●●

●● ● ●●● ●●●●●● ●● ●

●●●●

●

●●

●● ● ●● ●●●● ●

●●

● ● ●●

●●●

● ● ●

●●●●

● ● ●● ● ●●●●

●●●

●●

●●

●● ●● ●

●●●●●●●●●

● ●●

●

● ●● ●

●●●●●●●●

●

●●●●●

● ●●●

●●●●●

● ●●

●●●

● ●

●●●●●●●●●

●

●●●●●●●●●●●●●●

●● ●

●

● ●●

●

● ●

●

●● ● ●●

●

●

●

●

●

● ●●● ● ●●

●

● ●●●

●●

● ● ●●●

●

● ● ● ●

●

● ●

●

●●●

●●●●●●●●

●

●●●●●●●●●

●●

●●

●

●●●●

●

●●●●

● ●

●●●

● ●

●●●●●●

● ●●●

●●●

●

●●●●

● ●● ● ●●● ●

●●●

● ●● ●

●

●

●●●

● ●●● ● ●●

●●

●

●●●●●●●●●●●●●

● ●●●

●

●●●

●

●● ●

●●

● ●

●

●●

●●●●●

● ●● ●● ●● ●●● ●●●

●

● ● ●●●

●

●● ● ●●●

●●●

● ● ●●●●

●●●●●

● ●●

●●●●●●●●●●

● ●

●

● ●● ●● ●

●

●

●

● ● ●●● ●●●● ●●●

●●●●●●●●

●

●●

●

●

● ●● ●●●

●●●

●

●●

●●

●●●●●

●

●●●

● ● ●

●●●●●●

● ●●

●●●●●

●

●●

● ●●●●

●●●●●●●●●

●● ●

●●

●

●●

● ●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●● ●●

●

● ●

●●●●●●

● ●

●

● ●●●●

●

● ●●

●●●●●●●●●●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●

● ●●● ●● ●●

●

●

●

● ●● ●●

●●●●

● ●●

●●●●●●●●●●●

● ●●

●●

● ● ●● ●

●●●

●

●

● ●●

●

●●

●

●●

●

● ●● ● ●● ● ●●● ●

●

●●●

●●●●

●● ●●

●

● ●

●

●●●●● ●●●● ●

●●●

●

●●●

●

●●●●●●

● ●● ●

●

● ● ●

●●●●●●

●●

●

● ●

●

●

●●●

●● ● ●●

●

●●● ●

●

●●●●● ●● ●●

●

● ● ●● ●

●

●

●●

● ●

●

●● ●●●

●●

● ● ●●● ●

●●●

● ● ●

●●

● ● ●

●●●●●●●

●

●●●

●

●●

●

●●

●

●●●●●

● ●

●●●

●● ●●●● ● ●●

●

●

●

● ● ●

●

● ●●

●

●

●●●●●

●●

●

●

●●●

●●●● ●●

●●●●●●

● ●

●●●●

● ●●

●●

●●●

●●●●●

●

●●●●●●●●●●

●

●

●

●●●●●●●●

●

●●

●

●

●●

●●●●●●

●●

●

●● ● ● ●

●●●

●

●●●●

●● ●

●●●●

● ● ● ●●

●●●●●●

●

●●●●●●●●●

●

●●

●● ●

●●●●●

●●●

●●

● ●

●●●●

●● ●●●

●

● ● ●●●

●●●

●●

●

● ●●

●

● ●●●● ●● ● ●● ●●

●

● ●●

●●●

● ●●●● ●

●●

●●●● ● ●● ● ● ●●

●

● ●

●●●●

● ●

●

● ●

●●●●●●●

● ●

●

● ● ●● ●●● ●● ●●

●●●●●●●●

●●●● ●● ●● ●●● ●

●●●

● ●

●

●

●●●

●● ●

●●

●

●●●●●●●

●

●

●

●●●

● ●● ●●

●

●● ●● ●●● ●● ●● ● ● ●● ●●

●●

●

●●●●

● ● ●●

●●●

● ●

●

●● ●● ●●● ●●●● ●

●

● ●

●●●

● ●●

●●

● ● ●

●●●

● ●

●

●●● ●●

●

● ● ●● ●● ●

●

●

●

● ●●●● ●

●●●●●●●

●

●●●

●●●

●●●

●

●

● ●

●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●

●●●●●●●●●●●●●●●●●

● ●●● ●●● ●● ● ●●

●

● ●●

●

● ●●● ●

●●●●●●●

●●

●●●●●●

●● ● ●●●

●

●●

●●●●●●

●●● ●●● ●●● ●●● ●●●●

●●●●

●● ● ●● ● ●●●●● ●

●

●● ●●

●

●● ●

●

●●

●

● ●● ●●

●

●●● ●●

●●●●●

● ●●●●● ●●●

●●

●●● ●● ●●●● ●● ● ●

●●●●●●●

● ● ● ● ●●●●● ●●●●●

●●

●

●

● ●●● ●

●●●

● ●● ●●●●

●●●●●●●●●●●

● ●●●● ●●

●

●●●

●

●

●●●

● ● ●● ●●●●

●●●●●●●●●

● ●

●●●

● ●

●●●

●

●●●●●●●●

● ● ●

●●●●●●

●●

●

●

●●●●●

●● ●

●●●●●●●●●●●●●●●●●

●

●

●● ●●● ●● ●

●

●

●●●●●●●

● ● ●

●●●●

●

●●●●●●●●

●●●● ●●

●●●●●●●

●

●●

●

●

●

●●●●●●●●●●●●●

● ●

●●●

● ●

●●●●

●

●

●

●

●

●●●●●●●

●

●●

●

●

● ●

●●

● ●

●●

● ● ●● ●●

●

●

●●●

● ●

●●

●● ●●

●

● ●

●

● ●

●

●●

●

● ●● ●

●●●●●

●

●●

● ● ●●●●●

●●●●

●● ●●● ●● ● ●● ●

●●●●

● ● ●● ● ●● ● ●● ●●●

●

●

●●●●●●

●● ●● ●●● ●● ●

●

●●●●●●● ●●

●

● ●●●● ●

●

●

●●●●●●

●● ●● ●●●● ●●● ●●●●

●

● ● ●●●●●

●

●●

●

●● ●● ● ●●●● ●

●●●●●●●

● ●●●●● ●● ●●●●● ●●

●●

●●●● ●●

●●●●●●●

● ●

●●

● ●●

●●●●●

●

●

● ● ●●●●

●●●●●

● ●

●

●

●●

●●

●●●●●●●

●● ●●●

●●●●●

● ●● ●

●●

● ●●●● ●

●

● ●

●

●

●●●

●● ● ●

●●●

●●●

●●

● ● ●● ●

●

●

●

●

●●●●●

● ●●

●

●

●●●●●●●●●●●

● ● ●

●●●●●●●●●●●●●●

●● ●●● ●

●

●●

●●

●●● ●

●●

●

●●

●● ●

●●●●●●●●

●

●●●●●●

●

●

●

●●●●●●●●

●

●

● ●●● ●● ●

●

●

●

●

●●

● ●

●

● ● ●●●

●●●●●

●● ● ●● ●●●● ●

●

●● ●●● ●

●●●

●●

●

●●

●

● ●● ●

●

● ●●

●●

●●

●●●●●●

● ●

●

●● ●

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precipitation today (1/100 inch)

P
os

iti
ve

 p
re

ci
pi

ta
tio

n
to

m
or

ro
w

?

library(mgcv)
plot((tomorrow > 0) ~ today, data = snoq, xlab = "Precipitation today (1/100 inch)",

ylab = "Positive precipitation tomorrow?")
rug(snoq$today, side = 1, col = "grey")
pred.bands(snoq.logistic, data.plot)
lines(snoq.spline, col = "red")
snoq.gam <- gam((tomorrow > 0) ~ s(today), data = snoq, family = binomial)
pred.bands(snoq.gam, data.plot, "blue")

Figure 11.9 As Figure 11.8, but with the addition of a generalized additive
model (blue line) and its confidence limits (dashed blue lines).

diff.dev.obs <- snoq.logistic$deviance - snoq.gam$deviance
null.dist.of.diff.dev <- replicate(100, diff.dev())
p.value <- (1 + sum(null.dist.of.diff.dev > diff.dev.obs))/(1 + length(null.dist.of.diff.dev))

11.7 Weather Forecasting in Snoqualmie Falls 255

Using a thousand replicates takes about 67 seconds, or a bit over a minute; it
gives a p-value of < 1/101. (A longer run of 1000 replicates, not shown, gives a
p-values of < 10−3.)

Having detected that there is a problem with the logistic model, we can ask
where it lies. We could just use the GAM, but it’s more interesting to try to
diagnose what’s going on.

In this respect Figure 11.9 is actually a little misleading, because it leads the
eye to emphasize the disagreement between the models at large X, when actually
there are very few data points there, and so even large differences in predicted
probabilities there contribute little to the over-all likelihood difference. What is
actually more important is what happens at X = 0, which contains a very large
number of observations (about 47% of all observations), and which we have reason
to think is a special value anyway.

Let’s try introducing a dummy variable for X = 0 into the logistic regression,
and see what happens. It will be convenient to augment the data frame with an
extra column, recording 1 whenever X = 0 and 0 otherwise.

snoq2 <- data.frame(snoq, dry = ifelse(snoq$today == 0, 1, 0))
snoq2.logistic <- glm((tomorrow > 0) ~ today + dry, data = snoq2, family = binomial)
snoq2.gam <- gam((tomorrow > 0) ~ s(today) + dry, data = snoq2, family = binomial)

Notice that I allow the GAM to treat zero as a special value as well, by giving
it access to that dummy variable. In principle, with enough data it can decide
whether or not that is useful on its own, but since we have guessed that it is, we
might as well include it. The new GLM has a deviance of 1.4954796× 104, lower
than even the GAM before, and the new GAM has a deviance of 1.4841671×104.
I will leave repeating the specification test as an exercise. Figure 11.10 shows
the data and the two new models. These are extremely close to each other at
low percipitation, and diverge thereafter. The new GAM is the smoothest model
we’ve seen yet, which suggests that before the it was being under-smoothed to
help capture the special value at zero.

Let’s turn now to looking at calibration. The actual fraction of no-precipitation
days which are followed by precipitation is

signif(mean(snoq$tomorrow[snoq$today == 0] > 0), 3)
[1] 0.287

What does the new logistic model predict?

signif(predict(snoq2.logistic, newdata = data.frame(today = 0, dry = 1), type = "response"),
3)

1
0.287

This should not be surprising — we’ve given the model a special parameter
dedicated to getting this one probability exactly right! The hope however is that
this will change the predictions made on days with precipitation so that they are
better.

Looking at a histogram of fitted values (hist(fitted(snoq2.logistic)))

256 Logistic Regression

●●● ●● ● ●●● ●●

●●●●●●●

●

●

● ●●●

●●●

●● ●●

●

● ●

●●

●● ●●

●

●

●

● ● ● ●●

●●

● ●●●● ●●

●●

● ●

●●●

● ●●●

●

●

●

●

●

●●

●

● ●● ● ●●

●

●

●●●●

●

●

● ● ●●● ●●

●

● ●●●●●● ● ●

●●●

●● ● ●●●●●

●●

●

●

● ●● ● ●●●●

●

● ●●●●● ●

●

●

●●●

●

●●

● ● ●

●●●●

●

●●●●●●●

●

●

●

●●

● ●

●●

● ●●●

●●●●●●●●●●

●

●

● ●●

●

●

●●●●●●●

● ●

●●●

●

●●●

●

●●●●●●

●

●

● ●

●●●●●●

●

●

●

●●

● ● ●●●

●

● ●

●

●

●●

●

●●

●●

●●●●●●●●●●

●●

●●●●●

● ● ●●● ●● ● ●

●●●

●● ●● ●

●●

● ●●

●●●●●●●●●●

●●

●

●

●

●

●

● ●●● ●●●

●

● ●

●●●

● ●● ●● ●

●

● ● ●● ● ●● ●●● ●● ● ●●●● ●● ●● ●●●●● ●

●●

●● ●

●●●●●●●●

● ● ●●●

●●

●● ● ●

●●●●●

●

●●

●

●

●

●

●

●●●●

● ●

●●

●

●●●

●●●● ●● ●● ●

●

●● ●● ●●● ●● ●●

●●●●●●●●●●●

●●

●●●

● ●●●●●● ● ●●●

●

●● ●●

●

● ●

●

●

●●●

●

●●

●

●●●●

●

●●●●●

● ●●●●

●

●

●●

● ●● ● ●

●●●●●●●●●●●●●●

●

●

●

●●●●●●●

●

●●●

●●

●●●●●●●

●

●●●●●●

● ●

●●

●

●●●●●

●

●

● ●

●●●●●●●●●●●●●●●●

●

●

● ● ●

●●

● ●●●●

●●●●●●●●●

●●

●●●●

●

●●●●●●●●●●●

● ●

●●●●

●

●●●●

●●

●●●●●●●●

● ● ●●●●

●●●●

●

●●●●●

●

●●●

● ●●●●● ●●

●

●

●

● ●●●

●●●●●●

●● ●● ●

●●●●●●●●●

● ● ●● ● ●●

●●●

●

●●●

● ●● ●●● ●●●● ● ●

●

●

●●●

● ●

●

● ●

●

● ●● ●●●●● ● ●● ●● ●●●● ●● ●●●● ●●●● ●●●

●

● ● ●

●

● ● ●● ●●●● ●●

●●●●●●

● ●● ●● ●●●● ● ●● ● ●

●

● ●● ●● ● ● ●●

●●

● ● ● ●●●●● ●

●

●●●●● ● ●●●● ● ●●●● ●●

●

● ●● ●●

●

●●

●

● ●

●

● ● ●●● ●●

●●●●

● ●

●

● ●●

●●●

● ●●● ●●

●●●●●●●●●●

● ●●

●●

●

●●●●

● ●●

●●●●●●●

● ● ●

●

● ●●●●●

●

● ●

●●

● ●●●

●●

●●

●●●●●●●●●

●●

●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●●

●●●●●●

● ● ●

●●●●●

● ● ●

●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●

● ● ●●●

●●●●

●● ● ●●● ●

●

● ●

●

●

●

●●● ●

●●●●

● ● ●● ●●● ●● ●● ●●● ●●

●●●●

●● ● ● ●●

●

● ● ●●● ●●● ●●● ●●● ●●● ●●●

●

● ●●● ● ●●●● ● ●● ● ●●●● ●●● ●● ● ●● ●

●

● ●

●

●● ●● ●● ●●●● ●● ●●● ● ●●

●●●●

●● ●●

●

● ● ●● ●●●

●●

●

●

● ●● ●

●●●

●

●

●

●●

●

●

● ●● ●●● ●●●● ●●●

●●●●●

● ●

●●

● ●●

●

● ●

●●●●●●●●●●●●●●●●●●

●●

●●●●●●●

● ● ●●

●●●

● ●

●

●●

●

●● ●

●

●

●●

● ●

●●●●

● ●

●●

● ● ●

●●●●●

●

●

● ●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

● ●●

●●●●●●●

● ●●●

●●●●●●●●●●●●●

● ●

●

●● ●● ●●●●●●

●●●●

● ●●● ● ●●● ● ●● ●● ●

●●●●

●

●●●●

● ●

●●

●

●

● ● ● ●●●●

●●●●

●●

●●●

● ●●●● ●●

●

● ●● ●●

●●

●

●

●

●●

● ●●● ●●● ●

●●●●

●● ● ●

●●●

●●●●●●● ●●●

●

●

●●●

● ● ● ●●●● ●● ●

●

●● ●● ●● ●

●●●●

●

●

● ●

●

●● ●

●●●

●

●●●●

● ●

●

●

●●●

●● ●

●●●

● ● ●●●

●●●

● ●●●

●●

● ● ●

●●

● ● ●●

●

● ●

●●●●●●●●●

● ●

●●●●

●

●●●●●●●

● ●●● ●●●

●●

●

●

●●●

●

●● ●

●●●●

● ●●

●●●●●●

●●

●●●●●

● ●●

●●●

●● ●

●●

●●

●●●

● ●●

●●●●

● ●● ● ●

●●●●●●●●●●●●●●●●●●

●●●● ●●

●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●

● ●●●●

●●●●●●●●●●

● ●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●

●

● ●●

●●

● ● ●●

●●●

●

●●●

●● ●●● ●●

●●

●

●

●

●●●●●●●●●●●

● ● ● ●●● ●●●● ●

●●●

●

●●

●●● ●●

●●●●

● ●●●●● ●●

●

● ● ● ●●● ●●●● ● ●●●●●● ●●● ●● ●●●● ●●● ● ●●● ●

●●

●

●●

● ●● ●●

●●●

●

●●●

●● ●

●●●●

●

●●●●●

● ●

●●

● ● ●● ●●● ●●● ●

●

● ●

●

● ●●

●

●●● ● ●●

●●

●● ● ●

●

●●

●●●

● ●●

●

●●● ●● ●●

●●●●

●● ● ●●

●●●

●

●●●

● ●●● ●●●●

●

●

●

●

●●●

●

●

●

●

● ● ●

●

●

●

● ●

●●●

● ● ● ●●

●

● ●●

●

● ●

●●●●●●●●●

●

●●●●

●● ●

●●

●

●●●

●

●●●●●●●●●●●●●●

● ●●

●●●●●●●●●●●

●

●●

● ●●● ● ●●

●●

●●

●●●●●●●●●

●

●●●

●

●●

●

●●

● ●

●●●●

● ●● ●●

●●●●●

● ● ● ●

●●●

●

●

● ●●● ●

●●●●●●●

● ● ● ● ●

●●

● ● ●

●

●● ●●

●

● ● ● ●●● ●● ●●● ● ●● ●● ● ●● ● ●● ● ●● ● ●● ●

●

● ●

●●

● ● ●

●●

●

●●

● ●● ●●● ● ●●● ● ●●●●

●●●

● ● ●●●● ● ●● ● ●●●●●●

●●

●

●

●

●●●●●●●●●

● ●●●● ●●● ●● ●

●

● ●● ●●

●●●●●

●

●

● ●●● ●

●

●

●

●

●●●●●●●●●

● ●

●●●

● ●●● ●●●

●

● ●

●

●● ● ●

●●

● ●●●

●

● ●

●●

● ●

●

●●

●●●●

●

●●●●●

● ●

●●●●●●●●

●

●●

●●●

●●

●● ● ●

●

● ● ●● ●

●●●●

●

●

●● ●●

●

● ●

●●●●●

●● ●

●

●●

●●●●●●

●●● ●

●●●●

●

●●●

● ●

●●●●●●●●●●●●●

●

●●●●●●●●●

● ●●

●●

● ●

●

● ●●

●

●

●●

●

●

●

●●

● ●

●●

●●

●

● ●●●●●● ● ●

●

●

●●●●

●●●

●●●●●●●●

●●●●● ● ●

●●●●●●

● ●●●

●●●●●●●

●

●●●●

●● ●●●●●●● ●●●● ●● ●

●●

●

●●

● ●●●

●●●●●●

● ● ●

●

● ●

●

● ●●●

●●●●●

● ●● ●●●

●

● ● ● ●●●

●

●●

●●●●●●

●● ●● ●●

●●

●

●

● ● ●●

●●

●

●

●● ●●

●

● ●●● ●●

●●

●● ●●●●

●●●●

●

●

● ●●

●

● ●● ●

●●

●

●●

● ● ●● ●●●

●●

● ●

●

● ● ●● ●

●●

●● ●● ●●●

●●●●

● ● ●● ● ●●

●

● ●●●● ●● ●●

●

● ●

●

●

●●●●●●●

●

●●

● ● ●●●

●●●●

● ●

●

●●

●

●● ●

●

● ● ●

●

●●●

●●●●●●●●●●●●

●●

●●●●

● ●

●

● ● ● ●● ● ●● ●

●

●

●●

● ●

●●●●●

● ●

●●●●●●●●

● ●●● ●●●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●

● ●●●●

●●

● ●

●●●●●

● ● ●

●●●

● ● ●

●

● ● ● ●●●

●●

●

●●●

● ●

●●●

● ● ●● ●●●●●● ●●

●

●

●

●● ● ●

●●

●

●●

●● ●●●●● ● ●●●●● ● ●●●

●

● ● ●● ●●● ●

●●

●● ●● ●● ●●●●●● ●

●●●●

● ●● ●●● ●●●●●

●

● ●● ●●● ● ●●●● ●

●●●

● ●

●●●●●●

●

●●●●

● ● ●●● ●

●

● ●●

●

● ●● ●●●●● ●● ●● ●●● ● ●●

●●

●●

●●●●●

●●● ●● ●● ●● ●● ● ●●●

●

●●

●

● ●

●●●●●●●●●●●●●

●

●●●●●

●●

●●

●

●

●● ●●

●●

● ● ●

●●●●●●

●

●●●●●●

●

●

●

●●●●●

● ●● ●● ●

●

●

●●

●●●

●

●●● ●●●

●

●

●●●●●●●●●●

● ●

●●●

● ●●

●●●●●●●●●●●●●●●●●●●●

● ●●

●●●●●●●●●●

●

●●●●●●●

●

●

●● ●

●

●

●●●●●●●●●●

●● ●

●

●●

●●

●●

●

● ●●

●

●●● ●● ●

●

●●

●●●●●●●

●

●

● ●●● ●● ●●● ● ●● ●●●● ●● ● ●●●●●● ●

●●●

●

●

● ● ●● ● ● ●

●●●

●●

●●●

●●

●●●

●● ●●

●●

●● ●●●●●● ●● ●●● ●● ●

●●●●●●

●● ● ●●●

●●

● ●

●

●●

●●

●

●●

●

●

● ●●●●

●●●●●●

● ●●

●

● ●● ●●● ● ●●

●●●●●●●

● ●

●

● ● ● ●●●●●●●

●

● ●● ●●● ●●●● ●●●●

●●

● ●●●

●●●●

● ●● ●● ●● ●●●

●●●●

● ●● ●●

●

●

●●●●

● ● ●

●●●●●

●●

●●●●●

●●

●●

●●

●●●

●● ● ●● ● ●

●●●●●●●●●●●●●

● ●●●

●

● ●● ●●

●●●●

● ●

●●●●

● ●●●

●●●●●●

●

●●

●

●

●

●●

● ●●●

●●●●●

●

●●

●

●●●●●●●

● ●

●

● ●●

●

●●

●●●●●

●

●●●●●●●●●●●●●●●●●●●

● ●●

●●●●●●●●

● ●

●●●●●●●

● ●●

●

●●● ●●●

●

● ●

●●●

●● ●●● ●●

●●●

● ● ●● ●

●●

●● ●

●●●●●●●●●

● ● ● ● ●●

●●

● ●●

●●●

●●●●●

●

● ● ●●

●

● ● ●●

●●

● ●●● ●●● ●● ●●●● ●● ●● ● ●●

●●

●●

●●●●

● ●● ●● ●● ●● ● ●

●

●● ●● ●●

●

● ● ●● ●

●●

●

●

● ●●● ● ●●● ●●●● ●●●

●●

● ●● ●●●

●●

●

●●

●

●

● ●●

●●●●●●●

●●●● ● ●●

●

●●

●

●

●

● ●●● ●

●●●●

● ●●

●●

●● ●● ● ●● ●●● ●●●

●

●

●●●●●

●

●●●●●●

●● ●

●●●●●●●●●●

●

●●●

●●

●●

● ●●

●●●

● ●

●

●●●

●●●●●●●●●●●●

●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●

● ●●

●●

● ●●

●●●●●

● ●

●●

● ●●● ●●● ●●● ● ●●

●

●

●●●●●●●●●

● ●●●

●

● ●●●

●

● ● ● ●

●

● ●

●●●

●

●●●

● ●● ● ●●● ●●● ●● ● ●●

●●

●● ●● ●● ●●

●●●

● ●● ● ● ●●●● ● ●●● ●●●

●

●

●●

● ●● ●

●

● ●● ● ●●● ●● ●●

●●

●● ●● ● ●●● ●●●●● ●●●●● ● ●

●

● ● ●●● ●

●

●●●●●

●

● ●●

●●

● ● ●● ●●●

●●

●● ●● ●● ● ● ●●

●

●

●

● ●●● ●● ●

●●●

● ● ●

●

● ●●

●

● ●●● ●● ●●●

●

●●

●●●●●●●

● ●●●● ●

●●●

●

●●●

● ●●● ●

●

● ●● ●

●●●

● ● ●

●●

● ●●● ●

●●

●

●●●

●●● ●

●●●●●

●● ●

●●

● ● ●● ●

●●●

● ●●

●●

●

●●

● ●

●

●

●

●

●●

●● ●●●●

●●●●●●●●●●●●●●●

●

●●●

●●

●●●●●●

●

●●●●●●●●●●●●

●●

●

●

●

●

●●●

●●

●●●

● ●

●

● ● ●●●●

●●●●●

●● ●●●● ●●●●● ●● ●●

●●●●●●●●

●● ●●● ●

●●

●

●●

●

●

● ●● ●● ●●●●

●●●●●

● ●

●●●

●●

●

● ●

●●

●

●

● ● ●● ●●●● ●●

●

●●

●●

● ●

●●

● ●●●● ● ●●● ● ●●●

●

● ●

●

●● ●●

●●●

●

●●

●

●●

●● ●●

●

● ●●

●●

● ●

●●●●●

● ● ●●●●● ● ●

●

●● ●

●

● ● ●●●● ●● ●● ●●●

●●

●● ●

●

●

●

●

●●●●●

●●● ●●● ●●

●●

● ●● ●●

●●●●●●●●

●

●

● ● ●●●●

●●●●●

● ●

●

● ●●● ●●● ●● ● ●●●

●

●

●●●

●

●●●●

●●● ●

●●

● ●● ●●

●

● ●●●● ●●●● ●● ●

●●

● ●

●●●●●●●●●●●●●

● ●●

●●

● ●●

●●●

●

●●●●●●●●●●

● ●

●●

●

●

● ●● ●●● ●●● ●● ●

●●

● ●

●●●●●●

●●

●●●●●●

●

●

●● ● ●●

●●●●●●●●●

● ● ●●

●

● ● ●●

●●

●●

●●

● ●● ●●

●

● ●●● ● ●●

●

●

●●●

●

●

● ●

●

● ●●● ●●●● ●● ● ● ●

●●

●

●

● ●● ● ●

●

●

●●●●

● ● ●●

●●

● ● ●

●●●●

● ●● ●

●●

●● ●

●●

● ● ●●● ●●● ●● ●● ●● ●

●●●●

●●

●●●

● ● ● ●●● ●●●●

●

● ● ●● ●● ●● ●● ●● ●● ●●● ●

●

● ●● ●●

●●

● ●● ●● ● ●●● ●●

●

●●●

●

● ● ●●● ●

●●

●●● ● ●

●●●●

● ●

●

●● ●●●

●

● ●●

●

● ●

●

●

●●●

● ● ●● ●●● ● ●●●● ●●●●●

●●●●●●●

●● ●

●

● ●●● ●

●●●●●

●●

●

●●● ●

●●●●●●●●●●●●●●●●●

●

●

●

●●●

● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●

●●●●●●●●●●●●●●

● ●●

●●

●

●●●●●●●●●

●

●●

●

●

● ●

●●●●●●

● ●●

●●●●

● ●●

●

● ● ●● ●

●●

●

●●

●●

●

● ●

●

●● ●●

●●●

● ●●

●●●●●

● ● ●

●

●●

●●●

● ●

●

● ● ●●

●

●●● ●● ●●● ●

●

● ● ●

●

●

●●

● ●● ● ● ●● ●●●● ●●●

●

● ●

●●●

● ●

●

● ● ●●

●●●

● ●● ●●● ●

●●●●●

● ●●●●

●●●●●●

●

●

●●● ●● ●● ●● ●

●

● ●

●●●

● ●

●●●●

●● ● ●● ●●

●

● ●●●

●●●

● ●

●

●●● ●● ●● ● ●●

●●●●●●●

● ●● ●●

●

●

●●●●

●

●●●

●●●

●●

● ●● ● ●●●● ●●

●●

●

●

● ●●●●● ●●

●●

●

●●●

● ● ●●●

●●●

●

●

●● ●● ●

●●●●●●

●●●

●●●●●●●●●●

● ●●

●●●

● ●

●

● ●●

●●●

●

●●●●●●

●

●●●●●●●●●●●●●●

●

●

● ● ●●●

●●●●

● ●

●●●

●● ●●●

●●●●

●

●

● ●

●●●●●●●●●●●

● ●

●

● ●

●●●●●●●

●

●●●●

● ● ●

●●●

●

●●

● ● ● ● ●● ●● ●● ●

●

● ●

●●●●●●

● ●

●●●●●●●

● ●●

●

● ● ● ●●●●● ●●

●

● ●●

●●

● ● ●●

●

● ● ●● ●●● ●

●●

●●

●●

● ● ● ●●

●

●

●

● ●●●

●●

●● ●●

●

● ●●

●

●●●● ● ●

●●

●● ●

●

●

●●●●●●

●

●●●●●

●● ●● ● ●

●

●●

●●

●

●●

●●●● ●● ● ●

●●●●

● ●●●● ●

●●●●●●●●

●

●●

●

●

●●●● ●

●

● ●

●

● ●● ● ● ●●●

●

● ● ●● ●●●● ●●●● ●●●● ●●

●

●●●●

●

●

●

● ●●● ●

●

● ●●●●●

●

●

●●●●●●●●●●●●●●●●●●●

●● ●● ●

●●

●●

●●

●

●●●●●●

●

●

● ●●● ●●● ●● ●

●●●●●

●●●

●

●●

●●●

●

●●●●●

●●

●

●

●●●●●●

●

●●●●

●

●●●●●

●●

●●●●●●

● ●

●●

● ●●

●●●●●●

●●

●●●●●●●

●

●●

● ●●●

●●●●●

●●

●●●●●

●

●●●●

● ●●

●●●●

●

●

● ●

●●

● ●

●

● ●● ●● ●●

●

● ●●

●

● ●

●

●

●

● ●●●● ●● ●● ●●● ●● ●●● ● ●● ● ●

●

●

●

●●●●● ● ●● ●

●●●●

● ● ●● ●● ● ●● ●●● ●● ●

●

● ● ● ●●●● ● ●●● ●

●●

● ●● ●● ●● ●●●

●

● ●

●

● ●● ●● ●

●●

● ●

●●●●

● ● ●● ●● ●●●

●

●

●●●

●

●●●

● ● ● ●●● ●●

●

● ●● ●●●● ●

●

● ●

●

●● ●

●●

● ●●

●●●●

● ●

●

● ●

●●●

● ●● ●

●

●● ●

●●●

● ●●

●●

●● ●

●

●●●

●

●●● ●

●●

● ●

●

●●

●●●●●●

● ●●

●

● ●

●●●●●●

●

●●

● ●●● ●

●●

● ●●●

●

● ●● ●

●●●●●●●

●

●●●●

●

●●●●●

●●

●●●●

● ● ●

●

●

●

● ●

●●●●●●●●

●● ● ●● ●

●●●●●●●●

●

●●●●

●

●●●●●●

●●● ● ●●

●●

●

●●●●

● ● ●

●●●●

●●

●

●

●

● ●

●

●

●●

●

●●●

● ● ●●

●

●

●●●

● ●●

●●

●● ●●●

●●●●●●

● ●

●●●

●●

●

● ●● ●

●●

● ●● ●● ●●

●●●●●●●●

● ● ● ●● ●

●

● ● ●●

●●●●

●● ● ●

●

●

●

● ●

●●

●● ●● ● ●●

●

● ●●●●● ● ● ●●● ●●●

●●●●

●

●●

●●●●● ● ●● ●●● ● ●● ●

●●●

●● ●●●● ●

●

●● ● ●●●

●●

●

●

● ●

●●●

● ●●

●●●●●●●●●●●●●●●

●

●●●●

●●

●●

●●

●

● ●●

●

● ●

●●

● ●●

●

● ●

●●

●

●●

● ●● ● ●●

●

●●

●●●

●

●

● ● ●●● ● ●

●●●●●●●●

● ● ●

●

● ●●

●

●

●●●●●●

● ●

●●●●●●●●●●

● ●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●

● ●

●●●●

●

●●●●●●

● ●

●●●●●

● ●

●

● ●

●●●●●

● ●

●●

● ●

●

●

●

● ●

●●●●●●●●●●●●●●

● ● ● ●

●●●●●●●●●

●

●●●●●●●

● ● ●

●●

●

●●

● ●● ●

●

● ●● ●

●●●●●●

● ●

●

●

●●

● ● ●●

●●

●●● ●

●

●●

●●●

● ● ●●● ●● ● ●●

●●●

● ●● ● ●● ● ●

●

●

●●

●

●●●●●●

● ● ●● ●

●●

● ● ●●●● ● ●●● ●●●

●

● ●● ●●

●

●●●

●●●●

●

●

●

●

● ●● ●●

●●●

● ● ●●●●

●

● ●

●

●

●

●●

●●

●

●●

●

●

● ●● ●●

●

●

●

● ● ●● ●●●●● ●● ●●● ●● ●

●●●●●●●●

●

●

● ●

●●●●●●

● ● ● ●●●

●●●●●

● ● ●

●●

● ●

●●

●

●●●●●●

● ●

●●

●

●

●●● ●●

●●●●

● ●

●●●

● ●

●●●●

● ●●●

●●●●●

● ●

●

●

●●●●●

●

●

●

●

● ●

●●

●●

●●

● ● ● ●● ●●

●●

●●

●●

● ●●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●

●

●●

●

●●●●●●●●●●

●●

●●

●

●●

●●

●●●●

●

●●

●

●●●●

● ●

●●●

●●●

●●●

●

●●●●

●

●

● ● ●● ●

●●

● ●

●

●

●●●●●●

● ●●

●

● ●● ●● ●●● ●●●●●●●

●

●

●

● ●● ●●● ●● ● ●●

●

● ● ● ● ●

●

● ●●●● ●

●●

●● ●

●

●● ● ●● ●● ●● ●●●

●●

● ●● ● ●●●●● ● ●●●●

●

● ●● ●●

●●

● ●●●

●●●

●● ●● ● ● ●●●● ●

●●●●●●

●

●●

● ●●●

●●●●

●

●

●●

●

●

●

● ●●●

●

● ●● ●●●●●● ●

●●●●●

● ●

●●

●●

●●

● ● ●●● ●● ●● ●

●●

●●●● ●●

●●●●●●●●

●

●

● ●●

●●●●●●●●●●●

●

●●●

●

●

●

●●

● ●

●●●●●●●●●●●●●●●●

●●

●

●

●

● ●

●●●●●●●●●●●

●

●●●●●●●●●●●

● ●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●

● ●

●●●●●●●●●

●

●●●●●●●

● ●● ●● ●●●●●

●

● ●●●

●●●●

●

●

● ● ●●● ●

●

●

●

● ●●

●●●●●●

● ● ●● ●

●●

● ●

●●

●

●●●

●●● ●

●●

● ●●● ● ●●●

●

● ●●● ●●

●●●

●

●●●●

● ● ●● ●●●●●● ● ●

●

●●●

●

● ●● ●

●

● ●●●●●● ● ●●

●●

● ●●

●●

●● ●●● ● ●

●

●

●●●●●●●●●●

● ● ●●● ●● ●●

●●●●●●

● ● ●●●

●●

●● ●●● ● ●●

●●●●

●● ●● ●● ●● ●

●

● ●

●

● ● ●

●●●

● ● ●●● ●●

●

● ●●

●●

● ●

●

●

●●●

●

●●●

● ●●

●●●●●

●

●

●

●●●●

● ●●

●

●●●

●

●

●

●●● ● ●

●●●●●

●●●●●●

●●●●●

●

●

● ●

●●●

● ● ●

●●●●●●●●●●●●

●●

●

● ●

●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●

●●

●

●●●●●

●

● ● ●● ●●●●

●●

●

●●●●●●●●●

●

●

● ● ●●● ●●●

●

●

●●●●●●●●●●●

● ●● ●

●

● ●●● ●● ●

●

●

●

● ●●●

●●

●

●●●

● ●

●●

●

●●●●

●● ●● ● ●●

●

● ●●●

●

● ● ● ●●●●

●●

● ●●● ● ●●

●

● ●● ● ●

●

● ●● ●●●

●●

●●● ●

●

● ●●

●

●● ●

●

● ● ● ●●●●● ●●●●● ●● ●

●

●●

●●

●

●

●

●

● ●● ●●● ●●

●

●● ● ●● ●●●● ●●

●●●●●●

●

●

●● ●

●●●

● ●● ●●

●●●●●●●

●● ●●●

●●

● ●

●●●●●●

● ● ●●●● ●●●

●

● ●

●

● ●

●●

●● ●● ●

●

●● ●

●●●

● ●●● ●●

●●●●●●●●●●●●●●

●●

●●●●

●

●

● ● ●● ●

●●●●●●●●●●●●●

●

●●●●●●●

●● ● ●●●●●●

●

● ●● ●

●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●● ●

●●●●●●●●

●

●●●●●●●●●

●●●●

●

●

●●

● ●●

●●●●●●●

●●

●●

● ● ●● ●● ● ●●●

●

●● ● ●●●

●●●●

● ●● ●

●●●●●●●●

●

●●

●

●

● ●●● ●●●

●●

●● ● ●● ●●

●●

●●

●●

● ●●

●●

● ●

●

●

●●●●●●●●●

● ●

●●●

● ●●● ●● ●●● ●● ●●● ● ●

●

●● ●

●

●

●●●●

●

●●●●

● ● ●●● ● ●●●● ● ●●● ● ●● ●● ●

●●●

●

●

●●

●

●

●●●●●●

●● ●● ●● ●

●●●

●

●●●●●●●

●●

●

●● ●

●●●

● ● ●● ●● ●

●●●

●

●

●

●

●

●

● ● ●

●●

● ●●●● ● ●●● ●●

●●●●●●

● ● ●

●●

● ● ●●●

●

● ●

●●●●●●●

● ●●

●

●

●●●

●

●●●●●

● ●

●●●

●●●

●●●●●●●●●

●● ●●

●●

●●

●●●●●●●●●●●

●● ●

●●●●●●●●●●●●●●●●

●

●●●●●●●●

● ● ●

●●●●●

● ●

●●●

●●

●●●

●●

●●●●●●●●●●●●●●

●

●●

●

●

●● ●●● ●●●

●●●●●●

●● ●●

●

●●●

●●●●●●●●●●

● ●

●●

● ●

●

● ●

●●●●

●● ●● ●●●●

●●●●●●●●●●●

● ●● ● ●●● ●

●●

● ●●●● ●

●

●● ●●● ●

●●

● ● ●● ●● ●●

●●

● ●

●●

● ●● ●

●

● ●

●

●●

●●

●● ● ●● ●

●●●●●●

● ● ●●●●●●● ●●● ●●● ● ●● ●●

●●

● ●

●

●●● ● ●

●●●

● ●●● ●● ●●●● ●

●●

● ●● ●●●●

●

● ●●●● ●

●

● ● ●●●● ●● ●

●●●●

● ● ●●● ●● ● ●

●

●●

●●●

● ●● ●●●●

●●

●

●●●●

●

●

●● ●

●●

●

●●●●●●

●●

●●●●●●

● ●

●

● ●

●

● ● ●

●●●

●●●

●●

● ●●●●● ●

●

●● ●

●

● ●

●

● ●

●●●

● ●●

●

●●● ●

●

● ● ●

●●●●●

● ●

●

●● ●●

●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●● ●

●●●●●●●

● ●● ●

●●

● ●

●

●● ●●

●●●●●●●●●●●

● ● ●●● ●

●●●●

●

●●●

●

●●●●●

● ●

●●●

● ● ●

●

● ●

●

● ● ●

●●

● ● ●●● ●●

●

● ●● ● ●● ●●●

●

●●●

●

●

●

● ● ●●●● ●

●●

●●● ●●

●

● ●● ●●● ●●● ● ●●● ●●●●●

●●

●●● ●● ●

●

●●●● ● ●● ●●●●

●

● ●● ● ● ●●● ●●

●●●●●●

●

●●●

● ●● ●●

●

● ● ●●● ● ●●● ●

●

● ●● ●● ● ●●●● ●● ● ●

●

●● ● ● ● ●

●

●

●●

●●

●

●●

●

●

●

●

●●●●

● ●

●

●● ● ●●● ●● ●● ●●● ●● ●●● ●●

●

● ●

●

● ● ●

●●●●●●●

●●

●●●●●●

● ● ● ●

●●

●

●

●

●●●●●●●●●●●●●●

● ● ●●● ●

●

●●

●●●●

● ●●● ●●●

●●●●●●●●●●●

● ● ●●● ●

●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●

●

● ●●●

●●●●●●●●●●●●●●●

●●

●

●

●●●●

●

●●

● ● ● ● ●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●

●

●

●

● ●●

●●

● ●● ● ●● ●

●

● ●

●●●●●●●

●●

●●●

●● ●● ●●

●●

●● ●●

●●●●●●●

●

●●●

● ●●● ●● ● ●● ●● ●● ●●● ● ●

●

● ●

●●●●

● ● ● ●●● ●●● ●●

●●

● ●●

●●●

● ●

●●

● ●

●●●●●●

● ●

●●

●●● ●

●●●●●●

● ●●

●

● ●

●

●●●

●●

●● ●

●

● ●

●●

● ●● ●●●

●●●

● ●●

●

● ●●●

●●●

●●

●●●●●●●

●● ●●● ●

●

●

●●●●

●●

●●●●

●●

●●

●● ● ●

●●●●●●●●

●●

●

●●● ●●

●●●●●●

●

●●●●

● ●●

●●

● ●●●● ● ●●

●●●●

● ● ●

●●●

●●

●●●

●●●

●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●

●●

●●●●●●●●

●

●

●

●●●●●●

●

●●●●

●●●●

●●●●●

● ●

●●●

●●

●●●●

● ●● ●●● ●●

●●●●●●

●

●●●

● ●

●●●

● ● ●●

●

●

●●●●

● ●●● ●

●

●● ●●● ●

●●●

●

●

●

●

● ●● ●● ●● ●●

●

●● ●●● ● ●●● ● ●●●● ●●

●

● ● ●

●●

● ● ● ●● ● ●●

●

● ● ●● ●●

●

● ● ●●●

●●●●●●●●●

●●● ● ● ● ●●●● ●● ● ●● ● ● ●●●● ●●●● ●●●

●●●●●●

● ● ●● ●● ● ●

●

● ●

●

● ●●● ●● ●●● ● ●●● ● ●●●

●

● ●● ●

●●●●●●●

● ●●● ●●●●● ●● ● ●●● ● ●●●

●●

● ●

●

● ●●●●●●●●●

●●●

●

●●●

● ●

●●

● ●●● ●●●●●●●

●●●

● ● ●

●●●

●

●●

●

●

● ●●● ●

●●●●●●●●●●●●●●●●●

●●

●●●

●

●●

● ●

●●●

● ●● ●●

●●

●● ● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●

●●

●

●●●●●●●●●●●●

●

●●●

● ●●

●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●

●

●●●●●●●●

● ●

●●●●●

●● ●

●

● ●●

●●

●● ●● ●●●● ●

●●●●

● ●● ● ●●●● ●

●●●●●

● ●● ●●●

●

● ● ● ●●●● ●●●●● ● ●●

●

● ●●

●●

● ●● ●●● ● ●●● ●● ●● ●● ●●● ●●●

●●

● ●●● ●●

●●●●●●●●●

● ●● ● ● ● ●●●●

●

●● ● ●

●●

●

●

●● ● ●● ●●

●●●

●●

●●

●●

●

●● ● ● ●●●●●

●●

●●

●●

● ●

●

● ●

●

●

●●●●

●

●●●

●●

●

●

●

● ●

●●

● ● ●●●●

●●●●

● ●●●

●●●●

●

●●●

●● ●● ● ●

●

● ● ●

●●

●

●●●●●●●

● ●●

●●●●●●●●

● ●● ●●

●

●

●

●● ●● ● ●●

●

●●●

●●●●●●●●●●●

● ●●●

●●●●●●●●●

●●

●●●●●●●

●

●

●

●●●●●●●

●● ● ●●

●

●● ●

●

●

●

● ● ●●●●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

● ● ●● ●●●● ●

●●●

● ●● ● ●●● ● ●

●

● ● ●● ● ● ●●● ●●

●

● ● ●●

●

●●

●

● ●●●●●

●●●

● ●● ● ●●

●

● ● ● ● ●●

●

● ●

●

●

●●

● ●● ●

●

●●

●●

● ● ● ●● ●●● ● ●

●●●

● ●●●● ●●● ●●● ●●●●

●●●

● ● ●

●●

●

●●●●●

●●

●●●●●

●

●●

● ●●● ● ●● ●●

●●

●● ● ●●● ●●●

●●●●

●●

●●

●

●

●●

●

●●● ●●

●

● ●● ●●● ●●

●

● ●

●●●●

●

●

● ●

●

● ●

●

●● ●

●

● ●● ●●●● ●●

●●●●●

● ●

●

● ●

●●●●

●

●●

●

●●

●

●●●●●

●●● ●●●●● ●● ●●

●●●●

●●

●●

● ●

●

●● ●

●●●●

●

●

●● ●

●●●

●● ●●● ●

●●

● ●

●●●●●●●●●●

●●

●●●●●●●●●●●●

●

●●●

● ● ●

●●●●

● ● ●

●

●

●

●

●●●●

● ●

●●●●●●●●●●

● ●

●●●●

●

●

● ●

●●●●●●

●●●

●●●●●●●

●●

●

●

●●●●

●●●

●●●●●●●●●●●

●● ●

●●

●

●

● ●

●●●●●●

●●

●●●●

●● ●● ● ●● ●●

●

●● ●

●●●●●●●

●

●●

● ●●

●

●

●

● ●●

●●

● ●

●

●●● ●

●

● ●●●

●●●

●●●

●●●●●●

●● ●●●● ● ●●●●●

●●●●●●●●

● ●●

●●●●●●

●● ●●●

●●

●● ●

●●

● ●●

●

● ● ●● ● ●●

●●●

● ● ●●●● ●●●●

●

●● ●●●● ●●●● ●●

●●

●

●●●●●●●

● ●●

●

● ● ●● ●●

●●●

●

●●●

●

●●●●●

●● ●●●

●

●

●●

● ●

●

●● ●●●

●●

●

●

● ● ●● ●● ●

●

● ●●

●

● ●

●●

●

●●●●●●●●●●●●

●●●

●●●

●

●●●●

● ●●● ●

●●●●

●●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●● ●●●● ●

●●

● ●

●●●

●

●●●●●●●●

●

●

●● ●

●

● ● ●●

●

● ● ● ●

●●●●●

●

●

● ●

●●

●

●●

●

●●

●

●

●●●

●

● ●

●●

● ● ●● ●

●

● ●● ● ●●● ●● ●● ●●●●

●●●●

● ● ●● ●●● ●● ● ●●●● ●●●

●

● ●●● ●● ●● ●

●●●●

●●

●●●

● ●●

●●

● ● ●● ●● ●● ●●

●

● ●

●

●

●●

●● ●●

●●

● ●●●

●●

● ● ●●

●

● ●● ●●

●●●●

● ●

●

● ●

●●●

● ●● ●

●

● ●

●●

● ●●● ●●

●

●● ●● ●

●●●●●●●

●● ● ●●● ●●●●●● ●● ●

●●●●

●

●●

●● ● ●● ●●●● ●

●●

● ● ●●

●●●

● ● ●

●●●●

● ● ●● ● ●●●●

●●●

●●

●●

●● ●● ●

●●●●●●●●●

● ●●

●

● ●● ●

●●●●●●●●

●

●●●●●

● ●●●

●●●●●

● ●●

●●●

● ●

●●●●●●●●●

●

●●●●●●●●●●●●●●

●● ●

●

● ●●

●

● ●

●

●● ● ●●

●

●

●

●

●

● ●●● ● ●●

●

● ●●●

●●

● ● ●●●

●

● ● ● ●

●

● ●

●

●●●

●●●●●●●●

●

●●●●●●●●●

●●

●●

●

●●●●

●

●●●●

● ●

●●●

● ●

●●●●●●

● ●●●

●●●

●

●●●●

● ●● ● ●●● ●

●●●

● ●● ●

●

●

●●●

● ●●● ● ●●

●●

●

●●●●●●●●●●●●●

● ●●●

●

●●●

●

●● ●

●●

● ●

●

●●

●●●●●

● ●● ●● ●● ●●● ●●●

●

● ● ●●●

●

●● ● ●●●

●●●

● ● ●●●●

●●●●●

● ●●

●●●●●●●●●●

● ●

●

● ●● ●● ●

●

●

●

● ● ●●● ●●●● ●●●

●●●●●●●●

●

●●

●

●

● ●● ●●●

●●●

●

●●

●●

●●●●●

●

●●●

● ● ●

●●●●●●

● ●●

●●●●●

●

●●

● ●●●●

●●●●●●●●●

●● ●

●●

●

●●

● ●● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●● ●●

●

● ●

●●●●●●

● ●

●

● ●●●●

●

● ●●

●●●●●●●●●●

●

●●●●●●

●

●

●

●●●●●●●●●●●●●

● ●●● ●● ●●

●

●

●

● ●● ●●

●●●●

● ●●

●●●●●●●●●●●

● ●●

●●

● ● ●● ●

●●●

●

●

● ●●

●

●●

●

●●

●

● ●● ● ●● ● ●●● ●

●

●●●

●●●●

●● ●●

●

● ●

●

●●●●● ●●●● ●

●●●

●

●●●

●

●●●●●●

● ●● ●

●

● ● ●

●●●●●●

●●

●

● ●

●

●

●●●

●● ● ●●

●

●●● ●

●

●●●●● ●● ●●

●

● ● ●● ●

●

●

●●

● ●

●

●● ●●●

●●

● ● ●●● ●

●●●

● ● ●

●●

● ● ●

●●●●●●●

●

●●●

●

●●

●

●●

●

●●●●●

● ●

●●●

●● ●●●● ● ●●

●

●

●

● ● ●

●

● ●●

●

●

●●●●●

●●

●

●

●●●

●●●● ●●

●●●●●●

● ●

●●●●

● ●●

●●

●●●

●●●●●

●

●●●●●●●●●●

●

●

●

●●●●●●●●

●

●●

●

●

●●

●●●●●●

●●

●

●● ● ● ●

●●●

●

●●●●

●● ●

●●●●

● ● ● ●●

●●●●●●

●

●●●●●●●●●

●

●●

●● ●

●●●●●

●●●

●●

● ●

●●●●

●● ●●●

●

● ● ●●●

●●●

●●

●

● ●●

●

● ●●●● ●● ● ●● ●●

●

● ●●

●●●

● ●●●● ●

●●

●●●● ● ●● ● ● ●●

●

● ●

●●●●

● ●

●

● ●

●●●●●●●

● ●

●

● ● ●● ●●● ●● ●●

●●●●●●●●

●●●● ●● ●● ●●● ●

●●●

● ●

●

●

●●●

●● ●

●●

●

●●●●●●●

●

●

●

●●●

● ●● ●●

●

●● ●● ●●● ●● ●● ● ● ●● ●●

●●

●

●●●●

● ● ●●

●●●

● ●

●

●● ●● ●●● ●●●● ●

●

● ●

●●●

● ●●

●●

● ● ●

●●●

● ●

●

●●● ●●

●

● ● ●● ●● ●

●

●

●

● ●●●● ●

●●●●●●●

●

●●●

●●●

●●●

●

●

● ●

●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●

●●●●●●●●●●●●●●●●●

● ●●● ●●● ●● ● ●●

●

● ●●

●

● ●●● ●

●●●●●●●

●●

●●●●●●

●● ● ●●●

●

●●

●●●●●●

●●● ●●● ●●● ●●● ●●●●

●●●●

●● ● ●● ● ●●●●● ●

●

●● ●●

●

●● ●

●

●●

●

● ●● ●●

●

●●● ●●

●●●●●

● ●●●●● ●●●

●●

●●● ●● ●●●● ●● ● ●

●●●●●●●

● ● ● ● ●●●●● ●●●●●

●●

●

●

● ●●● ●

●●●

● ●● ●●●●

●●●●●●●●●●●

● ●●●● ●●

●

●●●

●

●

●●●

● ● ●● ●●●●

●●●●●●●●●

● ●

●●●

● ●

●●●

●

●●●●●●●●

● ● ●

●●●●●●

●●

●

●

●●●●●

●● ●

●●●●●●●●●●●●●●●●●

●

●

●● ●●● ●● ●

●

●

●●●●●●●

● ● ●

●●●●

●

●●●●●●●●

●●●● ●●

●●●●●●●

●

●●

●

●

●

●●●●●●●●●●●●●

● ●

●●●

● ●

●●●●

●

●

●

●

●

●●●●●●●

●

●●

●

●

● ●

●●

● ●

●●

● ● ●● ●●

●

●

●●●

● ●

●●

●● ●●

●

● ●

●

● ●

●

●●

●

● ●● ●

●●●●●

●

●●

● ● ●●●●●

●●●●

●● ●●● ●● ● ●● ●

●●●●

● ● ●● ● ●● ● ●● ●●●

●

●

●●●●●●

●● ●● ●●● ●● ●

●

●●●●●●● ●●

●

● ●●●● ●

●

●

●●●●●●

●● ●● ●●●● ●●● ●●●●

●

● ● ●●●●●

●

●●

●

●● ●● ● ●●●● ●

●●●●●●●

● ●●●●● ●● ●●●●● ●●

●●

●●●● ●●

●●●●●●●

● ●

●●

● ●●

●●●●●

●

●

● ● ●●●●

●●●●●

● ●

●

●

●●

●●

●●●●●●●

●● ●●●

●●●●●

● ●● ●

●●

● ●●●● ●

●

● ●

●

●

●●●

●● ● ●

●●●

●●●

●●

● ● ●● ●

●

●

●

●

●●●●●

● ●●

●

●

●●●●●●●●●●●

● ● ●

●●●●●●●●●●●●●●

●● ●●● ●

●

●●

●●

●●● ●

●●

●

●●

●● ●

●●●●●●●●

●

●●●●●●

●

●

●

●●●●●●●●

●

●

● ●●● ●● ●

●

●

●

●

●●

● ●

●

● ● ●●●

●●●●●

●● ● ●● ●●●● ●

●

●● ●●● ●

●●●

●●

●

●●

●

● ●● ●

●

● ●●

●●

●●

●●●●●●

● ●

●

●● ●

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precipitation today (1/100 inch)

P
os

iti
ve

 p
re

ci
pi

ta
tio

n
to

m
or

ro
w

?

plot((tomorrow > 0) ~ today, data = snoq, xlab = "Precipitation today (1/100 inch)",
ylab = "Positive precipitation tomorrow?")

rug(snoq$today, side = 1, col = "grey")
data.plot = data.frame(data.plot, dry = ifelse(data.plot$today == 0, 1, 0))
lines(snoq.spline, col = "red")
pred.bands(snoq2.logistic, data.plot)
pred.bands(snoq2.gam, data.plot, "blue")

Figure 11.10 As Figure 11.9, but allowing the two models to use a dummy
variable indicating when today is completely dry (X = 0).

shows a gap in the distribution of predicted probabilities below 0.63, so we’ll
look first at days where the predicted probability is between 0.63 and 0.64.

11.8 Logistic Regression with More Than Two Classes 257

signif(mean(snoq$tomorrow[(fitted(snoq2.logistic) >= 0.63) & (fitted(snoq2.logistic) <
0.64)] > 0), 3)

[1] 0.526

Not bad — but a bit painful to write out. Let’s write a function:

frequency.vs.probability <- function(p.lower, p.upper = p.lower + 0.01, model = snoq2.logistic,
events = (snoq$tomorrow > 0)) {
fitted.probs <- fitted(model)
indices <- (fitted.probs >= p.lower) & (fitted.probs < p.upper)
ave.prob <- mean(fitted.probs[indices])
frequency <- mean(events[indices])
se <- sqrt(ave.prob * (1 - ave.prob)/sum(indices))
return(c(frequency = frequency, ave.prob = ave.prob, se = se))

}

I have added a calculation of the average predicted probability, and a crude
estimate of the standard error we should expect if the observations really are
binomial with the predicted probabilities11. Try the function out before doing
anything rash:

frequency.vs.probability(0.63)
frequency ave.prob se
0.52603037 0.63414568 0.01586292

This agrees with our previous calculation.
Now we can do this for a lot of probability brackets:

f.vs.p <- sapply(c(0.28, (63:100)/100), frequency.vs.probability)

This comes with some unfortunate R cruft, removable thus

f.vs.p <- data.frame(frequency = f.vs.p["frequency",], ave.prob = f.vs.p["ave.prob",
], se = f.vs.p["se",])

and we’re ready to plot (Figure 11.11). The observed frequencies are generally
reasonably near the predicted probabilities. While I wouldn’t want to say this
was the last word in weather forecasting12, it’s surprisingly good for such a simple
model. I will leave calibration checking for the GAM as another exercise.

11.8 Logistic Regression with More Than Two Classes

If Y can take on more than two values, say k of them, we can still use logistic
regression. Instead of having one set of parameters β0, β, each class c in 0 :
(k− 1) will have its own offset β

(c)
0 and vector β(c), and the predicted conditional

probabilities will be

Pr
(
Y = c| ~X = x

)
=

eβ
(c)
0 +x·β(c)∑

c e
β
(c)
0 +x·β(c)

(11.23)

11 This could be improved by averaging predicted variances for each point, but using probability

ranges of 0.01 makes it hardly worth the effort.
12 There is an extensive discussion of this data in Guttorp (1995, ch. 2), including many significant

refinements, such as dependence across multiple days.

258 Logistic Regression

You can check that when there are only two classes (say, 0 and 1), equation

11.23 reduces to equation 11.5, with β0 = β
(1)
0 − β

(0)
0 and β = β(1) − β(0). In fact,

no matter how many classes there are, we can always pick one of them, say c = 0,
and fix its parameters at exactly zero, without any loss of generality (Exercise
11.2)13.

Calculation of the likelihood now proceeds as before (only with more book-
keeping), and so does maximum likelihood estimation.

As for R implementations, for am long time the easiest way to do this was
actually to use the nnet package for neural networks (Venables and Ripley, 2002).
More recently, the multiclass function from the mgcv package does the same
sort of job, with an interface closer to what you will be familiar with from glm

and gam.

Exercises

11.1 “We minimize the mis-classification rate by predicting the most likely class”: Let µ̂(x)

be our predicted class, either 0 or 1. Our error rate is then Pr (Y 6= µ̂). Show that

Pr (Y 6= µ̂) = E
[
(Y − µ̂)2

]
. Further show that E

[
(Y − µ̂)2 | X = x

]
= Pr (Y = 1|X = x) (1−

2µ̂(x)) + µ̂2(x). Conclude by showing that if Pr (Y = 1|X = x) > 0.5, the risk of mis-

classification is minimized by taking µ̂ = 1, that if Pr (Y = 1|X = x) < 0.5 the risk is

minimized by taking µ̂ = 0, and that when Pr (Y = 1|X = x) = 0.5 both predictions are

equally risky.

11.2 A multiclass logistic regression, as in Eq. 11.23, has parameters β
(c)
0 and β(c) for each class

c. Show that we can always get the same predicted probabilities by setting β
(c)
0 = 0, β(c) =

0 for any one class c, and adjusting the parameters for the other classes appropriately.

11.3 Find the first and second derivatives of the log-likelihood for logistic regression with one

predictor variable. Explicitly write out the formula for doing one step of Newton’s method.

Explain how this relates to re-weighted least squares.

13 Since we can arbitrarily chose which class’s parameters to “zero out” without affecting the predicted

probabilities, strictly speaking the model in Eq. 11.23 is unidentified. That is, different parameter

settings lead to exactly the same outcome, so we can’t use the data to tell which one is right. The

usual response here is to deal with this by a convention: we decide to zero out the parameters of the

first class, and then estimate the contrasting parameters for the others.

Exercises 259

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●●
●
●
●

●

●

●
●
●

●
●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predicted probabilities

O
bs

er
ve

d
fr

eq
ue

nc
ie

s

plot(frequency ~ ave.prob, data = f.vs.p, xlim = c(0, 1), ylim = c(0, 1), xlab = "Predicted probabilities",
ylab = "Observed frequencies")

rug(fitted(snoq2.logistic), col = "grey")
abline(0, 1, col = "grey")
segments(x0 = f.vs.p$ave.prob, y0 = f.vs.p$ave.prob - 1.96 * f.vs.p$se, y1 = f.vs.p$ave.prob +

1.96 * f.vs.p$se)

Figure 11.11 Calibration plot for the modified logistic regression model
snoq2.logistic. Points show the actual frequency of precipitation for each
level of predicted probability. Vertical lines are (approximate) 95% sampling
intervals for the frequency, given the predicted probability and the number
of observations.

12

Generalized Linear Models and Generalized
Additive Models

12.1 Generalized Linear Models and Iterative Least Squares

Logistic regression is a particular instance of a broader kind of model, called
a generalized linear model (GLM). You are familiar, of course, from your
regression class with the idea of transforming the response variable, what we’ve
been calling Y , and then predicting the transformed variable from X. This was
not what we did in logistic regression. Rather, we transformed the conditional
expected value, and made that a linear function of X. This seems odd, because it
is odd, but it turns out to be useful.

Let’s be specific. Our usual focus in regression modeling has been the condi-
tional expectation function, µ(x) = E [Y |X = x]. In plain linear regression, we
try to approximate µ(x) by β0 +x ·β. In logistic regression, µ(x) = E [Y |X = x] =
Pr (Y = 1|X = x), and it is a transformation of µ(x) which is linear. The usual
notation says

η(x) = β0 + x · β (12.1)

η(x) = log
µ(x)

1− µ(x)
(12.2)

= g(µ(x)) (12.3)

defining the logistic link function by g(m) = logm/(1−m). The function η(x)
is called the linear predictor.

Now, the first impulse for estimating this model would be to apply the trans-
formation g to the response. But Y is always zero or one, so g(Y) = ±∞, and
regression will not be helpful here. The standard strategy is instead to use (what
else?) Taylor expansion. Specifically, we try expanding g(Y) around µ(x), and
stop at first order:

g(Y) ≈ g(µ(x)) + (Y − µ(x))g′(µ(x)) (12.4)

= η(x) + (Y − µ(x))g′(µ(x)) ≡ z (12.5)

We define this to be our effective response after transformation. Notice that if
there were no noise, so that y was always equal to its conditional mean µ(x),
then regressing z on x would give us back exactly the coefficients β0, β. What
this suggests is that we can estimate those parameters by regressing z on x.

The term Y − µ(x) has expectation zero, so it acts like the noise, with the
factor of g′ telling us about how the noise is scaled by the transformation. This

260

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

12.1 Generalized Linear Models and Iterative Least Squares 261

lets us work out the variance of z:

V [Z|X = x] = V [η(x)|X = x] + V [(Y − µ(x))g′(µ(x))|X = x] (12.6)

= 0 + (g′(µ(x)))
2 V [Y |X = x] (12.7)

For logistic regression, with Y binary, V [Y |X = x] = µ(x)(1−µ(x)). On the other
hand, with the logistic link function, g′(µ(x)) = 1

µ(x)(1−µ(x))
. Thus, for logistic

regression, V [Z|X = x] = [µ(x)(1− µ(x))]
−1

.
Because the variance of Z changes with X, this is a heteroskedastic regression

problem. As we saw in chapter 10, the appropriate way of dealing with such a
problem is to use weighted least squares, with weights inversely proportional to
the variances. This means that, in logistic regression, the weight at x should be
proportional to µ(x)(1 − µ(x)). Notice two things about this. First, the weights
depend on the current guess about the parameters. Second, we give lots of weight
to cases where µ(x) ≈ 0 or where µ(x) ≈ 1, and little weight to those where
µ(x) = 0.5. This focuses our attention on places where we have a lot of potential
information — the distinction between a probability of 0.499 and 0.501 is just a
lot easier to discern than that between 0.001 and 0.003!

We can now put all this together into an estimation strategy for logistic regres-
sion.

1. Get the data (x1, y1), . . . (xn, yn), and some initial guesses β0, β.
2. until β0, β converge

1. Calculate η(xi) = β0 + xi · β and the corresponding µ̂(xi)

2. Find the effective transformed responses zi = η(xi) + yi−µ̂(xi)

µ̂(xi)(1−µ̂(xi))

3. Calculate the weights wi = µ̂(xi)(1− µ̂(xi))
4. Do a weighted linear regression of zi on xi with weights wi, and set β0, β

to the intercept and slopes of this regression

Our initial guess about the parameters tells us about the heteroskedastic-
ity, which we use to improve our guess about the parameters, which we use
to improve our guess about the variance, and so on, until the parameters stabi-
lize. This is called iterative reweighted least squares (or “iterative weighted
least squares”, “iteratively weighted least squares”, “iteratived reweighted least
squares”, etc.), abbreviated IRLS, IRWLS, IWLS, etc. As mentioned in the last
chapter, this turns out to be almost equivalent to Newton’s method, at least for
this problem.

12.1.1 GLMs in General

The set-up for an arbitrary GLM is a generalization of that for logistic regression.
We need

• A linear predictor, η(x) = β0 + x · β
• A link function g, so that η(x) = g(µ(x)). For logistic regression, we had
g(µ) = log µ/(1− µ).

262 GLMs and GAMs

• A dispersion scale function V , so that V [Y |X = x] = σ2V (µ(x)). For logis-
tic regression, we had V (µ) = µ(1− µ), and σ2 = 1.

With these, we know the conditional mean and conditional variance of the re-
sponse for each value of the input variables x.

As for estimation, basically everything in the IRWLS set up carries over un-
changed. In fact, we can go through this algorithm:

1. Get the data (x1, y1), . . . (xn, yn), fix link function g(µ) and dispersion scale
function V (µ), and make some initial guesses β0, β.

2. Until β0, β converge:

1. Calculate η(xi) = β0 + xi · β and the corresponding µ̂(xi)
2. Find the effective transformed responses zi = η(xi) + (yi − µ̂(xi))g

′(µ̂(xi))

3. Calculate the weights wi = [(g′(µ̂(xi))
2V (µ̂(xi))]

−1

4. Do a weighted linear regression of zi on xi with weights wi, and set β0, β
to the intercept and slopes of this regression

Notice that even if we don’t know the over-all variance scale σ2, that’s OK,
because the weights just have to be proportional to the inverse variance.

12.1.2 Examples of GLMs

12.1.2.1 Vanilla Linear Models

To re-assure ourselves that we are not doing anything crazy, let’s see what
happens when g(µ) = µ (the “identity link”), and V [Y |X = x] = σ2, so that
V (µ) = 1. Then g′ = 1, all weights wi = 1, and the effective transformed re-
sponse zi = yi. So we just end up regressing yi on xi with no weighting at all
— we do ordinary least squares. Since neither the weights nor the transformed
response will change, IRWLS will converge exactly after one step. So if we get
rid of all this nonlinearity and heteroskedasticity and go all the way back to our
very first days of doing regression, we get the OLS answers we know and love.

12.1.2.2 Binomial Regression

In many situations, our response variable yi will be an integer count running
between 0 and some pre-determined upper limit ni. (Think: number of patients
in a hospital ward with some condition, number of children in a classroom passing
a test, number of widgets produced by a factory which are defective, number of
people in a village with some genetic mutation.) One way to model this would be
as a binomial random variable, with ni trials, and a success probability pi which
is a logistic function of predictors x. The logistic regression we have done so far
is the special case where ni = 1 always. I will leave it as an Exercise (12.1) for
you to work out the link function and the weights for general binomial regression,
where the ni are treated as known.

One implication of this model is that each of the ni “trials” aggregated together
in yi is independent of all the others, at least once we condition on the predictors

12.1 Generalized Linear Models and Iterative Least Squares 263

x. (So, e.g., whether any student passes the test is independent of whether any
of their classmates pass, once we have conditioned on, say, teacher quality and
average previous knowledge.) This may or may not be a reasonable assumption.
When the successes or failures are dependent, even after conditioning on the
predictors, the binomial model will be mis-specified. We can either try to get
more information, and hope that conditioning on a richer set of predictors makes
the dependence go away, or we can just try to account for the dependence by
modifying the variance (“overdispersion” or “underdispersion”); we’ll return to
both topics in §12.1.4.

12.1.2.3 Poisson Regression

Recall that the Poisson distribution has probability mass function

p(y) =
e−µµy

y!
(12.8)

with E [Y] = V [Y] = µ. As you remember from basic probability, a Poisson
distribution is what we get from a binomial if the probability of success per trial
shrinks towards zero but the number of trials grows to infinity, so that we keep
the mean number of successes the same:

Binom(n, µ/n) Pois(µ) (12.9)

This makes the Poisson distribution suitable for modeling counts with no fixed
upper limit, but where the probability that any one of the many individual trials
is a success is fairly low. If µ is allowed to change with the predictor variables, we
get Poisson regression. Since the variance is equal to the mean, Poisson regression
is always going to be heteroskedastic.

Since µ has to be non-negative, a natural link function is g(µ) = logµ. This
produces g′(µ) = 1/µ, and so weights w = µ. When the expected count is large,
so is the variance, which normally would reduce the weight put on an observation
in regression, but in this case large expected counts also provide more information
about the coefficients, so they end up getting increasing weight.

12.1.3 Uncertainty

Standard errors for coefficients can be worked out as in the case of weighted
least squares for linear regression. Confidence intervals for the coefficients will
be approximately Gaussian in large samples, for the usual likelihood-theory rea-
sons, when the model is properly specified. One can, of course, also use either a
parametric bootstrap, or resampling of cases/data-points to assess uncertainty.

Resampling of residuals can be trickier, because it is not so clear what counts as
a residual. When the response variable is continuous, we can get “standardized”
or “Pearson” residuals, ε̂i = yi−µ̂(xi)√

̂V (µ(xi))
, resample them to get ε̃i, and then add

ε̃i

√
̂V (µ(xi)) to the fitted values. This does not really work when the response is

discrete-valued, however. [[ATTN:
Look up
if anyone
has a good
trick for
this]]

264 GLMs and GAMs

12.1.4 Modeling Dispersion

When we pick a family for the conditional distribution of Y , we get a pre-
dicted conditional variance function, V (µ(x)). The actual conditional variance
V [Y |X = x] may however not track this. When the variances are larger, the
process is over-dispersed; when they are smaller, under-dispersed. Over-
dispersion is more common and more worrisome. In many cases, it arises from
some un-modeled aspect of the process — some unobserved heterogeneity, or some
missed dependence. For instance, if we observe count data with an upper limit
and use a binomial model, we’re assuming that each “trial” within a data point
is independent; positive correlation between the trials will give larger variance
around the mean that the mp(1− p) we’d expect1.

The most satisfying solution to over-dispersion is to actually figure out where
it comes from, and model its origin. Failing that, however, we can fall back on
more “phenomenological” modeling. One strategy is to say that

V [Y |X = x] = φ(x)V (µ(x)) (12.10)

and try to estimate the function φ — a modification of the variance-estimation
idea we saw in §10.3. In doing so, we need a separate estimate of V [Y |X = xi].
This can come from repeated measurements at the same value of x, or from the
squared residuals at each data point. Once we have some noisy but independent
estimate of V [Y |X = xi], the ratio V [Y |X = xi] /V (µ(xi)) can be regressed on
xi to estimate φ. Some people recommend doing this step, itself, through a gen-
eralized linear or generalized additive model, with a gamma distribution for the
response, so that the response is guaranteed to be positive.

12.1.5 Likelihood and Deviance

When dealing with GLMs, it is conventional to report not the log-likelihood, but
the deviance. The deviance of a model with parameters (β0, β) is defined as

D(β0, β) = 2[`(saturated)− `(β0, β)] (12.11)

Here, `(β0, β) is the log-likelihood of our model, and `(saturated) is the log-
likelihood of a saturated model which has one parameter per data point. Thus,
models with high likelihoods will have low deviances, and vice versa. If our model
is correct and has p + 1 parameters in all (including the intercept), then the
deviance will generally approach a χ2 distribution asymptotically, with n−(p+1)
degrees of freedom; the factor of 2 in the definition is to ensure this.

For discrete response variables, the saturated model can usually ensure that
Pr (Y = yi|X = xi) = 1, so `(saturated) = 0, and deviance is just twice the
negative log-likelihood. If there are multiple data points with the same value of
x but different values of y, then `(saturated) < 0. In any case, even for repeated
values of x or even continuous response variables, differences in deviance are

1 If (for simplicity) all the trials have the same covariance ρ, then the variance of their sum is

mp(1− p) +m(m− 1)ρ (why?).

12.1 Generalized Linear Models and Iterative Least Squares 265

just twice differences in log-likelihood: D(model1)−D(model2) = 2[`(model2)−
`(model1)].

12.1.5.1 Maximum Likelihood and the Choice of Link Function

Having chosen a family of conditional distributions, it may happen that when we
write out the log-likelihood, the latter depends on the both the response variables
yi and the coefficients only through the product of yi with some transformation
of the conditional mean µ̂:

` =
n∑
i=1

f(yi, xi) + yig(µ̂i) + h(θ) (12.12)

In the case of logistic regression, examining Eq. 11.8 (§11.2.1, p. 237) shows that
the log-likelihood can be put in this form with g(µ̂i) = log µ̂i/(1− µ̂i). In the
case of a Gaussian conditional distribution for Y , we would have f = −y2

i /2,
g(µ̂i) = µ̂i, and h(θ) = −µ̂2

i . When the log-likelihood can be written in this form,
g(·) is the “natural” transformation to apply to the conditional mean, i.e., the
natural link function, and assures us that the solution to iterative least squares
will converge on the maximum likelihood estimate.2 Of course we are free to
nonetheless use other transformations of the conditional expectation.

12.1.6 R: glm

As with logistic regression, the workhorse R function for all manner of GLMs is,
simply, glm. The syntax is strongly parallel to that of lm, with the addition of a
family argument that specifies the intended distribution of the response variable
(binomial, gaussian, poisson, etc.), and, optionally, a link function appropriate
to the family. (See help(family) for the details.) With family="gaussian" and
an identity link function, its intended behavior is the same as lm.

2 To be more technical, we say that a distribution with parameters θ is an exponential family if its

probability density function at x is exp f(x) + T (x) · g(θ)/z(θ), for some vector of statistics T and

some transformation g of the parameters. (To ensure normalization,

z(θ) =
∫

exp (f(x) + T (x) · g(θ))dx. Of course, if the sample space x is discrete, replace this integral

with a sum.) We then say that T (·) are the “natural” or “canonical” sufficient statistics, and g(θ)

are the “natural” parameters. Eq. 12.12 is picking out the natural parameters, presuming the

response variable is itself the natural sufficient statistic. Many of the familiar families of

distributions, like Gaussians, exponentials, gammas, Paretos, binomials and Poissons are

exponential families. Exponential families are very important in classical statistical theory, and have

deep connections to thermodynamics and statistical mechanics (where they’re called “canonical

ensembles”, “Boltzmann distributions” or “Gibbs distributions” (Mandelbrot, 1962)), and to

information theory (where they’re “maximum entropy distributions”, or “minimax codes”

(Grünwald, 2007)). Despite their coolness, they are a rather peripheral topic for our sort of data

analysis — though see Guttorp (1995) for examples of using them in modeling discrete processes.

Any good book on statistical theory (e.g., Casella and Berger 2002) will have a fairly extensive

discussion; Barndorff-Nielsen (1978) and Brown (1986) are comprehensive treatments.

266 GLMs and GAMs

12.2 Generalized Additive Models

In the development of generalized linear models, we use the link function g to
relate the conditional mean µ̂(x) to the linear predictor η(x). But really nothing
in what we were doing required η to be linear in x. In particular, it all works
perfectly well if η is an additive function of x. We form the effective responses
zi as before, and the weights wi, but now instead of doing a linear regression on
xi we do an additive regression, using backfitting (or whatever). This gives us a
generalized additive model (GAM).

Essentially everything we know about the relationship between linear models
and additive models carries over. GAMs converge somewhat more slowly as n
grows than do GLMs, but the former have less bias, and strictly include GLMs
as special cases. The transformed (mean) response is related to the predictor vari-
ables not just through coefficients, but through whole partial response functions.
If we want to test whether a GLM is well-specified, we can do so by comparing
it to a GAM, and so forth.

In fact, one could even make η(x) an arbitrary smooth function of x, to be
estimated through (say) kernel smoothing of zi on xi. This is rarely done, however,
partly because of curse-of-dimensionality issues, but also because, if one is going to
go that far, one might as well just use kernels to estimate conditional distributions,
as we will see in Chapter 14.

12.3 Further Reading

At our level of theory, good references on generalized linear and generalized ad-
ditive models include Faraway (2006) and Wood (2006), both of which include
extensive examples in R. Tutz (2012) offers an extensive treatment of GLMs with
categorical response distributions, along with comparisons to other models for
that task.

Overdispersion is the subject of a large literature of its own. All of the refer-
ences just named discuss methods for it. Lambert and Roeder (1995) is worth
mentioning for introducing some simple-to-calculate ways of detecting and de-
scribing over-dispersion which give some information about why the response is
over-dispersed. One of these (the “relative variance curve”) is closely related to
the idea sketched above about estimating the dispersion factor.

Exercises

12.1 In binomial regression, we have Y |X = x ∼ Binom(n, p(x)), where p(x) follows a logistic

model. Work out the link function g(µ), the variance function V (µ), and the weights w,

assuming that n is known and not random.

12.2 Problem set 12, on predicting the death rate in Chicago, is a good candidate for using

Poisson regression. Repeat the exercises in that problem set with Poisson-response GAMs.

How do the estimated functions change? Why is this any different from just taking the

log of the death counts, as suggested in that problem set?

13

Classification and Regression Trees

[[TODO:
Notes
taken from
another
course;
integrate]]

So far, the models we’ve worked with have been built on the principle of every
point in the data set contributing (at least potentially) to every prediction. An
alternative is to divide up, or partition, the data set, so that each prediction
will only use points from one chunk of the space. If this partition is done in a
recursive or hierarchical manner, we get a prediction tree, which comes in two
varieties, regression trees and classification trees. These may seem too crude
to actually work, but they can, in fact, be both powerful and computationally
efficient.

13.1 Prediction Trees

The basic idea is simple. We want to predict some variable Y from other variables
X1, X2, . . . Xp. We do this by growing a binary tree. At each internal node in the
tree, we apply a test to one of the predictor variables, say Xi. Depending on the
outcome of the test, we go to either the left or the right sub-branch of the tree.
Eventually we come to a leaf node, where we make a prediction. This prediction
aggregates or averages all the training data points which reach that leaf. Figure
13.1 should help clarify this.

Why do this? Predictors like linear or polynomial regression are global mod-
els, where a single predictive formula is supposed to hold over the entire data
space. When the data has lots of variables which interact in complicated, nonlin-
ear ways, assembling a single global model can be very difficult, and hopelessly
confusing when you do succeed. As we’ve seen, non-parametric smoothers try to
fit models locally and then paste them together, but again they can be hard to
interpret. (Additive models are at least pretty easy to grasp.)

An alternative approach to nonlinear prediction is to sub-divide, or partition,
the space into smaller regions, where the interactions are more manageable. We
then partition the sub-divisions again — this is recursive partitioning (or
hierarchical partitioning) — until finally we get to chunks of the space which
are so tame that we can fit simple models to them. The global model thus has
two parts: one is just the recursive partition, the other is a simple model for each
cell of the partition.

Now look back at Figure 13.1 and the description which came before it. Predic-
tion trees use the tree to represent the recursive partition. Each of the terminal
nodes, or leaves, of the tree represents a cell of the partition, and has attached

267

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

268 Trees

Figure 13.1 Classification tree for county-level outcomes in the 2008
Democratic Party primary (as of April 16), by Amanada Cox for the New York
Times. [[TODO: Get figure permission!]]

13.1 Prediction Trees 269

to it a simple model which applies in that cell only. A point x belongs to a leaf
if x falls in the corresponding cell of the partition. To figure out which cell we
are in, we start at the root node of the tree, and ask a sequence of questions
about the predictor variables. The interior nodes are labeled with questions, and
the edges or branches between them labeled by the answers. Which question we
ask next depends on the answers to previous questions. In the classic version,
each question refers to only a single attribute, and has a yes or no answer, e.g.,
“Is HSGrad > 0.78?” or “Is Region == Midwest?” The variables can be of any
combination of types (continuous, discrete but ordered, categorical, etc.). You
could do more-than-binary questions, but that can always be accommodated as
a larger binary tree. Asking questions about multiple variables at once is, again,
equivalent to asking multiple questions about single variables.

That’s the recursive partition part; what about the simple local models? For
classic regression trees, the model in each cell is just a constant estimate of Y .
That is, suppose the points (xi, yi), (x2, y2), . . . (xc, yc) are all the samples belong-
ing to the leaf-node l. Then our model for l is just ŷ = 1

c

∑c
i=1 yi, the sample

mean of the response variable in that cell. This is a piecewise-constant model.1

There are several advantages to this:

• Making predictions is fast (no complicated calculations, just looking up con-
stants in the tree).
• It’s easy to understand what variables are important in making the prediction

(look at the tree).
• If some variables are missing, we might not be able to go all the way down the

tree to a leaf, but we can still make a prediction by averaging all the leaves in
the sub-tree we do reach.
• The model gives a jagged response, so it can work when the true regression

surface is not smooth. If it is smooth, though, the piecewise-constant surface
can approximate it arbitrarily closely (with enough leaves).
• There are fast, reliable algorithms to learn these trees.

A last analogy before we go into some of the mechanics. One of the most
comprehensible non-parametric methods is k-nearest-neighbors: find the points
which are most similar to you, and do what, on average, they do. There are
two big drawbacks to it: first, you’re defining “similar” entirely in terms of the
inputs, not the response; second, k is constant everywhere, when some points
just might have more very-similar neighbors than others. Trees get around both
problems: leaves correspond to regions of the input space (a neighborhood), but
one where the responses are similar, as well as the inputs being nearby; and their
size can vary arbitrarily. Prediction trees are, in a way, adaptive nearest-neighbor
methods.

1 We could instead fit, say, a different linear regression for the response in each leaf node, using only

the data points in that leaf (and using dummy variables for non-quantitative variables). This would

give a piecewise-linear model, rather than a piecewise-constant one. If we’ve built the tree well,

however, all the points in each leaf are pretty similar, so the regression surface would be nearly

constant anyway.

270 Trees

13.2 Regression Trees

Let’s start with an example.

13.2.1 Example: California Real Estate Again

We’ll revisit the Califonia house-price data from Chapter 8, where we try to pre-
dict the median house price in each census tract of California from the attributes
of the houses and of the inhabitants of the tract. We’ll try growing a regression
tree for this.

There are several R packages for regression trees; the easiest one is called,
simply, tree (Ripley, 2015).

calif <- read.table("http://www.stat.cmu.edu/~cshalizi/350/hw/06/cadata.dat",
header = TRUE)

require(tree)
treefit <- tree(log(MedianHouseValue) ~ Longitude + Latitude, data = calif)

This does a tree regression of the log price on longitude and latitude. What does
this look like? Figure 13.2 shows the tree itself; Figure 13.3 shows the partition,
overlaid on the actual prices in the state. (The ability to show the partition is
why I picked only two input variables.)

Qualitatively, this looks like it does a fair job of capturing the interaction
between longitude and latitude, and the way prices are higher around the coasts
and the big cities. Quantitatively, the error isn’t bad:

summary(treefit)
##
Regression tree:
tree(formula = log(MedianHouseValue) ~ Longitude + Latitude,
data = calif)
Number of terminal nodes: 12
Residual mean deviance: 0.1662 = 3429 / 20630
Distribution of residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.75900 -0.26080 -0.01359 0.00000 0.26310 1.84100

Here “deviance” is just mean squared error; this gives us an RMS error of 0.41,
which is higher than the smooth non-linear models in Chapter 8, but not shocking
since we’re using only two variables, and have only twelve leaves.

The flexibility of a tree is basically controlled by how many leaves they have,
since that’s how many cells they partition things into. The tree fitting function
has a number of controls settings which limit how much it will grow — each node
has to contain a certain number of points, and adding a node has to reduce the
error by at least a certain amount. The default for the latter, mindev, is 0.01;
let’s turn it down and see what happens.

treefit2 <- tree(log(MedianHouseValue) ~ Longitude + Latitude, data = calif,
mindev = 0.001)

Figure 13.4 shows the tree itself; with 68 nodes, the plot is fairly hard to read,

13.2 Regression Trees 271

|
Latitude < 38.485

Longitude < −121.655

Latitude < 37.925 Latitude < 34.675

Longitude < −118.315

Longitude < −117.545

Latitude < 33.725 Latitude < 33.59
Longitude < −116.33

Longitude < −120.275

Latitude < 39.355

12.48 12.10

12.53

12.54 12.14

12.09 11.16
11.63

11.75 11.28

11.73 11.32

plot(treefit)
text(treefit, cex = 0.75)

Figure 13.2 Regression tree for predicting California housing prices from
geographic coordinates. At each internal node, we ask the associated
question, and go to the left child if the answer is “yes”, to the right child if
the answer is “no”. Note that leaves are labeled with log prices; the plotting
function isn’t flexible enough, unfortunately, to apply transformations to the
labels.

but by zooming in on any part of it, you can check what it’s doing. Figure 13.5
shows the corresponding partition. It’s obviously much finer-grained than that
in Figure 13.3, and does a better job of matching the actual prices (RMS error
0.32). More interestingly, it doesn’t just uniformly divide up the big cells from

272 Trees

●●
●●● ●●

●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●
●●● ●●●●●●

●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●
●●●●●

●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
● ●

●●●●●
●●●

●●●
●

●●●●●
●

●
●●●● ●

●●●● ●
●●●

●●●
●●●●●●

●●
●

●●●
●

●●
● ●●

●●●
●●●
●

●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●
●●●●●●●●

●●●●
●●

●●

●●●●●●●●●

●●
● ●

●

●

●

●●
●
●●●

●●●
●

●
●●●●●

●●● ● ●

●●●●
●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●● ●●●●●●●●●
●

●●● ●
●

●
●

●●
●●●●

●●
●●●●

●●●●
●●

●●
●

●●●●●●●
●●●● ●●

●●●
●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●

● ●

●
●●●●●

●●
● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●
●

●●●
●●●●

●

●●●
●

●●●●●●●●●

●●●●●
●

●●

●

●●●●
●●●●●

●
●

●●

●●●●●●●●●● ● ●
●● ●●●●●●●

●
●

● ●

●

●●
●●●●●●●●●●●●●●●

●
●

●

●
●

●

●●

●

●

●

●
●●

●●●●●
●●●●●●●●●●●

●
●●●●●●

●●
●●●●●●●●●● ●

●
●●●●●●●●●

●●●

●

●
● ● ●

●●●●

●●●
●●●

●●●● ●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●
●

●

●●

●●●●●●●● ●

●

●

●●

●●●●

●●●
●
●●●●●●

●

●●

●●

●

●

●

●●

●●●●
●

●

●●
●

●
●●●●●●●●●

●● ●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●

●●
●●●●

●●●●●●●●●●●●

●●●

● ●
●●●●

●

●
●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●

● ●

●●
●●●●●
●

●●

●●●
●●●●

●●●●
●●

●
●●

●
●●●●●

●●●
●
●●●●●

●●●●

●●
●●●●●● ●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●

●●●
●
● ●●●●●

● ●

●

●●●●●●●●●●●●●●●●●●●
●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●● ●●●●●●●●●

● ●

●
●

●●
●

●
●

●
●●●●●● ● ●

●●
●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●
●●

●● ●●●
●●● ●●

●●
●●●

●●●●●●●●●●●●●●●●●●●
●●●

●●●●
●●

●●●●●●●
●●

●●
●●●

●●●
●●●
●●

●
●

●●●
●●

●●

●●●
●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●

● ●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●
● ●●● ● ●● ●●●

●●●●●●●●●●●
●●●●●●●●●●

●●
●●
●

●●●●●●●●●●●●●
●●

●●●

●●●
●

●

●●●●●●●●●
●

●●
●

●
●●

●●●●●●●●
●

●
●●●●●●●
●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●●
●●●

●●●

●●

●
●

● ●●●●
●

● ● ● ●
●

●●●●
●

●
●

●
●●●

●●

●●

●●●●●●●●●●●●
●●●●●●●●●● ●●●●●●● ●●●●

●●●●●
●

●●
●

●

●●

●
● ●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●
●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●

● ●
●
●

●
●●●●●●●●●●●●● ●●●●●●●

●

●

●

●

●

● ●

●

●

●●

●

●

●●
●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●

●●●●● ●●●
●

●●●●● ●●●●● ●●●●●
●●●●●●

●●

● ●
●

●

●

●

●●●●●●●●●●●●●●●●●
●

●●
●●●●●

●●●

●●●
●

●●●●●● ●●●●●●●●

●●●●●●●●●●
●●●●●

●
●●●

●
●●●●●

●●●●●
●●●●●●●●●●●●●

●●●
●●●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●
● ●●

●●●
● ●

●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●
●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●
●●

●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●
●●
●●
●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●

●●●●●●●●●
●●●●●●●

●●
●

●
●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●

●●●●●●●●●● ●●●●●●
●●●●●●●●●●●●

●●●●●

●●
● ● ●

●
●●●

●●●●●●
●

●
●●

●
●

●
●●●●● ●

●
●●

●
●

●●●●●●
●●●

●●●
●●

●●
●●●●●●●●●●●

● ●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●● ●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●● ●
●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●● ●●
●●●●●

●●●●●●●●●●
●●●●●

●●●●
●

●●
● ● ●●

● ●●●

●
● ●●●

●
●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●

●●● ●

●●●●●●●

●

●

●● ●
●

●
●

●●
●●
●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●

●●
●●●

●●●
●●●●●●●●●
●●● ●●●
●

●● ●●●●●●●●●●●

●●●●●●●●
●●●●●●

●
●

●●●
●●●
●●●●●●●●●●●●●●●●●●●● ●

●

●●●●●●●●
●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●
●●

●

●
●●●●●

●
●●●●● ●

●●●●

●●●●●●●●●●

●●●●●
●●
●●●●●●●●●●●●●

●●●●●●●●●

●

●

●

●●

●

●

●●●●●●
●●

●
●

●
●●●●●●●●●

●●●●●●●●
● ●

●

●
●

●

●●●●●●

●●●●●●●●●●●●●●●●●●● ●●●●●●●●
●●●●●●●●

●●●●●●●●●●
●●●●●

●

●
●

●
●

●●●
●●●●●●●●●●

●
●● ● ●

●

●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●●●
●●●●
●●●

●●
●●●

●●●
●●
●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

● ●●●●●●●
●●●●●●●●●●●

● ●●●● ●●●●● ●● ●●●
●●
●●
●●●●●●●●

●

●
●●●●●

●
●

●
●

●

●

●

● ●
●

●

●●●●●● ●
●●●●●

●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●
●●

●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●● ●●

●●
●●●●

●
●

●●●

●●●●●●
●

●●●●●●
●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●
●

●
● ●

●●●●●●●●●
●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●● ●

●●
●●●●

●●●●●●●●●●●●●
●●● ●

●
●●●

●●●
●●

●
●●●●●●●●●
●

●
●●

●●●
●●●●●●●●● ●●●●●●●●●●●

●●
●●●●●●●
●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●
●●
●●●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●

●

●
●

●
●●●

●
●● ●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●

●
●

●
●

●

●●
● ●

●
●●

● ●
●

●

●●●●● ●

●
●

●●
● ●● ●

● ●

●
●●●

●

●
●●

●
● ●●●●●●

●
●

●●●

●

●
●●●●

●●●
●

●
●●●

●

●

●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●
●●
●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●● ●

●
●●●●●●●●●

●
●●●●●

●●●
●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●

●●
●●●●●

●●●●
●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●

●
●
●
●●

●
●

●●●●●●
● ●

●
●●●

●●●

●
●●●

●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●●

● ●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●
●●●

●
●●
●

●
●●

●●

●●
●●

●

●

●●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●●●

●●
●●

●

●
●●●●

●
●●

●
●
● ●

●

● ●●●●●
● ●

●
●

●
●
●

●
● ●

●
●

●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●● ●●●
●●●●●●●●● ●●● ●

●

●
●

●

●●●●●●●●●●●●●●●●●●
● ●● ●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
● ● ●●

●●●●
●●●

●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●
●

●●●
●●●●●●●●●●●●●● ●

●●●●●●●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●

● ●●
●●●●●●●●●●
●●●

●●

●●●●●●
●

●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●
●

●● ●●●
●
●

●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●
●

●
●

●●●●●

−124 −122 −120 −118 −116 −114

34
36

38
40

42

Longitude

La
tit

ud
e

12.5

12.1

12.5

12.5

12.1

12.1 11.2

11.6

11.8 11.3

11.7

11.3

price.deciles <- quantile(calif$MedianHouseValue, 0:10/10)
cut.prices <- cut(calif$MedianHouseValue, price.deciles, include.lowest = TRUE)
plot(calif$Longitude, calif$Latitude, col = grey(10:2/11)[cut.prices], pch = 20,

xlab = "Longitude", ylab = "Latitude")
partition.tree(treefit, ordvars = c("Longitude", "Latitude"), add = TRUE)

Figure 13.3 Map of actual median house prices (color-coded by decile,
darker being more expensive), and the partition of the treefit tree.

the first partition; some of the new cells are very small, others quite large. The
metropolitan areas get a lot more detail than the Mojave.

Of course there’s nothing magic about the geographic coordinates, except that
they make for pretty plots. We can include all the predictor variables in our model

13.2 Regression Trees 273

|
Latitude < 38.485

Longitude < −121.655

Latitude < 37.925

Longitude < −122.305
Latitude < 37.585

Longitude < −122.025
Latitude < 37.175Latitude < 37.465Longitude < −122.235Longitude < −121.865Latitude < 37.315

Latitude < 37.815Longitude < −122.145
Latitude < 37.715

Longitude < −122.255
Latitude < 37.875

Longitude < −122.38
Latitude < 38.225Longitude < −122.335Latitude < 37.985

Latitude < 34.675

Longitude < −118.315

Latitude < 34.165
Longitude < −118.365

Latitude < 34.055Latitude < 33.885

Longitude < −118.485Longitude < −120.415Longitude < −119.365

Longitude < −117.545

Latitude < 33.725

Latitude < 34.105
Longitude < −118.165

Latitude < 33.875Longitude < −118.285Latitude < 34.045
Longitude < −118.225Longitude < −118.285Latitude < 33.915Longitude < −118.245

Longitude < −117.755
Latitude < 33.905Longitude < −117.815

Latitude < 34.525Longitude < −118.015Longitude < −118.115

Latitude < 33.59

Longitude < −116.33

Longitude < −117.165
Latitude < 33.125Longitude < −117.235Latitude < 32.755

Latitude < 34.055Longitude < −116.245

Longitude < −120.275

Latitude < 37.155
Longitude < −120.645Latitude < 36.02Longitude < −121.335

Latitude < 36.805Latitude < 34.825Longitude < −119.935

Latitude < 39.355
Longitude < −121.365
Latitude < 38.86Longitude < −121.57Longitude < −122.915

12.7

12.412.912.812.412.612.412.311.912.212.611.912.512.7

12.612.211.612.211.9

12.9
12.712.112.7

11.812.712.412.2

12.5

12.512.1
12.211.711.611.912.311.9

12.312.712.211.9
12.412.712.211.9

12.712.412.111.812.1

11.2

11.811.311.5

12.112.011.111.911.611.711.211.311.6

12.011.611.811.311.911.3

Figure 13.4 As Figure 13.2, but allowing splits for smaller reductions in
error (mindev=0.001 rather than the default mindev=0.01). Then fact that
the plot is nearly illegible is deliberate.

treefit3 <- tree(log(MedianHouseValue) ~ ., data = calif)

with the result shown in Figure 13.6. This model has fifteen leaves, as opposed
to sixty-eight for treefit2, but the RMS error is almost as good (0.36). This
is highly interactive: latitude and longitude are only used if the income level
is sufficiently low. (Unfortunately, this does mean that we don’t have a spatial
partition to compare to the previous ones, but we can map the predictions; Figure
13.7.) Many of the variables, while they were available to the tree fit, aren’t used
at all.

Now let’s turn to how we actually grow these trees.

274 Trees

●●
●●● ●●

●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●
●●● ●●●●●●

●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●
●●●●●

●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
● ●

●●●●●
●●●

●●●
●

●●●●●
●

●
●●●● ●

●●●● ●
●●●

●●●
●●●●●●

●●
●

●●●
●

●●
● ●●

●●●
●●●
●

●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●
●●●●●●●●

●●●●
●●

●●

●●●●●●●●●

●●
● ●

●

●

●

●●
●
●●●

●●●
●

●
●●●●●

●●● ● ●

●●●●
●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●● ●●●●●●●●●
●

●●● ●
●

●
●

●●
●●●●

●●
●●●●

●●●●
●●

●●
●

●●●●●●●
●●●● ●●

●●●
●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●

● ●

●
●●●●●

●●
● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●
●

●●●
●●●●

●

●●●
●

●●●●●●●●●

●●●●●
●

●●

●

●●●●
●●●●●

●
●

●●

●●●●●●●●●● ● ●
●● ●●●●●●●

●
●

● ●

●

●●
●●●●●●●●●●●●●●●

●
●

●

●
●

●

●●

●

●

●

●
●●

●●●●●
●●●●●●●●●●●

●
●●●●●●

●●
●●●●●●●●●● ●

●
●●●●●●●●●

●●●

●

●
● ● ●

●●●●

●●●
●●●

●●●● ●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●
●

●

●●

●●●●●●●● ●

●

●

●●

●●●●

●●●
●
●●●●●●

●

●●

●●

●

●

●

●●

●●●●
●

●

●●
●

●
●●●●●●●●●

●● ●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●

●●
●●●●

●●●●●●●●●●●●

●●●

● ●
●●●●

●

●
●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●

● ●

●●
●●●●●
●

●●

●●●
●●●●

●●●●
●●

●
●●

●
●●●●●

●●●
●
●●●●●

●●●●

●●
●●●●●● ●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●

●●●
●
● ●●●●●

● ●

●

●●●●●●●●●●●●●●●●●●●
●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●● ●●●●●●●●●

● ●

●
●

●●
●

●
●

●
●●●●●● ● ●

●●
●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●
●●

●● ●●●
●●● ●●

●●
●●●

●●●●●●●●●●●●●●●●●●●
●●●

●●●●
●●

●●●●●●●
●●

●●
●●●

●●●
●●●
●●

●
●

●●●
●●

●●

●●●
●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●

● ●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●
● ●●● ● ●● ●●●

●●●●●●●●●●●
●●●●●●●●●●

●●
●●
●

●●●●●●●●●●●●●
●●

●●●

●●●
●

●

●●●●●●●●●
●

●●
●

●
●●

●●●●●●●●
●

●
●●●●●●●
●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●●
●●●

●●●

●●

●
●

● ●●●●
●

● ● ● ●
●

●●●●
●

●
●

●
●●●

●●

●●

●●●●●●●●●●●●
●●●●●●●●●● ●●●●●●● ●●●●

●●●●●
●

●●
●

●

●●

●
● ●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●
●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●

● ●
●
●

●
●●●●●●●●●●●●● ●●●●●●●

●

●

●

●

●

● ●

●

●

●●

●

●

●●
●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●

●●●●● ●●●
●

●●●●● ●●●●● ●●●●●
●●●●●●

●●

● ●
●

●

●

●

●●●●●●●●●●●●●●●●●
●

●●
●●●●●

●●●

●●●
●

●●●●●● ●●●●●●●●

●●●●●●●●●●
●●●●●

●
●●●

●
●●●●●

●●●●●
●●●●●●●●●●●●●

●●●
●●●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●
● ●●

●●●
● ●

●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●
●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●
●●

●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●
●●
●●
●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●

●●●●●●●●●
●●●●●●●

●●
●

●
●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●

●●●●●●●●●● ●●●●●●
●●●●●●●●●●●●

●●●●●

●●
● ● ●

●
●●●

●●●●●●
●

●
●●

●
●

●
●●●●● ●

●
●●

●
●

●●●●●●
●●●

●●●
●●

●●
●●●●●●●●●●●

● ●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●● ●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●● ●
●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●● ●●
●●●●●

●●●●●●●●●●
●●●●●

●●●●
●

●●
● ● ●●

● ●●●

●
● ●●●

●
●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●

●●● ●

●●●●●●●

●

●

●● ●
●

●
●

●●
●●
●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●

●●
●●●

●●●
●●●●●●●●●
●●● ●●●
●

●● ●●●●●●●●●●●

●●●●●●●●
●●●●●●

●
●

●●●
●●●
●●●●●●●●●●●●●●●●●●●● ●

●

●●●●●●●●
●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●
●●

●

●
●●●●●

●
●●●●● ●

●●●●

●●●●●●●●●●

●●●●●
●●
●●●●●●●●●●●●●

●●●●●●●●●

●

●

●

●●

●

●

●●●●●●
●●

●
●

●
●●●●●●●●●

●●●●●●●●
● ●

●

●
●

●

●●●●●●

●●●●●●●●●●●●●●●●●●● ●●●●●●●●
●●●●●●●●

●●●●●●●●●●
●●●●●

●

●
●

●
●

●●●
●●●●●●●●●●

●
●● ● ●

●

●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●●●
●●●●
●●●

●●
●●●

●●●
●●
●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

● ●●●●●●●
●●●●●●●●●●●

● ●●●● ●●●●● ●● ●●●
●●
●●
●●●●●●●●

●

●
●●●●●

●
●

●
●

●

●

●

● ●
●

●

●●●●●● ●
●●●●●

●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●
●●

●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●● ●●

●●
●●●●

●
●

●●●

●●●●●●
●

●●●●●●
●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●
●

●
● ●

●●●●●●●●●
●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●● ●

●●
●●●●

●●●●●●●●●●●●●
●●● ●

●
●●●

●●●
●●

●
●●●●●●●●●
●

●
●●

●●●
●●●●●●●●● ●●●●●●●●●●●

●●
●●●●●●●
●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●
●●
●●●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●

●

●
●

●
●●●

●
●● ●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●

●
●

●
●

●

●●
● ●

●
●●

● ●
●

●

●●●●● ●

●
●

●●
● ●● ●

● ●

●
●●●

●

●
●●

●
● ●●●●●●

●
●

●●●

●

●
●●●●

●●●
●

●
●●●

●

●

●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●
●●
●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●● ●

●
●●●●●●●●●

●
●●●●●

●●●
●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●

●●
●●●●●

●●●●
●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●

●
●
●
●●

●
●

●●●●●●
● ●

●
●●●

●●●

●
●●●

●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●●

● ●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●
●●●

●
●●
●

●
●●

●●

●●
●●

●

●

●●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●●●

●●
●●

●

●
●●●●

●
●●

●
●
● ●

●

● ●●●●●
● ●

●
●

●
●
●

●
● ●

●
●

●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●● ●●●
●●●●●●●●● ●●● ●

●

●
●

●

●●●●●●●●●●●●●●●●●●
● ●● ●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
● ● ●●

●●●●
●●●

●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●
●

●●●
●●●●●●●●●●●●●● ●

●●●●●●●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●

● ●●
●●●●●●●●●●
●●●

●●

●●●●●●
●

●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●
●

●● ●●●
●
●

●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●
●

●
●

●●●●●

−124 −122 −120 −118 −116 −114

34
36

38
40

42

Longitude

La
tit

ud
e

12.7

12.4

12.9

12.812.4

12.6

12.4

12.3

11.9 12.2
12.6

11.912.5 12.7

12.6

12.2
11.6

12.2

11.9

12.9
12.7

12.1
12.7

11.8 12.7 12.4 12.2

12.5

12.512.1
12.2
11.711.611.9
12.311.9

12.312.7

12.2
11.9

12.412.7 12.2

11.9

12.712.4

12.1

11.8

12.1

11.2

11.8 11.3

11.5

12.1

12.0

11.1

11.9 11.6

11.7

11.2

11.3 11.6

12.0 11.6

11.8 11.3

11.9

11.3

plot(calif$Longitude, calif$Latitude, col = grey(10:2/11)[cut.prices], pch = 20,
xlab = "Longitude", ylab = "Latitude")

partition.tree(treefit2, ordvars = c("Longitude", "Latitude"), add = TRUE, cex = 0.3)

Figure 13.5 Partition for treefit2. Note the high level of detail around
the cities, as compared to the much coarser cells covering rural areas where
variations in prices are less extreme.

13.2.2 Regression Tree Fitting

Once we fix the tree, the local models are completely determined, and easy to
find (we just average), so all the effort should go into finding a good tree, which
is to say into finding a good partitioning of the data.

Ideally, we maximize the information the partition gives us about the response

13.2 Regression Trees 275

|
MedianIncome < 3.5471

MedianIncome < 2.51025

Latitude < 34.465

Longitude < −117.775 Longitude < −120.275

Latitude < 37.905

Latitude < 37.925

Longitude < −122.235

Latitude < 34.455

Longitude < −117.765Longitude < −120.385

MedianIncome < 5.5892

MedianHouseAge < 38.5MedianIncome < 7.393

11.9 11.5

11.8 11.4
11.1

12.5

12.2 11.8
12.0 11.4

11.7

12.2 12.5 12.6 13.0

plot(treefit3)
text(treefit3, cex = 0.5, digits = 3)

Figure 13.6 Regression tree for log price when all other variables are
included as (potential) predictors. Note that the tree ignores many variables.

variable. Since we are doing regression, what we would really like is for the condi-
tional mean E [Y |X = x] to be nearly constant in x over each cell of the partition,
and for adjoining cells to have distinct expected values. (It’s OK if two cells of the
partition far apart have similar average values.) It’s too hard to do this directly,
so we do a greedy search. We start by finding the one binary question we can ask
about the predictors which maximizes the information we get about the average

276 Trees

●●
●● ●●●

●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●●●● ●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●
●●● ●●●●●●

●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●
●●●●●

●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
● ●

●●●●●
●●●

●●●
●

●●●●●
●

●
●●●● ●

●●●● ●
●●●

●●●
●●●●●●

●●
●

●●●
●

●●
● ●●

●●●
●●●
●

●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●●●●●●●●●●

●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●

●●●●●●
●●●●
●●

●●●

●●●●●●●●●

●●
● ●

●

●

●

●●
●
●●●

●●●●
●●

●
●●●●●

●●● ● ●

●●●●
●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●● ●●●●●●●●●
●

●●● ●
●

●
●

●●
●●●●

●●
●●●●

●●●●
●●

●●
●

●●●●●●●
●●●● ●●

●●●
●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●

● ●

●
●●●●●

●●
● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●
●

●●●
●●●●

●

●●●
●

●●●●●●●●●

●●●●●
●

●●

●

●●●●
●●●●●

●
●

●●

●●●●●●●●●● ● ●
●● ●●●●●●●

●
●

● ●

●

●●
●●●●●●●●●●●●●●●

●
●

●

●
●

●

●●

●

●

●

●
●●

●●●●●
●●●●●●●●●●●

●
●●●●●●

●●
●●●●●●●●●● ●

●
●●●●●●●●●

●●●

●

●
● ● ●

●●●●

●●●
●●●

●●●● ●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●
●

●

●●

●●●●●●●● ●

●

●

●●

●●●●

●●●
●
●●●●●●

●

●●

●●

●

●

●

●●

●●●●
●

●

●●
●

●
●●●●●●●●●

●● ●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●

●●
●●●●

●●●●●●●●●●●●

●●●

● ●
●●●●

●

●
●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●

● ●

●●
●●●●●
●

●●

●●●
●●●●

●●●●
●●

●
●●

●
●●●●●

●●●
●
●●●●●

●●●●

●●
●●●●●● ●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●

●●●
●
● ●●●●●

● ●

●

●●●●●●●●●●●●●●●●●●●
●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●● ●●●●●●●●●

● ●

●
●

●●
●

●
●

●
●●●●●● ● ●

●●
●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●

●● ●●
●● ●●●

●●
●●●

●●●●●●●●●●●●●●●●●●●
●●●

●●●●●
●●●

●●●●●●●
●●

●●●
●●●●●●

●●●
●●●
●●

●●●●
●

●●●
●●

●●●

●●
●●●●●●●●●●●●●●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●

● ●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●
● ●●● ● ●● ●●●

●●●●●●●●●●●●●●●●●●●●●

●●
●●
●

●●●●●●●●●●●●●
●●

●●●

●●●
●

●

●●●●●●●●●
●

●●
●

●
●●

●●●●●●●●
●

●
●●●●●●●
●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●●●●●●●●●●●●●●●●●● ●●●
●●●●

●●● ●

●●

●
●

● ●●●●
●

● ● ● ●
●

●●●●
●

●
●

●
●●●

●●

●●

●●●●●●●●●●●●
●●●●●●●●●● ●●●●●●● ●●●●

●●●●●
●

●●
●

●

●●

●
● ●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●
●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●

● ●
●
●

●
●●●●●●●●●●●●● ●●●●●●●

●

●

●

●

●

● ●

●

●

●●

●

●

●●
●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●

●●●● ●●●
●

●●●●●●● ●●●●● ●●●●●
●●●●●●

●●

● ●
●

●

●

●
●

●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●
●●

●●●●●

●●

●●●
●

●●●●●● ●●●●●●●●●

●●●●●●●●●●
●●●●●

●
●●●

●
●●●●●

●●●●●
●●●●●●●●●●●●●

●●●
●●●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●
● ●●

●●●
● ●

●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●
●
●●●

●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●
●●●●●●●●

●●●●●●●●●
●●●●●●●

●●
●

●
●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●

●●●●●●●●●● ●●●●●●
●●●●●●●●●●●●

●●●●

●●
● ● ●

●
●●●

●●●●●●
●

●
●●

●
●

●
●●●●● ●

●
●●

●
●

●●●●●●
●●●

●●
●●●

●●
●●●●●●●●●●●

● ●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●● ●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●● ●
●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●● ●●
●●●●●

●●●●●●●●●●
●●●●●

●●●●
●

●●
● ● ●●

● ●●●

●
● ●●●

●
●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●● ●●●●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●

●●● ●

●●●●●●●

●

●

●● ●
●

●
●

●●
●●
●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●

●●●
●●

●●●
●●●●●●●●●
●●● ●●●
●

●● ●●●●●●●●●●●

●●●●●●●●
●●●●●●

●
●

●●●
●●●
●●●●●●●●●●●●●●●●●●●● ●

●

●●●●●●●●
●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●

●
●●●●● ●

●●●●

●●●●●●●●●●

●●●●●
●●
●●●●●●●●●●●●●

●●●●●●●●●

●

●

●

●●

●

●

●●●●●●
●●

●
●

●
●●●●●●●●●

●●●●●●●●
● ●

●

●
●

●

●●●●●●

●●●●●●●●●●●●●●●●●●● ●●●●●●●●
●●●●●●●●

●●●●●●●●●●
●●●●●

●

●
●

●
●

●●●
●●●●●●●●●●

●
●● ● ●

●

●●
●●●

●●●
●●●●●●●●●●●●●●
●●●●●●●

●●●
●●●●●●●●●●●●●
●●●

●●●
●●●●●●●●●●
●●●

●●
●●

●●●
●●
●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

● ●●●●●●●●
●●●●●●●●●●●

● ●●●● ●●●●● ●●● ●●
●●
●●
●●●●●●●●

●

●
●●●●●

●
●

●
●

●

●

●

● ●
●

●

●●●●●● ●
●●●●●

●
●

●●●
●●●

●●●●●●

●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●
●●

●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●● ●●

●●
●●●●

●
●

●●●

●●●●●●
●

●●●●●●
●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●
●

●
● ●

●●●●●●●●●
●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●● ●

●●
●●●●

●●●●●●●●●●●●●
●●● ●

●
●●●

●●
●●●

●●●
●●●●●●●●●●●

●●
●
●●

●●
●●●●●●●●●●●●

●●●●●●●●●●●●●
●

●●●●●

●●●
●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●

●●●
●●
●●●

●●
●●●

●●
●●

●●●
●●
●

●●●●
●●●●●●●●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●

●
●

●●●
●● ●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●●●●●●

●●●●●●●●● ●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●

●
●

●
●

●

●●
● ●

●
●●

● ●
●

●

●●●●● ●

●
●

●●
● ●● ●

● ●

●
●●●

●

●
●●

●
● ●●●●●●

●
●

●●●

●

●
●●●●

●●●
●

●
●●●

●

●

●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●
●●
●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●● ●

●
●●●●●●●●●

●
●●●●●

●●●
●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●

●●
●●●●●

●●●●
●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●

●
●
●
●●

●
●

●●●●●●
● ●

●
●●●

●●●

●
●●

●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●●

● ●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●
●●●

●
●●
●

●
●●

●●

●●
●●

●

●

●●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●●●

●●
●●

●

●
●●●●

●
●●

●
●
● ●

●

● ●●●●●
● ●

●
●

●
●
●

●
● ●

●
●

●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●● ●●
●●●●●●●●● ●●● ●

●

●
●

●

●●●●●●●●●●●●●●●●●●
● ●● ●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
● ● ●●

●●●●
●●●

●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●
●

●●●
●●●●●●●●●●●●●● ●

●●●●●●●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●● ●●●
●●●●●●●●●●
●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●
●

●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●
●

●● ●●●
●
●

●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●
●

●
●

●●●●●

−124 −122 −120 −118 −116 −114

34
36

38
40

42

Longitude

La
tit

ud
e

cut.predictions <- cut(predict(treefit3), log(price.deciles), include.lowest = TRUE)
plot(calif$Longitude, calif$Latitude, col = grey(10:2/11)[cut.predictions],

pch = 20, xlab = "Longitude", ylab = "Latitude")

Figure 13.7 Predicted prices for the treefit3 model. Same color scale as
in previous plots (where dots indicated actual prices).

value of Y ; this gives us our root node and two daughter nodes.2 At each daughter
node, we repeat our initial procedure, asking which question would give us the
maximum information about the average value of Y , given where we already are
in the tree. We repeat this recursively.

Every recursive algorithm needs to know when it’s done, a stopping criterion.

2 Mixing botanical and genealogical metaphors for trees is ugly, but I can’t find a way around it.

13.2 Regression Trees 277

Here this means when to stop trying to split nodes. Obviously nodes which contain
only one data point cannot be split, but giving each observations its own leaf is
unlikely to generalize well. A more typical criterion is something like: halt when
each child would contain less than five data points, or when splitting increases
the information by less than some threshold. Picking the criterion is important
to get a good tree, so we’ll come back to it presently.

To really make this work, we need to be precise about “information about
the average value of Y ”. This can be measured straightforwardly by the mean
squared error. The MSE for a tree T is

MSE(T) =
1

n

∑
c∈leaves(T)

∑
i∈c

(yi −mc)
2

(13.1)

where mc = 1
nc

∑
i∈c yi, the prediction for leaf c.

The basic regression-tree-growing algorithm then is as follows:

1. Start with a single node containing all points. Calculate mc and MSE.

2. If all the points in the node have the same value for all the input variables,
stop. Otherwise, search over all binary splits of all variables for the one which
will reduce MSE as much as possible. If the largest decrease in MSE would
be less than some threshold δ, or one of the resulting nodes would contain less
than q points, stop. Otherwise, take that split, creating two new nodes.

3. In each new node, go back to step 1.

Trees use only one variable at each step. If multiple variables are equally good,
which one is chosen is a matter of chance, or arbitrary programming decisions.

One problem with the straight-forward algorithm I’ve just given is that it can
stop too early, in the following sense. There can be variables which are not very
informative themselves, but which lead to very informative subsequent splits.
This suggests a problem with stopping when the decrease in S becomes less than
some δ. Similar problems can arise from arbitrarily setting a minimum number
of points q per node.

A more successful approach to finding regression trees uses the idea of cross-
validation (Chapter 3), especially k-fold cross-validation. We initially grow a large
tree, looking only at the error on the training data. (We might even set q = 1
and δ = 0 to get the largest tree we can.) This tree is generally too large and will
over-fit the data.

The issue is basically about the number of leaves in the tree. For a given number
of leaves, there is a unique best tree. As we add more leaves, we can only lower
the bias, but we also increase the variance, since we have to estimate more. At
any finite sample size, then, there is a tree with a certain number of leaves which
will generalize better than any other. We would like to find this optimal number
of leaves.

The reason we start with a big (lush? exuberant? spreading?) tree is to make
sure that we’ve got an upper bound on the optimal number of leaves. Thereafter,
we consider simpler trees, which we obtain by pruning the large tree. At each

278 Trees

pair of leaves with a common parent, we evaluate the error of the tree on the
testing data, and also of the sub-tree, which removes those two leaves and puts a
leaf at the common parent. We then prune that branch of the tree, and so forth
until we come back to the root. Starting the pruning from different leaves may give
multiple pruned trees with the same number of leaves; we’ll look at which sub-
tree does best on the testing set. The reason this is superior to arbitrary stopping
criteria, or to rewarding parsimony as such, is that it directly checks whether
the extra capacity (nodes in the tree) pays for itself by improving generalization
error. If it does, great; if not, get rid of the complexity.

There are lots of other cross-validation tricks for trees. One cute one is to
alternate growing and pruning. We divide the data into two parts, as before, and
first grow and then prune the tree. We then exchange the role of the training
and testing sets, and try to grow our pruned tree to fit the second half. We then
prune again, on the first half. We keep alternating in this manner until the size
of the tree doesn’t change.

13.2.2.1 Cross-Validation and Pruning in R

The tree package contains functions prune.tree and cv.tree for pruning trees
by cross-validation.

The function prune.tree takes a tree you fit by tree, and evaluates the error
of the tree and various prunings of the tree, all the way down to the stump.
The evaluation can be done either on new data, if supplied, or on the training
data (the default). If you ask it for a particular size of tree, it gives you the best
pruning of that size3. If you don’t ask it for the best tree, it gives an object which
shows the number of leaves in the pruned trees, and the error of each one. This
object can be plotted.

my.tree <- tree(y ~ x1 + x2, data = my.data)
prune.tree(my.tree, best = 5)
prune.tree(my.tree, best = 5, newdata = test.set)
my.tree.seq <- prune.tree(my.tree)
plot(my.tree.seq)
my.tree.seq$dev
opt.trees <- which(my.tree.seq$dev == min(my.tree.seq$dev))
min(my.tree.seq$size[opt.trees])

Finally, prune.tree has an optional method argument. The default is method="deviance",
which fits by minimizing the mean squared error (for continuous responses) or
the negative log likelihood (for discrete responses; see below).4

The function cv.tree does k-fold cross-validation (default is k = 10). It re-
quires as an argument a fitted tree, and a function which will take that tree and
new data. By default, this function is prune.tree.

3 Or, if there is no tree with that many leaves, the smallest number of leaves ≥ the requested size.
4 With discrete responses, you may get better results by saying method="misclass", which looks at

the misclassification rate.

13.3 Classification Trees 279

my.tree.cv <- cv.tree(my.tree)

The type of output of cv.tree is the same as the function it’s called on. If I
do

cv.tree(my.tree, best = 19)

I get the best tree (per cross-validation) of no more than 19 leaves. If I do

cv.tree(my.tree)

I get information about the cross-validated performance of the whole sequence
of pruned trees, e.g., plot(cv.tree(my.tree)). Optional arguments to cv.tree

can include the number of folds, and any additional arguments for the function
it applies (e.g., any arguments taken by prune).

To illustrate, think back to treefit2, which predicted predicted California
house prices based on geographic coordinates, but had a very large number of
nodes because the tree-growing algorithm was told to split at the least provcation.
Figure 13.8 shows the size/performance trade-off. Figures 13.9 and 13.10 show the
result of pruning to the smallest size compatible with minimum cross-validated
error.

13.2.3 Uncertainty in Regression Trees

Even when we are making point predictions, we have some uncertainty, because
we’ve only seen a finite amount of data, and this is not an entirely representative
sample of the underlying probability distribution. With a regression tree, we
can separate the uncertainty in our predictions into two parts. First, we have
some uncertainty in what our predictions should be, assuming the tree is correct.
Second, we may of course be wrong about the tree.

The first source of uncertainty — imprecise estimates of the conditional means
within a given partition — is fairly easily dealt with. We can consistently estimate
the standard error of the mean for leaf c just like we would for any other mean
of IID samples. The second source is more troublesome; as the response values
shift, the tree itself changes, and discontinuously so, tree shape being a discrete
variable. What we want is some estimate of how different the tree could have
been, had we just drawn a different sample from the same source distribution.

One way to estimate this, from the data at hand, is to use bootstrapping (ch.
6). It is important that we apply the bootstrap to the predicted values, which
can change smoothly if we make a tiny perturbation to the distribution, and not
to the shape of the tree itself (which can only change abruptly).

13.3 Classification Trees

Classification trees work just like regression trees, only they try to predict a dis-
crete category (the class), rather than a numerical value. The variables which go

280 Trees

into the classification — the inputs — can be numerical or categorical themselves,
the same way they can with a regression tree. They are useful for the same reasons
regression trees are — they provide fairly comprehensible predictors in situations
where there are many variables which interact in complicated, nonlinear ways.

We find classification trees in almost the same way we found regression trees:
we start with a single node, and then look for the binary distinction which gives
us the most information about the class. We then take each of the resulting new
nodes and repeat the process there, continuing the recursion until we reach some
stopping criterion. The resulting tree will often be too large (i.e., over-fit), so
we prune it back using (say) cross-validation. The differences from regression-
tree growing have to do with (1) how we measure information, (2) what kind of
predictions the tree makes, and (3) how we measure predictive error.

13.3.1 Measuring Information

The response variable Y is categorical, so we can use information theory to mea-
sure how much we learn about it from knowing the value of another discrete
variable A:

I[Y ;A] ≡
∑
a

Pr (A = a) I[Y ;A = a] (13.2)

where

I[Y ;A = a] ≡ H[Y]−H[Y |A = a] (13.3)

and you remember the definitions of entropyH[Y] and conditional entropyH[Y |A =
a],

H[Y] ≡
∑
y

−Pr (Y = y) log2 Pr (Y = y) (13.4)

and

H[Y |A = a] ≡
∑
y

−Pr (Y = y|A = a) log2 Pr (Y = y|A = a) (13.5)

I[Y ;A = a] is how much our uncertainty about Y decreases from knowing that
A = a. (Less subjectively: how much less variable Y becomes when we go from
the full population to the sub-population where A = a.) I[Y ;A] is how much our
uncertainty about Y shrinks, on average, from knowing the value of A.

For classification trees, A isn’t (necessarily) one of the predictors, but rather
the answer to some question, generally binary, about one of the predictors X,
i.e., A = 1A(X) for some set A. This doesn’t change any of the math above,
however. So we chose the question in the first, root node of the tree so as to
maximize I[Y ;A], which we calculate from the formula above, using the relative
frequencies in our data to get the probabilities.

When we want to get good questions at subsequent nodes, we have to take
into account what we know already at each stage. Computationally, we do this
by computing the probabilities and informations using only the cases in that

13.3 Classification Trees 281

node, rather than the complete data set. (Remember that we’re doing recursive
partitioning, so at each stage the sub-problem looks just like a smaller version
of the original problem.) Mathematically, what this means is that if we reach
the node when A = a and B = b, we look for the question C which maximizes
I[Y ;C|A = a,B = b], the information conditional on A = a, B = b. Algebraically,

I[Y ;C|A = a,B = b] = H[Y |A = a,B = b]−H[Y |A = a,B = b, C] (13.6)

Computationally, rather than looking at all the cases in our data set, we just look
at the ones where A = a and B = b, and calculate as though that were all the
data. Also, notice that the first term on the right-hand side, H[Y |A = a,B = b],
does not depend on the next question C. So rather than maximizing I[Y ;C|A =
a,B = b], we can just minimize H[Y |A = a,B = b, C].

13.3.2 Making Predictions

There are two kinds of predictions which a classification tree can make. One is a
point prediction, a single guess as to the class or category: to say “this is a flower”
or “this is a tiger” and nothing more. The other, a distributional prediction,
gives a probability for each class. This is slightly more general, because if we need
to extract a point prediction from a probability forecast we can always do so, but
we can’t go in the other direction.

For probability forecasts, each terminal node in the tree gives us a distribution
over the classes. If the terminal node corresponds to the sequence of answers A =
a,B = b, . . .Q = q, then ideally this would give us Pr (Y = y|A = a,B = b, . . . Q = q)
for each possible value y of the response. A simple way to get close to this is to
use the empirical relative frequencies of the classes in that node. E.g., if there
are 33 cases at a certain leaf, 22 of which are tigers and 11 of which are flowers,
the leaf should predict “tiger with probability 2/3, flower with probability 1/3”.
This is the maximum likelihood estimate of the true probability distribution,
and we’ll write it P̂r (·).

Incidentally, while the empirical relative frequencies are consistent estimates of
the true probabilities under many circumstances, nothing particularly compells
us to use them. When the number of classes is large relative to the sample size,
we may easily fail to see any samples at all of a particular class. The empirical
relative frequency of that class is then zero. This is good if the actual probability
is zero, not so good otherwise. (In fact, under the negative log-likelihood error
discussed below, it’s infinitely bad, because we will eventually see that class, but
our model will say it’s impossible.) The empirical relative frequency estimator is
in a sense too reckless in following the data, without allowing for the possibility
that it the data are wrong; it may under-smooth. Other probability estimators
“shrink away” or “back off” from the empirical relative frequencies; Exercise 1
involves one such estimator.

For point forecasts, the best strategy depends on the loss function. If it is just
the mis-classification rate, then the best prediction at each leaf is the class with
the highest conditional probability in that leaf. With other loss functions, we

282 Trees

should make the guess which minimizes the expected loss. But this leads us to
the topic of measuring error.

13.3.3 Measuring Error

There are three common ways of measuring error for classification trees, or indeed
other classification algorithms: misclassification rate, expected loss, and normal-
ized negative log-likelihood, a.k.a. cross-entropy.

13.3.3.1 Misclassification Rate

We’ve already seen this: it’s the fraction of cases assigned to the wrong class.

13.3.3.2 Average Loss

The idea of the average loss is that some errors are more costly than others.
For example, we might try classifying cells into “cancerous” or “not cancerous”
based on their gene expression profiles. If we think a healthy cell from someone’s
biopsy is cancerous, we refer them for further tests, which are frightening and
unpleasant, but not, as the saying goes, the end of the world. If we think a cancer
cell is healthy, th consequences are much more serious! There will be a different
cost for each combination of the real class and the guessed class; write Lij for the
cost (“loss”) we incur by saying that the class is j when it’s really i.

For an observation x, the classifier gives class probabilities Pr (Y = i|X = x).
Then the expected cost of predicting j is:

Loss(Y = j|X = x) =
∑
i

LijPr (Y = i|X = x) (13.7)

A cost matrix might look as follows

prediction
truth “cancer” “healthy”

“cancer” 0 100
“healthy” 1 0

We run an observation through the tree and wind up with class probabilities
(0.4, 0.6). The most likely class is “healthy”, but it is not the most cost-effective
decision. The expected cost of predicting “cancer” is 0.4 ∗ 0 + 0.6 ∗ 1 = 0.6, while
the expected cost of predicting “healthy” is 0.4∗100+0.6∗0 = 40. The probability
of Y = “healthy” must be 100 times higher than that of Y = “cancer” before
“cancer” is a cost-effective prediction.

Notice that if our estimate of the class probabilities is very bad, we can go
through the math above correctly, but still come out with the wrong answer. If
our estimates were exact, however, we’d always be doing as well as we could,
given the data.

You can show (Exercise 13.6) that if the costs are symmetric, we get the mis-
classification rate back as our error function, and should always predict the most
likely class.

13.3 Classification Trees 283

13.3.3.3 Likelihood and Cross-Entropy

The normalized negative log-likelihood is a way of looking not just at whether the
model made the wrong call, but whether it made the wrong call with confidence
or tentatively. (“Often wrong, never in doubt” is not a good way to go through
life.) More precisely, this loss function for a model Q is

L(data, Q) = − 1

n

n∑
i=1

logQ(Y = yi|X = xi) (13.8)

where Q(Y = y|X = x) is the conditional probability the model predicts. If
perfect classification were possible, i.e., if Y were a function of X, then the best
classifier would give the actual value of Y a probability of 1, and L = 0. If there is
some irreducible uncertainty in the classification, then the best possible classifier
would give L = H[Y |X], the conditional entropy of Y given the inputs X. Less-
than-ideal predictors have L > H[Y |X]. To see this, try re-write L so we sum
over values rather than data-points:

L = − 1

n

∑
x,y

N(Y = y,X = x) logQ(Y = y|X = x)

= −
∑
x,y

P̂r (Y = y,X = x) logQ(Y = y|X = x)

= −
∑
x,y

P̂r (X = x) P̂r (Y = y|X = x) logQ(Y = y|X = x)

= −
∑
x

P̂r (X = x)
∑
y

P̂r (Y = y|X = x) logQ(Y = y|X = x)

If the quantity in the log was Pr (Y = y|X = x), this would be H[Y |X]. Since
it’s the model’s estimated probability, rather than the real probability, it turns
out that this is always larger than the conditional entropy. L is also called the
cross-entropy for this reason.

There is a slightly subtle issue here about the difference between the in-sample
loss, and the expected generalization error or risk. N(Y = y,X = x)/n =

P̂r (Y = y,X = x), the empirical relative frequency or empirical probability. The
law of large numbers says that this converges to the true probability, N(Y =
y,X = x)/n → Pr (Y = y,X = x) as n → ∞. Consequently, the model which
minimizes the cross-entropy in sample may not be the one which minimizes it on
future data, though the two ought to converge. Generally, the in-sample cross-
entropy is lower than its expected value.

Notice that to compare two models, or the same model on two different data
sets, etc., we do not need to know the true conditional entropy H[Y |X]. All we
need to know is that L is smaller the closer we get to the true class probabilities.
If we could get L down to the cross-entropy, we would be exactly reproducing
all the class probabilities, and then we could use our model to minimize any loss
function we liked (as we saw above).5

5 Technically, if our model gets the class probabilities right, then the model’s predictions are just as

284 Trees

13.3.3.4 Neyman-Pearson Approach

Using a loss function which assigns different weights to different error types has
two noticeable drawbacks. First of all, we have to pick the weights, and this is
often quite hard to do. Second, whether our classifier will do well in the future
depends on getting the same proportion of cases in the future. Suppose that we’re
developing a tree to classify cells as cancerous or not from their gene expression
profiles. We will probably want to include lots of cancer cells in our training
data, so that we can get a good idea of what cancers look like, biochemically.
But, fortunately, most cells are not cancerous, so if doctors start applying our
test to their patients, they’re going to find that it massively over-diagnoses cancer
— it’s been calibrated to a sample where the proportion (cancer):(healthy) is, say,
1:1, rather than, say, 1:20.6

There is an alternative to weighting which deals with both of these issues, and
deserves to be better known and more widely-used than it is. This was introduced
by Scott and Nowak (2005), under the name of the “Neyman-Pearson approach”
to statistical learning. The reasoning goes as follows.

When we do a binary classification problem, we’re really doing a hypothesis
test, and the central issue in hypothesis testing, as first recognized by Neyman
and Pearson, is to distinguish between the rates of different kinds of errors: false
positives and false negatives, false alarms and misses, type I and type II. The
Neyman-Pearson approach to designing a hypothesis test is to first fix a limit on
the false positive probability, the size of the test, canonically α. Then, among
all tests of size α, we want to minimize the false negative rate, or equivalently
maximize the power, β.

In the traditional theory of testing, we know the distribution of the data under
the null and alternative hypotheses, and so can (in principle) calculate α and β
for any given test. This is not the case in many applied problems, but then we
often do have large samples generated under both distributions (depending on
the class of the data point). If we fix α, we can ask, for any classifier — say, a tree
— whether its false alarm rate is ≤ α. If so, we keep it for further consideration;
if not, we discard it. Among those with acceptable false alarm rates, then, we ask
“which classifier has the lowest false negative rate, the highest β?” This is the
one we select.

Notice that this solves both problems with weighting. We don’t have to pick a
weight for the two errors; we just have to say what rate of false positives α we’re
willing to accept. There are many situations where this will be easier to do than to
fix on a relative cost. Second, the rates α and β are properties of the conditional

informative as the original data. We then say that the predictions are a sufficient statistic for

forecasting the class. In fact, if the model gets the exact probabilities wrong, but has the correct

partition of the variable space, then its prediction is still a sufficient statistic. Under any loss

function, the optimal strategy can be implemented using only a sufficient statistic, rather than

needing the full, original data. This is an interesting but much more advanced topic; see, e.g.,

Blackwell and Girshick (1954) for details.
6 Cancer is rarer than that, but realistically doctors aren’t going to run a test like this unless they

have some reason to suspect cancer might be present.

13.4 Further Reading 285

distributions of the variables, Pr (X|Y). If those conditional distributions stay
they same but the proportions of the classes change, then the error rates are
unaffected. Thus, training the classifier with a different mix of cases than we’ll
encounter in the future is not an issue.

Unfortunately, I don’t know of any R implementation of Neyman-Pearson
learning; it wouldn’t be hard, I think, but goes beyond one problem set at this
level.

13.4 Further Reading

The classic book on prediction trees, which basically introduced them into statis-
tics and data mining, is Breiman et al. (1984). Chapter three in Berk (2008) is
clear, easy to follow, and draws heavily on Breiman et al. Another very good
chapter is the one on trees in Ripley (1996), which is especially useful for us be-
cause Ripley wrote the tree package. (The whole book is strongly recommended.)
There is another tradition of trying to learn tree-structured models which comes
out of artificial intelligence and inductive logic; see Mitchell (1997).

The clearest explanation of the Neyman-Pearson approach to hypothesis test-
ing I have ever read is that in Reid (1982), which is one of the books which made
me decide to learn statistics.

Exercises

13.1 Repeat the analysis of the California house-price data with the Pennsylvania data from

Problem Set 10.

13.2 Explain why, for a fixed partition, a regression tree is a linear smoother.

13.3 Suppose that we see each of k classes ni times, with
∑k
i=1 ni = n. The maximum likelihood

estimate of the probability of the ith class is p̂i = ni/n. Suppose that instead we use the

estimates

p̃i =
ni + 1∑k

j=1

(
nj + 1

) (13.9)

This estimator goes back to Laplace, who called it the “rule of succession”.

1. Show that
∑k
i p̃i = 1, no matter what the sample is.

2. Show that if p̂→ p as n→∞, then p̃→ p as well.

3. Using the result of the previous part, show that if we observe an IID sample, that

p̃→ p, i.e., that p̃ is a consistent estimator of the true distribution.

4. Does p̃→ p imply p̂→ p?

5. Which of these properties still hold if the +1s in the numerator and denominator are

replaced by +d for an arbitrary d > 0?

13.4 Fun with Laplace’s rule of succession: will the Sun rise tomorrow? One illustration Laplace

gave of the probability estimator in Eq. 13.9 was the following. Suppose we know, from

written records, that the Sun has risen in the east every day for the last 4000 years.7

7 Laplace was thus ignoring people who live above the Artic circle, or below the Antarctic circle. The

latter seems particularly unfair, because so many of them are scientists.

286 Trees

1. Calculate the probability of the event “the Sun will rise in the east tomorrow”, using

Eq. 13.9. You may take the year as containing 365.256 days.

2. Calculate the probability that the Sun will rise in the east every day for the next four

thousand years, assuming this is an IID event each day. Is this a reasonable assumption?

3. Calculate the probability of the event “the Sun will rise in the east every day for four

thousand years” directly from Eq. 13.9, treating that as a single event. Why does your

answer here not agree with that of part (b)?

(Laplace did not, of course, base his belief that the Sun will rise in the morning on such

calculations; besides everything else, he was the world’s expert in celestial mechanics! But

this shows a problem with the “rule of succession”.)

13.5 It’s reasonable to wonder why we should measure the complexity of a tree by just the

number of leaves it has, rather than by the total number of nodes. Show that for a binary

tree, with |T | leaves, the total number of nodes (including the leaves) is 2|T | − 1. (Thus,

controlling the number of leaves is equivalent to controlling the number of nodes.)

13.6 Show that, when all the off-diagonal elements of Lij (from §13.3.3.2) are equal (and

positive!), the best class to predict is always the most probable class .

Exercises 287

size

de
vi

an
ce

35
00

40
00

45
00

50
00

55
00

60
00

65
00

1 10 20 30 40 50 60 68

670.0 100.0 66.0 32.0 26.0 16.0 14.0 9.6 8.4 7.7

treefit2.cv <- cv.tree(treefit2)
plot(treefit2.cv)

Figure 13.8 Size (horizontal axis) versus cross-validated sum of squared
errors (vertical axis) for successive prunings of the treefit2 model. (The
upper scale on the horizontal axis refers to the “cost/complexity” penalty.
The idea is that the pruning minimizes (total error) + λ(complexity) for a
certain value of λ, which is what’s shown on that scale. Here complexity is
taken to just be the number of leaves in the tree, i.e., its size (though
sometimes other measures of complexity are used). λ then acts as a
Lagrange multiplier (§D.3.2) which enforces a constraint on the complexity
of the tree. See Ripley (1996, §7.2, pp. 221–226) for details.

288 Trees

|
Latitude < 38.485

Longitude < −121.655

Latitude < 37.925 Latitude < 34.675

Longitude < −118.315

Latitude < 34.165
Longitude < −118.365

Longitude < −117.545

Latitude < 33.725
Latitude < 34.105

Longitude < −118.165

Latitude < 33.59
Longitude < −116.33

Longitude < −117.165

Longitude < −120.275

Latitude < 39.355

12.48 12.10

12.86 12.38
12.37

12.54

11.92 12.20
12.40

12.38 11.95
11.16

11.63

11.75 11.28

11.73 11.32

opt.trees <- which(treefit2.cv$dev == min(treefit2.cv$dev))
best.leaves <- min(treefit2.cv$size[opt.trees])
treefit2.pruned <- prune.tree(treefit2, best = best.leaves)
plot(treefit2.pruned)
text(treefit2.pruned, cex = 0.75)

Figure 13.9 treefit2, after being pruned by ten-fold cross-validation.

Exercises 289

●●
●●● ●●

●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●
●●● ●●●●●●

●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●
●●●●●

●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
● ●

●●●●●
●●●

●●●
●

●●●●●
●

●
●●●● ●

●●●● ●
●●●

●●●
●●●●●●

●●
●

●●●
●

●●
● ●●

●●●
●●●
●

●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●
●●●●●●●●

●●●●
●●

●●

●●●●●●●●●

●●
● ●

●

●

●

●●
●
●●●

●●●
●

●
●●●●●

●●● ● ●

●●●●
●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●● ●●●●●●●●●
●

●●● ●
●

●
●

●●
●●●●

●●
●●●●

●●●●
●●

●●
●

●●●●●●●
●●●● ●●

●●●
●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●

● ●

●
●●●●●

●●
● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●
●

●●●
●●●●

●

●●●
●

●●●●●●●●●

●●●●●
●

●●

●

●●●●
●●●●●

●
●

●●

●●●●●●●●●● ● ●
●● ●●●●●●●

●
●

● ●

●

●●
●●●●●●●●●●●●●●●

●
●

●

●
●

●

●●

●

●

●

●
●●

●●●●●
●●●●●●●●●●●

●
●●●●●●

●●
●●●●●●●●●● ●

●
●●●●●●●●●

●●●

●

●
● ● ●

●●●●

●●●
●●●

●●●● ●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●
●

●

●●

●●●●●●●● ●

●

●

●●

●●●●

●●●
●
●●●●●●

●

●●

●●

●

●

●

●●

●●●●
●

●

●●
●

●
●●●●●●●●●

●● ●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●

●●
●●●●

●●●●●●●●●●●●

●●●

● ●
●●●●

●

●
●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●

● ●

●●
●●●●●
●

●●

●●●
●●●●

●●●●
●●

●
●●

●
●●●●●

●●●
●
●●●●●

●●●●

●●
●●●●●● ●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●

●●●
●
● ●●●●●

● ●

●

●●●●●●●●●●●●●●●●●●●
●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●● ●●●●●●●●●

● ●

●
●

●●
●

●
●

●
●●●●●● ● ●

●●
●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●
●●

●● ●●●
●●● ●●

●●
●●●

●●●●●●●●●●●●●●●●●●●
●●●

●●●●
●●

●●●●●●●
●●

●●
●●●

●●●
●●●
●●

●
●

●●●
●●

●●

●●●
●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●

● ●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●
● ●●● ● ●● ●●●

●●●●●●●●●●●
●●●●●●●●●●

●●
●●
●

●●●●●●●●●●●●●
●●

●●●

●●●
●

●

●●●●●●●●●
●

●●
●

●
●●

●●●●●●●●
●

●
●●●●●●●
●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●●
●●●

●●●

●●

●
●

● ●●●●
●

● ● ● ●
●

●●●●
●

●
●

●
●●●

●●

●●

●●●●●●●●●●●●
●●●●●●●●●● ●●●●●●● ●●●●

●●●●●
●

●●
●

●

●●

●
● ●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●
●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●

● ●
●
●

●
●●●●●●●●●●●●● ●●●●●●●

●

●

●

●

●

● ●

●

●

●●

●

●

●●
●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●

●●●●● ●●●
●

●●●●● ●●●●● ●●●●●
●●●●●●

●●

● ●
●

●

●

●

●●●●●●●●●●●●●●●●●
●

●●
●●●●●

●●●

●●●
●

●●●●●● ●●●●●●●●

●●●●●●●●●●
●●●●●

●
●●●

●
●●●●●

●●●●●
●●●●●●●●●●●●●

●●●
●●●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●
● ●●

●●●
● ●

●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●
●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●
●●

●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●
●●
●●
●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●

●●●●●●●●●
●●●●●●●

●●
●

●
●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●

●●●●●●●●●● ●●●●●●
●●●●●●●●●●●●

●●●●●

●●
● ● ●

●
●●●

●●●●●●
●

●
●●

●
●

●
●●●●● ●

●
●●

●
●

●●●●●●
●●●

●●●
●●

●●
●●●●●●●●●●●

● ●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●● ●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●● ●
●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●● ●●
●●●●●

●●●●●●●●●●
●●●●●

●●●●
●

●●
● ● ●●

● ●●●

●
● ●●●

●
●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●

●●● ●

●●●●●●●

●

●

●● ●
●

●
●

●●
●●
●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●

●●
●●●

●●●
●●●●●●●●●
●●● ●●●
●

●● ●●●●●●●●●●●

●●●●●●●●
●●●●●●

●
●

●●●
●●●
●●●●●●●●●●●●●●●●●●●● ●

●

●●●●●●●●
●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●
●●

●

●
●●●●●

●
●●●●● ●

●●●●

●●●●●●●●●●

●●●●●
●●
●●●●●●●●●●●●●

●●●●●●●●●

●

●

●

●●

●

●

●●●●●●
●●

●
●

●
●●●●●●●●●

●●●●●●●●
● ●

●

●
●

●

●●●●●●

●●●●●●●●●●●●●●●●●●● ●●●●●●●●
●●●●●●●●

●●●●●●●●●●
●●●●●

●

●
●

●
●

●●●
●●●●●●●●●●

●
●● ● ●

●

●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●●●
●●●●
●●●

●●
●●●

●●●
●●
●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

● ●●●●●●●
●●●●●●●●●●●

● ●●●● ●●●●● ●● ●●●
●●
●●
●●●●●●●●

●

●
●●●●●

●
●

●
●

●

●

●

● ●
●

●

●●●●●● ●
●●●●●

●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●
●●

●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●● ●●

●●
●●●●

●
●

●●●

●●●●●●
●

●●●●●●
●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●
●

●
● ●

●●●●●●●●●
●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●● ●

●●
●●●●

●●●●●●●●●●●●●
●●● ●

●
●●●

●●●
●●

●
●●●●●●●●●
●

●
●●

●●●
●●●●●●●●● ●●●●●●●●●●●

●●
●●●●●●●
●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●
●●
●●●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●

●

●
●

●
●●●

●
●● ●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●

●
●

●
●

●

●●
● ●

●
●●

● ●
●

●

●●●●● ●

●
●

●●
● ●● ●

● ●

●
●●●

●

●
●●

●
● ●●●●●●

●
●

●●●

●

●
●●●●

●●●
●

●
●●●

●

●

●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●
●●
●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●● ●

●
●●●●●●●●●

●
●●●●●

●●●
●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●

●●
●●●●●

●●●●
●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●

●
●
●
●●

●
●

●●●●●●
● ●

●
●●●

●●●

●
●●●

●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●●

● ●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●
●●●

●
●●
●

●
●●

●●

●●
●●

●

●

●●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●●●

●●
●●

●

●
●●●●

●
●●

●
●
● ●

●

● ●●●●●
● ●

●
●

●
●
●

●
● ●

●
●

●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●● ●●●
●●●●●●●●● ●●● ●

●

●
●

●

●●●●●●●●●●●●●●●●●●
● ●● ●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
● ● ●●

●●●●
●●●

●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●
●

●●●
●●●●●●●●●●●●●● ●

●●●●●●●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●

● ●●
●●●●●●●●●●
●●●

●●

●●●●●●
●

●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●
●

●● ●●●
●
●

●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●
●

●
●

●●●●●

−124 −122 −120 −118 −116 −114

34
36

38
40

42

Longitude

La
tit

ud
e

12.5

12.1

12.9 12.4

12.4

12.5

11.9 12.2

12.4

12.4 11.9 11.2

11.6

11.8 11.3

11.7

11.3

plot(calif$Longitude, calif$Latitude, col = grey(10:2/11)[cut.prices], pch = 20,
xlab = "Longitude", ylab = "Latitude")

partition.tree(treefit2.pruned, ordvars = c("Longitude", "Latitude"), add = TRUE,
cex = 0.3)

Figure 13.10 treefit2.pruned’s partition of California. Compare to
Figure 13.5.

Part II

Distributions and Latent Structure

291

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

14

Estimating Distributions and Densities

We have spent a lot of time looking at how to estimate expectations (which
is regression). We have also seen how to estimate variances, by turning it into
a problem about expectations. We could extend the same methods to looking
at higher moments — if you need to find the conditional skewness or kurtosis
functions1, you can tackle that in the same way as finding the conditional variance.
But what if we want to look at the whole distribution?

You’ve already seen one solution to this problem in earlier statistics courses:
posit a parametric model for the density (Gaussian, Student’s t, exponential,
gamma, beta, Pareto, . . .) and estimate the parameters. Maximum likelihood
estimates are generally consistent and efficient for such problems. None of this
changes when the distributions are multivariate. But suppose you don’t have any
particular parametric density family in mind, or want to check one — how could
we estimate a probability distribution non-parametrically?

14.1 Histograms Revisited

For most of you, making a histogram was probably one of the first things you
learned how to do in intro stats (if not before). This is a simple way of estimating
a distribution: we split the sample space up into bins, count how many samples
fall into each bin, and then divide the counts by the total number of samples. If
we hold the bins fixed and take more and more data, then by the law of large
numbers we anticipate that the relative frequency for each bin will converge on
the bin’s probability.

So far so good. But one of the things you learned in intro stats was also to work
with probability density functions, not just probability mass functions. Where do
we get pdfs? Well, one thing we could do is to take our histogram estimate, and
then say that the probability density is uniform within each bin. This gives us a
piecewise-constant estimate of the density.

Unfortunately, this isn’t going to work — isn’t going to converge on the true pdf
— unless we can shrink the bins of the histogram as we get more and more data.
To see this, think about estimating the pdf when the data comes from any of the
standard distributions, like an exponential or a Gaussian. We can approximate
the true pdf f(x) to arbitrary accuracy by a piecewise-constant density (indeed,

1 When you find out what the kurtosis is good for, be sure to tell the world.

293

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

294 Density Estimation

that’s what happens every time we plot it on our screens), but, for a fixed set of
bins, we can only come so close to the true, continuous density.

This reminds us of our old friend the bias-variance trade-off, and rightly so. If
we use a large number of very small bins, the minimum bias in our estimate of
any density becomes small, but the variance in our estimates grows. (Why does
variance increase?) To make some use of this insight, though, there are some
things we need to establish first.

• Is learning the whole distribution non-parametrically even feasible?
• How can we measure error so deal with the bias-variance trade-off?

14.2 “The Fundamental Theorem of Statistics”

Let’s deal with the first point first. In principle, something even dumber than
shrinking histograms will work to learn the whole distribution. Suppose we have
one-dimensional samples x1, x2, . . . xn with a common cumulative distribution
function F . The empirical cumulative distribution function on n samples,
F̃n(a) is

F̃n(a) ≡ 1

n

n∑
i=1

1(−∞,a])(xi) (14.1)

In words, this is just the fraction of the samples which are ≤ a. Then the
Glivenko-Cantelli theorem says

max
a
|F̃n(a)− F (a)| → 0 (14.2)

So the empirical CDF converges to the true CDF everywhere; the maximum
gap between the two of them goes to zero. Pitman (1979) calls this the “fun-
damental theorem of statistics”, because it says we can learn distributions just
by collecting enough data.2 The same kind of result also holds for the CDFs of
higher-dimensional vectors.

If the Glivenko-Cantelli theorem is so great, why aren’t we just content with

2 There are some interesting aspects to the theorem which are tangential to what we’ll need, so I will

stick them in this footnote. These hinge on the max in the statement of the theorem. For any one,

fixed value of a, that |F̃n(a)− F (a)| → 0 is just an application of the law of large numbers. The

extra work Glivenko and Cantelli did was to show that this held for infinitely many values of a at

once, so that even if we focus on the biggest gap between the estimate and the truth, that still

shrinks with n. Here’s a sketch, with no details. Fix an ε > 0; first show that there is some finite set

of points on the line, call them b1, . . . bm(ε), such that, for any a, |F̃n(a)− F̃n(bi)| < ε and

|F (a)− F (bi)| < ε for some bi. Next, show that, for large enough n, |F (bi)− F̃n(bi)| < ε for all the

bi simultaneously. (This follows from the law of large numbers and the fact that m(ε) is finite.)

Finally, use the triangle inequality to conclude that, for large enough n, maxa |F̃n(a)− F (a)| < 3ε.

Since ε can be made arbitrarily small, the Glivenko-Cantelli theorem follows. This general strategy

— combining pointwise convergence theorems with approximation arguments — forms the core of

what’s called empirical process theory, which underlies the consistency of basically all the

non-parametric procedures we’ve seen. If this line of thought is at all intriguing, the closest thing to

a gentle introduction is Pollard (1989). (If you know enough to object that I should have been

writing sup instead of max, you know enough to make the substitution for yourself.)

14.3 Error for Density Estimates 295

the empirical CDF? Sometimes we are, but it inconveniently doesn’t give us a
probability density. Suppose that x1, x2, . . . xn are sorted into increasing order.
What probability does the empirical CDF put on the interval (xi, xi+1)? Clearly,
zero. (Whereas the interval [xi, xi+1] gets probability 2/n.) This could be right,
but we have centuries of experience now with probability distributions, and this
tells us that pretty often we can expect to find some new samples between our
old ones. So we’d like to get a non-zero density between our observations.

Using a uniform distribution within each bin of a histogram doesn’t have this
issue, but it does leave us with the problem of picking where the bins go and how
many of them we should use. Of course, there’s nothing magic about keeping the
bin size the same and letting the number of points in the bins vary; we could
equally well pick bins so they had equal counts.3 So what should we do?

14.3 Error for Density Estimates

Our first step is to get clear on what we mean by a “good” density estimate.
There are three leading ideas:

1.
∫

(f(x)− f̂(x))
2
dx should be small: the squared deviation from the true den-

sity should be small, averaging evenly over all space.
2.
∫
|f(x)− f̂(x)|dx should be small: minimize the average absolute, rather than

squared, deviation.
3.
∫
f(x) log f(x)

f̂(x)
dx should be small: the average log-likelihood ratio should be

kept low.

Option (1) is reminiscent of the MSE criterion we’ve used in regression. Option
(2) looks at what’s called the L1 or total variation distance between the true and

the estimated density. It has the nice property that 1
2

∫
|f(x)− f̂(x)|dx is exactly

the maximum error in our estimate of the probability of any set. Unfortunately
it’s a bit tricky to work with, so we’ll skip it here. (But see Devroye and Lugosi
(2001)). Finally, minimizing the log-likelihood ratio is intimately connected to
maximizing the likelihood. We will come back to this (§14.6), but, like most texts
on density estimation, we will give more attention to minimizing (1), because it’s
mathematically tractable.

Notice that∫
(f(x)− f̂(x))

2
dx =

∫
f2(x)dx− 2

∫
f̂(x)f(x)dx+

∫
f̂2(x)dx (14.3)

3 A specific idea for how to do this is sometimes called a k − d tree. We have d random variables and

want a joint density for all of them. Fix an ordering of the variables Start with the first variable,

and find the thresholds which divide it into k parts with equal counts. (Usually but not always

k = 2.) Then sub-divide each part into k equal-count parts on the second variable, then sub-divide

each of those on the third variable, etc. After splitting on the dth variable, go back to splitting on

the first, until no further splits are possible. With n data points, it takes about logk n splits before

coming down to individual data points. Each of these will occupy a cell of some volume. Estimate

the density on that cell as one over that volume. Of course it’s not strictly necessary to keep refining

all the way down to single points.

296 Density Estimation

The first term on the right hand side doesn’t depend on the estimate f̂(x) at all,

so we can ignore it for purposes of optimization. The third one only involves f̂ ,
and is just an integral, which we can do numerically. That leaves the middle term,
which involves both the true and the estimated density; we can approximate it
by

− 2

n

n∑
i=1

f̂(xi) (14.4)

The reason we can do this is that, by the Glivenko-Cantelli theorem, integrals over
the true density are approximately equal to sums over the empirical distribution.

So our final error measure is

− 2

n

n∑
i=1

f̂(xi) +

∫
f̂2(x)dx (14.5)

In fact, this error measure does not depend on having one-dimension data; we
can use it in any number of dimensions.4 For purposes of cross-validation (you

knew that was coming, right?), we can estimate f̂ on the training set, and then
restrict the sum to points in the testing set.

14.3.1 Error Analysis for Histogram Density Estimates

We now have the tools to do most of the analysis of histogram density estimation.
(We’ll do it in one dimension for simplicity.) Choose our favorite location x, which
lies in a bin whose boundaries are x0 and x0 +h. We want to estimate the density
at x, and this is

f̂n(x) =
1

h

1

n

n∑
i=1

1(x0,x0+h](xi) (14.6)

Let’s call the sum, the number of points in the bin, b. It’s a random quantity,
B ∼ Binomial(n, p), where p is the true probability of falling into the bin, p =
F (x0 + h)− F (x0). The mean of B is np, and the variance is np(1− p), so

E
[
f̂n(x)

]
=

1

nh
E [B] (14.7)

=
n[F (x0 + h)− F (x0)]

nh
(14.8)

=
F (x0 + h)− F (x0)

h
(14.9)

4 Admittedly, in high-dimensional spaces, doing the final integral can become numerically challenging.

14.3 Error for Density Estimates 297

and the variance is

V
[
f̂n(x)

]
=

1

n2h2
V [B] (14.10)

=
n[F (x0 + h)− F (x0)][1− F (x0 + h) + F (x0)]

n2h2
(14.11)

= E
[
f̂n(x)

] 1− F (x0 + h) + F (x0)

nh
(14.12)

If we let h→ 0 as n→∞, then

E
[
f̂h(x)

]
→ lim

h→0

F (x0 + h)− F (x0)

h
= f(x0) (14.13)

since the pdf is the derivative of the CDF. But since x is between x0 and x0 + h,
f(x0) → f(x). So if we use smaller and smaller bins as we get more data, the
histogram density estimate is unbiased. We’d also like its variance to shrink as
the same grows. Since 1− F (x0 + h) + F (x0)→ 1 as h→ 0, to get the variance
to go away we need nh→∞.

To put this together, then, our first conclusion is that histogram density esti-
mates will be consistent when h → 0 but nh → ∞ as n → ∞. The bin-width h
needs to shrink, but slower than n−1.

At what rate should it shrink? Small h gives us low bias but (as you can
verify from the algebra above) high variance, so we want to find the trade-off

between the two. One can calculate the bias at x from our formula for E
[
f̂h(x)

]
through a somewhat lengthy calculus exercise, analogous to what we did for kernel
smoothing in Chapter 45; the upshot is that the integrated squared bias is∫ (

f(x)− E
[
f̂h(x)

])2

dx =
h2

12

∫
(f ′(x))

2
dx+ o(h2) (14.14)

We already got the variance at x, and when we integrate that over x we find∫
V
[
f̂h(x)

]
dx =

1

nh
+ o(n−1) (14.15)

So the total integrated squared error is

ISE =
h2

12

∫
(f ′(x))

2
dx+

1

nh
+ o(h2) + o(n−1) (14.16)

Differentiating this with respect to h and setting it equal to zero, we get

hopt

6

∫
(f ′(x))

2
dx =

1

nh2
opt

(14.17)

hopt =

(
6∫

(f ′(x))
2
dx

)1/3

n−1/3 = O(n−1/3) (14.18)

5 You need to use the intermediate value theorem multiple times; see for instance Wasserman (2006,

sec. 6.8).

298 Density Estimation

So we need narrow bins if the density changes rapidly (
∫

(f ′(x))
2
dx is large), and

wide bins if the density is relatively flat. No matter how rough the density, the
bin width should shrink like O(n−1/3). Plugging that rate back into the equation
for the ISE, we see that it is O(n−2/3).

It turns out that if we pick h by cross-validation, then we attain this optimal
rate in the large-sample limit. By contrast, if we knew the correct parametric
form and just had to estimate the parameters, we’d typically get an error decay
of O(n−1). This is substantially faster than histograms, so it would be nice if we
could make up some of the gap, without having to rely on parametric assumptions.

14.4 Kernel Density Estimates

It turns out that one can improve the convergence rate, as well as getting smoother
estimates, by using kernels. The kernel density estimate is

f̂h(x) =
1

n

n∑
i=1

1

h
K

(
x− xi
h

)
(14.19)

where K is a kernel function such as we encountered when looking at kernel
regression. (The factor of 1/h inside the sum is so that f̂h will integrate to 1;
we could have included it in both the numerator and denominator of the kernel
regression formulae, but then it would’ve just canceled out.) As before, h is the
bandwdith of the kernel. We’ve seen typical kernels in things like the Gaussian.
One advantage of using them is that they give us a smooth density everywhere,
unlike histograms, and in fact we can even use them to estimate the derivatives
of the density, should that be necessary.6

14.4.1 Analysis of Kernel Density Estimates

How do we know that kernels will in fact work? Well, let’s look at the mean and
variance of the kernel density estimate at a particular point x, and use Taylor’s

6 The advantage of histograms is that they’re computationally and mathematically simpler.

14.4 Kernel Density Estimates 299

theorem on the density.

E
[
f̂h(x)

]
=

1

n

n∑
i=1

E
[

1

h
K

(
x−Xi

h

)]
(14.20)

= E
[

1

h
K

(
x−X
h

)]
(14.21)

=

∫
1

h
K

(
x− t
h

)
f(t)dt (14.22)

=

∫
K(u)f(x− hu)du (14.23)

=

∫
K(u)

[
f(x)− huf ′(x) +

h2u2

2
f ′′(x) + o(h2)

]
du (14.24)

= f(x) +
h2f ′′(x)

2

∫
K(u)u2du+ o(h2) (14.25)

(14.26)

because, by definition,
∫
K(u)du = 1 and

∫
uK(u)du = 0. If we call

∫
K(u)u2du =

σ2
K , then the bias of the kernel density estimate is

E
[
f̂h(x)

]
− f(x) =

h2σ2
Kf
′′(x)

2
+ o(h2) (14.27)

So the bias will go to zero if the bandwidth h shrinks to zero. What about the
variance? Use Taylor’s theorem again:

V
[
f̂h(x)

]
=

1

n
V
[

1

h
K

(
x−X
h

)]
(14.28)

=
1

n

[
E
[

1

h2
K2

(
x−X
h

)]
−
(
E
[

1

h
K

(
x−X
h

)])2
]

(14.29)

=
1

n

[∫
1

h2
K2

(
x− t
h

)
dt−

[
f(x) +O(h2)

]2]
(14.30)

=
1

n

[∫
1

h
K2(u)f(x− hu)du− f2(x) +O(h2)

]
(14.31)

=
1

n

[∫
1

h
K2(u) (f(x)− huf ′(x)) du− f2(x) +O(h)

]
(14.32)

=
f(x)

hn

∫
K2(u)du+O(1/n) (14.33)

This will go to zero if nh → ∞ as n → ∞. So the conclusion is the same as for
histograms: h has to go to zero, but slower than 1/n.

Since the expected squared error at x is the bias squared plus the variance,

h4σ4
K(f ′′(x))2

4
+
f(x)

hn

∫
K2(u)du+ small (14.34)

300 Density Estimation

the expected integrated squared error is

ISE ≈ h4σ4
K

4

∫
(f ′′(x))2dx+

∫
K2(u)du

nh
(14.35)

Differentiating with respect to h for the optimal bandwidth hopt, we find

h3
optσ

4
K

∫
(f ′′(x))2dx =

∫
K2(u)du

nh2
opt

(14.36)

hopt =

(∫
K2(u)du

σ4
K

∫
(f ′′(x))2dx

)1/5

n−1/5 = O(n−1/5) (14.37)

That is, the best bandwidth goes to zero like one over the fifth root of the number
of sample points. Plugging this into Eq. 14.35, the best ISE = O(n−4/5). This
is better than the O(n−2/3) rate of histograms, but still includes a penalty for
having to figure out what kind of distribution we’re dealing with. Remarkably
enough, using cross-validation to pick the bandwidth gives near-optimal results.7

As an alternative to cross-validation, or at least a starting point, one can use Eq.
14.37 to show that the optimal bandwidth for using a Gaussian kernel to estimate
a Gaussian distribution is 1.06σn−1/5, with σ being the standard deviation of the
Gaussian. This is sometimes called the Gaussian reference rule or the rule-
of-thumb bandwidth. When you call density in R, this is basically what it
does.

Yet another technique is the plug-in method. Eq. 14.37 calculates the optimal
bandwidth from the second derivative of the true density. This doesn’t help if we
don’t know the density, but it becomes useful if we have an initial density estimate
which isn’t too bad. In the plug-in method, we start with an initial bandwidth
(say from the Gaussian reference rule) and use it to get a preliminary estimate of
the density. Taking that crude estimate and “plugging it in” to Eq. 14.37 gives
us a new bandwidth, and we re-do the kernel estimate with that new bandwidth.
Iterating this a few times is optional but not uncommon.

14.4.2 Joint Density Estimates

The discussion and analysis so far has been focused on estimating the distribution
of a one-dimensional variable. Just as kernel regression can be done with multiple
input variables (§4.3), we can make kernel density estimates of joint distributions.
We simply need a kernel for the vector:

f̂(~x) =
1

n

n∑
i=1

K(~x− ~xi) (14.38)

7 Substituting Eq. 14.37 into Eq. 14.35 gives a squared error of

1.25n−4/5σ
4/5
K

(∫
(f ′′(x))2dx

)1/5(∫
K2(u)du

)4/5
. The only two parts of this which depend on the

kernel are σK and
∫
K2(u)du. This is the source of the (correct) folklore that the choice of kernel is

less important than the choice of bandwidth.

14.4 Kernel Density Estimates 301

One could use any multivariate distribution as the kernel (provided it is centered
and has finite covariance). Typically, however, just as in smoothing, one uses a
product kernel, i.e., a product of one-dimensional kernels,

K(~x− ~xi) = K1(x1 − x1
i)K2(x2 − x2

i) . . .Kp(x
p − xpi) , (14.39)

Doing this requires a bandwidth for each coordinate, so the over-all form of the
joint PDF estimate is

f̂(~x) =
1

n
∏p
j=1 hj

n∑
i=1

d∏
j=1

Kj

(
xj − xji
hj

)
(14.40)

Going through a similar analysis for p-dimensional data shows that the ISE
goes to zero like O(n−4/(4+p)), and again, if we use cross-validation to pick the
bandwidths, asymptotically we attain this rate. Unfortunately, if p is large, this
rate becomes very slow — for instance, if p = 24, the rate is O(n−1/7). There is
simply no universally good way to learn arbitrary high-dimensional distributions.
This is the same “curse of dimensionality” we saw in regression (§8.3). The fun-
damental problem is that in high dimensions, there are just too different possible
distributions which are too hard to tell apart.

Evading the curse of dimensionality for density estimation needs some special
assumptions. Parametric models make the very strong assumption that we know
exactly what the distribution function looks like, and we just need to fill in a few
constants. It’s potentially less drastic to hope the distribution has some sort of
special structure we can exploit, and most of the rest of Part II will be about
searching for various sorts of useful structure8. If none of these options sound
appealing, or plausible, we’ve got little alternative but to accept a very slow
convergence of density estimates.

14.4.3 Categorical and Ordered Variables

Estimating probability mass functions with discrete variables can be straightfor-
ward: there are only a finite number of values, and so one just counts how often
they occur and takes the relative frequency. If one has a discrete variable X and
a continuous variable Y and one wants a joint distribution, one could just get a
separate density for Y for each value of x, and tabulate the probabilities for x.

In principle, this will work, but it can be practically awkward if the number
of levels for the discrete variable is large compared to the number of samples.
Moreover, for the joint distribution problem, it has us estimating completely sep-
arate distributions for Y for every x, without any sharing of information between
them. It would seem more plausible to smooth those distributions towards each
others. To do this, we need kernels for discrete variables.

Several sets of such kernels have been proposed. The most straightforward,

8 As Wiener (1956), the reason the ability to do nonparametric estimation doesn’t make scientific

theories redundant is that good theories usefully constrain the distributions we’re searching for, and

tell us what structures to look for.

302 Density Estimation

however, are the following. If X is a categorical, unordered variable with c possible
values, then, for 0 ≤ h < 1,

K(x1, x2) =

{
1− h x1 = x2

h/(c− 1) x1 6= x2
(14.41)

is a valid kernel. For an ordered x,

K(x1, x2) =

(
c

|x1 − x2|

)
h|x1−x2|(1− h)

c−|x1−x2| (14.42)

where |x1 − x2| should be understood as just how many levels apart x1 and x2

are. As h→ 0, both of these become indicators, and return us to simple relative
frequency counting. Both of these are implemented in np.

14.4.4 Practicalities

The standard R function density implements one-dimensional kernel density
estimation, defaulting to Gaussian kernels with the rule-of-thumb bandwidth.
There are some options for doing cleverer bandwidth selection, including a plug-
in rule. (See the help file.)

For more sophisticated methods, and especially for more dimensions, you’ll
need to use other packages. The np package estimates joint densities using the
npudens function. (The u is for “unconditional”.) This has the same sort of
automatic bandwidth selection as npreg, using cross-validation. Other packages
which do kernel density estimation include KernSmooth and sm.

14.4.5 Kernel Density Estimation in R: An Economic Example

The data set oecdpanel, in the np library, contains information about much
the same sort of variables at the Penn World Tables data you worked with in
the homework, over much the same countries and years, but with some of the
variables pre-transformed, with identifying country information removed, and
slightly different data sources. See help(oecdpanel) for details.

Here’s an example of using npudens with variables from the oecdpanel data
set, from problem set 11. We’ll look at the joint density of popgro (the logarithm
of the population growth rate) and inv (the logarithm of the investment rate).
Figure 14.1 illustrates how to call the command, and a useful trick where we get
np’s plotting function to do our calculations for us, but then pass the results to
a different graphics routine. (See help(npplot).) The distribution we get has
two big modes, one at a comparatively low population growth rate (≈ −2.9 —
remember this is logged so it’s not actually a shrinking population) and high
investment (≈ −1.5), and the other at a lower rate of investment (≈ −2) and
higher population growth (≈ −2.6). There is a third, much smaller mode at high
population growth (≈ −2.7) and very low investment (≈ −4).

14.4 Kernel Density Estimates 303

popgro

in
v

−4

−3

−2

−1

−3.4 −3.2 −3.0 −2.8 −2.6

0.1

0.1

0.1

0.2

0.2

0.3

0.4

0.5

0.6

0.70.8
0.91.0

1.11.21.3

1.3
1.4 1.4

1.5

1.5

1.6

1.61.71.81.92.0

2.1
2.2

data(oecdpanel)
popinv <- npudens(~popgro + inv, data = oecdpanel)
fhat <- plot(popinv, plot.behavior = "data")$d1
library(lattice)
contourplot(fhat$dens ~ fhat$eval$Var1 * fhat$eval$Var2, cuts = 20, xlab = "popgro",

ylab = "inv", labels = list(cex = 0.5))

Figure 14.1 Gaussian kernel estimate of the joint distribution of logged
population growth rate (popgro) and investment rate (inv). Notice that
npudens takes a formula, but that there is no dependent variable on the
left-hand side of the ∼. With objects produced by the np library, one can
give the plotting function the argument plot.behavior — the default is
plot, but if it’s set to data (as here), it calculates all the information needed
to plot and returns a separate set of objects, which can be plotted in other
functions. (The value plot-data does both.) See help(npplot) for more.

304 Density Estimation

14.5 Conditional Density Estimation

In addition to estimating marginal and joint densities, we will often want to get
conditional densities. The most straightforward way to get the density of Y given
X, fY |X(y | x), is

f̂Y |X(y | x) =
f̂X,Y (x, y)

f̂X(x)
(14.43)

i.e., to estimate the joint and marginal densities and divide one by the other.
To be concrete, let’s suppose that we are using a product kernel to estimate

the joint density, and that the marginal density is consistent with it:

f̂X,Y (x, y) =
1

nhXhY

n∑
i=1

KX

(
x− xi
hX

)
KY

(
y − yi
hY

)
(14.44)

f̂X(x) =
1

nhX

n∑
i=1

KX

(
x− xi
hX

)
(14.45)

Thus we need to pick two bandwidths, hX and hY , one for each variable.
This might seem like a solved problem — we just use cross-validation to find

hX and hY so as to minimize the integrated squared error for f̂X,Y , and then
plug in to Equation 14.43. However, this is a bit hasty, because the optimal
bandwidths for the joint density are not necessarily the optimal bandwidths for
the conditional density. An extreme but easy to understand example is when Y
is actually independent of X. Since the density of Y given X is just the density
of Y , we’d be best off just ignoring X by taking hX =∞. (In practice, we’d just
use a very big bandwidth.) But if we want to find the joint density, we would not
want to smooth X away completely like this.

The appropriate integrated squared error measure for the conditional density
is ∫

dxfX(x)

∫
dy
(
fY |X(y | x)− f̂Y |X(y | x)

)2

(14.46)

and this is what we want to minimize by picking hX and hY . The cross-validation
goes as usual.

One nice, and quite remarkable, property of cross-validation for conditional
density estimation is that it can detect and exploit conditional independence.
Say that X = (U, V), and that Y is independent of U given V — symbolically,
Y ⊥⊥ U | V . Then fY |U,V (y | u, v) = fY |V (y | v), and we should just ignore U in
our estimation of the conditional density. It turns out that when cross-validation

is used to pick bandwidths for conditional density estimation, ĥU → ∞ when
Y ⊥⊥ U | V , but not otherwise (Hall et al., 2004). In other words, cross-validation
will automatically detect which variables are irrelevant, and smooth them away.

14.6 More on the Expected Log-Likelihood Ratio 305

14.5.1 Practicalities and a Second Example

The np package implements kernel conditional density estimation through the
function npcdens. The syntax is pretty much exactly like that of npreg, and
indeed we can think of estimating the conditional density as a sort of regression,
where the dependent variable is actually a distribution.

To give a concrete example, let’s look at how the distribution of countries’
population growth rates has changed over time, using the oecdpanel data (Figure
14.2). The selected bandwidth for year is 10, while that for popgro is 0.048. (Note
that year is being treated as a continuous variable.)

You can see from the figure that the mode for population growth rates is
towards the high end of observed values, but the mode is shrinking and becoming
less pronounced over time. The distribution in fact begins as clearly bimodal, but
the smaller mode at the lower growth rate turns into a continuous “shoulder”.
Over time, Figure 14.2 population growth rates tend to shrink, and the dispersion
of growth rates narrows.

Let’s expand on this point. One of the variables in oecdpanel is oecd, which is
1 for countries which are members of the Organization for Economic Cooperation
and Development, and 0 otherwise. The OECD countries are basically the “devel-
oped” ones (stable capitalist democracies). We can include OECD membership
as a conditioning variable for population growth (we need to use a categorical-
variable kernel), and look at the combined effect of time and development (Figure
14.3).

What the figure shows is that OECD and non-OECD countries both have
unimodal distributions of growth rates. The mode for the OECD countries has
become sharper, but the value has decreased. The mode for non-OECD countries
has also decreased, while the distribution has become more spread out, mostly
by having more probability of lower growth rates. (These trends have continued
since 1995.) In words, despite the widespread contrary impression, population
growth has actually been slowing for decades in both rich and poor countries.

14.6 More on the Expected Log-Likelihood Ratio

I want to say just a bit more about the expected log-likelihood ratio
∫
f(x) log f(x)

f̂(x)
dx.

More formally, this is called the Kullback-Leibler divergence or relative en-
tropy of f̂ from f , and is also written D(f‖f̂). Let’s expand the log ratio:

D(f‖f̂) = −
∫
f(x) log f̂(x)dx+

∫
f(x) log f(x)dx (14.47)

The second term does not involve the density estimate, so it’s irrelevant for
purposes of optimizing over f̂ . (In fact, we’re just subtracting off the entropy of
the true density.) Just as with the squared error, we could try approximating the
integral with a sum: ∫

f(x) log f̂(x)dx ≈ 1

n

n∑
i=1

log f̂(xi) (14.48)

306 Density Estimation

1965

1970

1975

1980
1985

1990
1995

−3.4

−3.2

−3.0

−2.8

−2.6

−2.4

0.5

1.0

1.5

2.0

2.5

3.0

year
popgro

pdf

pop.cdens <- npcdens(popgro ~ year, data = oecdpanel)
plotting.grid <- expand.grid(year = seq(from = 1965, to = 1995, by = 1), popgro = seq(from = -3.5,

to = -2.4, length.out = 300))
fhat <- predict(pop.cdens, newdata = plotting.grid)
wireframe(fhat ~ plotting.grid$year * plotting.grid$popgro, scales = list(arrows = FALSE),

xlab = "year", ylab = "popgro", zlab = "pdf")

Figure 14.2 Conditional density of logarithmic population growth rates as
a function of time.

which is just the log-likelihood per observation. Since we know and like maximum
likelihood methods, why not just use this?

Well, let’s think about what’s going to happen if we plug in the kernel density

14.6 More on the Expected Log-Likelihood Ratio 307

1965
1970

1975
1980

1985
1990

1995

−3.2
−3.0

−2.8
−2.6

−2.4

1

2

3

4

yearpopgro

pdf

0

1965
1970

1975
1980

1985
1990

1995

−3.2
−3.0

−2.8
−2.6

−2.4

1

2

3

4

yearpopgro

pdf

1

pop.cdens.o <- npcdens(popgro ~ year + factor(oecd), data = oecdpanel)
oecd.grid <- expand.grid(year = seq(from = 1965, to = 1995, by = 1), popgro = seq(from = -3.4,

to = -2.4, length.out = 300), oecd = unique(oecdpanel$oecd))
fhat <- predict(pop.cdens.o, newdata = oecd.grid)
wireframe(fhat ~ oecd.grid$year * oecd.grid$popgro | oecd.grid$oecd, scales = list(arrows = FALSE),

xlab = "year", ylab = "popgro", zlab = "pdf")

Figure 14.3 Conditional density of population growth rates given year and
OECD membership. The left panel is countries not in the OECD, the right
is ones which are.

estimate:

1

n

n∑
i=1

log

(
1

nh

n∑
j=1

K

(
xj − xi
h

))
= − log nh+

1

n

n∑
i=1

log

(
n∑
j=1

K

(
xj − xi
h

))
(14.49)

308 Density Estimation

If we take h to be very small, K(xj−xi
h

) ≈ 0 unless xj = xi, so the over-all
likelihood becomes

≈ − log nh+ logK(0) (14.50)

which goes to +∞ as h→ 0. So if we want to maximize the likelihood of a kernel
density estimate, we always want to make the bandwidth as small as possible. In
fact, the limit is to say that the density is

f̃(x) =
1

n

n∑
i=1

δ(x− xi) (14.51)

where δ is the Dirac delta function.9 Of course, this is just the same distribution
as the empirical CDF.

Why is maximum likelihood failing us here? Well, it’s doing exactly what we
asked it to: to find the distribution where the observed sample is as probable as
possible. Giving any probability to values of x we didn’t see can only come at
the expense of the probability of observed values, so Eq. 14.51 really is the unre-
stricted maximum likelihood estimate of the distribution. Anything else imposes
some restrictions or constraints which don’t, strictly speaking, come from the
data. However, those restrictions are what let us generalize to new data, rather
than just memorizing the training sample.

One way out of this is to use the cross-validated log-likelihood to pick a band-
width, i.e., to restrict the sum in Eq. 14.48 to running over the testing set only.
This way, very small bandwidths don’t get an unfair advantage for concentrat-
ing around the training set. (If the test points are in fact all very close to the
training points, then small bandwidths get a fair advantage.) This is in fact the
default procedure in the np package, through the bwmethod option ("cv.ml" vs.
"cv.ls").

14.7 Simulating from Density Estimates

14.7.1 Simulating from Kernel Density Estimates

There are times when one wants to draw random values from the estimated
distribution. This is easy with kernel density estimates, because each kernel is
itself a probability density, generally a very tractable one. The pattern goes like so.
Suppose the kernel is Gaussian, that we have scalar observations x1, x2, . . . xn, and
the selected bandwidth is h. Then we pick an integer i uniformly at random from

9 Recall that the delta function is defined by how it integrates with other functions:∫
δ(x)f(x)dx = f(0). You can imagine δ(x) as zero everywhere except at the origin, where it has an

infinitely tall, infinitely narrow spike, the area under the spike being one. If you are suspicious that

this is really a bona fide function, you’re right; strictly speaking it’s just a linear operator on

functions. We can however approximate it as the limit of well-behaved functions. For instance, take

δh(x) = 1/h when x ∈ [−h/2, h/2] with δh(x) = 0 elsewhere, and let h go to zero. But this is where

we came in. . .

14.7 Simulating from Density Estimates 309

1 to n, and invoke rnorm(1,x[i],h).10 Using a different kernel, we’d just need
to use the random number generator function for the corresponding distribution.

To see that this gives the right distribution needs just a little math. A kernel
K(x, xi, h) with bandwidth h and center xi is a probability density function. The
probability the KDE gives to any set A is just an integral:

F̂ (A) =

∫
A

f̂(x)dx (14.52)

=

∫
A

1

n

n∑
i=1

K(x, xi, h)dx (14.53)

=
1

n

n∑
i=1

∫
A

K(x, xi, h)dx (14.54)

=
1

n

n∑
i=1

C(A, xi, h) (14.55)

introducing C to stand for the probability distribution corresponding to the ker-
nel. The simulation procedure works if the probability that the simulated value
X̃ falls into A matches this. To generate X̃, we first pick a random data point,
which really means picking a random integer J , uniformly from 1 to n. Then

Pr
(
X̃ ∈ A

)
= E

[
1A(X̃)

]
(14.56)

= E
[
E
[
1A(X̃) | J

]]
(14.57)

= E [C(A, xJ , h)] (14.58)

=
1

n

n∑
i=1

C(A, xi, h) (14.59)

The first step uses the fact that a probability is the expectation of an indica-
tor function; the second uses the law of total expectation; the last steps us the
definitions of C and J , and the distribution of J .

14.7.1.1 Sampling from a Joint Density

The procedure given above works with only trivial modification for sampling
from a joint, multivariate distribution. If we’re using a product kernel, we pick a
random data point, and then draw each coordinate independently from the kernel
distribution centered on our random point. (See Code Example 29 below.) The
argument for correctness actually goes exactly as before.

14.7.1.2 Sampling from a Conditional Density

Sampling from a conditional density estimate with product kernels is again straight-
forward. The one trick is that one needs to do a weighted sample of data points.
To see why, look at the conditional distribution (not density) function:

10 In fact, if we want to draw a sample of size q, rnorm(q,sample(x,q,replace=TRUE),h) will work in

R — it’s important though that sampling be done with replacement.

310 Density Estimation

F̂ (Y ∈ A | X = x) (14.60)

=

∫
A

f̂Y |X(y | x)dy

=

∫
A

1
nhXhY

∑n
i=1KX

(
x−xi
hX

)
KY

(
y−yi
hY

)
f̂X(x)

dy (14.61)

=
1

nhXhY f̂X(x)

∫
A

n∑
i=1

KX

(
x− xi
hX

)
KY

(
y − yi
hY

)
dy (14.62)

=
1

nhXhY f̂X(x)

n∑
i=1

KX

(
x− xi
hX

)∫
A

KY

(
y − yi
hY

)
dy (14.63)

=
1

nhX f̂X(x)

n∑
i=1

KX

(
x− xi
hX

)
CY (A, yi, hY) (14.64)

If we select the data point i with a weight proportional to KX

(
x−xi
hX

)
, and

then generate Ỹ from the KY distribution centered at yi, then, Ỹ will follow the
appropriate probability density function.

14.7.2 Drawing from Histogram Estimates

Sampling from a histogram estimate is also simple, but in a sense goes in the
opposite order from kernel simulation. We first randomly pick a bin by drawing
from a multinomial distribution, with weights proportional to the bin counts.
Once we have a bin, we draw from a uniform distribution over its range.

14.7.3 Examples of Simulating from Kernel Density Estimates

To make all this more concrete, let’s continue working with the oecdpanel data.
Section 14.4.5 shows the joint pdf estimate for the variables popgro and inv

in that data set. These are the logarithms of the population growth rate and
investment rate. Undoing the logarithms and taking the density gives Figure
14.4.

Let’s abbreviate the actual (not logged) population growth rate as X and the
actual (not logged) investment rate as Y in what follows.

Since this is a joint distribution, it implies a certain expected value for Y/X,
the ratio of investment rate to population growth rate11. Extracting this by direct
calculation from popinv2 would not be easy; we’d need to do the integral∫ 1

x=0

∫ 1

y=0

y

x
f̂X,Y (x, y)dydx (14.65)

11 Economically, we might want to know this because it would tell us about how quickly the capital

stock per person grows.

14.7 Simulating from Density Estimates 311

popinv2 <- npudens(~exp(popgro) + exp(inv), data = oecdpanel)

Figure 14.4 Gaussian kernel density estimate for the un-logged population
growth rate and investment rate. (Plotting code omitted — can you re-make
the figure?)

To find E [Y/X] by simulation, however, we just need to generate samples from
the joint distribution, say (X̃1, Ỹ1), (X̃2, Ỹ2), . . . (X̃T , ỸT), and average:

1

T

T∑
i=1

Ỹi

X̃i

= g̃T
T→∞−→ E

[
Y

X

]
(14.66)

where the convergence happens because that’s the law of large numbers. If the
number of simulation points T is big, then g̃T ≈ E [Y/X]. How big do we need to

312 Density Estimation

rpopinv <- function(n) {
n.train <- length(popinv2$dens)
ndim <- popinv2$ndim
points <- sample(1:n.train, size = n, replace = TRUE)
z <- matrix(0, nrow = n, ncol = ndim)
for (i in 1:ndim) {

coordinates <- popinv2$eval[points, i]
z[, i] <- rnorm(n, coordinates, popinv2$bw[i])

}
colnames(z) <- c("pop.growth.rate", "invest.rate")
return(z)

}

Code Example 29: Simulating from the fitted kernel density estimate popinv2. Can you see
how to modify it to draw from other bivariate density estimates produced by npudens? From
higher-dimensional distributions? Can you replace the for loop with less iterative code?

make T? Use the central limit theorem:

g̃T N (E [Y/X] ,V [g̃1] /
√
T) (14.67)

How do we find the variance V [g̃1]? We approximate it by simulating.
Code Example 29 is a function which draws from the fitted kernel density

estimate. First let’s check that it works, by giving it something easy to do, namely
reproducing the means, which we can work out:

signif(mean(exp(oecdpanel$popgro)), 3)
[1] 0.0693
signif(mean(exp(oecdpanel$inv)), 3)
[1] 0.172
signif(colMeans(rpopinv(200)), 3)
pop.growth.rate invest.rate
0.070 0.161

This is pretty satisfactory for only 200 samples, so the simulator seems to be
working. Now we just use it:

z <- rpopinv(2000)
signif(mean(z[, "invest.rate"]/z[, "pop.growth.rate"]), 3)
[1] 2.66
signif(sd(z[, "invest.rate"]/z[, "pop.growth.rate"])/sqrt(2000), 3)
[1] 0.0352

This tells us that E [Y/X] ≈ 2.66 ± 0.035.
Suppose we want not the mean of Y/X but the median?

signif(median(z[, "invest.rate"]/z[, "pop.growth.rate"]), 3)
[1] 2.34

Getting the whole distribution of Y/X is not much harder (Figure 14.5). Of
course complicated things like distributions converge more slowly than simple
things like means or medians, so we want might want to use more than 2000
simulated values for the distribution. Alternately, we could repeat the simulation

14.8 Further Reading 313

0 2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Y/X

P
ro

ba
bi

lit
y

de
ns

ity

YoverX <- z[, "invest.rate"]/z[, "pop.growth.rate"]
plot(density(YoverX), xlab = "Y/X", ylab = "Probability density", main = "")
rug(YoverX, side = 1)

Figure 14.5 Distribution of Y/X implied by the joint density estimate
popinv2.

many times, and look at how much variation there is from one realization to the
next (Figure 14.6).

Of course, if we are going to do multiple simulations, we could just average
them together. Say that g̃

(1)
T , g̃

(2)
T , . . . g̃

(s)
T are estimates of our statistic of interest

from s independent realizations of the model, each of size T . We can just combine
them into one grand average:

g̃s,T =
1

s

s∑
i=1

g̃
(1)
T (14.68)

As an average of IID quantities, the variance of g̃s,T is 1/s times the variance of

g̃
(1)
T .
By this point, we are getting the sampling distribution of the density of a

nonlinear transformation of the variables in our model, with no more effort than
calculating a mean.

14.8 Further Reading

Good introductory treatments of density estimation can be found in Simonoff
(1996) and Wasserman (2006). My treatment of conditional density estimation is
based on Hall et al. (2004).

The Glivenko-Cantelli theorem has a more “quantitative” version, the “Dvoretzky-

314 Density Estimation

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Y/X

P
ro

ba
bi

lit
y

de
ns

ity

plot(0, xlab = "Y/X", ylab = "Probability density", type = "n", xlim = c(-1,
10), ylim = c(0, 0.3))

one.plot <- function() {
zprime <- rpopinv(2000)
YoverXprime <- zprime[, "invest.rate"]/zprime[, "pop.growth.rate"]
density.prime <- density(YoverXprime)
lines(density.prime, col = "grey")

}
invisible(replicate(50, one.plot()))

Figure 14.6 Showing the sampling variability in the distribution of Y/X
by “over-plotting”. Each line is a distribution from an estimated sample of
size 2000, as in Figure 14.5; here 50 of them are plotted on top of each other.
The thickness of the bands indicates how much variation there is from
simulation to simulation at any given value of Y/X. (Setting the type of the
initial plot to n, for “null”, creates the plotting window, axes, legends, etc.,
but doesn’t actually plot anything.)

Kiefer-Wolfowitz inequality”, which asserts that with IID samples from a one-
dimensional CDF F ,

Pr

(
sup
x
|F̂n(x)− F (x)| > ε

)
≤ 2e−2nε2 (14.69)

and the constants appearing here are known to be the best that hold over all
distributions (Wasserman, 2006, §2.2); this can be inverted to get confidence
bands for the CDF.

On empirical process theory, see Pollard (1989, 1990); van de Geer (2000);
Pollard (1989) is especially good as an introduction. Devroye and Lugosi (2001)
applies empirical process theory to density estimation, as well as forcefully advo-
cating measuring error using the L1 distance,

∫
|f̂(x)− f(x)|dx. In this chapter

Exercises 315

I have stuck to L2, partly out of tradition and partly out of desire to keep the
algebra simple (which in turn helps explain the tradition).

Historical notes

I do not know of a good history of the Glivenko-Cantelli theorem (but would like
to read one).

Histogram estimates are very old; the word “histogram” was apparently coined
by Karl Pearson in the 1890s12, but as a convenient name for an already-common
type of graphic. Kernel density estimation seems to have first been proposed by
Rosenblatt (1956) (see especially section 4of that paper). It was re-introduced,
independently, by Parzen (1962), and some of the analysis of the error in KDEs
that we saw above goes back to this paper.

Exercises

14.1 Reproduce Figure 14.4?

14.2 Qualitatively, is this compatible with Figure 14.1?

14.3 How could we use popinv2 to calculate a joint density for popgro and inv (not exp(popgro)

and exp(inv))?

14.4 Should the density popinv2 implies for those variables be the same as what we’d get from

directly estimating their density with kernels?

14.5 You are given a kernel K which satisfies K(u) ≥ 0,
∫
K(u)du = 1,

∫
uK(u)du = 0,∫

u2K(u)du = σ2
K < ∞. You are also given a bandwidth h > 0, and a collection of n

univariate observations x1, x2, . . . xn. Assume that the data are independent samples from

some unknown density f .

1. Give the formula for f̂h, the kernel density estimate corresponding to these data, this

bandwidth, and this kernel.

2. Find the expectation of a random variable whose density is f̂h, in terms of the sample

moments, h, and the properties of the kernel function.

3. Find the variance of a random variable whose density is f̂h, in terms of the sample

moments, h, and the properties of the kernel function.

4. How must h change as n grows to ensure that the expectation and variance of f̂h will

converge on the expectation and variance of f?

14.6 The transformation method Many variables have natural range restrictions, like being non-

negative, or lie in some interval. Kernel density estimators don’t respect these restrictions,

so they can give positive probability density to impossible values. One way around this is

the transformation method (or “trick”): use an invertible function q to map the limited

range of X to the whole real line, find the density of the transformed variable, and then

undo the transformation.

In what follows, X is a random variable with pdf f , Y is a random variable with pdf g, and

Y = q(X), for a known function q. You may assume that q is continuous, differentiable

and monotonically increasing, inverse q−1 exists, and is also continuous, differentiable and

monotonically increasing.

12 See Jeff Miller (ed.), “Earliest Known Uses of Some of the Words of Mathematics”, s.v.

“Histogram”, http://jeff560.tripod.com/h.html. I have not verified the references cited there, by

have found the site to be generally reliable.

http://jeff560.tripod.com/h.html

316 Density Estimation

1. Find g(y) in terms of f and q.

2. Find f(x) in terms of g and q.

3. Suppose X is confined to the unit interval [0, 1] and q(x) = log x
1−x . Find f(x) in terms

of g and this particular q.

4. The beta distribution is confined to [0, 1]. Draw 1000 random values from the beta

distribution with both shape parameters equal to 1/2. Call this sample x, and plot its

histogram. (Hint: ?rbeta.)

5. Fit a Gaussian kernel density estimate to x , using density, npudens, or any other

existing one-dimensional density estimator you like.

6. Find a Gaussian kernel density estimate for logit(x).

7. Using your previous results, convert the KDE for logit(x) into a density estimate for

x .

8. Make a plot showing (i) the true beta density, (ii) the “raw” kernel density estimate

from 35, and (iii) the transformed KDE from 37. Make sure that the plotting region

shows all three curves adequately, and that the three curves are visually distinct.

15

Principal Components Analysis

In Chapter 14, we saw that kernel density estimation gives us, in principle, a
consistent way of nonparametrically estimating joint distributions for arbitrarily
many variables. We also saw (§14.4.2) that, like regression (§8.3), density estima-
tion suffers from the curse of dimensionality — the amount of data needed grows
exponentially with the number of variables. Moreover, this is not a flaw in kernel
methods, but reflects the intrinsic difficulty of the problem.

Accordingly, to go forward in multivariate data analysis, we need to somehow
lift the curse of dimensionality. One approach is to hope that while we have
a large number p of variables, the data is really only q-dimensional, and q �
p. The next few chapters will explore various ways of finding low-dimensional
structure. Alternatively, we could hope that while the data really does have lots
of dimensions, it also has lots of independent parts. At an extreme, if it had
p dimensions but we knew they were all statistically independent, we’d just do
p one-dimensional density estimates. Chapter 18 and its sequels are concerned
with this second approach, of factoring the joint distribution into independent or
conditionally-independent pieces.

Principal components analysis (PCA) is one of a family of techniques for
taking high-dimensional data, and using the dependencies between the variables
to represent it in a more tractable, lower-dimensional form, without losing too
much information. PCA is one of the simplest and most robust ways of doing
such dimensionality reduction. The hope with PCA is that the data lie in, or
close to, a low-dimensional linear subspace.

15.1 Mathematics of Principal Components

We start with p-dimensional vectors, and want to summarize them by projecting
down into a q-dimensional subspace. Our summary will be the projection of the
original vectors on to q directions, the principal components, which span the
sub-space.

There are several equivalent ways of deriving the principal components math-
ematically. The simplest one is by finding the projections which maximize the
variance. The first principal component is the direction in space along which pro-
jections have the largest variance. The second principal component is the direction
which maximizes variance among all directions orthogonal to the first. The kth

317

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

318 Principal Components Analysis

component is the variance-maximizing direction orthogonal to the previous k− 1
components. There are p principal components in all.

Rather than maximizing variance, it might sound more plausible to look for the
projection with the smallest average (mean-squared) distance between the origi-
nal vectors and their projections on to the principal components; this turns out
to be equivalent to maximizing the variance (as we’ll see in §15.1.1 immediately
below).

Throughout, assume that the data have been “centered”, so that every variable
has mean 0. If we write the centered data in a matrix x, where rows are objects
and columns are variables, then xTx = nv, where v is the covariance matrix of
the data. (You should check that last statement!)

15.1.1 Minimizing Projection Residuals

We’ll start by looking for a one-dimensional projection. That is, we have p-
dimensional vectors, and we want to project them on to a line through the origin.
We can specify the line by a unit vector along it, ~w, and then the projection of a
data vector ~xi on to the line is ~xi · ~w, which is a scalar. (Sanity check: this gives
us the right answer when we project on to one of the coordinate axes.) This is the
distance of the projection from the origin; the actual coordinate in p-dimensional
space is (~xi · ~w)~w. The mean of the projections will be zero, because the mean of
the vectors ~xi is zero:

1

n

n∑
i=1

(~xi · ~w)~w =

((
1

n

n∑
i=1

xi

)
· ~w
)
~w (15.1)

If we try to use our projected or image vectors instead of our original vectors,
there will be some error, because (in general) the images do not coincide with the
original vectors. (When do they coincide?) The difference is the error or residual
of the projection. How big is it? For any one vector, say ~xi, it’s

‖~xi − (~w · ~xi)~w‖2 = (~xi − (~w · ~xi)~w) · (~xi − (~w · ~xi)~w) (15.2)

= ~xi · ~xi − ~xi · (~w · ~xi)~w (15.3)

−(~w · ~xi)~w · ~xi + (~w · ~xi)~w · (~w · ~xi)~w
= ‖~xi‖2 − 2(~w · ~xi)2 + (~w · ~xi)2 ~w · ~w (15.4)

= ~xi · ~xi − (~w · ~xi)2 (15.5)

since ~w · ~w = ‖~w‖2 = 1.
Add those residuals up across all the vectors:

MSE(~w) =
1

n

n∑
i=1

‖~xi‖2 − (~w · ~xi)2
(15.6)

=
1

n

(
n∑
i=1

‖~xi‖2 −
n∑
i=1

(~w · ~xi)2

)
(15.7)

The first summation doesn’t depend on ~w, so it doesn’t matter for trying to

15.1 Mathematics of Principal Components 319

demo.theta <- runif(10, min = 0, max = pi/2)
demo.x <- cbind(cos(demo.theta), sin(demo.theta))
demo.x <- scale(demo.x, center = TRUE, scale = FALSE)
plot(demo.x, xlab = expression(x^1), ylab = expression(x^2), xlim = c(-1, 1),

ylim = c(-1, 1))
demo.w <- c(cos(-3 * pi/8), sin(-3 * pi/8))
arrows(0, 0, demo.w[1], demo.w[2], col = "blue")
text(demo.w[1], demo.w[2], pos = 4, labels = expression(w))
abline(0, b = demo.w[2]/demo.w[1], col = "blue", lty = "dashed")
projection.lengths <- demo.x %*% demo.w
projections <- projection.lengths %*% demo.w
points(projections, pch = 16, col = "blue")
segments(x0 = demo.x[, 1], y0 = demo.x[, 2], x1 = projections[, 1], y1 = projections[,

2], col = "grey")

●

●

●

●
●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x1

x2

w

●

●

●

●

●

●

●

●

●

●

Figure 15.1 Illustration of projecting data points ~x (black dots) on to an
arbitrary line through the space (blue, dashed), represented by a unit vector
~w along the line (also blue but solid). The blue dots are the projections on
to the blue line, (~x · ~w)~w ; the gray lines are the vector residuals,
~x− (~x · ~w)~w. These are not the residuals from regressing one of the
components of the data vector on the other.

320 Principal Components Analysis

minimize the mean squared residual. To make the MSE small, what we must do
is make the second sum big, i.e., we want to maximize

1

n

n∑
i=1

(~w · ~xi)2
(15.8)

which we can see is the sample mean of (~w · ~xi)2
. The (sample) mean of a square

is always equal to the square of the (sample) mean plus the (sample) variance:

1

n

n∑
i=1

(~w · ~xi)2
=

(
1

n

n∑
i=1

~xi · ~w
)2

+ V̂ [~w · ~xi] (15.9)

Since we’ve just seen that the mean of the projections is zero, minimizing the
residual sum of squares is equivalent to maximizing the variance of the projec-
tions.

(Of course in general we don’t want to project on to just one vector, but on to
multiple principal components. If those components are orthogonal and have the
unit vectors ~w1, ~w2, . . . ~wk, then the image of xi is its projection into the space
spanned by these vectors,

k∑
j=1

(~xi · ~wj) ~wj (15.10)

The mean of the projection on to each component is still zero. If we go through
the same algebra for the mean squared error, it turns [Exercise 15.1] out that
the cross-terms between different components all cancel out, and we are left with
trying to maximize the sum of the variances of the projections on to the compo-
nents.)

15.1.2 Maximizing Variance

Accordingly, let’s maximize the variance! Writing out all the summations grows
tedious, so let’s do our algebra in matrix form. If we stack our n data vectors
into an n× p matrix, x, then the projections are given by xw, which is an n× 1
matrix. The variance is

V̂ [~w · ~xi] =
1

n

∑
i

(~xi · ~w)
2

(15.11)

=
1

n
(xw)

T
(xw) (15.12)

=
1

n
wTxTxw (15.13)

= wT xTx

n
w (15.14)

= wTvw (15.15)

We want to chose a unit vector ~w so as to maximize V̂ [~w · ~xi]. To do this, we

15.1 Mathematics of Principal Components 321

need to make sure that we only look at unit vectors — we need to constrain the
maximization. The constraint is that ~w · ~w = 1, or wTw = 1. To enforce this
constraint, we introduce a Lagrange multiplier λ (Appendix D.3) and do a larger
unconstrained optimization:

L(w, λ) ≡ wTvw − λ(wTw − 1) (15.16)

∂L
∂λ

= wTw − 1 (15.17)

∂L
∂w

= 2vw − 2λw (15.18)

Setting the derivatives to zero at the optimum, we get

wTw = 1 (15.19)

vw = λw (15.20)

Thus, the desired vector w is an eigenvector of the covariance matrix v, and
the maximizing vector will be the one associated with the largest eigenvalue λ.
This is good news, because finding eigenvectors is something which can be done
comparatively rapidly, and because eigenvectors have many nice mathematical
properties, which we can use as follows.

We know that v is a p×p matrix, so it will have at most p different eigenvectors.
We know that v is a covariance matrix, so it is symmetric, and then linear algebra
tells us that the eigenvectors must be orthogonal to one another. Again because
v is a covariance matrix, it is a non-negative-definite1 matrix, in the sense
that ~x · v~x ≥ 0 for any ~x. This tells us that the eigenvalues of v must all be ≥ 0.

The eigenvectors of v are the principal components of the data. Because
we know they are orthogonal, together they span the whole p-dimensional space.
The first principal component, i.e. the eigenvector which goes the largest value
of λ, is the direction along which the data have the most variance. The second
principal component, i.e. the second eigenvector, is the direction orthogonal to
the first component with the most variance. Because it is orthogonal to the first
eigenvector, their projections will be uncorrelated. In fact, projections on to all
the principal components are uncorrelated with each other. If we use q principal
components, our weight matrix w will be a p× q matrix, where each column will
be a different eigenvector of the covariance matrix v. The eigenvalues will give
variance of the projection on to each component. The variance of the projections
on to the first q principal components is then

∑q
i=1 λi.

15.1.3 More Geometry; Back to the Residuals

If we use all p principal components, the matrix w is a p× p matrix, where each
column is an eigenvector of v. The product xw is a new n× p matrix, in which
each column (the projection on to an eigenvector) is uncorrelated with every other
column. Because eigenvectors are orthogonal and normalized, wTw = I, i.e.,

1 Or “positive semi-definite”.

322 Principal Components Analysis

wT = w−1, so w is itself an orthogonal matrix. Since the outstanding examples
of orthogonal matrices are rotation matrices, w is often called the rotation
matrix of the principal components analysis. It tells us how to rotate from the
original coordinate system to a new system of uncorrelated coordinates.

Suppose that the data really are q-dimensional. Then v will have only q positive
eigenvalues, and p − q zero eigenvalues. If the data fall near a q-dimensional
subspace, then p− q of the eigenvalues will be nearly zero.

If we pick the top q components, we can define a projection operator Pq. The
images of the data are then xPq. The projection residuals are x − xPq or
x(I − Pq). (Notice that the residuals here are vectors, not just magnitudes.) If
the data really are q-dimensional, then the residuals will be zero. If the data are
approximately q-dimensional, then the residuals will be small. In any case, we can
define the R2 of the projection as the fraction of the original variance kept by the
image vectors,

R2 ≡
∑q

i=1 λi∑p
j=1 λj

(15.21)

just as the R2 of a linear regression is the fraction of the original variance of the
dependent variable kept by the fitted values.

The q = 1 case is especially instructive. We know that the residual vectors
are all orthogonal to the projections. Suppose we ask for the first principal com-
ponent of the residuals. This will be the direction of largest variance which is
perpendicular to the first principal component. In other words, it will be the
second principal component of the data. This suggests a recursive algorithm for
finding all the principal components: the kth principal component is the leading
component of the residuals after subtracting off the first k − 1 components. In
practice, it is faster to get all the components at once from v’s eigenvectors, but
this idea is correct in principle.

This is a good place to remark that if the data really fall in a q-dimensional
subspace, then v will have only q positive eigenvalues, because after subtracting
off those components there will be no residuals. The other p− q eigenvectors will
all have eigenvalue 0. If the data cluster around a q-dimensional subspace, then
p − q of the eigenvalues will be very small, though how small they need to be
before we can neglect them is a tricky question.2

Projections on to the first two or three principal components can be visualized;
there is no guarantee, however, that only two or three dimensions really matter.
Usually, to get an R2 of 1, you need to use all p principal components.3 How many
principal components you should use depends on your data, and how big an R2

2 Be careful when n < p. Any two points define a line, and three points define a plane, etc., so if there

are fewer data points than variables, it is necessarily true that the fall on a low-dimensional

subspace. In §15.4.1, we represent stories in the New York Times as vectors with p ≈ 440, but

n = 102. Finding that only 102 principal components keep all the variance is not an empirical

discovery but a mathematical artifact.
3 The exceptions are when some of your variables are linear combinations of the others, so that you

don’t really have p different variables, or when, as just mentioned, n < p.

15.1 Mathematics of Principal Components 323

you need. Sometimes, you can get better than 80% of the variance described with
just two or three components. Sometimes, however, to keep a lot of the original
variance you need to use almost as many components as you had dimensions to
start with.

15.1.3.1 Scree Plots

People sometimes like to make plots of the eigenvalues, in decreasing order, as
in Figure 15.3. Ideally, one starts with a few big eigenvalues, and then sees a
clear drop-off to a remainder of small, comparatively negligible eigenvalues. These
diagrams are called scree plots4. (Some people make similar plots, but show
1−R2 versus the number of components, rather than the individual eigenvalues.)
Folklore recommends find the “base of the cliff” or “elbow” in the plot, the place
where the number eigenvalues decrease dramatically and then level off to the
right, and then retaining that number of components. This folklore appears to be
based on nothing more than intuition, and offers no recommendation for what to
do when there is no clear cliff or elbow in the scree plot.

15.1.4 Statistical Inference, or Not

You may have noticed, and even been troubled by, the fact that I have said
nothing at all in this chapter like “assume the data are drawn at random from
some distribution”, or “assume the different rows of the data frame are statisti-
cally independent”. This is because no such assumption is required for principal
components. All it does is say “these data can be summarized using projections
along these directions”. It says nothing about the larger population or stochastic
process the data came from; it doesn’t even suppose there is a larger population
or stochastic process. This is part of why §15.1.3 was so wishy-washy about the
right number of components to use.

However, we could add a statistical assumption and see how PCA behaves
under those conditions. The simplest one is to suppose that the data come iidly
from a distribution with covariance matrix v0. Then the sample covariance matrix
v ≡ n−1xTx will converge on v0 as n → ∞. Since the principal components are
smooth functions of v (namely its eigenvectors), they will tend to converge as
n grows5. So, along with that additional assumption about the data-generating
process, PCA does make a prediction: in the future, the principal components
will look like they do now.

4 The small loose rocks one finds at the base of cliffs or mountains are called “scree”; the metaphor is

that one starts with the big eigenvalues at the top of the hill, goes down some slope, and then finds

the scree beneath it, which is supposed to be negligible noise. Those who have had to cross scree

fields carrying heavy camping backpacks may disagree about whether it can really be ignored.
5 There is a wrinkle if v0 has “degenerate” eigenvalues, i.e., two or more eigenvectors with the same

eigenvalue. Then any linear combination of those vectors is also an eigenvector, with the same

eigenvalue (Exercise 15.2.) For instance, if v0 is the identity matrix, then every vector is an

eigenvector, and PCA routines will return an essentially arbitrary collection of mutually

perpendicular vectors. Generically, however, any arbitrarily small tweak to v0 will break the

degeneracy.

324 Principal Components Analysis

Variable Meaning

Sports Binary indicator for being a sports car
SUV Indicator for sports utility vehicle
Wagon Indicator
Minivan Indicator
Pickup Indicator
AWD Indicator for all-wheel drive
RWD Indicator for rear-wheel drive
Retail Suggested retail price (US$)
Dealer Price to dealer (US$)
Engine Engine size (liters)
Cylinders Number of engine cylinders
Horsepower Engine horsepower
CityMPG City gas mileage
HighwayMPG Highway gas mileage
Weight Weight (pounds)
Wheelbase Wheelbase (inches)
Length Length (inches)
Width Width (inches)

Table 15.1 Features for the 2004 cars data.

Error in knitr(head(cars)): could not find function "knitr"

Table 15.2 The first few lines of the 2004 cars data set.

We could always add stronger statistical assumptions; in fact, Chapter 16 will
look at what happens when our assumptions essentially amount to “the data lie
on a low-dimensional linear subspace, plus noise”. Even this, however, turns out
to make PCA a not-very-attractive estimate of the statistical structure.

15.2 Example 1: Cars

Enough math; let’s work an example. The data6 consists of 388 cars from the
20047 model year, with 18 features. Eight features are binary indicators; the
other 11 features are numerical (Table 15.1). Table 15.2 shows the first few lines
from the data set. PCA only works with numerical variables, so we have ten of
them to play with.

cars04 = read.csv("http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/data/cars-fixed04.dat")

There are two R functions for doing PCA, princomp and prcomp, which differ

6 On the course website; from http://www.amstat.org/publications/jse/datasets/04cars.txt,

with incomplete records removed.
7 I realize this is a bit antiquated by the time you read this. You will finding it character-building to

track down comparable data from your own time, and repeating the analysis.

http://www.amstat.org/publications/jse/datasets/04cars.txt

15.2 Example 1: Cars 325

in how they do the actual calculation.8 The latter is generally more robust, so
we’ll just use it.

cars04.pca = prcomp(cars04[, 8:18], scale. = TRUE)

The second argument to prcomp tells it to first scale all the variables to have
variance 1, i.e., to standardize them. You should experiment with what happens
with this data when we don’t standardize.

We can now extract the loadings or weight matrix from the cars04.pca object.
For comprehensibility I’ll just show the first two components.

round(cars04.pca$rotation[, 1:2], 2)
PC1 PC2
Retail -0.26 -0.47
Dealer -0.26 -0.47
Engine -0.35 0.02
Cylinders -0.33 -0.08
Horsepower -0.32 -0.29
CityMPG 0.31 0.00
HighwayMPG 0.31 0.01
Weight -0.34 0.17
Wheelbase -0.27 0.42
Length -0.26 0.41
Width -0.30 0.31

This says that all the variables except the gas-mileages have a negative projec-
tion on to the first component. This means that there is a negative correlation
between mileage and everything else. The first principal component tells us about
whether we are getting a big, expensive gas-guzzling car with a powerful engine,
or whether we are getting a small, cheap, fuel-efficient car with a wimpy engine.

The second component is a little more interesting. Engine size and gas mileage
hardly project on to it at all. Instead we have a contrast between the physical
size of the car (positive projection) and the price and horsepower. Basically, this
axis separates mini-vans, trucks and SUVs (big, not so expensive, not so much
horse-power) from sports-cars (small, expensive, lots of horse-power).

To check this interpretation, we can use a useful tool called a biplot, which
plots the data, along with the projections of the original variables, on to the first
two components (Figure 15.2). Notice that the car with the lowest value of the
second component is a Porsche 911, with pick-up trucks and mini-vans at the
other end of the scale. Similarly, the highest values of the first component all
belong to hybrids.

8 princomp actually calculates the covariance matrix and takes its eigenvalues. prcomp uses a different

technique called “singular value decomposition”.

326 Principal Components Analysis

−0.3 −0.2 −0.1 0.0 0.1

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1

PC1

P
C

2

Acura 3.5 RLAcura 3.5 RL NavigationAcura MDX

Acura NSX S

Acura RSX

Acura TL Acura TSXAudi A4 1.8T
Audi A4 1.8T convertible

Audi A4 3.0 convertible

Audi A4 3.0Audi A4 3.0 Quattro manualAudi A4 3.0 Quattro auto
Audi A4 3.0 Quattro convertible

Audi A6 2.7 Turbo Quattro four−door

Audi A6 3.0Audi A6 3.0 Avant QuattroAudi A6 3.0 Quattro

Audi A6 4.2 Quattro

Audi A8 L Quattro

Audi S4 Avant QuattroAudi S4 Quattro

Audi RS 6

Audi TT 1.8
Audi TT 1.8 Quattro

Audi TT 3.2

BMW 325iBMW 325Ci
BMW 325Ci convertible

BMW 325xiBMW 325xi Sport

BMW 330Ci
BMW 330Ci convertible

BMW 330iBMW 330xi

BMW 525i four−door

BMW 530i four−door

BMW 545iA four−doorBMW 745i four−door

BMW 745Li four−door

BMW M3

BMW M3 convertible

BMW X3 3.0i

BMW X5 4.4i

BMW Z4 convertible 2.5i two−door

BMW Z4 convertible 3.0i two−door

Buick Century Custom
Buick LeSabre Custom four−door

Buick LeSabre Limited

Buick Park Avenue

Buick Park Avenue Ultra

Buick RainierBuick Regal GS

Buick Regal LSBuick Rendezvous CX

Cadillac CTS VVT
Cadillac Deville

Cadillac Deville DTS

Cadillac Escaladet

Cadillac Seville
Cadillac SRX V8

Cadillac XLR

Chevrolet Aveo

Chevrolet Astro

Chevrolet Aveo LS

Chevrolet Cavalier two−doorChevrolet Cavalier four−doorChevrolet Cavalier LS

Chevrolet Corvette

Chevrolet Corvette convertible

Chevrolet Impala
Chevrolet Impala LS

Chevrolet Impala SS
Chevrolet Malibu

Chevrolet Malibu LS
Chevrolet Malibu LT

Chevrolet Malibu Maxx

Chevrolet Monte Carlo LS
Chevrolet Monte Carlo SS

Chevrolet Suburban 1500 LT

Chevrolet Tahoe LT

Chevrolet Tracker

Chevrolet TrailBlazer LT
Chevrolet Venture LS

Chrysler 300M
Chrysler 300M Special Edition

Chrysler Concorde LX
Chrysler Concorde LXi

Chrysler Crossfire

Chrysler Pacifica

Chrysler PT Cruiser

Chrysler PT Cruiser GT

Chrysler PT Cruiser Limited

Chrysler Sebring

Chrysler Sebring Touring

Chrysler Sebring convertibleChrysler Sebring Limited convertible

Chrysler Town and Country LX

Chrysler Town and Country Limited
Dodge Caravan SE

Dodge Durango SLT
Dodge Grand Caravan SXT

Dodge Intrepid ES
Dodge Intrepid SE

Dodge Neon SEDodge Neon SXT

Dodge Stratus SXTDodge Stratus SE

Ford Crown Victoria
Ford Crown Victoria LX

Ford Crown Victoria LX Sport

Ford Escape XLS

Ford Expedition 4.6 XLT

Ford Explorer XLT V6

Ford Focus LX
Ford Focus SE

Ford Focus SVT

Ford Focus ZTW
Ford Focus ZX5Ford Focus ZX3

Ford Freestar SE

Ford Mustang

Ford Mustang GT Premium

Ford Taurus LXFord Taurus SE
Ford Taurus SES Duratec

Ford Thunderbird Deluxe

GMC Envoy XUV SLE

GMC Safari SLEGMC Yukon 1500 SLE

GMC Yukon XL 2500 SLT

Honda Accord EX

Honda Accord EX V6

Honda Accord LX
Honda Accord LX V6

Honda Civic EX
Honda Civic DXHonda Civic HXHonda Civic LX

Honda Civic Si

Honda Civic HybridHonda CR−V LX
Honda Element LX

Honda Insight

Honda Odyssey EXHonda Odyssey LX

Honda Pilot LX

Honda S2000

Hummer H2

Hyundai AccentHyundai Accent GLHyundai Accent GT

Hyundai Elantra GLSHyundai Elantra GTHyundai Elantra GT hatchHyundai Santa Fe GLS

Hyundai Sonata GLSHyundai Sonata LX

Hyundai Tiburon GT V6

Hyundai XG350Hyundai XG350 L
Infiniti FX35

Infiniti FX45
Infiniti G35Infiniti G35 Sport Coupe

Infiniti G35 AWDInfiniti I35

Infiniti M45
Infiniti Q45 Luxury

Isuzu Ascender S

Isuzu Rodeo SJaguar S−Type 3.0

Jaguar S−Type 4.2

Jaguar S−Type R

Jaguar Vanden Plas

Jaguar X−Type 2.5

Jaguar X−Type 3.0Jaguar XJ8

Jaguar XJR

Jaguar XK8 coupe
Jaguar XK8 convertible

Jaguar XKR coupe
Jaguar XKR convertible

Jeep Grand Cherokee Laredo

Jeep Liberty Sport

Jeep Wrangler Sahara

Kia Optima LX

Kia Optima LX V6

Kia Rio autoKia Rio manualKia Rio Cinco

Kia Sedona LX

Kia Sorento LX

Kia SpectraKia Spectra GSKia Spectra GSX

Land Rover Discovery SELand Rover Freelander SE

Land Rover Range Rover HSE

Lexus ES 330
Lexus GS 300

Lexus GS 430

Lexus GX 470

Lexus IS 300 manualLexus IS 300 autoLexus IS 300 SportCross
Lexus LS 430

Lexus LX 470

Lexus SC 430

Lexus RX 330

Lincoln Aviator Ultimate

Lincoln LS V6 Luxury
Lincoln LS V6 Premium

Lincoln LS V8 Sport
Lincoln LS V8 Ultimate

Lincoln Navigator Luxury

Lincoln Town Car Signature
Lincoln Town Car Ultimate

Lincoln Town Car Ultimate L

Mazda6 iMazda MPV ES

Mazda MX−5 Miata
Mazda MX−5 Miata LS

Mazda Tribute DX 2.0

Mercedes−Benz C32 AMG

Mercedes−Benz C230 Sport

Mercedes−Benz C240Mercedes−Benz C240 RWDMercedes−Benz C240 AWD

Mercedes−Benz C320

Mercedes−Benz C320 Sport two−door

Mercedes−Benz C320 Sport four−door

Mercedes−Benz CL500

Mercedes−Benz CL600

Mercedes−Benz CLK320

Mercedes−Benz CLK500

Mercedes−Benz E320Mercedes−Benz E320 four−door

Mercedes−Benz E500Mercedes−Benz E500 four−door

Mercedes−Benz G500

Mercedes−Benz ML500Mercedes−Benz S430

Mercedes−Benz S500

Mercedes−Benz SL500

Mercedes−Benz SL55 AMG

Mercedes−Benz SL600

Mercedes−Benz SLK230

Mercedes−Benz SLK32 AMG

Mercury Grand Marquis GS
Mercury Grand Marquis LS PremiumMercury Grand Marquis LS Ultimate

Mercury Marauder

Mercury Monterey Luxury

Mercury Mountaineer

Mercury Sable GSMercury Sable GS four−door

Mercury Sable LS Premium

Mini Cooper
Mini Cooper S

Mitsubishi Diamante LS

Mitsubishi Eclipse GTSMitsubishi Eclipse Spyder GT

Mitsubishi Endeavor
Mitsubishi Galant

Mitsubishi Lancer Evolution

Mitsubishi Montero

Mitsubishi Outlander

Nissan 350Z
Nissan 350Z Enthusiast

Nissan Altima S

Nissan Altima SENissan Maxima SENissan Maxima SL
Nissan Murano

Nissan Pathfinder SE

Nissan Pathfinder Armada SE

Nissan Quest S

Nissan Quest SE

Nissan Sentra 1.8Nissan Sentra 1.8 S
Nissan Sentra SE−R

Nissan Xterra XE
Oldsmobile Alero GLS

Oldsmobile Alero GX

Oldsmobile Silhouette GL

Pontiac Aztekt

Porsche Cayenne S

Pontiac Grand Am GT

Pontiac Grand Prix GT1Pontiac Grand Prix GT2

Pontiac Montana

Pontiac Montana EWB

Pontiac Sunfire 1SAPontiac Sunfire 1SC
Pontiac Vibe

Porsche 911 CarreraPorsche 911 Carrera 4S
Porsche 911 Targa

Porsche 911 GT2

Porsche Boxster

Porsche Boxster S

Saab 9−3 Arc

Saab 9−3 Arc Sport
Saab 9−3 Aero

Saab 9−3 Aero convertible

Saab 9−5 Arc

Saab 9−5 AeroSaab 9−5 Aero four−door

Saturn Ion1
Saturn Ion2Saturn Ion2 quad coupe
Saturn Ion3Saturn Ion3 quad coupe

Saturn L300
Saturn L300−2

Saturn VUE

Scion xA
Scion xB

Subaru Forester
Subaru Impreza 2.5 RS

Subaru Impreza WRX

Subaru Impreza WRX STi

Subaru Legacy GT
Subaru Legacy LSubaru Outback

Subaru Outback Limited Sedan

Subaru Outback H6Subaru Outback H−6 VDC
Suzuki Aeno SSuzuki Aerio LX

Suzuki Aerio SX

Suzuki Forenza S
Suzuki Forenza EX

Suzuki Verona LX

Suzuki Vitara LX

Suzuki XL−7 EX
Toyota 4Runner SR5 V6

Toyota Avalon XL
Toyota Avalon XLS

Toyota Camry LE

Toyota Camry LE V6
Toyota Camry XLE V6

Toyota Camry Solara SE

Toyota Camry Solara SE V6
Toyota Camry Solara SLE V6 two−door

Toyota Celica

Toyota Corolla CEToyota Corolla SToyota Corolla LE

Toyota Echo two−door manualToyota Echo two−door autoToyota Echo four−door

Toyota Highlander V6

Toyota Land Cruiser

Toyota Matrix

Toyota MR2 Spyder

Toyota Prius

Toyota RAV4

Toyota Sequoia SR5
Toyota Sienna CE

Toyota Sienna XLE

Volkswagen Golf
Volkswagen GTI

Volkswagen Jetta GL

Volkswagen Jetta GLI

Volkswagen Jetta GLS

Volkswagen New Beetle GLS 1.8TVolkswagen New Beetle GLS convertible

Volkswagen Passat GLSVolkswagen Passat GLS four−door

Volkswagen Passat GLX V6 4MOTION four−door

Volkswagen Passat W8Volkswagen Passat W8 4MOTION

Volkswagen Touareg V6

Volvo C70 LPT
Volvo C70 HPT

Volvo S40

Volvo S60 2.5

Volvo S60 T5

Volvo S60 R

Volvo S80 2.5T
Volvo S80 2.9

Volvo S80 T6 Volvo V40

Volvo XC70Volvo XC90 T6

−30 −20 −10 0 10

−
30

−
20

−
10

0
10

RetailDealer

Engine

Cylinders

Horsepower

CityMPGHighwayMPG

Weight

WheelbaseLength

Width

biplot(cars04.pca, cex = 0.4)

Figure 15.2 “Biplot” of the 2004 cars data. The horizontal axis shows
projections on to the first principal component, the vertical axis the second
component. Car names are written at their projections on to the
components (using the coordinate scales on the top and the right). Red
arrows show the projections of the original variables on to the principal
components (using the coordinate scales on the bottom and on the left).

15.2 Example 1: Cars 327

●

●

●

●
●

● ● ● ● ●

V
ar

ia
nc

es

0
1

2
3

4
5

6
7

1 2 3 4 5 6 7 8 9 10

plot(cars04.pca, type = "l", main = "")

Figure 15.3 Scree plot of the 2004 cars data: the eigenvalues of the
principal components, in decreasing order. Each eigenvalue is the variance
along that component. Folklore suggests adding components until the plot
levels off, or goes past an “elbow” — here this might be 2 or 3 components.

328 Principal Components Analysis

15.3 Example 2: The United States circa 1977

R contains a built-in data file, state.x77, with facts and figures for the various
states of the USA as of about 1977: population, per-capita income, the adult
illiteracy rate, life expectancy, the homicide rate, the proportion of adults with
at least a high-school education, the number of days of frost a year, and the state’s
area. While this data set is almost as old as I am9, it still makes a convenient
example, so let’s step through a principal components analysis of it.

Since the variables all have different, incomparable scales, it’s not a bad idea
to scale them to unit variance before finding the components10:

state.pca <- prcomp(state.x77, scale. = TRUE)

The biplot and the scree plot (Figure 15.4) look reasonable.
With this reasonable-looking PCA, we might try to interpret the components.

signif(state.pca$rotation[, 1:2], 2)
PC1 PC2
Population 0.130 0.410
Income -0.300 0.520
Illiteracy 0.470 0.053
Life Exp -0.410 -0.082
Murder 0.440 0.310
HS Grad -0.420 0.300
Frost -0.360 -0.150
Area -0.033 0.590

The first component aligns with illiteracy, murder, and (more weakly) popu-
lation; it’s negatively aligned with high school graduation, life expectancy, cold
weather, income, and (very weakly) the area of the state. The second component
is positively algined with area, income, population, high school graduation and
murder, and negativey aligned, weakly, with cold weather and life expectancy.
The first component thus separates short-lived, violent, ill-educated, poor warm
states from those with the opposite qualities. The second component separates
big, rich, educated, violent states from those which are small (in land or people),
poor, less educated, and less violent.

Since each data point has a geographic location, we can make a map, where
the sizes of the symbols for each state vary with their projection on to the first
principal component. This suggests that the component is something we might
call “southernness” — more precisely, the contrast between the South and the
rest of the nation11. I will leave making a map of the second component as an
exercise12.

9 Again, readers will find it character-building to find more modern data on which to repeat the

exercise.
10 You should try re-running all this with scale.=FALSE, and ponder what the experience tells you

about the wisdom of advice like “maximize R2”, or even “minimize the approximation error”.
11 The correlation between the first component and an indicator for being in the Confederacy is 0.8;

for being a state which permitted slavery when the Civil War began, 0.78.
12 §16.9.1 has more on this example.

15.3 Example 2: The United States circa 1977 329

−0.2 0.0 0.2 0.4 0.6

−
0.

2
0.

0
0.

2
0.

4
0.

6

PC1

P
C

2

Alabama

Alaska

Arizona

Arkansas

California

Colorado

Connecticut

Delaware

Florida

GeorgiaHawaii

Idaho

Illinois

Indiana

Iowa

Kansas

Kentucky

Louisiana

Maine

Maryland

Massachusetts

Michigan

Minnesota

Mississippi

Missouri
Montana

Nebraska

Nevada

New Hampshire

New Jersey

New Mexico

New York

North Carolina

North Dakota

Ohio

Oklahoma

Oregon Pennsylvania

Rhode Island

South Carolina

South Dakota

Tennessee

Texas

Utah

Vermont

Virginia

Washington

West Virginia

Wisconsin

Wyoming

−5 0 5 10 15

−
5

0
5

10
15

Population

Income

Illiteracy

Life Exp

MurderHS Grad

Frost

Area

●

●

●

●

●
●

● ●

state.pca

V
ar

ia
nc

es

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1 2 3 4 5 6 7 8

biplot(state.pca, cex = c(0.5, 0.75))
plot(state.pca, type = "l")

Figure 15.4 Biplot and scree plot for the PCA of state.x77.

330 Principal Components Analysis

−120 −110 −100 −90 −80 −70

30
35

40
45

50

longitude

la
tit

ud
e

AL

AK

AZ
AR

CA

CO

CT

DE

FL

GA
HI

ID

IL IN

IA

KS

KY

LA

ME

MD

MA

MI

MN

MS

MO

MT

NE

NV

NH

NJ

NM

NY

NC

ND

OH

OK

OR

PA
RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

plot.states_scaled <- function(sizes, min.size = 0.4, max.size = 2, ...) {
plot(state.center, type = "n", ...)
out.range = max.size - min.size
in.range = max(sizes) - min(sizes)
scaled.sizes = out.range * ((sizes - min(sizes))/in.range)
text(state.center, state.abb, cex = scaled.sizes + min.size)
invisible(scaled.sizes)

}
plot.states_scaled(state.pca$x[, 1], min.size = 0.3, max.size = 1.5, xlab = "longitude",

ylab = "latitude")

Figure 15.5 The US states, plotted in their geographic locations, with
symbol size varying with the projection of the state on to the first principal
component. This suggests the component is something we might call
“southernness”.

15.4 Latent Semantic Analysis 331

15.4 Latent Semantic Analysis

Information retrieval systems (like search engines) and people doing computa-
tional text analysis often represent documents as what are called bags of words:
documents are represented as vectors, where each component counts how many
times each word in the dictionary appears in the text. This throws away informa-
tion about word order, but gives us something we can work with mathematically.
Part of the representation of one document might look like:

a abandoned abc ability able about above abroad absorbed absorbing abstract

43 0 0 0 0 10 0 0 0 0 1

and so on through to “zebra”, “zoology”, “zygote”, etc. to the end of the dictio-
nary. These vectors are very, very large! At least in English and similar languages,
these bag-of-word vectors have three outstanding properties:

1. Most words do not appear in most documents; the bag-of-words vectors are
very sparse (most entries are zero).

2. A small number of words appear many times in almost all documents; these
words tell us almost nothing about what the document is about. (Examples:
“the”, “is”, “of”, “for”, “at”, “a”, “and”, “here”, “was”, etc.)

3. Apart from those hyper-common words, most words’ counts are correlated
with some but not all other words; words tend to come in bunches which
appear together.

Taken together, this suggests that we do not really get a lot of value from keeping
around all the words. We would be better off if we could project down a smaller
number of new variables, which we can think of as combinations of words that
tend to appear together in the documents, or not at all. But this tendency needn’t
be absolute — it can be partial because the words mean slightly different things,
or because of stylistic differences, etc. This is exactly what principal components
analysis does.

To see how this can be useful, imagine we have a collection of documents
(a corpus), which we want to search for documents about agriculture. It’s en-
tirely possible that many documents on this topic don’t actually contain the word
“agriculture”, just closely related words like “farming”. A simple search on “agri-
culture” will miss them. But it’s very likely that the occurrence of these related
words is well-correlated with the occurrence of “agriculture”. This means that
all these words will have similar projections on to the principal components, and
it will be easy to find documents whose principal components projection is like
that for a query about agriculture. This is called latent semantic indexing.

To see why this is indexing, think about what goes into coming up with an index
for a book by hand. Someone draws up a list of topics and then goes through the
book noting all the passages which refer to the topic, and maybe a little bit of
what they say there. For example, here’s the start of the entry for “Agriculture”
in the index to Adam Smith’s The Wealth of Nations:

Agriculture, the labour of, does not admit of such subdivisions as manufactures, 6; this

332 Principal Components Analysis

impossibility of separation, prevents agriculture from improving equally with manufactures,
6; natural state of, in a new colony, 92; requires more knowledge and experience than most
mechanical professions, and yet is carried on without any restrictions, 127; the terms of rent,
how adjusted between landlord and tenant, 144; is extended by good roads and navigable canals,
147; under what circumstances pasture land is more valuable than arable, 149; gardening not a
very gainful employment, 152–3; vines the most profitable article of culture, 154; estimates of
profit from projects, very fallacious, ib.; cattle and tillage mutually improve each other, 220; . . .

and so on. (Agriculture is an important topic in The Wealth of Nations.) It’s
asking a lot to hope for a computer to be able to do something like this, but
we could at least hope for a list of pages like “6, 92, 126, 144, 147, 152–3, 154,
220,. . . ”. One could imagine doing this by treating each page as its own document,
forming its bag-of-words vector, and then returning the list of pages with a non-
zero entry for “agriculture”. This will fail: only two of those nine pages actually
contains that word, and this is pretty typical. On the other hand, they are full
of words strongly correlated with “agriculture”, so asking for the pages which
are most similar in their principal components projection to that word will work
great.13

At first glance, and maybe even second, this seems like a wonderful trick for
extracting meaning, or semantics, from pure correlations. Of course there are
also all sorts of ways it can fail, not least from spurious correlations. If our
training corpus happens to contain lots of documents which mention “farming”
and “Kansas”, as well as “farming” and “agriculture”, latent semantic indexing
will not make a big distinction between the relationship between “agriculture”
and “farming” (which is genuinely semantic, about the meaning of the words)
and that between “Kansas” and “farming” (which reflects non-linguistic facts
about the world, and probably wouldn’t show up in, say, a corpus collected from
Australia).

Despite this susceptibility to spurious correlations, latent semantic indexing
is an extremely useful technique in practice, and the foundational papers (Deer-
wester et al., 1990; Landauer and Dumais, 1997) are worth reading.

15.4.1 Principal Components of the New York Times

To get a more concrete sense of how latent semantic analysis works, and how
it reveals semantic information, let’s apply it to some data. The accompanying
R file and R workspace contains some news stories taken from the New York
Times Annotated Corpus (Sandhaus, 2008), which consists of about 1.8 million
stories from the Times, from 1987 to 2007, which have been hand-annotated by
actual human beings with standardized machine-readable information about their
contents. From this corpus, I have randomly selected 57 stories about art and 45
stories about music, and turned them into a bag-of-words data frame, one row
per story, one column per word; plus an indicator in the first column of whether

13 Or it should anyway; I haven’t actually done the experiment with this book.

15.4 Latent Semantic Analysis 333

the story is one about art or one about music.14 The original data frame thus has
102 rows, and 4432 columns: the categorical label, and 4431 columns with counts
for every distinct word that appears in at least one of the stories.15

The PCA is done as it would be for any other data: [[ATTN:
Why isn’t
loading
from the
course
website
working?]]

load("~/teaching/ADAfaEPoV/data/pca-examples.Rdata")
nyt.pca <- prcomp(nyt.frame[, -1])
nyt.latent.sem <- nyt.pca$rotation

We need to omit the first column in the first command because it contains
categorical variables, and PCA doesn’t apply to them. The second command just
picks out the matrix of projections of the variables on to the components — this
is called rotation because it can be thought of as rotating the coordinate axes
in feature-vector space.

Now that we’ve done this, let’s look at what the leading components are.

signif(sort(nyt.latent.sem[, 1], decreasing = TRUE)[1:30], 2)
music trio theater orchestra composers opera
0.110 0.084 0.083 0.067 0.059 0.058
theaters m festival east program y
0.055 0.054 0.051 0.049 0.048 0.048
jersey players committee sunday june concert
0.047 0.047 0.046 0.045 0.045 0.045
symphony organ matinee misstated instruments p
0.044 0.044 0.043 0.042 0.041 0.041
X.d april samuel jazz pianist society
0.041 0.040 0.040 0.039 0.038 0.038
signif(sort(nyt.latent.sem[, 1], decreasing = FALSE)[1:30], 2)
she her ms i said mother cooper
-0.260 -0.240 -0.200 -0.150 -0.130 -0.110 -0.100
my painting process paintings im he mrs
-0.094 -0.088 -0.071 -0.070 -0.068 -0.065 -0.065
me gagosian was picasso image sculpture baby
-0.063 -0.062 -0.058 -0.057 -0.056 -0.056 -0.055
artists work photos you nature studio out
-0.055 -0.054 -0.051 -0.051 -0.050 -0.050 -0.050
says like
-0.050 -0.049

These are the thirty words with the largest positive and negative projections on
to the first component.16 The words with positive projections are mostly associ-
ated with music, those with negative components with the visual arts. The letters
“m” and “p” show up with music because of the combination “p.m”, which our
parsing breaks into two single-letter words, and because stories about music give

14 Actually, following standard practice in language processing, I’ve normalized the bag-of-word

vectors so that documents of different lengths are comparable, and used “inverse

document-frequency weighting” to de-emphasize hyper-common words like “the” and emphasize

more informative words. See the lecture notes for data mining if you’re interested.
15 If we were trying to work with the complete corpus, we should expect at least 50000 words, and

perhaps more.
16 Which direction is positive and which negative is of course arbitrary; basically it depends on

internal choices in the algorithm.

334 Principal Components Analysis

show-times more often than do stories about art. Personal pronouns appear with
art stories because more of those quote people, such as artists or collectors.17

What about the second component?

signif(sort(nyt.latent.sem[, 2], decreasing = TRUE)[1:30], 2)
art museum images artists donations museums
0.150 0.120 0.095 0.092 0.075 0.073
painting tax paintings sculpture gallery sculptures
0.073 0.070 0.065 0.060 0.055 0.051
painted white patterns artist nature service
0.050 0.050 0.047 0.047 0.046 0.046
decorative feet digital statue color computer
0.043 0.043 0.043 0.042 0.042 0.041
paris war collections diamond stone dealers
0.041 0.041 0.041 0.041 0.041 0.040
signif(sort(nyt.latent.sem[, 2], decreasing = FALSE)[1:30], 2)
her she theater opera ms
-0.220 -0.220 -0.160 -0.130 -0.130
i hour production sang festival
-0.083 -0.081 -0.075 -0.075 -0.074
music musical songs vocal orchestra
-0.070 -0.070 -0.068 -0.067 -0.067
la singing matinee performance band
-0.065 -0.065 -0.061 -0.061 -0.060
awards composers says my im
-0.058 -0.058 -0.058 -0.056 -0.056
play broadway singer cooper performances
-0.056 -0.055 -0.052 -0.051 -0.051

Here the positive words are about art, but more focused on acquiring and
trading (“collections”, “dealers”, “donations”, “dealers”) than on talking with
artists or about them. The negative words are musical, specifically about musical
theater and vocal performances.

I could go on, but by this point you get the idea.

15.5 PCA for Visualization

Let’s try displaying the Times stories using the principal components (Figure
15.6).

Notice that even though we have gone from 4431 dimensions to 2, and so
thrown away a lot of information, we could draw a line across this plot and have
most of the art stories on one side of it and all the music stories on the other.
If we let ourselves use the first four or five principal components, we’d still have
a thousand-fold savings in dimensions, but we’d be able to get almost-perfect
separation between the two classes. This is a sign that PCA is really doing a
good job at summarizing the information in the word-count vectors, and in turn
that the bags of words give us a lot of information about the meaning of the
stories.

17 You should check out these explanations for yourself. The raw stories are part of the R workspace.

15.5 PCA for Visualization 335

a

a

a

a

a

a

a

a

a

a

a
a
a

a

a

aa

a
a

a

a
a

a

a

a
a

a
a

a
a

a

a

a

a

a

a

a
a

a

a

a

a

a

a
a

aa

a

a
a

a

a

a

a

a

a

a

m
m

m

m

m
m

m

m
m

m

m

m

m

m

m

m

m

m

m

m

m
m

m
m

m

m

m

m

m

m

m

m

m

m
m

m

m

m

m

m

m

m

m

m
m

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

PC1

P
C

2

plot(nyt.pca$x[, 1:2], pch = ifelse(nyt.frame[, "class.labels"] == "music",
"m", "a"), col = ifelse(nyt.frame[, "class.labels"] == "music", "blue",
"red"))

Figure 15.6 Projection of the Times stories on to the first two principal
components. Music stories are marked with a blue “m”, art stories with a
red “a”.

Multidimensional scaling

Figure 15.6 also illustrates the idea of multidimensional scaling, which means
finding low-dimensional points to represent high-dimensional data by preserving
the distances between the points. If we write the original vectors as ~x1, ~x2, . . . ~xn,
and their images as ~y1, ~y2, . . . ~yn, then the MDS problem is to pick the images to

336 Principal Components Analysis

minimize the difference in distances:∑
i

∑
j 6=i

(‖~yi − ~yj‖ − ‖~xi − ~xj‖)2
(15.22)

This will be small if distances between the image points are all close to the
distances between the original points. PCA accomplishes this precisely because
~yi is itself close to ~xi (on average).

15.6 PCA Cautions

Trying to guess at what the components might mean is a good idea, but like
many good ideas it’s easy to go overboard. Specifically, once you attach an idea
in your mind to a component, and especially once you attach a name to it, it’s
very easy to forget that those are names and ideas you made up; to reify them,
as you might reify clusters. Sometimes the components actually do measure real
variables, but sometimes they just reflect patterns of covariance which have many
different causes. If I did a PCA of the same variables but for, say, European cars,
I might well get a similar first component, but the second component would
probably be rather different, since SUVs are much less common there than here.

A more important example comes from population genetics. Starting in the
1960s, L. L. Cavalli-Sforza and collaborators began a huge project of mapping
human genetic variation — of determining the frequencies of different genes in
different populations throughout the world. (Cavalli-Sforza et al. (1994) is the
main summary; Cavalli-Sforza has also written several excellent popularizations.)
For each point in space, there are a very large number of variables, which are the
frequencies of the various genes among the people living there. Plotted over space,
this gives a map of that gene’s frequency. What they noticed (unsurprisingly) is
that many genes had similar, but not identical, maps. This led them to use PCA,
reducing the huge number of variables (genes) to a few components. Results look
like Figure 15.7. They interpreted these components, very reasonably, as signs of
large population movements. The first principal component for Europe and the
Near East, for example, was supposed to show the expansion of agriculture out
of the Fertile Crescent. The third, centered in steppes just north of the Caucasus,
was supposed to reflect the expansion of Indo-European speakers towards the end
of the Bronze Age. Similar stories were told of other components elsewhere.

Unfortunately, as Novembre and Stephens (2008) showed, spatial patterns like
this are what one should expect to get when doing PCA of any kind of spatial
data with local correlations, because that essentially amounts to taking a Fourier
transform, and picking out the low-frequency components.18 They simulated ge-
netic diffusion processes, without any migration or population expansion, and
got results that looked very like the real maps (Figure 15.8). This doesn’t mean

18 Remember that PCA re-writes the original vectors as a weighted sum of new, orthogonal vectors,

just as Fourier transforms do. When there is a lot of spatial correlation, values at nearby points are

similar, so the low-frequency modes will have a lot of amplitude, i.e., carry a lot of the variance. So

first principal components will tend to be similar to the low-frequency Fourier modes.

15.7 Random Projections 337

that the stories of the maps must be wrong, but it does undercut the principal
components as evidence for those stories.

15.7 Random Projections

PCA finds the optimal projection from p dimensions down to q dimensions, in
the sense of minimizing the MSE in Eq. 15.6. We have seen how this lead to
maximizing variance, and to an elegant solution in terms of eigenvectors of the
covariance matrix. However, finding eigenvectors is a lot of work. Lazy people
may therefore wonder whether it would really be so bad to just use a random
q-dimensional sub-space.

A remarkable answer is given by a geometric result which has come to be called
the Johnson-Lindenstrauss lemma, which runs as follows. We start with n
points ~x1, ~x2, . . . ~xn in Rp, and we want to project them down to Rq, while ensuring
that all (squared) distances are preserved to within a factor of 1 ± ε, i.e., that,
for all i and j,

(1− ε)‖~xi − ~xj‖ ≤ ‖w~xi −w~xj‖2 ≤ (1 + ε)‖~xi − ~xj‖ (15.23)

(Compare this expression to the objective function for multidimensional scaling,
Eq. 15.22.) There is always some w which achieves this, provided that q is at
least O(ε−2 log n). In fact, proofs of the result are constructive (Dasgupta and
Gupta, 2002): we can form w as follows:

1. Draw q = 4 lnn
ε/2−ε3/3 uniformly-distributed, unit-length vectors19 in Rp;

2. Orthogonalize the vectors;

3. Scale up each vector by a factor of
√
p/q;

4. Make the vectors the rows of the q × p matrix w.

The probability that this w keeps all of the distances between the n points to
within a factor of 1 ± ε is at least20 1 − 1/n. The fact that this probability is
> 0 shows that there is some distance-preserving projection. Since it is easy to
check whether a randomly-generated w does preserve the distances, we can make
the probability of success as close to 1 as we like by generating multiple w and
checking them all.

The Johnson-Lindenstrauss procedure has a number of very remarkable prop-
erties. One of them is that the projection is, indeed, completely random, and not
at all a function of the data, a drastic contrast with PCA. It is plainly foolish to
give any sort of interpretation to the Johnson-Lindenstrauss projection. (In fact,
the same random projection will work with most data sets!) Another remarkable
property is that the required number of dimensions q needed to approximate the
data does not depend on the original dimension p. Rather, q grows, slowly, with

19 To create such a vector ~U , make p draws Yi from an N(0, 1) distribution, and set

U = (Y1, Y2, . . . Yp)/
√∑p

i=1 Y
2
i .

20 Again, see Dasgupta and Gupta (2002) for the detailed calculations; they are not too difficult, but

not illuminating here.

338 Principal Components Analysis

the number of data points n. If, on the other hand, there really is a linear low-
dimensional structure to the data, PCA should be able to extract it with a fixed
number of principal components.21

15.8 Further Reading

Principal components goes back to Karl Pearson (1901). It was independently
re-invented by Harold Hotelling (1933a,b), who provided the name “principal
components analysis”. It has been re-re-discovered many times in many fields,
so it is also known as (among other things) the Karhunen-Loève transformation
(see Loève (1955)), the Hotelling transformation, the method of empirical orthog-
onal functions, and singular value decomposition22. Many statistical presentations
start with the idea of maximizing the variance; this seems less well-motivated to
me than trying to find the best-approximating linear subspace, which was, in
fact, Pearson’s original goal in 1901.

The enthusiastic and well-written textbook by Eshel (2012) is largely devoted
to PCA. It starts with the rudiments of linear algebra, looks into numerical and
computational issues I have glossed over, and gives detailed accounts of its uses
in analyzing spatial and spatio-temporal processes, especially in the Earth and
environmental sciences.

As I said above, PCA is an example of a data analysis method which in-
volves only approximation, with no statistical inference or underlying probabilis-
tic model. Chapters 16 and 17 describe two (rather-different looking) statistical
models which both imply that the data should lie in a linear subspace plus noise.
Alternatively, chapter F introduces methods for approximating data with low-
dimensional curved manifolds, rather than linear subspaces.

Latent semantic analysis, or latent semantic indexing, goes back to Deerwester
et al. (1990). Hand et al. (2001) has a good discussion, setting it in the context of
other data-analytic methods, and avoiding some of the more extravagant claims
made on its behalf (Landauer and Dumais, 1997).
§15.5 just scratches the surface of the vast literature on multidimensional scal-

ing, the general goal of which is to find low-dimensional, easily-visualized rep-
resentations which are somehow faithful to the geometry of high-dimensional
spaces. Much of this literature, including the name “multidimensional scaling”,
comes from psychology. For a brief introduction with references, I recommend
Hand et al. (2001).

Concerns about interpretation and reification23 are rarely very far away when-
ever people start using methods for finding hidden structure, whether they’re

21 It would seem like it should be possible to turn this last point into an actual test for whether the

data cluster around a linear sub-space, but, if so, I have not found where it is worked out.
22 Strictly speaking, singular value decomposition is a matrix algebra trick which is used in the most

common algorithm for PCA.
23 I have not been able to find out where the term “reification” comes from; some claim that it is

Marxist in origin, but it’s used by the early and decidedly non-Marxist Thomson (1939), so I doubt

that.

Exercises 339

just approximation methods or they attempt proper statistical inference. We will
touch on them again in Chapters 16 and 17. In general, people seem to find it
easier to say what’s wrong or dubious about other analysts’ interpretations of
their components or latent constructs, than to explain what’s right about their
own interpretations; certainly I do.

For more on random projections, see Mahoney (2011), which sets them in
the context of related randomized methods for dealing with large and/or high-
dimensional data.

Exercises

15.1 Suppose that instead of projecting on to a line, we project on to a q-dimensional subspace,

defined by q orthogonal length-one vectors ~w1, . . . ~wq. We want to show that minimizing

the mean squared error of the projection is equivalent to maximizing the sum of the

variances of the scores along these q directions.

1. Write w for the matrix forms by stacking the ~wi. Prove that wTw = Iq.

2. Find the matrix of q-dimensional scores in terms of x and w. Hint: your answer should

reduce to ~xi · ~w1 when q = 1.

3. Find the matrix of p-dimensional approximations based on these scores in terms of x

and w. Hint: your answer should reduce to (~xi · ~w1) ~w1 when q = 1.

4. Show that the MSE of using the vectors ~w1, . . . ~wq is the sum of two terms, one of

which depends only on x and not w, and the other depends only on the scores along

those directions (and not otherwise on what those directions are). Hint: look at the

derivation of Eq. 15.5, and use Exercise 41.

5. Explain in what sense minimizing projection residuals is equivalent to maximizing the

sum of variances along the different directions.

15.2 Suppose that u has two eigenvectors, ~w1 and ~w2, with the same eigenvalue a. Prove that

any linear combination of ~w1 and ~w2 is also an eigenvector of u, and also has eigenvalue

a.

340 Principal Components Analysis

Figure 15.7 Principal components of genetic variation in the old world,
according to Cavalli-Sforza et al. (1994), as re-drawn by Novembre and
Stephens (2008).

Exercises 341

Figure 15.8 How the PCA patterns can arise as numerical artifacts (far
left column) or through simple genetic diffusion (next column). From
Novembre and Stephens (2008).

16

Factor Models

16.1 From PCA to Factor Analysis

Let’s sum up PCA. We start with n different p-dimensional vectors as our data,
i.e., each observation as p numerical variables. We want to reduce the number
of dimensions to something more manageable, say q. The principal components
of the data are the q orthogonal directions of greatest variance in the original
p-dimensional space; they can be found by taking the top q eigenvectors of the
sample covariance matrix. Principal components analysis summarizes the data
vectors by projecting them on to the principal components.

All of this is purely an algebraic undertaking; it involves no probabilistic as-
sumptions whatsoever. It also supports no statistical inferences — saying nothing
about the population or stochastic process which made the data, it just summa-
rizes the data. How can we add some probability, and so some statistics? And
what does that let us do?

Start with some notation. X is our data matrix, with n rows for the different
observations and p columns for the different variables, so Xij is the value of
variable j in observation i. Each principal component is a vector of length p, and
there are p of them, so we can stack them together into a p × p matrix, say w.
Finally, each data vector has a projection on to each principal component, which
we collect into an n× p matrix F. Then

X = Fw (16.1)

[n× p] = [n× p][p× p]

where I’ve checked the dimensions of the matrices underneath. This is an exact
equation involving no noise, approximation or error, but it’s kind of useless; we’ve
replaced p-dimensional vectors in X with p-dimensional vectors in F. If we keep
only to q < p largest principal components, that corresponds to dropping columns
from F and rows from w. Let’s say that the truncated matrices are Fq and wq.
Then

X ≈ Fqwq (16.2)

[n× p] = [n× q][q × p]

The error of approximation — the difference between the left- and right- hand-
sides of Eq. 16.2 — will get smaller as we increase q. (The line below the equation
is a sanity-check that the matrices are the right size, which they are. Also, at this

342

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

16.1 From PCA to Factor Analysis 343

point the subscript qs get too annoying, so I’ll drop them.) We can of course make
the two sides match exactly by adding an error or residual term on the right:

X = Fw + ε (16.3)

where ε has to be an n× p matrix.
Now, Eq. 16.3 should look more or less familiar to you from regression. On the

left-hand side we have a measured outcome variable (X), and on the right-hand
side we have a systematic prediction term (Fw) plus a residual (ε). Let’s run
with this analogy, and start treating ε as noise, as a random variable which has
got some distribution, rather than whatever arithmetic says is needed to balance
the two sides. This move is where we go from mere data reduction, making no
claims about anything other than these particular data points, to actual statistical
inference, making assertions about the process that generated the data. It is the
difference between the difference between just drawing a straight line through a
scatter plot, and inferring a linear regression.

Having made that move, X will also be a random variable. When we want to
talk about the random variable which goes in the ith column of X, we’ll call it Xi.
What about F? Well, in the analogy it corresponds to the independent variables
in the regression, which ordinarily we treat as fixed rather than random, but
that’s because we actually get to observe them; here we don’t, so it can make
sense to treat F, too, as random. Now that they are random variables, we say
that we have q factors, rather than components, that F is the matrix of factor
scores and w is the matrix of factor loadings. The variables in X are called
observable or manifest variables, those in F are hidden or latent. (Technically
ε is also latent.)

Before we can actually do much with this model, we need to say more about
the distributions of these random variables. The traditional choices are as follows.

1. All of the observable random variables Xi have mean zero and variance 1.
2. All of the latent factors have mean zero and variance 1.
3. The noise terms ε all have mean zero.
4. The factors are uncorrelated across individuals (rows of F) and across variables

(columns of F).
5. The noise terms are uncorrelated across individuals, and across observable

variables.
6. The noise terms are uncorrelated with the factor variables.

Item (1) isn’t restrictive, because we can always center and standardize our data.
Item (2) isn’t restrictive either — we could always center and standardize the
factor variables without really changing anything. Item (3) actually follows from
(1) and (2). The substantive assumptions — the ones which will give us predictive
power but could also go wrong, and so really define the factor model — are the
others, about lack of correlation. Where do they come from?

Remember what the model looks like:

X = Fw + ε (16.4)

344 Factor Models

All of the systematic patterns in the observations X should come from the first
term on the right-hand side. The residual term ε should, if the model is working,
be unpredictable noise. Items (3) through (5) express a very strong form of this
idea. In particular it’s vital that the noise be uncorrelated with the factor scores.

16.1.1 Preserving correlations

There is another route from PCA to the factor model, which many people like
but which I find less compelling; it starts by changing the objectives.

PCA aims to minimize the mean-squared distance from the data to their
projects, or what comes to the same thing, to preserve variance. But it doesn’t
preserve correlations. That is, the correlations of the features of the image vectors
are not the same as the correlations among the features of the original vectors
(unless q = p, and we’re not really doing any data reduction). We might value
those correlations, however, and want to preserve them, rather than trying to
approximate the actual data.1 That is, we might ask for a set of vectors whose
image in the feature space will have the same correlation matrix as the original
vectors, or as close to the same correlation matrix as possible while still reducing
the number of dimensions. This leads to the factor model we’ve already reached,
as we’ll see in §16.4.2.

16.2 The Graphical Model

It’s common to represent factor models visually, as in Figure 16.1. This is an
example of a graphical model, in which the nodes or vertices of the graph rep-
resent random variables, and the edges of the graph represent direct statistical
dependencies between the variables. The figure shows the observables or features
in square boxes, to indicate that they are manifest variables we can actual mea-
sure; above them are the factors, drawn in round bubbles to show that we don’t
get to see them. The fact that there are no direct linkages between the factors
shows that they are independent of one another. From below we have the noise
terms, one to an observable.

Notice that not every observable is connected to every factor: this depicts
the fact that some entries in w are zero. In the figure, for instance, X1 has an
arrow only from F1 and not the other factors; this means that while w11 = 0.87,
w21 = w31 = 0.

Drawn this way, one sees how the factor model is generative — how it gives
us a recipe for producing new data. In this case, it’s: draw new, independent
values for the factor scores F1, F2, . . . Fq; add these up with weights from w; and
then add on the final noises ε1, ε2, . . . εp. If the model is right, this is a procedure

1 Why? Well, originally the answer was that the correlation coefficient had just been invented, and

was about the only way people had of measuring relationships between variables. Since then it’s

been propagated by statistics courses where it is the only way people are taught to measure

relationships. The great statistician John Tukey once wrote “Does anyone know when the correlation

coefficient is useful, as opposed to when it is used? If so, why not tell us?” (Tukey, 1954, p. 721).

16.2 The Graphical Model 345

F1

X1

0.87

X2

-0.75

F2

0.34

X3

0.13

X4

0.20

F3

0.73 0.10

X5

0.15

X6

0.45

E1 E2 E3 E4 E5 E6

Figure 16.1 Graphical model form of a factor model. Circles stand for the
unobserved variables (factors above, noises below), boxes for the observed
features. Edges indicate non-zero coefficients — entries in the factor loading
matrix w, or specific variances ψi. Arrows representing entries in w are
decorated with those entries. Note that it is common to omit the noise
variables in such diagrams, with the implicit understanding that every
variable with an incoming arrow also has an incoming noise term.

for generating new, synthetic data with the same characteristics as the real data.
In fact, it’s a story about how the real data came to be — that there really are
some latent variables (the factor scores) which linearly cause the observables to
have the values they do.

16.2.1 Observables Are Correlated Through the Factors

One of the most important consequences of the factor model is that observable
variables are correlated with each other solely because they are correlated with
the hidden factors. To see how this works, take X1 and X2 from the diagram,
and let’s calculate their covariance. (Since they both have variance 1, this is the
same as their correlation.)

346 Factor Models

Cov [X1, X2] = E [X1X2]− E [X1]E [X2] (16.5)

= E [X1X2] (16.6)

= E [(F1w11 + F2w21 + ε1)(F1w12 + F2w22 + ε2)] (16.7)

= E
[
F 2

1w11w12 + F1F2(w11w22 + w21w12) + F 2
2w21w22

]
+E [ε1ε2] + E [ε1(F1w12 + F2w22)]

+E [ε2(F1w11 + F2w21)] (16.8)

Since the noise terms are uncorrelated with the factor scores, and the noise terms
for different variables are uncorrelated with each other, all the terms containing
εs have expectation zero. Also, F1 and F2 are uncorrelated, so

Cov [X1, X2] = E
[
F 2

1

]
w11w12 + E

[
F 2

2

]
w21w22 (16.9)

= w11w12 + w21w22 (16.10)

using the fact that the factors are scaled to have variance 1. This says that the
covariance between X1 and X2 is what they have from both correlating with F1,
plus what they have from both correlating with F2; if we had more factors we
would add on w31w32 +w41w42 + . . . out to wq1wq2. And of course this would apply
as well to any other pair of observable variables. So the general form is

Cov [Xi, Xj] =
q∑

k=1

wkiwkj (16.11)

so long as i 6= j.
The jargon says that observable i loads on factor k when wki 6= 0. If two

observables do not load on to any of the same factors, if they do not share any
common factors, then they will be independent. If we could condition on (“control
for”) the factors, all of the observables would be conditionally independent.

Graphically, we draw an arrow from a factor node to an observable node if
and only if the observable loads on the factor. So then we can just see that two
observables are correlated if they both have in-coming arrows from the same
factors. (To find the actual correlation, we multiply the weights on all the edges
connecting the two observable nodes to the common factors; that’s Eq. 16.11.)
Conversely, even though the factors are marginally independent of each other, if
two factors both send arrows to the same observable, then they are dependent
conditional on that observable.2

16.2.2 Geometry: Approximation by Linear Subspaces

Each observation we take is a vector in a p-dimensional space; the factor model
says that these vectors have certain geometric relations to each other — that
the data has a certain shape. To see what that is, pretend for right now that

2 To see that this makes sense, suppose that X1 = F1w11 + F2w21 + ε1. If we know the value of X1,

we know what F1, F2 and ε1 have to add up to, so they are conditionally dependent.

16.3 Roots of Factor Analysis in Causal Discovery 347

we can turn off the noise terms ε. The loading matrix w is a q × p matrix, so
each row of w is a vector in p-dimensional space; call these vectors ~w1, ~w2, . . . ~wq.
Without the noise, our observable vectors would be linear combinations of these
vectors (with the factor scores saying how much each vector contributes to the
combination). Since the factors are orthogonal to each other, we know that they
span a q-dimensional sub-space of the p-dimensional space — a line if q = 1, a
plane if q = 2, in general a linear subspace. If the factor model is true and we turn
off noise, we would find all the data lying exactly on this subspace. Of course,
with noise we expect that the data vectors will be scattered around the subspace;
how close depends on the variance of the noise. (Figure 16.2.) But this is still a
rather specific prediction about the shape of the data.

A weaker prediction than “the data lie on a low-dimensional linear subspace
in the high-dimensional space” is “the data lie on some low-dimensional surface,
possibly curved, in the high-dimensional space”; there are techniques for trying
to recover such surfaces. Chapter F introduces two such techniques, but this is a
broad and still-growing area.

16.3 Roots of Factor Analysis in Causal Discovery

The roots of factor analysis go back to work by Charles Spearman just over a
century ago (Spearman, 1904); he was trying to discover the hidden structure of
human intelligence. His observation was that schoolchildren’s grades in different
subjects were all correlated with each other. He went beyond this to observe a
particular pattern of correlations, which he thought he could explain as follows:
the reason grades in math, English, history, etc., are all correlated is performance
in these subjects is all correlated with something else, a general or common
factor, which he named “general intelligence”, for which the natural symbol was
of course g or G.

Put in a form like Eq. 16.4, Spearman’s model becomes

X = ε+ Gw (16.12)

where G is an n × 1 matrix (i.e., a row vector) and w is a 1 × p matrix (i.e., a
column vector). The correlation between feature i and G is just wi ≡ w1i, and, if
i 6= j,

vij ≡ Cov [Xi, Xj] = wiwj (16.13)

where I have introduced vij as a short-hand for the covariance.

Up to this point, this is all so much positing and assertion and hypothesis.
What Spearman did next, though, was to observe that this hypothesis carried a
very strong implication about the ratios of correlation coefficients. Pick any four

348 Factor Models

−1.0 −0.5 0.0 0.5 1.0

−
0.

4
−

0.
3

−
0.

2
−

0.
1

 0
.0

 0
.1

 0
.2

 0
.3

 0
.4

−0.3
−0.2

−0.1
 0.0

 0.1
 0.2

 0.3
 0.4

x1

x2

x3

●

●●

●
●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

● ● ●● ●● ● ● ● ● ●● ●●● ● ●●● ●

n <- 20; library(scatterplot3d)
f <- matrix(sort(rnorm(n)),ncol=1); w <- matrix(c(0.5,0.2,-0.1),nrow=1)
fw <- f %*% w; x <- fw + matrix(rnorm(n*3,sd=c(.15,.05,.09)),ncol=3,byrow=TRUE)
s3d <- scatterplot3d(x,xlab=expression(x^1),ylab=expression(x^2),

zlab=expression(x^3),pch=16)
s3d$points3d(matrix(seq(from=min(f)-1,to=max(f)+1,length.out=2),ncol=1)%*%w,

col="red",type="l")
s3d$points3d(fw,col="red",pch=16)
for (i in 1:nrow(x)) {

s3d$points3d(x=c(x[i,1],fw[i,1]),y=c(x[i,2],fw[i,2]),z=c(x[i,3],fw[i,3]),
col="grey",type="l") }

Figure 16.2 Geometry of factor models: Black dots are observed vectors ~X
in p = 3 dimensions. These were generated from the q = 1 dimensional factor

scores ~F by taking ~Fw (red dots) and adding independent noise (grey lines).

The q-dimensional subspace along which all values of ~Fw must fall is also
shown in red. (See also exercise 16.3.)

16.4 Estimation 349

distinct features, i, j, k, l. Then, if the model (16.12) is true,

vij/vkj
vil/vkl

=
wiwj/wkwj
wiwl/wkwl

(16.14)

=
wi/wk
wi/wk

(16.15)

= 1 (16.16)

The relationship

vijvkl = vilvkj (16.17)

is called the “tetrad equation”, and we will meet it again later when we consider
methods for causal discovery in Part III. In Spearman’s model, this is one tetrad
equation for every set of four distinct variables.

Spearman found that the tetrad equations held in his data on school grades (to
a good approximation), and concluded that a single general factor of intelligence
must exist3. This was, of course, logically fallacious.

Later work, using large batteries of different kinds of intelligence tests, showed
that the tetrad equations do not hold in general, or more exactly that depar-
tures from them are too big to explain away as sampling noise. (Recall that the
equations are about the true correlations between the variables, but we only get
to see sample correlations, which are always a little off.) The response, done in
an ad hoc way by Spearman and his followers, and then more systematically by
Thurstone, was to introduce multiple factors. This breaks the tetrad equation,
but still accounts for the correlations among features by saying that features are
really directly correlated with factors, and uncorrelated conditional on the factor
scores. Thurstone’s form of factor analysis is basically the one people still use —
there have been refinements, of course, but it’s mostly still his method.

16.4 Estimation

The factor model introduces a whole bunch of new variables to explain the observ-
ables: the factor scores F, the factor loadings or weights w, and the observable-
specific variances ψi. The factor scores are specific to each individual, and indi-
viduals by assumption are independent, so we can’t expect them to really gener-
alize. But the loadings w and the variances ψ are, supposedly, characteristic of
the population. So it would be nice if we could separate estimating the population
parameters from estimating the attributes of individuals; here’s how.

Since the variables are centered, we can write the covariance matrix in terms
of the data frames:

v = E
[

1

n
XTX

]
(16.18)

3 Actually, the equations didn’t hold when music was one of the grades, so Spearman argued musical

ability did not load on general intelligence.

350 Factor Models

(This is the true, population covariance matrix on the left.) But the factor model
tells us that

X = Fw + ε (16.19)

This involves the factor scores F, but remember that when we looked at the
correlations between individual variables, those went away, so let’s substitute Eq.
16.19 into Eq. 16.18 and see what happens:

E
[

1

n
XTX

]
(16.20)

=
1

n
E
[
(εT + wTFT)(Fw + ε)

]
(16.21)

=
1

n

(
E
[
εT ε
]

+ wTE
[
FT ε

]
+ E

[
εTF

]
w + wTE

[
FTF

]
w
)

(16.22)

= ψ + 0 + 0 +
1

n
wTnIw (16.23)

= ψ + wTw (16.24)

Behold:

v = ψ + wTw (16.25)

The individual-specific variables F have gone away, leaving only population pa-
rameters on both sides of the equation. The left-hand side is clearly something
we can learn reliably from data, so if we can solve this equation for ψ and w, we
can estimate the factor parameter’s models. Can we solve Eq. 16.25?

16.4.1 Degrees of Freedom

It only takes a bit of playing with Eq. 16.25 to realize that we are in trouble. Like
any matrix equation, it represents a system of equations. How many equations in
how many unknowns? Naively, we’d say that we have p2 equations (one for each
element of the matrix v), and p+ pq unknowns (one for each diagonal element of
ψ, plus one for each element of w). If there are more equations than unknowns,
then there is generally no solution; if there are fewer equations than unknowns,
then there are generally infinitely many solutions. Either way, solving for w seems
hopeless (unless q = p− 1, in which case it’s not very helpful). What to do?

Well, first let’s do the book-keeping for degrees of freedom more carefully. The
observables variables are scaled to have standard deviation one, so the diagonal
entries of v are all 1. Moreover, any covariance matrix is symmetric, so we are
left with only p(p− 1)/2 degrees of freedom in v; there are really only that many
equations. On the other side, scaling to standard deviation 1 means we don’t
really need to solve separately for ψ, because it’s fixed as soon as we know what
wTw is, which saves us p unknowns. Also, the entries in w are not completely
free to vary independently of each other, because each row has to be orthogonal
to every other row. (Look back at Chapter 15.) Since there are q rows, this gives

16.4 Estimation 351

us q(q−1)/2 constraints on w — we can think of these as either extra equations,
or as reductions in the number of free parameters (unknowns).4

Summarizing, we really have p(p−1)/2 degrees of freedom in v, and pq−q(q−
1)/2 degrees of freedom in w. If these two match, then there is (in general) a
unique solution which will give us w. But in general they will not be equal; then
what? Let us consider the two cases.

More unknowns (free parameters) than equations (constraints)

This is fairly straightforward: there is no unique solution to Eq. 16.25; instead
there are infinitely many solutions. It’s true that the loading matrix w does have
to satisfy some constraints, that not just any w will work, so the data does give
us some information, but there is a continuum of different parameter settings
which are all match the covariance matrix perfectly. (Notice that we are working
with the population parameters here, so this isn’t an issue of having only a
limited sample.) There is just no way to use data to decide between these different
parameters, to identify which one is right, so we say the model is unidentifiable.
Most software for factor analysis, include R’s factanal function, will check for
this and just refuse to fit a model with too many factors relative to the number
of observables.

More equations (constraints) than unknowns (free parameters)

This is more interesting. In general, systems of equations like this are overde-
termined, meaning that there is no way to satisfy all the constraints at once,
and there are generally no solutions. We just can’t get all possible covariance
matrices v among, say, p = 7 variables in terms of, say, q = 1 factor models (as
p(p− 1)/2 = 21 but pq− q(q− 1)/2 = 7). But it is possible for special covariance
matrices. In these situations, the factor model actually has testable implications
for the data — it says that only certain covariance matrices are possible and not
others. For example, we saw above that the one-fator model implies the tetrad
equations must hold among the observable covariances; the constraints on v for
multiple-factor models are similar in kind but more complicated algebraically. By
testing these implications, we can check whether or not our favorite factor model
is right.5

Now we don’t know the true, population covariance matrix v, but we can
estimate it from data, getting an estimate v̂. The natural thing to do then is to
equate this with the parameters and try to solve for the latter:

v̂ = ψ̂ + ŵT ŵ (16.26)

The book-keeping for degrees of freedom here is the same as for Eq. 16.25. If q is

4 Notice that ψ + wTw is automatically symmetric, since ψ is diagonal, so we don’t need to impose

any extra constraints to get symmetry.
5 We need to be a little careful here. If we find that the tetrad equations don’t hold, we know a

one-factor model must be wrong. We could only conclude that the one-factor model must be right if

we found that the tetrad equations held, and that there were no other models which implied those

equations; but, as we’ll see, there are (§16.10.

352 Factor Models

too large relative to p, the model is unidentifiable; if it is too small, the matrix
equation can only be solved if v̂ is of the right, restricted form, i.e., if the model
is right. Of course even if the model is right, the sample covariances are the true
covariances plus noise, so we shouldn’t expect to get an exact match, but we
can try in various way to minimize the discrepancy between the two sides of the
equation.

16.4.2 A Clue from Spearman’s One-Factor Model

Remember that in Spearman’s model with a single general factor, the covariance
between observables i and j in that model is the product of their factor weightings:

vij = wiwj (16.27)

The exception is that vii = w2
i + ψi, rather than w2

i . However, if we look at
u = v− ψ, that’s the same as v off the diagonal, and a little algebra shows that
its diagonal entries are, in fact, just w2

i . So if we look at any two rows of U,
they’re proportional to each other:

uij =
wi
wk

ukj (16.28)

This means that, when Spearman’s model holds true, there is actually only one
linearly-independent row in in u.

Recall from linear algebra that the rank of a matrix is how many linearly
independent rows it has.6 Ordinarily, the matrix is of full rank, meaning all the
rows are linearly independent. What we have just seen is that when Spearman’s
model holds, the matrix u is not of full rank, but rather of rank 1. More generally,
when the factor model holds with q factors, the matrix u = wTw has rank q.
The diagonal entries of u, called the common variances or commonalities,
are no longer automatically 1, but rather show how much of the variance in each
observable is associated with the variances of the latent factors. Like v, u is a
positive symmetric matrix.

Because u is a positive symmetric matrix, we know from linear algebra that it
can be written as

u = cdcT (16.29)

where c is the matrix whose columns are the eigenvectors of u, and d is the
diagonal matrix whose entries are the eigenvalues. That is, if we use all p eigen-
vectors, we can reproduce the covariance matrix exactly. Suppose we instead use
cq, the p× q matrix whose columns are the eigenvectors going with the q largest
eigenvalues, and likewise make dq the diagonal matrix of those eigenvalues. Then
cqdqcq

T will be a symmetric positive p×p matrix. This is a matrix of rank q, and
so can only equal u if the latter also has rank q. Otherwise, it’s an approximation
which grows more accurate as we let q grow towards p, and, at any given q, it’s a

6 We could also talk about the columns; it wouldn’t make any difference.

16.4 Estimation 353

better approximation to u than any other rank-q matrix. This, finally, is the pre-
cise sense in which factor analysis tries to preserve correlations: u just contains
information about the correlations, and we’re going to try to approximate u as
well as possible.

To resume our algebra, define dq
1/2 as the q× q diagonal matrix of the square

roots of the eigenvalues. Clearly dq = dq
1/2dq

1/2. So

cqdqcq
T = cqdq

1/2dq
1/2cq

T =
(
cqdq

1/2
)(

cqdq
1/2
)T

(16.30)

So we have

u ≈
(
cqdq

1/2
)(

cqdq
1/2
)T

(16.31)

but at the same time we know that u = wTw. So we just identify w with(
cqdq

1/2
)T

:

w =
(
cqdq

1/2
)T

(16.32)

and we are done with our algebra.
Let’s think a bit more about how well we’re approximating v. The approxima-

tion will always be exact when q = p, so that there is one factor for each feature
(in which case ψ = 0 always). Then all factor analysis does for us is to rotate the
coordinate axes in feature space, so that the new coordinates are uncorrelated.
(This is the same as what PCA does with p components.) The approximation can
also be exact with fewer factors than features if the reduced covariance matrix is
of less than full rank, and we use at least as many factors as the rank.

16.4.3 Estimating Factor Loadings and Specific Variances

The classical method for estimating the factor model is now simply to do this
eigenvector approximation on the sample correlation matrix. Define the reduced
or adjusted sample correlation matrix as

û = v̂ − ψ̂ (16.33)

We can’t actually calculate û until we know, or have a guess as to, ψ̂. A reasonable
and common starting-point is to do a linear regression of each feature j on all

the other features, and then set ψ̂j to the mean squared error for that regression.
(We’ll come back to this guess later.)

Once we have the reduced correlation matrix, find its top q eigenvalues and

eigenvectors, getting matrices ĉq and d̂q as above. Set the factor loadings accord-

354 Factor Models

ingly, and re-calculate the specific variances:

ŵ =
(
cqdq

1/2
)T

(16.34)

ψ̂j = 1−
q∑
r=1

w2
rj (16.35)

ṽ ≡ ψ̂ + ŵT ŵ (16.36)

The “predicted” covariance matrix ṽ in the last line is exactly right on the diag-
onal (by construction), and should be closer off-diagonal than anything else we
could do with the same number of factors. However, our guess as to u depended
on our initial guess about ψ, which has in general changed, so we can try iterating
this (i.e., re-calculating cq and dq), until we converge.

16.5 Maximum Likelihood Estimation

It has probably not escaped your notice that the estimation procedure above
requires a starting guess as to ψ. This makes its consistency somewhat shaky.
(If we continually put in ridiculous values for ψ, why should we expect that
ŵ → w?) On the other hand, we know from our elementary statistics courses
that maximum likelihood estimates are generally consistent, unless we choose a
spectacularly bad model. Can we use that here?

We can, but at a cost. We have so far got away with just making assump-
tions about the means and covariances of the factor scores F. To get an actual
likelihood, we need to assume something about their distribution as well.

The usual assumption is that Fik ∼ N (0, 1), and that the factor scores are
independent across factors k = 1, . . . q and individuals i = 1, . . . n. With this
assumption, the features have a multivariate normal distribution ~Xi ∼ N (0, ψ +
wTw). This means that the log-likelihood is

L = −np
2

log 2π − n

2
log |ψ + wTw| − n

2
tr
(

(ψ + wTw)
−1

v̂
)

(16.37)

where tr a is the trace of the matrix a, the sum of its diagonal elements. Notice
that the likelihood only involves the data through the sample covariance matrix
v̂ — the actual factor scores F are not needed for the likelihood.

One can either try direct numerical maximization, or use a two-stage procedure.
Starting, once again, with a guess as to ψ, one finds that the crucial quantity is
actually ψ1/2wT , the optimal value of which is given by the matrix whose columns
are the q leading eigenvectors of ψ1/2v̂ψ1/2. Starting from a guess as to w, the
optimal choice of ψ is given by the diagonal entries of v̂−wTw. So again one starts
with a guess about the unique variances (e.g., the residuals of the regressions)
and iterates to convergence.7

The differences between the maximum likelihood estimates and the “principal

7 The algebra is tedious. See section 3.2 in Bartholomew (1987) if you really want it. (Note that

Bartholomew has a sign error in his equation 3.16.)

16.6 The Rotation Problem 355

factors” approach can be substantial. If the data appear to be normally dis-
tributed (as shown by the usual tests), then the additional efficiency of maxi-
mum likelihood estimation is highly worthwhile. Also, as we’ll see below, it is a
lot easier to test the model assumptions if one uses the MLE.

16.5.1 Alternative Approaches

Factor analysis is an example of trying to approximate a full-rank matrix, here
the covariance matrix, with a low-rank matrix, or a low-rank matrix plus some
corrections, here ψ + wTw. Such matrix-approximation problems are currently
the subject of very intense interest in statistics and machine learning, with many
new methods being proposed and refined, and it is very plausible that some of
these will prove to work better than older approaches to factor analysis.

In particular, Kao and Van Roy (2013) have recently used these ideas to propose
a new factor-analysis algorithm, which simultaneously estimates the number of
factors and the factor loadings, and does so through a modification of PCA,
distinct from the old “principal factors” method. In their examples, it works
better than conventional approaches, but whether this will hold true generally is
not clear. They do not, unfortunately, provide code.

16.5.2 Estimating Factor Scores

Given X and (estimates of) the parameters, it’s natural to want to estimate
the factor scores F. One of the best methods for doing so is the “regression” or
“Thomson” method, which says

F̂ir =
∑
j

Xijbjr (16.38)

and seeks the weights bjr which will minimize the mean squared error, E
[
(F̂ir − Fir)2

]
.

You can work out the bjr as an exercise (16.6), assuming you know w and ψ.

16.6 The Rotation Problem

Recall from linear algebra that a matrix o is orthogonal if its inverse is the
same as its transpose, oTo = I. The classic examples are rotation matrices. For
instance, to rotate a two-dimensional vector through an angle α, we multiply it
by

rα =

[
cosα − sinα
sinα cosα

]
(16.39)

The inverse to this matrix must be the one which rotates through the angle −α,
r−1
α = r−α, but trigonometry tells us that r−α = rTα .
To see why this matters to us, go back to the matrix form of the factor model,

356 Factor Models

and insert an orthogonal q × q matrix and its transpose:

X = ε+ Fw (16.40)

= ε+ FooTw (16.41)

= ε+ Hy (16.42)

We’ve changed the factor scores to H ≡ Fo, and we’ve changed the factor loadings
to y ≡ oTw, but nothing about the features has changed at all. We can do as
many orthogonal transformations of the factors as we like, with no observable
consequences whatsoever.8

Statistically, the fact that different parameter settings give us the same obser-
vational consequences means that the parameters of the factor model are uniden-
tifiable. The rotation problem is, as it were, the revenant of having an ill-posed
problem: we thought we’d slain it through heroic feats of linear algebra, but it’s
still around and determined to have its revenge.9

Mathematically, this should not be surprising at all. The factors live in a q-
dimensional vector space of their own. We should be free to set up any coordinate
system we feel like on that space. Changing coordinates in factor space will just
require a compensating change in how factor-space coordinates relate to feature
space (the factor loadings matrix w). That’s all we’ve done here with our orthog-
onal transformation.

Substantively, this should be rather troubling. If we can rotate the factors as
much as we like without consequences, how on Earth can we interpret them?

16.7 Factor Analysis as a Predictive Model

Unlike principal components analysis, factor analysis really does give us a pre-
dictive model. Its prediction is that if we draw a new member of the population
and look at the vector of observables we get from them,

~X ∼ N (0,wTw + ψ) (16.43)

if we make the usual distributional assumptions. Of course it might seem like it
makes a more refined, conditional prediction,

~X|~F ∼ N (Fw, ψ) (16.44)

8 Notice that the log-likelihood only involves wTw, which is equal to wT ooTw = yTy, so even

assuming Gaussian distributions doesn’t let us tell the difference between the original and the

transformed variables. In fact, if ~F ∼ N (0, I), then ~Fo ∼ N (0o,oT Io) = N (0, I) — in other words,

the rotated factor scores still satisfy our distributional assumptions.
9 Remember that we obtained the loading matrix w as a solution to wTw = u, that is we got w as a

kind of matrix square root of the reduced correlation matrix. For a real number u there are two

square roots, i.e., two numbers w such that w × w = u, namely the usual w =
√
u and w = −

√
u,

because (−1)× (−1) = 1. Similarly, whenever we find one solution to wTw = u, oTw is another

solution, because ooT = I. So while the usual “square root” of u is w = dq
1/2c, for any orthogonal

matrix oTdq
1/2c will always work just as well.

16.7 Factor Analysis as a Predictive Model 357

but the problem is that there is no way to guess at or estimate the factor scores
~F until after we’ve seen ~X, at which point anyone can predict X perfectly. So
the actual forecast is given by Eq. 16.43.10

Now, without going through the trouble of factor analysis, one could always
just postulate that

~X ∼ N (0,v) (16.45)

and estimate v; the maximum likelihood estimate of it is the observed covari-
ance matrix, but really we could use any consistent estimator of the covariance
matrix. The closer ours is to the true v, the better our predictions. One way to
think of factor analysis is that it looks for the maximum likelihood estimate, but
constrained to matrices of the form wTw + ψ.

On the plus side, the constrained estimate has a faster rate of convergence.
That is, both the constrained and unconstrained estimates are consistent and
will converge on their optimal, population values as we feed in more and more
data, but for the same amount of data the constrained estimate is probably closer
to its limiting value. In other words, the constrained estimate ŵT ŵ + ψ̂ has less
variance than the unconstrained estimate v̂.

On the minus side, maybe the true, population v just can’t be written in the
form wTw + ψ. Then we’re getting biased estimates of the covariance and the
bias will not go away, even with infinitely many samples. Using factor analysis
rather than just fitting a multivariate Gaussian means betting that either this
bias is really zero, or that, with the amount of data on hand, the reduction in
variance outweighs the bias.

(I haven’t talked about estimation errors in the parameters of a factor model.
With large samples and maximum-likelihood estimation, one could use the usual
asymptotic theory. For small samples, one bootstraps as usual.)

16.7.1 How Many Factors?

How many factors should we use? All the tricks people use for the how-many-
principal-components question can be tried here, too, with the obvious modifi-
cations. However, some other answers can also be given, using the fact that the
factor model does make predictions, unlike PCA.

1. Log-likelihood ratio tests Sample covariances will almost never be exactly equal
to population covariances. So even if the data comes from a model with q
factors, we can’t expect the tetrad equations (or their multi-factor analogs)
to hold exactly. The question then becomes whether the observed covariances
are compatible with sampling fluctuations in a q-factor model, or are too big
for that.

10 A subtlety is that we might get to see some but not all of ~X, and use that to predict the rest. Say
~X = (X1, X2), and we see X1. Then we could, in principle, compute the conditional distribution of

the factors, p(F |X1), and use that to predict X2. Of course one could do the same thing using the

correlation matrix, factor model or no factor model.

358 Factor Models

We can tackle this question by using log likelihood ratio tests. The crucial
observations are that a model with q factors is a special case of a model with
q+1 factors (just set a row of the weight matrix to zero), and that in the most
general case, q = p, we can get any covariance matrix v into the form wTw.
(Set ψ = 0 and proceed as in the “principal factors” estimation method.)

For the usual asymptotic-theory reasons, θ̂ is the maximum likelihood esti-
mate in a restricted model with s parameters, and Θ̂ is the MLE in a more
general model with r > s parameters, containing the former as a special case,
and finally ` is the log-likelihood function

2[`(Θ̂)− `(θ̂)] χ2
r−s (16.46)

when the data came from the small model. The general regularity conditions
needed for this to hold apply to Gaussian factor models, so we can test whether
one factor is enough, two, etc.

(Said another way, adding another factor never reduces the likelihood, but
the equation tells us how much to expect the log-likelihood to go up when the
new factor really adds nothing and is just over-fitting the noise.)

Determining q by getting the smallest one without a significant result in a
likelihood ratio test is fairly traditional, but statistically messy.11 To raise a
subject we’ll return to, if the true q > 1 and all goes well, we’ll be doing lots
of hypothesis tests, and making sure this compound procedure works reliably
is harder than controlling any one test. Perhaps more worrisomely, calculating
the likelihood relies on distributional assumptions for the factor scores and the
noises, which are hard to check for latent variables.

2. If you are comfortable with the distributional assumptions, use Eq. 16.43 to
predict new data, and see which q gives the best predictions — for compara-
bility, the predictions should be compared in terms of the log-likelihood they
assign to the testing data. If genuinely new data is not available, use cross-
validation.

Comparative prediction, and especially cross-validation, seems to be some-
what rare with factor analysis. There is no good reason why this should be
so.

16.7.1.1 R2 and Goodness of Fit

For PCA, we saw that R2 depends on the sum of the eigenvalues 15.1.3. For factor
models, the natural notion of R2 is the sum of squared factor loadings:

R2 =

∑q
j=1

∑p
k=1w

2
jk

p
(16.47)

(Remember that the factors are, by design, uncorrelated with each other, and
that the entries of w are the correlations between factors and observables.) If we

11 Suppose q is really 1, but by chance that gets rejected. Whether q = 2 gets rejected in turn is not an

independent event!

16.8 Factor Models versus PCA Once More 359

write w in terms of eigenvalues and eigenvectors as in §16.4.2, w =
(
cqdq

1/2
)T

,

then you can show that the numerator in R2 is, again, a sum of eigenvalues.
People sometimes select the number of factors by looking at how much variance

they “explain” — really, how much variance is kept after smoothing on to the
plane. As usual with model selection by R2, there is little good to be said for this,
except that it is fast and simple.

In particular, R2 should not be used to assess the goodness-of-fit of a factor
model. The bluntest way to see this is to simulate data which does not come
from a factor model, fit a small number of factors, and see what R2 one gets.
This was done by Peterson (2000), who found that it was easy to get R2 of 0.4
or 0.5, and sometimes even higher12 The same paper surveyed values of R2 from
the published literature on factor models, and found that the typical value was
also somewhere around 0.5; no doubt this was just a coincidence13.

Instead of looking at R2, it is much better to check goodness-of-fit by actually
goodness-of-fit tests. In the particular case of factor models with the Gaussian
assumption, we can use a log-likelihood ratio test, checking the null hypothesis
that the number of factors = q against the alternative of an arbitrary multivariate
Gaussian (which is the same as p factors). This test is automatically performed
by factanal in R.

If the Gaussian assumption is dubious but we want a factor model and goodness-
of-fit anyway, we can look at the difference between the empirical covariance ma-
trix v and the one estimated by the factor model, ψ̂ + ŵT ŵ. There are several
notions of distance between matrices (matrix norms) which could be used as test
statistics; one could also use the sum of squared differences between the entries
of v and those of ψ̂ + ŵT ŵ. Sampling distributions would have to come from
bootstrapping, where we would want to simulate from the factor model.

16.8 Factor Models versus PCA Once More

We began this chapter by seeking to add some noise, and some probabilistic
assumptions, into PCA. The factor models we came up with are closely related
to principal components, but are not the same. Many of the differences have been
mentioned as we went, but it’s worth collecting some of the most important ones
here.

1. Factor models assume that the data comes from a certain distribution, IID
across data points. PCA assumes nothing about distributions at all. Moreover,
factor models can be used generatively, to say how the latent factors cause
the observable variables. PCA has nothing to say about the data-generating
process.

12 See also http://bactra.org/weblog/523.html for a similar experiment, with (not very elegant) R

code.
13 Peterson (2000) also claims that reported values of R2 for PCA are roughly equal to those of factor

analysis, but by this point I hope that none of you take that as an argument in favor of PCA.

http://bactra.org/weblog/523.html

360 Factor Models

2. Factor models can be tested by their predictions on new data points; PCA
cannot.

3. Factor models assume that the variance matrix of the data takes a special
form, wTw + ψ, where w is q × p and ψ is diagonal. That is, the variance
matrix must be “low rank plus noise”. PCA works no matter what sample
variance matrix the data might have.

4. If the factor model is true, then the principal components are (or approach
with enough data) the eigenvectors of wTw + ψ. They do not approach the
eigenvectors of wTw, which would be the principal factors. If the noise is
small, the difference may also be small, but the factor model can be correct,
if perhaps not so useful, while ψ is as big as wTw.

5. Factor models are subject to the rotation problem; PCA is not. Which one
has the advantage here is unclear.

6. Similarly, a principal component is just a linear combination of the observable
variables. A latent factor is another, distinct random variable. Differences in
factor scores imply differences in the expected values of observables. Differences
in projections on to principal components imply differences in realized values
of observables. (It’s a little like the distinction between the predicted value for
the response in a linear regression, which is a combination of the covariates,
and the actual value of the response.)

16.9 Examples in R

16.9.1 Example 1: Back to the US circa 1977

We resume looking at the properties of the US states around 1977. In §15.3, we
did a principal components analysis, finding a first component that seemed to
mark the distinction between the South and the rest of the country, and a second
that seemed to separate big, rich states from smaller, poorer ones. Let’s now
subject the data to factor analysis. We begin with one factor, using the base R
function factanal.

(state.fa1 <- factanal(state.x77,factors=1,scores="regression"))
##
Call:
factanal(x = state.x77, factors = 1, scores = "regression")
##
Uniquenesses:
Population Income Illiteracy Life Exp Murder HS Grad
0.957 0.791 0.235 0.437 0.308 0.496
Frost Area
0.600 0.998
##
Loadings:
Factor1
Population -0.208
Income 0.458
Illiteracy -0.875
Life Exp 0.750

16.9 Examples in R 361

Murder -0.832
HS Grad 0.710
Frost 0.632
Area
##
Factor1
SS loadings 3.178
Proportion Var 0.397
##
Test of the hypothesis that 1 factor is sufficient.
The chi square statistic is 91.97 on 20 degrees of freedom.
The p-value is 3.34e-11

The output here tells us what fraction of the variance in each observable comes
from its own noise (= the diagonal entries in ψ̂ = “uniquenesses”). It also gives
us the factor loadings, i.e., the rows of ŵ. Here there’s only one loading vector,
since we set factors = q = 1. As a courtesy, the default printing method for the
loadings leaves blanks where the loadings would be very small (here, for Area);
this can be controlled through options (see help(loadings)). The last option
picks between different methods of estimating the factor scores.

For comparison, here is the first principal component:

##
Loadings:
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
Population 0.126 0.411 -0.656 -0.409 0.406 -0.219
Income -0.299 0.519 -0.100 -0.638 0.462
Illiteracy 0.468 0.353 0.387 -0.620 -0.339
Life Exp -0.412 -0.360 0.443 0.327 0.219 -0.256 0.527
Murder 0.444 0.307 0.108 -0.166 -0.128 -0.325 -0.295 0.678
HS Grad -0.425 0.299 0.232 -0.645 -0.393 -0.307
Frost -0.357 -0.154 0.387 -0.619 0.217 0.213 -0.472
Area 0.588 0.510 0.201 0.499 0.148 0.286
##
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
SS loadings 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Proportion Var 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
Cumulative Var 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000

The first principal component is clearly not the same as the single common
factor we extracted, even after a sign change, but it’s not shockingly dissimilar
either, as a map shows.

Of course, why use just one factor? Given the number of observables, we can fit
up to four factors before the problem becomes totally unidentified and factanal

refuses to work. That function automatically runs the likelihood ratio test every
time it fits a model, assuming Gaussian distributions for the observables. As re-
marked, this can work reasonably well for non-Gaussian distributions if they’re
not too non-Gaussian, especially if n is much larger than the number of parame-
ters; of course n = 50 is pretty modest. Still, let’s try it:

pvalues <- sapply(1:4,function(q){factanal(state.x77,factors=q)$PVAL})
signif(pvalues,2)

362 Factor Models

−120 −110 −100 −90 −80 −70

30
35

40
45

50

longitude

la
tit

ud
e

AL

AK

AZ
AR

CA

CO

CT

DE

FL

GA

HI

ID

IL IN

IA

KS
KY

LA

ME

MD

MA
MI

MN

MS

MO

MT

NE

NV

NH

NJ

NM

NY

NC

ND

OH

OK

OR

PA
RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI
WY

plot.states_scaled(state.fa1$score[,1],min.size=0.3,max.size=1.5,
xlab="longitude",ylab="latitude")

Figure 16.3 The US states, plotted in position with symbols scaled by
their factor scores in a one-factor model. Compare to Figure 15.5, which is
where the plot.states scaled function comes from. (Try plotting the
negative of the factor scores to make the maps look more similar.)

objective objective objective objective
3.3e-11 3.3e-05 4.6e-03 4.7e-02

(Figure 16.4 plots the results.) None of the models has a p-value crossing the
conventional 0.05 level, meaning all of them show systematic, detectable depar-

16.9 Examples in R 363

●

●

●

●

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1e
−

11
1e

−
09

1e
−

07
1e

−
05

1e
−

03

q (number of factors)

pv
al

ue

plot(1:4,pvalues,xlab="q (number of factors)", ylab="pvalue",
log="y",ylim=c(1e-11,0.04))

abline(h=0.05,lty="dashed")

Figure 16.4 Gaussian likelihood ratio test p-value for models with various
numbers of latent factors, fit to the US-in-1977 data.

tures from what the data should look like if the factor model were true. Still, the
four-factor model comes close.

Notice that the first factor’s loadings do not stay the same when we add more
factors, unlike the first principal component:

print(factanal(state.x77, factors=4)$loadings)
##
Loadings:
Factor1 Factor2 Factor3 Factor4
Population 0.636
Income 0.313 0.281 0.561 0.189
Illiteracy -0.466 -0.878
Life Exp 0.891 0.191
Murder -0.792 -0.384 0.109 0.405
HS Grad 0.517 0.418 0.581
Frost 0.128 0.679 0.105 -0.460
Area -0.174 0.796
##
Factor1 Factor2 Factor3 Factor4
SS loadings 2.054 1.680 1.321 0.821
Proportion Var 0.257 0.210 0.165 0.103
Cumulative Var 0.257 0.467 0.632 0.734

364 Factor Models

16.9.2 Example 2: Stocks

Classical financial theory suggests that the log-returns of corporate stocks should
be IID Gaussian random variables, but allows for the possibility that different
stocks might be correlated with each other. In fact, theory suggests that the
returns to any given stock should be the sum of two components: one which is
specific to that firm, and one which is common to all firms. (More specifically,
the common component is one which couldn’t be eliminated even in a perfectly
diversified portfolio.) This in turn implies that stock returns should match a
one-factor model. Further investigation of this idea is deferred to Data-Analysis
Assigment 8.

16.10 Reification, and Alternatives to Factor Models

A natural impulse, when looking at something like Figure 16.1, is to reify the
factors, and to treat the arrows causally: that is, to say that there really is
some variable corresponding to each factor, and that changing the value of that
variable will change the features. For instance, one might want to say that there
is a real, physical variable corresponding to the factor F1, and that increasing
this by one standard deviation will, on average, increase X1 by 0.87 standard
deviations, decrease X2 by 0.75 standard deviations, and do nothing to the other
features. Moreover, changing any of the other factors has no effect on X1.

Sometimes all this is even right. How can we tell when it’s right?

16.10.1 The Rotation Problem Again

Consider the following matrix, call it r: cos 30 − sin 30 0
sin 30 cos 30 0

0 0 1

 (16.48)

Applied to a three-dimensional vector, this rotates it thirty degrees counter-
clockwise around the vertical axis. If we apply r to the factor loading matrix
of the model in the figure, we get the model in Figure 16.5. Now instead of X1

being correlated with the other variables only through one factor, it’s correlated
through two factors, and X4 has incoming arrows from three factors.

Because the transformation is orthogonal, the distribution of the observations
is unchanged. In particular, the fit of the new factor model to the data will be
exactly as good as the fit of the old model. If we try to take this causally, however,
we come up with a very different interpretation. The quality of the fit to the data
does not, therefore, let us distinguish between these two models, and so these two
stories about the causal structure of the data.14

14 There might, of course, be other considerations, beyond the quality of the fit to the data, which

would favor one model over another. This would have to be something like independent scientific

evidence in favor of thinking that (say) X1 only reflected a single latent variable. Note however that

16.10 Reification, and Alternatives to Factor Models 365

G1

X1

0.13

X2

-0.45

X3

-0.13

X4

-0.20

G2

0.86 -0.69 0.02 0.03

F3

0.73 0.10

X5

0.15

X6

0.45

E1 E2 E3 E4 E5 E6

Figure 16.5 The model from Figure 16.1, after rotating the first two
factors by 30 degrees around the third factor’s axis. The new factor loadings
are rounded to two decimal places.

The rotation problem does not rule out the idea that checking the fit of a factor
model would let us discover how many hidden causal variables there are.

16.10.2 Factors or Mixtures?

Suppose we have two distributions with probability densities f0(x) and f1(x).
Then we can define a new distribution which is a mixture of them, with density
fα(x) = (1 − α)f0(x) + αf1(x), 0 ≤ α ≤ 1. The same idea works if we combine
more than two distributions, so long as the sum of the mixing weights sum to
one (as do α and 1 − α). Mixture models are a very flexible and useful way of
representing complicated probability distributions15, and we will look at them in
detail in Chapter 17.

those other considerations could hardly be previous factor analyses of the same (or similar)

variables, since they’d all be subject to the rotation problem as well.
15 They are also a probabilistic, predictive alternative to the kind of clustering techniques you may

have seen in data mining, such as k-means: each distribution in the mixture is basically a cluster,

and the mixing weights are the probabilities of drawing a new sample from the different clusters.

366 Factor Models

I bring up mixture models here because there is a very remarkable result: any
linear factor model with q factors is equivalent to some mixture model with q+ 1
clusters, in the sense that the two models have the same means and covariances
(Bartholomew, 1987, pp. 36–38). Recall from above that the likelihood of a factor
model depends on the data only through the correlation matrix. If the data really
were generated by drawing from q + 1 clusters, then a model with q factors can
match the covariance matrix very well, and so get a very high likelihood. This
means it will, by the usual test, seem like a very good fit. Needless to say, however,
the causal interpretations of the mixture model and the factor model are very
different. The two may be distinguishable if the clusters are well-separated (by
looking to see whether the data are unimodal or not), but that’s not exactly
guaranteed.

All of which suggests that factor analysis can’t alone really tell us whether we
have q continuous latent variables, or one discrete hidden variable taking q + 1
values.

16.10.3 The Thomson Sampling Model

We have been working with fewer factors than we have features. Suppose that’s
not true. Suppose that each of our features is actually a linear combination of a
lot of variables we don’t measure:

Xij = ηij +
q∑

k=1

AikTkj = ηij + ~Ai · ~Tj (16.49)

where q � p. Suppose further that the latent variables Aik are totally independent
of one another, but they all have mean 0 and variance 1; and that the noises ηij
are independent of each other and of the Aik, with variance φj; and the Tkj are
independent of everything. What then is the covariance between Xia and Xib?
Well, because E [Xia] = E [Xib] = 0, it will just be the expectation of the product

16.10 Reification, and Alternatives to Factor Models 367

of the features:

E [XiaXib] (16.50)

= E
[
(ηia + ~Ai · ~Ta)(ηib + ~Ai · ~Tb)

]
(16.51)

= E [ηiaηib] + E
[
ηia ~Ai · ~Tb

]
+ E

[
ηib ~Ai · ~Ta

]
+ E

[
(~Ai · ~Ta)(~Ai · ~Tb)

]
(16.52)

= 0 + 0 + 0 + E

[(
q∑

k=1

AikTka

)(
q∑
l=1

AilTlb

)]
(16.53)

= E

[∑
k,l

AikAilTkaTlb

]
(16.54)

=
∑
k,l

E [AikAil]TkaTlb (16.55)

=
∑
k,l

E [AikAil]E [TkaTlb] (16.56)

=
q∑

k=1

E [TkaTkb] (16.57)

where to get the last line I use the fact that E [AikAil] = 1 if k = l and = 0
otherwise. If the coefficients T are fixed, then the last expectation goes away and
we merely have the same kind of sum we’ve seen before, in the factor model.

Instead, however, let’s say that the coefficients T are themselves random (but
independent of A and η). For each feature Xia, we fix a proportion za between 0
and 1. We then set Tka ∼ Bernoulli(za), with Tka ⊥⊥ Tlb unless k = l and a = b.
Then

E [TkaTkb] = E [Tka]E [Tkb] = zazb (16.58)

and

E [XiaXib] = qzazb (16.59)

Of course, in the one-factor model,

E [XiaXib] = wawb (16.60)

So this random-sampling model looks exactly like the one-factor model with factor
loadings proportional to za. The tetrad equation, in particular, will hold.

Now, it doesn’t make a lot of sense to imagine that every time we make an
observation we change the coefficients T randomly. Instead, let’s suppose that
they are first generated randomly, giving values Tkj, and then we generate fea-
ture values according to Eq. 16.49. The covariance between Xia and Xib will be∑q

k=1 TkaTkb. But this is a sum of IID random values, so by the law of large
numbers as q gets large this will become very close to qzazb. Thus, for nearly all
choices of the coefficients, the feature covariance matrix should come very close
to satisfying the tetrad equations and looking like there’s a single general factor.

In this model, each feature is a linear combination of a random sample of a

368 Factor Models

huge pool of completely independent features, plus some extra noise specific to the
feature.16 Precisely because of this, the features are correlated, and the pattern
of correlations is that of a factor model with one factor. The appearance of a
single common cause actually arises from the fact that the number of causes is
immense, and there is no particular pattern to their influence on the features.

Code Example 30 simulates the Thomson model.

tm <- rthomson(50,11,500,50)
factanal(tm$data,1)
##
Call:
factanal(x = tm$data, factors = 1)
##
Uniquenesses:
[1] 0.768 0.272 0.893 0.107 0.948 0.742 0.720 0.545 0.349 0.848 0.464
##
Loadings:
Factor1
[1,] 0.482
[2,] 0.853
[3,] 0.327
[4,] 0.945
[5,] 0.229
[6,] 0.508
[7,] 0.529
[8,] 0.674
[9,] 0.807
[10,] 0.390
[11,] 0.732
##
Factor1
SS loadings 4.343
Proportion Var 0.395
##
Test of the hypothesis that 1 factor is sufficient.
The chi square statistic is 43.55 on 44 degrees of freedom.
The p-value is 0.491

The first command generates data from n = 50 items with p = 11 features
and q = 500 latent variables. (The last argument controls the average size of
the specific variances φj.) The result of the factor analysis is of course variable,
depending on the random draws; this attempt gave the proportion of variance as-
sociated with the factor as 0.39, and the p-value as 0.49. Repeating the simulation
many times, one sees that the p-value is pretty close to uniformly distributed,

16 When Godfrey Thomson introduced this model in 1914, he used a slightly different procedure to

generate the coefficient Tkj . For each feature he drew a uniform integer between 1 and q, call it qj ,

and then sampled the integers from 1 to q without replacement until he had qj random numbers;

these were the values of k where Tkj = 1. This is basically similar to what I describe, setting

zj = qj/q, but a bit harder to analyze in an elementary way. — Thomson (1916), the original paper,

includes what we would now call a simulation study of the model, where Thomson stepped through

the procedure to produce simulated data, calculate the empirical correlation matrix of the features,

and check the fit to the tetrad equations. Not having a computer, Thomson generated the values of

Tkj with a deck of cards, and of the Aik and ηij by rolling 5220 dice.

16.10 Reification, and Alternatives to Factor Models 369

Simulate Godfrey Thomson's 'sampling model' of mental abilities, and
perform factor analysis on the resulting test scores.

Simulate the Thomson model Follow Thomson's original
sampling-without-replacement scheme Pick a random number in 1:a for the
number of shared abilities for each test Then draw a
sample-without-replacement of that size from 1:a; those are the shared
abilities summed in that test. Specific variance of each test is also
random; draw a number in 1:q, and sum that many independent normals, with
the same parameters as the abilities. Inputs: number of testees (n)
number of tests (d) number of shared abilities (a) number of specific
abilities per test (q) mean of each ability (mean) sd of each ability (sd)
Depends on: mvrnorm from library MASS (multivariate random normal
generator) Output: list, containing: matrix of test loadings on to general
abilities vector of number of specific abilities per test matrix of
abilities-by-testees matrix of general+specific scores by testees raw data
(including measurement noise)
rthomson <- function(n, d, a, q, ability.mean = 0, ability.sd = 1) {

ATTN: Should really use more intuitive argument names number of testees =
n number of tests = d number of shared abilities = a max. number of
specific abilities per test = q

stopifnot(require(MASS)) # for multivariate normal generation

assign abilities to tests
general.per.test <- sample(1:a, size = d, replace = TRUE)
specifics.per.test <- sample(1:q, size = d, replace = TRUE)

Define the matrix assigning abilities to tests
general.to.tests <- matrix(0, a, d)
Exercise to the reader: Vectorize this
for (i in 1:d) {

abilities <- sample(1:a, size = general.per.test[i], replace = FALSE)
general.to.tests[abilities, i] <- 1

}

Covariance matrix of the general abilities
sigma <- matrix(0, a, a)
diag(sigma) <- (ability.sd)^2
mu <- rep(ability.mean, a)
x <- mvrnorm(n, mu, sigma) # person-by-abilities matrix of abilities

The 'general' part of the tests
general.tests <- x %*% general.to.tests
Now the 'specifics'
specific.tests <- matrix(0, n, d)
noisy.tests <- matrix(0, n, d)
Each test gets its own specific abilities, which are independent for each
person Exercise to the reader: vectorize this, too
for (i in 1:d) {

Each test has noises.per.test disturbances, each of which has the given
sd; since these are all independent their variances add
j <- specifics.per.test[i]
specifics <- rnorm(n, mean = ability.mean * j, sd = ability.sd * sqrt(j))
specific.tests[, i] <- general.tests[, i] + specifics
Finally, for extra realism, some mean-zero trial-to-trial noise, so that
if we re-use this combination of general and specific ability scores, we
won't get the exact same test scores twice
noises <- rnorm(n, mean = 0, sd = ability.sd)
noisy.tests[, i] <- specific.tests[, i] + noises

}

tm <- list(data = noisy.tests, general.ability.pattern = general.to.tests,
numbers.of.specifics = specifics.per.test, ability.matrix = x, specific.tests = specific.tests)

return(tm)
}

Code Example 30: Function for simulating the Thomson latent-sampling model.

370 Factor Models

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sampling distribution of FA p−value under Thomson model

200 replicates of 50 subjects each
p value

E
m

pi
ric

al
 C

D
F

●●●
●●●

●●●●●
●●●
●●●

●●●●
●●●
●●●
●●●
●●●
●●●●

●●●
●●●
●●●
●●●
●●●

●●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●●●

●●●
●●●

●●●
●●●
●●●

●●●●●
●●●

●●●●●●
●●●
●●●
●●●●●

●●●●●
●● ●●●

●●●
●●●

●●●●●●
●●●

●●●
●●●

●●●●
●●●●●

●●● ●●●
●●●
●●●

●●●
●●●
●● ●●●●

●●●●●
●●●●●●●

● ●

Figure 16.6 Mimcry of the one-factor model by the Thomson model. The
Thomson model was simulated 200 times with the parameters given above;
each time, the simulated data was then fit to a factor model with one factor,
and the p-value of the goodness-of-fit test extracted. The plot shows the
empirical cumulative distribution function of the p-values. If the null
hypothesis were exactly true, then p ∼ Unif(0, 1), and the theoretical CDF
would be the diagonal line (dashed).

which is what it should be if the null hypothesis is true (Figure 16.6). For fixed
n, the distribution becomes closer to uniform the larger we make q. In other
words, the goodness-of-fit test has little or no power against the alternative of
the Thomson model.

Modifying the Thomson model to look like multiple factors grows notationally
cumbersome; the basic idea however is to use multiple pools of independently-

16.11 Further Reading 371

sampled latent variables, and sum them:

Xij = ηij +
q1∑
k=1

AikTkj +
q2∑
k=1

BikRkj + . . . (16.61)

where the Tkj coefficients are uncorrelated with the Rkj, and so forth. In expec-
tation, if there are r such pools, this exactly matches the factor model with r
factors, and any particular realization is overwhelmingly likely to match if the
q1, q2, . . . qr are large enough.17

It’s not feasible to estimate the T of the Thomson model in the same way that
we estimate factor loadings, because q > p. This is not the point of considering
the model, which is rather to make it clear that we actually learn very little about
where the data come from when we learn that a factor model fits well. It could
mean that the features arise from combining a small number of factors, or on the
contrary from combining a huge number of factors in a random fashion. A lot of
the time the latter is a more plausible-sounding story.

For example, a common application of factor analysis is in marketing: you
survey consumers and ask them to rate a bunch of products on a range of features,
and then do factor analysis to find attributes which summarize the features.
That’s fine, but it may well be that each of the features is influenced by lots of
aspects of the product you don’t include in your survey, and the correlations are
really explained by different features being affected by many of the same small
aspects of the product. Similarly for psychological testing: answering any question
is really a pretty complicated process involving lots of small processes and skills
(of perception, several kinds of memory, problem-solving, attention, motivation,
etc.), which overlap partially from question to question.

16.11 Further Reading

The classical papers by Spearman (1904) and Thurstone (1934) are readily avail-
able online, and very much worth reading for getting a sense of the problems
which motivated the introduction of factor analysis, and the skill with which the
founders grappled with them. Loehlin (1992) is a decent textbook intended for
psychologists; the presumed mathematical and statistical level is decidedly lower
than that of this book, but it’s still useful. Thomson (1939) remains one of the
most insightful books on factor analysis, though obviously there have been a lot
of technical refinements since he wrote. It’s strongly recommended for anyone
who plans to make much use of the method. While out of print, used copies are
reasonably plentiful and cheap, and at least one edition is free online.

On purely statistical issues related to factor analysis, Bartholomew (1987) is
by far the best reference I have found; it quite properly sets it in the broader
context of latent variable models, including the sort of latent class models we will

17 A recent paper on the Thomson model (Bartholomew et al., 2009) proposes just this modification to

multiple factors and to Bernoulli sampling. However, I proposed this independently, in the fall 2008

version of these notes, about a year before their paper.

372 Factor Models

explore in Chapter 17. The computational advice of that edition is, necessarily,
now quite obsolete; there is an updated edition from 2011, which I have not been
able to consult by the time of writing.

The use of factor analysis in psychological testing has given rise to a large
controversial literature, full of claims, counter-claims, counter-counter-claims, and
so on ad nauseam. Without, here, going into that, I will just note that to the
extent the best arguments against (say) reifying the general factor extracted
from IQ tests as “general intelligence” are good arguments, they do not just
apply to intelligence, but also to personality tests, and indeed to many procedures
outside psychology. In other words, if there’s a problem, it’s not just a problem
for intelligence testing alone, or even for psychology alone. On this, see Glymour
(1998) and Borsboom (2005, 2006).

Exercises

16.1 Prove Eq. 16.13.

16.2 Why is it fallacious to go from “the data have the kind of correlations predicted by a

one-factor model” to “the data were generated by a one-factor model”?

16.3 Consider Figure 16.2 and its code. What is w here? What is ψ? What is the implied

covariance matrix of ~X? .

16.4 Show that the correlation between the jth feature and G, in the one-factor model, is wj .

16.5 Check that Eq. 16.11 and Eq. 16.25 are compatible.

16.6 Find the weights bjr for the Thomson estimator of factor scores (Eq. 16.38), assuming you

know w. Do you need to assume a Gaussian distribution?

17

Mixture Models

17.1 Two Routes to Mixture Models

17.1.1 From Factor Analysis to Mixture Models

In factor analysis, the origin myth is that we have a fairly small number, q of real
variables which happen to be unobserved (“latent”), and the much larger number
p of variables we do observe arise as linear combinations of these factors, plus
noise. The mythology is that it’s possible for us (or for Someone) to continuously
adjust the latent variables, and the distribution of observables likewise changes
continuously. What if the latent variables are not continuous but ordinal, or even
categorical? The natural idea would be that each value of the latent variable
would give a different distribution of the observables.

17.1.2 From Kernel Density Estimates to Mixture Models

We have also previously looked at kernel density estimation, where we approx-
imate the true distribution by sticking a small (1

n
weight) copy of a kernel pdf

at each observed data point and adding them up. With enough data, this comes
arbitrarily close to any (reasonable) probability density, but it does have some
drawbacks. Statistically, it labors under the curse of dimensionality. Computa-
tionally, we have to remember all of the data points, which is a lot. We saw similar
problems when we looked at fully non-parametric regression, and then saw that
both could be ameliorated by using things like additive models, which impose
more constraints than, say, unrestricted kernel smoothing. Can we do something
like that with density estimation?

Additive modeling for densities is not as common as it is for regression —
it’s harder to think of times when it would be natural and well-defined1 — but
we can do things to restrict density estimation. For instance, instead of putting
a copy of the kernel at every point, we might pick a small number K � n of
points, which we feel are somehow typical or representative of the data, and put
a copy of the kernel at each one (with weight 1

K
). This uses less memory, but it

1 Remember that the integral of a probability density over all space must be 1, while the integral of a

regression function doesn’t have to be anything in particular. If we had an additive density,

f(x) =
∑
j fj(xj), ensuring normalization is going to be very tricky; we’d need∑

j

∫
fj(xj)dx1dx2 . . . dxp = 1. It would be easier to ensure normalization while making the

log-density additive, but that assumes the features are independent of each other.

373

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

374 Mixture Models

ignores the other data points, and lots of them are probably very similar to those
points we’re taking as prototypes. The differences between prototypes and many
of their neighbors are just matters of chance or noise. Rather than remembering
all of those noisy details, why not collapse those data points, and just remember
their common distribution? Different regions of the data space will have different
shared distributions, but we can just combine them.

17.1.3 Mixture Models

More formally, we say that a distribution f is a mixture of K cluster2 distri-
butions f1, f2, . . . fK if

f(x) =
K∑
k=1

λkfk(x) (17.1)

with the λk being the mixing weights, λk > 0,
∑

k λk = 1. Eq. 17.1 is a complete
stochastic model, so it gives us a recipe for generating new data points: first pick
a distribution, with probabilities given by the mixing weights, and then generate
one observation according to that distribution. Symbolically,

Z ∼ Mult(λ1, λ2, . . . λK) (17.2)

X|Z ∼ fZ (17.3)

where I’ve introduced the discrete random variable Z which says which cluster
X is drawn from.

I haven’t said what kind of distribution the fks are. In principle, we could make
these completely arbitrary, and we’d still have a perfectly good mixture model.
In practice, a lot of effort is given over to parametric mixture models, where
the fk are all from the same parametric family, but with different parameters —
for instance they might all be Gaussians with different centers and variances, or
all Poisson distributions with different means, or all power laws with different
exponents. (It’s not necessary, just customary, that they all be of the same kind.)
We’ll write the parameter, or parameter vector, of the kth cluster as θk, so the
model becomes

f(x) =
K∑
k=1

λkf(x; θk) (17.4)

The over-all parameter vector of the mixture model is thus θ = (λ1, λ2, . . . λK , θ1, θ2, . . . θK).
Let’s consider two extremes. When K = 1, we have a simple parametric dis-

tribution, of the usual sort, and density estimation reduces to estimating the
parameters, by maximum likelihood or whatever else we feel like. On the other
hand when K = n, the number of observations, we have gone back towards kernel
density estimation. If K is fixed as n grows, we still have a parametric model,
and avoid the curse of dimensionality, but a mixture of (say) ten Gaussians is

2 Many people write “components” instead of “clusters”, but I am deliberately avoiding that here so

as not to lead to confusion with the components of PCA.

17.1 Two Routes to Mixture Models 375

more flexible than a single Gaussian — thought it may still be the case that the
true distribution just can’t be written as a ten-Gaussian mixture. So we have our
usual bias-variance or accuracy-precision trade-off — using many clusters in the
mixture lets us fit many distributions very accurately, with low approximation
error or bias, but means we have more parameters and so we can’t fit any one of
them as precisely, and there’s more variance in our estimates.

17.1.4 Geometry

In Chapter 15, we looked at principal components analysis, which finds linear
structures with q dimensions (lines, planes, hyper-planes, . . .) which are good
approximations to our p-dimensional data, q � p. In Chapter 16, we looked at
factor analysis, which imposes a statistical model for the distribution of the data
around this q-dimensional plane (Gaussian noise), and a statistical model of the
distribution of representative points on the plane (also Gaussian). This set-up is
implied by the mythology of linear continuous latent variables, but can arise in
other ways.

We know from geometry that it takes q + 1 points to define a q-dimensional
plane, and that in general any q+1 points on the plane will do. This means that if
we use a mixture model with q+1 clusters, we will also get data which lies around
a q-dimensional plane. Furthermore, by adjusting the mean of each cluster, and
their relative weights, we can make the global mean of the mixture whatever we
like. And we can even match the covariance matrix of any q-factor model by using
a mixture with q + 1 clusters3. Now, this mixture distribution will hardly ever
be exactly the same as the factor model’s distribution — mixtures of Gaussians
aren’t Gaussian, the mixture will usually (but not always) be multimodal while
the factor distribution is always unimodal — but it will have the same geometry (a
q-dimensional subspace plus noise), and the same mean and the same covariances,
so we will have to look beyond those to tell them apart. Which, frankly, people
hardly ever do.

17.1.5 Identifiability

Before we set about trying to estimate our probability models, we need to make
sure that they are identifiable — that if we have distinct representations of the
model, they make distinct observational claims. It is easy to let there be too many
parameters, or the wrong choice of parameters, and lose identifiability. If there
are distinct representations which are observationally equivalent, we either need
to change our model, change our representation, or fix on a unique representation
by some convention.

• With additive regression, E [Y |X = x] = α +
∑

j fj(xj), we can add arbitrary
constants so long as they cancel out. That is, we get the same predictions

3 See Bartholomew (1987, pp. 36–38). The proof is tedious algebraically.

376 Mixture Models

from α + c0 +
∑

j fj(xj) + cj when c0 = −
∑

j cj. This is another model of
the same form, α′ +

∑
j f
′
j(xj), so it’s not identifiable. We dealt with this by

imposing the convention that α = E [Y] and E [fj(Xj)] = 0 — we picked out
a favorite, convenient representation from the infinite collection of equivalent
representations.

• Linear regression becomes unidentifiable with collinear features. Collinearity is
a good reason to not use linear regression (i.e., we change the model.)

• Factor analysis is unidentifiable because of the rotation problem. Some people
respond by trying to fix on a particular representation, others just ignore it.

Two kinds of identification problems are common for mixture models; one is
trivial and the other is fundamental. The trivial one is that we can always swap
the labels of any two clusters with no effect on anything observable at all — if we
decide that cluster number 1 is now cluster number 7 and vice versa, that doesn’t
change the distribution of X at all. This label degeneracy can be annoying,
especially for some estimation algorithms, but that’s the worst of it.

A more fundamental lack of identifiability happens when mixing two distribu-
tions from a parametric family just gives us a third distribution from the same
family. For example, suppose we have a single binary feature, say an indicator for
whether someone will pay back a credit card. We might think there are two kinds
of customers, with high- and low- risk of not paying, and try to represent this as
a mixture of Bernoulli distribution. If we try this, we’ll see that we’ve gotten a
single Bernoulli distribution with an intermediate risk of repayment. A mixture
of Bernoulli is always just another Bernoulli. More generally, a mixture of discrete
distributions over any finite number of categories is just another distribution over
those categories4.

17.1.6 Probabilistic Clustering

Yet another way to view mixture models, which I hinted at when I talked about
how they are a way of putting similar data points together into “clusters”, where
clusters are represented by the distributions going into the mixture. The idea
is that all data points of the same type, belonging to the same cluster or class,
are more or less equivalent and all come from the same distribution, and any
differences between them are matters of chance. This view exactly corresponds to
mixture models like Eq. 17.1; the hidden variable Z I introduced above in just
the cluster label.

One of the very nice things about probabilistic clustering is that Eq. 17.1 ac-
tually claims something about what the data looks like; it says that it follows a

4 That is, a mixture of any two n = 1 multinomials is another n = 1 multinomial. This is not

generally true when n > 1; for instance, a mixture of a Binom(2, 0.75) and a Binom(2, 0.25) is not a

Binom(2, p) for any p (Exercise 17.2). However, both of those binomials is a distribution on {0, 1, 2},
and so is their mixture. This apparently trivial point actually leads into very deep topics, since it

turns out that which models can be written as mixtures of others is strongly related to what

properties of the data-generating process can actually be learned from data: see Lauritzen (1984).

17.2 Estimating Parametric Mixture Models 377

certain distribution. We can check whether it does, and we can check whether
new data follows this distribution. If it does, great; if not, if the predictions sys-
tematically fail, then the model is wrong. We can compare different probabilistic
clusterings by how well they predict (say under cross-validation).5

In particular, probabilistic clustering gives us a sensible way of answering the
question “how many clusters?” The best number of clusters to use is the number
which will best generalize to future data. If we don’t want to wait around to get
new data, we can approximate generalization performance by cross-validation, or
by any other adaptive model selection procedure.

17.1.7 Simulation

Simulating from a mixture model works rather like simulating from a kernel
density estimate (§14.7.1). To draw a new value X̃, first draw a random integer
Z from 1 to k, with probabilities λk, then draw from the Zth cluster. (That is,
X̃|Z ∼ fZ .) Note that if we want multiple draws, X̃1, X̃2, . . . X̃b, each of them
needs an independent Z.

17.2 Estimating Parametric Mixture Models

From intro stats., we remember that it’s generally a good idea to estimate distri-
butions using maximum likelihood, when we can. How could we do that here?

Remember that the likelihood is the probability (or probability density) of ob-
serving our data, as a function of the parameters. Assuming independent samples,
that would be

n∏
i=1

f(xi; θ) (17.5)

for observations x1, x2, . . . xn. As always, we’ll use the logarithm to turn multi-
plication into addition:

`(θ) =
n∑
i=1

log f(xi; θ) (17.6)

=
n∑
i=1

log
K∑
k=1

λkf(xi; θk) (17.7)

5 Contrast this with k-means or hierarchical clustering, which you may have seen in other classes:

they make no predictions, and so we have no way of telling if they are right or wrong. Consequently,

comparing different non-probabilistic clusterings is a lot harder!

378 Mixture Models

Let’s try taking the derivative of this with respect to one parameter, say θj.

∂`

∂θj
=

n∑
i=1

1∑K
k=1 λkf(xi; θk)

λj
∂f(xi; θj)

∂θj
(17.8)

=
n∑
i=1

λjf(xi; θj)∑K
k=1 λkf(xi; θk)

1

f(xi; θj)

∂f(xi; θj)

∂θj
(17.9)

=
n∑
i=1

λjf(xi; θj)∑K
k=1 λkf(xi; θk)

∂ log f(xi; θj)

∂θj
(17.10)

If we just had an ordinary parametric model, on the other hand, the derivative
of the log-likelihood would be

n∑
i=1

∂ log f(xi; θj)

∂θj
(17.11)

So maximizing the likelihood for a mixture model is like doing a weighted likeli-
hood maximization, where the weight of xi depends on cluster, being

wij =
λjf(xi; θj)∑K
k=1 λkf(xi; θk)

(17.12)

The problem is that these weights depend on the parameters we are trying to
estimate!6

Let’s look at these weights wij a bit more. Remember that λj is the probability
that the hidden class variable Z is j, so the numerator in the weights is the
joint probability of getting Z = j and X = xi. The denominator is the marginal
probability of getting X = xi, so the ratio is the conditional probability of Z = j
given X = xi,

wij =
λjf(xi; θj)∑K
k=1 λkf(xi; θk)

= p(Z = j|X = xi; θ) (17.13)

If we try to estimate the mixture model, then, we’re doing weighted maximum
likelihood, with weights given by the posterior cluster probabilities. These, to
repeat, depend on the parameters we are trying to estimate, so there seems to be
a vicious circle.

But, as the saying goes, one man’s vicious circle is another man’s successive
approximation procedure. A crude way of doing this7 would start with an initial
guess about the cluster distributions; find out which cluster each point is most
likely to have come from; re-estimate the clusters using only the points assigned
to it, etc., until things converge. This corresponds to taking all the weights wij to
be either 0 or 1. However, it does not maximize the likelihood, since we’ve seen
that to do so we need fractional weights.

What’s called the EM algorithm is simply the obvious refinement of this “hard”
assignment strategy.

6 Matters are no better, but also no worse, for finding λj ; see Exercise 17.3.
7 Related to what’s called “k-means” clustering.

17.2 Estimating Parametric Mixture Models 379

1. Start with guesses about the cluster distributions θ1, θ2, . . . θK and the mixing
weights λ1, . . . λK .

2. Until nothing changes very much:

1. Using the current parameter guesses, calculate the weights wij (E-step)
2. Using the current weights, maximize the weighted likelihood to get new

parameter estimates (M-step)

3. Return the final parameter estimates (including mixing proportions) and clus-
ter probabilities

The M in “M-step” and “EM” stands for “maximization”, which is pretty
transparent. The E stands for “expectation”, because it gives us the conditional
probabilities of different values of Z, and probabilities are expectations of indica-
tor functions. (In fact in some early applications, Z was binary, so one really was
computing the expectation of Z.) The whole thing is also called the “expectation-
maximization” algorithm.

17.2.1 More about the EM Algorithm

The EM algorithm turns out to be a general way of maximizing the likelihood
when some variables are unobserved, and hence useful for other things besides
mixture models (e.g., when some variables are missing some of the time — see
]§H.3.2). So in this section, where I try to explain why it works, I am going to be
a bit more general and abstract. (Also, it will actually cut down on notation.) I’ll
pack the whole sequence of observations x1, x2, . . . xn into a single variable d (for
“data”), and likewise the whole sequence of z1, z2, . . . zn into h (for “hidden”).
What we want to do is maximize

`(θ) = log p(d; θ) = log
∑
h

p(d, h; θ) (17.14)

This is generally hard, because even if p(d, h; θ) has a nice parametric form, that
is lost when we sum up over all possible values of h (as we saw above). The
essential trick of the EM algorithm is to maximize not the log likelihood, but
a lower bound on the log-likelihood, which is more tractable; we’ll see that this
lower bound is sometimes tight, i.e., coincides with the actual log-likelihood, and
in particular does so at the global optimum.

We can introduce an arbitrary8 distribution on h, call it q(h), and we’ll write

`(θ) = log
∑
h

p(d, h; θ) (17.15)

= log
∑
h

q(h)

q(h)
p(d, h; θ) (17.16)

= log
∑
h

q(h)
p(d, h; θ)

q(h)
(17.17)

8 Well, almost arbitrary; if some h has probability > 0 for all θ, then it shouldn’t give that h

probability zero.

380 Mixture Models

0.5 1.0 1.5 2.0

−
0.

5
0.

0
0.

5

x

lo
g(

x)

curve(log(x),from=0.4,to=2.1)
segments(0.5,log(0.5),2,log(2),lty=2)

Figure 17.1 The logarithm is a concave function, i.e., the curve connecting
any two points lies above the straight line doing so. Thus the average of
logarithms is less than the logarithm of the average.

So far so trivial.
Now we need a geometric fact about the logarithm function, which is that

its curve is concave: if we take any two points on the curve and connect them
by a straight line, the curve lies above the line (Figure 17.1 and Exercise 17.6).
Algebraically, this means that

w log t1 + (1− w) log t2 ≤ logwt1 + (1− w)t2 (17.18)

for any 0 ≤ w ≤ 1, and any points t1, t2 > 0. Nor does this just hold for two
points: for any r points t1, t2, . . . tr > 0, and any set of non-negative weights∑r

i=1wr = 1,
r∑
i=1

wi log ti ≤ log
r∑
i=1

witi (17.19)

In words: the log of the average is at least the average of the logs. This is called
Jensen’s inequality. So

log
∑
h

q(h)
p(d, h; θ)

q(h)
≥
∑
h

q(h) log
p(d, h; θ)

q(h)
(17.20)

≡ J(q, θ) (17.21)

We are bothering with this because we hope that it will be easier to maximize
this lower bound on the likelihood than the actual likelihood, and the lower bound

17.2 Estimating Parametric Mixture Models 381

is reasonably tight. As to tightness, suppose that we set q(h) = p(h|d; θ). For this
special choice of q, call it q̂,

p(d, h; θ)

q̂(h)
=
p(d, h; θ)

p(h|d; θ)
=

p(d, h; θ)

p(h, d; θ)/p(d; θ)
= p(d; θ) (17.22)

no matter what h is. This implies J(q̂, θ) = `(θ):

J(q̂, θ) =
∑
h

q̂(h) log
p(d, h; θ)

q̂(h)
(17.23)

=
∑
h

p(h|d; θ) log p(d; θ) (17.24)

= log p(d; θ)
∑
h

p(h|d; θ) (17.25)

= `(θ) (17.26)

using Eq. 17.22 in the second line. This means that the lower bound J(q, θ) ≤ `(θ)
is tight. Moreover, setting q = q̂ maximizes J(q, θ) for fixed θ.

Here’s how the EM algorithm goes in this formulation.

1. Start with an initial guess θ(0) about the clusters and mixing weights.
2. Until nothing changes very much

1. E-step: q(t) = argmaxq J(q, θ(t)), i.e., set q(t)(h) = p(h|d; θ(t)).

2. M-step: θ(t+1) = argmaxθ J(q(t), θ)

3. Return final estimates of θ and q

The E and M steps are now nice and symmetric; both are about maximizing J .
It’s easy to see that, after the E step,

J(q(t), θ(t)) ≥ J(q(t−1), θ(t)) (17.27)

and that, after the M step,

J(q(t), θ(t+1)) ≥ J(q(t), θ(t)) (17.28)

Putting these two inequalities together,

J(q(t+1), θ(t+1)) ≥ J(q(t), θ(t)) (17.29)

`(θ(t+1)) ≥ `(θ(t)) (17.30)

So each EM iteration can only improve the likelihood, guaranteeing convergence
to a local maximum. Since it only guarantees a local maximum, it’s a good idea
to try a few different initial values of θ(0) and take the best.

We saw above that the maximization in the E step is just computing the
posterior probability p(h|d; θ). What about the maximization in the M step?∑

h

q(h) log
p(d, h; θ)

q(h)
=
∑
h

q(h) log p(d, h; θ)−
∑
h

q(h) log q(h) (17.31)

The second sum doesn’t depend on θ at all, so it’s irrelevant for maximizing,

382 Mixture Models

giving us back the optimization problem from the last section. This confirms
that using the lower bound from Jensen’s inequality hasn’t yielded a different
algorithm! (Exercise 17.10)

17.2.2 Topic Models and Probabilistic LSA

Mixture models over words provide an alternative to latent semantic indexing
(§15.4) for document analysis. Instead of finding the principal components of the
bag-of-words vectors, the idea is as follows. There are a certain number of topics
which documents in the corpus can be about; each topic corresponds to a distri-
bution over words. The distribution of words in a document is a mixture of the
topic distributions. That is, one can generate a bag of words by first picking a
topic according to a multinomial distribution (topic i occurs with probability λi),
and then picking a word from that topic’s distribution. The distribution of topics
varies from document to document, and this is what’s used, rather than projec-
tions on to the principal components, to summarize the document. This idea was,
so far as I can tell, introduced by Hofmann (1999), who estimated everything by
EM. Latent Dirichlet allocation, due to Blei and collaborators (Blei et al.,
2003) is an important variation which smoothes the topic distributions; there is a
CRAN package called lda. Blei and Lafferty (2009) is a good recent review paper
of the area.

17.3 Non-parametric Mixture Modeling

We could replace the M step of EM by some other way of estimating the distribu-
tion of each cluster. This could be a fast-but-crude estimate of parameters (say a
method-of-moments estimator if that’s simpler than the MLE), or it could even
be a non-parametric density estimator of the type we talked about in Chapter
14. (Similarly for mixtures of regressions, etc.) Issues of dimensionality re-surface
now, as well as convergence: because we’re not, in general, increasing J at each
step, it’s harder to be sure that the algorithm will in fact converge. This is an
active area of research.

17.4 Worked Computing Example: Snoqualmie Falls Revisited

17.4.1 Mixture Models in R

There are several R packages which implement mixture models. The mclust pack-
age (http://www.stat.washington.edu/mclust/) is pretty much standard for
Gaussian mixtures. One of the more recent and powerful is mixtools (Benaglia
et al., 2009), which, in addition to classic mixtures of parametric densities, han-
dles mixtures of regressions and some kinds of non-parametric mixtures. The
FlexMix package (Leisch, 2004) is (as the name implies) very good at flexibly
handling complicated situations, though you have to do some programming to
take advantage of this.

http://www.stat.washington.edu/mclust/

17.4 Worked Computating Example 383

17.4.2 Fitting a Mixture of Gaussians to Real Data

Let’s go back to the Snoqualmie Falls data set, last used in §11.79. There we built
a system to forecast whether there would be precipitation on day t, on the basis
of how much precipitation there was on day t− 1. Let’s look at the distribution
of the amount of precipitation on the wet days.

snoqualmie <- scan("http://www.stat.washington.edu/peter/book.data/set1",skip=1)
snoq <- snoqualmie[snoqualmie > 0]

Figure 17.2 shows a histogram (with a fairly large number of bins), together
with a simple kernel density estimate. This suggests that the distribution is rather
skewed to the right, which is reinforced by the simple summary statistics:

summary(snoq)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 6.00 19.00 32.28 44.00 463.00

Notice that the mean is larger than the median, and that the distance from the
first quartile to the median is much smaller (13/100 of an inch of precipitation)
than that from the median to the third quartile (25/100 of an inch). One way
this could arise, of course, is if there are multiple types of wet days, each with a
different characteristic distribution of precipitation.

We’ll look at this by trying to fit Gaussian mixture models with varying num-
bers of clusters. We’ll start by using a mixture of two Gaussians. We could code
up the EM algorithm for fitting this mixture model from scratch, but instead
we’ll use the mixtools package.

library(mixtools)
snoq.k2 <- normalmixEM(snoq,k=2,maxit=100,epsilon=0.01)

The EM algorithm “runs until convergence”, i.e., until things change so little
that we don’t care any more. For the implementation in mixtools, this means
running until the log-likelihood changes by less than epsilon. The default toler-
ance for convergence is not 10−2, as here, but 10−8, which can take a very long
time indeed. The algorithm also stops if we go over a maximum number of iter-
ations, even if it has not converged, which by default is 1000; here I have dialed
it down to 100 for safety’s sake. What happens?

snoq.k2 <- normalmixEM(snoq,k=2,maxit=100,epsilon=0.01)

summary(snoq.k2)
summary of normalmixEM object:
comp 1 comp 2
lambda 0.568944 0.431056
mu 10.610703 60.904331
sigma 8.831970 45.243524
loglik at estimate: -32681.2

9 See that section for explanations of some of the data manipulation done in this section.

384 Mixture Models

Precipitation in Snoqualmie Falls

Precipitation (1/100 inch)

D
en

si
ty

0 100 200 300 400

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

plot(hist(snoq,breaks=101),col="grey",border="grey",freq=FALSE,
xlab="Precipitation (1/100 inch)",main="Precipitation in Snoqualmie Falls")

lines(density(snoq),lty="dashed")

Figure 17.2 Histogram (grey) for precipitation on wet days in Snoqualmie
Falls. The dashed line is a kernel density estimate, which is not completely
satisfactory. (It gives non-trivial probability to negative precipitation, for
instance.)

There are two clusters, with weights (lambda) of about 0.57 and 0.43, two
means (mu) and two standard deviations (sigma). The over-all log-likelihood,
obtained after 59 iterations, is −3.26812×104. (Demanding convergence to ±10−8

would thus have required the log-likelihood to change by less than one part in a
trillion, which is quite excessive when we only have 6920 observations.)

17.4 Worked Computating Example 385

We can plot this along with the histogram of the data and the non-parametric
density estimate. I’ll write a little function for it.

Plot the (scaled) density associated with a Gaussian cluster
Inputs: mixture object (mixture)

index number of the cluster (cluster.number)
optional additional arguments to curve (...)

Outputs: None useful
Side-effects: Plot is added to the current display
plot.gaussian.clusters <- function(mixture, cluster.number, ...) {

curve(mixture$lambda[cluster.number] *
dnorm(x,mean=mixture$mu[cluster.number],
sd=mixture$sigma[cluster.number]), add=TRUE, ...)

}

This adds the density of a given cluster to the current plot, but scaled by
the share it has in the mixture, so that it is visually comparable to the over-all
density.

17.4.3 Calibration-checking for the Mixture

Examining the two-cluster mixture, it does not look altogether satisfactory —
it seems to consistently give too much probability to days with about 1 inch of
precipitation. Let’s think about how we could check things like this.

When we looked at logistic regression, we saw how to check probability forecasts
by checking calibration — events predicted to happen with probability p should
in fact happen with frequency ≈ p. Here we don’t have a binary event, but we
do have lots of probabilities. In particular, we have a cumulative distribution
function F (x), which tells us the probability that the precipitation is ≤ x on any
given day. When x is continuous and has a continuous distribution, F (x) should
be uniformly distributed.10 The CDF of a two-cluster mixture is

F (x) = λ1F1(x) + λ2F2(x) (17.32)

and similarly for more clusters. A little R experimentation gives a function for
computing the CDF of a Gaussian mixture:

pnormmix <- function(x,mixture) {
lambda <- mixture$lambda
k <- length(lambda)
pnorm.from.mix <- function(x,cluster) {
lambda[cluster]*pnorm(x,mean=mixture$mu[cluster],

sd=mixture$sigma[cluster])
}
pnorms <- sapply(1:k,pnorm.from.mix,x=x)
return(rowSums(pnorms))

}

We can use this to get a plot like Figure 17.4. We do not have the tools to

10 We saw this principle when we looked at generating random variables in Chapter 5.

386 Mixture Models

Precipitation in Snoqualmie Falls

Precipitation (1/100 inch)

D
en

si
ty

0 100 200 300 400

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

plot(hist(snoq,breaks=101),col="grey",border="grey",freq=FALSE,
xlab="Precipitation (1/100 inch)",main="Precipitation in Snoqualmie Falls")

lines(density(snoq),lty=2)
invisible(sapply(1:2,plot.gaussian.clusters,mixture=snoq.k2))

Figure 17.3 As in the previous figure, plus the clusters of a mixture of two
Gaussians, fitted to the data by the EM algorithm (dashed lines). These are
scaled by the mixing weights of the clusters. Could you add the sum of the
two cluster densities to the plot?

assess whether the size of the departure from the main diagonal is significant11,
but the fact that the errors are so very structured is rather suspicious.

11 Though we could: the most straight-forward thing to do would be to simulate from the mixture, and

repeat this with simulation output.

17.4 Worked Computating Example 387

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●

●●●
●●●

●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Theoretical CDF

E
m

pi
ric

al
 C

D
F

distinct.snoq <- sort(unique(snoq))
tcdfs <- pnormmix(distinct.snoq,mixture=snoq.k2)
ecdfs <- ecdf(snoq)(distinct.snoq)
plot(tcdfs,ecdfs,xlab="Theoretical CDF",ylab="Empirical CDF",xlim=c(0,1),

ylim=c(0,1))
abline(0,1)

Figure 17.4 Calibration plot for the two-cluster Gaussian mixture. For
each distinct value of precipitation x, we plot the fraction of days predicted
by the mixture model to have ≤ x precipitation on the horizontal axis,
versus the actual fraction of days ≤ x.

388 Mixture Models

17.4.4 Selecting the Number of Clusters by Cross-Validation

Since a two-cluster mixture seems iffy, we could consider using more clusters. By
going to three, four, etc., clusters, we improve our in-sample likelihood, but of
course expose ourselves to the danger of over-fitting. Some sort of model selection
is called for. We could do cross-validation, or we could do hypothesis testing. Let’s
try cross-validation first.

We can already do fitting, but we need to calculate the log-likelihood on the
held-out data. As usual, let’s write a function; in fact, let’s write two.

Probability density corresponding to a Gaussian mixture model
Inputs: location for evaluating the pdf (x)

mixture-model object (mixture)
whether or not output should be logged (log)

Output: the (possibly logged) PDF at the point(s) x
dnormalmix <- function(x,mixture,log=FALSE) {

lambda <- mixture$lambda
k <- length(lambda)
Calculate share of likelihood for all data for one cluster
like.cluster <- function(x,cluster) {
lambda[cluster]*dnorm(x,mean=mixture$mu[cluster],

sd=mixture$sigma[cluster])
}
Create array with likelihood shares from all clusters over all data
likes <- sapply(1:k,like.cluster,x=x)
Add up contributions from clusters
d <- rowSums(likes)
if (log) {
d <- log(d)

}
return(d)

}

Evaluate the loglikelihood of a mixture model at a vector of points
Inputs: vector of data points (x)

mixture model object (mixture)
Output: sum of log probability densities over the points in x
loglike.normalmix <- function(x,mixture) {

loglike <- dnormalmix(x,mixture,log=TRUE)
return(sum(loglike))

}

To check that we haven’t made a big mistake in the coding:

loglike.normalmix(snoq,mixture=snoq.k2)
[1] -32681.2

which matches the log-likelihood reported by summary(snoq.k2). But our func-
tion can be used on different data!

We could do five-fold or ten-fold CV, but just to illustrate the approach we’ll
do simple data-set splitting, where a randomly-selected half of the data is used
to fit the model, and half to test.

n <- length(snoq)
data.points <- 1:n

17.4 Worked Computating Example 389

data.points <- sample(data.points) # Permute randomly
train <- data.points[1:floor(n/2)] # First random half is training
test <- data.points[-(1:floor(n/2))] # 2nd random half is testing
candidate.cluster.numbers <- 2:10
loglikes <- vector(length=1+length(candidate.cluster.numbers))
k=1 needs special handling
mu<-mean(snoq[train]) # MLE of mean
sigma <- sd(snoq[train])*sqrt((n-1)/n) # MLE of standard deviation
loglikes[1] <- sum(dnorm(snoq[test],mu,sigma,log=TRUE))
for (k in candidate.cluster.numbers) {

mixture <- normalmixEM(snoq[train],k=k,maxit=400,epsilon=1e-2)
loglikes[k] <- loglike.normalmix(snoq[test],mixture=mixture)

}

When you run this, you will may see a lot of warning messages saying “One
of the variances is going to zero; trying new starting values.” The issue is that
we can give any one value of x arbitrarily high likelihood by centering a Gaus-
sian there and letting its variance shrink towards zero. This is however generally
considered unhelpful — it leads towards the pathologies that keep us from doing
pure maximum likelihood estimation in non-parametric problems (Chapter 14)
— so when that happens the code recognizes it and starts over.

If we look at the log-likelihoods, we see that there is a dramatic improvement
with the first few clusters, and then things slow down a lot12:

loglikes
[1] -17543.96 -16290.10 -15708.27 -15493.29 -15341.29 -15276.23 -15231.44
[8] -15225.36 -15213.96 -15215.86

(See also Figure 17.5). This favors nine clusters to the mixture. It looks like
Figure 17.6. The calibration is now nearly perfect, at least on the training data
(Figure 17.7).

12 Notice that the numbers here are about half of the log-likelihood we calculated for the two-cluster

mixture on the complete data. This is as it should be, because log-likelihood is proportional to the

number of observations. (Why?) It’s more like the sum of squared errors than the mean squared

error. If we want something which is directly comparable across data sets of different size, we should

use the log-likelihood per observation.

390 Mixture Models

●

●

●

●

●

●
● ● ● ●

2 4 6 8 10

−
17

50
0

−
17

00
0

−
16

50
0

−
16

00
0

−
15

50
0

Number of mixture clusters

Lo
g−

lik
el

ih
oo

d
on

 te
st

in
g

da
ta

plot(x=1:10, y=loglikes,xlab="Number of mixture clusters",
ylab="Log-likelihood on testing data")

Figure 17.5 Log-likelihoods of different sizes of mixture models, fit to a
random half of the data for training, and evaluated on the other half of the
data for testing.

17.4 Worked Computating Example 391

Precipitation in Snoqualmie Falls

Precipitation (1/100 inch)

D
en

si
ty

0 100 200 300 400

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

snoq.k9 <- normalmixEM(snoq,k=9,maxit=400,epsilon=1e-2)
plot(hist(snoq,breaks=101),col="grey",border="grey",freq=FALSE,

xlab="Precipitation (1/100 inch)",main="Precipitation in Snoqualmie Falls")
lines(density(snoq),lty=2)
invisible(sapply(1:9,plot.gaussian.clusters,mixture=snoq.k9))

Figure 17.6 As in Figure 17.3, but using the nine-cluster Gaussian mixture.

392 Mixture Models

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●

●●
●●

●●●●●●●
●●

●●
●●

●●
●●

●●
●●

●●●
●●●

●●●
●●●
●●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Theoretical CDF

E
m

pi
ric

al
 C

D
F

distinct.snoq <- sort(unique(snoq))
tcdfs <- pnormmix(distinct.snoq,mixture=snoq.k9)
ecdfs <- ecdf(snoq)(distinct.snoq)
plot(tcdfs,ecdfs,xlab="Theoretical CDF",ylab="Empirical CDF",xlim=c(0,1),

ylim=c(0,1))
abline(0,1)

Figure 17.7 Calibration plot for the nine-cluster Gaussian mixture.

17.4 Worked Computating Example 393

17.4.5 Interpreting the Clusters in the Mixture, or Not

The clusters of the mixture are far from arbitrary. It appears from Figure 17.6
that as the mean increases, so does the variance. This impression is confirmed
from Figure 17.8. Now it could be that there really are nine types of rainy days
in Snoqualmie Falls which just so happen to have this pattern of distributions,
but this seems a bit suspicious — as though the mixture is trying to use Gaus-
sians systematically to approximate a fundamentally different distribution, rather
than get at something which really is composed of nine distinct Gaussians. This
judgment relies on our scientific understanding of the weather, which makes us
surprised by seeing a pattern like this in the parameters. (Calling this “scientific
knowledge” is a bit excessive, but you get the idea.) Of course we are sometimes
wrong about things like this, so it is certainly not conclusive. Maybe there really
are nine types of days, each with a Gaussian distribution, and some subtle me-
teorological reason why their means and variances should be linked like this. For
that matter, maybe our understanding of meteorology is wrong.

There are two directions to take this: the purely statistical one, and the sub-
stantive one.

On the purely statistical side, if all we care about is being able to describe the
distribution of the data and to predict future precipitation, then it doesn’t really
matter whether the nine-cluster Gaussian mixture is true in any ultimate sense.
Cross-validation picked nine clusters not because there really are nine types of
days, but because a nine-cluster model had the best trade-off between approxi-
mation bias and estimation variance. The selected mixture gives a pretty good
account of itself, nearly the same as the kernel density estimate (Figure 17.9). It
requires 26 parameters13, which may seem like a lot, but the kernel density es-
timate requires keeping around all 6920 data points plus a bandwidth. On sheer
economy, the mixture then has a lot to recommend it.

On the substantive side, there are various things we could do to check the idea
that wet days really do divide into nine types. These are going to be informed
by our background knowledge about the weather. One of the things we know, for
example, is that weather patterns more or less repeat in an annual cycle, and that
different types of weather are more common in some parts of the year than in
others. If, for example, we consistently find type 6 days in August, that suggests
that is at least compatible with these being real, meteorological patterns, and
not just approximation artifacts.

Let’s try to look into this visually. snoq.k9$posterior is a 6920 × 9 array
which gives the probability for each day to belong to each class. I’ll boil this
down to assigning each day to its most probable class:

day.classes <- apply(snoq.k9$posterior,1,which.max)

We can’t just plot this and hope to see any useful patterns, because we want to
see stuff recurring every year, and we’ve stripped out the dry days, the division

13 A mean and a standard deviation for each of nine clusters (=18 parameters), plus mixing weights

(nine of them, but they have to add up to one).

394 Mixture Models

0 50 100 150 200

0
20

40
60

80

Cluster mean

C
lu

st
er

 s
ta

nd
ar

d
de

vi
at

io
n

1
23

4
5

6

7

8

9

plot(0,xlim=range(snoq.k9$mu),ylim=range(snoq.k9$sigma),type="n",
xlab="Cluster mean", ylab="Cluster standard deviation")

points(x=snoq.k9$mu,y=snoq.k9$sigma,pch=as.character(1:9),
cex=sqrt(0.5+5*snoq.k9$lambda))

Figure 17.8 Characteristics of the clusters of the 9-mode Gaussian
mixture. The horizontal axis gives the cluster mean, the vertical axis its
standard deviation. The area of the number representing each cluster is
proportional to the cluster’s mixing weight.

into years, the padding to handle leap-days, etc. Thus, we need to do a bit of R
magic. Remember we started with a giant vector snoqualmie which had all days,
wet or dry; let’s copy that into a data frame, to which we’ll add the classes and
the days of the year.

17.4 Worked Computating Example 395

0 100 200 300 400

0.
00

0.
01

0.
02

0.
03

0.
04

Comparison of density estimates
 Kernel vs. Gaussian mixture

Precipitation (1/100 inch)

D
en

si
ty

plot(density(snoq),lty=2,ylim=c(0,0.04),
main=paste("Comparison of density estimates\n",

"Kernel vs. Gaussian mixture"),
xlab="Precipitation (1/100 inch)")

curve(dnormalmix(x,snoq.k9),add=TRUE)

Figure 17.9 Dashed line: kernel density estimate. Solid line: the
nine-Gaussian mixture. Notice that the mixture, unlike the KDE, gives
negligible probability to negative precipitation.

snoqualmie.classes <- data.frame(precip=snoqualmie, class=0)
years <- 1948:1983
snoqualmie.classes$day <- rep(c(1:366,1:365,1:365,1:365),times=length(years)/4)
wet.days <- (snoqualmie > 0)
snoqualmie.classes$class[wet.days] <- day.classes

396 Mixture Models

Now, it’s somewhat inconvenient that the index numbers of the clusters do
not really tell us about the mean amount of precipitation. Let’s try replacing the
numerical labels in snoqualmie.classes by those means.

snoqualmie.classes$class[wet.days] <- snoq.k9$mu[day.classes]

This leaves alone dry days (still zero) and NA days (still NA). Now we can plot
(Figure 17.10).

The result is discouraging if we want to read any deeper meaning into the
classes. The class with the heaviest amounts of precipitation is most common in
the winter, but so is the classes with the second-heaviest amount of precipitation,
the etc. It looks like the weather changes smoothly, rather than really having
discrete classes. In this case, the mixture model seems to be merely a predictive
device, and not a revelation of hidden structure.14

14 A a distribution called a “type II generalized Pareto”, where p(x) ∝ (1 + x/σ)−θ−1, provides a

decent fit here. (See Shalizi 2007; Arnold 1983 on this distribution and its estimation.) With only

two parameters, rather than 26, its log-likelihood is only 1% higher than that of the nine-cluster

mixture, and it is almost but not quite as calibrated. One origin of the type II Pareto is as a

mixture of exponentials (Maguire et al., 1952). If X|Z ∼ Exp(σ/Z), and Z itself has a Gamma

distribution, Z ∼ Γ(θ, 1), then the unconditional distribution of X is type II Pareto with scale σ and

shape θ. We might therefore investigate fitting a finite mixture of exponentials, rather than of

Gaussians, for the Snoqualmie Falls data. We might of course still end up concluding that there is a

continuum of different sorts of days, rather than a finite set of discrete types.

17.4 Worked Computating Example 397

plot(x=snoqualmie.classes$day, y=snoqualmie.classes$class,
xlim=c(1,366),ylim=range(snoq.k9$mu),xaxt="n",
xlab="Day of year",ylab="Expected precipiation (1/100 inch)",
pch=16,cex=0.2)

axis(1,at=1+(0:11)*30)

Figure 17.10 Plot of days classified according to the nine-cluster mixture.
Horizontal axis: day of the year, numbered from 1 to 366 (to handle
leap-years). Vertical axis: expected amount of precipitation on that day,
according to the most probable class for the day.

398 Mixture Models

17.4.6 Hypothesis Testing for Mixture-Model Selection

An alternative to using cross-validation to select the number of mixtures is to
use hypothesis testing. The k-cluster Gaussian mixture model is nested within
the (k + 1)-cluster model, so the latter must have a strictly higher likelihood on
the training data. If the data really comes from a k-cluster mixture (the null
hypothesis), then this extra increment of likelihood will follow one distribution,
but if the data come from a larger model (the alternative), the distribution will
be different, and stochastically larger.

Based on general likelihood theory, we might expect that the null distribution
is, for large sample sizes,

2(logLk+1 − logLk) ∼ χ2
dim(k+1)−dim(k) (17.33)

where Lk is the likelihood under the k-cluster mixture model, and dim(k) is the
number of parameters in that model. There are however several reasons to dis-
trust such an approximation, including the fact that we are approximating the
likelihood through the EM algorithm. We can instead just find the null distribu-
tion by simulating from the smaller model, which is to say we can do a parametric
bootstrap.

While it is not too hard to program this by hand (Exercise 17.7), the mixtools
package contains a function to do this for us, called boot.comp, for “bootstrap
comparison”. Let’s try it out (Figure 17.11).

The command in the figure tells boot.comp to consider mixtures of up to 10
clusters (just as we did with cross-validation), increasing the size of the mixture
it uses when the difference between k and k + 1 is significant. (The default is
“significant at the 5% level”, as assessed by 100 bootstrap replicates, but that’s
controllable.) The command also tells it what kind of mixture to use, and passes
along control settings to the EM algorithm which does the fitting. Each individual
fit is fairly time-consuming, and we are requiring 200 at each value of k. This took
about three minutes to run on my laptop.

This selected three clusters (rather than nine), and accompanied this decision
with a rather nice trio of histograms explaining why (Figure 17.11). Remember
that boot.comp stops expanding the model when there’s even a 5% chance of
that the apparent improvement could be due to mere over-fitting. This is actu-
ally pretty conservative, and so ends up with rather fewer clusters than cross-
validation.

Let’s explore the output of boot.comp, conveniently stored in the object snoq.boot.

str(snoq.boot)
List of 3
$ p.values : num [1:3] 0 0 0.08
$ log.lik :List of 3
..$: num [1:100] 1.096 0.474 2.185 5.246 5.192 ...
..$: num [1:100] 0.248863 0.932997 0.000975 0.654704 0.001666 ...
..$: num [1:100] 0.238989 1.91315 1.19471 0.000683 0.439974 ...
$ obs.log.lik: num [1:3] 5096 2354 920

17.4 Worked Computating Example 399

1 versus 2 Components

Bootstrap Likelihood
Ratio Statistic

F
re

qu
en

cy

0 5 10 15

0
10

20
30

40
2 versus 3 Components

Bootstrap Likelihood
Ratio Statistic

F
re

qu
en

cy

0 2 4 6 8 10 12 14

0
10

20
30

40
50

60
3 versus 4 Components

Bootstrap Likelihood
Ratio Statistic

F
re

qu
en

cy

0 500 1500 2500

0
20

40
60

80

snoq.boot <- boot.comp(snoq,max.comp=10,mix.type="normalmix",
maxit=400,epsilon=1e-2)

Figure 17.11 Histograms produced by boot.comp(). The vertical red lines
mark the observed difference in log-likelihoods.

This tells us that snoq.boot is a list with three elements, called p.values,
log.lik and obs.log.lik, and tells us a bit about each of them. p.values con-
tains the p-values for testing H1 (one cluster) against H2 (two clusters), testing
H2 against H3, and H3 against H4. Since we set a threshold p-value of 0.05, it
stopped at the last test, accepting H3. (Under these circumstances, if the differ-
ence between k = 3 and k = 4 was really important to us, it would probably
be wise to increase the number of bootstrap replicates, to get more accurate
p-values.) log.lik is itself a list containing the bootstrapped log-likelihood ra-

400 Mixture Models

tios for the three hypothesis tests; obs.log.lik is the vector of corresponding
observed values of the test statistic.

Looking back to Figure 17.5, there is indeed a dramatic improvement in the
generalization ability of the model going from one cluster to two, and from two
to three, and diminishing returns to complexity thereafter. Stopping at k = 3
produces pretty reasonable results, though repeating the exercise of Figure 17.10
is no more encouraging for the reality of the latent classes.

17.5 Further Reading 401

17.5 Further Reading

My presentation of the EM algorithm draws heavily on Neal and Hinton (1998).
Because it’s so general, the EM algorithm is applied to lots of problems with

missing data or latent variables. Traditional estimation methods for factor analy-
sis, for example, can be replaced with EM. (Arguably, some of the older methods
were versions of EM.) A common problem in time-series analysis and signal pro-
cessing is that of “filtering” or “state estimation”: there’s an unknown signal St,
which we want to know, but all we get to observe is some noisy, corrupted mea-
surement, Xt = h(St) + ηt. (A historically important example of a “state” to be
estimated from noisy measurements is “Where is our rocket and which way is
it headed?” — see McGee and Schmidt, 1985.) This is solved by the EM algo-
rithm, with the signal as the hidden variable; Fraser (2008) gives a really good
introduction to such models and how they use EM.

Instead of just doing mixtures of densities, one can also do mixtures of pre-
dictive models, say mixtures of regressions, or mixtures of classifiers. The hidden
variable Z here controls which regression function to use. A general form of this
is what’s known as a mixture-of-experts model (Jordan and Jacobs, 1994; Ja-
cobs, 1997) — each predictive model is an “expert”, and there can be a quite
complicated set of hidden variables determining which expert to use when.

The EM algorithm is so useful and general that it has in fact been re-invented
multiple times. The name “EM algorithm” comes from the statistics of mixture
models in the late 1970s; in the time series literature it’s been known since the
1960s as the “Baum-Welch” algorithm.

Exercises

17.1 Write a function to simulate from a Gaussian mixture model. Check that it works by

comparing a density estimated on its output to the theoretical density.

17.2 Show that the mixture of a Binom(2, 0.75) and a Binom(2, 0.25) is not a Binom(2, p) for

any p

17.3 Following §17.2, suppose that we want to estimate the λj by maximizing the likelihood.

1. Show that

∂`

∂λj
=

n∑
i=1

wij (17.34)

2. Explain why we need to add a Lagrange multiplier to enforce the constraint
∑K
j=1 λj =

1, and why it was OK to ignore that in Eq. 17.10.

3. Show that, including the Lagrange multiplier, the optimal value of λj is
∑n
i=1 wij/n.

Can you find a simple expression for the Lagrange multiplier?

17.4 Work through the E- step and M- step for a mixture of two Poisson distributions.

17.5 Code up the EM algorithm for a mixture of K Gaussians. Simulate data from K = 3

Gaussians. How well does your code assign data-points to clusters if you give it the actual

Gaussian parameters as your initial guess? If you give it other initial parameters?

17.6 Prove Eq. 17.18.

402 Mixture Models

17.7 Write a function to find the distribution of the log-likelihood ratio for testing the hypoth-

esis that the mixture has k Gaussian clusters against the alternative that it has k+ 1, by

simulating from the k-cluster model. Compare the output to the boot.comp function in

mixtools.

17.8 Write a function to fit a mixture of exponential distributions using the EM algorithm.

Does it do any better at discovering sensible structure in the Snoqualmie Falls data?

17.9 Explain how to use relative distribution plots (Chapter E) to check calibration, along the

lines of Figure 17.4.

17.10 Abstract vs. concrete The abstract EM algorithm of §17.2.1 is very general, much more

general than the concrete algorithm given on the previous pages. Nonetheless, the former

reduces to the latter when the latent variable Z follows a multinomial distribution.

1. Show that the M step of the abstract EM algorithm is equivalent to solving

n∑
i=1

wij
∂ log f(xi; θj)

∂θj
= 0 (17.35)

for the new θ.

2. Show that the maximization in the E step of the abstract EM algorithm yields Eq.

17.13.

18

Graphical Models

We have spent a lot of time looking at ways of figuring out how one variable (or
set of variables) depends on another variable (or set of variables) — this is the
core idea in regression and in conditional density estimation. We have also looked
at how to estimate the joint distribution of variables, both with kernel density
estimation and with models like factor and mixture models. The later two show
an example of how to get the joint distribution by combining a conditional distri-
bution (observables given factors; mixture components) with a marginal distri-
bution (Gaussian distribution of factors; the component weights). When dealing
with complex sets of dependent variables, it would be nice to have a general way
of composing conditional distributions together to get joint distributions, and
especially nice if this gave us a way of reasoning about what we could ignore,
of seeing which variables are irrelevant to which other variables. This is what
graphical models let us do.

18.1 Conditional Independence and Factor Models

The easiest way into this may be to start with the diagrams we drew for factor
analysis. There, we had observables and we had factors, and each observable
depended on, or loaded on, some of the factors. We drew a diagram where we
had nodes, standing for the variables, and arrows running from the factors to the
observables which depended on them. In the factor model, all the observables
were conditionally independent of each other, given all the factors:

p(X1, X2, . . . Xp|F1, F2, . . . Fq) =
p∏
i=1

p(Xi|F1, . . . Fq) (18.1)

But in fact observables are also independent of the factors they do not load on,
so this is still too complicated. Let’s write loads(i) for the set of factors on which
the observable Xi loads. Then

p(X1, X2, . . . Xp|F1, F2, . . . Fq) =
p∏
i=1

p(Xi|Floads(i)) (18.2)

Consider Figure 18.1. The conditional distribution of observables given factors
is

p(X1, X2, X3, X4|F1, F2) = p(X1|F1, F2)p(X2|F1, F2)p(X3|F1)p(X4|F2) (18.3)

403

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

404 Graphical Models

X4 X2 X3

F2

X1

F1

Figure 18.1 Illustration of a typical model with two latent factors (F1 and
F2, in circles) and four observables (X1 through X4).

X1 loads on F1 and F2, so it is independent of everything else, given those two
variables. X1 is unconditionally dependent on X2, because they load on common
factors, F1 and F2; and X1 and X3 are also dependent, because they both load
on F1. In fact, X1 and X2 are still dependent given F1, because X2 still gives in-
formation about F2. But X1 and X3 are independent given F1, because they have
no other factors in common. Finally, X3 and X4 are unconditionally independent
because they have no factors in common. But they become dependent given X1,
which provides information about both the common factors.

None of these assertions rely on the detailed assumptions of the factor model,
like Gaussian distributions for the factors, or linear dependence between factors
and observables. What they rely on is that Xi is independent of everything else,
given the factors it loads on. The idea of graphical models is to generalize this,
by focusing on relations of direct dependence, and the conditional independence
relations implied by them.

18.2 Directed Acyclic Graph (DAG) Models

We have a collection of variables, which to be generic I’ll write X1, X2, . . . Xp.
These may be discrete, continuous, or even vectors; it doesn’t matter. We rep-
resent these visually as nodes in a graph. There are arrows connecting some of
these nodes. If an arrow runs from Xi to Xj, then Xi is a parent of Xj. This is,
as the name “parent” suggests, an anti-symmetric relationship, i.e., Xj cannot
also be the parent of Xi. This is why we use an arrow, and why the graph is
directed1. We write the set of all parents of Xj as parents(j); this generalizes
the notion of the factors which an observable loads on to. The joint distribution
“decomposes according to the graph”:

p(X1, X2, . . . Xp) =
p∏
i=1

p(Xi|Xparents(i)) (18.4)

If Xi has no parents, because it has no incoming arrows, take p(Xi|Xparents(i))
just to be the marginal distribution p(Xi). Such variables are called exogenous;

1 See Appendix G for a brief review of the ideas and jargon of graph theory.

18.2 Directed Acyclic Graph (DAG) Models 405

the others, with parents, are endogenous. An unfortunate situation could arise
where X1 is the parent of X2, which is the parent of X3, which is the parent of
X1. Perhaps, under some circumstances, we could make sense of this and actually
calculate with Eq. 18.4, but the general practice is to rule it out by assuming the
graph is acyclic, i.e., that it has no cycles, i.e., that we cannot, by following a
series of arrows in the graph, go from one node to other nodes and ultimately
back to our starting point. Altogether we say that we have a directed acyclic
graph, or DAG, which represents the direct dependencies between variables.2

What good is this? The primary virtue is that if we are dealing with a DAG
model, the graph tells us all the dependencies we need to know; those are the
conditional distributions of variables on their parents, appearing in the product
on the right hand side of Eq. 18.4. (This includes the distribution of the exoge-
neous variables.) This fact has two powerful sets of implications, for probabilistic
reasoning and for statistical inference.

Let’s take inference first, because it’s more obvious: all that we have to estimate
are the conditional distributions p(Xi|Xparents(i)). We do not have to estimate the
distribution of Xi given all of the other variables, unless of course they are all
parents of Xi. Since estimating distributions, or even just regressions, conditional
on many variables is hard, it is extremely helpful to be able to read off from the
graph which variables we can ignore. Indeed, if the graph tells us that Xi is
exogeneous, we don’t have to estimate it conditional on anything, we just have
to estimate its marginal distribution.

18.2.1 Conditional Independence and the Markov Property

The probabilistic implication of Eq. 18.4 is perhaps even more important, and
that has to do with conditional independence. Pick any two variables Xi and Xj,
where Xj is not a parent of Xi. Consider the distribution of Xi conditional on
its parents and Xj. There are two possibilities. (i) Xj is not a descendant of Xi.
Then we can see that Xi and Xj are conditionally independent. This is true no
matter what the actual conditional distribution functions involved are; it’s just
implied by the joint distribution respecting the graph. (ii) Alternatively, Xj is
a descendant of Xi. Then in general they are not independent, even conditional
on the parents of Xi. So the graph implies that certain conditional independence
relations will hold, but that others in general will not hold.

As you know from your probability courses, a sequence of random variables
X1, X2, X3, . . . forms a Markov process3 when “the past is independent of the
future given the present”: that is,

Xt+1 ⊥⊥ (Xt−1, Xt−2, . . . X1)|Xt (18.5)

2 See §18.6 for remarks on undirected graphical models, and graphs with cycles.
3 After the Russian mathematician A. A. Markov, who introduced the theory of Markov processes in

the course of a mathematical dispute with his arch-nemesis, to show that probability and statistics

could apply to dependent events, and hence that Christianity was not necessarily true (I am not

making this up: Basharin et al., 2004).

406 Graphical Models

Xt+1Xt.Xt−1

Figure 18.2 DAG for a discrete-time Markov process. At each time t, Xt is
the child of Xt−1 alone, and in turn the sole parent of Xt+1.

from which it follows that

(Xt+1, Xt+2, Xt+3, . . .) ⊥⊥ (Xt−1, Xt−2, . . . X1)|Xt (18.6)

which is called the Markov property. DAG models have a similar property: if
we take any collection of nodes I, it is independent of its non-descendants, given
its parents:

XI ⊥⊥ Xnon−descendants(I)|Xparents(I) (18.7)

This is the directed graph Markov property. The ordinary Markov property
is a special case, when the graph looks like Figure 18.24.

On the other hand, if we condition on one of Xi’s children, Xi will generally be
dependent on any other parent of that child. If we condition on multiple children
of Xi, we’ll generally find Xi is dependent on all its co-parents. It should be
plausible, and is in fact true, that Xi is independent of everything else in the
graph if we condition on its parents, its children, and its children’s other parents.
This set of nodes is called Xi’s Markov blanket.

18.3 Conditional Independence and d-Separation

It is clearly very important to us to be able to deduce when two sets of variables
are conditionally independent of each other given a third. One of the great uses of
DAGs is that they give us a fairly simple criterion for this, in terms of the graph
itself. All distributions which conform to a given DAG share a common set of
conditional independence relations, implied by the Markov property, no matter
what their parameters or the form of the distributions.

Our starting point is that when we have a single directed edge, we can reason
from the parent to the child, or from the child to the parent. While (as we’ll see
in Part III) it’s reasonable to say that influence or causation flows one way, along
the direction of the arrows, statistical information can flow in either direction.
Since dependence is the presence of such statistical information, if we want to
figure out which variables are dependent on which, we need to keep track of these
information flows.

While we can do inference in either direction across any one edge, we do have
to worry about whether we can propagate this information further. Consider the
four graphs in Figure 18.3. In every case, we condition on X, which acts as the
source of information. In the first three cases, we can (in general) propagate

4 To see this, take the “future” nodes, indexed by t+ 1 and up, as the set I. Their parent consists just

of Xt, and all their non-descendants are the even earlier nodes at times t− 1, t− 2, etc.

18.3 Conditional Independence and d-Separation 407

a

X Z Y

b

ZX Y

c

ZX Y

d

X Z Y

Figure 18.3 Four DAGs for three linked variables. The first two (a and b)
are called chains; c is a fork; d is a collider. If these were the whole of the
graph, we would have X 6⊥⊥ Y and X ⊥⊥ Y |Z. For the collider, however, we
would have X ⊥⊥ Y while X 6⊥⊥ Y |Z.

the information from X to Z to Y — the Markov property tells us that Y is
independent of its non-descendants given its parents, but in none of those cases
does that make X and Y independent. In the last graph, however, what’s called a
collider5, we cannot propagate the information, because Y has no parents, and
X is not its descendant, hence they are independent. We learn about Z from X,
but this doesn’t tell us anything about Z’s other cause, Y .

All of this flips around when we condition on the intermediate variable (Z in
Figure 18.3). The chains (Figures 18.3a and b), conditioning on the intermediate
variable blocks the flow of information from X to Y — we learn nothing more
about Y from X and Z than from Z alone, at least not along this path. This is
also true of the fork (Figure 18.3c) — conditional on their common cause, the
two effects are uninformative about each other. But in a collider, conditioning
on the common effect Z makes X and Y dependent on each other, as we’ve seen
before. In fact, if we don’t condition on Z, but do condition on a descendant of
Z, we also create dependence between Z’s parents.

We are now in a position to work out conditional independence relations. We
pick our two favorite variables, X and Y , and condition them both on some third
set of variables S. If S blocks every undirected path6 from X to Y , then they
must be conditionally independent given S. An unblocked path is also called
active. A path is active when every variable along the path is active; if even one
variable is blocked by S, the whole path is blocked. A variable Z along a path is
active, conditioning on S, if

1. Z is a collider along the path, and in S; or,
2. Z is a descendant of a collider, and in S; or
3. Z is not a collider, and not in S.

Turned around, Z is blocked or de-activated by conditioning on S if

5 Because two incoming arrows “collide” there.
6 Whenever I talk about undirected paths, I mean paths without cycles.

408 Graphical Models

1. Z is a non-collider and in S; or
2. Z is collider, and neither Z nor any of its descendants is in S

In words, S blocks a path when it blocks the flow of information by condi-
tioning on the middle node in a chain or fork, and doesn’t create dependence by
conditioning on the middle node in a collider (or the descendant of a collider).
Only one node in a path must be blocked to block the whole path. When S
blocks all the paths between X and Y , we say it d-separates them7. A collec-
tion of variables U is d-separated from another collection V by S if every X ∈ U
and Y ∈ V are d-separated.

In every distribution which obeys the Markov property, d-separation implies
conditional independence8. It is not always the case that the reverse implication,
the one from conditional independence to d-separation, holds good. We will see
in Part III, that when the distribution is “faithful” to a DAG, causal inference is
immensely simplified. But going from d-separation to conditional independence
is true in any DAG, whether or not it has a causal interpretation.

18.3.1 D-Separation Illustrated

The discussion of d-separation has been rather abstract, and perhaps confusing
for that reason. Figure 18.4 shows a DAG which might make this clearer and
more concrete.

If we make the conditioning set S the empty set, that is, we condition on
nothing, we “block” paths which pass through colliders. For instance, there are
three exogenous variables in the graph, X2, X3 and X5. Because they have no
parents, any path from one to another must go over a collider (Exercises 18.1 and
18.2). If we do not condition on anything, therefore, we find that the exogenous
variables are d-separated and thus independent. Since X3 is not on any path
linking X2 and X5, or descended from a node on any such path, if we condition
only on X3, then X2 and X5 are still d-separated, so X2 ⊥⊥ X5|X3. There are two
paths linking X3 to X5: X3 → X1 ← X2 → X4 ← X5, and X3 → X1 → Y ← X5.
Conditioning on X2 (and nothing else) blocks the first path (since X2 is part of
it, but is a fork), and also blocks the second path (since X2 is not part of it, and
Y is a blocked collider). Thus, X3 ⊥⊥ X5|X2. Similarly, X3 ⊥⊥ X2|X5 (Exercise
18.4).

For a somewhat more challenging example, let’s look at the relation between
X3 and Y . There are, again, two paths here: X3 → X1 → Y , and X3 → X1 ←
X2 → X4 ← X5 → Y . If we condition on nothing, the first path, which is a simple
chain, is open, so X3 and Y are d-connected and dependent. If we condition on
X1, we block the first path. X1 is a collider on the second path, so conditioning
on X1 opens the path there. However, there is a second collider, X4, along this
path, and just conditioning on X1 does not activate the second collider, so the

7 The “d” stands for “directed”
8 We will not prove this, though I hope I have made it plausible. You can find demonstrations in

Spirtes et al. (2001); Pearl (2000); Lauritzen (1996).

18.3 Conditional Independence and d-Separation 409

X6

X4

X5 X2

X3

X1

Y

Figure 18.4 Example DAG used to illustrate d-separation.

path as a whole remains blocked.

Y 6⊥⊥ X3 (18.8)

Y ⊥⊥ X3|X1 (18.9)

To activate the second path, we can condition on X1 and either X4 (a collider
along that path) or on X6 (a descendant of a collider) or on both:

Y 6⊥⊥ X3|X1, X4 (18.10)

Y 6⊥⊥ X3|X1, X6 (18.11)

Y 6⊥⊥ X3|X1, X4, X6 (18.12)

Conditioning on X4 and/or X6 does not activate the X3 → X1 → Y path, but
it’s enough for there to be one active path to create dependence.

To block the second path again, after having opened it in one of these ways,
we can condition on X2 (since it is a fork along that path, and conditioning on a
fork blocks it), or on X5 (also a fork), or on both X2 and X5. So

Y ⊥⊥ X3|X1, X2 (18.13)

Y ⊥⊥ X3|X1, X5 (18.14)

Y ⊥⊥ X3|X1, X2, X5 (18.15)

Y ⊥⊥ X3|X1, X2, X4 (18.16)

Y ⊥⊥ X3|X1, X2, X6 (18.17)

Y ⊥⊥ X3|X1, X2, X5, X6 (18.18)

410 Graphical Models

etc., etc.
Let’s look at the relationship between X4 and Y . X4 is not an ancestor of

Y , or a descendant of it, but they do share common ancestors, X5 and X2.
Unconditionally, Y and X4 are dependent, both through the path going X4 ←
X5 → Y , and through that going X4 ← X2 → X1 → Y . Along both paths,
the exogenous variables are forks, so not conditioning on them leaves the path
unblocked. X4 and Y become d-separated when we condition on X5 and X2.
X6 and X3 have no common ancestors. Unconditionally, they should be inde-

pendent, and indeed they are: the two paths are X6 ← X4 ← X2 → X1 ← X3,
and X6 ← X4 ← X5 → Y ← X1 ← X3. Both paths contain a single collider (X1

and Y , respectively), so if we do not condition on them the paths are blocked and
X6 and X3 are independent. If we condition on either Y or X1 (or both), however,
we unblock the paths, and X6 and X3 become d-connected, hence dependent. To
get back to d-separation while conditioning on Y , we must also condition on X4

or X5, or both. To get d-separation while conditioning on X1, we must also con-
dition on X4, or on X2, or on X4 and X2. If we condition on both X1 and Y and
want d-separation, we could just add conditioning on X4, or we could condition
on X2 and X5, or all three.

If this is all still too abstract, consider reading the variables as follows:

Y ⇔ Grade in this class

X1 ⇔ Effort spent on this class

X2 ⇔ Enjoyment of statistics

X3 ⇔Workload this term

X4 ⇔ Quality of work in linear regression class

X5 ⇔ Amount learned in linear regression class

X6 ⇔ Grade in linear regression

Pretending, for the sake of illustration, that this is accurate, how heavy your
workload is this term (X3) would predict, or rather retrodict, your grade in linear
regression last term (X6), once we control for how much effort you put into
this class (X1). Changing your workload this term would not, however, reach
backwards in time to raise or lower your grade in regression.

18.3.2 Linear Graphical Models and Path Coefficients

We began our discussion of graphical models with factor analysis as our starting
point. Factor models are a special case of linear (directed) graphical models, a.k.a.
path models9 As with factor models, in the larger class we typically center all the
variables (so they have expectation zero) and scale them (so they have variance
1). In factor models, the variables were split into two sets, the factors and the
observables, and all the arrows went from factors to observables. In the more

9 Some people use the phrase “structural equation models” for linear directed graphical models

exclusively.

18.3 Conditional Independence and d-Separation 411

general case, we do not necessarily have this distinction, but we still assume the
arrows from a directed acyclic graph. The conditional expectation of each variable
is a linear combination of the values of its parents:

E
[
Xi | Xparents(i)

]
=

∑
j∈parents(i)

wjiXj (18.19)

just as in a factor model. In a factor model, the coefficients wji were the factor
loadings. More generally, they are called path coefficients.

The path coefficients determine all of the correlations between variables in the
model. If all of the variables have been standardized to mean zero and variance 1,
and the path coefficients are calculated for these standardized variables, we can
find the correlation between Xi and Xj as follows:

• Find all of the undirected paths between Xi and Xj.
• Discard all of the paths which go through colliders.
• For each remaining path, multiply all the path coefficients along the path.
• Sum up these products over paths.

These rules were introduced by the great geneticist and mathematical biologist
Sewall Wright in the early 20th century (see further reading for details). These
“Wright path rules” often seem mysterious, particularly the bit where paths with
colliders are thrown out. But from our perspective, we can see that what Wright
is doing is finding all of the unblocked paths between Xi and Xj. Each path is
a channel along which information (here, correlation) can flow, and so we add
across channels.

It is frequent, and customary, to assume that all of the variables are Gaussian.
(We saw this in factor models as well.) With this extra assumption, the joint
distribution of all the variables is a multivariate Gaussian, and the correlation
matrix (which we find from the path coefficients) gives us the joint distribution.

If we want to find correlations conditional on a set of variables S, corr(Xi, Xj|S),
we still sum up over the unblocked paths. If we have avoided conditioning on col-
liders, then this is just a matter of dropping the now-blocked paths from the sum.
If on the other hand we have conditioned on a collider, that path does become
active (unless blocked elsewhere), and we in fact need to modify the path weights.
Specifically, we need to work out the correlation induced between the two par-
ents of the collider, by conditioning on that collider. This can be calculated from
the path weights, and some fairly tedious algebra10. The important thing is to
remember that the rule of d-separation still applies, and that conditioning on a
collider can create correlations.

Path Coefficients and Covariances

If the variables have not all been standardized, but Eq. 18.19 still applies, it is
often desirable to calculate covariances, rather than correlation coefficients. This
involves a little bit of extra work, by way of keeping track of variances, and in

10 See for instance Li et al. (1975).

412 Graphical Models

particular the variances of “source” terms. Since many references do not state
the path-tracing rules for covariances, it’s worth going over them here.

To find the marginal covariance between Xi and Xj, the procedure is as follows:

1. Find all of the unblocked paths between Xi and Xj (i.e., discard all paths
which go through colliders).

2. For each remaining path:

1. multiply all the path coefficients along the path;
2. find the node along that path which is the ancestor of all the other nodes

along that path11, and call it the path’s source;
3. multiply the product of the coefficients by the variance of the source.

3. Sum the product of path coefficients and source variances over all remaining
paths.

(Notice that if all variables are standardized to variance 1, we don’t have to worry
about source variances, and these rules reduce to the previous ones.)

To find the conditional covariance between Xi and Xj given a set of variables S,
there are two procedures, depending on whether or not conditioning on S opens
any paths between Xi and Xj by including colliders. If S does not contain any
colliders or descendants of colliders (on paths between Xi and Xj),

1. For each unblocked path linking Xi and Xj:

1. multiply all the path coefficients along the path;
2. find the source of each path12;
3. multiply the product of the coefficients by the variance of the source.

2. Sum the product of path coefficients and source variances over all remaining
paths.

If, on the other hand, conditioning on S opens paths by conditioning on col-
liders (or their descendants), then we would have to handle the consequences of
conditioning on a collider. This is usually too much of a pain to do graphically,
and one should fall back on algebra. The next sub-section does however say a bit[[TODO:

In final
revision,
write out
full graph-
ical rules
for com-
pleteness]]

about what qualitatively happens to the correlations.

18.3.3 Positive and Negative Associations

We say that variables X and Y are positively associated if increasing X pre-
dicts, on average, an increase in Y , and vice versa13; if increasing X predicts a de-
crease in Y , then they are negatively associated. If this holds when condition-
ing out other variables, we talk about positive and negative partial associations.
Heuristically, positive association means positive correlation in the neighborhood
of any given x, though the magnitude of the positive correlation need not be

11 Showing that such an ancestor exists is Exercise 21.
12 Showing that the source of an unblocked, collider-free path cannot be in S is Exercise 22.
13 I.e., if

dE[Y |X=x]
dx

≥ 0

18.4 Independence and Information 413

constant. Note that not all dependent variables have to have a definite sign for
their association.

We can multiply together the signs of positive and negative partial associations
along a path in a graphical model, the same we can multiply together path
coefficients in a linear graphical model. Paths which contain (inactive!) colliders
should be neglected. If all the paths connecting X and Y have the same sign,
then we know that over-all association between X and Y must have that sign. If
different paths have different signs, however, then signs alone are not enough to
tell us about the over-all association.

If we are interested in conditional associations, we have to consider whether our
conditioning variables block paths or not. Paths which are blocked by conditioning
should be dropped from consideration. If a path contains an activated collider,
we need to include it, but we reverse the sign of one arrow into the collider.

That is, if X
+→ Z

+← Y , and we condition on Z, we need to replace one of the
plus signs with a − sign, because the two parents now have an over-all negative
association.14 If on the other hand one of the incoming arrows had a positive
association and the other was negative, we need to flip one of them so they are
both positive or both negative; it doesn’t matter which, since it creates a positive
association between the parents15. [[TODO:

Write out
formal
proofs as
appendix]]

18.4 Independence, Conditional Independence, and Information
Theory

Take two random variables, X and Y . They have some joint distribution, which
we can write p(x, y). (If they are both discrete, this is the joint probability mass
function; if they are both continuous, this is the joint probability density function;
if one is discrete and the other is continuous, there’s still a distribution, but it
needs more advanced tools.) X and Y each have marginal distributions as well,
p(x) and p(y). X ⊥⊥ Y if and only if the joint distribution is the product of the
marginals:

X ⊥⊥ Y ⇔ p(x, y) = p(x)p(y) (18.20)

We can use this observation to measure how dependent X and Y are. Let’s start
with the log-likelihood ratio between the joint distribution and the product of
marginals:

log
p(x, y)

p(x)p(y)
(18.21)

14 If both smoking and asbestos are positively associated with lung cancer, and we know the patient

does not have lung cancer, then high levels of smoking must be compensated for by low levels of

asbestos, and vice versa.
15 If yellow teeth are positively associated with smoking and negatively associated with dental

insurance, and we know the patient does not have yellow teeth, then high levels of smoking must be

compensated for by excellent dental care, and conversely poor dental care must be compensated for

by low levels of smoking.

414 Graphical Models

This will always be exactly 0 when X ⊥⊥ Y . We use its average value as our
measure of dependence:

I[X;Y] ≡
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
(18.22)

(If the variables are continuous, replace the sum with an integral.) Clearly, if
X ⊥⊥ Y , then I[X;Y] = 0. One can show16 that I[X;Y] ≥ 0, and that I[X;Y] = 0
implies X ⊥⊥ Y . The quantity I[X;Y] is clearly symmetric between X and Y .
Less obviously, I[X;Y] = I[f(X); g(Y)] whenever f and g are invertible func-
tions. This coordinate-freedom means that I[X;Y] measures all forms of de-
pendence, not just linear relationships, like the ordinary (Pearson) correlation
coefficient, or monotone dependence, like the rank (Spearman) correlation co-
efficient. In information theory, I[X;Y] is called the mutual information, or
Shannon information, between X and Y . So we have the very natural state-
ment that random variables are independent just when they have no information
about each other.

There are (at least) two ways of giving an operational meaning to I[X;Y]. One,
the original use of the notion, has to do with using knowledge of Y to improve
the efficiency with which X can be encoded into bits (Shannon, 1948; Cover
and Thomas, 2006). While this is very important — it’s literally transformed the
world since 1945 — it’s not very statistical. For statisticians, what matters is that
if we test the hypothesis that X and Y are independent, with joint distribution
p(x)p(y), against the hypothesis that they dependent, with joint distribution
p(x, y), then the mutual information controls the error probabilities of the test.
To be exact, if we fix any power we like (90%, 95%, 99.9%, . . .), the size or type
I error rate αn, of the best possible test shrinks exponentially with the number of
IID samples n, and the rate of exponential decay is precisely I[X;Y] (Kullback,
1968, §4.3, theorem 4.3.2):

lim
n→∞

− 1

n
logαn ≤ I[X;Y] (18.23)

So positive mutual information means dependence, and the magnitude of mutual
information tells us about how detectable the dependence is17.

Suppose we conditioned X and Y on a third variable (or variables) Z. For each
realization z, we can calculate the mutual information,

I[X;Y |Z = z] ≡
∑
x,y

p(x, y|z) log
p(x, y|z)

p(x|z)p(y|z)
(18.24)

16 Using the same type of convexity argument (“Jensen’s inequality”) we used §17.2.1 for

understanding why the EM algorithm works.
17 Symmetrically, if we follow the somewhat more usual procedure of fixing a type I error rate α, the

type II error rate βn (= 1−power) also goes to zero exponentially, and the exponential rate is∑
x,y p(x)p(y) log

p(x)p(y)
p(x,y)

, a quantity called the “lautam information” (Palomar and Verdú, 2008).

(For proofs of the exponential rate, see Palomar and Verdú (2008, p. 965), following Kullback (1968,

§4.3, theorem 4.3.3).)

18.5 Examples of DAG Models and Their Uses 415

X

Z

Figure 18.5 DAG for a mixture model. The latent class Z is exogenous,
and the parent of the observable random vector X. (If the components of X
are conditionally independent given Z, they could be represented as separate
boxes on the lower level.

And we can average over z,

I[X;Y |Z] ≡
∑
z

p(z)I[X;Y |Z = z] (18.25)

This is the conditional mutual information. It will not surprise you at this
point to learn that X ⊥⊥ Y |Z if and only if I[X;Y |Z] = 0. The magnitude of
the conditional mutual information tells us how easy it is to detect conditional
dependence.

18.5 Examples of DAG Models and Their Uses

Factor models are examples of DAG models (as we’ve seen). So are mixture mod-
els (Figure 18.5) and Markov chains (see above). DAG models are considerably
more flexible, however, and can combine observed and unobserved variables in
many ways.

Consider, for instance, Figure 18.6. Here there are two exogeneous variables,
labeled “Smoking” and “Asbestos”. Everything else is endogenous. Notice that
“Yellow teeth” is a child of “Smoking” alone. This does not mean that (in the
model) whether someone’s teeth get yellowed (and, if so, how much) is a function
of smoking alone; it means that whatever other influences go into that are inde-
pendent of the rest of the model, and so unsystematic that we can think about
those influences, taken together, as noise.

Continuing, the idea is that how much someone smokes influences how yellow
their teeth become, and also how much tar builds up in their lungs. Tar in the
lungs, in turn, leads to cancer, as does by exposure to asbestos.

Now notice that, in this model, teeth-yellowing will be unconditionally depen-
dent on, i.e., associated with, the level of tar in the lungs, because they share
a common parent, namely smoking. Yellow teeth and tarry lungs will however
be conditionally independent given that parent, so if we control for smoking we
should not be able to predict the state of someone’s teeth from the state of their
lungs or vice versa.

On the other hand, smoking and exposure to asbestos are independent, at least

416 Graphical Models

AsbestosYellow teeth Tar in lungs

Cancer

Smoking

Figure 18.6 DAG model indicating (hypothetical) relationships between
smoking, asbestos, cancer, and covariates.

in this model, as they are both exogenous18. Conditional on whether someone has
cancer, however, smoking and asbestos will become dependent.

To understand the logic of this, suppose (what is in fact true) that both how
much someone smokes and how much they are exposed to asbestos raises the risk
of cancer. Conditional on not having cancer, then, one was probably exposed to
little of either tobacco smoke or asbestos. Conditional on both not having cancer
and having been exposed to a high level of asbestos, one probably was exposed to
an unusually low level of tobacco smoke. Vice versa, no cancer plus high levels of
tobacco tend to imply especially little exposure to asbestos. We thus have created
a negative association between smoking and asbestos by conditioning on cancer.
Naively, a regression where we “controlled for” cancer would in fact tell us that
exposure to asbestos keeps tar from building up in the lungs, prevents smoking,
and whitens teeth.

More generally, conditioning on a third variable can create dependence be-
tween otherwise independent variables, when what we are conditioning on is a
common descendant of the variables in question.19 This conditional dependence
is not some kind of finite-sample artifact or error — it’s really there in the joint
probability distribution. If all we care about is prediction, then it is perfectly
legitimate to use it. In the world of Figure 18.6, it really is true that you can pre-
dict the color of someone’s teeth from whether they have cancer and how much

18 If we had two variables which in some physical sense were exogenous but dependent on each other,

we would represent them in a DAG model by either a single vector-valued random variable (which

would get only one node), or as children of a latent unobserved variable, which was truly exogenous.
19 Economists, psychologists, and other non-statisticians often repeat the advice that if you want to

know the effect of X on Y , you should not condition on Z when Z is endogenous. This is bit of

folklore is a relic of the days of ignorance, when our ancestors groped towards truths they could not

grasp. If we want to know whether asbestos is associated with tar in the lungs, conditioning on the

yellowness of teeth is fine, even though that is an endogenous variable.

18.6 Non-DAG Graphical Models 417

asbestos they’ve been exposed to, so if that’s what you want to predict20, why
not use that information? But if you want to do more than just make predictions
without understanding, if you want to understand the structure tying together
these variables, if you want to do science, if you don’t want to go around telling
yourself that asbestos whitens teeth, you really do need to know the graph.21

18.5.1 Missing Variables

Suppose that we do not observe one of the variables, such as the quantity of tar
in the lungs, but we somehow know all of the conditional distributions required
by the graph. (Tar build-up in the lungs might indeed be hard to measure for
living people.) Because we have a joint distribution for all the variables, we could
estimate the conditional distribution of one of them given the rest, using the
definition of conditional probability and of integration:

p(Xi|X1, X2, Xi−1, Xi+1, Xp) =
p(X1, X2, Xi−1, Xi, Xi+1, Xp)∫
p(X1, X2, Xi−1, xi, Xi+1, Xp)dxi

(18.26)

We could in principle do this for any joint distribution. When the joint distribu-
tion comes from a DAG model, however, we can simplify this considerably. Recall
from §18.2.1 that Xi is independent of all the other variables given its Markov
blanket, i.e., its parents, its children, and the other parents of its children. We
can therefore drop from the conditioning everything which isn’t in the Markov
blanket. Actually doing the calculation then boils down to a version of the EM
algorithm.22

If we observe only a subset of the other variables, we can still use the DAG
to determine which ones actually matter to estimating Xi, and which ones are
superfluous. The calculations then however become much more intricate.23

18.6 Non-DAG Graphical Models: Undirected Graphs and Directed
Graphs with Cycles

This section is optional, as, for various reasons, we will not use these models in
this course.

18.6.1 Undirected Graphs

There is a lot of work on probability models which are based on undirected graphs,
in which the relationship between random variables linked by edges is completely

20 Maybe you want to guess who’d be interested in buying whitening toothpaste.
21 We return to this example in §19.2.2.
22 Graphical models, especially directed ones, are often called “Bayes nets” or “Bayesian networks”,

because this equation is, or can be seen as, a version of Bayes’s rule. Since of course it follows

directly from the definition of conditional probability, there is nothing distinctively Bayesian here —

no subjective probability, or assigning probabilities to hypotheses.
23 There is an extensive discussion of relevant methods in Jordan (1998).

418 Graphical Models

symmetric, unlike the case of DAGs24. Since the relationship is symmetric, the
preferred metaphor is not “parent and child”, but “neighbors”. The models are
sometimes called Markov networks or Markov random fields, but since DAG
models have a Markov property of their own, this is not a happy choice of name,
and I’ll just call them “undirected graphical models”.

The key Markov property for undirected graphical models is that any set of
nodes I is independent of the rest of the graph given its neighbors:

XI ⊥⊥ Xnon−neighbors(I)|Xneighbors(I) (18.27)

This corresponds to a factorization of the joint distribution, but a more complex
one than that of Eq. 18.4, because a symmetric neighbor-of relation gives us no
way of ordering the variables, and conditioning the later ones on the earlier ones.
The trick turns out to go as follows. First, as a bit of graph theory, a clique
is a set of nodes which are all neighbors of each other, and which cannot be
expanded without losing that property. We write the collection of all cliques in
a graph G as cliques(G). Second, we introduce potential functions ψc which
take clique configurations and return non-negative numbers. Third, we say that
a joint distribution is a Gibbs distribution25 when

p(X1, X2, . . . Xp) ∝
∏

c∈cliques(G)

ψc(Xi∈c) (18.28)

That is, the joint distribution is a product of factors, one factor for each clique.
Frequently, one introduces what are called potential functions, Uc = logψc,
and then one has

p(X1, X2, . . . Xp) ∝ e−
∑
c∈cliques(G) Ui(Xi∈c) (18.29)

The key correspondence is what is sometimes called the Gibbs-Markov the-
orem: a distribution is a Gibbs distribution with respect to a graph G if, and
only if, it obeys the Markov property with neighbors defined according to G.26.

In many practical situations, one combines the assumption of an undirected
graphical model with the further assumption that the joint distribution of all
the random variables is a multivariate Gaussian, giving a Gaussian graphical

24 I am told that this is more like the idea of causation in Buddhism, as something like “co-dependent

origination”, than the asymmetric one which Europe and the Islamic world inherited from the

Greeks (especially Aristotle), but you would really have to ask a philosopher about that.
25 After the American physicist and chemist J. W. Gibbs, who introduced such distributions as part of

statistical mechanics, the theory of the large-scale patterns produced by huge numbers of

small-scale interactions.
26 This theorem was proved, in slightly different versions, under slightly different conditions, and by

very different methods, more or less simultaneously by (alphabetically) Dobrushin, Griffeath,

Grimmett, and Hammersley and Clifford, and almost proven by Ruelle. In the statistics literature, it

has come to be called the “Hammersley-Clifford” theorem, for no particularly good reason. In my

opinion, the clearest and most interesting version of the theorem is that of Griffeath (1976), an

elementary exposition of which is given by Pollard (http:

//www.stat.yale.edu/~pollard/Courses/251.spring04/Handouts/Hammersley-Clifford.pdf). (On

the other hand, Griffeath was one of my teachers, so discount accordingly.) Calling it the

“Gibbs-Markov theorem” says more about the content, and is fairer to all concerned.

http://www.stat.yale.edu/~pollard/Courses/251.spring04/Handouts/Hammersley-Clifford.pdf
http://www.stat.yale.edu/~pollard/Courses/251.spring04/Handouts/Hammersley-Clifford.pdf

18.6 Non-DAG Graphical Models 419

Set point\non thermostat Furnace Exterior\ntemperature Interior\ntemperature

-

+ +

+

Figure 18.7 Directed but cyclic graphical model of a feedback loop. Signs
(+, − on arrows are “guides to the mind”. Cf. Figure 18.8.

model. An important consequence of this assumption is that the graph can be
“read off” from the inverse of the covariance matrix Σ, sometimes called the
precision matrix. Specifically, there is an edge linking Xi to Xj if and only
if (Σ−1)ij 6= 0. (See Lauritzen (1996) for an extensive discussion.) These ideas
sometimes still work for non-Gaussian distributions, when there is a natural way
of transforming them to be Gaussian (Liu et al., 2009), though it is unclear just
how far that goes.

18.6.2 Directed but Cyclic Graphs

Much less work has been done on directed graphs with cycles. It is very hard to
give these a causal interpretation, in the fashion described in the next chapter.
Feedback processes are of course very common in nature and technology, and one
might think to represent these as cycles in a graph. A model of a thermostat,
for instance, might have variables for the set-point temperature, the temperature
outside, how much the furnace runs, and the actual temperature inside, with a
cycle between the latter two (Figure 18.7).

Thinking in this way is however simply sloppy. It always takes some time to
traverse a feedback loop, and so the cycle really “unrolls” into an acyclic graph
linking similar variables at different times (Figure 18.8). Sometimes27, it is clear
that when people draw a diagram like Figure 18.7, the incoming arrows really
refer to the change, or rate of change, of the variable in question, so it is merely
a visual short-hand for something like Figure 18.8.

Directed graphs with cycles are thus primarily useful when measurements are so
slow or otherwise imprecise that feedback loops cannot be unrolled into the actual
dynamical processes which implement them, and one is forced to hope that one
can reason about equilibria instead28. If you insist on dealing with cyclic directed
graphical models, see Richardson (1996); Lacerda et al. (2008) and references
therein.

27 As in Puccia and Levins (1985), and the LoopAnalyst package based on it (Dinno, 2009).
28 Economists are fond of doing so, generally without providing any rationale, based in economic

theory, for supposing that equilibrium is a good approximation (Fisher, 1983, 2010).

420 Graphical Models

Furnace\nat time t

Furnace\nat time t+1

Set point\non thermostat

Interior\ntemperature\nat time t

Exterior\ntemperature

Interior\ntemperature\nat time t+1

+

+

+ +-

+

+

Set point
on thermostat

Furnace
at time t

+

Furnace
at time t+1

+

Interior
temperature
at time t+1

+

Exterior
temperature

+
Interior

temperature
at time t

+

-+

Figure 18.8 Directed, acyclic graph for the situation in Figure 18.7, taking
into account the fact that it takes time to traverse a feedback loop. One
should imagine this repeating to times t+ 2, t+ 3, etc., and extending
backwards to times t− 1, t− 2, etc., as well. Notice that there are no longer
any cycles.

18.7 Further Reading 421

18.7 Further Reading

The paper collection Jordan (1998) is actually extremely good, unlike most col-
lections of edited papers; Jordan and Sejnowski (2001) is also useful. Lauritzen
(1996) is thorough but more mathematically demanding. The books by Spirtes
et al. (1993, 2001) and by Pearl (1988, 2000, 2009b) are deservedly classics, espe-
cially for their treatment of causality, of which much more in Part III. Glymour
(2001) discusses applications to psychology.

While I have presented DAG models as an outgrowth of factor analysis, their
historical ancestry is actually closer to the “path analysis” models introduced,
starting around 1918, by the great geneticist and mathematical biologist Sewall
Wright to analyze processes of development and genetics. Wright published his
work in a series of papers which culminated in Wright (1934). That paper is
now freely available online, and worth reading. (See also http://www.ssc.wisc.

edu/soc/class/soc952/Wright/wright_biblio.htm for references to, and in
some cases copies of, related papers by Wright.) Path analysis proved extremely
influential in psychology and sociology. Loehlin (1992) is user-friendly, though
aimed at psychologists who know less math anyone taking this course. Li (1975),
while older, is very enthusiastic and has many interesting applications in biology.
Moran (1961) is a very clear treatment of the mathematical foundations, extended
by Wysocki (1992) to the case where each variable is itself multi-dimensional
vector, so that path “coefficients” are themselves matrices.

Markov random fields where the graph is a regular lattice are used extensively
in spatial statistics. Good introductory-level treatments are provided by Kinder-
mann and Snell (1980) (the full text of which is free online), and by Guttorp
(1995), which also covers the associated statistical methods. Winkler (1995) is
also good, but presumes more background in statistical theory. (I would recom-
mend reading it after Guttorp.) Griffeath (1976), while presuming more probabil-
ity theory on the part of the reader, is extremely clear and insightful, including
what is simultaneously one of the deepest and most transparent proofs of the
Gibbs-Markov theorem. Lauritzen (1996) is a mathematically rigorous treatment
of graphical models from the viewpoint of theoretical statistics, covering both the
directed and undirected cases.

If you are curious about Gibbs distributions in their (so to speak) natural
habitat, the book by Sethna (2006), also free online, is the best introduction to
statistical mechanics I have seen, and presumes very little knowledge of actual
physics on the part of the reader. Honerkamp (2002) is less friendly, but tries
harder to make connections to statistics. If you already know what an exponential
family is, then Eq. 18.29 is probably extremely suggestive, and you should read
Mandelbrot (1962).

On information theory (§18.4), the best book is Cover and Thomas (2006) by a
large margin. References specifically on the connection between causal graphical
models and information theory are given in Chapter 19.

http://www.ssc.wisc.edu/soc/class/soc952/Wright/wright_biblio.htm
http://www.ssc.wisc.edu/soc/class/soc952/Wright/wright_biblio.htm

422 Graphical Models

Exercises

18.1 Find all the paths between the exogenous variables in Figure 18.4, and verify that every

such path goes through at least one collider .

18.2 Is it true that in any DAG, every path between exogenous variables must go through

at least one collider, or descendant of a collider? Either prove it or construct a counter-

example in which it is not true. Does the answer change we say “go through at least one

collider”, rather than “collider or descendant of a collider”? .

18.3 1. Take any two nodes, say X1 and X2, which are linked in a DAG by a path which does

not go over colliders. Prove that there is a unique node along the path which is an

ancestor of all other nodes on that path. (Note that this shared ancestor may in fact

be X1 or X2.) Hint: do exercise 18.2.

2. Take any two nodes which are linked in a DAG by a path which remains open when

conditioning on a set of variables S containing no colliders. Prove that for every open

path between X1 and X2, there is a unique node along the path which is an ancestor

of all other nodes on that path, and that this ancestor is not in S.

18.4 Prove that X2 ⊥⊥ X3|X5 in Figure 18.4.

Part III

Causal Inference

423

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

19

Graphical Causal Models

19.1 Causation and Counterfactuals

Take a piece of cotton, say an old rag. Apply flame to it; the cotton burns. We
say the fire caused the cotton to burn. The flame is certainly correlated with the
cotton burning, but, as we all know, correlation is not causation (Figure 19.1).
Perhaps every time we set rags on fire we handle them with heavy protective
gloves; the gloves don’t make the cotton burn, but the statistical dependence is
strong. So what is causation?

We do not have to settle 2500 years (or more) of argument among philosophers
and scientists. For our purposes, it’s enough to realize that the concept has a
counter-factual component: if, contrary to fact, the flame had not been applied
to the rag, then the rag would not have burned1. On the other hand, the fire
makes the cotton burn whether we are wearing protective gloves or not.

To say it a somewhat different way, the distributions we observe in the world

1 If you immediately start thinking about quibbles, like “What if we hadn’t applied the flame, but the

rag was struck by lightning?”, then you may have what it takes to be a philosopher.

Figure 19.1 “Correlation doesn’t imply causation, but it does waggle its
eyebrows suggestively and gesture furtively while mouthing ‘look over
there”’ (Image and text copyright by Randall Munroe, used here under a
Creative Commons attribution-noncommercial license; see
http://xkcd.com/552/. [[TODO: Excise from the commercial version]])

425

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://xkcd.com/552/
http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

426 Graphical Causal Models

are the outcome of complicated stochastic processes. The mechanisms which
set the value of one variable inter-lock with those which set other variables.
When we make a probabilistic prediction by conditioning — whether we pre-
dict E [Y | X = x] or Pr (Y | X = x) or something more complicated — we are
just filtering the output of those mechanisms, picking out the cases where they
happen to have set X to the value x, and looking at what goes along with that.

When we make a causal prediction, we want to know what would happen if the
usual mechanisms controlling X were suspended and it was set to x. How would
this change propagate to the other variables? What distribution would result for
Y ? This is often, perhaps even usually, what people really want to know from a
data analysis, and they settle for statistical prediction either because they think
it is causal prediction, or for lack of a better alternative.

Causal inference is the undertaking of trying to answer causal questions from
empirical data. Its fundamental difficulty is that we are trying to derive counter-
factual conclusions with only factual premises. As a matter of habit, we come to
expect cotton to burn when we apply flames. We might even say, on the basis
of purely statistical evidence, that the world has this habit. But as a matter of
pure logic, no amount of evidence about what did happen can compel beliefs
about what would have happened under non-existent circumstances2. (For all my
data shows, all the rags I burn just so happened to be on the verge of sponta-
neously bursting into flames anyway.) We must supply some counter-factual or
causal premise, linking what we see to what we could have seen, to derive causal
conclusions.

One of our goals, then, in causal inference will be to make the causal premises
as weak and general as possible, thus limiting what we take on faith.

19.2 Causal Graphical Models

We will need a formalism for representing causal relations. It will not surprise
you by now to learn that these will be graphical models. We will in fact use DAG
models from last time, with “parent” interpreted to mean “directly causes”. These
will be causal graphical models, or graphical causal models.3

We make the following assumptions.

1. There is some directed acyclic graph G representing the relations of causation
among the our variables.

2 The first person to really recognize this seems to have been the medieval Muslim theologian and

anti-philosopher al Ghazali (1100/1997). (See Kogan (1985) for some of the history.) Very similar

arguments were made centuries later by Hume (1739); whether there was some line of intellectual

descent linking them — that is, any causal connection — I don’t know.
3 Because DAG models have joint distributions which factor according to the graph, we can always

write them in the form of a set of equations, as Xi = fi(Xparents(i)) + εi, with the catch that the

noise εi is not necessarily independent of Xi’s parents. This is what is known, in many of the social

sciences, as a structural equation model. So those are, strictly, a sub-class of DAG models. They

are also often used to represent causal structure.

19.2 Causal Graphical Models 427

2. The Causal Markov condition: The joint distribution of the variables obeys
the Markov property on G.

3. Faithfulness: The joint distribution has all of the conditional independence
relations implied by the causal Markov property, and only those conditional
independence relations.

The point of the faithfulness condition is to rule out “conspiracies among the
parameters”, where, say, two causes of a common effect, which would typically
be dependent conditional on that effect, have their impact on the joint effect and
their own distributions matched just so exactly that they remain conditionally
independent.

19.2.1 Calculating the “effects of causes”

Let’s fix two sub-sets of variables in the graph, Xc and Xe. (Assume they don’t
overlap, and call everything else XN .) If we want to make a probabilistic predic-
tion for Xe’s value when Xc takes a particular value, xc, that’s the conditional
distribution, Pr (Xe | Xc = xc), and we saw last time how to calculate that using
the graph. Conceptually, this amounts to selecting, out of the whole population
or ensemble, the sub-population or sub-ensemble where Xc = xc, and accepting
whatever other behavior may go along with that.

Now suppose we want to ask what the effect would be, causally, of setting Xc

to a particular value xc. We represent this by “doing surgery on the graph”: we
(i) eliminate any arrows coming in to nodes in Xc, (ii) fix their values to xc, and
(iii) calculate the resulting distribution for Xe in the new graph. By steps (i)
and (ii), we imagine suspending or switching off the mechanisms which ordinarily
set Xc. The other mechanisms in the assemblage are left alone, however, and so
step (iii) propagates the fixed values of Xc through them. We are not selecting a
sub-population, but producing a new one.

If setting Xc to different values, say xc and x′c, leads to different distributions
for Xe, then we say that Xc has an effect on Xe — or, slightly redundantly,
has a causal effect on Xe. Sometimes4 “the effect of switching from xc to x′c”
specifically refers to a change in the expected value of Xe, but since profoundly
different distributions can have the same mean, this seems needlessly restrictive.5

If one is interested in average effects of this sort, they are computed by the same
procedure.

It is convenient to have a short-hand notation for this procedure of causal
conditioning. One more-or-less standard idea, introduced by Judea Pearl, is to
introduce a do operator which encloses the conditioning variable and its value.
That is,

Pr (Xe | Xc = xc) (19.1)

4 Especially in economics.
5 Economists are also fond of the horribly misleading usage of talking about “an X effect” or “the

effect of X” when they mean the regression coefficient of X. Don’t do this.

428 Graphical Causal Models

is probabilistic conditioning, or selecting a sub-ensemble from the old mecha-
nisms; but

Pr (Xe | do(Xc = xc)) (19.2)

is causal conditioning, or producing a new ensemble. Sometimes one sees this
written as Pr (Xe | Xc=̂xc), or even Pr (Xe | x̂c). I am actually fond of the do
notation and will use it.

Suppose that Pr (Xe | Xc = xc) = Pr (Xe | do(Xc = xc)). This would be ex-
tremely convenient for causal inference. The conditional distribution on the right
is the causal, counter-factual distribution which tells us what would happen if
xc was imposed. The distribution on the left is the ordinary probabilistic distri-
bution we have spent years learning how to estimate from data. When do they
coincide?

One situation where they coincide is when Xc contains all the parents of Xe,
and none of its descendants. Then, by the Markov property, Xe is independent of
all other variables given Xc, and removing the arrows into Xc will not change that,
or the conditional distribution of Xe given its parents. Doing causal inference for
other choices of Xc will demand other conditional independence relations implied
by the Markov property. This is the subject of Chapter 20.

19.2.2 Back to Teeth

Let us return to the example of Figure 18.6, and consider the relationship between
exposure to asbestos and the staining of teeth. In the model depicted by that
figure, the joint distribution factors as

p(Yellow teeth, Smoking,Asbestos,Tar in lungs,Cancer)

= p(Smoking)p(Asbestos) (19.3)

×p(Tar in lungs|Smoking)

×p(Yellow teeth|Smoking)

×p(Cancer|Asbestos,Tar in lungs)

As we saw, whether or not someone’s teeth are yellow (in this model) is un-
conditionally independent of asbestos exposure, but conditionally dependent on
asbestos, given whether or not they have cancer. A logistic regression of tooth
color on asbestos would show a non-zero coefficient, after “controlling for” cancer.
This coefficient would become significant with enough data. The usual interpre-
tation of this coefficient would be to say that the log-odds of yellow teeth increase
by so much for each one unit increase in exposure to asbestos, “other variables
being held equal”.6 But to see the actual causal effect of increasing exposure to
asbestos by one unit, we’d want to compare p(Yellow teeth|do(Asbestos = a)) to
p(Yellow teeth|do(Asbestos = a+ 1)), and it’s easy to check (Exercise 19.1) that

6 Nothing hinges on this being a logistic regression, similar interpretations are given to all the other

standard models.

19.3 Conditional Independence and d-Separation Revisited 429

these two distributions have to be the same. In this case, because asbestos is ex-
ogenous, one will in fact get the same result for p(Yellow teeth|do(Asbestos = a)
and for p(Yellow teeth|Asbestos = a).

For a more substantial example, consider Figure 19.27 The question of interest
here is whether regular brushing and flossing actually prevents heart disease. The
mechanism by which it might do so is as follows: brushing is known to make it less
likely for people to get gum disease. Gum disease, in turn, means the gums suffer
from constant, low-level inflammation. Persistent inflammation (which can be
measured through various messenger chemicals of the immune system) is thought
to increase the risk of heart disease. Against this, people who are generally health-
conscious are likely to brush regularly, and to take other actions, like regularly
exercising and controlling their diets, which also make them less likely to get
heart disease. In this case, if we were to manipulate whether people brush their
teeth8, we would shift the graph from Figure 19.2 to Figure 19.3, and we would
have

p(Heart disease|Brushing = b) 6= p(Heart disease|do(Brushing = b)) (19.4)

19.3 Conditional Independence and d-Separation Revisited

We saw in §18.3 that all distributions which conform to a common DAG share
a common set of conditional independence relations. Faithful distributions have
no other conditional independence relations. These are vital facts for causal in-
ference.

The reason is that while causal influence flows one way through the graph,
along the directions of arrows from parents to children, statistical information
can flow in either direction. We can certainly make inferences about an effect
from its causes, but we can equally make inferences about causes from their
effects. It might be harder to actually do the calculations9, and we might be left
with more uncertainty, but we could do it. As we saw in §18.3, when conditioning
on a set of variables S blocks all channels of information flow between X and
Y , X ⊥⊥ Y |S. The faithful distributions are the ones where this implication is
reversed, where X ⊥⊥ Y |S implies that S blocks all paths between X and Y .
In faithful graphical models, blocking information flow is exactly the same as
conditional independence.

This turns out to be the single most important fact enabling causal inference.
If we want to estimate the effects of causes, within a given DAG, we need to
block off all non-causal channels of information flow. If we want to check whether
a given DAG is correct for the variables we have, we need to be able to compare

7 Based on de Oliveira et al. (2010), and the discussion of this paper by Chris Blattman (http:

//chrisblattman.com/2010/06/01/does-brushing-your-teeth-lower-cardiovascular-disease/).
8 Hopefully, by ensuring that everyone brushes, rather than keeping people from brushing.
9 Janzing (2007) [[TODO: update refs]] makes the very interesting suggestion that the direction of

causality can be discovered by using this — roughly speaking, that if X|Y is much harder to

compute than is Y |X, we should presume that X → Y rather than the other way around.

http://chrisblattman.com/2010/06/01/does-brushing-your-teeth-lower-cardiovascular-disease/
http://chrisblattman.com/2010/06/01/does-brushing-your-teeth-lower-cardiovascular-disease/

430 Graphical Causal Models

Frequency of toohbrushing

Amount of fat and \nred meat in diet

Gum disease

Heart disease

Health\nconsciousness

Inflammatory\nimmune response

Frequency of exercise

Figure 19.2 Graphical model illustrating hypothetical pathways linking
brushing your teeth to not getting heart disease.

the conditional independence relations implied by the DAG to those supported
by the data. If we want to discover the possible causal structures, we have to see
which ones imply the conditional independencies supported by the data.

19.4 Further Reading

The two foundational books on graphical causal models are Spirtes et al. (2001)
and Pearl (2009b). Both are excellent and recommended in the strongest possible
terms; but if you had to read just one, I would recommend Spirtes et al. (2001).
If on the other hand you do not feel up to reading a book at all, then Pearl
(2009a) is much shorter, and covers the high points. (Also, it’s free online.) The
textbook by Morgan and Winship (2007, 2015) is much less demanding mathe-
matically, and therefore also less complete conceptually, but it does explain the
crucial ideas clearly, simply, and with abundant examples.10 Lauritzen (1996) has

10 That textbook also discusses an alternative formalism for counterfactuals, due mainly to Donald B.

Rubin and collaborators. While Rubin has done very distinguished work in causal inference, his

19.4 Further Reading 431

Frequency of toohbrushing

Amount of fat and \nred meat in diet

Gum disease

Heart disease

Health\nconsciousness

Inflammatory\nimmune response

Frequency of exercise

Figure 19.3 The previous graphical model, “surgically” altered to reflect a
manipulation (do) of brushing.

a mathematically rigorous treatment of d-separation (among many other things),
but de-emphasizes causality.

Many software packages for linear structural equation models and path analysis
offer options to search for models; these are not, in general, reliable (Spirtes et al.,
2001).

Raginsky (2011) provides a fascinating information-theoretic account of graphi-
cal causal models and do(), in terms of the notion of directed (rather than mutual)
information.

formalism is vastly harder to manipulate than are graphical models, but has no more expressive

power. (Pearl (2009a) has a convincing discussion of this point, and Richardson and Robins (2013)

provides a comprehensive proof that the everything expressible in the counterfactuals formalism can

also be expressed with suitably-augmented graphical models.) I have thus skipped the Rubin

formalism here, but there are good accounts in Morgan and Winship (2007, ch. 2), in Rubin’s

collected papers (Rubin, 2006), and in Imbens and Rubin (2015) (though please read Shalizi 2016

before taking any of the real-data examples in the last of these as models to imitate).

432 Graphical Causal Models

Exercises

19.1 Show, for the graphical model in Figure 18.6, that p(Yellow teeth|do(Asbestos = a)) is

always the same as p(Yellow teeth|do(Asbestos = a+ 1)).

20

Identifying Causal Effects from Observations

There are two problems which are both known as “causal inference”:

1. Given the causal structure of a system, estimate the effects the variables have
on each other.

2. Given data about a system, find its causal structure.

The first problem is easier, so we’ll begin with it; we come back to the second in
Chapter 22.

20.1 Causal Effects, Interventions and Experiments

As a reminder, when I talk about the causal effect of X on Y , which I write

Pr (Y |do(X = x)) (20.1)

I mean the distribution of Y which would be generated, counterfactually, were
X to be set to the particular value x. This is not, in general, the same as the
ordinary conditional distribution

Pr (Y |X = x) (20.2)

The reason these are different is that the latter represents taking the original
population, as it is, and just filtering it to get the sub-population where X = x.
The processes which set X to that value may also have influenced Y through other
channels, and so this distribution will not, typically, really tell us what would
happen if we reached in and manipulated X. We can sum up the contrast in a
little table (Table 20.1). As we saw in Chapter 18, if we have the full graph for a
directed acyclic graphical model, it tells us how to calculate the joint distribution
of all the variables, from which of course the conditional distribution of any
one variable given another follows. As we saw in Chapter 19, calculations of
Pr (Y |do(X = x)) use a “surgically” altered graph, in which all arrows into X
are removed, and its value is pinned at x, but the rest of the graph is as before.
If we know the DAG, and we know the distribution of each variable given its
parents, we can calculate any causal effect we want, by graph-surgery.

433

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

434 Identifying Causal Effects

Probabilistic conditioning Causal conditioning

Pr (Y |X = x) Pr (Y |do(X = x))
Factual Counter-factual
Select a sub-population Generate a new population
Predicts passive observation Predicts active manipulation
Calculate from full DAG Calculate from surgically-altered DAG
Always identifiable when X and Y Not always identifiable even
are observable when X and Y are observable

Table 20.1 Contrasts between ordinary probabilistic conditioning and causal conditioning. (See
below on identifiability.)

20.1.1 The Special Role of Experiment

If we want to estimate Pr (Y |do(X = x)), the most reliable procedure is also the
simplest: actually manipulate X to the value x, and see what happens to Y . (As
my mother says, “Why think, when you can just do the experiment?”) A causal
or counter-factual assumption is still required here, which is that the next time
we repeat the manipulation, the system will respond similarly, but this is pretty
weak as such assumptions go.

While this seems like obvious common sense to us now, it is worth taking a mo-
ment to reflect on the fact that systematic experimentation is a very recent thing;
it only goes back to around 1600. Since then, the knowledge we have acquired
by combining experiments with mathematical theories have totally transformed
human life, but for the first four or five thousand years of civilization, philoso-
phers and sages much smarter than (almost?) any scientist now alive would have
dismissed experiment as something fit only for cooks, potters and blacksmiths,
who didn’t really know what they were doing.

The major obstacle the experimentalist must navigate around is to make sure
they the experiment they are doing is the one they think they are doing. Symboli-
cally, when we want to know Pr (Y |do(X = x)), we need to make sure that we are
only manipulating X, and not accidentally doing Pr (Y |do(X = x), Z = z) (be-
cause we are only experimenting on a sub-population), or Pr (Y |do(X = x, Z = z))
(because we are also, inadvertently, manipulating Z). There are two big main di-
visions about how to avoid these confusions.

1. The older strategy is to deliberately control or manipulate as many other vari-
ables as possible. If we find Pr (Y |do(X = x, Z = z)) and Pr (Y |do(X = x′, Z = z))
then we know the differences between them are indeed just due to changing X.
This strategy, of actually controlling or manipulating whatever we can, is the
traditional one in the physical sciences, and more or less goes back to Galileo
and the beginning of the Scientific Revolution1.

2. The younger strategy is to randomize over all the other variables but X. That
is, to examine the contrast between Pr (Y |do(X = x)) and Pr (Y |do(X = x′)),

1 The anguished sound you hear as you read this is every historian of science wailing in protest as the

over-simplification, but this will do as an origin myth for our purposes.

20.2 Identification and Confounding 435

we use an independent source of random noise to decide which experimental
subjects will get do(X = x) and which will get do(X = x′). It is easy to
convince yourself that this makes Pr (Y |do(X = x)) equal to Pr (Y |X = x).
The great advantage of the randomization approach is that we can apply it
even when we cannot actually control the other causally relevant variables,
or even are unsure of what they are. Unsurprisingly, it has its origins in the
biological sciences, especially agriculture. If we want to credit its invention to
a single culture hero, it would not be too misleading2 to attribute it to R. A.
Fisher in the early 1900s.

Experimental evidence is compelling, but experiments are often slow, expen-
sive, and difficult. Moreover, experimenting on people is hard, both because there
are many experiments we shouldn’t do, and because there are many experiments
which would just be too hard to organize. We must therefore consider how to do
causal inference from non-experimental, observational data.

20.2 Identification and Confounding

For the present purposes, the most important distinction between probabilistic
and causal conditioning has to do with the identification (or identifiability),
of the conditional distributions. An aspect of a statistical model is identifiable
when it cannot be changed without there also being some change in the distribu-
tion of the observable variables. If we can alter part of a model with no observable
consequences, that part of the model is unidentifiable3. Sometimes the lack of
identification is trivial: in a two-cluster mixture model, we get the same observ-
able distribution if we swap the labels of the two clusters (§17.1.5). The rotation
problem for factor models (§§16.6, 16.10.1) is a less trivial identification prob-
lem4. If two variables are co-linear, then their coefficients in a linear regression
are unidentifiable (§2.1.1)5. Note that identification is about the true distribution,
not about what happens with finite data. A parameter might be identifiable, but
we could have so little information about it in our data that our estimates are
unusable, with immensely wide confidence intervals; that’s unfortunate, but we
just need more data. An unidentifiable parameter, however, cannot be estimated
even with infinite data.6

When X and Y are both observable variables, Pr (Y |X = x) can’t help being

2 See previous note.
3 More formally, divide the model’s parameters into two parts, say θ and ψ. The distinction between

θ1 and θ2 is identifiable if, for all ψ1, ψ2, the distribution over observables coming from (θ1, ψ1) is

different from that coming from (θ2, ψ2). If the right choice of ψ1 and ψ2 masks the distinction

between θ1 and θ2, then θ is unidentifiable.
4 As this example suggests, what is identifiable depends on what is observed. If we could observe the

factors directly, factor loadings would be identifiable.
5 As that example suggests, whether one aspect of a model is identifiable or not can depend on other

aspects of the model. If the co-linearity was broken, the two regression coefficients would become

identifiable.
6 For more on identifiability, and what to do with unidentifiable problems, see the great book by

Manski (2007).

436 Identifying Causal Effects

YX

U

Figure 20.1 The distribution of Y given X, Pr (Y |X), confounds the
actual causal effect of X on Y , Pr (Y |do(X = x)), with the indirect
dependence between X and Y created by their unobserved common cause U .
(You may imagine that U is really more than one variable, with some
internal sub-graph.)

identifiable. (Changing this conditional distribution just is changing part of the
distribution of observables.) Things are very different, however, for Pr (Y |do(X = x)).
In some models, it’s entirely possible to change this drastically, and always have
the same distribution of observables, by making compensating changes to other
parts of the model. When this is the case, we simply cannot estimate causal effects
from observational data. The basic problem is illustrated in Figure 20.1.

In Figure 20.1, X is a parent of Y . But if we analyze the dependence of
Y on X, say in the form of the conditional distribution Pr (Y |X = x), we see
that there are two channels by which information flows from cause to effect.
One is the direct, causal path, represented by Pr (Y |do(X = x)). The other is
the indirect path, where X gives information about its parent U , and U gives
information about its child Y . If we just observe X and Y , we cannot sep-
arate the causal effect from the indirect inference. The causal effect is con-
founded with the indirect inference. More generally, the effect of X on Y is
confounded whenever Pr (Y |do(X = x)) 6= Pr (Y |X = x). If there is some way
to write Pr (Y |do(X = x)) in terms of distributions of observables, we say that
the confounding can be removed by an identification strategy, which de-
confounds the effect. If there is no way to de-confound, then this causal effect
is unidentifiable.

The effect of X on Y in Figure 20.1 is unidentifiable. Even if we erased the
arrow from X to Y , we could get any joint distribution for X and Y we liked
by picking P (X|U), P (Y |U) and P (U) appropriately. So we cannot even, in
this situation, use observations to tell whether X is actually a cause of Y . No-
tice, however, that even if U was observed, it would still not be the case that
Pr (Y |X = x) = Pr (Y |do(X = x)). While the effect would be identifiable (via
the back door criterion; see below), we would still need some sort of adjustment
to recover it.

In the next section, we will look at such identification strategies and adjust-
ments.

20.3 Identification Strategies 437

20.3 Identification Strategies

To recap, we want to calculate the causal effect of X on Y , Pr (Y |do(X = x)),
but we cannot do an experiment, and must rely on observations. In addition to
X and Y , there will generally be some covariates Z which we know, and we’ll
assume we know the causal graph, which is a DAG. Is this enough to determine
Pr (Y |do(X = x))? That is, does the joint distribution identify the causal effect?

The answer is “yes” when the covariates Z contain all the other relevant vari-
ables7. The inferential problem is then no worse than any other statistical es-
timation problem. In fact, if we know the causal graph and get to observe all
the variables, then we could (in principle) just use our favorite non-parametric
conditional density estimate at each node in the graph, with its parent variables
as the inputs and its own variable as the response. Multiplying conditional dis-
tributions together gives the whole distribution of the graph, and we can get any
causal effects we want by surgery. Equivalently (Exercise 20.2), we have that

Pr (Y |do(X = x)) =
∑
t

Pr (Y |X = x,Pa(X) = t) Pr (Pa(X) = t) (20.3)

where Pa(X) is the complete set of parents of X.
If we’re willing to assume more, we can get away with just using non-parametric

regression or even just an additive model at each node. Assuming yet more, we
could use parametric models at each node; the linear-Gaussian assumption is
(alas) very popular.

If some variables are not observed, then the issue of which causal effects are
observationally identifiable is considerably trickier. Apparently subtle changes in
which variables are available to us and used can have profound consequences.

The basic principle underlying all considerations is that we would like to condi-
tion on adequate control variables, which will block paths linking X and Y other
than those which would exist in the surgically-altered graph where all paths into
X have been removed. If other unblocked paths exist, then there is some con-
founding of the causal effect of X on Y with their mutual dependence on other
variables.

This is familiar to use from regression as the basic idea behind using additional
variables in our regression, where the idea is that by introducing covariates, we
“control for” other effects, until the regression coefficient for our favorite variable
represents only its causal effect. Leaving aside the inadequacies of linear regression
as such (Chapter 2), we need to be cautious here. Just conditioning on everything

7 This condition is sometimes known as causal sufficiency. Strictly speaking, we do not have to

suppose that all causes are included in the model and observable. What we have to assume is that

all of the remaining causes have such an unsystematic relationship to the ones included in the DAG

that they can be modeled as noise. (This does not mean that the noise is necessarily small.) In fact,

what we really have to assume is that the relationships between the causes omitted from the DAG

and those included is so intricate and convoluted that it might as well be noise, along the lines of

algorithmic information theory (Li and Vitányi, 1997), whose key result might be summed up as

“Any determinism distinguishable from randomness is insufficiently complex”. But here we verge on

philosophy.

438 Identifying Causal Effects

YX

Z

Figure 20.2 “Controlling for” additional variables can introduce bias into
estimates of causal effects. Here the effect of X on Y is directly identifiable,
Pr (Y |do(X = x)) = Pr (Y |X = x). If we also condition on Z however,
because it is a common effect of X and Y , we’d get
Pr (Y |X = x, Z = z) 6= Pr (Y |X = x). In fact, even if there were no arrow
from X to Y , conditioning on Z would make Y depend on X.

possible does not give us adequate control, or even necessarily bring us closer to
it. As Figure 20.2 illustrates, and as several of the data-analysis problem sets will
drive home, adding an ill-chosen covariate to a regression can create confounding.

There are three main ways we can find adequate controls, and so get both
identifiability and appropriate adjustments:

1. We can condition on an intelligently-chosen set of covariates S, which block
all the indirect paths from X to Y , but leave all the direct paths open. (That
is, we can follow the regression strategy, but do it right.) To see whether a
candidate set of controls S is adequate, we apply the back-door criterion.

2. We can find a set of variables M which mediate the causal influence of X
on Y — all of the direct paths from X to Y pass through M . If we can
identify the effect of M on Y , and of X on M , then we can combine these
to get the effect of X on Y . (That is, we can just study the mechanisms by
which X influences Y .) The test for whether we can do this combination is
the front-door criterion.

3. We can find a variable I which affects X, and which only affects Y by influ-
encing X. If we can identify the effect of I on Y , and of I on X, then we can,
sometimes, “factor” them to get the effect of X on Y . (That is, I gives us
variation in X which is independent of the common causes of X and Y .) I is
then an instrumental variable for the effect of X on Y .

20.3 Identification Strategies 439

S1

S3

S2

B

U

V

Y

X

Figure 20.3 Illustration of the back-door criterion for identifying the
causal effect of X on Y . Setting S = {S1, S2} satisfies the criterion, but
neither S1 nor S2 on their own would. Setting S = {S3}, or S = {S1, S2, S3}
also works. Adding B to any of the good sets makes them fail the criterion.

Let’s look at these three in turn.

20.3.1 The Back-Door Criterion: Identification by Conditioning

When estimating the effect of X on Y , a back-door path is an undirected path
between X and Y with an arrow into X. These are the paths which create con-
founding, by providing an indirect, non-causal channel along which information
can flow. A set of conditioning variables or controls S satisfies the back-door
criterion when (i) S blocks every back-door path between X and Y , and (ii) no
node in S is a descendant of X. (Cf. Figure 20.3.) When S meets the back-door
criterion,

Pr (Y |do(X = x)) =
∑
s

Pr (Y |X = x, S = s) Pr (S = s) (20.4)

Notice that all the items on the right-hand side are observational conditional
probabilities, not counterfactuals. Thus we have achieved identifiability, as well
as having an adjustment strategy.

The motive for (i) is plain, but what about (ii)? We don’t want to include
descendants of X which are also ancestors of Y , because that blocks off some of
the causal paths from X to Y , and we don’t want to include descendants of X
which are also descendants of Y , because they provide non-causal information
about Y 8.

More formally, we can proceed as follows (Pearl, 2009b, §11.3.3). We know from

8 What about descendants of X which are neither ancestors nor descendants of Y ? Conditioning on

them is either creates potential colliders, if they are also descended from ancestors of Y other than

X, or needlessly complicates the adjustment in Eq. 20.4.

440 Identifying Causal Effects

Eq. 20.3 that

Pr (Y |do(X = x)) =
∑
t

Pr (Pa(X) = t) Pr (Y |X = x,Pa(X) = t) (20.5)

We can always introduce another set of conditioned variables, if we sum out over
them:

Pr (Y |do(X = x)) =
∑
t

Pr (Pa(X) = t)
∑
s

Pr (Y, S = s|X = x,Pa(X) = t)

(20.6)
We can do this for any set of variables S, it’s just probability. It’s also just
probability that

Pr (Y, S|X = x,Pa(X) = t) = (20.7)

Pr (Y |X = x,Pa(X) = t, S = s) Pr (S = s|X = x,Pa(X) = t)

so

Pr (Y |do(X = x)) = (20.8)∑
t

Pr (Pa(X) = t)
∑
s

Pr (Y |X = x,Pa(X) = t, S = s) Pr (S = s|X = x,Pa(X) = t)

Now we use the fact that S satisfies the back-door criterion. Point (i) of the
criterion, blocking back-door paths, implies that Y ⊥⊥ Pa(X)|X,S. Thus

Pr (Y |do(X = x)) = (20.9)∑
t

Pr (Pa(X) = t)
∑
s

Pr (Y |X = x, S = s) Pr (S = s|X = x,Pa(X) = t)

Point (ii) of the criterion, not containing descendants of X, means (by the Markov
property) that X ⊥⊥ S|Pa(X). Therefore

Pr (Y |do(X = x)) = (20.10)∑
t

Pr (Pa(X) = t)
∑
s

Pr (Y |X = x, S = s) Pr (S = s|Pa(X) = t)

Since
∑

t Pr (Pa(X) = t) Pr (S = s|Pa(X) = t) = Pr (S = s), we have, at last,

Pr (Y |do(X = x)) =
∑
s

Pr (Y |X = x, S = s) Pr (S = s) (20.11)

as promised. 2

20.3.1.1 The Entner Rules

Using the back-door criterion requires us to know the causal graph. Recently,
Entner et al. (2013) have given a set of rules which provide sufficient conditions
for deciding that set of variables satisfy the back-door criterion, or that X actually
has no effect on Y , which can be used without knowing the graph completely.

It makes no sense to control for anything which is a descendant of either Y orX;
that’s either blocking a directed path, or activating a collider, or just irrelevant.

20.3 Identification Strategies 441

So let W be the set of all observed variables which descend neither from X nor
Y .

1. If there is a set of controls S such that X ⊥⊥ Y |S, then X has no causal effect
on Y .

Reasoning: Y can’t be a child of X if we can make them independent by
conditioning on anything, and Y can’t be a more remote descendant either,
since S doesn’t include any descendants of X. So in this situation all the paths
linking X to Y must be back-door paths, and S, blocking them, shows there’s
no effect.

2. If there is a W ∈ W and a subset S of the W, not including W , such that (i)
W 6⊥⊥ Y |S, but (ii) W ⊥⊥ Y |S,X, then X has an effect on Y , and S satisfies
the back-door criterion for estimating the effect.

Reasoning: Point (i) shows that conditioning on S leaves open path from W
to Y . By point (ii), these paths must all pass through X, since conditioning
on X blocks them, hence X has an effect on Y . S must block all the back-door
paths between X and Y , otherwise X would be a collider on paths between
W and Y , so conditioning on X would activate those paths.

3. If there is a W ∈ W and a subset S ofW, excluding W , such that (i) W 6⊥⊥ X|S
but (ii) W ⊥⊥ Y |S, then X has no effect on Y .

Reasoning: Point (i) shows that conditioning on S leaves open active paths
from W to X. But by (ii), there cannot be any open paths from W to Y , so
there cannot be any open paths from X to Y .

If none of these rules apply, whether X has an effect on Y , and if so what
adequate controls are for finding it, will depend on the exact graph, and cannot be
determined just from independence relations among the observables. (For proofs
of everything, see the paper.)

20.3.2 The Front-Door Criterion: Identification by Mechanisms

A set of variables M satisfies the front-door criterion when (i) M blocks all
directed paths from X to Y , (ii) there are no unblocked back-door paths from X
to M , and (iii) X blocks all back-door paths from M to Y . Then

Pr (Y |do(X = x)) = (20.12)∑
m

Pr (M = m|X = x)
∑
x′

Pr (Y |X = x′,M = m) Pr (X = x′)

The variables M are sometimes called mediators.
A natural reaction to the front-door criterion is “Say what?”, but it becomes

more comprehensible if we take it apart. Because, by clause (i), M blocks all
directed paths from X to Y , any causal dependence of Y on X must be mediated
by a dependence of Y on M :

Pr (Y |do(X = x)) =
∑
m

Pr (Y |do(M = m)) Pr (M = m|do(X = x)) (20.13)

442 Identifying Causal Effects

YX M

U

Figure 20.4 Illustration of the front-door criterion, after Pearl (2009b,
Figure 3.5). X, Y and M are all observed, but U is an unobserved common
cause of both X and Y . X ← U → Y is a back-door path confounding the
effect of X on Y with their common cause. However, all of the effect of X on
Y is mediated through X’s effect on M . M ’s effect on Y is, in turn,
confounded by the back-door path M ← X ← U → Y , but X blocks this
path. So we can use back-door adjustment to find Pr (Y |do(M = m)), and
directly find Pr (M |do(X = x)) = Pr (M |X = x). Putting these together
gives Pr (Y |do(X = x)).

Clause (ii) says that we can get the effect of X on M directly,

Pr (M = m|do(X = x)) = Pr (M = m|X = x) . (20.14)

Clause (iii) say that X satisfies the back-door criterion for identifying the effect
of M on Y , and the inner sum in Eq. 20.12 is just the back-door computation
(Eq. 20.4) of Pr (Y |do(M = m)). So really we are using the back door criterion,
twice. (See Figure 20.4.)

For example, in the “does tooth-brushing prevent heart-disease?” example of
§19.2.2, we have X = “frequency of tooth-brushing”, Y = “heart disease”, and we
could take as the mediating M either “gum disease” or “inflammatory immune
response”, according to Figure 19.2.

20.3.2.1 The Front-Door Criterion and Mechanistic Explanation

Morgan and Winship (2007, ch. 8) give a useful insight into the front-door cri-
terion. Each directed path from X to Y is, or can be thought of as, a separate
mechanism by which X influences Y . The requirement that all such paths be
blocked by M , (i), is the requirement that the set of mechanisms included in M
be “exhaustive”. The two back-door conditions, (ii) and (iii), require that the
mechanisms be “isolated”, not interfered with by the rest of the data-generating
process (at least once we condition on X). Once we identify an isolated and ex-
haustive set of mechanisms, we know all the ways in which X actually affects Y ,
and any indirect paths can be discounted, using the front-door adjustment 20.12.

One interesting possibility suggested by this is to elaborate mechanisms into
sub-mechanisms, which could be used in some cases where the plain front-door

20.3 Identification Strategies 443

M

U

M2 YX M1

Figure 20.5 The path X →M → Y contains all the mechanisms by which
X influences Y , but is not isolated from the rest of the system (U →M).
The sub-mechanisms X →M1 →M and M →M2 → Y are isolated, and
the original causal effect can be identified by composing them.

criterion won’t apply9, such as Figure 20.5. Because U is a parent of M , we cannot
use the front-door criterion to identify the effect of X on Y . (Clause (i) holds,
but (ii) and (iii) both fail.) But we can use M1 and the front-door criterion to
find Pr (M |do(X = x)), and we can use M2 to find Pr (Y |do(M = m)). Chaining
those together, as in Eq. 20.13, would given Pr (Y |do(X = x)). So even though
the whole mechanism from X to Y is not isolated, we can still identify effects
by breaking it into sub-mechanisms which are isolated. This suggests a natural
point at which to stop refining our account of the mechanism into sub-sub-sub-
mechanisms: when we can identify the causal effects we’re concerned with.

20.3.3 Instrumental Variables

A variable I is an instrument10 for identifying the effect of X on Y when there is
a set of controls S such that (i) I 6⊥⊥ X|S, and (ii) every unblocked path from I to
Y has an arrow pointing into X. Another way to say (ii) is that I ⊥⊥ Y |S, do(X).
Colloquially, I influences Y , but only through first influencing X (at least once
we control for S). (See Figure 20.6.)

How is this useful? By making back-door adjustments for S, we can identify
Pr (Y |do(I = i)) and Pr (X|do(I = i)). Since all the causal influence of I on Y
must be channeled through X (by point (ii)), we have

Pr (Y |do(I = i)) =
∑
x

Pr (Y |do(X = x)) Pr (X = x|do(I = i)) (20.15)

as in Eq. 20.3. We can thus identify the causal effect of X on Y whenever

9 The ideas in this paragraph come from conversation Prof. Winship; see Morgan and Winship (2015,

ch. 10).
10 The term “instrumental variables” comes from econometrics, where they were originally used, in the

1940s, to identify parameters in simultaneous equation models. (The metaphor was that I is a

measuring instrument for the otherwise inaccessible parameters.) Definitions of instrumental

variables are surprisingly murky and controversial outside of extremely simple linear systems; this

one is taken from Galles and Pearl (1997), via Pearl (2009b, §7.4.5).

444 Identifying Causal Effects

BI S

U

Y

X

Figure 20.6 A valid instrumental variable, I, is related to the cause of
interest, X, and influences Y only through its influence on X, at least once
control variables block other paths. Here, to use I as an instrument, we
should condition on S, but should not condition on B. (If we could condition
on U , we would not need to use an instrument.)

Y

I

U

X

Figure 20.7 I acts as an instrument for estimating the effect of X on Y ,
despite the presence of the confounding, unobserved variable U .

Eq. 20.15 can be solved for Pr (Y |do(X = x)) in terms of Pr (Y |do(I = i)) and
Pr (X|do(I = i)). Figuring out when this is possible in general requires an excur-
sion into the theory of integral equations11, which I have bracketed in §20.3.3.3.
The upshot is that while there may not be unique solutions, there often are,
though they can be somewhat hard to calculate. However, in the special case
where the relations between all variables are linear, we can be much more spe-
cific, fairly easily.

Let’s start with the most basic possible set-up for an instrumental variable,
namely that in Figure 20.7, where we just have X, Y , the instrument I, and the
unobserved confounders S. If everything is linear, identifying the causal effect of
X on Y is equivalent to identifying the coefficient on the X → Y arrow. We can
write

X = α0 + αI + δU + εX (20.16)

11 If X is continuous, then the analog of Eq. 20.15 is

Pr (Y |do(I = i)) =
∫
p(Y |do(X = x))p(X = x|do(I = i))dx, where the “integral operator”∫

·p(X = x|do(I = i))dx is known, as is Pr (Y |do(I = i)).

20.3 Identification Strategies 445

and

Y = β0 + βX + γU + εY (20.17)

where εX and εY are mean-zero noise terms, independent of each other and of
the other variables, and we can, without loss of generality, assume U has mean
zero as well. We want to find β. Substituting,

Y = β0 + βα0 + βαI + (βδ + γ)U + βεX + εY (20.18)

Since U , εX and εY are all unobserved, we can re-write this as

Y = γ0 + βαI + η (20.19)

where γ0 = β0 + βα0, and η = (βδ + γ)U + βεX + εY has mean zero.
Now take the covariances:

Cov [I,X] = αV [I] + Cov [εX , I] (20.20)

Cov [I, Y] = βαV [I] + Cov [η, I] (20.21)

= βαV [I] + (βδ + γ)Cov [U, I] (20.22)

+βCov [εX , I] + Cov [εY , I]

By condition (ii), however, we must have Cov [U, I] = 0, and of course Cov [εX , I] =
Cov [εY , I] = 0. Therefore Cov [I, Y] = βαV [I]. Solving,

β =
Cov [I, Y]

Cov [I,X]
(20.23)

This can be estimated by substituting in the sample covariances, or any other
consistent estimators of these two covariances.

On the other hand, the (true or population-level) coefficient for linearly re-
gressing Y on X is

Cov [X,Y]

V [X]
=
βV [X] + γCov [U,X]

V [X]
(20.24)

= β + γ
Cov [U,X]

V [X]
(20.25)

= β + γ
δV [U]

α2V [I] + δ2V [U] + V [εX]
(20.26)

That is, “OLS is biased for the causal effect when X is correlated with the noise”.
In other words, simple regression is misleading in the presence of confounding12.

The instrumental variable I provides a source of variation in X which is un-
correlated with the other common ancestors of X and Y . By seeing how both X
and Y respond to these perturbations, and using the fact that I only influences Y
through X, we can deduce something about how X influences Y , though linearity
is very important to our ability to do so.

12 But observe that if we want to make a linear prediction of Y and only have X available, i.e., to find

the best r1 in E [Y |X = x] = r0 + r1x, then Eq. 20.26 is exactly the coefficient we would want to

use. OLS is doing its job.

446 Identifying Causal Effects

Y

I

Z

UX

Y

I

S

UX

Figure 20.8 Left: I is not a valid instrument for identifying the effect of X
on Y , because I can influence Y through a path not going through X. If we
could control for Z, however, I would become valid. Right: I is not a valid
instrument for identifying the effect of X on Y , because there is an
unblocked back-door path connecting I and Y . If we could control for S,
however, I would become valid.

The simple line of reasoning above runs into trouble if we have multiple instru-
ments, or need to include controls (as the definition of an instrument allows). In
§21.2 we’ll look at the more complicated estimation methods which can handle
this, again assuming linearity.

20.3.3.1 Some Invalid Instruments

Not everything which looks like an instrument actually works. If Y is indeed a
descendant of I, but there is a line of descent that doesn’t go through X, then I is
not a valid instrument for X (Figure 20.8, left). If there are unblocked back-door
paths linking I and Y , e.g., if I and Y have common ancestors, then I is again
not a valid instrument (Figure 20.8, right).

Economists sometimes refer to both sets of problems with instruments as “vi-
olations of exclusion restrictions”. The second sort of problem, in particular, is a
“failure of exogeneity”.

20.3.3.2 Critique of Instrumental Variables

By this point, you may well be thinking that instrumental variable estimation is
very much like using the front-door criterion. There, the extra variable M came
between X and Y ; here, X comes between I and Y . It is, perhaps, surprising (if
not annoying) that using an instrument only lets us identify causal effects under
extra assumptions, but that’s (mathematical) life. Just as the front-door criterion
relies on using our scientific knowledge, or rather theories, to find isolated and
exhaustive mechanisms, finding valid instruments relies on theories about the

20.3 Identification Strategies 447

part of the world under investigation, and one would want to try to check those
theories.

In fact, instrumental variable estimates of causal effects are often presented as
more or less unquestionable, and free of theoretical assumptions; economists, and
other social scientists influenced by them, are especially apt to do this. As the
economist Daniel Davies puts it13, devotees of this approach

have a really bad habit of saying:
“Whichever way you look at the numbers, X”.
when all they can really justify is:
“Whichever way I look at the numbers, X”.
but in fact, I should have said that they could only really support:
“Whichever way I look at these numbers, X”.

(Emphasis in the original.) It will not surprise you to learn that I think this is
very wrong.

I hope that, by this point in the book, if someone tries to sell you a linear
regression, you should be very skeptical, but let’s leave that to one side. (It’s
possible that the problem at hand really is linear.) The clue that instrumental
variable estimation is a creature of theoretical assumptions is point (ii) in the
definition of an instrument: I ⊥⊥ Y |S, do(X). This says that if we eliminate all
the arrows into X, the control variables S block all the other paths between I and
Y . This is exactly as much an assertion about mechanisms as what we have to
do with the front-door criterion. In fact it doesn’t just say that every mechanism
by which I influences Y is mediated by X, it also says that there are no common
causes of I and Y (other than those blocked by S).

This assumption is most easily defended when I is genuinely random, For
instance, if we do a randomized experiment, I might be a coin-toss which assigns
each subject to be in either the treatment or control group, each with a different
value of X. If “compliance” is not perfect (if some of those in the treatment group
don’t actually get the treatment, or some in the control group do), it is nonetheless
often plausible that the only route by which I influences the outcome is through
X, so an instrumental variable regression is appropriate. (I here is sometimes
called “intent to treat”.)

Even here, we must be careful. If we are evaluating a new medicine, whether
people think they are getting a medicine or not could change how they act, and
medical outcomes. Knowing whether they were assigned to the treatment or the
control group would thus create another path from I to Y , not going through
X. This is why randomized clinical trials are generally “double-blinded” (neither
patients nor medical personnel know who is in the control group); but whether the
steps taken to double-blind the trial actually worked is itself a causal assumption.

More generally, any argument that a candidate instrument is valid is really an
argument that other channels of information flow, apart from the favored one
through X, can be ruled out. This generally cannot be done through analyzing

13 In part four of his epic and insightful review of Freakonomics; see

http://d-squareddigest.blogspot.com/2007/09/freakiology-yes-folks-its-part-4-of.html.

http://d-squareddigest.blogspot.com/2007/09/freakiology-yes-folks-its-part-4-of.html

448 Identifying Causal Effects

the same variables used in the instrumental-variable estimation (see below), but
involves theories about the world, and rests on the strength of the evidence for
those theories. As has been pointed out multiple times — e.g., by Rosenzweig and
Wolpin (2000) and Deaton (2010) — the theories needed to support instrumental
variable estimates in particular concrete cases are often not very well-supported,
and plausible rival theories can produce very different conclusions from the same
data.

Many people have thought that one can test for the validity of an instrument,
by looking at whether I ⊥⊥ Y |X — the idea being that, if influence flows from I
throughX to Y , conditioning onX should block the channel. The problem is that,
in the instrumental-variable set-up, X is a collider on the path I → X ← U → Y ,
so conditioning on X actually creates an indirect dependence between I and Y
even if I is valid. So I 6⊥⊥ Y |X, whether or not the instrument is valid, and the
test (even if done perfectly with infinite data) tells us nothing14.

A final, more or less technical, issue with instrumental variable estimation is
that many instruments are (even if valid) weak — they only have a little influence
on X, and a small covariance with it. This means that the denominator in Eq.
20.23 is a number close to zero. Error in estimating the denominator, then, results
in a much larger error in estimating the ratio. Weak instruments lead to noisy
and imprecise estimates of causal effects. It is not hard to construct scenarios
where, at reasonable sample sizes, one is actually better off using the biased OLS
estimate than the unbiased but high-variance instrumental estimate15.

20.3.3.3 Instrumental Variables and Integral Equations

I said above (p. 20.3.3) that, in general, identifying causal effects through in-
strumental variables means solving integral equations. It’s worth exploring that,
because it provides some insight into how instrumental variables works, especially
for non-linear systems. Since this is somewhat mathematically involved, however,
you may want to skip this section on first reading.

To grasp what it means to identify causal effects by solving integral equations,
let’s start with the most basic set up, where the cause X, the effect Y , and
the instrument I are all binary. There are then really only two numbers that
need to be identified, Pr (Y = 1|do(X = 0)) and Pr (Y = 1|do(X = 1)). Eq. 20.15
becomes now a system of equations involving these effects:

Pr (Y = 1|do(I = 0)) = Pr (Y = 1|do(X = 0)) Pr (X = 0|do(I = 0)) + Pr (Y = 1|do(X = 1)) Pr (X = 1|do(I = 0))

Pr (Y = 1|do(I = 0)) = Pr (Y = 1|do(X = 0)) Pr (X = 0|do(I = 1)) + Pr (Y = 1|do(X = 1)) Pr (X = 1|do(I = 1))(20.27)

The left-hand sides are identifiable (by the assumptions on I), as are the prob-
abilities Pr (X|do(I)). So, once we get those, we have a system of two linear
equations with two unknowns, Pr (Y = 1|do(X = 0)) and Pr (Y = 1|do(X = 1)).

14 However, see Pearl (2009b, §8.4) for a different approach which can “screen out very bad would-be

instruments”.
15 Young (2017) re-analyzes hundreds of published papers in economics to argue that this is scenario is

actually rather common.

20.3 Identification Strategies 449

Since there are as many equations as unknowns, there is a unique solution, unless
the equations are redundant (Exercise 20.4).

If we put together some vectors and matrices,

~fI→Y ≡
[

Pr (Y = 1|do(I = 0))
Pr (Y = 1|do(I = i))

]
(20.28)

~fX→Y ≡
[

Pr (Y = 1|do(X = 0))
Pr (Y = 1|do(X = 1))

]
(20.29)

fI→X ≡
[

Pr (X = 0|do(I = 0)) Pr (X = 1|do(I = 0))
Pr (X = 0|do(I = 1)) Pr (X = 1|do(I = 1))

]
(20.30)

then Eq. 20.27 becomes
~fI→Y = fI→X ~fX→Y (20.31)

and we can make the following observations:

1. The effect of the instrument I on the response Y , ~fI→Y , is a linear transfor-
mation of the desired causal effects, ~fX→Y .

2. Getting those desired effects requires inverting a linear operator, the matrix
fI→X .

3. That inversion is possible if, and only if, all of the eigenvalues of fI→X are
non-zero.

There is nothing too special about the all-binary case, except that we can write
everything out explicitly. If the cause, effect and instrument are all categorical,
with the number of levels being cx, cy and ci respectively, then there are (cy−1)cx
parameters to identify, and Eq. 20.15 leads to a system of (cy − 1)ci equations,
so the effects will be identifiable (in general) so long as ci ≥ cx. There will, once
again, be a matrix form of the system of equations, and solving the system means
inverting a matrix in whose entries are the effects of I on X, Pr (X = x|do(I = i)).
This, in turn, is something we can do so long as all of the eigenvalues are non-zero.

In the continuous case, we will replace our vectors by conditional density func-
tions:

fI→Y (y|i) ≡ f(y|do(I = i)) (20.32)

fX→Y (y|x) ≡ f(y|do(X = x)) (20.33)

fI→X(x|i) ≡ f(x|do(I = i)) (20.34)

Eq. 20.15 now reads

fI→Y (y|i) =

∫
fX→Y (y|x)fI→X(x|i)dx (20.35)

This is linear in the desired function fX→Y , so we define the linear operator

Φh ≡
∫
h(x)fI→X(x|i)dx (20.36)

and re-write Eq. 20.15 one last time as

fI→Y = ΦfI→X (20.37)

450 Identifying Causal Effects

which could be solved by

Φ−1fI→Y = fI→X (20.38)

An operator like Φ is called an “integral operator”, and equations like Eq. 20.35
or 20.37 are “integral equations”.

If we take Eq. 20.15, multiply both sides by y, and sum (or integrate) over all
possible y, we get

E [Y |do(I = i)] =
∑
y

∑
x

yPr (Y = y|do(X = x)) Pr (X = x|do(I = i))(20.39)

=
∑
x

∑
y

yPr (Y = y|do(X = x)) Pr (X = x|do(I = i))(20.40)

=
∑
x

Pr (X = x|do(I = i))E [Y |do(X = x)] (20.41)

= ΦE [Y |do(X)] (20.42)

So, again, the conditional expectations (= average causal effects) we’d like to
identify can be obtained by solving a linear integral equation. This doesn’t require
that either the functions E [Y |do(I = i)] or E [Y |do(X = x)] be linear (in i and x,
respectively), it just follows from the Markov property16.

20.3.4 Failures of Identification

The back-door and front-door criteria, and instrumental variables, are all suffi-
cient for estimating causal effects from probabilistic distributions, but are not
necessary. A necessary condition for un-identifiability is the presence of an un-
blockable back-door path from X to Y . However, this is not sufficient for lack of
identification — we might, for instance, be able to use the front door criterion, as
in Figure 20.4. There are necessary and sufficient conditions for the identifiability
of causal effects in terms of the graph, and so for un-identifiability, but they are
rather complex and I will not go over them (see Shpitser and Pearl (2008), and
Pearl (2009b, §§3.4–3.5) for an overview).

As an example of the unidentifiable case, consider Figure 20.9. This DAG
depicts the situation analyzed in Christakis and Fowler (2007), a famous paper
claiming to show that obesity is contagious in social networks (at least in the
suburb of Boston where the data was collected). At each observation, participants
in the study get their weight taken, and so their obesity status is known over time.
They also provide the name of a friend. This friend is often in the study. Christakis
and Fowler were interested in the possibility that obesity is contagious, perhaps
through some process of behavioral influence. If this is so, then Irene’s obesity
status in year 2 should depend on Joey’s obesity status in year one, but only if
Irene and Joey are friends — not if they are just random, unconnected people. It

16 In fact, one reason the Markov property is important in studying dynamics is that it lets us move

from studying non-linear individual trajectories to the linear evolution of probability distributions

(Lasota and Mackey, 1994).

20.3 Identification Strategies 451

Joey’s\nlatent\ntraitsIrene’s\nlatent\ntraits

Was Irene\nobese\nlast year?

Is Irene\nobese\nthis year? Is Joey\nobese\nthis year?

Was Joey\nobese\nlast year?Is Joey\n Irene’s friend?

???

Figure 20.9 Social influence is confounded with selecting friends with
similar traits, unobserved in the data.

is indeed the case that if Joey becomes obese, this predicts a substantial increase
in the odds of Joey’s friend Irene becoming obese, even controlling for Irene’s
previous history of obesity17.

The difficulty arises from the latent variables for Irene and Joey (the round
nodes in Figure 20.9). These include all the traits of either person which (a)
influence who they become friends with, and (b) influence whether or not they
become obese. A very partial list of these would include: taste for recreational ex-
ercise, opportunity for recreational exercise, taste for alcohol, ability to consume
alcohol, tastes in food, occupation and how physically demanding it is, ethnic
background18, etc. Put simply, if Irene and Joey are friends because they spend
two hours in the same bar every day drinking and eating chicken wings with
ranch dressing, it’s less surprising that both of them have an elevated chance of

17 The actual analysis was a bit more convoluted than that, but this is the general idea.
18 Friendships often run within ethnic communities. On the one hand, this means that friends tend to

be more genetically similar than random members of the same town, so they will be usually apt to

share genes which influence susceptibility to obesity (in that environment). On the other hand,

ethnic communities transmit, non-genetically, traditions regarding food, alcohol, sports, exercise,

etc., and (again non-genetically: Tilly (1998)) influence employment and housing opportunities.

452 Identifying Causal Effects

becoming obese, and likewise if they became friends because they both belong to
the decathlete’s club, they are both unusually unlikely to become obese. Irene’s
status is predictable from Joey’s, then, not (or not just) because Joey influences
Irene, but because seeing what kind of person Irene’s friends are tells us about
what kind of person Irene is. It is not too hard to convince oneself that there
is just no way, in this DAG, to get at the causal effect of Joey’s behavior on
Irene’s that isn’t confounded with their latent traits (Shalizi and Thomas, 2011).
To de-confound, we would need to actual measure those latent traits, which may
not be impossible but is certainly was not done here19.

When identification is not possible — when we can’t de-confound — it may
still be possible to bound causal effects. That is, even if we can’t say exactly that
Pr (Y |do(X = x)) must be, we can still say it has to fall within a certain (non-
trivial!) range of possibilities. The development of bounds for non-identifiable
quantities, what’s sometimes called partial identification, is an active area of
research, which I think is very likely to become more and more important in data
analysis; the best introduction I know is Manski (2007).

20.4 Summary

Of the four techniques I have introduced, instrumental variables are clever, but
fragile and over-sold20. Experimentation is ideal, but often unavailable. The back-
door and front-door criteria are, I think, the best observational approaches, when
they can be made to work.

Often, nothing can be made to work. Many interesting causal effects are just not
identifiable from observational data. More exactly, they only become identifiable
under very strong modeling assumptions, typically ones which cannot be tested
from the same data, and sometimes ones which cannot be tested by any sort of
empirical data whatsoever. Sometimes, we have good reasons (from other parts
of our scientific knowledge) to make such assumptions. Sometimes, we make such
assumptions because we have a pressing need for some basis on which to act, and
a wrong guess is better than nothing21. If you do make such assumptions, you
need to make clear that you are doing so, and what they are; explain your reasons
for making those assumptions, and not others22; and indicate how different your
conclusions could be if you made different assumptions.

19 Of course, the issue is not really about obesity. Studies of “viral marketing”, and of social influence

more broadly, all generically have the same problem. Predicting someone’s behavior from that of

their friend means conditioning on the existence of a social tie between them, but that social tie is a

collider, and activating the collider creates confounding.
20 I confess that I would probably not be so down on them if others did not push them up so

excessively.
21 As I once heard a distinguished public health expert put it, “This problem is too important to

worry about getting it right.”
22 “My boss/textbook says so” and “so I can estimate β” are not good reasons

Exercises 453

20.4.1 Further Reading

My presentation of the three major criteria is heavily indebted to Morgan and
Winship (2007), but I hope not a complete rip-off. Pearl (2009b) is also essential
reading on this topic. Berk (2004) provides an excellent critique of naive (that is,
overwhelmingly common) uses of regression for estimating causal effects.

Most econometrics texts devote considerable space to instrumental variables.
Didelez et al. (2010) is a very good discussion of instrumental variable methods,
with less-standard applications. There is some work on non-parametric versions of
instrumental variables (e.g., Newey and Powell 2003), but the form of the models
must be restricted or they are unidentifiable. On the limitations of instrumen-
tal variables, Rosenzweig and Wolpin (2000) and Deaton (2010) are particularly
recommended; the latter reviews the issue in connection with important recent
work in development economics and the alleviation of extreme poverty, an area
where statistical estimates really do matter.

There is a large literature in the philosophy of science and in methodology on
the notion of “mechanisms”. References I have found useful include, in general,
Salmon (1984), and, specifically on social processes, Elster (1989), Hedström and
Swedberg (1998) (especially Boudon 1998), Hedström (2005), Tilly (1984, 2008),
and DeLanda (2006).

Exercises

20.1 Draw a graphical model representing the situation where a causal variable X is randomized

by an experimenter. Verify that Pr (Y |X = x) is then equal to Pr (Y |do(X = x)). (Hint:

Use the back door criterion.)

20.2 Prove Eq. 20.3, by using the causal Markov property of the appropriate surgically-altered

graph.

1. The variable T contains all the parents of X; V contains all variables other than X,

Y , and T . Explain why

Pr
(
Y = y,X = x′, T = t, V = v|do(X = x)

)
= δxx′

Pr (Y = y,X = x, T = t, V = v)

Pr (X = x|T = t)
(20.43)

where δij is the “Kronecker delta”, 1 when i = j and 0 when i 6= j.

Hint: The left-hand side of the equation has to factor according to the graph we get

after intervening on X, and the probability in the numerator on the right-hand side

comes from the graphical model before the intervention. How do they differ?

2. Assuming Eq. 20.43 holds, show that

Pr
(
Y = y,X = x′, T = t, V = v|do(X = x)

)
= δxx′Pr (Y = y,X = x, T = t, V = v|X = x, T = t) Pr (T = t)

(20.44)

Hint: Pr (A|B) = Pr (A,B) /Pr (B).

3. Assuming Eq. 20.44 holds, use the law of total probability to derive Eq. 20.3, i.e., to

derive

Pr (Y = y|do(X = x)) =
∑
t

Pr (Y = y|X = x, T = t) Pr (T = t) (20.45)

454 Identifying Causal Effects

tar in lungs

cancer

asbestos dental care

cell damage

job

yellow teeth

smoking

class

Figure 20.10 DAG for Exercise 20.3.

20.3 Refer to Figure 20.10. Can we use the front door criterion to estimate the effect of occu-

pational prestige on cancer? If so, give a set of variables which we would use as mediators.

Is there more than one such set? If so, can you find them all? Are there variables we could

add to this set (or sets) which would violate the front-door criterion?

20.4 Solve Eq. 20.27 for Pr (Y = 1|do(X = 0)) and Pr (Y = 1|do(X = 1)) in terms of the other

conditional probabilities. When is the solution unique?

20.5 (Lengthy, conceptual, open-ended) Read Salmon (1984). When does his “statistical rele-

vance basis” provide enough information to identify causal effects?

21

Estimating Causal Effects from Observations

Chapter 20 gave us ways of identifying causal effects, that is, of knowing when
quantities like Pr (Y = y|do(X = x)) are functions of the distribution of observ-
able variables. Once we know that something is identifiable, the next question is
how we can actually estimate it from data.

21.1 Estimators in the Back- and Front- Door Criteria

The back-door and front-door criteria for identification not only show us when
causal effects are identifiable, they actually give us formulas for representing the
causal effects in terms of ordinary conditional probabilities. When S satisfies the
back-door criterion (Chapter 14), we can use parametric density models, we can

model Y |X,S = f(X,S) + εY and use regression, etc. If P̂r (Y = y|X = x, S = s)

is a consistent estimator of Pr (Y = y|X = x, S = s), and P̂r (S = s) is a consis-
tent estimator of Pr (S = s), then∑

s

P̂r (S = s) P̂r (Y = y|X = x, S = s) (21.1)

will be a consistent estimator of Pr (Y |do(X = x)).
In principle, I could end this section right here, but there are some special

cases and tricks which are worth knowing about. For simplicity, I will in this
section only work with the back-door criterion, since estimating with the front-
door criterion amounts to doing two rounds of back-door adjustment.

21.1.1 Estimating Average Causal Effects

Because Pr(Y |do(X = x)) is a probability distribution, we can ask about E [Y |do(X = x)],
when it makes sense for Y to have an expectation value; it’s just

E [Y |do(X = x)] =
∑
y

yPr(Y = y|do(X = x)) (21.2)

as you’d hope. This is the average effect, or sometimes just the effect of
do(X = x). While it is certainly not always the case that it summarizes all there
is to know about the effect of X on Y , it is often useful.

If we identify the effect of X on Y through the back-door criterion, with control

455

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

456 Estimating Causal Effects

variables S, then some algebra shows

E [Y |do(X = x)] =
∑
y

yPr(Y = y|do(X = x)) (21.3)

=
∑
y

y
∑
s

Pr(Y = y|X = x, S = s) Pr(S = s) (21.4)

=
∑
s

Pr(S = s)
∑
y

yPr(Y = y|X = x, S = s) (21.5)

=
∑
s

Pr(S = s)E [Y |X = x, S = s] (21.6)

The inner conditional expectation is just the regression function µ(x, s), for when
we try to make a point-prediction of Y from X and S, so now all of the regression
methods from Part I come into play. We would, however, still need to know the
distribution Pr(S), so as to average appropriately. Let’s turn to this.

21.1.2 Avoiding Estimating Marginal Distributions

We’ll continue to focus on estimating the causal effect of X on Y using the back-
door criterion, i.e., assuming we’ve found a set of control variables S such that

Pr(Y = y|do(X = x)) =
∑
s

Pr(Y = y|X = x, S = s) Pr(S = s) (21.7)

S will generally contain multiple variables, so we are committed to estimating
two potentially quite high-dimensional distributions, Pr(S) and Pr(Y |X,S). Even
assuming that we knew all the distributions, just enumerating possible values s
and summing over them would be computationally demanding. (Similarly, if S
is continuous, we would need to do a high-dimensional integral.) Can we reduce
these burdens?

One useful short-cut is to use the law of large numbers, rather than exhaustively
enumerating all possible values of s. Notice that the left-hand side fixes y and x,
so Pr(Y = y|X = x, S = s) is just some function of s. If we have an IID sample
of realizations of S, say s1, s2, . . . sn, then the law of large numbers says that, for
all well-behaved function f ,

1

n

n∑
i=1

f(si)→
∑
s

f(s) Pr(S = s) (21.8)

Therefore, with a large sample,

Pr(Y = y|do(X = x)) ≈ 1

n

n∑
i=1

Pr(Y = y|X = x, S = si) (21.9)

and this will still be (approximately) true when we use a consistent estimate of
the conditional probability, rather than its true value.

The same reasoning applies for estimating E [Y |do(X = x)]. Moreover, we can
use the same reasoning to avoid explicitly summing over all possible s if we

21.1 Estimators in the Back- and Front- Door Criteria 457

do have Pr(S), by simulating from it1. Even if our sample (or simulation) is
not completely IID, but is statistically stationary, in the sense we will cover in
Chapter 23 (strictly speaking: “ergodic”), then we can still use this trick.

None of this gets us away from having to estimate Pr(Y |X,S), which is still
going to be a high-dimensional object, if S has many variables.

21.1.3 Matching

Suppose that our causal variable of interest X is binary, or (almost equivalent)
that we are only interested in comparing the effect of two levels, do(X = 1) and
do(X = 0). Let’s call these the “treatment” and “control” groups for definite-
ness, though nothing really hinges on one of them being in any sense a normal or
default value (as “control” suggests) — for instance, we might want to know not
just whether men get paid more than women, but whether they are paid more
because of their sex2. In situations like this, we are often not so interested in the
full distributions Pr (Y |do(X = 1)) and Pr (Y |do(X = 0)), but just in the expec-
tations, E [Y |do(X = 1)] and E [Y |do(X = 0)]. In fact, we are often interested just
in the difference between these expectations, E [Y |do(X = 1)]−E [Y |do(X = 0)],
what is often called the average treatment effect, or ATE.

Suppose we are the happy possessors of a set of control variables S which satisfy
the back-door criterion. How might we use them to estimate this average causal
effect?

ATE =
∑
s

Pr (S = s)E [Y |X = 1, S = s]−
∑
s

Pr (S = s)E [Y |X = 0, S = s](21.10)

=
∑
s

Pr (S = s) (E [Y |X = 1, S = s]− E [Y |X = 0, S = s]) (21.11)

1 This is a “Monte Carlo” approximation to the full expectation value.
2 The example is both imperfect and controversial. It is imperfect because biological sex (never mind

socio-cultural gender) is not quite binary, even in mammals, though the exceptional cases are quite

rare. (See Dreger 1998 for a historical perspective.) It is controversial because many statisticians

insist that there is no sense in talking about causal effects unless there is some actual manipulation

or intervention one could do to change X for an actually-existing “unit” — see, for instance,

Holland (1986), which seems to be the source of the slogan “No causation without manipulation”. I

will just note that (i) this is the kind of metaphysical argument which statisticians usually avoid (if

we can’t talk about sex or race as causes, because changing those makes the subject a “different

person”, how about native language? the shape of the nose? hair color? whether they go to college?

age at which they started school? grades in school?); (ii) genetic variables are highly manipulable

with modern experimental techniques, though we don’t use those techniques on people; (iii) real

scientists routinely talk about causal effects with no feasible manipulation (e.g., “continental drift

causes earthquakes”), or even imaginable manipulation (e.g., “the solar system formed because of

gravitational attraction”). It may be merely coincidence that (iv) many of the statisticians who

make such pronouncements work or have worked for the Educational Testing Service, an

organization with an interest in asserting that, strictly speaking, sex and race cannot have any

causal role in the score anyone gets on the SAT. (Points (i)–(iii) follow Glymour (1986); Glymour

and Glymour (2014); Marcellesi (2013).)

458 Estimating Causal Effects

Abbreviate E [Y |X = x, S = s] as µ(x, s), so that the average treatment effect is∑
s

(µ(1, s)− µ(0, s))Pr (S = s) = E [µ(1, S)− µ(0, S)] (21.12)

Suppose we got to observe µ. Then we could use the law of large numbers argu-
ment above to say

ATE ≈ 1

n

n∑
i=1

µ(1, si)− µ(0, si) (21.13)

Of course, we don’t get to see either µ(1, si) or µ(0, si). We don’t even get to see
µ(xi, si). At best, we get to see Yi = µ(xi, si) + εi, with εi being mean-zero noise.

Clearly, we need to estimate µ(1, si) − µ(0, si). In principle, any consistent
estimator of the regression function, µ̂, would do. If, for some reason, you were
scared of doing a regression, however, the following scheme might occur to you:
First, find all the units in the sample with S = s, and compare the mean Y
for those who are treated (X = 1) to the mean Y for those who are untreated
(X = 0). Writing the the set of units with X = 1 and S = s as Ts, and the set of
units with X = 0 and S = s as Cs, then∑

s

(
1

|Ts|
∑
i∈Ts

Yi −
1

|Cs|
∑
j∈Cs

Yj

)
Pr (S = s) (21.14)

=
∑
s

(
1

|Ts|
∑
i∈Ts

µ(1, s) + εi −
1

|Cs|
∑
j∈Cs

µ(0, s) + εj

)
Pr (S = s) (21.15)

=
∑
s

(µ(1, s)− µ(0, s))Pr (S = s) +
∑
s

(
1

|Ts|
∑
i∈Ts

εi −
1

|Cs|
∑
j∈Cs

εj

)
Pr (S = s)(21.16)

The first part is what we want, and the second part is an average of noise terms,
so it goes to zero as n→∞. Thus we have a consistent estimator of the average
treatment effect.

We could however go further. Take any unit i where X = 1; it has some value
si for the covariates. Suppose we can find another unit i∗ with the same value of
the covariates, but with S = 0. Then

Yi − Yi∗ = µ(1, si) + εi − µ(0, si)− εi∗ (21.17)

The comparison between the response of the treated unit and this matched
control unit is an unbiased estimate of µ(1, si)− µ(0, si). If we can find a match
i∗ for every unit i, then

1

n

n∑
i=1

Yi − Yi∗ (21.18)

=
1

n

∑
i = 1nµ(1, si)− µ(0, si) +

1

n

n∑
i=1

εi (21.19)

The first average is, by the law-of-large-numbers argument, approximately the

21.1 Estimators in the Back- and Front- Door Criteria 459

average treatment effect, and the second is the average of noise terms, so it should
be going to zero as n→∞. Thus, matching gives us a consistent estimate of the
average treatment effect, without any explicit regression. Instead, we rely on a
paired comparison, because members of the treatment group are being compared
to with members of the control group with matching values of the covariates S.
This often works vastly better than estimating µ through a linear model.

There are three directions to go from here. One is to deal with all of the
technical problems and variations which can arise. We might match each unit
against multiple other units, to get further noise reduction. If we can’t find an
exact match, the usual approach is to match each treated unit against the control-
group unit with the closest values of the covariates. Exploring these details is
important to applications, but we won’t follow it up here (see further readings).

A second direction is to remember that matching does not solve the identifi-
cation problem. Computing Eq. 21.19 only gives us an estimate of the average
treatment effect if S satisfies the back-door criterion. If S does not, then even
if matching is done perfectly, Eq. 21.19 does nothing of any particular interest.
Matching is one way of estimating identified average treatment effects; it con-
tributes nothing to solving identification problems.

Third, and finally, matching is really doing nearest neighbor regression (§1.5.1).
To get the difference between the responses of treated and controlled units, we’re
comparing each treated unit to the control-group unit with the closest values of
the covariates. When people talk about matching estimates of average treatment
effects, they usually mean that the number of nearest neighbors we use for each
treated unit is fixed as n grows.

Once we realize that matching is really just nearest-neighbor regression, it may
become less compelling; at the very least many issues should come to mind. As we
saw in §1.5.1, to get consistent estimates of µ out of k-nearest neighbors, we need
to let k grow (slowly) with n. If k is fixed, then the bias of µ̂(x, s) is either zero
or goes quickly to zero as n grows (quicker the smaller k is), but V [µ̂x, s] 6→ 0
as n → ∞. If all we want to do is estimate the average treatment effect, this
remaining asymptotic variance at each s will still average out, but it would be
a problem if we wanted to look at anything more detailed. More generally, the
bias-variance tradeoff is a tradeoff, and it’s not always a good idea to prioritize
low bias over anything else. Moreover, it’s not exactly clear that we should use
a fixed k, or for that matter should use nearest neighbors instead of any other
consistent regression method.

Nearest neighbor regression, like every other nonparametric method, is subject
to the curse of dimensionality3; therefore, so is matching4. It would be very nice

3 An important caveat: when S is high-dimensional but all the data fall on or very near a

low-dimensional sub-space, nearest neighbor regression will adapt to this low effective

dimensionality (Kpotufe, 2011). Not all regression methods have this nice property.
4 If we can could do matching easily for high-dimensional S, then we could match treated units to

other treated units, and control-group units to control-group units, and do easy high-dimensional

regression. Since we know high-dimensional regression is hard, and we just reduced regression to

matching, high-dimensional matching must be at least as hard.

460 Estimating Causal Effects

if there was some way of lightening the curse when estimating treatment effects.
We’ll turn to that next.

21.1.4 Propensity Scores

The problems of having to estimate high-dimensional conditional distributions
and of averaging over large sets of control values are both reduced if the set
of control variables has in fact only a few dimensions. If we have two sets of
control variables, S and R, both of which satisfy the back-door criterion for
identifying Pr (Y |do(X = x)), all else being equal we should use R if it contains
fewer variables than S5

An important special instance of this is when we can set R = f(S), for some
function S, and have

X ⊥⊥ S|R (21.20)

In the jargon, R is a sufficient statistic6 for predicting X from S. To see why
this matters, suppose now that we try to identify Pr (Y = y|do(X = x)) from a
back-door adjustment for R alone, not for S. We have7∑

r

Pr (Y |X = x,R = r) Pr (R = r) (21.21)

=
∑
r,s

Pr (Y, S = s|X = x,R = r) Pr (R = r)

=
∑
r,s

Pr (Y |X = x,R = r, S = s) Pr (S = s|X = x,R = r) Pr (R = r)(21.22)

=
∑
r,s

Pr (Y |X = x, S = s) Pr (S = s|X = x,R = r) Pr (R = r) (21.23)

=
∑
r,s

Pr (Y |X = x, S = s) Pr (S = s|R = r) Pr (R = r) (21.24)

=
∑
s

Pr (Y |X = x, S = s)
∑
r

Pr (S = s,R = r) (21.25)

=
∑
s

Pr (Y |X = x, S = s) Pr (S = s) (21.26)

= Pr (Y |do(X = x)) (21.27)

That is to say, if S satisfies the back-door criterion, then so does R. Since R is a
function of S, both the computational and the statistical problems which come
from using R are no worse than those of using S, and possibly much better, if R
has much lower dimension.
5 Other things which might not be equal: the completeness of data on R and S; parametric

assumptions might be more plausible for the variables in S, giving a better rate of convergence; we

might be more confident that S really does satisfy the back-door criterion.
6 This is not the same sense of the word “sufficient” as in “causal sufficiency”.
7 Going from Eq. 21.22 to Eq. 21.23 uses the fact that R = f(S), so conditioning on both R and S is

the same as just conditioning on S. Going from Eq. 21.23 uses the fact that S ⊥⊥ X|R.

21.1 Estimators in the Back- and Front- Door Criteria 461

It may seem far-fetched that such a summary score should exist, but really all
that’s required is that some combinations of the variables in S carry the same
information about X as the whole of S does. Consider for instance, the set-up
where

X ←
p∑
j=1

Vj + εX (21.28)

Y ← f(X,V1, V2, . . . Vp) + εY (21.29)

To identify the effect of X on Y , we need to block the back-door paths between
them. Each one of the Vj provides such a back-door path, so we need to condition
on all of them. However, if R =

∑p
j=1 Vj, then X ⊥⊥ {V1, V2, . . . Vp} |R, so we could

reduce a p-dimensional set of control variables to a one-dimensional set.
Often, as here, finding summary scores will depend on the functional form,

and so not be available in the general, non-parametric case. There is, however,
an important special case where, if we can use the back-door criterion at all, we
can use a one-dimensional summary.

This is the case where X is binary. If we set f(S) = Pr (X = 1|S = s), and then
take this as our summary R, it is not hard to convince oneself that X ⊥⊥ S|R
(Exercise 21.1). This f(S) is called the propensity score. It is remarkable, and
remarkably convenient, that an arbitrarily large set of control variables S, perhaps
with very complicated relationships with X and Y , can always be boiled down
to a single number between 0 and 1, but there it is.

That said, except in very special circumstances, there is no analytical formula
for f(S). This means that it must be modeled and estimated. The most common
model used is logistic regression, but so far as I can see this is just because many
people know no other way to model a binary outcome. Since accurate propensity
scores are needed to make the method work, it would seem to be worthwhile
to model R very carefully, and to consider GAM or fully non-parametric esti-
mates. If S contains a lot of variables, then estimating Pr (X = 1|S = s) is a
high-dimensional regression problem, and so itself subject to the curse of dimen-
sionality.

21.1.5 Propensity Score Matching

If the number of covariates in S is large, the curse of dimensionality settles upon
us. Many values of S will have few or no individuals at all, let alone a large
number in both the treatment and the control groups. Even if the real difference
E [Y |X = 1, S = s] − E [Y |X = 0, S = s] is small, with only a few individuals in
either sub-group we could easily get a large difference in sample means. And of
course with continuous covariates in S, each individual will generally have no
exact matches at all.

The very clever idea of Rosenbaum and Rubin (1983) is to solve this by match-
ing not on S, but on the propensity score defined in the last section. We have seen
already that when X is binary, adjusting for the propensity score is just as good

462 Estimating Causal Effects

as adjusting for the full set of covariates S. It is easy to double-check (Exercise
21.2) that∑

s

Pr (S = s) (E [Y |X = 1, S = s]− E [Y |X = 0, S = s])

=
∑
r

Pr (R = r) (E [Y |X = 1, R = r]− E [Y |X = 0, R = r]) (21.30)

when R = Pr (X = 1|S = s), so we lose no essential information by matching
on the propensity score R rather than on the covariates S. Intuitively, we now
compare each treated individual with one who was just as likely to have received
the treatment, but, by chance, did not8. On average, the differences between such
matched individuals have to be due to the treatment.

What have we gained by doing this? Since R is always a one-dimensional vari-
able, no matter how big S is, it is going to be much easier to find matches on R
than on S. This does not actually break the curse of dimensionality, but rather
shifts its focus, from the regression of Y on X and S to the regression of X on
S. Still, this can be a very real advantage.

It is important to be clear, however, that the gain here is in computational
tractability and (perhaps) statistical efficiency, not in fundamental identification.
With R = Pr (X = 1|S = s), it will always be true that X ⊥⊥ S|R, whether or
not the back-door criterion is satisfied. If the criterion is satisfied, in principle
there is nothing stopping us from using matching on S to estimate the effect,
except our own impatience. If the criterion is not satisfied, having a compact
one-dimensional summary of the wrong set of control variables is just going to
let us get the wrong answer faster.

Some confusion seems to have arisen on this point, because, conditional on
the propensity score, the treated group and the control group have the same
distribution of covariates. (Again, recall that X ⊥⊥ S|R.) Since treatment and
control groups have the same distribution of covariates in a randomized experi-
ment, some people have concluded that propensity score matching is just as good
as randomization9. This is emphatically not the case.

The propensity score matching method has become incredibly popular since
Rosenbaum and Rubin (1983), and there are a huge number of implementations
of various versions of it. The optmatch package in R is notable for doing the
actual matching in an extremely flexible and efficient way, but leaves defining
matching criteria largely to the user (Hansen and Klopfer, 2006). The MatchIt

package (Ho et al., 2011) includes more tools for actually calculating propensity
scores or other mesures of similarity, and then doing the matching. See Stuart
(2010) for a fairly recent listing of relevant software in R and other languages.

8 Methods of approximate matching often work better on propensity scores than on the full set of

covariates, because the former are lower-dimensional.
9 These people do not include Rubin and Rosenbaum, but it is easy to see how their readers could

come away with this impression. See Pearl (2009b, §11.3.5), and especially Pearl (2009a).

21.2 Instrumental-Variables Estimates 463

21.2 Instrumental-Variables Estimates

§20.3.3 introduced the idea of using instrumental variables to identify causal
effects. Roughly speaking, I is an instrument for identifying the effect of X on
Y when I is a cause of X, but the only way I is associated with Y is through
directed paths which go through X. To the extent that variation in I predicts
variation in X and Y , this can only be because X has a causal influence on Y .
More precisely, given some controls S, I is a valid instrument when I 6⊥⊥ X|S,
and every path from I to Y left open by S has an arrow into X.

In the simplest case, of Figure 20.7, we saw that when everything is linear, we
can find the causal coefficient of Y on X as

β =
Cov [I, Y]

Cov [I,X]
(21.31)

A one-unit change in I causes (on average) an α-unit change in X, and an αβ-unit
change in Y , so β is, as it were, the gearing ratio or leverage of the mechanism
connecting I to Y .

Estimating β by plugging in the sample values of the covariances into Eq. 21.31
is called the Wald estimator of β. In more complex situations, we might have
multiple instruments, and be interested in the causal effects of multiple variables,
and we might have to control for some covariates to block undesired paths and
get valid instruments. In such situations, the Wald estimator breaks down.

There is however a more general procedure which still works, provided the
linearity assumption holds. This is called two-stage regression, or two-stage
least squares (2SLS).

1. Regress X on I and S. Call the fitted values x̂.
2. Regress Y on x̂ and S, but not on I. The coefficient of Y on x̂ is a consistent

estimate of β.

The logic is very much as in the Wald estimator: conditional on S, variations in
I are independent of the rest of the system. The only way they can affect Y is
through their effect on X. In the first stage, then, we see how much changes in
the instruments affect X. In the second stage, we see how much these I-caused
changes in X change Y ; and this gives us what we want.

To actually prove that this works, we would need to go through some heroic
linear algebra to show that the population version of the two-stage estimator is
actually equal to β, and then a straight-forward argument that plugging in the
appropriate sample covariance matrices is consistent. The details can be found
in any econometrics textbook, so I’ll skip them. (But see Exercise 21.4.)

As mentioned in §21.2, there are circumstances where it is possible to use in-
strumental variables in nonlinear and even nonparametric models. The technique
becomes far more complicated, however, because finding Pr (Y = y|do(X = x))
requires solving Eq. 20.15,

Pr (Y |do(I = i)) =
∑
x

Pr (Y |do(X = x)) Pr (X = x|do(I = i))

464 Estimating Causal Effects

and likewise finding E [Y |do(X = x)] means solving

E [Y |do(I = i)] =
∑
x

E [Y |do(X = x)] Pr (X = x|do(I = i)) (21.32)

When, as is generally the case, x is continuous, we have rather an integral equa-
tion,

E [Y |do(I = i)] =

∫
E [Y |do(X = x)] p(x|do(I = i))dx (21.33)

Solving such integral equations is not (in general) impossible, but it is hard,
and the techniques needed are much more complicated than even two-stage least
squares. I will not go over them here, but see Li and Racine (2007, chs. 16–17).

21.3 Uncertainty and Inference

The point of the identification strategies from Chapter 20 is to reduce the problem
of causal inference to that of ordinary statistical inference. Having done so, we can
assess our uncertainty about any of our estimates of causal effects the same way
we would assess any other statistical inference. If we want confidence intervals
or standard errors for E [Y |do(X = 1)] − E [Y |do(X = 0)], for instance, we can
treat our estimate of this like any other point estimate, and proceed accordingly.
In particular, we can use the bootstrap (Chapter 6), if analytical formulas are
unavailable or unappealing.

The one wrinkle to the use of analytical formulas comes from two-stage least-
squares. Taking standard errors, confidence intervals, etc., for β from the usual
formulas for the second regression neglects the fact that this estimate of β comes
from regressing Y on x̂, which is itself an estimate and so uncertain. Even if this
is handled with some care, two-stage least squares is extraordinarily vulnerable to
any violations in the usual assumptions about IID Gaussian errors. Young (2017),
reviewing over 1000 (!) instrumental-variable regressions from top economics jour-
nals, shows that this is not merely a theoretical concern, but undermines a huge
amount of the published literature.

21.4 Recommendations

Instrumental variables are a very clever idea, but they need to be treated with
caution. They only work if the instruments are valid, and that validity is rests
just as much on assumptions about the underlying DAG as any of the other
identification strategies. The crucial point, after all, is that the instrument is
an indirect cause of Y , but only through X, with no other (unblocked) paths
connecting I to Y . This can only too easily fail, if some indirect path has been
neglected. They also require great care in their statistical inference (Young, 2017).

Matching, especially propensity score matching, is just as ingenious, and just
as much at the mercy of the correctness of the DAG. Whether we match di-
rectly on covariates, or indirectly through the propensity score, what matters is

21.5 Further Reading 465

whether the covariates really block off the back-door pathways between X and
Y . If the covariates block those pathways, well and good; any consistent form
of regression will work, including one called “matching” because “nonparametric
nearest-neighbor smoothing” sounds too scary. If the covariates do not block the
back-door pathways, then no amount of statistical ingenuity is going to help you.

There is a curious divide, among practitioners, between those who lean mostly
on instrumental variables, and those who lean mostly on matching. The former
tend to suspect that (in our terms) the covariates used in matching are not enough
to block all the back-door paths10, and to think that the business is more or less
over once an exogenous variable has been found. The matchers, for their part,
think the instrumentalists are too quick to discount the possibility that their
instruments are connected to Y through unmeasured pathways11, but that if you
match on enough variables, you’ve got to block the back-door paths. (They don’t
often worry that they might be conditioning on colliders, or blocking front-door
paths, as they do so.) As is often the case in science, there is much truth to each
faction’s criticism of the other side. You are now in a position to think more clearly
about these matters, and to act more intelligently, than many practitioners.

Throughout these chapters, we have been assuming that we know the correct
DAG. Without such assumptions, or ones equivalent to them, none of these ideas
can be used. In the next chapter, then, we will look at how to actually begin
discovering causal structure from data.

21.5 Further Reading

The material in §21.1 is largely “folklore”, though see Morgan and Winship
(2007), which also treats instrumental variable estimation, and a number of
other, more specialized techniques, like “regression discontinuity designs” and

10 As an example for their side, Arceneaux et al. (2010) applied matching methods to an actual

experiment, where the real causal relations could be worked out straightforwardly for comparison.

Well-conduced propensity-score “matching suggests that [a] pre-election phone call that encouraged

people to wear their seat belts also generated huge increases in voter turnout”. The paper gives a

convincing explanation of where this illusory effect comes from, i.e., of what the unblocked

back-door path is, which I will not spoil for you.
11 For instance, a recent and widely-promoted preprint by three economists argued that watching

television caused autism in children. (I leave tracking down the paper as an exercise for the reader.)

The economists used the variation in how much it rains across different locations in California,

Oregon and Washington as an instrument to predict average TV-watching (X) and its affects on the

prevalence of autism (Y). It is certainly plausible that kids watch more TV when it rains, and that

neither TV-watching nor autism causes rain. But this leaves open the question of whether rain and

the prevalence of autism might not have some common cause, and for the West Coast in particular

it is easy to find one. It is well-established that the risk of autism is higher among children of older

parents, and that more-educated people tend to have children later in life. All three states have, of

course, a striking contrast between large, rainy cities full of educated people (San Francisco,

Portland, Seattle), and very dry, very rural locations on the other side of the mountains. Thus there

is a (potential) uncontrolled common cause of rain and autism, namely geographic location, and the

situation is as in Figure 20.8. — For a rather more convincing effort to apply ideas about causal

inference to understanding the changing prevalence of autism, see Liu et al. (2010).

466 Estimating Causal Effects

“difference in differences”. It does not, however, consider nonparametric regres-
sion methods.

On matching, Stuart (2010) is another good review. For some of the asymptotic
theory, including the connection to nearest neighbor methods, see Abadie and
Imbens (2006).

Rubin and Waterman (2006) is an extremely clear and easy-to-follow intro-
duction to propensity score matching as a method of causal inference; Imbens
and Rubin (2015) is a more comprehensive presentation of the estimation work
done by Rubin, Imbens and collaborators on estimating causal effects by match-
ing, propensity scores, and instrumental variables. (Much of the original work is
reprinted in Rubin 2006.) While sound on theory, its worked examples cannot be
recommended as examples of statistical craft (Shalizi, 2016).

King and Nielsen (2016) is an interesting argument against matching on propen-
sity scores, in favor of matching on the full set of covariates, related to the extra
variance of estimating the propensity scores.

Exercises

21.1 Suppose X is binary, and define R = Pr (X = 1|S). Show that X ⊥⊥ S|R. .

21.2 Prove Eq. 21.30.

21.3 Suppose thatX has three levels, say 0, 1, 2. LetR be the vector (Pr (X = 0|S = s) ,Pr (X = 1|S = s)).

Prove that X ⊥⊥ S|R. (This is how to generalize propensity scores to non-binary X.)

21.4 For the situation in Figure 20.7, prove that the two-stage least-squares estimate of β is

the same as the Wald estimate.

22

Discovering Causal Structure from
Observations

[[ATTN:
Further
examples]]

The last few chapters have, hopefully, convinced you that when you want to do
causal inference, it would help to know the causal graph. We have seen how the
graph would let us calculate the effects of actual or hypothetical manipulations of
the variables in the system. Furthermore, the graph tells us about what effects we
can and cannot identify, and estimate, from observational data. But everything
has posited that we know the graph somehow. This chapter finally deals with
where the graph comes from.

There are fundamentally three ways to get the DAG:

• Prior knowledge

• Guessing-and-testing

• Discovery algorithms

There is only a little to say about the first, because, while it’s important,
it’s not very statistical. As functioning adult human beings, you have a lot of
everyday causal knowledge, which does not disappear the moment you start doing
data analysis. Moreover, you are the inheritor of a vast scientific tradition which
has, through patient observation, toilsome experiments, ingenious theorizing and
intricate debate, acquired even more causal knowledge. You can and should use
this. Someone’s sex or race or caste at birth might be causes of the job they get or
their income at age 30, but not the other way around. Running an electric current
through a wire produces heat at a rate proportional to the square of the current.
Malaria is due to a parasite transmitted by mosquitoes, and spraying mosquitoes
with insecticides makes the survivors more resistant to those chemicals. All of
these sorts of ideas can be expressed graphically, or at least as constraints on
graphs.

We can, and should, also use graphs to represent scientific ideas which are not
as secure as Ohm’s law or the epidemiology of malaria. The ideas people work
with in areas like psychology or economics, are really quite tentative, but they are
ideas about the causal structure of parts of the world, and so graphical models
are implicit in them.

All of which said, even if we think we know very well what’s going on, we will
often still want to check it, and that brings us the guess-and-test route.

467

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

468 Discovering Causal Structure

smoking

tar

genesstress

lung
disease

Figure 22.1 A hypothetical causal model in which smoking is associated
with lung disease, but does not cause it. Rather, both smoking and lung
disease are caused by common genetic variants. (This idea was due to R. A.
Fisher.) Smoking is also caused, in this model, by stress.

22.1 Testing DAGs

A graphical causal model makes two kinds of qualitative claims. One is about
direct causation. If the model says X is a parent of Y , then it says that changing
X will change the (distribution of) Y . If we experiment on X (alone), moving
it back and forth, and yet Y is unaltered, we know the model is wrong and can
throw it out.

The other kind of claim a DAG model makes is about probabilistic conditional
independence. If S d-separates X from Y , then X ⊥⊥ Y |S. If we observed X, Y
and S, and see that X 6⊥⊥ Y |S, then we know the model is wrong and can throw it
out. (More: we know that there is a path linking X and Y which isn’t blocked by
S.) Thus in the model of Figure 22.1, lungdisease ⊥⊥ tar|smoking. If lung disease
and tar turn out to be dependent when conditioning on smoking, the model must
be wrong.

This then is the basis for the guess-and-test approach to getting the DAG:

• Start with an initial guess about the DAG.
• Deduce conditional independence relations from d-separation.
• Test these, and reject the DAG if variables which ought to be conditionally

independent turn out to be dependent.

This is a distillation of primary-school scientific method: formulate a hypotheses
(the DAG), work out what the hypothesis implies, test those predictions, reject
hypotheses which make wrong predictions.

It may happen that there are only a few competing, scientifically-plausible
models, and so only a few, competing DAGs. Then it is usually a good idea to
focus on checking predictions which differ between them. So in both Figure 22.1
and in Figure 22.2, stress ⊥⊥ tar|smoking. Checking that independence thus does
nothing to help us distinguish between the two graphs. In particular, confirming
that stress and tar are independent given smoking really doesn’t give us evidence

22.2 Testing Conditional Independence 469

smoking

tar

genesstress

lung
disease

Figure 22.2 As in Figure 22.1, but now tar in the lungs does cause lung
disease.

for the model from Figure 22.1, since it equally follows from the other model. If
we want such evidence, we have to look for something they disagree about.

In any case, testing a DAG means testing conditional independence, so let’s
turn to that next.

22.2 Testing Conditional Independence

Recall from §18.4 that conditional independence is equivalent to zero conditional
information: X ⊥⊥ Y |Z if and only if I[X;Y |Z] = 0. In principle, this solves the
problem. In practice, estimating mutual information is non-trivial, and in par-
ticular the sample mutual information often has a very complicated distribution.
You could always bootstrap it, but often something more tractable is desirable.
Completely general conditional independence testing is actually an active area
of research. Some of this work is still quite mathematical (Sriperumbudur et al.,
2010), but it has already led to practical tests (Székely and Rizzo, 2009; Gretton
et al., 2012; Zhang et al., 2011) and no doubt more are coming soon.

If all the variables are discrete, one just has a big contingency table problem,
and could use a G2 or χ2 test. If everything is linear and multivariate Gaussian,
X ⊥⊥ Y |Z is equivalent to zero partial correlation1. Nonlinearly, if X ⊥⊥ Y |Z,
then E [Y | Z] = E [Y | X,Z], so if smoothing Y on X and Z leads to different
predictions than just smoothing on Z, conditional independence fails. To reverse
this, and go from E [Y | Z] = E [Y | X,Z] to X ⊥⊥ Y |Z, requires the extra as-
sumption that Y doesn’t depend on X through its variance or any other moment.
(This is weaker than the linear-and-Gaussian assumption, of course.)

The conditional independence relationX ⊥⊥ Y |Z is fully equivalent to Pr (Y | X,Z) =
Pr (Y | Z). We could check this using non-parametric density estimation, though
we would have to bootstrap the distribution of the test statistic. A more auto-
matic, if slightly less rigorous, procedure comes from the idea mentioned in §14.5:

1 Recall that the partial correlation between X and Y given Z is the correlation between X and Y ,

after linearly regressing each of them on Z separately. That is, it is the correlation of their residuals.

470 Discovering Causal Structure

If X is in fact useless for predicting Y given Z, then an adaptive bandwidth selec-
tion procedure (like cross-validation) should realize that giving any finite band-
width to X just leads to over-fitting. The bandwidth given to X should tend
to the maximum allowed, smoothing X away altogether. This argument can be
made more formal, and made into the basis of a test (Hall et al., 2004; Li and
Racine, 2007).

22.3 Faithfulness and Equivalence

In graphical models, d-separation implies conditional independence: if S blocks
all paths from U to V , then U ⊥⊥ V |S. To reverse this, and conclude that if
U ⊥⊥ V |S then S must d-separate U and V , we need an additional assumption,
already referred to in §19.2, called faithfulness. More exactly, if the distribution
is faithful to the graph, then if S does not d-separate U from V , U 6⊥⊥ V |S. The
combination of faithfulness and the Markov property means that U ⊥⊥ V |S if and
only if S d-separates U and V .

This seems extremely promising. We can test whether U ⊥⊥ V |S for any sets
of variables we like. We could in particular test whether each pair of variables is
independent, given all sorts of conditioning variable sets S. If we assume faith-
fulness, when we find that X ⊥⊥ Y |S, we know that S blocks all paths linking X
and Y , so we learn something about the graph. If X 6⊥⊥ Y |S for all S, we would
seem to have little choice but to conclude that X and Y are directly connected.
Might it not be possible to reconstruct or discover the right DAG from knowing
all the conditional independence and dependence relations?

This is on the right track, but too hasty. Start with just two variables:

X → Y ⇒ X 6⊥⊥ Y (22.1)

X ← Y ⇒ X 6⊥⊥ Y (22.2)

With only two variables, there is only one independence (or dependence) relation
to worry about, and it’s the same no matter which way the arrow points.

Similarly, consider these arrangements of three variables:

X → Y → Z (22.3)

X ← Y ← Z (22.4)

X ← Y → Z (22.5)

X → Y ← Z (22.6)

The first two are chains, the third is a fork, the last is a collider. It is not hard
to check (Exercise 22.1) that the first three DAGs all imply exactly the same set
of conditional independence relations, which are different from those implied by
the fourth2

2 In all of the first three, X 6⊥⊥ Z but X ⊥⊥ Z|Y , while in the collider, X ⊥⊥ Z but X 6⊥⊥ Z|Y .

Remarkably enough, the work which introduced the notion of forks and colliders, Reichenbach

(1956), missed this — he thought that X ⊥⊥ Z|Y in a collider as well as a fork. Arguably, this highly

uncharacteristic mistake by a great scholar delayed the development of causal inference by thirty

22.4 Causal Discovery with Known Variables 471

These examples illustrate a general problem. There may be multiple graphs
which imply the same independence relations, even when we assume faithfulness.
When this happens, the exact same distribution of observables can factor ac-
cording to, and be faithful to, all of those graphs. The graphs are thus said to
be equivalent, or Markov equivalent. Observations alone cannot distinguish
between equivalent DAGs. Experiment can, of course — changing Y alters both
X and Z in a fork, but not a chain — which shows that there really is a difference
between the DAGs, just not one observational data can track.

22.3.1 Partial Identification of Effects

Chapters 20–21 considered the identification and estimation of causal effects un-
der the assumption that there was a single known graph. If there are multiple
equivalent DAGs, then, as mentioned above, no amount of purely observational
data can select a single graph. Background knowledge lets us rule out some equiv-
alent DAGs3, but it may not narrow the set of possibilities to a single graph. How
then are we to actually do our causal estimation?

We could just pick one of the equivalent graphs, and do all of our calculations
as though it were the only possible graph. This is often what people seem to do.
The kindest thing one can say about it is that it shows confidence; phrases like
“lying by omission” also come to mind.

A more principled alternative is to admit that the uncertainty about the DAG
means that causal effects are only partially identified. Simply put, one does the
estimation in each of the equivalent graphs, and reports the range of results4. If
each estimate is consistent, then this gives a consistent estimate of the range of
possible effects. Because the effects are not fully identified, this range will not
narrow to a single point, even in the limit of infinite data, but admitting this,
rather than claiming a non-existent precision, is simple scientific honesty.

22.4 Causal Discovery with Known Variables

Section 22.1 talks about how we can test a DAG, once we have it. This lets us
eliminate some DAGs, but still leaves mysterious where they come from in the
first place. While in principle there is nothing wrong which deriving your DAG
from a vision of serpents biting each others’ tails, so long as you test it, it would
be nice to have a systematic way of finding good models. This is the problem of
model discovery, and especially of causal discovery.

years or more, and is one of the reasons why, as Dean Eckles once put it, formal causal inference is

an “idea behind its time”

(http://www.deaneckles.com/blog/429_ideas-behind-their-time-formal-causal-inference/).
3 If we know that X, Y and Z have to be in either a chain or a fork, with Y in the middle, and we

know that X comes before Y in time, then we can rule out the fork and the chain X ← Y → Z.
4 Sometimes the different graphs will gave the same estimates of certain effects. For example, the

chain X → Y → Z and the fork X ← Y → Z will agree on the effect of Y on Z.

http://www.deaneckles.com/blog/429_ideas-behind-their-time-formal-causal-inference/

472 Discovering Causal Structure

Causal discovery is silly with just one variable, and too hard for us with just
two.5

With three or more variables, we have however a very basic principle. If there
is no edge between X and Y , in either direction, then X is neither Y ’s parent
nor its child. But any variable is independent of its non-descendants given its
parents. Thus, for some set6 of variables S, X ⊥⊥ Y |S (Exercise 22.2). If we
assume faithfulness, then the converse holds: if X ⊥⊥ Y |S, then there cannot be
an edge between X and Y . Thus, there is no edge between X and Y if and only if
we can make X and Y independent by conditioning on some S. Said another way,
there is an edge between X and Y if and only if we cannot make the dependence
between them go away, no matter what we condition on7.

So let’s start with three variables, X, Y and Z. By testing for independence and
conditional independence, we could learn that there had to be edges between X
and Y and Y and Z, but not between X and Z. But conditional independence is a
symmetric relationship, so how could we orient those edges, give them direction?
Well, to rehearse a point from the last section, there are only four possible directed
graphs corresponding to that undirected graph:

• X → Y → Z (a chain);
• X ← Y ← Z (the other chain);
• X ← Y → Z (a fork on Y);
• X → Y ← Z (a collision at Y)

With the fork or either chain, we have X ⊥⊥ Z|Y . On the other hand, with
the collider we have X 6⊥⊥ Z|Y . Thus X 6⊥⊥ Z|Y if and only if there is a collision
at Y . By testing for this conditional dependence, we can either definitely orient
the edges, or rule out an orientation. If X − Y −Z is just a subgraph of a larger
graph, we can still identify it as a collider if X 6⊥⊥ Z| {Y, S} for all collections of
nodes S (not including X and Z themselves, of course).

With more nodes and edges, we can induce more orientations of edges by
consistency with orientations we get by identifying colliders. For example, suppose
we know that X,Y, Z is either a chain or a fork on Y . If we learn that X → Y ,
then the triple cannot be a fork, and must be the chain X → Y → Z. So orienting
the X−Y edge induces an orientation of the Y −Z edge. We can also sometimes
orient edges through background knowledge; for instance we might know that Y
comes later in time than X, so if there is an edge between them it cannot run
from Y to X.8 We can eliminate other edges based on similar sorts of background

5 But see Janzing (2007); Hoyer et al. (2009) for some ideas on how you could do it if you’re willing to

make some extra assumptions. The basic idea of these papers is that the distribution of effects given

causes should be simpler, in some sense, than the distribution of causes given effects.
6 Possibly empty: conditioning on the empty set of variables is the same as not conditioning at all.
7 “No causation without association”, as it were.
8 Some have argued, or at least entertained the idea, that the logic here is backwards: rather than

order in time constraining causal relations, causal order defines time order. (Versions of this idea are

discussed by, inter alia, Russell (1927); Wiener (1961); Reichenbach (1956); Pearl (2009b); Janzing

(2007) makes a related suggestion). Arguably then using order in time to orient edges in a causal

graph begs the question, or commits the fallacy of petitio principii. But of course every syllogism

22.4 Causal Discovery with Known Variables 473

knowledge: men tend to be heavier than women, but changing weight does not
change sex, so there can’t be an edge (or even a directed path!) from weight to
sex, though there could be one the other way around.

To sum up, we can rule out an edge between X and Y whenever we can
make them independent by conditioning on other variables; and when we have
an X − Y −Z pattern, we can identify colliders by testing whether X and Z are
dependent given Y . Having oriented the arrows going into colliders, we induce
more orientations of other edges.

Putting these three things — edge elimination by testing, collider finding, and
inducing orientations — gives the most basic causal discovery procedure, the
SGS (Spirtes-Glymour-Scheines) algorithm (Spirtes et al., 2001, §5.4.1, p. 82).
This assumes:

1. The data-generating distribution has the causal Markov property on a graph
G.

2. The data-generating distribution is faithful to G.
3. Every member of the population has the same distribution.
4. All relevant variables are in G.
5. There is only one graph G to which the distribution is faithful.

Abstractly, the algorithm works as follows:

• Start with a complete undirected graph on all p variables, with edges between
all nodes.
• For each pair of variables X and Y , and each set of other variables S, see if
X ⊥⊥ Y |S; if so, remove the edge between X and Y .
• Find colliders by checking for conditional dependence; orient the edges of col-

liders.
• Try to orient undirected edges by consistency with already-oriented edges; do

this recursively until no more edges can be oriented.

Pseudo-code is in §22.7.
Call the result of the SGS algorithm Ĝ. If all of the assumptions above hold,

and the algorithm is correct in its guesses about when variables are conditionally
independent, then Ĝ = G. In practice, of course, conditional independence guesses
are really statistical tests based on finite data, so we should write the output as
Ĝn, to indicate that it is based on only n samples. If the conditional independence
test is consistent, then

lim
n→∞

Pr
(
Ĝn 6= G

)
= 0 (22.7)

In other words, the SGS algorithm converges in probability on the correct causal

does, so this isn’t a distinctively statistical issue. (Take the classic: “All men are mortal; Socrates is

a man; therefore Socrates is mortal.” How can we know that all men are mortal until we know

about the mortality of this particular man, Socrates? Isn’t this just like asserting that tomatoes and

peppers must be poisonous, because they belong to the nightshade family of plants, all of which are

poisonous?) While these philosophical issues are genuinely fascinating, this footnote has gone on

long enough, and it is time to return to the main text.

474 Discovering Causal Structure

structure; it is consistent for all graphs G. Of course, at finite n, the probability
of error — of having the wrong structure — is (generally!) not zero, but this just
means that, like any statistical procedure, we cannot be absolutely certain that
it’s not making a mistake.

One consequence of the independence tests making errors on finite data can
be that we fail to orient some edges — perhaps we missed some colliders. These
unoriented edges in Ĝn can be thought of as something like a confidence region
— they have some orientation, but multiple orientations are all compatible with
the data.9 As more and more edges get oriented, the confidence region shrinks.

If the fifth assumption above fails to hold, then there are multiple graphs G
to which the distribution is faithful. This is just a more complicated version of
the difficulty of distinguishing between the graphs X → Y and X ← Y . All the
graphs in the equivalence class may have some arrows in common; in that case
the SGS algorithm will identify those arrows. If some edges differ in orientation
across the equivalence class, SGS will not orient them, even in the limit. In terms
of the previous paragraph, the confidence region never shrinks to a single point,
just because the data doesn’t provide the information needed to do this. The
graph is only partially identified.

If there are unmeasured relevant variables, we can get not just unoriented
edges, but actually arrows pointing in both directions. This is an excellent sign
that some basic assumption is being violated.

22.4.1 The PC Algorithm

The SGS algorithm is statistically consistent, but very computationally inefficient;
the number of tests it does grows exponentially in the number of variables p. This
is the worst-case complexity for any consistent causal-discovery procedure, but
this algorithm just proceeds immediately to the worst case, not taking advantage
of any possible short-cuts.

Since it’s enough to find one S making X and Y independent to remove their
edge, one obvious short-cut is to do the tests in some order, and skip unnecessary
tests. On the principle of doing the easy work first, the revised edge-removal step
would look something like this:

• For each X and Y , see if X ⊥⊥ Y ; if so, remove their edge.

• For each X and Y which are still connected, and each third variable Z con-
nected to X or Y , see if X ⊥⊥ Y |Z; if so, remove the edge between X and
Y .

• For each X and Y which are still connected, and each third and fourth variables
Z1 and Z2 both connected to X or both connected to Y , see if X ⊥⊥ Y |Z1, Z2;
if so, remove the edge between X and Y .

• . . .

9 I say “multiple orientations” rather than “all orientations”, because picking a direction for one edge

might induce an orientation for others.

22.4 Causal Discovery with Known Variables 475

• For each X and Y which are still connected at the kth stage, see if there
are k variables Z1, Z2, . . . Zk all connected to X or all connected to Y where
X ⊥⊥ Y | {Z1, . . . Zk}; if so, remove, the edge between X and Y .

• . . .

• Stop when k = p− 2.

If all the tests are done correctly, this will give the same result as the SGS proce-
dure (Exercise 22.4). And if some of the tests give erroneous results, conditioning
on a small number of variables will tend to be more reliable than conditioning on
more (why?).

We can be even more efficient, however. If X ⊥⊥ Y |S for any S at all, then
X ⊥⊥ Y |S′, where all the variables in S′ are adjacent to X or Y (or both) (Exercise
22.3). To see the sense of this, suppose that there is a single long directed path
running from X to Y . If we condition on any of the variables along the chain, we
make X and Y independent, but we could always move the point where we block
the chain to be either right next to X or right next to Y . So when we are trying
to remove edges and make X and Y independent, we only need to condition on
variables which are still connected to X and Y , not ones in totally different parts
of the graph.

This then gives us the PC10 algorithm (Spirtes et al. 2001, §5.4.2, pp. 84–88; see
also §22.7). It works exactly like the SGS algorithm, except for the edge-removal
step, where it tries to condition on as few variables as possible (as above), and only
conditions on adjacent variables. The PC algorithm has the same assumptions as
the SGS algorithm, and the same consistency properties, but generally runs much
faster, and does many fewer statistical tests. It should be the default algorithm
for attempting causal discovery.

22.4.2 Causal Discovery with Hidden Variables

Suppose that the set of variables we measure is not causally sufficient. Could we at
least discover this? Could we possibly get hold of some of the causal relationships?
Algorithms which can do this exist (e.g., the CI and FCI algorithms of Spirtes
et al. (2001, ch. 6)), but they require considerably more graph-fu. (The RFCI
algorithm (Colombo et al., 2012) is a modern, fast successor to FCI.) The results
of these algorithms can succeed in removing some edges between observable vari-
ables, and definitely orienting some of the remaining edges. If there are actually
no latent common causes, they end up acting like the SGS or PC algorithms.

Partial identification of effects

When all relevant variables are observed, all effects are identified within one
graph; partial identification happens because multiple graphs are equivalent.
When some variables are not observed, we may have to use the identification
strategies to get at the same effect. In fact, the same effect may be identified in

10 Peter-Clark

476 Discovering Causal Structure

one graph and not identified in another, equivalent graph. This is, again, unfor-
tunate, but when it happens it needs to be admitted.

22.4.3 On Conditional Independence Tests

The abstract algorithms for causal discovery assume the existence of consistent
tests for conditional independence. The implementations known to me mostly
assume either that variables are discrete (so that one can basically use the χ2

test), or that they are continuous, Gaussian, and linearly related (so that one
can test for vanishing partial correlations), though the pcalg package does al-
low users to provide their own conditional independence tests as arguments. It
bears emphasizing that these restrictions are not essential. As soon as you have
a consistent independence test, you are, in principle, in business. In particular,
consistent non-parametric tests of conditional independence would work perfectly
well. An interesting example of this is the paper by Chu and Glymour (2008),
on finding causal models for the time series, assuming additive but non-linear
models.

22.5 Software and Examples

The PC and FCI algorithms are implemented in the stand-alone Java program
Tetrad (http://www.phil.cmu.edu/projects/tetrad/). They are also imple-
mented in the pcalg package on CRAN (Kalisch et al., 2010, 2012). This pack-
age also includes functions for calculating the effects of interventions from fitted
graphs, assuming linear models. The documentation for the package is somewhat
confusing; rather see Kalisch et al. (2012) for a tutorial introduction.[[TODO:

Cleanup
output
from the
package]]

It’s worth going through how pcalg works11. The code is designed to take ad-
vantage of the modularity and abstraction of the PC algorithm itself; it separates
actually finding the graph completely from performing the conditional indepen-
dence test, which is rather a function the user supplies. (Some common ones
are built in.) For reasons of computational efficiency, in turn, the conditional in-
dependence tests are set up so that the user can just supply a set of sufficient
statistics, rather than the raw data.

Let’s walk through an example12, using the mathmarks data set. This contains
grades (“marks”) from 88 university students in five mathematical subjects, al-
gebra, analysis, mechanics, statistics and vectors. All five variables are positively
correlated with each other.

11 A word about installing the package: you’ll need the package Rgraphviz for drawing graphs, which

is hosted not on CRAN (like pcalg) but on BioConductor. Try installing it, and its dependencies,

before installing pcalg. See

http://www.bioconductor.org/packages/release/bioc/html/Rgraphviz.html for help on installing

Rgraphviz.
12 After Spirtes et al. (2001, §6.12, pp. 152–154).

http://www.phil.cmu.edu/projects/tetrad/
http://www.bioconductor.org/packages/release/bioc/html/Rgraphviz.html

22.5 Software and Examples 477

library(pcalg)
library(SMPracticals)
data(mathmarks)
suffStat <- list(C=cor(mathmarks),n=nrow(mathmarks))
pc.fit <- pc(suffStat, indepTest=gaussCItest, p=ncol(mathmarks),alpha=0.005)

This uses a Gaussian (-and-linear) test for conditional independence, gaussCItest,
which is built into the pcalg package. Basically, it hopes to test whetherX ⊥⊥ Y |Z
by testing whether the partial correlation of X and Y given Z is close to zero.
These partial correlations can all be calculated from the correlation matrix, so the
line before creates the sufficient statistics needed by gaussCItest — the matrix
of correlations and the number of data points. We also have to tell pc how many
variables there are, and what significance level to use in the test (here, 0.5%).

Before going on, I encourage you to run pc as above, but with verbose=TRUE,
and to study the output.

Figure 22.3 shows the resulting DAG. If we take it seriously, it says that grades
in analysis are driven by grades in algebra, while algebra in turn is driven by
statistics and vectors. While one could make up stories for why this would be
so (perhaps something about the curriculum?), it seems safer to regard this as
a warning against blindly trusting any algorithm —- a key assumption of the
PC algorithm, after all, is that there are no unmeasured but causally-relevant
variables, and it is easy to believe these are violated. For instance, while knowledge
of different mathematical fields may be causally linked (it would indeed be hard
to learn much mechanics without knowing about vectors), test scores are only
imperfect measurements of knowledge.

The size of the test may seem low, but remember we are doing a lot of tests:

summary(pc.fit)
Object of class 'pcAlgo', from Call:
pc(suffStat = suffStat, indepTest = gaussCItest, alpha = 0.005,
p = ncol(mathmarks))
##
Nmb. edgetests during skeleton estimation:
===
Max. order of algorithm: 3
Number of edgetests from m = 0 up to m = 3 : 20 38 10 0
##
Graphical properties of skeleton:
=================================
Max. number of neighbours: 2 at node(s) 2
Avg. number of neighbours: 1
##
Adjacency Matrix G:
1 2 3 4 5
1 . 1 . . .
2 1 . 1 . .
3 . . . 1 .
4
5 . . 1 . .

This tells us that it considered going up to conditioning on three variables (the

478 Discovering Causal Structure

Inferred DAG for mathmarks

mechanics

vectors

algebra

analysis

statistics

library(Rgraphviz)
plot(pc.fit,labels=colnames(mathmarks),main="Inferred DAG for mathmarks")

Figure 22.3 DAG inferred by the PC algorithm from the mathmarks data.
Two-headed arrows, like undirected edges, indicate that the algorithm was
unable to orient the edge. (It is obscure why pcalg sometimes gives an edge
it cannot orient no heads and sometimes two.)

maximum possible, since there are only five variables), that it did twenty tests
of unconditional independence, 31 tests where it conditioned on one variable,
four tests where it conditioned on two, and none where it conditioned on three.
This 55 tests in all, so a simple Bonferroni correction suggests the over-all size
is 55 × 0.005 = 0.275. This is probably pessimistic (the Bonferroni correction
typically is). Setting α = 0.05 gives a somewhat different graph (Figure 22.4).

22.5 Software and Examples 479

mechanics

vectors

algebra

analysis

statistics

plot(pc(suffStat, indepTest=gaussCItest, p=ncol(mathmarks),alpha=0.05),
labels=colnames(mathmarks),main="")

Figure 22.4 Inferred DAG when the size of the test is 0.05.

480 Discovering Causal Structure

For a second example13, let’s use some data on academic productivity among
psychologists. The two variables of ultimate interest were the publication (pubs)
and citation (cites) rates, with possible measured causes including ability

(basically, standardized test scores), graduate program quality grad (basically,
the program’s national rank), the quality of the psychologist’s first job, first, a
measure of productivity prod, and sex. There were 162 subjects, and while the
actual data isn’t reported, the correlation matrix is.

psychs
ability grad prod first sex cites pubs
ability 1.00 0.62 0.25 0.16 -0.10 0.29 0.18
grad 0.62 1.00 0.09 0.28 0.00 0.25 0.15
prod 0.25 0.09 1.00 0.07 0.03 0.34 0.19
first 0.16 0.28 0.07 1.00 0.10 0.37 0.41
sex -0.10 0.00 0.03 0.10 1.00 0.13 0.43
cites 0.29 0.25 0.34 0.37 0.13 1.00 0.55
pubs 0.18 0.15 0.19 0.41 0.43 0.55 1.00

The model found by pcalg is fairly reasonable-looking (Figure 22.5). Of course,
the linear-and-Gaussian assumption has no particular support here, and there is
at least one variable for which it must be wrong (which?), but unfortunately with
just the correlation matrix we cannot go further.

13 Following Spirtes et al. (2001, §5.8.1, pp. 98–102).

22.5 Software and Examples 481

ability

grad prod

first sex cites

pubs

plot(pc(list(C=psychs,n=162),indepTest=gaussCItest,p=7,alpha=0.01),
labels=colnames(psychs),main="")

Figure 22.5 Causes of academic success among psychologists. The arrow
from citations to publications is a bit odd, but not impossible — people who
get cited more might get more opportunities to do research and so to
publish.

482 Discovering Causal Structure

22.6 Limitations on Consistency of Causal Discovery

There are some important limitations to causal discovery algorithms (Spirtes
et al., 2001, §12.4). They are universally consistent: for all causal graphs G,14

lim
n→∞

Pr
(
Ĝn 6= G

)
= 0 (22.8)

The probability of getting the graph wrong can be made arbitrarily small by using
enough data. However, this says nothing about how much data we need to achieve
a given level of confidence, i.e., the rate of convergence. Uniform consistency would
mean that we could put a bound on the probability of error as a function of n
which did not depend on the true graph G. Robins et al. (2003) proved that no
uniformly-consistent causal discovery algorithm can exist. The issue, basically,
is that the Adversary could make the convergence in Eq. 22.8 arbitrarily slow
by selecting a distribution which, while faithful to G, came very close to being
unfaithful, making some of the dependencies implied by the graph arbitrarily
small. For any given dependence strength, there’s some amount of data which
will let us recognize it with high confidence, but the Adversary can make the
required data size as large as he likes by weakening the dependence, without ever
setting it to zero15.

The upshot is that so uniform, universal consistency is out of the question; we
can be universally consistent, but without a uniform rate of convergence; or we
can converge uniformly, but only on some less-than-universal class of distribu-
tions. These might be ones where all the dependencies which do exist are not too
weak (and so not too hard to learn reliably from data), or the number of true
edges is not too large (so that if we haven’t seen edges yet they probably don’t
exist; Janzing and Herrmann, 2003; Kalisch and Bühlmnann, 2007).

It’s worth emphasizing that the Robins et al. (2003) no-uniform-consistency
result applies to any method of discovering causal structure from data. Invoking
human judgment, Bayesian prior distributions over possible causal structures,
etc., etc., won’t get you out of it.

22.7 Pseudo-code for the SGS Algorithm16

When you see a loop, assume that it gets entered at least once. “Replace” in the
sub-functions always refers to the input graph.

SGS = function(set of variables V) {
Ĝ = colliders(prune(complete undirected graph on V))

until (Ĝ == G′) {
Ĝ = G′

14 If the true distribution is faithful to multiple graphs, then we should read G as their equivalence

class, which has some undirected edges.
15 See §18.4 for a more quantitative statement of how the required sample size relates to

non-parametric measures of the strength of dependence.
16 This section may be omitted on first (and maybe even second) reading.

22.8 Further Reading 483

G′ = orient(Ĝ)
}
return(Ĝ)

}

prune = function(G) {
for each A,B ∈ V {

for each S ⊆ V \ {A,B} {
if A ⊥⊥ B|S { G = G \ (A−B) }

}
}
return(G)

}

collliders = function(G) {
for each (A−B) ∈ G {

for each (B − C) ∈ G {
if (A− C) 6∈ G {

collision = TRUE

for each S ⊂ B ∩V \ {A,C} {
if A ⊥⊥ C|S { collision = FALSE }

}
if (collision) { replace (A−B) with (A→ B), (B − C) with (B ← C) }

}
}

}
return(G)

}

orient = function(G) {
if ((A→ B) ∈ G & (B − C) ∈ G & (A− C) 6∈ G) { replace (B − C) with (B → C) }
if ((directed path from A to B)∈ G & (A−B) ∈ G) { replace (A−B) with (A→ B) }
return(G)

}

22.8 Further Reading

The best single reference on causal discovery algorithms remains Spirtes et al.
(2001). A lot of work has been done in recent years by the group centered around
ETH-Zürich, beginning with Kalisch and Bühlmnann (2007), connecting this to
modern statistical concerns about sparse effects and high-dimensional modeling.

As already mentioned, the best reference on partial identification is Manski
(2007). Partial identification of causal effects due to multiple equivalent DAGs
is considered in Maathuis et al. (2009), along with efficient algorithms for linear

484 Discovering Causal Structure

systems, which are applied in Maathuis et al. (2010), and implemented in the
pcalg package as ida.

Discovery is possible for directed cyclic graphs, though since it’s harder to
understand what such models mean, it is less well-developed. Important papers
on this topic include Richardson (1996) and Lacerda et al. (2008).

Exercises

22.1 Prove that, assuming faithfulness, a three-variable chain and a three-variable fork imply

exactly the same set of dependence and independence relations, but that these are dif-

ferent from those implied by a three-variable collider. Are any implications common to

chains, forks, and colliders? Could colliders be distinguished from chains and forks without

assuming faithfulness?

22.2 Prove that if X and Y are not parent and child, then either X ⊥⊥ Y , or there exists a set

of variables S such that X ⊥⊥ Y |S. Hint: start with the Markov property, that any X is

independent of all its non-descendants given its parents, and consider separately the cases

where Y a descendant of X and those where it is not.

22.3 Prove that if X ⊥⊥ Y |S for some set of variables S, then X ⊥⊥ Y |S′, where every variable

in S′ is a neighbor of X or Y .

22.4 Prove that the graph produced by the edge-removal step of the PC algorithm is exactly

the same as the graph produced by the edge-removal step of the SGS algorithm. Hint:

SGS removes the edge between X and Y when X ⊥⊥ Y |S for even one set S.

22.5 When, exactly, does E [Y | X,Z] = E [Y | Z] imply Y ⊥⊥ X|Z?

22.6 Would the SGS algorithm work on a non-causal, merely-probabilistic DAG? If so, in what

sense is it a causal discovery algorithm? If not, why not?

22.7 Describe how to use bandwidth selection as a conditional independence test.

22.8 Read Kalisch et al. (2012) and write a conditional independence test function based on

bandwidth selection (§14.5). Check that your test gives the right size when run on simu-

lated cases where you know the variables are conditionally independent. Check that your

test function works with pcalg::pc.

Part IV

Dependent Data

485

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

23

Time Series

So far, we have assumed that all data points are pretty much independent of each
other. In the chapters on regression, we assumed that each Yi was independent
of every other, given its Xi, and we often assumed that the Xi were themselves
independent. In Parts II and III, we allowed for arbitrarily complicated depen-
dence between the variables, but each multivariate data-point was assumed to be
generated independently. We will now relax this assumption, and see what sense
we can make of dependent data.

23.1 What Time Series Are

The simplest form of dependent data are time series, which are just what they
sound like: a series of values recorded over time. The most common version of this,
in statistical applications, is to have measurements of a variable or variables X
at equally-spaced time-points starting from t, written say Xt, Xt+h, Xt+2h, . . ., or
X(t), X(t+h), X(t+2h), Here h, the amount of time between observations, is
called the “sampling interval”, and 1/h is the “sampling frequency” or “sampling
rate”.

Figure 23.1 shows two fairly typical time series. One of them is actual data
(the number of lynxes trapped each year in a particular region of Canada); the
other is the output of a purely artificial model. (Without the labels, it might
not be obvious which one was which.) The core idea of time series analysis is
one which we’re already familiar with from the rest of statistics: we regard the
actual time series we see as one realization of some underlying, partially-random
(“stochastic”) process, which generated the data. We use the data to make guesses
(“inferences”) about the process, and want to make reliable guesses while being
clear about the uncertainty involved. The complication is that each observation
is dependent on all the other observations; in fact it’s usually this dependence
that we want to draw inferences about.

Other kinds of time series

One sometimes encounters irregularly-sampled time series,X(t1), X(t2), . . ., where
ti− ti−1 6= ti+1− ti. This is mostly an annoyance, unless the observation times are
somehow dependent on the values. Continuously-observed processes are rarer —
especially now that digital sampling has replaced analog measurement in so many
applications. (It is more common to model the process as evolving continuously

487

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

488 Time Series

logistic.map <- function(x, r = 4) {
r * x * (1 - x)

}
logistic.iteration <- function(n, x.init, r = 4) {

x <- vector(length = n)
x[1] <- x.init
for (i in 1:(n - 1)) {

x[i + 1] <- logistic.map(x[i], r = r)
}
return(x)

}
x <- logistic.iteration(1000, x.init = runif(1))
y <- x + rnorm(1000, mean = 0, sd = 0.05)

Code Example 31: Code defining our synthetic data set. Why is this “logistic”?

in time, but observe it at discrete times.) We skip both of these in the interest of
space.

Regular, irregular or continuous time series all record the same variable at
every moment of time. An alternative is to just record the sequence of times at
which some event happened; this is called a “point process”. More refined data
might record the time of each event and its type — a “marked point process”.
Point processes include very important kinds of data (e.g., earthquakes), but they
need special techniques, and we’ll skip them (though see §23.12).

Notation

For a regularly-sampled time series, it’s convenient not to have to keep writing the
actual time, but just the position in the series, as X1, X2, . . ., or X(1), X(2),
This leads to a useful short-hand, that Xi:j = (Xi, Xi+1, . . . Xj−1, Xj), a whole
block of time; some people write Xj

i with the same meaning.

23.2 Stationarity

In our old IID world, the distribution of each observation is the same as the
distribution of every other data point. It would be nice to have something like
this for time series. The property is called stationarity, which doesn’t mean that
the value of the time series never changes, but that its distribution doesn’t.

More precisely, a time series is strictly stationary or strongly stationary
when X1:k and Xt:t+k−1 have the same distribution, for all k and t — the distri-
bution of blocks of length k is time-invariant. Again, this doesn’t mean that
every block of length k has the same value, just that it has the same distribution
of values.

If there is strong or strict stationarity, there should be weak or loose (or
wide-sense) stationarity, and there is. All it requires is that E [X1] = E [Xt], and
that Cov [X1, Xk] = Cov [Xt, Xt+k−1]. (Notice that it’s not dealing with whole
blocks of time any more, just one or two time-points.)

Strong stationarity implies weak stationarity, but not, in general, the other

23.2 Stationarity 489

Time

ly
nx

1820 1860 1900

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

y t

par(mfrow = c(1, 2))
plot(lynx)
plot(y[1:100], xlab = "t", ylab = expression(y[t]), type = "l")
par(mfrow = c(1, 1))

Figure 23.1 Left: annual number of trapped lynxes in the Mackenzie River
region of Canada. Right: a toy dynamical model, simulated from Code
Example 31.

way around, hence the names. It may not surprise you to learn that strong and
weak stationarity coincide when Xt is a Gaussian process, but not, in general,
otherwise. You can prove all the claims in this paragraph in Exercise 23.1.

You should convince yourself that an IID sequence is strongly stationary.

490 Time Series

23.2.1 Autocorrelation

Time series are serially dependent: Xt is in general dependent on all earlier
values in time, and on all later ones. Typically, however, there is decay of depen-
dence (sometimes called decay of correlations): Xt and Xt+h become more
and more nearly independent as h→∞. The oldest way of measuring this is the
autocovariance,

γ(h) = Cov [Xt, Xt+h] (23.1)

which is well-defined just when the process is weakly stationary. We could equally
well use the autocorrelation,

ρ(h) =
Cov [Xt, Xt+h]

V [Xt]
=
γ(h)

γ(0)
(23.2)

again using stationarity to simplify the denominator.
As I said, for most time series γ(h) → 0 as h grows. Of course, γ(h) could

be exactly zero while Xt and Xt+h are strongly dependent. Figure 23.2 shows
the autocorrelation functions (ACFs) of the lynx data and the simulation model;
the correlation for the latter is basically never distinguishable from zero, which
doesn’t accord at all with the visual impression of the series. Indeed, we can
confirm that something is going on the series by the simple device of plotting
Xt+1 against Xt (Figure 23.3). More general measures of dependence would in-
clude looking at the Spearman rank-correlation of Xt and Xt+h, or quantities like
mutual information.

Autocorrelation is important for four reasons, however. First, because it is the
oldest measure of serial dependence, it has a “large installed base”: everybody
knows about it, they use it to communicate, and they’ll ask you about it. Second,
in the rather special case of Gaussian processes, it really does tell us everything
we need to know. Third, in the somewhat less special case of linear prediction,
it tells us everything we need to know. Fourth and finally, it plays an important
role in a crucial theoretical result, which we’ll go over next.

23.2.2 The Ergodic Theorem

With IID data, the ultimate basis of all our statistical inference is the law of large
numbers, which told us that

1

n

n∑
i=1

Xi → E [X1] (23.3)

For complicated historical reasons, the corresponding result for time series is
called the ergodic theorem1. The most general and powerful versions of it are

1 In the late 1800s, the physicist Ludwig Boltzmann needed a word to express the idea that if you

took an isolated system at constant energy and let it run, any one trajectory, continued long

enough, would be representative of the system as a whole. Being a highly-educated nineteenth

century German-speaker, Boltzmann knew far too much ancient Greek, so he called this the

“ergodic property”, from ergon “energy, work” and hodos “way, path”. The name stuck.

23.2 Stationarity 491

quite formidable, and have very subtle proofs, but there is a simple version which
gives the flavor of them all, and is often useful enough.

23.2.2.1 The World’s Simplest Ergodic Theorem

Suppose Xt is weakly stationary, and that

∞∑
h=0

|γ(h)| = γ(0)τ <∞ (23.4)

(Remember that γ(0) = V [Xt].) The quantity τ is called the correlation time,
or integrated autocorrelation time.

Now consider the average of the first n observations,

Xn =
1

n

n∑
t=1

Xt (23.5)

This time average is a random variable. Its expectation value is

E
[
Xn

]
=

1

n

n∑
t=1

E [Xt] = E [X1] (23.6)

because the mean is stationary. What about its variance?

V
[
Xn

]
= V

[
1

n

n∑
t=1

Xt

]
(23.7)

=
1

n2

[
n∑
t=1

V [Xt] + 2
n∑
t=1

n∑
s=t+1

Cov [Xt, Xs]

]
(23.8)

=
1

n2

[
nV [X1] + 2

n∑
t=1

n∑
s=t+1

γ(s− t)
]

(23.9)

≤ 1

n2

[
nγ(0) + 2

n∑
t=1

n∑
s=t+1

|γ(s− t)|
]

(23.10)

≤ 1

n2

[
nγ(0) + 2

n∑
t=1

n∑
h=1

|γ(h)|
]

(23.11)

≤ 1

n2

[
nγ(0) + 2

n∑
t=1

∞∑
h=1

|γ(h)|
]

(23.12)

=
nγ(0)(1 + 2τ)

n2
(23.13)

=
γ(0)(1 + 2τ)

n
(23.14)

Eq. 23.9 uses stationarity again, and then Eq. 23.13 uses the assumption that the
correlation time τ is finite.

492 Time Series

Since E
[
Xn

]
= E [X1], and V

[
Xn

]
→ 0, we have that

Xn → E [X1] (23.15)

exactly as in the IID case. (“Time averages converge on expected values.”) In
fact, we can say a bit more. Remember Chebyshev’s inequality: for any random
variable Z,

Pr (|Z − E [Z] | > ε) ≤ V [Z]

ε2
(23.16)

so

Pr
(
|Xn − E [X1] | > ε

)
≤ γ(0)(1 + 2τ)

nε2
(23.17)

which goes to zero as n grows for any given ε.
You may wonder whether the condition that

∑∞
h=0 |γ(h)| <∞ is as weak as pos-

sible. It turns out that it can in fact be weakened to just limn→∞
1
n

∑n
h=0 γ(h) = 0,

as indeed the proof above might suggest.
The argument above can actually be extended to some non-stationary pro-

cesses; see Exercise 23.8.

23.2.2.2 Rate of Convergence

If the Xt were all IID, or even just uncorrelated, we would have V
[
Xn

]
= γ(0)/n

exactly. Our bound on the variance is larger by a factor of (1+2τ), which reflects
the influence of the correlations. Said another way, we can more or less pretend
that instead of having n correlated data points, we have n/(1 + 2τ) independent
data points, that n/(1 + 2τ) is our effective sample size2

Generally speaking, dependence between observations reduces the effective
sample size, and the stronger the dependence, the greater the reduction. (For
an extreme example, consider the situation where X1 is randomly drawn, but
thereafter Xt+1 = Xt.) In more complicated situations, finding the effective sam-
ple size is itself a tricky undertaking, but it’s often got this general flavor.

23.2.2.3 Why Ergodicity Matters

The ergodic theorem is important, because it tells us that a single long time
series becomes representative of the whole data-generating process, just the same
way that a large IID sample becomes representative of the whole population or
distribution. We can therefore actually learn about the process from empirical
data.

Strictly speaking, we have established that time-averages converge on expecta-
tions only for Xt itself. This doesn’t directly address what happens for a transfor-
mation f(Xt) where the function f is non-linear. It might be that f(Xt) doesn’t
have a finite correlation time even though Xt does, or indeed vice versa. This is
annoying; we don’t want to have to go through the analysis of the last section
for every different function we might want to calculate.

2 Some people like to define the correlation time as, in this notation, 1 + 2τ for just this reason.

23.3 Markov Models 493

When people say that the whole process is ergodic, they roughly speaking
mean that

1

n

n∑
t=1

f(Xt:t+k−1)→ E [f(X1:k)] (23.18)

for any reasonable function f . This is (again very roughly) equivalent to

1

n

n∑
t=1

Pr (X1:k ∈ A,Xt:t+l−1 ∈ B)→ Pr (X1:k ∈ A) Pr (X1:l ∈ B) (23.19)

which is a kind of asymptotic independence-on-average3

If our data source is ergodic, then what Eq. 23.18 tells us is that sample aver-
ages of any reasonable function are representative of expectation values, which is
what we need to be in business statistically. This in turn is basically implied by
stationarity.4 What does this let us do?

23.3 Markov Models

For this section, we’ll assume that Xt comes from a stationary, ergodic time
series. So for any reasonable function f , the time-average of f(Xt) converges on
E [f(X1)]. Among the “reasonable” functions are the indicators, so

1

n

n∑
t=1

1A(Xt)→ Pr (X1 ∈ A) (23.20)

3 Here’s a sketch of a less rough statement. Instead of working with Xt, work with the whole future

trajectory Yt = (Xt, Xt+1, Xt+2, . . .). Now the dynamics, the rule which moves us into the future,

can be summed up in a very simple, and deterministic, operation T :

Yt+1 = TYt = (Xt+1, Xt+2, Xt+3, . . .). A set of trajectories is invariant if it is left unchanged by T :

for every y ∈ A, there is another y′ in A where Ty′ = y. A process is ergodic if every invariant set

either has probability 0 or probability 1. What this means is that (almost) all trajectories generated

by an ergodic process belong to a single invariant set, and they all wander from every part of that

set to every other part — they are metrically transitive. (Because: no smaller set with any

probability is invariant.) Metric transitivity, in turn, is equivalent, assuming stationarity, to

n−1
∑n−1
t=0 Pr

(
Y ∈ A, T tY ∈ B

)
→ Pr (Y ∈ A) Pr (Y ∈ B). From metric transitivity follows

Birkhoff’s “individual” ergodic theorem, that n−1
∑n−1
t=0 f(T tY)→ E [f(Y)], with probability 1.

Since a function of the trajectory can be a function of a block of length k, we get Eq. 23.18. —

These definitions, and the proofs of the associated claims, are all pretty standard in ergodic theory;

Gray (2009) is a good source.
4 Another sketch of a less rough statement: Use Y again for whole trajectories. Every stationary

distribution for Y can be written as a mixture of stationary and ergodic distributions, rather as we

wrote complicated distributions as mixtures of simple Gaussians in Chapter 17. (This is called the

“ergodic decomposition” of the process: see Gray 2009.) We can think of this as first picking an

ergodic process according to some fixed distribution, and then generating Y from that process. Time

averages computed along any one trajectory thus converge according to Eq. 23.18. If we have only a

single trajectory, it looks just like a stationary and ergodic process. It is thus common to assume

that the data source is not only stationary but also ergodic. This only becomes a problem if we have

multiple trajectories from the same source, each of which one may be converging to a different

ergodic component.

494 Time Series

Since this also applies to functions of blocks,

1

n

n∑
t=1

1A,B(Xt, Xt+1)→ Pr (X1 ∈ A,X2 ∈ B) (23.21)

and so on. If we can learn joint and marginal probabilities, and we remember how
to divide, then we can learn conditional probabilities.

It turns out that pretty much any density estimation method which works for
IID data will also work for getting the marginal and conditional distributions
of time series (though, again, the effective sample size depends on how quickly
dependence decays). So if we want to know p(xt), or p(xt+1 | xt), we can estimate
it just as we learned how to do in Chapter 14. Just as in that chapter, much the
same techniques apply whether x is discrete or continuous; for brevity, I’ll speak
as though x is continuous and p(xt+1 | xt) is a conditional pdf.

Now, the conditional distribution p(xt+1 | xt) always exists, and we can always
estimate it. But why stop just one step back into the past? Why not look at
p(xt+1 | xt, xt−1), or for that matter p(xt+1 | xt−999:t)? There are three reasons, in
decreasing order of pragmatism.

• Estimating p(xt+1 | xt−999:t) means estimating a thousand-and-one-dimensional
distribution. The curse of dimensionality will crush us.

• Because of the decay of dependence, there shouldn’t be much difference, much
of the time, between p(xt+1 | xt−999:t) and p(xt+1 | xt−998:t), etc. Even if we could
go very far back into the past, it shouldn’t, usually, change our predictions very
much.

• Sometimes, a finite, short block of the past completely screens off the remote
past.

You will remember the Markov property from your previous probability classes:

Xt+1 ⊥⊥ X1:t−1 | Xt (23.22)

When the Markov property holds, there is simply no point in looking at p(xt+1 |
xt, xt−1), because it’s got to be just the same as p(xt+1 | xt). If the process isn’t
a simple Markov chain but has a higher-order Markov property,

Xt+1 ⊥⊥ X1:t−k | Xt−k+1:t (23.23)

then we never have to condition on more than the last k steps to learn all that
there is to know. The Markov property means that the current state screens off
the future from the past.

It is always an option to model Xt as a Markov process, or a higher-order
Markov process. If it isn’t exactly Markov, if there’s really some dependence be-
tween the past and the future even given the current state, then we’re introducing
some bias, but it can be small, and dominated by the reduced variance of not
having to worry about higher-order dependencies.

23.3 Markov Models 495

23.3.1 Meaning of the Markov Property

The Markov property is a weakening both of being strictly IID and of being
strictly deterministic.

That being Markov is weaker than being IID should be obvious: an IID sequence
satisfies the Markov property, because everything is independent of everything
else no matter what we condition on.

In a deterministic dynamical system, on the other hand, we have Xt+1 = g(Xt)
for some fixed function g. Iterating this equation, the current state Xt fixes the
whole future trajectory Xt+1, Xt+2, In a Markov chain, we weaken this to
Xt+1 = g(Xt, Ut), where the Ut are IID noise variables (which we can take to be
uniform for simplicity). The current state of a Markov chain doesn’t fix the exact
future trajectory, but it does fix the distribution over trajectories.

The real meaning of the Markov property, then, is about information flow: the
current state is the only channel through which the past can affect the future.

23.3.2 Estimating Markov Models

Once we believe that we’re dealing with a Markov process, we really have only
two things to have to estimate: the conditional distribution p(xt+1 | xt), and the
initial distribution p(x1). Let’s focus on the first, for reasons which will become
apparent shortly. If X is continuous, then, as I said above, pretty much any
method for estimating conditional distributions could be used. This is also true
if X is discrete, but it’s also possible to simplify matters.

Suppose that there are m states, so that we can collect all the probabilities
Pr (Xt+1 = j|Xt = i) in an m ×m matrix p of transition rates or transition
probabilities. Then the conditional likelihood of the time series, given the first
observation x1, is

n∏
t=2

pXt−1Xt =
∏
i,j

p
Nij
ij (23.24)

where I’ve introduced the (random) transition counts5 Nij, which tell us how
many times the state i was followed by the state j. The log-likelihood is therefore∑

i,j

Nij log pij (23.25)

Before we can maximize this, we need to impose the constraint that each state is
followed by something: for each i, ∑

j

pij = 1 (23.26)

5 It should be clear from the equation that if the process is Markovian, then any two sequences with

the same transition counts are equally probable. It turns out that if the probability is the same for

all sequences with equal transition counts, then the process must be Markovian, though the proof is

intricate (Diaconis and Freedman, 1980).

496 Time Series

We need to introduce m Lagrange multipliers to enforce these m constraints.
Doing so, we get the very natural solution (Exercise 23.3):

p̂ij =
Nij∑
j Nij

(23.27)

Each time the process revisits state i, the next state is (by the Markov property)
independent of the previous and subsequent visits, so using the law of large
numbers, we have that p̂ij → pij, provided only that the state i is returned to
infinitely often as n grows6.

At this point, you may be thinking that this is very much like the maximum
likelihood estimate of the multinomial distribution you’ll have seen in baby stats.
This is because it is exactly like that; each state i gets its own multinomial dis-
tribution for the next state, but those estimates can be done separately from
each other. The maximum-likelihood estimate of p is, like the MLE for multino-
mial distributions, generally consistent and efficient, with a variance which can
be found from the second derivative of the log-likelihood. Of course, if transition
rates are not free to be adjusted independently, because they are all functions of
more basic underlying parameters, we should estimate those parameters, which
complicates the calculus a little.

Higher-order and variable-length Markov chains

In estimating a kth order Markov chain, k > 1, we still just need to estimate
the transition rates, but the matrix of rates now has mk rows (one per length-k
history) and m columns. Each row must still sum to one, so the form of the
solution remains unchanged; we just need to count transitions from length-k
histories to the next observation.

Sincemk grows rapidly with k, it would be nice if we could get away from having
to do that many estimations. It can happen that sometimes we don’t need to keep
track of all of the last k observations to get the next-observation distribution.
For instance, in a second-order Markov process, it might happen that the history
Xt = 0, Xt−1 = 0 has the same predictive distribution as Xt = 0, Xt−1 = 1,
so we only need to estimate that distribution once, if we can realize this. Such
approaches are known as “variable length Markov chains” or “context trees”
(Bühlmann, 2000; Bühlmann and Wyner, 1999).

But what about that first observation?

By the Markov property, X1 is irrelevant to the rest of the time series once we’ve
seen X2. The advantage of this is that the distribution of X1 can be arbitrary,
and we will still get consistent estimates of the transition rates. The disadvantage
is that if, for some reason, we need to estimate the distribution of X1, sometimes
called the “starting” or “initial” distribution, we’ve got a problem, because we
have only one observation!

6 You might wonder how that last condition could fail, but consider a state which, once left, is never

returned to from any other state. (Can you show that this implies a failure of ergodicity?)

23.4 Autoregressive Models 497

If we see multiple independent realizations of the Markov chain and believe
that they share a common starting distribution, we could use that to estimate
X1. On the other hand, if we believe the chain is stationary, we could use the
transition rates to estimate the marginal distribution of all the Xt, as follows.
Any distribution over the m states could be written as an m-dimensional vector,
say q, with the constraints that qi ≥ 0,

∑
i qi = 1. For q to match the marginal

distribution over states in a stationary chain, the probability of arriving in any
state qi has to match the probability of starting there:

qi =
∑
j

qjpji (23.28)

In matrix form, this is

q = qp (23.29)

so q is an invariant distribution if it is a left eigenvector of p with eigenvalue
one7. If we have an estimate p̂, finding its eigenvector(s) with eigenvalue 1 will
then give an estimate of the invariant distribution, which (assuming stationarity)
would be an estimate of the starting distribution8

23.4 Autoregressive Models

Instead of trying to estimate the whole conditional distribution of Xt, we can just
look at its conditional expectation. This is a regression problem, but since we are
regressing Xt on earlier values of the series, it’s called an autoregression:

E [Xt | Xt−p:t−1 = xp1] = r(x1:p) (23.30)

If we think the process is Markov of order p, then of course there is no point in
conditioning on more than p steps of the past when doing an autoregression. But
even if we don’t think the process is Markov, the same reasons which inclined us
towards Markov approximations also make limited-order autoregressions attrac-
tive.

Since this is a regression problem, we can employ all the tools we know for
regression analysis: linear models, kernel regression, spline smoothing, additive
models, etc., mixtures of regressions, etc. Since we are regressing Xt on earlier
values from the same series, it is useful to have tools for turning a time series
into a regression-style design matrix (as in Figure 23.4); see Code Example 32.

7 Conversely, all left eigenvectors of a transition matrix with eigenvalue one must have non-negative

entries, and so must either be invariant distributions, or proportional to invariant distributions. This

result is a non-trivial piece of linear algebra called the Frobenius-Perron (or Perron-Frobenius)

theorem.
8 You could even set up the problem of jointly maximizing the log-likelihood of the entire sequence,

using the eigenvector of p as the distribution of X1, but I don’t recommend it. The eigenvector of p

is a very nonlinear function of the entries in p, so the maximization becomes a complicated

numerical problem, and in the end it’s only to get at the information about p contained in the

single observation X1. If X1 is really very influential on p̂, it’s hard to imagine you’ve got enough

data to be secure in all the other assumptions!

498 Time Series

design.matrix.from.ts <- function(ts, order, right.older = TRUE) {
n <- length(ts)
x <- ts[(order + 1):n]
for (lag in 1:order) {

if (right.older) {
x <- cbind(x, ts[(order + 1 - lag):(n - lag)])

}
else {

x <- cbind(ts[(order + 1 - lag):(n - lag)], x)
}

}
lag.names <- c("lag0", paste("lag", 1:order, sep = ""))
if (right.older) {

colnames(x) <- lag.names
}
else {

colnames(x) <- rev(lag.names)
}
return(as.data.frame(x))

}

Code Example 32: Example code for turning a time series into a design matrix, suitable for
regression.

aar <- function(ts, order) {
stopifnot(require(mgcv))
fit <- gam(as.formula(auto.formula(order)), data = design.matrix.from.ts(ts,

order))
return(fit)

}
auto.formula <- function(order) {

inputs <- paste("s(lag", 1:order, ")", sep = "", collapse = "+")
form <- paste("lag0 ~ ", inputs)
return(form)

}

Code Example 33: Fitting an additive autoregression of arbitrary order to a time series. See
online for comments.

Suppose p = 1. Then we essentially want to draw regression curves through
plots like those in Figure 23.3. Figure 23.5 shows an example for the artificial
series.

23.4.1 Autoregressions with Covariates

Nothing keeps us from adding a variable other than the past of Xt to the regres-
sion:

E [Xt+1 | Xt−k+1:t, Z] (23.31)

or even another time series:

E [Xt+1 | Xt−k+1:t, Zt−l+1:t] (23.32)

23.4 Autoregressive Models 499

These are perfectly well-defined conditional expectations, and quite estimable
in principle. Of course, adding more variables to a regression means having to
estimate more, so again the curse of dimensionality comes up, but our methods
are very much the same as in the basic regression analyses.

23.4.2 Additive Autoregressions

As before, if we want some of the flexibility of non-parametric smoothing, without
the curse of dimensionality, we can try to approximate the conditional expectation
as an additive function:

E [Xt | Xt−p:t−1] ≈ α0 +
p∑
j=1

gj(Xt−j) (23.33)

My personal experience with applied projects is that additive autoregressions
tend to work surprisingly well.

Example: The lynx

Let’s try fitting an additive model for the lynx. Code Example 33 shows some
code for doing this. (Most of the work is re-shaping the time series into a data
frame, and then automatically generating the right formula for gam.) Let’s try
out p = 2.

lynx.aar2 <- aar(lynx, 2)

This inherits everything we can do with a GAM, so we can do things like plot
the partial response functions (Figure 23.6), plot the fitted values against the
actual (Figure 23.7), etc. To get a sense of how well it can actually extrapolate,
Figure 23.8 re-fits the model to just the first 80 data points, and then predicts
the remaining 34.

23.4.3 Linear Autoregression

When people talk about autoregressive models, they usually (alas) just mean
linear autoregressions. There is almost never any justification in scientific theory
for this preference, but we can always ask for the best linear approximation to
the true autoregression, if only because it’s fast to compute and fast to converge.

The analysis we did in Chapter 2 of how to find the optimal linear predictor
carries over with no change whatsoever. If we want to predict Xt as a linear com-
bination of the last k observations, Xt−1, Xt−2, . . . Xt−p, then the ideal coefficients
β are

β = (V [Xt−p:t−1])
−1

Cov [Xt−p:t−1, Xt] (23.34)

where V [Xt−p:t−1] is the variance-covariance matrix of (Xt−1, . . . Xt−p) and simi-
larly Cov [Xt−p:t−1, Xt] is a vector of covariances. Assuming stationarity, V [Xt] is
constant in t, and so the common factor of the over-all variance goes away, and β

500 Time Series

could be written entirely in terms of the correlation function ρ. Stationarity also
lets us estimate these covariances, by taking time-averages.

A huge amount of effort is given over to using linear AR models, which in
my opinion is out of all proportion to their utility — but very reflective of what
was computationally feasible up to about 1980. My experience is that results like
Figure 23.9 is pretty typical.

23.4.3.1 “Unit Roots” and Stationary Solutions

Suppose we really believed a first-order linear autoregression,

Xt+1 = α+ βXt + εt (23.35)

with εt some IID noise sequence. Let’s suppose that the mean is zero for simplicity,
so α = 0. Then

Xt+2 = β2Xt + βεt + εt+1 (23.36)

Xt+3 = β3Xt + β2εt + βεt+1 + εt+2 , (23.37)

etc. If this is going to be stationary, it’d better be the case that what happened
at time t doesn’t go on to dominate what happens at all later times, but clearly
that will happen if |β| > 1, whereas if |β| < 1, eventually all memory of Xt

(and εt) fades away. The linear AR(1) model in fact can only produce stationary
distributions when |β| < 1.

For higher-order linear AR models, with parameters β1, β2, . . . βp, the corre-
sponding condition is that all the roots of the polynomial

p∑
j=1

βjz
j − 1 (23.38)

must be outside the unit circle. When this fails, when there is a “unit root”, the
linear AR model cannot generate a stationary process9.

There is a fairly elaborate machinery for testing for unit roots, which is some-
times also used to test for non-stationarity. It is not clear how much this really
matters. A non-stationary but truly linear AR model can certainly be estimated10;
a linear AR model can be non-stationary even if it has no unit roots11; and if the
linear model is just an approximation to a non-linear one, the unit-root criterion
doesn’t apply to the true model anyway.

See §23.6.1 for an alternative way of checking stationarity, which presumes no
particular parametric form.

9 The same argument applies to ARMA models (§23.9.3.2) more generally.
10 Because the correlation structure stays the same, even as the means and variances can change.

Consider Xt = Xt−1 + εt, with εt IID.
11 Start it with X1 very far from the expected value.

23.4 Autoregressive Models 501

23.4.4 Conditional Variance

Having estimated the conditional expectation, we can estimate the conditional
variance V [Xt | Xt−p:t−1] just as we estimated other conditional variances, in
Chapter 10.

Example: lynx

The lynx series seems ripe for fitting conditional variance functions — presumably
when there are a few thousand lynxes, the noise is going to be larger than when
there are only a few hundred.

sq.res <- residuals(lynx.aar2)^2
lynx.condvar1 <- gam(sq.res ~ s(lynx[-(1:2)]))
lynx.condvar2 <- gam(sq.res ~ s(lag1) + s(lag2), data = design.matrix.from.ts(lynx,

2))

I have fit two different models for the conditional variance here, just because.
Figure 23.10 shows the data, and the predictions of the second-order additive AR
model, but with just the standard deviation bands corresponding to the first of
these two models; you can try making the analogous plot for lynx.condvar2.

23.4.5 Regression with Correlated Noise; Generalized Least Squares

Suppose we have an old-fashioned regression problem

Yt = µ(Xt) + εt (23.39)

only now the noise terms εt are themselves a dependent time series. Ignoring this
dependence, and trying to estimate µ by minimizing the mean squared error, is
very much like ignoring heteroskedasticity. (In fact, heteroskedastic εt are a special
case.) What we saw in Chapter 10 is that ignoring heteroskedasticity doesn’t lead
to bias, but it does mess up our understanding of the uncertainty of our estimates,
and is generally inefficient. The solution was to weight observations, with weights
inversely proportional to the variance of the noise.

With correlated noise, we do something very similar. Suppose we knew the
covariance function γ(h) of the noise. From this , we could construct the variance-
covariance matrix Γ of the εt (since Γij = γ(i− j), of course).

We can use this as follows. Say that our guess about the regression function is
m. Stacking y1, y2, . . . yn into a matrix y as usual in regression, and likewise cre-
ating m(x), the Gauss-Markov theorem (§10.2.2.1) tells us that the most efficient
estimate is the solution to the generalized least squares problem,

m̂GLS = argmin
m

1

n
(y −m(x))TΓ−1(y −m(x)) (23.40)

as opposed to just minimizing the mean-squared error,

m̂OLS = argmin
m

1

n
(y −m(x))T (y −m(x)) (23.41)

502 Time Series

Multiplying by the inverse of Γ appropriately discounts for observations which
are very noisy, and discounts for correlations between observations introduced by
the noise.12

This raises the question of how to get γ(h) in the first place. If we knew the true
regression function µ, we could use the covariance of Yt − µ(Xt) across different
t. Since we don’t know µ, but have only an estimate m̂, we can try alternating
between using a guess at γ to estimate m̂, and using m̂ to improve our guess at
γ. We used this sort of iterative approximation for weighted least squares, and it
can work here, too.

23.5 Bootstrapping Time Series

The big picture of bootstrapping doesn’t change: simulate a distribution which is
close to the true one, repeat our estimate (or test or whatever) on the simulation,
and then look at the distribution of this statistic over many simulations. The
catch is that the surrogate data from the simulation has to have the same sort
of dependence as the original time series. This means that simple resampling is
just wrong (unless the data are independent), and our simulations will have to
be more complicated.

23.5.1 Parametric or Model-Based Bootstrap

Conceptually, the simplest situation is when we fit a full, generative model —
something which we could step through to generate a new time series. If we are
confident in the model specification, then we can bootstrap by, in fact, simulating
from the fitted model. This is the parametric bootstrap we saw in Chapter 6.

23.5.2 Block Bootstraps

Simple resampling won’t work, because it destroys the dependence between suc-
cessive values in the time series. There is, however, a clever trick due to Künsch
(1989) which does work, and is almost as simple. Take the full time series x1:n

and divide it up into overlapping blocks of length k, i.e., x1:k, x2:k+1 and so on
down to xn−k+1:n. Now draw m = n/k of these blocks with replacement13, and
set them down in order. Call the new time series x̃1:n.

Within each block, we have preserved all of the dependence between obser-
vations. It’s true that successive observations are now completely independent,
which generally wasn’t true of the original data, so we’re introducing some inac-
curacy, but we’re certainly coming closer than just resampling individual obser-
vations (which would be k = 1). Moreover, we can make this inaccuracy smaller
and smaller by letting k grow as n grows. One can show14 that the optimal

12 If you want to use a linear model for m, this can be carried through to an explicit modification of

the usual ordinary-least-squares estimate — Exercise 23.4.
13 If n/k isn’t a whole number, round.
14 I.e., I will not show — see Lahiri (2003)..

23.5 Bootstrapping Time Series 503

rblockboot <- function(ts, block.length, len.out = length(ts)) {
the.blocks <- as.matrix(design.matrix.from.ts(ts, block.length - 1, right.older = FALSE))
blocks.in.ts <- nrow(the.blocks)
stopifnot(blocks.in.ts == length(ts) - block.length + 1)
blocks.needed <- ceiling(len.out/block.length)
picked.blocks <- sample(1:blocks.in.ts, size = blocks.needed, replace = TRUE)
x <- the.blocks[picked.blocks,]
x.vec <- as.vector(t(x))
return(x.vec[1:len.out])

}

Code Example 34: The basic block bootstrap for univariate time series. See Exercise 23.6 for
variants and extensions.

k = O(n1/3); this gives a growing number (O(n2/3)) of increasingly long blocks,
capturing more and more of the dependence. (We will consider how exactly to
pick k [[below]].)

The block bootstrap scheme is extremely clever, and has led to a great many
variants. Three in particular are worth mentioning.

1. In the circular block bootstrap (or circular bootstrap), we “wrap the
time series around a circle”, so that it goes x1, x2, . . . xn1

, xn, x1, x2, We
then sample the n blocks of length k this gives us, rather than the merely
n − k blocks of the simple block bootstrap. This makes better use of the
information we have about dependence on distances < k.

2. In the block-of-blocks bootstrap, we first divide the series into blocks of
length k2, and then subdivide each of those into sub-blocks of length k1 < k2.
To generate a new series, we sample blocks with replacement, and then sample
sub-blocks within each block with replacement. This gives a somewhat better
idea of longer-range dependence, though we have to pick two block-lengths.

3. In the stationary bootstrap, the length of each block is random, chosen
from a geometric distribution of mean k. Once we have chosen a sequence of
block lengths, we sample the appropriate blocks with replacement. The reason
for doing this is that the ordinary block bootstrap doesn’t quite give us a
stationary time series, since the distribution gets funny around the boundaries
between blocks. (The distribution of Xk−1:k is not the same as the distribution
of Xk:k+1, as stationarity would require.) Averaging over the random choices of
block lengths, the stationary bootstrap does. It tends to be slightly slower to
converge that the block or circular bootstrap, but there are some applications
where the surrogate data really needs to be strictly stationary.

23.5.3 Sieve Bootstrap

A compromise between model-based and resampling bootstraps is to use a sieve
bootstrap. This also simulates from models, but we don’t really believe in them;
rather, we just want them to be reasonable easy to fit and simulate, yet flexible
enough that they can capture a wide range of processes if we just give them

504 Time Series

enough capacity. We then (slowly) let them get more complicated as we get more
data15. One popular choice is to use linear AR(p) models, and let p grow with n
— but there is nothing special about linear AR models, other than that they are
very easy to fit and simulate from. Additive autoregressive models, for instance,
would often work at least as well.

23.6 Cross-Validation

There are actually multiple ways to do cross-validation for time series.
The most straight-forward applies to auto-regressive models. Since we have,

at least implicitly, converted the time series to a design matrix (as on p. 497),
we can “hold out” rows from that design matrix at random as our testing set.
Concretely, this means that we don’t try to predict some time points t ∈ Ttest
when estimating the model. (The set Ttest is randomly chosen, and then averaged-
over, in the usual way.) Those held-out time-points t are then what we try to
predict during testing, using the previously-estimated model and the predecessor
points t− 1, t− 2, . . . t− p.

Notice that even if t is a held-out time-point, we are still likely to use X(t)
to predict (say) X(t + 1), since it is unlikely that both t and t + 1 are in the
same hold-out set. Nothing like this happened when doing cross-validation for
IID data — every observed value was either in the training set or the testing set,
not awkwardly straddling the border between them. If we want something like
this under serial dependence, the natural approach is to remove a buffer around
each testing point. The points in this buffer are not used during training, but just
to provide input values when trying to predict the points in the test set.

23.6.1 Testing Stationarity by Cross-Prediction

[[After Schreiber (1997) and the version in Kantz and Schreiber (2004)]]

23.7 Trends and De-Trending

The sad fact is that a lot of important time series are not even approximately
stationary. For instance, Figure 23.13 shows US national income per person (ad-
justed for inflation) over the period from 1952 (when the data series begins) until
the last time I re-ran the code for this book. It is possible that this is sample from
a stationary process. But in that case, the correlation time is evidently much
longer than 50 years, on the order of centuries, and so the theoretical stationarity
is irrelevant for anyone but a very ambitious quantitative historian — living in
our distant future.

It makes more sense to treat data like this as a non-stationary time series.

15 This is where the metaphor of the “sieve” comes in: the idea is that the mesh of the sieve gets finer

and finer, catching more and more subtle features of the data.

23.7 Trends and De-Trending 505

The conventional approach is try decomposing such time series into a persistent
trend, and stationary fluctuations (or deviations) around the trend,

Yt = Xt + Zt (23.42)

series = fluctuations + trend

Since we could add or subtract a constant to each Xt without changing whether
they are stationary, we’ll stipulate that E [Xt] = 0, so E [Yt] = E [Zt]. (In other
situations, the decomposition might be multiplicative instead of additive, etc.)
How might we find such a decomposition?

If we have multiple independent realizations Yi,t of the same process, say m of
them, and they all have the same trend Zt, then we can try to find the common
trend by averaging the time series:

Zt = E [Y·,t] ≈
m∑
i=1

Yi,t (23.43)

Multiple time series with the same trend do exist, especially in the experimental
sciences. Yi,t might be the measurement of some chemical in a reactor at time t
in the ith repetition of the experiment, and then it would make sense to average
the Yi,t to get the common Zt trend, the average trajectory of the chemical
concentration. One can tell similar stories about experiments in biology or even
psychology, though those are complicated by the tendency of animals to get tired
and to learn16.

For better or for worse, however, we have only one realization of the post-WWII
US economy, so we can’t average multiple runs of the experiment together. If we
have a theoretical model of the trend, we can try to fit that model. For instance,
some (simple) models of economic growth predict that series like the one in Figure
23.13 should, on average, grow at a steady exponential rate17. We could then
estimate Zt by fitting a model to Yt of the form β0e

βt, or even by doing a linear
regression of log Yt on t. The fluctuations Xt are then taken to be the residuals
of this model.

If we only have one time series (no replicates), and we don’t have a good theory
which tells us what the trend should be, we fall back on curve fitting. In other
words, we regress Yt on t, call the fitted values Zt, and call the residuals Xt. This is
frankly rests more on hope than on theorems. The hope is that the characteristic
time-scale for the fluctuations Xt (say, their correlation time τ) is short compared
to the characteristic time-scale for the trend Zt

18. Then if we average Yt over a

16 Even if we do have multiple independent experimental runs, it is very important to get them aligned

in time, so that Yi,t and Yj,t refer to the same point in time relative to the start of the experiment;

otherwise, averaging them is just mush. It can also be important to ensure that the initial state,

before the experiment, is the same for every run. Chu et al. (2003) explains how the later problem

can lead to complications in studying gene regulation.
17 This is not quite what is claimed by Solow (1970), which you should read anyway if economic

growth interests you at all.
18 I am being deliberately vague about what “the characteristic time scale of Zt” means. Intuitively,

it’s the amount of time required for Zt to change substantially. You might think of it as something

506 Time Series

band-width which is large compared to τ , but small compared to the scale of Zt,
we should get something which is mostly Zt — there won’t be too much bias
from averaging, and the fluctuations should mostly cancel out.

Once we have the fluctuations, and are reasonably satisfied that they’re sta-
tionary, we can model them like any other stationary time series. Of course, to
actually make predictions, we need to extrapolate the trend, which is a harder
business.

23.7.1 Forecasting Trends

The problem with making predictions when there is a substantial trend is that
it is usually hard to know how to continue or extrapolate the trend beyond the
last data point. If we are in the situation where we have multiple runs of the
same process, we can at least extrapolate up to the limits of the different runs.
If we have an actual model which tells us that the trend should follow a certain
functional form, and we’ve estimated that model, we can use it to extrapolate.
But if we have found the trend purely through curve-fitting, we have a problem.

Suppose that we’ve found the trend by spline smoothing, as in Figure 23.16.
The fitted spline model will cheerfully make predictions for the what the trend
of GDP per capita will be in, say, 2252, far outside the data. This will be a
simple linear extrapolation, because splines are always linear outside the data
range (Chapter 7, p. 153). This is just because of the way splines are set up, not
because linear extrapolation is such a good idea. Had we used kernel regression,
or any of many other ways of fitting the curve, we’d get different extrapolations.
People in 2252 could look back and see whether the spline had fit well, or some
other curve would have done better. (But why would they want to?) Right now,
if all we have is curve-fitting, we are in a dubious position even as regards next
year, never mind 225219

23.7.2 Seasonal Components

Sometimes we know that time series contain components which repeat, pretty
exactly, over regular periods. These are called seasonal components, after the
obvious example of trends which cycle each year with the season. But they could
cycle over months, weeks, days, etc.

like n−1
∑n−1
t=1 1/|Zt+1 − Zt|, if you promise not to treat that too seriously. Trying to get an exact

statement of what’s involved in identifying trends requires being very precise, and getting into topics

at the intersection of statistics and functional analysis which are beyond the scope of this class.
19 Yet again, we hit a basic philosophical obstacle, which is the problem of induction. We have so far

evaded it, by assuming that we’re dealing with IID or a stationary probability distribution; these

assumptions let us deductively extrapolate from past data to future observations, with more or less

confidence. (For more on this line of thought, see Hacking (2001); Spanos (2011); Gelman and

Shalizi (2013).) If we assume a certain form or model for the trend, then again we can deduce future

behavior on that basis. But if we have neither probabilistic nor mechanistic assumptions, we are, to

use a technical term, stuck with induction. Whether there is some principle which might help —

perhaps a form of Occam’s Razor (Kelly, 2007)? — is a nice question.

23.7 Trends and De-Trending 507

The decomposition of the process is thus

Yt = Xt + Zt + St (23.44)

where Xt handles the stationary fluctuations, Zt the long-term trends, and St the
repeating seasonal component.

If Zt = 0, or equivalently if we have a good estimate of it and can subtract
it out, we can find St by averaging over multiple cycles of the seasonal trend.
Suppose that we know the period of the cycle is T , and we can observe m = n/T
full cycles. Then

St ≈
1

m

m−1∑
j=0

Yt+jT (23.45)

This works because, with Zt out of the picture, Yt = Xt + St, and St is periodic,
St = St+T . Averaging over multiple cycles, the stationary fluctuations tend to
cancel out (by the ergodic theorem), but the seasonal component does not.

For this trick to work, we need to know the period. If the true T = 355, but
we use T = 365 without thinking20, we’ll get mush.

We also need to know the over-all trend. Of course, if there are seasonal com-
ponents, we really ought to subtract them out before trying to find Zt. So we
have yet another vicious cycle, or, more optimistically, another case for iterative
approximation.

23.7.3 Detrending by Differencing

Suppose that Yt has a linear time trend:

Yt = β0 + βt+Xt (23.46)

with Xt stationary. Then if we take the difference between successive values of
Yt, the trend goes away:

Yt − Yt−1 = β +Xt −Xt−1 (23.47)

Since Xt is stationary, β + Xt − Xt−1 is also stationary. Taking differences has
removed the trend.

Differencing will not only get rid of linear time trends. Suppose that

Zt = Zt−1 + εt (23.48)

where the “innovations” or “shocks” εt are IID, and that

Yt = Zt +Xt (23.49)

with Xt stationary, and independent of the εt. It is easy to check that (i) Zt is
not stationary (Exercise 23.5), but that (ii) the first difference

Yt − Yt−1 = εt +Xt −Xt−1 (23.50)

20 Can you come up with an example of a time series where the periodicity should be 355 days?

508 Time Series

is stationary. So differencing can get rid of trends which are built out of the
summation of persistent random shocks.

Differencing gives us another way of making a time series stationary: instead of
trying to model the time trend, take the difference between successive values, and
see if that is stationary. (The diff() function in R does this; see Figure 23.18.) If
such “first differences” don’t look stationary, take differences among differences,
third differences, etc., until you have something satisfying.

Differencing is like taking the discrete version of a derivative. Repeated differ-
encing will eventually get rid of trends if they correspond to curves (e.g., polyno-
mials) with only finitely many non-zero derivatives. It fails for trends which aren’t
like that, like exponentials or sinusoids, though you can hope that eventually the
higher differences are small enough that they don’t matter much.

Notice that now we can continue to the trend (a little): once we predict Yt+1−Yt,
we add it on to Yt (which we observed) to get Yt+1.

23.7.4 Cautions with Detrending

The fact that I’ve explained multiple different ways of detrending non-stationary
time series may have made you uneasy: how are you to know which one to use?
My unhelpful answer is “it depends”, namely, on what you think is a plausible
about the trend and the fluctuations around it. (E.g., if you think the trend
is linear, then differencing should work.) My advice is to try several different
ways of detrending your data, and to examine them very carefully if they give
substantially different results.

Finally, it is worth considering how much damage you might do by de-trending
if the process really is stationary. E.g., if the original series is really uncorrelated,
differencing will create correlations — see Exercise 23.7, and §23.9.2 on the Yule-
Slutsky effect.

23.7.5 Bootstrapping with Trends

All the bootstraps discussed in §23.5 work primarily for stationary time series.
(Parametric bootstraps are an exception, since we could include trends in the
model.) If we have done extensive de-trending, the reasonable thing to do is to
use a bootstrap to generate a series of fluctuations, add it to the estimated trend,
and then repeat the whole analysis on the new, non-stationary surrogate series,
including the de-trending. This works on the same sort of principle as resampling
residuals in regressions (§6.4, especially 6.4.3).

23.8 Breaks in Time Series 509

23.8 Breaks in Time Series

Figure 23.19 shows the employment to population ratio21 for the US since 1990.
There are fairly periodic oscillations — it’s not seasonally adjusted — but it
seems to be fluctuating within a not-too-wide band, and then 2008 happens, and
the Lesser Depression begins.

What should we, as time series analysts, do with something like this? It goes
against intuition to say that this sort of abrupt and dramatic break is all part
of a single stationary process, but by this point I hope you are all thoroughly
suspicious of that sort of intuition. The two big routes to dealing with series
which look like this are (1) to treat them as stationary, never mind our gut, or
(2) to give up on global stationarity, to say that sometimes things just change
abruptly.

23.8.1 Long Memory Series

The simplest option for dealing with series that look like Figure 23.19 is to say
that they are really stationary time series, except that the decay of dependence is
very slow — that the time series has a long memory. Formally, a long-memory
time series is one where the covariance function γ(h) = O(h−α) for some α > 0.
If α is big enough,

∑∞
h=0 |γ(h)| is still finite — but the slow decay of γ(h) means

that the sum, and so the correlation time, is quite large. A large correlation time
means that we need to wait a very long time before any one trajectory becomes
representative of the whole system — in this case, perhaps, several centuries.22

23.8.2 Change Points and Structural Breaks

We could of course give up on the idea that all the data come from a single
stationary process. The most popular alternative is the idea of a change point or
structural break. Up to some time, call it tb, the process followed one stationary
process. After this change point, it follows a different stationary process, perhaps
bearing no relationship at all to what went before.

If we think we’re dealing with a change point, the natural questions are, When
did it change?, and What does the process look like after the change? Before we
plunge in to those questions, however, let’s look at the contrast between change
points and long memory.

23.8.2.1 Change Points and Long Memory

Suppose that the change-point manifests itself by a shift in the expectation value
of Xt, say from µ1 before the change to µ2 after. The global mean of the time
series n−1

∑
tXt is the somewhere between µ1 and µ2. If h is not too large, then

21 That is, the ratio of the total number of employed people to all people. This is not one minus the

unemployment rate, because the denominator in the unemployment rate excludes those who

wouldn’t be looking for paid work anyway, such as retirees.
22 See also §23.9.3.3 on “regime switching” models.

510 Time Series

for most t, Xt and Xt+h will be on the same side of the change point. If they are
both before, then Xt and Xt+h will both be somewhere around µ1, and if both
times are after the point, both values will be around µ2. Therefore, it will tend
to be the case that either both Xt and Xt+h are above the global mean, or both
of them are below it — and so they’re correlated. This argument applies even if
the Xt are really all independent, as in Figure 23.20.

This phenomenon makes it very hard to distinguish empirically between time
series which have change points and those which have a slow decay of dependence.

23.8.3 Change Point Detection

It is often reasonable to set aside such scruples, assume there are change points,
and try to find them. A large number of methods have been developed for this
purpose, often under very strong parametric restrictions — say that Xt ∼IID
N (µ1, σ

2) when t < tb, and Xt ∼IID N (µ2, σ
2) when t ≥ tb. Many of these have

the flavor of looking for “runs” of values which are cumulatively very unlikely —
for instance, we might look for a long run of values which are far from µ1 and
on the same side of it. Other procedures boil down to “will dividing this time
series here, and letting the parameters change, work better?” Along those lines,
it is natural to try to use cross-validation, and Arlot and Celisse (2011) propose
a segmentation algorithm on exactly such a basis.

23.9 Time Series with Latent Variables

There are many time-series problems where we want to use a model where one or
more of the time series are latent. The best reason for to do this is, of course, that
there really is a latent process related to the observables, or at least that we think
their might be one. It can also make models more interpretable, if the dynamics
of the latent process are somehow simpler than those of the observables. It is
sometimes done just to increase the capacity of the model, and soak up some
mis-specification error; this is not a good practice, but it is common.

While there an almost infinite variety of time series models with latent vari-
ables are possible, people generally work with schemes that share some common
features. The most important of these is that these models sum up everything we
need from the past of the process into one (possibly-multidimensional variable),
the state. The state evolves according to a Markov process, and the current
state completely fixes the distribution of all present and future observables. We
generally do not get to directly observe the state, so it is latent, but it is sup-
posed to drive, or at least summarize, everything which we do observe. That
is, the state at time t, St, obeys the Markov property, so St+1:∞ ⊥⊥ S−∞:t−1|St,
and screens off the future of the observables from the past of the whole process,
Xt:∞ ⊥⊥ X−∞:t−1, S−∞:t−1|St.

Models of this sort are called “state-space models”, or “partially-observable
Markov models”. There are, however, (at least) two kinds of models which meet

23.9 Time Series with Latent Variables 511

all these requirements, most easily distinguished through their graphical models.
Figures 23.21 and Figure 23.22 show the alternatives. In both cases, St has as its
parent St−1 and as its child St+1, and the S’s form a Markov process. In both
cases, St is the sole parent of Xt, so that conditioning on St makes Xt independent
of all that came before. Where they differ is in Xt’s children. In Figure 23.21, Xt

has no children. What we observe at time t might tell us about how the state
evolves, but it doesn’t change how the state evolves. In Figure 23.22, however,
Xt and St are the two parents of St+1, which indeed is usually taken to be a
deterministic function of its parents. In this alternative, what we observe at time
t directly affects the future state. Former alternative (Figure 23.21) has come to
be called a hidden Markov model (HMMs), while the latter (Figure 23.22) is
known as a chain with complete connections (CCCs). In both cases, you can
verify that the X’s do not form a Markov process.

While these are both logically possible and mathematically interesting, sta-
tistical practice has favored HMMs over CCCs, to the point where “state space
model”, when used in time series analysis or econometrics, almost always means
an HMM. However, CCCs have important uses, and there doesn’t seem to be any
really deep reason why they are not used more in statistics.

[[”Parameter-driven” vs. ”observation-driven”]]

Regardless of which kind of state-space model you want to use, there are four
basic problems for them:

• Simulation: how to generate new time series from a fully-parameterized model?

• Prediction: how, given a sequence of observations X1:t and a parameterized
model, do we come up with a guess for Xt+1?

• State estimation: how, given a fully-parameterized model and the time series
of X’s, to find estimates of the latent states S?

• Inference: how do we estimate the parameters of the model (or fit it nonpara-
metrically), or test guesses about the parameters?

Simulation is straightforward, at least in outline. Our general strategy for sim-
ulation (§5.2.1) tells us to start with generating S1, then generate X1 from the
conditional distribution of X1|S1, etc., etc. In short, we write out the DAG, and
we generate each variable by conditioning on its parents. There can be clever
tricks for doing simulation faster in special situations, but this is the core idea.

Prediction is also straightforward in principle. We would, ideally, like the dis-
tribution p(xt+1|x1:t), since we can calculate any other prediction (say, a 90%

512 Time Series

prediction interval) from this. But this is

p(xt+1|x1:t) =
∑
s1:t+1

p(xt+1|s1:t+1, x1:t)p(s1:t+1|x1:t) (23.51)

=
∑
s1:t+1

p(xt+1|st+1)p(st+1|x1:t, s1:t)p(s1:t|x1:t) (23.52)

=
∑
s1:t+1

p(xt+1|st+1)p(st+1|xt, st)p(s1:t|x1:t) (23.53)

=
∑
st:t+1

p(xt+1|st+1)p(st+1|xt, st)p(st|x1:t) (23.54)

(For an HMM, p(st+1|xt, st) itself simplifies to p(st+1|st).) Thus the key part of
prediction turns out to be doing state estimation, specifically finding the distri-
bution p(st|x1:t).

State estimation is also important for inference, since the observable likelihood,
p(x1:n), is a product of predictive distributions:

p(x1:n) = p(x1)
n∏
t=2

p(xt|x1:t−1) (23.55)

Though, it must be said, there are ways of doing inference which don’t rely on
the likelihood, some of which can side-step state estimation.

The bulk of my treatment of time series models with latent variables will,
therefore, be devoted to state estimation, since it’s crucial to the other statistical
problems with these models. Before plunging in to these details, however, it is
instructive to first consider the simplest, and historically oldest, time series model
with latent variables, which is just “the time series is a moving average of random
noise” (§23.9.1), and then some more complex examples (§23.9.3), before diving
in (§23.9.4).

23.9.1 Moving Averages and Apparent Cycles

The basic equation for a moving average (MA) model of order q, or MA(q) is

Xt = Zt +
q∑
i=1

θiZt−i (23.56)

with the Zt being IID noise terms. That is, what we observe is a weighted aver-
age23 of the q + 1 most recent noise variables.

Figure 23.23 shows the graphical model for an MA(1) model. It’s evident from
it that Xt 6⊥⊥ Xt−1, but Xt ⊥⊥ Xt−k, k > 1 — observables are only dependent on
each other through the hidden noise variables, and Xt and Xt−k have no common
parents. In general, in an MA(q), Xt ⊥⊥ Xt−k when k > q.

23 The right-hand side would look more like a weighted average if we wrote it Xt =
Zt+

∑q
i=1 θiZt−i

1+
∑q
i=1 θi

,

but since the Zt are latent we could just re-scale each of them by the denominator. (Likewise, we

can always impose weight 1 on the most recent Z.)

23.9 Time Series with Latent Variables 513

Suppose that we try to predict Xt from its past values. We condition Xt on
Xt−1, and ask whether there is still more information to be had about Xt from
Xt−2. This is asking whether Xt and Xt−2 are dependent, given Xt−1. The answer
is clearly yes from Figure 23.23: there is one path linking Xt to Xt−2, and Xt−1

is a collider on that path, so conditioning on it activates the path.
Why does Xt−2 give us information about Xt, conditional on Xt−1? To deter-

mine Xt, we’d need to know Zt and Zt−1. Since Xt−1 is a child of Zt−1 and Zt−2,
knowing Xt−1 tells us something about Zt−1, but we learn even more from also
knowing Xt−2.

Undaunted, we try conditioning Xt on Xt−2:t−1. Is Xt ⊥⊥ Xt−3|Xt−2:t−1? Clearly
not. There is again only a single path, which goes over two colliders — and we
condition on both of them, activating the path. Knowing Xt−3 would tell us more
about Zt−3, and that, with Xt−2, tells us more about Zt−2, which, together with
Xt−1, helps us pin down Zt−1 even better. The chain of inferences is getting
longer and longer, but it’s not breaking, and it’s evident that it will never break,
no matter how many steps back into the past we condition.

To sum up, an MA(1) process, and by extension any MA(q), is not Markov, no
matter what order of Markov chain we consider. Nonetheless, all of the depen-
dence of future on the past is carried by a simple, low-dimensional state variable,
(Zt−1, Zt). Conditional on that, Xt is independent of all other Xs’s

24.

23.9.2 Yule-Slutsky

Applying a moving average to independent noise creates a process with compli-
cated dependence. This fact was noticed independently by two pioneers of time
series analysis, G. Udny Yule and E. Slutsky. It is therefore known as the Yule-
Slutsky effect. But Yule and Slutsky gave very different interpretations to it —
both are valid in their own circumstances, but the contrast is instructive.

23.9.2.1 Slutsky

Slutsky was primarily interested under the fluctuations of the economy — in the
business cycle. The way he thought of a moving average process was that the
economy is (under capitalism) continually subjected to random, unpredictable
shocks, but it takes time for the economy to respond to them, for them to work
through the system, as it were. The coefficients θ represent how the economy
responds over time to any given shock. That this leads to fluctuations with a
characteristic amplitude and (nearly) duration was a feature, not a bug — it was
how Slutsky proposed to explain the business cycle25. It is not at all clear that
any subsequent theory of the business cycle has any more predictive power (cf.
Figure ??).

24 Because Zt−1 and Zt are the only parents of Xt, which has no descendants.
25 The USSR in the 1920s being what it was, Slutsky had to do some fast talking to try to reconcile

this with Marxism. (In particular, depicting capitalism as stationary, rather than inevitably

self-destructive, was not very politically correct.) He was lucky to be allowed to escape into pure

probability theory (Klein, 1997, pp. 276–279), and many of his colleagues were not.

514 Time Series

23.9.2.2 Yule

Moving averages are of course a very common way of smoothing time series. We
can think of them as being rather like kernel smoothing, but with a one-sided
kernel. That is, we start with our original data Zt, and then average it together
locally to get a smoother series Xt, with some of the noise removed. What Yule
recognized is that doing this will, all by itself, create correlations among the Xt

(cf. Chapter 4), and complicated predictive relationships. Indeed, even if the Zt
are all independent of each other, the Xt will be correlated, and will have non-
zero linear regression coefficients (or other regression functions, if you use them).
Part of what we infer on the Xt is then just the effects of our smoothing.

This Yule effect is very basic, and very easy to understand as soon as one sees
Figure 23.23, but it continues to trip up researchers in a wide range of applied
fields26 Don’t be like that.

23.9.3 Examples of State-Space Models

23.9.3.1 General Gaussian-Linear State Space Model

The classical example of a hidden Markov model has a state variable S evolving
linearly, subject to noise,

St = aSt−1 + ηt (23.57)

but what we observe being a noisy, linear function of the hidden state,

Xt = bXt + εt (23.58)

It is often assumed that ηt and εt are each IID series (generally with different
distributions), and independent of each other. This is the general linear state
space model. If one further assumes that both the dynamical noise η and the
observation noise ε are Gaussian, then one gets a general Gaussian-linear state
space model. When the parameters are known, the Kalman filter provides an
exact, closed-form formula for estimating the latent state St and updating it as
new observations are made (Kalman, 1960; Kalman and Bucy, 1961). This in turn
forms a component of estimating the parameters by maximum likelihood. Because
this model is very extensively treated elsewhere, we will say almost nothing more
about it, but refer the interested reader to Durbin and Koopman (2001) or Fraser
(2008).

23.9.3.2 Autoregressive-Moving Average (ARMA) Models

An important result in the theory of stochastic processes says that basically any
stationary process can be represented as an infinite-order autoregression,

Xt = εt +
∞∑
j=1

βjXt−j (23.59)

26 For instance, Martindale (1990); see discussion at http://bactra.org/weblog/666.html.

http://bactra.org/weblog/666.html

23.9 Time Series with Latent Variables 515

where the “innovations” εt are serially uncorrelated, and uncorrelated with pre-
vious X’s. This is matched by another result which says that basically any sta-
tionary process can be represented as an infinite-order moving average process,

Xt = mt +
∞∑
j=0

θjZt−j (23.60)

where the Z’s are serially uncorrelated, and mt is a deterministic linear combi-
nation of previous m’s (hence the lower-case letter).

These two results, about representing stationary processes as either AR(∞) or
MA(∞) processes, are called the “Wold decomposition”.

Since infinite series of parameters are not very useful to the practicing statisti-
cian, people had the bright idea of trying to combine the AR and the MA parts,
to get an ARMA(p, q) model:

Xt = α+ β1Xt−1 + . . .+ βpXt−p (23.61)

+Zt + θ1Zt−1 + . . .+ θqZt−q

= α+ β ·Xt−p:t−1 + θ · Zt−q:t (23.62)

(23.63)

where α is an intercept, β is the vector of autoregressive parameters, θ is the
vector of moving average parameters (including, by convention, θ0 = 1). Figure
23.25 illustrates the dependence structure for an ARMA(1, 1) model.

Estimation of ARMA models is complicated by the fact that the β we want
here is not the β we’d get from just regressing Xt on Xt−p:t−1. The reason for
this is evident from Figure 23.25: if we condition X4 on, say, X2 and X3, there
is an unblocked back-door path, X3 ← Z3 → X4. Indeed, by conditioning on X3,
we open a back-door path, X2 ← Z2 → X3 ← Z3 → X4. More algebraically, Eq.
23.62 clearly implies that

Xt = α+ β ·Xt−p:t−1 + εt (23.64)

where εt has mean zero, but is also serially correlated, and correlated with Xt.
But

Xt − E [Xt|Xt−p:t−1] (23.65)

is always uncorrelated with Xt−p:t−1, by the general properties of expectations. So
whatever we’d get from a pure autoregression can’t be the β of the ARMA(p, q),
because plugging in that β will give correlated residuals.

There are, however, ingenious ways to get around this issue. The key trick is
that Xt is (assumed to be) a deterministic function of Xt−p:t−1 and of Zt−q:t. If
we knew everything up to time t− 1, our prediction for Xt would be

µ̂t = α+ β ·Xt−p:t−1 +
q∑
j=1

θjZt−j (23.66)

and so

Zt = Xt − µ̂t (23.67)

516 Time Series

One way to do the estimation, then, is to begin with a purely autoregressive
model, and use it, via Eqs. 23.66–23.67, to get initial estimates of the Z’s. If
we know all the Z’s, we can estimate α, β and θ by ordinary regression. Plug-
ging those parameters back in to the equations gives updated Z’s, and so forth
(Durbin, 1960; Hannan and Rissanen, 1982). This is not the only way to do it,
particularly if you are willing to assume the Z’s are Gaussian, but the details of
the various schemes are thoroughly covered in standard time series texts, e.g.,
Shumway and Stoffer (2000), and not worth rehashing here.

The biggest reason I do not give much space to ARMA models is that, despite
their popularity, I have rarely seen them work well on real data sets. Leaving
to one side Gaussian-noise assumptions, the validity of the Wold decomposition
does not really give any mathematical reason to expect that ARMA(p, q) models
should work.

Finally, it’s worth noting that ARMA models can be seen as a special case
of the general linear state-space model, where the state St keeps track of all the
necessary information, namely previous values of Xt and of Zt. There are actually
(at least) two ways to do this; Thiesson et al. (2004) describes one which is more
efficient than the most obvious procedure.

23.9.3.3 Regime Switching

Hidden-state models give us another way of dealing with apparent non-stationarity,
in addition to change-points and long memory processes (§23.8), namely regime
switching. The idea is that there observed time series is in some sense driven
or controlled by a discrete latent variable, the regime, and can show very differ-
ent dynamics in different regimes. The regime itself evolves according to its own
dynamics, often taken to be Markovian. If every regime has a high probability
of transitioning to itself, we will see long stretches of time where the observables
seem to follow one stationary process, punctuated by rare but rapid transitions
to what looks like a realization of a different stationary process. If the Markov
chain for regimes is stationary, the over-all process will also be stationary, but
one would, so to speak, need to look over very long time scales to see it.

23.9.3.4 Noisily-Observed Dynamical Systems

23.9.4 State Estimation

If we want to know what the latent states are, we need to estimate them from the
observables. We might be interested in those states for their own sake, or might
need them as part of our statistical analysis. In the jargon, if we estimate Sn, the
state at time n, using only observations made up to that time, X1:n, then we are
doing filtering. If, on the other hand, we estimate the whole sequence of states,
S1:n, from the whole sequence of observations, then we are doing smoothing27.
The key difference is that in smoothing, our estimate of St, t < n, is also informed
by later observations, Xt+1:n.

27 These terms got fixed very early, when the best way to do state estimation was, in fact, to apply

linear smoothers (Wiener, 1949).

23.9 Time Series with Latent Variables 517

Whether we are doing filtering or smoothing, there is a straightforward formal
solution to the state-estimation problem, which arises from basic probability.
We start with the likelihood of the observable sequence given the (hypothetical)
sequence of latent states, and then use Bayes’s rule:

p(x1:n|s1:n) =
n∏
t=1

p(xt|st) (23.68)

p(x1:n) =
∑
s1:n

p(x1:n|s1:n)p(s1:n) (23.69)

p(s1:n|x1:n) =
p(x1:n|s1:n)p(s1:n)

p(x1:n)
(23.70)

=
p(x1:n|s1:n)p(s1:n)∑
p(x1:n|s1:n)p(s1:n)

(23.71)

If the states are Markovian, we have in addition

p(s1:n) = p(s1)
n∏
t=2

p(st|st−1) (23.72)

Putting it all together,

p(sn1 |xn1) =

∏n
t=1 p(xt|st)p(st|st−1)∑

s′1:n

∏n
t=1 p(xt|st)p(st|st−1)

(23.73)

If we only care about p(sn|xn1), a further summation takes care of that.
This is a bit easier to work with recursively. It should seem reasonable that if

we know the smoothing distribution at time t, we can easily extrapolate the state
one step forward in time:

p(s1:t+1|x1:t) = p(s1:t|x1:t)p(st+1|s1:t) (23.74)

and get a predictive distribution for the next observation,

p(xt+1|x1:t) =
∑
s1:t+1

p(st+1|x1:t)p(xt+1|st+1) (23.75)

and then we can update the distribution over states once we see xt+1:

p(s1:t+1|x1:t+1) = p(s1:t+1|x1:t)
p(xt+1|st+1)

p(xt+1|x1:t)
(23.76)

Similarly for filtering:

p(st+1|x1:t) =
∑
st

p(st|x1:t)p(st+1|st) (23.77)

and

p(st+1|x1:t+1) = p(st+1|x1:t)
p(xt+1|st+1)

p(xt+1|x1:t)
(23.78)

(See Exercise 23.9.)

518 Time Series

I said that this was just a “formal” solution to the problem, i.e., not a real
solution. Eq. 23.73 is unpleasant-looking, not least the prospect of calculating
the denominator — and it generally is hard to actually calculate. In the limited
special case of linear, Gaussian state-space models (§23.9.3.1), there is a closed-
form solution, given by what is called the “Kalman filter”. For hidden Markov
models where both X and S are discrete, we can use the EM algorithm, which in
fact was first developed for just this use (Baum et al., 1970), and so is sometimes
called the “Baum-Welch algorithm” in this context28.

In general, however, there just isn’t any way of exactly applying Eq. 23.73, and
one must consider approximations. Some of these are deterministic, such as using
local linear approximations to an underlying nonlinear system, or exploiting the
fact that p(sn|xn1) is often very sharply peaked around the most probable value
(Koyama et al., 2010).

23.9.4.1 Particle Filtering

23.9.4.2 Parameter Estimation

Much of the effort of the EM algorithm and of particle filtering goes into esti-
mating the time-evolution of the latent state. If what we are willing to ignore
that, and just focus on estimating the parameters, we can sometimes save greatly
on time and effort by using techniques of simulation-based inference, basically
adjusting the parameters until simulated trajectories of the model look like the
data; see Chapter 24 for details. We could then always go back and estimate the
states for one parameter value, or a range that reflects our uncertainty.

23.9.4.3 Prediction

23.10 Longitudinal Data

23.11 Multivariate Time Series

23.12 Further Reading

Shumway and Stoffer (2000) is a good introduction to conventional time series
analysis, covering R practicalities. In particular, it includes both ARMA models,
and the very important subject of frequency-domain methods, which I have de-
liberately omitted because it relies on Fourier analysis, otherwise not needed for
this book.

On the history of how that standard machinery came to be standard, and why
it seemed like a good idea, I strongly recommend Klein (1997), which is also
just one of the best books I’ve seen on the history of statistics and statistical
reasoning. I am not aware of a serious history of time-series analysis that goes
past the 1930s.

28 The origin of the name is curious. You may notice that Welch is not an author of Baum et al.

(1970). That paper cites a submitted manuscript by Baum and Welch on “A statistical estimation

procedure for probabilistic functions of finite Markov processes”, which seems never to have been

published. In his Shannon Lecture, Welch (2003) disclaims having done more than the “easy part”

(p. 12) of coming up with the idea, and showing that it worked in some particular cases. This

engaging lecture also gives an excellent overview of the algorithm.

23.12 Further Reading 519

Returning to textbooks, Lindsey (2004) surveys a broader range of situations
than Shumway and Stoffer (2000) in less depth; it is readable, but opinionated,
and I don’t always agree with the opinions. (Try to contain your surprise.) Fan
and Yao (2003) is a deservedly-standard reference on nonparametric time series
models. The theoretical portions would be challenging for most readers of this
book, but the methodology isn’t, and it devotes about the right amount of space
(i.e., little) to the usual linear-model theory. Douc et al. (2014) plays a similar
role for parametric nonlinear statistical models; part II of that book in particular
is a self-contained treatment of stochastic process theory, and part III of particle
filters.

The best introduction to stochastic processes I know of, by a very wide mar-
gin, is Grimmett and Stirzaker (1992). However, like most textbooks on stochastic
processes, it says next to nothing about how to use them as models of data. A no-
table exception is the excellent Guttorp (1995), which both introduces the theory
of a range of highly-applicable stochastic processes, and covers their statistical
inference with real scientific examples. Bartlett (1955), while similar in intent to
Guttorp, is old enough that it now makes a better second book than a first.

The basic ergodic theorem in §23.2.2.1 follows a continuous-time argument
in Frisch (1995), which seems to go back to Taylor (1922). Exercise 23.8 gives
an extension to non-stationary processes. My general treatment of ergodicity is
heavily shaped by Gray (1988) and Shields (1996).

As mentioned, the block bootstrap was introduced by Künsch (1989). Davison
and Hinkley (1997, §8.2) has a clear treatment of the main flavors of bootstrap
for time series; Lahiri (2003) is thorough but theoretical. Bühlmann (2002) is also
useful.

On cross-validation for time series, classic references are Burman et al. (1994),
Racine (2000). Carmack et al. (2009) is a recent proposal for a refinement. Lunde
and Shalizi (2017) proposes a bootstrap method for putting confidence intervals
on the prediction error, as an alternative to cross-validation.

ARMA models have spawned a huge number of modifications, extensions, and
re-interpretations. Holan et al. (2010) is a recent survey of this “alphabet soup”
of a lineage.

The notion of “state” used in state-space models ultimately derives from physics
and from the mathematical theory of dynamical systems. The transition to state-
space models in the current, statistical sense seems to have been made by engi-
neers, who had to contend with imperfect measurements of the system and the
possibility that it wads disturbed by noise, rather than evolving deterministically.
See, for instance, McGee and Schmidt (1985) for an account of how state-space
modeling was adopted by the US space program.

In parallel to the treatment of time series by statisticians, physicists and math-
ematicians developed their own tradition of time-series analysis (Packard et al.,
1980), where the basic models are not stochastic processes but deterministic, yet
unstable, dynamical systems. The focus of this work is exactly recovering the la-
tent state space from observables, with prediction often made by nearest-neighbor
methods in the state space (sometimes called the “method of analogues” in this

520 Time Series

literature). Perhaps the best guides to this are Abarbanel (1996); Kantz and
Schreiber (2004). There are in fact very deep connections between this approach
and the question of why probability theory works in the first place (Ruelle, 1991),
but that’s not a subject for data analysis.

A natural mathematical question is to ask which stochastic processes have
state-space representations. It turns out that the answer is “basically all of them”,
and that there is a uniquely optimal representation for each original process. The
key idea is to start by considering the conditional distribution over future events,
St ≡ Pr (Xt+1:∞|X−∞:t). This is a well-defined random object, albeit one whose
value is a distribution over the infinite sequence Xt+1:∞. We can then inquire
into the properties of the prediction process . . . , St−1, St, St+1, One can
show that this is always a Markov process, that Xt+1:∞ ⊥⊥ S−∞:t−1, X−∞:t|St,
and that this is, in several precise senses, the simplest possible process with
both those properties. You can also show that there’s a deterministic function
q such that St+1 = q(St, Xt+1). Thus, every stochastic process has a unique,
optimal representation as a state-space process, where the states are predictive
distributions for the original process, and this process is a chain with complete
connections. This construction, or one mathematically equivalent to it, has been
independent discovered by Crutchfield and Young (1989), Jaeger (2000), Knight
(1975), Langford et al. (2009) and Littman et al. (2002) (that I know of). Of these,
the treatment by Knight (1975) is the oldest, and most mathematically general.
Shalizi and Crutchfield (2001) proves the information-theoretic optimality of the
prediction process, and Shalizi (2003) extends it to spatio-temporal processes29.

Throughout this chapter, I assumed that the time series records some variable
(or variables) at regular time points, or perhaps continuously over some interval
of time. Another very important kind of temporal data records the instants of
time at which events happen — what are called point processes. (We might
distinguish among several types of events, called marked point processes.)
Guttorp (1995, ch. 5) is a good starting point; Daley and Vere-Jones (2003) is a
standard reference on some of the deeper intricacies of the subject.

Exercises

23.1 1. (Easy) Prove that every strongly stationary process is also weakly (second-order) sta-

tionary.

2. A Gaussian process is one where the joint distribution (Xt1 , Xt2 , Xtk) is always

(multivariate) Gaussian, for any collection of indices t1, . . . tk. Show that a weakly

stationary Gaussian process is also strongly stationary.

3. (Harder) Give an example of a process which is weakly but not strongly stationary.

Hint: By the previous sub-exercise, the example can’t be Gaussian.

23.2 Write a function which takes in a time series X and makes a plot of Xt+1 versus Xt, as

in Figure 23.3. Hint: Use Code Example 32.

23.3 1. Prove that maximizing the log-likelihood in Eq. 23.25, under the constraints of Eq.

29 If this paragraph is not more than you ever wanted to know, see

http://bactra.org/notebooks/prediction-process.

http://bactra.org/notebooks/prediction-process

Exercises 521

23.26, leads to the MLE in Eq. 23.27. Hint: Use Lagrange multipliers, and solve for the

value of the multipliers.

2. Transition rates, being probabilities, must be non-negative, pij ≥ 0. Explain why you

do not need to add yet more Lagrange multipliers to enforce this constraint.

3. Eq. 23.27 presumes that the elements pij in the p matrix can vary independently

(subject to the constraints). Suppose instead that they are all functions of a lower-

dimensional parameter vector θ. Find an expression for the MLE of θ. Do you still

need the Lagrange multipliers?

23.4 In Eq. 23.40, assume that m(x) has to be a linear function, m(x) = β · x. Solve for the

optimal β in terms of y, x, and Γ. This “generalized least squares” (GLS) solution should

reduce to ordinary least squares when Γ = σ2I.

23.5 If Zt = Zt−1 + εt, with εt IID, prove that Zt is not stationary. Hint: consider V [Zt].

23.6 Start with rblockboot from Code Example 34.

1. Modify the function to perform the circular block bootstrap. (Hint: Extend ts.)

2. Modify the function to work with multivariate time series, given as an array with time

points as the rows and variables as the columns. Ensure that the same blocks are used

for all variables, to preserve dependencies across them.

3. Modify the function to work with multivariate time series, given as a collection of

univariate time series. Again, make sure the same blocks are used for all series. (Hint:

Reduce to the previous sub-exercise.)

23.7 Suppose that Xi are IID, but we difference them and so look at Yi = Xi − Xi−1. Find

the autocovariance function of the Y series, in terms of the moments of the Xi.

23.8 A non-stationary ergodic theorem Suppose that the Xt are non-stationary, but they all

have finite (not necessarily equal) means E [Xt], and finite covariances Cov [Xt, Xs]. Define

mn ≡
1

n

n∑
t=1

E [Xt] (23.79)

and

Vn ≡
n∑
t=1

n∑
s=1

Cov [Xt, Xs] (23.80)

Show that if Vn = o(n2), then

E
[(
mn −Xn

)2]→ 0 (23.81)

and so that Xn → mn. Does this result imply Eq. 23.15 under the conditions of §23.2.2.1?

Could you deduce this result from Eq. 23.15?

23.9 Recursive equations for state estimation

1. Derive Eq. 23.74. Hint: First show that St+1 ⊥⊥ X1:t|St.
2. Derive Eq. 23.75. Hint: First show that Xt+1 ⊥⊥ X1:t|St.
3. Derive Eq. 23.76.

4. Derive Eq. 23.77.

5. Derive Eq. 23.78.

522 Time Series

0 5 10 15 20

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

Series lynx

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series y

par(mfrow = c(1, 2))
acf(lynx)
acf(y)
par(mfrow = c(1, 1))

Figure 23.2 Autocorrelation functions of the lynx data (above) and the
simulation (below). The acf function plots the autocorrelation function as
an automatic side-effect; it actually returns the actual value of the
autocorrelations, which you can capture. The 95% confidence interval
around zero is computed under Gaussian assumptions which shouldn’t be
taken too seriously, unless the sample size is quite large, but are useful as
guides to the eye.

Exercises 523

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●●
●
●

●

●

●

●

●

●●
●

●

●

●

●

0 2000 4000 6000

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

lynxt

ly
nx

t+
1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

yt

y t
+1

par(mfrow = c(1, 2))
plot(lag0 ~ lag1, data = design.matrix.from.ts(lynx, 1), xlab = expression(lynx[t]),

ylab = expression(lynx[t + 1]), pch = 16)
plot(lag0 ~ lag1, data = design.matrix.from.ts(y, 1), xlab = expression(y[t]),

ylab = expression(y[t + 1]), pch = 16)
par(mfrow = c(1, 1))

Figure 23.3 Plots of Xt+1 versus Xt, for the lynx (left) and the simulation
(right); see Exercise 23.2. Note that even though the correlation between
successive iterates is next to zero for the simulation, there is clearly a lot of
dependence (see Appendix ??).

524 Time Series

t x

1821 269
1822 321
1823 585
1824 871
1825 1475
1826 2821
1827 3928
1828 5943
1829 4950
. . .

⇒

lag0 lag1 lag2 lag3

871 585 321 269
1475 871 585 321
2821 1475 871 585
3928 2821 1475 871
5943 3928 2821 1475
4950 5943 3928 2821
. . .

Figure 23.4 Turning a time series (here, the beginning of lynx) into a
regression-suitable matrix.

Exercises 525

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

yt

y t
+1

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

plot(lag0 ~ lag1, data = design.matrix.from.ts(y, 1), xlab = expression(y[t]),
ylab = expression(y[t + 1]), pch = 16)

abline(lm(lag0 ~ lag1, data = design.matrix.from.ts(y, 1)), col = "red")
yaar1 <- aar(y, order = 1)
points(y[-length(y)], fitted(yaar1), col = "blue")

Figure 23.5 Plotting successive values of the artificial time series against
each other, along with the linear regression, and a spline curve (see below for
the aar function, which fits additive autoregressive models; with order=1, it
just fits a spline.

526 Time Series

0 2000 4000 6000

−
40

00
−

20
00

0
20

00
40

00
60

00

lag1

s(
la

g1
,7

.9
2)

0 2000 4000 6000

−
40

00
−

20
00

0
20

00
40

00
60

00

lag2

s(
la

g2
,3

.2
5)

plot(lynx.aar2, pages = 1)

Figure 23.6 Partial response functions for the second-order additive
autoregression model of the lynx. Notice that a high count last year predicts
a higher count this year, but a high count two years ago predicts a lower
count this year. This is the sort of alternation which will tend to drive
oscillations.

Exercises 527

Time

ly
nx

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

plot(lynx)
lines(1823:1934, fitted(lynx.aar2), lty = "dashed")

Figure 23.7 Actual time series (solid line) and predicted values (dashed)
for the second-order additive autoregression model of the lynx. The match is
quite good, but of course every one of these points was used to learn the
model, so it’s not quite as impressive as all that. (Also, the occasional
prediction of a negative number of lynxes is less than ideal.)

528 Time Series

Time

ly
nx

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

lynx.aar2b <- aar(lynx[1:80], 2)
out.of.sample <- design.matrix.from.ts(lynx[-(1:78)], 2)
lynx.preds <- predict(lynx.aar2b, newdata = out.of.sample)
plot(lynx)
lines(1823:1900, fitted(lynx.aar2b), lty = "dashed")
lines(1901:1934, lynx.preds, col = "grey")

Figure 23.8 Out-of-sample forecasting. The same model specification as
before is estimated on the first 80 years of the lynx data, then used to
predict the remaining 34 years. Solid black line, data; dashed line, the
in-sample prediction on the training data; grey lines, predictions on the
testing data. The RMS errors are 723 lynxes/year in-sample, 922
lynxes/year out-of-sample.

Exercises 529

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

yt

y t
+1

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●

● ● ●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●●
●

● ●

●

● ●
●

●

●

●

●

●
●

●
●●

●

●

●
●

●
● ●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

● ●

●

● ●

●

●

●
●

●

●

●
●

●● ●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●● ● ●

●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●● ●
●

●

●

●
●

●

●

●

●

●
●

● ●● ●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

● ●●

●

●

●
●●

●
●

●

●

●

●● ●
●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●
●

●

●
●

●

●
●

●
●

●

●

●

● ● ●

●

●

●
●

●

●

●

●
●

●

●

●● ●

●

●

●

●●

●

●

●
●

●● ●
● ●

●

● ●
●

●

●●

●

●

●

●

●

●
●

●

● ●

●
●

●

●
●

●

●
●

●

●●
●

●

● ●
●
●

●

●

●

●
●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●● ●
● ●

●

●
●

●

●

●

●

● ●

●
●●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●
●

●●

●

●

● ●
●

●
●

●

●

●

●

●
● ●

●

●

●●
●

●

● ● ●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

● ●

●
●

●
●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●●

●

●

●
● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●●
●

●
●

●
●

●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

● ●

●

● ●

● ●● ●

●

●

●

●
●●

●

●

●

●
●

● ●

●

●

●

●●
●

●

●
●

●
●

● ●

●

●
●

●

●

●
●

●

●

●
●

● ●
●●

●

● ●

●

●
●

●
●

●

●

●
●

●
●● ●● ●

●

●

●
●

●

●

●

●●●
●

●

●

●

●

● ●

●

●●

●
●●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

●

●
●

●

● ●
●

●

●

●

●

●
●

●●
●

●

●
●

●
●

● ● ●● ●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●
●

●

●

●

● ●
● ●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

● ●

●
●

●
●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●
● ●

●

●

● ●
●

●
● ●

●

●

● ●

●

●

●

●

library(tseries)
yar8 <- arma(y, order = c(8, 0))
points(y[-length(y)], fitted(yar8)[-1], col = "red")

Figure 23.9 Adding the predictions of an eighth-order linear AR model
(red dots) to Figure 23.5. We will see the arma function in more detail in
§23.9.3.2; for now, it’s enough to know that when the second component of
its order argument is 0, it estimates and fits a linear AR model.

530 Time Series

Time

ly
nx

1820 1840 1860 1880 1900 1920

0
20

00
40

00
60

00
80

00
10

00
0

plot(lynx, ylim = c(-500, 10000))
sd1 <- sqrt(fitted(lynx.condvar1))
lines(1823:1934, fitted(lynx.aar2) + 2 * sd1, col = "grey")
lines(1823:1934, fitted(lynx.aar2) - 2 * sd1, col = "grey")
lines(1823:1934, sd1, lty = "dotted")

Figure 23.10 The lynx data (black line), together with the predictions of
the additive autoregression ±2 conditional standard deviations. The dotted
line shows how the conditional standard deviation changes over time; notice
how it ticks upwards around the big spikes in population.

Exercises 531

t x

1821 269
1822 321
1823 585
1824 871
1825 1475
1826 2821
1827 3928
1828 5943

⇒

lag2 lag1 lag0

269 321 585
321 585 871
585 871 1475
871 1475 2821
1475 2821 3928
2821 3928 5943

⇒

lag2 lag1 lag0

269 321 585
871 1475 2821
585 871 1475

⇒

t x̃

1821 269
1822 321
1823 585
1824 871
1825 1475
1826 2821
1827 585
1828 871

Figure 23.11 Scheme for block bootstrapping: turn the time series (here,
the first eight years of lynx) into blocks of consecutive values; randomly
resample enough of these blocks to get a series as long as the original; then
string the blocks together in order. See Code Example 34 for code.

532 Time Series

Time

ly
nx

1820 1840 1860 1880 1900 1920

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

plot(lynx)
lines(1821:1934, rblockboot(lynx, 4), col = "blue")

Figure 23.12 The lynx time series, and one run of resampling it with a
block bootstrap, block length = 4.

Exercises 533

Warning: package ’xts’ was built under R version 3.4.4
Loading required package: zoo

Warning: package ’zoo’ was built under R version 3.4.4
##

Attaching package: ’zoo’
The following objects are masked from ’package:base’:

##
as.Date, as.Date.numeric

1950 1960 1970 1980 1990 2000 2010 2020

20
00

0
30

00
0

40
00

0
50

00
0

year

G
D

P
 p

er
 c

ap
ita

 (
co

ns
ta

nt
 2

01
2

do
lla

rs
)

library(pdfetch)
gdppc.fred <- pdfetch_FRED("A939RX0Q048SBEA")
library(xts)
library(lubridate)
gdppc <- data.frame(year = decimal_date(index(gdppc.fred)), y = as.numeric(gdppc.fred))
plot(gdppc, log = "y", type = "l", ylab = "GDP per capita (constant 2012 dollars)")

Figure 23.13 US GDP per capita, adjusted for inflation (consumer price
index deflator), with a log scale on the vertical axis. (The values were
initially recorded in the file in millions of dollars per person per year, hence
the correction.)

534 Time Series

1950 1960 1970 1980 1990 2000 2010 2020

20
00

0
30

00
0

40
00

0
50

00
0

year

G
D

P
 p

er
 c

ap
ita

 (
co

ns
ta

nt
 2

01
2

do
lla

rs
)

gdppc.exp <- lm(log(y) ~ year, data = gdppc)
beta0 <- exp(coefficients(gdppc.exp)[1])
beta <- coefficients(gdppc.exp)[2]
curve(beta0 * exp(beta * x), lty = "dashed", add = TRUE)

Figure 23.14 As in Figure 23.13, but with an exponential trend fitted.

Exercises 535

1950 1960 1970 1980 1990 2000 2010 2020

−
0.

10
−

0.
05

0.
00

0.
05

year

lo
gg

ed
 fl

uc
tu

at
io

n
ar

ou
nd

 tr
en

d

plot(gdppc$year, residuals(gdppc.exp), xlab = "year", ylab = "logged fluctuation around trend",
type = "l", lty = "dashed")

Figure 23.15 The hopefully-stationary fluctuations around the exponential
growth trend in Figure 23.14. Note that these are log Yt

β̂0eβ̂t
, and so unitless.

536 Time Series

1950 1960 1970 1980 1990 2000 2010 2020

20
00

0
30

00
0

40
00

0
50

00
0

year

G
D

P
 p

er
 c

ap
ita

 (
co

ns
ta

nt
 2

01
2

do
lla

rs
)

gdp.spline <- fitted(gam(y ~ s(year), data = gdppc))
lines(gdppc$year, gdp.spline, lty = "dotted")

Figure 23.16 Figure 23.14, but with the addition of a spline curve for the
time trend (dotted line). This is, perhaps unsurprisingly, not all that
different from the simple exponential-growth trend.

Exercises 537

1950 1960 1970 1980 1990 2000 2010 2020

−
0.

10
−

0.
05

0.
00

0.
05

year

lo
gg

ed
 fl

uc
tu

at
io

n
ar

ou
nd

 tr
en

d

lines(gdppc$year, log(gdppc$y/gdp.spline), xlab = "year", ylab = "logged fluctuations around trend",
lty = "dotted")

Figure 23.17 Adding the logged deviations from the spline trend (dotted)
to Figure 23.15.

538 Time Series

1950 1960 1970 1980 1990 2000 2010 2020

−
0.

03
−

0.
02

−
0.

01
0.

00
0.

01
0.

02
0.

03

year

di
ffe

re
nc

ed
 lo

g
G

D
P

 p
er

 c
ap

ita

plot(gdppc$year[-1], diff(log(gdppc$y)), type = "l", xlab = "year", ylab = "differenced log GDP per capita")

Figure 23.18 First differences of log GDP per capita, i.e., the year-to-year
growth rate of GDP per capita.

Exercises 539

1990 1995 2000 2005 2010 2015

50
55

60
65

70

Employment to population ratio

year

P
er

ce
nt

epr.fred <- pdfetch_FRED("LNU02300000")
epr <- data.frame(year = decimal_date(index(epr.fred)), epr = as.numeric(epr.fred))
epr <- epr[epr$year > 1989,]
plot(epr, ylab = "Percent", ylim = c(50, 70), main = "Employment to population ratio",

type = "l")

Figure 23.19 Monthly employment to population ratio for the US, in
percent, without seasonal adjustment, from 1990 forward. (Source: series
LNU02300000 from FRED,
https://fred.stlouisfed.org/series/LNU02300000.)

https://fred.stlouisfed.org/series/LNU02300000

540 Time Series

1990 2000 2010

58
60

62
64

year

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF of surrogate series

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF of actual data

par(mfrow = c(2, 2))
before_crash <- (epr$year < 2009)
after_crash <- (epr$year >= 2009)
epr_before <- epr$epr[before_crash]
epr_after <- epr$epr[after_crash]
pre <- rnorm(sum(before_crash), mean(epr_before), sd(epr_before))
post <- rnorm(sum(after_crash), mean(epr_after), sd(epr_after))
change <- data.frame(year = epr$year, epr = c(pre, post))
plot(change, ylab = "", type = "l")
acf(change$epr, lag.max = 50, main = "ACF of surrogate series")
acf(epr$epr, lag.max = 50, main = "ACF of actual data")
par(mfrow = c(1, 1))

Figure 23.20 A time series with a change-point. Before and after the
change point, the series is an IID sequence of Gaussians, but both the
expected value and the variance switch at the change-point. (These are
matched to the employment-population ratio’s values up to 2008 and after
2008.) The middle panel shows the resulting autocorrelation function. The
bottom panel shows the actual ACF of the employment-population ratio.
There is more correlation in the data than the change-point alone can
account for, but it comes close.

Exercises 541

Xt−2 Xt−1

StSt−1St−2

Xt

Figure 23.21 DAG for hidden Markov models. The current state St is the
only parent of the current observation Xt and the only parent of the next
state St+1. Thus the S’s are Markovian, the X’s are not,
Xt ⊥⊥ S−∞:t−1, X−∞:t−1|St, and Xt+1:∞, St+1:∞ ⊥⊥ Xt|St.

Xt−2 Xt−1

StSt−1St−2

Xt

Figure 23.22 DAG for a chain with complete connections. The current
state St is the only parent of the current observation Xt, and those two
together are the only parents of the next state St+1. (In fact, they’re usually
assumed to fix St+1 deterministically.) The S’s are Markovian, the X’s are
not, Xt ⊥⊥ S−∞:t−1, X−∞:t−1|St, and Xt+1:∞, St+1:∞ 6⊥⊥ Xt|St.

Xt−3 Xt−2 Xt−1

Zt−3 Zt. . . Zt−1

Xt

Zt−2

Figure 23.23 The DAG for a first-order moving average model.

542 Time Series

1950 1960 1970 1980 1990 2000 2010 2020

−
0.

10
−

0.
05

0.
00

0.
05

year

lo
gg

ed
 fl

uc
tu

at
io

ns
 in

 r
ea

l U
S

 G
D

P
 p

er
 c

ap
ita

gdppc.ma4 <- arma(x = residuals(gdppc.exp), order = c(0, 4))
plot(gdppc$year, residuals(gdppc.exp), type = "l", xlab = "year", ylab = "logged fluctuations in real US GDP per capita")
lines(gdppc$year, fitted(gdppc.ma4), col = "grey", lwd = 2)

Figure 23.24 Logged fluctuations for the United States’s GDP per capita
(with exponential trend removed, as in Figure 23.15), versus a fourth-order
moving average model. (Since each unit of time is a quarter, four quarters is
a year.) The root-mean-squared error, in sample, is 0.013, corresponding to
an R2 of 0.75. (But you know better than to rely on R2.

Exercises 543

. . . Xt−3 Xt−2 Xt−1

Zt−3 Zt. . . Zt−1

Xt

Zt−2

Figure 23.25 The DAG for an ARMA(1, 1) model.

24

Simulation-Based Inference

Checking whether the model’s simulation output looks like the data (§5.4.2) nat-
urally suggests the idea of adjusting the model until it does. This becomes a
way of estimating the model — in the jargon, simulation-based inference. All
forms of this involve tweaking parameters of the model until the simulations do
look like the data, but differ in what, concretely, “looking like the data” means.

24.1 The Method of Simulated Moments

The most straightforward form of simulation-based inference is the method of
simulated moments, which builds of the method of moments you’ll have
seen in earlier statistics classes.

24.1.1 The Method of Moments

We have a model with a parameter vector θ, and pick a vector m of moments
to calculate. The moments, like the expectation of any variables, are functions of
the parameters,

m = g(θ) (24.1)

for some function g. If that g is invertible, then we can recover the parameters
from the moments,

θ = g−1(m) (24.2)

The method of moments estimator takes the observed, sample moments m̂, and
plugs them into Eq. 24.2:

θ̂MM = g−1(m̂) (24.3)

What if g−1 is hard to calculate — if it’s hard to explicitly solve for parameters
from moments? In that case, we can use minimization:

θ̂MM = argmin
θ
‖g(θ)− m̂‖2 (24.4)

For the minimization version, we just have to calculate moments from parameters
g(θ), not vice versa. To see that Eqs. 24.3 and 24.4 do the same thing, notice that

544

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

24.1 The Method of Simulated Moments 545

(i) the squared1 distance ‖g(θ)− m̂‖2 ≥ 0, (ii) the distance is only zero when the
moments are matched exactly, and (iii) there is only one θ which will match the
moments.

In either version, inversion or minimization, the method of moments works
statistically because the sample moments m̂ converge on their expectations g(θ)
as we get more and more data (App. D.5). This is, generally, a consequence of
the law of large numbers or ergodic theorem.

It’s worth noting that nothing in this argument says that m has to be a vector
of moments in the strict sense. They could be expectations of any functions of
the random variables, so long as g(θ) is invertible, we can calculate the sample
expectations of these functions from the data, and the sample expectations con-
verge. When m isn’t just a vector of moments, then, we have the generalized
method of moments.

It is also worth noting that there’s a somewhat more general version of the
same method, where we minimize

(g(θ)− m̂) ·w (g(θ)− m̂) (24.5)

with some positive-definite weight matrix w. This can help if some of the moments
are much more sensitive to the parameters than others.

24.1.2 Adding in the Simulation

All of this supposes that we know how to calculate g(θ) — that we can find the
moments exactly. Even if this is too hard, however, we could always simulate to
approximate these expectations, and try to match the simulated moments to the
real ones. Rather than Eq. 24.4, the estimator would be

θ̂SMM = argmin
θ
‖g̃s,T (θ)− m̂‖2 (24.6)

with s being the number of simulation paths and T being their size. Now consis-
tency requires that g̃ → g, either as T grows or s or both, but this is generally
assured by the law of large numbers, as before. Simulated method of moments
estimates like this are generally more uncertain than ones which don’t rely on
simulation, since there’s an extra layer of approximation, but this can be reduced
by increasing s.2

1 Why squared? Basically because it makes the function we’re minimizing smoother, and the

optimization nicer.
2 A common trick is to fix T at the actual sample size n, and then to increase s as much as

computationally feasible. By looking at the variance of g̃ across different runs of the model with the

same θ, one gets an idea of how much uncertainty there is in m̂ itself, and so of how precisely one

should expect to be able to match it. If the optimizer has gotten |g̃(θ)− m̂| down to 0.02, and the

standard deviation of g̃ at constant θ is 0.1, further effort at optimization is probably wasted.

546 Simulation-Based Inference

24.1.3 An Example: Moving Average Models and the Stock Market

To give a concrete example, we will try fitting a time series model to the stock
market: it’s a familiar subject which interests most students, and we can check
the method of simulated moments here against other estimation techniques.

Our data will consist of about ten year’s worth of daily values for the S& P
500 stock index, previously seen in Chapter 7:

sp <- pdfetch_YAHOO("SPY", fields = "adjclose", from = as.Date("1993-02-09"),
to = as.Date("2018-02-09"))

sp <- diff(log(sp))
sp <- sp[-1]

Professionals in finance do not care so much about the sequence of prices Pt,
as the sequence of returns, Pt−Pt−1

Pt−1
. This is because making $1000 is a lot better

when you invested $1000 than when you invested $1,000,000, but 10% is 10%. In
fact, it’s often easier to deal with the log returns, Xt = log Pt

Pt−1
, as we do here.

The model we will fit is a first-order moving average, or MA(1) model
(§23.9.1):

Xt = Zt + θZt−1 (24.7)

Zt ∼ N (0, σ2) i.i.d. (24.8)

The Xt sequence of variables are the returns we see; the Zt variables are invisible
to us. The interpretation of the model is as follows. Prices in the stock market
change in response to news that affects the prospects of the companies listed, as
well as news about changes in over-all economic conditions. Zt represents this
flow of news, good and bad. It makes sense that Zt is uncorrelated, because
the relevant part of the news is only what everyone hadn’t already worked out
from older information3. However, it does take some time for the news to be
assimilated, and this is why Zt−1 contributes to Xt. A negative contribution,
θ < 0, would seem to indicate a “correction” to the reaction to the previous day’s
news.

Mathematically, notice that since Zt and θZt−1 are independent Gaussians, Xt

is a Gaussian with mean 0 and variance σ2 + θ2σ2. The marginal distribution of
Xt is therefore the same for all t. For technical reasons4, we can really only get
sensible behavior from the model when −1 ≤ θ ≤ 1.

There are two parameters, θ and σ2, so we need two moments for estimation.

3 Nobody will ever say “What? It’s snowing in Pittsburgh in February? Call my broker!”
4 Think about trying to recover Zt, if we knew θ. One might try Xt − θXt−1, which is almost right,

it’s Zt + θZt−1 − θZt−1 − θ2Zt−2 = Zt − θ2Zt−2. Similarly, Xt − θXt−1 + θ2Xt−2 = Zt + θ3Zt−2,

and so forth. If |θ| < 1, then this sequence of approximations will converge on Zt; if not, then not. It

turns out that models which are not “invertible” in this way are very strange — see Shumway and

Stoffer (2000).

24.1 The Method of Simulated Moments 547

Let’s try V [Xt] and Cov [Xt, Xt−1].

V [Xt] = V [Zt] + θ2V [Zt−1] (24.9)

= σ2 + θ2σ2 (24.10)

= σ2(1 + θ2) ≡ v(θ, σ) (24.11)

Cov [Xt, Xt−1] = E [(Zt + θZt−1)(Zt−1 + θZt−2)] (24.12)

= θE
[
Z2
t−1

]
(24.13)

= θσ2 ≡ c(θ, σ) (24.14)

We can solve the system of equations for the parameters, starting with elimi-
nating σ2:

c(θ, σ)

v(θ, σ)
=

σ2θ

σ2(1 + θ2)
(24.15)

=
θ

1 + θ2
(24.16)

0 = θ2 c

v
− θ +

c

v
(24.17)

This is a quadratic in θ,

θ =
1±

√
1− 4 c

2

v2

2c/v
(24.18)

and it’s easy to confirm5 that this has only one solution in the meaningful range,
−1 ≤ θ ≤ 1. Having found θ, we solve for σ2,

σ2 = c/θ (24.19)

The method of moments estimator takes the sample values of these moments,
v̂ and ĉ, and plugs them in to Eqs. 24.18 and 24.19. With the S& P returns, the
sample covariance is −1.61 × 10−5, and the sample variance 1.96 × 10−4. This

leads to θ̂MM = −8.28 × 10−2, and σ̂2
MM = 1.95 × 10−4. In terms of the model,

then, each day’s news has a follow-on impact on prices which is about 8% as large
as its impact the first day, but with the opposite sign.6

If we did not know how to solve a quadratic equation, we could use the mini-
mization version of the method of moments estimator:[

θ̂MM

σ̂2
MM

]
= argmin

θ,σ2

∥∥∥∥ σ2θ − ĉ
σ2(1 + θ2)− v̂

∥∥∥∥2

(24.20)

Computationally, it would go something like Code Example 35.

5 For example, plot c/v as a function of θ, and observe that any horizontal line cuts the graph at only

one point.
6 It would be natural to wonder whether θ̂MM is really significantly different from zero. Assuming

Gaussian noise, one could, in principle, calculate the probability that even though θ = 0, by chance

ĉ/v̂ was so far from zero as to give us our estimate. As you will see in the homework, however,

Gaussian assumptions are very bad for this data. This sort of thing is why we have bootstrapping.

548 Simulation-Based Inference

ma.mm.est <- function(c, v) {
theta.0 <- c/v
sigma2.0 <- v
fit <- optim(par = c(theta.0, sigma2.0), fn = ma.mm.objective, c = c, v = v)
return(fit)

}
ma.mm.objective <- function(params, c, v) {

theta <- params[1]
sigma2 <- params[2]
c.pred <- theta * sigma2
v.pred <- sigma2 * (1 + theta^2)
return((c - c.pred)^2 + (v - v.pred)^2)

}

Code Example 35: Code for implementing method of moments estimation of a first-order
moving average model, as in Eq. 24.20. See App. I.9.7 for “design notes”, and the online code
for comments.

rma <- function(n, theta, sigma2, s = 1) {
z <- replicate(s, rnorm(n = n + 1, mean = 0, sd = sqrt(sigma2)))
x <- z[-1,] + theta * z[-(n + 1),]
return(x)

}

Code Example 36: Function which simulates s independent runs of a first-order moving average
model, each of length n, with given noise variance sigma2 and after-effect theta. See online for
comments.

The parameters estimated by minimization agree with those from direct algebra
to four significant figures, which I hope is good enough to reassure you that this
works.

Before we can try out the method of simulated moments, we have to figure out
how to simulate our model. Xt is a deterministic function of Zt and Zt−1, so our
general strategy (§5.2.1) says to first generate the Zt, and then compute Xt from
that. But here the Zt are just a sequence of independent Gaussians, which is a
solved problem for us. The one wrinkle is that to get our first value X1, we need
a previous value Z0. Code Example 36 shows the solution.

What we need to extract from the simulation are the variance and the co-
variance. It will be more convenient to have functions which calculate these call
rma() themselves (Code Example 37).

Figure 24.1 plots the covariance, the variance, and their ratio as functions of θ
with σ2 = 1, showing both the values obtained from simulation and the theoretical
ones.7 The agreement is quite good, though of course not quite perfect.8

7 I could also have varied σ2 and made 3D plots, but that would have been more work. Also, the

variance and covariance are both proportional to σ2, so the shapes of the figures would all be the

same.
8 If you look at those figures and think “Why not do a nonparametric regression of the simulated

moments against the parameters and use the fitted values as g̃, it’ll get rid of some of the simulation

noise?”, congratulations, you’ve just discovered the smoothed method of simulated moments.

24.1 The Method of Simulated Moments 549

●●●●
●●●●●
●●●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●

●●●●●●●●●●
●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●
●●●●●●
●●●●●●●●●

●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

θ

C
ov

ar
ia

nc
e

●●●●
●●●●●●
●
●
●
●●
●●●●
●●●●●
●●●●●●●

●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●

●●●●●●●●●●●●●
●●●●●
●●●●●●●●●

●●
●●●●●●●●

●●●●●
●●●●●
●●
●●●●●
●●
●●●●
●●●●●
●●●
●●●
●●●
●●●●
●●●●
●●
●●●●
●●●●
●●●●
●
●●●
●●●●
●●●
●●
●●●
●●●●
●●●●
●●
●●
●●
●●
●
●
●●
●●●

●
●
●

−1.0 −0.5 0.0 0.5 1.0

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

θ
V

ar
ia

nc
e

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●
●●●●
●●●●
●●●
●●●●●
●●●●●●
●●●●●
●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●
●●●●●
●●●●●
●●●●
●●●●
●●●
●●●●●
●●●●●●
●●
●●●●●●
●●●●
●●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●

●

−1.0 −0.5 0.0 0.5 1.0

−
0.

4
0.

0
0.

2
0.

4

θ

R
at

io
 o

f c
ov

ar
ia

nc
e

to
 v

ar
ia

nc
e

par(mfrow = c(2, 2))
theta.grid <- seq(from = -1, to = 1, length.out = 300)
cov.grid <- sapply(theta.grid, sim.cov, sigma2 = 1, n = length(sp), s = 10)
plot(theta.grid, cov.grid, xlab = expression(theta), ylab = "Covariance")
abline(0, 1, col = "grey", lwd = 3)
var.grid <- sapply(theta.grid, sim.var, sigma2 = 1, n = length(sp), s = 10)
plot(theta.grid, var.grid, xlab = expression(theta), ylab = "Variance")
curve((1 + x^2), col = "grey", lwd = 3, add = TRUE)
plot(theta.grid, cov.grid/var.grid, xlab = expression(theta), ylab = "Ratio of covariance to variance")
curve(x/(1 + x^2), col = "grey", lwd = 3, add = TRUE)
par(mfrow = c(1, 1))

Figure 24.1 Plots of the covariance, the variance, and their ratio as a
function of θ, with σ2 = 1. Dots show simulation values (averaging 10
realizations each as long as the data), the grey curves the exact calculations.

550 Simulation-Based Inference

sim.var <- function(n, theta, sigma2, s = 1) {
vars <- apply(rma(n, theta, sigma2, s), 2, var)
return(mean(vars))

}
sim.cov <- function(n, theta, sigma2, s = 1) {

x <- rma(n, theta, sigma2, s)
covs <- colMeans(x[-1,] * x[-n,])
return(mean(covs))

}

Code Example 37: Functions for calculating the variance and covariance for specified parameter
values from simulations.

ma.msm.est <- function(c, v, n, s) {
theta.0 <- c/v
sigma2.0 <- v
fit <- optim(par = c(theta.0, sigma2.0), fn = ma.msm.objective, c = c, v = v,

n = n, s = s)
return(fit)

}
ma.msm.objective <- function(params, c, v, n, s) {

theta <- params[1]
sigma2 <- params[2]
c.pred <- sim.cov(n, theta, sigma2, s)
v.pred <- sim.var(n, theta, sigma2, s)
return((c - c.pred)^2 + (v - v.pred)^2)

}

Code Example 38: Code for implementing the method of simulated moments estimation of a
first-order moving average model.

Conceptually, we could estimate θ by jut taking the observed value ĉ/v̂, running
a horizontal line across Figure 24.1c, and seeing at what θ it hit one of the
simulation dots. Of course, there might not be one it hits exactly...

The more practical approach is Code Example 38. The code is practically
identical to that in Code Example 35, except that the variance and covariance
predicted by given parameter settings now come from simulating those settings,
not an exact calculation. Also, we have to say how long a simulation to run, and
how many simulations to average over per parameter value.

When I run this, with s=100, I get θ̂MSM = −8.36× 10−2 and σ̂2
MSM = 1.94×

10−4, which is quite close to the non-simulated method of moments estimate.
In fact, in this case there is actually a maximum likelihood estimator (arima(),

after the more general class of models including MA models), which claims θ̂ML =
−9.75× 10−2 and σ̂2

ML = 1.94× 10−4. Since the standard error of the MLE on θ
is ±0.02, this is working essentially as well as the method of moments, or even
the method of simulated moments. [[TODO: Replace numbers with R]]

In this case, because there is a tractable maximum likelihood estimator, one
generally wouldn’t use the method of simulated moments. But we can in this case

24.2 Indirect Inference 551

check whether it works (it does), and so we can use the same technique for other
models, where an MLE is unavailable.

24.2 Indirect Inference

Section 24.1 explained the method of simulated moments, where we try to match
expectations of various functions of the data. Expectations of functions are sum-
mary statistics, but they’re not the only kind of summary statistics. We could
try to estimate our model by matching any set of summary statistics, so long as
(i) there’s a unique way of mapping back from summaries to parameters, and (ii)
estimates of the summary statistics converge as we get more data.

A powerful but somewhat paradoxical version of this is what’s called indirect
inference, where the summary statistics are the parameters of a different model.
This second or auxiliary model does not have to be correctly specified, it just
has to be easily fit to the data, and satisfy (i) and (ii) above. Say the parameters
of the auxiliary model are β, as opposed to the θ of our real model. We calculate
β̂ on the real data. Then we simulate from different values of θ, fit the auxiliary
to the simulation outputs, and try to match the auxiliary estimates. Specifically,
the indirect inference estimator is

θ̂II = argmin
θ
‖β̃(θ)− β̂‖2 (24.21)

where β̃(θ) is the value of β we estimate from a simulation of θ, of the same size
as the original data. (We might average together a couple of simulation runs for
each θ.) If we have a consistent estimator of β, then

β̂ → β (24.22)

β̃(θ)→ b(θ) (24.23)

If in addition b(θ) is invertible, then

θ̂II → θ (24.24)

For this to work, the auxiliary model needs to have at least as many parameters
as the real model, but we can often arrange this by, say, making the auxiliary
model a linear regression with a lot of coefficients.

[[TODO: nominal confidence limits by means of the information matrix]]
A specific case, often useful for time series, is to make the auxiliary model a lin-

ear autoregressive model (§23.4), where each observation is linearly regressed
on the previous ones — see the discussion in §23.4.

24.3 Further Reading

The best general reference on simulation-based inference I know is (despite its
age) still Gouriéroux and Monfort (1989/1995); many of the examples presume
some familiarity with the jargon of econometrics, but the general approaches do

552 Simulation-Based Inference

not. It covers the simulated method of moments, simulated maximum likelihood,
and (unsurprisingly: Gouriéroux et al. 1993) indirect inference.

Kendall et al. (2005) is an excellent example of applying indirect inference
to testing substantive scientific (not statistical!) hypotheses with real data. (I
learned about indirect inference from hearing Prof. Ellner describe this paper.)

The weakest conditions I know of under which indirect inference is consistent
are given in Zhao (2010, ch. 5).

Wood (2010) proposes an interesting variant on indirect inference; despite the
title, it applies much more generally than to ecology.

Indirect inference has a Bayesian counterpart, or even version, called “approxi-
mate Bayesian computation”, which originated in population genetics; Beaumont
(2010) is an accessible review by one of the inventors.

Exercises

24.1 Indirect inference

1. Convince yourself that if Xt comes from an MA(1) process, it can’t also be written as

an AR(1) model.

2. Write a function, ar1.fit, to fit an AR(1) model to a time series, using lm, and to

return the three parameters (intercept, slope, noise variance).

3. Apply ar1.fit to the S&P 500 data; what are the auxiliary parameter estimates?

4. Combine ar1.fit with the simulator rma, and plot the three auxiliary parameters as

functions of θ, holding σ2 fixed at 1. (This is analogous to Figure 24.1.)

5. Write functions, analogous to ma.msm.est and ma.msm.objective, for estimating an

MA(1) model, using an AR(1) model as the auxiliary function. Does this recover the

right parameter values when given data simulated from an MA(1) model?

6. What values does your estimator give for θ and σ2 on the S& P 500 data? How do

they compare to the other estimates?

24.2 Indirect inference with a mechanistic model [[TODO: Lotka-Volterra model with errors-

in-variables for the lynx data?]]

References

Abadie, Alberto and Guido W. Imbens (2006). “Large Sample Properties of Matching Estimators
for Average Treatment Effects.” Econometrica, 74: 235–267. URL http://www.ksg.harvard.

edu/fs/aabadie/smep.pdf. doi:10.1111/j.1468-0262.2006.00655.x. 466

Abarbanel, Henry D. I. (1996). Analysis of Observed Chaotic Data. Berlin: Springer-Verlag.
520

Adler, Joseph (2009). R in a Nutshell . Sebastopol, California: O’Reilly. 727

Akaike, Hirotugu (1973). “Information Theory and an Extension of the Maximum Likelihood
Principle.” In Proceedings of the Scond International Symposium on Information Theory
(B. N. Petrov and F. Caski, eds.), pp. 267–281. Budapest: Akademiai Kiado. Reprinted in
(Akaike, 1998, pp. 199–213). 610

— (1998). Selected Papers of Hirotugu Akaike. Berlin: Springer-Verlag. Edited by Emanuel
Parzen, Kunio Tanabe and Genshiro Kitagawa. 553

al Ghazali, Abu Hamid Muhammad ibn Muhammad at-Tusi (1100/1997). The Incoherence
of the Philosophers = Tahafut al-Falasifah: A Parallel English-Arabic Text . Provo, Utah:
Brigham Young University Press. Translated by Michael E. Marmura. 426

Alford, J. R., C. L. Funk and J. R. Hibbibng (2005). “Are Political Orientations Genetically
Transmitted?” American Political Science Review , 99: 153–167. 218

Amari, Shun-ichi and Hiroshi Nagaoka (1993/2000). Methods of Information Geometry . Provi-
dence, Rhode Island: American Mathematical Society. Translated by Daishi Harada. As Joho
Kika no Hoho, Tokyo: Iwanami Shoten Publishers. 643

Anthony, Martin and Peter L. Bartlett (1999). Neural Network Learning: Theoretical Founda-
tions. Cambridge, England: Cambridge University Press. 78

Arceneaux, Kevin, Alan S. Gerber and Donald P. Green (2010). “A Cautionary Note on the
Use of Matching to Estimate Causal Effects: An Empirical Example Comparing Matching
Estimates to an Experimental Benchmark.” Sociological Methods and Research, 39: 256–282.
doi:10.1177/0049124110378098. 465

Arlot, Sylvain and Alain Celisse (2010). “A survey of cross-validation procedures for model
selection.” Statistics Surveys, 4: 40–79. URL http://projecteuclid.org/euclid.ssu/

1268143839. 78

— (2011). “Segmentation of the mean of heteroscedastic data via cross-validation.” Statistics
and Computing , 21: 613–632. URL http://arxiv.org/abs/0902.3977. 510

Arnold, Barry C. (1983). Pareto Distributions. Fairland, Maryland: International Cooperative
Publishing House. 138, 396

Arnol’d, V. I. (1973). Ordinary Differential Equations. Cambridge, Massachusetts: MIT Press.
Trans. Richard A. Silverman from Obyknovennye differentsial’nye Uravneniya. 643

Bai, Jushan (2003). “Testing Parametric Conditional Distributions of Dynamic Models.” The
Review of Economics and Statistics, 85: 531–549. doi:10.1162/003465303322369704. 625

Barndorff-Nielsen, O. E. (1978). Information and Exponential Families in Statistical Theory .
New York: John Wiley and Sons. 265

Barndorff-Nielsen, O. E. and D. R. Cox (1995). Inference and Asymptotics. London: Chapman
and Hall. 610

553

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.ksg.harvard.edu/fs/aabadie/smep.pdf
http://www.ksg.harvard.edu/fs/aabadie/smep.pdf
http://dx.doi.org/10.1111/j.1468-0262.2006.00655.x
http://dx.doi.org/10.1177/0049124110378098
http://projecteuclid.org/euclid.ssu/1268143839
http://projecteuclid.org/euclid.ssu/1268143839
http://arxiv.org/abs/0902.3977
http://dx.doi.org/10.1162/003465303322369704
http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

554 References

Bartholomew, David J. (1987). Latent Variable Models and Factor Analysis. New York: Oxford
University Press. 354, 366, 371, 375

Bartholomew, David J., Ian J. Deary and Martin Lawn (2009). “A New Lease on
Life for Thomson’s Bonds Model of Intelligence.” Psychological Review , 116: 567–579.
doi:10.1037/a0016262. 371

Bartlett, M. S. (1955). An Introduction to Stochastic Processes, with Special Reference to Meth-
ods and Applications. Cambridge, England: Cambridge University Press. 519

Basharin, Gely P., Amy N. Langville and Valeriy A. Naumov (2004). “The Life and Work of
A. A. Markov.” Linear Algebra and its Applications, 386: 3–26. URL http://langvillea.

people.cofc.edu/MarkovReprint.pdf. 405

Baum, Leonard E., Ted Petrie, George Soules and Norman Weiss (1970). “A maximization
technique occurring in the statistical analysis of probabilistic functions of Markov chains.”
Annals of Mathematical Statistics, 41: 164–171. URL https://projecteuclid.org/euclid.

aoms/1177697196. doi:10.1214/aoms/1177697196. 518

Beaumont, Mark A. (2010). “Approximate Bayesian Computation in Evolution and Ecology.”
Annual Review of Ecology, Evolution, and Systematics, 41: 379–406. doi:10.1146/annurev-
ecolsys-102209-144621. 552

Becker, Howard S. (2017). Evidence. Chicago: University of Chicago Press. 686

Belkin, Mikhail and Partha Niyogi (2003). “Laplacian Eigenmaps for Dimensionality Reduction
and Data Representation.” Neural Computation, 15: 1373–1396. URL http://www.cse.

ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf. doi:10.1162/089976603321780317. 659,
660

Benaglia, Tatiana, Didier Chauveau, David R. Hunter and Derek S. Young (2009). “mixtools:
An R Package for Analyzing Mixture Models.” Journal of Statistical Software, 32. URL
http://www.jstatsoft.org/v32/i06. 382, 575

Benzi, Michele (2009). “The Early History of Matrix Iterations: With a Focus on the Ital-
ian Contribution.” Presentation at SIAM Conference on Applied Linear Algebra, Monterey
Bay, California, 26 October 2009. URL https://archive.siam.org/meetings/la09/talks/

benzi.pdf. 181

Bera, Anil K. and Aurobindo Ghosh (2002). “Neyman’s Smooth Test and Its Applications in
Econometrics.” In Handbook of Applied Econometrics and Statistical Inference (Aman Ullah
and Alan T. K. Wan and Anoop Chaturvedi, eds.), pp. 177–230. New York: Marcel Dekker.
URL http://ssrn.com/abstract=272888. 615, 636

Berk, Richard, Lawrence Brown, Andreas Buja, Kai Zhang and Linda Zhao (2013). “Valid
Post-Selection Inference.” Annals of Statistics, 41: 802–837. URL http://arxiv.org/abs/

1306.1059. doi:10.1214/12-AOS1077. 78

Berk, Richard A. (2004). Regression Analysis: A Constructive Critique. Thousand Oaks, Cali-
fornia: Sage. 60, 453

— (2008). Statistical Learning from a Regression Perspective. New York: Springer-Verlag. 285

Beygelzimer, Alina, Sham Kakade, John Langford, Sunil Arya, David Mount and Shengqiao
Li (2013). FNN: Fast Nearest Neighbor Search Algorithms and Applications. URL http:

//CRAN.R-project.org/package=FNN. R package version 1.1. 30, 575

Biecek, Przemyslaw and Teresa Ledwina (2010). ddst: Data driven smooth test . URL http:

//CRAN.R-project.org/package=ddst. R package, version 1.02. 621

Blackwell, David and M. A. Girshick (1954). Theory of Games and Statistical Decisions. New
York: Wiley. 284

Blei, David M. and John D. Lafferty (2009). “Topic Models.” In Text Mining: Theory and
Applications (A. Srivastava and M. Sahami, eds.). London: Taylor and Francis. URL http:

//www.cs.princeton.edu/~blei/papers/BleiLafferty2009.pdf. 382

Blei, David M., Andrew Y. Ng and Michael I. Jordan (2003). “Latent Dirichlet Allocation.”
Journal of Machine Learning Research, 3: 993–1022. URL http://jmlr.csail.mit.edu/

papers/v3/blei03a.html. 382

http://dx.doi.org/10.1037/a0016262
http://langvillea.people.cofc.edu/MarkovReprint.pdf
http://langvillea.people.cofc.edu/MarkovReprint.pdf
https://projecteuclid.org/euclid.aoms/1177697196
https://projecteuclid.org/euclid.aoms/1177697196
http://dx.doi.org/10.1214/aoms/1177697196
http://dx.doi.org/10.1146/annurev-ecolsys-102209-144621
http://dx.doi.org/10.1146/annurev-ecolsys-102209-144621
http://www.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf
http://www.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf
http://dx.doi.org/10.1162/089976603321780317
http://www.jstatsoft.org/v32/i06
https://archive.siam.org/meetings/la09/talks/benzi.pdf
https://archive.siam.org/meetings/la09/talks/benzi.pdf
http://ssrn.com/abstract=272888
http://arxiv.org/abs/1306.1059
http://arxiv.org/abs/1306.1059
http://dx.doi.org/10.1214/12-AOS1077
http://CRAN.R-project.org/package=FNN
http://CRAN.R-project.org/package=FNN
http://CRAN.R-project.org/package=ddst
http://CRAN.R-project.org/package=ddst
http://www.cs.princeton.edu/~blei/papers/BleiLafferty2009.pdf
http://www.cs.princeton.edu/~blei/papers/BleiLafferty2009.pdf
http://jmlr.csail.mit.edu/papers/v3/blei03a.html
http://jmlr.csail.mit.edu/papers/v3/blei03a.html

References 555

Boas, Mary L. (1983). Mathematical Methods in the Physical Sciences. New York: Wiley, 2nd
edn. 582

Bonner, John Tyler (1988). The Evolution of Complexity, by Means of Natural Selection. Prince-
ton, New Jersey: Princeton University Press. 18, 57

Borsboom, Denny (2005). Measuring the Mind: Conceptual Issues in Contemporary Psychomet-
rics. Cambridge, England: Cambridge University Press. 372

— (2006). “The Attack of the Psychometricians.” Psychometrika, 71: 425–440. URL https:

//sites.google.com/site/borsboomdenny/BorsboomPM2006.pdf. doi:10.1007/s11336-006-
1447-6. 372

Boudon, Raymond (1998). “Social Mechanisms without Black Boxes.” In Hedström and Swed-
berg (1998), pp. 172–203. 453

Bousquet, Olivier, Stéphane Boucheron and Gábor Lugosi (2004). “Introduction to Statistical
Learning Theory.” In Advanced Lectures in Machine Learning (Olivier Bousquet and Ulrike
von Luxburg and Gunnar Rätsch, eds.), pp. 169–207. Berlin: Springer-Verlag. URL http:

//www.econ.upf.edu/~lugosi/mlss_slt.pdf. 78

Boyd, Stephen and Lieven Vandenberghe (2004). Convex Optimization. Cambridge, England:
Cambridge University Press. 610

Braun, W. John and Duncan J. Murdoch (2008). A First Course in Statistical Programming
with R. Cambridge University Press. 727

Breiman, Leo, Jerome Friedman, R. Olshen and C. Stone (1984). Classification and Regression
Trees. Belmont, California: Wadsworth. 285

Breiman, Leo and Jerome H. Friedman (1985). “Estimating Optimal Transformations for Mul-
tiple Regression and Correlation.” Journal of the American Statistical Association, 80: 580–
598. doi:10.1080/01621459.1985.10478157. 55

Brown, Lawrence D. (1986). Fundamentals of Statistical Exponential Families: with Applications
in Statistical Decision Theory . Hayward, California: Institute of Mathematical Statistics.
URL http://projecteuclid.org/euclid.lnms/1215466757. 265

Bühlmann, Peter (2000). “Model Selection for Variable Length Markov Chains and Tuning the
Context Algorithm.” Annals of the Institute of Statistical Mathematics, 52: 287–315. URL
http://e-collection.ethbib.ethz.ch/show?type=incoll&nr=117. 496

— (2002). “Bootstraps for Time Series.” Statistical Science, 17: 52–72. URL http:

//projecteuclid.org/euclid.ss/1023798998. doi:10.1214/ss/1023798998. 519

Bühlmann, Peter and Abraham J. Wyner (1999). “Variable Length Markov Chains.” Annals
of Statistics, 27: 480–513. URL http://projecteuclid.org/euclid.aos/1018031204. 496

Buja, Andreas, Richard Berk, Lawrence Brown, Edward George, Emil Pitkin, Mikhail Traskin,
Linda Zhao and Kai Zhang (2014). “Models as Approximations, Part I: A Conspiracy of
Nonlinearity and Random Regressors in Linear Regression.” arxiv:1404.1578. URL http:

//arxiv.org/abs/1404.1578. 60, 150, 605

Buja, Andreas, Trevor Hastie and Robert Tibshirani (1989). “Linear Smoothers and Additive
Models.” Annals of Statistics, 17: 453–555. URL http://projecteuclid.org/euclid.aos/

1176347115. doi:10.1214/aos/1176347115. 39, 181

Burman, Prabir, Edmond Chow and Deborah Nolan (1994). “A Cross-Validatory Method for
Dependent Data.” Biometrika, 81: 351–358. doi:10.1093/biomet/81.2.351. 519

Canty, Angelo and Brian Ripley (2013). “boot: Bootstrap R (S-Plus) Functions.” R package
version 1.3-9. URL http://cran.r-project.org. 149

Canty, Angelo J., Anthony C. Davison, David V. Hinkley and Valérie Ventura (2006). “Bootstrap
Diagnostics and Remedies.” The Canadian Journal of Statistics, 34: 5–27. URL http:

//www.stat.cmu.edu/tr/tr726/tr726.html. doi:10.1002/cjs.5550340103. 149

Carmack, Patrick S., William R. Schucany, Jeffrey S. Spence, Richard F. Gunst, Qihua Lin and
Robert W. Haley (2009). “Far Casting Cross Validation.” Journal of Computational and
Graphical Statistics, 18: 879–893. doi:10.1198/jcgs.2009.07034. 519

https://sites.google.com/site/borsboomdenny/BorsboomPM2006.pdf
https://sites.google.com/site/borsboomdenny/BorsboomPM2006.pdf
http://dx.doi.org/10.1007/s11336-006-1447-6
http://dx.doi.org/10.1007/s11336-006-1447-6
http://www.econ.upf.edu/~lugosi/mlss_slt.pdf
http://www.econ.upf.edu/~lugosi/mlss_slt.pdf
http://dx.doi.org/10.1080/01621459.1985.10478157
http://projecteuclid.org/euclid.lnms/1215466757
http://e-collection.ethbib.ethz.ch/show?type=incoll&nr=117
http://projecteuclid.org/euclid.ss/1023798998
http://projecteuclid.org/euclid.ss/1023798998
http://dx.doi.org/10.1214/ss/1023798998
http://projecteuclid.org/euclid.aos/1018031204
http://arxiv.org/abs/1404.1578
http://arxiv.org/abs/1404.1578
http://projecteuclid.org/euclid.aos/1176347115
http://projecteuclid.org/euclid.aos/1176347115
http://dx.doi.org/10.1214/aos/1176347115
http://dx.doi.org/10.1093/biomet/81.2.351
http://cran.r-project.org
http://www.stat.cmu.edu/tr/tr726/tr726.html
http://www.stat.cmu.edu/tr/tr726/tr726.html
http://dx.doi.org/10.1002/cjs.5550340103
http://dx.doi.org/10.1198/jcgs.2009.07034

556 References

Carroll, Raymond J., Aurore Delaigle and Peter Hall (2009). “Nonparametric Prediction in
Measurement Error Models.” Journal of the American Statistical Association, 104: 993–
1003. doi:10.1198/jasa.2009.tm07543. 52

Casella, George and R. L. Berger (2002). Statistical Inference. Belmont, California: Duxbury
Press, 2nd edn. 265

Cavalli-Sforza, Luigi L., Paolo Menozzi and Alberto Piazza (1994). The History and Geography
of Human Genes. Princeton: Princeton University Press. 336, 340

Chambers, John M. (2008). Software for Data Analysis: Programming with R. New York:
Springer. 727

Chenoweth, Erica and Maria J. Stephan (2011). Why Civil Resistance Works: The Strategic
Logic of Nonviolent Conflict . New York: Columbia University Press. 25

Chetty, Raj, Nathaniel Hendren, Patrick Kline and Emmanuel Saez (2014). “Where is the Land
of Opportunity? The Geography of Intergenerational Mobility in the United States.” Quar-
terly Journal of Economics, 129: 1553–1623. URL http://www.equality-of-opportunity.

org/index.php/papers. doi:10.1093/qje/qju022. 4, 15

Christakis, Nicholas A. and James H. Fowler (2007). “The Spread of Obesity in a Large Social
Network over 32 Years.” The New England Journal of Medicine, 357: 370–379. URL http:

//content.nejm.org/cgi/content/abstract/357/4/370. 450

Chu, Tianjiao and Clark Glymour (2008). “Search for Additive Nonlinear Time Series Causal
Models.” Journal of Machine Learning Research, 9: 967–991. URL http://jmlr.csail.mit.

edu/papers/v9/chu08a.html. 476

Chu, Tianjiao, Clark Glymour, Richard Scheines and Peter Spirtes (2003). “A Statistical Prob-
lem for Inference to Regulatory Structure from Associations of Gene Expression Measure-
ments with Microarrays.” Bioinformatics, 19: 1147–1152. 505

Claeskens, Gerda and Nils Lid Hjort (2008). Model Selection and Model Averaging . Cambridge,
England: Cambridge University Press. 78, 609, 610, 618

Clauset, Aaron and Douglas H. Erwin (2008). “The Evolution and Distribution of
Species Body Size.” Science, 321: 399–401. URL http://arxiv.org/abs/0901.0251.
doi:10.1126/science.1157534. 18

Clauset, Aaron, Cosma Rohilla Shalizi and M. E. J. Newman (2009). “Power-law Distributions
in Empirical Data.” SIAM Review , 51: 661–703. URL http://arxiv.org/abs/0706.1062.
135, 136, 137

Cleveland, W. S. (1979). “Robust Locally Weighted Regression and Smoothing Scatterplots.”
Journal of the American Statistical Association, 74: 829–836. URL https://www.jstor.org/

stable/2286407. doi:10.2307/2286407. 231

Coleman, James, Elihu Katz and Herbert Menzel (1957). “The Diffusion of an Innovation Among
Physicians.” Sociometry , 20: 253–270. URL http://www.jstor.org/stable/2785979.
doi:10.2307/2785979. 96

Collier, Paul and Anke Hoeffler (2004). “Greed and Grievance in Civil War.” Oxford Economic
Papers, 56: 563–595. URL http://economics.ouls.ox.ac.uk/12055/1/2002-01text.pdf.
22

Colombo, Diego, Marloes H. Maathuis, Markus Kalisch and Thomas S. Richardson (2012).
“Learning High-dimensional Directed Acyclic Graphs with Latent And Selection Variables.”
Annals of Statistics, 40: 249–321. URL http://arxiv.org/abs/1104.5617. doi:10.1214/11-
AOS940. 475

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest and Clifford Stein (2001). Intro-
duction to Algorithms. Cambridge, Massachusetts: MIT Press, 2nd edn. 0

Cover, Thomas M. (1968a). “Estimation by the Nearest Neighbor Rule.” IEEE Transactions
on Information Theory , 14: 50–55. URL http://www-isl.stanford.edu/~cover/papers/

transIT/0050cove.pdf. 39

— (1968b). “Rates of Convergence for Nearest Neighbor Procedures.” In Proceedings of the
Hawaii International Conference on Systems Sciences (B. K. Kinariwala and F. F. Kuo, eds.),

http://dx.doi.org/10.1198/jasa.2009.tm07543
http://www.equality-of-opportunity.org/index.php/papers
http://www.equality-of-opportunity.org/index.php/papers
http://dx.doi.org/10.1093/qje/qju022
http://content.nejm.org/cgi/content/abstract/357/4/370
http://content.nejm.org/cgi/content/abstract/357/4/370
http://jmlr.csail.mit.edu/papers/v9/chu08a.html
http://jmlr.csail.mit.edu/papers/v9/chu08a.html
http://arxiv.org/abs/0901.0251
http://dx.doi.org/10.1126/science.1157534
http://arxiv.org/abs/0706.1062
https://www.jstor.org/stable/2286407
https://www.jstor.org/stable/2286407
http://dx.doi.org/10.2307/2286407
http://www.jstor.org/stable/2785979
http://dx.doi.org/10.2307/2785979
http://economics.ouls.ox.ac.uk/12055/1/2002-01text.pdf
http://arxiv.org/abs/1104.5617
http://dx.doi.org/10.1214/11-AOS940
http://dx.doi.org/10.1214/11-AOS940
http://www-isl.stanford.edu/~cover/papers/transIT/0050cove.pdf
http://www-isl.stanford.edu/~cover/papers/transIT/0050cove.pdf

References 557

pp. 413–415. Honolulu: University of Hawaii Press. URL http://www-isl.stanford.edu/

~cover/papers/paper009.pdf. 39
Cover, Thomas M. and P. E. Hart (1967). “Nearest Neighbor Pattern Classification.” IEEE

Transactions on Information Theory , 13: 21–27. URL http://www-isl.stanford.edu/

~cover/papers/transIT/0021cove.pdf. 39
Cover, Thomas M. and Joy A. Thomas (2006). Elements of Information Theory . New York:

John Wiley, 2nd edn. 414, 421
Cramér, Harald (1945). Mathematical Methods of Statistics. Uppsala: Almqvist and Wiksells.

610
Cristianini, Nello and John Shawe-Taylor (2000). An Introduction to Support Vector Machines:

And Other Kernel-Based Learning Methods. Cambridge, England: Cambridge University
Press. 78

Crutchfield, James P. and Karl Young (1989). “Inferring Statistical Complexity.” Phys-
ical Review Letters, 63: 105–108. URL http://www.santafe.edu/~cmg/compmech/pubs/

ISCTitlePage.htm. 520
Daley, D. J. and D. Vere-Jones (2003). Elementary Theory and Methods, vol. 1 of An Introduction

to the Theory of Point Processes. New York: Springer-Verlag, 2nd edn. 520
Dasgupta, Sanjoy and Anupam Gupta (2002). “An Elementary Proof of a Theorem of Johnson

and Lindenstrauss.” Random Structures and Algorithms, 22: 60–65. URL http://cseweb.

ucsd.edu/~dasgupta/papers/jl.pdf. doi:10.1002/rsa.10073. 337
Davison, A. C. (2013). SMPracticals: Practicals for use with Davison (2003) Statistical Models.

URL https://CRAN.R-project.org/package=SMPracticals. R package version 1.4-2. 575
Davison, A. C. and D. V. Hinkley (1997). Bootstrap Methods and their Applications. Cambridge,

England: Cambridge University Press. 149, 519
Dawes, Robyn M. (1975). “Graduate Admission Variables and Future Success.” Science, 187:

721–723. URL https://www.jstor.org/stable/1739800. doi:10.1126/science.187.4178.721.
673

de Oliveira, Cesar, Richard Watt and Mark Hamer (2010). “Toothbrushing, inflammation, and
risk of cardiovascular disease: results from Scottish Health Survey.” British Medical Journal ,
340: c2451. doi:10.1136/bmj.c2451. 429

Deaton, Angus (2010). “Instruments, Randomization, and Learning about Development.” Jour-
nal of Economic Literature, 48: 424–455. doi:10.1257/jel.48.2.424. 448, 453

Deerwester, Scott, Susan T. Dumais, George W. Furnas, Thomas K. Landauer and Richard
Harshman (1990). “Indexing by Latent Semantic Analysis.” Journal of the American Society
for Information Science, 41: 391–407. URL http://lsa.colorado.edu/papers/JASIS.lsi.

90.pdf. doi:10.1002/(SICI)1097-4571(199009)41:6¡391::AID-ASI1¿3.0.CO;2-9. 332, 338
DeLanda, Manuel (2006). A New Philosophy of Society: Assemblage Theory and Social Com-

plexity . London: Continuum. 453
Devroye, Luc and Gábor Lugosi (2001). Combinatorial Methods in Density Estimation. Berlin:

Springer-Verlag. 295, 314
Diaconis, Persi and David Freedman (1980). “De Finetti’s Theorem for Markov Chains.” An-

nals of Probability , 8: 115–130. URL http://projecteuclid.org/euclid.aop/1176994828.
doi:10.1214/aop/1176994828. 495

Didelez, Vanessa, Sha Meng and Nuala A. Sheehan (2010). “Assumptions of IV Methods for
Observational Epidemiology.” Statistical Science, 25: 22–40. URL http://arxiv.org/abs/

1011.0595. 453
Ding, Peng and Fang Li (2018). “Causal Inference: A Missing Data Perspective.” Sta-

tistical Science, 33: 214–237. URL https://projecteuclid.org/euclid.ss/1525313143.
doi:10.1214/18-STS645. 678

Dinno, Alexis (2009). LoopAnalyst: A collection of tools to conduct Levins’ Loop Analysis. URL
http://CRAN.R-project.org/package=LoopAnalyst. R package version 1.2-2. 419

Douc, Randal, Eric Moulines and David S. Stoffer (2014). Nonlinear Time Series: Theory,
Methods, and Applications with R Examples. Boca Raton, Florida: Chapman Hall/CRC. 519

http://www-isl.stanford.edu/~cover/papers/paper009.pdf
http://www-isl.stanford.edu/~cover/papers/paper009.pdf
http://www-isl.stanford.edu/~cover/papers/transIT/0021cove.pdf
http://www-isl.stanford.edu/~cover/papers/transIT/0021cove.pdf
http://www.santafe.edu/~cmg/compmech/pubs/ISCTitlePage.htm
http://www.santafe.edu/~cmg/compmech/pubs/ISCTitlePage.htm
http://cseweb.ucsd.edu/~dasgupta/papers/jl.pdf
http://cseweb.ucsd.edu/~dasgupta/papers/jl.pdf
http://dx.doi.org/10.1002/rsa.10073
https://CRAN.R-project.org/package=SMPracticals
https://www.jstor.org/stable/1739800
http://dx.doi.org/10.1126/science.187.4178.721
http://dx.doi.org/10.1136/bmj.c2451
http://dx.doi.org/10.1257/jel.48.2.424
http://lsa.colorado.edu/papers/JASIS.lsi.90.pdf
http://lsa.colorado.edu/papers/JASIS.lsi.90.pdf
http://dx.doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
http://projecteuclid.org/euclid.aop/1176994828
http://dx.doi.org/10.1214/aop/1176994828
http://arxiv.org/abs/1011.0595
http://arxiv.org/abs/1011.0595
https://projecteuclid.org/euclid.ss/1525313143
http://dx.doi.org/10.1214/18-STS645
http://CRAN.R-project.org/package=LoopAnalyst

558 References

Dreger, Alice (1998). Hermaphrodites and the Medical Invention of Sex . Cambridge, Mas-
sachusetts: Harvard University Press. 457

DuMouchel, William H. and Greg J. Duncan (1983). “Using Sample Survey Weights in Multiple
Regression Analyses of Stratified Samples.” Journal of the American Statistical Association,
78: 535–543. URL http://www.jstor.org/stable/2288115. 207

Durbin, J. (1960). “The fitting of time series models.” Revue de l’Institut International de
Statistique / Review of the International Statistical Institute, 28: 233–244. URL https:

//repository.lib.ncsu.edu/handle/1840.4/2230. doi:10.2307/1401322. 516

Durbin, James and Siem Jam Koopman (2001). Time Series Analysis by State Space Methods.
Oxford: Oxford University Press. 514

Efron, Bradley (1979). “Bootstrap Methods: Another Look at the Jackknife.” An-
nals of Statistics, 7: 1–26. URL http://projecteuclid.org/euclid.aos/1176344552.
doi:10.1214/aos/1176344552. 128, 150

— (1982). The Jackknife, the Bootstrap, and Other Resampling Plans. Philadelphia: SIAM
Press. 150

Efron, Bradley and Robert J. Tibshirani (1993). An Introduction to the Bootstrap. New York:
Chapman and Hall. 149

Eliade, Mircea (1971). The Forge and the Crucible: The Origin and Structure of Alchemy . New
York: Harper and Row. 58

Elster, Jon (1989). Nuts and Bolts for the Social Sciences. Cambridge, England: Cambridge
University Press. 453

Entner, Doris, Patrik O. Hoyer and Peter Spirtes (2013). “Data-driven Covariate Selection for
Nonparametric Estimation of Causal Effects.” In Sixteenth International Conference on Arti-
ficial Intelligence and Statistics [AISTATS 2013] (Carlos M. Carvalho and Pradeep Raviku-
mar, eds.), pp. 256–264. URL http://jmlr.org/proceedings/papers/v31/entner13a.html.
440

Eshel, Gidon (2012). Spatiotemporal Data Analysis. Princeton, New Jersey: Princeton University
Press. 338

Ezekiel, Mordecai (1924). “A Method of Handling Curvilinear Correlation for Any Number
of Variables.” Journal of the American Statistical Association, 19: 431–453. URL http:

//www.jstor.org/stable/2281561. 181

Fair, Ray C. (1978). “A Theory of Extramarital Affairs.” Journal of Political Economy , 86:
45–61. URL http://fairmodel.econ.yale.edu/rayfair/pdf/1978A200.PDF. 55

Fama, Eugene F. and Kenneth R. French (1993). “Common risk factors in the returns on stocks
and bonds.” Journal of Financial Economics, 33: 3–56. doi:10.1016/0304-405X(93)90023-5.
30

Fan, Jianqing and Qiwei Yao (2003). Nonlinear Time Series: Nonparametric and Parametric
Methods. Berlin: Springer-Verlag. 519

Fan, Jiaqing and I. Gijbels (1996). Local Polynomial Modelling and Its Applications. London:
Chapman and Hall. 231

Faraway, Julian J. (1992). “On the Cost of Data Analysis.” Journal of Computational and
Graphical Statistics, 1: 213–229. URL http://people.bath.ac.uk/jjf23/papers/cda.pdf.
doi:10.1080/10618600.1992.10474582. 78

— (2004). Linear Models with R. Boca Raton, Florida: Chapman and Hall/CRC Press. 60

— (2006). Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonpara-
metric Regression Models. Boca Raton, Florida: Chapman and Hall/CRC. 39, 266

— (2014). faraway: Functions and datasets for books by Julian Faaway . URL https://CRAN.

R-project.org/package=faraway. R package version 1.0.6. 575

— (2016). “Does Data Splitting Improve Prediction?” Statistics and Computing , 26: 49–60.
URL http://arxiv.org/abs/1301.2983. doi:10.1007/s11222-014-9522-9. 76, 78

Fisher, Franklin M. (1983). Disequilibrium Foundations of Equilibrium Economics. Cambridge,
England: Cambridge University Press. 419

http://www.jstor.org/stable/2288115
https://repository.lib.ncsu.edu/handle/1840.4/2230
https://repository.lib.ncsu.edu/handle/1840.4/2230
http://dx.doi.org/10.2307/1401322
http://projecteuclid.org/euclid.aos/1176344552
http://dx.doi.org/10.1214/aos/1176344552
http://jmlr.org/proceedings/papers/v31/entner13a.html
http://www.jstor.org/stable/2281561
http://www.jstor.org/stable/2281561
http://fairmodel.econ.yale.edu/rayfair/pdf/1978A200.PDF
http://dx.doi.org/10.1016/0304-405X(93)90023-5
http://people.bath.ac.uk/jjf23/papers/cda.pdf
http://dx.doi.org/10.1080/10618600.1992.10474582
https://CRAN.R-project.org/package=faraway
https://CRAN.R-project.org/package=faraway
http://arxiv.org/abs/1301.2983
http://dx.doi.org/10.1007/s11222-014-9522-9

References 559

— (2010). “The Stability of General Equilibrium — What Do We Know and Why Is It Im-
portant?” In General Equilibrium Analysis: A Century after Walras (Pascal Bridel, ed.), pp.
34–45. London: Routledge. URL http://economics.mit.edu/files/6988. 419

Fisher, R. A. (1922). “On the Mathematical Foundations of Theoretical Statistics.” Philosoph-
ical Transactions of the Royal Society A, 222: 309–368. URL http://digital.library.

adelaide.edu.au/dspace/handle/2440/15172. 610

Fraser, Andrew M. (2008). Hidden Markov Models and Dynamical Systems. Philadelphia: SIAM
Press. URL http://www.siam.org/books/ot107/. 401, 514

Freedman, David A. (1983). “A Note on Screening Regression Equations.” The American
Statistician, 37: 152–155. doi:10.1080/00031305.1983.10482792. 79

Frisch, Uriel (1995). Turbulence: The Legacy of A. N. Kolmogorov . Cambridge, England: Cam-
bridge University Press. 519

Galles, David and Judea Pearl (1997). “Axioms of Causal Relevance.” Artificial Intelligence,
97: 9–43. URL http://nexus.cs.usfca.edu/~galles/research/relaxiom.ps. 443

Gamow, George (1970). My World-Line: An Informal Autobiography . New York: Viking Press.
Foreword by Stanislaw M. Ulam. 581

Gelman, Andrew (2003). “A Bayesian Formulation of Exploratory Data Analysis and
Goodness-of-fit Testing.” International Statistical Review , 71: 369–382. URL http:

//www.stat.columbia.edu/~gelman/research/published/isr.pdf. doi:10.1111/j.1751-
5823.2003.tb00203.x. 122

Gelman, Andrew and Iain Pardoe (2007). “Average predictive comparisons for models
with nonlinearity, interactions, and variance components.” Sociological Methodology , 37:
23–51. URL http://www.stat.columbia.edu/~gelman/research/published/ape17.pdf.
doi:10.1111/j.1467-9531.2007.00181.x. 96

Gelman, Andrew and Cosma Rohilla Shalizi (2013). “Philosophy and the Practice of Bayesian
Statistics.” British Journal of Mathematical and Statistical Psychology , 66: 8–38. URL
http://arxiv.org/abs/1006.3868. doi:10.1111/j.2044-8317.2011.02037.x. 122, 506

Genz, Alan, Frank Bretz, Tetsuhisa Miwa, Xuefei Mi, Friedrich Leisch, Fabian Scheipl and
Torsten Hothorn (2016). mvtnorm: Multivariate Normal and t Distributions. URL http:

//CRAN.R-project.org/package=mvtnorm. R package version 1.0-5. 575

Gershenfeld, Neil (1999). The Nature of Mathematical Modeling . Cambridge, England: Cam-
bridge University Press. 164

Geyer, Charles J. (2013). “Asymptotics of Maximum Likelihood without the LLN or CLT or
Sample Size Going to Infinity.” In Advances in Modern Statistical Theory and Applications:
A Festschrift in honor of Morris L. Eaton (Galin Jones and Xiaotong Shen, eds.), pp. 1–24.
Beachwood, Ohio: Institute of Mathematical Statistics. URL http://arxiv.org/abs/1206.

4762. doi:10.1214/12-IMSCOLL1001. 610

Gilbert, Paul and Ravi Varadhan (2015). numDeriv: Accurate Numerical Derivatives. URL
https://CRAN.R-project.org/package=numDeriv. R package version 2014.2-1. 575

Glymour, Clark (1986). “Statistics and Metaphysics.” Journal of the American Statistical As-
sociation, 81: 964–966. URL http://www.hss.cmu.edu/philosophy/glymour/glymour1986.

pdf. 457

— (1998). “What Went Wrong? Reflections on Science by Observation and The Bell Curve.”
Philosophy of Science, 65: 1–32. URL http://www.hss.cmu.edu/philosophy/glymour/

glymour1998.pdf. 372

— (2001). The Mind’s Arrows: Bayes Nets and Graphical Causal Models in Psychology . Cam-
bridge, Massachusetts: MIT Press. 421

Glymour, Clark and Madelyn R. Glymour (2014). “Race and Sex are Causes.” Epidemiology ,
25: 488–490. doi:10.1097/EDE.0000000000000122. 457

Gnedenko, B. V. and A. N. Kolmogorov (1954). Limit Distributions for Sums of Independent
Random Variables. Cambridge, Massachusetts: Addison-Wesley. Translated from the Russian
and annotated by K. L. Chung, with an Appendix by J. L. Doob. 600

http://economics.mit.edu/files/6988
http://digital.library.adelaide.edu.au/dspace/handle/2440/15172
http://digital.library.adelaide.edu.au/dspace/handle/2440/15172
http://www.siam.org/books/ot107/
http://dx.doi.org/10.1080/00031305.1983.10482792
http://nexus.cs.usfca.edu/~galles/research/relaxiom.ps
http://www.stat.columbia.edu/~gelman/research/published/isr.pdf
http://www.stat.columbia.edu/~gelman/research/published/isr.pdf
http://dx.doi.org/10.1111/j.1751-5823.2003.tb00203.x
http://dx.doi.org/10.1111/j.1751-5823.2003.tb00203.x
http://www.stat.columbia.edu/~gelman/research/published/ape17.pdf
http://dx.doi.org/10.1111/j.1467-9531.2007.00181.x
http://arxiv.org/abs/1006.3868
http://dx.doi.org/10.1111/j.2044-8317.2011.02037.x
http://CRAN.R-project.org/package=mvtnorm
http://CRAN.R-project.org/package=mvtnorm
http://arxiv.org/abs/1206.4762
http://arxiv.org/abs/1206.4762
http://dx.doi.org/10.1214/12-IMSCOLL1001
https://CRAN.R-project.org/package=numDeriv
http://www.hss.cmu.edu/philosophy/glymour/glymour1986.pdf
http://www.hss.cmu.edu/philosophy/glymour/glymour1986.pdf
http://www.hss.cmu.edu/philosophy/glymour/glymour1998.pdf
http://www.hss.cmu.edu/philosophy/glymour/glymour1998.pdf
http://dx.doi.org/10.1097/EDE.0000000000000122

560 References

Godfrey, L. G. (1988). Misspecification Tests in Econometrics; The Lagrange Multiplier Principle
and Other Approaches. Cambridge, England: Cambridge University Press. 205

Gouriéroux, Christian and Alain Monfort (1989/1995). Statistics and Econometric Models.
Themes in Modern Econometrics. Cambridge, England: Cambridge University Press. Trans-
lated by Quang Vuong from Statistique et modèles économétriques, Paris: Économica. 551

Gouriéroux, Christian, Alain Monfort and E. Renault (1993). “Indirect Inference.” Journal of
Applied Econometrics, 8: S85–S118. URL http://www.jstor.org/pss/2285076. 552

Gray, Robert M. (1988). Probability, Random Processes, and Ergodic Properties. New York:
Springer-Verlag. URL http://ee.stanford.edu/~gray/arp.html. 519

— (2009). Probability, Random Processes, and Ergodic Properties. New York: Springer-Verlag,
2nd edn. URL http://ee.stanford.edu/~gray/arp.html. 493

Gretton, Arthur, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf and Alexander
Smola (2012). “A Kernel Two-Sample Test.” Journal of Machine Learning Research, 13:
723–773. URL http://jmlr.csail.mit.edu/papers/v13/gretton12a.html. 469

Griffeath, David (1976). “Introduction to Markov Random Fields.” In Denumerable Markov
Chains (John G. Kemeny and J. Laurie Snell and Anthony W. Knapp, eds.), pp. 425–457.
Berlin: Springer-Verlag, 2nd edn. 418, 421

Grimmett, G. R. and D. R. Stirzaker (1992). Probability and Random Processes. Oxford: Oxford
University Press, 2nd edn. 519

Grünwald, Peter D. (2007). The Minimum Description Length Principle. Cambridge, Mas-
sachusetts: MIT Press. 265

Guckenheimer, John and Philip Holmes (1983). Nonlinear Oscillations, Dynamical Systems and
Bifurcations of Vector Fields. New York: Springer-Verlag. 643

Guttorp, Peter (1995). Stochastic Modeling of Scientific Data. London: Chapman and Hall.
125, 246, 257, 265, 421, 519, 520

Györfi, László, Michael Kohler, Adam Krzyżak and Harro Walk (2002). A Distribution-Free
Theory of Nonparametric Regression. New York: Springer-Verlag. 30, 39, 78

Hacking, Ian (1990). The Taming of Chance. Cambridge, England: Cambridge University Press.
17

— (2001). An Introduction to Probability and Inductive Logic. Cambridge, England: Cambridge
University Press. 506

Hall, Peter and Joel Horowitz (2013). “A Simple Bootstrap Method for Constructing Non-
parametric Confidence Bands for Functions.” Annals of Statistics, 41: 1892–1921. URL
https://projecteuclid.org/euclid.aos/1378386242. doi:10.1214/13-AOS1137. 147

Hall, Peter, Jeff Racine and Qi Li (2004). “Cross-Validation and the Estimation of Conditional
Probability Densities.” Journal of the American Statistical Association, 99: 1015–1026. URL
http://www.ssc.wisc.edu/~bhansen/workshop/QiLi.pdf. 304, 313, 470

Halmos, Paul R. (1957). An Introduction to Hilbert Space and the Theory of Spectral Multiplicity .
New York: Chelsea Publishing Co., 2nd edn. First edition, 1951. 181

Hand, David, Heikki Mannila and Padhraic Smyth (2001). Principles of Data Mining . Cam-
bridge, Massachusetts: MIT Press. 338

Handcock, Mark S. (2015). Relative Distribution Methods. URL http://CRAN.R-project.org/

package=reldist. Version 1.6-4. 575

Handcock, Mark S. and Martina Morris (1998). “Relative Distribution Methods.” Sociological
Methodology , 28: 53–97. URL http://www.jstor.org/pss/270964. 628, 636

— (1999). Relative Distribution Methods in the Social Sciences. Berlin: Springer-Verlag. 628,
636

Hannan, E. J. and Jorma Rissanen (1982). “Recursive estimation of mixed autoregressive-
moving average order.” Biometrika, 69: 81–94. URL https://www.jstor.org/stable/

2335856. doi:10.2307/2335856. 516

http://www.jstor.org/pss/2285076
http://ee.stanford.edu/~gray/arp.html
http://ee.stanford.edu/~gray/arp.html
http://jmlr.csail.mit.edu/papers/v13/gretton12a.html
https://projecteuclid.org/euclid.aos/1378386242
http://dx.doi.org/10.1214/13-AOS1137
http://www.ssc.wisc.edu/~bhansen/workshop/QiLi.pdf
http://CRAN.R-project.org/package=reldist
http://CRAN.R-project.org/package=reldist
http://www.jstor.org/pss/270964
https://www.jstor.org/stable/2335856
https://www.jstor.org/stable/2335856
http://dx.doi.org/10.2307/2335856

References 561

Hansen, Ben B. and Stephanie Olsen Klopfer (2006). “Optimal full matching and re-
lated designs via network flows.” Journal of Computational and Graphical Statis-
tics, 15: 609–627. URL http://www.stat.lsa.umich.edu/~bbh/hansenKlopfer2006.pdf.
doi:10.1198/106186006X137047. 462

Hart, Jeffrey D. (1997). Nonparametric Smoothing and Lack-of-Fit Tests. Berlin: Springer-
Verlag. 192, 205

Hastie, Trevor, Robert Tibshirani and Jerome Friedman (2009). The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Berlin: Springer, 2nd edn. URL http:

//www-stat.stanford.edu/~tibs/ElemStatLearn/. 60, 78, 165, 597

Hayfield, Tristen and Jeffrey S. Racine (2008). “Nonparametric Econometrics: The np Package.”
Journal of Statistical Software, 27(5): 1–32. URL http://www.jstatsoft.org/v27/i05. 90,
96, 575

Heckman, James J. (1976). “The Common Structure of Statistical Models of Truncation, Sample
Selection and Limited Dependent Variables and a Simple Estimator for Such Models.” Annals
of Economic and Social Measurement , 5: 475–492. URL http://www.nber.org/chapters/

c10491. 676, 677

— (1979). “Sample Bias as a Specification Error.” Econometrica, 47: 153–162. URL http:

//www.nber.org/papers/w0172. 677

Hedström, Peter (2005). Dissecting the Social: On the Principles of Analytical Sociology . Cam-
bridge, England: Cambridge University Press. 453

Hedström, Peter and Richard Swedberg (eds.) (1998). Social Mechanisms: An Analytical Ap-
proach to Social Theory , Studies in Rationality and Social Change, Cambridge, England.
Cambridge University Press. 453, 555

Ho, Daniel E., Kosuke Imai, Gary King and Elizabeth A. Stuart (2011). “MatchIt: Nonparamet-
ric Preprocessing for Parametric Causal Inference.” Journal of Statistical Software, 42(8):
1–28. URL http://www.jstatsoft.org/v42/i08/. 462

Hoerl, Arthur E. and Robert W. Kennard (1970). “Ridge Regression: Biased Estimation for
Nonorthogonal Problems.” Technometrics, 12. URL http://www.jstor.org/pss/1267351.
595

Hofmann, Thomas (1999). “Probabilistic Latent Semantic Analysis.” In Uncer-
tainty in Artificial Intelligence: Proceedings of the Fiftheenth Conference [UAI 1999]
(Kathryn Laskey and Henri Prade, eds.), pp. 289–296. San Francisco: Morgan Kauf-
mann. URL http://uai.sis.pitt.edu/displayArticleDetails.jsp?mmnu=1&smnu=2&

article_id=179&proceeding_id=15. 382

Holan, Scott H., Robert Lund and Ginger Davis (2010). “The ARMA alphabet soup: A tour of
ARMA model variants.” Statistics Surveys, 4: 232–274. URL http://projecteuclid.org/

euclid.ssu/1291731822. doi:10.1214/09-SS060. 519

Holland, Paul W. (1986). “Statistics and Causal Inference.” Journal of the American Statistical
Association, 81: 945–970. 457

Honerkamp, Josef (2002). Statistical Physics: An Advanced Approach with Applications. Berlin:
Springer-Verlag, 2nd edn. Translated by Thomas Filk. 421

Hong, Yongmiao and Halbert White (1995). “Consistent Specification Testing Via Nonparamet-
ric Series Regression.” Econometrica, 63: 1133–1159. URL http://www.jstor.org/stable/

2171724. doi:10.2307/2171724. 205

Hotelling, Harold (1933a). “Analysis of a complex of statistical variables into principal compo-
nents [Part 1 of 2].” Journal of Educational Psychology , 24: 471–441. doi:10.1037/h0071325.
338

— (1933b). “Analysis of a complex of statistical variables into principal components [Part 2 of
2].” Journal of Educational Psychology , 24: 498–520. doi:10.1037/h0070888. 338

Hoyer, Patrik O., Domink Janzing, Joris Mooij, Jonas Peters and Bernhard Schölkopf (2009).
“Nonlinear causal discovery with additive noise models.” In Advances in Neural Information
Processing Systems 21 [NIPS 2008] (Daphne Koller and D. Schuurmans and Y. Bengio and

http://www.stat.lsa.umich.edu/~bbh/hansenKlopfer2006.pdf
http://dx.doi.org/10.1198/106186006X137047
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
http://www.jstatsoft.org/v27/i05
http://www.nber.org/chapters/c10491
http://www.nber.org/chapters/c10491
http://www.nber.org/papers/w0172
http://www.nber.org/papers/w0172
http://www.jstatsoft.org/v42/i08/
http://www.jstor.org/pss/1267351
http://uai.sis.pitt.edu/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=179&proceeding_id=15
http://uai.sis.pitt.edu/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=179&proceeding_id=15
http://projecteuclid.org/euclid.ssu/1291731822
http://projecteuclid.org/euclid.ssu/1291731822
http://dx.doi.org/10.1214/09-SS060
http://www.jstor.org/stable/2171724
http://www.jstor.org/stable/2171724
http://dx.doi.org/10.2307/2171724
http://dx.doi.org/10.1037/h0071325
http://dx.doi.org/10.1037/h0070888

562 References

Léon Bottou, eds.), pp. 689–696. Cambridge, Massachusetts: MIT Press. URL http://books.

nips.cc/papers/files/nips21/NIPS2008_0266.pdf. 472

Huber, Peter J. (1967). “The Behavior of Maximum Likelihood Estimates under Nonstandard
Conditions.” In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability (Lucien M. Le Cam and Jerzy Neyman, eds.), vol. 1, pp. 221–233. Berkeley:
University of California Press. URL http://projecteuclid.org/euclid.bsmsp/1200512988.
605, 610

Hume, David (1739). A Treatise of Human Nature: Being an Attempt to Introduce the Exper-
imental Method of Reasoning into Moral Subjects. London: John Noon. Reprint (Oxford:
Clarendon Press, 1951) of original edition, with notes and analytical index. 426

Hunter, David R., Steven M. Goodreau and Mark S. Handcock (2008). “Goodness of Fit of Social
Network Models.” Journal of the American Statistical Association, 103: 248–258. URL http:

//www.csss.washington.edu/Papers/wp47.pdf. doi:10.1198/016214507000000446. 122

Imbens, Guido W. and Donald B. Rubin (2015). Causal Inference for Statistics, Social, and
Biomedical Sciences: An Introduction. Cambridge, England: Cambridge University Press.
431, 466, 569

Iyigun, Murat (2008). “Luther and Suleyman.” Quarterly Journal of Economics, 123: 1465–
1494. URL http://www.colorado.edu/Economics/courses/iyigun/ottoman081506.pdf.
doi:10.1162/qjec.2008.123.4.1465. 76, 77

Jacobs, Robert A. (1997). “Bias/Variance Analyses of Mixtures-of-Experts Architectures.” Neu-
ral Computation, 9: 369–383. 401

Jaeger, Herbert (2000). “Observable Operator Models for Discrete Stochastic Time Series.”
Neural Computation, 12: 1371–1398. URL http://minds.jacobs-university.de/sites/

default/files/uploads/papers/oom_neco00.pdf. doi:10.1162/089976600300015411. 520

Janzing, Dominik (2007). “On causally asymmetric versions of Occam’s Razor and their relation
to thermodynamics.” arxiv:0708.3411. URL http://arxiv.org/abs/0708.3411. 429, 472

Janzing, Dominik and Daniel Herrmann (2003). “Reliable and Efficient Inference of Bayesian
Networks from Sparse Data by Statistical Learning Theory.” arxiv:cs.LG/0309015. URL
http://arxiv.org/abs/cs.LG/0309015. 482

Jones, Owen, Robert Maillardet and Andrew Robinson (2009). Introduction to Scientific Pro-
gramming and Simulation Using R. Boca Raton, Florida: Chapman and Hall/CRC. 125

Jordan, Michael I. (ed.) (1998). Learning in Graphical Models, Dordrecht. Kluwer Academic.
417, 421, 566

Jordan, Michael I. and Robert A. Jacobs (1994). “Hierarchical Mixtures of Experts and the
EM Algorithm.” Neural Computation, 6: 181–214. URL ftp://publications.ai.mit.edu/

ai-publications/pdf/AIM-1440.pdf. doi:10.1162/neco.1994.6.2.181. 401

Jordan, Michael I. and Terrence J. Sejnowski (eds.) (2001). Graphical Models: Foundations of
Neural Computation, Computational Neuroscience, Cambridge, Massachusetts. MIT Press.
421

Kahn, Joan R. and J. Richard Udry (1986). “Marital Coital Frequency: Unnoticed Outliers and
Unspecified Interactions Lead to Erroneous Conclusions.” American Sociological Review , 51:
734–737. URL https://www.jstor.org/stable/2095496. doi:10.2307/2095496. 666

Kalisch, Markus and Peter Bühlmnann (2007). “Estimating High-Dimensional Directed Acyclic
Graphs with the PC-Algorithm.” Journal of Machine Learning Research, 8: 616–636. URL
http://jmlr.csail.mit.edu/papers/v8/kalisch07a.html. 482, 483

Kalisch, Markus, Martin Mächler and Diego Colombo (2010). pcalg: Estimation of CPDAG/PAG
and causal inference using the IDA algorithm. URL http://CRAN.R-project.org/package=

pcalg. R package version 1.1-2. 476, 575

Kalisch, Markus, Martin Mächler, Diego Colombo, Marloes H. Maathuis and Peter Bühlmnann
(2012). “Causal Inference Using Graphical Models with the R Package pcalg.” Journal of
Statistical Software, 47(11): 1–26. URL http://www.jstatsoft.org/v47/i11. 476, 484, 575

http://books.nips.cc/papers/files/nips21/NIPS2008_0266.pdf
http://books.nips.cc/papers/files/nips21/NIPS2008_0266.pdf
http://projecteuclid.org/euclid.bsmsp/1200512988
http://www.csss.washington.edu/Papers/wp47.pdf
http://www.csss.washington.edu/Papers/wp47.pdf
http://dx.doi.org/10.1198/016214507000000446
http://www.colorado.edu/Economics/courses/iyigun/ottoman081506.pdf
http://dx.doi.org/10.1162/qjec.2008.123.4.1465
http://minds.jacobs-university.de/sites/default/files/uploads/papers/oom_neco00.pdf
http://minds.jacobs-university.de/sites/default/files/uploads/papers/oom_neco00.pdf
http://dx.doi.org/10.1162/089976600300015411
http://arxiv.org/abs/0708.3411
http://arxiv.org/abs/cs.LG/0309015
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-1440.pdf
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-1440.pdf
http://dx.doi.org/10.1162/neco.1994.6.2.181
https://www.jstor.org/stable/2095496
http://dx.doi.org/10.2307/2095496
http://jmlr.csail.mit.edu/papers/v8/kalisch07a.html
http://CRAN.R-project.org/package=pcalg
http://CRAN.R-project.org/package=pcalg
http://www.jstatsoft.org/v47/i11

References 563

Kallenberg, Wilbert C. M. and Teresa Ledwina (1997). “Data-Driven Smooth Tests When the
Hypothesis Is Composite.” Journal of the American Statistical Association, 92: 1094–1104.
URL http://doc.utwente.nl/62408/. 618, 636

Kalman, R. E. and R. S. Bucy (1961). “New Results in Linear Filtering and Prediction.” ASME
Transactions, Journal of Basic Engineering , 83D: 95–108. 514

Kalman, Rudolf E. (1960). “A New Approach to Linear Filtering and Prediction Problems.”
ASME Transactions, Journal of Basic Engineering , 82D: 35–50. 514

Kanai, Ryota, Tom Feilden, Colin Firth and Geraint Rees (2011). “Political Orientations
Are Correlated with Brain Structure in Young Adults.” Current Biology , 21: 677–680.
doi:10.1016/j.cub.2011.03.017. 628, 67

Kantz, Holger and Thomas Schreiber (2004). Nonlinear Time Series Analysis. Cambridge,
England: Cambridge University Press, 2nd edn. 504, 520

Kao, Yi-hao and Benjamin Van Roy (2013). “Learning a Factor Model via Regular-
ized PCA.” Machine Learning , 91: 279–303. URL http://arxiv.org/abs/1111.6201.
doi:10.1007/s10994-013-5345-8. 355

Kaplan, E. L. and Paul Meier (1958). “Nonparametric Estimation from Incomplete Ob-
servations.” Journal of the American Statistical Association, 53: 457–481. URL https:

//www.jstor.org/stable/2281868. doi:10.2307/2281868. 673
Kass, Robert E. and Paul W. Vos (1997). Geometrical Foundations of Asymptotic Inference.

New York: Wiley. 643
Kearns, Michael J. and Umesh V. Vazirani (1994). An Introduction to Computational Learning

Theory . Cambridge, Massachusetts: MIT Press. 78
Kelly, Kevin T. (2007). “Ockham’s razor, empirical complexity, and truth-finding efficiency.”

Theoretical Computer Science, 383: 270–289. doi:10.1016/j.tcs.2007.04.009. 506
Kendall, Bruce E., Stephen P. Ellner, Edward Mccauley, Simon N. Wood, Cheryl J. Briggs,

William W. Murdoch and Peter Turchin (2005). “Population Cycles in the Pine Looper
Moth: Dynamical Tests of Mechanistic Hypotheses.” Ecological Monographs, 75: 259–276.
URL https://escholarship.org/uc/item/2tq9h5tq. doi:10.1890/03-4056. 552

Kindermann, Ross and J. Laurie Snell (1980). Markov Random Fields and their Applications.
Providence, Rhode Island: American Mathematical Society. URL http://www.ams.org/

online_bks/conm1/. 421
King, Gary and Richard Nielsen (2016). “Why Propensity Scores Should Not Be Used for

Matching.” Electronic preprint. URL http://j.mp/1FQhySn. 466
King, Gary and Margaret E Roberts (2015). “How Robust Standard Errors Expose

Methodological Problems They Do Not Fix, and What to Do About It.” Po-
litical Analysis, 23: 159–179. URL http://gking.harvard.edu/publications/

how-robust-standard-errors-expose-methodological-problems-they-do-not-fix.
doi:10.1093/pan/mpu015. 150

Klein, Judy L. (1997). Statistical Visions in Time: A History of Time Series Analysis, 1662–
1938 . Cambridge, England: Cambridge University Press. 60, 513, 518

Knight, Frank B. (1975). “A Predictive View of Continuous Time Processes.” Annals of Prob-
ability , 3: 573–596. URL http://projecteuclid.org/euclid.aop/1176996302. 520

Koenker, Roger and Kevin F. Hallock (2001). “Quantile Regression.” Journal of Economic
Perspectives, 15: 143–156. URL http://www.econ.uiuc.edu/~roger/research/rq/QRJEP.

pdf. doi:10.1257/jep.15.4.143. 599
Kogan, Barry S. (1985). Averroes and the Metaphysics of Causation. Albany, New York: State

University of New York Press. 426
Koyama, Shinsuke, Lucia Castellanos Pérez-Bolde, Cosma Rohilla Shalizi and Robert E. Kass

(2010). “Approximate Methods for State-Space Models.” Journal of the American Statistical
Association, 105: 170–180. URL http://arxiv.org/abs/1004.3476. 518

Kpotufe, Samory (2011). “k-NN Regression Adapts to Local Intrinsic Dimension.” In Ad-
vances in Neural Information Processing Systems 24 [NIPS 2011] (John Shawe-Taylor and
Richard S. Zemel and Peter L. Bartlett and Fernando Pereira and Kilian Q. Weinberger,

http://doc.utwente.nl/62408/
http://dx.doi.org/10.1016/j.cub.2011.03.017
http://arxiv.org/abs/1111.6201
http://dx.doi.org/10.1007/s10994-013-5345-8
https://www.jstor.org/stable/2281868
https://www.jstor.org/stable/2281868
http://dx.doi.org/10.2307/2281868
http://dx.doi.org/10.1016/j.tcs.2007.04.009
https://escholarship.org/uc/item/2tq9h5tq
http://dx.doi.org/10.1890/03-4056
http://www.ams.org/online_bks/conm1/
http://www.ams.org/online_bks/conm1/
http://j.mp/1FQhySn
http://gking.harvard.edu/publications/how-robust-standard-errors-expose-methodological-problems-they-do-not-fix
http://gking.harvard.edu/publications/how-robust-standard-errors-expose-methodological-problems-they-do-not-fix
http://dx.doi.org/10.1093/pan/mpu015
http://projecteuclid.org/euclid.aop/1176996302
http://www.econ.uiuc.edu/~roger/research/rq/QRJEP.pdf
http://www.econ.uiuc.edu/~roger/research/rq/QRJEP.pdf
http://dx.doi.org/10.1257/jep.15.4.143
http://arxiv.org/abs/1004.3476

564 References

eds.), pp. 729–737. Cambridge, Massachusetts: MIT Press. URL http://papers.nips.cc/

paper/4455-k-nn-regression-adapts-to-local-intrinsic-dimension. 459
Kullback, Solomon (1968). Information Theory and Statistics. New York: Dover Books, 2nd

edn. 414
Künsch, Hans R. (1989). “The Jackknife and the Bootstrap for General Stationary Observa-

tions.” Annals of Statistics, 17: 1217–1241. URL http://projecteuclid.org/euclid.aos/

1176347265. doi:10.1214/aos/1176347265. 502, 519
Lacerda, Gustavo, Peter Spirtes, Joseph Ramsey and Patrik Hoyer (2008). “Discovering Cyclic

Causal Models by Independent Components Analysis.” In Proceedings of the Proceedings of
the Twenty-Fourth Conference Annual Conference on Uncertainty in Artificial Intelligence
(UAI-08), pp. 366–374. Corvallis, Oregon: AUAI Press. URL http://uai.sis.pitt.edu/

papers/08/p366-lacerda.pdf. 419, 484
Lahiri, S. N. (2003). Resampling Methods for Dependent Data. New York: Springer-Verlag. 502,

519
Lambert, Diane and Kathryn Roeder (1995). “Overdispersion Diagnostics for Generalized Linear

Models.” Journal of the American Statistical Association, 90: 1225–1236. URL http://www.

jstor.org/stable/2291513. 266
Landauer, Thomas K. and Susan T. Dumais (1997). “A Solution to Plato’s Problem: The La-

tent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge.”
Psychological Review , 104: 211–240. URL http://lsa.colorado.edu/papers/plato/plato.

annote.html. 332, 338
Lange, Kenneth (2013). Optimization. New York: Springer, 2nd edn. 610
Langford, John, Ruslan Salakhutdinov and Tong Zhang (2009). “Learning Nonlinear Dynamic

Models.” In Proceedings of the 26th Annual International Conference on Machine Learning
[ICML 2009] (Andrea Danyluk and Léon Bottou and Michael Littman, eds.), pp. 593–600.
New York: Association for Computing Machinery. URL http://arxiv.org/abs/0905.3369.
520

Lasota, Andrzej and Michael C. Mackey (1994). Chaos, Fractals, and Noise: Stochastic Aspects
of Dynamics. Berlin: Springer-Verlag. First edition, Probabilistic Properties of Deterministic
Systems, Cambridge University Press, 1985. 450

Lauritzen, Steffen L. (1984). “Extreme Point Models in Statistics.” Scandinavian Journal
of Statistics, 11: 65–91. URL http://www.jstor.org/pss/4615945. With discussion and
response. 376

— (1996). Graphical Models. New York: Oxford University Press. 408, 419, 421, 430
Lawrie, Ian D. (1990). A Unified Grand Tour of Theoretical Physics. Bristol, England: Adam

Hilger. 643
Lee, Ann B. and Larry Wasserman (2010). “Spectral Connectivity Analysis.” Journal of the

American Statistical Association, 105: 1241–1255. URL http://arxiv.org/abs/0811.0121.
doi:10.1198/jasa.2010.tm09754. 659

Lehmann, Erich L. (2008). “On the history and use of some standard statistical models.”
In Probability and Statistics; Essays in Honor of David A. Freedman (Deborah Nolan and
Terry Speed, eds.), pp. 114–126. Brentwood, Ohio: Institute of Mathematical Statistics. URL
http://projecteuclid.org/euclid.imsc/1207580081. 60

Leisch, Friedrich (2004). “FlexMix: A General Framework for Finite Mixture Models and Latent
Class Regression in R.” Journal of Statistical Software, 11. URL http://www.jstatsoft.

org/v11/i08. 382
Li, Ching Chun (1975). Path Analysis: A Primer . Pacific Grove, California: The Boxwood

Press. 421
Li, Ching Chun, Sati Mazumdar and B. Raja Rao (1975). “Partial Correlation in Terms of Path

Coefficients.” The American Statistician, 29: 89–90. URL http://www.jstor.org/stable/

2683271. 411
Li, Ming and Paul M. B. Vitányi (1997). An Introduction to Kolmogorov Complexity and Its

Applications. New York: Springer-Verlag, 2nd edn. 437

http://papers.nips.cc/paper/4455-k-nn-regression-adapts-to-local-intrinsic-dimension
http://papers.nips.cc/paper/4455-k-nn-regression-adapts-to-local-intrinsic-dimension
http://projecteuclid.org/euclid.aos/1176347265
http://projecteuclid.org/euclid.aos/1176347265
http://dx.doi.org/10.1214/aos/1176347265
http://uai.sis.pitt.edu/papers/08/p366-lacerda.pdf
http://uai.sis.pitt.edu/papers/08/p366-lacerda.pdf
http://www.jstor.org/stable/2291513
http://www.jstor.org/stable/2291513
http://lsa.colorado.edu/papers/plato/plato.annote.html
http://lsa.colorado.edu/papers/plato/plato.annote.html
http://arxiv.org/abs/0905.3369
http://www.jstor.org/pss/4615945
http://arxiv.org/abs/0811.0121
http://dx.doi.org/10.1198/jasa.2010.tm09754
http://projecteuclid.org/euclid.imsc/1207580081
http://www.jstatsoft.org/v11/i08
http://www.jstatsoft.org/v11/i08
http://www.jstor.org/stable/2683271
http://www.jstor.org/stable/2683271

References 565

Li, Qi and Jeffrey Scott Racine (2007). Nonparametric Econometrics: Theory and Practice.
Princeton, New Jersey: Princeton University Press. 99, 192, 205, 464, 470

Ligges, Uwe and Martin Mächler (2003). “scatterplot3d: An R Package for Visualizing Mul-
tivariate Data.” Journal of Statistical Software, 8(11): 1–20. URL http://www.jstatsoft.

org/v8/i11/. 575
Lindsey, J. K. (2004). Statistical Analysis of Stochastic Processes in Time. Cambridge, England:

Cambridge University Press. 519
Little, Roderick J. A. and Donald B. Rubin (1987). Statistical Analysis with Missing Data. New

York: John Wiley and Sons. 686
Littman, Michael L., Richard S. Sutton and Satinder Singh (2002). “Predictive Repre-

sentations of State.” In Advances in Neural Information Processing Systems 14 (NIPS
2001) (Thomas G. Dietterich and Suzanna Becker and Zoubin Ghahramani, eds.), pp.
1555–1561. Cambridge, Massachusetts: MIT Press. URL http://papers.nips.cc/paper/

1983-predictive-representations-of-state. 520
Liu, Han, John Lafferty and Larry Wasserman (2009). “The Nonparanormal: Semiparametric

Estimation of High Dimensional Undirected Graphs.” Journal of Machine Learning Research,
10: 2295–2328. URL http://jmlr.csail.mit.edu/papers/v10/liu09a.html. 419

Liu, Ka-Yuet, Marissa King and Peter S. Bearman (2010). “Social Influ-
ence and the Autism Epidemic.” American Journal of Sociology , 115:
1387–1434. URL http://www.understandingautism.columbia.edu/papers/

social-influence-and-the-autism-epidemic-(2010).pdf. doi:10.1086/651448. 465
Loehlin, John C. (1992). Latent Variable Models: An Introduction to Factor, Path, and Structural

Analysis. Hillsdale, New Jersey: Lawrence Erlbaum Associates, 2nd edn. 371, 421
Loève, Michel (1955). Probability Theory . New York: D. Van Nostrand Company, 1st edn. 338
Lunde, Robert and Cosma Rohilla Shalizi (2017). “Bootstrapping Generalization Error Bounds

for Time Series.” arxiv:1711.02834. URL https://arxiv.org/abs/1711.02834. 519
Maathuis, Marloes H., Diego Colombo, Markus Kalisch and Peter Bühlmann (2010). “Pre-

dicting Causal Effects in Large-scale Systems from Observational Data.” Nature Meth-
ods, 7: 247–248. URL http://stat.ethz.ch/Manuscripts/buhlmann/maathuisetal2010.

pdf. doi:10.1038/nmeth0410-247. See also http://stat.ethz.ch/Manuscripts/buhlmann/

maathuisetal2010SI.pdf. 484
Maathuis, Marloes H., Markus Kalisch and Peter Bühlmann (2009). “Estimating High-

Dimensional Intervention Effects from Observational Data.” Annals of Statistics, 37: 3133–
3164. URL http://arxiv.org/abs/0810.4214. doi:10.1214/09-AOS685. 483

MacCulloch, Diarmaid (2004). The Reformation: A History . New York: Penguin. 77
MacKenzie, Donald (2006). An Engine, Not a Camera: How Financial Models Shape Markets.

Cambridge, Massachusetts: MIT Press. 30
Maguire, B. A., E. S. Pearson and A. H. A. Wynn (1952). “The Time Intervals between Industrial

Accidents.” Biometrika, 39: 168–180. URL http://www.jstor.org/pss/2332475. 396
Mahoney, Michael W. (2011). “Randomized Algorithms for Matrices and Data.” Foundations

and Trends in Machine Learning , 2: 123–224. URL https://arxiv.org/abs/1104.5557.
doi:10.1561/2200000035. 339

Mandelbrot, Benoit (1962). “The Role of Sufficiency and of Estimation in Thermodynam-
ics.” Annals of Mathematical Statistics, 33: 1021–1038. URL http://projecteuclid.org/

euclid.aoms/1177704470. 265, 421
Manski, Charles F. (2003). Partial Identification of Probability Distributions. New York:

Springer-Verlag. 686
— (2007). Identification for Prediction and Decision. Cambridge, Massachusetts: Harvard

University Press. 435, 452, 483, 676, 686
Marcellesi, Alexandre (2013). “Is Race a Cause?” Philosophy of Science, 80: 650–659.

doi:10.1086/673721. 457
Martindale, Colin (1990). The Clockwork Muse: The Predictability of Artistic Change. New

York: Basic Books. 514

http://www.jstatsoft.org/v8/i11/
http://www.jstatsoft.org/v8/i11/
http://papers.nips.cc/paper/1983-predictive-representations-of-state
http://papers.nips.cc/paper/1983-predictive-representations-of-state
http://jmlr.csail.mit.edu/papers/v10/liu09a.html
http://www.understandingautism.columbia.edu/papers/social-influence-and-the-autism-epidemic-(2010).pdf
http://www.understandingautism.columbia.edu/papers/social-influence-and-the-autism-epidemic-(2010).pdf
http://dx.doi.org/10.1086/651448
https://arxiv.org/abs/1711.02834
http://stat.ethz.ch/Manuscripts/buhlmann/maathuisetal2010.pdf
http://stat.ethz.ch/Manuscripts/buhlmann/maathuisetal2010.pdf
http://dx.doi.org/10.1038/nmeth0410-247
http://stat.ethz.ch/Manuscripts/buhlmann/maathuisetal2010SI.pdf
http://stat.ethz.ch/Manuscripts/buhlmann/maathuisetal2010SI.pdf
http://arxiv.org/abs/0810.4214
http://dx.doi.org/10.1214/09-AOS685
http://www.jstor.org/pss/2332475
https://arxiv.org/abs/1104.5557
http://dx.doi.org/10.1561/2200000035
http://projecteuclid.org/euclid.aoms/1177704470
http://projecteuclid.org/euclid.aoms/1177704470
http://dx.doi.org/10.1086/673721

566 References

Matloff, Norman (2011). The Art of R Programming: A Tour of Statistical Software Design.
San Francisco: No Starch Press. 727

McGee, Leonard A. and Stanley F. Schmidt (1985). Discovery of the Kalman Filter as a
Practical Tool for Aerospace and Industry . Tech. Rep. 86847, NASA Technical Memo-
randum. URL http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19860003843_

1986003843.pdf. 401, 519
McLachlan, Geoffrey J. and Thriyambakam Krishnan (2008). The EM Algorithm and Exten-

sions. Hoboken, New Jersey: John Wiley and Sons. 686
Metropolis, Nicholas, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller and

Edward Teller (1953). “Equations of State Calculations by Fast Computing Machines.”
Journal of Chemical Physics, 21: 1087–1092. doi:10.1063/1.1699114. 120

Miller, John H. (1998). “Active Nonlinear Tests (ANTs) of Complex Simulation Models.” Man-
agement Science, 44: 820–830. URL http://zia.hss.cmu.edu/miller/papers/antabst.

html. 125
Mitchell, Tom M. (1997). Machine Learning . New York: McGraw-Hill. 285
Mohan, Karthika, Judea Pearl and Jin Tian (2013). “Graphical Models for Inference with

Missing Data.” In Advances in Neural Information Processing Systems 26 [NIPS 2013]
(C. J. C. Burges and Léon Bottou and Max Welling and Zoubin Ghahramani and Kilian Q.
Weinberger, eds.), pp. 1277–1285. Curran Associates. URL http://papers.nips.cc/paper/

4899-graphical-models-for-inference-with-missing-data. 679
Mohri, Mehryar, Afshin Rostamizadeh and Ameet Talwalkar (2012). Foundations of Machine

Learning . Adaptive Computation and Machine Learning. Cambridge, Massachusetts: MIT
Press. 78

Moran, P. A. P. (1961). “Path Coefficients Reconsidered.” Australian Journal of Statistics, 3:
87–93. doi:10.1111/j.1467-842X.1961.tb00314.x. 421

Morgan, Stephen L. and Christopher Winship (2007). Counterfactuals and Causal Inference:
Methods and Principles for Social Research. Cambridge, England: Cambridge University
Press. 430, 431, 442, 453, 465

— (2015). Counterfactuals and Causal Inference: Methods and Principles for Social Research.
Cambridge, England: Cambridge University Press, 2nd edn. 430, 443

Nadaraya, E. A. (1964). “On Estimating Regression.” Theory of Probability and Its Applications,
9: 141–142. doi:10.1137/1109020. 39, 100

Neal, Radford M. and Geoffrey E. Hinton (1998). “A View of the EM Algorithm that Justifies
Incremental, Sparse, and Other Variants.” In Jordan (1998), pp. 355–368. URL http:

//www.cs.toronto.edu/~radford/em.abstract.html. 401
Newey, Whitney K. and James L. Powell (2003). “Instrumental Variable Estimation of Non-

parametric Models.” Econometrica, 71: 1565–1578. doi:10.1111/1468-0262.00459. 453
Newman, Mark E. J. and G. T. Barkema (1999). Monte Carlo Methods in Statistical Physics.

Oxford: Clarendon Press. 125
Novembre, John and Matthew Stephens (2008). “Interpreting principal component analyses

of spatial population genetic variation.” Nature Genetics, 40: 646–649. doi:10.1038/ng.139.
336, 340, 341

Packard, Norman H., James P. Crutchfield, J. Doyne Farmer and Robert S. Shaw (1980). “Ge-
ometry from a Time Series.” Physical Review Letters, 45: 712–716. 519

Paige, Robert L. and A. Alexandre Trindade (2010). “The Hodrick-Prescott Filter: A special
case of penalized spline smoothing.” Electronic Journal of Statistics, 4: 856–874. URL
http://projecteuclid.org/euclid.ejs/1284557751. doi:10.1214/10-EJS570. 166

Palomar, Daniel P. and Sergio Verdú (2008). “Lautum Information.” IEEE Transactions on
Information Theory , 54: 964–975. URL http://www.princeton.edu/~verdu/lautum.info.

pdf. 414
Parzen, Emanuel (1962). “On Estimation of a Probability Density Function and Mode.” Annals

of Mathematical Statistics, 33: 1065–1076. URL https://projecteuclid.org/euclid.aoms/

1177704472. doi:10.1214/aoms/1177704472. 315

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19860003843_1986003843.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19860003843_1986003843.pdf
http://dx.doi.org/10.1063/1.1699114
http://zia.hss.cmu.edu/miller/papers/antabst.html
http://zia.hss.cmu.edu/miller/papers/antabst.html
http://papers.nips.cc/paper/4899-graphical-models-for-inference-with-missing-data
http://papers.nips.cc/paper/4899-graphical-models-for-inference-with-missing-data
http://dx.doi.org/10.1111/j.1467-842X.1961.tb00314.x
http://dx.doi.org/10.1137/1109020
http://www.cs.toronto.edu/~radford/em.abstract.html
http://www.cs.toronto.edu/~radford/em.abstract.html
http://dx.doi.org/10.1111/1468-0262.00459
http://dx.doi.org/10.1038/ng.139
http://projecteuclid.org/euclid.ejs/1284557751
http://dx.doi.org/10.1214/10-EJS570
http://www.princeton.edu/~verdu/lautum.info.pdf
http://www.princeton.edu/~verdu/lautum.info.pdf
https://projecteuclid.org/euclid.aoms/1177704472
https://projecteuclid.org/euclid.aoms/1177704472
http://dx.doi.org/10.1214/aoms/1177704472

References 567

Pearl, Judea (1988). Probabilistic Reasoning in Intelligent Systems. New York: Morgan Kauf-
mann. 421

— (2000). Causality: Models, Reasoning, and Inference. Cambridge, England: Cambridge Uni-
versity Press. 408, 421

— (2009a). “Causal inference in statistics: An overview.” Statistics Surveys, 3: 96–146. URL
http://projecteuclid.org/euclid.ssu/1255440554. 430, 431, 462

— (2009b). Causality: Models, Reasoning, and Inference. Cambridge, England: Cambridge
University Press, 2nd edn. 421, 430, 439, 442, 443, 448, 450, 453, 462, 472

Pearson, Karl (1901). “On lines and planes of closest fit to systems of points in space.” Philo-
sophical Magazine, 2 (series 6): 559–572. doi:10.1080/14786440109462720. 338

Peterson, Robert A. (2000). “A Meta-Analysis of Variance Accounted for and Factor Loadings
in Exploratory Factor Analysis.” Marketing Letters, 11: 261–275. 359

Pitman, E. J. G. (1979). Some Basic Theory for Statistical Inference. London: Chapman and
Hall. 294

Pollard, David (1989). “Asymptotics via Empirical Processes.” Statistical Science, 4: 341–354.
URL http://projecteuclid.org/euclid.ss/1177012394. doi:10.1214/ss/1177012394. 294,
314

— (1990). Empirical Processes: Theory and Applications, vol. 2 of NSF-CBMS Regional Con-
ference Series in Probability and Statistics. Hayward, California: Institute of Mathematical
Statistics. URL http://www.stat.yale.edu/~pollard/. 314

Porter, Theodore M. (1986). The Rise of Statistical Thinking, 1820–1900 . Princeton, New
Jersey: Princeton University Press. 17, 60

Press, William H., Saul A. Teukolsky, William T. Vetterling and Brian P. Flannery (1992).
Numerical Recipes in C: The Art of Scientific Computing . Cambridge, England: Cambridge
University Press, 2nd edn. URL http://www.nrbook.com/. 125

Puccia, Charles J. and Richard Levins (1985). Qualitative Modeling of Complex Systems: An
Introduction to Loop Analysis and Time Averaging . Cambridge, Massachusetts: Harvard
University Press. 419

Quiñonero-Candela, Joaquin, Masashi Sugiyama, Anton Schwaighofer and Neil D. Lawrence
(eds.) (2009). Dataset Shift in Machine Learning . Cambridge, Massachusetts: MIT Press.
74, 207

R Core Team (2015a). R: A Language and Environment for Statistical Computing . R Foundation
for Statistical Computing, Vienna, Austria. URL http://www.R-project.org. ISBN 3-
900051-07-0. 574

— (2015b). foreign: Read Data Stored by Minitab, S, SAS, SPSS, Stata, Systat, Weka, dBase,
.... URL https://CRAN.R-project.org/package=foreign. R package version 0.8-66. 575

Racine, Jeff (2000). “Consistent cross-validatory model-selection for dependent data: hv-block
cross-validation.” Journal of Econometrics, 99: 39–61. doi:10.1016/S0304-4076(00)00030-0.
519

Racine, Jeffrey S. (2008). “Nonparametric Econometrics: A Primer.” Foundations and
Trends in Econometrics, 3: 1–88. URL http://socserv.mcmaster.ca/racine/ECO0301.pdf.
doi:10.1561/0800000009. 99

Raginsky, Maxim (2011). “Directed Information and Pearl’s Causal Calculus.” In Proceed-
ings of the 49th Annual Allerton Conference on Communication, Control and Computing
(S. Meyn and B. Hajek, eds.), pp. 958–965. IEEE. URL http://arxiv.org/abs/1110.0718.
doi:10.1109/Allerton.2011.6120270. 431

Rayner, J. C. W. and D. J. Best (1989). Smooth Tests of Goodness of Fit . Oxford: Oxford
University Press. 615, 636

Reichenbach, Hans (1956). The Direction of Time. Berkeley: University of California Press.
Edited by Maria Reichenbach. 470, 472

Reid, Constance (1982). Neyman from Life. New York: Springer-Verlag. 285

http://projecteuclid.org/euclid.ssu/1255440554
http://dx.doi.org/10.1080/14786440109462720
http://projecteuclid.org/euclid.ss/1177012394
http://dx.doi.org/10.1214/ss/1177012394
http://www.stat.yale.edu/~pollard/
http://www.nrbook.com/
http://www.R-project.org
https://CRAN.R-project.org/package=foreign
http://dx.doi.org/10.1016/S0304-4076(00)00030-0
http://socserv.mcmaster.ca/racine/ECO0301.pdf
http://dx.doi.org/10.1561/0800000009
http://arxiv.org/abs/1110.0718
http://dx.doi.org/10.1109/Allerton.2011.6120270

568 References

Reinhart, Abiel (2014). pdfetch: Fetch economic and financial time series data from public
sources. URL https://CRAN.R-project.org/package=pdfetch. R package version 0.1.6.
575

Reinsch, Christian H. (1967). “Smoothing by Spline Functions.” Numerische Mathematik , 10:
177–183. 166

Richardson, Thomas (1996). “A Discovery Algorithm for Directed Cyclic Graphs.” In Pro-
ceedings of the Proceedings of the Twelfth Conference Annual Conference on Uncertainty in
Artificial Intelligence (UAI-96), pp. 454–446. San Francisco, CA: Morgan Kaufmann. URL
ftp://ftp.andrew.cmu.edu/pub/phil/thomas/TR68.ps. URL is for expanded version. 419,
484

Richardson, Thomas S. and James M. Robins (2013). Single World Intervention Graphs
(SWIGs): A Unification of the Counterfactual and Graphical Approaches to Causality . Tech.
Rep. 128, Center for Statistics and the Social Sciences, University of Washington. URL
http://www.csss.washington.edu/Papers/wp128.pdf. 431

Ripley, Brian D. (1996). Pattern Recognition and Neural Networks. Cambridge, England: Cam-
bridge University Press. 285, 287

— (2015). tree: Classification and Regression Trees. URL https://CRAN.R-project.org/

package=tree. R package version 1.0-36. 270, 575

Robins, James M., Richard Scheines, Peter Spirtes and Larry Wasserman (2003). “Uniform
Consistency in Causal Inference.” Biometrika, 90: 491–515. URL http://www.stat.cmu.

edu/tr/tr725/tr725.html. 482

Rodrik, Dani (2008). “The Real Exchange Rate and Economic Growth.” Brookings Papers
on Economic Activity , 2008(2): 365–412. URL http://www.hks.harvard.edu/fs/drodrik/

Research%20papers/RER%20and%20growth.pdf. doi:10.1353/eca.0.0020. 9

Rosenbaum, Paul and Donald Rubin (1983). “The Central Role of the Propensity Score in
Observational Studies for Causal Effects.” Biometrika, 70: 41–55. URL http://www.jstor.

org/stable/2335942. 461, 462

Rosenblatt, Murray (1956). “Remarks on Some Nonparametric Estimates of a Density Func-
tion.” Annals of Mathematical Statistics, 27: 832–837. URL https://projecteuclid.org/

euclid.aoms/1177728190. doi:10.1214/aoms/1177728190. 315

Rosenzweig, Mark R. and Kenneth I. Wolpin (2000). “Natural “Natural Experiments” in Eco-
nomics.” Journal of Economic Literature, 38: 827–874. doi:10.1257/jel.38.4.827. 448, 453

Roweis, Sam T. and Laurence K. Saul (2000). “Nonlinear Dimensionality Reduction by Locally
Linear Embedding.” Science, 290: 2323–2326. doi:10.1126/science.290.5500.2323. 644

Rubin, Donald B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: Wiley.
681, 686

— (2006). Matched Sampling for Causal Effects. Cambridge, England: Cambridge University
Press. 431, 466

Rubin, Donald B. and Richard P. Waterman (2006). “Estimating the Causal Effects of Marketing
Interventions Using Propensity Score Methodology.” Statistical Science, 21: 206–222. URL
http://arxiv.org/abs/math.ST/0609201. 466

Ruelle, David (1991). Chance and Chaos. Princeton, New Jersey: Princeton University Press.
520

Russell, Bertrand (1920). Introduction to Mathematical Philosophy . London: George Allen
and Unwin, 2nd edn. URL http://people.umass.edu/klement/russell-imp.html. First
edition, 1919. 123

— (1927). The Analysis of Matter . London: K. Paul Trench, Trubner and Co. Reprinted New
York: Dover Books, 1954. 472

Salmon, Wesley C. (1984). Scientific Explanation and the Causal Structure of the World . Prince-
ton: Princeton University Press. 453, 454

Sandhaus, Evan (2008). “The New York Times Annotated Corpus.” Electronic database. URL
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2008T19. 332

https://CRAN.R-project.org/package=pdfetch
ftp://ftp.andrew.cmu.edu/pub/phil/thomas/TR68.ps
http://www.csss.washington.edu/Papers/wp128.pdf
https://CRAN.R-project.org/package=tree
https://CRAN.R-project.org/package=tree
http://www.stat.cmu.edu/tr/tr725/tr725.html
http://www.stat.cmu.edu/tr/tr725/tr725.html
http://www.hks.harvard.edu/fs/drodrik/Research%20papers/RER%20and%20growth.pdf
http://www.hks.harvard.edu/fs/drodrik/Research%20papers/RER%20and%20growth.pdf
http://dx.doi.org/10.1353/eca.0.0020
http://www.jstor.org/stable/2335942
http://www.jstor.org/stable/2335942
https://projecteuclid.org/euclid.aoms/1177728190
https://projecteuclid.org/euclid.aoms/1177728190
http://dx.doi.org/10.1214/aoms/1177728190
http://dx.doi.org/10.1257/jel.38.4.827
http://dx.doi.org/10.1126/science.290.5500.2323
http://arxiv.org/abs/math.ST/0609201
http://people.umass.edu/klement/russell-imp.html
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2008T19

References 569

Sarkar, Deepayan (2008). Lattice: Multivariate Data Visualization with R. New York: Springer.
URL http://lmdvr.r-forge.r-project.org. 575

Saul, Lawrence K. and Sam T. Roweis (2003). “Think Globally, Fit Locally: Supervised Learning
of Low Dimensional Manifolds.” Journal of Machine Learning Research, 4: 119–155. URL
http://jmlr.csail.mit.edu/papers/v4/saul03a.html. 644

Schoenberg, I. J. (1964). “Spline Functions and the Problem of Graduation.” Proceedings of the
National Academy of Sciences (USA), 52: 947–950. 166

Schreiber, Thomas (1997). “Detecting and Analysing Nonstationarity in a Time Series with
Nonlinear Cross Prediction.” Physics Letters A, 160: 411. URL http://arxiv.org/abs/

chao-dyn/9909044. 504
Schutz, Bernard F. (1980). Geometrical Methods of Mathematical Physics. Cambridge, England:

Cambridge University Press. 643
Schwarz, Gideon (1978). “Estimating the Dimension of a Model.” Annals of Statistics, 6:

461–464. URL http://projecteuclid.org/euclid.aos/1176344136. 618
Scott, Clayton and Robert Nowak (2005). “A Neyman-Pearson Approach to Statistical Learn-

ing.” IEEE Transactions on Information Theory , 51: 3806–3819. URL http://www.ece.

wisc.edu/~nowak/np.pdf. doi:10.1109/TIT.2005.856955. 284
Sethna, James P. (2006). Statistical Mechanics: Entropy, Order Parameters, and Complex-

ity . Oxford: Oxford University Press. URL http://pages.physics.cornell.edu/sethna/

StatMech/. 421
Shalizi, Cosma Rohilla (2003). “Optimal Nonlinear Prediction of Random Fields on Networks.”

Discrete Mathematics and Theoretical Computer Science, AB(DMCS): 11–30. URL http:

//arxiv.org/abs/math.PR/0305160. 520
— (2007). “Maximum Likelihood Estimation and Model Testing for q-Exponential Distribu-

tions.” Physical Review E , submitted. URL http://arxiv.org/abs/math.ST/0701854.
396

— (2016). “Review of Imbens and Rubin (2015).” Journal of the American Statistical Associa-
tion, 111: 1364–1365. doi:10.1080/01621459.2016.1235436. 431, 466

Shalizi, Cosma Rohilla and James P. Crutchfield (2001). “Computational Mechanics: Pattern
and Prediction, Structure and Simplicity.” Journal of Statistical Physics, 104: 817–879. URL
http://arxiv.org/abs/cond-mat/9907176. 520

Shalizi, Cosma Rohilla and Andrew C. Thomas (2011). “Homophily and Conta-
gion Are Generically Confounded in Observational Social Network Studies.” Socio-
logical Methods and Research, 40: 211–239. URL http://arxiv.org/abs/1004.4704.
doi:10.1177/0049124111404820. 452

Shannon, Claude E. (1948). “A Mathematical Theory of Communication.” Bell System Technical
Journal , 27: 379–423. Reprinted in Shannon and Weaver (1963). 414

Shannon, Claude E. and Warren Weaver (1963). The Mathematical Theory of Communication.
Urbana, Illinois: University of Illinois Press. 569

Shields, Paul C. (1996). The Ergodic Theory of Discrete Sample Paths. Providence, Rhode
Island: American Mathematical Society. 519

Shpitser, Ilya and Judea Pearl (2008). “Complete Identification Methods for the Causal Hierar-
chy.” Journal of Machine Learning Research, 9: 1941–1979. URL http://jmlr.csail.mit.

edu/papers/v9/shpitser08a.html. 450
Shumway, Robert H. and David S. Stoffer (2000). Time Series Analysis and Its Applications.

New York: Springer-Verlag. 516, 518, 519, 546
Silverman, B. W. (1984). “Spline Smoothing: The Equivalent Variable Kernel Method.” Annals

of Statistics, 12: 898–916. doi:10.1214/aos/1176346710. 163
— (1985). “Some Aspects of the Spline Smoothing Approach to Non-Parametric Regression

Curve Fitting.” Journal of the Royal Statistical Society B , 47: 1–52. URL http://www.

jstor.org/stable/2345542. 166
Simonoff, Jeffrey S. (1996). Smoothing Methods in Statistics. Berlin: Springer-Verlag. 39, 92,

99, 163, 165, 231, 313

http://lmdvr.r-forge.r-project.org
http://jmlr.csail.mit.edu/papers/v4/saul03a.html
http://arxiv.org/abs/chao-dyn/9909044
http://arxiv.org/abs/chao-dyn/9909044
http://projecteuclid.org/euclid.aos/1176344136
http://www.ece.wisc.edu/~nowak/np.pdf
http://www.ece.wisc.edu/~nowak/np.pdf
http://dx.doi.org/10.1109/TIT.2005.856955
http://pages.physics.cornell.edu/sethna/StatMech/
http://pages.physics.cornell.edu/sethna/StatMech/
http://arxiv.org/abs/math.PR/0305160
http://arxiv.org/abs/math.PR/0305160
http://arxiv.org/abs/math.ST/0701854
http://dx.doi.org/10.1080/01621459.2016.1235436
http://arxiv.org/abs/cond-mat/9907176
http://arxiv.org/abs/1004.4704
http://dx.doi.org/10.1177/0049124111404820
http://jmlr.csail.mit.edu/papers/v9/shpitser08a.html
http://jmlr.csail.mit.edu/papers/v9/shpitser08a.html
http://dx.doi.org/10.1214/aos/1176346710
http://www.jstor.org/stable/2345542
http://www.jstor.org/stable/2345542

570 References

Solow, Robert M. (1970). Growth Theory: An Exposition. Radcliffe Lectures, University of
Warwick, 1969. Oxford: Oxford University Press. New edition with the 1987 Nobel lecture.
505

Spain, Seth M., Kristin L. Sotak, Joey (Chou-Yu) Tsai, P. D. Harms and Sean T. Hannah
(2012). “Testing the Form of Theoretical Models by Relaxing Assumptions: Comparing
Parametric and Nonparametric Models.” Electronic preprint, SSRN/2164297. URL http:

//ssrn.com/abstract=2164297. 205

Spanos, Aris (2011). “A Frequentist Interpretation of Probability for Model-based Inductive
Inference.” Synthese, 190. URL http://www.econ.vt.edu/faculty/2008vitas_research/

Spanos/1Spanos-2011-Synthese.pdf. doi:10.1007/s11229-011-9892-x. 506

Spearman, Charles (1904). ““General Intelligence,” Objectively Determined and Measured.”
American Journal of Psychology , 15: 201–293. URL http://psychclassics.yorku.ca/

Spearman/. 347, 371

Spector, Phil (2008). Data Manipulation with R. Berlin: Springer. 727

Spector, Phil, Jerome Friedman, Robert Tibshirani and Thomas Lumley (2013). acepack:
ace() and avas() for selecting regression transformations. URL http://CRAN.R-project.

org/package=acepack. R package version 1.3-3.3. 55

Spirtes, Peter, Clark Glymour and Richard Scheines (1993). Causation, Prediction, and Search.
Berlin: Springer-Verlag, 1st edn. 421

— (2001). Causation, Prediction, and Search. Cambridge, Massachusetts: MIT Press, 2nd edn.
408, 421, 430, 431, 473, 475, 476, 480, 482, 483

Spivak, Michael (1965). Calculus on Manifolds: A Modern Approach to Classical Theorems of
Advanced Calculus. Menlo Park, California: Benjamin Cummings. 643

Spufford, Francis (2010). Red Plenty . London: Faber and Faber. 610

Sriperumbudur, Bharath K., Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf and
Gert R.G. Lanckriet (2010). “Hilbert Space Embeddings and Metrics on Probability Mea-
sures.” Journal of Machine Learning Research, 11: 1517–1561. URL http://jmlr.csail.

mit.edu/papers/v11/sriperumbudur10a.html. 469

Stephan, Maria J. and Erica Chenowth (2008). “Why Civil Resistance Works; The Strategic
Logic of Nonviolent Conflict.” International Security , 33: 7–44. doi:10.1162/isec.2008.33.1.7.
25

Stigler, Stephen M. (1986). The History of Statistics: The Measurement of Uncertainty before
1900 . Cambridge, Massachusetts: Harvard University Press. 17, 60

Stone, M. (1974). “Cross-validatory choice and assessment of statistical predictions.” Journal of
the Royal Statistical Society B , 36: 111–147. URL http://www.jstor.org/stable/2984809.
78

Stuart, Elizabeth A. (2010). “Matching Methods for Causal Inference: A Review and a
Look Forward.” Statistical Science, 25: 1–21. URL http://arxiv.org/abs/1010.5586.
doi:10.1214/09-STS313. 462, 466

Sung, Yun Ju and Charles J. Geyer (2007). “Monte Carlo Likelihood Inference for Missing Data
Models.” Annals of Statistics, 35: 990–1011. doi:10.1214/009053606000001389. 686

Székely, Gábor J. and Maria L. Rizzo (2009). “Brownian Distance Covariance.” Annals of
Applied Statistics, 3: 1236–1265. URL http://arxiv.org/abs/1010.0297. doi:10.1214/09-
AOAS312. With discussion and reply. 469

Taylor, G. I. (1922). “Diffusion by Continuous Movements.” Proceedings of the London Mathe-
matical Society , 20: 196–212. doi:10.1112/plms/s2-20.1.196. 519

Taylor, Jonathan and Robert J. Tibshirani (2015). “Statistical Learning and Selective
Inference.” Proceedings of the National Academy of Sciences (USA), 112: 7629–7634.
doi:10.1073/pnas.1507583112. 78

Therneau, Terry M. (2015). A Package for Survival Analysis in S . URL https://CRAN.

R-project.org/package=survival. Version 2.38. 673

http://ssrn.com/abstract=2164297
http://ssrn.com/abstract=2164297
http://www.econ.vt.edu/faculty/2008vitas_research/Spanos/1Spanos-2011-Synthese.pdf
http://www.econ.vt.edu/faculty/2008vitas_research/Spanos/1Spanos-2011-Synthese.pdf
http://dx.doi.org/10.1007/s11229-011-9892-x
http://psychclassics.yorku.ca/Spearman/
http://psychclassics.yorku.ca/Spearman/
http://CRAN.R-project.org/package=acepack
http://CRAN.R-project.org/package=acepack
http://jmlr.csail.mit.edu/papers/v11/sriperumbudur10a.html
http://jmlr.csail.mit.edu/papers/v11/sriperumbudur10a.html
http://dx.doi.org/10.1162/isec.2008.33.1.7
http://www.jstor.org/stable/2984809
http://arxiv.org/abs/1010.5586
http://dx.doi.org/10.1214/09-STS313
http://dx.doi.org/10.1214/009053606000001389
http://arxiv.org/abs/1010.0297
http://dx.doi.org/10.1214/09-AOAS312
http://dx.doi.org/10.1214/09-AOAS312
http://dx.doi.org/10.1112/plms/s2-20.1.196
http://dx.doi.org/10.1073/pnas.1507583112
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival

References 571

Thiesson, Bo, David Maxwell Chickering, David Heckerman and Christopher Meek (2004).
“ARMA Time-Series Modeling with Graphical Models.” In Uncertainty in Artificial Intelli-
gence: Proceedings of the Twentieth Conference (UAI 2004) (Max Chickering and Joseph Y.
Halpern, eds.), pp. 552–560. Arlington, Virginia: AUAI Press. URL http://arxiv.org/abs/

1207.4162. 516

Thomson, Godfrey H. (1916). “A Hierarchy without a General Factor.” British Journal of
Psychology , 8: 271–281. 368

— (1939). The Factorial Analysis of Human Ability . Boston: Houghton Mifflin Company. URL
http://www.archive.org/details/factorialanalysi032965mbp. 338, 371

Thurstone, L. L. (1934). “The Vectors of Mind.” Psychological Review , 41: 1–32. URL http:

//psychclassics.yorku.ca/Thurstone/. 371

Tibshirani, Robert (1996). “Regression Shrinkage and Selection via the Lasso.” Journal of
the Royal Statistical Society B , 58: 267–288. URL http://www-stat.stanford.edu/~tibs/

lasso/lasso.pdf. 595

Tibshirani, Ryan J., Alessandro Rinaldo, Robert Tibshirani and Larry Wasserman (2015). Uni-
form Asymptotic Inference and the Bootstrap After Model Selection. Tech. rep., Statistics
Department, Carnegie Mellon University. URL http://arxiv.org/abs/1506.06266. 78

Tibshirani, Ryan J. and Robert Tibshirani (2009). “A Bias Correction for the Minimum Error
Rate in Cross-Validation.” Annals of Applied Statistics, 3: 822–829. URL http://arxiv.

org/abs/0908.2904. 72, 91

Tilly, Charles (1984). Big Structures, Large Processes, Huge Comparisons. New York: Russell
Sage Foundation. 453

— (1998). Durable Inequality . Berkeley: University of California Press. 451

— (2008). Explaining Social Processes. Boulder, Colorado: Paradigm Publishers. 453

Trapletti, Adrian and Kurt Hornik (2015). tseries: Time Series Analysis and Computational
Finance. URL http://CRAN.R-project.org/package=tseries. R package version 0.10-34.
575

Tukey, John W. (1954). “Unsolved Problems of Experimental Statistics.” Journal of the Amer-
ican Statistical Association, 49: 706–731. URL http://www.jstor.org/pss/2281535. 344

Tutz, Gerhard (2012). Regression for Categorical Data. Cambridge, England: Cambridge Uni-
versity Press. 266

van de Geer, Sara A. (2000). Empirical Processes in M-Estimation. Cambridge, England:
Cambridge University Press. 314

van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge, England: Cambridge University
Press. 147, 610

Vapnik, Vladimir N. (2000). The Nature of Statistical Learning Theory . Berlin: Springer-Verlag,
2nd edn. 78

Varadhan, Ravi (2012). alabama: Constrained nonlinear optimization. URL http://CRAN.

R-project.org/package=alabama. R package version 2011.9-1. 598

Venables, W. N. and B. D. Ripley (2002). Modern Applied Statistics with S . Berlin: Springer-
Verlag, 4th edn. URL http://www.stats.ox.ac.uk/pub/MASS4. 258, 575

Vidyasagar, Mathukumalli (2003). Learning and Generalization: With Applications to Neural
Networks. Berlin: Springer-Verlag, 2nd edn. 78

von Luxburg, Ulrike and Bernhard Schölkopf (2008). “Statistical Learning Theory: Models,
Concepts, and Results.” arxiv:0810.4752. URL http://arxiv.org/abs/0810.4752. 78

Wahba, Grace (1990). Spline Models for Observational Data. Philadelphia: Society for Industrial
and Applied Mathematics. 165, 181

Ward, Michael D., Brian D. Greenhill and Kristin M. Bakke (2010). “The Perils of Pol-
icy by p-value: Predicting Civil Conficts.” Journal of Peace Research, 47: 363–375.
doi:10.1177/0022343309356491. 22

Wasserman, Larry (2003). All of Statistics: A Concise Course in Statistical Inference. Berlin:
Springer-Verlag. 39

http://arxiv.org/abs/1207.4162
http://arxiv.org/abs/1207.4162
http://www.archive.org/details/factorialanalysi032965mbp
http://psychclassics.yorku.ca/Thurstone/
http://psychclassics.yorku.ca/Thurstone/
http://www-stat.stanford.edu/~tibs/lasso/lasso.pdf
http://www-stat.stanford.edu/~tibs/lasso/lasso.pdf
http://arxiv.org/abs/1506.06266
http://arxiv.org/abs/0908.2904
http://arxiv.org/abs/0908.2904
http://CRAN.R-project.org/package=tseries
http://www.jstor.org/pss/2281535
http://CRAN.R-project.org/package=alabama
http://CRAN.R-project.org/package=alabama
http://www.stats.ox.ac.uk/pub/MASS4
http://arxiv.org/abs/0810.4752
http://dx.doi.org/10.1177/0022343309356491

572 References

— (2006). All of Nonparametric Statistics. Berlin: Springer-Verlag. 39, 92, 99, 165, 172, 230,
297, 313, 314

Watson, Geoffrey S. (1964). “Smooth Regression Analysis.” Sanhkya, 26: 359–372. URL
http://www.jstor.org/stable/25049340. 39, 100

Weisberg, Sanford (1985). Applied Linear Regression. New York: Wiley, 2nd edn. 60

Welch, Lloyd R. (December 2003). “Shannon Lecture: Hidden Markov Models and the Baum-
Welch Algorithm.” IEEE Information Theory Society Newsletter , 53(4): 1 and 10–13. URL
http://www-bcf.usc.edu/~lototsky/MATH508/Baum-Welch.pdf. 518

Western, Bruce (1996). “Vague Theory and Model Uncertainty in Macrosociology.”
Sociological Methodology , 26: 165–192. URL http://www.jstor.org/stable/271022.
doi:10.2307/271022. 84

White, Halbert (1994). Estimation, Inference and Specification Analysis. Cambridge, England:
Cambridge University Press. 78, 205, 605, 606, 608, 610

Whittaker, E. T. (1922). “On a New Method of Graduation.” Proceedings of the Edinburgh
Mathematical Society , 41: 63–75. doi:10.1017/S001309150000359X. 166

Wickham, Hadley (2011). “The Split-Apply-Combine Strategy for Data Analysis.” Journal of
Statistical Software, 40(1): 1–29. URL http://www.jstatsoft.org/v40/i01/. 575

— (2015). Advanced R. Boca Raton, Florida: CRC Press. 727

Wiener, Norbert (1949). Extrapolation, Interpolation, and Smoothing of Stationary Time Series:
With Engineering Applications. Cambridge, Massachusetts: The Technology Press of the
Massachusetts Institute of Technology. “First published during the war [1942] as a classifed
report to Section D2, National Defense Research Council”. 516

— (1956). “Nonlinear Prediction and Dynamics.” In Proceedings of the Third Berkeley Sym-
posium on Mathematical Statistics and Probability (Jerzy Neyman, ed.), vol. 3, pp. 247–252.
Berkeley: University of California Press. URL http://projecteuclid.org/euclid.bsmsp/

1200502197. 301

— (1961). Cybernetics: Or, Control and Communication in the Animal and the Machine. Cam-
bridge, Massachusetts: MIT Press, 2nd edn. First edition New York: Wiley, 1948. 472

Winkler, Gerhard (1995). Image Analysis, Random Fields and Dynamic Monte Carlo Methods:
A Mathematical Introduction. Berlin: Springer-Verlag. 421

Wood, Simon N. (2004). “Stable and efficient multiple smoothing parameter estimation for
generalized additive models.” Journal of the American Statistical Association, 99: 673–686.
URL http://www.maths.bath.ac.uk/~sw283/simon/papers/magic.pdf. 575

— (2006). Generalized Additive Models: An Introduction with R. Boca Raton, Florida: Chapman
and Hall/CRC. 165, 181, 266

— (2010). “Statistical inference for noisy nonlinear ecological dynamic systems.” Nature, 466:
1102–1104. doi:10.1038/nature09319. 552

Wright, Sewall (1934). “The Method of Path Coefficients.” Annals of Mathematical Statistics,
5: 161–215. URL http://projecteuclid.org/euclid.aoms/1177732676. 421

Wysocki, W. (1992). “Mathematical Foundations of Multivariate Path Analysis.” Inventiones
Mathematicae, 21: 387–397. URL https://eudml.org/doc/263277. 421

Xie, Yihui (2015). Dynamic Documents with R and knitr . Boca Raton, Florida: CRC Press,
2nd edn. URL http://yihui.name/knitr/. 575

Yates, JoAnne (1989). Control through Communication: The Rise of System in American Man-
agement . Baltimore: Johns Hopkins University Press. 681

Ye, Jianming (1998). “On Measuring and Correcting the Effects of Data Mining
and Model Selection.” Journal of the American Statistical Association, 93: 120–131.
doi:10.1080/01621459.1998.10474094. 39

Young, Alwyn (2017). Consistency without Inference: Instrumental Variables in Practical Ap-
plication. Tech. rep., London School of Economics. 448, 464

Zeileis, Achim (2004). “Econometric Computing with HC and HAC Covariance Matrix Estima-
tors.” Journal of Statistical Software, 11(10): 1–17. doi:10.18637/jss.v011.i10. 605

http://www.jstor.org/stable/25049340
http://www-bcf.usc.edu/~lototsky/MATH508/Baum-Welch.pdf
http://www.jstor.org/stable/271022
http://dx.doi.org/10.2307/271022
http://dx.doi.org/10.1017/S001309150000359X
http://www.jstatsoft.org/v40/i01/
http://projecteuclid.org/euclid.bsmsp/1200502197
http://projecteuclid.org/euclid.bsmsp/1200502197
http://www.maths.bath.ac.uk/~sw283/simon/papers/magic.pdf
http://dx.doi.org/10.1038/nature09319
http://projecteuclid.org/euclid.aoms/1177732676
https://eudml.org/doc/263277
http://yihui.name/knitr/
http://dx.doi.org/10.1080/01621459.1998.10474094
http://dx.doi.org/10.18637/jss.v011.i10

References 573

— (2006). “Object-Oriented Computation of Sandwich Estimators.” Journal of Statis-
tical Software, 16(9): 1–16. URL https://www.jstatsoft.org/article/view/v016i09.
doi:10.18637/jss.v016.i09. 605

Zhang, Kun, Jonas Peters, Dominik Janzing and Bernhard Schölkopf (2011). “Kernel-based
Conditional Independence Test and Application in Causal Discovery.” In Proceedings of
the Twenty-Seventh Conference Annual Conference on Uncertainty in Artificial Intelligence
(UAI-11) (Fabio Gagliardi Cozman and Avi Pfeffer, eds.), pp. 804–813. Corvallis, Oregon:
AUAI Press. URL http://arxiv.org/abs/1202.3775. 469

Zhao, Linqiao (2010). A Model of Limit-Order Book Dynamics and a Consistent Estimation
Procedure. Ph.D. thesis, Carnegie Mellon University. URL http://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.173.2067&rep=rep1&type=pdf. 552

https://www.jstatsoft.org/article/view/v016i09
http://dx.doi.org/10.18637/jss.v016.i09
http://arxiv.org/abs/1202.3775
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.173.2067&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.173.2067&rep=rep1&type=pdf

Acknowledgments

I am grateful to my students in 36-402 for their feedback, and for their endur-
ing first (and second and third. . .) drafts. Martin Gold and Danny Yee made
detailed and valuable comments on early versions. Jim Crutchfield, Chris Gen-
ovese, Clark Glymour, Kristina Klinkner, Valerie Ventura and Larry Wasserman
all both shaped how I think about statistics, and offered vital early encourage-
ment; John Miller offered vital early encouragement and late advice, assuring me
from beginning to end that this was a bad idea. (He was right.) Abigail Owen
made me actually finish.

Dr. Ryota Kanai and Prof. Bruce Western kindly shared data sets from their
papers. For specific corrections and comments, I thank Burak Bayramli, Souhaib
Ben Taieb, David Blei, Christopher Bradsher, Bob Carpenter, Kathy Chen, Joe
Chi, Brad DeLong, Jeremy Drelich, Beatriz Estefania Etchegaray, Nj̊al Foldnes,
Manuel Garber, Max Grazier G’Sell, Ben Hansen, Anas Hoque, Maksim Horowitz,
Crystal Hou, Rafael Izbicki, Shiguo Jiang, Xi Jin, Kent Johnson, Sidharth Ka-
pur, Kidong “Justin” Kim, Maksim Levental, Shubao Liu, Terra Mack, Shaina
Mitchell, Sinnott Murphy, Spencer Nelson, Brendan O’Connor, Oh Won-Joon,
Nathan M. Palmer, Mark T. Patterson, Dana Peck, Ariel Polakoff, Daniel Posen,
Akhil Prakash, Calvin Price, David Pugh, Bryn Raschke, Janet E. Rosenbaum,
Timothy Ruel, Donald Schoolmaster, Jr., Howard Seltman, Sonia Shi, Navdeep
Sood, Michael Stanley, Stephanie Stern, Nicholas Thieme, Ryan Tibshirani, Jo-
han Ugander, Michelle Wan, Jerzy Wieczorek, Peter Windridge and Sasha Zhang;
Barry Dewitt and Patrick Kane deserve particular thanks for suggesting improve-
ments and corrections for almost every chapter. Remaining errors and infelicities
are, naturally, my fault.

While I was working on this book, my research was supported by grants from
the National Science Foundation (DMS1207759 and DMS1418124), the National
Institutes of Health (R01 NS047493), and the Institute for New Economic Think-
ing (IN01100005 and INO1400020). While not intended to pay for writing a text-
book, money and time are fungible, so they helped. None of those bodies, or
Carnegie Mellon University, are at all responsible for what I have written.

Package acknowledgements

This book was written with LATEX and Emacs. It uses the following LATEX pack-
ages: amsmath, amssymb, caption, datetime, dot2texi, fancyhdr, float, graphicx,
hyperref, latexsym, and natbib. It also uses R (R Core Team, 2015a), and the

574

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

Acknowledgments 575

following R packages: faraway (Faraway, 2014), FNN (Beygelzimer et al., 2013),
foreign (R Core Team, 2015b), knitr (Xie, 2015), lattice (Sarkar, 2008), MASS
(Venables and Ripley, 2002), mgcv (Wood, 2004), mixtools (Benaglia et al.,
2009), mvtnorm (Genz et al., 2016), np (Hayfield and Racine, 2008), numDeriv
(Gilbert and Varadhan, 2015), pcalg (Kalisch et al., 2010, 2012), pdfetch (Rein-
hart, 2014), plyr (Wickham, 2011), scatterplot3d (Ligges and Mächler, 2003),
SMPracticals (Davison, 2013), reldist (Handcock, 2015), Rgraphviz, tseries
(Trapletti and Hornik, 2015), and tree (Ripley, 2015). The book would have been
much worse without these free resources, if it existed at all, and I am grateful
to their authors for their generosity. Leaving this book online is a small token of
reciprocity to the community.

Online Appendices

577

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

Appendix A

Big O and Little o Notation

It is often useful to talk about the rate at which some function changes as its
argument grows (or shrinks), without worrying to much about the detailed form.
This is what the O(·) and o(·) notation lets us do.

A function f(n) is “of constant order”, or “of order 1” when there exists some
non-zero constant c such that

f(n)

c
→ 1 (A.1)

as n → ∞; equivalently, since c is a constant, f(n) → c as n → ∞. It doesn’t
matter how big or how small c is, just so long as there is some such constant. We
then write

f(n) = O(1) (A.2)

and say that “the proportionality constant c gets absorbed into the big O”.
For example, if f(n) = 37, then f(n) = O(1). But if g(n) = 37(1 − 2

n
), then

g(n) = O(1) also.
The other orders are defined recursively. Saying

g(n) = O(f(n)) (A.3)

means

g(n)

f(n)
= O(1) (A.4)

or

g(n)

f(n)
→ c (A.5)

as n→∞— that is to say, g(n) is “of the same order” as f(n), and they “grow at
the same rate”, or “shrink at the same rate”. For example, a quadratic function
a1n

2 +a2n+a3 = O(n2), no matter what the coefficients are. On the other hand,
b1n
−2 + b2n

−1 is O(n−1).
Big-O means “is of the same order as”. The corresponding little-o means “is [[ATTN:

Get in to
“of same
order as”
vs. “is
at most
the order
of”?]]

ultimately smaller than”: f(n) = o(1) means that f(n)/c → 0 for any constant
c. Recursively, g(n) = o(f(n)) means g(n)/f(n) = o(1), or g(n)/f(n) → 0. We
also read g(n) = o(f(n)) as “g(n) is ultimately negligible compared to f(n)”.

There are some rules for arithmetic with big-O symbols:

579

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

580 Big O and Little o Notation

• If g(n) = O(f(n)), then cg(n) = O(f(n)) for any constant c.
• If g1(n) and g2(n) are both O(f(n)), then so is g1(n) + g2(n).
• If g1(n) = O(f(n)) but g2(n) = o(f(n)), then g1(n) + g2(n) = O(f(n)).
• If g(n) = O(f(n)), and f(n) = o(h(n)), then g(n) = o(h(n)).

These are not all of the rules, but they’re enough for most purposes.

Appendix B

Taylor Expansions

As you know, the first derivative of a function f at a point x0 is the slope of the
line tangent to the curve of f at x0, which is the limit of slopes taken through
the curve at near-by points:

f ′(x0) ≡ lim
x→x0

f(x)− f(x0)

x− x0

(B.1)

This suggests that if x ≈ x0, we should have

f(x) ≈ f(x0) + (x− x0)f ′(x0) (B.2)

The idea of a Taylor series is to make this suggestion concrete, and to deal with
higher derivatives.

Definition 1 (Taylor series (one-dimensional)). For a real-valued function of
one real argument, the Taylor series (or “expansion”) of order k at (or
“around”) x0 approximates f(x) by

f(x) ≈
k∑
i=0

f (i)(x0)
(x− x0)i

i!
(B.3)

where f (i)(x0) is the ith derivative of f at x0. (We presume derivatives of at least
order k exist at x0.) The complete Taylor series is obtained by setting k =∞. A
function whose (complete) Taylor series converges everywhere is called analytic.

The Taylor series approximation will become more and more accurate as x→
x0. Intuitively, the magnitude of the error involved should depend both on how
far x is from the point x0 we’re expanding around, and on the magnitude of the
higher-order derivatives we’re ignoring. (A first-order Taylor series would be exact
for a linear function; if the function is non-linear but curved, it will be better, at
a given from x0, the less curvature f has.) There is in fact a theoretical bound
on the approximation error1:

Proposition 1. Suppose we do a kth-order Taylor series around x0. Then there

1 This result is useful when trying to decide to what order a Taylor expansion needs to be carried out,

or when one needs to prove one’s scientific bona fides to an anarchist Cossak militia (Gamow, 1970,

pp. 19–20).

581

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

582 Taylor Expansions

is a point x′, between x and x0, such that

f(x)−
k∑
i=0

f (i)(x0)
(x− x0)i

i!
=
f (k+1)(x′)

(k + 1)!
(x− x0)k+1 (B.4)

Consequently, if f (k+1)(x) is bounded, then the error of a kth order Taylor ap-
proximation is O((x− x0)k+1).

It’s nice to use Taylor series for functions of multiple arguments. The second-
order Taylor expansion for a real-valued function f of a vector ~x around the point
~x0 is

f(~x) ≈ f(~x0) + (~x− ~x0) · ∇f(~x0) +
1

2
(~x− ~x0) ·H(~x0)(~x− ~x0) (B.5)

with H being the Hessian matrix, the matrix of second partial derivatives of f .
If the third derivatives are bounded, the approximation error is O(‖~x − ~x0‖3).
Higher-order multivariate Taylor expansions won’t be needed in this book, but
you can find them in good calculus textbooks, if you need them.

References/Further reading

Because Taylor series are such a basic tool, you can find extensive treatments in
almost any good book on calculus or on mathematical methods. I recommend
Boas (1983), but that’s because it’s what I used as a student.

Exercises

1. Show that 1
1+x
≈ 1− x for |x| � 1.

2. Show that (1 + x)k ≈ 1 + kx for |x| � 1.
3. (Everything looks quadratic near the optimum) Suppose that f has a local

minimum or maximum at x0. Find the 2nd order Taylor expansion around x0.
(You may assume the curvature at x0 is non-zero.) Where is the extremum of
the approximation?

4. (Newton’s method) Suppose that f has a local minimum or maximum at x0,
but that we Taylor-expand f to second order around another point x, which
is not x0 but is close to it. Find the extremum of the approximation. Can you
say when this will be closer to x0 than the initial expansion point x was?

[[TODO:
Replace
with a
copyright-
free pic-
ture, or
get permis-
sion]]

Taylor Expansions 583

Figure B.1 Sound advice for almost any problem in statistical theory.

Appendix C

Propagation of Error, and Standard Errors
for Derived Quantities

A reminder about how we get approximate standard errors for functions of quantities which are
themselves estimated with error.

Suppose we are trying to estimate some quantity θ. We compute an estimate θ̂,
based on our data. Since our data is more or less random, so is θ̂. One convenient
way of measuring the purely statistical noise or uncertainty in θ̂ is its standard
deviation. This is the standard error of our estimate of θ.1 Standard errors are
not the only way of summarizing this noise, nor a completely sufficient way, but
they are often useful.

Suppose that our estimate θ̂ is a function of some intermediate quantities

ψ̂1, ψ̂2, . . . , ψ̂p, which are also estimated:

θ̂ = f(ψ̂1, ψ̂2, . . . ψ̂p) (C.1)

For instance, θ might be the difference in expected values between two groups,
with ψ1 and ψ2 the expected values in the two groups, and f(ψ1, ψ2) = ψ1 − ψ2.

If we have a standard error for each of the original quantities ψ̂i, it would seem
like we should be able to get a standard error for the derived quantity θ̂. There
is in fact a simple if approximate way of doing so, which is called propagation
of error2.

We start with (what else?) a Taylor expansion (App. B). We’ll write ψ∗i for the

true (ensemble or population) value which is estimated by ψ̂i.

f(ψ∗1 , ψ
∗
2 , . . . ψ

∗
p) ≈ f(ψ̂1, ψ̂2, . . . ψ̂p) +

p∑
i=1

(ψ∗i − ψ̂i)
∂f

∂ψi

∣∣∣∣
ψ=ψ̂

(C.2)

f(ψ̂1, ψ̂2, . . . ψ̂p) ≈ f(ψ∗1 , ψ
∗
2 , . . . ψ

∗
p) +

p∑
i=1

(ψ̂i − ψ∗i)
∂f

∂ψi

∣∣∣∣
ψ=ψ̂

(C.3)

θ̂ ≈ θ∗ +
p∑
i=1

(ψ̂i − ψ∗i)f ′i(ψ̂) (C.4)

introducing f ′i as an abbreviation for ∂f
∂ψi

. The left-hand side is now the quantity

1 It is not, of course, to be confused with the standard deviation of the data. It is not even to be

confused with the standard error of the mean, unless θ is the expected value of the data and θ̂ is the

sample mean.
2 Or, sometimes, the delta method.

584

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

Propagation of Error 585

whose standard error we want. I have done this manipulation because now θ̂ is a
linear function (approximately!) of some random quantities whose variances we
know, and some derivatives which we can calculate.

Remember the rules for arithmetic with variances: if X and Y are random
variables, and a, b and c are constants,

V [a] = 0 (C.5)

V [a+ bX] = b2V [X] (C.6)

V [a+ bX + cY] = b2V [X] + c2V [Y] + 2bcCov [X,Y] (C.7)

While we don’t know f(ψ∗1 , ψ
∗
2 , . . . ψ

∗
p), it’s constant, so it has variance 0. Similarly,

V
[
ψ̂i − ψ∗i

]
= V

[
ψ̂i
]
. Repeatedly applying these rules to Eq. C.4,

V
[
θ̂
]
≈

p∑
i=1

(f ′i(ψ̂))2V
[
ψ̂i
]

+ 2
p−1∑
i=1

p∑
j=i+1

f ′i(ψ̂)f ′j(ψ̂)Cov
[
ψ̂i, ψ̂j

]
(C.8)

The standard error for θ̂ would then be the square root of this.
If we follow this rule for the simple case of group differences, f(ψ1, ψ2) = ψ1−ψ2,

we find that

V
[
θ̂
]

= V
[
ψ̂1

]
+ V

[
ψ̂2

]
− 2Cov

[
ψ̂1, ψ̂2

]
(C.9)

just as we would find from the basic rules for arithmetic with variances. The
approximation in Eq. C.8 comes from the nonlinearities in f .

If the estimates of the initial quantities are uncorrelated, Eq. C.8 simplifies to

V
[
θ̂
]
≈

p∑
i=1

(f ′i(ψ̂))2V
[
ψ̂i
]

(C.10)

and, again, the standard error of θ̂ would be the square root of this. The special
case of Eq. C.10 is sometimes called the propagation of error formula, but I think
it’s better to use that name for the more general Eq. C.8.

Appendix D

Optimization

[[TODO:
Most of
this should
be cut,
or rather
moved into
the sepa-
rate MS on
elementary
asymp-
totics]]

[[TODO: Multiple sections either need to be written from the beginning, or seriously re-written]]

Many statistical problems are conveniently cast as optimization problems. This
is particularly true of finding point estimates. This appendix therefore reviews
some basic ideas of optimization (§D.1), and the theory of constrained and penal-
ized optimization (§§D.3.1–D.3.3), including constrained linear regression (ridge
regression and the lasso) as an application (§D.3.4).

D.1 Basic Concepts of Optimization

We start with some real-valued function M on a domain Θ, called the objective1

function. A point θ ∈ Θ is a global minimum if M(θ) ≤ M(θ′) for all θ′ 6= θ,
and a global maximum if M(θ) ≥ M(θ′). A local minimum is a point θ
where M(θ) ≤ M(θ′) for all θ which are both in Θ and sufficiently close to θ;
similarly for local maxima. All global minima are thus also local minima, and
similarly for maxima. The minima and maxima together form the set of extrema
or extremes, local or global.

We minimize a function by making it as small as possible, i.e., by finding
the global minima, or coming close to (at least) one, and similarly maximizing
means finding the global maxima. Generalically, minimizing and maximizing are
both instances of optimizing, of finding the “best” values of the function.

An interior extremum is one which is not on the boundary of the domain
Θ. (If Θ has no boundaries, all extrema are interior extrema.) If θ is an interior
local minimum, then sufficiently small movements away from θ in any direction
must increase the function. For smooth functions, therefore, it follows2 that the
gradient at an interior minimum is zero, and the matrix of second derivatives is
positive-definite. That is, ∇M(θ) = 0 and ∇2M � 0, where the latter statement
means, more precisely, that for any vector v, 〈v,∇2fv〉 ≥ 0. Similar statements
apply to local interior maxima, but with the signs reversed.

The solution of an equation M(θ) = c is the value (or values) of θ which make
the two sides of the equation balance. Similarly, the solution to an optimization
problem

max
θ∈Θ

M(θ)

1 “Objective” here means “goal”, not “factual”.
2 Consult Appendix B if this doesn’t seem reasonable.

586

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

D.2 Newton’s Method 587

is the value of θ which maximizes the objective function M ; we also write this
solution, or solutions, as

argmax
θ∈Θ

M(θ) ,

i.e., the argument that maximizes the function. The definitions for a minimization
problem and the argmin are parallel. It is common to add equality or inequality
constraints to an optimization problem, e.g.,

max
θ∈Θ

M(θ)

such that g(θ) = c

r(θ) ≤ d

In principle, such constraints cut down the domain from Θ to Θ ∩ g−1(c) ∩
{θ : r(θ) ≤ d}; this is not always the best way of solving such problems (§D.3).

Transforming the Objective Function

If q is a monotonic-increasing function, then

argmaxM(θ) = argmax q(M(θ))

while if q is monotonic-decreasing

argmaxM(θ) = argmin q(M(θ))

Thus for instance maximizing M(θ) is the same as minimizing − logM(θ).

Transforming the Domain

If r is an invertible function from Θ to Θ′, we can define a new objective function
by M ′ = M ◦ r−1. Optimization problems for M and M ′ are equivalent, in the
sense that minM = minM ′ and argminM = r(argminM ′) (and similarly for
maxima). If r is continuous, even local minima and maxima are equivalent.

Iterative improvement

Suppose we can come up with a sequence of values θ1, θ2, . . . where M(θn) ≤
M(θn−1), and we know that f ≥ c. Then the sequence of θn must converge to a
local minimum (which may or may not be a global minimum); the same applies,
with signs reversed, for an increasing sequence.

D.2 Newton’s Method

There are a huge number of methods for numerical optimization, because there
is no magical method which always works better than anything else. However,
there are some methods which work very well on an awful lot of practical problems
which keep coming up, and acquiring some knowledge of them is very useful when
doing practical data analysis. Because of its close connection with generalized

588 Optimization

linear models, we’ll look at one of the most ancient and important of them,
namely Newton’s method (alias “Newton-Raphson”).

Let’s start with the simplest case of minimizing a function of one scalar variable,
say M(θ). We want to find the location of the global minimum, θ∗. We suppose
that f is smooth, and that θ∗ is a regular interior minimum, meaning that the
derivative at θ∗ is zero and the second derivative is positive. Near the minimum
we could make a Taylor expansion (App. B) around θ∗:

M(θ) ≈M(θ∗) +
1

2
(θ − θ∗)2 d

2f

dθ2

∣∣∣∣
θ=θ∗

(D.1)

(We can see here that the second derivative has to be positive to ensure that
M(θ) > M(θ∗).) In words, M(θ) is close to quadratic near the minimum.

Newton’s method uses this fact, and minimizes a quadratic approximation to
the function we are really interested in. (In other words, Newton’s method is to
replace the problem we want to solve, with a problem which we can solve.) Guess
an initial point θ(0). If this is close to the minimum, we can take a second order
Taylor expansion around θ(0) and it will still be accurate:

M(θ) ≈M(θ(0)) + (θ − θ(0))
df

dw

∣∣∣∣
θ=θ(0)

+
1

2

(
θ − θ(0)

)2 d2f

dw2

∣∣∣∣
θ=θ(0)

(D.2)

Now it’s easy to minimize the right-hand side of equation D.2. Let’s abbreviate the
derivatives, because they get tiresome to keep writing out: df

dw

∣∣
θ=θ(0)

= f ′(θ(0)),
d2f
dw2

∣∣∣
θ=θ(0)

= f ′′(θ(0)). We just take the derivative with respect to θ, and set it

equal to zero at a point we’ll call θ(1):

0 = f ′(θ(0)) +
1

2
f ′′(θ(0))2(θ(1) − θ(0)) (D.3)

θ(1) = θ(0) − f ′(θ(0))

f ′′(θ(0))
(D.4)

The value θ(1) should be a better guess at the minimum θ∗ than the initial one θ(0)

was. So if we use it to make a quadratic approximation to f , we’ll get a better ap-
proximation, and so we can iterate this procedure, minimizing one approximation
and then using that to get a new approximation:

θ(n+1) = θ(n) − f ′(θ(n))

f ′′(θ(n))
(D.5)

Notice that the true minimum θ∗ is a fixed point of equation D.5: if we happen
to land on it, we’ll stay there (since f ′(θ∗) = 0). We won’t show it, but it can
be proved that if θ(0) is close enough to θ∗, then θ(n) → θ∗, and that in general
|θ(n) − θ∗| = O(n−2), a very rapid rate of convergence. (Doubling the number of
iterations we use doesn’t reduce the error by a factor of two, but by a factor of
four.)

Let’s put this together in an algorithm.

D.2 Newton’s Method 589

my.newton = function(f,f.prime,f.prime2,beta0,tolerance=1e-3,max.iter=50) {
beta = beta0
old.f = f(beta)
iterations = 0
made.changes = TRUE
while(made.changes & (iterations < max.iter)) {
iterations <- iterations +1
made.changes <- FALSE
new.beta = beta - f.prime(beta)/f.prime2(beta)
new.f = f(new.beta)
relative.change = abs(new.f - old.f)/old.f -1
made.changes = (relative.changes > tolerance)
beta = new.beta
old.f = new.f
}
if (made.changes) {
warning("Newton's method terminated before convergence")

}
return(list(minimum=beta,value=f(beta),deriv=f.prime(beta),

deriv2=f.prime2(beta),iterations=iterations,
converged=!made.changes))

}

The first three arguments here have to all be functions. The fourth argument is
our initial guess for the minimum, θ(0). The last arguments keep Newton’s method
from cycling forever: tolerance tells it to stop when the function stops changing
very much (the relative difference between f(θ(n)) and f(θ(n+1)) is small), and
max.iter tells it to never do more than a certain number of steps no matter what.
The return value includes the estmated minimum, the value of the function there,
and some diagnostics — the derivative should be very small, the second derivative
should be positive, etc.

You may have noticed some potential problems — what if we land on a point
where f ′′ is zero? What if f(θ(n+1)) > f(θ(n))? Etc. There are ways of handling
these issues, and more, which are incorporated into real optimization algorithms
from numerical analysis — such as the optim function in R; I strongly recom-
mend you use that, or something like that, rather than trying to roll your own
optimization code (§D.4).

Newton’s Method in More than One Dimension

Suppose that the objective f is a function of multiple arguments, f(θ1, θ2, . . . θp).
Let’s bundle the parameters into a single vector, w. Then the Newton update is

θ(n+1) = θ(n) − h−1(θ(n))∇f(θ(n)) (D.6)

where∇f is the gradient of f , its vector of partial derivatives [∂f/∂θ1, ∂f/∂θ2, . . . ∂f/∂θp],
and h is the Hessian matrix of f , its matrix of second partial derivatives,
hij = ∂2f/∂θi∂θj.

Calculating h and∇f isn’t usually very time-consuming, but taking the inverse
of h is, unless it happens to be a diagonal matrix. This leads to various quasi-
Newton methods, which either approximate h by a diagonal matrix, or take a

590 Optimization

proper inverse of h only rarely (maybe just once), and then try to update an
estimate of h−1(θ(n)) as θ(n) changes.

D.3 Constrained and Penalized Optimization

D.3.1 Constrained Optimization

Suppose we want to minimize a function M(u, v) of two variables u and v. (It
could be more, but this will illustrate the pattern.) Ordinarily, we know exactly
what to do: we take the derivatives of L with respect to u and to v, and solve
for the u∗, v∗ which makes the derivatives equal to zero, i.e., solve the system of
equations

∂L

∂u
= 0 (D.7)

∂L

∂v
= 0 (D.8)

If necessary, we take the second derivative matrix of L and check that it is positive.
Suppose however that we want to impose a constraint on u and v, to demand

that they satisfy some condition which we can express as an equation, g(u, v) = c.
The old, unconstrained minimum u∗, v∗ generally will not satisfy the constraint,
so there will be a different, constrained minimum, say û, v̂. How do we find it?

We could attempt to use the constraint to eliminate either u or v — take the
equation g(u, v) = c and solve for u as a function of v, say u = h(v, c). Then
M(u, v) = M(h(v, c), v), and we can minimize this over v, using the chain rule:

dL

dv
=
∂L

∂v
+
∂L

∂u

∂h

∂v
(D.9)

which we then set to zero and solve for v. Except in quite rare cases, this is messy.

D.3.2 Lagrange Multipliers

When we need to optimize under constraints, we don’t usually explicitly use
the constraint to eliminate variables. Rather, we typically employ the method of
Lagrange multipliers. This goes as follows.

With one constraint, we introduce one new variable λ, the Lagrange multiplier,
and a new objective function, the Lagrangian,

L(u, v, λ) = M(u, v) + λ(g(u, v)− c) (D.10)

which we minimize with respect to u and v and λ. That is, we solve

∂L
∂λ

= 0 (D.11)

∂L
∂u

= 0 (D.12)

∂L
∂v

= 0 (D.13)

D.3 Constrained and Penalized Optimization 591

Notice that minimize L with respect to λ always gives us back the constraint
equation, because ∂L

∂λ
= g(u, v) − c. Moreover, when the constraint is satisfied,

L(u, v, λ) = M(u, v). Taken together, these facts mean that the û, v̂ we get from
the unconstrained minimization of L is equal to what we would find from the con-
strained minimization of L. We have encoded the constraint into the Lagrangian.

Practically, the value of this is that we know how to solve unconstrained op-
timization problems. The derivative with respect to λ yields, as I said, the con-
straint equation. The other derivatives are however yields

∂L
∂u

=
∂L

∂u
+ λ

∂g

∂u
(D.14)

∂L
∂v

=
∂L

∂v
+ λ

∂g

∂v
(D.15)

Together with the constraint, this gives us as many equations as unknowns, so a
solution exists.

If λ = 0, then the constraint doesn’t matter — we could just as well have
ignored it. When λ 6= 0, the size (and sign) of the constraint tells us about
how it affects the value of the objective function at the minimum. The value
of the objective function L at the constrained minimum is bigger than at the
unconstrained minimum, M(û, v̂) > M(u∗, v∗). Changing the level of constraint
c changes how big this gap is. As we saw, L(û, v̂) = M(û, v̂), so we can see how
much influence the level of the constraint on the value of the objective function
by taking the derivative of L with respect to c,

∂L

∂c
= −λ (D.16)

That is, at the constrained minimum, increasing the constraint level from c to
c+δ, with δ very small, would change the value of the objective function by −λδ.
(Note that λ might be negative.) This makes λ the “price”, in units of L, which
we would be willing to pay for a marginal increase in c — what economists would
call the shadow price3.

If there is more than one constraint equation, then we just introduce one multi-
plier per constraint, and add all those terms into the Lagrangian. Each multiplier
thus corresponds to a different constraint. The size of each multiplier indicates
how much lower the objective function L could be if we relaxed that constraint
— the set of shadow prices.

What about inequality constraints, g(u, v) ≤ c? Well, either the unconstrained
minimum exists in that set, in which case we don’t need to worry about it, or it
does not, in which case the constraint is “binding”, and we can treat this as an
equality constraint4.

3 Shadow prices are internal to each decision maker, and depend on their values and resources; they

are distinct from market prices, which are the outcome of exchange and are common to all decision

makers.
4 A full and precise statement of this idea is the Karush-Kuhn-Tucker theorem of optimization, which

you can look up.

592 Optimization

D.3.3 Penalized Optimization

So much for constrained optimization; how does this relate to penalties? Well,
once we fix λ, the (u, v) which minimizes the full Lagrangian

M(u, v) + λg(u, v) + λc (D.17)

has to be the same as the one which minimizes

M(u, v) + λg(u, v) (D.18)

This is a penalized optimization problem. Changing the magnitude of the penalty
λ corresponds to changing the level c of the constraint. Conversely, if we start
with a penalized problem, it implicitly corresponds to a constraint on the value
of the penalty function g(u, v). So, generally speaking, constrained optimization
corresponds to penalized optimization, and vice versa.

D.3.4 Constrained Linear Regression

To make this more concrete, let’s tackle a simple one-variable statistical optimiza-
tion problem, namely univariate regression through the origin, with a constraint
on the slope. That is, we have the statistical model

Y = βX + ε (D.19)

where ε is noise, and X and Y are both scalars. We want to estimate the optimal
value of the slope β, but subject to the constraint that it not be too large, say
β2 < c. The unconstrained optimization problem is just least squares, i.e.,

M(β) =
1

n

n∑
i=1

(yi − bxi)2 (D.20)

Call the unconstrained optimum β̂:

β̂ = argmin
β

M(β) (D.21)

As was said above in §D.3.3, there are really only two cases. Either the uncon-
strained optimum is inside the constraint set, i.e.,, β̂2 < c, or it isn’t, in which
case we can treat the inequality constraint like an equality. So we write out the
Lagrangian

L(β, λ) =
1

n

n∑
i=1

(yi − βxi)2 + λ(β2 − c) (D.22)

and we optimize:

∂L
∂λ

= 0 (D.23)

∂L
∂β

= 0 (D.24)

(D.25)

D.3 Constrained and Penalized Optimization 593

The first of these just gives us the constraint back again,

β̃2 = c (D.26)

writing β̃ for the constrained optimum. The second equation is

1

n

n∑
i=1

2(yi − β̃xi)(−xi) + 2λβ̃ = 0 (D.27)

(If it weren’t for the λ term, we’d just solve for the slope and get, as usual,

β̂ =
∑n
i=1 xiyi∑n
i=1 x

2
i

.) Now we have two unknowns, β̃ and λ, and two equations. Let’s

solve for λ. The equation β̃2 = c can also be written β̃ =
√
c sgn β̃, so, plugging

in to Eq. D.27,

0 =
2

n

n∑
i=1

xiyi −
√
c sgn β̃

2

n

n∑
i=1

x2
i + λ

√
c sgn β̃ (D.28)

λ =
2
n

∑n
i=1 xiyi − c sgn β̃ 2

n

∑n
i=1 x

2
i√

c sgn β̃
(D.29)

The only thing left to figure out then is sgn β̃, but this just has to be the same
as sgn β̂. (Why?)

To illustrate, I generate 100 observations from the model in Eq. D.19, with the
true β = 4, X uniformly distributed on [−1, 1], and ε having a t distribution with
2 degrees of freedom (Figure D.1. Figure D.2 shows the MSE as a function of β,

i.e., the M(β) of Eq. D.20. If
√
c is smaller than β̂ ≈ 3.95, then the constraint is

active and λ is non-zero. Figure D.3 plots λ against c from Eq. D.29. Notice how,
as the constraint comes closer and closer to including the unconstrained optimum,
the Lagrange multiplier λ becomes closer and closer to 0, finally crossing when
c = β̂2 ≈ 15.6.

Turned around, we could fix λ and try to solve the penalized optimization
problem

β̃ = argmin
β
L(β, λ) (D.30)

= argmin
β

1

n

n∑
i=1

(yi − βxi)2 + λβ2 (D.31)

Taking the derivative with respect to β,

0 =
∂L
∂β

(D.32)

0 =
1

n

n∑
i=1

2(yi − β̃xi)(−xi) + 2λβ̃ (D.33)

β̃ =
1
n

∑n
i=1 xiyi

λ+ 1
n

∑n
i=1 x

2
i

(D.34)

which is of course just Eq. D.27 again. Figure D.4 shows how β̃ and β̃2 change with

594 Optimization

●●

●

●

●

●

● ● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
10

0
10

20

x

y

x <- runif(n=100,min=-1,max=1)
beta.true <- 4
y <- beta.true*x + rt(n=100,df=2)
plot(y~x)
abline(0,beta.true,col="grey")
abline(lm(y~x),lty=2)

Figure D.1 Example for constrained regression. Dots are data points, the
grey line is the true regression line, and the dashed line is the ordinary least
squares fit through the origin, without a constraint on the slope.

λ. The fact that the latter plot shows the same curve as Figure D.3 only turned
on its side reflects the general correspondence between penalized and constrained
optimization.

D.3 Constrained and Penalized Optimization 595

0 2 4 6 8 10

15
20

25
30

β

M
S

E

demo.mse <- function(b) { return(mean((y-b*x)^2)) }
curve(Vectorize(demo.mse)(x),from=0,to=10,xlab=expression(beta),ylab="MSE")
rug(x=beta.true,side=1,col="grey")

Figure D.2 Mean squared error as a function of β. The grey tick marks the

true β = 4; the minimum of the curve is at β̂ = 3.95.

D.3.5 Statistical Remark: “Ridge Regression” and “The Lasso”

The idea of penalizing or constraining the coefficients of a linear regression model
can be extended to having more than one coefficient. The general case, with p
covariates, is that one penalizes the sum of the squared coefficients, β2

1 + . . .+β2
p ,

which of course is just the squared length of the coefficient vector, ‖β‖2. This is
called ridge regression (Hoerl and Kennard, 1970), and yields the estimates

β̃ = (xTx + λI)−1xTy (D.35)

where I is the p×p identity matrix. Instead of penalizing or constraining the sum
of squared coefficients, we could penalized or constrain the sum of the absolute
values of the coefficients, |β1|+ |β2|+ . . .+ |βp|, abbreviated ‖β‖1. This is called
the lasso (Tibshirani, 1996). It doesn’t have a nice formula like Eq. D.35, but it
can be computed efficiently.

Examining Eq. D.35 should convince you that β̃ is generally smaller than the
unpenalized estimate β̂. (This may be easier to see from Eq. D.34.) The same
is true for the lasso penalty. Both are examples of shrinkage estimators, called
that because the usual estimate is “shrunk” towards the null model of an all-0
parameter vector. This introduces a bias, but it also reduces the variance. Shrink-
age estimators are rarely very helpful in situations like the simulation example
above, where the number of observations n (here = 100) is large compared to
the number of parameters to estimate p (here = 1), but they can be very handy

596 Optimization

0 5 10 15

0
1

2
3

4
5

c

λ

lambda.from.c <- function(c) { (2*mean(x*y) - sqrt(c)*2*mean(x^2))/sqrt(c) }
curve(lambda.from.c(x),from=0,to=15.7,xlab="c",ylab=expression(lambda))

Figure D.3 λ as a function of the constraint level c, according to Eq. D.29
and the data in Figure D.1.

when n is close to p, and p > n, ordinary least squares is useless, but shrinkage
estimators can still work. (Ridge regression in particular can be handy in the
face of collinearity, even when p � n.) While the lasso is a bit harder to deal
with mathematically and computationally than is ridge regression, it has the nice
property of shrinking small coefficients to zero exactly, so that they drop out of
the problem; this is especially helpful when there are really only a few predictor
variables that matter, but you don’t know which.

D.3 Constrained and Penalized Optimization 597

0 1 2 3 4 5 6

0.
5

1.
5

2.
5

λ

β~

0 1 2 3 4 5 6

0
2

4
6

8
10

λ

β~
2

par(mfrow=c(2,1))
beta.from.lambda <- function(l) { return(mean(x*y)/(l+mean(x^2))) }
curve(beta.from.lambda(x),from=0,to=6,

xlab=expression(lambda),ylab=expression(tilde(beta)))
curve(beta.from.lambda(x)^2,from=0,to=6,

xlab=expression(lambda),ylab=expression(tilde(beta)^2))
par(mfrow=c(1,1))

Figure D.4 Left: The penalized estimation of the regression slope, as a
function of the strength of the penalty λ. Right: Square of the penalized
regression slope.

For much more on the lasso, ridge regression, shrinkage, etc., see Hastie et al.
(2009).

598 Optimization

D.4 Optimization in R

The basic work-horse function for optimization in R is optim. This is actually a
wrapper for several different optimization methods. The default, method="Nelder-Mead",
does not use derivatives. method="BFGS" selects a Newton-style method, which
is more efficient about re-calculating the Hessian matrix than a pure Newton’s
method would be. (BFGS is an acronym for the names of the algorithm’s inven-
tors.) If you can write a function which calculates the gradient, optim will use it;
if not, it will approximate it by finite differences.5

optim includes a method, method="L-BFGS-B", for “box” constraints, where each
parameter has to be above a lower bound and below an upper bound. For more
complicated constraints, including both equality and inequality constraints, I
typically use the alabama package (Varadhan, 2012).

Beyond this, there are a large variety of packages implementing specific meth-
ods, and/or tailored to specific types of optimization problems. The CRAN
webpage on “Optimization and Mathematical Programming”, https://cran.

r-project.org/web/views/Optimization.html, is the best starting point.

D.5 Small-Noise Asymptotics for Optimization

The core of asymptotic estimation theory is pretty simple, and is about optimizing
a function which is perturbed by a small amount of noise. In the spirit of “to
explain, first over-simplify, then exaggerate”, this section tries to convey the basic
intuitions by deliberately ignoring the qualifications, regularity conditions, etc.,
etc. Those details are worth knowing, because they can matter a lot when you
are trying to make these ideas work in new or non-standard circumstances, but
first you have to grasp the big-picture basic ideas.

These ideas apply to all of the most common methods of parameter estima-
tion, including the method of maximum likelihood, because they all boil down
to optimizing a quantity which is a function of both the data and of the param-
eters. We treat the data as fixed, and look for the optimal parameter. Because
the data are random, we are thus optimizing a random function, and the location
of the optimum will be random too. If we’ve chosen a good objective function,
however, these random functions are converging to a non-random limit, so the
optima will also converge, and ideally converge on the truth. We can thus say a
lot about asymptotic estimates, purely from knowing that we are optimizing a
random function which is converging on a non-random limit.

D.5.1 Basic Set-up and Notation

We observe n data points X1, . . . Xn. These might each be multidimensional, and
they may be dependent (a time series, a spatial field, etc.). The data actually end
up playing little role in the theory and will mostly be suppressed in the notation.

5 For a view of optim in action, see Chapter 24.

https://cran.r-project.org/web/views/Optimization.html
https://cran.r-project.org/web/views/Optimization.html

D.5 Small-Noise Asymptotics for Optimization 599

We are trying to infer a parameter ψ. Here, by a “parameter” I mean sim-
ply “some function of the true probability distribution”. It may or may not be
finite-dimensional, and it may or may not be used to characterize the probability
distribution generating the Xi. Examples of parameters, in this sense, include:
expectations, medians, other specific quantiles, conditional expectations (e.g.,
if Xi = (Yi, Zi), the parameter might be E [Y |Z = 5]), conditional expectation
functions (e.g., the function z 7→ E [Y |Z = z]), variances, etc., the coefficients of
particular regression models (e.g., the slope of the optimal linear regression of
Y on Z), etc., etc. All that is required is that there is some well-defined way of
calculating the parameter from the true probability distribution.

D.5.1.1 Examples of Objective Functions

We introduce a sequence of objective functions Mn, which are functions of both
the data and of the parameter. They are thus strictly written Mn(X1:n, ψ). How-
ever, I will generally suppress the first argument, writing Mn(ψ). The capital
letter M reminds us that this is a random function, whose randomness comes
from the data. Here are some examples:

Estimating the expectation We take ψ = E [X], and use

Mn(ψ) =
1

n

n∑
i=1

(Xi − ψ)2 (D.36)

Quantile estimation If we want ψ to be the α quantile of the distribution of
(univariate) X, we can set

Mn(ψ) =
1

n

n∑
i=1

Xi(α− I(Xi < 0)) (D.37)

(See Koenker and Hallock 2001, which also covers the extension to esti-
mating conditional quantiles.)

Estimating a simple linear regression with ordinary least squares We take
ψ = (ψ1, ψ2) to be the coefficients of the best linear regression of Yi on
Zi, and make Mn the corresponding MSE:

Mn(ψ) =
1

n

n∑
i=1

(Yi − ψ1 − ψ2Zi)
2 (D.38)

Estimating a parametric nonlinear regression We assume (or want to ap-
proximate) E [Y |Z = z] by a parametric family of functions µ(z;ψ), where
ψ are the unknown coefficients in some appropriate nonlinear form. (Per-
haps µ(z;ψ) = ψ1 +ψ2e

ψ3(z−ψ4)/(1 + eψ3(z−ψ4)).) Again, we can make Mn

the corresponding MSE:

Mn(ψ) =
1

n

n∑
i=1

(Yi − µ(Zi;ψ))2 (D.39)

600 Optimization

Estimating an autoregression The Xi are ordered in time, we want ψ to be
the function x 7→ E [Xt+1|Xt = x], and we use the MSE of this autore-
gression as Mn:

Mn(ψ) =
1

n− 1

n−1∑
t=1

(Xt+1) − ψ(Xt))
2 (D.40)

Parameters and negative normalized log-likelihood If ψ is the parameter
vector of a family of probability densities f(x1:n;ψ), we often maximize
the log-likelihood,

log f(X1:n;ψ) (D.41)

This is of course equivalent to minimizing the negative log-likelihood per
observation,

Mn(ψ) = − 1

n
log f(X1:n;ψ) (D.42)

but the latter is more convenient for the analysis later on. When When
we want to distinguish this objective function from others, we’ll write it
Ln(ψ). The (unnormalized, positive) log-likelihood will be Ln(ψ).

Note that while Mn is often a sum or average of functions of each data point,
this isn’t required, as in the last two examples. Indeed, Mn doesn’t even have to
be an average of any kind.

In every case, we obtain our estimate by minimizing Mn:

ψ̂n ≡ argmin
ψ

Mn(ψ) (D.43)

We will assume that there is a unique minimum for Mn, since the complications
that arise from multiple minima are both technical and boring.

Since the function Mn is random (through the data X1:n), ψ̂n is also random.
Finally, throughout this section, all limits are to be taken as n→∞.

D.5.2 Basic Convergence Assumption

The basic assumption which is needed to get asymptotic estimation theory to
work is that the random objective functions Mn converge on a non-random lim-
iting function m. It doesn’t particularly matter to the argument why this is hap-
pening, though we might have our suspicions6, just that it is. This is an appeal
to the gods of stochastic convergence. We typically further assume that m has a
unique minimum, so

ψ∗ ≡ argmin
ψ

m(ψ) (D.44)

is well-defined. This is an appeal to the gods of optimization.

6 “In fact, all epistemologic value of the theory of the probability is based on this: that large-scale

random phenomena in their collective action create strict, nonrandom regularity” — Gnedenko and

Kolmogorov (1954, p. 1).

D.5 Small-Noise Asymptotics for Optimization 601

D.5.2.1 Examples of Limiting Objective Functions

§D.5.1.1 gave examples of random objective functions Mn used for estimation.
Here are the corresponding non-random limiting objective functions m:

Estimating the expectation The expected squared error of predicting X with
a constant:

m(ψ) = E
[
(X − ψ)2

]
(D.45)

Quantile estimation The expected value of the “check-mark” error function:

m(ψ) = E [X(α− I(X < 0))] (D.46)

Estimating a simple linear regression with ordinary least squares The ex-
pected squared error of predicting Y from Z:

m(ψ) = E
[
(Y − ψ1 − ψ2Z)2

]
(D.47)

Estimating a parametric nonlinear regression Again, the expected squared
error:

m(ψ) = E
[
(Y − µ(Z;ψ))2

]
(D.48)

Estimating an autoregression Once more, the expected squared error:

m(ψ) = E
[
(Xt+1) − ψ(Xt))

2
]

(D.49)

Parameters and negative normalized log-likelihood The limiting expected
negative log-likelihood per observation:

m(ψ) = lim
n→∞

n−1E [− log f(X1:n;ψ)] (D.50)

This is called the cross-entropy rate in information theory [[CROSS-
REF]]. When we want to distinguish this limiting objective function from
others, we’ll write it `(ψ).

D.5.2.2 Modes of Convergence

Readers with more training in math, especially in probability theory, may at
this point start asking some questions. These can be answered, but the rest of
this sub-section can be skipped by readers who were willing to nod along to the
previous paragraph.

In saying that Mn → m, I glossed over two issues. First, random variables have
different modes of convergence, and I didn’t say which one “→” meant. Second,
Mn and m are functions Ψ 7→ R, and functions, too, have different modes of
convergence. So just what, if anything, does “Mn → m” mean?

The two relevant modes of convergence for functions are pointwise convergence
and uniform convergence. Pointwise convergence means that, for all ψ,

Mn(ψ)→ m(ψ) (D.51)

or

∀ψ, |Mn(ψ)−m(ψ)| → 0 (D.52)

602 Optimization

The stronger notion of uniform convergence is that

sup
ψ∈Ψ
|Mn(ψ)−m(ψ)| → 0 (D.53)

Both of these can be applied to any notion of convergence for random variables:
almost-sure convergence, convergence in probability, or convergence in Lp norm
(e.g., in L2). Thus pointwise L2 convergence would be the assertion that

∀ψ ,E
[
|Mn(ψ)−m(ψ)|2

]
→ 0 (D.54)

while its uniform counterpart would be

E

[(
sup
ψ∈Ψ
|Mn(ψ)−m(ψ)|

)2
]
→ 0 (D.55)

Most of what I say below will, taken literally, require uniform convergence, but
it will apply to any mode of convergence of random variables. That is, if you
assume uniform convergence in probability for the functions, you’ll get results
about convergence-in-probability of estimators. In many cases, strict uniform
convergence can be replaced by assuming that convergence is uniform over some
domain around the limiting optimum ψ∗, and that ψ̂n enters this domain with
probability tending to 1. Details can be pursued through any of the standard
references given under “further reading”.

D.5.3 Consistency

Suppose, in line with our assumptions, that Mn → m, and that m has a unique
minimum at ψ∗. Then it is natural suppose that

ψ̂n → ψ∗ (D.56)

which is to say that ψ̂n is a consistent estimator of ψ∗.
It’s plausible, and generally true7, that m(ψ̂n) → m(ψ∗), which is sometimes

called risk-consistency. A further condition is usually also needed to get actual
consistency. A nice sufficient condition for this that m (not Mn!) should have a
well-separated minimum: for any ε > 0,

m(ψ∗) < inf
ψ : ‖ψ−ψ∗‖≥ε

m(ψ) (D.57)

In words, this just says that you can’t get (arbitrarily) close to the value of the
minimum without also coming close the location of the minimum: for each δ > 0,
m(ψ) ≤ m(ψ∗) + δ only if ‖ψ − ψ∗‖ < ε for some ε, and ε ↓ 0 as δ ↓ 0. So this

plus risk-consistency means that ψ̂n → ψ∗.

7 Notice that Mn(ψ̂n) ≤Mn(ψ∗) (by definition of ψ̂n and that m(ψ∗) ≤ m(ψ̂n) (by definition of ψ∗.

So m(ψ̂n)−m(ψ∗) ≤ m(ψ̂n)−m(ψ∗) +Mn(ψ̂n)−Mn(ψ∗) ≤
|m(ψ̂n)−m(ψ∗) +Mn(ψ̂n)−Mn(ψ∗)| ≤ 2 supψ |Mn(ψ)−m(ψ)|. Assuming uniform convergence,

this → 0. Something weaker than uniform convergence can also work, e.g., uniform convergence on a

sub-domain containing ψ∗.

D.5 Small-Noise Asymptotics for Optimization 603

To sum up: if Mn → m, and this convergence is well-behaved, and m has a
nice, well-separated minimum at ψ∗, then ψ̂n → ψ∗.

D.5.4 Asymptotic Variance

We can say more about the distribution of ψ̂n if we strengthen our assumptions
about Mn and m. Specifically, assume that Mn has a smooth, interior minimum
at ψ̂n; likewise that m has a smooth, interior minimum at ψ∗; and that derivatives
converge:

∇Mn(ψ̂n) = 0 (D.58)

∇m(ψ∗) = 0 (D.59)

∇∇Mn(ψ̂n) � 0 (D.60)

∇∇m(ψ) � 0 (D.61)

∇Mn → ∇m (D.62)

∇∇Mn → ∇∇m (D.63)

Here∇Mn is the gradient of Mn (= vector of partial derivatives with respect to ψ)
and ∇∇Mn is its Hessian matrix (= square matrix of second partial derivatives),
and similarly for ∇m and ∇∇m. It’s convenient to not have to write out the ∇∇
over and over, so define Hn(ψ) ≡ ∇∇Mn(ψ) and h(ψ) ≡ ∇∇m(ψ).

To see how these assumptions help us get at the distribution of ψ̂n, start with
Eq. D.58, and then do a Taylor series for the gradient ∇Mn around the limiting
optimum ψ∗:

0 = ∇Mn(ψ̂n) (D.64)

0 ≈ ∇Mn(ψ∗) + (ψ̂n − ψ∗)∇∇Mn(ψ∗) (D.65)

ψ̂n ≈ ψ∗ − (Hn(ψ∗)−1∇Mn(ψ∗) (D.66)

(If this reminds you of Newton’s Method (§D.2), that’s no coincidence!) By as-
sumption, Hn(ψ∗)→ h(ψ∗), i.e., the Hessian matrix of Mn converges on the Hes-

sian matrix of m. Also by assumption, ∇Mn → ∇m, so ψ̂n → ψ∗−h(ψ∗)0 = ψ∗,

i.e., we get consistency again. We are however interested in the fluctuations of ψ̂n
around ψ∗, so we should step back just a little.

ψ̂n ≈ ψ∗ − h(ψ∗)−1∇Mn(ψ∗) (D.67)

E
[
ψ̂n
]
≈ ψ∗ − h(ψ)−1E [Mn(ψ∗)]→ ψ∗ (D.68)

V
[
ψ̂n
]
≈ h(ψ∗)−1V [∇Mn(ψ∗)] h(ψ∗)−1 (D.69)

Eq. D.68 asserts an (asymptotic) lack of bias in ψ̂n. This is reassuring but usually
of less interest than variance, Eq. D.69, which gives us standard errors. That
equation calls for some special comment.

604 Optimization

D.5.4.1 The Sandwich Covariance Matrix

Eq. D.69 is the famous sandwich covariance matrix for estimators obtained
by minimization. The “bread” of the sandwich are the two copies of h(ψ∗)−1.
These will be small when m is very sharply curved around its minimum ψ∗,
telling us that that when the limiting objective function has a lot of curvature
(and hence a very sharp optimum), then it’s easy to find the optimum, and there’s
little uncertainty about its location. It is for this reason that statisticians, and
statistical programs, care so much about the Hessian of the objective function.

The “filling” of the sandwich, V [∇Mn(ψ∗)], will be small when there is little
variance to ∇Mn(ψ∗). That is, there will be little uncertainty in the location
of the optimum when there is little noise in the gradient. The variance of the
gradient is important enough that we should give it a symbol,

Jn ≡ V [∇Mn(ψ∗)] , (D.70)

so we can write the sandwich covariance as

V
[
ψ̂n
]
≈ h(ψ∗)−1Jnh(ψ∗)−1 (D.71)

This makes it clear that the rate at which V
[
ψ̂n
]
→ 0 will depend on the rate

at which Jn → 0. In many situations8, Mn, and hence ∇Mn, will be an average
over data-points, with a variance ∝ n−1. If that’s true, and we write nJn → j, we
have

nV
[
ψ̂n
]
→ h(ψ∗)−1jh(ψ∗)−1 (D.72)

which is another common expression for the sandwich covariance. Note, however,
that Eqns. D.69 and D.71 hold more broadly than Eq. D.72.

Practical Estimation of the Sandwich Covariance Matrix

If we want to actually get numbers out of Eq. D.71, we need to be able to plug
something in for h(ψ∗) and V [∇Mn(ψ∗)]. The obvious difficulty is that these

involve ψ∗, which we don’t know. The obvious solution is to substitute in ψ̂n
for ψ∗, since ψ̂n → ψ∗. (This is just like substituting in the sample mean when
calculating the sample variance.) We probably also don’t know h, but we can use
Hn as a substitute. So we get

V
[
ψ̂n
]
≈ Hn(ψ̂n)−1V

[
∇Mn(ψ̂n)

]
Hn(ψ̂n)−1 (D.73)

We can find the Hessians either by doing some calculus (if we’re lucky), or nu-

merical differentiation (if we’re not). This leaves getting the filling V
[
∇Mn(ψ̂n)

]
.

This is generally trickier, because we only have one “observation” of ∇Mn(ψ̂n),
which is zero. . .

8 For instance, this will be true if Mn is an average over uncorrelated data points, and even for many

correlated data sources, if there is a finite “correlation time” or “correlation length” (§23.2.2.1, Eq.

??).

D.5 Small-Noise Asymptotics for Optimization 605

If Mn is a sum or average over data-points,

Mn(ψ) =
n∑
i=1

Mni(ψ) (D.74)

then we can do a bit more. (Notice that all the examples of objective functions
Mn in §D.5.1.1 above were of this form.) Eq. D.74 implies

∇Mn(ψ) =
n∑
i=1

∇Mni(ψ) (D.75)

and so

V [∇Mn(ψ∗)] =
n∑
i=1

V [∇Mni(ψ
∗)] +

n∑
i=1

∑
j 6=i

Cov [∇Mni(ψ
∗),∇Mnj(ψ

∗)](D.76)

=
n∑
i=1

‖E [∇Mni(ψ
∗)] ‖2 +

n∑
i=1

∑
j 6=i

E [∇Mni(ψ
∗)⊗∇Mnj(ψ

∗)](D.77)

since E [∇Mni(ψ
∗)] = 0. Substituting ψ̂n ≈ ψ∗,

V [∇Mn(ψ∗)] ≈
n∑
i=1

‖E
[
∇Mni(ψ̂n)

]
‖2 +

n∑
i=1

∑
j 6=i

E
[
∇Mni(p̂sin)⊗∇Mnj(ψ̂n)

]
(D.78)

(D.79)

We can in turn approximate the first, sum-of-the-variances term by
∑

i ‖∇Mni(ψ̂n)‖2.
(This is analogous to the way we estimate conditional variance functions in Chap-
ter 10. The second, sum-of-covariances term would go away if the data points were
independent. If they’re not, we need to estimate it somehow, and this is typically
done using

n∑
i=1

∑
j 6=i

∇Mni(p̂sin)⊗∇Mnj(ψ̂n)w(|i− j|) (D.80)

where the weights w(h)→ 0 as h→∞, to help keep the sum stable. (In practice,
w is often a kernel, with a bandwidth that needs to be tuned.) The resulting vari-
ance estimate is variously called heteroskedastic-autocorrelation consistent
(HAC), robust, or Huber-White (after Huber 1967 and White 1994).

While there are, clearly, a lot of moving parts here, the general framework is
very repetitive, across different choices of parameter, model, objective function,
etc. This suggests makes it an excellent candidate for automation via software.
This is most nicely done in R with the sandwich package (Zeileis, 2004, 2006).

Before moving on, it’s worth noting that, with bootstrapping (Chapter 6), one

can use simulation to estimate j = V
[
∇Mn(ψ̂n)

]
. Of course, you could also use

the bootstrap to directly estimate V
[
ψ̂n
]
, avoiding the sandwich step. Under

some circumstances, the bootstrap and the sandwich estimates of the variance
are known to coincide (Buja et al., 2014).

606 Optimization

D.5.4.2 Asymptotic Gaussianity

Go back to Eq. D.67:

ψ̂n ≈ ψ∗ − h(ψ∗)−1∇Mn(ψ∗)

If ∇Mn(ψ∗) is approximately Gaussian, then ψ̂n must be approximately Gaussian
as well. Since we’ve worked out the expectation and variance of ∇Mn(ψ∗), we’d
have

ψ̂n N (ψ∗, n−1h(ψ∗)−1j(ψ∗)h(ψ∗)−1) (D.81)

For this conclusion, it doesn’t matter why the gradient ∇Mn(ψ∗) becomes Gaus-
sian as n grows, just that it does. If Mn is an average of IID terms, then we’d
anticipate Mn converging in distribution to a Gaussian as n grows (by the cen-
tral limit theorem), and for the same behavior to generally carry over to its
derivatives. We can also anticipate things like this under weak dependence and
heterogeneous distributions, provided that all of the terms in the average have
only weak influence on the over-all value of the average, diminishing as n grows.
Sufficient conditions for this tend to involve some rather intricate probability
theory, but are discussed in the literature on asymptotics, e.g., White (1994).

D.5.4.3 “Optimism”

Typically (as in the examples in §§D.5.1.1 and D.5.2.1), Mn is some measure of in-
sample performance of a model, while m measures expected performance on new
data. While it is generally the case that Mn(ψ̂n) → m(ψ∗), there is generally a

gap between Mn(ψ̂n) and m(ψ̂n), i.e., between how well the estimated parameter
performs on the data used to estimate it, and how well it will do in the future.
This measure of over-fitting is sometimes (especially for regression) referred to as
the optimism of the estimator. We can get at the optimism by doing some more
Taylor expansions. First, we Taylor-expand m(ψ̂n) around ψ∗, since ∇m(ψ∗) = 0:

m(ψ̂n) ≈ m(ψ∗) +
1

2

(
ψ̂n − ψ∗

)
· h(ψ∗)

(
ψ̂n − ψ∗

)
(D.82)

E
[
m(ψ̂n)

]
≈ m(ψ∗) +

1

2
tr (h(ψ∗)V

[
ψ̂n − ψ∗

]
) (D.83)

= m(ψ∗) +
1

2
tr (h(ψ∗)V

[
ψ̂n
]
) (D.84)

≈ m(ψ∗) +
1

2n
tr (h(ψ∗)h−1(ψ∗)jh−1(ψ∗)) (D.85)

= m(ψ∗) +
1

2n
tr (jh−1(ψ∗)) (D.86)

using ψ̂n → ψ∗, and a general equation for the expectation of a quadratic form9.
The result involves the unknown limiting function m at the unknown limiting

9 Namely, E
[
~X · a ~X

]
= tr (aV

[
~X
]
) + E

[
~X
]
· aE

[
~X
]
, for any random vector ~X and non-random

square matrix a.

D.5 Small-Noise Asymptotics for Optimization 607

optimum ψ∗, so it’s not that useful as an estimate, but we can fix that by doing
a parallel expansion of Mn(ψ∗) around ψ̂n:

Mn(ψ∗) ≈Mn(ψ̂n) +
1

2

(
ψ∗ − ψ̂n

)
· h(ψ̂n)

(
ψ∗ − ψ̂n

)
(D.87)

≈Mn(ψ̂n) +
1

2

(
ψ∗ − ψ̂n

)
· h(ψ∗)

(
ψ∗ − ψ̂n

)
(D.88)

E [Mn(ψ∗)] ≈ E
[
Mn(ψ̂n)

]
+

1

2
tr
(
h(ψ∗)V

[
ψ∗ − ψ̂n

])
(D.89)

= E
[
Mn(ψ̂n)

]
+

1

2
tr
(
h(ψ∗)V

[
ψ̂n
])

(D.90)

= E
[
Mn(ψ̂n)

]
+

1

2n
tr
(
jh−1(ψ∗)

)
(D.91)

m(ψ∗) ≈ E
[
Mn(ψ̂n)

]
+

1

2n
tr
(
jh−1(ψ∗)

)
(D.92)

Now we combine this with Eq. D.86:

E
[
m(ψ̂n)

]
− 1

2n
tr (jh−1(ψ∗)) ≈ E

[
Mn(ψ̂n)

]
+

1

2
tr (jh−1(ψ∗)) (D.93)

E
[
m(ψ̂n)

]
≈ E

[
Mn(ψ̂n)

]
+

1

n
tr (jh−1(ψ∗)) (D.94)

Since Mn(ψ̂n) is something we can observe, and its average equals E
[
Mn(ψ̂n)

]
,

we get

Mn(ψ̂n) +
1

n
tr (jh−1(ψ∗)) (D.95)

as an unbiased estimator of E
[
m(ψ̂n)

]
, and n−1 tr (jh−1(ψ∗)) as our estimate of

the optimism.

D.5.5 Application to Maximum Likelihood

All of the theory above applies to maximum likelihood estimation.
As indicated in §§D.5.1.1 and D.5.2.1 above, Ln(θ) is the negative normalized

log-likelihood for a parametric model with parameter θ, and θ̂n is the maximum
likelihood estimate, and the limiting objective function `(θ) is the expected nega-
tive log-likelihood per observation, known in information theory [[CROSS-REF]]
as the cross-entropy rate. (The convergence of Ln(θ) → `(θ) is then called the
“asymptotic equipartition” or “Shannon-McMillan-Breiman” property.) The gra-
dient ∇Ln(θ) is called the score vector, often written Un. The expected value of
the Hessian is the Fisher information10,

f(θ) ≡ E [∇∇Ln(θ)] (D.96)

10 It’s more usual to write I(θ) or I(θ), but I have found that this leads to confusion with the identity

matrix I, so I am using a slightly non-standard letter, while insisting that (i) matrices stay in bold

type, and (ii) random variables are upper case and non-random ones lower-case.

608 Optimization

which simplifies, for IID observations, to

f(θ) = ∇∇`(θ) (D.97)

With non-IID observations, many authors will use Eq. D.97 as the definition of
f(θ), which thus takes the role of h in our general estimation theory11.

D.5.5.1 Correctly-Specified Parametric Models: Fisher’s Identity

If the parametric model is correctly specified, then one can show (Exercise D.1)
that Fisher’s identity holds,

E [∇∇Ln(θ)] = V [∇Ln(θ)] (D.98)

or, in terms of the symbols used above,

f(θ) = h(θ) = j (D.99)

Because this involves the Fisher information matrix, Eq. D.98 is also often called
the information identity.

When Fisher’s identity holds, the sandwich variance matrix simplifies from
h−1jh−1 to just h−1(θ∗) = j−1 = f−1(θ∗). Plugging in θ̂n ≈ θ∗, one gets three
approximations for the variance of the MLE:

V
[
θ̂n
]
≈ f−1(θ̂n) (D.100)

≈ H−1
n (θ̂n) (D.101)

≈ j−1
n (D.102)

The first of these relies on being able to calculate the Fisher information matrix.
The second approximates the Fisher information matrix by the the Hessian ma-
trix of the (normalized, negative) log-likelihood at the MLE — what’s called the
observed information matrix. The third, rare form approximates it with the
covariance matrix of the score vector12. Note, however, that this simplification
relies on Fisher’s identity holding, and it generally does not hold unless the model
is well-specified.

This final thought suggest the possibility of testing whether the model is well-
specified, by testing whether

H−1
n (θ̂n) ≈ V

[
∇Ln(θ̂n)

]
(D.103)

Since this is a matrix equation, we need to think carefully about how to measure
discrepancy between the two sides, and about what distribution it should have
under the null hypothesis of correct specification — White (1994) is a good source
for such details.
11 Because Eq. D.97 involves normalizing by the number of observations, many writers call it the

Fisher information rate, reserving “Fisher information” for E [−∇∇Ln]. (Notice the minus sign

which arises from using the log-likelihood, rather than the negative log-likelihood.) Call this last

quantity Fn. Then our f = limn→∞ n−1Fn, and it is f which matters for asymptotics. (Of course

for rigor one needs to show that the limit exists.)
12 See above, pp. 604, on ways to calculate j from data.

D.5 Small-Noise Asymptotics for Optimization 609

D.5.5.2 Asymptotic Distribution of the MLE

Provided the score vector ∇Ln is asymptotically Gaussian, the argument of
§D.5.4.2 applies to the MLE. As indicated in that section, we can usually ex-
pect this to be the case when the data are IID (so Ln itself is a sample mean
obeying the CLT) or only weakly dependent (ditto). It is worth noting, how-
ever, that for well-specified models, all that is required to get an asymptotically
Gaussian MLE is for the log-likeliood to be asymptotically quadratic around the
true parameter value13 In any event, we then have Eq. D.81 for the asymptotic
distribution of the MLE. If the model is well-specified, we can further simplify
by using any of the approximations Eq. D.100–D.102 in place of the sandwich
variance matrix. In short, for a well-specified, well-behaved model,

θ̂n N (θ∗, n−1f−1(θ̂n)) (D.104)

This gives a test of the hypothesis that θ∗ = θ0 for any particular θ0, and lets us
form confidence sets around the MLE θ̂n.

Notice, however, that nothing guarantees that the convergence to this asymp-
totic Gaussian distribution is especially fast — it may still be better to bootstrap.

D.5.5.3 Akaike’s Information Criterion

Our treatment of the optimism (§D.5.4.3) applies to maximum likelihood estima-
tors. The general Eq. D.95 says, in this case, that

Ln(ψ̂n) +
1

n
tr (jf−1(θ̂n)) (D.105)

is an unbiased estimate of the expected log-likelihood per observation. This can
be compared across models, and used as a model-selection criterion. When doing
so, it is somewhat more common to (in our terms) multiply through by n, yielding

nLn(ψ̂n) + tr (jf−1(θ̂n)) (D.106)

as an unbiased estimate of the expected negative log-likelihood. Multiplying
through by −1, and remembering that the log-likelihood is Ln,

Ln(θ̂n)− tr (jf−1(θ̂n)) (D.107)

the log-likelihood penalized by the optimism, is an unbiased estimate of the ex-
pected log-likelihood. This is, in a model-selection context, often called Takeuchi’s
information criterion (TIC). (Whether one prefers a model that minimizes Eq.
D.105 or D.106, or maximizes Eq. D.107, makes no difference.)

It’s not exactly obvious, but it can be shown (Claeskens and Hjort, 2008, §2.9)
that, for large n, TIC is asymptotically equivalent to using leave-one-out cross-
validation to estimate the generalization error. For complicated models, Eq. D.105
can be much faster to calculate than leave-one-out, even considering the effort of
getting j and f−1.

13 This simple-sounding result rests on some deep work by Lucien Le Cam, accessibly presented in ?.

But even a crude vulgarization of Geyer’s simplification of Le Cam would take too much space here.

610 Optimization

A further simplification is possible if the model is correctly specified. In that
case, as we’ve just seen (§D.5.5.1), Eq. D.99 says f(θ) = j, so tr (jf−1(ψ∗)) =
dim(ψ), the number of parameters estimated. This gives the Akaike informa-
tion criterion,

Ln(ψ̂n)− dim(ψ) (D.108)

where we just penalize the log-likelihood by the number of parameters14.
AIC one was one the first tools proposed for systematic model selection, and

has retained some truly devoted followers, especially among non-statisticians. I
have mostly ignored it in this book, however, for specific reasons. As we’ve just
seen, when the models are mis-specified, it’s inferior to the TIC15. The TIC in
turn is best thought of as a fast asymptotic approximation to leave-one-out cross-
validation. Unfortunately, leave-one-out is known to be in-consistent for model
selection — it over-fits, even as n→∞, and consequently so does AIC (Claeskens
and Hjort, 2008, ch. 2).

D.6 Further Reading

My usual reference on optimization methods is Lange (2013), but there are many
other good ones. Boyd and Vandenberghe (2004) is, deservedly, the standard
reference on theory and algorithms for optimizing convex functions.

Spufford (2010) is the best historical novel about attempting to achieve utopia
through the power of optimization and computers, and should be read by anyone
trying to use data to change the world.

The material on optimizing noisy functions, and in particular on the behavior of
maximum likelihood, is a simplified view of classical parts of theoretical statistics,
much of it dating back to Fisher (1922); Cramér (1945) gives a detailed treatment,
with extensive references to the earlier literature. Most presentations require more
advanced math (measure theory) than I use here; Barndorff-Nielsen and Cox
(1995) can be recommended as a thorough, modern account. For the importance
of considering what happens when the model is false, see Huber (1967) and White
(1994). The simple approach to consistency of §D.5.3 comes from van der Vaart
(1998, §5.2). The best single paper to read on this whole subject is Geyer (2013).

AIC was introduced by Akaike (1973), as the first of many subsequent “infor-
mation criteria”. The best available over-view of model selection from a statistical
perspective, covering the strengths, weaknesses, and inter-relations of (almost) all
the information criteria, is Claeskens and Hjort (2008).

All of the arguments about estimation which involved Taylor series assumed,
more or less implicitly, that the objective functions Mn and m had their minima

14 In his original papers, Akaike wrote the equivalent of Eq. D.108 with a factor of 2 throughout. This

is because standard asymptotics for likelihood ratio tests tell us that 2× the log likelihood ratio

should have a χ2 distribution, and he wanted (differences in) his criterion to be comparable to this.

This only becomes relevant when comparing numerical values of AIC from different sources, e.g.,

different pieces of software — you need to check whether the factor of 2 is there or not!
15 Sometimes therefore called the robust AIC.

Exercises 611

in the interior of the parameter space. Matters become trickier, and rigor more
necessary, when the optimum lives on the boundary of the parameter space —
see, for instance, ?.

Exercises

D.1 Let p(x1:n; θ) be a family of probability densities parameterized by a vector θ. Define

Mn(θ) = −n−1 log p(X1:n; θ). Suppose that X1:n really are generated from this distribu-

tion, with parameter θ∗. Prove Fisher’s identity:

E
[
∇∇Mn(θ∗)

]
= V

[
∇Mn(θ∗)

]
(D.109)

taking all derivatives with respect to θ. Assume you can interchange differentiation and

integration whenever it is convenient to do so. Hints: Integration by parts; all probability

densities integrate to 1; ∂ log f(x)/∂x = 1
f(x)

∂f/∂x.

Appendix E

Relative Distributions and Smooth Tests of
Goodness-of-Fit

In §5.2.2.3, we saw how to use the quantile function to turn uniformly-distributed
random numbers into random numbers with basically arbitrary distributions. In
this chapter, we will look at two closely-related data-analysis tools which go
the other way, trying to turn data into uniformly-distributed numbers. One of
these, the smooth test, turns a lot of problems into ones of testing a uniform
distribution. Another, the relative distribution, gives us a way of comparing
whole distributions, rather than specific statistics (like the expectation or the
variance).

E.1 Smooth Tests of Goodness of Fit

E.1.1 From Continuous CDFs to Uniform Distributions

Suppose that X has probability density function f , and that f is continuous. The
corresponding cumulative distribution function F is then continuous and strictly
increasing (on the support of f). Since F is a fixed function, we can ask what the
probability distribution of F (X) is. Clearly,

Pr (F (X) ≤ 0) = 0 (E.1)

Pr (F (X) ≤ 1) = 1 (E.2)

Since F is continuous and strictly increasing, it has an inverse, the quantile func-
tion Q, which is also continuous and strictly increasing. Then, for 0 ≤ a ≤ 1,

Pr (F (X) ≤ a) = Pr (Q(F (X)) ≤ Q(a)) (E.3)

= Pr (X ≤ Q(a)) (E.4)

= F (Q(a)) = a (E.5)

Thus, when F is continuous and strictly-increasing, F (X) is uniformly distributed
on the unit interval,

F (X) ∼ Unif(0, 1) (E.6)

If the distribution of X is F , but we guess that it has some other distribution,
with CDF F0, then this trick will not work. F0(X) will still be in the unit interval,
but it won’t be uniformly distributed:

This only works if X really is distributed according to F . If instead X were

612

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

E.1 Smooth Tests of Goodness of Fit 613

distributed according, say, F0, then F (X) will still be in the unit interval, but it
will not be uniformly distributed:

Pr (F0(X) ≤ a) = Pr (X ≤ Q0(a)) (E.7)

= F (Q0(a)) 6= a (E.8)

because F0 6= Q−1.
Putting this together, we see that when X has a continuous distribution,

F (X) ∼ Unif(0, 1) if and only if F is the cumulative distribution function for
X. This means that we can reduce the problem of testing whether X ∼ F to that
of testing whether F (X) is uniform. We need to work out one testing problem,
rather than many different testing problems for many different distributions.

E.1.2 Testing Uniformity

Now we have a random variable, say Y , which lives on the unit interval [0, 1], and
we want to test whether it is uniformly distributed. There are several different
ways we could do this. One frequently-used strategy is to use the Kolmogorov-
Smirnov test: calculate the K-S distance,

dKS = max
a∈[0,1]

∣∣∣F̂n,Y (a)− a
∣∣∣ (E.9)

where F̂n,Y (a) is the empirical CDF of Y , and look up the appropriate p-value
for the K-S test. One could use any other one-sample non-parametric test here,
like Cramér-von Mises or Anderson-Darling1 All of these tests can work quite
well in the right circumstances, and they have the advantage of requiring little
additional work over and above typing ks.test or the like.

E.1.3 Neyman’s Smooth Test

There are however two disadvantages of just applying off-the-shelf tests to check
uniformity. One is that it turns out that they often do not have very high power.
The other, which is in some ways even more serious, is that rejecting the null
hypothesis of uniformity doesn’t tell you how uniformity fails — it doesn’t suggest
any sort of natural alternative.

As you can guess from my having brought up these points, there is a test which
avoids both difficulties, called Neyman’s smooth test. It works by embedding
the uniform distribution on the unit interval in a larger class of alternatives, and
then testing the null of uniformity against those alternatives.

The alternatives all have pdfs of the form

g(y; θ) ≡
{

e
∑d
j=1 θjhj(y)

z(θ)
0 ≤ y ≤ 1

0 elsewhere
(E.10)

1 You could even use a χ2 test, but this would be dumb. Because the χ2 test requires discrete data,

using it means binning continuous values, thereby destroying information, to no good purpose.

614 Relative Distributions and Smooth Tests

where the hj are carefully chosen functions (see below), and the normalizing
factor or partition function z(θ) just makes sure the density integrates to 1:

z(θ) ≡
∫ 1

0

e
∑d
j=1 θjhj(y)dy (E.11)

No matter what functions we pick for the hj, uniformity corresponds to the choice
θ = 0, since then the density is just 1. As we move θ slightly away from 0, the
density departs smoothly from uniformity; hence the name of the test.

To ensure that everything works out, we need to put some requirements on
the functions hj: they need to be orthogonal to each other and to the constant
function, ∫ 1

0

hj(y)dy = 0 (E.12)∫ 1

0

hj(y)hk(y)dy = 0 (E.13)

and normalized in magnitude, ∫ 1

0

h2
j(y)dy = 1 (E.14)

Further details, while practically important, do not matter for the general idea
of the test, so I’ll put them off to §E.1.3.1.

We can estimate θ by maximum likelihood. Because uniformity corresponds
to θ = 0, we can test the hypothesis that θ = 0 against the alternative that
θ 6= 0 with a likelihood ratio test. Writing `(θ̂) for the log-likelihood under the
MLE, and `(0) for the log-likelihood under the null, by general results on the
likelihood-ratio, under the null, as n→∞,

2(`(θ̂)− `(0)) χ2
d (E.15)

In fact, `(0) = 0 (why?), so we only need to calculate the log-likelihood under
the alternative, and reject uniformity when, and only when, that log-likelihood
is large.

Alternatively, and this was Neyman’s original recommendation and what is
usually meant by his “smooth test”, we can calculate the sample mean of each of
the hj,

hj =
1

n

n∑
i=1

hj(yi) (E.16)

and form the test statistic

Ψ2 = n
d∑
j=1

hj
2

(E.17)

which also has a χ2
d distribution under the null.2

2 To appreciate what’s going on, notice that hj → 0 under the null, by the law of large numbers.

E.1 Smooth Tests of Goodness of Fit 615

It can be shown that Neyman’s smooth test has, in a certain sense, optimal
power against smooth alternatives like this — see Rayner and Best (1989) or Bera
and Ghosh (2002) for the gory details. More importantly, for data analysis, when
we reject the null hypothesis of uniformity, we have a ready-made alternative to
fall back on, namely g(y; θ̂).

To make all this work, we have to pick some “basis functions” hj, and we need
to decide how many of them we want to use, d.

E.1.3.1 Choice of Function Basis

Neyman’s original proposal was to use orthonormal polynomials for basis
functions: hj would be a polynomial of degree j, which was orthogonal to all the
ones before it, ∫ 1

0

hj(y)hk(y)dy = 0 ∀k < j (E.18)

including the constant “polynomial” h0(y) = 1, and normalized to size 1,∫ 1

0

h2
j(y)dy = 1 (E.19)

Since there are j + 1 coefficients in a polynomial of degree j, and this gives
j + 1 equations, the polynomial is uniquely determined. In fact, there are recur-
sively formulas which let you find the coefficients of hj from those of the previous
polynomials3. Figure E.1 shows the first few of these polynomials, and their ex-
ponentiated versions (which are what appear in Eq. E.10).

Experience has shown that the specific choice of basis functions doesn’t matter
as much as ensuring that they are orthonormal. One could, for instance, use
hj(y) = cj cos 2πjy, where cj is a normalizing constant4.

E.1.3.2 Choice of Number of Basis Functions

As we make d in Eq. E.10, we include more and more distributions in the alter-
native to the null hypothesis of uniformity. In fact, since any smooth function on
[0, 1] can be approximated arbitrarily closely by sufficiently-high order polynomi-
als5, as we let d → ∞ we eventually get all continuous distributions, other than
uniformity, as part of the alternative. However, using a large value of d means

(This is where being orthogonal to the constant function h0(y) = 1 comes in.) Multiplying hj
2

by n

corresponds to looking at
√
nhj , which should, by the central limit theorem, be a Gaussian; the

variance of this Gaussian is 1. (This is where normalizing each hj comes in.) Finally,
√
nhj and√

nhk are uncorrelated. (This is where the mutual orthogonality of the hj comes in.) Thus, the Ψ2

statistic is a sum of d uncorrelated standard Gaussians, which has a χ2
d distribution.

3 In fact, the polynomials Neyman proposed to use are, as he knew, the “Legendre polynomials”,

though many math books (and Wikipedia) give the version of those defined on [−1, 1], rather than

on [0, 1]. If lj is the polynomial on [−1, 1], then hj(y) = lj(2(y − 0.5)).
4 If this makes you think of Fourier analysis, you’re right.
5 This may be obvious, but making it precise (what do we mean by “smooth” and “arbitrarily

close”?) is the “Stone-Weierstrauss theorem”. There is nothing magic about polynomials here; we

could also use sines and cosines, or many other function bases.

616 Relative Distributions and Smooth Tests

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
0.

0
1.

0

y

h j
(y

)

h1

h2

h3

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

y

eh j
(y

)

h1

h2

h3

par(mfrow = c(2, 1))
h1 <- function(y) {

sqrt(12) * (y - 0.5)
}
h2 <- function(y) {

sqrt(5) * (6 * (y - 0.5)^2 - 0.5)
}
h3 <- function(y) {

sqrt(7) * (20 * (y - 0.5)^3 - 3 * (y - 0.5))
}
curve(h1(x), ylab = expression(h[j](y)), xlab = "y")
curve(h2(x), add = TRUE, lty = "dashed")
curve(h3(x), add = TRUE, lty = "dotted")
legend(legend = c(expression(h[1]), expression(h[2]), expression(h[3])), lty = c("solid",

"dashed", "dotted"), x = "bottomright")
curve(exp(h1(x)), ylab = expression(e^h[j](y)), xlab = "y")
curve(exp(h2(x)), add = TRUE, lty = "dashed")
curve(exp(h3(x)), add = TRUE, lty = "dotted")
legend(legend = c(expression(h[1]), expression(h[2]), expression(h[3])), lty = c("solid",

"dashed", "dotted"), x = "bottomright")
par(mfrow = c(1, 1))

Figure E.1 Left panel: the first three of the basis functions for Neyman’s
smooth tests, h1, h2 and h3. Each hj is a polynomial of order j which is

orthogonal to the others, in the sense that
∫ 1

0
hj(y)hk(y)dy = 0 when j 6= k,

but normalized in size,
∫ 1

0
h2
j (y)dy = 1. The right panel shows ehj(y), to give

an indication of how the functions contribute to the probability density in
Eq. E.10.

E.1 Smooth Tests of Goodness of Fit 617

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

y

g(
y,

 θ
)

x <- (1:1e+06)/1e+06
z <- sum(exp(h1(x) + h2(x) - h3(x)))/1e+06
curve(exp(h1(x) + h2(x) - h3(x))/z, xlab = "y", ylab = expression(g(y, theta)))
abline(h = 1, col = "grey")

Figure E.2 Illustration of a smooth alternative density: using the same
basis functions as before, with θ1 = 1, θ2 = 1, θ3 = −1. The first two lines of
the R calculate the normalizing constant z(θ) by a simple numerical integral.
The grey line shows the uniform density.

estimating a lot of parameters, which means we are at risk of over-fitting. What
to do?

Neyman’s original advice was to guess a particular value of d before looking
at the data and stick to it. (He thought d = 4 would usually be enough.) More

618 Relative Distributions and Smooth Tests

modern approaches try to adaptively pick a good value of d. We could attempt
this through cross-validation based on the log-likelihood, but what’s usually done,
in implemented software, is to pick d to maximize Schwarz’s information criterion:

d∗ = argmax
d

1

n
`(θ̂(d))− d

2

log n

n
(E.20)

which imposes an extra penalty for each parameter (d), with the size of the
penalty depending on how much data we have, and getting relatively harsher as
n grows6. So in a data-driven smooth test (Kallenberg and Ledwina, 1997),
we pick d∗ using Eq. E.20, and then compute the test statistic using d∗.

Unfortunately, since d∗ is random (through the data), the nice asymptotic
theory which says that the test statistic is χ2

d under the null hypothesis no longer
applies. However, this is why we have bootstrapping: by simulating from the null
hypothesis, which remember is just Unif(0, 1), and treating the simulation output
like real data we can work out the sampling distribution as accurately as we need.
This sampling distribution then gives us our p-values.

E.1.3.3 Application: Combining p-Values

One useful property of p-values is that they are always uniformly distributed on
[0, 1] under the null hypothesis7. Suppose we have conducted a bunch of tests of
the same null hypothesis — these might be different clinical trials of the same
drug, or attempts to replicate some surprising effect in separate laboratories8. If
the tests are independent, then the p-values should be IID and uniform. It would
seem like we should be able to combine these into some over-all p-value. This is
precisely what Neyman’s smooth test of uniformity lets us do.

E.1.3.4 Density Estimation by Series Expansion

As an aside, notice what we have done. By using a large enough d, as I said,
densities which look like Eq. E.10 can come as close as we like to any smooth
density on [0, 1]. And now we have at least two ways of picking d: by cross-
validation, or by the Schwarz information criterion (Eq. E.20). If we let d → ∞
as n→∞, then we have a way of approximating any density on the unit interval,
without knowing what it was to start with, or assuming a particular parametric
form for it. That is, we have a way of doing non-parametric density estimation,
at least on [0, 1], without using kernels.

If you want to estimate a density on (−∞,∞) instead of on [0, 1], you can do so
by using a transformation, e.g., the inverse logit. This is the opposite of what you

6 It is common in the literature to see the criterion written out multiplied through by n, or even by

2n. Also, it is often called the “Bayesian information criterion”, or BIC. This is an unfortunate

name, because, despite what Schwarz (1978) thought, it really has nothing at all to do with Bayes’s

rule or even Bayesian statistics. It’s best thought of as a fast, but very crude and not always very

accurate, approximation to cross-validation. If you want to know more, Claeskens and Hjort (2008)

is probably the best reference.
7 Unless someone has messed up a calculation, that is.
8 These are typical examples of meta-analysis, trying to combine the results of many different data

analyses (without just going back to the original data).

E.1 Smooth Tests of Goodness of Fit 619

did in the homework, where you used a transformation to take [0, 1] to (−∞,∞)
so you could use kernel density estimation.

E.1.4 Smooth Tests of Non-Uniform Parametric Families

Remember that we went into all these details about testing uniformity because we
want to test whether X is distributed according to some continuous distribution
with CDF F . From §E.1.1, if we define Y = F (X), then X ∼ F is equivalent to
Y ∼ Unif(0, 1), so we have a two-step procedure for testing whether X ∼ F :

1. Use the CDF F to transform the data, yi = F (xi)
2. Test whether the transformed data yi are uniform

Let’s think about what the alternatives considered in the test look like. For y,
the alternative densities are (to repeat Eq. E.10)

g(y; θ) ≡
{

e
∑d
j=1 θjhj(y)

z(θ)
0 ≤ y ≤ 1

0 elsewhere
(E.21)

Since X = F−1(Y), this implies a density for X:

gX(x; θ) =
e
∑d
j=1 θjhj(F (x))

z(θ)

dF

dx
(E.22)

=
e
∑d
j=1 θjhj(F (x))

z(θ)
f(x) (E.23)

where f is the pdf corresponding to the CDF F . (Why do we not have to worry
about setting this to zero outside some range?) Just like g(·; θ) is a modulation
or distortion of the uniform density, gX(·; θ) is a modulation or distortion of f(·).
If and when we reject the density f , gX(·; θ) is available to us as an alternative.

Even if hj(y) is a polynomial in y, hj(F (x)) will not (in general) be a polynomial
in x, but it remains true that∫ ∞

−∞
hj(F (x))hk(F (x))f(x)dx = δjk (E.24)

Figure E.3 illustrates what happens to the basis functions, and to particular
alternatives.

When it comes to the actual smooth test, we can either use the likelihood ratio,
or we can calculate

hj =
1

n

n∑
i=1

hj(yi) =
1

n

n∑
i=1

hj(F (xi)) (E.25)

leading as before to the test statistic

Ψ2 = n
d∑
j=1

hj
2

(E.26)

620 Relative Distributions and Smooth Tests

−4 −2 0 2 4

−
3

−
1

1
2

3

x

h j
(F

(x
))

h1

h2

h3

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

x

g X
(x

, θ
)

par(mfrow = c(2, 1))
curve(h1(pnorm(x)), xlab = "x", ylab = expression(h[j](F(x))), from = -5, to = 5,

ylim = c(-3, 3))
curve(h2(pnorm(x)), add = TRUE, lty = "dashed")
curve(h3(pnorm(x)), add = TRUE, lty = "dotted")
legend(legend = c(expression(h[1]), expression(h[2]), expression(h[3])), lty = c("solid",

"dashed", "dotted"), x = "bottomright")
curve(dnorm(x) * exp(h1(pnorm(x)) + h2(pnorm(x)) - h3(pnorm(x)))/z, xlab = "x",

ylab = expression(g[X](x, theta)), from = -5, to = 5)
curve(dnorm(x), add = TRUE, col = "grey")
par(mfrow = c(1, 1))

Figure E.3 Left panel: the basis functions from Figure E.1 composed with
the standard Gaussian CDF. Right panel: the alternative to the standard
Gaussian corresponding to the alternative to the uniform distribution
plotted in Figure E.2, i.e., θ1 = θ2 = 1, θ3 = −1. The grey curve is the
standard Gaussian density, corresponding to the flat line in Figure E.2.

E.1 Smooth Tests of Goodness of Fit 621

The distribution of the test statistics is unchanged under the null hypothesis, i.e.,
still χ2

d if d is fixed. (There are still d degrees of freedom, because we are still
fixing d parameters from distributions of the form Eq. E.23.) If d is chosen from
the data, we still need to bootstrap, but can do so just as before.

E.1.4.1 Estimated Parameters

So far, the discussion has assumed that F is fixed and won’t change with the
data. This is often not very realistic. Rather, F comes from some parametrized
family of distributions, with parameter (say) β, i.e., F (·;β) is a different CDF
for each value of β. For Gaussians, for instance, β is a vector consisting of the
mean and variance (or mean and standard deviation). Let’s assume that there
are always corresponding densities, f(·;β), and these are always continuous.

We don’t know β so we have to estimate it. After estimating, we’d like to test
whether the model really matches the data. It would be convenient if we could
do the following:

1. Get estimate β̂ from x1, x2, . . . xn
2. Calculate yi = F (xi; β̂)
3. Apply a smooth test of uniformity to y1, y2, . . . yn

That is, it would be convenient if we could just ignore the fact that we had to
estimate β.

We can do this if β̂ is the maximum likelihood estimate. To understand this,
think about the family of alternative distributions we’re now considering in the
test. Substituting into Eq. E.23, they are

gX(x;β, θ) =
e
∑d
j=1 θjhj(F (x;β))

z(θ)
f(x;β) (E.27)

The null hypothesis that X ∼ F (·;β) for some β is thus corresponds to X ∼
GX(·;β, 0) — we are still fixing d parameters in the larger family. And, generally
speaking, when we fix d parameters in a parametric model, we get a χ2

d distribu-
tion in the log-likelihood ratio test. If d is not fixed but data-driven, then, again,
we need to bootstrap.

E.1.5 Implementation in R

The main implementation of smooth tests available in R is the ddst package
(Biecek and Ledwina, 2010), standing for “data-driven smooth tests”. It pro-
vides a ddst.uniform.test, which we could use for any family where we can
calculate the CDF. But it also provides functions for directly testing several
families of distributions, notably Gaussians (ddst.norm.test) and exponentials
(ddst.exp.test).

E.1.5.1 Some Examples
Let’s give ddst.norm.test some Gaussian data and see what happens.

622 Relative Distributions and Smooth Tests

r <- rnorm(100)
(r.normality <- ddst.norm.test(r))
##
Data Driven Smooth Test for Normality
##
data: r, base: ddst.base.legendre, c: 100
WT* = 0.095878, n. coord = 1

This reminds us what the data was, tells us that the test used Legendre polyno-
mials (as opposed to cosines), that d was selected to be 1, and that the value of the
test statistic was 0.0959. (The c setting has to do with the order-selection penalty,
and is basically ignorable for most users.) These numbers are all attributes of the
returned object.

What is missing is the p-value, because this is computationally expensive to
calculate. (You can control how many bootstraps it uses, but the default is 1000.)

(r.normality <- ddst.norm.test(r, compute.p = TRUE))
##
Data Driven Smooth Test for Normality
##
data: r, base: ddst.base.legendre, c: 100
WT* = 0.095878, n. coord = 1, p-value = 0.7672

So the p-value is 0.767, giving us little reason to reject a Gaussian distribution
— which is good, because we’re looking at numbers from the standard Gaussian.
If we ignored the fact that d was selected from the data and plugged into the
corresponding χ2

d distribution, we’d get a p-value of

pchisq(r.normality$statistic, df = 1, lower.tail = FALSE)
WT*
0.7568333

which to say a relative error of about 1%.
What if we give the procedure some non-Gaussian data? Say, the same amount

of data from a t distribution with 5 degrees of freedom?

ng <- rt(100, df = 5)
ddst.norm.test(ng, compute.p = TRUE)
##
Data Driven Smooth Test for Normality
##
data: ng, base: ddst.base.legendre, c: 100
WT* = 0.50615, n. coord = 1, p-value = 0.4896

Of course, it won’t always reject, because the we’re only looking at 100 samples,
and the t distribution isn’t that different from a Gaussian. Still, when I repeat
this experiment many times, we get quite respectable power at the standard 5%
size:

mean(replicate(100, ddst.norm.test(rt(100, df = 5), compute.p = TRUE)$p.value) <
0.05)

[1] 0.63

E.1 Smooth Tests of Goodness of Fit 623

r

D
en

si
ty

−3 −2 −1 0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

rF

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

par(mfrow = c(2, 1))
plot(hist(r, plot = FALSE), freq = FALSE, main = "")
rug(r)
curve(dnorm(x), add = TRUE, col = "grey")
rF <- pnorm(r, mean = mean(r), sd = sd(r))
plot(hist(rF, plot = FALSE), freq = FALSE, main = "")
rug(rF)
abline(h = 1, col = "grey")
par(mfrow = c(1, 1))

Figure E.4 Left panel: histogram of the 100 random values from the
standard Gaussian used in the text (exact values marked along the
horizontal axis), plus the true density in grey. Right panel: transforming the
data according to the Gaussian fitted to the data by maximum likelihood.

624 Relative Distributions and Smooth Tests

ng

D
en

si
ty

−3 −2 −1 0 1 2 3 4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

ngF

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

plot(hist(ng, plot = FALSE), freq = FALSE, main = "")
rug(ng)
curve(dnorm(x, mean = mean(ng), sd = sd(ng)), add = TRUE, col = "grey")
ngF <- pnorm(r, mean = mean(ng), sd = sd(ng))
plot(hist(ngF, plot = FALSE), freq = FALSE, main = "")
rug(ngF)
abline(h = 1, col = "grey")

Figure E.5 Treating the draw from the t distribution discussed in the text
the same as the Gaussian sample in Figure E.4.

E.2 Relative Distributions 625

See Exercise E.3 for a small project of ddst.exp.test to check a Pareto dis-
tribution.

E.1.6 Conditional Distributions and Calibration

Suppose that we are not interested in the marginal distribution of X, but rather
its conditional distribution given some other variable or variables C (for “covari-
ates”). If the conditional density f(x|C = c) is continuous in x for every c, then it
is easy to argue, in parallel with §E.1.1, that F (X|C = c), the conditional CDF,
should ∼ Unif(0, 1). So, as long as we use the conditional CDF to transform X,
we can apply smooth tests as before.

One important use of this is regression residuals. Suppose X is the target vari-
able of a regression, with C being the predictor variables9, and we have some
parametric distribution in mind for the noise (Gaussian, say), with the noise ε
being independent of C. Then the model is X = r(C) + ε, so looking at the con-
ditional CDF of X given Z is equivalent to looking at the at unconditional CDF
of the residuals. We can then actually test whether the residuals are Gaussian,
rather than just squinting at a Q-Q plot. We could also do this by applying a K-S
test to the transformed residuals, but everything that was said above in favor of
smooth tests would still apply.

Notice, by the way, that by applying the CDF transformation to the residuals,
we are checking whether the model is properly calibrated, i.e., whether events it
says happen with probability p actually have a frequency close to p. We do need
to impose assumptions about the distribution of the noise to check calibration
for a regression model, since if we just predict expected values, we say nothing
about how often any particular range of values should happen.

Later, when we look at graphical models and at time series, we will see several
other important situations where a statistical model is really about conditional
distributions, and so can be checked by looking at conditional CDF transforma-
tions. It seems to be somewhat more common to apply K-S tests than smooth
tests after the conditional CDF transformation (e.g., Bai 2003), but I think this
is just because smooth tests are not as widely known and used as they should be.

E.2 Relative Distributions

So far, I have been talking about how we can test whether our data follows some
hypothesized distribution, or family of distributions, by using the fact that F (X)
is uniform if and only if X has CDF F . If the values of F (xi) are close enough to
being uniform, the true CDF has to be pretty close to F (with high confidence);
if they are far from uniform, the true CDF has to be far from F (again with high
confidence).

In many situations, however, we already know (or are at least pretty sure) that
X doesn’t have some distribution, say F0, and what we are interested in is how

9 I know you’re used to X being the predictor and Y being the target.

626 Relative Distributions and Smooth Tests

X fails to follow it; we want, in other words, to compare the distribution of X to
some reference distribution F0. For instance:

1. We are trying a new medical procedure, and we want to compare the dis-
tribution of outcomes for patients who got the treatment to those who did
not.

2. We want to compare the distribution of some social outcome across two cate-
gories at the same time. (For instance, we might compare income, or lifespan,
for men and for women.)

3. We might want to compare members of the same category at different times, or
in different locations. (We might compare the income distribution of American
men in 1980 to that of 2010, or the lifespans of American men in 2010 to those
of Canadian men.)

4. We might compare our actual population to the distribution predicted by a
model we know to be too simple (or just approximate) to try to learn what it
is missing.

You learned how to do comparisons of simple summaries of distributions in baby
stats. (For instance, you learned how to compare group means by doing t-tests.)
While these certainly have their places, they can miss an awful lot. For example,
a few years ago now an anesthesiologist came to the CMU statistics department
for help evaluating a new pain-management procedure, which was supposed to
reduce how many pain-killers patients recovering from surgery needed. Under
both the old procedure and the new one, the distribution was strongly bimodal,
with some patients needing very little by way of pain-killers, many needing much
more, and a few needing an awful lot of drugs. Simply looking at the change
in the mean amount of drugs taken, or even the changes in the mean and the
variance, would have told us very little about whether things were any better10.

In this example, the reference distribution, F0, is given by the distribu-
tion of drug demand for patients on the old pain-management protocol. The
new or comparison sample, x1, . . . xn, are realizations of a random variable X,
representing the demand for pain-killers under the new protocol. X follows the
comparison distribution F , which is presumably not the same as F0; how does
it differ?

The idea of the relative distribution is to characterize the change in distri-
butions by using F0 to transform X into [0, 1], and then looking at how it departs
from uniformity. The relative data, or grades, are

ri = F0(xi) (E.28)

Simply put, we take the comparison data points and see where they fall in the
reference distribution.

What is the cumulative distribution function of the relative data? Let’s look
at this first at the population level, where we have F0 (the reference distribution)

10 I am omitting some details, and not providing a reference because the study is still, so far as I know,

unpublished.

E.2 Relative Distributions 627

and F (the comparison distribution), rather than just samples. Let’s call the CDF
of the relative data G:

G(a) ≡ Pr (R ≤ a) (E.29)

= Pr (F0(X) ≤ a) (E.30)

= Pr (X ≤ Q0(a)) (E.31)

= F (Q0(a)) (E.32)

where remember Q0 = F−1
0 is the quantile function of the reference distribution.

This in turn implies a probability density function of the relative data:

g(y) ≡ dG

da

∣∣∣∣
a=y

(E.33)

=
dF

du

∣∣∣∣
u=Q0(y)

dF−1
0

da

∣∣∣∣
a=y

(E.34)

= f(Q0(y))
1

f0(Q0(y))
=

f(Q0(y))

f0(Q0(y))
(E.35)

This only applies when y ∈ [0, 1]; elsewhere, g(y) is straightforwardly 0.
When g(y) > 1, we have f(Q0(y)) > f0(Q0(y)) — that is, values around

Q0(y) are relatively more probable in the comparison distribution than in the
reference distribution. Likewise, when g(y) < 1, the comparison distribution puts
less weight on values around Q0(y) than does the reference distribution. If the
comparison distribution was exactly the same as the reference distribution, we
would, of course, get g(y) = 1 everywhere.

One very important property of the relative distribution is that it is invariant
under monotone transformations. That is, suppose instead of looking at X, we
looked at h(X) for some monotonic function h. (An obvious example would be
change of units, but we might also take logs or powers.) Summary statistics like
differences in means are generally not even equi-variant11. But it is easy to check
(Exercise E.4) that the relative distribution of h(X) is the same as the relative
distribution ofX. This expresses the idea that the difference between the reference
and comparison distributions is independent of our choice of a coordinate system
for X.

E.2.1 Estimating the Relative Distribution

In some situations, the reference distribution can come from a theoretical model,
but the comparison distribution is unknown, though we have samples. Estimating
the relative density g is then extremely similar to what we had to do in the last

11 Remember that a statistic, say δ, is a function of the data, δ(x1, x2, . . . xn). The statistic is invariant

under a transformation h if δ(h(x1), h(x2), . . . h(xn)) = δ(x1, x2, . . . xn) — the transformation does

not change the statistic. The statistic is equivariant if it “changes along with” the transformation,

δ(h(x1), h(x2), . . . h(xn)) = h(δ(x1, x2, . . . xn)). Maximum likelihood estimates are equivariant.

Statistics like the mean are equivariant under linear and affine transformations (but not others).

628 Relative Distributions and Smooth Tests

section for hypothesis testing. Non-parametric estimation of g can thus proceed
either through fitting series expansions like Eq. E.10 (with a data-driven choice of
d, as above), or through using a fixed, data-independent transformation to map
[0, 1] to (−∞,∞) and using kernel density estimation12.

If, on the other hand, neither the reference nor the comparison distribution is
fully known, but we have samples from both, estimating the relative distribution
involves estimating Q0, the quantile function of the reference distribution. This
is typically estimated as just the empirical quantile function, but in principle one
could use, say, kernel smoothing to get at Q0. Once we have an estimate for it,
though, we have reduced the problem of estimating g to the case considered in
the previous paragraph.

Uncertainty in the estimate of the relative density g is, as usual, most easily
assessed through the bootstrap. Be careful to include the uncertainty in estimates
of Q0 as well, if the reference quantiles have to be estimated. One can, however,
also use asymptotic approximations (Handcock and Morris, 1999, §9.6).

E.2.2 R Implementation and Examples

Relative distribution methods were introduced by Handcock and Morris (1998,
1999), who also wrote an R package, reldist, which is by far the easiest way to
work with relative distributions. Rather than explain abstractly how this works,
we’ll turn immediately to examples.

E.2.2.1 Example: Conservative versus Liberal Brains

Data analysis problem set 18 looks at the data from Kanai et al. (2011), which
record the volumes of two parts of the brain, the amygdala and the anterior
cingulate cortex (ACC), adjusted for body size, sex, etc., and political orienta-
tion on a five-point ordinal scale, with 1 being the most conservative and 5 the
most liberal13. The subjects being British university students, the lowest score
for political orientation recorded was 2, and so we will look at relative distribu-
tions between those students and the rest of the sample. That is, we take the
conservatives as the comparison sample, and the rest as the reference sample14.

Having loaded the data into the data frame n90, we can look at simple density
estimates for the two classes and the two variables (Figure E.6). This indicates
that conservative subjects tend to have relatively larger amygdalas and relatively
smaller ACCs, though with very considerable overlap. (We are not looking at the
uncertainty here at all.)

Enough preliminaries; let’s find the relative distribution (Figure E.7).

acc.rel <- reldist(y = n90$acc[n90$orientation < 3], yo = n90$acc[n90$orientation >
2], ci = TRUE, yolabs = pretty(n90$acc[n90$orientation > 2]), main = "Relative density of adjusted ACC volume")

12 We saw how to do this in the homework
13 I am grateful to Dr. Kanai for graciously sharing the data.
14 This implies no value judgment about conservatives being “weird”, but rather reflects the fact that

there are many fewer of them than of non-conservatives in this data.

E.2 Relative Distributions 629

−0.10 −0.05 0.00 0.05 0.10

0
2

4
6

8
12

Adjusted amygdala volume

D
en

si
ty

−0.04 −0.02 0.00 0.02 0.04

0
10

20
30

Adjusted ACC volume

D
en

si
ty

par(mfrow = c(2, 1))
plot(density(n90$amygdala[n90$orientation > 2]), main = "", xlab = "Adjusted amygdala volume")
lines(density(n90$amygdala[n90$orientation < 3]), lty = "dashed")
plot(density(n90$acc[n90$orientation < 3]), lty = "dashed", main = "", xlab = "Adjusted ACC volume")
lines(density(n90$acc[n90$orientation > 2]))
par(mfrow = c(1, 1))

Figure E.6 Estimated densities for the (adjusted) volume of the amygdala
(upper panel) and ACC (lower panel) in non-conservative (solid lines) and
conservative (dashed) students.

The first argument is the comparison sample; the second is the reference sam-
ple. The labeling of the horizontal axis is in terms of the quantiles of the ref-
erence distribution; I convert this back to the original units with the optional

630 Relative Distributions and Smooth Tests

yolabs argument15. The dots show a pointwise 95%-confidence band, but based
on asymptotic approximations which should not be taken seriously when there
are only 77 reference samples and just 13 comparison samples.

E.2.2.2 Example: Economic Growth Rates

For a second example, let’s return to the OECD data on economic growth featured
in Chapter 14. We want to know how the economic growth rates of countries which
are already economically developed compares to the growth rates of developing
and undeveloped countries. I approximate “is a developed country” by “is a
membership of the OECD”, as in §14.5.1. I will take the non-developed countries
as the reference distribution and the OECD members as the comparison group,
mostly because there are more of the former and they are more diverse.

The basic commands now go as before (aside from loading the data from a
different library):

Examining the resulting plot (Figure E.8), the relative distribution is unimodal,
peaking around the 60th percentile of the reference distribution, a growth rate
of about 2.5% per year. The relative distribution drops below 1 at both low
(negative) or high (> 0.05%) growth rates — developed countries, at least over
the period of this data, tend to grow steadily and within a fairly narrow band,
without so much of both the positive and negative extremes of non-developed
countries16

It’s also worth illustrating how to use reldist for comparison to a theoretical
CDF. A very primitive, or better yet nihilistic, model of economic growth would
say that the factors causing economies to grow or shrink are so many, and so
various, and so complicated that there is no hope of tracking them systematic,
but rather that we should regard them as effectively random. As we know from
introductory probability, the average of many small independent terms has a
nearly Gaussian distribution; so we’ll just assume that each country grows (or
shrinks) by some independent Gaussian amount every year.

Doing this just means applying the cumulative distribution function of the
model’s distribution to the values from our comparison sample, as in Figure E.9.
The result does not look too different from Figure E.8. (This does not mean that
the nihilistic model of economic growth is right.)

E.2.3 Adjusting for Covariates

Another nice use of relative distributions is in adjusting for covariates or pre-
dictors more flexibly than is easy to do with regression. Suppose that we have
15 The function pretty() is a built-in routine for coming up with reasonable axis tick-marks from a

vector. See help(pretty).
16 It’s easy to tell a story for why the distribution of growth rates for poor countries is so wide. Some

poor countries grow very slowly or even shrink because they suffer from poor institutions,

corruption, war, lack of resources, technological backwardness, etc.; some poor countries grow very

quickly if they over-come or escape these obstacles and can quickly make use of technologies

developed elsewhere. Nobody has a particular good story for why the growth rates of all developed

countries are so similar.

E.2 Relative Distributions 631

Relative density of adjusted amygdala volume

Reference proportion

R
el

at
iv

e
D

en
si

ty

0.
90

1.
00

1.
10

0.0 0.2 0.4 0.6 0.8 1.0

−0.1 −0.05 0 0.05

Relative density of adjusted ACC volume

Reference proportion

R
el

at
iv

e
D

en
si

ty

0.
5

1.
5

2.
5

3.
5

0.0 0.2 0.4 0.6 0.8 1.0

−0.04 0 0.02 0.04

par(mfrow = c(2, 1))
reldist(y = n90$amygdala[n90$orientation < 3], yo = n90$amygdala[n90$orientation >

2], ci = TRUE, yolabs = pretty(n90$amygdala[n90$orientation > 2]), main = "Relative density of adjusted amygdala volume")
reldist(y = n90$acc[n90$orientation < 3], yo = n90$acc[n90$orientation > 2],

ci = TRUE, yolabs = pretty(n90$acc[n90$orientation > 2]), main = "Relative density of adjusted ACC volume")
par(mfrow = c(1, 1))

Figure E.7 Relative distribution of adjusted brain-region volumes,
contrasting conservative subjects (comparison samples) to non-conservative
subjects (reference samples). Dots indicate 95% confidence limits, but these
are based on asymptotic approximations which don’t apply here. (The
supposed lower limit for the relative density of the amygdala is almost
always negative!) The dashed lines mark a relative density of 1, which would
be no difference.

632 Relative Distributions and Smooth Tests

Reference proportion

R
el

at
iv

e
D

en
si

ty

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

0.0 0.2 0.4 0.6 0.8 1.0

−0.15 0 0.05 0.1

reldist(y = oecdpanel$growth[in.oecd], yo = oecdpanel$growth[!in.oecd], yolabs = pretty(oecdpanel$growth[!in.oecd]),
ci = TRUE, ylim = c(0, 3))

Figure E.8 Relative distribution of the per-capita GDP growth rates of
OECD-member countries compared to those of non-OECD countries.

measurements of two variables, X and Z. In general, when we move from the
reference population to the comparison population, both variables will change
their marginal distributions. If the marginal distribution of Z changes, and the
conditional distribution of X given Z did not, then the marginal distribution of X
would change. It is often informative to know how the change in the distribution
of X compares to what would be anticipated just from the change in Z:

E.2 Relative Distributions 633

Reference proportion

R
el

at
iv

e
D

en
si

ty

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

0.0 0.2 0.4 0.6 0.8 1.0

−0.025 0.00047 0.018 0.035 0.06

growth.mean <- mean(oecdpanel$growth[!in.oecd])
growth.sd <- sd(oecdpanel$growth[!in.oecd])
r = pnorm(oecdpanel$growth[in.oecd], growth.mean, growth.sd)
reldist(y = r, ci = TRUE, ylim = c(0, 3))
top.ticks <- (1:9)/10
top.tick.values <- signif(qnorm(top.ticks, growth.mean, growth.sd), 2)
axis(side = 3, at = top.ticks, labels = top.tick.values)

Figure E.9 Distribution of the growth rates of developed countries, relative
to a Gaussian fitted to all growth rates.

• The two populations might be male and female workers in the same industry,
with X income and Z (say) education, or some measure of qualifications.

• The two populations might be students at two different schools, or taught in

634 Relative Distributions and Smooth Tests

two different ways, with X their test scores at the end of the year, and Z some
measure of prior knowledge.

Write the conditional density of X given Z in the reference population as
f0(x|z). Then, just from the definitions of conditional and marginal probability,

f0(x) =

∫
f0(x|z)f0(z)dz (E.36)

If the distribution of the covariate Z is instead taken from the comparison pop-
ulation, we get a different distribution for x,

f0C(x) =

∫
f0(x|z)f(z)dz (E.37)

with the C standing for “covariate” or “compensated”, depending on who you
talk to. This is the distribution we would have seen for X if the distribution of
X shifted but the relation between X and Z did not.

Before, we looked at the relative distribution of the comparison distribution
F to the reference distribution F0, which had the density (Eq. E.35) g(y) =
f(Q0(y))/f0(Q0(y)). Notice that

f(Q0(y))

f0(Q0(y))
=
f0C(Q0(y))

f0(Q0(y))

f(Q0(y))

f0C(Q0(y))
(E.38)

The first ratio on the right-hand side the relative density of F0C compared to f0;
the second ratio is the relative density of F compared to F0C .

I have written everything as though Z were just a scalar, but it could be a
vector, so we can adjust for multiple covariates at once. Also, it is important to
emphasize that there is no implication that Z is in any sense the cause of X here
(though such adjustments are often more interesting when that’s true).

E.2.3.1 Example: Adjusting Growth Rates

Let’s look at an example of his this works. The oecdpanel data set also includes
a variable called humancap, which is the log of the average number of years of
education of people over the age of fifteen17. How do the growth rates of developed
countries compare to those of undeveloped countries once we adjust for education?

As Figure E.10 shows, after adjusting for education levels, the relative density
shifts somewhat to the left, with its peak peaked closer to the median of the refer-
ence distribution. That is, some of the higher-than-usual growth of the developed
countries can be explained away by their (unusually high: Figure E.11) levels of
education. But the relative density is now even more sharply peaked than it was
before.

Again, it would be rash to read too much causality into this. It could be that

17 If you look at help(oecdpanel), it calls this variable “average secondary school enrollment rate”,

but that’s clearly wrong, and examining the original papers referenced there shows the correct

meaning of the variable. I am not sure why it was logged. (Incidentally, humancap stands for “human

capital”. Whether education is best thought of in this way, or indeed whether years of schooling are

a good measure of human capital, are hard questions which we fortunately do not have to answer.)

E.2 Relative Distributions 635

Reference proportion

R
el

at
iv

e
D

en
si

ty

0
1

2
3

4

0.0 0.2 0.4 0.6 0.8 1.0

−0.15 0 0.05 0.1

reldist(y = oecdpanel$growth[in.oecd], yo = oecdpanel$growth[!in.oecd], yolabs = pretty(oecdpanel$growth[!in.oecd]),
z = oecdpanel$humancap[in.oecd], zo = oecdpanel$humancap[!in.oecd], decomp = "covariate",
ci = TRUE, ylim = c(0, 4))

Figure E.10 Relative distribution of per-capita GDP growth rates after
adjusting for education (humancap).

education promotes economic growth18, or it could be that education is a luxury
of rich societies, which grow faster than average for other reasons.

18 Certainly it’s convenient for a teacher to think so.

636 Relative Distributions and Smooth Tests

Reference proportion

R
el

at
iv

e
D

en
si

ty

0
5

10
15

0.0 0.2 0.4 0.6 0.8 1.0

0 2 4 6 8

reldist(y = exp(oecdpanel$humancap[in.oecd]), yo = exp(oecdpanel$humancap[!in.oecd]),
yolabs = pretty(exp(oecdpanel$humancap[!in.oecd])))

Figure E.11 Relative distribution of years of education, comparing OECD
countries to non-OECD countries.

E.3 Further Reading

On smooth tests of goodness of fit, see Bera and Ghosh (2002) (a pleasantly
enthusiastic paper) and Rayner and Best (1989). The ddst package is ultimately
based on Kallenberg and Ledwina (1997). On relative distributions, see Handcock
and Morris (1998) (an expository paper aimed at social scientists) and Handcock
and Morris (1999) (a more comprehensive book with technical details).

Exercises 637

Exercises

E.1 §E.1.3.1 asserts that one could use cosines orthonormal basis functions in a Neyman test,

with hj(x) = cj cos 2πjx. Find an expression for the normalizing constant cj such that

these functions satisfy Eq. E.18 and Eq. E.19.

E.2 Prove Eq. E.24. Hint: change of variables. Also, prove that∫ ∞
−∞

f(x) exp
∑d
j=1 θjhj(F (x)) dx =

∫ 1

0

exp
∑d
j=1 θjhj(y) dy = z(θ) (E.39)

E.3 If X ∼ Pareto(α, x0), then logX/x0 ∼ Exp(α) — the log of a power-law distributed

variable has an exponential distribution. Using the wealth.dat data from Chapter 6 and

ddst.exp.test, test whether net worths over $3× 108 follow a Pareto distribution.

E.4 Let T = h(X) for some fixed and strictly monotonic function h. Prove that the relative

density of T is the same as the relative density of X. Hint: find the density of T under

both the reference and comparison distribution in terms of f0, f and h.

Appendix F

Nonlinear Dimensionality Reduction

PCA (Chapter 15) and factor models (Chapter 16) are examples of linear dimen-
sion reduction; they’re good when there’s low-dimensional structure in the data,
but that structure is a plane or other linear subspace. Non-linear dimension reduc-
tion is an obvious extension, but, since there are many ways of being non-linear,
it’s nowhere near as settled a subject as the linear special case. After a stark
example of how linear methods can fail (§F.1), this appendix goes through, in
some detail, implementing one particular nonlinear dimension reduction method,
called “locally linear embedding”, which directly builds on what we’ve done with
PCA (§§F.3–??). The further reading (§??) points towards other methods, with
some indication of their virtues and drawbacks.

F.1 Why We Need Nonlinear Dimensionality Reduction

Consider the points shown in Figure F.1. Even though there are two variables,
a.k.a. coordinates, all of the points fall on a one-dimensional curve (as it happens,
a logarithmic spiral). This is exactly the kind of constraint which it would be good
to recognize and exploit — rather than using two separate coordinates, we could
just say how far along the curve a data-point is.

PCA will do poorly with data like this. Remember that to get a one-dimensional
representation out of it, we need to take the first principal component, which is
the straight line along which the data’s projections have the most variance. If
this works for capturing structure along the spiral, then projections on to the
first PC should have the same order that the points have along the spiral.1 Since,
fortuitously, the data are already in that order, we can just plot the first PC
against the row index (Figure F.2). The results are — there is really no other
word for it — screwy.

So, PCA with one principal component fails to capture the one-dimensional
structure of the spiral. We could add another principal component, but then
we’ve just rotated our two-dimensional data. In fact, any linear dimensionality-
reduction method is going to fail here, simply because the spiral is not even
approximately a one-dimensional linear subspace.

What then are we to do?

1 It wouldn’t matter if the coordinate increased as we went out along the spiral or decreased, just so

long as it was monotonic.

638

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

F.1 Why We Need Nonlinear Dimensionality Reduction 639

●●
●●●●●●●●●●●

●●
●●●●

●●●
●●●
●●●
●●●●

●●
●

●
●
●
●
●
●
●
●
●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●
●
●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

−300 −200 −100 0 100

−
20

0
−

10
0

0
10

0
20

0
30

0
40

0

x[,1]

x[
,2

]

x = matrix(c(exp(-0.2 * (-(1:300)/10)) * cos(-(1:300)/10), exp(-0.2 * (-(1:300)/10)) *
sin(-(1:300)/10)), ncol = 2)

plot(x)

Figure F.1 Two-dimensional data constrained to a smooth one-dimensional
region, namely the logarithmic spiral, r = e−0.2θ in polar coordinates.

1. Stick to not-too-nonlinear structures.

2. Somehow decompose nonlinear structures into linear subspaces.

3. Generalize the eigenvalue problem of minimizing distortion.

There’s not a great deal to be said about (1). Some curves can be approximated
by linear subspaces without too much heartbreak. (For instance, see Figure F.4.)
We can use things like PCA on them, and so long as we remember that we’re

640 Nonlinear Dimensionality Reduction

0 50 100 150 200 250 300

-2
00

-1
00

0
10
0

20
0

30
0

Index

pr
co

m
p(

x)
$x

[,
1]

Figure F.2 Projections of the spiral points on to their first principal
component. [[TODO: Make code-generated figure!]]

just seeing an approximation, we won’t go too far wrong. But fundamentally this
is weak. (2) is hoping that we can somehow build a strong method out of this
weak one; as it happens we can, and it’s called locally linear embedding (and its
variants). The last is diffusion maps, which we’ll cover next lecture.

F.2 Local Linearity and Manifolds

Let’s look again at Figure F.4. A one-dimensional linear subspace is, in plain
words, a straight line. By doing PCA on this part of the data alone, we are
approximating a segment of the spiral curve by a straight line. Since the segment
is not very curved, the approximation is reasonably good. (Or rather, the segment

F.2 Local Linearity and Manifolds 641

●●
●●●●●●●●●●●

●●
●●●●

●●●
●●●
●●●
●●●●

●●
●

●
●
●
●
●
●
●
●
●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●
●
●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

−300 −200 −100 0 100

−
20

0
−

10
0

0
10

0
20

0
30

0
40

0

x1

x 2

fit.all = prcomp(x)
approx.all = fit.all$x[, 1] %*% t(fit.all$rotation[, 1])
plot(x, xlab = expression(x[1]), ylab = expression(x[2]))
points(approx.all, pch = 4)

Figure F.3 Spiral data (circles) replotted with their one-dimensional PCA
approximations (crosses).

was chosen so the approximation would be good, consequently it had to have low
curvature.) Notice that this error is not a random scatter of points around the
line, but rather a systematic mis-match between the true curve and the line —
a bias which would not go away no matter how much data we had from the
spiral. The size of the bias depends on how big a region we are using, and how
much the tangent direction to the curve changes across that region — the average

642 Nonlinear Dimensionality Reduction

−250 −200 −150 −100

−
20

0
−

15
0

−
10

0

x1

x 2

●
●

●

●

●

●

●

●

●

●

●

fit = prcomp(x[270:280,])
pca.approx = fit$x[, 1] %*% t(fit$rotation[, 1]) + colMeans(x[270:280,])
plot(rbind(x[270:280,], pca.approx), type = "n", xlab = expression(x[1]), ylab = expression(x[2]))
points(x[270:280,])
points(pca.approx, pch = 4)

Figure F.4 Portion of the spiral data (circles) together with its
one-dimensional PCA approximation (crosses).

curvature. By using small regions when the curvature is high and big regions
when the curvature is low, we can maintain any desired degree of approximation.

If we shifted to a different part of the curve, we could do PCA on the data there,
too, getting a different principal component and a different linear approximations

F.2 Local Linearity and Manifolds 643

to the data. Generally, as we move around the degree of curvature will change,
so the size of the region we’d use would also need to grow or shrink.

This suggests that we could make some progress towards learning nonlinear
structures in the data by patching together lots of linear structures. We could,
for example, divide up the whole data space into regions, and do a separate
PCA in each region. Here we’d hope that in each region we needed only a single
principal component. Such hopes would generally be dashed, however, because
this is a bit too simple-minded to really work.

1. We’d need to chose the number of regions, introducing a trade-off between
having many points in each region (so as to deal with noise) and having small
regions (to keep the linear approximation good).

2. Ideally, the regions should be of different sizes, depending on average curvature,
but we don’t know the curvature.

3. What happens at the boundaries between regions? The principal components
of adjacent regions could be pointing in totally different directions.

Nonetheless, this is the core of a good idea. To make it work, we need to say
just a little about differential geometry, specifically the idea of a manifold.2

For our purposes, a manifold is a smooth, curved subset of a Euclidean space,
in which it is embedded. The spiral curve (not the isolated points I plotted)
is a one-dimensional manifold in the plane, just as are lines, circles, ellipses and
parabolas. The surface of a sphere or a torus is a two-dimensional manifold,
like a plane. The essential fact about a q-dimensional manifold is that it can be
arbitrarily well-approximated by a q-dimensional linear subspace, the tangent
space, by taking a sufficiently small region about any point.3 (This generalizes
the fact any sufficiently small part of a curve about any point looks very much like
a straight line, the tangent line to the curve at that point.) Moreover, as we move
from point to point, the local linear approximations change continuously, too.
The more rapid the change in the tangent space, the bigger the curvature of the
manifold. (Again, this generalizes the relation between curves and their tangent
lines.) So if our data come from a manifold, we should be able to do a local linear
approximation around every part of the manifold, and then smoothly interpolate
them together into a single global system. To do dimensionality reduction — to
learn the manifold — we want to find these global low-dimensional coordinates.4

2 Differential geometry is a very beautiful and important branch of mathematics, with its roots in the

needs of geographers in the 1800s to understand the curved surface of the Earth in detail

(geodesy). The theory of curved spaces they developed for this purpose generalized the ordinary

vector calculus and Euclidean geometry, and turned out to provide the mathematical language for

describing space, time and gravity (Einstein’s general theory of relativity; Lawrie (1990)), the other

fundamental forces of nature (gauge field theory; Lawrie (1990)), dynamical systems Arnol’d (1973);

Guckenheimer and Holmes (1983), and indeed statistical inference (information geometry; Kass and

Vos (1997); Amari and Nagaoka (1993/2000)). Good introductions are Spivak (1965) and Schutz

(1980) (which confines the physics to one (long) chapter on applications).
3 If it makes you happier: every point has an open neighborhood which is homeomorphic to Rq , and

the transition from neighborhood to neighborhood is continuous and differentiable.
4 There are technicalities here which I am going to gloss over, because this is not a book on

644 Nonlinear Dimensionality Reduction

F.3 Locally Linear Embedding (LLE)

Locally linear embedding (or: local linear embedding, you see both) is a clever
scheme for finding low-dimensional global coordinates when the data lie on (or
very near to) a manifold embedded in a high-dimensional space. The trick is to
do a different linear dimensionality reduction at each point (because locally a
manifold looks linear) and then combine these with minimal discrepancy. It was
introduced by Roweis and Saul (2000), though Saul and Roweis (2003) has a
fuller explanation. I don’t think it uses any elements which were unknown, math-
ematically, since the 1950s. Rather than diminishing its inventors achievement,
this should make the rest of us feel humble. . .

The LLE procedure has three steps: it builds a neighborhood for each point
in the data; finds the weights for linearly approximating the data in that neigh-
borhood; and finally finds the low-dimensional coordinates best reconstructed by
those weights. This low-dimensional coordinates are then returned.

To be more precise, the LLE algorithm is given as inputs an n× p data matrix
X, with rows ~xi; a desired number of dimensions q < p; and an integer k for
finding local neighborhoods, where k ≥ q + 1. The output is supposed to be an
n× q matrix Y, with rows ~yi.

1. For each ~xi, find the k nearest neighbors.
2. Find the weight matrix w which minimizes the residual sum of squares for

reconstructing each ~xi from its neighbors,

RSS(w) ≡
n∑
i=1

‖~xi −
∑
j 6=i

wij~xj‖
2

(F.1)

where wij = 0 unless ~xj is one of ~xi’s k-nearest neighbors, and for each i,∑
j wij = 1. (I will come back to this constraint below.)

3. Find the coordinates Y which minimize the reconstruction error using the
weights,

Φ(Y) ≡
n∑
i=1

‖~yi −
∑
j 6=i

wij~yj‖
2

(F.2)

subject to the constraints that
∑

i Yij = 0 for each j, and that YTY = I. (I
will come back to those constraints below, too.)

F.3.1 Finding Neighborhoods

In step 1, we define local neighborhoods for each point. By defining these in
terms of the k nearest neighbors, we make them physically large where the data

differential geometry. (Read one, it’s good for you!) The biggest one is that most manifolds don’t

admit of a truly global coordinate system, one which is good everywhere without exception. But the

places where it breaks down are usually isolated point and easily identified. For instance, if you take

a sphere, almost every point can be identified by latitude and longitude — except for the poles,

where longitude becomes ill-defined. Handling this in a mathematically precise way is tricky, but

since these are probability-zero cases, we can ignore them in a statistics class.

F.3 Locally Linear Embedding (LLE) 645

points are widely separated, and physically small when the density of the data is
high. We don’t know that the curvature of the manifold is low when the data are
sparse, but we do know that, whatever is happening out there, we have very little
idea what it is, so it’s safer to approximate it crudely. Conversely, if the data
are dense, we can capture both high and low curvature. If the actual curvature is
low, we might have been able to expand the region without loss, but again, this is
playing it safe. So, to summarize, using k-nearest neighborhoods means we take
a fine-grained view where there is a lot of data, and a coarse-grained view where
there is little data.

It’s not strictly necessary to use k-nearest neighbors here; the important thing
is to establish some neighborhood for each point, and to do so in a way which
conforms or adapts to the data.

F.3.2 Finding Weights

Step 2 can be understood in a number of ways. Let’s start with the local linearity
of a manifold. Suppose that the manifold was exactly linear around ~xi, i.e., that it
and its neighbors belonged to a q-dimensional linear subspace. Since q+ 1 points
in generally define a q-dimensional subspace, there would be some combination
of the neighbors which reconstructed ~xi exactly, i.e., some set of weights wij such
that

~xi =
∑
j

wij~xj (F.3)

Conversely, if there are such weights, then ~xi and (some of) its neighbors do form
a linear subspace. Since every manifold is locally linear, by taking a sufficiently
small region around each point we get arbitrarily close to having these equations
hold — n−1RSS(w) should shrink to zero as n grows.

Vitally, the same weights would work to reconstruct xi both in the high-
dimensional embedding space and the low-dimensional subspace. This means that
it is the weights around a given point which characterize what the manifold looks
like there (provided the neighborhood is small enough compared to the curva-
ture). Finding the weights gives us the same information as finding the tangent
space. This is why, in the last step, we will only need the weights, not the original
vectors.

Now, about the constraints that
∑

j wij = 1. This can be understood in two
ways, geometrically and probabilistically. Geometrically, what it gives us is in-
variance under translation. That is, if we add any vector ~c to ~xi and all of its
neighbors, nothing happens to the function we’re minimizing:

~xi + ~c−
∑
j

wij(~xj + ~c) = ~xi + ~c−
(∑

j

wij~xj

)
− ~c (F.4)

= ~xi −
∑
j

wij~xj (F.5)

646 Nonlinear Dimensionality Reduction

Since we are looking at the same shape of manifold no matter how we move it
around in space, translational invariance is a constraint we want to impose.

Probabilistically, forcing the weights to sum to one makes w a stochastic tran-
sition matrix.5 This should remind you of page-rank, where we built a Markov
chain transition matrix from the graph connecting web-pages. There is a tight
connection here, which we’ll return to next time under the heading of diffusion
maps; for now this is just to tantalize.

We will see below how to actually minimize the squared error computationally;
as you probably expect by now, it reduces to an eigenvalue problem. Actually it
reduces to a bunch (n) of eigenvalue problems: because there are no constraints
across the rows of w, we can find the optimal weights for each point separately.
Naturally, this simplifies the calculation.

F.3.2.1 k > p

If k, the number of neighbors, is greater than p, the number of variables, then
(in general) the space spanned by k distinct vectors is the whole space. Then ~xi
can be written exactly as a linear combination of its k-nearest neighbors.6 In fact,
if k > p, then not only is there a solution to ~xi =

∑
j wij

~j, there are generally
infinitely many solutions, because there are more unknowns (k) than equations
(p). When this happens, we say that the optimization problem is ill-posed, or
irregular. There are many ways of regularizing ill-posed problems. A common
one, for this case, is what is called L2 or Tikhonov regularization: instead of
minimizing

‖~xi −
∑
j

wij~xj‖2 (F.6)

pick an α > 0 and minimize

‖~xi −
∑
j

wij~xj‖2 + α
∑
j

w2
ij (F.7)

This says: pick the weights which minimize a combination of reconstruction error
and the sum of the squared weights. As α→ 0, this gives us back the least-squares
problem. To see what the second, sum-of-squared-weights term does, take the
opposite limit, α → ∞: the squared-error term becomes negligible, and we just
want to minimize the Euclidean (“L2”) norm of the weight vector wij. Since the
weights are constrained to add up to 1, we can best achieve this by making all
the weights equal — so some of them can’t be vastly larger than the others, and
they stabilize at a definite preferred value. Typically α is set to be small, but not
zero, so we allow some variation in the weights if it really helps improve the fit.

We will see how to actually implement this regularization later, when we look

5 Actually, it really only does that if wij ≥ 0. In that case we are approximating ~xi not just by a

linear combination of its neighbors, but by a convex combination. Often one gets all positive

weights anyway, but it can be helpful to impose this extra constraint.
6 This is easiest to see when ~xi lies inside the body which has its neighbors as vertices, their convex

hull, but is true more generally.

F.3 Locally Linear Embedding (LLE) 647

at the eigenvalue problems connected with LLE. The L2 term is an example of a
penalty term, used to stabilize a problem where just matching the data gives
irregular results, and there is an art to optimally picking λ; in practice, however,
LLE results are often fairly insensitive to it, when it’s needed at all7. Remember,
the whole situation only comes up when k > p, and p can easily be very large —
in gene-expression data analysis we often have thousands of variables from each
measurement.

F.3.3 Finding Coordinates

As I said above, if the local neighborhoods are small compared to the curvature
of the manifold, weights in the embedding space and weights on the manifold
should be the same. (More precisely, the two sets of weights are exactly equal for
linear subspaces, and for other manifolds they can be brought arbitrarily close
to each other by shrinking the neighborhood sufficiently.) In the third and last
step of LLE, we have just calculated the weights in the embedding space, so we
take them to be approximately equal to the weights on the manifold, and solve
for coordinates on the manifold.

So, taking the weight matrix w as fixed, we ask for the Y which minimizes

Φ(Y) =
∑
i

∥∥∥∥∥~yi −∑
j 6=i

~yjwij

∥∥∥∥∥
2

(F.8)

That is, what should the coordinates ~yi be on the manifold, that these weights
reconstruct them?

As mentioned, some constraints are going to be needed. Remember that we saw
above that we could add any constant vector ~c to ~xi and its neighbors without
affecting the sum of squares, because

∑
j wij = 1. We could do the same with

the ~yi, so the minimization problem, as posed, has an infinity of equally-good
solutions. To fix this — to “break the degeneracy” — we impose the constraint

1

n

∑
i

~yi = 0 (F.9)

Since if the mean vector was not zero, we could just subtract it from all the ~yi
without changing the quality of the solution, this is just a book-keeping conve-
nience.

Similarly, we also impose the convention that

1

n
YTY = I (F.10)

i.e., that the covariance matrix of Y be the (q-dimensional) identity matrix. This
is not as substantial as it looks. If we found a solution where the covariance
matrix of Y was not diagonal, we could use PCA to rotate the new coordinates

7 It’s no accident that the scaling factor for the penalty term is written with a Greek letter; it can

also be seen as the Lagrange multiplier enforcing a constraint on the solution (§D.3.3).

648 Nonlinear Dimensionality Reduction

on the manifold so they were uncorrelated, giving a diagonal covariance matrix.
The only bit of this which is not, again, a book-keeping convenience is assuming
that all the coordinates have the same variance — that the diagonal covariance
matrix is in fact I.

This optimization problem is like multi-dimensional scaling (p. 335): we are
asking for low-dimensional vectors which preserve certain relationships (averag-
ing weights) among high-dimensional vectors. We are also asking to do it under
constraints, which we will impose through Lagrange multipliers. Once again, it
turns into an eigenvalue problem, though one just a bit more subtle than what
we saw with PCA in Chapter 158.

Unfortunately, finding the coordinates does not break up into n smaller prob-
lems, the way finding the weights did, because each row of Y appears in Φ multiple
times, once as the focal vector ~yi, and then again as one of the neighbors of other
vectors.

F.3.4 More Fun with Eigenvalues and Eigenvectors

To sum up: for each ~xi, we want to find the weights wij which minimize

RSSi(w) = ‖~xi −
∑
j

wij~xj‖2 (F.11)

where wij = 0 unless ~xj is one of the k nearest neighbors of ~xi, under the con-
straint that

∑
j wij = 1. Given those weights, we want to find the q-dimensional

vectors ~yi which minimize

Φ(Y) =
n∑
i=1

‖~yi −
∑
j

wij~yj‖2 (F.12)

with the constraints that

n−1
∑
i

~yi = 0 (F.13)

n−1YTY = I . (F.14)

F.3.5 Finding the Weights

In this subsection, assume that j just runs over the neighbors of ~xi, so we don’t
have to worry about the weights (including wii) which we know are zero.

We saw that RSSi is invariant if we add an arbitrary ~c to all the vectors. Set

8 One reason to suspect the appearance of eigenvalues, in addition to my very heavy-handed

foreshadowing, is that eigenvectors are automatically orthogonal to each other and normalized, so

making the columns of Y be the eigenvectors of some matrix would automatically satisfy Eq. F.10.

F.3 Locally Linear Embedding (LLE) 649

~c = −~xi, centering the vectors on the focal point ~xi:

RSSi = ‖
∑
j

wij(~xj − ~xi)‖2 (F.15)

= ‖
∑
j

wij~zj‖2 (F.16)

defining ~zj = ~xj − ~xi. If we correspondingly define the k× p matrix z, and set wi

to be the k× 1 matrix, the vector we get from the sum is just wT
i z. The squared

magnitude of any vector ~r, considered as a row matrix r, is rrT , so

RSSi = wT
i zzTwi (F.17)

Notice that zzT is a k×k matrix consisting of all the inner products of the neigh-
bors. This symmetric matrix is called the Gram matrix of the set of vectors,
and accordingly abbreviated G — here I’ll say Gi to remind us that it depends
on our choice of focal point ~xi.

RSSi = wT
i Giwi (F.18)

Notice that the data matter only in so far as they determine the Gram matrix
Gi; the problem is invariant under any transformation which leaves all the inner
products alone (translation, rotation, mirror-reversal, etc.).

We want to minimize RSSi, but we have the constraint
∑

j wij = 1. We impose
this via a Lagrange multiplier, λ.9 To express the constraint in matrix form,
introduce the k× 1 matrix of all 1s, call it 1.10 Then the constraint has the form
1Twi = 1, or 1Twi − 1 = 0. Now we can write the Lagrangian:

L(wi, λ) = wT
i Giwi − λ(1Tw − 1) (F.19)

Taking derivatives, and remembering that Gi is symmetric,

∂L
∂wi

= 2Giwi − λ1 = 0 (F.20)

∂L
∂λ

= 1Twi − 1 = 0 (F.21)

or

Giwi =
λ

2
1 (F.22)

If the Gram matrix is invertible,

wi =
λ

2
G−1
i 1 (F.23)

where λ can be adjusted to ensure that everything sums to 1.

9 This λ should not be confused with the penalty-term λ used when k > p (§F.3.5.1).
10 This should not be confused with the identity matrix, I.

650 Nonlinear Dimensionality Reduction

F.3.5.1 k > p

If k > p, we modify the objective function to be

wT
i Giwi + αwT

i wi (F.24)

where α > 0 determines the degree of regularization. Proceeding as before to
impose the constraint,

L = wT
i Giwi + αwT

i wi − λ(1Twi − 1) (F.25)

where now λ is the Lagrange multiplier. Taking the derivative with respect to wi

and setting it to zero,

2Giwi + 2αwi = λ1 (F.26)

(Gi + αI)wi =
λ

2
1 (F.27)

wi =
λ

2
(Gi + αI)

−1
1 (F.28)

where, again, we pick λ to properly normalize the right-hand side.

F.3.6 Finding the Coordinates

As with PCA, it’s easier to think about the q = 1 case first; the general case
follows similar lines. So ~yi is just a single scalar number, yi, and Y reduces to an
n× 1 column of numbers. We’ll revisit q > 1 at the end.

The objective function is

Φ(Y) =
n∑
i=1

(
yi −

∑
j

wijyj

)2

(F.29)

=
n∑
i=1

y2
i − yi

(∑
j

wijyj

)
−
(∑

j

wijyj

)
yi +

(∑
j

wijyj

)2

(F.30)

= YTY −YT (wY)− (wY)TY + (wY)T (wY) (F.31)

= ((I−w)Y)T ((I−w)Y) (F.32)

= YT (I−w)T (I−w)Y (F.33)

Define the m×m matrix M = (I−w)T (I−w).

Φ(Y) = YTMY (F.34)

This looks promising — it’s the same sort of quadratic form that we maximized
in doing PCA.

Now let’s use a Lagrange multiplier µ to impose the constraint that n−1YTY =
I — but, since q = 1, that’s the 1× 1 identity matrix, i.e., the scalar number 1.

L(Y, µ) = YTMY − µ(n−1YTY − 1) (F.35)

Note that this µ is not the same as the µ which constrained the weights!

F.3 Locally Linear Embedding (LLE) 651

Proceeding as we did with PCA,

∂L
∂Y

= 2MY − 2µn−1Y = 0 (F.36)

or

MY =
µ

n
Y (F.37)

so Y must be an eigenvector of M. Because Y is defined for each point in the
data set, it is a function of the data-points, and we call it an eigenfunction, to
avoid confusion with things like the eigenvectors of PCA (which are p-dimensional
vectors in the space of observables). Because we are trying to minimize YTMY,
we want the eigenfunctions going with the smallest eigenvalues — the bottom
eigenfunctions — unlike the case with PCA, where we wanted the top eigenvec-
tors.

M being an n × n matrix, it has, in general, n eigenvalues, and n mutually
orthogonal eigenfunctions. The eigenvalues are real and non-negative; the smallest
of them is always zero, with eigenfunction 1. To see this, notice that w1 = 1.11

Then

(I−w)1 = 0 (F.38)

(I−w)T (I−w)1 = 0 (F.39)

M1 = 0 (F.40)

Since this eigenfunction is constant, it doesn’t give a useful coordinate on the
manifold. To get our first coordinate, then, we need to take the two bottom
eigenfunctions, and discard the constant.

Again as with PCA, if we want to use q > 1, we just need to take multiple
eigenfunctions of M . To get q coordinates, we take the bottom q + 1 eigenfunc-
tions, discard the constant eigenfunction with eigenvalue 0, and use the others as
our coordinates on the manifold. Because the eigenfunctions are orthogonal, the
no-covariance constraint is automatically satisfied. Notice that adding another
coordinate just means taking another eigenfunction of the same matrix M — as
is the case with PCA, but not with factor analysis.

(What happened to the mean-zero constraint? Well, we can add another La-
grange multiplier ν to enforce it, but the constraint is linear in Y, it’s aY = 0
for some matrix a (Exercise F.2), so when we take partial derivatives we get

∂L(Y, µ, ν)

∂Y
= 2MY − 2µY − νa = 0 (F.41)

and this is the only equation in which ν appears. So we are actually free to
pick any ν we like, and may as well set it to be zero. Geometrically, this is the
translational invariance yet again. In optimization terms, the size of the Lagrange
multiplier tells us about how much better the solution could be if we relaxed the
constraint — when it’s zero, as here, it means that the constrained optimum is
also an unconstrained optimum — but we knew that already!)

11 Each row of w1 is a weighted average of the other rows of 1. But all the rows of 1 are the same.

652 Nonlinear Dimensionality Reduction

lle <- function(x, q, k = q + 1, alpha = 0.01) {
stopifnot(q > 0, q < ncol(x), k > q, alpha > 0)
kNNs = find.kNNs(x, k)
w = reconstruction.weights(x, kNNs, alpha)
coords = coords.from.weights(w, q)
return(coords)

}

Code Example 39: Locally linear embedding in R. Notice that this top-level function is very
simple, and mirrors the math exactly.

find.kNNs <- function(x, k, ...) {
x.distances = dist(x, ...)
x.distances = as.matrix(x.distances)
kNNs = smallest.by.rows(x.distances, k + 1)
return(kNNs[, -1])

}

Code Example 40: Finding the k nearest neighbors of all the row-vectors in a data frame. As
the main text says, this is a fairly slow way to do it, and shouldn’t be used on large data sets.

F.4 Implementation

Let’s break this down from the top. The nice thing about doing this is that the
over-all function is four lines, one of which is just the return (Example 39).

F.4.1 Finding the Nearest Neighbors

The following approach is straightforward (exploiting an R utility function, order),
but not recommended for “industrial strength” uses. A lot of thought has been
given to efficient algorithms for finding nearest neighbors, and this isn’t even close
to the state of the art [[cites]]. For large n, the difference in efficiency would be
quite substantial. For the present, however, this will do.

To find the k nearest neighbors of each point, we first need to calculate the
distances between all pairs of points. The neighborhoods only depend on these
distances, not the actual points themselves. We just need to find the k smallest
entries in each row of the distance matrix (Example 40).

Most of the work is done either by dist, a built-in function optimized for
calculating distance matrices, or by smallest.by.rows (Example 41), which we
are about to write. The +1 and −1 in the last two lines come from simplifying
that.
smallest.by.rows uses the utility function order. Given a vector, it returns

the permutation that puts the vector into increasing order, i.e., its return is a
vector of integers as long as its input.12 The first line of smallest.by.rows

applies order to each row of the input matrix m. The first column of row.orders
now gives the column number of the smallest entry in each row of m; the second

12 There is a lot of control over ties, but we don’t care about ties. See help(order), though, it’s a

handy function.

F.4 Implementation 653

smallest.by.rows <- function(m, k) {
stopifnot(ncol(m) >= k)
row.orders = t(apply(m, 1, order))
k.smallest = row.orders[, 1:k]
return(k.smallest)

}

Code Example 41: Finding which columns contain the smallest entries in each row.

column, the second smallest entry, and so forth. By taking the first k columns,
we get the set of the smallest entries in each row. find.kNNs applies this function
to the distance matrix, giving the indices of the closest points. However, every
point is closest to itself, so to get k neighbors, we need the k + 1 closest points;
and we want to discard the first column we get back from smallest.by.rows.

Let’s check that we’re getting sensible results from the parts.

(r <- matrix(c(7, 3, 2, 4), nrow = 2))
[,1] [,2]
[1,] 7 2
[2,] 3 4
smallest.by.rows(r, 1)
[1] 2 1
smallest.by.rows(r, 2)
[,1] [,2]
[1,] 2 1
[2,] 1 2

Since 7 > 2 but 3 < 4, this is correct. Now try a small distance matrix, from
the first five points on the spiral:

round(as.matrix(dist(x[1:5,])), 2)
1 2 3 4 5
1 0.00 0.11 0.21 0.32 0.43
2 0.11 0.00 0.11 0.22 0.33
3 0.21 0.11 0.00 0.11 0.22
4 0.32 0.22 0.11 0.00 0.11
5 0.43 0.33 0.22 0.11 0.00
smallest.by.rows(as.matrix(dist(x[1:5,])), 3)
[,1] [,2] [,3]
1 1 2 3
2 2 1 3
3 3 2 4
4 4 3 5
5 5 4 3

Notice that the first column, as asserted above, is saying that every point is
closest to itself. But the two nearest neighbors are right.

find.kNNs(x[1:5,], 2)
[,1] [,2]
1 2 3
2 1 3
3 2 4
4 3 5
5 4 3

654 Nonlinear Dimensionality Reduction

reconstruction.weights <- function(x, neighbors, alpha) {
stopifnot(is.matrix(x), is.matrix(neighbors), alpha > 0)
n = nrow(x)
stopifnot(nrow(neighbors) == n)
w = matrix(0, nrow = n, ncol = n)
for (i in 1:n) {

i.neighbors = neighbors[i,]
w[i, i.neighbors] = local.weights(x[i,], x[i.neighbors,], alpha)

}
return(w)

}

Code Example 42: Iterative (and so not really recommended) function to find linear least-
squares reconstruction weights.

local.weights <- function(focal, neighbors, alpha) {
stopifnot(nrow(focal) == 1, ncol(focal) == ncol(neighbors))
k = nrow(neighbors)
neighbors = t(t(neighbors) - focal)
gram = neighbors %*% t(neighbors)
weights = try(solve(gram, rep(1, k)))
if (identical(class(weights), "try-error")) {

weights = solve(gram + alpha * diag(k), rep(1, k))
}
weights = weights/sum(weights)
return(weights)

}

Code Example 43: Find the weights for approximating a vector as a linear combination of the
rows of a matrix.

Success!

F.4.2 Calculating the Weights

First, the slow iterative way (Example 42). Aside from sanity-checking the in-
puts, this just creates a square, n × n weight-matrix w, initially populated
with all zeroes, and then fills each line of it by calling a to-be-written function,
local.weights (Example 43).

For testing, it would really be better to break local.weights up into two
sub-parts — one which finds the Gram matrix, and another which solves for the
weights — but let’s just test it altogether this once.

matrix(mapply("*", local.weights(x[1,], x[2:3,], 0.01), x[2:3,]), nrow = 2)
[,1] [,2]
[1,] 2.014934 -0.4084473
[2,] -0.989357 0.3060440
colSums(matrix(mapply("*", local.weights(x[1,], x[2:3,], 0.01), x[2:3,]),

nrow = 2))
[1] 1.0255769 -0.1024033
colSums(matrix(mapply("*", local.weights(x[1,], x[2:3,], 0.01), x[2:3,]),

nrow = 2)) - x[1,]

F.4 Implementation 655

[1] 0.0104723155 -0.0005531495

The mapply function is another of the lapply family of utility functions. Just
as sapply sweeps a function along a vector, mapply sweeps a multi-argument
function (hence the m) along multiple argument vectors, recycling as necessary.
Here the function is multiplication, so we’re getting the products of the recon-
struction weights and the vectors. (I re-organize this into a matrix for compre-
hensibility.) Then I add up the weighted vectors, getting something that looks
reasonably close to x[1,]. This is confirmed by actually subtract the latter from
the approximation, and seeing that the differences are small for both coordinates.

This didn’t use the regularization; let’s turn it on and see what happens.

colSums(matrix(mapply("*", local.weights(x[1,], x[2:4,], 0.01), x[2:4,]),
nrow = 3)) - x[1,]

[1] 0.01091407 -0.06487090

The error message alerts us that the unregularized attempt to solve for the
weights failed, since the determinant of the Gram matrix was as close to zero
as makes no difference, hence it’s uninvertible. (The error message could be sup-
pressed by adding a silent=TRUE option to try; see help(try).) However, with
just a touch of regularization (α = 0.01) we get quite reasonable accuracy.

Let’s test our iterative solution. Pick k = 2, each row of the weight matrix
should have two non-zero entries, which should sum to one. (We might expect
some small deviation from 1 due to finite-precision arithmetic.) First, of course,
the weights should match what the local.weights function says.

x.2NNs <- find.kNNs(x, 2)
x.2NNs[1,]
[1] 2 3
local.weights(x[1,], x[x.2NNs[1,],], 0.01)
[1] 1.9753018 -0.9753018
wts <- reconstruction.weights(x, x.2NNs, 0.01)
sum(wts[1,] != 0)
[1] 2
all(rowSums(wts != 0) == 2)
[1] TRUE
all(rowSums(wts) == 1)
[1] FALSE
summary(rowSums(wts))
Min. 1st Qu. Median Mean 3rd Qu. Max.
1 1 1 1 1 1

Why does summary say that all the rows sum to 1, when directly testing that
says otherwise? Because some rows don’t quite sum to 1, just closer-than-display
tolerance to 1.

sum(wts[1,]) == 1
[1] TRUE
sum(wts[1,])
[1] 1
sum(wts[1,]) - 1
[1] 0
summary(rowSums(wts) - 1)

656 Nonlinear Dimensionality Reduction

local.weights.for.index <- function(focal, x, NNs, alpha) {
n = nrow(x)
stopifnot(n > 0, 0 < focal, focal <= n, nrow(NNs) == n)
w = rep(0, n)
neighbors = NNs[focal,]
wts = local.weights(x[focal,], x[neighbors,], alpha)
w[neighbors] = wts
return(w)

}

Code Example 44: Finding the weights for the linear approximation of a point given its index,
the data-frame, and the matrix of neighbors.

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.220e-16 0.000e+00 0.000e+00 -1.184e-17 0.000e+00 2.220e-16

So the constraint is satisfied to ±2·10−16, which is good enough for all practical
purposes. It does, however, mean that we have to be careful about testing the
constraint! Fortunately, the all.equal() function understands about numerical
precision:

all.equal(rowSums(wts), rep(1, ncol(wts)))
[1] TRUE

Of course, iteration is usually Not the Way We Do It in R — especially here,
where there’s no dependence between the rows of the weight matrix.13 What
makes this a bit tricky is that we need to combine information from two matrices
— the data frame and the matrix giving the neighborhood of each point. We
could try using something like mapply or Map, but it’s cleaner to just write a
function to do the calculation for each row (Example 44), and then apply it to
the rows.

As always, check the new function:

w.1 = local.weights.for.index(1, x, x.2NNs, 0.01)
w.1[w.1 != 0]
[1] 1.9753018 -0.9753018
which(w.1 != 0)
[1] 2 3

So (at least for the first row!) it has the right values in the right positions.
Now the final function is simple (Example 45), and passes the check:

wts.2 = reconstruction.weights.2(x, x.2NNs, 0.01)
identical(wts.2, wts)
[1] TRUE

13 Remember what makes loops slow in R is that every time we change an object, we actually create a

new copy with the modified values and then destroy the old one. If n is large, then the weight

matrix, with n2 entries, is very large, and we are wasting a lot of time creating and destroying big

matrices to make small changes.

F.4 Implementation 657

reconstruction.weights.2 <- function(x, neighbors, alpha) {
n = nrow(x)
w = sapply(1:n, local.weights.for.index, x = x, NNs = neighbors, alpha = alpha)
w = t(w)
return(w)

}

Code Example 45: Non-iterative calculation of the weight matrix.

coords.from.weights <- function(w, q, tol = 1e-07) {
n = nrow(w)
stopifnot(ncol(w) == n)
stopifnot(all(abs(rowSums(w) - 1) < tol))
M = t(diag(n) - w) %*% (diag(n) - w)
soln = eigen(M)
coords = soln$vectors[, ((n - q):(n - 1))]
return(coords)

}

Code Example 46: Getting manifold coordinates from approximation weights by finding eigen-
functions.

F.4.3 Calculating the Coordinates

Having gone through all the eigen-manipulation, this is a straightforward calcu-
lation (Example 46).

Notice that w will in general be a very sparse matrix — it has only k non-
zero entries per row, and typically k � n. There are special techniques for rapidly
solving eigenvalue problems for sparse matrices, which are not being used here
— another way in which this is not an industrial-strength version.

Let’s try this out: make the coordinate (with q = 1), plot it (Figure F.5), and
check that it really is monotonically increasing, as the figure suggests.

spiral.lle = coords.from.weights(wts, 1)
plot(spiral.lle, ylab = "Coordinate on manifold")

658 Nonlinear Dimensionality Reduction

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●
●●●●●

●●●●●
●●●●●

●●●●
●●●●

●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

0 50 100 150 200 250 300

0.
00

0.
05

0.
10

0.
15

0.
20

Index

C
oo

rd
in

at
e

on
 m

an
ifo

ld

all(diff(spiral.lle) > 0)
[1] TRUE

So the coordinate we got through LLE increases along the spiral, just as it
should, and we have successfully recovered the underlying structure of the data.
To verify this in a more visually pleasing way, Figure F.6 plots the original data
again, but now with points colored so that their color in the rainbow corresponds
to their inferred coordinate on the manifold.

Before celebrating our final victory, test that everything works when we put it
together:

all.equal(lle(x, 1, 2), spiral.lle)
[1] TRUE

2

F.5 Further Reading 659

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●
●●●●●

●●●●●
●●●●●

●●●●
●●●●

●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

0 50 100 150 200 250 300

0.
00

0.
05

0.
10

0.
15

0.
20

Index

C
oo

rd
in

at
e

on
 m

an
ifo

ld

plot(coords.from.weights(wts, 1), ylab = "Coordinate on manifold")

Figure F.5 Coordinate on the manifold estimated by locally-linear
embedding for the spiral data. Notice that it increases monotonically along
the spiral, as it should.

F.5 Further Reading
[[TODO:
Write,
insert
refs.]]

[[SNE]]

[[Eigenmaps: Belkin and Niyogi (2003)]]

[[Diffusion maps: form a similarity graph for the data, and then use as coordi-
nates projections on the eigenvectors of the graph Laplacian Lee and Wasserman

660 Nonlinear Dimensionality Reduction

●●
●●●●●●●●●●●

●●
●●●●

●●●
●●●
●●●
●●●●

●●
●

●
●
●
●
●
●
●
●
●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●
●
●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

−300 −200 −100 0 100

−
20

0
−

10
0

0
10

0
20

0
30

0
40

0

x[,1]

x[
,2

]

plot(x, col = rainbow(300, end = 5/6)[cut(spiral.lle, 300, labels = FALSE)])

Figure F.6 The original spiral data, but with color advancing smoothly
along the spectrum according to the intrinsic coordinate found by LLE.

(2010); distinct from LLE14]] [[Diffusion maps: see also http://www.stat.cmu.

edu/~cshalizi/350/lectures/15/lecture-15.pdf]]
[[Manifold learning]]
[[LLE: note that, Like PCA, not really fitting a probability model (so pure

14 In fact, in some cases, it can be shown (Belkin and Niyogi, 2003, §5) that the matrix in the LLE

minimization problem is related to the Laplacian, because (I−w)T (I−w) ≈ 1
2
L2. Since the powers

of L have the same eigenvectors as L, when this holds the coordinates we get from the diffusion map

are approximately the same as the LLE coordinates.

http://www.stat.cmu.edu/~cshalizi/350/lectures/15/lecture-15.pdf
http://www.stat.cmu.edu/~cshalizi/350/lectures/15/lecture-15.pdf

Exercises 661

data analysis, rather than statistical inference) — refs. on ideas more like factor
models, with an inferential/probabilistic component]]

Exercises

F.1 Let B be any n×n matrix. Show that if ~v is an eigenvector of B, then it is also an eigen-

vector of B2, and of any power of B. Conclude that B and B2 have the same eigenvectors.

(Hint: how many eigenvectors does each matrix have?) What happens to the eigenvalues?

F.2 Find the matrix A which expresses the mean-zero constraint in the form AY = 0.

F.3 In local linear embedding, we obtain an n × n matrix w, where wij is the weight on ~xj
we use to reconstruct ~xi. Each row of w sums to one. We then try to find coordinates

y1, y2, . . . yn which minimize

Φ(Y) =

n∑
i=1

yi − n∑
j=1

wijyj

2

(F.42)

where Y is the n× 1 matrix of yi values (this is the q = 1 case, for simplicity). Above, in

Eq. F.34, we showed that this is the same as minimizing

Φ(Y) = YTMY (F.43)

where

M = ((I−w)T (I−w)) (F.44)

1. Show that M is a symmetric matrix.

2. Show that 1 is an eigenvector of M, and that its eigenvalue is zero.

3. Show that Φ(Y) = Φ(Y + c1), where c is any constant and 1 is the n×1 matrix whose

entries are all 1s. (Hint: one way is to use the previous two parts.)

4. Show that Φ(Y) is minimized by Y = 0.

5. To avoid the trivial solution of setting all the yi to zero, we impose the constraint that

n−1∑n
i=1 y

2
i = 1. We use a Lagrange multiplier to enforce this constraint; write down

the Lagrangian for the constrained minimization problem.

6. Show that a solution Y to the constrained minimization problem must be an eigenvec-

tor of M.

Appendix G

Rudimentary Graph Theory

[[TODO:
Stream-
line,
and re-
integrate
into the
graphical
models
chapter]]

A graph G is built out of a set of nodes or vertices, and edges or links
connecting them. The edges can either be directed or undirected. A graph with
undirected edges, or an undirected graph, represents a symmetric binary relation
among the nodes. For instance, in a social network, the nodes might be people,
and the relationship might be “spends time with”. A graph with directed edges,
or arrows, is called a directed graph or digraph1, and represents an asymmetric
relation among the nodes. To continue the social example, the arrows might
mean “admires”, pointing from the admirer to the object of admiration. If the
relationship is reciprocal, that is indicated by drawing a pair of arrows between
the nodes, one in each direction (as between A and B in Figure G.1).

A directed path from node V1 to node V2 is a sequence of edges, beginning
at V1 and ending at V2, which is connected and which follows the orientation of
the edges at each step. An undirected path is a sequence of connected edges
ignoring orientation. (Every path in an undirected graph is undirected.) If there
is a directed path from V1 to V2 and from V2 to V1, then those two nodes are
strongly connected. (In Figure G.1, A and C are strongly connected, but A
and D are not.) If there are undirected paths in both directions, they are weakly
connected. (A and D are weakly connected.) Strong connection implies weak
connection (Exercise 1). We also stipulate that every node is strongly connected
to itself.

Strong connection is an equivalence relation, i.e., it is reflective, symmetric and
transitive (Exercise 2). Weak connection is also an equivalence relation (Exercise
3). Therefore, a graph can be divided into non-overlapping strongly connected
components, consisting of maximal sets of nodes which are all strongly con-
nected to each other. (In Figure G.1, A, B and C form one strongly connected
component, and D and E form components with just one node; Exercise ??.)
It can also be divided into weakly connected components, maximal sets of
nodes which are all weakly connected to each other. (There is only one weakly
connected component in the graph. If either of the edges into D were removed,
there would be two weakly connected components; Exercise ??.)

A cycle is a directed path from a node to itself. The existence of two distinct
nodes which are strongly connected to each other implies the existence of a cycle,
and vice versa (Exercise 6). A directed graph without cycles is called acyclic.

1 Or, more rarely, a Guthrie diagram.

662

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

G.1 Exercises 663

A

C

B

E

D

Figure G.1 Example for illustrating the concepts of graph theory.

Said another way, an acyclic graph is one where all the strongly connected compo-
nents consist of individual nodes. The weakly connected components can however
contain an unlimited number of nodes.

In a directed acyclic graph, or DAG, it is common to refer to the nodes
connected by an edge as “parent” and “child” (so that the arrow runs from the
parent to the child). If there is a directed path (of any length) from V1 to V2,
then V1 is the ancestor of V2, which is the descendant of V1. In the jargon,
the ancestor/descendant relation is the transitive closure of the parent/child
relation.

G.1 Exercises

1. Prove that if two nodes are strongly connected, they are also weakly connected.
Draw a graph in which two nodes are weakly connected but not strongly
connected.

2. Prove that strong connection between nodes is an equivalence relation.

1. Reflexive Prove that every node is strongly connected to itself.
2. Symmetric Prove that if A is strongly connected to B, then B is strongly

connected to A.
3. Transitive Prove that if A is strongly connected to B, and B is strongly

connected to C, then A is strongly connected to C.

3. Prove that weak connection between nodes is an equivalence relation. Divide
the proof into parts as in Exercise 2.

664 Rudimentary Graph Theory

4. Verify that the graph in Figure G.1 has three strongly connected components,
{A,B,C}, {D} and {E}.

5. Verify that the graph in Figure G.1 has only one weakly connected component.
Check that if either of the edges into D were removed, there would be two
weakly connected components — what would they be?

6. Prove that if A is strongly connected to even one other node B 6= A, then
there is a cycle in the graph.

Appendix H

Missing Data

665

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

666 Missing Data

There was a point to the blank page, beyond the obvious joke. Tautologously,
missing data is data we do not have. We don’t know what it would have been.
Anything we say about it is guesswork, based on assumptions. All statistical
inference rests on assumptions, but they are especially hard to take for granted,
and especially hard to check or to justify, when they’re assumptions about things
we know we don’t have evidence about.

To be a bit more formal, “missing data” refers to situations where we are able
to record some variable for some but not all of the units of analysis in our data
set. Conventionally, in R, those are NA values in our data frame1 Variables we
never measure are not missing, but latent or hidden, or indeed ignored. If we
do a face-to-face survey about people’s finances, our survey-takers would typically
be able to record the interviewees’ eye colors and the number of times they say
“um”, but wouldn’t do so: those variables are ignored. If some but not all of
those surveyed refuse to say how much they spend on housing every month, that
is missing data. Missing data is very, very common in the real world.

We would (in general) draw different inferences if only we had the complete
data, the data we actually got plus the data that is, in fact, missing. But (to
hammer home the point), precisely because it’s missing, we don’t have direct
evidence about how our inferences would change. Any effort to take missing data
into account will rely on assumptions about what we would have seen. Any anal-
ysis which tries to just ignore missing-ness is only going to make sense under
assumptions of its own.

To give an initial feel for the kinds of problems which arise, start with Figure
H.12. It’s a scatter-plot of a kind you’ve seen many times already, where you may
suppose we’re interested in how Y depends on X.

Looking carefully at Figure H.1, you may notice that there are more tick-marks
on the horizontal axis than there are points in the scatter-plot. These tick-marks
come from data points where I am treating Y as missing but X as observed. (In
fact, to keep things simple, I have made it so that X is never missing.) In the
observed data, higher values of X clearly predict higher values of Y . Whether
that is also true over-all depends on what the missing values are like. Figure
H.2 illustrates a few different possibilities, all of which are equally compatible,
logically, with the observations in Figure H.1.

More concretely, Figure H.2 illustrates four different data-generating processes,
filling in the missing values. The relationship between X and Y implied by the
filled circles in Figure H.2b is clearly very different from the one implied by

1 R, as a modern computer language, is capable of doing arithmetic with NA values, and (correctly)

“‘propagates” them, so that anything plus NA is also NA, etc. In earlier times, however, many

computing systems lacked an NA value, and so particular numbers were sometimes used to “code”

missing values. Common choices included −1, 0, and (very insidiously) 99 and 999. (For a case

where 99 was the missing value code, but some 99s were apparently mis-entered as 88s, leading to

very surprising conclusions, see Kahn and Udry (1986).) I myself once worked with a data-set which

coded missing values of worker’s ages 66, because everyone was supposed to retire at 65.
2 This is a simulation, not real data, but it’s inspired by a project I participated in on predicting

which people who had been arrested could be safely released while awaiting trial. The code

generating it appears on p. 690, but please don’t peek ahead.

Missing Data 667

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Figure H.1 Running example for illustrating missing-data issues. The
rug-plots along the axes indicate the marginal distributions of the observed
(not missing) values. The generating code is deliberately hidden here, but
will be given at the end of the chapter.

the empty diamonds in Figure H.2d. But all four processes, and infinitely many
others, are equally compatible with the fully-observed data points. This makes it
vivid that there are two big tasks when dealing with missing data:

1. Almost all of our computational procedures presume complete data sets. How,
as a technical matter, can we use data sets with missing values in such proce-
dures, and under which assumptions are different techniques good ideas?

2. How, if it all, can we check assumptions about missing-ness?

Since the right techniques for handling missing data depends on assumptions,

668 Missing Data

●

●

●
●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

● ●●
●

●
●

●

●

●

●

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a

x

y

●

●

●
●

●
● ●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

● ●●
●

●
●

●

●

●

●

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

b

x

y

● ●

●

●

●

●

●

●
●

●

● ● ●
●

●

●

●
●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

● ●●
●

●
●

●

●

●

●

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

c

x

y

●

●

●
●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

● ●●
●

●
●

●

●

●

●

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d

x

y

Figure H.2 Some possible complete data sets, all compatible with the
observations in Figure H.1. The four point shapes indicate four distinct
data-generating processes. In all four, the hollow circles are the
fully-observed data points.

you would be forgiven for thinking that assumption-checking is more important
than techniques. Unfortunately, as we’ll see in §H.4, there are good reasons why
statisticians have given much more attention to techniques.

H.0.1 Notation and Preliminaries

We will often need a concise way to refer to whether or not a variable is missing.
MY will be the indicator variable which is 1 when Y is missing and 0 when Y is
observed. If we need to refer to its value in a particular observation i, we’ll write

H.1 Deletion, and Missing-at-Random Assumptions 669

that MYi . We will also often refer to the probability that an observation is not
missing, Pr (MY = 0), the inclusion or capture probability3, π = 1 − E [MY].
When this is conditioned on X = x, we’ll write π(x). When we need to collectively
refer to all the fully-observed values of Y , they will be Yobs (realization, yobs), and,
likewise, the collection of all missing values will be Ymiss (realization, ymiss).

We would like to know about the complete-data distribution, what generated
the data before some of it went missing. Depending on how ambitious we are,
this might be Pr (Y = y), or Pr (Y = y|X = x), or Pr (Y = y,X = x). (As usual,
everything works out just the same for continuous probability densities as for
discrete probability mass functions, so I’ll just write things out for the latter.)
Basic probability tells us that

Pr (Y = y,X = x)

= Pr (Y = y,X = x,MY = 0) + Pr (Y = y,X = x,MY = 0) (H.1)

= Pr (Y = y,X = x|MY = 0) Pr (MY = 0) + Pr (Y = y,X = x|MY = 1) Pr (MY = 1)(H.2)

= Pr (Y = y,X = x|MY = 0)π + Pr (Y = y,X = x|MY = 1) (1− π) , (H.3)

that

Pr (Y = y|X = x)

= Pr (Y = y,MY = 0|X = x) + Pr (Y = y,MY = 1|X = x) (H.4)

= Pr (Y = y|X = x,MY = 0) Pr (MY = 0|X = x) + Pr (Y = y|X = x,MY = 1) Pr (MY = 1|X = x)(H.5)

= Pr (Y = y|X = x,MY = 0)π(x) + Pr (Y = y|X = x,MY = 1) (1− π(x)) , (H.6)

and that

Pr (Y = y) = Pr (Y = y,MY = 0) + Pr (Y = y,MY = 1) (H.7)

= Pr (Y = y|MY = 0)π + Pr (Y = y|MY = 1) (1− π) . (H.8)

In every case, what we want is the complete-data expression on the left-hand
side. But what we might be able to identify from the data are just the first parts
of the sums on the right, where we’re conditioning on MY = 0, i.e., condition-
ing on Y being observed. The complete-data expressions will be identified from
observations only under assumptions which somehow tie the missing-data terms,
where MY = 1, to things we observe.

H.1 Deletion, and Missing-at-Random Assumptions

The simplest way to handle missing data is to not use incomplete records — to
delete them4. This can be done in multiple ways, depending on how aggressive
one wants to be about using the variables that aren’t missing.

One extreme of deletion is to drop all records which are incomplete in any

3 It may seem perverse to have a missing indicator and an inclusion probability, but these choices will

simplify formulae later, and anyway are conventional.
4 Despite the name, it is generally a bad idea to actually delete them from your main data file!

Instead, drop rows from working copies of the data-frame in your code.

670 Missing Data

variable5 This has come to be called listwise deletion. Its greatest advantage is
stark simplicity. With a data-frame in R, this amounts to taking the columns you
need, and then dropping any row with an NA, as performed by na.omit(). This
is the default behavior of most model-fitting functions, once they’ve determined
which columns of the data-frame they will actually use.

Just because something is R’s default behavior does not, however, mean it is
a good idea6. While no good might come of throwing away some of our data
at random, random deletion at least wouldn’t lead to systematic mistakes. But
the one thing we know about the rows with missing values is that they are
systematically different from the complete rows in an important way — namely,
some variables are missing! Listwise deletion would seem, on the face of it, to be
a recipe for creating biased samples and introducing systematic errors. If it’s to
make any statistical sense, very strong assumptions will be required.

H.1.1 Practicalities of Data Analysis After Deletion

If we make such assumptions, though, our life can be very straightforward. Figure
H.3 shows what our running example data set looks like after deletion, with a
simple smoothing spline run through it.

The only even slightly subtle thing to remember is that our sample size has
shrunk: it’s not the original number of data points, but just the number of fully-
observed data points.

H.1.2 Assumptions Justifying Deletion

H.1.2.1 Missing Completely at Random

One strong assumption which would justify deletion is that of “missingness com-
pletely at random” (MCAR), that MY ⊥⊥ Y,X. The idea is that, in effect, Some-
body went down the rows of the data frame, tossed a coin for each row, and
erased Y whenever the coin came up heads. In a situation like this, the com-
plete rows really are a representative sample of the complete data. Formally, the
independence assumed by MCAR means that

Pr (Y = y,X = x) = Pr (Y = y,X = x|MY = 0) (H.9)

So anything we could identify from the complete data (because it’s a function
of the joint distribution) is also something we can identify from the distribution
of the data after deletion. (Can you prove this, using Eq. H.3?) Similarly, since
our estimates are built using an effectively-random subset of the total sample,
it’s as though we just had a somewhat smaller random sample to begin with, or
at least one that’s no more biased than the complete data. Anything procedure

5 That is, any variable you are actually using in a given analysis.
6 By now, you’ve learned this lesson when it comes to the precision with which numerical results

should be reported.

H.1 Deletion, and Missing-at-Random Assumptions 671

which should be consistent with the complete data should also be consistent after
deletion, if we assume MCAR.

MCAR is, obviously, a very strong assumption, and, honestly, hard to believe
in lots of real-world situations. It’s not logically impossible that the people who
won’t tell interviewers how much they spend on housing are just like those who
do say, both in terms of their income and their housing expenses, but it’s not
very plausible. In fact, because MY ⊥⊥ X,Y implies MY ⊥⊥ X, this is one of
the easiest assumptions about missing-ness to dis-prove (see §H.4). In the case of
Figure H.1, it’s clear by inspection that large and small values of X predict very
different rates of missing-ness for Y , so MCAR is very implausible here7.

H.1.2.2 Missing at Random

Because MCAR is so strong, and usually so implausible, but deletion is so tempt-
ing, people have looked for weaker assumptions which would still justify ignoring
incomplete records. One favorite has come to be called missing-at-random
(MAR), or ignorable missingness or uninformative missingness. It is sim-
ply that

MY ⊥⊥ Y |X (H.10)

By the definition of conditional independence, this is equivalent to saying that,
for all x, y,

Pr (Y = y|X = x,MY = 0) = Pr (Y = y|X = x,MY = 1) (H.11)

In words: given X, the missing values of Y follow exactly the same probability
distribution as the observed values8. From this, and Eq. H.6, it follows that

Pr (Y = y|X = x) = Pr (Y = y|X = x,MY = 0) (H.12)

Thus, under MAR, any function of the complete-data conditional distribution
can be calculated directly from the observed conditional distribution. In fact, the
complete-data joint distribution is identified under MAR, though it’s not equal
to the observed joint distribution (Exercise 1).

Because MAR is all about conditional independence, it’s very natural to want
to apply the graphical modeling ideas introduced in Chapter 18. Thus Figure H.4
shows the simplest, though by no means the only, graphical model in which MAR
holds, but MCAR (in general) does not.

It’s natural to wonder if anything weaker than MAR could still justify dele-
tion. The answer is pretty much “no”. If we want Eq. H.12 to hold, so that
the complete-data and observed conditional distributions are equal, then the
assumption-free Eq. H.6 implies Eq. H.11, and we’re back to MAR.

7 How might you conduct a formal test, if you’re not willing to believe me? Hint: Can you apply

Chapter 9?
8 The probability of being missing can change with X, so the marginal distributions Y |MY = 0 and

Y |MY = 1 need not be equal; see Exercise 2.

672 Missing Data

H.1.3 Partial Deletion

The disadvantage of listwise deletion is that records which are missing one variable
might still have perfectly good values for other variables. If we assume missingness
is uninformative, not using those records won’t introduce biases, but it will reduce
the precision of some statistics. In partial deletion (a.k.a. pairwise deletion,
or “available pairs”), we use incomplete data points to calculate whatever
statistics they can help with. For example, in linear regression, a point which
is missing Y can still contribute to calculating xTx. In fact, a point which also
missing some columns of x could still contribute to some entries in xTx. Thus, in
partial deletion, we try to stretch out the data as much as possible. The ability
to do this why I do not recommend just running na.omit on your data, even if
you’re willing to assume MAR (see also Exercises 1 and 2).

As usual, these advantages come at a price. Because different calculations are
done with more-or-less different data sizes, it is possible to get mutually inconsis-
tent results. Thus if you estimate V [X], V [Y] and Cov [X,Y] when Y is missing
using partial deletion, you might get a correlation coefficient bigger than 1 or
smaller than −1.

H.2 Informative Missingness, or Missing-Not-At-Random

The opposite of missing-at-random is, naturally, missing-not-at-random, or
MNAR:

MY 6⊥⊥ Y |X (H.13)

This also has the more comprehensible names of non-ignorable missingness
or informative missingness (see Exercise 3).

When missingness is informative, arguments parallel to the ones we used to
justify deletion under MAR tell us that deletion is a bad idea. Specifically,

Pr (Y = y|X = x) 6= Pr (Y = y|X = x,MY = 0) (H.14)

so the observed data doesn’t follow the same conditional distribution as the com-
plete data, and deletion will give us a biased, systematically-distorted idea of that
conditional distribution.

There is very little more which can be said at this level of generality at MNAR.
In particular, while missingness is informative, it might or might not be very
informative. It can also take many different forms. Two of the most common are
censoring and selection.

H.2.1 Censoring

When Y values in certain ranges are just not observed, Y is censored. The most
common examples of this are right censoring, when we never see Y > ymax,
and left censoring, when we never see Y < ymin. The classic setting for right-
censored data is when Y is the time to some event — how long patients live, or

H.2 Informative Missingness, or Missing-Not-At-Random 673

how long a machine lasts before breakdown, etc. Any patient who is still alive at
the end of the study that collected the data will die eventually, so they have some
survival time, but it’s missing, and the missingness is directly a function of how
long they’ve lived. As a classical problem, it has a classical solution, the “product-
limit” or Kaplan and Meier (1958) estimator (implemented in, e.g., the survival
package (Therneau, 2015)). This, however, rests on the assumption that the time
at which each observation is censored is deterministic, or at least independent
of the actual lifespan9. Lifespans or durations can also be left-censored, if events
which happen too quickly don’t show up in our data10.

H.2.2 Selection

In many situations, we only get to observe Y for individuals (cases, etc.), which
are somehow selected into one condition or another, but the process of selection
is itself (supposed to be) sensitive to what Y would be. That’s a rather vague,
abstract statement, but concrete cases are very common. Admissions processes at
many schools deliberately try to select students who will do well at the school, but
we only get to see academic outcomes for students who were selected. If Y is any
measure of academic outcomes, then, there’s potentially informative missingness.

Ignoring such selection can be seriously misleading. As a little simulation to
prove the point, I first generate test scores uniformly distributed between 200
and 1600, and then a subsequent grade in the range of 0 to 4, which is a linear
and increasing, but noisy, function of the test scores:

n <- 1000
test.scores <- runif(n, min=200, max=1600)
gpas <- 4*(test.scores-200)/1400 + rnorm(n, sd=0.5)

The correlation between scores and outcomes is unsurprisingly high, 0.91. But if
I only look at those who scored above, say, 1300, the correlation drops immensely,
to 0.42. People who dislike using test-scores in admissions decisions sometimes
point to evidence that such scores are poor predictors of success in academic
programs among those admitted, which is often true, but is exactly what we
would expect if such scores were good predictors and used for selection11

This is not just a literally-academic issue. Perhaps the most consequential place
such issues arise is in courts and prisons, which make decisions about who will be
arrested, who will be released on bail between arrest and trial, who will be released
on parole, etc. Increasingly, such decisions are made using predictive statistical

9 That is, it’s assumed that the real life-time of unit i is Yi, that it is lost to observation at a time Li,

that we see Yi if Yi ≤ Li, and that Li is either constant for all i, or that Yi ⊥⊥ Li.
10 This can be an issue when studying the lifespans of social or political movements, online fads, etc.
11 This is a very old point — see Dawes (1975) — but still a valid one. (Dawes raises the additional,

more subtle point that when those admitted are selected on multiple variables, say X1 and X2, we

are conditioning on a collider (see ch. 19), which creates negative correlations among the predictors,

and tends to make each predictor only weakly related to the outcome Y .) — I say all this as

someone who generally doesn’t like emphasizing standardized tests in admissions decisions, but for

other reasons.

674 Missing Data

models12. In developing these models, there is information about whether (for
example) those released on bail show up for their trial, commit another crime13,
etc., but this information is missing for those who are kept in jail while awaiting
trial. Any Y which measures those outcomes is potentially subject to informative
missingness14

In these situations, it’s imaginable that Y is really missing at random, con-
ditional on the right set of X variables. After all, the people currently making
decisions about bail (mostly judges) can’t see the future to know what Y would
be, but rather have to rely on cues and signals that actually exist when they make
their decisions15. One can imagine bundling all those cues and signals up into an
X variable, and then it would be positively unreasonable to think anything other
than Y ⊥⊥ MY |X (see Figure H.5). But if we as data-analysts don’t have access
to exactly the X used by the decision-makers, but instead some other variable
X ′, it could very easily be that Y 6⊥⊥ MY |X ′, so that missingness is informative
for us (see Figure H.5 again).

In efforts to develop models for deciding on pre-trial release, for example, one
commonly has data about the demographic characteristics of the arrestee (age,
sex, etc.), what they have been arrested for, and their prior history of arrests
and convictions16. But a judge might consider other factors, such as the repu-
tation of the arresting officer, or testimony about the character of the arrestee,
or the arrestee’s appearance17 The decisions made by the selectors would then
reflect some information about Y which is not available to us in X ′. This can,
in fact, completely change the apparent implications of the variables in X ′. If,
overall, people who have been people who have been convicted of many violent
crimes are especially likely to re-offend before trial if granted bail, they might
appear unusually safe, because judges only grant them bail when (say) there
is abundant and credible testimony that they have reformed. That is, when
these decisions are made accurately, using cues and signs that really are in-
formative, Pr (re-offend|history of violence,M=0) can be very low, even though

12 I have been myself involved in an effort to evaluate pre-trial release models for a non-profit

organization.
13 More precisely: about whether they are arrested for another crime.
14 The same issue arises for credit risk: lenders try to select loan applicants who will repay, but we

don’t see whether those denied loans would have repaid. Any Y reflecting repayment is, then,

potentially subject to informative missingness. But let’s stick with crime and punishment, rather

than banking, for right now.
15 This is why econometricians sometimes refer to MAR as “selection on observables”. It is also one

way selection differs, conceptually, from censoring, where MY depends directly on Y .
16 Though not always. The prior legal history is itself missing more often than anyone should like. In

large part this is because different organizations (e.g., police vs. courts vs. prisons vs. parole offices),

even within the same legal jurisdiction, do a very bad job at sharing and linking up their records.

Even the same organization may not have a good way to keep track of whether the Joe Smith now

on trial for theft is the same as the J. E. Smith previously convicted of fraud.
17 As this last indicates, nothing says that everything in X′ has to be either ethically legitimate or

rationally linked to Y . (Devising situations where it is legitimate, rational and legal for a judge to

be influenced by how an arrestee looks when deciding whether or not to grant bail is left as an

exercise for your ingenuity.)

H.2 Informative Missingness, or Missing-Not-At-Random 675

Probre-offend|history of violence is very high. Under less extreme circumstances,
a history of violent crime might seem to pose less of a risk than a history of
non-violent crime, for the same reason.

Censoring and selection are not the only two kinds of informative missingness,
but it’s almost impossible to give a complete catalog. In every event, for further
work, it’s important to investigate the precise mechanisms leading to missingness.
This needs to be done at two levels, the statistical or probabilistic, and the
substantive.

H.2.3 The “Missingness Mechanism”, Statistically Considered

In the statistics of missing data, the “missingness mechanism” has come to refer
to the conditional distribution

Pr (MY = 1|X = x, Y = y) = 1− π(x, y) (H.15)

(Of course, it works just as well to know the conditional probability that MY = 0.)
Recall that when we’re trying to find the conditional distribution of Y given X,
the data lets us identify

Pr (Y = y|X = x,MY = 0) Pr (MY = 0|X = x) (H.16)

but (Eq. H.6) we need that plus

Pr (Y = y|X = x,MY = 1) (1− π(x)) (H.17)

to get Pr (Y = y|X = x). But basic probability (Exercise 5) tells us that

Pr (Y = y|MY = 1, X = x) =
Pr (MY = 1|X = x, Y = y) Pr (Y = y|X = x)

Pr (MY = 1|X = x)
(H.18)

so (Exercise 6)

Pr (Y = y|X = x) = Pr (Y = y|X = x,MY = 0)
π(x)

π(x, y)
(H.19)

so long as π(x, y) > 0. We thus have an expression for the complete-data condi-
tional distribution, in terms of the observable conditional distribution, and the
missingness mechanism, or the inclusion probabilities. Knowing the latter allows
us to, so to speak, undo the distortions due to missingness. And, because we’ve
assumed nothing but basic probability to get Eq. H.19, any assumption which
is strong enough to let us identify Pr (Y |X) under MNAR has to either be an
assumption about π(x)/π(x, y), or has to imply the form of that ratio18.

18 In fact, MAR is the assumption that π(x)/π(x, y) = 1 for all x, y, so that the exact inclusion

probabilities can be ignored (Exercise 7).

676 Missing Data

H.2.3.1 Example: Heckman Selectivity19

An example of modeling assumptions which define a missingness mechanism
comes from a situation of selection that originally arose in studying the dis-
tribution of wages. A basic model of wage labor is that every individual has a
“reservation wage”, an amount that they would have to be paid to accept em-
ployment at all20. People may refuse offers of employment above their reservation
wage, but they will definitely refuse offers below their reservation wage. Some
people may therefore not be employees (at any given time) because they haven’t
received any offer exceeding their reservation wage. If we want to know how the
wages people can command in the labor-market vary with their characteristics,
it’s important to have some idea of what those missing wages would have been.

Stated at this level of generality, the problem is unsolvable. The distribution
of wages below the reservation wage could, logically speaking, be absolutely any-
thing, without altering the observable distribution at all. Economic theory does
not, in this case, provide any real constraints either. As they have so often done
when faced with an unsolvable problem and unguided by substantive economics,
econometricians have responded by trying to make linear regression work. Specif-
ically, in the Heckman (1976) model, we assume that (log) wages Y are linear in
a covariate X,

Y = β1x+ ε (H.20)

as are (log) reservation wages,

R = β2x+ η (H.21)

with ε and η being independent of X and sharing a Gaussian distribution with
mean 0 and variance matrix Σ. We further assume that we see the wages of
person i if, and only if, Yi > Ri,

MY = 1(Y < R) (H.22)

Under these assumptions, you can show that

π(x) = Φ(x(β1 − β2)/σ) (H.23)

where Φ is the standard Gaussian CDF, and σ2 is the variance of η− ε (Exercise
82). Since the inclusion probabilities are observable, the composite parameter
(β1 − β2)/σ can be identified from observations (under all these assumptions). A
similar but longer calculation (Exercise 84) shows that

E [Y |X = x,MY = 0] = β1x− c
φ(x(β1 − β2)/σ)

Φ(x(β1 − β2)/σ)
(H.24)

where φ is the standard Gaussian PDF, and c is the covariance between ε and

19 My treatment of this classic topic in econometrics is heavily indebted to Manski (2007, §§2.6 and

4.1–4.2).
20 As opposed to continuing to look for work in hopes of better jobs, going into business for themselves,

dealing with family responsibilities, sleeping under bridges and stealing bread, or whatever.

H.2 Informative Missingness, or Missing-Not-At-Random 677

(η − ε)/σ. Once we know (β1 − β2)/σ, this lets us identify β1, which is usually
what’s of interest.

There are several points worth making about this example.

1. You can extend the same logic to many situations of selection beyond wages.
For instance, if we’re studying life-spans, we can have Yi be the life of unit i,
and Ri be the amount of time between when unit i appears and the end of the
study period. Then we only get to observe a completed lifespan if Yi ≥ Ri. It
is thus unsurprising that Heckman (1976) has been cited over 5500 times21.

2. Extending the model to multiple predictor variables is straightforward, if te-
dious, provided both Y and R remain linear in the coordinates of X.

3. We can identify β1 without ever having to record the reservation wage R. This
is handy, because usually we can’t measure R at all.

4. The identifying power of the assumptions breaks down if we don’t assume that
(ε, η) ⊥⊥ X — for instance, heteroskedasticity in ε or η is in general enough to
make things unidentifiable again.

5. Economic theory provides absolutely no reason to think that (log) wages and
(log) reservation wages should be jointly Gaussian, with conditional means
which are linear in the observed features, and homoskedastic disturbances.
Many of those thousands of citations come from other areas of social science,
like sociology and education, where theory is even less definite, and no more
supportive of these assumptions.

6. We can use data to check whether Eq. H.23 holds, because it concerns purely
observable quantities, with one unknown parameter. (In terms of the model,
that’s a composite, β1−β2

σ
, but that’s still only one adjustable parameter.) We

can also use data to check whether Eq. H.24 holds, since that’s a parameteric
form with three unknown parameters (β1, c and β1−β2

σ
), albeit one which is

non-linear in x. One could even, in principle, test whether the data imply the
same value for β1−β2

σ
in the two equations. But (and this is crucial) we cannot

test the full model. There are many different models which would also imply
both Eqns. H.23 and H.24. (The simplest of these, though perhaps not the
most plausible, would say that inclusion probabilities follow Eq. H.23, while
Y ⊥⊥MY |Z, and E [Y |X = x] also follows the form given by Eq. H.24.)

H.2.4 Mechanisms of Missingness, Substantively

I have said that the “missingness mechanism”, in the jargon, is just the function
π(x, y) (or its complement). Mathematically, if we know this, we know how to
deal with our missing data. This immediately raises the question of how we might
learn it. The only real way is to study how and why, exactly, some, but only some,
of our data comes to be missing. That is, we must study the actual mechanisms

21 See https://scholar.google.com/scholar?cites=16798156444849893273 (as of July 2018). A

related paper, Heckman (1979), is claimed to have over 27000 citations

(https://scholar.google.com/scholar?cites=4067958607302478696), but I am not sure that isn’t

a record-linkage error in the database.

https://scholar.google.com/scholar?cites=16798156444849893273
https://scholar.google.com/scholar?cites=4067958607302478696

678 Missing Data

which lead to missingness. Once we understand them, they will often suggest
one, or more, plausible statistical models, which in turn will get us to the π(x, y)
function we need for our calculations.

Studying this part of the data-generating, or perhaps data-collecting or data-
creating, process is a key part of applied statistics, but it’s not a statistical task in
the same way that, say, estimating a regression surface is. Rather, it is something
that requires a good deal of substantive, domain-specific knowledge, because the
actual causes of missingness are very different in different areas of inquiry. If we
are dealing with surveys, for instance, we have to investigate why people22 don’t
answer some questions on surveys (but not others). These causes will be very
different from those which lead meteorological measuring stations to sometimes
fail to record the concentration of certain pollutants in the air. This in turn will
have nothing to do with gaps in credit records when making loan decisions.

H.2.5 Causal Inference as a Missing Data Problem, and Vice Versa

The most basic sort of causal inference23 is asking about the average effect of
changing the value of one cause, the average treatment effect (ATE):

ATE ≡ E [Y |do(X = 1)]− E [Y |do(X = 0)] (H.25)

If we have many units we can observe, say i = 1, . . . n, we might hope to approx-
imate this by the average of the effects for each unit:

ATE ≈
n∑
i=1

Yi|do(X = 1)− Yi|do(X = 0) (H.26)

Unfortunately, we cannot simultaneously give unit i both treatments. Thus one
or the other of the two values we want there is un-observed, or, in a word, missing.
This is why a lot of work on estimating treatment effects re-uses tools developed
for handling missing data, to the point where Donald Rubin, an eminent authority
in both areas, has been known to say that “causal inference is a missing data
problem” (Ding and Li, 2018).

On the other hand, whether or not some variables are missing has, clearly, some
sort of probabilistic connection to those variables. If I have convinced you that
you should really investigate in detail why variables are missing, you will be led
to build models of the missing-data mechanism, and that in turn will lead you
to things like graphical models, which make assessing conditional independence
relations very straightforward. For instance, the simplest graphical model which
would support MAR is given in Figure H.4. From this perspective, whether or not
the relationship between Y and X can be identified when Y is sometimes missing
turns on what features of the joint distribution are left alone when conditioning

22 That is, people who can be reached by the survey at all; why some people are easier to survey than

others is another, though related, problem.
23 If you have skipped around, it would be a good idea to read Part III, or at least Chapter 19 before

going further in this section.

H.3 Further Methods: Imputation, EM, Weighting 679

on MY , i.e., on what paths such conditioning opens or closes. One can, therefore,
completely reverse the perspective, and treat “missing data as a causal inference
problem” (Mohan et al., 2013).

H.3 Further Methods: Imputation, EM, Weighting

Some methods for dealing with missing data can be used whether we assume
MAR or informative missingness (though they will give different answers in the
two cases). The most important ones are:

• Making up, or imputing, values for the missing variables, and analyzing the
completed data set;
• Averaging the log-likelihood function over all possible values of the missing

variables, using the EM algorithm;
• Weighting the complete observations, so that the point we see appropriate

represent the ones we missed.

We will deal with these in turn.

H.3.1 Imputation

An alternative to any form of deletion is to make something up for the missing
values, and then analyze the data set, with both real and imputed values, as
though it were complete. The best reason to do such imputation is so that
the partial cases can be used in procedures (statistical or computational) which
require complete data. Imputation never creates more information; at best, it
uses the available information efficiently, and it can easily lead to systematic
distortions. It is thus a tool to be applied carefully. Indeed, I rather suspect half
the reason we call this “imputation” is that calling it “making stuff up for the
missing values so we can use the data” is so blunt and explicit about what we’re
doing that it makes people nervous24.

H.3.1.1 Imputation under MAR

1. Imputation by hopefully-representative constants The simplest and oldest sort
of imputation replaces every missing value of a variable by the same value,
derived from the observed cases, usually the mean, median or mode. This is
rarely a good idea, because it will distort the relationship between the imputed
variable and everything else. In particular, imputing a constant value for a
missing response variable will tend to attenuate any regression relationship.

2. Imputation from the marginal distribution Rather than using a single constant
value, one can also impute randomly, using the marginal distribution of ob-
served cases for the missing variable. The oldest form of this replaces each
missing value of Y by independently sampling from the observed values of Y .

24 The other half of the reason is that “making stuff up for the missing values so we can use the data”

is a mouthful.

680 Missing Data

One could also attempt to learn the distribution of Y (by a parametric model,
nonparametric density estimation, etc.), and then draw from that.

Sampling from the marginal distribution has the advantage over the typical-
value method of not artificially reducing the variance of Y , or otherwise dis-
torting its (marginal) distribution. But, because the draws are independent of
other variables, it will tend to attenuate the dependence of Y on those other
variables, and so will still introduce distortions into, say, regressions. This
would be true even if we were sampling from the true marginal distribution of
Y . You should be able to convince yourself that if Y is missing at random, but
not missing completely at random, then sampling from the observed marginal
distribution of Y will introduce distortions. On the other hand, if Y really is
missing completely at random, such imputation only affects the relationship
to other variables.

Figure H.2b is our running example, with marginal-distribution imputation.

3. Conditional imputation by regression A somewhat more flexible strategy is to
use the complete cases to learn a regression function for the sometimes-missing
variable, i.e., to estimate the function µ̂ = E [Y |X]. In a record where Y is
missing and we see X = x, then, we impute the value µ̂(x) for Y . This tries to
preserve something of the relationship between the missing variable and the
others, but obviously relies very strongly on missing-ness being uninformative
about Y .

(An additional complication for this strategy is that other variables, besides
Y , might be missing for some records but not for others. One thus might have
to end up estimating, and using, many different regression functions.)

Figure H.2c is our running example, with imputation from having smoothed
the observed data points.

4. Conditional imputation from the conditional distribution Of course, nothing
says that we need to only use regression. Once we can estimate Pr (Y |X), we
can draw samples from it, and impute those samples to the missing observa-
tions. The easiest form of this is to predict the missing values using regression,
and then add noise, but all the techniques used to learn conditional distribu-
tions (§14.5) are potentially in play.

One version of this idea is to impute by matching, that is, to search for
an observation with the same value of X as the one where Y is missing,
and to copy its value of Y ; if there are multiple matches, chose among them
randomly25. The exact performance here will depend on a lot of details — what
if there is no match? since exact equality is implausible if X is continuous, how
close does it need to be to declare a match? what if X is multi-dimensional?

25 This is, of course, similar to the matching methods sometimes used in causal inference (§21.1.3).

H.3 Further Methods: Imputation, EM, Weighting 681

— which can lead to very complicated algorithms26. The point, however, is to
sample from Pr (Y |X).

H.3.1.2 Imputation under Informative Missingness

Basically every idea about imputation under MAR has its counter-part for im-
putation under informative missingness. The most natural starting point is im-
putation from the conditional distribution. If we’re working under MNAR, and
we think we know Pr (Y |X,MY = 1), then we should (in principle) be able to
sample from it, and use those sample to fill in the missing values. Figure H.2d
shows an example of such imputation, where the trend for the missing values is
assumed to run opposite to the one we get from the fully-observed data.

In this context, it’s worth putting in a word for imputation constants. This
can make a fair amount of sense in situations where we know the missing values
arose by censoring. If, for instance, we’re measuring how long it takes a chemical
reaction to run, but each experiment only lasts for a certain amount of time t0,
it can be a good idea to impute t0 + δ to all the reactions which didn’t finish in
time — and to vary δ to see how much that affects our conclusions.

H.3.1.3 Multiple Imputation and Uncertainty

Once we have completed the data set, we can run our usual analyses on it,
whatever those might be. When we look at how uncertain those analyses are,
however, we really ought to take into account the fact that we did imputation,
and we might well have imputed different values than the ones we did. (This is
especially true when we impute randomly-sampled values!) One way to get at
this is through multiple imputation, where we do our stochastic imputation
many times, re-running the analysis on each.

At this point, we need to somehow synthesize the multiple results from multi-
ple imputations into a single measure of uncertainty. This is fairly simple if we
bootstrap: first draw a bootstrap sample, then do imputation using that sample,
and then combine the results as we would ordinarily for bootstrapping.

If we’re just reporting means and variances, though, we need to be just a little
bit more careful. In these situations, we often calculate a estimate θ̂ from each
imputation run, and an associated variance σ2. Say that we get θ̂1, . . . θ̂m from our
m imputations, and σ2

1, . . . σ
2
m for the variances. Then our best over-all estimate

is clearly

θ =
1

m

m∑
j=1

θ̂j (H.27)

26 A historically important one, developed by the US Census Bureau, was called “hot-deck

imputation”, because of the way it re-used the punched paper cards then used for data storage.

(Using punch cards to store census data actually goes back to the late 1800s, and the tabulating

machines were important precursors of digital computers — see, e.g., Yates 1989.) Cards with a

similar value of X had just been processed, hence were warm from the card-reading machinery,

hence “hot”. By contrast, sampling from the marginal distribution by picking a totally random card

was “cold-deck imputation”. For more on this, see Rubin (1987), and the references therein.

682 Missing Data

But the associated variance is

1

m

m∑
j=1

σ2
j +

1

m− 1

m∑
j=1

(θ̂j − θ)2 (H.28)

(This is just our old friend, the law of total variance.)

H.3.2 The EM Algorithm

In §17.2, we looked at the EM algorithm as a way of dealing with latent variables,
ones which are never observed, but we nonetheless postulate, and imagine are
linked to the observable variables in systematic ways. This is very close to the
problem we have with missing data, and the EM algorithm can also be used here.

What we would like to do is to maximize the observed-data likelihood

p(x, yobs; θ) (H.29)

By elementary probability,

p(x, yobs; θ) =
∑
y

p(x, yobs, ymiss; θ) (H.30)

i.e., a sum over all possible complete-data likelihoods. (If the missing observations
are continuous, make the sum into an integral.) Appealing to the theory in §17.2.1,
the EM procedure for doing this is as follows:

1. Start with a guess θ̂(0) for θ
2. Until things stop improving:

1. E-step: Find the conditional distribution of Ymiss given X = x and Yobs =
yobs,

q(ymiss) = p(ymiss|x, yobs,MY ; θ̂(t)) (H.31)

Note that if data points are IID, then Ymiss ⊥⊥ Yobs|X,MY , so this simplifies

to just p(ymiss|x,MY ; θ̂(t)). In fact, with the IID assumption this simplifies
even further, since each missing Y value needs to be conditioned only on the
corresponding X and its own missing-ness indicator, and the whole joint
distribution over missing y values is a product of the distributions for each
value.

2. M-step: Find the θ which maximizes the approximation to the complete-
data log-likelihood:

θ̂(t+1) = argmax
θ

∑
ymiss

q(ymiss) log p(x, yobs, ymiss,MY ; theta) (H.32)

Again, if ymiss is continuous, replace the sum with an integral.
If (as in regression problems) we only care about the conditional-on-X
likelihood, we use that here, so

θ̂(t+1) = argmax
θ

∑
ymiss

q(ymiss) log p(yobs, ymiss,MY |x; θ) (H.33)

H.3 Further Methods: Imputation, EM, Weighting 683

Finally, under the IID assumption, both the numerator and the denomina-
tor inside the log are products of independent terms for each data point,
simplifying the calculation.

3. Return the final θ̂(t) and (optionally) the final distribution q over the missing
observations.

Note that since we are conditioning Ymiss not just on X but also MY , the EM
procedure can work when the Y suffers from informative missingness. We just
need to guess (correctly) the conditional distribution of missing Y .

It is very likely that this all feels rather abstract. Exercise 9 guides you through
implementing the EM algorithm for missing data in a classic problem, both in a
version where data are missing at random, and one subject to censoring.

H.3.2.1 Monte Carlo EM

In many situations, the E step of the EM algorithm is hard to implement exactly,
because it’s difficult to get a closed-form expression for the conditional distribu-
tion of the missing observations. In these situations, it is often possible to draw a
random sample from the distribution instead. Instead of averaging over averaging
over q(ymiss) in Eq. H.32, then, we average over the sample of different possible
ymiss values.

H.3.3 Inverse Probability Weighting

A final approach to dealing with missing data is worth mentioning. This is the
simple trick of giving more or less weight to the complete observations. Suppose
that we a certain data point was fully observed, but we think that its inclusion
probability was only 0.1. Then there should have been about nine other data
points just like it, in order to get one successful observation.

This logic leads to the idea of inverse probability weighting (IPW). If we
know the inclusion probabilities as a function of X and Y , π(x, y), then we give
data point i a weight of

wi =
1

π(xi, yi)
(H.34)

when we compute things like MSE or log-likelihood. This, of course, will simplify
if we assume MAR, to just

wi =
1

π(xi)
(H.35)

After that, the analysis proceeds as in Ch. 10. Exercise 10 covers derives from
properties for estimating expectation values in this way.

It is worth noting that IPW leans very heavily on knowing the inclusion prob-
abilities. This is particularly true when we believe that some of the inclusion
probabilities are very small, and so imply very large weights. If we have to es-

684 Missing Data

timate those probabilities from data27, then we really ought to propagate the
uncertainty from the inclusion probabilities to the sampling weights to our ulti-
mate conclusions. The bootstrap provides a convenient way to do this: in each
bootstrap replicate, re-learn the inclusion probabilities, then use those re-learnt
weights; pool over replicates as usual.

H.4 Checking Assumptions About Missingness

The sad truth is that most assumptions about missingness cannot be checked in
a purely “statistical” way, by running tests on the observed data. This is because
most assumptions about missingness are about how Y related to MY , and (once
more, with feeling) we don’t know what Y is when MY = 1.

The only important exception to this negative conclusion is the assumption of
“missing complete at random”, MCAR. This is that

MY ⊥⊥ X,Y (H.36)

This implies that

MY ⊥⊥ X (H.37)

which only involves observable variables, so we can check it. If we find, in our
data, that MY 6⊥⊥ X, we can reject MCAR. Of course, MCAR can be false even
if MY ⊥⊥ X, because then missingness might still be very informative about Y ,
and we cannot test this without knowing Y .

Let’s turn now to the contrast between missing-at-random, MAR, and informa-
tive missingness or missing-not-at-random, MNAR. This is the contrast between
MY ⊥⊥ Y |X, and MY 6⊥⊥ Y |X. Basic probability tells us that MAR is equivalent
to the equation

Pr (Y = y|X = x,MY = 1) = Pr (Y = y|X = x,MY = 0) (H.38)

holding for all x and y. Unfortunately, our data tells us, quite literally, nothing
about Pr (Y = y|X = x,MY = 1). That distribution could be anything at all, and
the distribution of what we observe would not change28. So there is no way to do
a formal, statistical test of whether the missing-ness in Y is informative about
Y . Whether you take this to mean that the data can never support MAR, or to
mean that the data can never undermine MAR, is to some extent a matter of
temperament.

However, the fact that there is no formal, statistical test to appeal to does not
mean that there is no work for a statistician to do. It is often possible to inves-
tigate why some data are missing, by a detailed study of the data-collection pro-
cess. Particular assumptions may also be made more or less plausible by means of
analogies with other situations where the missing-data mechanisms are (thought
to be) well-understood.

27 As opposed to, say, knowing them because they reflect properties of the data-collection process

under our control.
28 This doesn’t mean that Pr (Y = y|X = x) can be anything at all, however; see §H.5 below.

H.5 Bounds 685

H.5 Bounds

So far, all our techniques for handling missing data have focused on somehow
working out what the missing values were, or might have been. We might instead
frankly accept that we have no idea what they were, but try to place bounds on
their impact. Think back to Eq. refeqn:complete-data-marginal-prob-in-terms-of-
missing-data-marginal-prob:

Pr (Y = y) = Pr (Y = y|MY = 0)π + Pr (Y = y|MY = 1) (1− π) (H.39)

We can, in principle, learn Pr (Y = y|MY = 0) and π from data — they’re iden-
tified. Pr (Y = y|MY = 1) is not identified, without further assumptions, but of
course, being a probability, it’s between 0 and 1. So we can say, without any
assumptions, that

Pr (Y = y|MY = 0)π ≤ Pr (Y = y) ≤ Pr (Y = y|MY = 0)π + 1− π (H.40)

This doesn’t tell us everything, but it does rule out some possibilities for Pr (Y = y)
— for instance, it can’t be 1

2
Pr (Y = y|MY = 0)π. When the distribution of the

data doesn’t uniquely determine some quantity, but does put restrictions on it,
we say that the quantity is partially identified or set-identified (as opposed
to the usual point-identified).

A similar argument gives partial-identification bounds for the conditional prob-
ability:

Pr (Y = y|MY = 0, X = x)π(x) ≤ Pr (Y = y|X = x) ≤ 1+(Pr (Y = y|MY = 0, X = x)−1)π(x)
(H.41)

Going further than these bounds typically requires either some detailed con-
sideration of what we’re really trying to estimate (when do we care about a
single probability?), possibly combined with additional assumptions, e.g., that
Pr (Y = y|X = x) is monotone in y for each x. This sort of elaboration inolves
too many special cases to be treated here, but see the references under further
reading.

H.6 Closing Modeling Advice

I cannot, unfortunately, provide any hard and fast rules about how to deal with
missing data. I can, however, provide some advice.

1. The best way to deal with missing data is not to have any. To the extent
that you can influence how the data are collected, try to make sure that
missing data does not arise; failing that, try to make sure that missingness is
uninformative and rare. It’s usually better to spend your efforts securing good
data to begin with, than trying to compensate for bad data collection later
with fancy techniques29.

29 Statisticians get rewarded, professionally, for developing new techniques, so that’s the focus of most

of our scientific literature on missing data. But I don’t think any experienced applied statistician

would disagree with this point.

686 Missing Data

2. Understand, concretely, why some of this data might go missing. If you can
change how the data is collected, this will help you make sure less does go
missing (as in the first point). If the data are just handed to you and you have
to make the best of them, then this understand is crucial to creating stochastic
models of missingness, and deciding whether MAR is plausible or not.

3. Consider more than one model for missingness. Even if you think MAR is
plausible (or at least defensible), it’s usually a good idea to consider at least
one or two models of informative missingness. If small departures from your
initial or most-favorite model don’t change the conclusions of your analysis
very much, well and good. (Though, in that case, you might want to ask how
big a departure would be needed to seriously alter a conclusion.) If, on the
other hand, your conclusions are very sensitive to exactly how you deal with
missing values, you either need a strong justification for preferring one model
over another, or you need to be up-front about just how much your conclusions
rest on assumptions about missing data.

H.7 Further Reading

The classic reference on missing data, which standardized the MCAR/MAR/MNAR
terminology, is Little and Rubin (1987). From the same school, Rubin (1987) is
a classic reference on multiple imputation.

On the EM algorithm, in addition to the references given in Ch. 17, McLachlan
and Krishnan (2008) includes an extensive treatment of its uses in missing data
problems. The Monte Carlo EM approach, where in the E step we sample from the
distribution of missing values instead of calculating that distribution, still requires
us to iterate the E and M steps many times. Sung and Geyer (2007) provides a
truly ingenious procedure where we need only a single, data-independent sample
of potential missing values. The basic idea of the paper is well within the grasp
of readers of this book, though the proofs of its validity are much more technical.

The bounding approach, as an alternative to identifying assumptions, is most
closely associated with the work of Charles Manski. Manski (2007) is the easiest
introduction to his thought; see especially Chapter 2 of that book. Manski (2003)
is a more thoroughly technical treatment.

Becker (2017) provides a rich discussion of many of the ways data-gathering on
social phenomena can go wrong, including highly-informative missingness, and
case studies of how to investigate such problems. Much of his discussion applies
equally well to measurement in other domains.

H.8 Exercises

1. In this exercise, assume that Y is missing at random, but not missing com-
pletely at random, and that X is not missing at all.

1. Show that the complete-data joint distribution, Pr (X = x, Y = y), is not
equal to the observed joint distribution, Pr (X = x, Y = y|MY = 0).

H.8 Exercises 687

2. Show that the complete-data joint distribution is still observationally iden-
tified.

3. Can the complete-data joint distribution be estimated after listwise dele-
tion?

2. In this exercise, assume that Y is missing at random, but not missing com-
pletely at random, and that X is not missing at all.

1. Show that Pr (Y = y|MY = 0) 6= Pr (Y = y), so that the observed marginal
distribution of Y is not equal to the complete-data marginal distribution.

2. Is Pr (Y = y) identified?

3. Read §18.4 on mutual and conditional information.

1. Show that MCAR holds if and only if I[Y ;MY] = 0

2. Show that MAR holds if and only if I[Y ;MY |X] = 0.

3. Show that MNAR holds if and only if I[Y ;MY |X] > 0.

4. Explain why MNAR is also called “informative missingness”.

4. Refer to Figure H.5 (and to the concept of d-separation in Chapter 18).

1. Use the d-separation rules to explain why

Y ⊥⊥MY |{V,W,Z,R} (H.42)

but

Y 6⊥⊥MY |{V,W,Q} (H.43)

2. Decision-makers often rely on proxies for the variables they really wish
they had. In the diagram, R could be such a proxy, since it’s not a causal
ancestor of Y . Does this mean that we could still have Y ⊥⊥MY |{V,W,Z}?
Explain.

3. Can you find a set of variables S such that S does not include all the parents
of MY , but Y ⊥⊥ MY |S? If so, give it, and explain why the independence
holds; if not, explain why such a set is impossible.

5. Derive Eq. H.18.

6. Derive Eq. H.19.

7. Show that Y is MAR if and only if π(x, y) = π(x). Explain how Eq. H.19
can still apply when Y is missing-at-random, and why MAR is also known as
“ignorable missingness”.

8. In both parts of this exercise, but only in this exercise, make all the assump-
tions of §H.2.3.1. Note: The first part is (for most people!) much easier than
the second.

1. Find the variance of ε − η in terms of the elements of the variance matrix
Σ.

2. Derive Eq. H.23.

3. Find the covariance of ε and η−ε
σ

in terms of the elements of Σ.

4. Derive Eq. H.24.

688 Missing Data

9. Detailed example of EM for missing data In this problem, we work through the
EM algorithm for missing data, in the classic (i.e., simple!) case of exponentially-
distributed random variables. Each unit i has a lifetime Yi, and these follow
an exponential distribution, so the PDF is θe−θy. Assume throughout that the
Yi are independent and identically distributed.

1. Assume all the Yi are observed. Write out the log-likelihood and find the
MLE of θ.

2. Assume that some of the Yi are missing completely at random, with prob-
ability ρ.

1. Write out the log-likelihood for the observed values of Y and the miss-
ingness indicators.

2. Find the MLE for θ and ρ, based on this log-likelihood for observables
alone.

3. (E-step) Find the conditional distribution for the unobserved values of
Y , given the observed values and the missingness indicators. This should
be a function of θ. (Should it also be a function of ρ?)

4. (M-step) Write out the complete-data log-likelihood.
5. (M-step, continued) Write out the expected value of the complete data

log-likelihood, averaging over the distribution of missing values. Hint:
What is the expected value of an exponential distribution?

6. Find an expression for θ̂(t+1) in terms of θ̂(t) and the data.
7. Find the fixed point of this expression. Does it match the MLE for θ you

found earlier?

3. Assume that the Yi are censored: there is a time t0 such that if Yi ≤ t0, we
get to see Yi, but if Yi > t0, Yi is missing (and we know that it’s missing).
Assume we know t0.

1. Write out the log-likelihood function based on the observed Yi and the
missingness indicators. Hint: The probability of an observation being
censored is a function of θ and t0.

2. Find the maximum likelihood estimator of θ based on this observed-data
log-likelihood.

3. (E-step) Find the conditional distribution of the missing Yi, given the
observed Yi and the missingness indicators. Hint: If Y ∼ Exp(θ), then
Y |Y > y0 follows what distribution?

4. (M-step) Write out the complete-data log-likelihood.
5. (M-step) Write out the expected value of the complete-data log-likelihood,

averaging over the distribution of missing values.
6. Find an expression for θ̂(t+1) in terms of θ̂(t) and the data.
7. Find the fixed point of this expression. Does it match the MLE for θ you

found earlier?
8. Explain what assumption this procedure makes about the unobserved

values of Y , and why this assumption cannot be tested (with this data).
9. Can you extend the procedure to handle the case where each unit i has

its own (known) censoring time ti?

H.8 Exercises 689

10. A classic example of inverse probability weighting concerns estimating the
mean (or total) of a population from samples. Suppose that there are n mem-
bers of the population, each with some value of Y , say Yi. The population
mean is therefore

y =
1

n

n∑
i=1

Yi (H.44)

We actually observe N < n members of the population, say the ones where i ∈
O. The probability of observing Yi is πi. The Horvitz-Thompson estimate
of the population mean is

ŷHT =
1

n

∑
i∈O

Yi
πi

(H.45)

Note that the denominator is the total population size, not the sample size!

1. Show that ŷHT is an unbiased estimate of y. Hint: First show that
∑

i∈O Yi =∑n
i=1 Yi(1−MYi).

2. Find the variance of ŷHT . You will need the joint probability that both i
and j are observed, πij.

3. Show that the variance → 0 as N grows.

690 Missing Data

The Running Example

Here is the code for the simulation that provides this chapter’s running example:

library(faraway) # for ilogit
n <- 50
X is uniform (put it in order for easy plotting)
x <- sort(runif(n, min=0, max=100))
Y increases with X, though non-linearly
y <- ilogit(0.05*(x-50)+rnorm(n, sd=1))
Missing-ness depends on the value of Y, high values => more missing
prob.y.missing <- ilogit(50*logit(y))
missing.y <- (rbinom(n=n, size=1, prob=prob.y.missing) == 1) # To make it Boolean
y.obs <- y[!missing.y]
x.obs <- x[!missing.y]
the.df <- data.frame(x=x, y=ifelse(missing.y, NA, y), missing.y=missing.y)
plot(y~x, data=the.df, xlab="x", ylab="y", ylim=c(0,1))
rug(side=1, x=the.df$x)
rug(side=2, x=the.df$y)

As you may have worked out by a process of elimination, this is shown in
Figure H.2a. Missingness is here directly based on Y , and so informative. Notice,
by the way, that when we run a regression on the fully-observed data points (as
in Figure H.2c, or Figure H.3), we get a very different regression curve than is
implied by the actual generative process.

H.8 Exercises 691

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

the.df.post.deletion <- na.omit(the.df)
plot(y ~ x, data=the.df.post.deletion, xlab="x", ylab="y", type="p",

xlim=c(min(x), max(x)), ylim=c(0,1))
rug(side=1, x=the.df.post.deletion$x)
rug(side=2, x=the.df.post.deletion$y)
require(mgcv)
a.spline <- gam(y ~ s(x), data=the.df.post.deletion)
lines(the.df.post.deletion$x, fitted(a.spline), col="grey")

Figure H.3 What the running-example data looks like, after deleting
incomplete cases. The grey line is a spline run through the fully-observed
points.

692 Missing Data

Y

X

MY

Figure H.4 The simplest (but not the only!) graphical model in which Y
might be missing at random (MAR), but not missing completely at random
(MCAR).

Q

MY

R

U

WV

Y

Z

Figure H.5 Whether Y is missing-at-random or not can depend on the
variables used for conditioning. Suppose that whether or not a student is
admitted (or a loan approved, or an arrestee released) depends on
X = {V,W,Z,R}, and Y is some measure of academic success (or loan
repayment, or subsequent trouble with the law). Then Y ⊥⊥MY |X, and Y is
missing-at-random for the decision-makers. But we as data-analysts might
only have access to X ′ = {V,W,Q}, and then Y 6⊥⊥MY |X ′. See Exercise 4
for proofs and extensions.

Appendix I

Writing R Functions

The ability to read, understand, modify and write simple pieces of code is an
essential skill for modern data analysis. Lots of high-quality software already
exists for specific purposes, which you can and should use, but statisticians need
to grasp how such software works, tweak it to suit their needs, recombine existing
pieces of code, and, when needed, build their own tools. Someone who just knows
how to run canned routines is not a data analyst but a human interface to a
machine they do not understand.

Fortunately, writing code is not actually very hard, especially not in R. All it
demands is the discipline to think logically, and the patience to practice. This
appendix tries to illustrate what’s involved, starting from the very beginning. It
is redundant for many students, but included through popular demand.

I.1 Functions

Programming in R is organized around functions. You all know what a mathe-
matical function is, like log x or φ(z) or sin θ: it is a rule which takes some inputs
and delivers a definite output. A function in R, like a mathematical function,
takes zero or more inputs, also called arguments, and returns an output. The
output is arrived at by going through a series of calculations, based on the in-
put, which we specify in the body of the function. As the computer follows our
instructions, it may do other things to the system; these are called side-effects.
(The most common sort of side-effect, in R, is probably making or updating a
plot on the screen.) The basic declaration or definition of a function looks like
so:

my.function <- function(argument.1, argument.2, ...) {
clever manipulations of arguments
return(the.return.value)

}

Strictly speaking, we often don’t need the return() command; without it, the
function will return the last thing it evaluated. But it’s usually clearer, and never
hurts, to be explicit.

We write functions because we often find ourselves going through the same
sequence of steps at the command line, perhaps with small variations. It saves
mental effort on our part to take that sequence and bind it together into an

693

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

694 Programming

integrated procedure, the function, so that then we can think about the function
as a whole, rather than the individual steps. It also reduces error, because, by
invoking the same function every time, we don’t have to worry about missing a
step, or wondering whether we forgot to change the third step to be consistent
with the second, and so on.

I.2 First Example: Pareto Quantiles

Let me give a really concrete example. In Chapter 6, I mentioned the Pareto
distribution, which has the probability density function

f(x;α, x0) =

{
α−1
x0

(
x
x0

)−α
x ≥ x0

0 x < x0

(I.1)

Consequently, the CDF is

F (x;α, x0) = 1−
(
x

x0

)−α+1

(I.2)

and the quantile function is

Q(p;α, x0) = x0(1− p)−
1

α−1 (I.3)

Say I want to find the median of a Pareto distribution with α = 2.33 and
x0 = 6× 108. I can do that in R:

6e8 * (1-0.5)^(-1/(2.33-1))
[1] 1010391288

If I decide I want the 40th percentile of the same distribution, I can do that:

6e8 * (1-0.4)^(-1/(2.33-1))
[1] 880957225

If I decide to raise the exponent to 2.5, lower the threshold to 1× 106, and ask
about the 92nd percentile, I can do that, too:

1e6 * (1-0.92)^(-1/(2.5-1))
[1] 5386087

But doing this all by hand gets quite tiresome, and at some point I’m going to
mess up and (say) type when I meant ^. I’ll write a function to do this for me,
and so that there is only one place for me to make a mistake:

Calculate quantiles of the Pareto distribution
Inputs: desired quantile (p)

exponent of the distribution (exponent)
lower threshold of the distribution (threshold)

Outputs: the pth quantile
qpareto.1 <- function(p, exponent, threshold) {

q <- threshold*((1-p)^(-1/(exponent-1)))
return(q)

}

I.3 Functions Which Call Functions 695

The name of the function is what goes on the left of the assignment <-, with
the declaration (beginning function) on the right. (I called this qpareto.1 to
distinguish it from later modifications.) The three terms in the parenthesis after
function are the arguments to qpareto — the inputs it has to work with. The
body of the function is just like some R code we would type into the command
line, after assigning values to the arguments. The very last line tells the function,
explicitly, what its output or return value should be. Here, of course, the body
of the function calculates the pth quantile of the Pareto distribution with the
exponent and threshold we ask for.

When I enter the code above, defining qpareto.1, into the command line, R
just accepts it without outputting anything. It thinks of this as assigning certain
value to the name qpareto.1, and it doesn’t produce outputs for assignments
when they succeed, just as if I’d said alpha <- 2.5.

All that successfully creating a function means, however, is that we didn’t make
a huge error in the syntax. We should still check that it works, by invoking the
function with values of the arguments where we know, by other means, what the
output should be. I just calculated three quantiles of Pareto distributions above,
so let’s see if we can reproduce them.

qpareto.1(p=0.5,exponent=2.33,threshold=6e8)
[1] 1010391288
qpareto.1(p=0.4,exponent=2.33,threshold=6e8)
[1] 880957225
qpareto.1(p=0.92,exponent=2.5,threshold=1e6)
[1] 5386087

So, our first function seems to work successfully.

I.3 Functions Which Call Functions

If we examine other quantile functions (e.g., qnorm), we see that most of them
take an argument called lower.tail, which controls whether p is a probability
from the lower tail or the upper tail. qpareto.1 implicitly assumes that it’s the
lower tail, but let’s add the ability to change this.

Calculate quantiles of the Pareto distribution
Inputs: desired quantile (p)

exponent of the distribution (exponent)
lower threshold of the distribution (threshold)
flag for whether to give lower or upper quantiles (lower.tail)

Outputs: the pth quantile
qpareto.2 <- function(p, exponent, threshold, lower.tail=TRUE) {

if(lower.tail==FALSE) {
p <- 1-p

}
q <- threshold*((1-p)^(-1/(exponent-1)))
return(q)

}

696 Programming

When, in a function declaration, an argument is followed by = and an expres-
sion, the expression sets the default value of the argument, the one which will
be used unless explicitly over-ridden. The default value of lower.tail is TRUE,
so, unless it is explicitly set to false, we will assume p is a probability counted
from −∞ on up.

The if command is a control structure — if the condition in parenthesis
is true, then the commands in the following braces will be executed; if not, not.
Since lower tail probabilities plus upper tail probabilities must add to one, if we
are given an upper tail probability, we just find the lower tail probability and
proceed as before.

Let’s try it:

qpareto.2(p=0.5,exponent=2.33,threshold=6e8,lower.tail=TRUE)
[1] 1010391288
qpareto.2(p=0.5,exponent=2.33,threshold=6e8)
[1] 1010391288
qpareto.2(p=0.92,exponent=2.5,threshold=1e6)
[1] 5386087
qpareto.2(p=0.5,exponent=2.33,threshold=6e8,lower.tail=FALSE)
[1] 1010391288
qpareto.2(p=0.92,exponent=2.5,threshold=1e6,lower.tail=FALSE)
[1] 1057162

First: the answer qpareto.2 gives with lower.tail explicitly set to true
matches what we already got from qpareto.1. Second and third: the default
value for lower.tail works, and it works for two different values of the other
arguments. Fourth and fifth: setting lower.tail to FALSE works properly (since
the 50th percentile is the same from above or from below, but the 92nd percentile
is different, and smaller from above than from below).

The function qpareto.2 is equivalent to this:

Calculate quantiles of the Pareto distribution
Inputs: desired quantile (p)

exponent of the distribution (exponent)
lower threshold of the distribution (threshold)
flag for whether to give lower or upper quantiles (lower.tail)

Outputs: the pth quantile
qpareto.3 <- function(p, exponent, threshold, lower.tail=TRUE) {

if(lower.tail==FALSE) {
p <- 1-p

}
q <- qpareto.1(p, exponent, threshold)
return(q)

}

When R tries to execute this, it will look for a function named qpareto.1 in
the workspace. If we have already defined such a function, then R will execute it,
with the arguments we have provided, and q will become whatever is returned by
qpareto.1. When we give R the above function definition for qpareto.3, it does
not check whether qpareto.1 exists — it only has to be there at run time. If

I.3 Functions Which Call Functions 697

qpareto.1 changes, then the behavior of qpareto.3 will change with it, without
our having to redefine qpareto.3.

This is extremely useful. It means that we can take our programming problem
and sub-divide it into smaller tasks efficiently. If I made a mistake in writing
qpareto.1, when I fix it, qpareto.3 automatically gets fixed as well — along
with any other function which calls qpareto.1, or qpareto.3 for that matter. If
I discover a more efficient way to calculate the quantiles and modify qpareto.1,
the improvements are likewise passed along to everything else. But when I write
qpareto.3, I don’t have to worry about how qpareto.1 works, I can just assume
it does what I need somehow.

I.3.1 Sanity-Checking Arguments

It is good practice, though not strictly necessary, to write functions which check
that their arguments make sense before going through possibly long and compli-
cated calculations. For the Pareto quantile function, for instance, p must be in
[0, 1], the exponent α must be at least 1, and the threshold x0 must be positive,
or else the mathematical function just doesn’t make sense.

Here is how to check all these requirements:

Calculate quantiles of the Pareto distribution
Inputs: desired quantile (p)

exponent of the distribution (exponent)
lower threshold of the distribution (threshold)
flag for whether to give lower or upper quantiles (lower.tail)

Outputs: the pth quantile
qpareto.4 <- function(p, exponent, threshold, lower.tail=TRUE) {

stopifnot(p >= 0, p <= 1, exponent > 1, threshold > 0)
q <- qpareto.3(p,exponent,threshold,lower.tail)
return(q)

}

The function stopifnot halts the execution of the code, with an error message,
if all of its arguments do not evaluate to TRUE. If all those conditions are met,
however, R just goes on to the next command, which here happens to be running
qpareto.3. Of course, I could have written the checks on the arguments directly
into the latter.

Let’s see this in action:

qpareto.4(p=0.5,exponent=2.33,threshold=6e8,lower.tail=TRUE)
[1] 1010391288
qpareto.4(p=0.92,exponent=2.5,threshold=1e6,lower.tail=FALSE)
[1] 1057162
qpareto.4(p=1.92,exponent=2.5,threshold=1e6,lower.tail=FALSE)

Error: p <= 1 is not TRUE

qpareto.4(p=-0.02,exponent=2.5,threshold=1e6,lower.tail=FALSE)

Error: p >= 0 is not TRUE

qpareto.4(p=0.92,exponent=0.5,threshold=1e6,lower.tail=FALSE)

698 Programming

Error: exponent > 1 is not TRUE

qpareto.4(p=0.92,exponent=2.5,threshold=-1,lower.tail=FALSE)

Error: threshold > 0 is not TRUE

qpareto.4(p=-0.92,exponent=2.5,threshold=-1,lower.tail=FALSE)

Error: p >= 0 is not TRUE

The first two lines give the same results as our earlier functions — as they
should, because all the arguments are in the valid range. The third, fourth, fifth
and sixth lines all show that qpareto.4 stops with an error message when one
of the conditions in the stopifnot is violated. Notice that the error message
says which condition was violated. The seventh line shows one limitation of this:
the arguments violate two conditions, but stopifnot’s error message will only
mention the first one. (What is the other violation?)

I.4 Layering Functions and Debugging

Functions can call functions which call functions, and so on indefinitely. To il-
lustrate, I’ll write a function which generates Pareto-distributed random num-
bers, using the “quantile transform” method from §5.2.2.3. This first generates
a uniform random number U on [0, 1], and then returns Q(U), with Q being the
quantile function of the desired distribution.

The first version contains a deliberate bug, which I will show how to
track down and fix.

Generate random numbers from the Pareto distribution
Inputs: number of random draws (n)

exponent of the distribution (exponent)
lower threshold of the distribution (threshold)

Outputs: vector of random numbers
rpareto <- function(n,exponent,threshold) {

x <- vector(length=n)
for (i in 1:n) {
x[i] <- qpareto.4(p=rnorm(1),exponent=exponent,threshold=threshold)

}
return(x)

}

Notice that this calls qpareto.4, which calls qpareto.3, which calls qpareto.1.
It doesn’t work:

rpareto(10)

Error in qpareto.4(p = rnorm(1), exponent = exponent, threshold = threshold): argument
"exponent" is missing, with no default

This is a puzzling error message — the expression exponent > 1 never appears
in rpareto! The error is coming from further down the chain of execution. We

I.4 Layering Functions and Debugging 699

can see where it happens by using the traceback() function, which gives the
chain of function calls leading to the latest error1:

<<wrapper=TRUE, eval=FALSE>>=

traceback()
3: stopifnot(p >= 0, p <= 1, exponent > 1, threshold > 0) at #2
2: qpareto.4(p = rnorm(1), exponent = exponent, threshold = threshold) at #4
1: rpareto(10)

@

traceback() outputs the sequence of function calls leading up to the error in
reverse order, so that the last line, numbered 1, is what we actually entered on
the command line. This tells us that the error is happening when qpareto.4 tries
to check the arguments to the quantile function. And the reason it is happening
is that we are not providing qpareto.4 with any value of exponent. And the
reason that is happening is that we didn’t give rpareto any value of exponent

as an explicit argument when we called it, and our definition didn’t set a default.
Let’s try this again.

rpareto(n=10,exponent=2.5,threshold=1)

Error: p <= 1 is not TRUE

<<wrapper=TRUE, eval=FALSE>>=

traceback()
3: stopifnot(p >= 0, p <= 1, exponent > 1, threshold > 0) at #2
2: qpareto.4(p = rnorm(1), exponent = exponent, threshold = threshold) at #4
1: rpareto(n = 10, exponent = 2.5, threshold = 1)

@

This is progress! The stopifnot in qpareto.4 is at least able to evaluate all
the conditions — it just happens that one of them is false. The problem, then,
is that qpareto.4 is being passed a negative value of p. This tells us that the
problem is coming from the part of rpareto.1 which sets p. Looking at that,

p = rnorm(1)

the culprit is obvious: I stupidly wrote rnorm, which generates a Gaussian
random number, when I meant to write runif, which generates a uniform random
number.2

The obvious fix is just to replace rnorm with runif:

1 For users of knitr/R Markdown: traceback is one of a number of highly-interactive commands

which don’t work properly in knitr. This is not much of a loss, since it’s for debugging, and you

shouldn’t be doing your debugging in your report.
2 I actually made this exact mistake the first time I wrote the function, in 2004.

700 Programming

Generate random numbers from the Pareto distribution
Inputs: number of random draws (n)

exponent of the distribution (exponent)
lower threshold of the distribution (threshold)

Outputs: vector of random numbers
rpareto <- function(n,exponent,threshold) {

x <- vector(length=n)
for (i in 1:n) {
x[i] <- qpareto.4(p=runif(1),exponent=exponent,threshold=threshold)

}
return(x)

}

Let’s see if this is enough to fix things, or if I have any other errors:

rpareto(n=10,exponent=2.5,threshold=1)
[1] 1.875049 3.463652 1.009382 2.231161 1.285460 1.746962 3.126330
[8] 1.134979 1.818675 1.475200

This function at least produces numerical return values rather than errors! Are
they the right values?

We can’t expect a random number generator to always give the same results, so
I can’t cross-check this function against direct calculation, the way I could check
qpareto.1. (Actually, one way to check a random number generator is to make
sure it doesn’t give identical results when run twice!) It’s at least encouraging that
all the numbers are above threshold, but that’s not much of a test. However,
since this is a random number generator, if I use it to produce a lot of random
numbers, the quantiles of the output should be close to the theoretical quantiles,
which I do know how to calculate.

r <- rpareto(n=1e4,exponent=2.5,threshold=1)
qpareto.4(p=0.5,exponent=2.5,threshold=1)
[1] 1.587401
quantile(r,0.5)
50%
1.585473
qpareto.4(p=0.1,exponent=2.5,threshold=1)
[1] 1.072766
quantile(r,0.1)
10%
1.073453
qpareto.4(p=0.9,exponent=2.5,threshold=1)
[1] 4.641589
quantile(r,0.9)
90%
4.539353

This looks pretty good. Figure I.1 shows a plot comparing all the theoretical
percentiles to the simulated ones, confirming that we didn’t just get lucky with
choosing particular percentiles above.

I.4 Layering Functions and Debugging 701

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●

●●●●
●●●

●●●
●●

●●
●●

●
●

●
●

●

●

●

●

●

●

●

5 10 15 20

5
10

15
20

theoretical.percentiles

si
m

ul
at

ed
.p

er
ce

nt
ile

s

simulated.percentiles <- quantile(r,(0:99)/100)
theoretical.percentiles <- qpareto.4((0:99)/100,exponent=2.5,threshold=1)
plot(theoretical.percentiles,simulated.percentiles)
abline(0,1)

Figure I.1 Theoretical percentiles of the Pareto distribution with α = 2.5,
x0 = 1, and empirical percentiles from a sample of 104 values simulated from
it with the rpareto function. (The solid line is the x = y diagonal, for visual
reference.)

702 Programming

I.4.1 More on Debugging

Everyone who writes their own code spends a lot of time debugging3. There are
some guidelines for making it easier and less painful.

Characterize the Bug

We’ve got a bug when the code we’ve written won’t do what we want. To fix this,
it helps a lot to know exactly what error we’re seeing. The first step to this is to
make the error reproducible. Can we always get the error when re-running the
same code and values? If we start the same code in a clean copy of R, does the
same thing happen? Once we can reproduce the error, we map its boundaries.
How much can we change the inputs and get the same error? A different error?
For what inputs (if any) does the bug go away? How big is the error?

Localize the Bug

The problem may be a diffuse all-pervading wrongness, but often it’s a lot more
localized, to a few lines or even just one line of code; it helps to know where! We
have seen some tools for localizing the bug above: traceback() and stopifnot().
Another very helpful one is to add print statements, so that our function gives
us messages about the progress of its calculations, selected variables, etc., as it
goes; the warning command can be used to much the same effect4.

Fix the Bug

Once you know what’s going wrong and where it’s going wrong, it’s often not too
hard to spot the error, either one of syntax (say = vs. ==) or logic. Try a fix and
see if it makes it better. Do the inputs which gave you the bugs before now work
properly? Are you getting different errors?

I.5 Automating Repetition and Passing Arguments

The match between the theoretical quantiles and the simulated ones in Figure
I.1 is close, but it’s not perfect. On the one hand, this might indicate some subtle
mistake. On the other hand, it might just be random sampling noise — rpareto

is supposed to be a random number generator, after all. We could check this by
seeing whether we get different deviations around the line with different runs of
rpareto, or if on the contrary they all pull in the same direction. We could just
make many plots by hand, the way we made that plot by hand, but since we’re
doing almost exactly the same thing many times, let’s write a function.

Compare random draws from Pareto distribution to theoretical quantiles
Inputs: None
Outputs: None

3 Those who don’t write their own code but use computers anyway spend a lot of time putting up

with other people’s bugs.
4 Real software engineers look down on this, in favor of more sophisticated tools, like interactive

debuggers. They have a point, but that’s usually over-kill for the purposes of this class.

I.5 Automating Repetition and Passing Arguments 703

Side-effects: Adds points showing random draws vs. theoretical quantiles
to current plot

pareto.sim.vs.theory <- function() {
r <- rpareto(n=1e4,exponent=2.5,threshold=1)
simulated.percentiles <- quantile(r,(0:99)/100)
points(theoretical.percentiles,simulated.percentiles)

}

This doesn’t return anything. All it does is draw a new sample from the same
Pareto distribution as before, re-calculate the simulated percentiles, and add them
to an existing plot — this is an example of a side-effect. Notice also that the func-
tion presumes that theoretical.percentiles already exists. (The theoretical
percentiles won’t need to change from one simulation draw to the next, so it
makes sense to only calculate them once.)

Figure I.2 shows how we can use it to produce multiple simulation runs. We
can see that, looking over many simulation runs, the quantiles seem to be too
large about as often, and as much, as they are too low, which is reassuring.

One thing which that figure doesn’t do is let us trace the connections between
points from the same simulation. More generally, we can’t modify the plotting
properties, which is kind of annoying. This is easily fixed modifying the function
to pass along arguments:

Compare random draws from Pareto distribution to theoretical quantiles
Inputs: Graphical arguments, passed to points()
Outputs: None
Side-effects: Adds points showing random draws vs. theoretical quantiles

to current plot
pareto.sim.vs.theory <- function(...) {

r <- rpareto(n=1e4,exponent=2.5,threshold=1)
simulated.percentiles <- quantile(r,(0:99)/100)
points(theoretical.percentiles,simulated.percentiles,...)

}

Putting the ellipses (...) in the argument list means that we can give pareto.sim.vs.theory.2
an arbitrary collection of arguments, but with the expectation that it will pass
them along unchanged to some other function that it will call with ... — here,
that’s the points function. Figure I.3 shows how we can use this, by passing
along graphical arguments to points — in particular, telling it to connect the
points by lines (type="b"), varying the shape of the points (pch=i) and the line
style (lty=i).

These figures are reasonably convincing that nothing is going seriously wrong
with the simulation for these parameter values. To check other parameter settings,
again, I could repeat all these steps by hand, or I could write another function:

Check Pareto random number generator, by repeatedly generating random draws
and comparing them to theoretical quantiles

Inputs: Number of random points to generate per replication (n)
exponent of distribution (exponent)
lower threshold of distribution (threshold)
number of replications to create (B)

Outputs: None

704 Programming

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●

●●●●
●●●

●●●
●●

●●
●●

●
●

●
●

●

●

●

●

●

●

●

5 10 15 20

5
10

15
20

theoretical.percentiles

si
m

ul
at

ed
.p

er
ce

nt
ile

s

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●

●●●●●●
●●●●●

●●●●
●●●

●●●
●●

●●
●●

●
●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●

●●●●●●
●●●●●

●●●●
●●●

●●
●●

●●
●●

●
●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●

●●●●
●●●

●●●
●●

●●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●

●●●●●●
●●●●●

●●●
●●●

●●
●●

●●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●

●●●●
●●●

●●●
●●

●●
●●●●

●
●

●
●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●
●●●●●●

●●●●●
●●●●

●●●
●●●

●●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●
●●●●●●
●●●●●

●●●●
●●●

●●●
●●

●●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●

●●●
●●●

●●●
●●

●●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●

●●●●●●
●●●●●

●●●●
●●●

●●
●●

●●
●●

●
●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●

●●●●●
●●●●

●●●
●●
●●●

●●
●
●

●
●

●
●

●

●

●

●

●

●

●

simulated.percentiles <- quantile(r,(0:99)/100)
theoretical.percentiles <- qpareto.4((0:99)/100,exponent=2.5,threshold=1)
plot(theoretical.percentiles,simulated.percentiles)
abline(0,1)
for (i in 1:10) { pareto.sim.vs.theory() }

Figure I.2 Comparing multiple simulated quantile values to the theoretical
quantiles.

Side-effects: Creates new plot, plots simulated points vs. theory
check.rpareto <- function(n=1e4, exponent=2.5, threshold=1, B=10) {

One set of percentiles for everything
theoretical.percentiles <- qpareto.4((0:99)/100, exponent=exponent,

threshold=threshold)
Set up plotting window, but don't put anything in it:

I.5 Automating Repetition and Passing Arguments 705

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●

●●●●
●●●

●●●
●●

●●
●●

●
●

●
●

●

●

●

●

●

●

●

5 10 15 20

5
10

15
20

theoretical.percentiles

si
m

ul
at

ed
.p

er
ce

nt
ile

s

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●

●●●●
●●●

●●●
●●

●●
●●●

●
●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●
●●●●●●
●●●●●

●●●●
●●●

●●●
●●

●●
●●

●
●

●
●

●
●

●

●

●

●

●

●

simulated.percentiles <- quantile(r,(0:99)/100)
theoretical.percentiles <- qpareto.4((0:99)/100,exponent=2.5,threshold=1)
plot(theoretical.percentiles,simulated.percentiles)
abline(0,1)
for (i in 1:10) {

pareto.sim.vs.theory(pch=i,type="b",lty=i)
}

Figure I.3 As Figure I.2, but using the ability to pass along arguments to a
subsidiary function to distinguish separate simulation runs.

plot(0,type="n", xlim=c(0, max(theoretical.percentiles)),
No more horizontal room than we need
ylim=c(0,1.1*max(theoretical.percentiles)),
Allow some extra vertical room for noise

706 Programming

xlab="theoretical percentiles", ylab="simulated percentiles",
main = paste("exponent = ", exponent, ", threshold = ", threshold))

Diagonal, for visual reference
abline(0,1)
for (i in 1:B) {
pareto.sim.vs.theory(n=n, exponent=exponent, threshold=threshold,

pch=i, type="b", lty=i)
}

}

R will accept this definition, but it won’t run properly until we re-defined
pareto.sim.vs.theory to take the arguments n, exponent and threshold.5

It seems like a simple modification of the old definition should do the trick:

Compare random draws from Pareto distribution to theoretical quantiles
Inputs: Graphical arguments, passed to points()
Outputs: None
Side-effects: Adds points showing random draws vs. theoretical quantiles

to current plot
pareto.sim.vs.theory <- function(n, exponent, threshold,...) {

r <- rpareto(n=n, exponent=exponent, threshold=threshold)
simulated.percentiles <- quantile(r, (0:99)/100)
points(theoretical.percentiles, simulated.percentiles, ...)

}

After defining this, the checker function seems to work fine. The following
commands produce the plot in Figure I.4, which looks very like the manually-
created one. (Random noise means it won’t be exactly the same.) Putting in the
default arguments explicitly gives the same results (not shown).

check.rpareto()
check.rpareto(n=1e4, exponent=2.5, threshold=1)

Unfortunately, changing the arguments reveals a bug (Figure I.5). Notice that
the vertical coordinates of the points, coming from the simulation, look like they
have about the same range as the theoretical quantiles, used to lay out the plotting
window. But the horizontal coordinates are all pretty much the same (on a scale
of tens of billions, anyway). What’s going on?

The horizontal coordinates for the points being plotted are set in pareto.sim.vs.theory.3:

points(theoretical.percentiles, simulated.percentiles, ...)

Where does this function get theoretical.percentiles from? Since the vari-
able isn’t assigned inside the function, R tries to figure it out from context. Since
pareto.sim.vs.theory was defined on the command line, the context R uses to
interpret it is the global workspace — where there is, in fact, a variable called
theoretical.percentiles, which I set by hand for the previous plots. So the
plotted theoretical quantiles are all too small in Figure I.5, because they’re for a
distribution with a much lower threshold.

5 Try running check.rpareto(), followed by warnings().

I.5 Automating Repetition and Passing Arguments 707

0 5 10 15 20

0
5

10
15

20
exponent = 2.5 , threshold = 1

theoretical percentiles

si
m

ul
at

ed
 p

er
ce

nt
ile

s

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●

●●●●●●
●●●●●

●●●●
●●●

●●
●●●

●
●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●

●●●●●●
●●●●

●●●●
●●●

●●
●●

●●●●
●

●
●

●

●

●

●

●

●

●

check.rpareto()

Figure I.4 Automating the checking of rpareto.

Didn’t check.rpareto assign is own value to theoretical.percentiles, which
it used to set the plot boundaries? Yes, but that assignment only applied in the
context of the function. Assignments inside a function have limited scope, they
leave values in the broader context alone. Try this:

x <- 7
x
[1] 7
square <- function(y) { x <- y^2; return(x) }
square(7)
[1] 49

708 Programming

0.0e+00 5.0e+09 1.0e+10 1.5e+10 2.0e+10 2.5e+10

0.
0e

+
00

5.
0e

+
09

1.
0e

+
10

1.
5e

+
10

2.
0e

+
10

2.
5e

+
10

3.
0e

+
10

exponent = 2.33 , threshold = 9e+08

theoretical percentiles

si
m

ul
at

ed
 p

er
ce

nt
ile

s

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●
●●●●●
●●●●
●●●
●●
●●
●
●
●
●
●
●
●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●
●●●●
●●●
●●
●●
●●
●
●
●
●
●

●

●

●

●

●

check.rpareto(n=1e4, exponent=2.33, threshold=9e8)

Figure I.5 A bug in check.rpareto.

x
[1] 7

The function square assigns x to be the square of its argument. This assignment
holds within the scope of the function, as we can see from the fact that the
returned value is always the square of the argument, and not what we assigned
x to be in the global, command-line context. However, this does not over-write
that global value, as the last line shows.6

6 There are techniques by which functions can change assignments outside of their scope. They are

I.5 Automating Repetition and Passing Arguments 709

There are two ways to fix this problem. One is to re-define pareto.sim.vs.theory
to calculate the theoretical quantiles:

Compare random draws from Pareto distribution to theoretical quantiles
Inputs: Number of random points to generate (n)

exponent of distribution (exponent)
lower threshold of distribution (threshold)
graphical arguments, passed to points() (...)

Outputs: None
Side-effects: Adds points showing random draws vs. theoretical quantiles

to current plot
pareto.sim.vs.theory <- function(n, exponent, threshold,...) {

r <- rpareto(n=n, exponent=exponent, threshold=threshold)
theoretical.percentiles <- qpareto.4((0:99)/100, exponent=exponent,

threshold=threshold)
simulated.percentiles <- quantile(r,(0:99)/100)
points(theoretical.percentiles, simulated.percentiles, ...)

}

This will work (try running check.rpareto(1e4,2.33,9e8) now), but it’s very
redundant — every time we call this, we’re recalculating the same percentiles,
which we already calculated in check.rpareto. A cleaner solution is to make the
vector of theoretical percentiles an argument to pareto.sim.vs.theory, and
change check.rpareto to provide it.

Compare random draws from Pareto distribution to theoretical quantiles
Inputs: Graphical arguments, passed to points()
Outputs: None
Side-effects: Adds points showing random draws vs. theoretical quantiles

to current plot
check.rpareto <- function(n=1e4,exponent=2.5,threshold=1,B=10) {

One set of percentiles for everything
theoretical.percentiles <- qpareto.4((0:99)/100,exponent=exponent,
threshold=threshold)

Set up plotting window, but don't put anything in it:
plot(0,type="n", xlim=c(0,max(theoretical.percentiles)),
No more horizontal room than we need
ylim=c(0,1.1*max(theoretical.percentiles)),
Allow some extra vertical room for noise
xlab="theoretical percentiles", ylab="simulated percentiles",
main = paste("exponent = ", exponent, ", threshold = ", threshold))

Diagonal, for visual reference
abline(0,1)
for (i in 1:B) {
pareto.sim.vs.theory(n=n,exponent=exponent,threshold=threshold,
theoretical.percentiles=theoretical.percentiles,
pch=i,type="b",lty=i)

}
}

Compare random draws from Pareto distribution to theoretical quantiles
Inputs: Number of random points to generate (n)

exponent of distribution (exponent)

tricky, rare, and best avoided except by those who really know what they are doing. (If you think

you do, you are probably wrong.)

710 Programming

lower threshold of distribution (threshold)
vector of theoretical percentiles (theoretical.percentiles)
graphical arguments, passed to points()

Outputs: None
Side-effects: Adds points showing random draws vs. theoretical quantiles

to current plot
pareto.sim.vs.theory <- function(n,exponent,threshold,

theoretical.percentiles,...) {
r <- rpareto(n=n,exponent=exponent,threshold=threshold)
simulated.percentiles <- quantile(r,(0:99)/100)
points(theoretical.percentiles,simulated.percentiles,...)

}

Figure I.6 shows that this succeeds.

I.5 Automating Repetition and Passing Arguments 711

0.0e+00 5.0e+09 1.0e+10 1.5e+10 2.0e+10 2.5e+10

0.
0e

+
00

5.
0e

+
09

1.
0e

+
10

1.
5e

+
10

2.
0e

+
10

2.
5e

+
10

3.
0e

+
10

exponent = 2.33 , threshold = 9e+08

theoretical percentiles

si
m

ul
at

ed
 p

er
ce

nt
ile

s

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●

●●●●●
●●●●

●●●
●●●

●●
●●●

●
●

●
●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●

●●●●●
●●●●

●●●
●●●

●●
●●

●
●

●
●

●

●

●

●

●

●

check.rpareto(1e4,2.33,9e8)

Figure I.6 Using the corrected simulation checker.

712 Programming

I.6 Avoiding Iteration: Manipulating Objects

Let’s go back to the declaration of rpareto, which I repeat here, unchanged, for
convenience:

Generate random numbers from the Pareto distribution
Inputs: number of random draws (n)

exponent of the distribution (exponent)
lower threshold of the distribution (threshold)

Outputs: vector of random numbers
rpareto <- function(n,exponent,threshold) {

x <- vector(length=n)
for (i in 1:n) {
x[i] <- qpareto.4(p=runif(1),exponent=exponent,threshold=threshold)

}
return(x)

}

We’ve confirmed that this works, but it involves explicit iteration in the form
of the for loop. Because of the way R carries out iteration7, it is slow, and better
avoided when possible. Many of the utility functions in R, like replicate, are
designed to avoid explicit iteration. We could re-write rpareto using replicate,
for example:

Generate random numbers from the Pareto distribution
Inputs: number of random draws (n)

exponent of the distribution (exponent)
lower threshold of the distribution (threshold)

Outputs: vector of random numbers
rpareto <- function(n,exponent,threshold) {

x <- replicate(n,qpareto.4(p=runif(1),exponent=exponent,threshold=threshold))
return(x)

}

(The outstanding use of replicate is when we want to repeat the same random
experiment many times — there are examples in the notes for Chapters 5 and 6.)

An even clearer alternative makes use of the way R automatically vectorizes
arithmetic:

Generate random numbers from the Pareto distribution
Inputs: number of random draws (n)

exponent of the distribution (exponent)
lower threshold of the distribution (threshold)

Outputs: vector of random numbers
rpareto <- function(n,exponent,threshold) {

x <- qpareto.4(p=runif(n),exponent=exponent,threshold=threshold)
return(x)

}

This feeds qpareto.4 a vector of quantiles p, of length n, which in turn gets
passed along to qpareto.1, which finally tries to evaluate

7 Roughly speaking, it ends up having to create and destroy a whole copy of everything which gets

changed in the course of one pass around the iteration loop, which can involve lots of memory and

time.

I.6 Avoiding Iteration: Manipulating Objects 713

threshold*((1-p)^(-1/(exponent-1)))

With p being a vector, R hopes that threshold and exponent are also vectors,
and of the same length, so that it evaluates this arithmetic expression component-
wise. If exponent and threshold are shorter, it will “recycle” their values, in
order, until it has vectors equal in length to p. In particular, if exponent and
threshold have length 1, it will repeat both of them length(p) times, and
then evaluate everything component by component. (See the “Introduction to
R” manual for more on this “recycling rule”.) The quantile functions we have
defined inherit this ability to recycle, without any special work on our part. The
final version of rpareto we have written is not only faster, it is clearer and easier
to read. It focuses our attention on what is being done, and not on the mechanics
of doing it.

I.6.1 ifelse and which

Sometimes we want to do different things to different parts of a vector (or larger
structure) depending on its values. For instance, in robust regression one often
replaces the squared error loss with what’s called the Huber loss8,

ψ(x) =

{
x2 if |x| ≤ 1

2|x| − 1 if |x| > 1
(I.4)

which isn’t so vulnerable to outliers, as in Figure I.7.
We might code this up like so:

Calculate Huber's loss function
Input: vector of numbers x
Return: x^2 for |x|<1, 2|x|-1 otherwise
huber <- function(x) {

n <- length(x)
y <- vector(n)
for (i in 1:n) {
if (abs(x) <= 1) {
y[i] <- x[i]^2

} else {
y[i] <- 2*abs(x[i])-1

}
}
return(y)

}

This is not very easy to follow. R provides a very useful function, ifelse, which
lets us apply a binary test to each element in a vector, and then draw from either
of two calculations. Using it, we re-write huber like so:

8 One applies this not to the residuals directly, but to residuals divided by some robust measure of

dispersion.

714 Programming

−4 −2 0 2 4

0
5

10
15

20
25

x

curve(x^2,col="grey",from=-5,to=5,ylab="")
curve(huber,add=TRUE)

Figure I.7 The Huber loss function ψ from Eq. I.4 (black) versus the
squared error loss (grey).

Calculate Huber's loss function
Input: vector of numbers x
Return: x^2 for |x|<1, 2|x|-1 otherwise
huber <- function(x) {

return(ifelse(abs(x) <= 1, x^2, 2*abs(x)-1))
}

The first argument needs to produce a vector of TRUE/FALSE values; the sec-
ond argument provides the outputs for the TRUE positions, the third outputs for
the FALSE positions. Here all three are expressions involving the same variable,
but that’s not essential.

Another useful device is the which function, whose argument is a vector of
TRUE/FALSE values, returning a vector of the indices where the argument is
TRUE, e.g.,

incomplete.cases <- which(is.na(cholesterol))

would give us the positions at which the vector cholesterol had NA values.
This is equivalent to

incomplete.cases <- c()
for (i in 1:length(cholesterol)) {

if (is.na(cholesterol[i])) {
incomplete.cases <- c(incomplete.cases,i)

}

I.6 Avoiding Iteration: Manipulating Objects 715

}

I.6.2 apply and Its Variants

Particularly useful ways of avoiding iteration come from the function apply, and
the closely related sapply and lapply functions. (It particularly shows up apply

in Chapter 6.)

x <- replicate(10,rpareto(100,2.5,1))
apply(x,2,quantile,probs=0.9)

Each call to rpareto inside the replicate creates a vector of length 100.
Replicate then stacks these, as columns, into an array. The apply function applies
the same function to each row or column of the array, depending on whether its
second argument is 1 (rows) or 2 (columns). So this will find the 90th percentile
of each of the 10 random-number draws, and give that back to us as a vector.
array only works for arrays, matrices and data frames (and works on them

by treating them as arrays). If we want to apply the same function to every
element of a vector or list, we use lapply. This gives us back a list, which can
be inconvenient:

y <- c(0.9,0.99,0.999,0.99999)
lapply(y,qpareto.4,exponent=2.5,threshold=1)
[[1]]
[1] 4.641589
##
[[2]]
[1] 21.54435
##
[[3]]
[1] 100
##
[[4]]
[1] 2154.435

The function sapply works like lapply, but tries to simplify its output down
to a vector or array:

sapply(y,qpareto.4,exponent=2.5,threshold=1)
[1] 4.641589 21.544347 100.000000 2154.434690

That last line just did the equivalent of qpareto.4(y,exponent=2.5,threshold=1),
but sapply can take considerably more complicated functions:

Suppose we have models lm.1 and lm.2 hanging around
some.models <- list(model.1=lm.1, model.2=lm.2)
Extract all the coefficients from all the models
sapply(some.models,coefficients)

sapply has a simplify argument, which defaults to TRUE; setting it to FALSE

716 Programming

turns off the simplification. replicate has the same argument. Usually, simpli-
fying the output of sapply or replicate is a good thing, but it can lead to
weirdness when what’s being repeated is a complicated value itself.

For instance, let’s revisit the data set about economic growth and currency
undervaluation across countries and times (Problem Set 2), and try fitting a
different model for each five-year period.

uv <- read.csv("http://www.stat.cmu.edu/~cshalizi/uADA/16/hw/02/uv.csv")
uv.lm.fiveyear <- function(fiveyear) {

lm(growth ~ log(gdp) + underval,data=uv[uv$year==fiveyear,])
}
What are all the five-year periods in the data?
fiveyears <- sort(unique(uv$year))
fiveyear.models.1 <- sapply(fiveyears, uv.lm.fiveyear)

Working with fiveyear.models.1 is going to be very hard, because it wants
to be an array, but isn’t quite, and is generally very confused. (Try it!) Instead
do it this way:

fiveyear.models.2 <- sapply(fiveyears, uv.lm.fiveyear, simplify=FALSE)

fiveyear.models.2 is simply a list with 10 elements, each one of which is an
lm-style model. Now it’s easy extract information about any particular one, or
use sapply:

sapply(fiveyear.models.2, coefficients)
[,1] [,2] [,3] [,4]
(Intercept) -0.04635778 -0.045134479 -0.040404844 -0.045820302
log(gdp) 0.00843245 0.008659137 0.008534740 0.009419719
underval -0.00738292 0.003926747 -0.007497302 -0.007846092
[,5] [,6] [,7] [,8]
(Intercept) -0.022554554 -0.011886137 -0.028066634 -0.10547596
log(gdp) 0.005690720 0.002667598 0.004361408 0.01358393
underval 0.004461034 0.013164665 0.007724422 0.01808939
[,9] [,10]
(Intercept) -0.038967138 -0.054008775
log(gdp) 0.006042791 0.008512894
underval -0.011033117 0.019044209

I.7 More Complicated Return Values

So far, all the functions we have written have returned either a single value,
or a simple vector, or nothing at all. The built-in functions return much more
complicated things, like matrices, data frames, or lists, and we can too.

To illustrate, let’s switch gears away from the Pareto distribution, and think
about the Gaussian for a change. As you know, if we have data x1, x2, . . . xn and
we want to fit a Gaussian distribution to them by maximizing the likelihood, the
best-fitting Gaussian has mean

µ̂ =
1

n

n∑
i=1

xi (I.5)

I.7 More Complicated Return Values 717

which is just the sample mean, and variance

σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2 (I.6)

which differs from the usual way of defining the sample variance by having a
factor of n in the denominator, instead of n − 1. Let’s write a function which
takes in a vector of data points and returns the maximum-likelihood parameter
estimates for a Gaussian.

gaussian.mle <- function(x) {
n <- length(x)
mean.est <- mean(x)
var.est <- var(x)*(n-1)/n
est <- list(mean=mean.est, sd=sqrt(var.est))
return(est)

}

There is one argument, which is the vector of data. To be cautious, I should
probably check that it is a vector of numbers, but skip that to be clear here.
The first line figures out how many data points we have. The second takes the
mean. The third finds the estimated variance — the definition of the built-in var

function uses n−1 in its denominator, so I scale it down by the appropriate factor9.
The fourth line creates a list, called est, with two components, named mean and
sd, since those are the names R likes to use for the parameters of Gaussians. The
first component is our estimated mean, and the second is the standard deviation
corresponding to our estimated variance10. Finally, the function returns the list.

As always, it’s a good idea to check the function on a case where we know the
answer.

x <- 1:10
mean(x)
[1] 5.5
var(x) * (length(x)-1)/length(x)
[1] 8.25
sqrt(var(x) * (length(x)-1)/length(x))
[1] 2.872281
gaussian.mle(x)
$mean
[1] 5.5
##
$sd
[1] 2.872281

9 Clearly, if n is large, n−1
n

= 1− 1/n will be very close to one, but why not be precise?

10 If n is large,
√

n−1
n

=
√

1− 1
n
≈ 1− 1

2n
(using the binomial theorem in the last step). For

reasonable data sets, the error of just using sd(x) would have been small — but why have it at all?

718 Programming

I.8 Re-Writing Your Code: An Extended Example

Suppose we want to find a standard error for the median of a Gaussian distri-
bution. We know, somehow, that the mean of the Gaussian is 3, the standard
deviation is 2, and the sample size is one hundred. If we do

x <- rnorm(n=100,mean=3,sd=2)

we’ll get a draw from that distribution in x. If we do

x <- rnorm(n=100,mean=3,sd=2)
median(x)
[1] 2.862481

we’ll calculate the median on one random draw. Following the general idea of
Monte Carlo (§5.4.1) we can approximate the standard error of the median by
repeating this calculation many times, on many random draws, and taking the
standard deviation. We’ll do this by explicitly iterating, so we need to set up a
vector to store our intermediate results first.

medians <- vector(length=100)
for (i in 1:100) {

x <- rnorm(n=100,mean=3,sd=2)
medians[i] <- median(x)

}
se.in.median <- sd(medians)

Well, how do we know that 100 replicates is enough to get a good approxima-
tion? We’d need to run this a couple of times, typing it in or at least pasting it in
many times. Instead, we can write a function which just gives everything we’ve
done a single name. (I’ll add comments as I go on.)

Inputs: None (everything is hard-coded)
Output: the standard error in the median
find.se.in.median <- function() {

Set up a vector to store the simulated medians
medians <- vector(length=100)
Do the simulation 100 times
for (i in 1:100) {
x <- rnorm(n=100,mean=3,sd=2) # Simulate
medians[i] <- median(x) # Calculate the median of the simulation

}
se.in.median <- sd(medians) # Take standard deviation
return(se.in.median)

}

If we decide that 100 replicates isn’t enough and we want 1000, we need to
change this function. We could just change the first two appearances of “100” to
“1000”, but we have to catch all of them; we have to remember that the 100 in
rnorm is there for a different reason and leave it alone; and if we later decide that
actually 500 replicates would be enough, we have to do everything all over again.

It is easier, safer, clearer and more flexible to abstract a little and add an

I.8 Re-Writing Your Code: An Extended Example 719

argument to the function, which is the number of replicates. I’ll add comments
as I go.

Inputs: Number of replicates (B)
Output: the standard error in the median
find.se.in.median <- function(B) {

Set up a vector to store the simulated medians
medians <- vector(length=B)
Do the simulation B times
for (i in 1:B) {
x <- rnorm(n=100,mean=3,sd=2) # Simulate
medians[i] <- median(x) # Calculate median of the simulation

}
se.in.median <- sd(medians) # Take standard deviation
return(se.in.median)

}

Now suppose we want to find the standard error of the median for an ex-
ponential distribution with rate 2 and sample size 37. We could write another
function,

find.se.in.median.exp <- function(B) {
Set up a vector to store the simulated medians
medians <- vector(length=B)
Do the simulation B times
for (i in 1:B) {
x <- rexp(n=37,rate=2) # Simulate
medians[i] <- median(x) # Calculate median of the simulation

}
se.in.median <- sd(medians) # Take standard deviation
return(se.in.median)

}

but it is wasteful to define two functions which do almost the same job. It’s
not just inelegant; it invites mistakes, it’s harder to read (imagine coming back
to this in two weeks — was there a big reason why we had two separate functions
here?), and it’s harder to improve. We need to abstract a bit more.

We could put in some kind of switch which would simulate from either of these
two distributions, maybe like this:

Inputs: number of replicates (B)
flag for whether to use a normal or an exponential (use.norm)

Output: The standard error in the median
find.se.in.median <- function(B,use.norm=TRUE) {

medians <- vector(length=B)
for (i in 1:B) {
if (use.norm) {
x <- rnorm(100,3,2)

} else {
x <- rexp(37,2)

}
medians[i] <- median(x)

}
se.in.median <- sd(medians)
return(se.in.median)

720 Programming

}

But why just these two? If we wanted any other distribution whatsoever, plainly
all we’d have to do is change how x is simulated. So we really want to be able to
give a simulator to the median-finding function as an argument.

Fortunately, in R you can give one function as an argument to another, so we’d
do something like this.

Inputs: Number of replicates (B)
Simulator function (simulator)

Presumes: simulator is a no-argument function which produce a vector of
numbers

Output: The standard error in the media
find.se.in.median <- function(B,simulator) {

median <- vector(length=B)
for (i in 1:B) {
x <- simulator()
medians[i] <- median(x)

}
se.in.medians <- sd(medians)
return(se.in.medians)

}

Now to repeat our original calculations, we define a simulator function:

Inputs: None
Output: ten draws from the mean 3, s.d. 2 Gaussian
simulator.1 <- function() {

return(rnorm(100,3,2))
}

If we now call this function, then every time find.se.in.median goes through
the for loop, it will call simulator.1, which in turn will produce the right
random numbers.

find.se.in.median(B=100,simulator=simulator.1)
[1] 0.2551885

If we also define

Inputs: None
Output: 37 draws from the rate 2 exponential
simulator.2 <- function() {

return(rexp(37,2))
}

then to find the standard error in the median of this, we just call

find.se.in.median(B=100, simulator=simulator.2)
[1] 0.09738438

This same approach works if we want to sample from a much more compli-
cated distribution. If we fit a kernel regression to the data on economic growth
and currency undervaluation (Problem Set 2), and want a standard error in the

I.8 Re-Writing Your Code: An Extended Example 721

median of the predicted growth rate, with noise coming from resampling cases,
we would do something like this for the simulator

Perturb the currency-undervaluation data by re-sampling and fit a kernel
regression for growht on initial GDP and undervaluation

Inputs: None
Output: The fitted growth rates from a new kernel regression
simulator.3 <- function() {

Make sure the np library is loaded
require(np)
If we haven't already loaded the data, load it
if (!exists("uv")) {
uv <- read.csv("http://www.stat.cmu.edu/~cshalizi/uADA/16/hw/02/uv.csv")

}
How big is the data set?
n <- nrow(uv)
Treat the data set like a population and draw a sample
resampled.rows <- sample(1:n,size=n,replace=TRUE)
uv.r <- uv[resampled.rows,]
See the chapter on smoothing for the following incantation
fit <- npreg(growth~log(gdp)+underval, data=uv.r, tol=1e-2, ftol=1e-2)
growth.rates <- fitted(fit)
return(growth.rates)

}

and then this to find the standard error in the median: [[TODO:
Increase
number
of repli-
cates for
production
draft]]

find.se.in.median(B=10, simulator=simulator.3)
[1] 0.9280185

By breaking up the task this way, if we encounter errors or just general trouble
when we run that last command, it is easier to localize the problem. We can check
whether find.se.in.median seems to work properly with other simulator func-
tions. (For instance, we might write a “simulator” that either does rep(10,1) or
rep(10,-1) with equal probability, since then we can work out what the stan-
dard error of the median ought to be.) We can also check whether simulator.3
is working properly, and finally whether there is some issue with putting them
together, say that the output from the simulator is not quite in a format that
find.se.in.median can handle. If we just have one big ball of code, it is much
harder to read, to understand, to debug, and to improve.

To turn to that last point, one of the things R does poorly is explicit iteration
with for loops. As mentioned in §I.6, it’s generally better to replace such loops
with “vectorized” functions, which do the iteration using fast code outside of R.
One of these, especially for this situation, is the function replicate. We can
re-write find.se.in.median using it:

Inputs: number of replicates (B)
Simulator function (simulator)

Presumes: simulator is a no-argument function which produces a vector of
numbers

Outputs: Standard error in the median of the output of simulator
find.se.in.median <- function(B,simulator) {

medians <- replicate(B, median(simulator()))

722 Programming

se.in.median <- sd(medians)
return(se.in.median)

}

Again: shorter, faster, and easier to understand (if you know what replicate
does). Also, because we are telling this what simulation function to use, and
writing those functions separately, we do not have to change any of our simulators.
They don’t care how find.se.in.median works. In fact, they don’t care that
there is any such function — they could be used as components in many other
functions which can also process their outputs. So long as these interfaces are
maintained, the inner workings of the functions are irrelevant to each other.

Suppose for instance that we want not the standard error of the median, but
the interquartile range of the median — the median is after all a “robust”, outlier-
resistant measure of the central tendency, and the IQR is likewise a robust mea-
sure of dispersion. This is now easy:

Inputs: number of replicates (B)
Simulator function (simulator)

Presumes: simulator is a no-argument function which produces a vector of
numbers

Outputs: Interquartile range of the median of the output of simulator
find.iqr.of.median <- function(B,simulator) {

medians <- replicate(B,median(simulator()))
iqr.of.median <- IQR(medians)
return(iqr.of.median)

}

Or for that matter the good old standard error of the mean:

Inputs: number of replicates (B)
Simulator function (simulator)

Presumes: simulator is a no-argument function which produces a vector of
numbers

Outputs: Standard error of the mean of the output of simulator
find.se.of.mean <- function(B,simulator) {

means <- replicate(B,mean(simulator()))
se.of.mean <- sd(means)
return(se.of.mean)

}

These last few examples suggest that we could abstract even further, by swap-
ping in and out different estimators (like median and mean) and different sum-
marizing functions (like se or IQR).

Inputs: number of replicates (B)
Simulator function (simulator)
Estimator function (estimator)
Sample summarizer function (summarizer)

Presumes: simulator is a no-argument function which produces a vector of
numbers
estimator is a function that takes a vector of numbers and produces one
output
summarizer takes a vector of outputs from estimator

I.9 General Advice on Programming 723

Outputs: Summary of the simulated distribution of estimates
summarize.sampling.dist.of.estimates <- function(B,simulator,estimator,

summarizer) {
estimates <- replicate(B,estimator(simulator()))
return(summarizer(estimates))

}

The name is too long, of course, so we should replace it with something catchier
(Chapter 6):

bootstrap <- function(B,simulator,estimator,summarizer) {
estimates <- replicate(B,estimator(simulator()))
return(summarizer(estimates))

}

Our very first example in this section is equivalent to

bootstrap(B=100,simulator=simulator.1, estimator=median, summarizer=sd)
[1] 0.2142745

bootstrap is just two lines: one simulates and re-estimates, the other summa-
rizes the re-estimates. This is the essence of what we are trying to do, and is
logically distinct from the details of particular simulators, estimators and sum-
maries.

We started with a particular special case and generalized it. The alternative
route is to start with a very general framework — here, writing bootstrap —
and then figure out what lower-level functions we would need to make it work in
a the case at hand, writing them if necessary. (We need to write a simulator, but
someone’s already written median for us.) Getting the first stage right involves a
certain amount of reflection on how to solve the problem — it’s rather like doing
a “show that” math problem by starting from the desired conclusion and working
backwards.

It is still somewhat clunky to have to write a new function every time we want
to change the settings in the simulation, but this has gone on long enough.

I.9 General Advice on Programming

Programming is an act of communication: with the computer, of course, but
also with your co-workers, and with yourself in the future11. Clear and effective
communication is a valuable skill in itself; it also tends to make it easier to do the
job, and to make debugging easier. This section, then, gives some general advice
about making your programs clearer and more effective, closing (in §I.9.7) by
going over how I used these principles when writing code to implement simulation-
based estimation for a time-series model in Chapter 24.

11 And, in a class, with your graders.

724 Programming

I.9.1 Comment your code

Comments lengthen your file, but they make it immensely easier for other people
to understand. (“Other people” includes your future self; there are few experiences
more frustrating than coming back to a program after a break only to wonder
what you were thinking.) Comments should say what each part of the code does,
and how it does it. The “what” is more important; you can change the “how”
more often and more easily.

Every function (or subroutine, etc.) should have comments at the beginning
saying:

• what it does;
• what all its inputs are (in order);
• what it requires of the inputs and the state of the system (“presumes”);
• what side-effects it may have (e.g., “plots histogram of residuals”);
• what all its outputs are (in order)

Listing what other functions or routines the function calls (“dependencies”) is
optional; this can be useful, but it’s easy to let it get out of date.

You should treat “Thou shalt comment thy code” as a commandment which
Moses brought down from Mt. Sinai, written on stone by a fiery Hand.

I.9.2 Use meaningful names

Unlike some older languages, R lets you give variables and functions names of
essentially arbitrary length and form. So give them meaningful names. Writing
loglikelihood, or even loglike, instead of L makes your code a little longer,
but generally a lot clearer, and it runs just the same.

This rule is lower down in the list because there are exceptions and qualifica-
tions. If your code is tightly associated to a mathematical paper, or to a field
where certain symbols are conventionally bound to certain variables, you may as
well use those names (e.g., call the probability of success in a binomial p). You
should, however, explain what those symbols are in your comments. In fact, since
what you regard as a meaningful name may be obscure to others (e.g., those
grading your work), you should use comments to explain variables in any case.
Finally, it’s OK to use single-letter variable names for counters in loops (but see
the advice on iteration in §I.6).

I.9.3 Check whether your program works

It’s not enough — in fact it’s very little — to have a program which runs and
gives you some output. It needs to be the right output. You should therefore
construct tests, which are things that the correct program should be able to do,
but an incorrect program should not. This means that:

• you need to be able to check whether the output is right;

I.9 General Advice on Programming 725

• your tests should be reasonably severe, so that it’s hard for an incorrect pro-
gram to pass them;

• your tests should help you figure out what isn’t working;

• you should think hard about programming the test, so it checks whether the
output is right, and you can easily repeat the test as many times as you need.

Try to write tests for the component functions, as well as the program as a
whole. That way you can see where failures are. Also, it’s easier to figure out
what the right answers should be for small parts of the problem than the whole.

Try to write tests as very small functions which call the component you’re
testing with controlled input values. For instance, we tested qpareto by looking
at what it returned for selected arguments with manually carrying out the com-
putation. With statistical procedures, tests can look at average or distributional
results — we saw an example of this with checking rpareto.

Of course, unless you are very clever, or the problem is very simple, a program
could pass all your tests and still be wrong, but a program which fails your tests
is definitely not right.

(Some people would actually advise writing your tests before writing any actual
functions. They have a point, but I think that’s overkill for this class.)

I.9.4 Avoid writing the same thing twice

Many data-analysis tasks involve doing the same thing multiple times, either as
iteration, or to slightly different pieces of data, or with some parameters adjusted,
etc. Try to avoid writing two pieces of code to do the same job. If you find yourself
copying the same piece of code into two places in your program, look into writing
one function, and calling it twice.

Doing this means that there is only one place to make a mistake, rather than
many. It also means that when you fix your mistake, you only have one piece of
code to correct, rather than many. (Even if you don’t make a mistake, you can
always make improvements, and then there’s only one piece of code you have to
work on.) It also leads to shorter, more comprehensible and more adaptable code.

I.9.5 Start from the beginning and break it down

When you have a big problem, start by thinking about what you want your
program to do. Then figure out a set of slightly smaller steps which, put together,
would accomplish that. Then take each of those steps and break them down into
yet smaller ones. Keep going until the pieces you’re left with are so small that
you can see how to do each of them with only a few lines of code. Then write
the code for the smallest bits, check it, once it works write the code for the next
larger bits, and so on.

In slogan form:

• Think before you write.

726 Programming

• What first, then how.
• Design from the top down, code from the bottom up.

(Not everyone likes to design code this way, and it’s not in the written-in-stone-
atop-Sinai category, but there are many much worse ways to start.)

I.9.6 Break your code into many short, meaningful functions

Since you have broken your programming problem into many small pieces, try
to make each piece a short function. (In other languages you might make them
subroutines or methods, but in R they should be functions.)

Each function should achieve a single coherent task — its function, if you will.
The division of code into functions should respect this division of the problem
into sub-problems. More exactly, the way you break your code into functions is
how you have divided your problem.

Each function should be short, generally less than a page of print-out. The
function should do one single meaningful thing. (Do not just break the calculation
into arbitrary thirty-line chunks and call each one a function.) These functions
should generally be separate, not nested one inside the other.

Using functions has many advantages:

• you can re-use the same code many times, either at different places in this
program or in other programs
• the rest of your code only has to care about the inputs and outputs to the

function (its interfaces), not about the internal machinery that turns inputs
into outputs. This makes it easier to design the rest of the program, and it
means you can change that machinery without having to re-design the rest of
the program.
• it makes your code easier to test (see below), to debug, and to understand.

Of course, every function should be commented, as described above.

I.9.7 Illustration: The Method of Moments Code from §24.1.3

This section goes over the code for the method of moments in §24.1.3 as an
example of how to write code in R, using the principles above.

The first function, ma.mm.est, estimates the parameters taking as inputs two
numbers, representing the covariance and the variance. The real work is done by
the built-in optim function12, which itself takes two major arguments. One, fn, is
the function to optimize. Another, par, is an initial guess about the parameters
at which to begin the search for the optimum.13

The fn argument to optim must be a function, here ma.mm.objective. The
first argument to that function has to be a vector, containing all the parameters

12 See §D.4.
13 Here par is a very rough guess based on c and v — it’ll actually be right when c=0, but otherwise

it’s not much good. Fortunately, it doesn’t have to be! Anyway, let’s return to designing the code

I.10 Further Reading 727

to be optimized over. (Otherwise, optim will quit and complain.) There can be
other arguments, not being optimized over, to that function, which optim will
pass along, as you see here. optim will also accept a lot of optional arguments to
control the search for the optimum — see help(optim).

All ma.mm.objective has to do is calculate the objective function. The first
two lines peel out θ and σ2 from the parameter vector, just to make it more
readable. The next two lines calculate what the moments should be. The last
line calculates the distance between the model predicted moments and the actual
ones, and returns it. The whole thing could be turned into a one-liner, like

return(t(params-c(c,v)) %*% (params-c(c,v)))

or perhaps even more obscure, but that is usually a bad idea.
Notice that I could write these two functions independently of one another,

at least to some degree. When writing ma.mm.est, I knew I would need the
objective function, but all I needed to know about it was its name, and the
promise that it would take a parameter vector and give back a real number.
When writing ma.mm.objective, all I had to remember about the other function
was the promise this one needed to fulfill. In my experience, it is usually easiest to
do any substantial coding in this “top-down” fashion14. Start with the high-level
goal you are trying to achieve, break it down into a few steps, write something
which will put those steps together, presuming other functions or programs can
do them. Now go and write the functions to do each of those steps.

The code for the method of simulated moments is entirely parallel to these.
Writing it as two separate pairs of functions is therefore somewhat wasteful. If I
find a mistake in one pair, or thing of a way to improve it, I need to remember to
make corresponding changes in the other pair (and not introduce a new mistake).
In the long run, when you find yourself writing parallel pieces of code over and
over, it is better to try to pull together the common parts and write them once.
Here, that would mean something like one pair of functions, with the inner one
having an argument which controlled whether to calculate the predicted moments
by simulation or by a formula. You may try your hand at writing this.

I.10 Further Reading

Matloff (2011) is a good introduction to programming for total novices using R.
Braun and Murdoch (2008) has more on statistical calculations and related topics,
but can also work as an introduction for absolute beginners. Adler (2009) is an
introduction to R for those with some prior knowledge of other programming
languages. For sheer data manipulation, see Spector (2008). Chambers (2008)
and Wickham (2015) are both essential for anyone who wants to be serious about
programming in R.

If you are going to do a lot of computational work, it is worthwhile learning
some of what programmers are taught. The “Software Carpentry” website (http:
//software-carpentry.org) provides good introduction to key tools, like the

14 What qualifies as “substantial coding” depends on how much experience you have

http://software-carpentry.org
http://software-carpentry.org

0 Programming

Unix shell and version control. It is also worth learning about common data
structures and the algorithms for working with them, since the right choices
there can make dramatic differences; I like Cormen et al. (2001), but there are
many fine alternatives.

Data-Analysis Assignments

1

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

0.11 Suggested rubric for writing and formatting 3

[[TODO: Renew page numbers from 1 here]]
All of the following problem sets have been used in class at least once. They

are arranged in an order approximately matching the order of the chapters, but
many of them draw on multiple chapters. Each one is scored out of 90 points, with
an extra 10 points allocated to clarity of writing, figures, code, etc. (The exact
rubric is given below.) ; in a typical semester, students would do one problem [[TODO:

Fix so
they really
are scored
from 90]]

set a week, 12–14 in all. A few provide much less “scaffolding” to guide students
through the analysis; these were assigned as take-home exams.

Most of these assignments are based on published papers in the scientific or
statistical literature; I have provided citations to the source papers, but urge
students to not read them until after they have attempted the assignment.15

[[TODO: Add references to the source papers]]

0.11 Suggested rubric for writing and formatting

This describes the ideal; the suggested weight is 10 points out of 100.
The text is laid out cleanly, with clear divisions between problems and sub-

problems. The writing itself is well-organized, free of grammatical and other me-
chanical errors, and easy to follow. Figures and tables are easy to read, with
informative captions, axis labels and legends, and are placed near the text of
the corresponding problems. All quantitative and mathematical claims are sup-
ported by appropriate derivations, included in the text, or calculations in code.
Numerical results are reported to appropriate precision. Code is either properly
integrated with a tool like R Markdown or knitr, or included as a separate R file.
In the former case, both the knitted and the source file are included. In the latter
case, the code is clearly divided into sections referring to particular problems. In
either case, the code is indented, commented, and uses meaningful names. All
code is relevant to the text; there are no dangling or useless commands. All parts
of all problems are answered with actual coherent sentences, and never with raw
computer code or its output. For full credit, all code runs, and the Markdown file
knits (if applicable).

15 Some of the source papers would be positive hindrances.

1

Your Daddy’s Rich

When the assignment says “make a scatterplot of A against B”, or “plot A against B”, A goes
on the vertical axis and B on the horizontal axis.

Agenda: Getting back into practice with regression; starting to unlearn some bad habits.
Source:
Chetty
et al.
(2014)

This assignment will look at economic mobility across generations in the con-
temporary USA. The data come from a large study, based on tax records, which
allowed researchers to link the income of adults to the income of their parents
several decades previously. For privacy reasons, we don’t have that individual-
level data, but we do have aggregate statistics about economic mobility for several
hundred communities, containing most of the American population, and covariate
information about those communities. We are interested in predicting economic
mobility from the characteristics of communities.

The Data

The data file mobility.csv has information on 741 communities1. The variable
we want to predict is economic mobility; the rest are predictor variables or co-
variates.

1. Mobility: The probability that a child born in 1980–1982 into the lowest quin-
tile (20%) of household income will be in the top quintile at age 30. Individuals
are assigned to the community they grew up in, not the one they were in as
adults.

2. Population in 2000.

3. Is the community primarily urban or rural?

4. Black: percentage of individuals who marked black (and nothing else) on cen-
sus forms.

5. Racial segregation: a measure of residential segregation by race.

6. Income segregation: Similarly but for income.

7. Segregation of poverty: Specifically a measure of residential segregation for
those in the bottom quarter of the national income distribution.

8. Segregation of affluence: Residential segregation for those in the top qarter.

9. Commute: Fraction of workers with a commute of less than 15 minutes.

10. Mean income: Average income per capita in 2000.

1 Technically, “commuting zones”. These include cities and their suburbs and exurbs, but also many

rural areas with integrated economies.

4

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

Your Daddy’s Rich 5

11. Gini: A measure of income inequality, which would be 0 if all incomes were
perfectly equal, and tends towards 100 as all the income is concentrated among
the richest individuals (see Wikipedia, s.v. “Gini coefficient”).

12. Share 1%: Share of the total income of a community going to its richest 1%.
13. Gini bottom 99%: Gini coefficient among the lower 99% of that community.
14. Fraction middle class: Fraction of parents whose income is between the national

25th and 75th percentiles.
15. Local tax rate: Fraction of all income going to local taxes.
16. Local government spending: per capita.
17. Progressivity: Measure of how much state income tax rates increase with in-

come.
18. EITC: Measure of how much the state contributed to the Earned Income Tax

Credit (a sort of negative income tax for very low-paid wage earners).
19. School expenditures: Average spending per pupil in public schools.
20. Student/teacher ratio: Number of students in public schools divided by number

of teachers.
21. Test scores: Residuals from a linear regression of mean math and English test

scores on household income per capita.
22. High school dropout rate: Also, residuals from a linear regression of the dropout

rate on per-capita income.
23. Colleges per capita
24. College tuition: in-state, for full-time students
25. College graduation rate: Again, residuals from a linear regression of the actual

graduation rate on household income per capita.
26. Labor force participation: Fraction of adults in the workforce.
27. Manufacturing: Fraction of workers in manufacturing.
28. Chinese imports: Growth rate in imports from China per worker between 1990

and 2000.
29. Teenage labor: fraction of those age 14–16 who were in the labor force.
30. Migration in: Migration into the community from elsewhere, as a fraction of

2000 population.
31. Migration out: Ditto for migration into other communities.
32. Foreign: fraction of residents born outside the US.
33. Social capital: Index combining voter turnout, participation in the census, and

participation in community organizations.
34. Religious: Share of the population claiming to belong to an organized religious

body.
35. Violent crime: Arrests per person per year for violent crimes.
36. Single motherhood: Number of single female households with children divided

by the total number of households with children.
37. Divorced: Fraction of adults who are divorced.
38. Married: Ditto.
39. Longitude: Geographic coordinate for the center of the community
40. Latitude: Ditto
41. ID: A numerical code, identifying the community.

6 Your Daddy’s Rich

42. Name: the name of principal city or town.
43. State: the state of the principal city or town of the community.

Some of these variables are missing for some communities, and this may make a
difference for some questions.

Your Daddy’s Rich 7

1. (5) Draw a map of mobility. That is, make a plot where the x and y coordinates
are longitude and latitude, and mobility is indicated by color (possibly grey
scale), by a third coordinate, or some other suitable device. Make sure your
map is legible. Describe the geographic pattern in words.

2. (15) Make scatter plots of mobility against each of the following variables.
Include on each plot a line for the simple or univariate regression, and give a
table of the regression coefficients. Carefully explain the interpretation of each
coefficient. (2 pts each) Do any of the results seem odd? (1 pt)

1. Population
2. Mean household income per capita
3. Racial segregation
4. Income share of the top 1%
5. Mean school expenditures per pupil
6. Violent crime rate
7. Fraction of workers with short commutes.

3. Run a linear regression of mobility against all appropriate covariates.

1. (5) Report all regression coefficients and their standard errors to reasonable
precision; you may use either a table or a figure as you prefer. Do not just
paste in R’s output.

2. (1) Explain why the ID variable must be excluded.
3. (4) Explain which other variables, if any, you excluded from the regression,

and why. (If you think they can all be used, explain why.)
4. (5) Compare the coefficients you found in problem 2 to the coefficients for

the same variables in this regression. Are they significantly different? Have
any changed sign?

4. The wrong side of the tracks starts at Giant Eagle Find Pittsburgh in the data
set.

1. (1) What its actual mobility? What is its predicted mobility, according to
the model?

2. (3) Holding all else fixed, what is the predicted mobility if the violent crime
rate is doubled? If it is halved?

3. (3) Holding all else fixed, at what level of income segregation does the model
predict that mobility will exceed 1.0?

4. (3) Holding all else fixed, what would the income share of the top 1% have
to be for the model to predict that mobility will fall to 0.0?

(We will see later in the course how to avoid the embarrassment of models
that predict probabilities greater than 1 or less than 0.)

5. Free as in beer

1. (1) The national mobility level is the average mobility across all communi-
ties, weighted by population. What is it?

2. (3) Suppose college were made free for everyone. Calculate the change in
the predicted mobility for each community. Report the minimum, median,
mean and maximum changes.

8 Your Daddy’s Rich

3. (1) Find the change to the predicted (not actual) national mobility level
from making college free for everyone. Hint: consider a weighted average,
or weighted sum, of your vector of answers from Problem 52.

4. (3) Give a (rough) 95% confidence interval for the change in the predicted
national mobility level.

5. (2) Explain at least one way in which this calculation is unrealistic.

6. Distinctions vs. differences

1. (2) Make a table ranking the variables by the magnitude of the t statistic
in the regression results (i.e., rank by |t|, not t).

2. (6) For each variable in the model, find the expected change in mobility
from a one standard deviation change in that variable (assuming all else is
fixed). Provide a table ranking variables by the magnitude of their impact.

3. (2) How similar is the ranking by impact to the ranking by t statistics?

7. (5) Make a map of the model’s predicted mobility. How does it compare,
qualitatively, to the map of actual mobility?

8. After making proper allowances

1. (1) Make a map of the model’s residuals.
2. (2) What are the five communities with the largest positive residuals? The

five with the most negative residuals? (Can you mark these on the map?)
3. (2) One interpretation of these residuals is that they show communities

where some factor not included in the model leads to higher (or lower)
mobility than in otherwise-similar communities. Suggest at least one other
interpretation. Could you test these ideas with this data set?

9. Expectations and reality

1. (3) Make a scatterplot of actual mobility against predicted mobility. Is the
relationship linear? Should it be, if the model is right? Is the relationship
flat? Should it be, if the model is right?

2. (2) Make a scatterplot of the model’s residuals against predicted mobility. Is
the relationship linear? Should it be, if the model is right? Is the relationship
flat? Should it be, if the model is right?

10. Model checking will continue until morale improves

1. (5) For each variable in the model, make a scatterplot of the model’s resid-
uals against the predictor variable. (You will have a lot of plots.)

2. (5) Explain why, if the linear model is right, all the relationships you just
plotted should be flat.

3. (5) Explain why, if the usual assumptions for t tests and their p-values are
right, each plot should have a roughly constant vertical spread of points as
one moves from left to right.

4. (5) Which residual plots look like they’re flat with constant width? For the
ones which don’t look like this, describe how they differ.

Extra credit, 5 points: Add kernel smoothing lines to each of the residual
plots. Comment.

2

. . . But We Make It Up in Volume

Source:
Rodrik
(2008)

“Gross domestic product” is a standard measure of the size of an economy; it’s the
total value of all goods and services bought and solid in a country over the course
of a year. It’s not a perfect measure of prosperity1, but it is a very common one,
and many important questions in economics turn on what leads GDP to grow
faster or slower.

One common idea is that poorer economies, those with lower initial GDPs,
should grower faster than richer ones. The reasoning behind this “catching up”
is that poor economies can copy technologies and procedures from richer ones,
but already-developed countries can only grow as technology advances. A second,
separate idea is that countries can boost their growth rate by under-valuing their
currency, making the goods and services they export cheaper.

This week’s data set contains the following variables:

• Country, in a three-letter code (see http://en.wikipedia.org/wiki/ISO_

3166-1_alpha-3).
• Year (in five-year increments).
• Per-capita GDP, in dollars per person per year (“real” or inflation-adjusted).
• Average percentage growth rate in GDP over the next five years.
• An index of currency under-valuation2. The index is 0 if the currency is neither

over- nor under- valued, positive if under-valued, negative if it is over-valued.

Note that not all countries have data for all years. However, there are no missing
values in the data table.

1 A standard example: if vandals break all the windows on a street, a town, GDP goes up by the cost

of the repairs.
2 The idea is to compare the actual exchange rate with the US dollar to what’s implied by the prices

of internationally traded goods in that country — the exchange rate which would ensure

“purchasing power parity”. The details are in the paper this assignment is based on, which will be

revealed in the solutions.

9

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-3
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-3
http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

10 . . . But We Make It Up in Volume

1. (10) Linearly regress the growth rate on the under-valuation index and the
log of GDP. Report the coefficients and their standard errors (to reasonable
precision). Do the coefficients support the idea of “catching up”? Do they
support the idea that under-valuing a currency boosts economic growth?

2. (20) Repeat the linear regression but add as covariates the country, and the
year. Use factor(year), not year, in the regression formula.

1. (5) Report the coefficients for log GDP and undervaluation, and their stan-
dard errors, to reasonable precision.

2. (5) Explain why it is more appropriate to use factor(year) in the formula
than just year.

3. (5) Plot the coefficients on year versus time.
4. (5) Does this expanded model support the idea of catching up? Of under-

valuation boosting growth?

3. (10) Does adding in year and country as covariates improve the predictive
ability of a linear model which includes log GDP and under-valuation?

1. (1) What are the R2 and the adjusted R2 of the two models?
2. (5) Use leave-one-out cross-validation to find the mean squared errors of

the two models. Which one actually predicts better, and by how much?
Hint: Use the code from lecture 3.

3. (4) Explain why using 5-fold cross-validation would be hard here. (You
don’t need to figure out how to do it.)

4. (20) Kernel smoothing Use kernel regression, as implemented in the np package,
to non-parametrically regress growth on log GDP, under-valuation, country,
and year (treating year as a categorical variable). Hint: read chapter four
carefully. In particular, try setting tol to about 10−3 and ftol to about 10−4

in the npreg command, and allow several minutes for it to run. (If you are
using R Markdown, trying caching this part of your code.)

1. (5) Give the coefficients of the kernel regression, or explain why you can’t.
2. (5) Plot the predicted values of the kernel regression, for each country and

year, against the predicted values of the linear model.
3. (5) Plot the residuals of the kernel regression against its predicted values.

Should these points be scattered around a flat line, if the model is right?
Are they?

4. (5) The npreg function reports a cross-validated estimate of the mean
squared error for the model it fits. What is that? Does the kernel regression
predict better or worse than the linear model with the same variables?

5. (20) Time courses and interactions In this question, use the kernel regression
you fit in the previous problem.

1. (6) Plot the predicted growth rate, as a function of the year, in five year
increments from 1955 to 2000, if the initial GDP (not log GDP!) is $10,000
in each period, the under-valuation index is 0 (i.e., no under- or over- val-
uation), and the country is Turkey.

2. (3) Re-do the plot but change the under-valuation index to +0.5.

. . . But We Make It Up in Volume 11

3. (3) Re-do the plot but hold the initial GDP at $1,000 and the under-
valuation index at 0.

4. (3) Re-do the plot with the initial GDP at $1,000 and the under-valuation
index at +0.5.

5. (5) Is there evidence of an interaction between initial GDP and under-
valuation? Explain.

6. (20) Average predictive comparisons §[[4.5]] explains how to calculate the “av-
erage predictive comparison” — the typical rate of change in the response
when a given variable is perturbed, even when the model is nonlinear and has
interactions. See, in particular, Equation [[4.31]].

Hint: at no point in this problem should you re-fit either model.

1. (5) Calculate the average predictive comparison for log GDP in the kernel
regression.

2. (5) Calculate the average predictive comparison for under-valuation in the
kernel regression.

3. (5) Explain how to calculate the corresponding average predictive compar-
isons from the linear model’s coefficients. What are the average predictive
comparisons for initial log GDP and for under-valuation in the linear model?

4. (5) Do the kernel and the linear regression agree, qualitatively, about the
average effect of increasing initial GDP on growth? Do they agree, qualita-
tively, about the effect of undervaluation on growth?

3

Past Performance, Future Results

Agenda: Practice with cross-validation and with smoothing; baby steps in using simulation to
see how a model behaves and to do hypothesis testing; reinforcement that “the variable matters”
6= “the coefficient on the variable is statistically significant”.

Timing: Some parts of this assignment, particularly Problem 66, are very computation-
intensive. Start early, read the hints, and cache your results.

A corporation’s earnings in a given year is its income minus its expenses1.
The return on an investment over a year is the fractional change in its value,
(vt+1−vt)/vt, and the average rate of return over k years is [(vt+k−vt)/vt]1/k. Our
data set this week looks at the relationship between US stock prices, the earnings
of the corporations, and the returns on investment in stocks, with returns counting
both changes in stock price and dividends paid to stock holders.2

Specifically, our data contains the following variables:

• Date, with fractions of a year indicating months
• Price of an index of US stocks (inflation-adjusted)
• Earnings per share (also inflation-adjusted);
• Earnings_10MA_back, a ten-year moving average of earnings, looking backwards

from the current date;
• Return_cumul, cumulative return of investing in the stock index, from the be-

ginning;
• Return_10_fwd, the average rate of return over the next 10 years from the

current date.

“Returns” will refer to Return_10_fwd throughout.
[[TODO: link to data set]]

1. Inventing a variable

1. (1) Add a new column, MAPE, to the data frame, which is the ratio of Price
to Earnings_10MA_back. It should have the following summary statistics:

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

4.785 11.710 15.950 16.550 19.960 44.200 120

1 Accountants get into subtle issues about whether to include in expenses taxes, interest paid on

loans, and charges for depreciation of assets and amortization of investments. Those of you who get

jobs with certain kinds of tech company will grow only too familiar with these wrinkles. In our data

set, earnings are very definitely after all these expenses.
2 Nothing in this assignment, or the solutions, should be taken as financial advice.

12

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

Past Performance, Future Results 13

Why are there exactly 120 NAs?

2. (1) Linearly regress the returns on MAPE (and nothing else). What is the
coefficient and its standard error? Is it significant?

3. (1) What is the MSE of this model, under five-fold CV?

2. Inverting a variable

1. (3) Linearly regress the returns on 1/MAPE (and nothing else). What is the
coefficient and its standard error? Is it significant? (For full credit, do not
add a new column to the data frame, or create a new vector.)

2. (1) What is the five-fold CV MSE of this model? How does it compare to
the previous one?

3. Employing a variable A simple-minded model3 says that expected returns over
the next ten years should be exactly equal to 1/MAPE.

1. (1) Find the in-sample MSE of this model.

2. (2) Explain why the in-sample MSE is an unbiased estimate of the gener-
alization error for this particular model.

3. (2) Make a Q−Q plot for the residuals of this model. Hint: try subtraction,
rather than residuals.

4. (5) Estimate a t distribution from the residuals. Report the parameters
and their standard errors. Plot a histogram of the residuals, and add the
estimated t density. Hint: see the function fitdistr in the MASS package.

4. (5) Use npreg to estimate a kernel regression of the returns on MAPE. What is
the bandwidth? The cross-validated MSE?

5. One big happy plot For this problem, you need to only include one plot, and
one paragraph of writing, but make sure you clearly label, with comments,
which parts of your code are answers to each question. (This does not mean
showing your code in your report.) Also, in this problem, take “line” to mean
“straight or curved line, as appropriate”. Plotting disconnected points where
a line is called for will get partial credit.

1. (1) Make a scatter-plot of the returns against MAPE.

2. (6) Add two lines, showing the predictions from the models you fit in prob-
lem 1 and 2.

3. (1) Add a curve showing the predictions of the simple-minded model from
problem 3.

4. (5) Add a line of the predictions of the kernel regression to the plot from
problem 5. Which of the previous models does it most resemble? Is it just
a slightly wiggly copy of that model, or does it do something qualitatively
different?

6. Simulating the simple-minded model

3 Assume that: future earnings get added to the value of an investment in the company’s stock; that

nothing else adds to the value of the investment; and that earnings over the next ten years will be

equal to those over the last ten years. Solve for the returns.

14 Past Performance, Future Results

1. (10) Write a function which simulates the simple-minded model from prob-
lem 3. The function should take as inputs (i) a vector of MAPE values, and (ii)
the three parameters of the t distribution. It should return a two-column
data frame, with one column being MAPE and the other being 1/MAPE plus t-
distributed noise. The columns should have names which match the names
used in the real data frame. Make sure that the output of your function has
the right number of rows and columns, and that the summary statistics for
the two columns are what they should be (at least approximately, in the
case of the second column).

2. (5) Write a function which takes as input a data frame, estimates the same
linear model as in problem 2 to that data frame, and returns the coefficient
on 1/MAPE. Check that it works by running it on the original data. Check
that it also works when the input comes from your simulation function from
61.

3. (7) By repeated simulation, find the probability, under the simple-minded
model, of the coefficient on 1/MAPE being as far from 1.0 (in either direction)
as what you found in the data.

4. (8) You can now report a p-value for testing the hypothesis that this slope
is exactly 1.0. Carefully state the null and alternative hypotheses, and give
your p-value.

5. (7) Write a function which takes as input a data frame, estimates the same
kernel regression as in problem 4, and returns the vector of fitted values
from that regression. Check that it works by running it on your original
data. Check that it also works when the input comes from your simulation
function.

6. (8) Create a plot of predicted returns versus MAPE for the simple-minded
model, as in problem 53. Add 200 kernel regression curves, fit to 200 simu-
lations of the model. Finally, add the kernel regression curve from the true
data, as in problem 54. (You’ll want to manipulate graphics settings.) How
plausible is the simple-minded model? Explain your answer by referring to
your plot.
Hint/warning: Estimating all the kernel regressions might well take a few
seconds per simulation. Write and debug your code here with a smaller
number of curves, then increase it for the final version.

7. More fun with star-gazing

1. (1) Linearly regress the returns on both MAPE and 1/MAPE (without interac-
tion). What are the coefficients? Which ones are significant?

2. (1) Linearly regress the returns on MAPE, 1/MAPE, and the square of MAPE.
What are the coefficients? Which ones are significant?

3. (8) Explain what is going on.

4

Free Soil

Agenda: Practice writing, testing, and debugging simple R functions. Practice decomposing a
big computational problem into a bunch of small, inter-locking functions. Practice estimating a
categorical contrast. Practice with weighted least squares. Practice with bootstrapping. Finally,
an early observance of Lincoln’s birthday.

Source:
Chetty
et al.
(2014)

Recall that equation for the standard error of a proportion, when we observe
a binomial with n trials and success probability p:√

p(1− p)
n

(4.1)

Further recall the estimated standard error in an observed proportion p̂:√
p̂(1− p̂)

n
(4.2)

Recall, finally, that the Mobility variable from homework 1 was an observed
proportion, the fraction of children born into the bottom fifth of the income
distribution who make their way to the top fifth of the distribution by age 30.

Load the data set from homework 1 as a data frame named mobility. We will
only need three columns, Mobility, Population and State, though you may also
want to keep Name for debugging purposes. Do not remove any row from the data
frame which has complete values for these variables.

1. (15) Write a function, se.prop, to calculate the standard error for proportions.
It should take a vector of proportions, p, and a vector of trial numbers, n, and
return a vector of standard errors.

1. (2) Construct a test case to check that se.prop gives the right answer when
p = 0.5, n = 1.

2. (2) Construct a test case to check that when se.prop is given a vector of
different n’s, all with the same p (not equal to 0 or 1), the answers are
proportional to 1/

√
n.

3. (2) Construct a test case to check that when p = 0, the returned value is
always 0, for multiple n.

4. (2) Construct a test case to check that when p = 1, the returned value is
always 0, for multiple n.

5. (2) Construct a test case to check that when given a vector p of mixed 0s
and 1s, the returned vector has all 0s, for multiple n.

15

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

16 Free Soil

6. (2) Construct a test case to check that when given a vector of different, non-
extreme values for p, and a constant n, the entries of the returned vector
are proportional to

√
p(1− p).

7. (2) Check that se.prop works properly when p=c(0.3,0.8) and n=c(12,72).
This includes working out what the proper answers should be.

8. (1) Explain whether your code implements Eq. 1 or Eq. 2.

2. (10)

1. (3) Use se.prop to calculate the standard error of the mobility for each
community in the data from homework 1; report the summary statistics.

2. (1) Plot the histogram of the standard errors.
3. (2) Make a scatter-plot of the standard errors vs. population.
4. (2) Make a scatter-plot of the standard errors vs. mobility.
5. (2) How reliable were the inferential statistics you calculated in homework

1?

3. (15)

1. (5) Write a function, WSE, to calculate weighted mean squared error. It
should take as arguments predicted, a vector of predicted values; observed,
a vector of observed values; and weights, a vector of weights. It should re-
turn a single real number, the weighted mean squared error. Mathemati-
cally, that is to say, it should find∑n

i=1wi (yi − ŷi)2∑n
i′=1wi′

Make the default value for observed the Mobility column of the data, and
the default values for weights equal to one over the squares of the standard
errors in Mobility from the previous problem. Hint: You could write this
using a for loop, or even two of them, but there are more elegant ways.

2. (3) Check that WSE works properly when predicted is c(0.15,0.05), observed
is c(0.14,0.07), and weights is c(0.01, 0.42). (This includes working out
what the right answer should be.)

3. (2) Create three modified versions of this test case, each changing one of
the three arguments, and make sure that your function works correctly on
all three.

4. (2) Explain why, for modeling mobility, the weights should be the inverse
square standard errors.

5. (3) Check that WSE returns the MSE when all the weights are equal. (They
will not be equal for those default values.)

4. (10)

1. (5) Write a function, dixie, which reads in a vector of state names (in the
form used in the mobility data set), and returns a binary vector, 1 if the
state was part of the Confederacy during the US civil war, and 0 otherwise.

2. (5) Check that it gives the correct results when applied to a vector of the
50 state names and the District of Columbia.

Free Soil 17

5. (10) Write a function, dixie.fit, which takes two arguments: a data frame
with a column named State, and a vector of length two, levels. It should test,
for each row, whether the state was in the Confederacy (using dixie), and if so
return the first element of levels, and if not, return the second element. Check
that it works correctly when levels=c(1,0). Explain how you know that is the
correct behavior.

6. (10) Write a function, dixie.WSE, which takes as input levels, without default,
and a data frame, defaulting to mobility. It should predict the mobility level
for each city based on whether it was in the Confederacy or not, using the
function dixie.fit, and return the weighted squared error, using WSE, with the
actual values of Mobility as the response and weights based on their standard
errors. For full credit, call, do not re-write, the functions from the earlier
problems.

Construct a test case using a data frame of four rows to check that is working
properly, when levels=c(0.01,0.15).

7. (5) Optimize the weighted squared error for this two-parameter model, starting
from the initial guess that the mobility level for the former Confederacy is 0.01,
while that for the rest of the country is 0.15. Report the best-fitting values of
levels.

8. (10) Turn the optimization from the previous problem into a function, which
takes as arguments a data frame (with default equal to mobility) and an
initial guess at levels (with default equal to c(0.01,0.15)), and returns the
fitted values of levels (and nothing else). Check that running it with the
defaults reproduces your answer from the previous problem. Check that you
get a different answer if you remove the first half of the data frame.

9. (5) Use resampling of rows to give standard errors for levels.

Extra credit (10): Show, mathematically, that the optimal values for levels
are always given by two weighted averages of Mobility. Show how to find them
by two calls to weighted.average, without using WSE, dixie.fit, dixie.WSE, or
any optimization function. For full extra credit, check that code implementing
this matches the answer you obtained above.

5

There Were Giants in the Earth in Those
Day

[[TODO: See if there’re any improvements over previous versions; if not, cut]]

Agenda: Explicitly: splines, bootstrap, simulation, comparing a simulation to data; implicitly:
more practice writing, testing, and debugging simple functions.

Source:
Clauset
and Erwin
(2008)

Some biologists argue that larger animals tend to have advantages over smaller
members of their species, so that natural selection should tend to lead to an
increase in size within an evolutionary lineage1. There is also some evidence that
larger species tend to be shorter-lived than smaller ones2. In this assignment, we
will look at the evidence for an increase in species size within lineages, and how
the trade-off between these two forces might lead to a stable distribution of sizes
across species.

We will use two data sets:

• The North American Mammalian Paleofauna Database (nampd.csv) lists, for
about 2000 living and extinct species, the log of the mass, in grams, of a typical
member of the species; the log mass of the ancestral species (when known); and
the dates of the species’ first and last appearance in the fossil record, in millions
of years ago. If the last appearance date is NA, the species is still alive. This
means you should not just throw away all rows containing NAs.
• The Masses of Mammals (MoM.txt) gives, for about 4000 living species, their

mass in grams, identifying codes for the species, genus, and other taxonomic
groups, and an indicator for whether the species lives in the land or in the
water.

The model we will work with goes as follows: At any given time t, there is
a collection of nt species, whose masses are X1, X2, . . . Xnt . At each time step,
one current species A gets picked, uniformly at random, to evolve into two new
species. The masses of a descendant species XD is related to that of its ancestor,
XA, by the model

XD = exp (r(logXA) + Z) (5.1)

where Z ∼ N (0, σ2), and r is a function to be learned from the data, subject to

1 Among other things, larger animals may be harder for predators to attack, find it easier to

over-come prey or other members of their species, and be more efficient metabolically. For more, see,

e.g., Bonner (1988).
2 This may be because larger animals need more food in total, and possibly more specialized food

sources, so they are more vulnerable to shifts in their environment.

18

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/uADA/15/hw/05/nampd.csv
http://www.stat.cmu.edu/~cshalizi/uADA/15/hw/05/MoM.txt
http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

There Were Giants in the Earth in Those Day 19

the restriction that XD has to be at least xmin and at most xmax. The ancestor XA

is removed from the current list of species, and its two independent descendants
are added. After this, all species currently in the list have a risk of going extinct,
with the probability for a species of mass x going extinct being a function of their
mass,

pe(x) = βxρ (5.2)

Any species become extinct are removed from the collection. We then iterate the
model again.

In all of the following questions, unless otherwise specified, you may take σ2 =
0.63 (what are the units?), xmin = 1.8 grams, xmax = 1015 grams, ρ = 0.025, and
β = 1/5000.

1. (5) Linearly regress the log of the new mass on the log of the ancestral mass.
Plot this regression line, along with a scatter-plot of the data, in units of grams,
not log-grams. Carefully explain the interpretation of both the slope and the
intercept. A rote recitation of “a one unit change”, etc., will not receive full
credit; think about the model, the transformations, and what the transformed
model says about the variables.

2. (10) Use a smoothing spline to do a nonparametric regression of log new mass
on log ancestral mass. Create a plot showing the data points, the model from
question 1, and the spline, making sure that the axes are in units of grams,
not log-grams.

3. (20)

1. (10) Using resampling of residuals, calculate 95% confidence bands for the
spline curve, and add them to the plot.

2. (10) Using resampling of cases, calculate standard errors for the spline
curve, and add bands at ±2 standard errors to the plot.

4. (10) Write a function, rmass, which takes as inputs a single ancestral mass
XA (not logXA), an estimated spline function r, and any other parameters
required by the model, and returns a single random value for XD, according
to Eq. 5.1. Make sure the returned value is in grams, not log grams. You will
probably find it easiest to keep generating candidate values for XD, until you
get one which is between the limits. Hint: while

1. (2) What model parameters does your rmass need?
2. (4) Check, by repeated simulation, that the output is always between xmin

and max, even when XA is brought near either limit.
3. (4) Using the spline curve you estimated in question 2, create 150 evenly

spaced XA values between xmin and max, generate an XD for each of them,
and fit a spline curve to the simulated values. Check that it is close to, but
not identical with, the one you found from the data. (Why should it not be
identical?)

5. (10) Write a function, origin, which takes the same arguments as rmass, except
that instead of one ancestral mass it can take a vector of them. origin should

20 There Were Giants in the Earth in Those Day

pick one entry from the vector to be XA, and generate two independent values
of XD from it. One of these should replace the entry for XA, and the other
should be added to the end of the vector.

1. (4) Check, by simulating with a length-one vector of ancestral masses, that
neither component of the returned value matches the ancestral mass (why?),
that both components have the same marginal distribution, and that the
two components are uncorrelated with each other.

2. (2) Check, by simulating, that if the input vector of masses has length m,
the output vector always has length m + 1. (Check at least two values of
m.)

3. (4) Check, by simulating, that m− 1 entries in the output match the input
exactly. Check this for at least two values of m. Hint: is.element, or %in%,
or match.

6. (5) Write a function, extinct.prob, which takes as inputs a vector of species
masses, and parameters ρ and β, and returns the extinction probabilities ac-
cording to Eq. 5.2.

1. (2) Check that if the masses are c(100, 1600, 10000) grams, ρ = 1/2 and
β = 1/200, then extinct.prob returns the right values.

2. (1) Check that if ρ = 0, the output probabilities are all β, no matter what
the masses are.

3. (1) Check that if the input masses are all equal, so are the returned prob-
abilities, for at least three of different combinations of mass, ρ and β.

4. (1) Check that if ρ 6= 0 and β 6= 0, and the masses are all different, then
the returned probabilities are all distinct.

7. (5) Write a function, extinction, which takes a vector of species masses, ρ
and β, and returns a possibly-shorter vector which removes the masses of
species which were probabilistically selected for extinction. Be sure to handle
the (unfortunate) case where every species goes extinct. Hint: Explain what
rbinom(n,size=1,prob=p) does when p is a vector of length n.

1. (1) Check that if β = 0, the output vector is always the same as the input
vector.

2. (3) Create a case where the input masses are all equal, and ρ and β are set
so that the extinction probability should be 1/2. Check that the output is,
on average, half as long as the input.

3. (1) In the same test cases as the previous part, check that all the values in
the new vector of masses were also in the old vector of masses.

8. (5) Write a function, evolve_step, which takes as inputs a vector of species
masses, plus all needed parameters and estimated curves; calls origin and
extinction as appropriate; and returns a new vector of species masses. How
do you know it works?

9. (5) Write a function, mass_evolve, which takes the same inputs as evolve_step,
plus an additional number T; iterates evolve_step T times; and returns the

There Were Giants in the Earth in Those Day 21

final vector of species masses. How do you know it works? Hint: There will
almost certainly need to be a for loop inside the function.

10. (5) In this question, use the default parameter values, and the spline you
estimated in question 2.

1. (1) Run mass_evolve starting from a single species with a mass of 120 grams
for T = 2× 105 steps. Save the output as masses.1. Plot the histogram.

2. (1) Re-run mass_evolve from the same conditions. Save as masses.2. Plot
the histogram.

3. (1) Re-run from the same conditions but for T = 4 × 105 steps, saving as
masses.3. Plot the histogram.

4. (1) Change the starting condition to two species, one of 40 grams and one
of 1000 grams. Run twice, both times with T = 2× 105, saving the results
as masses.4 and masses.5.

5. (1) How do the distributions of the various masses compare to each other?

11. (5)

1. (1) Load the Masses of Mammals data set, and plot the histogram of masses
for land species.

2. (2) Compare, verbally, the distribution for land species to that obtained
from the simulations.

3. (2) Compare the distributions using QQ plots.

12. (5) Does the output of the simulation model match the distribution of masses
we actually observe? Are the differences between the model and reality bigger
than those between different runs of the simulation? Are there qualitative dis-
tinctions between the simulation-to-simulation differences, and the simulation-
to-reality differences? Support your answers by reference to the plots you have
already made, or, if need be, new ones.

Note: more advanced techniques for comparing distributions exist (e.g., chapter
E).
Extra credit: (10) Re-write the code so that Z, rather than being drawn

from a Gaussian distribution, comes from resampling the residuals of the fitted
spline curve. What do you have to modify? How much do the results change?
Which version fits the observed mass distribution better?

6

The Sound of Gunfire, Off in the Distance

Agenda: Explicitly, logistic models, generalized additive models, and checking regression spec-
ifications. Implicitly, the perils of science by p-value.

Sources:
Collier and
Hoeffler
(2004) and
Ward et al.
(2010)

Our data this week, http://www.stat.cmu.edu/~cshalizi/uADA/15/hw/06/
ch.csv, comes from a study of the causes of civil wars. Every row of the data
represents a combination of a country and of a five year interval — the first row is
Afghanistan, 1960, really meaning Afghanistan, 1960–1965. The variables are:

• The country name;

• The year;

• An indicator for whether a civil war began during that period — the code of
NA means an on-going civil war, while 0 denotes continuing peace;

• Exports, really a measure of how dependent the country’s economy is on com-
modity exports;

• Secondary school enrollment rate for males, as a percentage1;

• Annual growth rate in GDP;

• An index of the geographic concentration of the country’s population (which
would be 1 if the entire population lives in one city, and 0 if it evenly spread
across the territory);

• The number of months since the country’s last war or the end of World War
II, whichever is more recent2;

• The natural logarithm of the country’s population;

• An index of social “fractionalization”, which tries to measure how much the
country is divided along ethnic and/or religious lines;

• An index of ethnic dominance, which tries to measure how much one ethnic
group runs affairs in the country.

Some of these variables are NA for some countries.

1. (10) Fit logistic regression for the start of civil war on all other variables except
country and year; include a quadratic term for exports. Report the coefficients
and their standard errors, together with R’s p-values. Which ones does R say
are significant at the 5% level?

1 I have been unable to find an explanation anywhere of why this rate is greater than 100 for some

data points.
2 This appears to count only civil and not foreign wars.

22

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/uADA/15/hw/06/ch.csv
http://www.stat.cmu.edu/~cshalizi/uADA/15/hw/06/ch.csv
http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

The Sound of Gunfire, Off in the Distance 23

2. Interpretation (15) All parts of this question refer to the logistic regression
model you just fit.

1. (5) What is the model’s predicted probability for a civil war in India in the
period beginning 1975? What probability would it predict for a country
just like India in 1975, except that its male secondary school enrollment
rate was 30 points higher? What probability would it predict for a country
just like India in 1975, except that the ratio of commodity exports to GDP
was 0.1 higher?

2. (5) What is the model’s predicted probability for a civil war in Nigeria in
the period beginning 1965? What probability would it predict for a country
just like Nigeria in 1965, except that its male secondary school enrollment
rate was 30 points higher? What probability would it predict for a country
just like Nigeria in 1965, except that the ratio of commodity exports to
GDP was 0.1 higher?

3. (5) In parts (a) and (b), you changed the same predictor variables by the
same amounts. If you did your calculations properly, the changes in pre-
dicted probabilities are not equal. Explain why not. (The reasons may or
may not be the same for the two variables.)

3. Confusion (10) Logistic regression predicts a probability of civil war for each
country and period. Suppose we want to make a definite prediction of civil war
or not, that is, to classify each data point. The probability of mis-classification
is minimized by predicting war if the probability is ≥ 0.5, and peace otherwise.

1. (5) Build a 2× 2 “confusion matrix” (a.k.a. “classification table” or “conti-
gency table”) which counts: the number of outbreaks of civil war correctly
predicted by the logistic regression; the number of civil wars not predicted
by the model; the number of false predictions of civil wars; and the number
of correctly predicted absences of civil wars. (Note that some entries in the
table may be zero.) Make sure the rows and columns of the table are clearly
labeled.

2. (3) What fraction of the logistic regression’s predictions are correct? (Note
that this is if anything too kind to the model, since it’s an in-sample eval-
uation.)

3. (2) Consider a foolish (?) pundit who always predicts “no war”. What
fraction of the pundit’s predictions are correct on the whole data set? What
fraction are correct on data points where the logistic regression model also
makes a prediction?

4. Calibration (10) Divide the data points into groups where the predicted prob-
ability of a civil war is 0–10%, those where it is 10–20%, etc. Calculate the
actual proportion of civil wars for each group of data points. Give a plot where
the horizontal axis is the predicted probability, and the vertical is the actual
frequency. Does the plot go up the 45-degree diagonal? Should it, if the model
is right? If it does not, do observed frequencies at least increase as the pre-
dicted probability goes up, so that civil war really is more common when the

24 The Sound of Gunfire, Off in the Distance

model says it has higher probability? (Again, this is if anything too kind to
the logistic regression, because it’s an in-sample comparison.)

5. (10) Fit a GAM with the same variables to the same data: smooth all the
continuous predictor variables; do not include an explicit quadratic term for
exports. (The ethnic-dominance variable is binary, and should be included in
the model with as.factor.) Provide plots of the partial response functions.
Which ones are at least roughly linear, and which are not?

6. (10) Calculate the confusion matrix for the GAM. What fraction of its pre-
dictions are accurate? How does that compare both to the logistic regression
and the peace-always pundit?

7. (10) Repeat the calibration checking plot for the GAM. Are its probabilities
closer to tracking actual frequencies, or further, than those of the logistic
regression?

8. (15) Test whether the logistic regression is properly specified, using the GAM
as the alternative model. (Follow the procedure in the notes.) What is the
p-value? Explain, based on this test and any other results you have reported,
which model you prefer.

Extra credit (15): Start with the model which predicts a constant probabil-
ity of civil war for all countries and years. Evaluate its log-likelihood out of sample
through five-fold cross-validation. Now consider all one-variable GAMs, using all
available predictor variables except country and year. Which one variable has the
highest cross-validation log-likelihood, and is it higher than the trivial, intercept-
only model? Consider all two-variable GAMs which extend the one-variable GAM
you just picked: report their cross-validated log-likelihoods. Are the two variables
you picked the two variables with the smallest p-values in the logistic regression?
Should they be?

7

The Bullet or the Ballot?

Many people assume that violence, while perhaps dangerous or evil, is more
effective politically than non-violence. In this exam, we will examine whether,
in fact, non-violent political movements are more or less likely to achieve their
goals than violent ones. Moreover, we will look at the conditions which make
non-violence more or less likely to succeed.

Our data set, gathered by political scientists who have studied exactly these
questions, is navc.csv on the class website. The units of analysis here are political Source:

Stephan
and
Chenowth
(2008);
Chenoweth
and
Stephan
(2011)

movements or campaigns. For each movement, the data records:

• The name of the movement (campaign);
• The country the movement was in (country);
• The peak year of the movement’s activity (year);
• Whether the movement fully achieved its aims (1.0), achieved partial success

(0.5), or failed (0) (outcome);
• An indicator variable (nonviol), 1 for non-violent movements and 0 for others;
• A quantitative measure of how democratic the government of the country was,

from -10 for very un-democratic governments to a possible maximum of +10
(democracy);
• An indicator for the government being under international sanctions (sanctions);
• An indicator for whether the government received aid from other governments

to help deal with the movement (aid);
• An indicator for the movement’s receiving aid from foreign governments (support);
• An indicator for the government’s using violence to repress the movement

(viol.repress);
• An indicator for whether substantial portions of the security (military and

police) forces of the government sided with the movement (defect);
• The duration of the movement, in days (duration).

Specific analytic issues you must address

In general, are non-violent movements more likely to be successful than violent
ones? Does violent repression by the government make movements more or less
likely to be successful, and is there a difference in this effect between movements
which are themselves violent and non-violent? Similarly, what is the effect of
foreign aid to the government and to the movement? Do non-violent movements
become more likely to succeed as the government becomes more democratic?

25

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/uADA/15/exams/1/navc.csv
http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

26 The Bullet or the Ballot?

Does the difference in probability of success between violent and non-violent
movements vary with how democratic the government is? All of these should be
answered with reference to the results in your model (or models).

Models

Use a generalized additive model with a logistic link function; smooth all contin-
uous predictor variables, and include all categorical variables, except campaign
and country names, as your default. (Departures from this should be carefully
justified.) Be sure to include the year as a predictor variable, and explain the inter-
pretation of your estimated effects for the year. Some of the analytic issues above
may be most easily addressed through including interaction terms, or through
fitting different models on subsets of the data; describe any such variations, and
the reasons for your choices.

Note 1: Before fitting a model with a logistic link function, you will need to
re-code partial successes as either successes or failures. Explain which one you
chose, and briefly justify your decision.

Note 2: The analysis could also be done with kernel models, and doing so would
receive full credit, but computations may take too long. (This could however avoid
needing to re-code partial successes.)

Inferential Statistics and Model Assessment

You may not assume that R’s default standard errors or p-values on estimated
regression coefficients can be trusted. Uncertainty should be assessed using suit-
able bootstrap or simulation procedures. (Be sure to explain why you used the
procedure you did.) If you need to compare two models in terms of predictive
accuracy, this should not be done through R’s default significance tests or R2’s,
but through either a suitable bootstrap or cross-validation (again, explain the
reasoning behind your choices). Exceptions will be made if you can successfully
argue that the default calculations are reliable for this problem.

Model checking

The answers you give to the substantive analytical questions rest on your esti-
mated model, so you need to include some assessment of the model’s goodness of
fit. The exact way in which you do this is left up to your initiative; it may help
to remember that the model is predicting probabilities of success. Be sure to de-
scribe your procedure and explain why you chose it, that is, why it is appropriate
to answer the questions at hand.

Format

Your main report should be a humanly-readable document of at most 10 single-
spaced pages, including figures. It should have the following sections:

Introduction describing the scientific problem and the data set, possibly including relevant
summary statistics or exploratory graphs.

The Bullet or the Ballot? 27

Models with subsections

– Describing the specification of the model (or models) you estimated, and
explaining why you decided to use those specifications rather than others;

– Giving the relevant estimated coefficients and/or functions (possibly in visual
form), along with suitable measures of uncertainty;

– Checking the goodness of fit of the model, including a description of the test
procedures you used, why you chose those ways of checking the model, what
the results were, and what they told you about the ability of the model to
describe the data set.

Results answering the analytical questions quantitatively, and with suitable measures
of uncertainty, with reference to your estimated model or models.

You may assume that the reader has a general familiarity with the contents of
401, and with the models and methods we have covered so far in the course, but
will need to be reminded of any details. The reader should not be assumed to
have any prior familiarity with the data set.

Numerical results

Numerical quantities should be written out to appropriate precision, i.e., neither
more nor fewer significant digits than appropriate.

Code

All statistical results must be supported by appropriate code, or they will re-
ceive no credit. (“Show your work.”) The ideal would be to use R Markdown, or
knitr+LATEX, to embed all computations in a humanly readable document, and
submit both the knitted version and the source1 As a second best, it is acceptable
to submit a PDF document containing all text and figures, and a separate .R file,
containing all supporting computations, clearly labeled via the comments so that
it is easy to see which claims or results go with which pieces of code.

Rubric

As usual, this describes the ideal.

Words

(10) The text is laid out cleanly, with clear divisions and transitions between
sections and sub-sections. The writing itself is well-organized, free of grammatical
and other mechanical errors, divided into complete sentences logically grouped
into paragraphs and sections, and easy to follow from the presumed level of
knowledge.

1 See examples at http://yihui.name/knitr/demos/, and the useful chunk options like echo at

http://yihui.name/knitr/options/.

http://yihui.name/knitr/demos/
http://yihui.name/knitr/options/

28 The Bullet or the Ballot?

Numbers

(5) All numerical results or summaries are reported to suitable precision, and
with appropriate measures of uncertainty attached when applicable.

Pictures

(5) Figures and tables are easy to read, with informative captions, axis labels and
legends, and are placed near the relevant pieces of text.

Code

(15) The code is formatted and organized so that it is easy for others to read
and understand. It is indented, commented, and uses meaningful names. It only
includes computations which are actually needed to answer the analytical ques-
tions, and avoids redundancy. Code borrowed from the notes, from books, or from
resources found online is explicitly acknowledged and sourced in the comments.
Functions or procedures not directly taken from the notes have accompanying
tests which check whether the code does what it is supposed to. All code runs,
and the Markdown file knits (if applicable).

Modeling

(15) Regression model specifications are described clearly and in appropriate de-
tail. There are clear explanations of how estimating the model helps to answer the
analytical questions, and rationales for all modeling choices. If multiple models
are compared, they are all clearly described, along with the rationale for consid-
ering multiple models, and the reasons for selecting one model over another, or
for using multiple models simultaneously.

Inference

(20) The actual estimation of model parameters or estimated functions is tech-
nically correct. All calculations based on estimates are clearly explained, and
also technically correct. All estimates or derived quantities are accompanied with
appropriate measures of uncertainty.

Checking

(15) The goodness-of-fit of the model is actively probed by means of tests suitable
to that class of model. The tests chosen are described, along with the rationale
for using those tests. The execution of the tests is technically correct, and the
results of the checks are clearly described. The extent to which the results of the
model assessment build or undermine confidence in the conclusions is laid out
clearly, with reference to the results of specific tests.

Conclusions

(15) The substantive, analytical questions are all answered as precisely as the
data and the model allow. The chain of reasoning from estimation results about
the model, or derived quantities, to substantive conclusions is both clear and

The Bullet or the Ballot? 29

convincing. Contingent answers (“if X, then Y , but if Z, then W”) are likewise
described as warranted by the model and data. If uncertainties in the data and
model mean the answers to some questions must be imprecise, this too is reflected
in the conclusions.

Extra credit

(10) Up to ten points may be awarded for reports which are unusually well-
written, where the code is unusually elegant, where the analytical methods are
unusually insightful, or where the analysis goes beyond the required set of ana-
lytical questions.

8

A Diversified Portfolio

Warning: Some questions require slow computations.
Source:
Classic
material
for finance,
but see
especially
Fama and
French
(1993),
and, for
the history,
MacKenzie
(2006)

Classical financial theory suggests that the log-returns of corporate stocks
should be IID Gaussian random variables, but allows for the possibility that
different stocks might be correlated with each other. In fact, theory suggests that
the returns to any given stock should be the sum of two components: one which is
specific to that firm, and one which is common to all firms. (More specifically, the
common component is one which couldn’t be eliminated even in a perfectly diver-
sified portfolio.) This in turn implies that stock returns should match a one-factor
model.

The data file portfolio.csv consists of the log returns for the stocks of 22 selected
large US corporations, centered to have mean zero and scaled to have standard
deviation 1. Each row is labeled by the relevant date.

1. (10)

1. (5) Report the weights of the first principal component. Since this is a
vector of length 22, it will be better to report this visually than as a table
or list of numbers. Comment on any notable patterns.

2. (5) Plot the projection on to the first principal component against date.
Comment on any notable patterns.

2. (10) Fit a one-factor model.

1. (5) Report the vector of factor loadings. (Again, this will be most easily
reported visually.) Comment on any notable patterns, and compare it to
the first principal component.

2. (5) Plot the factor score against the date. Comment on any notable pat-
terns, and compare to the projection on the first principal component.

3. (10) Use case bootstrapping to provide 90% confidence intervals for the factor
loadings of the one-factor model. Report the results as a figure rather than a
table.

4. (5) What is the p-value of a goodness of fit test for the hypothesis that one
factor is adequate? Explain carefully just what hypothesis is being tested, and
what is entailed by rejecting or retaining it.

5. (5) Download the function charles from the class website. Explain carefully
what arguments the function takes, what the function does, and exactly what

30

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/uADA/15/hw/09/portfolio.csv
http://www.stat.cmu.edu/~cshalizi/uADA/15/hw/09/charles.R
http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

A Diversified Portfolio 31

its return value is. (An acceptable answer to this question could be a thoroughly-
commented version of the function.)

6. (15) Write a function which finds the cross-validated log-likelihood of a factor
model with a given number of factors. That is, it should take a data set and
a number of factors as inputs, divide the data randomly into folds, calculate
the log-likelihood on a test fold of a model fit on the other folds, and return
the average log-likelihood across folds. You are encouraged to re-use existing
code from the solutions and notes; charles may or may not be useful. Report
the five-fold cross-validated log-likelihood of factor models with from 1 to 10
factors for this data. What is the favored number of factors?

7. (10) Using the mvnormalmixEM function from the mixtools package, fit a two-
component Gaussian mixture model to the data.

1. (5) Report the parameters of the two mixture components, and their rela-
tive weights. Avoid excessive precision.

2. (5) Use posterior component of the object returned by mvnormalmixEM to
classify each day as belonging to one mixture component or the other. Plot
the mixture components over time, and comment on any patterns.

8. (15) Write a function, loglike.mvnormalmix, which takes in a data set and a
model returned by mvnormalmixEM, and returns a log-likelihood. Check that it
works by seeing that it gives the correct value of the log-likelihood when a
two-component mixture is fit to the whole data. (Hint: read section 21.4.4 of
the notes.)

9. (8) Write a function which calculates the log-likelihood of mixture models
through cross-validation, as in problem 6. Report the five-fold cross-validated
log-likelihood of mixture models with from two to four components for this
data. What is the favored number of mixture components?

Warning: five-fold CV for four mixture components on the full data might
take several hours. Start early, and make sure you debug your code on small
parts of the data rather than the whole thing.

10. (2) Can you decide whether factor models or mixture models fit this data
better?

32 A Diversified Portfolio

Company Abbreviation

Altria (formerly Philip Morris) MO
Amazon AMZN
Apple AAPL
Archer Daniels Midland ADM
Automatic Data Processing ADP
Bank of America BAC
Corrections Corporation of America CXW
Dow Chemicals DOW
Equifax EFX
ExxonMobil XOM
Ford F
Halliburton HAL
General Electric GE
Goldman Sachs GS
Graham Holding Companies GHC
Microsoft MSFT
Proctor and Gamble PG
Time Warner TWX
United States Steel X
Walmart WMT
Yahoo! YHOO
Yum! Brands YUM

Table 8.1 Abbreviations for the companies included in the data set.

9

The Monkey’s Paw

[[TODO: Need to handle continuous vs. discrete issue here — perhaps make
additional problem of constructing a Poissonian factor model? Or just too com-
plicated?]]

Scientific background: Nerve cells (or “neurons”) communicate and pro-
cess information by transmitting little electrical impulses to each other, called
“spikes”1. Many neurons use “rate codes”, where the number of spikes they pro-
duce in a short period of time encodes information either about some aspect of
the world the organism is sensing, or about how the organism is acting or is going
to act.

For example, when very fine electrodes are inserted into certain motor-control
regions of the brains of monkeys, so that neuroscientists can record from individ-
ual neurons, some cells are found to encode the direction in which the monkey
intends to move its hand. Specifically, a neuron has a preferred direction vector ~b,
and the when the monkey intends to move its hand with velocity ~v, the average
number of spikes over a short interval is a+~b · ~v, plus or minus some amount of
noise. A neuron which behaves like this is said to show “directional tuning”, and
~b is its “preferred direction”.2

The data set neur.csv is based on an experiment during which the neuro-
scientists recorded simultaneously from 96 directionally-sensitive neurons in a
monkey’s motor region, each cell having a different preferred direction. That is,
each neuron i will have its own ~bi and its own intercept ai. During each trial, the
monkey was to move its hand in one of eight directions, spread evenly around
a circle. Each row of the data frame represents 100ms, and so the entries in the
data frame are the number of spikes produced by each of the 96 neurons spiked
during each time interval.

In this exam, you will both fit a model which derives from this “directional
tuning” idea, and consider alternative multivariate models.

1 Because of how they look in a plot of voltage against time.
2 For more on such models of neural coding, see, for example, §3.3 of P. Dayan and L. F. Abbott,

Theoretical Neuroscience (MIT Press, 2001).

33

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/uADA/15/exams/2/neur.csv
http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

34 The Monkey’s Paw

9.1 Specific Problems

1. Explain how this model for spiking is, or is related to, a factor model. Your
explanation should indicate how a, ~b and ~v are related to the factor loadings
and factor scores, and the number of factors.

2. Fit a factor model with the number of factors you determined is appropriate
from problem 1. For each neuron, report its preferred direction. (Since there are
a large number of neurons, it would probably be best to report this visually.)

3. Based on your fitted factor model, report an estimate of the intended direc-
tion ~v at each time point. (Again, this should probably be reported visually.)
The experiment had distinct breaks between trials where the monkey stopped
moving in one direction and started moving in another, random direction; can
you work out, approximately, where these breaks occurred?

4. Suppose that instead of recording intended velocities in the usual (x, y) co-
ordinates, we used coordinate axes which were rotated 30 degrees counter-
clockwise from the usual ones. Show that this would amount to multiplying

the intended-velocity vector ~v by

[
cosπ/6 − sinπ/6
sinπ/6 cosπ/6

]
. Explain what effect,

if any, this would have on the preferred-direction vector ~b of each neuron. Ex-
plain how this difference in coordinate systems could, or could not, be detected
in your factor analysis of the data. In particular, what would this change of
coordinates imply for the interpretation of your factor score estimates and
factor loadings?

5. Try fitting a three-cluster mixture model. Why might three clusters, specif-
ically, be reasonable? Which model predicts better, the factor model or the
three-cluster mixture model?

Note: if using the mixtools package, you might find it easier to use the
function npEM to fit a non-parametric mixture model than to use mvnormalmixEM

to fit a Gaussian mixture model, since the observable variables are discrete
counts rather than continuous. Fitting such a mixture model to the full data
may take as much as a couple of minutes, so allow plenty of time for debugging
and any computation-intensive procedues.

6. Try fitting an eight-cluster mixture model. Why might eight clusters be rea-
sonable? Which model predicts best? (See previous note.)

You are welcome to consider other models for this data as well, but for full
credit you must answer all these questions about these models.

9.2 Formatting Instructions and Rubric

Your main report should be a humanly-readable document of at most 10 single-
spaced pages, including figures. It should have the following sections:

Introduction describing the scientific problem and the data set, possibly including relevant
summary statistics or exploratory graphs. (Do not include EDA just to have
EDA.)

9.2 Formatting Instructions and Rubric 35

Specific Problems answering the questions set above, but avoiding the check-list, itemized format
in favor of continuous text, with a logical succession of sentences and para-
graphs. (Writing coherently is more important than following the order of the
questions.)

Conclusions summarizing what you have learned from the data and models about whether
the directional-tuning model is really a good description of how these neurons
encode motion.

You may assume that the reader has a general familiarity with the contents of
401, and with the models and methods we have covered so far in the course, but
will need to be reminded of any details. The reader should not be assumed to
have any prior familiarity with the data set.

Numerical results

Numerical quantities should be written out to appropriate precision, i.e., neither
more nor fewer significant digits than appropriate.

Code

All statistical results must be supported by appropriate code, or they will re-
ceive no credit. (“Show your work.”) The ideal would be to use R Markdown, or
knitr+LATEX, to embed all computations in a humanly readable document, and
submit both the knitted version and the source3 As a second best, it is acceptable
to submit a PDF document containing all text and figures, and a separate .R file,
containing all supporting computations, clearly labeled via the comments so that
it is easy to see which claims or results go with which pieces of code.

Rubric

As usual, this describes the ideal.

Words

(10) The text is laid out cleanly, with clear divisions and transitions between
sections and sub-sections. The writing itself is well-organized, free of grammatical
and other mechanical errors, divided into complete sentences logically grouped
into paragraphs and sections, and easy to follow from the presumed level of
knowledge.

Numbers

(5) All numerical results or summaries are reported to suitable precision, and
with appropriate measures of uncertainty attached when applicable.

3 See examples at http://yihui.name/knitr/demos/, and the useful chunk options like echo at

http://yihui.name/knitr/options/; also the examples in the solutions to exam 1.

http://yihui.name/knitr/demos/
http://yihui.name/knitr/options/

36 The Monkey’s Paw

Pictures

(5) Figures and tables are easy to read, with informative captions, axis labels and
legends, and are placed near the relevant pieces of text.

Code

(15) The code is formatted and organized so that it is easy for others to read
and understand. It is indented, commented, and uses meaningful names. It only
includes computations which are actually needed to answer the analytical ques-
tions, and avoids redundancy. Code borrowed from the notes, from books, or from
resources found online is explicitly acknowledged and sourced in the comments.
Functions or procedures not directly taken from the notes have accompanying
tests which check whether the code does what it is supposed to. All code runs,
and the Markdown file knits (if applicable). The main text of the report is free of
intrusive blocks of code, which are used only when a specifically-computational
point is being made, or when code is actually the clearest way of describing a
point.

Specific Problems

(25) All specific problems posed in §9.1 receive clear, well-written and correct
answers. The answers show, and convey, a real grasp of the mathematical basis
of the models being manipulated, and how quantities in the model are related to
the underlying scientific questions about neural coding of movement.

Inference and Uncertainty

(15) The actual estimation of model parameters or estimated functions is tech-
nically correct. All calculations based on estimates are clearly explained, and
also technically correct. All estimates or derived quantities are accompanied with
appropriate measures of uncertainty (such as confidence intervals or standard
errors).

Comparisons

(15) All comparisons between models are done in a statistically valid way: if
in-sample, they are accompanied by an explanation of why this particular in-
sample comparison will not lead to over-fitting; if out-of-sample, there is a clear
description of the generalization process being performed. The execution of com-
parisons is technically correct, and their results clearly described. The extent to
which comparisons provide either clear or ambiguous evidence about which mod-
els fit better is made plain to the reader, and is carried through to the ultimate
conclusions.

Conclusions

(15) The substantive questions about neural coding are all answered as precisely
as the data and the model allow. The chain of reasoning from estimation results
about models, or derived quantities, to substantive conclusions is both clear and

9.2 Formatting Instructions and Rubric 37

convincing. Contingent answers (“if X, then Y , but if Z, then W”) are likewise
described as warranted by the model and data. If uncertainties in the data and
model mean the answers to some questions must be imprecise, this too is reflected
in the conclusions.

Extra credit

(10) Up to ten points may be awarded for reports which are unusually well-
written, where the code is unusually elegant, where the analytical methods are
unusually insightful, or where the analysis goes beyond the required set of ana-
lytical questions.

10

What’s That Got to Do with the Price of
Condos in California?

Agenda: As a warm-up and refresher in using linear regression to explore relationships between
variables, we will look at a large data set on real estate prices.

The Census Bureau divides the country up into geographic regions, smaller
than counties, called “tracts” of a few thousand people each, and reports much
of its data at the level of tracts. This data set, drawn from the 2011 American
Community Survey, contains information on the housing stock and economic
circumstances of every tract in California and Pennsylvania. For each tract, the
data file records a large number of variables (not all of which will be used in this
assignment):

• A geographic ID code, a code for the state, a code for the county, and a code
for the tract

• The population, latitude and longitude of the tract

• Its name

• The median value of the housing units in the tract

• The total number of units and the number of vacant units

• The median number of rooms per unit

• The mean number of people per household which owns its home, the mean
number of people per renting household

• The median and mean income of households (in dollars, from all sources)

• The percentage of housing units built in 2005 or later; built in 2000–2004; built
in the 1990s; in the 1980s; in the 1970s; in the 1960s; in the 1950s; in the 1940s;
and in 1939 or earlier

• The percentage of housing units with 0 bedrooms; with 1 bedroom; with 2;
with 3; with 4; with 5 or more bedrooms

• The percentage of households which own their home, and the percentage which
rent

Remember that these are not values for individual houses or families, but sum-
maries of all of the houses and families in the tract.

The basic question here has to do with how the quality of the housing stock,
the income of the people, and the geography of the tract relate to house values
in the tract. We will look at several different linear models, and see if they have
reasonable interpretations, and/or make systematic errors.

38

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

What’s That Got to Do with the Price of Condos in California? 39

1. (3 pts) Not all variables are available for all tracts. Remove the rows containing
NA values. All subsequent problems will be done on this cleaned data set. Hint:
Recipe 5.27.

1. (1) How many tracts are eliminated?
2. (1) How many people live in those tracts?
3. (1) What happens to the summary statistics for median house value and

median income?

2. (7) House value and income

1. (1) Linearly regress median house value on median household income. Re-
port the intercept and the coefficient (to reasonable precision), and explain
what they mean.

2. (2) Regress median house value on mean household income. Report the
intercept and the coefficient (to reasonable precision), and explain what
they mean. Why are the coefficients for two different measure of household
income different?

3. (4) Regress median house value on both mean and median household in-
come. Report the estimates, and interpret the coefficients, as before. Does
this interpretation seem reasonable? Explain.

3. (10) Regress median house value on median income, mean income, population,
number of housing units, number of vacant units, percentage of owners, median
number of rooms, mean household size of homeowners, and mean household
size of renters. Report all the estimated coefficients and their standard errors
to reasonable precision, and explain what they mean. Why are the coefficients
on income different from in the previous models?

4. (5) Which three variables are most important, in this model, for predicting
house values? Explain your reasoning for deciding on this. Hint: make sure
your answers wouldn’t change if we changed the units of measurement for the
predictor variables.

5. (20) Checking residuals for the model from problem 3.

1. (5) Make a Q−Q plot of the regression residuals.
2. (5) Make scatter-plots of the regression residuals against each of the predic-

tor variables, and add kernel smoother curves (as in Chapter 1). Describe
any patterns you see. (A very rough rule of thumb is that the bandwidth
should be about σn−1/5, where σ is the standard deviation of the predictor
variable and n is the sample size.)

3. (5) Make scatter-plots of the squared residuals against each of the predictor
variables, and add kernel smoother curves. Describe any patterns you see.

4. (5) Explain, using these plots, whether the residuals appear Gaussian and
independent of the predictors.

6. (12) Fit the model from 3 to data from California alone, and again to data
from Pennsylvania alone.

1. (5) Report the two sets of coefficients and standard errors. Explain whether
or not it is plausible that the true coefficients are really equally.

40 What’s That Got to Do with the Price of Condos in California?

2. (2) What are the square root of the mean squared error (RMSEs) of the
Pennsylvania and California coefficients, on their own data?

3. (5) Use the California coefficients to predict the Pennsylvania data. What
is the RMSE? What is the correlation between the California coefficients’
predictions for Pennsylvania, and the Pennsylvania coefficients’ predictions?
Hint: Recipe 11.18.

7. (10) Make a map of median house values. The vertical coordinate should be
latitude, the horizontal coordinate should be longitude, and the house value
should be indicated either by the color of the points (Hint: recipe 10.23), or
by using a third dimension in a perspective plot. Describe the patterns that
you see.

8. (10) Make a map of the regression residuals for the model from problem 3.
Are they randomly scattered over space, or are there regions where the model
systematically over- or under- predicts? Are there regions where the errors are
unusually large in both directions? (You might also want to make a map of
the absolute value of the residuals.) — If you cannot make a map, you can still
get partial credit for scatter-plots of residuals against latitude and longitude.

9. (8) Fit a linear regression with all the variables from problem 3, as well as
latitude and longitude. Report the new coefficients and their standard errors.
What do the coefficients on latitude and longitude mean? How important are
latitude and longitude in this new model?

10. (5) Make a map of the regression residuals for the new model from problem
9. Compare and contrast it with the map of the residuals from the previous
model. Are the new residuals spatially uniform, or are there patterns?

11. (10) Regress the log of median house value on the same variables as in problem
9. Which model more accurately predicts housing prices? How can you tell?

11

The Advantages of Backwardness

Many theories of economic growth say that it’s easier for poor countries to grow
faster than rich countries — “catching up”, or the “advantages of backwardness”.
One argument for this is that poor countries can grow by copying existing, suc-
cessful technologies and ways of doing business from rich ones. But rich countries
are already using those technologies, so they can only grow by finding new ones,
and copying is faster than innovation. So, all else being equal, poor countries
should grow faster than rich ones. One way to check this is to look at how growth
rates are related to other economic variables.

Our data for examining this will be taken from the “Penn World Table” (http:
//pwt.econ.upenn.edu/php_site/pwt_index.php), for selected countries and
years. The data file is penn-select.csv on the class website. Each row of this
table gives, for a given country and a five-year period, the starting year, the initial
population of the country, the initial gross domestic product (GDP)1 per capita
(adjusted for inflation and local purchasing power), the average annual growth
rate of GDP over that period, the average population growth rate, the average
percentage of GDP devoted to investment, and the average percentage ratio of
trade (imports plus exports) to GDP2.

We will use the np package on CRAN to do kernel regression.3 Install it, and
load the data file penn-select.csv (link on the class website).

1. (5 points) Fit a linear model of gdp.growth on log(gdp). What is the coeffi-
cient? What does it suggest about catching-up?

2. (5 points) Fit a linear model of gdp.growth on log(gdp), pop.growth, invest
and trade. What is the coefficient on log(gdp)? What does it suggest about
catching-up?

3. (5 points) It is sometimes suggested that the catching-up effect only works for
countries which are open to trade with, and learning from, more-developed
economies. Add an interaction between log(gdp) and trade to the model

1 Annual gross domestic product is the total value of all goods and services produced in the country

in a given year. It has some pathologies — an earthquake which breaks everyone’s windows could

increase GDP by the value of the repairs — but it’s a standard measure of economic output.
2 The Penn tables call this variable “openness”. It can be bigger than 100, if, for instance, a country

re-exports lots of its imports.
3 In addition to the examples in Chapter 4, the package has good help files, and a tutorial at

http://www.jstatsoft.org/v27/i05.

41

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://pwt.econ.upenn.edu/php_site/pwt_index.php
http://pwt.econ.upenn.edu/php_site/pwt_index.php
http://www.jstatsoft.org/v27/i05
http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

42 The Advantages of Backwardness

from Problem 2. What are the relevant coefficients? What do they suggest
about catching-up?

4. (15 points) Use data-set splitting, as in Chapter 3 of the notes, to decide which
of these three linear models predicts best. (You can adapt the code from that
chapter or write your own.) Which one is the winner?

5. (15 points) The npreg function in the np package does kernel regression. By
default, it uses a combination of cross-validation and sophisticated but very
slow optimization to pick the best bandwidth. In this problem, we will force
it to use fixed bandwidths, and do the cross-validation ourselves.

penn.0.1 <- npreg(gdp.growth~log(gdp),bws=0.1,data=penn)

does a kernel regression of growth on log(gdp), using the default kernel
(which is Gaussian) and bandwidth 0.1. (You don’t have to call the data
penn.) You can run fitted, predict, etc., on the output of npreg just as you
can on the output of lm. (There are more examples of using npreg in Chapter
4.)

The code at the end of this assignment (also online) uses five-fold cross-
validation to estimate the mean-squared error for the six bandwidths 0.05, 0.1, 0.2, 0.3, 0.4, 0.5.
Use it to create a plot of cross-validated MSE versus bandwidth. Add to the
same plot the in-sample MSEs of those six bandwidths on the whole data.
What bandwidth predicts best?

6. (10 points) Make a scatterplot of log(gdp) versus growth. Add the line for
the linear model from problem 1. Add the fitted values for the kernel curve
with the best bandwidth (according to the previous problem). What does this
suggest about catching up?

(There are at least two ways to get the fitted values for the kernel regression,
using fitted or predict.)

7. (5 points) npreg will also do kernel regressions with multiple input variables.
This time, use the built-in bandwidth selector:

penn.npr <- npreg(gdp.growth ~ log(gdp) + pop.growth + invest

+ trade, data=penn, tol=0.1, ftol=0.1)

(The last two arguments tell the bandwidth selector not to try very hard to
optimize; it may still take several minutes.) What are the selected bandwidths?
(Use summary.)

8. (5 points) Explain why we cannot add an interaction between log(gdp) and
trade to the nonparametric regression from the previous problem.

9. (15 points) Sub-divide the data into points where the initial GDP per capita
is ≤ $700 and those where it is above. For each data point, use the kernel
regression from problem 7 to predict the change in growth-rate from a 10%
decrease in initial GDP (not a 10% decrease in log-GDP). Report the averages
over the initially-poorer and the initially-richer data points. Describe what
this suggests about catching up.

Hints: use predict() with partially-modified data; do not estimate another

The Advantages of Backwardness 43

regression with artificially-lowered initial GDPs; make sure you are changing
initial GDP by 10%, and not changing the log of GDP by 10%.

10. (10 points) To chose between the best linear model (as picked by you in prob-
lem 4) and the kernel regression from problem 7, use cross-validation again.
Modify the code provided to use five-fold cross-validation to get CV MSEs for
both the linear regression and for the nonparametric regression (with auto-
matic bandwidth selection). Which predicts better?

11. (10 points) Based on your analysis, does the data support the idea of catching
up, undermine it, support its happening under certain conditions, or provide
no evidence either way? (As always, explain your answers.)

44 The Advantages of Backwardness

Compare predictive ability of different bandwidths using k-fold CV

Inputs: number of folds, vector of bandwidths, dataframe

Presumes: data frame contains variables called "gdp.growth" and "gdp"

Output: vector of cross-validated MSEs for the different bandwidths

The default bandwidths here are NOT good ones for other problems

cv.growth.folds <- function(nfolds=5, bandwidths=c(0.05,(1:5)/10), df=penn) {

require(np)

case.folds <- rep(1:nfolds,length.out=nrow(df))

divide the cases as evenly as possible

case.folds <- sample(case.folds) # randomly permute the order

fold.mses <- matrix(0,nrow=nfolds,ncol=length(bandwidths))

colnames(fold.mses) = as.character(bandwidths)

By naming the columns, we'll won't have to keep track of which bandwidth

is in which position

for (fold in 1:nfolds) {

What are the training cases and what are the test cases?

train <- df[case.folds!=fold,]

test <- df[case.folds==fold,]

for (bw in bandwidths) {

Fit to the training set

First create a "bandwidth object" with the fixed bandwidth

current.npr.bw <- npregbw(gdp.growth ~ log(gdp), data=train, bws=bw,

bandwidth.compute=FALSE)

Now actually use it to create the kernel regression

current.npr <- npreg(bws=current.npr.bw)

Predict on the test set

predictions <- predict(current.npr, newdata=test)

What's the mean-squared error?

fold.mses[fold,paste(bw)] <- mean((test$gdp.growth - predictions)^2)

Using paste() here lets us access the column with the right name...

}

}

Average the MSEs

bandwidths.cv.mses <- colMeans(fold.mses)

return(bandwidths.cv.mses)

}

12

It’s Not the Heat that Gets You, It’s the
Sustained Conjunction of Heat with

Elevated Levels of Atmospheric Pollutants

Agenda: More practice with additive models; more practice with transformed variables; ex-
tending additive models to include interactions; re-shaping data frames; answering “what if?”
questions using models.

Timing: Problems 1–4 and 6 involve fitting models to data, plotting, and interpretation, but
no coding. Problem 5 requires explaining and using some provided code. Problem 7 requires
doing some math, and possibly writing some code to do the corresponding calculation. The
solutions for problems 1–7 take a few minutes to knit. The extra credit takes about 40 minutes
to run with streamlined code.

The data set chicago, in the package gamair, contains data on the relationship
between air pollution and the death rate in Chicago from 1 January 1987 to 31 De-
cember 2000. The seven variables are: the total number of (non-accidental) deaths
each day (death); the median density over the city of large pollutant particles
(pm10median); the median density of smaller pollutant particles (pm25median);
the median concentration of ozone (O3) in the air (o3median); the median con-
centration of sulfur dioxide (SO2) in the air (so2median); the time in days (time);
and the daily mean temperature (tmpd).

We will model how the death rate changes with pollution and temperature.
Epidemiologists tell us that risk factors usually multiply together rather than
adding, so we will fit additive models to the logarithm of the number of deaths.
For fitting additive models, please use the mgcv package.

1. Load the data set and run summary on it.

1. (1) Is temperature given in degrees Fahrenheit or degrees Celsius?
2. (2) The pollution variables are negative at least half the time. What might

this mean?
3. (2) We will ignore the pm25median variable in the rest of this problem set.

Why is this reasonable?

2. Fit a spline smoothing of log(death) on time. (You can use either smooth.spline
or gam.)

1. (4) Plot the smoothing spline along with the actual values.
2. (3) There should be four large outliers, right next to each other in time.

When are they? For full credit, give calendar dates, not day numbers.
(Hints: day 0 was 31 December 1993; the as.Date function.)

3. (3) Calculate the R2 of the model. In what sense, if any, is this the “pro-
portion of variance explained by the model”?

45

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

46 It’s Not the Heat that Gets You

3. Use gam to fit an additive model for log(death) on pm10median, o3median,
so2median, tmpd and time. Use spline smoothing for each of these predictor
variables. Hint: Because of some missing-data issues, some plots later may be
easier to make if you set the na.action=na.exclude option when estimating
the model.

1. (7) Plot the partial response functions, with partial residuals. Describe the
partial response functions in words.

2. (4) Plot the fitted values as a function of time, along with the actual values
of log(death). Hint: You will have to be careful about the NA values!

3. (4) Are the outliers still there? Are they any better? Hint: Look at the
residuals here.

4. Medically, it makes more sense to suppose that deaths on day t are due con-
ditions over the previous few days, and not just on the conditions on day t.
This problem re-shapes the data set to let us model this.

1. (8) Suppose that on any given day, we want to know the average value of
some variable over today and the previous k days. Explain how the following
code computes that.

lag.mean <- function(x, window) {
n <- length(x)

y <- rep(0,n-window)

for (t in 0:window) {
y <- y + x[(t+1):(n-window+t)]

}
return(y/(window+1))

}

In particular, how is k related to the arguments?
2. (7) Create a new data frame with the same column names as chicago,

but where, on each day, the value of the pollution concentrations and tem-
perature is the average of that day’s value with the previous three days.
(Hint: you will want to do different things to different columns of chicago.)
How many rows should this data frame have? Make sure that the time and
death columns are properly aligned with the new, time-average predictor
variables. How can you check that this is working properly?

5. Fit an additive model, as in problem 3, with the time-averaged pollution and
temperature variables. (Do not average time or death.)

1. (5) Plot the partial response functions and their partial residuals.
2. (5) Plot the fitted values as a function of time, and the actual values. What

has happened to the outliers? Hint: Again, look at the residuals.

6. Variable examination

1. (4) Find the rows in the data frame (with the time-averaged values) corre-
sponding to the large-death outliers. Look at all variables for them, and for
three days on either side. Now compare this to the same stretch of time a

It’s Not the Heat that Gets You 47

year earlier. Which two variables, aside from death, are unusually high or
low around the outliers?

2. (7) Re-fit the model from problem 5, with an interaction between the two
variables you just picked out. Plot the partial response functions.

3. (4) Plot the fitted values versus time. What has happened to the outliers?
Hint: Residuals once more.

7. Using the last model you fit, we will consider the predicted impact of a 2◦

Celsius increase in temperature on log(death), taking the last full year of the
data as a baseline.1.

1. (1) Prepare a data frame containing only the last full year of the data.
What is the average predicted value of log(deaths)?

2. (1) Modify this data frame to increase all temperatures by 2◦C.
3. (3) Find the new average change in the predicted values of log(deaths)

associated with a 2◦C warming.
4. (5) Find a standard error for this average predicted change, using the stan-

dard errors for the prediction on each day, and assuming no correlation
among them. Include an explanation of why your calculation is correct.
Also give the corresponding Gaussian 95% confidence interval. Hint 1: The
se.fit option to predict. Hint 2: The appendix to the textbook on “prop-
agation of error”.

5. (5) Find the predicted change in the number of deaths (not change in
log(death) from a 2◦C warming over the course of a whole year. Hint:
remember that ex 6= ex.

6. (5) Find a standard error for the predicted change in the number of deaths
(not the change in log(death)) and the corresponding 95% Gaussian con-
fidence interval. Hint: Propagation of error again.

Extra credit 1 (10):

1. (4) Explain how you could use bootstrapping to give a 95% confidence interval
for the average increase in log(death) over the year. Explain how your idea
will handle the fact that the model uses multiple variables, and that what
happens on day t is not independent of what happens on day t − 1. More
credit will be given for more precise, complete and clear explanations. (You
do not have to implement your solution yet.)

2. (6) Implement your bootstrapping scheme and give the confidence interval.

1 2◦C is in the middle range of current projections for the global average effect of climate change by

the end of this century

(http://www.ipcc.ch/publications_and_data/ar4/wg1/en/contents.html)q. Of course it’s

unrealistic to suppose that would be an even shift throughout the year, or for that matter that

Chicago would necessarily warm by the average amount. In fact, some of the models

(http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch11s11-5-3.html, Figure 11.11) have

4◦C of warming in the middle of their prediction intervals for central North America.

http://www.ipcc.ch/publications_and_data/ar4/wg1/en/contents.html
http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch11s11-5-3.html

13

Nice Demo City, but Will It Scale?

[[TODO:
Integrate
the two
versions of
this prob-
lem set,
perhaps
by just
picking
one]]

13.0.1 Version 1

This ver-
sion was
used as a
take-home
exam,
hence less
scaffolding;
flag as
such in
the guide
to the
problems

13.0.1.1 Background

It has been known for a long time that larger cities tend to be more economically
productive than smaller ones. That is, the economic output per person of a city or

[[TODO:
Yank refer-
ences from
Preface to
Urban Eco-
nomics]]

other settlement (Y) tends to increase with the population (N). Recently, there
has been some controversy over the exact form of the relationship, and over its
explanation.

In particular, it has been claimed1 that urban incomes show “power-law scal-
ing”, meaning that

Y ≈ y0N
a

for some constant y0 > 0 (the same across cities) and some scaling exponent a > 0
(the same across cities). Equivalently2,

log Y ≈ c+ a logN

The scientists who first postulated power law scaling for urban economies thought
that the tendency for bigger cities to be more productive was largely due to
what are called “increasing returns to scale”3, which would be stronger in larger
cities. Additionally, having more people around, and more different sorts of people
around, could lead to exchanges of ideas and so to new and better ways of doing
business. According to this view, the primary determinant of a city’s economy is
simply its size, and larger cities are just “scaled up” versions of smaller ones.

An alternative explanation is that different industries have different levels of
income per worker, and that some industries tend to be concentrated in larger
cities and others in smaller towns. Large cities tend especially to be the places
where one finds highly skilled providers of very specialized services, though their
services are used, often indirectly, more or less everywhere4. In this view, the

1 By Geoffrey West and collaborators; there’s a good video online of Prof. West giving a talk about

the work at a TED conference, if you’re interested.
2 Why is it equivalent, and how is c related to y0?
3 This is when the cost of producing the same item, with the same factory, employees, etc., is lower

when the volume being produced is high, perhaps because the system runs more efficiently, or each

sale has to recover a smaller share of the fixed cost of setting up the factory. A constant sale price

minus lower costs equals higher profits.
4 There are probably few, if any, electrochemical engineers who design liquid crystal displays working

48

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

Nice Demo City, but Will It Scale? 49

association between the population of cities and their economic productivity is
due to the kind of industries that go with being big cities, not some effect of size
as such. There is no reason, according to this “urban hierarchy” view, why the
relationship between per-capita income Y and urban population N should be a
power law. In fact, the urban-hierarchy model doesn’t even specify a particular
functional relationship between how much of a city’s economy comes from high-
value industries and the city’s income, just that the relationship is increasing.

Note that neither the power-law nor the urban-hierarchy model predicts Gaus-
sian distributions.

In this exam, you will assess the evidence for power law scaling, and whether
the “urban hierarchy” idea can explain the relationship between income and
population.

Data

For data-collection purposes, urban regions of the United States are divided into
several hundred “Metropolitan Statistical Areas” based on patterns of residence
and commuting; these cut across the boundaries of legal cities and even states.
In the last decade, the U.S. Bureau of Economic Analysis has begun to estimate
“gross metropolitan products” for these areas — the equivalent of gross national
product, but for each metropolitan area. (See Homework 2 for the definition of
“gross national product”.) Our data set contains the following variables, derived
from the BEA:

• the name of each metropolitan area;
• its per-capita gross metropolitan product, in dollars (Y);
• its population (N);
• the share of its economy derived from finance (as a fraction between 0 and 1);
• the share of “professional and technical services”;
• the share of “information, communication and technology” (ICT);
• and the share of “management of firms and enterprises”.

Note that the last four columns have some missing values (NAs), since the BEA
does not release those figures when doing so would disclose sensitive information
about individual companies.

13.0.1.2 Tasks and Questions

You are to write a report assessing the (1) whether the power-law scaling model
accurately represents the relationship between urban population and urban per-
capita income; (2) whether, as the “urban hierarchy” idea implies, the relationship
can be explained away by controlling for which industries are found in which cities;
and (3) whether the power-law scaling or the urban-hierarchy idea provides a
better model of urban economies.

Your report should have the following sections: an introduction, laying out

in Altoona, PA, but everyone there who buys a cellphone indirectly pays for the time and training

of such engineers who live elsewhere.

50 Nice Demo City, but Will It Scale?

the questions being investigated and the approach taken; a description of the
data; detailed analyses; and conclusions. Your report should deal with at least
the following specific points:

• The estimation of the scaling exponent a from the data, including its uncer-
tainty5;
• An estimate of the out-of-sample error of the power-law-scaling model;
• An examination of that model’s residuals;
• A comparison of that model to non-parametric models of the size-income rela-

tionship (including, but not limited to, out-of-sample errors);
• Whether larger cities tend to have higher shares of the four high-value indus-

tries measured in the data set, and if so, what the size-industry relationship
is;
• Whether cities with higher shares for those industries have higher incomes, and

if so, what the industry-income relationship is;
• Whether, and in what sense, the income-industry relationships can explain the

size-income relationship;
• How missing values were handled, and why;
• Appropriate quantifications of uncertainty for all estimates and hypothesis

tests.

Adequately dealing with these points may, of course, lead to others.

13.0.2 Version 2

13.0.2.1[[This ver-
sion was
a pair of
homework
assign-
ments, so
the points
add up to
200]]

For data-collection purposes, urban areas of the United States are divided into
several hundred “Metropolitan Statistical Areas” based on patterns of residence
and commuting; these cut across the boundaries of legal cities and even states.
In the last decade, the U.S. Bureau of Economic Analysis has begun to estimate
“gross metropolitan products” for these areas — the equivalent of gross national
product, but for each metropolitan area. (See Homework 2 for the definition of
“gross national product”.) Even more recently, it has been claimed that these
gross metropolitan products show a simple quantitative regularity, called “supra-
linear power-law scaling”. If Y is the gross metropolitan product in dollars, and
N is the number of people in the city, then, the claim goes,

Y ≈ cN b (13.1)

where the exponent b > 1 and the scale factor c > 0. This homework will use the
tools built so far to test this hypothesis.

1. (15 points) A metropolitan area’s gross per capita product is y = Y/N . Show
that if Eq. 13.1 holds, then

log y ≈ β0 + β1 logN

5 Hint: You should get a value in the range (0, 0.5).

Nice Demo City, but Will It Scale? 51

How are β0 and β1 related to c and b?

2. (15 points) The data files gmp 2006.csv and pcgmp 2006.csv on the class
website contain the total gross metropolitan product (Y) in millions of dollars,
and the per capita gross metropolitan product (y) in dollars, for all metropoli-
tan areas in the US in 2006. Read them in and use them to calculate the
metropolitan populations (N). If it’s done correctly, then running summary on
the population figures should give

Min. 1st Qu. Median Mean 3rd Qu. Max.

54980 135600 231500 680900 530900 18850000

(Your exact results may differ very slightly because of rounding and display
settings.) What is the variance of log y?

3. (20 points) Estimating the power-law scaling model. Use lm to linearly regress
log per capita product, log y, on log population, logN . How does estimating
this statistical model relate to Equation 13.1? What are the estimated coeffi-
cients? Are they compatible with the idea of supra-linear scaling? What is the
mean squared error for log y?

4. (15 points) Plot per capita product y against N , along with the fitted power-
law relationship from problem 3. (Be careful about logs!)

5. (15 points) Fit a non-parametric smoother to log y and logN . (You can use
kernel regression, a spline, or any other non-parametric smoother.) What is
the mean squared error for log y? Describe, in words, how this curve compares
to the power-law model from problem 3.

6. (20 points) Using the method from [[lecture 10, section 1]], test whether the
power-law relationship is correctly specified. What is the p-value? What do
you conclude about the validity of the power-law model, based not just on
this problem but the previous ones as well?

13.0.2.2

We continue to investigate the relationship between how big cities are, and how
economically productive they are. The scientists who first postulated power laws
for urban economies thought that the tendency for bigger cities to be more pro-
ductive was largely due to what are called “increasing returns to scale”6, which
would be bigger in larger cities. Additionally, having more people around, and
more different sorts of people around, could lead to exchanges of ideas and so to
new and better ways of doing business.

An alternative explanation is that different industries have different levels of
income per worker, and that some industries tend to be concentrated in larger
cities and others in smaller towns. Large cities tend especially to be the places
where one finds highly skilled providers of very specialized services, though their

6 This is when the cost of producing the same item, with the same factory, employees, etc., is lower

when the volume being produced is high, perhaps because the system runs more efficiently, or each

sale has to recover a smaller share of the fixed cost of setting up the factory. A constant sale price

minus lower costs equals higher profits.

52 Nice Demo City, but Will It Scale?

services are used, often indirectly, more or less everywhere7. In this view, the
association between the population of cities and their economic productivity is
due to the kind of industries that go with being big cities, not some effect of size
as such.

In this exam, you will do a fairly simple test of these two explanations.

Data

A data file has been e-mailed to you at your Andrew account. It is a comma-
separated text file (CSV), containing the following columns, in order, for each
metropolitan area:

• the name of the metropolitan area;
• its per-capita gross metropolitan product (in dollars)
• its population;
• the share of its economy derived from finance (as a fraction between 0 and 1);
• the share of “professional and technical services”;
• the share of “information, communication and technology” (ICT);
• and the share of “management of firms and enterprises”.

The first three columns you saw in the last homework. The last four columns
came from the same source. However, those columns have some missing values
(NAs), since the Bureau of Economic Analysis does not release the data when
doing so would disclose sensitive information about individual companies.

13.0.2.3 Problems

1. More specialist service industries in bigger cities?

1. (2 points) For each of the four industries, create a scatter-plot of the share
of that industries in the economy as a function of population. If a city is
missing a value for an industry, omit it from that plot.

2. (5 points) Add a nonparametric smoothing curve to each plot. Use kernel
regression, local linear regression, a smoothing spline, etc., as you wish, but
make sure that you use cross-validation to adapt the amount of smoothing
to the roughness of the data.

3. (3 points) Describe the patterns made by these plots. In particular, do
larger cities have more of these industries?

2. Higher productivity from specialist service industries?

1. (2 points) For each of the four industries, create a scatter-plot of per-capita
GMP as a function of the share of that industry in the city’s economy. If a
city is missing a value for an industry, omit it from the plot.

2. (5 points) Add a nonparametric smoothing curve to each plot. (Use the
same smoothing method you did for problem 1.)

7 There are probably very few electrochemical engineers who design liquid crystal displays in Altoona,

but everyone there who buys a cellphone indirectly pays for the time and training of such engineers

who live elsewhere.

Nice Demo City, but Will It Scale? 53

3. (3 points) Describe the patterns made by these plots. In particular, do cities
which are more dependent on these industries have higher productivity?

3. Are bigger cities more productive, controlling for industry shares? Using the
gam function from the mgcv package, fit the semi-parametric log-additive model

ln y = α0 + b lnN +
4∑
j=1

fj(xj) + ε

where y is per-capita GMP, N is population, and x1 through x4 are the shares
of the four industries.

1. (5 points) Explain how this model is related to, but different than, the
power-law scaling model from the last homework. Which terms in the model
are parametric, and which are non-parametric?

2. (2 points point) What R command did you use to fit this?

3. (2 points) Report your estimated values for α0, b, and the residual standard
error.

4. (6 points) Provide plots of each of the four partial response functions fj.
Compare them to the plots from question 2 — do they suggest the same
relationships between industry shares and the level of productivity, and if
not, how do they differ? Hint: help(plot.gam,package="mgcv")

5. (5 points) Do the residuals seem to have a Gaussian distribution? (Justify
your answer.)

6. (5 points) Running summary on your fitted model will produce output which
includes approximate standard errors and p-values for the parametric terms,
assuming homoskedastic Gaussian noise. What standard error and p-value
does it report for b? Is that term significant? Do you think you can trust
those calculations in this case?

4. Predictive comparisons

1. (5 points) Take the fitted power-law scaling model from the last homework.
(If you were unable to complete that homework, follow the solutions.) For
each city, compute the predicted change in ln y from increasing that city’s
population by 10%. Report the average change over all cities.

2. (5 points) Repeat this calculation, for the cities where complete data is
available, for the model you fit in Problem 3, assuming that only population
changes.

3. (5 points) Do the two models seem to lead to different conclusions about
the effect of population on productivity? Explain

5. Model comparisons

1. (3 points) What is the in-sample mean squared error, for ln y, of the additive
model you fit in Problem 3? How much smaller is it than the linear (power
law) model from the last homework? Explain why the additive model should
always have a smaller in-sample error than the linear model.

54 Nice Demo City, but Will It Scale?

2. (11 points) Describe, concisely and in your own words, a technique for
determining whether the additive model from Problem 3 is better able
to generalize than the pure power law model. Explain why this technique
should be reliable here. (You are free to use a method from 36-401, if you
can explain why it is applicable.)

3. (11 points) Implement this comparison and report your results. Which
model is favored?

6. Evaluation

1. (10 points) Based on what you have done so far, does it seem that city size
directly effects productivity? Specifically, if an American city wanted to
increase its per-capita economic output, should it try to increase population,
or change its industries?

2. (5 points) Suggest additional data, models or comparisons which could
improve your analysis.

14

Fair’s Affairs

In 1969, the magazine Psychology Today did a survey of its readers that included
questions about (among other things) how often the respondents had had extra-
marital sex in the previous twelve months. In 1978 the economist Ray C. Fair
used this data to develop a “theory of extramarital affairs” (Fair, 1978)1, with
the idea that people optimize a trade-off between working, spending time with
their spouse, and spending time with a “paramour”. The model and data have
become very well known (there are at least a hundred later papers and books
which reference it), and is available as Affairs in the package AER on CRAN.

The variable affairs records the answer to “How often did you engage in
extramarital sexual intercourse during the past year”, with values of “once a
month”, or more frequently, all coded as 12. Other variables are sex, age, how
many years the respondent had been married2, whether they had children, how
religious they were (on a scale of 1–5), their level of education, how much prestige
their occupation had (on a scale of 1–7), and how happy they were with their
marriage (on a scale of 1–5).

1. (30 points) Two specifications

1. (15 points) Using logistic regression, fit a model for the number of times
respondents said they had extramarital sex during the previous year. De-
scribe, in words, the predictions of the model. Which variables are signifi-
cant predictors?

2. (15 points) Repeat (1a), but use logistic regression to fit a model for whether
respondents said they had extramarital sex at all during the previous year.

2. (10 points) Are the same variables significant in both models in problem 1?
Do they have the same signs in both models? Should the models match in this
way? Explain.

3. (20 points) Comparing predictions

1. (5 points) For each person in the data set, calculate the predicted proba-
bility, under both models, that they did not have an affair.

2. (10 points) Plot these against each other. Describe the plot in words.

3. (5 points) Do the models agree with each other in their predictions? Should
they? Explain.

1 This paper also used a similar survey of readers of Redbook in 1974, not part of this data set.
2 Prof. Fair removed respondents who had never married, or had married more than once.

55

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

56 Fair’s Affairs

4. (20 points) Calibration

1. (2 points) Consider all the people for whom the predicted probability of an
affair, according to the model from problem (1a), is less than 10%. What
fraction of them report having affairs?

2. (3 points) Repeat this calculation for predicted probabilities between 10%
and 20%, 20% and 30%, etc. Plot the actual frequencies against the pre-
dicted probabilities.

3. (5 points) Make a similar plot for the other model. (You can combine the
plots, if the result is clear.)

4. (10 points) For which model do the predictions seem to match the data
best? Explain with reference to your plots.

5. (10 points) Download Fair’s paper and read Table I (p. 53). Does it make
sense to use a linear response for all of the variables (as in problem 1 above),
or would it be better to treat some variables as categorical? Explain.

6. (10 points) Evaluation

1. (5 points) Do either of these models seem to provide an adequate description
of the data? (Explain.) If not, what else could one try?

2. (5 points) Is it reasonable to use this data to develop theories about con-
temporary behavior? Explain.

15

How the North American Paleofauna Got a
Crook in Its Regression Line

Our problem set this week concerns an important question for evolutionary bi-
ology and paleontology. It has been argued that larger organisms tend to have
selective advantage over smaller ones of the same species, but larger bodies de-
mand more specialized internal structure, more “division of labor”, than small
ones, indirectly driving the evolution of increased biological complexity (Bonner,
1988). To evaluate this, it is important to know whether species tend to get larger
over evolutionary time, and, if so, to characterize this accurately.

Our data set this week is taken from the North American Mammalian Paleo-
faunal Database, which contains information on the typical body mass of about
2000 living and extinct species of mammals native to North America. (You can
find it on the website, http://www.stat.cmu.edu/~cshalizi/uADA/13/hw/04/
nampd.csv.) Specifically, the columns of the data give: the scientific name of the
species; the natural logarithm of its typical body mass (measured in grams); the
natural logarithm of the mass of its ancestor (in grams); how long ago it first
appeared in the fossil record (in millions of years); and how recently it last ap-
peared (in millions of years; an NA in this column indicates the species is still
alive). We will model how the change body mass is related to the body mass of
the ancestral species. In particular, paleontologists have suggested that the cor-
rect model relating change in log mass to ancestral log mass should be piece-wise
linear: a downward-sloping line for small ancestral log masses, and flat for larger
ancestral masses. In this problem set, you will fit that model, and examine its
predictions.

1. (10) Basics

1. (5) Load the data. Create a vector which gives each species’ change in log
body mass from its ancestor, and add it to the data frame as a new column.
Explain, in your own words, what it would mean for a species to have a
value of +0.7 in this column. Check that this column has NA values in the
correct places. Explain how you know that those are the correct places.
Remove all the rows with NA values for the change in log mass, and use
this cleaned version of the data for all subsequent parts of the assignment.

2. (5) Plot the change in log body mass versus ancestral log body mass. De-
scribe the plot briefly.

2. (10) Linear model

57

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/uADA/13/hw/04/nampd.csv
http://www.stat.cmu.edu/~cshalizi/uADA/13/hw/04/nampd.csv
http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

58 How the North American Paleofauna Got a Crook in Its Regression Line

1. (2) Linearly regress the change in log body mass on the ancestral log body
mass. Report the coefficients to reasonable precision.

2. (3) Create a new figure which is the scatter-plot from problem 12, plus your
fitted regression line.

3. (5) Based on the estimates 21 and the plot from 22, does this model sup-
port or undermine the idea that new species tend to be larger than their
ancestors? Explain.

3. (15) Piecewise linear model

1. (5) The piece-wise linear model predicts the following mean response as a
function of the input x:

ŷ(x) =

{
a+ bx if x ≤ d
c if x ≥ d

Assuming that this is continuous at d, solve for a in terms of b, c and d.
Explain why, in this application, it is reasonable to assume continuity.

2. (10) Write a function in R, called1 deac, that takes in a vector of numbers
x, and three parameters b, c, and d, and returns the prediction of the model
at each value of x.
Check that your deac function is working properly by seeing that when
b = −1, c = 0.05 and d = 2, giving x=c(1,1.5,3) outputs

[1] 1.05 0.55 0.05

Plot deac, with those parameters, as x goes over the range (0, 4). Does it
look right?
Hints: ifelse for writing deac, curve for plotting.

4. (15) Because deac varies nonlinearly with parameter d, we cannot estimate it
by linear regression. However, we can still estimate the parameters by least
squares. To do this, we need to write a function, make a starting guess about
the parameters, and use the built-in optimization function optim (see recipe
13.2 in The R Cookbook).2. The following function fits the model to a data set
by numerically minimizing the sum of squared errors:

my.start <- c(b=-1,c=0.2,d=10)

fit.a.deac <- function(data,start=my.start) {

sse <- function(par) {

preds <- deac(data$ln_old_mass,par[1],par[2],par[3])

sum((data$delta_ln_mass - preds)^2)

}

fit <- optim(par=start,fn=sse,method="Nelder-Mead")

coefficients <- fit$par

fitted <- deac(data$ln_old_mass,coefficients[1],coefficients[2],

1 From the initials of the scientists who proposed this model; they didn’t give it a name.
2 R has a built-in function, nls, for such “nonlinear least-squares” estimation, working more like lm.

Unfortunately, nls can be flaky when the model doesn’t have continuous derivatives, which is the

case here. Besides, writing your own code builds character.

How the North American Paleofauna Got a Crook in Its Regression Line 59

coefficients[3])

residuals <- data$delta_ln_mass - fitted

mse <- mean(residuals^2)

return(list(coefficients=coefficients,fitted=fitted,residuals=residuals,

mse=mse,data=data))

}

(See online for the commented version; you’ll want to source that, rather than
typing this in and adding original errors.)

1. (7) Explain what the inner function, sse, does.

2. (8) What sort of output does fit.a.deac give — a vector, a list, an array,
what? What do the various components of the output represent, in terms
of the statistical problem?

5. (15) Starting positions The code given above looks for a vector of initial pa-
rameters called my.start, if no other starting point is supplied. The line before
the function makes up some values for my.start; they are bad ones. We will
see in a later problem set that a reasonable guess for d is about 5.

1. (5) Use this more-reasonable value of d to get a rough guess for c by taking
the average change in log mass over all animals whose ancestral log mass
exceeds d. Explain why this is a reasonable way to guess at c.

2. (5) Get a rough guess for b by linearly regressing the change in log mass on
ancestral log mass for animals where the ancestral log mass is less than d.
Explain why this is a reasonable way to guess at b.

3. (5) Re-define my.start to contain your improved guesses for b, c and d.
Run fit.a.deac to get a fitted model, which you should call nampd.deac.
Plot the fitted values as a function of log ancestral mass on a scatter-plot
of change in log mass versus log ancestral mass.

6. (20) Bootstrapping will continue until morale improves. Use resampling of
residuals, not cases, in both parts. Note: You can use the same resampled
data-frames for both parts of this problem, but it needs more clever program-
ming. 1000 bootstrap replicates takes 1–2 minutes on my computer.

1. (10) Find bootstrap standard errors, and 95% confidence intervals, for the
parameters b, c and d. Report all these quantities.

2. (10) Find 95% bootstrap confidence bands for the fitted curve, and add
them to your plot from problem 53.

7. (15) Linear vs. Piecewise Linear One way to compare two models is to see
which one can predict the other’s parameter values. We will compare the
simple linear model from problem 21 with the piecewise linear model deac
model from problem 53.

1. (5) Simulate the fitted deac model, using resampling of residuals, and esti-
mate the linear model on the simulation. What coefficients do you estimate?
Are they compatible with the ones you estimated from the data?

60 How the North American Paleofauna Got a Crook in Its Regression Line

2. (5) Simulate the fitted linear model, using resampling of residuals, and
estimate the deac model on the simulation. What coefficients do you get?
Are they compatible with the ones you estimated from the data?

3. (5) Use five-fold cross-validation to compare the linear model from prob-
lem to the piecewise-linear deac model. Which one predicts mass changes
better?

16

How the Hyracotherium Got Its Mass

Agenda: Using nonparametric smoothing to check parametric models; more practice with simple
simulations and function-writing.

We continue to work with the fossil data set from §15. As mentioned there, some
paleontologists have suggested that the right curve relating change in log mass to
ancestral log mass should be piece-wise linear and homoskedastic: a downward-
sloping line for small ancestral log masses, flat for larger ancestral masses, and
constant conditional variance:

Y =

{
a+ bx+ ε if x ≤ d
c+ ε if x ≥ d

E[ε|x] = 0

Var[ε|x] = σ2

In the last problem set, you fit that model; in this one, you will see whether the
data support non-linear corrections.

You will first need to load the data from the other problem set, and add the
column of change in log mass to the data frame.

The mgcv package is recommended for the additive model in Problem 5. Earlier
problems call for spline smoothing, and can be done with either the smooth.spline
function or with the gam function.

1. (10) Plotting the Parametric Model

1. (5) Make a scatter-plot showing the change in log mass as a function of the
log ancestral mass.

2. (5) Add the estimated piecewise linear model from homework 4. You may
refer to the solutions for code and parameter estimates, but must explain,
in your own words, any code you borrow from there.

2. (25) Residual inspections

1. (5) Calculate the residuals of the estimated piecewise linear model and
plot them against the log ancestral mass. Describe any patterns to the plot
in words; you should address whether the model systematically over- or
under- predicts in certain ranges of ancestral mass, but there may be other
important features.

2. (5) The column first_appear_Mya lists how many millions of years ago each

61

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

62 How the Hyracotherium Got Its Mass

species first appeared. Plot the residuals against this variable; describe any
patterns.

3. (5) Plot the squared residuals against the log ancestral mass. Add a smooth-
ing spline. Explain whether the scatter-plot and the spline show evidence
of heteroskedasticity.

4. (5) Plot the squared residuals against date of first appearance and add
a smoothing spline. Explain whether the scatter-plot and the spline show
evidence of heteroskedasticity.

5. (5) Plot the histogram of the residuals (not the squared residuals). Are they
Gaussian? Should they be, under the model?

3. (10) A nonparametric alternative

1. (7) Fit a spline regression of the change in log mass against log ancestral
mass. Plot this spline on the same graph as the data and the estimated
piece-wise linear model. Compare, in words, the shape of the spline to that
of the parametric model.

2. (3) Find the in-sample root-mean-square error of both the parametric model
and the smoothing spline. Which fits better?

4. (20) Testing parametric forms

1. (3) Write a function to fit the smoothing spline to a data set. Check that
it works by making sure it gives the right answer on the original data.

2. (2) Write a function to calculate the MSE of a fitted smoothing spline.
Check that it works by making sure it gives the right answer on the original
data.

3. (5) Write a function to take in a data set and return the difference in MSEs
between the parametric model and the smoothing spline. Check that it
works by making sure it gives the right answer on the original data.

4. (5) Write a function to simulate from the estimated piecewise-linear model
by resampling the residuals. You can borrow from the solutions to home-
work 4, but must explain, in your own words, how that code works. How
can you check that the simulation works?

5. (5) Combine your functions to draw 1000 samples from the distribution of
this test statistic, under the null hypothesis that the parametric model is
right. What is the p-value of this test of the null hypothesis?

5. (25) Additional Variables The piecewise linear model implicitly assumes that
the relationship between ancestral mass and change in mass is the same at all
times. An alternative is that this relationship has itself evolved.

1. (5) Estimate an additive model which regresses the change in log mass
against the log ancestral mass and the date of first appearance. Plot the two
partial response functions, and describe, in words, the shape of the curves.
Compare the shape of the partial response function for log ancestral mass
to the spline curve from Problem 31.

2. (4) Does the estimated additive model support or undermine the idea that

How the Hyracotherium Got Its Mass 63

the relationship between ancestral mass and descendant mass is invariant
over time? Explain.

3. (1) What is the in-sample root-mean-square error of the additive model?
4. (10) Explain what you would have to change from your code in Problem

4 to test the piecewise-linear model against the additive model, and what
pieces of code could stay the same.

5. (5) Write the new code called for by Problem 54 and run the test. What is
the p-value?

6. (10) Is the piecewise-linear, homoskedastic parametric model an acceptable
representation of the data? Justify your answer by referring to your work
above.

17

How the Recent Mammals Got Their Size
Distribution

All of this
is shame-
less ripped
off from
http:

//arxiv.

org/abs/

0901.0251

but Aaron
said it was
OK

Problem sets 15 and 16 used regression to study how the typical mass of (mam-
malian) species changes over evolution: on average new species are heavier than
their ancestors, especially if the ancestor was very small, but with a wide vari-
ation. If we combine this with the facts that new species branch off from old
ones, and that sometimes species go extinct without leaving descendants, we get
a model for how the distribution of body masses changes over time. It’s not
feasible to say much about this model mathematically, but we can simulate it,
and check the simulated distribution against the real distribution of body masses
today.

The objects in this model are species, each described by its typical mass. (We
assume that this does not change over the lifespan of the species.) Each species
can produce new species, who mass is related to that of its ancestor according
to our previously-learned regression model, or go extinct. As time goes on, the
distribution of body masses will fluctuate randomly, but should do so around a
steady, characteristic distribution.

More specifically, each species i has a mass Xi, which is required to be between
xmin, the smallest possible mass for a mammal, and xmax, the largest possible
mass. At each point in time, one current species A is uniformly selected to evolve
into exactly two new species. Each descendant has a mass XD which depends on
the mass of its ancestor, XA, according to the regression model, plus independent
noise:

logXD = logXA + Z +

{
a+ b logXA if logXA ≤ d

c if logXA ≥ d
(17.1)

where Z ∼ N (0, σ2). Continuity means that a = c − bd; we also need to impose
the constraints that xmin ≤ XD ≤ xmax.

Species become extinct with a probability that depends on their body mass,

pe(x) = βxρ (17.2)

Unless otherwise specified, you should use σ2 = 0.63; xmin = 1.8 grams and
xmax = 1015 grams; ρ = 0.025; β = 1/5000; and the values of b, c and d from the
solutions to Homework 4.

1. (10) Write a function, rdeac.1, which takes as inputs a single ancestral mass
XA (not logXA), the parametersb, c, d and σ2, and the limits xmin and xmax.
It should generate a candidate value for XD (not logXD) from Eq. 17.1 and

64

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://arxiv.org/abs/0901.0251
http://arxiv.org/abs/0901.0251
http://arxiv.org/abs/0901.0251
http://arxiv.org/abs/0901.0251
http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

How the Recent Mammals Got Their Size Distribution 65

return it if it is between the limits, otherwise it should discard the candidate
value and try again.

1. (2) Set XA to 40 grams and check, by simulating many times, that the
output is always between xmin and xmax, even when those values are brought
close to 40 grams.

2. (8) Simulate a single XD value for 100 values of XA evenly spaced between
1 and 100 grams. Treat this as real data and re-estimate the parameters
b, c and d according to the methods of Homework 4; are they reasonably
close to those in the simulation?

2. (10) Write a function, rdeac, which takes the same inputs as rdeac.1 plus
an integer n, and returns a vector containing n independent draws from this
distribution. We will test this with n = 2, but your code must be more general
for full credit.

1. (4) Check, by simulating, that the first component of the returned vector
has the same marginal distribution as the output of rdeac.1.

2. (4) Check that the second component of the returned vector has the same
marginal distribution as the first component.

3. (2) Check that the two components are uncorrelated.

3. (10) Write a function, speciate, which takes the same arguments as rdeac.1,
except that XA is replaced by a vector of ancestral masses. The function should
select one entry from the vector to be XA, and generate two independent values
of XD from it. One of these should replace the entry for XA, and the other
should be added to the end of the vector.

1. (2) Check, by simulating, the output always has one more entry than the
input vector of masses, no matter how long the input is.

2. (8) If the input has length n, check that n− 1 of the entries in the output
match the input.

4. (15) Write a function, extinct.probs, which takes as inputs a vector of species
masses, an exponent ρ, and a baseline-rate β, and returns the extinction prob-
ability for each species, according to Eq. 17.2.

1. (1) Check that if the input masses are 2 grams and 2500 grams, with the
default parameters the output probabilities ≈ 2.0 × 10−4 and 2.4 × 10−4

respectively.
2. (2) Check that if ρ = 0, then the output probabilities are always β, no

matter what the masses are.
3. (2) Check that if there input masses are all equal, then the output proba-

bilities are all the same, no matter what ρ and β are.
4. (10) Write a function, extinction, which takes a vector of species masses,
ρ and β, and returns a possibly-shorter vector which removes the masses of
species which have been selected for extinction. Hint: What does rbinom(n,size=1,prob=p)
do when p is a vector of length n?

5. (15) Evolve!

66 How the Recent Mammals Got Their Size Distribution

1. (5) Write a function, evolve.1, which takes as inputs a vector of species
masses, b, c, d, σ2, xmin, xmax, ρ and β, and first does one speciation step,
then one round of extinction, and returns the resulting vector of species
masses.

2. (5) Write a function, evolve, which takes the same inputs at evolve.1,
plus an integer t, and iterates evolve.1 t times.

3. (5) How do you know that your functions are working properly?

6. (15) Re-running history

1. (5) Run evolve starting from a single species with a mass of 40 grams for
t = 2× 105 steps. Save the output vector of species masses as y1. Plot the
density of y1.

2. (5) Repeat the last step to get a different vector y2. Does it have the same
distribution as y1? How can you tell?

3. (5) Change the initial mass to 1000 grams and get a vector of final masses
y3. How does its distribution differ from that of y1?

7. (25) The data file MOM data full.txt gives the masses of a large (and represen-
tative) sample of currently-living species of mammals. The column mass gives
the mass in grams; the columns species, genus, family, order and code are
identifiers for the particular species, which do not matter to us. Finally, the
column land is 1 for species which live on land and 0 for those which live in
the water.

1. (5) Load the data and plot the density of masses for land species.
2. (10) Describe, in words, how the distribution of current species masses

compares to that produced by the simulation model in y1.
3. (10) Use the relative distribution method from Chapter E to compare the

actual distribution to the distribution of y1. Describe the results and what
they say about how the data differ from the model.

http://www.stat.cmu.edu/~cshalizi/uADA/13/hw/08/MOM_data_full.txt

18

Red Brain, Blue Brain

Agenda: Practice with density estimation, conditional densities, and classification models.

Timing: Problems 1–3 and 6 involve fitting models to data, plotting, and interpretation, but
no coding. Problem 5 requires doing all that and some bootstrapping, for which you will need
to write a little code (along lines you have done before). Problem 7 requires fitting a model and
making some plots from it, and you will (probably) need to write a little code, along the lines
of examples, to do so. Problem 8 requires comparing models, and you will need to either write
some new code, or tweak some example code, to do 82. The solutions to all problems take about
5 minutes to knit without a cache (and about two seconds with a cache — cache everything!).

The data set n90 pol.csv contains information on 90 university students who
participated in a psychological experiment designed to look for relationships be-
tween the size of different regions of the brain and political views. The variables

Kanai
et al.
(2011)

amygdala and acc indicate the volume of two particular brain regions known
to be involved in emotions and decision-making, the amygdala and the anterior
cingulate cortex; more exactly, these are residuals from the predicted volume,
after adjusting for height, sex, and similar anatomical variables. The variable
orientation gives the subjects’ locations on a five-point scale from 1 (very con-
servative) to 5 (very liberal). orientation is an ordinal but not a metric variable,
so scores of 1 and 2 are not necessarily as far apart as scores of 2 and 3.

1. Marginal density of brain region volumes

1. (5) Using npudens, estimate the probability density for the volume of the
amygdala. Plot it and report the bandwidth.

2. (5) Repeat this for the volume of the ACC.

2. Joint density of brain regions

1. (5) Using npudens, estimate a joint probability density for the volumes of
the amygdala and the ACC. What are the bandwidths? Are they the same
as the bandwidths you got in problem 1? Should they be?

2. (5) Plot the joint density. Does it suggest the two volumes are statistically
independent? Should they be? You may use three dimensions, color, con-
tours, etc., for your plot, but you will be graded, in part, on how easy to
read it is.

3. Predicting brain sizes from political views

1. (10) Using npcdens, find the conditional density of the volume of the amyg-
dala as a function of political orientation. (Make sure that you are treating

67

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/uADA/17/hw/07/n90_pol.csv
http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

68 Red Brain, Blue Brain

orientation as an ordinal variable.) Report the bandwidths. Is the band-
width for the amygdala the same as either of the previous two bandwidths
you have found for it? Should it be? Plot the distribution, and comment on
whether it suggests any relationship between the size of this brain region
and political orientation.

2. (5) Repeat this for the conditional density of the ACC as a function of
orientation.

4. Creating a binary response variable

1. (1) Create a vector, conservative, which is 1 when the subject has orientation
≤ 2, and 0 otherwise.

2. (2) Explain why the cut-off was put at an orientation score of 2 (as
opposed to some other cut-off).

3. (1) Check that your conservative vector has the proper values, without
manually examining all 90 entries.

4. (1) Add conservative to your data frame. (Creating a new data frame
with a new name will only get you partial credit.)

5. Logistic regression

1. (5) Fit a logistic regression of conservative (not orientation) on amygdala

and acc. Report the coefficients to no more than three significant digits.
Explain what the coefficients mean.

2. (5) Using case resampling, give bootstrap standard errors and 95% confi-
dence intervals for the coefficients. Was the restriction to three significant
digits reasonable?

6. (10) Generalized additive model Fit a generalized additive model for conservative
on amygdala and acc. (Be sure to smooth both the input variables.) Make sure
you are using a logistic link function. Report the intercep. Plot the partial re-
sponse functions, and explain what they mean (be careful!).

7. Kernel conditional probability estimation

1. (5) Using npcdens, find the conditional probability of conservative given
amygdala and acc. Make sure npcdens treats conservative as a categor-
ical variable and not a continuous one. Report the bandwidths.

2. (5) Plot the estimated conditional probability that conservative is 1,
with acc set to its median value and amygdala running over the range
[−0.07, 0.09]. (The plotting range for amygdala exceeds the range of values
found in the data.) Hint: your code will need to provide values for acc, for
amygdala and for conservative (why?).

3. (5) Plot the estimated conditional probability that conservative is 1,
with amygdala set to its median value and acc running over the range
[−0.04, 0.06]. (This plotting range also requires extrapolating outside the
data.)

8. Classification The models from problems 5–7 predict probabilities for conservative.
If we have to make a definite prediction of whether someone is conservative or
not, we should predict 1 if the probability is ≥ 0.5 and 0 otherwise.

Red Brain, Blue Brain 69

1. (7) Find such predictions for each subject, under each of the three models.
What fraction of subjects are mis-classified? What fraction would be mis-
classified by “predicting” that none of them are conservative?

2. (8) Re-calculate the classification error rates using leave-one-out cross-
validation for each model.

19

Brought to You by the Letters D, A and G

Agenda: Identifying and estimating causal effects; the importance of selecting appropriate con-
trols; estimating effects in non-linear models.

Timing: Problems 1 and 2 are straightforward data manipulation; problem 3 needs you to
fit a linearly model and bootstrap some standard errors; problems 4 and 5 need you to fit
nonparametric models, extract predictions from them, and bootstrap some standard errors;
problem 6 needs you to take the ratio of two covariances, and bootstrap some standard errors.
Despite all the bootstrapping and using kernel regressions, the solutions take less than two
minutes to knit (without a cache). Problems 2–6 all require you to think about some graphical
models. Problem 7 requires you to do some math.

The file sesame.csv contains data on an experiment which sought to learn
whether regularly watching Sesame Street caused an increase in cognitive skills,
at least on average. The experiment consisted of randomly selecting some children,
the treated, and encouraging them to watch the show, while others received no
such encouragement. The children were tested before and after the experimental
period on a range of cognitive skills. (Table 19.1 lists the variables.)

1. Before and after (5) For each of the skills variables, find the difference between
pre-test and post-test scores, and add the corresponding column to the data
frame. Name these columns deltabody, deltalet, etc. Describe and run a
check that the values in these columns are at least approximately right (with-
out examining them all).

2. Naive comparison

1. (2) Find the mean deltalet scores for children who were regular watchers,
and for children who were not regular watchers. Provide standard errors in
these means as well, and the standard error for the difference in means.

2. (3) What must be assumed for the difference between these means to be a
sound estimate of the average causal effect of switching from not watching
to regularly watching Sesame Street? Is that plausible? Suggest a way the
assumption could be tested.

3. “Holding all else constant”

1. (5) Linearly regress the change in reading scores on regular watching, and
all other variables except id, viewcat, and the post-tests.Report the coef-
ficients and bootstrap standard errors to reasonable precision. (Be careful
of categorical variables.)

2. (3) Explain why id, viewcat, and the post variables had to be left out of
the regression. (The reasons need not all be the same.)

70

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

Brought to You by the Letters D, A and G 71

3. (2) What would someone who had only taken linear regression report as
the average effect of making a child become a regular watcher of Sesame
Street?

4. (5) What would we have to assume for this to be a valid estimate of the
average causal effect? Is that plausible?

4. Consider the graphical model in Figure 19.1.

1. (10) Find a set of variables which satisfies the back-door criterion for esti-
mating the effect of regular watching on deltalet.

2. (5) Do a nonparametric regression of deltalet on regular and the vari-
ables you selected in 41. (You can use any nonparametric method you like;
you may need to be careful about which variables are categorical.) Find the
corresponding estimate of the average effect of causing a child to become a
regular watcher. Give a bootstrap standard error for this average treatment
effect.

5. Consider the graphical model in Figure 19.2.

1. (5) There is at least one set of variables which meets the back-door criterion
in Figure 19.2 which did not meet it in Figure 19.1. Find such a set, and
explain why it meets the criterion in the new graph, but did not meet it in
the old one.

2. (5) Explain whether or not the set of control variables you found in 41 still
works in the new graph.

3. (5) Do a nonparametric regression of deltalet on regular and the vari-
ables you selected in 51. Find the corresponding estimate of the average
effect of causing a child to become a regular watcher, and a bootstrap stan-
dard error for this average treatment effect.

4. (5) Find a pair of variables which are conditionally (or marginally!) inde-
pendent in Figure 19.1 but are not in Figure 19.2, and vice versa. Explain
why. Note: Both the conditioned and conditioning variables must be ob-
served; the point is to find something which could be checked with the
data.

6. Instrumental encouragement Some children were randomly selected for encour-
agement to watch Sesame Street. This is encoded in the variable encour.

1. (3) Explain why encour is a valid instrument for the effect of regular watch-
ing on deltalet in Figure 19.1. Do you need to control for anything else?

2. (2) Explain why encour is a valid instrument in Figure 19.2. Do you need
to control for anything?

3. (5) Describe a DAG in which encour would not be a valid instrument, even
though it is randomized by the experimenters.

4. (5) Estimate the average effect on deltalet of causing a child to become a
regular watcher using encour and the Wald estimator (see notes). Provide
a standard error using bootstrapping.

7. (5) Do Exercise 20.2.

72 Brought to You by the Letters D, A and G

deltalet

prenumb

deltanumbdeltabody

prelet

peabody

preclasf

site

prerelat

deltaclasfdeltarelat

regularprebodypreform

deltaform

U

encoursetting

Figure 19.1 First DAG.

[1] 80

Extra credit (5) Test whether either of the two conditional independence
relations from 54 hold in the data.

Brought to You by the Letters D, A and G 73

deltalet

prenumb

deltanumb deltabody

prelet

peabody

preclasf

site

prerelat

deltaclasfdeltarelat

regular prebodypreform

deltaform

U

encoursetting

Figure 19.2 Second DAG.

74 Brought to You by the Letters D, A and G

id subject ID number
site categorical; social background

1: Disadvantaged inner-city children, 3–5 yr old
2: Advantaged suburban children, 4 yr old
3: Advantaged rural children, various ages
4: Disadvantaged rural children
5: Disadvantaged Spanish-speaking children

sex male=1, female=2
age in months
setting categorical; whether show was watched at home (1) or school (2)
viewcat categorical; frequency of viewing Sesame Street

1: watched < 1/wk
2: watched 1−−2/wk
3: watched 3−−5/wk
4: watched > 5/wk

regular 0: watched < 1/wk, 1: watched ≥ 1/wk
encour encouraged to watch = 1, not encouraged=0
peabody mental age, according to the Peabody Picture Vocabulary test

(to measure vocabulary knowledge)
prelet, postlet pre-experiment and post-experiment scores on knowledge of letters
prebody, postbody pre-test and post-test on body parts
preform, postform pre-test and post-test on geometric forms
prenumb, postnumb tests on numbers
prerelat, postrelat tests on relational terms
preclasf, postclasf pre-test and post-test on classification skills

(“one of these things is not like the others”)
(“one of these things just doesn’t belong”)

Table 19.1 Variables in the sesame data file. The pre- and post- experiment test scores are
integers, but can be treated as continuous.

20

Teacher, Leave Those Kids Alone! (They’re
the Control Group)

Agenda: Applying causal-inference ideas in an experimental setting. Practice in thinking through
what variables should and should not be controlled for.

Timing: None of the problems here should require very elaborate coding or time-consuming
computations.

The Tennessee STAR project was a randomized experiment which sought to
determine whether children learn more in classrooms with fewer students. Stu-
dents within participating schools were randomly assigned to small (¡ 18 student)
classrooms, to ordinary-sized classrooms, and to ordinary classrooms where the
teacher had an aide. The study began in kindergarten and continued through
third grade. Students initially assigned to the small-class condition for the most
part stayed in it (there were a few unavoidable exceptions for administrative rea-
sons); students assigned to the two large-class conditions were re-randomized in
the second year of the study, and thereafter changed only minimally. New stu-
dents entering the schools in the study were randomized into the three conditions.
Teachers were also randomized as to which kind of classroom they got. Learning
was assessed (in the initial phase of the project) through annual standardized
tests of reading and math.

A standard version of the data set is available as STAR in the AER package, which
you may need to install. See help(STAR) for the definitions of the variables named
below.

General: Whenever you are asked to give standard errors, you should either
bootstrap or provide an explanation of why, in this particular situation, R’s de-
fault calculations of standard errors should be reliable. Unless explicitly called
for, do not report R’s p-values, or any significance stars.

1. Causality? Reverse causality?

1. (5) Linearly reqgress readk and mathk on stark. Report the coeffcients and
standard errors. Explain why a non-parametric regression would be redun-
dant here.

2. (5) Linearly regress read3 and math3 on stark. Report the coefficients and
their standard errors as above.

3. (5) Explain how a randomized treatment received in kindergarten can pre-
dict test scores three years later.

4. (5) Linearly regress readk and mathk on star3. Report the coefficients and
their standard errors as above.

75

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

76 Teacher, Leave Those Kids Alone! (They’re the Control Group)

5. (5) Explain how a treatment received in the third grade can predict test
scores in kindergarten, three years earlier.

6. (5) To estimate the causal effect of the stark on readk and mathk, should
we control for star3? (Explain.)

7. (5) To estimate the causal effect of the star3 on read3 and math3, should
we control for stark? (Again, explain.)

2. (15) For each year from kindergarten through third grade, provide an estimate
of the expected reading and math scores when students are assigned to a
regular classroom, a small classroom, and a regular classroom with a teacher’s
aide. Include an estimated standard error for each of these. You may present
your results either as a table or graphically; make sure it’s easy to read and
compare across conditions.

Explain how you obtained your estimates, and why that procedure is, for
this data, a valid way of estimating the desired causal effect. If you have to
control or adjust for any covariates to get the causal effects, explain which
ones you used and why.

3. (15) Heterogeneity of effects There is considerable interest in knowing whether
the effects of smaller classes are different for different groups of students.

1. (10) Report estimates of the effect of the three classroom sizes on kinder-
garten reading and math scores, for all six ethnic sub-groups in the data.
Include standard errors.

2. (5) Explain why, to get such estimates from linear regression, the right mod-
els would be of the form lm(readk~stark*ethnicity), and why lm(readk~stark+ethnicity)

would be uninformative.

4. (25) Observational inference in an experimental study Students whose families
are sufficiently poor qualify for free lunches at school. This is recorded in the
variables lunchk through lunch3. We want to know whether being above or
below this threshold level of poverty has a causal effect on student’s scores.

1. (5) Report the mean scores for reading and for math in each grade for
students who do and do not qualify for free lunches (in that grade). Include
standard errors.

2. (5) If we want to estimate the effect of lunchk on kindergarten reading and
math scores, does it make sense to control for stark? Explain.

3. (10) Consider the following variables: gender, ethnicity, schoolk, experiencek,
tethnicityk, systemk, schoolidk, lunch1. When estimating the effect of
lunchk on kindergarten test scores, which of these should be controlled for,
which of them should not be controlled for, and which of them do you not
have enough information to say? If you answer “not enough information”
for any variables, what more would you have to know? (Be more specific
than “the complete causal graph”.)

4. (5) If we want to estimate the effect of lunchk on first-grade reading and
math scores, under what assumptions should we control for readk and
mathk? Under what assumptions should we not control for them?

Teacher, Leave Those Kids Alone! (They’re the Control Group) 77

[1] 130

21

Estimating with DAGs

This homework will illustrate some of the advantages of using a known DAG
structure. You will need to read the lectures on graphical models carefully in
order to do it.

Figure 21.1 is an elaboration of the graph used in lectures. All problems refer
to it, unless otherwise specified.

The file fake-smoke.csv contains some (synthetic) data, for use in problem 5.

1. Parents and children (10 points)

1. (5 points) For each variable in the model, list its parents; or, if it has no
parents, say so.

2. (5 points) For each variable in the model, list its children. (Some variables
have no children.)

2. Joint distributions and factorization (10 points) Using the graph, list the
smallest collection of marginal and conditional distributions which must be
estimated in order to get the joint distribution of all variables.

3. Associations (20 points) Should there be a positive association, a negative
association, or no association between the following variables? Explain with
reference to the graph. (2 points each)

1. Yellowing of teeth and cancer?
2. Yellowing of teeth and cancer, controlling for smoking?
3. Yellowing of teeth and cancer, controlling for occupational prestige?
4. Yellowing of teeth and cancer, controlling for smoking and exposure to

asbestos?
5. Smoking and cancer, controlling for the amount of tar in the lungs?
6. Asbestos and cancer, controlling for cellular damage?
7. Smoking and cancer, controlling for asbestos?
8. Smoking and asbestos, controlling for cellular damage?
9. Tar in lungs and cancer, controlling for asbestos, smoking, and yellowing

of teeth?
10. Smoking and cancer, controlling for asbestos and occupational prestige?

4. Using conditional independence to specify regressions (40 points)

1. (10 points) We wish to know the conditional risk of cancer given smoking.
What other variables should be controlled for? Which other variables do
not need to be controlled for?

78

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/402/hw/10/fake-smoke.csv
http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

Estimating with DAGs 79

Occupational
Prestige

Amount of
Smoking

-

Asbestos
Exposure

-

Access to
Dental Care

+

Amount of
Tar in Lungs

+

Yellowing
of Teeth

+

Cellular
Damage

+

Cancer

+

+

-

Figure 21.1 Graphical model for use in all problems, except part of the
last. Signs on arrows indicate the sign of the associations (not necessarily
linear) between parents and children.

2. (10 points) Using the fake-smoke.csv data from the class website, fit a
logistic regression model for the risk of cancer given the level of smoking,
controlling for any appropriate covariates.

3. (10 points) Using the same data set, fit another logistic regression for the

http://www.stat.cmu.edu/~cshalizi/402/hw/10/fake-smoke.csv

80 Estimating with DAGs

risk of cancer using all the covariates. What does this say about the rela-
tionship between smoking and cancer? Why is this different than what is
implied by the model in 4b?

4. (5 points) A medical insurance company needs to predict the risk of cancer
among customers in order to set rates. Should it use the model from 4b
or the one from 4c? Why? (Assume, for the sake of the problem, that the
training data and the insurance customers are both representative samples
of the general population.)

5. (5 points) A doctor wants to advise their patients about what actions to
take to reduce their risk of cancer. Should they use the model from 4b or
4c? Why?

5. (20 points) Consider the alternative graph in Figure 21.2.

1. (10 points) Repeat problem 3 with the new graph. Clearly indicate in your
response which associations differ for the two DAGs.

2. (10 points) Suggest an experiment, or an observational analysis, which could
let us check which structure was right; explain, in terms of the graphs.

6. (10 points) Extra Credit: Which DAG did the example data come from?
How can you tell?

Estimating with DAGs 81

Occupational
Prestige

Amount of
Smoking

-

Asbestos
Exposure

-

Access to
Dental Care

+

Amount of
Tar in Lungs

+

Yellowing
of Teeth

+

Cellular
Damage

+

Cancer

+

-

Figure 21.2 An alternative DAG for the same variables.

22

Use and Abuse of Conditioning

1. (30 points) Refer to figure [[1]] in Problem Set 21.

1. (5 points) Using the back door criterion, describe a way to estimate the
causal effect of smoking on cancer.

2. (5 points) Using the front door criterion, describe a different way to estimate
the causal effect of smoking on cancer.

3. (5 points) Is there a way to use instrumental variables to estimate the causal
effect of smoking on cancer in this model? Explain.

4. (5 points) Using your back-door identification strategy and the data file
from last time, estimate Pr (cancer = 1|do(smoking = 1.5)).

5. (5 points) Repeat this using your front-door identification strategy.
6. (5 points) Do your two estimates of the casual effect match? Explain.

2. (25 points) Take the model in Figure 22.1. Suppose that X ∼ N (0, 1), Y =
αX + ε and Z = β1X + β2Y + η, where ε and η are mean-zero Gaussian noise
with common variance σ2. Set this up in R and regress Y twice, once on X
alone and once on X and Z. Can you find any values of the parameters where
the coefficient of X in the second regression is even approximately equal to α?
(It’s possible to solve this problem exactly through linear algebra instead.)

3. (25 points) Take the model in Figure 22.2 and parameterize it as follows:
U ∼ N (0, 1), X = α1U + ε, Z = βX + η, Y = γZ + α2U + ξ, where ε, η, ξ
are independent Gaussian noises with mean zero and common variance σ2. If
you regress Y on Z, what coefficient do you get, on average? If you regress Y
on Z and X? If you do a back-door adjustment for X? (Approach this either
analytically or through simulation, as you like.)

4. (20 points) Continuing in the set-up of the previous problem, what coefficient
do you get for X when you regress Y on Z and X? Now compare this to the
front-door adjustment for the effect of X on Y .

82

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

Use and Abuse of Conditioning 83

X Y

Z

Figure 22.1 DAG for problem 2.

X Z Y

U

Figure 22.2 DAG for problems 3 and 4.

23

What Makes the Union Strong?

Finding the factors which control the frequency and severity of strikes by or-
ganized workers is an important problem in economics, sociology and political
science1. Our data set, http://www.stat.cmu.edu/~cshalizi/uADA/12/hw/06/
strikes.csv, kindly provided by a distinguished specialist in the field, contains
information about the incidence of strikes, and several variables which are plau-
sibly related to that, for 18 developed (OECD) countries during 1951–1985:Source:

Western
(1996) • Country name

• Year
• Strike volume, defined as “days [of work] lost due to industrial disputes per

1000 wage salary earners”
• Unemployment rate (percentage)
• Inflation rate (consumer prices, percentage)
• “parliamentary representation of social democratic and labor parties”. (For the

United States, this is the fraction of Congressional seats held by the Democratic
Party.)
• A measure of the centralization of the leadership in that country’s union move-

ment, on a scale of 0 to 12.
• Union density, the fraction of salary earners belonging to a union (only available

from 1960).

Note that some variables are missing (NA) for some cases.[[TODO:
Fix point
assign-
ments]]

1. Estimate a linear model to predict strike volume in terms of all of the other
variables, except country and year.

1. Report the coefficients, with 90% (not 95%) confidence intervals calculated
according to

1. (2) The standard formulas
2. (9) Resampling of the residuals
3. (9) Resampling of the cases

Do not use more digits than you can justify.

1 Or it used to be, anyway.
2 This measure really should be a constant for each country over the period, but having a variable

with only 8 levels is trouble for the spline smoother used in Problem 3, so a very small amount of

artificial noise (±0.005 at most) has been added to each value.

84

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/uADA/12/hw/06/strikes.csv
http://www.stat.cmu.edu/~cshalizi/uADA/12/hw/06/strikes.csv
http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

What Makes the Union Strong? 85

2. (10) Describe the meaning of the coefficients qualitatively. (I.e., do not write
“A one unit change in foo produces a change of bar units in strike volume”
over and over.)

3. (5) Rank the predictor variables from most to least important, with “im-
portance” measured by the magnitude of the predicted change to strike
volume in response to a 1% relative change of the predictor away from its
mean value.

4. (5) Rank the predictor variables from most to least important in terms of
predicted response to a 1 standard deviation change in the variable.

5. (5) Do the two rankings agree? Should they? Which one seems more rea-
sonable for this problem?

2. Some theories suggest that English-speaking countries have legal and political
institutions which make strikes operate differently than in other industrialized
countries. Figure out which countries in the data set are primarily English-
speaking, create an indicator (dummy) variable for whether a case belongs to
one of those countries, and add it to the data set.

1. (5) Fit a linear model in which the predictors from Problem 1 interact
with the English-using variable. Report the new coefficients (to reasonable
precision)

2. (5) Explain how (if at all) this model differs qualitatively from the model
in Problem 1.

3. (5) Use five-fold cross-validation to compare this model to the model in
Problem 1. Which one does better?

3. Fit an additive model for strike volume as a smooth function of all the variables
except country and year.

1. (5) Plot all the partial response functions. Do they agree qualitatively with
the conclusions you drew from the model in Problem 1?

2. (5) Consider increasing each of the predictor variables by 1% from its mean,
leaving the other variables alone. Rank the predictors according to the
magnitude of this model’s predicted change in strike volume. Would the
ranking be the same for a 1% decrease? Hint: use predict and a data
frame with artificial data.

3. (5) Consider increasing each of the predictor variables by one standard devi-
ation from its mean, leaving the other variables alone. Rank the predictors
according to the magnitude of this model’s predicted change in strike vol-
ume.

4. (5) Discuss the contrast (if any) between these rankings, and the corre-
sponding ones for the linear model.

4. (10) Use the methods of Chapter 10 to test whether the linear model from
Problem 1 is well-specified against an additive alternative.

5. Continuing past the training data

1. (2) What were the values of unemployment, inflation, union density, and

86 What Makes the Union Strong?

left.parliament for the United States in 2009? Hint: You can get most
of these from the last The Statistical Abstract of the United States.

2. (4) Assuming the union centralization variable for the US in 2009 was 0,
what strike volume was predicted by (i) the model from problem 1, (ii)
the English-is-different model from problem 2, and (iii) the additive model
from problem 3?

3. (4) The actual strike volume for the United States in 2009 was 0.8. Is this
plausible under any of the models? Hint: How much do you expect actual
values to differ from predicted values?

6. 1. (5) Use pc() from pcalg to obtain a graph, assuming all relations between
variables are linear. Report the causal parents (if any) and children (if any)
of every variable. If the algorithm is unable to orient one or more of the
edges, report this, and in later parts of this problem, consider all the graphs
which result from different possible orientations.

Note: See http://bactra.org/weblog/914.html for help with installing
pcalg. The most troublesome component is the Rgraphviz package. If
you are unable to get Rgraphviz to work, you can still extract the in-
formation from the fitted model returned by pc: if that’s pc.fit, then
pc.fit@graph@edgeL is the “edge list” of the graph, listing, for each node,
the nodes it has arrows to. With this information, you can make your own
picture of the DAG.

2. (10) Linearly model each variable as a function of its parents. Report the co-
efficients (to reasonable precision), the standard deviation of the regression
noise (ditto), and 95% confidence intervals for all of these, as determined
by bootstrapping the residuals.

3. (10 total) You should find that strike volume and union density are not
connected, but that there is at least one directed path linking them —
either density is an ancestor of strike volume, or the other way around.

1. (5) Find the expected change in the descendant from a one-standard-
deviation increase in the ancestor above its mean value.

2. (5) Linearly regress the descendant on all the other variables, including
the ancestor. According to this regression, what is the expected change
in the descendant, when the ancestor increases one SD above its mean
value and all other variables are at their mean values?

4. (15 total) Check the linearity assumption for each variable which has a
parent. (Putting in interactions and/or quadratic terms is inadequate and
will result in only partial credit at best.)

1. (5) Describe your method, and why it should work.

2. (5) Report the p-value for each case, to reasonable precision.

3. (5) What is your over-all judgment about whether it is reasonable to
model each endogenous variable as linearly related to its parents? If you
need more information than just p-values to reach a decision, describe
it.

http://bactra.org/weblog/914.html

What Makes the Union Strong? 87

5. (10) Discuss the over-all adequacy of the model, on both statistical grounds
(goodness-of-fit, appropriateness of modeling assumptions, etc.) and sub-
stantive, scientific ones (whether it makes sense, given what is known about
the processes involved).

24

An Insufficiently Random Walk Down Wall
Street

[[TODO:
Brad De-
Long (!)
points out
by e-mail
that one
should re-
ally define
returns
here as
log ((Pt+1 +Dt+1)/Pt),
where D
is the divi-
dend series
— prices
aren’t the
only thing
that mat-
ters with
the S&P!
Obtain a
historical
dividend
series, or a
dividend-
adjusted
price se-
ries.]]

In this assignment, you will work with a data set of historical values for the S&
P 500 stock index. You will need to download SPhistory.short.csv from the
class website. This data set records the actual prices of the index, say Pt on day t,
but in finance we actually care about the returns, Pt

Pt−1
, or about the logarithmic

returns,

Rt = log
Pt
Pt−1

since we care more about whether we’re making 1% on our investment than $1
per share. In this assignment, “returns” always means “logarithmic returns”.

Problems 2 and 3 are about estimating the first percentile of the return dis-
tribution, Q(0.01), under various assumptions. The returns will be larger than
this 99% of the time, so Q(0.01) gives an idea of how bad the bad performance
will be, which is useful for planning. Note that a calendar year contains about
250 trading days, and so should average two or three days when returns are even
worse than Q(0.01). Problems 4 and 5 are about predicting future returns from
historical returns, and the uncertainty in this. Doing all the bootstrapping for
problem 5 may be time-consuming, and should not be left to the last minute.

1. (5) Load the data file, take the last column (containing the daily closing price),
and calculate the logarithmic returns. Note that the file is in reverse chrono-
logical order (newest first). When you are done, if everything worked right,
running summary on the returns series should give

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.094700 -0.006440 0.000467 -0.000064 0.006310 0.110000

Hint: help(rev) and Recipe 14.8 in The R Cookbook.
2. In finance, it is common to model daily returns as independent Gaussian vari-

ables.

1. (5) Find the mean and standard deviation of the returns. What is Q(0.01)
of the corresponding Gaussian distribution? Hint: qnorm.

2. (5) Write an expression which will generate a series of independent Gaussian
values of the same length as the returns, with the mean and standard
deviation you found in 21. Check that the mean and standard deviation
of the output is approximately right, and that their histogram looks like a
bell-curve.

88

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/uADA/13/hw/03/SPhistory.short.csv
http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

An Insufficiently Random Walk Down Wall Street 89

3. (10) Write a function which takes in a data vector, calculates its mean and
standard deviation, and returns Q(0.01) according to the corresponding
Gaussian distribution. Check that it works by seeing that it matches what
the answer you got in 21 when run on the actual returns.

4. (10) Using the code you wrote in 22 and 23, find a 95% confidence interval
for Q(0.01) from 21. Hint: Look at the examples of parametric bootstrap-
ping in Chapter 6.

5. (5 points) What is the first percentile of the data? Is it within the confidence
interval you found in 24? Hint: quantile.

3. 1. (5) Use hist to plot the histogram of returns. Also plot, on the same
graph, the probability density function of the Gaussian distribution you fit
in problem 21. Comment on their differences.

2. (5) Write a function to resample the returns; it should generate a different
random vector of the sample length as the data every time it is run. Check
that running summary on these vectors produces results close to those on
the data. Hint: Look at the examples of resampling in Chapter 6.

3. (5) Write a function to calculate Q(0.01) from an arbitrary vector, without
assuming a Gaussian distribution. Check that it works by seeing that its
answer, when run on the real data, matches what you found in 25.

4. (10) Using the code you wrote in 32 and 33, find a 95% confidence interval
for Q(0.01). Compare this to your answer in 24. Which is more believ-
able, and why? Hint: Look at the examples in the notes of non-parametric
bootstrapping.

4. (10) Using npreg, fit a kernel regression of Rt+1, tomorrow’s returns, on Rt,
today’s returns. (Use the automatic bandwidth selector.) Report the selected
bandwidth and the in-sample mean-squared error. Make a scatter-plot with
Rt on the horizontal axis and Rt+1 on the vertical axis, and add the estimated
kernel regression function. Comment on the shape of the curve. Hints: Make
a data frame with Rt as one column and Rt+1 as another column. Also, see
examples in Chapter 4 of plotting fitted models from npreg.

5. (25) Uncertainty in the kernel regression

1. (5) Write a function which resamples (Rt, Rt+1) pairs from the returns
series, and produces a new data frame of the same size as the original.
Check that it works by running summary on it, and seeing that both columns
approximately match the summaries of the data. Hint: look at the examples
of resampling cases for regression in the notes.

2. (10) Write a function which takes a data frame with appropriately-named
columns, and runs a kernel regression of Rt+1 on Rt. It should return fitted
values at 30 evenly-spaced values of Rt which span its observed range.

3. (10) Using your code from 51 and 52, add 95% confidence bands for the
kernel regression to your plot from problem 4. Hint: See the examples of
plotting bootstrapped nonparametric regressions in the notes.

[[TODO:
Integrate
this version
with the
one above]]

90 An Insufficiently Random Walk Down Wall Street

1. (5 points) Load the data file, take the last column (containing the daily closing
price), and calculate the logarithmic returns. Note that the file is in reverse
chronological order (newest first). When you are done, if everything worked
right, running summary on the returns series should give

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.094700 -0.006440 0.000467 -0.000064 0.006310 0.110000

2. In many applications in finance, it is common to model daily returns as inde-
pendent Gaussian variables.

1. (5 points) Use maximum likelihood to estimate the mean and standard
deviation of the best-fitting Gaussian, and the Q(0.01) it implies.

2. (5 points) Write a function which simulates a data set of the same size as
the real data, using the independent Gaussian model you fit in (2a), and
returns a list or vector, with components named mean and sd, containing
the parameter values estimated from the simulation output.

3. (5 points) Write a function which takes as arguments a list or vector, with
components named mean and sd, and returns the first percentile of the
corresponding Gaussian distribution. Check that it works by verifying that
when run with mean 5 and sd 2, it returns 0.347.

4. (10 points) Using the code you wrote in (2b) and (2c), find a 95% confidence
interval for Q(0.01) from (2a). Hint: Look at the examples in the notes of
parametric bootstrapping.[[TODO:

Clarify
using
quantile
here.]]

5. (5 points) What is the first percentile of the data? Is it within the confidence
interval you found in (2d)?

3. 1. (5 points) Use density(), or any other suitable non-parametric density
estimator, to plot the distribution of returns. Also plot, on the same graph,
the Gaussian distribution you fit in problem 2. Comment on their differ-
ences.

2. (10 points) Write a function to re-sample the returns, and calculate Q(0.01)
on each surrogate data set. Use this to find a 95% confidence interval for
Q(0.01). Hint: Look at the examples in the notes of non-parametric boot-
strapping.

4. (15 points) In an autoregressive model, the measurement at time t is re-
gressed on the measurement at time t− 1, Xt = φ0 + φ1Xt−1 + εt. (§23.4 has
much more information.) Use lm to fit an autoregressive model to the returns.
Give the estimates of φ0, φ1 and V [ε], and try to interpret what they mean.

Also give the reported standard error for φ̂1.

5. Hint: Look at the examples in the notes of re-sampling regression residuals.

1. (5 points) Write a function which re-samples the residuals of the autore-
gressive model from (4). Make sure it returns a vector of values. Check
that the mean and standard deviation of its output are close to those of
the residuals.

An Insufficiently Random Walk Down Wall Street 91

2. (15 points) Write a function which simulates the autoregressive model you
fit in (4), with noise provided by the function you wrote for (5a). The initial
value of X should match the initial value in the data, and it should return
a vector.

3. (5 points) Write a function which takes a time series, fits an autoregressive
model, and returns the estimate of φ1. Check that it works by seeing that
when it’s give the data, the output matches what you found in (4).

4. (10 points) Using the function you wrote in (5c), and the simulator you

wrote in (5b), find the bootstrap standard error for φ̂1. Does it match what
lm reported in (4)?

Note: If you cannot solve (5b), you can get full credit for (5d) using the built-in function

arima.sim instead, but make sure that the distribution of innovations or noise comes from

the function you wrote in (5a). If you cannot solve (5a), you can get full credit for (5b) and

(5d) by providing suitable Gaussian noise.

25

Predicting Nine of the Last Five Recessions

The data set http://www.stat.cmu.edu/~cshalizi/uADA/13/exams/3/macro.
csv on the class website contains five standard macroeconomic time series for the
United States, from the beginning of 1948 to the beginning of 2010: total national
income or GDP; value of goods consumed; investment spending; hours worked;
and output per hour worked for all non-financial firms. (Some of these series are
in inflation-adjusted dollars, some of them are in hours, and some of them are
indexes where a particular date has been set as 100 and others are expressed
relative to that.) All variables are measured “quarterly”, i.e., four times a year.

Most macroeconomic forecasting models do not concern themselves directly
with these values, but only with the logged fluctuations around their long-run
trends.

For full credit on the modeling questions, you must use models which go beyond
those available in 401, or you must use appropriate methods to show that linear
model are justified here.

It is first necessary to remove trends; macroeconomists traditionally do this
with the following function.

hpfilter <- function(y, w=1600){

eye = diag(length(y))

d = diff(eye,d=2)

ybar = solve(eye + w*crossprod(d), y)

yhat = log(y) - log(ybar)

return(list(fluctuation=yhat,trend=ybar))

}

1. (10) Create five plots, showing each of the variables and its trend (as returned
by hpfilter) as functions of time. Use a logged scale for the vertical axis.
Report R2, with and without logging, for each of the five trends.

2. (10) Plot the logged fluctuations around trend (as returned by hpfilter) for
each of the five variables. Does it make sense to compare these fluctuations
across variables? Do the fluctuations look stationary? — After this problem,
references to the variables always mean their logged fluctuations around their
trends.

3. (10) Are the variables Gaussian? (You can do better than looking at a his-
togram.)

4. (20) For the first four variables (GDP, consumption, investment, hours worked),

92

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/uADA/13/exams/3/macro.csv
http://www.stat.cmu.edu/~cshalizi/uADA/13/exams/3/macro.csv
http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

Predicting Nine of the Last Five Recessions 93

fit an additive regression of each variable on the values of all four at the pre-
vious time-step. Use only data up to, but not including, 2005 (“the training
period”). Report the mean squared error on the training data (to reasonable
precision), and include plots of the partial response functions. Describe, in
words, what the partial response functions say about the relations between
these variables.

5. (20 total) Using the circular block bootstrap, with blocks of length 24, generate
new time series which are as long as the training data.

1. (4) Write a function to calculate the mean squared errors of the fitted
models from Problem 4, on a time series. (Each of the four variables should
have its own MSE.) Check that it works by making sure that it gives the
right answer for the training data.

2. (6) Report the mean MSEs, and the standard error of these means, from
enough bootstrap replicates that the standard errors are no more than 10%
of the means.

3. (10) What do you need to assume for the numbers from 52 to be good
estimates of the generalization error of this model?

6. (20 total) “Real” (as opposed to “monetary”) business cycle theories hold that
fluctuations in macroeconomic variables are ultimately caused by exogenous
“real shocks”, especially changes to productivity. The productivity variable
in macro.csv is a measurement of this variable, which, according to these
theories, should be exogenous. The other variables, in such theories, are en-
dogenous.

1. (10) Fit an model for each of the four endogenous variables, as an additive
function of the endogenous variables in the previous quarter, and produc-
tivity for the previous four quarters. Report the MSEs and include plots of
the partial response functions. Compare the plots to those in Problem 4.

2. (4) Describe a method which could be used to decide whether including
productivity in this way really improves predictive performance. Discuss
the assumptions of the method, and why you think they apply here.

3. (6) Implement your method. For which variables does including productiv-
ity actually help? How confident are you of this conclusion?

7. (10 total) Now consider the period 2005–2010. What are the mean squared
errors, on this data, of

1. (4) Predicting according to the additive model from Problem 4?
2. (4) Predicting according to the additive model from Problem 6?
3. (2) Predicting the mean of each variable, as estimated from the training

period?

8. (5, extra credit) Explain how what hpfilter does is related to spline smooth-
ing.

26

Debt Needs Time for What It Kills to Grow
In

An important and controversial question in macroeconomics and political econ-
omy is whether high levels of government debt causes the economy to grow more
slowly or even shrink. There are several plausible-sounding reasons why it might1;
some economists claim that there is a threshold level of debt, perhaps around 90%
of GDP, above which growth rates plummet.

Against this, there are other reasons why high levels of debt might not cause
growth to slow, at least not always2. In particular, since “high levels of government
debt” are defined relative to the size of the economy, as a high ratio of debt to
GDP, slow growth itself might cause higher levels of government debt.

This week’s data set contains information on GDP and government debt for a
selection of countries since World War II. For each country and year, we should
have the GDP (nominal, i.e., not adjusted for inflation or differences in exchange
rates) and the size of government debt (also nominal). Unfortunately, one or both
values may be missing for some countries in some years.

1. (10) The data set contains a variable, growth, which is the annual growth rate
in real (inflation-adjusted) GDP for each country and year. It also contains a
variable, ratio which is the ratio of government debt to GDP. Make a scatter-
plot with growth on the vertical axis and ratio on the horizontal. Describe
the patterns you see, if any.

2. (15) Run a nonparametric regression of growth on ratio, and plot the result-
ing curve. Describe and interpret the curve. Does it suggest an abrupt slowing
of growth above some threshold level of debt?

3. (10) Since changes in government debt levels might take some time to affect
economic growth, we would like to compare growth in year t+1 to ratio in year
t. Create a new variable, growth.lead1, which records for each country/year

1 High levels of government borrowing might “crowd out” investing in the private sector, by using up

available savings and/or raising the interest rates at which businesses can borrow; capitalists might

anticipate that the debt will either be paid off through high taxes or discharged through inflation,

and prefer to spend their money on luxuries now, rather than invest and see the investment go away

later; high levels of debt might lead to lower confidence that the government generally knows what

it’s doing, making investment seem too risky; etc.
2 A depressed economy has unused resources, so government employment needn’t lead to crowding

out; the things government spends money on (roads, schools, hospitals, basic research, honest

markets) increase the value of private investments; governments which can borrow large sums are

receiving a market endorsement of their willingness and ability to pay their debts; etc.

94

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

Debt Needs Time for What It Kills to Grow In 95

the next year’s GDP growth, with NAs in the right places when it is not
available. Describe, in words, how your code works. Add growth.lead1 to the
data frame.

Hints: Make sure that you do not confuse growth rates from different coun-
tries (so that, e.g., the last year for Austria gets a growth rate from Belgium).
You may find Recipes 14.7 (and 6.6) from The R Cookbook helpful.

4. (10) Plot growth.lead1 against ratio, and do a nonparametric regression of
the former on the latter. Describe the results, and compare them to those of
Problem 2.

5. (15) Economic growth rates tend to be rather persistent over time within
countries. Estimate an additive model where growth.lead1 is predicted from
growth and ratio. Is the partial response to the previous year’s growth nearly
linear? Should it be? Compare the partial response function for debt to the
curves from problems 2 and 4.

6. (10) Create a new variable, growth.lag1, which represents the previous year’s
growth rate (with NAs in appropriate places), and add it to the data set. Plot
it against ratio and fit a nonparametric regression. Does ratio do a better
job of predicting growth or growth.lag1?

7. (15) Estimate an additive model in which the current year’s ratio is predicted
by last year’s ratio, last year’s growth, and the current year’s growth. (You
may have to create a new column.) Describe the partial response functions,
and whether any predictor variables could be dropped.

8. (15) Explain what we would have to assume for the model in Problem 5 to
give us an unconfounded estimate of the causal effect of government debt on
future economic growth; be as specific as possible. (You may want to draw
some DAGs, and include them in your write-up.) Comment on how plausible
those assumptions are, and on what might go wrong if the assumptions fail.

27

How Tetracycline Came to Peoria

Now-common ideas like “early adopters” and “viral marketing” grew from soci-
ological studies of the diffusion of innovations. One of the most famous of these
studies tracked how a then-new antibiotic, tetracycline, spread among doctors in
four towns in Illionis in the 1950s (Coleman et al., 1957). In this exam, we will
go back to that data to look at one of the crucial ideas, that of the innovation
(prescribing tetracycline) spreading from person to person.

For this assignment, you will need two data files, ckm nodes.csv and ckm network.dat.1

The former has information about each individual doctor in the four towns.[[TODO:
Better
URLs]]

adoption_date records the month in which the doctor began prescribing tetra-
cycline, counting from November 1953. If the doctor did not begin prescribing
it by month 17, i.e., February 1955, when the study ended, this is recorded as
Inf. If it’s not known when or if a doctor adopted tetracycline, their value is NA.
(Apparently no doctors gave up tetracycline after adopting it.) Other columns
record when the doctor attended medical school, whether they attend medical
conferences (and if so, what kind), how many medical journals they read, and
other information about the individual doctors. Note that the covariates in this
file are a mix of ordinal variables, categorical variables, and numerical variables.

The ckm_network.dat file contains a binary matrix, which records the social
network among the doctors. There is one row and one column for each doctor;
the i, j entry is 1 if doctor number i and doctor number j knew each other, and
0 if they did not.[[TODO:

Re-work
points and
instruc-
tions for
this not
to be an
exam?]]

1. (5) Create a plot of the number of doctors who began prescribing tetracycline
each month versus time. (It is OK for the numbers on the horizontal axis to
just be integers rather than formatted dates.) Produce another plot of the
total number of doctors prescribing tetracycline in each month. (The curve for
total adoptions should first rise rapidly and then level out around month 6.)

2. Estimate the probability that a doctor who had not yet adopted the drug will
begin to do so in a given month t, as a function of the total number of doctors
Nt who had adopted before t. (You may assume that these probabilities are the
same for all t.) You may estimate this function however you like, but be sure
to explain how you are estimating these probabilities, and how you know that
method is reliable in this particular case. (This may involve model checking.)

1 Slightly modified from http://moreno.ss.uci.edu/data.html to fit R conventions, and collapsing

three distinct, directed social relationships into one undirected social network.

96

04:46 Sunday 8th September, 2019
Copyright c©Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

http://www.stat.cmu.edu/~cshalizi/statcomp/14/labs/07/ckm_nodes.csv
http://www.stat.cmu.edu/~cshalizi/statcomp/14/labs/07/ckm_network.dat
http://moreno.ss.uci.edu/data.html
http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

How Tetracycline Came to Peoria 97

1. (5) Report these probabilities as a curve, with N ranging from 0 to 125.
If you do not think you can estimate the whole range, plot as much as
you can, and explain why you cannot go further. For full credit, your plot
must have more than 17 points. Also for full credit, your curve should be
accompanied by some measure of its error.

2. (5) Averaging over doctors and months, how much does the predicted prob-
ability of adoption change N increases by 1? Give a standard error to this
change in predicted probabilities.

Hint: You may find it useful to create a new data frame which records, for
each month, the number of doctors who adopted tetracycline that month, and
the number who had previously adopted tetracycline.

3. Estimate the probability that a doctor i who had not yet adopted the drug will
begin to do so in month t, as a function of the number Cit of doctors linked to
i who had adopted before t. (Again, you may assume that these probabilities
are the same for all t.)

1. (8) Make a plot of these probabilities, with Cit ranging from 0 to 30. If you
do not think you can estimate the whole range, plot as much as you can, and
explain why you cannot go further. For full credit, your plot must include
at least 29 points, and include a measure of uncertainty in your estimates.
Does your curve support the idea that the use of tetracycline is transmitted
from one doctor to another through the social network? Explain, including
a description of what curves which did not support this idea would look
like, or why the shape of this curve is actually irrelevant to this issue.

2. (7) Averaging over doctors and months, how much does the predicted prob-
ability of adoption change when Cit increases by one? What is your standard
error for this change in predicted probabilities?

Hint: You may find it useful to create a data frame recording, for every com-
bination of doctor and month, whether that doctor began prescribing tetracy-
cline that month, the number of their contacts who began prescribing before
that month. Such a data frame should have 2125 rows.

4. 1. (1) Are your estimates from problem 22 and 32 consistent with one another?
Explain.

2. (4) What would you have to assume for either of these to be estimates of the
causal effect on adoption by other doctors of making one extra doctor adopt
the drug? Be as specific as you can, rather than just repeating definitions
from the notes. Drawing graphs is encouraged.

5. Estimate a model which predicts the probability that a doctor i who had not
yet adopted the drug by month t will begin to do so in month t, as a function
of Cit and of the covariates which indicate when i went to medical school,
whether they attended medical-society meetings (and if so what kind), and
how many medical journals they read.

1. (5) Plot the estimated probability of adoption as a function of Cit for doc-
tors who read the minimal number of journals, do not attend conferences,
and graduated from medical school (i) in 1919 or earlier, (ii) in the 1920s,

98 How Tetracycline Came to Peoria

and (iii) in 1940 or after. For full credit, have all three lines on the same plot
(clearly visually distinct from each other), and some measure of uncertainty
for each line.

2. (5) Averaging over doctors and months, how much does increasing Cit by
one change the probability of doctor i adopting tetracycline in month t?
Include a standard error for this change in predicted probabilities.

3. (5) Under what assumptions does this give a valid estimate of the average
causal effect of increasing Cit by one?

Note If you want to display the social network, the R package igraph is designed
for such things.

27.1 Formatting Instructions and Rubric

Your main report should be a humanly-readable document of at most 10 single-
spaced pages, including figures. It should have the following sections:

Introduction describing the scientific problem and the data set, possibly including relevant
summary statistics or exploratory graphs. (Do not include EDA just to have
EDA.)

Specific Problems answering the questions set above, but avoiding the check-list, itemized format
in favor of continuous text, with a logical succession of sentences and para-
graphs. (Writing coherently is more important than following the order of the
questions.)

Conclusions summarizing what you have learned from the data and models about whether
the transmission of an innovation from person to person is really a good de-
scription of how these doctors came to use tetracycline.

You may assume that the reader has a general familiarity with the contents of
401, and with the models and methods we have covered so far in the course, but
will need to be reminded of any details. The reader should not be assumed to
have any prior familiarity with the data set.

Code

All statistical results must be supported by appropriate code, or they will receive
no credit. (“Show your work.”) Code should only appear in the text of the report
when it is the best way of conveying some point. The ideal would be to use R
Markdown, or knitr+LATEX, to embed all computations in a humanly readable
document, and submit both the knitted version and the source2 As a second best,
it is acceptable to submit a PDF document containing all text and figures, and a
separate .R file, containing all supporting computations, clearly labeled via the
comments so that it is easy to see which claims or results go with which pieces
of code.

2 See examples at http://yihui.name/knitr/demos/, and the useful chunk options like echo at

http://yihui.name/knitr/options/; also the examples in the solutions to exam 1.

http://yihui.name/knitr/demos/
http://yihui.name/knitr/options/

27.1 Formatting Instructions and Rubric 99

Rubric

As usual, this describes the ideal.

Words

(5) The text is laid out cleanly, with clear divisions and transitions between
sections and sub-sections. The writing itself is well-organized, free of grammatical
and other mechanical errors, divided into complete sentences logically grouped
into paragraphs and sections, and easy to follow from the presumed level of
knowledge.

Numbers

(5) All numerical results or summaries are reported to suitable precision, and
with appropriate measures of uncertainty attached when applicable.

Pictures

(5) Figures and tables are easy to read, with informative captions, axis labels and
legends, and are placed near the relevant pieces of text.

Code

(15) The code is formatted and organized so that it is easy for others to read
and understand. It is indented, commented, and uses meaningful names. It only
includes computations which are actually needed to answer the analytical ques-
tions, and avoids redundancy. Code borrowed from the notes, from books, or from
resources found online is explicitly acknowledged and sourced in the comments.
Functions or procedures not directly taken from the notes have accompanying
tests which check whether the code does what it is supposed to. All code runs,
and the Markdown file knits (if applicable). The main text of the report is free of
intrusive blocks of code, which are used only when a specifically-computational
point is being made, or when code is actually the clearest way of describing a
point.

Inference and Uncertainty

(10) The actual estimation of model parameters or estimated functions is tech-
nically correct. All calculations based on estimates are clearly explained, and
also technically correct. All estimates or derived quantities are accompanied with
appropriate measures of uncertainty (such as confidence intervals or standard
errors).

Conclusions

(10) The substantive questions about diffusion of innovations are all answered as
precisely as the data and the model allow. The chain of reasoning from estimation
results about models, or derived quantities, to substantive conclusions is both
clear and convincing. Contingent answers (“if X, then Y , but if Z, then W”) are
likewise described as warranted by the model and data. If uncertainties in the

100 How Tetracycline Came to Peoria

data and model mean the answers to some questions must be imprecise, this too
is reflected in the conclusions.

Extra credit

(10) Up to ten points may be awarded for reports which are unusually well-
written, where the code is unusually elegant, where the analytical methods are
unusually insightful, or where the analysis goes beyond the required set of ana-
lytical questions. Example: Simulating the model estimated in problem 5, taking
the set of doctors who have adopted in month 1 for the initial conditions and
continuing for another 16 months, with a detailed and quantitative comparison
of multiple simulation runs to the actual data, and an informative assessment of
what the comparison says about the strengths and weaknesses of the model.

	Contents
	Introduction
	Introduction
	Part I Regression and Its Generalizations
	1 Regression Basics
	Exercises
	2 The Truth about Linear Regression
	Exercises
	3 Model Evaluation
	Exercises
	4 Smoothing in Regression
	Exercises
	5 Simulation
	Exercises
	6 The Bootstrap
	Exercises
	7 Splines
	Exercises
	8 Additive Models
	Exercises
	9 Testing Regression Specifications
	10 Weighting and Variance
	Exercises
	11 Logistic Regression
	Exercises
	12 GLMs and GAMs
	Exercises
	13 Trees
	Exercises

	Part II Distributions and Latent Structure
	14 Density Estimation
	Exercises
	15 Principal Components Analysis
	Exercises
	16 Factor Models
	Exercises
	17 Mixture Models
	Exercises
	18 Graphical Models
	Exercises

	Part III Causal Inference
	19 Graphical Causal Models
	Exercises
	20 Identifying Causal Effects
	Exercises
	21 Estimating Causal Effects
	Exercises
	22 Discovering Causal Structure
	Exercises

	Part IV Dependent Data
	23 Time Series
	Exercises
	24 Simulation-Based Inference
	Exercises

	Bibliography
	References
	Acknowledgments

	Online Appendices
	to 1.25Appendix ABig O and Little o Notation
	to 1.25Appendix BTaylor Expansions
	to 1.25Appendix CPropagation of Error
	to 1.25Appendix DOptimization
	Exercises
	to 1.25Appendix ERelative Distributions and Smooth Tests
	Exercises
	to 1.25Appendix FNonlinear Dimensionality Reduction
	Exercises
	to 1.25Appendix GRudimentary Graph Theory
	to 1.25Appendix HMissing Data
	to 1.25Appendix IProgramming

	Data-Analysis Assignments
	1 Your Daddy's Rich
	2 …But We Make It Up in Volume
	3 Past Performance, Future Results
	4 Free Soil
	5 There Were Giants in the Earth in Those Day
	6 The Sound of Gunfire, Off in the Distance
	7 The Bullet or the Ballot?
	8 A Diversified Portfolio
	9 The Monkey's Paw
	10 What's That Got to Do with the Price of Condos in California?
	11 The Advantages of Backwardness
	12 It's Not the Heat that Gets You
	13 Nice Demo City, but Will It Scale?
	14 Fair's Affairs
	15 How the North American Paleofauna Got a Crook in Its Regression Line
	16 How the Hyracotherium Got Its Mass
	17 How the Recent Mammals Got Their Size Distribution
	18 Red Brain, Blue Brain
	19 Brought to You by the Letters D, A and G
	20 Teacher, Leave Those Kids Alone! (They're the Control Group)
	21 Estimating with DAGs
	22 Use and Abuse of Conditioning
	23 What Makes the Union Strong?
	24 An Insufficiently Random Walk Down Wall Street
	25 Predicting Nine of the Last Five Recessions
	26 Debt Needs Time for What It Kills to Grow In
	27 How Tetracycline Came to Peoria

