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CHAPTER 1

Manifolds

1.1. Smooth Manifolds

A manifold is a topological space, M, with a maximal atlas or a maximal smooth
structure.

There are two virtually identical definitions. The standard definition is as follows:

DEFINITION 1.1.1. There is an atlas A consisting of maps xα : Uα → Rnα such that

(1) Uα is an open covering of M.
(2) xα is a homeomorphism onto its image.
(3) The transition functions xα ◦ x−1

β
: xβ

(
Uα ∩Uβ

)
→ xα

(
Uα ∩Uβ

)
are diffeomor-

phisms.

In condition (3) it suffices to show that the transition functions are smooth since xβ ◦
x−1

α : xα

(
Uα ∩Uβ

)
→ xβ

(
Uα ∩Uβ

)
is an inverse.

The second definition is a compromise between the first and a more sheaf theoretic
approach. It is, however, essentially the definition of a submanifold of Euclidean space
where parametrizations are given as local graphs.

DEFINITION 1.1.2. A smooth structure is a collection D consisting of continuous
functions whose domains are open subsets of M with the property that: For each p ∈ M,
there is an open neighborhood U 3 p and functions xi ∈D , i = 1, ...,n such that

(1) The domains of xi contain U .
(2) The map x =

(
x1, ...,xn

)
: U → Rn is a homeomorphism onto its image V ⊂ Rn.

(3) For each f : O→ R in D there is a smooth function F : x(U ∩O)→ R such that
f = F ◦ x on U ∩O.

The map in (2) in both definitions is called a chart or coordinate system on U . The
topology of M is recovered by these maps. Observe that in condition (3), F = f ◦ x−1,
but it is usually possible to find F without having to invert x. F is called the coordinate
representation of f and is normally also denoted by f .

Note that it is very easy to see that these two definitions are equivalent. Both have
advantages. The first in certain proofs. The latter is generally easier to work with when
showing that a concrete space is a manifold and is also often easier to work with when it
comes to defining foundational concepts.

DEFINITION 1.1.3. A continuous function f : O→ R is said to be smooth wrt D if
D ∪{ f} is also a smooth structure. In other words we only need to check that condition (3)
still holds when we add f to our collection D . We can more generally define what it means
for f to be Ck for any k with smooth being C∞ and continuous C0. We shall generally only
use smooth or continuous functions.
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1.2. EXAMPLES 5

The space of all smooth functions is a maximal smooth structure. We use the notation
Ck (M) for the space of Ck functions defined on all of M and Ck (M) for the space of
f : O→ R where O⊂M is open and f is Ck.

It is often the case that all the functions in a D have domain M. In fact it is possible
to always select the smooth structure such that this is the case. We shall also show that it
is possible to always use a finite collection D .

A manifold of dimension n or an n-manifold is a manifold such that coordinate charts
always use n functions.

PROPOSITION 1.1.4. If U ⊂ Rm and V ⊂ Rn are open sets that are diffeomorphic,
then m = n.

PROOF. The differential of the diffeomorphism is forced to be a linear isomorphism.
This shows that m = n. �

COROLLARY 1.1.5. A connected manifold is an n-manifold for some integer n.

PROOF. It is not possible to have coordinates around a point into Euclidean spaces
of different dimensions. Let An ⊂ M be the set of points that have coordinates using n
functions. This is clearly an open set. Moreover if pi → p and pi ∈ An then we see that
if p has a chart that uses m functions then pi will also have this property showing that
m = n. �

1.2. Examples

If we start with M ⊂ Rk as a subset of Euclidean space, then we should obviously use
the induced topology and the ambient coordinate functions xi|M : M→ R as the potential
differentiable structure D . Depending on what subset we start with this might or might not
work. Even when it doesn’t there might be other obvious ways that could make it work.
For example, we might start with a subset which has corners, such as a triangle. While
the obvious choice of a differentiable structure will not work we note that the subset is
homeomorphic to a circle, which does have a valid differentiable structure. This structure
will be carried over to the triangle via the homeomorphism. This is a rather subtle point and
begs the very difficult question: Does every topological manifold carry a smooth structure?
The answer is yes in dimensions 1, 2, and 3, but no in dimension 4 and higher. There are
also subsets where the induced topology won’t make the space even locally homeomorphic
to Euclidean space. A figure eight 8 is a good example. But again there is an interesting
bijective continuous map R→ 8. It “starts” at the crossing, wraps around in the figure 8
and then ends at the crossing on the opposite side. However, as the interval was open every
point on 8 only gets covered once in this process. This map is clearly also continuous.
However, it is not a homeomorphism onto its image. Thus we see again that an even more
subtle game can be played where we refine the topology of a given subset and thus have
the possibility of making it a manifold.

1.2.1. Spheres. The n-sphere is defined as

Sn =
{

x ∈ Rn+1 | |x|= 1
}

Thus we have n+1 natural coordinate functions. On any hemisphere O±i =
{

x ∈ Sn | ±xi > 0
}

we use the coordinate system that comes from using the n functions x j where j 6= i and the
remaining coordinate function is given as a smooth expression:

±xi =

√
1−∑

j 6=i
(x j)2
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A somewhat different atlas of charts is given by stereographic projection from the
points±ei, where ei are the usual basis vectors. The map is geometrically given by drawing
a line through a point z∈

{
z ∈ Rn+1 | z⊥ ei

}
and±ei and then checking where it intersects

the sphere. The equator where xi = 0 stays fixed, while the hemisphere closest to ±ei is
mapped outside this equatorial band, and the hemisphere farthest from ±ei is mapped
inside the band, finally the map is not defined at ±ei. The map from the sphere to the
subspace is given by the formula:

z =
1

1∓ xi (x∓ ei)± ei

and the inverse

x =
±2

1+ |z|2
(z∓ ei)± ei

Any two of these maps suffice to create an atlas. But one must check that the transition
functions are also smooth. One generally takes the ones coming from opposite points, say
en+1 and −en+1. In this case the transition is an inversion in the equatorial band and is
given by

z 7→ z

|z|2

1.2.2. Projective Spaces. The n-dimensional (real) projective space RPn is defined
as the space of lines or more properly 1-dimensional subspaces of Rn+1. First let us dis-
pel the myth that this is not easily seen to be a subset of some Euclidean space. A sub-
space M⊂Rn+1 is uniquely identified with the orthogonal projection projM :Rn+1→Rn+1

whose image is M = projM
(
Rn+1

)
. Orthogonal projections are characterized as idempo-

tent self-adjoint linear maps, i.e., in this case matrices E ∈Mat(n+1)×(n+1) (R) such that
E2 = E and E∗ = E. Thus it is clear that RPn ⊂ Mat(n+1)×(n+1) (R). We can be more
specific. If

x =


x0

x1

xn

 ∈ Rn+1−{0} ,

then the matrix that describes the orthogonal projection onto span{x} is given by

Ex =
1

|x|2


x0x0 x0x1 x0xn

x1x0 x1x1 x1xn

xnx0 xnx1 xnxn


=

1

|x|2
xx∗.

Clearly E∗x = Ex and as x∗x = |x|2 we have E2
x = Ex and Exx = x. Thus Ex is the orthogonal

projection onto span{x}. Finally note that Ex = Ey if and only if x = λy, λ 6= 0. With that
in mind we obtain a natural differentiable system by using the coordinate functions

f i j (Ex) =
xix j

|x|2
.
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If we fix j and consider the n+1 functions f i j, then we have the relationship

f j j =
(

f j j)2
+∑

i6= j

(
f i j)2

.

This describes a sphere of radius 1
2 centered at the point where f i j = 0 for i 6= j and f j j = 1

2 .
The origin on this sphere corresponds to all points where x j = 0. But any other point on the
sphere corresponds to a unique element of O j =

{
Ex : x j 6= 0

}
. This means that around any

given point in O j we can use n of the functions f i j as a coordinate chart. The remaining
function is then expressed smoothly in terms of the other coordinate functions. This still
leaves us with the other functions f kl , but they satisfy

f kl =
f k j f l j

f j j

and so on the given neighborhood in O j they are also smoothly expressed in terms of our
chosen coordinate functions. The more efficient collection of functions f i j, i≤ j yield the
Veronese map

RPn→ R
(n+2)(n+1)

2 .

A more convenient differentiable system can be constructed using homogeneous co-
ordinates on RPn. These are written

[
x0 : x1 : · · · : xn

]
and represent the equivalence class

of non-zero vectors that are multiples of x. The idea is that all elements in the equivalence
class have the same ratios xi : x j = xi

x j on O j. We can then define a differentiable system by
using the functions

f i
j
([

x0 : x1 : · · · : xn])= xi

x j =
f i j

f j j .

These have domain O j and are smoothly expressed in terms of the coordinate functions we
already considered. Conversely note that on Oi∩O j the old coordinates are also expressed
smoothly in terms of the new functions:

f i j =

(
∑
k

f k
i f k

j

)−1

.

On O j we can use f i
j, i 6= j as a coordinate chart. The other coordinate functions f k

l
can easily be expressed as smooth combinations by noting that on Ol ∩O j we have

f k
l =

f k
j

f l
j
.

Thus using the obvious coordinate functions works, but it is often desirable to use a
different collection of functions for a differentiable system.

1.2.3. Matrix Spaces. Define Matkn×m as the matrices with n rows, m columns, and
rank k.

The special case where k = n = m is denoted Gln and is known as the general linear
group. It evidently consists of the nonsingular n× n matrices and is an open subset of all
the n×n matrices. As such it is obviously a manifold of dimension n2.

Back to general case. As Matkn×m is a subspace of a Euclidean space we immediately
suspect that the entries will suffice as a differentiable system. The trick is to discover
how many of them are needed to create a coordinate system. To that end, assume that we
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look at the matrices of rank k where the first k rows and the first k columns are linearly
independent. If such a matrix is written in block form[

A C
B D

]
,

then we know that B = YA, Y ∈ Mat(n−k)×k, C = AX , X ∈ Matk×(m−k), and D = YAX .
Thus those matrices are uniquely represented by the invertible matrix A and the two gen-
eral matrices X ,Y . Next observe that Y = BA−1, X = A−1C. Thus we can use the nm−
(n− k)(m− k) entries that correspond to A,B,C as a coordinate chart on this set. The
remaining entries corresponding to D are then smooth functions of these coordinates as
D = BA−1C.

More generally we define the sets Oi1,...,ik, j1,..., jk ⊂ Matkn×m as the rank k matrices
where the rows indexed by i1, ..., ik and columns by j1, ..., jk are linearly independent. On
these sets all entries that lie in the corresponding rows and columns are used as coordi-
nates and the remaining entries are smoothly expressed in terms of these using the above
expression with the necessary index modifications.

When m = n we can add other conditions such as having constant determinant, being
skew or self-adjoint, orthogonal, unitary and much more. A particularly nasty situation is
the Grassmannian of k-planes in Rn. These are as indicated the k-dimensional subspaces
of Rn. When k = 1 we then return to the projective spaces. As such they are represented
as the subset

Grk (Rn) =
{

E ∈Matkn×n | E2 = E and E∗ = E
}
.

If X ∈Matkn×k, then

EX = X (X∗X)−1 X∗ ∈ Grk (Rn) .

Moreover, EX = EY if and only if X = YA where A ∈ Glk. The question now is if we
learned anything else useful from constructing coordinates on projective space. We define
sets Oi1,...,ik ⊂ Grk (Rn) with the property that the rows of E corresponding to the indices
i1, ..., ik are linearly independent. As E is self-adjoint the corresponding columns are also
linearly independent. If E = EX , then Oi1,...,ik corresponds the X ∈Matkn×k where the rows
indexed by i1, ..., ik are linearly independent. We can then consider the matrix AX ∈ Glk
which consists of those rows from X . Then the remaining rows in XA−1

X parametrize EX =
EXA−1

X
. To see this more explicitly assume that the first k rows are linearly independent.

Then we can use

X =

[
Ik
Z

]
, Z ∈Mat(n−k)×k

and

E =

[
A C
B D

]
=

[
Ik +Z∗Z (Ik +Z∗Z)Z∗

Z (Ik +Z∗Z) Z (Ik +Z∗Z)Z∗

]
.

Thus we should use the functions coming from the entries of BA−1 as our coordinates on
O1,...,k. With that choice we clearly get that the entries are smoothly expressed in terms
of these coordinates. But that is not really what we wish to check. However, the types
of coordinate functions we are considering are in turn smoothly related to the entries of E
so in a somewhat backward way we have worked everything out without having done any
hard work.
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1.2.4. Tangent Spaces to Spheres. The last example for now is somewhat different
in nature and can easily be generalized to manifolds that come from subsets of Euclidean
space where standard coordinate functions give a differentiable system.

We’ll consider the set of vectors tangent to a sphere. By tangent to the sphere we
mean that they are velocity vectors for curves in the sphere. If c : I→ Sn, then |c|2 = 1 and
consequently ċ ·c = (ċ|c) = 1. Thus the velocity is always perpendicular to the base vector.
This means that we are considering the set

T Sn '
{
(x,v) ∈ Rn+1×Rn+1 | |x|= 1 and (x|v) = 0

}
Conversely we see that for (x,v) ∈ T Sn the curve

c(t) = xcos t + vsin t

is a curve on the sphere that has velocity v at the base point x. Now suppose that we are
considering the points x ∈ O±j with ±x j > 0. We know that on this set we can use xi,
i 6= j as coordinates. It seems plausible that we could similarly use vi, i 6= j for the vector
component. We already know that we can write x j as a smooth function of xi, i 6= j. So we
now have to write v j as a smooth function of vi and xi. The equation (x|v) = 0 tells us that

v j =−
∑i6= j xivi

x j

so this is certainly possible.
This also helps us in the general case where we might be considering tangent vectors

to a general M. For simplicity assume that xn+1 = F
(
x1, ...,xn

)
. If c is a curve, then we

also have cn+1 (t) = F
(
c1 (t) , ...,cn (t)

)
. Thus

ċn+1 (t) =
∂F
∂xi ċi (t) .

This means that for the tangent vectors

vn+1 =
∂F
∂xi vi.

Thus we have again written vn+1 as a smooth function of our chosen coordinates given that
xn+1 is already written as a smooth function of x1, ...,xn.

This argument is general enough that we can use it to create a differentiable structure
for similarly defined tangent spaces T M for Mm ⊂ Rn where we used the n-coordinate
functions from Rn to generate the differentiable structure on M. The only difference is that
we’ll have n−m functions to describe n−m coordinates on any given set where we’ve
used a specific set of m coordinates as a chart. For instance

x j = F j (x1, ...,xm) , j > m

yields

v j =
m

∑
i=1

∂F j

∂xi vi, j > m.

1.3. Topological Properties of Manifolds

The goal is to show that we can construct partitions of unity on smooth manifolds.
This means that we have to start by showing that the space is paracompact. The simplest
topological assumptions for this to work is that the space is second countable (there is a
countable basis for the topology) and Hausdorff (points can be separated by disjoint open
sets). For a manifold, as defined above, this means that the topology will henceforth be
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assumed to be second countable and Hausdorff. The Hausdorff property is essential for
much that we do, but it will also seem as if we rarely use it explicitly. Two essential
properties come from the Hausdorff axiom. First, that limits of sequences are uniquely
defined. Second, that compact subsets are closed sets and thus have complements that are
open.

Checking that the topology is second countable generally follows by checking that the
space can be covered by countably many coordinate charts. Clearly open subsets of Rn are
second countable. So this means that the space is a countable union of open sets that are
all second countable and thus itself second countable.

Checking that it is Hausdorff is generally also easy. Either two points will lie the same
chart in which case they can easily be separated. Otherwise they’ll never lie in the same
chart and one must then check that there are small charts around the points whose domains
don’t intersect.

We now proceed to the constructions that are directly related to what we shall later
use.

THEOREM 1.3.1. A smooth manifold has a compact exhaustion and is paracompact.

PROOF. A compact exhaustion is an increasing countable collection of compact sets
K1 ⊂ K2 ⊂ ·· · such that M = ∪Ki and Ki ⊂ intKi+1 for all i. The crucial ingredients for
finding such an exhaustion is second countability and local compactness.

First we show that open sets O in Rn have this property. Around each p ∈ O select an
open neighborhood Up such that the closure is compact and U p ⊂ O. Since O is second
countable (or just Lindelöf) we can select a countable collection Upi that covers O. Define
K1 =U p1 and given Ki let Ki+1 =U p1 ∪·· ·∪U pn where p1, ..., pn are chosen so that n≥ i
and Ki ⊂Up1 ∪·· ·∪Upn .

By definition M is a countable union of open sets that have exhaustions, i.e., there are
compact sets Ki, j where for fixed j, Ki, j, i = 1,2,3... are an exhaustion of O j, and O j is an
open covering. The desired exhaustion is then given by Ki = ∪ j≤iKi, j.

To show that the space is paracompact consider the compact “annuli” Ci =Ki− intKi−1
and note that Ci ∩C j = /0 when |i− j| > 1. Extend this to a covering of open sets Ui =
intKi+1−Ki−1 ⊃ Ci and note that Ui ∩U j = /0 when |i− j| > 4. In other words these are
locally finite covers. Given an open cover Bα we can consider the refinement Bα ∩Ui. For
fixed i we can then extract a finite collection of Bα ∩Ui that cover the compact set Vi. This
leads to a locally finite refinement of the original cover. �

Another fundamental lemma we need is a smooth version of Urysohn’s lemma.

LEMMA 1.3.2. (Smooth Urysohn Lemma) If M is a smooth manifold and C0,C1 ⊂M
are disjoint closed sets, then there exists a smooth function f : M→ [0,1] such that C0 =
f−1 (0) and C1 = f−1 (1) .

PROOF. First we claim that for each open set O ⊂ M there is a smooth function f :
M→ [0,∞) such that M−O = f−1 (0) .

We start by proving this in Euclidean space. First note that for any open cube

O = (a1,b1)×·· ·× (an,bn)

there is a bump function Rn→ [0,∞) that is positive on O and vanishes on the complement.
Next write a general open set O as a union of open cubes such that for all p ∈ Rn there is
a neighborhood U that intersects only finitely many open cubes. Using bump functions on
each of the cubes we can then add them up to get a function that is positive only on O.
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Next note that if U ⊂M is open and the closure is contained in a chart Ū ⊂V , where
x : V →O⊂Rn, then this construction gives us a function that is positive on U and vanishes
on V −Ū . If we extend this function to vanish on M−V we obtain a smooth function.

More generally we can find a locally finite cover of M consisting of open Uα , where
Ūα ⊂Vα and Vα is the domain for a chart (MIGHT WANT TO PROVE THIS). For a fixed
open set O ⊂ M consider the nonempty intersections Uα ∩O and construct a function as
just explained on each of them. Then add all of these functions to obtain a smooth function
on M that is positive on O and vanishes on M−O.

Finally, the Urysohn function is constructed by selecting fi : M → [0,∞) such that
f−1
i (0) =Ci and defining

f (x) =
f0 (x)

f0 (x)+ f1 (x)
.

This function is well-defined as C0∩C1 = /0 and is the desired Urysohn function. �

We can now easily construct the partitions of unity we need.

LEMMA 1.3.3. Let M be a smooth manifold. Any countable locally finite covering
Uα of open sets has partition of unity subordinate to this covering, i.e., there are smooth
functions φα : M→ [0,1] such that φ−1

α (0) = M−Uα and 1 = ∑α φα .

PROOF. The previous result gives us functions λα : M → [0,1] such that λ−1
α (0) =

M−Uα . As the cover is locally finite the sum ∑α λα is well-defined. Moreover it is
always positive as Uα cover M. We can then define

φα =
λα

∑α λα

�

PROPOSITION 1.3.4. If U ⊂M is an open set in a smooth manifold and f : U → Rn

is smooth, then λ f defines a smooth function on M if λ : M→ R is smooth and vanishes
on M−U.

PROOF. Clearly λ f is smooth away from the boundary of U. On the boundary λ and
all it derivatives vanish so the product rule shows that λ f is also smooth there. �

Finally, we can use this to show

PROPOSITION 1.3.5. A smooth manifold admits a proper smooth function.

PROOF. Select a compact exhaustion K1 ⊂ K2 ⊂ ·· · , where each Ki is compact, Ki ⊂
intKi+1, and M =

⋃
Ki. Choose Urysohn functions φi : M→ [0,1] such that φi (Ki−1) = 0

and φi (M− intKi) = 1. Then consider ρ = ∑φi. �

We finish by mentioning three interesting results that help us understand when topo-
logical spaces are metrizable and when metric spaces have compact exhaustions. It should
also be mentioned that if we use the topology on R generated by the half open intervals
[a,b) then we obtain a paracompact space that is separable but not second countable and
not locally compact (51 in [Steen & Seebach]).

THEOREM 1.3.6. A connected locally compact metric space has a compact exhaus-
tion.
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PROOF. Assume (M,d) is the metric space. For each x ∈M let

r (x) = sup
{

r | B(x,r) is compact
}
.

If r (x) = ∞ for some x we are finished. Otherwise r (x) is a continuous function, in fact

|r (x)− r (y)| ≤ d (x,y)

since
r (y)≤ d (x,y)+ r (x)

and
r (x)≤ d (x,y)+ r (y)

We now claim that for a fixed compact set C the set C# =
{

x ∈M | ∃z ∈C : d (x,z)≤ 1
2 r (z)

}
is also compact and contains C in its interior. The latter statement is obvious since B

(
x, 1

2 r (x)
)
⊂

C# for all x∈C. Next select a sequence xi ∈C# and select zi ∈C such that d (xi,zi)≤ 1
2 r (zi).

Since C is compact we can after passing to a subsequence assume that zi→ z ∈C and that
d (z,zi) <

1
4 r (z) for all i. Then d (z,xi) ≤ d (z,zi)+d (zi,xi) <

1
4 r (z)+ 1

2 r (zi). Continuity

of r (zi) then shows that xi ∈ B
(
z, 3

4 r (z)
)

for large i. As B
(
z, 3

4 r (z)
)

is compact we can
then extract a convergent subsequence of xi.

Finally consider the compact sets Ki+1 = K#
i where K1 is any non-empty compact set.

We claim that ∪iKi is both open and closed. The set is open since B
(
x, 1

2 r (x)
)
⊂K#

i =Ki+1
for any x ∈ Ki. To see that the set is closed select a convergent sequence xn ∈ ∪iKi and let
x be the limit point. We have r (xn)→ r (x) and d (xi,x)→ 0. So it follows that for large n
we have x ∈ B

(
xn,

1
2 r (xn)

)
showing that x ∈ K#

i if xn ∈ Ki. So the fact that M is connected
shows that it has a compact exhaustion. �

COROLLARY 1.3.7. A second countable locally compact metric space has a compact
exhaustion and is paracompact.

PROOF. There are at most countably many connected components and each of these
has a compact exhaustion. We can then proceed as above. �

THEOREM 1.3.8 (Baire Category Theorem). A Hausdorff space that is locally com-
pact satisfies: A countable union of closed sets without interiors has no interior.

PROOF. Let Ci ⊂ M be a countable collection of closed sets with no interior points.
Select an open set V0 ⊂ X . Then V0−C1 is a nonempty open set as C1 has no interior
points. As M is locally compact we can find an open set V1 such that V̄1 ⊂ V0−C1 is
compact. Similarly we can find open sets Vi such that V̄i ⊂Vi−1−Ci ⊂Vi−1 is compact. By
compactness

⋂
∞
i=1 V̄i is nonempty and we also have

⋂
∞
i=1 V̄i ⊂ V0−

⋃
∞
i=1 Ci. In particular,

V0 −
⋃

∞
i=1 Ci is nonempty for any open set V0. This shows that

⋃
∞
i=1 Ci has no interior

points. �

EXAMPLE 1.3.9. The set of rationals Q ⊂ R forms a metrizable space that does not
admit a complete metric nor is it locally compact.

The Urysohn metrization theorem asserts that a second countable normal Hausdorff
space is metrizable. The proof of this result is remarkably simple.

THEOREM 1.3.10. A second countable normal Hausdorff space is metrizable. More-
over, if the space admits a compact exhaustion, then it is metrizable with a complete metric.
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PROOF. We shall only use that the space is completely regular. In fact Tychonoff’s
Lemma shows that a regular Lindelöf space is normal. So it suffices to assume that the
space is second countable and regular. There are second countable Hausdorff spaces that
are not regular (79 in [Steen & Seebach]). Note that such spaces can’t be locally compact.

The key is to use that the Hilbert cube: ×∞
i=1Ii where Ii = [0,1] is a metric space with

distance
d ((xi) ,(yi)) = ∑

i
2−i |xi− yi| .

The goal is then simply to show that our space is homeomorphic to a subset in the Hilbert
cube.

Choose a countable collection of closed sets C such that their complements generate
the topology of M. Enumerate the all pairs (Ci,Fi) ∈ C ×C with Ci ⊂ intFi, and for each
such pair select a function φi : M→ [0,1] such that φi (Ci) = 0 and φi (M− intFi) = 1. Then
we obtain a map Φ : M→×∞

i=1Ii by Φ(x) =×∞
i=1φi (x).

This map is injective since distinct points can be separated by open sets whose com-
plements are in C . Next we show that for each C ∈ C the image Φ(C) is closed. Consider
a sequence cn ∈ C such that Φ(cn)→ Φ(x). Note that for any fixed index we then have
φi (cn)→ φi (x). If x /∈C, then we can find a pair (Ci,Fi) where x ∈M− intFi. Therefore,
φi (cn) = 0 and φi (x) = 1, which is impossible. Thus x ∈C and Φ(x) ∈Φ(C). This shows
that the map is a homeomorphism onto its image.

An explicit metric on M can given by

d (x,y) = ∑
i

2−i |φi (x)−φi (y)| .

In case the space also has a compact exhaustion we can find a proper function ρ :
M→ [0,∞) and use the proper map: (ρ,Φ) : M→ [0,∞)×∞

i=1 Ii. In this way the metric has
the property that bounded closed sets are compact. In particular, Cauchy sequences have
accumulations points and are consequently convergent. �

These topological properties of manifolds lead us to a very general principle that will
be used later.

Consider a class M n manifolds with the following properties:

(1) Every M ∈M is σ -compact and has dimension n.
(2) Rn ∈M n.
(3) If M ∈M n and U ⊂M is open, then U ∈M n.
(4) If M ∈M n and M is diffeomorphic to N, then N ∈M n.

This can for example be the class of all n-manifolds or all oriented n-manifolds or simply
all open subsets of a manifold. The key property to be extracted from σ -compactness is
that each manifold has a proper functon ρ : M→ [0,∞).

The goal is to consider the validity of a statement P(M) for all M ∈M n. We will
assume that the statement only depends on the diffeomorphism type of the manifold.

THEOREM 1.3.11. The statement P(M) is true for all manifolds in M n provided the
following conditions hold:

(1) P(Rn) is true.
(2) If A,B ⊂M ∈M n are open and P(A) ,P(B) ,P(A∩B) are true, then P(A∪B)

is true.
(3) If Ai ⊂M ∈M n form a countable collection of pairwise disjoint open sets such

that P(Ai) are true, then P(
⋃

Ai) is true.
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PROOF. We start by showing that P(U) is true for all open sets U ⊂Rn. Observe first
that any open box (a1,b1)×·· ·× (an,bn) is diffeomorphic to Rn and that the intersection
of two boxes is either empty or a box. Consider next an open subset of Rn that is a finite
union of open boxes. The claim follows for such sets by induction on the number of boxes.
To see this, assume it holds for any union of k or fewer open boxes and consider k+1 open
boxes Bi. Then the statement holds for B1 ∪ ·· · ∪Bk, Bk+1, and the intersection as it is a
union of k or fewer boxes:

(B1∪·· ·∪Bk)∩Bk+1 = (B1∩Bk+1)∪·· ·∪ (Bk ∩Bk+1) .

This in turn shows that we can prove the theorem for all open sets in Rn. Fix an open set
U ⊂ Rn and a proper function ρ : U → [0,∞). Now cover each compact set ρ−1 [i, i+1]⊂
Ui by an open set Ui that is a finite union of open boxes, where Ui∩U j = /0 when |i− j| ≥ 2.
Thus the theorem holds for

⋃
U2i,

⋃
U2i+1. It also holds for the intersection (

⋃
U2i)∩

(
⋃

U2i+1) =
⋃(

U j ∩U j+1
)

as Ui ∩Ui+1 ∩U j ∩U j+1 = /0 when i 6= j. Consequently, the
statement holds for the entire union.

Having come this far we use the exact same strategy to prove the statement for an M ∈
M n by considering the class of all open subsets U ⊂M and replacing the first statement
with:

(1) P(U) is true for all open U ⊂M that are diffeomorphic to an open subset of Rn,
i.e., all charts U ⊂M.

Using induction this shows that the statement is true for any open subset of M that is
a finite union of charts. Next write M =

⋃
Ui where each Ui is a finite union of charts

and Ui ∩U j = /0 when |i− j| ≥ 2. This means the theorem holds for
⋃

U2i,
⋃

U2i+1, and
(
⋃

U2i)∩ (
⋃

U2i+1) and consequently for the entire union. �

1.4. Smooth Maps

1.4.1. Smooth Maps. A map F : M→ N between spaces has a natural dual or pull
back that takes functions defined on subsets of N to functions defined on subsets of M.
Specifically if f : A ⊂ N → R then F∗ ( f ) = f ◦ F : F−1 (A) ⊂ M → R. Here it could
happen that F−1 (A)= /0. Note that if F is continuous then its pull back will map continuous
functions on open subsets of N to continuous functions on open subsets of M. Conversely,
if N is normal, and the pull back takes continuous functions to continuous functions, then
it will be continuous. To see this fix O⊂N that is open and select a continuous function λ :
N→ [0,∞) such that λ−1 (0,∞) = O. Then (λ ◦F)−1 (0,∞) = F−1 (O) and is in particular
open as we assumed that λ ◦F was continuous.

DEFINITION 1.4.1. A map F : M→ N is said to be smooth if F∗ takes smooth func-
tions to smooth functions, i.e., F∗ (C∞ (N))⊂ C∞ (M).

PROPOSITION 1.4.2. Let F : M→ N be continuous then the following conditions are
equivalent:

(1) F is smooth.
(2) If D is a differentiable structure on N, then F∗ (D)⊂ C∞ (M).
(3) F∗ (C∞ (N))⊂C∞ (M).
(4) If xα : Uα → Rm is an atlas for M and yβ : Vβ → Rn an atlas for N, then the

coordinate representations yα ◦F ◦ x−1
β

are smooth when- and where-ever they
are defined.
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1.4.2. Maps of Maximal Rank.

DEFINITION 1.4.3. The rank of a smooth map at p ∈ M is denoted rankpF and is
defined as the rank of the differential D

(
y◦F ◦ x−1

)
at x(p). This definition is independent

of the coordinate systems we choose due to the chain rule and the fact that the transition
functions have nonsingular differentials at all points.

PROPOSITION 1.4.4. If F : M→ N and G : N→ O are smooth maps, then

rankp (G◦F)≤min
{

rankpF, rankF(p)G
}
.

PROOF. Using coordinates x around p∈M, y around F (p)∈N, and z around G(F (p))∈
O we can consider the composition

z◦G◦F ◦ x−1 =
(
z◦G◦ y−1)◦ (y◦F ◦ x−1)

The chain rule then implies

D
(
z◦G◦F ◦ x−1) |p = D

(
z◦G◦ y−1) |y◦F(p) ◦D

(
y◦F ◦ x−1) |x(p)

This reduces the claim to the corresponding result for linear maps. �

DEFINITION 1.4.5. We say that F is a diffeomorphism if it is a bijection and both F
and F−1 are smooth.

PROPOSITION 1.4.6. Let y : U → Rm be smooth where U ⊂M is an open subset. If
rankpy = dimM = m, then y is a chart on a neighborhood of p. Moreover, if rankpy = m <

dimM, then it is possible to select coordinate functions ym+1, ...,yn such that y1, ...,yn form
coordinates around p.

PROOF. This follows from the inverse function theorem. Select a chart x : V → Rm

on a neighborhood of p and consider the smooth map y ◦ x−1 : x(U ∩V )→ Rm. By the
definition of rank the map has nonsingular differential at x(p) and must therefore be a
diffeomorphism from a neighborhood around x(p) to its image. This shows in turn that y
is a diffeomorphism on some neighborhood of p onto its image.

For the second claim select an arbitrary coordinate system z1, ...,zn around p. Then
the map

(
y◦ z−1,z1, ...,zn

)
has a differential at z(p) that looks like[

D
(
y◦ z−1

)
In

]
where In is the identity matrix and D

(
y◦ z−1

)
has linearly independent rows. We can

then use the replacement procedure to eliminate m of the bottom n rows so as to get a
nonsingular n×n matrix. Assuming after possibly rearranging indices that the remaining
rows are the last n−m rows we see that

(
y◦ z−1,zm+1, ...,zn

)
has rank n at p and thus forms

a coordinate system around p. �

DEFINITION 1.4.7. We say that F is an immersion if rankpF = dimM for every p∈M.

PROPOSITION 1.4.8. For a smooth map F : M→N the following conditions are equiv-
alent:

(1) F is an immersion.
(2) For each p ∈ M there are charts x : U → Rm and y : V → Rn with p ∈U and

F (p) ∈V such that

y◦F ◦ x−1 (x1, ...,xm)= (x1, ...,xm,0, ...,0
)



1.4. SMOOTH MAPS 16

(3) If D is a differentiable structure on N then F∗ (D) is a differentiable structure
on M.

PROOF. It is obvious that 2 implies 1. For 1 implies 2. Select coordinates z : U →Rm

around p and x̃ : V → Rn around F (p) ∈ N. The composition x̃ ◦ F ◦ z−1 has rank m
at z(p). After possibly reordering the indices for the x̃-coordinates we can assume that(
x̃1, ..., x̃m

)
◦F ◦ z−1 also has rank m at z(p). But this means that it is a diffeomorphism

on some neighborhood around z(p). Consequently x =
(
x̃1, ..., x̃m

)
◦F is a chart around p.

Consider the functions

yi = x̃i, i = 1, ...,m,

yi = x̃i− x̃i ◦F ◦ x−1 (x̃1, ..., x̃m) , i > m.

These are defined on a neighborhood of F (p) and when i > m we have

x̃i ◦F− x̃i ◦F ◦ x−1 (x1 ◦F, ...,xm ◦F
)
= 0.

So it remains to check that they are coordinates at F (p). After composing these functions
with x̃−1 the differential will have a lower triangular block form[

Im 0
∗ In−m

]
where the diagonal entries are the identity matrices on first m and last n−m coordinate
subspaces. This shows that they will form coordinates on some neighborhood of F (p).

As 1 and 2 are equivalent we can now use the proof that 1 implies 2 to show that if 1
or 2 hold then 3 also holds.

Conversely assume that 3 holds. Select coordinates zi = yi ◦F around p where yi ∈D .
The chart z has rank m at p, so it follows that the corresponding smooth map y must have
rank at least m at F (p). However, the rank can’t be greater than m as it maps into Rm.
We can now add n−m coordinate functions zi from some other coordinate system around
F (p) so as to get a map

(
y1, ...,ym,zm+1, ...,zn

)
that has rank n at F (p). These coordinate

choices show that 1 holds. �

COROLLARY 1.4.9. A smooth map F : M→N is an immersion iff for any smooth map
G : L→M and o ∈ L we have

rankoF ◦G = rankoG.

DEFINITION 1.4.10. We say that F is an embedding if it is an immersion, injective,
and F : M→ F (M) is a homeomorphism, where the image is endowed with the induced
topology.

PROPOSITION 1.4.11. For a smooth map F : M → N the following conditions are
equivalent:

(1) F is an embedding.
(2) F∗ (C∞ (N)) = C∞ (M), i.e., F∗ is surjective on smooth functions.

PROOF. Start by assuming that 2 holds. Given p,q ∈M select f ∈ C∞ (M) such that
f (p) 6= f (q). Then find g∈C∞ (N) such that f = g◦F . Then g(F (p)) 6= g(F (q)) showing
that F is injective. To see that the topology of M agrees with the induced topology on
F (M) select an open set O ∈ M and λ : M → [0,∞) such that λ−1 (0,∞) = O. Select
µ : U ⊂ N → R such that λ = µ ◦F . Note that F (M) ⊂U as λ is defined on all of M.
Thus

µ
−1 (0,∞)∩F (M) = F

(
λ
−1 (0,∞)

)
= F (O)
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and F (O) is open in F (M). Finally select coordinates x around p∈M and write xi = yi ◦F
for smooth functions on some neighborhood of F (p). The composition y◦F ◦x−1 has rank
m at x(p). So the map F ◦ x−1 must have rank at least m at x(p). However, the rank can’t
exceed m so this shows that rankpF = m and in turn that F is an immersion.

Conversely assume that F is an embedding and f : O ⊂ M → R a smooth function.
Using that F is an immersion we can for each p ∈ M select charts xp : Op → Rm around
p and yp : Up → Rn around F (p) such that y j

p|F(Op)∩Up
= 0 for j > m. Since F is an

embedding Up∩F (Op)⊂ F (M) is open. This means that we can assume that Up is chosen
so that F (Op) = Up ∩F (M). Now select a locally finite subcover Uα of F (M) from the
cover Up and let Oα = F−1 (Uα). On each Uα define gα such that gα ◦ y−1

α

(
a1, ..,an

)
=

f ◦ x−1
α

(
a1, ...,am

)
. We can then define g = ∑α µα gα , where µα is a partition of unity for

Uα . This gives us a function on the open set ∪Uα . Since F is injective it follows that
g◦F = f . �

COROLLARY 1.4.12. If F : M→ N is an embedding such that F (M) ⊂ N is closed,
then F∗ (C∞ (N)) =C∞ (M).

PROOF. The only additional item to worry about is that the function g we just con-
structed cannot be extended to N and still remain fixed on F (M). When the image is a
closed subset this is easily done by finding a smooth Urysohn function ν that is 1 on F (M)
and vanishes on N−U . The function νg is then a smooth function on N that can be used
instead of g. �

DEFINITION 1.4.13. A subset S ⊂ M is a submanifold if it admits a topology such
that the restriction of the differentiable structure on M to S is a differentiable structure.
The dimension of the structure on S will generally be less than that of M unless S is an
open subset with the induced topology. Note that the topology on S can be different from
the induced topology, but it has to be finer as we require all smooth functions on M to be
smooth on S. In this way we see that a submanifold is in fact the image of an injective
immersion.

DEFINITION 1.4.14. We say that F is a submersion if rankpF = dimN for all p ∈M.

PROPOSITION 1.4.15. For a smooth map F : M → N the following conditions are
equivalent:

(1) F is a submersion.
(2) For each p ∈ M there are charts x : U → Rm and y : V → Rn with p ∈U and

F (p) ∈V such that

y◦F ◦ x−1 (x1, ...,xm)= (x1, ...,xn) .
(3) For each f ∈ C∞ (N) and p ∈M we have that rankp ( f ◦F) = rankF(p) ( f ).

PROOF. Assume that 1 holds and select a chart y around F (p). Then y ◦F has rank
n at p. We can then supplement with m− n coordinate functions xi from any coordinate
system around p such that x1 = y1 ◦F, ..., xn = yn ◦F, xn+1, ..., xm are coordinates around
p. This yields the desired coordinates.

Clearly 2 implies 3.
If we assume that 3 holds and that we have a chart y around F (p). Then we can

consider smooth functions f = ∑αiyi, where αi ∈ R. These have rank 1 at F (p) unless
α1 = · · · = αn = 0. If we choose coordinates x around p, then D

(
f ◦F ◦ x−1

)
|x−1(p)) =
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∑αiD
(
yi ◦F ◦ x−1

)
|x−1(p). So it follows that D

(
yi ◦F ◦ x−1

)
|x−1(p) are linearly indepen-

dent, which in turn implies that y◦F ◦ x−1 has rank n at x−1 (p). �

COROLLARY 1.4.16. A smooth map F : M → N is a submersion iff for any smooth
map G : N→ O and p ∈M we have

rankpG◦F = rankF(p)G

Finally we have a few useful properties.

PROPOSITION 1.4.17. Let F : Mm→ Nn be a smooth map.
(1) If F is proper, then it is closed.
(2) If F is a submersion, then it is open.
(3) If F is a proper submersion and N is connected then it is surjective.

PROOF. 1. Let C ⊂ M be a closed set and assume F (xi)→ y, where xi ∈ C. The
set {y,F (xi)} is compact. Thus the preimage is also compact. This implies that {xi}
has an accumulation point. If we assume that xi j → x ∈ C, then continuity shows that
F
(
xi j

)
→ F (x) . Thus y = F (x) ∈ F (C) .

2. Consequence of local coordinate representation of F.
3. Follows directly from the two other properties. �

COROLLARY 1.4.18. Let F : M → N be a submersion. If f : O ⊂ F (N)→ R is a
function on an open set such that f ◦F is smooth, then f is smooth.

PROOF. Smoothness is clearly a local property so we can confine ourselves to func-
tions that are defined on the coordinate systems guaranteed from 2 in the above character-
ization of submersions. But then the claim is obvious. �

1.4.3. Regular and Critical Points. We say that F is non-singular on M if it is both
a submersion and an immersion. This is evidently equivalent to saying that it is locally a
diffeomorphism.

A point p ∈ M is called a regular point if rankpF = dimN, otherwise it is a critical
point. A point q ∈ N is called a regular value if F−1 (q) is empty or only contains regular
points, otherwise it is a critical value.

Note that if p ∈ M is a regular point for F : M → N, then there is a neighborhood
p ∈U ⊂M such that q is a regular value for F |U : U → N.

THEOREM 1.4.19 (The Regular Value Theorem). If q ∈ N is a regular value for a
smooth function F : Mm→Nn, then F−1 (p) is empty or a properly embedded submanifold
of M of dimension m−n.

PROOF. Note that the preimage is closed so it follows that its intersections with com-
pact sets is compact. We shall also use the induced topology and show that it is a subman-
ifold with respect to that topology. We claim that C∞ (M) restricts to a differential system
on the preimage.

If we select coordinates yi, i = 1, ...,n around q ∈ N, then the functions yi ◦ F are
part of a coordinate system xi around any point p ∈ F−1 (q). This means that we can
find a neighborhood p ∈U such that U ∩F−1 (q) =

{
x ∈U | yi (F (x)) = yi (F (q))

}
, i.e.,

xi = yi ◦F are constant on the preimage. Given f ∈ C∞ (M) defined around p we have that
f = F

(
x1, ...,xm

)
. Now on U ∩F−1 (q) the first n coordinates are constant so it follows

that f |U∩F−1(q) = F
(
x1 (p) , ...,xn (p) ,xn+1, ...,xm

)
. Thus the restriction can be written as

a smooth function of the last m− n coordinates. Finally we note that these last m− n
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coordinates also define the desired chart on U ∩F−1 (q) as they are injective and yield a
homeomorphism on to the image. �

To complement this we next prove.

THEOREM 1.4.20 (Brown, 1935, A.P. Morse, 1939 and Sard, 1942). The set of regular
values for a smooth function F : Mm→ Nn is a countable intersection of open dense sets
and in particular dense. Moreover, the set of critical values has measure 0.

PROOF. We prove Brown’s original statement: the set of critical values has no interior
points. The proof we give is fairly standard and is very close to Brown’s original proof.
The same proof is easily adapted to prove Sard’s measure zero version, but this particular
statement is in fact rarely used. A.P. Morse proved the measure theoretic result when the
target space is R.

Note that the set of critical points is closed but its image need not be closed. However,
the set of critical points is a countable union of compact sets and thus the image is also a
countable union of compact sets. This means that we rely on the Baire category theorem:
a set that is the countable union of closed sets with empty interiors also has empty interior.
Thus we only need to show that there are no interior points in the set of critical values
that come from critical points in a compact set. Further note that it suffices to prove the
theorem for the restriction of F to any open covering of M.

To clarify the meaning of measure 0 and prove Sard’s theorem in the case where it is
most used, we make some simple observations.

Consider a map F : O ⊂ Rn→ Rn. When F is locally Lipschitz, then it maps sets of
measure zero to sets of measure zero. Moreover, any differentiable map that has bounded
derivative on compact sets is locally Lipschitz. Thus C1 diffeomorphisms preserve sets
of measure zero. This shows that the notion of sets of measure zero is well-defined in a
smooth manifold. Now consider F : Mm→Nn, where m< n and construct F̄ : M×Rn−m→
N, by F̄ (x,z) = F (x). Then F (M) = F̄ (M×{0}) has measure zero as M×{0} ⊂ M×
Rn−m has measure zero.

In the general case the proof uses induction on m. For m = 0 the claim is trivial as M
is forced to be a countable set with the discrete topology. As mentioned above, it suffices
to prove it for maps F : U ⊂ Rm → Rn, where U is open. For such a map let C0 be the
set of critical points and define Ck ⊂C0 as the set of critical points where all derivatives of
order ≤ k vanish. Note that all of these sets are closed.

First we show that F (Ck) has no interior points when k ≥ m/n: Fix a compact set K.
Taylor’s theorem shows that we can select r > 0 and C > 0 such that for any x ∈ B(p,r)
with p ∈Ck ∩K we have

|F (p)−F (x)| ≤C |p− x|k+1 .

Now cover Ck∩K by finitely many cubes Iε
i of side length ε < r, then F (Iε

i ) lies in a cube
Jε

i of side length ≤C (m,n)εk+1 for a constant C (m,n) that depends on C, m, and n. Thus

|Jε
i | ≤ (C (m,n))n

ε
n(k+1)

= (C (m,n))n
ε

n(k+1)−m |Iε
i | .

Since Ck ∩K is compact we can assume that ∑ |Iε
i | remains bounded as ε → 0. Thus

∑ |Jε
i | will converge to 0 since n(k+1)> m. This shows that F (Ck ∩K) does not contain

any interior points as it could otherwise not be covered by cubes whose total volume is
arbitrarily small.

Next we show that F (Ck−Ck+1) has no interior points for k > 0: Denote by ∂ k some
specific partial derivative of order k. Thus

(
∂ kF

)
(p) = 0 for p∈Ck−Ck+1 but some partial
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derivative ∂∂ kF
∂x j (p) 6= 0. Without loss of generality we can assume that ∂∂ kF1

∂x j (p) 6= 0. This
means that near p the set where ∂ kF1 = 0 will be a submanifold of dimension m−1. Since
p is critical for F it’ll also be a critical point for the restriction of F to any submanifold.
By induction hypothesis the image of such a set has no interior points. Thus for any fixed
compact set K the set K∩ (Ck−Ck+1) can be divided into a finite collection of sets whose
images have no interior points.

Finally we show that F (C0−C1) has no interior points: Note that when n = 1 it
follows that C0 =C1 so there is nothing to prove in this case. Assume that p ∈C0−C1 is a
point where ∂F i

∂x j 6= 0. After rearranging the coordinates in Rm and Rn we can assume that
∂F1

∂x1 6= 0. In particular, the set L =
{

x | F1 (x) = F1 (p)
}

is a submanifold of dimension
m−1 in a neighborhood of p. Let G =

(
F2, ...,Fn

)
: L→Rn−1. Now observe that if F (p)

is an interior point in F (C0−C1), then G(p) is an interior point for G(L∩ (C0−C1)).
This, however, contradicts our induction hypothesis since all the points in L∩ (C0−C1)
are critical for G. (For the measure zero statement, this last part requires a precursor to the
Tonelli/Fubini theorem or Cavalieri’s principle: A set has measure zero if its intersection
with all parallel hyperplanes has measure zero in the hyperplanes.)

Putting these three statements together implies that the set of critical values has no
interior points. �

1.4.4. Covering Maps.

LEMMA 1.4.21. Let F : Mm → Nm be a smooth proper map. If y ∈ N is a regular
value, then there exists a neighborhood V around y such that F−1(V ) =

⋃n
k=1 Uk where Uk

are mutually disjoint and F : Uk→V is a diffeomorphism.

PROOF. First use that F is proper to show that F−1(y) = {x1, . . . ,xn} is a finite set.
Next use that y is regular to find mutually disjoint neighborhoods Wk around xk such that
F : Wk → F(Wk) is a diffeomorphism. If the desired V does not exist, then we can find a
sequence zi ∈ M−

⋃n
k=1 Wk such that F(zi)→ y. Using again that F is proper it follows

that (zi) must have an accumulation point z. Continuity of F then shows that z ∈ F−1(y).
This in turn shows that infinitely many zi must lie in

⋃n
k=1 Wk, a contradiction. �

DEFINITION 1.4.22. A smooth map π : N̄→ N is called a covering map if each point
in N is evenly covered, i.e., for every y ∈ N there is a neighborhood V around y such that
π−1 (V ) =

⋃
Ui where π : Ui→V is a diffeomorphism and the sets Ui are pairwise disjoint.

COROLLARY 1.4.23. If F : M→ N is a proper non-singular map with N connected,
then F is a covering map.

The key property for covering maps is the unique path lifting property. A lift of a map
F : M → N into the base of a covering map π : N̄ → N is a map F̄ : M → N̄ such that
π ◦ F̄ = F . If F̄ (x0) = π (y0), then we say that the lift goes through y0.

PROPOSITION 1.4.24. If M is connected, x0 ∈M, and y0 ∈ N̄ such that F (x0)= π (y0),
then there is at most one lift F̄ such that F̄ (x0) = y0.

PROOF. Assume that we have two lifts F1 and F2 with this property and let A =
{x ∈M | F1 (x) = F2 (x)}. Clearly A is non-empty and closed. The covering maps prop-
erty shows that A is open. So when M is connected A = M. �

THEOREM 1.4.25. If M is connected and simply connected, then any F : M→ N has
lift through each point in π−1 (F (x0)).



1.5. TANGENT SPACES 21

PROOF. Cover N by connected open sets Vα that are evenly covered by disjoint sets
in N̄.

Next suppose that M is covered by a string of connected sets Ui, i = 0,1,2... such
that F (Ui) ⊂ Vαi . We can then lift F on each of the sets Ui to go through a given point

in π−1 (F (Ui)). If we further have the property that Uk ∩
(⋃k−1

i=0 Ui

)
is non-empty and

connected for, then we can use the uniqueness of liftings to successively define F |Uk given
that it is defined on

⋃k−1
i=0 Ui. Note that the sets Ui need not be open.

Unfortunately not a lot of manifolds admit such covers. Clearly Rk does as it can
be covered by coordinate cubes. Also any interval, disc, and square has this property.
However, the circle S1 cannot be covered by such a string of sets. On the other hand
spheres Sn, n > 1 do have this property. We will use the property for the interval and
square.

We can now show that if we have a map G : M0→M, where M0 has the desired cov-
ering property, then F ◦G can be lifted. Given two curves ci : [0,1]→M where ci (0) = x0
and ci (1) = x ∈M, where i = 0,1, we invoke simple connectivity of M to find a homotopy
H : [0,1]2→M where H (s,0) = x0, H (s,1) = x, and H (i, t) = ci (t). We can then find a
lift of F ◦H such that F ◦H (s,0) = y0. The unique path lifting property then guarantees
that F ◦H (s,1) is constant, and, in particular, that the lift of F at x ∈M does not depend
on the path connecting it to x0. This gives us a well-defined lift of F that is smooth when
composed with any curve that starts at x0. It is now easy to check that the lift of F is
continuous and smooth using uniqueness of lifts. �

COROLLARY 1.4.26. If π : N̄ → N is a covering map and F : M→ N is a map such
that for every closed curve c : S1→M the map F ◦c has a lift that passes through each point
in π−1 (F ◦ c(t0)) for a fixed t0 ∈ S1, then F has a lift through each point in π−1 (F (x0)).

PROOF. This proof is almost identical to the above proof. The one difference is that
the curves are no longer necessarily homotopic to each other. However, the fact that lifts
of closed curves in M are assumed to become closed shows that the construction is inde-
pendent of the paths we choose. �

COROLLARY 1.4.27. If F0 : M0→ N and F1 : M1→ N are coverings where all man-
ifolds are connected and M0,1 are both simply connected, then M0 and M1 are diffeomor-
phic.

PROOF. This is an immediate consequence of the lifting property of each of the cov-
ering maps to the other covering space. �

COROLLARY 1.4.28. (Hadamard) Let F : Rn → Rn be a proper non-singular map,
then F is a diffeomorphism.

1.5. Tangent Spaces

1.5.1. Motivation. Let us start by selecting a countable differentiable system
{

f i
}

,
i = 1,2, ... of functions f i : M → R. To find such a system we invoke paracompactness,
partitions of unity, extensions of smooth function etc from above.

Tangent vectors are supposed to be tangents or velocities to curves on the manifold.
These vectors have as such no place to live unless we know that the manifold is in Euclidean
space. In the general case we can use the countable collection f i of smooth functions com-
ing from a differential structure to measure the coordinates of the velocities by calculating
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the derivatives
d
(

f i ◦ c
)

dt
for a smooth curve c : I→M. Thus a tangent vector v ∈ T M looks like a countable collec-
tion vi of its coordinates. However, around any given point we know that there will be n
coordinate functions, say f 1, ..., f n, that yield a chart and then other smooth functions F j,
j > n such that f j = F j

(
f 1, ..., f n

)
. Thus we also have the relations

v j =
n

∑
i=1

∂F j

∂xi vi.

In other words the n coordinates v1, ...,vn determine the rest of the coordinate components
of v. Note that at a fixed point p, the tangent vectors v∈ TpM form an n-dimensional vector
space, which is an n-dimensional subspace of a fixed infinite dimensional vector space.
Moreover, this tangent space is well-defined as the set of vectors tangent to curves going
through p and is thus not dependent on the chosen coordinates. However, the coordinates
help us select a basis for this vector space and thus to create suitable coordinates that yield
a differentiable structure on T M.

As it stands the definition does depend on our initial choice of a differentiable system.
To get around this we could simply use the entire space of smooth functions C∞ (M) to get
around this. This is more or less what we shall do below.

1.5.2. Abstract Derivations. The space of all smooth functions C∞ (M) is not a vec-
tor space as we can’t add functions that have different domains especially if these domains
do not even intersect. If we fix p ∈M, then we can consider the subset Cp (M) ⊂ C∞ (M)
of smooth functions whose domain contains p. Thus any two functions in Cp (M) can now
be added in a meaningful way by adding them on the intersection of their domains and
then noting that this is again an open set containing p. Thus we get a nice and very large
vector space of smooth functions defined on some neighborhood of p. To get a logically
meaningful theory this space is often modified by considering instead equivalence classes
of function in Cp (M), the relation being that two functions that are equal on some neigh-
borhood of p are considered equivalent. This quotient space is denoted Fp (M) and the
elements are called germs of functions at p. This is not unlike the idea that the space of L2

functions is really supposed to be a quotient space where we divide out by the subspace of
functions that vanish almost everywhere.

Now consider a curve c : I → M with c(t0) = p. The goal is to make sense of the
velocity of c at t0. If f ∈ Cp (M), then f ◦c measures how c changes with respect to f . If f
had been a coordinate function this would be the corresponding coordinate component of
c in a chart. Similarly the derivative d

dt ( f ◦ c) measures the change in velocity with respect
to f , i.e., what should be the f -component of the velocity.

DEFINITION 1.5.1. The velocity ċ(t0) of c at t0 is the map

Cp (M) → R

f 7→ d
dt

( f ◦ c)(t0) .

Thus ċ(t0) is implicitly defined by specifying its directional derivatives

Dċ(t0) f =
d
dt

( f ◦ c)(t0)

for all smooth functions defined on a neighborhood of p = c(t0).
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DEFINITION 1.5.2. A derivation at p or on Cp (M) is a linear map D : Cp (M)→ R
that is also satisfies the product rule for differentiation at p:

D( f g) = D( f )g(p)+ f (p)D(g) .

There is an alternate way of defining derivations as linear functions on Cp (M). Let
C0

p (M) ⊂ Cp (M) be the maximal ideal of functions that vanish at p and
(
C0

p (M)
)2 ⊂

C0
p (M) the ideal generated by products of elements in C0

p (M).

LEMMA 1.5.3. The derivations at p are isomorphic to the subspace of linear maps on
C0

p (M) that vanish on
(
C0

p (M)
)2.

PROOF. If D is a derivation, then the derivation property shows that it vanishes on(
C0

p (M)
)2. Furthermore, it also vanishes on constant functions as linearity and the deriva-

tion property implies

D(c) = cD(1) = cD(1 ·1) = c(D(1)+D(1))

Conversely, any linear map D on C0
p (M) that vanishes on

(
C0

p (M)
)2 defines a unique

linear map on Cp (M) by defining it to vanish on constant functions. If f ,g ∈ Cp (M), then
we have

0 = D(( f − f (p))(g− f (p)))

= D( f g)− f (p)Dg−g(p)D f +D( f (p)g(p))

= D( f g)− f (p)Dg−g(p)D f

showing that it is a derivation. �

Next we show that derivations exist.

PROPOSITION 1.5.4. The map f 7→ d
dt ( f ◦ c)(t0) is a derivation on Cp (M).

PROOF. That it is linear in f is obvious from the fact that differentiation is linear. The
derivation property follows from the product rule for differentiation:

d
dt

(( f g)◦ c)(t0) =
(

d
dt

( f ◦ c)(t0)
)
(g◦ c)(t0)+( f ◦ c)(t0)

d
dt

(g◦ c)(t0) .

�

DEFINITION 1.5.5. The tangent space TpM for M at p is the vector space of derivations
on Cp (M).

PROPOSITION 1.5.6. If p ∈U ⊂M, where U is open, then TpU = TpM.

PROOF. We already saw that derivations must vanish on constant function. Next con-
sider a function f that vanishes on a neighborhood of p. We can then find λ : M→ R that
is 1 on a neighborhood of p and λ = 0 on the complement of the region where f vanishes.
Thus λ f = 0 on M and

0 = D(λ f ) = D(λ ) f (p)+λ (p)D( f ) = D( f ) .

This in turns shows that if two functions f ,g agree on a neighborhood of p, then
D( f ) = D(g). This means that a derivation D on Cp (M) restricts to a derivation on Cp (U)
and conversely that any derivation on Cp (U) also defines a derivation on Cp (M). This
proves the claim. �

We are now ready to prove that there are no more derivations than one would expect.
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LEMMA 1.5.7. The natural map Rn → T0Rn that maps v to Dv f =
(

d f
dt

)
(tv) |t=0 is

an isomorphism.

PROOF. The map is clearly linear and as

Dvxi = vi

it follows that its kernel is trivial. Thus we need to show that it is surjective. This claim
depends crucially on the fact that derivations are defined on C∞ functions. The key obser-
vation is that we have a Taylor formula

f (x) = f (0)+ xi fi (x)

where fi are also smooth and fi (0) =
∂ f
∂xi (0). These functions are defined by

fi (x) =
∫ 1

0

∂ f
∂xi (tx)dt

and the result follows from the fundamental theorem of calculus and the chain rule
d
dt

( f (tx)) = xi ∂ f
∂xi (tx) .

Now select an abstract derivation D ∈ T0Rn and observe that

D( f ) = D( f (0))+D
(
xi) fi (0)+0D( fi) =

∂ f
∂xi (0)D

(
xi)

So if we define a vector v =
(
D
(
x1
)
, ...,D(xn)

)
, then in fact

D( f ) = Dv ( f ) .

�

REMARK 1.5.8. The space of linear maps on Ck (Rn), 1 ≤ k < ∞ that satisfy the
product rule

D( f g) = D( f )g(0)+ f (0)D(g)

is infinite dimensional! Note that it suffices to show this for n = 1. Next observe that if
Z ⊂ Ck (R) is the subset of functions that vanish at 0, then we merely need to show that
Z/Z2 is infinite dimensional. To see this first note that if f is C0 and g ∈ Z then f g is
differentiable with derivative f (0)g′ (0) at 0. This in turn implies that functions in Z2 are
not only Ck but also have derivatives of order k+1 at 0. However, there is a vast class of
functions in Z that do not have derivatives of order k+1 at 0.

1.5.3. Concrete Derivations. To avoid the issue of crucially using C∞ functions we
give an alternate definition of the tangent space that obviously gives the above definition.

DEFINITION 1.5.9. TpM is the space of derivations that are constructed from the
derivations coming from curves that pass through p.

Without the above result it is not obvious that this is a vector space so a little more
work is needed.

PROPOSITION 1.5.10. Let x1, ...,xn be coordinates on a neighborhood of p, then two
curves ci passing through p at t = 0 define the same derivations if and only if for all
i = 1, ...,n

d
(
xi ◦ c1

)
dt

(0) =
d
(
xi ◦ c2

)
dt

(0) .
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PROOF. The necessity is obvious. Conversely note that any f ∈ Cp (M) can be ex-
pressed smoothly as f = F

(
x1, ...,xn

)
on some neighborhood of p. Thus

d ( f ◦ c1)

dt
(0) =

d
(
F
(
x1 ◦ c1, ...,xn ◦ c1

))
dt

(0)

=
∂F
∂xi

d
(
xi ◦ c1

)
dt

(0)

=
∂F
∂xi

d
(
xi ◦ c2

)
dt

(0)

=
d ( f ◦ c2)

dt
(0) .

�

PROPOSITION 1.5.11. The subset of derivations on Cp (M) that come from curves
through p form a subspace.

PROOF. First note that for a curve c through p we have

α
d ( f ◦ c)

dt
(0) =

d ( f ◦ c)(αt)
dt

(0) .

So scalar multiplication preserves this subset.
Next assume that we have two curves ci and select a coordinate system xi around p.

Define
c = x−1 (x1 ◦ c1 + x1 ◦ c2, ...,xn ◦ c1 + xn ◦ c2

)
where x−1 is the inverse of the chart map x : U →V ⊂ Rn. Then

xi ◦ c = xi ◦ c1 + xi ◦ c2

and
d ( f ◦ c)

dt
(0) =

d ( f ◦ c1)

dt
(0)+

d ( f ◦ c2)

dt
(0) .

Showing that addition of such derivations also remain in this subset. �

DEFINITION 1.5.12. The velocity of a curve c : I → M at t0 is denoted by ċ(t0) ∈
Tc(t0)M and is the derivation corresponding to the map:

f 7→ d ( f ◦ c)
dt

(t0) .

As any vector v ∈ TpM can be written as v = ċ(t0) we can also define the directional
derivative of f by

Dv f =
d ( f ◦ c)

dt
(t0) .

1.5.4. Local Coordinate Formulas, Differentials, and the Tangent Bundle. Fi-
nally let us use coordinates to specify a basis for the tangent space. Fix p ∈ M and a
coordinate system xi around p. For any f ∈ Cp (M) write f = F

(
x1, ...,xn

)
and define

∂ f
∂xi =

∂F
∂xi .

The map f 7→ ∂ f
∂xi (p) is a derivation on Cp (M). We denote it by ∂

∂xi |p. These tangent
vectors in fact form a basis as we saw that

D( f ) = D
(
xi) ∂ f

∂xi |p
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i.e.,

D = vi ∂

∂xi |p

where the components vi are uniquely determined. Moreover, as

d ( f ◦ c)
dt

(0) =
∂ f
∂xi |p

d
(
xi ◦ c

)
dt

(0)

we also get this as a natural basis if we stick to curves.

DEFINITION 1.5.13. The cotangent space T ∗p M to M at p ∈ M is the vector space
of linear functions on TpM. Alternately this can also be defined as the quotient space
C0

p (M)/
(
C0

p (M)
)2 without even referring to tangent vectors.

Using coordinates we obtain a natural dual basis dxi satisfying

dxi
(

∂

∂x j

)
=

∂xi

∂x j = δ
i
j.

In particular we see that

dxi (v) = dxi
(

v j ∂

∂x j

)
= vi

calculates the ith coordinate of a vector.
We also obtain a natural set of transformation laws when we have another coordinate

system yi around p:

dyi =
∂yi

∂x j dx j

and
∂

∂yi =
∂x j

∂yi
∂

∂x j .

Here the matrices
[

∂yi

∂x j

]
and

[
∂x j

∂yi

]
have entries that are functions on the common domain of

the the charts and they are inverses of each other. These are also the natural transformation
laws for a change of basis as well as the change of the dual basis.

The differential d also has a coordinate free definition. Let f ∈ Cp (M), then we can
define d f ∈ T ∗p M by

d f (v) = Dv f =
d ( f ◦ c)

dt
(0)

if c is a curve with ċ(0) = v. In coordinates we already know that

d f (v) =
∂ f
∂xi vi

so in fact

d f =
∂ f
∂xi dxi.

This shows that our definition of dxi is consistent with the more abstract definition and that
the transformation law for switching coordinates is simply just the law of how to write a
vector or co-vector out in components with respect to a basis.

It now becomes very simple to define a differentiable structure on the tangent bundle
T M. This space is the disjoint union of the tangent spaces TpM where p ∈ M. There
is also a natural base point projection p : T M → M that takes a vector in TpM to its
base point p. Starting with a differential system

{
f i
}

for M, we obtain a differentiable
system

{
f i ◦ p,d f i

}
for T M. Moreover when f 1, .., f n form a chart on U ⊂ M, then
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f 1 ◦ p, ..., f n ◦ p,d f 1, ...,d f n form a chart on TU . This takes us full circle back to our
preliminary definition of tangent vectors.

IMPORTANT: The isomorphism between TpM and Rn depends on a choice of coor-
dinates and is not canonically defined. We just saw that in a coordinate system we have a
natural identification

TU →U×Rn

which for fixed p ∈U yields a linear isomorphism

TpU →{p}×Rn ' Rn.

However, this does not mean that T M has a natural map to M×Rn that is a linear
isomorphism when restricted to tangent spaces. Manifolds that admit such maps are called
parallelizable. Euclidean space is parallelizable as are all matrix groups. But as we shall
see S2 is not parallelizable.

1.5.5. Derivatives of Maps. Given a smooth function F : M→ N we obtain a deriva-
tive or differential DF |p : TpM→ TF(p)N. If we let D= v= ċ(0)∈ TpM represent a tangent
vector, then

DF |p (D) = D◦F∗,

DDF |p(v) f = Dv f ◦F,

DF |p (v) =
d (F (c(t)))

dt
|t=0.

When using coordinates around p ∈M we can also create the partial derivatives

∂F
∂xi ∈ T N

as the velocities of the xi-curves for F ◦ x−1 where the other coordinates are kept constant,
in fact

∂F
∂xi |p = DF

(
∂

∂xi |p
)
.

Note that ∂F
∂xi is a function from (a subset of) M to T N which at p∈M is mapped to TF(p)N.

These partial derivatives represent the columns in a matrix representation for DF since

DF (v) = DF
(

∂

∂xi vi
)
= DF

(
∂

∂xi

)
vi =

∂F
∂xi vi.

If we also have coordinates at F (p) in N, then we have

DF (v) =
∂F
∂xi vi =

∂
(
y j ◦F

)
∂xi vi ∂

∂y j .

So the matrix representation for DF is precisely the matrix of partial derivatives

[DF ] =

[
∂
(
y j ◦F

)
∂xi

]
=

[
∂
(
y j ◦F ◦ x−1

)
∂xi

]
.

We can now reformulate what it means for a smooth function to be an immersion or
submersion.

DEFINITION 1.5.14. The smooth function F : M → N is an immersion if DF |p is
injective for all p ∈M. It is a submersion if DF |p is surjective for all p ∈M.
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REMARK 1.5.15. When we consider a map F : M→ Rk, then we also have a differ-
ential

dF =

 dF1

...
dFk

 : T M→ Rk.

The identification I : Rk×Rk→ TRk defined by I (p,v) = d
dt (p+ tv) |t=0 shows that DF =

I (F,dF).

1.5.6. Vector Fields. A vector field is a smooth map (called a section) X : M→ T M
such that X |p ∈ TpM. We use X |p instead of X (p) as X |p is a derivation that can also be
evaluated on function. In fact we note that we obtain a derivation

DX : C∞ (M)→C∞ (M)

by defining
(DX f )(p) = DX |p f .

Conversely any such derivation corresponds to a vector field in the same way that tangent
vectors correspond to derivations at a point.

In local coordinates we obtain

X = DX
(
xi) ∂

∂xi .

Given two vector fields X and Y we can construct their Lie bracket [X ,Y ]. Implicitly
as a derivation

D[X ,Y ] = DX DY −DY DX = [DX ,DY ] .

This clearly defines a linear map and is a derivation as

D[X ,Y ] ( f g) = DX (gDY f + f DY g)−DY (gDX f + f DX g)

= DX gDY f +DX f DY g+gDX DY f + f DX DY g

−DY gDX f +−DY f DX g−gDY DX f − f DY DX g

= g [DX ,DY ] f + f [DX ,DY ]g.

In local coordinates this is conveniently calculated by ignoring second order partial
derivatives: [

X i ∂

∂xi ,Y
j ∂

∂x j

]
= X i ∂Y j

∂xi
∂

∂x j −Y j ∂X i

∂x j
∂

∂xi

+X iY j ∂ 2

∂xi∂x j −Y jX i ∂ 2

∂x j∂xi

= X i ∂Y j

∂xi
∂

∂x j −Y j ∂X i

∂x j
∂

∂xi

=

(
X j ∂Y i

∂x j −Y j ∂X i

∂x j

)
∂

∂xi .

Since tangent vectors are also velocities to curves it would be convenient if vector
fields had a similar interpretation. A curve c(t) such that

ċ(t) = X |c(t)
is called an integral curve for X . Given an initial value p ∈ M, there is in fact a unique
integral curve c(t) such that c(0) = p and it is defined on some maximal interval I that
contains 0 as an interior point.
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In local coordinates we can write xi ◦ c(t) = xi (t) and X = vi ∂

∂xi . The condition that c
is an integral curve then comes down to

ċ(t) =
dxi

dt
∂

∂xi = vi ∂

∂xi

or more precisely
dxi

dt
(t) = vi (c(t)) .

This is a first order ODE and as such will have a unique solution given an initial value.
To get a maximal interval for an integral curve we have to use the local uniqueness of

solutions and patch them together through a covering of coordinate charts.
We state the main theorem on integral curves that will be used again and again.

THEOREM 1.5.16. Let X be a vector field on a manifold M. For each p ∈M there is a
unique integral curve cp (t) : Ip→M where cp (0) = p, ċp (t) = Xcp(t) for all t ∈ Ip, and Ip
is the maximal open interval for any curve satisfying these two properties. Moreover, the
map (t, p) 7→ cp (t) is defined on an open subset of R×M and is smooth. Finally, for given
p ∈M the interval Ip either contains [0,∞) or cp (t) is not contained in a compact set as
t→ ∞.

PROOF. The first part is simply existence and uniqueness of solutions to ODEs. The
second part is that such solutions depend smoothly on initial data. This is far more subtle
to prove. The last statement is a basic compactness argument. �

We use the general notation that Φt
X (p) = cp (t) is the flow corresponding to a vector

field X , i.e.
d
dt

Φ
t
X = X |Φt

X
= X ◦Φ

t
X

Let F : Mm→ Nn be a smooth map between manifolds. If X is a vector field on M and
Y a vector field on N, then we say that X and Y are F-related provided DF (X |p) =Y |F(p),
or in other words DF (X) =Y ◦F. Given that tangent vectors are defined as derivations we
note that it is equivalent to say that for all f ∈C∞ (N) we have (DY f )◦F = DX (( f ◦F)).
In particular, when Xi are F-related to Yi for i = 1,2, it follows that [X1,X2] is F-related to
[Y1,Y2].

We can also relate this concept to the integral curves for the vector fields.

PROPOSITION 1.5.17. X and Y are F-related iff F ◦Φt
X = Φt

Y ◦F whenever both sides
are defined.

PROOF. Assuming that F ◦Φt
X = Φt

Y ◦F we have

DF (X) = DF
(

d
dt
|t=0Φ

t
X

)
=

d
dt
|t=0

(
F ◦Φ

t
X
)

=
d
dt
|t=0

(
Φ

t
Y ◦F

)
= Y ◦Φ

0
Y ◦F

= Y ◦F.
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Conversely DF (X) = Y ◦F implies that

d
dt

(
F ◦Φ

t
X
)

= DF
(

d
dt

Φ
t
X

)
= DF

(
X |Φt

X

)
= Y |F◦Φt

X
.

This shows that t 7→ F ◦Φt
X is an integral curve for Y . At t = 0 it agrees with the integral

curve t 7→Φt
Y ◦F so by uniqueness we obtain F ◦Φt

X = Φt
Y ◦F . �

1.5.7. Proper Submersions. In case F is a submersion it is possible to construct
vector fields in M that are F-related to a given vector field in N.

PROPOSITION 1.5.18. Assume that F is a submersion. Given a vector field Y in N,
there are vector fields X in M that are F-related to Y.

PROOF. First we do a local construction of X . Since F is a submersion proposition
1.4.15 shows that for each p ∈M there are charts x : U → Rm and y : V → Rn with p ∈U
and F (p) ∈V such that

y◦F ◦ x−1 (x1, ...,xm)= (x1, ...,xn) .
This relationship evidently implies that ∂

∂yi and ∂

∂xi are F-related for i = 1, ...,n. Thus,

if we write Y = Y i ∂

∂yi , then we can simply define X = ∑
n
i=1 Y i ◦F ∂

∂xi . This gives the local
construction.

For the global construction assume that we have a covering Uα , vector fields Xα on Uα

that are F-related to Y, and a partition of unity λα subordinate to Uα . Then simply define
X = ∑λα Xα and note that

DF (X) = DF
(
∑λα Xα

)
= ∑λα DF (Xα)

= ∑λαY ◦F

= Y ◦F.

�

Finally we can say something about the maximal domains of definition for the flows
of F-related vector fields given F is proper.

PROPOSITION 1.5.19. Assume that F is proper and that X and Y are F-related vector
fields. If F (p) = q and Φt

Y (q) is defined on [0,b), then Φt
X (p) is also defined on [0,b). In

other words the relation F ◦Φt
X = Φt

Y ◦F holds for as long as the RHS is defined.

PROOF. Assume Φt
X (p) is defined on [0,a). If a < b, then the set

K =
{

x ∈M | F (x) = Φ
t
Y (p) for some t ∈ [0,a]

}
= F−1 ({

Φ
t
Y (p) | t ∈ [0,a]

})
is compact in M since F is proper. The integral curve t 7→Φt

X (q) lies in K since F (Φt
X (p))=

Φt
Y (q) . It is now a general result that maximally defined integral curves are either defined

for all time or leave every compact set. In particular, [0,a) is not the maximal interval on
which t 7→Φt

X (p) is defined. �
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These relatively simple properties lead to some very general and tricky results.
A fibration F : M→ N is a smooth map which is locally trivial in the sense that for

every p ∈ N there is a neighborhood U of p such that F−1 (U) is diffeomorphic to U ×
F−1 (p) . This diffeomorphism must commute with the natural maps of these sets on to U.
In other words (x,y) ∈U ×F−1 (p) must be mapped to a point in F−1 (x) . Note that it is
easy to destroy the fibration property by simply deleting a point in M. Note also that in this
context fibrations are necessarily submersions.

Special cases of fibrations are covering maps and vector bundles. The Hopf fibration
S3 → S2 = P1 is a more non trivial example of a fibration, which we shall study further
below. Tubular neighborhoods are also examples of fibrations.

THEOREM 1.5.20 (Ehresman). If F : M → N is a proper submersion, then it is a
fibration.

PROOF. As far as N is concerned this is a local result. In N we simply select a set U
that is diffeomorphic to Rn and claim that F−1 (U) ≈U ×F−1 (0) . Thus we just need to
prove the theorem in case N = Rn, or more generally a coordinate box around the origin.

Next select vector fields X1, ...,Xn in M that are F-related to the coordinate vector fields
∂1, ...,∂n. Our smooth map G :Rn×F−1 (0)→M is then defined by G

(
t1, ..., tn,x

)
=Φt1

X1
◦

· · · ◦Φtn

Xn
(x) . The inverse to this map is G−1 (z) =

(
F (z) ,Φ−tn

Xn
◦ · · · ◦Φ

−t1

X1
(z)
)
, where

F (z) =
(
t1, ..., tn

)
. �

The theorem also unifies several different results.

COROLLARY 1.5.21 (Basic Lemma in Morse Theory). Let F : M → R be a proper
map. If F is regular on (a,b)⊂ R, then F−1 (a,b)' F−1 (c)× (a,b) where c ∈ (a,b) .

COROLLARY 1.5.22 (Reeb). Let M be a closed manifold that admits a map with two
critical points, then M is homeomorphic to a sphere. (This is a bit easier to show if we also
assume that the critical points are nondegenerate.)

Finally we can extend the fibration theorem to the case when M has boundary.

THEOREM 1.5.23. Assume that M is a manifold with boundary and that N is a mani-
fold without boundary, if F : M→ N is proper and a submersion on M as well as on ∂M,
then it is a fibration.

PROOF. The proof is identical and reduced to the case when N =Rn. The assumptions
allow us to construct the lifted vector fields so that they are tangent to ∂M. The flows will
then stay in ∂M or intM for all time if they start there. �

REMARK 1.5.24. This theorem is sometimes useful when we have a submersion
whose fibers are not compact. It is then occasionally possible to add a boundary to M
so as to make the map proper. A good example is a tubular neighborhood around a closed
submanifold S ⊂ U. By possibly making U smaller we can assume that it is a compact
manifold with boundary such that the fibers of U → S are closed discs rather than open
discs.

EXAMPLE 1.5.25. Consider the the projection R2 → R onto the first axis. This is
clearly a submersion and a trivial bundle. The standard vector field ∂x on R can be lifted
to the related field ∂x +y2∂y on R2. However, the integral curves for this lifted field are not

complete as they are given by
(

t + t0,
x0

1−x0(t+t0)

)
and diverge as t approaches 1

x0
− t0. In
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particular, neither the above proportion or theorem 1.5.20 can be made to work when the
submersion isn’t proper even though the submersion is a trivial fibration.

REMARK 1.5.26. There is also a very interesting converse problem: If M is a manifold
and ∼ an equivalence relation on M when is M/∼ a manifold and M→M/∼ a submer-
sion? Clearly the equivalence classes must form a foliation and the leaves/equivalence
classes be closed subsets of M. Also their normal bundles have to be trivial as preimages
of regular values have trivial normal bundle.

The most basic and still very nontrivial case is that of a Lie group G and a subgroup
H. The equivalence classes are the cosets gH in G and the quotient space is G/H. When
H is dense in G the quotient topology is not even Hausdorff. However one can prove that
if H is closed in G , so that the equivalence classes are all closed embedded submanifolds,
then the quotient is a manifold and the quotient map a submersion.

A nasty example is R2−{0} with the equivalence relation being that two points are
equivalent if they have the same x-coordinate and lie in the same component of the cor-
responding vertical line. This means that the above general assumptions are not sufficient
as all equivalence classes are closed embedded submanifolds with trivial normal bundles.
The quotient space is the line with double origin and so is not Hausdorff!

The key to getting a Hausdorff quotient is to assume that the graph of the equivalence
relation

{(x,y) | x∼ y} ⊂M×M
is closed.

1.6. Embeddings

1.6.1. Embeddings into Euclidean Space. The goal is to show that any manifold is
a proper submanifold of Euclidean space. This requires most importantly that we can find
a way to reduce the dimension of the ambient Euclidean space into which the manifold can
be embedded.

THEOREM 1.6.1 (Whitney Embedding, Dimension Reduction). If F : Mm→Rn is an
injective immersion, then there is also an injective immersion Mm→ R2m+1. Moreover, if
one of the coordinate functions of F is proper, then we can keep this property. In particular,
when M is compact we obtain an embedding.

PROOF. For each v∈Rn−{0} consider the orthogonal projection onto the orthogonal
complement

fv (x) = x− (x|v)v

|v|2
.

The image is an (n−1)-dimensional subspace. So if we can show that fv ◦F is an injective
immersion, then the ambient dimension has been reduced by 1.

Note that fv◦F (x)= fv◦F (y) iff F (x)−F (y) is proportional to v. Similarly d ( fv ◦F)(w)=
0 iff dF (w) is proportional to v.

As long as 2m+1 < n Sard’s theorem implies that the union of the two images

H : M×M×R→ Rn

h(x,y, t) = t (F (x)−F (y))

G : T M→ Rn

G(w) = dF (w)



1.6. EMBEDDINGS 33

has dense complement. Therefore, we can select v ∈ Rn− (H (M×M×R)∪G(T M)) .
Assuming fv ◦F (x) = fv ◦F (y) , we have F (x)−F (y) = sv. If s = 0 this shows that

F (x) = F (y) and hence x = y. Otherwise s 6= 0 showing that s−1 (F (x)−F (y)) = v and
hence that v ∈ H (M×M×R) .

Assuming d ( fv ◦F)(w) = 0 we get that dF (w) = sv. If s = 0, then dF (w) = 0 and
w = 0. Otherwise dF

(
s−1w

)
= v showing that v ∈ G(T M) .

Note that the v we selected could be taken from O− (H (M×M×R)∪G(T M)) ,
where O ⊂ Rn is any open subset. This gives us a bit of extra information. While we
can’t get the ultimate map Mm → R2m+1 to target a specific (2m+1)-dimensional sub-
space of Rn, we can map it into a subspace arbitrarily close to a fixed subspace of dimen-
sion 2m+ 1. To be specific simply assume that R2m+1 ⊂ Rn consists of the first 2m+ 1
coordinates. By selecting v ∈ (−ε,ε)2m+1× (1− ε,1+ ε)n−2m−1 we see that fv changes
the first coordinates with an error that is small.

This can be used to obtain proper maps fv ◦F . When the first coordinate for F is
proper, then fv ◦F is also proper provided v is not proportional to e1. This means that we
merely have to select v ∈ {|v|< 2 | (v | e1)< ε} to obtain a proper injective submersion.

�

REMARK 1.6.2. Note also that if F starts out only being an immersion, then we can
find an immersion into R2m. This is because G(T M) ⊂ Rn has measure zero as long as
n > 2m.

LEMMA 1.6.3. If A,B ⊂ Mm are open sets that both admit embeddings into R2m+1,
then the union A∪B also admits an embedding into R2m+1.

PROOF. Select a partition of unity λA,λB : A∪B→ [0,1], i.e., suppλA ⊂ A, suppλB ⊂
B, and λA + λB = 1. Further, choose embeddings FA : A→ R2m+1 and FB : B→ R2m+1.
Note multiplying these embeddings with our bump functions we obtain well-defined maps
λAFA, λBFB : A∪B→ R2m+1. This gives us a map

F : A∪B→ R2m+1×R2m+1×R×R,
F (x) = (λA (x)FA (x) ,λB (x)FB (x) ,λA (x) ,λB (x)) ,

which we claim is an injective immersion.
If F (x) = F (y), then λA,B (x) = λA,B (y). If, e.g., λB (x)> 0 then FB (x) = FB (y). This

shows that x = y as FB is an injection.
If dF (v) = 0 for v ∈ TpM, then dλA,B (v) = 0. So if, e.g., λA (p) > 0, then by the

product rule:

d (λAFA) |p = (dλA) |pFA (p)+λA (p)dFA|p = λA (p)dFA|p
and consequently

dFA|p (v) = 0
showing that v = 0.

If, in addition, we select a proper function ρ : A∪B→ [0,∞), then we obtain a proper
injective immersion

(ρ,F) : A∪B→ R×R2m+1×R2m+1×R×R
and consequently an embedding. The dimension reduction result above then gives us a
(proper) embedding into R2m+1. �

THEOREM 1.6.4 (Whitney Embedding, Final Version). An m-dimensional manifold
M admits a proper embedding into R2m+1.
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PROOF. We only need to check the hypotheses in theorem 1.3.11. Clearly the state-
ment is invariant under diffeomorphisms and holds for Rm. Condition (2) was established
in the previous lemma. Condition (3) is almost trivial. Given embeddings Fi : Ai→R2m+1,
where Ai ⊂M are open and pairwise disjoint we can construct new embeddings Gi : Ai→(
i, i+ 1

2

)2m+1
with disjoint images. This yields an embedding G :

⋃
i Ai→ R2m+1.

This shows that any m-manifold has an embedding into R2m+1. To obtain a proper
embedding we select a proper function ρ : M → [0,∞) and use the dimension reduction
result on the proper embedding (ρ,F) : M→ R×R2m+1. �

1.6.2. Extending Embeddings.

LEMMA 1.6.5. If F : M→ N is an immersion that is an embedding when restricted to
the embedded submanifold S⊂M, then F is an embedding on a neighborhood of S.

PROOF. We only do the case where dimM = dimN. It is a bit easier and also the only
case we actually need.

By assumption F is an open mapping as it is a local diffeomorphism. Thus it suffices
to show that it is injective on a neighborhood of S. If it is not injective on any neighbor-
hood, then we can find sequences xi and yi that approach S with F (xi) = F (yi) . If both
sequences have accumulation points, then those points will lie in S and we can, by passing
to subsequences, assume that they converge to points x and y in S. Then F (x) = F (y) so
x = y and xi = yi for large i as they lie in a neighborhood of x = y where F is injective.
If one or both of these sequences have no accumulation points, then it is possible to find
a neighborhood of S that doesn’t contain the sequence. This shows that we don’t have to
worry about the sequence. �

LEMMA 1.6.6. If M ⊂ Rn is an embedded submanifold, then some neighborhood of
the normal bundle of M in Rn is diffeomorphic to a neighborhood of M in Rn.

PROOF. The normal bundle is defined as

ν (M ⊂ Rn) =
{
(v, p) ∈ TpRn×M | v⊥ TpM

}
.

There is a natural map

ν (M ⊂ Rn) → Rn,

(v, p) 7→ v+ p.

One checks easily that this is a local diffeomorphism on some neighborhood of the zero
section M and that it is clearly an embedding when restricted to the zero section. The
previous lemma then shows that it is a diffeomorphism on a neighborhood of the zero
section. �

THEOREM 1.6.7. If M ⊂ N is an embedded submanifold, then some neighborhood of
the normal bundle of M in N is diffeomorphic to a neighborhood of M in N.

PROOF. Any subbundle of T N|M that is transverse to T M is a normal bundle. It is easy
to see that all such bundles are isomorphic. One specific choice comes from embedding
N ⊂ Rn and then defining

ν (M ⊂ N) =
{
(v, p) ∈ TpN×M | v⊥ TpM

}
.

We don’t immediately get a map ν (M ⊂ N)→ N. What we do, is to select a neighborhood
N ⊂U ⊂ Rn as in the previous lemma. The projection π : U → N that takes w+q ∈U to
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q ∈ N is a submersion deformation retraction. We then select a neighborhood M ⊂ V ⊂
ν (M ⊂ N) such that v+ p ∈U if (v, p) ∈V. Now we get a map

V → N,

(v, p) 7→ π (v+ p) .

that is a local diffeomorphism near the zero section and an embedding on the zero section.
�

1.7. Lie Groups

1.7.1. General Properties. A Lie group is a smooth manifold with a group structure
that is also smooth, i.e., We have a manifold G with an associative multiplication G×G→
G that is smooth and inverse operation G→G that is smooth. A Lie group homomorphism
is a homomorphism between Lie groups that is also smooth.

A Lie group is homogeneous in a canonical way as left translation by group elements:
Lg (x) = g · x maps the identity element e to g. Conseqeuntly, Lgh−1 maps h to g. Since
left translation is a diffeomorphim it can be used to calculate the differential of Lie group
homomorphisms if we know their differentials at the identity. Let φ : G1 → G2 be a Lie
group homomorphism, then the homorphism property implies that

φ ◦Lg = Lφ(g) ◦φ

and by the chain rule we obtain

Dφ ◦DLg = DLφ(g) ◦Dφ

showing that
Dφ |g = DLφ(g) ◦Dφ |e ◦DLg−1

In particular, φ will be an immersion (or submersion) precisely when Dφ |e is injective (or
surjective.)

THEOREM 1.7.1. A surjective Lie group homomorphism with a differential that is
bijective is a covering map. Moreover, when G is connected the kernel is central and in
particular Abelian.

PROOF. Consider a surjective Lie group homomorphism φ : G→H whose differential
is bijective. The kernel kerφ is by definition the pre-image of the identity and by the
regular value theorem a closed 0-dimensional submanifold of G. Thus we can select a
neighborhood U around e ∈ G that has compact closure and Ū ∩ kerφ = {e} and that is
mapped diffeomorphically to φ (U). It follows from continuity of the group multiplication
and that inversion is a diffeormorphism that there is neighborhood around e ∈ G such
that V 2 ⊂U and V−1 = V i.e., if a,b ∈ V then a · b ∈U and a−1 ∈ V . We claim that if
g,h∈ kerφ and g ·V ∩h ·V 6= /0, then g = h. In fact, if g ·v1 = h ·v2, then g−1 ·h = v2 ·v−1

1 ∈
U ∩ kerφ , which implies that g−1 · h = e. In this way we have found disjoint open sets
g ·V for g ∈ kerφ that are mapped diffeomorphically to φ (V ). We claim that additionally
φ−1 (φ (V )) =

⋃
g∈kerφ g ·V . To see this let φ (x) = φ (y) with y∈V . Then g = xy−1 ∈ kerφ

and x ∈ gV .
This shows that a neighborhood of e ∈H is evenly covered. Using left translations we

can then show that all points in H are evenly covered.
Finally assume that G is connected. For a fixed g∈G consider conjugation x→ gxg−1.

We say that x is central if it commutes with all elements in G and this comes down to
checking that x is fixed by all conjugations. Now the kernel is already a normal subgroup
of G and thus preserved by all conjugations. Consider a path g(t) from e ∈ G to g ∈ G,
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then for fixed x we obtain a path g(t) · x · (g(t))−1. When x ∈ kerφ this path is necessarily
in kerφ and starts at x. However, kerφ is discrete and so the path must be constant. This
shows that any x ∈ kerφ commutes with all elements in G. �

There is also a converse to this result

THEOREM 1.7.2. Let f : Ḡ→ G be a covering map, with Ḡ connected. If G is a Lie
group, then Ḡ has a Lie group structure that makes f a homomorphism. Moreover, the
fundamental group of a connected Lie group is Abelian.

PROOF. The most important and simplest case is when Ḡ is simply connected. In
that case we can simply use the unique lifting property to lift the map Ḡ× Ḡ→ G to a
product structure on Ḡ. Simmilarly we obtain the inverse structure. We then have to use
the uniquness of lifts to establish associativity as we would otherwise obtain to different
lifts for multiplying three elements Ḡ× Ḡ× Ḡ→ G.

The general case now uses that the kernel of f becomes Abelian. This allows us after
having developed the theory of covering spaces to conclude that any connected cover of G
is a Galois cover, i.e., if G̃→G is the universal cover, then there is a covering map G̃→ Ḡ
such that G̃→ G is factored via G̃→ Ḡ→ G. The group structure on Ḡ then comes from
lifting Ḡ× Ḡ→ G to G̃ and then mapping it down to Ḡ.

Finally, covering space theory shows that the fundamental group is also a group of
deck transformations on the universal cover. Specifically the collection of all lifts of the
projection G̃→G. Composition and inverses of these lifts are simply new lifts and so they
form a group. This is the fundamental group. However, left translation by elements in the
kernel of G̃→ G are lifts of the projection G̃→ G. The group structure on the kernel is
preserved as composition of left translations so the deck transformations form an Abelian
group. �

1.7.2. Matrix Groups. The most obvious examples of Lie groups are matrix groups
starting with the general linear groups

Gl (n,R)⊂Matn×n (R) ,

Gl (n,C)⊂Matn×n (C) .
These are open subsets of the vector space of n×n matrices and and the group operations
are explicitly given in terms of multiplication and division of numbers. The determinant
map det : Matn×n (F)→ F is multiplicative and smooth, and the general linear group is in
fact the open subset of matrices with non-zero determinant.

The derivative of the determinant is important to calculate. The determinant function
is multi-linear in the columns of the matrix. So if we denote the identity matrix by I, then
it follows that

det(I + tX) = 1+ t (trX)+o(t)
and for A ∈ Gl that

det(A+ tX) = detA
(
1+ t

(
tr
(
A−1X

))
+o(t)

)
.

In particular, all non-zero values in F−{0} are regular values of det. This gives us the
special linear groups Sl (n,F) of matrices with det = 1. The tangent space TISl is given as
the kernel of the differential and is thus the space of traceless matrices:

TISl = {X ∈Matn×n | trX = 0} .
Using that the operation of taking adjoints A→ A∗ is smooth we obtain a smooth map

F : Matn×n (F)→ Symn (F) defined by A→ AA∗ where Symn (F) denotes the real vector
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space of self-adjoint operators (symmetric or Hermitian depending on the field.) Note that
the image of this map consists of the seft-adjoint matrices that are nonnegative definite,
i.e., have nonnegative eigenvalues. The differential of this map at the identity can be found
using

(I + tX)(I + tX∗) = I + t (X +X∗)+o(t)

to be
X +X∗.

This is clearly surjective since it is simply multiplication by 2 when restricted to Symn (F).
More generally the differential at an invertible A ∈ Gl is given by

XA∗+AX∗

which is also surjective as it is a bijection when retricted to the real subspace
{

X
(
A−1

)∗ | X ∈ Symn (F)
}

.
Thus we obtain a submersion to the space of positive definite self-adjoint matrices:

F : Gl(n,F)→ Sym+
n (F) .

Note that Sym+
n (F) ⊂ Symn (F) is an open convex subset of a real vector space and dif-

feomorphic to a Euclidean space. Finally we observe that this submersion is also proper as
AkA∗k → ∞ when Ak→ ∞. In particular, we can use Ehresmann’s theorem to conclude that
Gl(n,F) is diffeomorphic to Sym+

n (F)×F−1 (I). The fiber over the identity is identifield
with the orthogonal group:

O(n) = {O ∈ Gl (n,R) | OO∗ = I}
or the unitary group

U (n) = {U ∈ Gl (n,C) |UU∗ = I}
and are both compact Lie groups. We note that left translates LAF−1 (I) = A · F−1 (I)
are diffeomorphic to each other and A ·F−1 (I) ⊂ F−1 (A). Thus fibers are precisely the
lefttranslates of the orthogonal or unitary groups. This is the content of the polar decom-
position for invertible matrices.

The tangent spaces to the orthogonal and unitary groups are given as the kernel of the
differential of the map A→ AA∗ and are thus given by the skew-adjoint matrices

TIO(n) = {X ∈Matn×n (R) | X∗ =−X} ,

TIU (n) = {X ∈Matn×n (C) | X∗ =−X} .
These two families of groups can be intersected with the special linear groups to obtain

the special orthogonal groups SO(n) = O(n)∩ Sl (n,R) and the special unitary groups
SU (n) = U (n)∩ Sl (n,C). It is not immediately clear that these new groups have well-
defined smooth structures as the intersections are not transverse. However, it follows from
the canonical forms of orthogonal matrices that SO(n) is the connected component of O(n)
that contains I. The other component consists of the orthogonal matrices with det = −1.
For the unitary group we obtain a Lie group homomorphism det : U (n)→ S1 ⊂ C where
all values are regular values.

The tangent spaces are the traceless skew-adjoint matrices. In the real case skew-
adjoint matrices are skew-symmeteric and thus automatically traceless, this conforms with
SO(n) ⊂ O(n) being open. In the complex case, the skew-adjoint matrices have purely
imaginary entries on the diagonal so the additional assumption that they be traceless re-
duces the real dimension by 1, this conforms with 1 being a regular value of det : U (n)→
S1.
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The matrix exponential map exp : Matn×n (F)→ Gl (n,F) is defined using the usual
power series expansion. The relationship

detexp(A) = exp(trA)

shows that it image is in the general linear group and in case F = R that it maps into the
matrices with positive determinant.

It also commutes with the operation of taking adjoints expA∗ = (expA)∗. This also
shows that we obtain the following restrictions

exp : TIO(n) → SO(n) ,

exp : TIU (n) → U (n) ,

exp : TISU (n) → SU (n) ,

as well as
exp : Symn (F) = TISym+

n (F)→ Sym+
n (F) .

These maps are all surjective. In all cases this uses that a matrix in the target can be
conjugated to a nice canonical form: O∗CO where C is diagonal in the last three cases
and has a block diagonal form in the first case that consists of 2×2 rotations and diagonal
entries that are ±1. In the unitary case the diagonal entries are of the form eiθ . Thus
C = exp(iD), where D is a real diagonal matrix, and O∗CO = O∗ exp(iD)O. Similarly,
in the last case C is a diagonal matric with positive entries and C = exp(D) for a unique
diagonal matrix D with real entries. The first case is the most intricate. First observe that
rotations do come from skew-symmetric matrices:[

cosθ −sinθ

sinθ cosθ

]
= exp

[
0 −θ

θ 0

]
.

This also takes care of pairs of eigenvalues of the same sign as they correspond to rotations
where θ = 0 or π . Since elements in SO(n) have determinant 1 we can always ensure
that the real eigenvalues get paired up except when n is odd, in which case the remaining
eigenvalues is 1.

The polar decomposition diffeomorphism Gl (n,C) ∼= Sym+
n (R)×U (n) now tells us

that Gl (n,C) is connected. Similarly, Gl+ (n,R) ' Sym+
n (R)× SO(n) is connected. As

the elements of O(n) with determinant −1 are diffeomorphic to SO(n) via multiplication
by any reflection in a coordinate hyperplane it follows that Gl (n,R) has presicely two
connected components.

Finally, the exponential map also satisfies the law of exponents exp(A+B)= expAexpB
when A,B commute.

1.7.3. Low Dimensional Groups and Spheres. There are several interesting con-
nections between low dimensional Lie groups and low dimensional spheres.

First we note that rotations in the plane are also complex multiplication by numbers
on the unit circleS1 ⊂ C so:

SO(2) =U (1) = S1.

The 3-sphere can be thought of as the unit sphere S3⊂C2 and thus S3 =
{
(z,w) ∈ C2 | |z|2 + |w|2

}
.

However

SU (2) =U (2)∩Sl (2,C) =
{[

z −w̄
w z̄

]
∈U (2) | zz̄+ww̄ = 1

}
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so we have:
SU (2) = S3.

Next we note that

SO(3) =
{[

e1 e2 e3
]
| ei · e j = δi j,det

[
e1 e2 e3

]
= 1
}

=
{[

e1 e2 e1× e2
]
| e1 · e2 = 0, |e1|= |e2|= 1

}
= US2

where US2 = {(p,v) | |p|= |v|= 1, p · v = 0} is the set of unit tangent vectors.
There is a another important identification for this space

SO(3) = RP3.

This comes from exhibiting a homomorphism SU (2)→ SO(3) whose kernel is {±I}. This
shows that via the identification SU (2) = S3 the preimages are precisely antipodal points.
The specifics of the construction take a bit of work and will also lead us to quaternions.
First make the identification

C2 =

{[
z −w̄
w z̄

]
| (z,w) ∈ C2

}
.

On the right hand side we obtain a collection of matrices that is closed under addition and
multiplication by real scalars. Since C is a commutative algebra the right hand side is also
closed under multiplication. Thus it forms an algebra over R. It is also a division algebra
as non-zero elements have det = |z|2 + |w|2 > 0 and thus have inverses. This is the algebra
of quaternions also denoted H. Any A ∈ SU (2) acts by conjugation on this algebra by

A ·X = AXA∗.

In fact X 7→ AXA∗ is an orthogonal transformation when we use the natural real inner
product structure where

1 =

[
1 0
0 1

]
, i =

[
i 0
0 −i

]
, j =

[
0 1
1 0

]
, k =

[
0 −i
−i 0

]
form an orthonormal basis. Note that these matrices each have Euclidean norm

√
2. So the

inner product is scaled to make them have norm 1. The last matrix is defined so that we
obtain

i j = k =− ji,

jk = i =−k j,

ki = j =−ik,

i2 = j2 = k2 =−1.

In fact conjugation fixes 1 so it also fixes the orthogonal complement spanned by i, j,k.
Thus we obtain a homomorphism SU (2)→ SO(3) by letting A∈ SU (2) act by conjuagtion
on spanR {i, j,k}. The kernel of this map consists of matrices A ∈ SU (2) that commute
with all elements in H since AX = XA. This shows that such A must be homotheties
and consequently the only possibilities are ±I = ±1. It is also not hard to check that
SU (2)→ SO(3) is a submersion by calculating the differential at the identity. Thus the
image is both open and closed and all of SO(3). This shows that SO(3) = RP3.

From all of this we can derive the “Hairy Ball Theorem”:

THEOREM 1.7.3. Every vector field on S2 vanishes somewhere.
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PROOF. The proof is by contradiction. If we have a non-zero vector field, then we also
have a unit vector field p 7→ (p,v(p)) ∈US2. This gives us a diffeomorphism SO(3)→
S2×S1 ⊂ S2×R2 by mapping each [p,e2, p× e2] ∈ SO(3) to

(p,e2 · v(p) ,(p× e2) · v(p)) .

This contradicts that SO(3) = RP3 as S2×S1 has a non-compact simply connected cover
S2×R. �

1.8. Projective Space

Given a vector space V we define P(V ) as the space of 1-dimensional subspaces or
lines through the origin. It is called the projective space of V. In the special case were
V = Fn+1 we use the notation P

(
Fn+1

)
= FPn = Pn. This is a bit confusing in terms of

notation. The point is that Pn is an n-dimensional space as we shall see below.
One can similarly develop a theory of the space of subspaces of any given dimension.

The space of k-dimensional subspaces is denoted Gk (V ) and is called the Grassmannian.

1.8.1. Basic Geometry of Projective Spaces. The space of operators or endomor-
phisms on V is denoted End(V ) and the invertible operators or automorphisms by Aut(V ) .
When V =Fn these are represented by matrices End(Fn)=Mat(F) and Aut(Fn)=Gln (F) .
Since invertible operators map lines to lines we see that aut(V ) acts in a natural way on
P(V ) . In fact this action is homogeneous, i.e., if we have p,q∈P(V ), then there is an oper-
ator A∈ aut(V ) such that A(p)= q. Moreover, as any two bases in V can be mapped to each
other by invertible operators it follows that any collection of k independent lines p1, ..., pk,
i.e., p1 + · · ·+ pk = p1⊕·· ·⊕ pk can be mapped to any collection of k independent lines
q1, ...,qk. This means that the action of Aut(V ) on P(V ) is k-point homogeneous for all
k ≤ dim(V ) . Note that this action is not effective, i.e., some transformations act trivially
on P(V ) . Specifically, the maps that act trivially are precisely the homotheties A = λ1V .

Since an endomorphism might have a kernel it is not true that it maps lines to lines,
however, if we have A ∈ end(V ) , then we do get a map A : P(V )− P(kerA)→ P(V )
defined on lines that are not in the kernel of A.

Let us now assume that V is an inner product space with an inner product 〈v,w〉 that
can be real or complex. The key observation in relation to subspaces is that they are
completely characterized by the orthogonal projections onto the subspaces. Thus the space
of k-dimensional subspaces is the same as the space of orthogonal projections of rank k.
It is convenient to know that an endomorphism E ∈ End(V ) is an orthogonal projection
iff it is a projection, E2 = E that is self-adjoint, E∗ = E. In the case of a one dimensional
subspace p ∈ P(V ) spanned by a unit vector v ∈V, the orthogonal projection is given by

projp (x) = 〈x,v〉v.

Clearly we get the same formula for all unit vectors in p. Note that the formula is quadratic
in v. This yields a map P(V )→ End(V ) . This gives P(V ) a natural topology and even a
metric. One can also easily see that P(V ) is compact.

The angle between lines in V gives a natural metric on P(V ) . Automorphisms clearly
do not preserve angles between lines and so are not necessarily isometries. However if we
restrict attention to unitary or orthogonal transformations U ⊂Aut(V ) , then we know that
they preserve inner products of vectors. Therefore, they must also preserve angles between
lines. Thus U acts by isometries on P(V ) . This action is again homogeneous so P(V )
looks the same everywhere.
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1.8.2. Coordinates in more Detail. We are now ready to coordinatize P(V ) . Select
p ∈ P(V ) and consider the set of lines P(V )−P

(
p⊥
)

that are not perpendicular to p.
This is clearly an open set in P(V ) and we claim that there is a coordinate map Gp :
Hom

(
p, p⊥

)
→ P(V )−P

(
p⊥
)
. To construct this map decompose V ' p⊕ p⊥ and note

that any line not in p⊥ is a graph over p given by a unique homomorphism in
(

p, p⊥
)
. The

next thing to check is that Gp is a homeomorphism onto its image and is differentiable as
a map into End(V ) . Neither fact is hard to verify. Finally observe that Hom

(
p, p⊥

)
is a

vector space of dimension dimV −1. In this way P(V ) becomes a manifold of dimension
dimV −1.

In case we are considering Pn we can construct a more explicit coordinate map. First
we introduce homogenous coordinates: select z =

(
z0, ...,zn

)
∈ Fn+1−{0} denote the line

by
[
z0 : · · · : zn

]
∈ Pn, thus

[
z0 : · · · : zn

]
=
[
w0 : · · · : wn

]
iff and only if z and w are pro-

portional and hence generate the same line. If we let p = [1 : 0 : · · · : 0], then Fn → Pn is
simply Gp

(
z1, ...,zn

)
=
[
1 : z1 : · · · : zn

]
.

Keeping in mind that p is the only line perpendicular to all lines in p⊥ we see that
Pn− p can be represented by

Pn− p =
{[

z : z1 : · · · : zn] | (z1, ...,zn) ∈ Fn−{0} and z ∈ F
}
.

Here the subset

P
(

p⊥
)
=
{[

0 : z1 : · · · : zn] | (z1, ...,zn) ∈ Fn−{0}
}

can be identified with Pn−1. Using the projection

R0 =


0 0 · · · 0
0 1 0
...

. . .
...

0 0 · · · 1

 ,
ker(R0) = p

we get a retract R0 : Pn− p→ Pn−1, whose fibers are diffeomorphic to F. Using the trans-
formations

Rt =


t 0 · · · 0
0 1 0
...

. . .
...

0 0 · · · 1


we see that R0 is in fact a deformation retraction.

Finally we check the projective spaces in low dimensions. When dimV = 1, P(V ) is
just a point and that point is in fact V it self. Thus P(V ) = {V} . When dimV = 2, we note
that for each p∈ P(V ) the orthogonal complement p⊥ is again a one dimensional subspace
and therefore an element of P(V ) . This gives us an involution p→ p⊥ on P(V ) just like
the antipodal map on the sphere. In fact

P(V ) = (P(V )−{p})∪
(
P(V )−

{
p⊥
})

,

P(V )−{p} ' F' P(V )−
{

p⊥
}
,

F−{0} ' (P(V )−{p})∩
(
P(V )−

{
p⊥
})

.
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Thus P(V ) is simply a one point compactification of F. In particular, we have that RP1 '
S1 and CP1 ' S2, (you need to convince your self that this is a diffeomorphism.) Since
the geometry doesn’t allow for distances larger than π

2 it is natural to suppose that these
projective “lines” are spheres of radius 1

2 in F2. This is in fact true.

1.8.3. Bundles. Define the tautological or canonical line bundle

τ (Pn) =
{
(p,v) ∈ Pn×Fn+1 | v ∈ p

}
.

This is a natural subbundle of the trivial vector bundle Pn×Fn+1 and therefore has a natural
orthogonal complement

τ
⊥ (Pn)'

{
(p,v) ∈ Pn×Fn+1 | p⊥ v

}
Note that in the complex case we are using Hermitian orthogonality. These are related to
the tangent bundle in an interesting fashion

TPn ' Hom
(

τ (Pn) ,τ⊥ (Pn)
)

This identity comes from our coordinatization around a point p∈ Pn. We should check that
these bundle are locally trivial, i.e., fibrations over Pn. This is quite easy, for each p ∈ Pn

we use the coordinate neighborhood around p and show that the bundles are trivial over
these neighborhoods.

Note that the fibrations τ (Pn)→ Pn and Fn+1−{0} → Pn are suspiciously similar.
The latter has fibers p−{0} where the former has p. This means that the latter fibration
can be identified with the nonzero vectors in τ (Pn) . This means that the missing 0 in
Fn+1−{0} is replaced by the zero section in τ (Pn) in order to create a larger bundle. This
process is called a blow up of the origin in Fn+1. Essentially we have a map τ (Pn)→ Fn+1

that maps the zero section to 0 and is a bijection outside that. We can use Fn+1−{0}→ Pn

to create a new fibration by restricting it to the unit sphere S⊂ Fn+1−{0} .
The conjugate to the tautological bundle can also be seen internally in Pn+1 as the map

Pn+1−{p}→ Pn

When p = [1 : 0 : · · · : 0] this fibration was given by[
z : z0 : · · · : zn]→ [z0 : · · · : zn] .

This looks like a vector bundle if we use fiberwise addition and scalar multiplication on z.
The equivalence is obtained by mapping

Pn+1−{[1 : 0 : · · · : 0]}→ τ (Pn) ,

[
z : z0 : · · · : zn]→([z0 : · · · : zn] , z̄ (z0, ...,zn

)
|(z0, ...,zn)|2

)
It is necessary to conjugate z to get a well-defined map. This is why the identification
is only conjugate linear. The conjugate to the tautological bundle can also be identified
with the dual bundle hom(τ (Pn) ,C) via the natural inner product structure coming from
τ (Pn)⊂Pn×Fn+1. The relevant linear functional corresponding to

[
z : z0 : · · · : zn

]
is given

by

v→

〈
v, z̄

(
z0, ...,zn

)
|(z0, ...,zn)|2

〉



1.8. PROJECTIVE SPACE 43

This functional appears to be defined on all of Fn+1, but as it vanishes on the orthogonal
complement to

(
z0, ...,zn

)
we only need to consider the restriction to span

{(
z0, ...,zn

)}
=[

z0 : · · · : zn
]
.

Finally we prove that these bundles are not trivial. In fact, we show that there can’t be
any smooth sections F : Pn → S ⊂ Fn+1−{0} such that F (p) ∈ p for all p, i.e., it is not
possible to find a smooth (or continuous) choice of basis for all 1-dimensional subspaces.
Should such a map exist it would evidently be a lift of the identity on Pn to a map Pn→ S. In
case F=R, the map S→RPn is a nontrivial two fold covering map. So it is not possible to
find RPn→ S as a lift of the identity. In case F=C the unit sphere S has larger dimension
than CPn so Sard’s theorem tells us that CPn→ S isn’t onto. But then it is homotopic to a
constant, thus showing that the identity CPn→CPn is homotopic to the constant map. We
shall see below that this is not possible.

In effect, we proved that a fibration of a sphere S→ B is nontrivial if either π1 (B) 6=
{1} or dimB < dimS.

1.8.4. Lefschetz Numbers. Finally we are going to study Lefschetz numbers for lin-
ear maps on projective spaces. The first general observation is that a map A ∈ Aut(V )
has a fixed point p ∈ P(V ) iff p is an invariant one dimensional subspace for A. In other
words fixed points for A on P(V ) correspond to eigenvectors, but without information
about eigenvalues.

We start with the complex case as it is a bit simpler. The claim is that any A ∈Aut(V )
with distinct eigenvalues is a Lefschetz map on P(V ) with L(A) = dimV. Since such maps
are diagonalizable we can restrict attention to V = Cn+1 and the diagonal matrix

A =

 λ0 0
. . .

0 λn


By symmetry we need only study the fixed point p = [1 : 0 : · · · : 0] . Note that the eigen-
values are assumed to be distinct and none of then vanish. To check the action of A on a
neighborhood of p we use the coordinates introduced above

[
1 : z1 : · · · : zn

]
. We see that

A
[
1 : z1 : · · · : zn] =

[
λ01 : λ1z1 : · · · : λnzn]

=

[
1 :

λ1

λ0
z1 : · · · : λn

λ0
zn
]
.

This is already (complex) linear in these coordinates so the differential at p must be repre-
sented by the complex n×n matrix

DA|p =


λ1
λ0

0
. . .

0 λn
λ0

 .
As the eigenvalues are all distinct 1 is not an eigenvalue of this matrix, showing that A really
is a Lefschetz map. Next we need to check the differential of det(I−DA|p) . Note that in
[Guillemin-Pollack] the authors use the sign of det(DA|p− I) , but this is not consistent
with Lefschetz’ formula for the Lefschetz number as we shall see below. Since Gln (C)
is connected it must lie in Gl+2n (R) as a real matrix, i.e., complex matrices always have
positive determinant when viewed as real matrices. Since DA|p is complex it must follow
that det(I−DA|p)> 0. So all local Lefschetz numbers are 1. This shows that L(A) = n+1.
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Since Gln+1 (C) is connected any linear map is homotopic to a linear Lefschetz map and
must therefore also have Lefschetz number n+1.

In particular, we have shown that all invertible complex linear maps must have eigen-
vectors. Note that this fact is obvious for maps that are not invertible. This could be one
of the most convoluted ways of proving the Fundamental Theorem of Algebra. We used
the fact that Gln (C) is connected. This in turn follows from the polar decomposition of
matrices, which in turn follows from the Spectral Theorem. Finally we observe that the
Spectral Theorem can be proven without invoking the Fundamental Theorem of Algebra.

The alternate observation that the above Lefschetz maps are dense in Gln (C) is also
quite useful in many situations.

The real projective spaces can be analyzed in a similar way but we need to consider
the parity of the dimension as well as the sign of the determinant of the linear map.

For A ∈ GL+
2n+2 (R) we might not have any eigenvectors whatsoever as A could be

n+ 1 rotations. Since GL+
2n+2 (R) is connected this means that L(A) = 0 on RP2n+1 if

A ∈ GL+
2n+2 (R) . When A ∈ GL−2n+2 (R) it must have at least two eigenvalues of opposite

sign. Since GL−2n+2 (R) is connected we just need to check what happens for a specific

A =



1 0
0 −1

0 −1
1 0

. . .
0 −1
1 0


=

 1 0 0
0 −1 0
0 0 R


We have two fixed points

p = [1 : 0 : · · · : 0] ,
q = [0 : 1 : · · · : 0] .

For p we can quickly guess that

DAp =

[
−1 0
0 R

]
.

This matrix doesn’t have 1 as an eigenvalue and

det
(

I−
[
−1 0
0 R

])
= det

[
2 0
0 I−R

]

= det



2
1 1
−1 1

. . .
1 1
−1 1


= 2n+1.
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So we see that the determinant is positive. For q we use the coordinates
[
z0 : 1 : z2 : · · · : zn

]
and easily see that the differential is [

−1 0
0 −R

]
which also doesn’t have 1 as an eigenvalue and again gives us positive determinant for
I−DAq. This shows that L(A) = 2 if A ∈ GL−2n+2 (R) .

In case A ∈ Gl2n+1 (R) it is only possible to compute the Lefschetz number mod 2 as
RP2n isn’t orientable. We can select

A± =

[
±1 0
0 R

]
∈ GL±2n+1 (R)

with R as above. In either case we have only one fixed point and it is a Lefschetz fixed
point since DA±p =±R. Thus L(A±) = 1 and all A ∈ G(2n+1,R) have L(A) = 1.



CHAPTER 2

Basic Tensor Analysis

2.1. Lie Derivatives and Its Uses

Let X be a vector field and Φt = Φt
X the corresponding locally defined flow on a

smooth manifold M. Thus Φt (p) is defined for small t and the curve t 7→ Φt (p) is the
integral curve for X that goes through p at t = 0. The Lie derivative of a tensor in the
direction of X is defined as the first order term in a suitable Taylor expansion of the tensor
when it is moved by the flow of X .

2.1.1. Definitions and Properties. Let us start with a function f : M→ R. Then

f
(
Φ

t (p)
)
= f (p)+ t (LX f )(p)+o(t) ,

where the Lie derivative LX f is just the directional derivative DX f = d f (X) . We can also
write this as

f ◦Φ
t = f + tLX f +o(t) ,

LX f = DX f = d f (X) .

When we have a vector field Y things get a little more complicated. We wish to
consider Y |Φt , but this can’t be directly compared to Y as the vectors live in different
tangent spaces. Thus we look at the curve t → DΦ−t

(
Y |Φt (p)

)
that lies in TpM. We can

expand for t near 0 to get

DΦ
−t (Y |Φt (p)

)
= Y |p + t (LXY ) |p +o(t)

for some vector (LXY ) |p ∈ TpM. If we compare this with proposition 1.5.17, then we see
that LXY measures how far Y is from being Φt related to itself for small t. This is made
more precise in the next result.

PROPOSITION 2.1.1. Consider two vector fields X ,Y on M. The following are equiv-
alent:

(1) Φt
X ◦Φs

Y = Φs
Y ◦Φt

X ,
(2) DΦt

X (Y ) = Y ◦Φt
X , i.e., Y is Φt

X -related to itself,
(3) LXY = 0 on M.

PROOF. The fact that (1) and (2) are equivalent follows from proposition 1.5.17. The
fact that (2) implies (3) follows from

LXY = lim
t→0

Y |Φt
X
−DΦt

X (Y )

t
.

46
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Conversely, consider the curve c(t) = DΦ
−t
X

(
Y |Φt

X (p)

)
∈ TpM. Its velocity at t0 is calcu-

lated by considering the difference:

DΦ
−t
X

(
Y |Φt

X (p)

)
−DΦ

−t0
X

(
Y |

Φ
t0
X (p)

)
= DΦ

−t0
X

(
DΦ

−(t−t0)
(

Y |
Φ

t−t0
X (Φ

t0
X (p))

))
−DΦ

−t0
X

(
Y |

Φ
t0
X (p)

)
= DΦ

−t0
X

(
DΦ

−(t−t0)
(

Y |
Φ

t−t0
X (Φ

t0
X (p))

)
−Y |

Φ
t0
X (p)

)
= DΦ

−t0
X

(
(t− t0)LXY |

Φ
t0
X (p)+o(t− t0)

)
= o(t− t0) .

Showing that the curve is constant and consequently that (2) holds provided the Lie bracket
vanishes. �

This Lie derivative of a vector field is in fact the Lie bracket.

PROPOSITION 2.1.2. For vector fields X ,Y on M we have

LXY = [X ,Y ] .

PROOF. We see that the Lie derivative satisfies

DΦ
−t (Y |Φt ) = Y + tLXY +o(t)

or equivalently
Y |Φt = DΦ

t (Y )+ tDΦ
t (LXY )+o(t) .

It is therefore natural to consider the directional derivative of a function f in the direction
of Y |Φt −DΦt (Y ).

D(Y |Φt−DΦt (Y )) f = DY |
Φt f −DDΦt (Y ) f

= (DY f )◦Φ
t −DY

(
f ◦Φ

t)
= DY f + tDX DY f +o(t)

−DY ( f + tDX f +o(t))

= t (DX DY f −DY DX f )+o(t)

= tD[X ,Y ] f +o(t) .

This shows that

LXY = lim
t→0

Y |Φt −DΦt (Y )
t

= [X ,Y ] .

�

We are now ready to define the Lie derivative of a (0, p)-tensor T and also give an
algebraic formula for this derivative. We define(

Φ
t)∗T = T + t (LX T )+o(t)

or more precisely((
Φ

t)∗T
)
(Y1, ...,Yp) = T

(
DΦ

t (Y1) , ...,DΦ
t (Yp)

)
= T (Y1, ...,Yp)+ t (LX T )(Y1, ...,Yp)+o(t) .

PROPOSITION 2.1.3. If X is a vector field and T a (0, p)-tensor on M, then

(LX T )(Y1, ...,Yp) = DX (T (Y1, ...,Yp))−
p

∑
i=1

T (Y1, ...,LXYi, ...,Yp)
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PROOF. We restrict attention to the case where p = 1. The general case is similar but
requires more notation. Using that

Y |Φt = DΦ
t (Y )+ tDΦ

t (LXY )+o(t)

we get ((
Φ

t)∗T
)
(Y ) = T

(
DΦ

t (Y )
)

= T
(
Y |Φt − tDΦ

t (LXY )
)
+o(t)

= T (Y )◦Φ
t − tT

(
DΦ

t (LXY )
)
+o(t)

= T (Y )+ tDX (T (Y ))− tT
(
DΦ

t (LXY )
)
+o(t) .

Thus

(LX T )(Y ) = lim
t→0

(
(Φt)∗T

)
(Y )−T (Y )
t

= lim
t→0

(
DX (T (Y ))−T

(
DΦ

t (LXY )
))

= DX (T (Y ))−T (LXY ) .

�

Finally we have that Lie derivatives satisfy all possible product rules. From the above
propositions this is already obvious when multiplying functions with vector fields or (0, p)-
tensors. However, it is less clear when multiplying tensors.

PROPOSITION 2.1.4. Let T1 and T2 be (0, pi)-tensors, then

LX (T1 ·T2) = (LX T1) ·T2 +T1 · (LX T2) .

PROOF. Recall that for 1-forms and more general (0, p)-tensors we define the product
as

T1 ·T2 (X1, ...,Xp1 ,Y1, ...,Yp2) = T1 (X1, ...,Xp1) ·T2 (Y1, ...,Yp2) .

The proposition is then a simple consequence of the previous proposition and the product
rule for derivatives of functions. �

PROPOSITION 2.1.5. Let T be a (0, p)-tensor and f : M→ R a function, then

L f X T (Y1, ...,Yp) = f LX T (Y1, ...,Yp)+d f (Yi)
p

∑
i=1

T (Y1, ...,X , ...,Yp) .

PROOF. We have that

L f X T (Y1, ...,Yp) = D f X (T (Y1, ...,Yp))−
p

∑
i=1

T
(
Y1, ...,L f XYi, ...,Yp

)
= f DX (T (Y1, ...,Yp))−

p

∑
i=1

T (Y1, ..., [ f X ,Yi] , ...,Yp)

= f DX (T (Y1, ...,Yp))− f
p

∑
i=1

T (Y1, ..., [X ,Yi] , ...,Yp)

+d f (Yi)
p

∑
i=1

T (Y1, ...,X , ...,Yp)

�
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The case where X |p = 0 is of special interest when computing Lie derivatives. We
note that Φt (p) = p for all t. Thus DΦt : TpM→ TpM and

LXY |p = lim
t→0

DΦ−t (Y |p)−Y |p
t

=
d
dt

(
DΦ

−t) |t=0 (Y |p) .

This shows that LX = d
dt (DΦ−t) |t=0 when X |p = 0. From this we see that if θ is a 1-form,

then LX θ =−θ ◦LX at points p where X |p = 0.
Before moving on to some applications of Lie derivatives we introduce the concept of

interior product, it is simply evaluation of a vector field in the first argument of a tensor:

iX T (X1, ...,Xk) = T (X ,X1, ...,Xk)

We list 4 general properties of Lie derivatives.

L[X ,Y ] = LX LY −LY LX ,

LX ( f T ) = LX ( f )T + f LX T,

LX [Y,Z] = [LXY,Z]+ [Y,LX Z] ,

LX (iY T ) = iLXY T + iY (LX T ) .

2.1.2. Lie Groups. Lie derivatives also come in handy when working with Lie groups.
For a Lie group G we have the inner automorphism Adh : x→ hxh−1and its differential at
x = e denoted by the same letters

Adh : g→ g.

LEMMA 2.1.6. The differential of h→ Adh is given by U → adU (X) = [U,X ]

PROOF. If we write Adh (x) = Rh−1Lh (x), then its differential at x = e is given by
Adh = DRh−1DLh. Now let Φt be the flow for U. Then Φt (g) = gΦt (e) = Lg (Φ

t (e)) as
both curves go through g at t = 0 and have U as tangent everywhere since U is a left-
invariant vector field. This also shows that DΦt = DRΦt (e). Thus

adU (X) |e =
d
dt

DRΦ−t (e)DLΦt (e) (X |e) |t=0

=
d
dt

DRΦ−t (e)
(
X |Φt (e)

)
|t=0

=
d
dt

DΦ
−t (X |Φt (e)

)
|t=0

= LU X = [U,X ] .

�

This is used in the next Lemma.

LEMMA 2.1.7. Let G = Gl (V ) be the Lie group of invertible matrices on V. The Lie
bracket structure on the Lie algebra gl(V ) of left invariant vector fields on Gl (V ) is given
by commutation of linear maps. i.e., if X ,Y ∈ TIGl (V ) , then

[X ,Y ] |I = XY −Y X .
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PROOF. Since x 7→ hxh−1 is a linear map on the space hom(V,V ) we see that Adh (X)=
hXh−1. The flow of U is given by Φt (g) = g(I + tU +o(t)) so we have

[U,X ] =
d
dt

(
Φ

t (I)XΦ
−t (I)

)
|t=0

=
d
dt

((I + tU +o(t))X (I− tU +o(t))) |t=0

=
d
dt

(X + tUX− tXU +o(t)) |t=0

= UX−XU.

�

2.1.3. The Hessian. Lie derivatives are also useful for defining Hessians of functions.
We start with a Riemannian manifold (Mm,g) . The Riemannian structure immediately

identifies vector fields with 1-froms. If X is a vector field, then the corresponding 1-form
is denoted ωX and is defined by

ωX (v) = g(X ,v) .

In local coordinates this looks like

X = ai
∂i,

ωX = gi jaidx j.

This also tells us that the inverse operation in local coordinates looks like

φ = a jdx j

= δ
k
j akdx j

= g jigikakdx j

= gi j

(
gikak

)
dx j

so the corresponding vector field is X = gikak∂i. If we introduce an inner product on 1-
forms that makes this correspondence an isometry

g(ωX ,ωY ) = g(X ,Y ) .

Then we see that

g
(
dxi,dx j) = g

(
gik

∂k,g jl
∂l

)
= gikg jlgkl

= δ
i
l g jl

= g ji = gi j.

Thus the inverse matrix to gi j, the inner product of coordinate vector fields, is simply the
inner product of the coordinate 1-forms.

With all this behind us we define the gradient grad f of a function f as the vector field
corresponding to d f , i.e.,

d f (v) = g(grad f ,v) ,

ωgrad f = d f ,

grad f = gi j
∂i f ∂ j.
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This correspondence is a bit easier to calculate in orthonormal frames E1, ...,Em, i.e.,
g(Ei,E j) = δi j, such a frame can always be constructed from a general frame using the
Gram-Schmidt procedure. We also have a dual frame φ 1, ...,φ m of 1-forms, i.e., φ i (E j) =
δ i

j. First we observe that

φ
i (X) = g(X ,Ei)

thus

X = aiEi = φ
i (X)Ei = g(X ,Ei)Ei

ωX = δi jai
φ

j = ai
φ

i = g(X ,Ei)φ
i

In other words the coefficients don’t change. The gradient of a function looks like

d f = aiφ
i = (DEi f )φ

i,

grad f = g(grad f ,Ei)Ei = (DEi f )Ei.

In Euclidean space we know that the usual Cartesian coordinates ∂i also form an or-
thonormal frame and hence the differentials dxi yield the dual frame of 1-forms. This
makes it particularly simple to calculate in Rn. One other manifold with the property
is the torus T n. In this case we don’t have global coordinates, but the coordinates vec-
tor fields and differentials are defined globally. This is precisely what we are used to in
vector calculus, where the vector field X = P∂x +Q∂y +R ∂z corresponds to the 1-form
ωX = Pdx+Qdy+Rdz and the gradient is given by ∂x f ∂x +∂y f ∂y +∂z f ∂z.

Having defined the gradient of a function the next goal is to define the Hessian of F.
This is a bilinear form, like the metric, Hess f (X ,Y ) that measures the second order change
of f . It is defined as the Lie derivative of the metric in the direction of the gradient. Thus
it seems to measure how the metric changes as we move along the flow of the gradient

Hess f (X ,Y ) =
1
2
(
Lgrad f g

)
(X ,Y )
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We will calculate this in local coordinates to check that it makes some sort of sense:

Hess f (∂i,∂ j) =
1
2
(
Lgrad f g

)
(∂i,∂ j)

=
1
2

Lgrad f gi j−
1
2

g
(
Lgrad f ∂i,∂ j

)
− 1

2
g
(
∂i,Lgrad f ∂ j

)
=

1
2

Lgrad f gi j−
1
2

g([grad f ,∂i] ,∂ j)−
1
2

g(∂i, [grad f ,∂ j])

=
1
2

Lgkl∂l f ∂k
gi j−

1
2

g
([

gkl
∂l f ∂k,∂i

]
,∂ j

)
− 1

2
g
(

∂i,
[
gkl

∂l f ∂k,∂ j

])
=

1
2

gkl
∂l f ∂k (gi j)+

1
2

g
(

∂i

(
gkl

∂l f
)

∂k,∂ j

)
+

1
2

g
(

∂i,∂ j

(
gkl

∂l f
)

∂k

)
=

1
2

gkl
∂l f ∂k (gi j)+

1
2

∂i

(
gkl

∂l f
)

gk j +
1
2

∂ j

(
gkl

∂l f
)

gik

=
1
2

gkl
∂k (gi j)∂l f +

1
2

∂i

(
gkl
)

gk j∂l f +
1
2

∂ j

(
gkl
)

gik∂l f

+
1
2

gkl
∂i (∂l f )gk j +

1
2

gkl
∂ j (∂l f )gik

=
1
2

gkl
∂k (gi j)∂l f − 1

2
gkl

∂i
(
gk j
)

∂l f − 1
2

gkl
∂ j (gik)∂l f

+
1
2

δ
l
j∂i∂l f +

1
2

δ
l
i (∂ j∂l f )

=
1
2

gkl (
∂kgi j−∂igk j−∂ jgik

)
∂l f +∂i∂ j f .

So if the metric coefficients are constant, as in Euclidean space, or we are at a critical point,
this gives us the old fashioned Hessian.

It is worth pointing out that these more general definitions and formulas are useful
even in Euclidean space. The minute we switch to some more general coordinates, such as
polar, cylindrical, spherical etc, the metric coefficients are no longer all constant. Thus the
above formulas are our only way of calculating the gradient and Hessian in such general
coordinates. We also have the following interesting result that is often used in Morse
theory.

LEMMA 2.1.8. If a function f : M→R has a critical point at p then the Hessian of f
at p does not depend on the metric.

PROOF. Assume that X = ∇ f and X |p = 0. Next select coordinates xi around p such
that the metric coefficients satisfy gi j|p = δi j. Then we see that

LX
(
gi jdxidx j) |p = LX (gi j) |p +δi jLX

(
dxi)dx j +δi jdxiLX

(
dx j)

= δi jLX
(
dxi)dx j +δi jdxiLX

(
dx j)

= LX
(
δi jdxidx j) |p.

Thus Hess f |p is the same if we compute it using g and the Euclidean metric in the fixed
coordinate system. �

2.2. Operations on Forms

2.2.1. General Properties. Given p 1-forms ωi ∈Ω1 (M) on a manifold M we define

(ω1∧·· ·∧ωp)(v1, ...,vp) = det([ωi (v j)])
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where [ωi (v j)] is the matrix with entries ωi (v j) . We can then extend the wedge product to
all forms using linearity and associativity. This gives the wedge product operation

Ω
p (M)×Ω

q (M) → Ω
p+q (M) ,

(ω,ψ) → ω ∧ψ.

This operation is bilinear and antisymmetric in the sense that:

ω ∧ψ = (−1)pq
ψ ∧ω.

The wedge product of a function and a form is simply standard multiplication.
The exterior derivative of a form is defined by

dω (X0, ....,Xk) =
k

∑
i=0

(−1)i LXi

(
ω

(
X0, ..., X̂i, ...,Xk

))
−∑

i< j
(−1)i

ω

(
X0, ..., X̂i, ...,LXiX j, ...,Xk

)
=

k

∑
i=0

(−1)i LXi

(
ω

(
X0, ..., X̂i, ...,Xk

))
+∑

i< j
(−1)i+ j

ω

(
LXiX j,X0, ..., X̂i, ..., X̂ j, ...,Xk

)

=
1
2

k

∑
i=0

(−1)i

 (LXiω)
(

X0, ..., X̂i, ...,Xk

)
+LXi

(
ω

(
X0, ..., X̂i, ...,Xk

)) 
Lie derivatives, interior products, wedge products and exterior derivatives on forms are
related as follows:

d (ω ∧ψ) = (dω)∧ψ +(−1)p
ω ∧ (dψ) ,

iX (ω ∧ψ) = (iX ω)∧ψ +(−1)p
ω ∧ (iX ψ) ,

LX (ω ∧ψ) = (LX ω)∧ψ +ω ∧ (LX ψ) ,

and the composition properties

d ◦d = 0,
iX ◦ iX = 0,

LX = d ◦ iX + iX ◦d,

LX ◦d = d ◦LX ,

iX ◦LX = LX ◦ iX .

The third property LX = d ◦ iX + iX ◦ d is also known a H. Cartan’s formula (son of the
geometer E. Cartan). It is behind the definition of exterior derivative we gave above in the
form

iX0 ◦d = LX0 −d ◦ iX0 .

2.2.2. The Volume Form. We are now ready to explain how forms are used to unify
some standard concepts from differential vector calculus. We shall work on a Riemannian
manifold (M,g) and use orthonormal frames E1, ...,Em as well as the dual frame φ 1, ...,φ m

of 1-forms.
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The local volume form is defined as:

dvol = dvolg = φ
1∧·· ·∧φ

m.

We see that if ψ1, ...,ψm is another collection of 1-forms coming from an orthonormal
frame F1, ...,Fm, then

ψ
1∧·· ·∧ψ

m (E1, ...,Em) = det
(
ψ

i (E j)
)

= det(g(Fi,E j))

= ±1.

The sign depends on whether or not the two frames define the same orientation. In case
M is oriented and we only use positively oriented frames we will get a globally defined
volume form. Next we calculate the local volume form in local coordinates assuming that
the frame and the coordinates are both positively oriented:

dvol(∂1, ...∂m) = det
(
φ

i (∂ j)
)

= det(g(Ei,∂ j)) .

As Ei hasn’t been eliminated we have to work a little harder. To this end we note that

det(g(∂i,∂ j)) = det(g(g(∂i,Ek)Ek,g(∂ j,El)El))

= det(g(∂i,Ek)g(∂ j,El)δkl)

= det(g(∂i,Ek)g(∂ j,Ek))

= det(g(∂i,Ek))det(g(∂ j,Ek))

= (det(g(Ei,∂ j)))
2 .

Thus

dvol(∂1, ...∂m) =
√

detgi j,

dvol =
√

detgi jdx1∧·· ·∧dxm.

2.2.3. Divergence. The divergence of a vector field is defined as the change in the
volume form as we flow along the vector field. Note the similarity with the Hessian.

LX dvol = div(X)dvol
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In coordinates using that X = ai∂i we get

LX dvol = LX

(√
detgkldx1∧·· ·∧dxm

)
= LX

(√
detgkl

)
dx1∧·· ·∧dxm

+
√

detgkl ∑
i

dx1∧·· ·∧LX
(
dxi)∧·· ·∧dxm

= ai
∂i

(√
detgkl

)
dx1∧·· ·∧dxm

+
√

detgkl ∑
i

dx1∧·· ·∧d
(
LX xi)∧·· ·∧dxm

= ai
∂i

(√
detgkl

)
dx1∧·· ·∧dxm

+
√

detgkl ∑
i

dx1∧·· ·∧d
(
ai)∧·· ·∧dxm

= ai
∂i

(√
detgkl

)
dx1∧·· ·∧dxm

+
√

detgkl ∑
i

dx1∧·· ·∧
(
∂ jaidx j)∧·· ·∧dxm

ai
∂i

(√
detgkl

)
dx1∧·· ·∧dxm

+
√

detgkl ∑
i

dx1∧·· ·∧
(
∂iaidxi)∧·· ·∧dxm

=
(

ai
∂i

(√
detgkl

)
+
√

detgkl∂iai
)

dx1∧·· ·∧dxm

=
∂i
(
ai√detgkl

)
√

detgkl

√
detgkldx1∧·· ·∧dxm

=
∂i
(
ai√detgkl

)
√

detgkl
dvol

We see again that in case the metric coefficients are constant we get the familiar divergence
from vector calculus.

H. Cartan’s formula for the Lie derivative of forms gives us a different way of finding
the divergence

div(X)dvol = LX dvol
= diX (dvol)+ iX d (dvol)
= diX (dvol) ,

in particular div(X)dvol is always exact.
This formula suggests that we should study the correspondence that takes a vector

field X to the (n−1)-form iX (dvol) . Using the orthonormal frame this correspondence is

iX (dvol) = ig(X ,E j)E j

(
φ

1∧·· ·∧φ
m)

= g(X ,E j) iE j

(
φ

1∧·· ·∧φ
m)

= ∑(−1) j+1 g(X ,E j)φ
1∧·· ·∧ φ̂ j ∧·· ·∧φ

m
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while in coordinates

iX (dvol) = ia j∂ j

(√
detgkldx1∧·· ·∧dxm

)
=

√
detgkl ∑a ji∂ j

(
dx1∧·· ·∧dxm)

=
√

detgkl ∑(−1) j+1 a jdx1∧·· ·∧ d̂x j ∧·· ·∧dxm

If we compute diX (dvol) using this formula we quickly get back our coordinate formula
for div(X) .

In vector calculus this gives us the correspondence

i(P∂x+Q∂y+R∂z)dx∧dy∧dz = Pi∂x dx∧dy∧dz

+Qi∂y dx∧dy∧dz

+Ri∂zdx∧dy∧dz

= Pdy∧dz−Qdx∧dz+Rdx∧dy

= Pdy∧dz+Qdz∧dx+Rdx∧dy

If we compose the grad and div operations we get the Laplacian:

div(grad f ) = ∆ f

For this to make sense we should check that it is the “trace” of the Hessian. This is most
easily done using an orthonormal frame Ei. On one hand the trace of the Hessian is:

∑
i

Hess f (Ei,Ei) = ∑
i

1
2
(
Lgrad f g

)
(Ei,Ei)

= ∑
i

1
2

Lgrad f (g(Ei,Ei))−
1
2

g
(
Lgrad f Ei,Ei

)
− 1

2
g
(
Ei,Lgrad f Ei

)
= −∑

i
g
(
Lgrad f Ei,Ei

)
.

While the divergence is calculated as

div(grad f ) = div(grad f )dvol(E1, ...,Em)

=
(
Lgrad f φ

1∧·· ·∧φ
m)(E1, ...,Em)

= ∑
(
φ

1∧·· ·∧Lgrad f φ
i∧·· ·∧φ

m)(E1, ...,Em)

= ∑
(
Lgrad f φ

i)(Ei)

= ∑Lgrad f
(
φ

i (Ei)
)
−φ

i (Lgrad f Ei
)

= −∑φ
i (Lgrad f Ei

)
= −∑g

(
Lgrad f Ei,Ei

)
.

2.2.4. Curl. While the gradient and divergence operations work on any Riemannian
manifold, the curl operator is specific to oriented 3 dimensional manifolds. It uses the
above two correspondences between vector fields and 1-forms as well as 2-forms:

d (ωX ) = icurlX (dvol)

If X = P∂x +Q∂y +R∂z and we are on R3 we can easily see that

curlX = (∂yR−∂zQ)∂x +(∂zP−∂xR)∂y +(∂xQ−∂yP)∂z
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Taken together these three operators are defined as follows:

ωgrad f = d f ,

icurlX (dvol) = d (ωX ) ,

div(X)dvol = diX (dvol) .

Using that d ◦d = 0 on all forms we obtain the classical vector analysis formulas

curl(grad f ) = 0,
div(curlX) = 0,

from

icurl(grad f ) (dvol) = d
(
ωgrad f

)
= dd f ,

div(curlX)dvol = dicurlX (dvol) = ddωX .

2.3. Orientability

Recall that two ordered bases of a finite dimensional vector space are said to represent
the same orientation if the transition matrix from one to the other is of positive determinant.
This evidently defines an equivalence relation with exactly two equivalence classes. A
choice of such an equivalence class is called an orientation for the vector space.

Given a smooth manifold each tangent space has two choices for an orientation. Thus
we obtain a two fold covering map OM →M, where the preimage of each p ∈M consists
of the two orientations for TpM. A connected manifold is said to be orientable if the orien-
tation covering is disconnected. For a disconnected manifold, we simply require that each
connected component be connected. A choice of sheet in the covering will correspond to
a choice of an orientation for each tangent space.

To see that OM really is a covering just note that if we have a chart
(
x1,x2, ...,xn

)
: U ⊂

M→ Rn, where U is connected, then we have two choices of orientations over U, namely,
the class determined by the framing (∂1,∂2, ...,∂n) and by the framing (−∂1,∂2, ...,∂n) .
Thus U is covered by two sets each diffeomorphic to U and parametrized by these two
different choices of orientation. Observe that this tells us that Rn is orientable and has a
canonical orientation given by the standard Cartesian coordinate frame (∂1,∂2, ...,∂n) .

Note that since simply connected manifolds only have trivial covering spaces they
must all be orientable. Thus Sn, n > 1 is always orientable.

An other important observation is that the orientation covering OM is an orientable
manifold since it is locally the same as M and an orientation at each tangent space has been
picked for us.

THEOREM 2.3.1. The following conditions for a connected n-manifold M are equiva-
lent.

1. M is orientable.
2. Orientation is preserved moving along loops.
3. M admits an atlas where the Jacobians of all the transitions functions are positive.
4. M admits a nowhere vanishing n-form.

PROOF. 1⇔ 2 : The unique path lifting property for the covering OM → M tells us
that orientation is preserved along loops if and only if OM is disconnected.

1⇒ 3 : Pick an orientation. Take any atlas (Uα ,Fα) of M where Uα is connected. As
in our description of OM from above we see that either each Fα corresponds to the chosen
orientation, otherwise change the sign of the first component of Fα . In this way we get
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an atlas where each chart corresponds to the chosen orientation. Then it is easily checked
that the transition functions Fα ◦F−1

β
have positive Jacobian as they preserve the canonical

orientation of Rn.
3⇒ 4 : Choose a locally finite partition of unity (λα) subordinate to an atlas (Uα ,Fα)

where the transition functions have positive Jacobians. On each Uα we have the nowhere
vanishing form ωα = dx1

α ∧ ...∧dxn
α . Now note that if we are in an overlap Uα ∩Uβ then

dx1
α ∧ ...∧dxn

α

(
∂

∂x1
β

, ...,
∂

∂xn
β

)
= det

(
dxi

α

(
∂

∂x j
β

))
= det

(
D
(

Fα ◦F−1
β

))
> 0.

Thus the globally defined form ω = ∑λα ωα is always nonnegative when evaluated on(
∂

∂x1
β

, ..., ∂

∂xn
β

)
. What is more, at least one term must be positive according to the definition

of partition of unity.
4⇒ 1 : Pick a nowhere vanishing n-form ω. Then define two sets O± according to

whether ω is positive or negative when evaluated on a basis. This yields two disjoint open
sets in OM which cover all of M. �

With this result behind us we can try to determine which manifolds are orientable and
which are not. Conditions 3 and 4 are often good ways of establishing orientability. To
establish non-orientability is a little more tricky. However, if we suspect a manifold to be
non-orientable then 1 tells us that there must be a non-trivial 2-fold covering map π : M̂→
M, where M̂ is oriented and the two given orientations at points over p ∈M are mapped to
different orientations in M via Dπ . A different way of recording this information is to note
that for a two fold covering π : M̂→ M there is only one nontrivial deck transformation
A : M̂→ M̂ with the properties: A(x) 6= x, A◦A = idM, and π ◦ IA = π. With this is mind
we can show

PROPOSITION 2.3.2. Let π : M̂→M be a non-trivial 2-fold covering and M̂ an ori-
ented manifold. Then M is orientable if and only if A preserves the orientation on M̂.

PROOF. First suppose A preserves the orientation of M̂. Then given a choice of orien-
tation e1, ...,en ∈ TxM̂ we can declare Dπ (e1) , ...,Dπ (en) ∈ Tπ(x)M to be an orientation at
π (x) . This is consistent as DA(e1) , ...,DA(en) ∈ TI(x)M̂ is mapped to Dπ (e1) , ...,Dπ (en)

as well (using π ◦A = π) and also represents the given orientation on M̂ since A was as-
sumed to preserve this orientation.

Suppose conversely that M is orientable and choose an orientation for M. Since we
assume that both M̂ and M are connected the projection π : M̂ → M, being nonsingular
everywhere, must always preserve or reverse the orientation. We can without loss of gen-
erality assume that the orientation is preserved. Then we just use π ◦A = π as in the first
part of the proof to see that A must preserve the orientation on M̂. �

We can now use these results to check some concrete manifolds for orientability.
We already know that Sn,n> 1 are orientable, but what about S1? One way of checking

that this space is orientable is to note that the tangent bundle is trivial and thus a uniform
choice of orientation is possible. This clearly generalizes to Lie groups and other paral-
lelizable manifolds. Another method is to find a nowhere vanishing form. This can be
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done on all spheres Sn by considering the n-form

ω =
n+1

∑
i=1

(−1)i+1 xidx1∧·· ·∧ d̂xi∧·· ·∧dxn+1

on Rn+1. This form is a generalization of the 1-form xdy− ydx, which is ± the angular
form in the plane. Note that if X = xi∂i denotes the radial vector field, then we have (see
also the section below on the classical integral theorems)

iX
(
dx1∧·· ·∧dxn+1)= ω.

From this it is clear that if v2, ...,vn form a basis for a tangent space to the sphere, then

ω (v2, ...,vn) = dx1∧·· ·∧dxn+1 (X ,v2, ...,vn+1)

6= 0.

Thus we have found a nonvanishing n-form on all spheres regardless of whether or not they
are parallelizable or simply connected. As another exercise people might want to use one
of the several coordinate atlases known for the spheres to show that they are orientable.

Recall that RPn has Sn as a natural double covering with the antipodal map as a natural
deck transformation. Now this deck transformation preserves the radial field X = xi∂i and
thus its restriction to Sn preserves or reverses orientation according to what it does on Rn+1.
On the ambient Euclidean space the map is linear and therefore preserves the orientation
iff its determinant is positive. This happens iff n+ 1 is even. Thus we see that RPn is
orientable iff n is odd.

Using the double covering lemma show that the Klein bottle and the Möbius band are
non-orientable.

Manifolds with boundary are defined like manifolds, but modeled on open sets in
Ln =

{
x ∈ Rn | x1 ≤ 0

}
. The boundary ∂M is then the set of points that correspond to

elements in ∂Ln =
{

x ∈ Rn | x1 = 0
}
. It is not hard to prove that if F : M→ R has a ∈ R

as a regular value then F−1(−∞,a] is a manifold with boundary. If M is oriented then
the boundary is oriented in such a way that if we add the outward pointing normal to
the boundary as the first basis vector then we get a positively oriented basis for M. Thus
∂2, ...,∂n is the positive orientation for ∂Ln since ∂1 points away from Ln and ∂1,∂2, ...,∂n
is the usual positive orientation for Ln.

2.4. Integration of Forms

We shall assume that M is an oriented n-manifold. Thus, M comes with a covering
of charts ϕα =

(
x1

α , . . . ,x
n
α

)
: Uα ←→ B(0,1)⊂ Rn such that the transition functions ϕα ◦

ϕ
−1
β

preserve the usual orientation on Euclidean space, i.e., det
(

D
(

ϕα ◦ϕ
−1
β

))
> 0. In

addition, we shall also assume that a partition of unity with respect to this covering is given.
In other words, we have smooth functions φα : M→ [0,1] such that φα = 0 on M−Uα and
∑α φα = 1. For the last condition to make sense, it is obviously necessary that the covering
be also locally finite.

Given an n-form ω on M we wish to define:∫
M

ω.

When M is not compact, it might be necessary to assume that the form has compact support,
i.e., it vanishes outside some compact subset of M.
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In each chart we can write

ω = fα dx1
α ∧·· ·∧dxn

α .

Using the partition of unity, we then obtain

ω = ∑
α

φα ω

= ∑
α

φα fα dx1
α ∧·· ·∧dxn

α ,

where each of the forms φα fα dx1
α ∧ ·· · ∧ dxn

α has compact support in Uα . Since Uα is
identified with Ūα ⊂ Rn, we simply declare that∫

Uα

φα fα dx1
α ∧·· ·∧dxn

α =
∫

Ūα

φα fα dx1 · · ·dxn.

Here the right-hand side is simply the integral of the function φα fα viewed as a function
on Ūα . Then we define ∫

M
ω = ∑

α

∫
Uα

φα fα dx1
α ∧·· ·∧dxn

α

whenever this sum converges. Using the standard change of variables formula for integra-
tion on Euclidean space, we see that indeed this definition is independent of the choice of
coordinates.

With these definitions behind us, we can now state and prove Stokes’ theorem for
manifolds with boundary.

THEOREM 2.4.1. For any ω ∈Ωn−1 (M) with compact support we have∫
M

dω =
∫

∂M
ω.

PROOF. If we use the trick

dω = ∑
α

d (φα ω) ,

then we see that it suffices to prove the theorem in the case M = Ln and ω has compact
support. In that case we can write

ω =
n

∑
i=1

fidx1∧·· ·∧ d̂xi∧·· ·∧dxn,

The differential of ω is now easily computed:

dω =
n

∑
i=1

(d fi)∧dx1∧·· ·∧ d̂xi∧·· ·∧dxn

=
n

∑
i=1

(
∂ fi

∂xi

)
dxi∧dx1∧·· ·∧ d̂xi∧·· ·∧dxn

=
n

∑
i=1

(−1)i−1 ∂ fi

∂xi dx1∧·· ·∧dxi∧·· ·∧dxn.
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Thus, ∫
Ln

dω =
∫

Ln

n

∑
i=1

(−1)i−1 ∂ fi

∂xi dx1∧·· ·∧dxn

=
n

∑
i=1

(−1)i−1
∫

Ln

∂ fi

∂xi dx1 · · ·dxn

=
n

∑
i=1

(−1)i−1
∫ (∫ (

∂ fi

∂xi

)
dxi
)

dx1 · · · d̂xi · · ·dxn.

The fundamental theorem of calculus tells us that∫
∞

−∞

(
∂ fi

∂xi

)
dxi = 0, for i > 1,∫ 0

−∞

(
∂ f1

∂x1

)
dx1 = f1

(
0,x2, ...,xn) .

Thus ∫
Ln

dω =
∫

∂Ln
f1
(
0,x2, ...,xn)dx2∧·· ·∧dxn.

Since dx1 = 0 on ∂Ln it follows that

ω|∂Ln = f1dx2∧·· ·∧dxn.

This proves the theorem. �

We get a very nice corollary out of Stokes’ theorem.

THEOREM. (Brouwer) Let M be a connected compact manifold with nonempty bound-
ary. Then there is no retract r : M→ ∂M.

PROOF. Note that if ∂M is not connected such a retract clearly can’t exists so we need
only worry about having connected boundary.

If M is oriented and ω is a volume form on ∂M, then we have

0 <
∫

∂M
ω

=
∫

∂M
r∗ω

=
∫

M
d (r∗ω)

=
∫

M
r∗dω

= 0.

If M is not orientable, then we lift the situation to the orientation cover and obtain a con-
tradiction there. �

We shall briefly discuss how the classical integral theorems of Green, Gauss, and
Stokes follow from the general version of Stokes’ theorem presented above.

Green’s theorem in the plane is quite simple.

THEOREM 2.4.2. (Green’s Theorem) Let Ω⊂R2 be a domain with smooth boundary
∂Ω. If X = P∂x +Q∂y is a vector field defined on a region containing Ω then∫

Ω

(∂xQ−∂yP)dxdy =
∫

∂Ω

Pdx+Qdy.
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PROOF. Note that the integral on the right-hand side is a line integral, which can also
be interpreted as the integral of the 1-form ω = Pdx1 +Qdx2 on the 1-manifold ∂Ω. With
this in mind we just need to observe that dω = (∂1Q−∂2P)dx1∧dx2 in order to establish
the theorem. �

Gauss’ Theorem is quite a bit more complicated, but we did some of the ground work
when we defined the divergence above. The context is a connected, compact, oriented
Riemannian manifold M with boundary, but the example to keep in mind is a domain
M ⊂ Rn with smooth boundary

THEOREM 2.4.3. (The divergence theorem or Gauss’ theorem) Let X be a vector field
defined on M and N the outward pointing unit normal field to ∂M, then∫

M
(divX)dvolg =

∫
∂M

g(X ,N)dvolg|∂M

PROOF. We know that

divXdvolg = d (iX (dvolg)) .

So by Stokes’ theorem it suffices to show that

iX (dvolg) |∂M = g(X ,N)dvolg|∂M

The orientation on Tp∂M is so that v2, ...,vn is a positively oriented basis for Tp∂M iff
N,v2, ...,vn is a positively oriented basis for TpM. Therefore, the natural volume form for
∂M denoted dvolg|∂M

is given by iN (dvolg) . If v2, ...,vn ∈ Tp∂M is a basis, then

iX (dvolg) |∂M (v2, ...,vn) = dvolg (X ,v2, ...,vn)

= dvolg (g(X ,N)N,v2, ...,vn)

= g(X ,N)dvolg (N,v2, ...,vn)

= g(X ,N) iN (dvolg)
= g(X ,N)dvolg|∂M

where we used that X −g(X ,N)X , the component of X tangent Tp∂M, is a linear combi-
nation of v2, ...,vn and therefore doesn’t contribute to the form. �

Stokes’ Theorem is specific to 3 dimensions. Classically it holds for an oriented sur-
face S⊂ R3 with smooth boundary but can be formulated for oriented surfaces in oriented
Riemannian 3-manifolds.

THEOREM 2.4.4. (Stokes’ theorem) Let S⊂M3 be an oriented surface with boundary
∂S. If X is a vector field defined on a region containing S and N is the unit normal field to
S, then ∫

S
g(curlX ,N)dvolg|S =

∫
∂S

ωX .

PROOF. Recall that ωX is the 1-form defined by

ωX (v) = g(X ,v) .

This form is related to curlX by

d (ωX ) = icurlX (dvolg) .

So Stokes’ Theorem tells us that∫
∂S

ωX =
∫

S
icurlX (dvolg) .
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The integral on the right-hand side can now be understood in a manner completely anal-
ogous to our discussion of iX (dvolg) |∂M in the Divergence Theorem. We note that N is
chosen perpendicular to TpS in such a way that N,v2,v3 ∈ TpM is positively oriented iff
v2,v3 ∈ TpS is positively oriented. Thus we have again that

dvolg|S = iNdvolg
and consequently

icurlX (dvolg) = g(curlX ,N)dvolg|S
�

2.5. Frobenius

In the section we prove the theorem of Frobenius for vector fields and relate it to
equivalent versions for forms and differential equations that involve Lie derivatives.



CHAPTER 3

Basic Cohomology Theory

3.1. De Rham Cohomology

Throughout we let M be an n-manifold. Using that d ◦d = 0, we trivially get that the
exact forms

Bp (M) = d
(
Ω

p−1 (M)
)

are a subset of the closed forms

Zp (M) = {ω ∈Ω
p (M) | dω = 0} .

The de Rham cohomology is then defined as

H p (M) =
Zp (M)

Bp (M)
.

Given a closed form ψ, we let [ψ] denote the corresponding cohomology class.
The first simple property comes from the fact that any function with zero differential

must be locally constant. On a connected manifold we therefore have

H0 (M) = R.
Given a smooth map F : M→ N, we get an induced map in cohomology:

H p (N) → H p (M) ,

F∗ ([ψ]) = [F∗ψ] .

This definition is independent of the choice of ψ, since the pullback F∗ commutes with d.
The two key results that are needed for a deeper understanding of de Rham cohomol-

ogy are the Meyer-Vietoris sequence and homotopy invariance of the pull back map.

LEMMA 3.1.1. (The Mayer-Vietoris Sequence) If M = A∪B for open sets A,B⊂M,
then there is a long exact sequence

· · · → H p (M)→ H p (A)⊕H p (B)→ H p (A∩B)→ H p+1 (M)→ ·· · .

PROOF. The proof is given in outline, as it is exactly the same as the corresponding
proof in algebraic topology. We start by defining a short exact sequence

0→Ω
p (M)→Ω

p (A)⊕Ω
p (B)→Ω

p (A∩B)→ 0.

The map Ωp (M)→ Ωp (A)⊕Ωp (B) is simply restriction ω 7→ (ω|A,ω|B) . The second
is given by (ω,ψ) 7→ (ω|A∩B−ψ|A∩B) . With these definitions it is clear that Ωp (M)→
Ωp (A)⊕Ωp (B) is injective and that the sequence is exact at Ωp (A)⊕Ωp (B) . It is a bit
less obvious why Ωp (A)⊕Ωp (B)→Ωp (A∩B) is surjective. To see this select a partition
of unity λA,λB with respect to the covering A,B. Given ω ∈ Ωp (A∩B) we see that λAω

defines a form on B, while λBω defines a form on A. Then (λBω,−λAω) 7→ ω.

64
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These maps induce maps in cohomology

H p (M)→ H p (A)⊕H p (B)→ H p (A∩B)

such that this sequence is exact. The connecting homomorphisms

δ : H p (A∩B)→ H p+1 (M)

are constructed using the diagram

0 → Ωp+1 (M) → Ωp+1 (A)⊕Ωp+1 (B) → Ωp+1 (A∩B) → 0
↑ d ↑ d ↑ d

0 → Ωp (M) → Ωp (A)⊕Ωp (B) → Ωp (A∩B) → 0

If we take a form ω ∈ Ωp (A∩B) , then (λBω,−λAω) ∈ Ωp (A)⊕Ωp (B) is mapped onto
ω. If dω = 0, then

d (λBω,−λAω) = (dλB∧ω,−dλA∧ω)

∈ Ω
p+1 (A)⊕Ω

p+1 (B)

vanishes when mapped to Ωp+1 (A∩B) . So we get a well-defined form

δω =

{
dλB∧ω on A
−dλA∧ω on B

∈ Ω
p+1 (M) .

It is easy to see that this defines a map in cohomology that makes the Meyer-Vietoris
sequence exact.

The construction here is fairly concrete, but it is a very general homological construc-
tion. �

The first part of the Meyer-Vietoris sequence

0→ H0 (M)→ H0 (A)⊕H0 (B)→ H0 (A∩B)→ H1 (M)

is particularly simple since we know what the zero dimensional cohomology is. In case
A∩B is connected it must be a short exact sequence

0→ H0 (M)→ H0 (A)⊕H0 (B)→ H0 (A∩B)→ 0

so the Meyer-Vietoris sequence for higher dimensional cohomology starts with

0→ H1 (M)→ H1 (A)⊕H1 (B)→ ·· ·

To study what happens when we have homotopic maps between manifolds we have to
figure out how forms on the product [0,1]×M relate to forms on M.

On the product [0,1]×M we have the vector field ∂t tangent to the first factor as well
as the corresponding one form dt. In local coordinates forms on [0,1]×M can be written

ω = aIdxI +bJdt ∧dxJ

if we use summation convention and multi index notation

aI = ai···ik ,

dxI = dxi1 ∧·· ·∧dxik

For each form the dt factor can be integrated out as follows

I (ω) =
∫ 1

0
ω =

∫ 1

0
bJdt ∧dxJ =

(∫ 1

0
bJdt

)
dxJ
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Thus giving a map

Ω
k+1 ([0,1]×M)→Ω

k (M)

To see that this is well-defined note that it can be expressed as

I (ω) =
∫ 1

0
dt ∧ i∂t ω

since

i∂t (ω) = bJdxJ .

LEMMA 3.1.2. Let jt : M→ [0,1]×M be the map jt (x) = (t,x) , then

I (dω)+dI (ω) = j∗1 (ω)− j∗0 (ω)

PROOF. The key is to prove that

I (dω)+dI (ω) =
∫ 1

0
dt ∧L∂t ω

Given this we see that the right hand side is∫ 1

0
dt ∧L∂t ω =

∫ 1

0
dt ∧L∂t

(
aIdxI +bJdt ∧dxJ)

=
∫ 1

0
dt ∧

(
∂taIdxI +∂tbJdt ∧dxJ)

=
∫ 1

0
dt ∧ (∂taI)dxI

=

(∫ 1

0
dt∂taI

)
dxI

= (aI (1,x)−aI (0,x))dxI

= j∗1 (ω)− j∗0 (ω)

The first formula follows by noting that

I (dω)+dI (ω) =
∫ 1

0
dt ∧ i∂t dω +d

(∫ 1

0
dt ∧ i∂t ω

)
=

∫ 1

0
dt ∧ i∂t dω +

∫ 1

0
dt ∧di∂t ω

=
∫ 1

0
dt ∧

(
i∂t dω +di∂t ω

)
=

∫ 1

0
dt ∧

(
L∂t ω

)
The one tricky move here is the identity

d
(∫ 1

0
dt ∧ i∂t ω

)
=
∫ 1

0
dt ∧di∂t ω

On the left hand side it is clear what d does, but on the right hand side we are computing d
of a form on the product. However, as we are wedging with dt this does not become an is-
sue. Specifically, if d is exterior differentiation on [0,1]×M and dx exterior differentiation
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on M, then

dx

(∫ 1

0
dt ∧ i∂t ω

)
= dx

(∫ 1

0
bJdt

)
∧dxJ

= ∑
i

∂
∫ 1

0 bJdt
∂xi ∧dxi∧dxJ

= ∑
i

∫ 1

0

∂bJ

∂xi dt ∧dxi∧dxJ

=

(∫ 1

0
dt ∧

(
∑

i

∂bJ

∂xi dxi

))
∧dxJ

=

(∫ 1

0
dt ∧ (dxbJ)

)
∧dxJ

=

(∫ 1

0
dt ∧ (dbJ−∂tbJdt)

)
∧dxJ

=

(∫ 1

0
dt ∧dbJ

)
∧dxJ

=
∫ 1

0
dt ∧di∂t ω

�

We can now establish homotopy invariance.

PROPOSITION 3.1.3. If F0,F1 : M→ N are smoothly homotopic, then they induce the
same maps on de Rham cohomology.

PROOF. Assume we have a homotopy H : [0,1]×M→ N, such that F0 = H ◦ j0 and
F1 = H ◦ j1, then

F∗1 (ω)−F∗0 (ω) = (H ◦ j1)
∗ (ω)− (H ◦ j0)

∗ (ω)

= j∗1 (H
∗ (ω))− j∗0 (H

∗ (ω))

= dI (H∗ (ω))+I (H∗ (dω))

So if ω ∈Ωk (N) is closed, then we have shown that the difference

F∗1 (ω)−F∗0 (ω) ∈Ω
k (M)

is exact. Thus the two forms F∗1 (ω) and F∗0 (ω) must lie in the same de Rham cohomology
class. �

COROLLARY 3.1.4. If two manifolds, possibly of different dimension, are homotopy
equivalent, then they have the same de Rham cohomology.

PROOF. This follows from having maps F : M→ N and G : N →M such that F ◦G
and G◦F are homotopic to the identity maps. �

LEMMA 3.1.5. (The Poincaré Lemma) The cohomology of a contractible manifold M
is

H0 (M) = R,
H p (M) = {0} for p > 0.

In particular, convex sets in Rn have trivial de Rham cohomology.

PROOF. Being contractible is the same as being homotopy equivalent to a point. �
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3.2. Examples of Cohomology Groups

For Sn we use that

Sn = (Sn−{p})∪ (Sn−{−p}) ,
Sn−{±p} ' Rn,

(Sn−{p})∩ (Sn−{−p}) ' Rn−{0} .

Since Rn−{0} deformation retracts onto Sn−1 this allows us to compute the cohomology of
Sn by induction using the Meyer-Vietoris sequence. We start with S1, which a bit different
as the intersection has two components. The Meyer-vietoris sequence starting with p = 0
looks like

0→ R→ R⊕R→ R⊕R→ H1 (S1)→ 0.

Showing that H1
(
S1
)
' R. For n ≥ 2 the intersection is connected so the connecting ho-

momorphism must be an isomorphism

H p−1 (Sn−1)→ H p (Sn)

for p≥ 1. Thus

H p (Sn) =

{
0, p 6= 0,n,
R, p = 0,n.

For Pn we use the decomposition

Pn =
(
Pn−Pn−1)∪ (Pn− p) ,

where

p = [1 : 0 : · · · : 0] ,

Pn−1 = P
(

p⊥
)
=
{[

0 : z1 : · · · : zn] | (z1, ...,zn) ∈ Fn−{0}
}
,

and consequently

Pn− p =
{[

z : z1 : · · · : zn] | (z1, ...,zn) ∈ Fn−{0} and z ∈ F
}
' Pn−1,

Pn−Pn−1 =
{[

1 : z1 : · · · : zn] | (z1, ...,zn) ∈ Fn}' Fn,(
Pn−Pn−1)∩ (Pn− p) =

{[
1 : z1 : · · · : zn] | (z1, ...,zn) ∈ Fn−{0}

}
' Fn−{0} .

We have already identified P1 so we don’t need to worry about having a disconnected
intersection when F= R and n = 1. Using that Fn−{0} deformation retracts to the unit
sphere S of dimension dimRFn−1 we see that the Meyer-Vietoris sequence reduces to

0 → H1 (Pn)→ H1 (Pn−1)→ H1 (S)→ ···
· · · → H p−1 (S)→ H p (Pn)→ H p (Pn−1)→ H p (S)→ ·· ·

for p ≥ 2. To get more information we need to specify the scalars and in the real case
even distinguish between even and odd n. First assume that F = C. Then S = S2n−1 and
CP1 ' S2. A simple induction then shows that

H p (CPn) =

{
0, p = 1,3, ...,2n−1,
R, p = 0,2,4, ...,2n. .

When F = R, we have S = Sn−1 and RP1 ' S1. This shows that H p (RPn) = 0 when
p = 1, ...,n−2. The remaining cases have to be extracted from the last part of the sequence

0→ Hn−1 (RPn)→ Hn−1 (RPn−1)→ Hn−1 (Sn−1)→ Hn (RPn)→ 0
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where we know that
Hn−1 (Sn−1)= R.

This first of all shows that Hn (RPn) is either 0 or R. Next we observe that the natural map

Hk (RPn)→ Hk (Sn)

is always an injection. To see this note that if π : Sn → RPn is the natural projection and
A : Sn→ Sn the antipodal map then π ◦A = π . So if π∗ω = dφ , then π∗ω = d 1

2 (φ +A∗φ).
But 1

2 (φ +A∗φ) is invariant under the antipodal map and thus defines a form on projective
space. Thus showing that ω is itself exact. Note that this uses that the projection is a local
diffeomorphism. This means that we obtain the simpler exact sequence

0→ Hn−1 (RPn−1)→ Hn−1 (Sn−1)→ Hn (RPn)→ 0

Form this we conclude that Hn (RPn)= 0 iff Hn−1
(
RPn−1)=R. Given that H1

(
RP1)=R

we then obtain the cohomology groups:

H p (RP2n)={ 0, p≥ 1,
R, p = 0,

H p (RP2n+1)={ 0, 2n≥ p≥ 1,
R, p = 0,2n+1.

3.3. Poincaré Duality

The last piece of information we need to understand is how the wedge product acts on
cohomology. It is easy to see that we have a map

H p (M)×Hq (M) → H p+q (M) ,

([ψ] , [ω]) 7→ [ψ ∧ω] .

We are interested in understanding what happens in case p+ q = n. This requires a sur-
prising amount of preparatory work. We claim that, if M is a closed connected oriented
n-manifold, then

Hn (M) → R,

[ω] 7→
∫

M
ω

is a well-defined isomorphism
In order to establish this result it turns out that we also need to work with open man-

ifolds such as Euclidean space. Thus we choose to establish a more general result that
depends on introducing a new cohomology theory.

DEFINITION 3.3.1. Compactly supported cohomology is defined as follows: Let Ω
p
c (M)

denote the compactly supported p-forms. With this we have the compactly supported exact
and closed forms Bp

c (M)⊂ Zp
c (M) (note that d : Ω

p
c (M)→Ω

p+1
c (M)). Then define

H p
c (M) =

Zp
c (M)

Bp
c (M)

.

Needless to say, for closed manifolds the two cohomology theories are identical. For
connected open manifolds, on the other hand, we have that the closed 0-forms must be
zero, as they also have to have compact support. Thus H0

c (M) = {0} if M has no compact
connected components.

Note that only proper maps F : M→N have the property that they map F∗ : Ω
p
c (N)→

Ω
p
c (M) . In particular, if A ⊂ M is open, we do not have a restriction map H p

c (M)→
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H p
c (A) . Instead, we observe that there is a natural inclusion Ω

p
c (A)→ Ω

p
c (M) , which

induces
H p

c (A)→ H p
c (M) .

Thus compactly supported cohomology behaves more like a homology theory.
The above claim can, with our new terminology, be generalized to the claim that

Hn
c (M) → R,

[ω] 7→
∫

M
ω

is an isomorphism for connected oriented n-manifolds.
To start off we establish this result for Euclidean space and then proceed to the even

more general result on Poiancaré duality.

LEMMA 3.3.2. The compactly supported cohomology of Euclidean space is

H p
c (Rn) =

{
R when p = n,
0 when p 6= n.

PROOF. We focus on the case where p= n, the other cases will be handled in a similar
way.

First observe that for any connected oriented n-manifold, M, the map

Ω
n
c (M) → R,

ω 7→
∫

M
ω

vanishes on closed forms by Stokes’ theorem. Thus it induces a map

Hn
c (M) → R,

[ω] 7→
∫

M
ω.

It is also onto, since any form with the property that it is positive when evaluated on a
positively oriented frame is integrated to a positive number.

Case 1: M = Sn. We know that Hn (Sn) = R, so
∫

: Hn (Sn)→ R must be an isomor-
phism.

Case 2: M =Rn. We can think of M = Sn−{p} . Any compactly supported form ω on
M therefore yields a form on Sn. Given that

∫
M ω = 0, we therefore also get that

∫
Sn ω = 0.

Thus, ω must be exact on Sn. Let ψ ∈ Ωn−1 (Sn) be chosen such that dψ = ω. Use again
that ω is compactly supported to find an open disc U around p such that ω vanishes on U
and U ∪M = Sn. Then ψ is clearly closed on U and must by the Poincaré lemma be exact.
Thus, we can find θ ∈Ωn−2 (U) with dθ = ψ on U. This form doesn’t necessarily extend
to Sn, but we can select a bump function λ : Sn → [0,1] that vanishes on Sn−U and is 1
on some smaller neighborhood V ⊂U around p. Now observe that ψ−d (λθ) is actually
defined on all of Sn. It vanishes on V and clearly

d (ψ−d (λθ)) = dψ = ω.

The case for p-forms proceeds in a similar way using that H p (Sn) = 0 for 0 < p < n.
Finally H0

c (M) = 0 for all non-compact manifolds. �

In order to carry out induction proofs with this cohomology theory, we also need a
Meyer-Vietoris sequence:

· · · → H p
c (A∩B)→ H p

c (A)⊕H p
c (B)→ H p

c (M)→ H p+1
c (A∩B)→ ··· .
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This is established in the same way as before using the diagram

0 → Ω
p+1
c (A∩B) → Ω

p+1
c (A)⊕Ω

p+1
c (B) → Ω

p+1
c (M) → 0

↑ d ↑ d ↑ d
0 → Ω

p
c (A∩B) → Ω

p
c (A)⊕Ω

p
c (B) → Ω

p
c (M) → 0

where the horizontal arrows are defined by:

Ω
p
c (A∩B) → Ω

p
c (A)⊕Ω

p
c (B) ,

[ω] 7→ ([ω] ,− [ω]) ,

and

Ω
p
c (A)⊕Ω

p
c (B) → Ω

p
c (M) ,

([ωA] , [ωB]) 7→ [ωA +ωB] .

THEOREM 3.3.3 (Poincaré Duality). Let M be an oriented n-manifold. The pairing

H p (M)×Hn−p
c (M) → R,

([ω] , [ψ]) 7→
∫

M ω ∧ψ

is well-defined and non-degenerate. In particular, the two cohomology groups H p (M) and
Hn−p

c (M) are dual to each other and therefore have the same dimension provided they are
finite-dimensional vector spaces.

PROOF. It is easy to see that the pairing is well-defined. Next note that it defines a
linear map

H p (M)→
(
Hn−p

c (M)
)∗

= Hom
(
Hn−p

c (M) ,R
)
.

We claim that this map is an isomorphism for all orientable, but not necessarily connected,
manifolds. The case when p= 0 corresponds to the above mentioned results for integrating
compactly supported n-forms.

There is also a map
Hn−p

c (M)→ (H p (M))∗

which is an isomorphism when Hn−p
c (M) is finite dimensional, but not necessarily other-

wise.
We only need to check conditions (1)-(3) in theorem 1.3.11.
1: That P(Rn) is true follows from the Poincaré lemma and the above calculation of

H p
c (Rn).

2: In general suppose A,B ⊂ M are open and our claim is true for A, B, and A∩B.
Using that taking duals reverses arrows, we obtain a diagram where the left- and right most
columns have been eliminated
→ H p−1 (A∩B) → H p (A∪B) → H p (A)⊕H p (B) →

↓ ↓ ↓
→

(
Hn−p+1

c (A∩B)
)∗

→
(

Hn−p
c (A∪B)

)∗
→

(
Hn−p

c (A)
)∗
⊕
(

Hn−p
c (B)

)∗
→

Each square in this diagram is either commutative or anti-commutative (i.e., commutes
with a minus sign.) As all vertical arrows, except for the middle one, are assumed to be
isomorphisms, we see by a simple diagram chase that the middle arrow is also an isomor-
phism. More precisely, the five lemma asserts that if we have a commutative diagram:

A1 → A2 → A3 → A4 → A5
↓ ↓ ↓ ↓ ↓

B1 → B2 → B3 → B4 → B5
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where the two horizontal rows are exact and Ai → Bi are isomorphisms for i = 1,2,4,5,
then A3→ B3 is an isomorphism.

3: Consider an arbitrary union of pairwise disjoint open sets
⋃

Ui. In this case we have

H p
(⋃

Ui

)
= ×iH p (Ui)

Hn−p
c

(⋃
Ui

)
= ⊕iHn−p

c (Ui)(
Hn−p

c

(⋃
Ui

))∗
= ×i

(
Hn−p

c (Ui)
)∗

so the claim also follows in this case. �

COROLLARY 3.3.4. If Mn is contractible, then

H p
c (M) =

{
R when p = n,
0 when p 6= n.

COROLLARY 3.3.5. On a closed oriented n-manifold M we have that H p (M) and
Hn−p (M) are isomorphic.

PROOF. This requires that we know that H p (M) is finite dimensional for all p. First
note that if O⊂ Rk is a finite union of open boxes, then the de Rham cohomology groups
are finite dimensional.

This will give the result for M⊂Rk as we can find a tubular neighborhood M⊂U ⊂Rk

and a retract r : U →M, i.e., r|M = idM . Now cover M by open boxes that lie in U and use
compactness of M to find M ⊂ O ⊂U with O being a union of finitely many open boxes.
Since r|M = idM the retract r∗ : H p (M)→ H p (O) is an injection so it follows that H p (M)
is finite dimensional. �

Note that RP2 does not satisfy this duality between H0 and H2. In fact we always have

THEOREM 3.3.6. Let M be a connected n-manifold that is not orientable, then

Hn
c (M) = 0.

PROOF. We use the two-fold orientation cover F : M̂ → M and the involution A :
M̂→ M̂ such that F = F ◦A. The fact that M is not orientable means that A is orientation
reversing. This implies that pull-back by A changes integrals by a sign:∫

M̂
η =−

∫
M̂

A∗η , η ∈Ω
n
c
(
M̂
)
.

To prove the theorem select ω ∈ Ωn
c (M) and consider the pull-back F∗ω ∈ Ωn

c
(
M̂
)
.

Since F = F ◦A this form is invariant under pull-back by A∫
M̂

F∗ω =
∫

M̂
A∗ ◦F∗ω.

On the other hand as A reverses orientation we must also have∫
M̂

F∗ω =−
∫

M̂
A∗ ◦F∗ω.

Thus ∫
M̂

F∗ω = 0.

This shows that the pull back is exact

F∗ω = dψ, ψ ∈Ω
n−1
c
(
M̂
)
.
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The form ψ need not be a pull back of a form on M, but we can average it

ψ̄ =
1
2
(ψ +A∗ψ) ∈Ω

n−1
c
(
M̂
)

to get a form that is invariant under A

A∗ψ̄ =
1
2
(A∗ψ +A∗A∗ψ)

=
1
2
(A∗ψ +ψ)

= ψ̄.

The differential, however, stays the same

dψ̄ =
1
2
(dψ +A∗dψ)

=
1
2
(F∗ω +A∗F∗ω)

= F∗ω.

Now there is a unique φ ∈Ωn−1
c (M) , such that F∗φ = ψ̄. Moreover dφ = ω, since F is a

local diffeomorphism and
ω = F∗dφ = dF∗φ = dψ̄.

�

The last part of this proof yields a more general result:

COROLLARY 3.3.7. Let F : M→ N be a two-fold covering map, then

F∗ : H p
c (N)→ H p

c (M)

and
F∗ : H p (N)→ H p (M)

are injections.

COROLLARY 3.3.8. Let M be an open connected n-manifold, then

Hn (M) = 0.

PROOF. By the previous corollary it suffices to prove this for orientable manifolds. In
this case it follows from Poincaré duality that

0' H0
c (M)' (Hn (M))∗ .

This proves the claim. �

3.4. Degree Theory

Given the simple nature of the top cohomology class of a manifold, we see that maps
between manifolds of the same dimension can act only by multiplication on the top coho-
mology class. We shall see that this multiplicative factor is in fact an integer, called the
degree of the map.

To be precise, suppose we have two oriented n-manifolds M and N and also a proper
map F : M→ N. Then we get a diagram

Hn
c (N)

F∗→ Hn
c (M)

↓
∫

↓
∫

R d→ R.
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Since the vertical arrows are isomorphisms, the induced map F∗ yields a unique map d :
R→ R. This map must be multiplication by some number, which we call the degree of F ,
denoted by degF. Clearly, the degree is defined by the property∫

M
F∗ω = degF ·

∫
N

ω.

From the functorial properties of the induced maps on cohomology we see that

deg(F ◦G) = deg(F)deg(G)

LEMMA 3.4.1. If F : M→ N is a diffeomorphism between oriented n-manifolds, then
degF =±1, depending on whether F preserves or reverses orientation.

PROOF. Note that our definition of integration of forms is independent of coordinate
changes. It relies only on a choice of orientation. If this choice is changed then the integral
changes by a sign. This clearly establishes the lemma. �

THEOREM 3.4.2. If F : M→ N is a proper map between oriented n-manifolds, then
degF is an integer.

PROOF. The proof will also give a recipe for computing the degree. First, we must
appeal to Sard’s theorem. This theorem ensures that we can find y ∈ N such that for each
x ∈ F−1 (y) the differential DF : TxM → TyN is an isomorphism. The inverse function
theorem then tells us that F must be a diffeomorphism in a neighborhood of each such x.
In particular, the preimage F−1 (y) must be a discrete set. As we also assumed the map to
be proper, we can conclude that the preimage is finite: {x1, . . . ,xk}= F−1 (y) . We can then
find a neighborhood U of y in N, and neighborhoods Ui of xi in M, such that F : Ui→U is
a diffeomorphism for each i. Now select ω ∈Ωn

c (U) with
∫

ω = 1. Then we can write

F∗ω =
k

∑
i=1

F∗ω|Ui ,

where each F∗ω|Ui has support in Ui. The above lemma now tells us that∫
Ui

F∗ω|Ui =±1.

Hence,

degF = degF ·
∫

N
ω

= degF ·
∫

U
ω

=
∫

M
F∗ω

=
k

∑
i=1

∫
Ui

F∗ω|Ui

is an integer. �

Note that
∫

Ui
F∗ω|Ui is ±1, depending simply on whether F preserves or reverses the

orientations at xi. Thus, the degree simply counts the number of preimages for regular
values with sign. In particular, a finite covering map has degree equal to the number of
sheets in the covering.

We get several nice results using degree theory. Several of these have other proofs as
well using differential topological techniques. Here we emphasize the integration formula
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for the degree. The key observation is that the degree of a map is a homotopy invariant.
However, as we can only compute degrees of proper maps it is important that the homo-
topies are through proper maps. When working on closed manifolds this is not an issue.
But if the manifold is Euclidean space, then all maps are homotopy equivalent, although
not necessarily through proper maps.

COROLLARY 3.4.3. Let F : M→ N be a proper non-singular map of degree ±1 be-
tween oriented connected manifolds, then F is a diffeomorphism.

PROOF. Since F is non-singular everywhere it either reverses or preserves orientations
at all points. If the degree is well defined it follows that it can only be ±1 if the map is
injective. On the other hand the fact that it is proper shows that it is a covering map, thus it
must be a diffeomorphism. �

COROLLARY 3.4.4. The identity map on a closed manifold is not homotopic to a
constant map.

PROOF. The constant map has degree 0 while the identity map has degree 1 on an
oriented manifold. In case the manifold isn’t oriented we can lift to the orientation cover
and still get it to work. �

COROLLARY 3.4.5. Even dimensional spheres do not admit non-vanishing vector
fields.

PROOF. Let X be a vector field on Sn we can scale it so that it is a unit vector field. If
we consider it as a function X : Sn→ Sn ⊂ Rn+1 then it is always perpendicular to its foot
point. We can then create a homotopy

H (p, t) = pcos(πt)+Xp sin(πt) .

Since p ⊥ Xp and both are unit vectors the Pythagorean theorem shows that H (p, t) ∈ Sn

as well. When t = 0 the homotopy is the identity, and when t = 1 it is the antipodal map.
Since the antipodal map reverses orientations on even dimensional spheres it is not possible
for the identity map to be homotopic to the antipodal map. �

On an oriented Riemannian manifold (M,g) we always have a canonical volume form
denoted by dvolg. Using this form, we see that the degree of a map between closed Rie-
mannian manifolds F : (M,g)→ (N,h) can be computed as

degF =

∫
M F∗ (dvolh)

vol(N)
.

In case F is locally a Riemannian isometry, we must have that:

F∗ (dvolh) =±dvolg.

Hence,

degF =±volM
volN

.

This gives the well-known formula for the relationship between the volumes of Riemannian
manifolds that are related by a finite covering map.

On Rn−{0} we have an interesting (n−1)-form

w = r−n
n

∑
i=1

(−1)i+1 xidx1∧·· ·∧ d̂xi∧·· ·∧dxn
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that is closed. If we restrict this to a sphere of radius ε around the origin we see that∫
Sn−1(ε)

w = ε
−n
∫

Sn−1(ε)

n

∑
i=1

(−1)i+1 xidx1∧·· ·∧ d̂xi∧·· ·∧dxn

= ε
−n
∫

B̄(0,ε)
d

(
n

∑
i=1

(−1)i+1 xidx1∧·· ·∧ d̂xi∧·· ·∧dxn

)
= ε

−n
∫

B̄(0,ε)
ndx1∧·· ·∧dxn

= nε
−nvolB̄(0,ε)

= nvolB̄(0,1)

= voln−1Sn−1 (1) .

More generally if F : Mn−1 → Rn−{0} is a smooth map then it is clearly homotopic to
the map F1 : Mn−1→ Sn−1 (1) defined by F1 = F/ |F | so we obtain

1
voln−1Sn−1 (1)

∫
M

F∗w =
1

voln−1Sn−1 (1)

∫
M

F∗1 w

= degF1

This is called the winding number of F.

3.5. The Künneth-Leray-Hirch Theorem

In this section we shall compute the cohomology of a fibration under certain simpli-
fying assumptions. We assume that we have a submersion-fibration π : E → M where
the fibers are diffeomorphic to a manifold N. As an example we might have the product
N×M → M. We shall further assume that the restriction to any fiber π−1 (p) ∼= N is a
surjection in cohomology

H∗ (E)→ N∗
(
π
−1 (p)

)
→ 0, for all p ∈M.

In the case of a product this obviously holds since the projection N×M → N is a right
inverse to all the inclusions N → N×{s} ⊂ N×M. In general such cohomology classes
might not exist, e.g., the fibration S3→ S2 is a good counter example.

It seems a daunting task to check the condition for all fibers in a general situation.
Assuming we know it is true for a specific fiber N = π−1 (p) we can select a neighborhood
U around p such that π−1 (U) = N×U. As long as U is contractible we see that π−1 (U)
and N are homotopy equivalent and so the restriction to any of the fibers over U will also
give a surjection in cohomology. When M is connected a covering of such contractible sets
shows that H∗ (E)→ N∗

(
π−1 (p)

)
is a surjection for all p ∈M. In fact this construction

gives us a bit more. First note that for a specific fiber N it is possible to select and sub-
space H ∗ ∈H∗ (N) that is isomorphic to H∗ (N). The construction now shows that H ∗ is
isomorphic to N∗

(
π−1 (p)

)
for all p ∈M as long as M is connected.

THEOREM 3.5.1 (Künneth-Leray-Hirch). Assume we have H ∗ ⊂ H∗ (E) that is iso-
morphic to H∗

(
π−1 (p)

)
via restriction for all p ∈M. If H∗ (N) is finite dimensional, then

there is an isomorphism: ⊕
p+q=k

Hq (M)⊗H p→ Hk (E)

where the map Hq (M)⊗H p→ H p+q (E) is defined by ψ⊗ω 7→ ψ ∧π∗ (ω).
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REMARK 3.5.2. Observe that for any map E → M the space H∗ (E) is naturally a
H∗ (M) module:

H∗ (M)×H∗ (E)→ H∗ (E)

via pull-back H∗ (M)→ H∗ (E) and wedge product in H∗ (E). The statement of the theo-
rem can then be rephrased as giving a condition for when H∗ (E) is a free H∗ (M)-module.

PROOF. Note that for each open U ⊂M there is a natural restriction

H ∗ ⊂ H∗ (E)→H ∗|U ⊂ H∗
(
π
−1 (U)

)
.

This shows that the assumption of the theorem holds for all of the bundles π−1 (U)→U ,
where U ⊂ M is open. One more important piece of information to check is diffeomor-
phism invariance. To that end assume that F : V →U is a diffeomorphism. We can then
consider the pull-back bundle

F∗π−1 (U) =
{
(v,e) ∈V ×π

−1 (U) | e ∈ π
−1 (F (v))

}
.

Note that the pull-back is a subbundle of a trivial product bundle over V . It also fits in to a
diagram

F∗π−1 (U)
π2→ π−1 (U)

π1 ↓ π ↓
V F→ U

where πi is the projection onto the ith factor. We can use π∗2 H ∗ = {π∗2 ω | ω ∈H ∗} for
this pull-back bundle.

With these constructions in mind we can employ the same strategy as in the universal
theorem. To that end restrict attention to open subsets U ⊂ M with the statement P(U)
being that for all k the map⊕

p+q=k

H p|U ⊗Hq (U)→ Hk (
π
−1 (U)

)
is an isomorphism.

This statement clearly holds for any U ⊂M that is contractible and where the bundle
is trivial π−1 (U)∼= N×U . Now any U ⊂M that is diffeoemorphic to Rn has the property
that π−1 (U) is trivial. This follows from the proof of Ehresman’s theorem when π : E→M
is proper but is fact true for any fibration.

Next assume that the result holds for open sets U,V,U ∩V ⊂M, then we can use the
same strategy as in the proof of theorem 3.3.3 to verify the statement for U ∪V .

Finally when the statement holds for pairwise disjoint open sets: Ui ⊂M, then it will
also hold for the union. This depends crucially on H p being finite dimensional as tensor
products do not, in general, respect infinite products (see example below). Specifically, if
we denote dual by (H p)∗ = Hom(H p,R) we know that

Hom
(
(H p)∗ ,V

)
= (H p)∗∗⊗V = H p⊗V.

In particular, if V =×iVi, then

H p⊗ (×iVi) = Hom
(
(H p)∗ ,×iVi

)
=×iHom

(
(H p)∗ ,Vi

)
=×i (H

p⊗Vi) .
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This leads us to the desired isomorphism:⊕
p+q=k

H p⊗Hq

(⋃
i

Ui

)
=

⊕
p+q=k

H p⊗ (×iHq (Ui))

=
⊕

p+q=k

×i (H
p⊗Hq (Ui))

= ×i
⊕

p+q=k

(H p⊗Hq (Ui))

= ×iHk (
π
−1 (Ui)

)
= Hk

(
π
−1

(⋃
i

Ui

))
.

�

Künneth’s theorem or formula is the above result in the case where the fibration is a
product, while the Leray-Hirch theorem or formula is for a fibration of the above type.

EXAMPLE 3.5.3. In case both spaces have infinite dimensional cohomology the result
does not necessarily hold. Consider two 0-dimensional manifolds A,B, i.e., they are finite
or countable sets. Here H0 (A×B) is isomorphic the the space of functions A×B→ R,
while H0 (A)⊗H0 (B) consists of finite sums of elements of the form fA⊗ fB, where fC :
C→R. Thus the map H0 (A)⊗H0 (B)→H0 (A×B) is only an isomorphism when A or B
is finite. To address the construction in the above proof note that

H0 (A)⊗H0 (B) = H0 (A)⊗×b∈BH0 (b)

while

×b∈BH0 (A)⊗H0 (b) =×b∈BH0 (A)⊗R=×b∈BH0 (A) =×a∈A,b∈BR= H0 (A×B) .

3.6. Generalized Cohomology

In this section we are going to explain how one can define relative cohomology and
also indicate how it can be used to calculate some of the cohomology groups we have seen
earlier.

We start with the simplest and most important situation where S ⊂M is a closed sub-
manifold of a closed manifold.

PROPOSITION 3.6.1. If S⊂M is a closed submanifold of a closed manifold, then
(1) The restriction map i∗ : Ωp (M)→Ωp (S) is surjective.
(2) If θ ∈Ωp−1 (S) is closed, then there exists ψ ∈Ωp−1 (M) such that θ = i∗ψ and

dψ ∈Ω
p
c (M−S) .

(3) If ω ∈ Ωp (M) with dω ∈ Ω
p+1
c (M−S) and i∗ω ∈ Ωp (S) is exact, then there

exists θ ∈Ωp−1 (M) such that ω−dθ ∈Ω
p
c (M−S).

PROOF. Select a neighborhood S⊂U ⊂M that deformation retracts π : U → S. Then
i∗ : H p (U)→ H p (S) is an isomorphism. We also need a function λ : M → [0,1] that is
compactly supported in U and is 1 on a neighborhood of S.

1. Given ω ∈Ωp (S) let ω̄ = λπ∗ (ω) .
2. This also shows that d (λπ∗θ) = dλ ∧π∗θ +λdπ∗θ has compact support in M−S.
3. Conversely assume that ω ∈Ωp (M) has dω ∈Ω

p+1
c (M−S). By possibly shrinking

U we can assume that it is disjoint from the support of dω . Thus, dω|U = 0 since i : S→U
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is an isomorphism in cohomology and we assume that i∗ω is exact, it follows that ω|U =
dψ for some ψ ∈Ωp−1 (U). Define θ = λψ and then note that

ω−dθ = ω−λdψ−dλ ∧ψ

= ω−λω|U −dλ ∧θ

∈ Ω
p
c (M−S) .

�

Part (1) shows that we have a short exact sequence

0 → Ω
p (M,S)→Ω

p (M)→Ω
p (S)→ 0,

Ω
p (M,S) = ker(i∗ : Ω

p (M)→Ω
p (S)) .

We claim that (2) and (3) show that the natural inclusion

Ω
p
c (M−S)→Ω

p (M,S)

induces an isomorphism H p
c (M−S)→ H p (M,S).

To show that it is injective consider ω ∈ Ω
p
c (M−S), such that ω = dθ , where θ ∈

Ωp−1 (M,S). We can apply (3) to θ and to find ψ ∈ Ωp−2 (M) such that θ − dψ ∈
Ω

p−1
c (M−S). This shows that ω = d (θ −dψ) for a form θ −dψ ∈Ω

p−1
c (M−S).

To show that it is surjective consider ω ∈Ωp (M,S) with dω = 0. By (3) we can find
θ ∈Ωp−1 (M) such that ω−dθ ∈Ω

p
c (M−S), but we don’t know that θ ∈Ωp−1 (M,S). To

fix that problem use (2) to find ψ ∈ Ωp−1 (M) such that i∗θ = i∗ψ and dψ ∈ Ω
p
c (M−S).

Then ω−d (θ −ψ) = (ω−dθ)−dψ ∈Ω
p
c (M−S) and θ −ψ ∈Ωp−1 (M,S).

COROLLARY 3.6.2. Assume S⊂M is a closed submanifold of a closed manifold, then

→ H p
c (M−S)→ H p (M)→ H p (S)→ H p+1

c (M−S)→

is a long exact sequence of cohomology groups.

Good examples are Sn−1 ⊂ Sn with Sn−Sn−1 being two copies of Rn and Pn−1 ⊂ Pn

where Pn−Pn−1 ' Fn. This gives us a slightly different inductive method for computing
the cohomology of these spaces. Conversely, given the cohomology groups of those spaces,
it computes the compactly supported cohomology of Rn.

It can also be used on manifolds with boundary:

→ H p
c (intM)→ H p (M)→ H p (∂M)→ H p+1

c (intM)→

where we can specialize to M = Dn ⊂ Rn, the closed unit ball. The Poincaré lemma com-
putes the cohomology of Dn so we get that

H p+1
c (Bn)' H p (Sn−1) .

For general connected compact manifolds with boundary we also get some interesting
information.

THEOREM 3.6.3. If M is a connected compact n-manifold with boundary, then

Hn (M) = 0.

PROOF. If M is not orientable, then neither is the interior so Hn
c (intM) = 0 and

Hn (∂M) = 0, this shows from the long exact sequence that Hn (M) = 0.
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If M is oriented, then we know that ∂M is also oriented and that

Hn (M,∂M) = Hn
c (intM)' R

Hn (∂M) = {0} ,
Hn−1 (∂M) ' Rk,

where k is the number of components of ∂M. The connecting homomorphism Hn−1 (∂M)→
Hn

c (intM) can be analyzed from the diagram

0 → Ωn (M,∂M) → Ωn (M) → Ωn (∂M) → 0
↑ d ↑ d ↑ d

0 → Ωn−1 (M,∂M) → Ωn−1 (M) → Ωn−1 (∂M) → 0

Evidently any ω ∈ Ωn−1 (∂M) is the restriction of some ω̄ ∈ Ωn−1 (M) , where we can
further assume that dω̄ ∈Ωn

c (intM). Stokes’ theorem then tells us that∫
M

dω̄ =
∫

∂M
ω̄ =

∫
∂M

ω.

This shows that the map Hn−1 (∂M)→Hn
c (intM) is nontrivial and hence surjective, which

in turn implies that Hn (M) = {0} . �

It is possible to extend the above long exact sequence to the case where M is non-
compact by using compactly supported cohomology on M. This gives us the long exact
sequence

→ H p
c (M−S)→ H p

c (M)→ H p (S)→ H p+1
c (M−S)→

It is even possible to also have S be non-compact if we assume that the embedding is proper
and then also use compactly supported cohomology on S

→ H p
c (M−S)→ H p

c (M)→ H p
c (S)→ H p+1

c (M−S)→
We can generalize further to a situation where S is simply a compact subset of M. In

that case we define the deRham-Cech cohomology groups Ȟ p (S) using

Ω̌
p (S) =

{ω ∈Ωp (M)}
ω1 ∼ ω2 iff ω1 = ω2 on a ngbd of S

,

i.e., the elements of Ω̌p (S) are germs of forms on M at S. We now obtain a short exact
sequence

0→Ω
p
c (M−S)→Ω

p
c (M)→ Ω̌

p (S)→ 0.
This in turn gives us a long exact sequence

→ H p
c (M−S)→ H p

c (M)→ Ȟ p (S)→ H p+1
c (M−S)→

Finally we can define a more general relative cohomology group. We take a differen-
tiable map F : S→M between manifolds. It could, e.g., be an embedding of S⊂M, but S
need not be closed. Define

Ω
p (F) = Ω

p (M)⊕Ω
p−1 (S)

and the differential

d : Ω
p (F) → Ω

p+1 (F)

d (ω,ψ) = (dω,F∗ω−dψ)

Note that d2 = 0 so we get a complex and cohomology groups H p (F) . These “forms” fit
into a sort exact sequence

0→Ω
p−1 (S)→Ω

p (F)→Ω
p (M)→ 0,
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where the maps are just the natural inclusion and projection. When we include the differ-
ential we get a large diagram where the left square is anti-commutative and the right one
commutative

0 → Ωp (S) → Ωp+1 (M)⊕Ωp (S) → Ωp+1 (M) → 0
↑ d ↑ (d,F∗−d) ↑ d

0 → Ωp−1 (S) → Ωp (M)⊕Ωp−1 (S) → Ωp (M) → 0

This still leads us to a long exact sequence

→ H p−1 (S)→ H p (F)→ H p (M)→ H p (S)→

The connecting homomorphism H p (M)→ H p (S) is in fact the pull-back map F∗ as can
be seen by a simple diagram chase.

In case i : S ⊂ M is an embedding we also use the notation H p (M,S) = H p (i) . In
this case it’d seem that the connecting homomorphism is more naturally defined to be
H p−1 (S)→ H p (M,S) , but we don’t have a short exact sequence

0→Ω
p (M)⊕Ω

p−1 (S)→Ω
p (M)→Ω

p (S)→ 0

hence the tricky shift in the groups.
We can easily relate the new relative cohomology to the one defined above. This

shows that the relative cohomology, while trickier to define, is ultimately more general and
useful.

PROPOSITION 3.6.4. If i : S ⊂ M is a closed submanifold of a closed manifold then
the natural map

Ω
p
c (M−S) → Ω

p (M)⊕Ω
p−1 (S)

ω → (ω,0)

defines an isomorphism
H p

c (M−S)' H p (i) .

PROOF. Simply observe that we have two long exact sequences

→ H p (i)→ H p (M)→ H p (S)→ H p+1 (i)→

→ H p
c (M−S)→ H p (M)→ H p (S)→ H p+1

c (M−S)→
where two out of three terms are equal. �

Now that we have a fairly general relative cohomology theory we can establish the
well-known excision property.

THEOREM 3.6.5. Assume that a manifold M =U ∪V, where U and V are open, then
the restriction map

H p (M,U)→ H p (V,U ∩V )

is an isomorphism.

PROOF. First select a partition of unity λU ,λV relative to U,V .
We start with injectivity. Take a class [(ω,ψ)] ∈ H p (M,U) , i.e.,

dω = 0,
ω|U = dψ.
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If the restriction to (V,U ∩V ) is exact, then we can find (ω̄, ψ̄)∈Ωp−1 (V )⊕Ωp−2 (U ∩V )
such that

ω|V = dω̄,

ψ|U∩V = ω̄|U∩V −dψ̄.

Using that ψ̄ = λU ψ̄ +λV ψ̄ we obtain

(ψ +d (λV ψ̄)) |U∩V = (ω̄−d (λU ψ̄)) |U∩V ,

ψ +d (λV ψ̄) ∈ Ω
p−1 (U) ,

ω̄−d (λU ψ̄) ∈ Ω
p−1 (V ) .

Thus we have a form ω̃ ∈Ωp−1 (M) defined by ψ +d (λV ψ̄) on U and ω̄−d (λU ψ̄) on V.
Clearly dω̃ = ω and ψ = ω̃|U −d (λV ψ̄) so we have shown that (ω,ψ) is exact.

For surjectivity select (ω̄, ψ̄) ∈Ωp (V )⊕Ωp−1 (U ∩V ) that is closed:

dω̄ = 0,
ω̄|U∩V = dψ̄.

Using

ω̄|U∩V −d (λU ψ̄) = d (λV ψ̄) ,

ω̄−d (λU ψ̄) ∈ Ω
p (V ) ,

d (λV ψ̄) ∈ Ω
p (U)

we can define ω as ω̄−d (λU ψ̄) on V and d (λV ψ̄) on U. Clearly ω is closed and ω|U =
d (λV ψ̄) . Thus we define ψ = λV ψ̄ in order to get a closed form (ω,ψ) ∈ Ωp (M)⊕
Ωp−1 (U) . Restricting this form to Ωp (V )⊕Ωp−1 (U ∩V ) yields (ω̄−d (λU ψ̄) ,λV ψ̄)
which is not (ω̄, ψ̄) . However, the difference is exact:

(ω̄, ψ̄)− (ω̄−d (λU ψ̄) ,λV ψ̄) = (d (λU ψ̄) ,λU ψ̄)

= d (λU ψ̄,0) .

Thus [(ω,ψ)] ∈ H p (M,U) is mapped to [(ω̄, ψ̄)] ∈ H p (V,U ∩V ) . �



CHAPTER 4

Characteristic Classes

4.1. Intersection Theory

4.1.1. The Poincaré Dual. Let Sk ⊂ Nn be a closed oriented submanifold of an ori-
ented manifold with finite dimensional de Rham cohomology. The codimension is denoted
by m= n−k. By integrating k-forms on N over S we obtain a linear functional Hk (N)→R.
The Poincaré dual to this functional is an element ηN

S ∈ Hm
c (N) such that∫

S
ω =

∫
N

η
N
S ∧ω

for all ω ∈ Hk (N) . We call ηN
S the dual to S ⊂ N. The obvious defect of this definition is

that several natural submanifolds might not have nontrivial duals for the simple reason that
Hm

c (N) vanishes, e.g., N = Sn.
To get a nontrivial dual we observe that

∫
S ω only depends on the values of ω in a

neighborhood of S. Thus we can find duals supported in any neighborhood U of S in N,
i.e., ηU

S ∈ Hm
c (U) . We normally select the neighborhood so that there is a deformation

retraction π : U → S. In particular,

π
∗ : Hk (S)→ Hk (U)

is an isomorphism. In case S is connected we also know that integration on Hk (S) defines
an isomorphism ∫

: Hk (S)→ R.

This means that ηU
S is just the Poincaré dual to 1 ∈R modulo these isomorphisms. Specif-

ically, if ω ∈ Hk (S) is a volume form that integrates to 1, then∫
U

η
U
S ∧π

∗
ω = 1.

Our first important observation is that if we change the orientation of S, then inte-
gration changes sign on S and hence ηU

S also changes sign. This will become important
below.

The dual gives us an interesting isomorphism called the Thom isomorphism.

LEMMA 4.1.1. (Thom) Recall that k+m = n. The map

H p−m
c (S) → H p

c (U) ,

ω 7→ η
U
S ∧π

∗ (ω)

is an isomorphism.

83
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PROOF. Using Poincaré duality twice we see that

H p
c (U) ' hom

(
Hn−p (U) ,R

)
' hom

(
Hn−p (S) ,R

)
' H p−m

c (S)

Thus it suffices to show that the map

H p−m
c (S) → H p

c (U)

ω 7→ η
N
S ∧π

∗ (ω)

is injective. When p = n this is clearly the above construction. For p < n select τ ∈
Hn−p (S)' Hn−p (U) , then ω ∧ τ ∈ Hk (S) so∫

U
η

U
S ∧π

∗ (ω)∧π
∗ (τ) =

∫
U

η
U
S ∧π

∗ (ω ∧ τ)

=
∫

S
ω ∧ τ.

When ηU
S ∧π∗ (ω) is exact, i.e., vanishes in H p

c (U), then ηU
S ∧π∗ (ω)∧π∗ (τ) is also exact

as dτ = 0. In particular, the linear map τ →
∫

S ω ∧ τ is trivial when ηU
S ∧π∗ (ω) is trivial

in H p
c (U) . Poincaré duality then implies that ω itself is trivial in H p−m

c (S) . �

The next goal is to find a characterization of ηU
S when we have a deformation retraction

submersion π : U → S.

PROPOSITION 4.1.2. The dual is characterized as a closed form with compact support
that integrates to 1 along fibers π−1 (p) for all p ∈ S.

PROOF. The characterization requires a choice of orientation for the fibers. It is cho-
sen so that Tpπ−1 (p)⊕ TpS and TpN have the same orientation (this is consistent with
[Guillemin-Pollack], but not with several other texts.) For ω ∈ Ωk (S) we note that π∗ω
is constant on π−1 (p) , p ∈ S. Therefore, if η is a closed compactly supported form that
integrates to 1 along all fibers, then∫

U
η ∧π

∗
ω =

∫
S

ω

as desired.
Conversely we define

f : S→ R,

f (p) =
∫

π−1(p)
η

U
S

and note that ∫
S

ω =
∫

U
η

U
S ∧π

∗
ω =

∫
S

f ω

for all ω. Since the support of ω can be chosen to be in any open subset of S, this shows
that f = 1 on S. �

In case S is not connected the dual is constructed on each component.
Next we investigate naturality of the dual.

THEOREM 4.1.3. Let F : M→ N be proper and transverse to S, then for suitable U
we have

F∗
(
η

U
S
)
= η

F−1(U)

F−1(S) .
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PROOF. To make sense of η
F−1(U)

F−1(S) we need to choose orientations for F−1 (S) . This

is done as follows. First note that by shrinking U we can assume that F−1 (U) deformation
retracts onto F−1 (S) in such a way that we have a commutative diagram

F−1 (U)
F−→ U

↓ π ↓ π

F−1 (S) F−→ S

Transversality of F then shows that F restricted to the fibers F : π−1 (q)→ π−1 (F (q))
is a diffeomorphism. We then select the orientation on π−1 (q) such that F has degree
1 and then on TqF−1 (S) such that Tqπ−1 (q)⊕ TqF−1 (S) has the orientation of TqM. In
case F−1 (S) is a finite collection of points we are simply assigning 1 or −1 to each point
depending on whether π−1 (q) got oriented the same way as M or not. With all of these
choices it is now clear that if ηU

S integrates to 1 along fibers then so does the pullback

F∗
(
ηU

S

)
, showing that the pullback must represent η

F−1(U)

F−1(S) . �

This gives us a new formula for intersection numbers.

COROLLARY 4.1.4. If dimM + dimS = dimN, and F : M→ N is proper and trans-
verse to S, then

I (F,S) =
∫

F−1(U)
F∗
(
η

U
S
)
.

The advantage of this formula is that the right-hand side can be calculated even when
F isn’t transverse to S. And since both sides are invariant under homotopies of F this gives
us a more general way of calculating intersection numbers. We shall see how this works in
the next section.

Another interesting special case of naturality occurs for submanifolds.

COROLLARY 4.1.5. Assume S1,S2⊂N are compact and transverse and oriented, with
suitable orientations on S1∩S2 the dual is given by

ηS1 ∧ηS2 = ηS1∩S2 .

4.1.2. The Euler Class. Finally we wish to study to what extent η depends only
on its values on the fibers. First we note that if the tubular neighborhood S ⊂ U is a
product neighborhood, i.e. there is a diffeomorphism F : D× S→U which is a degree 1
diffeomorphism on fibers: D×{p}→ π−1 (p) for all p ∈ S, then η

D×S
S = F∗

(
ηU

S

)
can be

represented as the volume form on D pulled back to D×S.
To better measure this effect we define the Euler class

eU
S = i∗

(
η

U
S
)
∈ Hm (S)

as the restriction of the dual to S. Since duals are natural we quickly get

PROPOSITION 4.1.6. Let F : M→ N be proper and transverse to S, then for suitable
U we have

F∗
(
eU

S
)
= eF−1(U)

F−1(S) .

COROLLARY 4.1.7. If U is a trivial tubular neighborhood of S, then eU
S = 0.

PROOF. Note that when U = D× S, then the projection to the fiber F : U → D is
proper and transeverse to any point s ∈ D. Clearly eD

{s} = 0 so the corollary follows from
the previous proposition. �
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We also see that intersection numbers of maps are carried by the Euler class.

LEMMA 4.1.8. If dimM +dimS = dimN, and F : M→ N is proper and transeverse
to S, then

I (F,S) =
∫

F−1(U)
F∗
(
π
∗ (eU

S
))

.

PROOF. Assume that π : U → S is a deformation retraction. Then F and i◦π ◦F are
homotopy equivalent as maps from F−1 (U) . This shows that

I (F,S) =
∫

F−1(U)
F∗
(
η

U
S
)

=
∫

F−1(U)
(i◦π ◦F)∗

(
η

U
S
)

=
∫

F−1(U)
(π ◦F)∗

(
i∗ηU

S
)

=
∫

F−1(U)
(π ◦F)∗

(
eU

S
)

=
∫

F−1(U)
F∗
(
π
∗ (eU

S
))

.

�

This formula makes it clear that this integral really is an intersection number as it must
vanish if F doesn’t intersect S.

COROLLARY 4.1.9. If m = k, then the self intersection number of S with itself is given
by

I (S,S) =
∫

S
eU

S .

PROOF. The left hand side can be calculated by finding a section F : S→U that is
transeverse to S. On the other hand the right hand side∫

S
F∗
(
π
∗ (eU

S
))

=
∫

S
(π ◦F)∗

(
eU

S
)
=
∫

S
eU

S

for any section. This proves the claim. �

Finally we show that Euler classes vanish if the codimension is odd.

THEOREM 4.1.10. The Euler class is characterized by

η
U
S ∧π

∗ (eU
S
)
= η

U
S ∧η

U
S ∈ H2m

c (U) .

In particular eU
S = 0 if m is odd.

PROOF. Since π∗
(
eU

S

)
and ηU

S represent the same class in Hm (U) we have that

π
∗ (eU

S
)
−η

U
S = dω.

Then

η
U
S ∧π

∗ (eU
S
)
−η

U
S ∧η

U
S = η

U
S ∧ (dω)

= d
(
η

U
S ∧ω

)
.

Since ηU
S ∧ω is compactly supported this shows that ηU

S ∧π∗
(
eU

S

)
= ηU

S ∧ηU
S .
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Moreover, as the map

Hm (S) → H2m
c (U) ,

e 7→ η
U
S ∧π

∗ (e)

is injective, it follows that that the relation ηU
S ∧π∗ (e) = ηU

S ∧ηU
S implies that e = eU

S . In
particular, eU

S = 0 when ηU
S ∧ηU

S = 0. This applies to the case when m is odd as

η
U
S ∧η

U
S =−η

U
S ∧η

U
S .

�

4.2. The Hopf-Lefschetz Formulas

We are going to relate the Euler characteristic and Lefschetz numbers to the cohomol-
ogy of the space.

THEOREM 4.2.1. (Hopf-Poincaré) Let M be a closed oriented n-manifold, then

χ (M) = I (∆,∆) = ∑(−1)p dimH p (M) .

PROOF. If we consider the map

(id, id) : M→ ∆,

(id, id)(x) = (x,x) ,

then the Euler characteristic can be computed as the intersection number

χ (M) = I (∆,∆)

= I ((id, id) ,∆)

=
∫

M
(id, id)∗

(
η

M×M
∆

)
.

Thus we need a formula for the Poincaré dual η∆ = η
M×M
∆

. To find this formula we use
Künneth’s formula for the cohomology of the product. To this end select a basis ωi for the
cohomology theory H∗ (M) and a dual basis τi, i.e.,∫

M
ωi∧ τ j = δi j,

where the integral is assumed to be zero if the form ωi∧ τ j doesn’t have degree n.
By Künneth’s theorem π∗1 (ωi)∧π∗2 (τ j) is a basis for H∗ (M×M) . The dual basis is

up to a sign given by π∗1 (τk)∧π∗2 (ωl) as we can see by calculating∫
M×M

π
∗
1 (ωi)∧π

∗
2 (τ j)∧π

∗
1 (τk)∧π

∗
2 (ωl)

= (−1)degτ j degτk

∫
M×M

π
∗
1 (ωi)∧π

∗
1 (τk)∧π

∗
2 (τ j)∧π

∗
2 (ωl)

= (−1)degτ j(degτk+degωl)
∫

M×M
π
∗
1 (ωi)∧π

∗
1 (τk)∧π

∗
2 (ωl)∧π

∗
2 (τ j)

= (−1)degτ j(degτk+degωl)

(∫
M

ωi∧ τk

)(∫
M

ωl ∧ τ j

)
= (−1)degτ j(degτk+degωl) δikδl j

Clearly this vanishes unless i = k and l = j.
This can be used to compute η∆ for ∆⊂M×M. We assume that

η∆ = ∑ci jπ
∗
1 (ωi)∧π

∗
2 (τ j) .
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On one hand ∫
M×M

η∆∧π
∗
1 (τk)∧π

∗
2 (ωl)

= ∑ci j

∫
M×M

π
∗
1 (ωi)∧π

∗
2 (τ j)∧π

∗
1 (τk)∧π

∗
2 (ωl)

= ∑ci j (−1)degτ j(degτk+degωl) δkiδ jl

= ckl (−1)degτl(degτk+degωl)

On the other hand using that (id, id) : M→ ∆ is a map of degree 1 tells us that∫
M×M

η∆∧π
∗
1 (τk)∧π

∗
2 (ωl) =

∫
∆

π
∗
1 (τk)∧π

∗
2 (ωl)

=
∫

M
(id, id)∗ (π∗1 (τk)∧π

∗
2 (ωl))

=
∫

M
τk ∧ωl

= (−1)deg(τk)deg(ωl) δkl .

Thus

ckl (−1)degτl(degωl+degτk) = (−1)degτk degωl δkl

or in other words ckl = 0 unless k = l and in that case

ckk = (−1)degτk(2degωk+degτk)

= (−1)degτk degτk

= (−1)degτk .

This yields the formula

η∆ = ∑(−1)degτi π
∗
1 (ωi)∧π

∗
2 (τi) .

The Euler characteristic can now be computed as follows

χ (M) =
∫

M
(id, id)∗

(
η

M×M
∆

)
=

∫
M
(id, id)∗

(
∑(−1)degτi π

∗
1 (ωi)∧π

∗
2 (τi)

)
= ∑(−1)degτi

∫
M

ωi∧ τi

= ∑(−1)degτi

= ∑(−1)p dimH p (M) .

�

A generalization of this leads us to a similar formula for the Lefschetz number of a
map F : M→M.

THEOREM 4.2.2. (Hopf-Lefschetz) Let F : M→M, then

L(F) = I (graph(F) ,∆) = ∑(−1)p tr(F∗ : H p (M)→ H p (M)) .



4.3. EXAMPLES OF LEFSCHETZ NUMBERS 89

PROOF. This time we use the map (id,F) : M→ graph(F) sending x to (x,F (x)) to
compute the Lefschetz number

I (graph(F) ,∆) =
∫

M
(id,F)∗η∆

=
∫

M
(id,F)∗

(
∑(−1)degτi π

∗
1 (ωi)∧π

∗
2 (τi)

)
= ∑(−1)degτi

∫
M

ωi∧F∗τi

= ∑(−1)degτi

∫
M

ωi∧Fi jτ j

= ∑(−1)degτi Fi jδi j

= ∑(−1)degτi Fii

= ∑(−1)p tr(F∗ : H p (M)→ H p (M)) .

�

The definition I (graph(F) ,∆) for the Lefschetz number is not consistent with [Guillemin-Pollack].
But if we use their definition then the formula we just established would have a sign
(−1)dimM on it. This is a very common confusion in the general literature.

4.3. Examples of Lefschetz Numbers

It is in fact true that tr(F∗ : H p (M)→ H p (M)) is always an integer, but to see this
requires that we know more algebraic topology. In the cases we study here this will be
established directly. Two cases where we do know this to be true are when p = 0 or
p = dimM, in those cases

tr
(
F∗ : H0 (M)→ H0 (M)

)
= # of components of M,

tr(F∗ : Hn (M)→ Hn (M)) = degF.

4.3.1. Spheres and Real Projective Spaces. The simplicity of the cohomology of
spheres and odd dimensional projective spaces now immediately give us the Lefschetz
number in terms of the degree.

When F : Sn→ Sn we have L(F) = 1+(−1)n degF. This conforms with our knowl-
edge that any map without fixed points must be homotopic to the antipodal map and there-
fore have degree (−1)n+1 .

When F : RP2n+1 → RP2n+1 we have L(F) = 1− deg(F) . This also conforms with
our feeling for what happens with orthogonal transformations. Namely, if F ∈ Gl+2n+2 (R)
then it doesn’t have to have a fixed point as it doesn’t have to have an eigenvector, while if
F ∈ Gl−2n+2 (R) there should be at least two fixed points.

The even dimensional version F : RP2n→ RP2n is a bit trickier as the manifold isn’t
orientable and thus our above approach doesn’t work. However, as the only nontrivial
cohomology group is when p = 0 we would expect the mod 2 Lefschetz number to be
1 for all F. When F ∈ Gl2n+1 (R) , this is indeed true as such maps have an odd number
of real eigenvalues. For general F we can lift it to a map F̃ : S2n → S2n satisfying the
symmetry condition

F̃ (−x) =±F̃ (x) .
The sign ± must be consistent on the entire sphere. If it is + then we have that F̃ ◦A = F̃ ,

where A is the antipodal map. This shows that deg F̃ · (−1)2n+1 = deg F̃ , and hence that
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deg F̃ = 0. In particular, F̃ and also F must have a fixed point. If the sign is − and we
assume that F̃ doesn’t have a fixed point, then the homotopy to the antipodal map

H (x, t) =
(1− t) F̃ (x)− tx∣∣(1− t) F̃ (x)− tx

∣∣
must also be odd

H (−x, t) =
(1− t) F̃ (−x)− t (−x)∣∣(1− t) F̃ (−x)− t (−x)

∣∣
= − (1− t) F̃ (x)− t (x)∣∣(1− t) F̃ (x)− t (x)

∣∣
= −H (x, t) .

This implies that F is homotopic to the identity on RP2n and thus L(F) = L(id) = 1.

4.3.2. Tori. Next let us consider M = T n. The torus is a product of n circles. If we let
θ be a generator for H1

(
S1
)

and θi = π∗i (θ), where πi : T n→ S1 is the projection onto the
ith factor, then Künneth formula tells us that H p (T n) has a basis of the form θi1 ∧·· ·∧θip ,
i1 < · · · < ip. Thus F∗ is entirely determined by knowing what F∗ does to θi. We write
F∗ (θi) = αi jθ j. The action of F∗ on the basis θi1 ∧·· ·∧θip , i1 < · · ·< ip is

F∗
(
θi1 ∧·· ·∧θip

)
= F∗ (θi1)∧·· ·∧F∗

(
θip

)
= αi1 j1θ j1 ∧·· ·∧αip jpθ jp

=
(
αi1 j1 · · ·αip jp

)
θ j1 ∧·· ·∧θ jp

this is zero unless j1, ..., jp are distinct. Even then, these indices have to be reordered thus
introducing a sign. Note also that there are p! ordered j1, ..., jp that when reordered to
be increasing are the same. To find the trace we are looking for the “diagonal” entries,
i.e., those j1, ..., jp that when reordered become i1, ..., ip. If S (i1, ..., ip) denotes the set of
permutations of i1, ..., ip then we have shown that

trF∗|H p(T n) = ∑
i1<···<ip

∑
σ∈S(i1,...,ip)

sign(σ)αi1σ(i1) · · ·αipσ(ip).

This leads us to the formula

L(F) =
n

∑
p=0

(−1)p
∑

i1<···<ip

∑
σ∈S(i1,...,ip)

sign(σ)αi1σ(i1) · · ·αipσ(ip).

We claim that this can be simplified considerably by making the observation

det(δi j−αi j) = ∑
σ∈S(1,...,n)

sign(σ)
(
δ1σ(1)−α1σ(1)

)
· · ·
(
δnσ(n)−αnσ(n)

)
= ∑

σ∈S(1,...,n)
sign(σ)(−1)p

αi1σ(i1) · · ·αipσ(ip)δip+1σ(ip+1) · · ·δinσ(in),

where in the last sum
{

i1, ..., ip, ip+1, ..., in
}
= {1, ...,n} . Since the terms vanish unless the

permutation fixes ip+1, ..., in we have shown that

L(F) = det(δi j−αi j) .

Finally we claim that the n×n matrix [αi j] has integer entries. To see this first lift F
to F̃ : Rn → Rn and think of T n = Rn/Zn where Zn is the usual integer lattice. Let ei be
the canonical basis for Rn and observe that ei ∈ Zn. The fact that F̃ is a lift of a map in T n
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means that F̃ (x+ ei)− F̃ (x) ∈ Zn for all x and i = 1, ...,n. Since F̃ is continuous we see
that

F̃ (x+ ei)− F̃ (x) = F̃ (ei)− F̃ (0) = Aei ∈ Zn

For some A = [ai j] ∈Matn×n (Z) . We can then construct a linear homotopy

H (x, t) = (1− t) F̃ (x)+ t (Ax) .

Since

H (x+ ei, t) = (1− t) F̃ (x+ ei)+ tA(x+ ei)

= (1− t)
(
F̃ (x)+Aei

)
+ t (Ax+Aei)

= (1− t)
(
F̃ (x)

)
+ t (Ax)+Aei

= H (x, t)+Aei

we see that this defines a homotopy on T n as well. Thus showing that F is homotopic to
the linear map A on T n. This means that F∗ = A∗. Since A∗ (θi) = a jiθ j, we have shown
that [αi j] is an integer valued matrix.

4.3.3. Complex Projective Space. The cohomology groups of Pn = CPn vanish in
odd dimensions and are one dimensional in even dimensions. The trace formula for the
Lefschetz number therefore can’t be too complicated. It turns out to be even simpler and
completely determined by the action of the map on H2 (Pn) , analogously with what hap-
pened on tori. To show this we need to show that any generator ω ∈ H2 (Pn) has the
property that ωk ∈ H2k (Pn) is a generator. We can use induction on n to show this. Fix
Pn−1 ⊂ Pn and recall from section 3.2 that H2k (Pn)→ H2k

(
Pn−1

)
is an isomorphism for

k≤ n−1. We can now use the induction hypothesis to claim that ωk|Pn−1 ∈H2k
(
Pn−1

)
are

nontrivial for k≤ n−1. This in turn shows that ωk ∈H2k (Pn) are nontrivial for k≤ n−1.
Finally, since the duality pairing

H2 (Pn)×H2(n−1) (Pn) → H2n (Pn) ,

(ω1,ω2) 7→ ω1∧ω2

is nondegenerate it follows that ωn = ω ∧ωn−1 ∈ H2n (Pn) is a generator.
Such a form can be constructed to have the property that

∫
P1 ω = 1 for all P1 ⊂ Pn.

One way of constructing such a form is to note that U (n+1) acts transitively on the space
of P1s in Pn. Specifically, a P1 corresponds to a complex subspace of dimension 2 in
Cn+1 and for any two such subspaces there is a unitary transformation that take one into
the other. Thus we are finished if we can find a closed 2-form that is invariant under the
unitary group and integrates to 1 on just one P1.

Since U (n+1) is compact we can average any closed 2-form on Pn to get an invariant
closed 2-form

τ̄ =
1

volU (n+1)

∫
U(n+1)

(U∗τ)dU.

Next note that U 7→
∫
P1 U∗τ is nonnegative, continuous, and positive for U = I. In

particular,
∫
P1 τ̄ > 0. We can then define ω = 1∫

P1 τ̄
τ̄ . A more explicit form is described at

the end of the section.
Now let F : Pn→ Pn and define λ by F∗ (ω) = λω. Then F∗

(
ωk
)
= λ kωk and

L(F) = 1+λ + · · ·+λ
n.
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If λ = 1 this gives us L(F) = n+1, which was the answer we got for maps from Gln+1 (C) .
In particular, the Euler characteristic χ (Pn) = n+ 1. When λ 6= 1, the formula simplifies
to

L(F) =
1−λ n+1

1−λ
.

Since λ is real we note that this can’t vanish unless λ = −1 and n+ 1 is even. Thus all
maps on P2n have fixed points, just as on RP2n. On the other hand P2n+1 does admit a map
without fixed points, it just can’t come from a complex linear map. Instead we just select
a real linear map without fixed points that still yields a map on P2n+1

I
([

z0 : z1 : · · ·
])

=
[
−z̄1 : z̄0 : · · ·

]
.

If I fixes a point then

−λ z̄1 = z0,

λ z̄0 = z1

which implies

−|λ |2 zi = zi

for all i. Since this is impossible the map does not have any fixed points.
Finally we should justify why λ is an integer. Let F1 = F |P1 : P1 → Pn and observe

that

λ =
∫
P1

F∗ (ω)

=
∫
P1

F∗1 (ω) .

We now claim that F1 is homotopic to a map P1→ P1. To see this note that F1
(
P1
)
⊂ Pn

is compact and has measure 0 by Sard’s theorem. Thus we can find p /∈ im(F1)∪ P1.
This allows us to deformation retract Pn − p to a Pn−1 ⊃ P1. This Pn−1 might not be
perpendicular to p in the usual metric, but one can always select a metric where p and
P1 are perpendicular and then use the Pn−1 that is perpendicular to p. Thus F1 : P1→ Pn

is homotopic to a map F2 : P1 → Pn−1. We can repeat this argument until we get a map
Fn : P1→ P1 homotopic to the original F1. This shows that

λ =
∫
P1

F∗1 (ω)

=
∫
P1

F∗n (ω)

= deg(Fn)
∫
P1

ω

= deg(Fn) .

EXAMPLE 4.3.1. Finally we give a concrete description of such a form. This descrip-
tion combined with the fact that τ (Pn) and Pn+1−{p} are isomorphic bundles over Pn

with conjugate structures, i.e., they have opposite orientations but are isomorphic over R,
shows that the Euler class eτ(Pn)

Pn ∈ H2 (Pn) also generates the cohomology of Pn.

Using the submersion Cn+1 − {0} → Pn that sends
(
z0, ...,zn

)
to
[
z0 : · · · : zn

]
we

should be able to construct ω on Cn+1. To make the form as nice as possible we want
it to be U (n+1) invariant. This is extremely useful as it will force

∫
P1 ω to be the same for
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all P1 ⊂ Pn. Since ω is closed it will also be exact on Cn+1. We use a bit of auxiliary nota-
tion to define the desired 2-form ω on Cn+1−{0} as well as some complex differentiation
notation

dzi = dxi +
√
−1dyi,

dz̄i = dxi−
√
−1dyi,

∂ f
∂ zi =

1
2

(
∂ f
∂xi −

√
−1

∂ f
∂yi

)
,

∂ f
∂ z̄i =

1
2

(
∂ f
∂xi +

√
−1

∂ f
∂yi

)
∂ f =

∂ f
∂ zi dzi,

∂̄ f =
∂ f
∂ z̄i dz̄i.

The factor 1
2 and strange signs ensure that the complex differentials work as one would

think

dz j
(

∂

∂ zi

)
=

∂ z j

∂ zi = δ
j

i =
∂ z̄ j

∂ z̄i = dz̄ j
(

∂

∂ z̄i

)
,

dz j
(

∂

∂ z̄i

)
= 0 = dz̄ j

(
∂

∂ zi

)
More generally we can define ∂ω and ∂̄ω for complex valued forms by simply computing
∂ and ∂̄ of the coefficient functions just as the local coordinate definition of d, specifically

∂
(

f dzi1 ∧·· ·∧dzip ∧dz̄ j1 ∧·· ·∧dz̄ jq
)

= ∂ f ∧dzi1 ∧·· ·∧dzip ∧dz̄ j1 ∧·· ·∧dz̄ jq ,

∂̄
(

f dzi1 ∧·· ·∧dzip ∧dz̄ j1 ∧·· ·∧dz̄ jq
)

= ∂̄ f ∧dzi1 ∧·· ·∧dzip ∧dz̄ j1 ∧·· ·∧dz̄ jq .

With this definition we see that

d = ∂ + ∂̄ ,

∂
2 = ∂̄

2 = ∂ ∂̄ + ∂̄ ∂ = 0

and the Cauchy-Riemann equations for holomorphic functions can be stated as

∂̄ f = 0.

Working on Cn+1−{0} define

Φ(z) = log |z|2

= log
(
z0z̄0 + · · ·+ znz̄n)

and

ω =

√
−1

2π
∂ ∂̄Φ.

As |z|2 is invariant under U (n+1) the form ω will also be invariant. If we multiply z ∈
Cn+1−{0} by a nonzero scalar λ then

Φ(λ z) = log
(
|λ z|2

)
= log |λ |2 + log |z|2

= log |λ |2 +Φ(z)

so when taking derivatives the constant log |λ |2 disappears. This shows that the form ω

becomes invariant under multiplication by scalars. That said, it is not possible to define Φ
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on all of Pn. We give a local coordinate representation below. It is called the potential, or
Kähler potential, of ω. Note that the form is exact on Cn+1−{0} since

∂ ∂̄ =
(
∂ + ∂̄

)
∂̄ = d∂̄ .

To show that ω is a nontrivial element of H2 (Pn) it suffices to show that
∫
P1 ω 6= 0.

By deleting a point from P1 we can coordinatize it by C. Specifically we consider

P1 =
[
z0 : z1 : 0 : · · · : 0

]
,

and coordinatize P1−{[0 : 1 : 0 : · · · : 0]} by z 7→ [1 : z : 0 : · · · : 0] . Then

ω =

√
−1

2π
∂ ∂̄ log(1+ zz̄)

=

√
−1

2π

(
∂

(
zdz̄

1+ |z|2

))

=

√
−1

2π

 ∂ (zdz̄)

1+ |z|2
−
(

∂

(
1+ |z|2

))
∧ zdz̄(

1+ |z|2
)2


=

√
−1

2π

 dz∧dz̄

1+ |z|2
− (z̄dz)∧ zdz̄(

1+ |z|2
)2


=

√
−1

2π

 dz∧dz̄

1+ |z|2
− |z|

2 dz∧dz̄(
1+ |z|2

)2


=

√
−1

2π

dz∧dz̄(
1+ |z|2

)2

=

√
−1

2π

d
(
x+
√
−1y

)
∧d
(
x−
√
−1y

)
(1+ x2 + y2)2

=

√
−1

2π

2
√
−1dy∧dx

(1+ x2 + y2)2

=
1
π

dx∧dy

(1+ x2 + y2)2

=
1
π

rdr∧dθ

(1+ r2)2

If we delete the π in the formula this is the volume form for the sphere of radius 1
2 in

stereographic coordinates, or the volume form for that sphere in Riemann’s conformally
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flat model. ∫
P1

ω =
∫
P1−{[0:1:0:···:0]}

ω

=
∫
C

1
2π
√
−1

dz̄∧dz(
1+ |z|2

)2

=
∫
R2

1
π

dx∧dy

(1+ x2 + y2)2

=
1
π

∫
∞

0

∫ 2π

0

rdr∧dθ

(1+ r2)2

=
∫

∞

0

2rdr

(1+ r2)2

= 1.

We can more generally calculate ω in the coordinates z =
(
z1, ...,zn

)
∈Cn correspond-

ing to points
[
1 : z1 : · · · : zn

]
∈ Pn.

ω =

√
−1

2π
∂ ∂̄ log

(
1+ z1z̄1 + · · ·+ znz̄n)

=

√
−1

2π
∂ ∂̄ log

(
1+ |z|2

)
=

√
−1

2π

(
∂

(
∂̄ |z|2

1+ |z|2

))

=

√
−1

2π

 ∂ ∂̄ |z|2

1+ |z|2
− ∂ |z|2∧ ∂̄ |z|2(

1+ |z|2
)2


=

√
−1

2π

(
1+ |z|2

)2

((
1+ |z|2

)
∂ ∂̄ |z|2−∂ |z|2∧ ∂̄ |z|2

)
and in coordinates

ω =

√
−1

2π
∂ ∂̄ log

(
1+ |z|2

)
=

√
−1

2π

∂ 2 log
(

1+ |z|2
)

∂ zi∂ z̄ j dzi∧dz̄ j

=

√
−1

2π
Fi j̄dzi∧dz̄ j.

Here the matrix
[
Fi j̄
]

is Hermitian and we clain it is positive definite. The entries are given
by

Fi j̄ =

(
1+ |z|2

)
δi j− z j z̄i(

1+ |z|2
)2 .

Here the matrix
[
z j z̄i
]
= z · z∗, where z∗ is the adjoint of the column matrix z. In particular,

the kernel of z · z∗ consists of all the vectors orthogonal to z and z is an eigenvector with
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eigenvalue |z|2. This also gives the eigenspace decomposition for
[
Fi j̄
]
. Specifically, n−1

eigenvectors with eigenvalue 1
1+|z|2

and one with eigenvalue 1

(1+|z|2)
2 . Thus det

[
Fi j̄
]
=(

1+ |z|2
)−n−1

.
We can now calculate

ω
n =

(√
−1

2π

)n (
Fi j̄dzi∧dz̄ j)n

=

(√
−1

2π

)n (
Fi1 j̄1 · · ·Fin j̄ndzi1 ∧dz̄ j1 ∧·· ·∧dzin ∧dz̄ jn

)
Now note that this vanishes unless all of the indices i1, ..., in, as well as j1, ..., jn, are dis-
tinct. After rearraging then we obtain

ω
n =

(√
−1

2π

)n

sign(i1, ..., in)sign( j1, ..., jn)Fi1 j̄1 · · ·Fin j̄ndz1∧dz̄1∧·· ·∧dzn∧dz̄n

=

(√
−1

2π

)n

n!det
[
Fi j̄
]

dz1∧dz̄1∧·· ·∧dzn∧dz̄n

=
n!

πn
(

1+ |z|2
)n+1 dx1∧dy1∧·· ·∧dxn∧dyn

and∫
Pn

ω
n =

∫
Pn−Pn−1

ω
n =

∫
R2n

πn!

 1

π

(
1+ |z|2

)
n+1

dx1∧dy1∧·· ·∧dxn∧dyn > 0.

This shows that ωn is a volume form and that ωk ∈ H2k (Pn) is a generator for all k =
0, ...,n.

4.4. The Euler Class

We are interested in studying duals and in particular Euler classes in the special case
where we have a vector bundle π : E → M and M is thought of a submanifold of E by
embedding it into E via the zero section. The total space E is assumed oriented in such
a way that a positive orientation for the fibers together with a positive orientation of M
gives us the orientation for E. The dimensions are set up so that the fibers of E→M have
dimension m.

The dual ηE
M ∈ Hm

c (E) is in this case usually called the Thom class of the bundle
E→M. The embedding M ⊂ E is proper so by restriction this dual defines a class e(E) ∈
Hm (M) called the Euler class (note that we only defined duals to closed submanifolds
so Hc (M) = H (M) .) Since all sections s : M → E are homotopy equivalent we see that
e(E) = s∗ηM. This immediately proves a very interesting theorem generalizing our earlier
result for trivial tubular neighborhoods.

THEOREM 4.4.1. If a bundle π : E→M has a nowhere vanishing section then e(E) =
0.

PROOF. Let s : M→ E be a section and consider C · s for a large constant C. Then the
image of C ·s must be disjoint from the compact support of ηM and hence s∗ (ηM) = 0. �

This Euler class is also natural
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PROPOSITION 4.4.2. Let F : N→M be a map that is covered by a vector bundle map
F̄ : E ′→ E, i.e., F̄ is a linear orientation preserving isomorphism on fibers. Then

e
(
E ′
)
= F∗ (e(E)) .

An example is the pull-back vector bundle is defined by

F∗ (E) = {(p,v) ∈ N×E : π (v) = F (q)} .

Reversing orientation of fibers changes the sign of ηE
M and hence also of e(E). Using

F = id and F̄ (v) =−v yields an orientation reversing bundle map when k is odd, showing
that e(E) = 0. Thus we usually only consider Euler classes for even dimensional bundles.

The Euler class can also be used to detect intersection numbers as we have see before.
In case M and the fibers have the same dimension, we can define the intersection number
I (s,M) of a section s : M→ E with the zero section or simply M. The formula is

I (s,M) =
∫

M
s∗ (e(E))

=
∫

M
e(E)

since all sections are homotopy equivalent to the zero section.
In the special case of the tangent bundle to an oriented manifold M we already know

that the intersection number of a vector field X with the zero section is the Euler character-
istic. Thus

χ (M) = I (X ,M) =
∫

M
e(T M)

This result was first proven by Hopf and can be used to compute χ using a triangula-
tion. This is explained in [Guillemin-Pollack] and [Spivak].

The Euler class has other natural properties when we do constructions with vector
bundles.

THEOREM 4.4.3. Given two vector bundles E → M and E ′ → M, the Whitney sum
has Euler class

e
(
E⊕E ′

)
= e(E)∧ e

(
E ′
)
.

PROOF. As we have a better characterization of duals we start with a more general
calculation.

Let π : E →M and π ′ : E ′→M′ be bundles and consider the product bundle π×π ′ :
E×E ′→M×M′. With this we have the projections π1 : E×E ′→ E and π2 : E×E ′→ E ′.
Restricting to the zero sections gives the projections π1 : M×M′→M and π2 : M×M′→
M′. We claim that

ηM×M′ = (−1)n·m′
π
∗
1 (ηM)∧π

∗
2 (ηM′) ∈ Hm+m′

c
(
E×E ′

)
.

Note that since the projections are not proper it is not clear that π∗1 (ηM)∧ π∗2 (ηM′) has
compact support. However, the support must be compact when projected to E and E ′ and
thus be compact in E ×E ′. To see the equality we select volume forms ω ∈ Hn (M) and
ω ′ ∈ Hn′ (M′) that integrate to 1. Then π∗1 (ω)∧π∗2 (ω

′) is a volume form on M×M′ that
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integrates to 1. Thus it suffices to compute∫
E×E ′

π
∗
1 (ηM)∧π

∗
2 (ηM′)∧

(
π×π

′)∗ (
π
∗
1 (ω)∧π

∗
2
(
ω
′))

=
∫

E×E ′
π
∗
1 (ηM)∧π

∗
2 (ηM′)∧π

∗
1 (π

∗ (ω))∧π
∗
2
((

π
′)∗ (

ω
′))

= (−1)n·m′
∫

E×E ′
π
∗
1 (ηM)∧π

∗
1 (π

∗ (ω))∧π
∗
2 (ηM′)∧π

∗
2
((

π
′)∗ (

ω
′))

= (−1)n·m′
(∫

E
ηM ∧π

∗ (ω)

)(∫
E ′

ηM′ ∧
(
π
′)∗ (

ω
′))

= (−1)n·m′ .

When we consider Euler classes this gives us

e
(
E×E ′

)
= π

∗
1 (e(E))∧π

∗
2
(
e
(
M′
))
∈ Hm+m′

c
(
M×M′

)
.

The sign is now irrelevant since e(M′) = 0 if m′ is odd.
The Whitney sum E⊕E ′→M of two bundles over the same space is gotten by tak-

ing direct sums of the vector space fibers over points in M. This means that E ⊕ E ′ =
(id, id)∗ (E×E ′) where (id, id) : M→M×M since

(id, id)∗
(
E×E ′

)
=
{(

p,v,v′
)
∈M×E×E ′ : π (v) = p = π

′ (v′)}= E⊕E ′.

Thus we get the formula
e
(
E⊕E ′

)
= e(E)∧ e

(
E ′
)
.

�

This implies

COROLLARY 4.4.4. If a bundle π : E → M admits an orientable odd dimensional
sub-bundle F ⊂ E, then e(E) = 0.

PROOF. We have that E = F ⊕E/F or if E carries an inner product structure E =
F⊕F⊥. Now orient F and then E/F so that F⊕E/F and E have compatible orientations.
Then e(E) = e(F)∧ e(E/F) = 0. �

Note that if there is a nowhere vanishing section, then there is a 1 dimensional ori-
entable subbundle. So this recaptures our earlier vanishing theorem. Conversely any ori-
entable 1 dimensional bundle is trivial and thus yields a nowhere vanishing section.

A meaningful theory of invariants for vector bundles using forms should try to avoid
odd dimensional bundles altogether. The simplest way of doing this is to consider vector
bundles where the vector spaces are complex and then insist on using only complex and
Hermitian constructions. This will be investigated further below.

The trivial bundles Rm⊕M all have e(Rm⊕M) = 0. This is because these bundles are
all pull-backs of the bundle Rm⊕{0} , where {0} is the 1 point space.

To compute e(τ (Pn)) recall that τ (Pn) is the conjugate of Pn+1−{p} → Pn which
has dual ηPn = ω. Since conjugation reverses orientation on 1 dimensional bundles this
shows that e(τ (Pn)) =−ω.

Since χ (Pn) = n+1 we know that e(TPn) = (n+1)ωn.
We go on to describe how the dual and Euler class can be calculated locally. Assume

that M is covered by sets Uk such that E|Uk is trivial and that there is a partition of unit λk
relative to this covering.
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First we analyze what the dual restricted to the fibers might look like. For that purpose
we assume that the fiber is isometric to Rm. We select a volume form ψ ∈ Ωm−1

(
Sm−1

)
that integrates to 1 and a bump function ρ : [0,∞)→ [−1,0] that is −1 on a neighborhood
of 0 and has compact support. Then extend ψ to Rm−{0} and consider

d (ρψ) = dρ ∧ψ.

Since dρ vanishes near the origin this is a globally defined form with total integral∫
Rm

dρ ∧ψ =
∫

∞

0
dρ

∫
Sm−1

ψ

= (ρ (∞)−ρ (0))
= 1.

Each fiber of E carries such a form. The bump function ρ is defined on all of E by ρ (v) =
ρ (|v|) , but the “angular” form ψ is not globally defined. As we shall see, the Euler class
is the obstruction for ψ to be defined on E. Over each Uk the bundle is trivial so we do get
a closed form ψk ∈ Ωm−1

(
S
(
E|Uk

))
that restricts to the angular form on fibers. As these

forms agree on the fibers the difference depends only on the footpoints:

ψk−ψl = π
∗
φkl ,

where φkl ∈Ωm−1 (Uk ∩Ul) are closed. These forms satisfy the cocycle conditions

φkl = −φlk,

φki +φil = φkl .

Now define

εk = ∑
i

λiφki ∈Ω
m−1 (Uk)

and note that the cocycle conditions show that

εk− εl = ∑
i

λiφki−∑
i

λiφli

= ∑
i

λi (φki−φli)

= ∑
i

λiφkl

= φkl .

Thus we have a globally defined form e = dεk on M since d (εk− εl) = dφkl = 0. This will
turn out to be the Euler form

e = d

(
∑

i
λiφki

)
= ∑

i
dλi∧φki.

Next we observe that

π
∗
εk−π

∗
εl = ψk−ψl

so

ψ = ψk−π
∗
εk
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defines a form on E. This is our global angular form. We now claim that

η = d (ρψ)

= dρ ∧ψ +ρdψ

= dρ ∧ψ−ρπ
∗dεk

= dρ ∧ψ−ρπ
∗e

is the dual. First we note that it is defined on all of E, is closed, and has compact support.
It yields e when restricted to the zero section as ρ (0) = −1. Finally when restricted to a
fiber we can localize the expression

η = dρ ∧ψk−dρ ∧π
∗
εk−ρπ

∗e.

But both π∗εk and π∗e vanish on fibers so η , when restricted to a fiber, is simply the form
we constructed above whose integral was 1. This shows that η is the dual to M in E and
that e is the Euler class.

We are now going to specialize to complex line bundles with a Hermitian structure on
each fiber. Since an oriented Euclidean plane has a canonical complex structure this is the
same as studying oriented 2-plane bundles. The complex structure just helps in setting up
the formulas.

The angular form is usually denoted dθ as it is the differential of the locally defined
angle. To make sense of this we select a unit length section sk : Uk → S

(
E|Uk

)
. For v ∈

S
(
E|Uk

)
the angle can be defined by

v = hk (v)sk = e
√
−1θk sk.

This shows that the angular form is given by

dθk = −
√
−1

dhk

hk

= −
√
−1d loghk.

Since we want the unit circles to have unit length we normalize this and define

ψk =−
√
−1

2π
d loghk.

On Uk ∩Ul we have that

hlsl = v = hksk

So

(hl)
−1 hksk = sl .

But (hl)
−1 hk now only depends on the base point in Uk ∩Ul and not on where v might be

in the unit circle. Thus

π
∗gkl = gkl ◦π = hk (hl)

−1

where gkl : Uk ∩Ul → S1 satisfy the cocycle conditions

(gkl)
−1 = glk

gkigil = gkl .
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Taking logarithmic differentials then gives us

−
√
−1

2π
π
∗ dgkl

gkl
= −

√
−1

2π
π
∗d log(gkl)

=

(
−
√
−1

2π
d log(hk)

)
−
(
−
√
−1

2π
d log(hl)

)
=

(
−
√
−1

2π

dhk

hk

)
−
(
−
√
−1

2π

dhl

hl

)
.

Thus

εk = −
√
−1

2π
∑

i
λid log(gki) ,

ψ =

(
−
√
−1

2π

dhk

hk

)
−π

∗
εk

e = dεk

= d

(√
−1

2π
∑

i
λid log(gki)

)

=

√
−1

2π
∑

i
dλi∧d log(gki)

This can be used to prove an important result.

LEMMA 4.4.5. Let E→M and E ′→M be complex line bundles, then

e
(
hom

(
E,E ′

))
= −e(E)+ e

(
E ′
)
,

e
(
E⊗E ′

)
= e(E)+ e

(
E ′
)
.

PROOF. Note that the sign ensures that the Euler class vanishes when E = E ′.
Select a covering Uk such that E and E ′ have unit length sections sk respectively tk on

Uk. If we define Lk ∈ hom(E,E ′) such that Lk (sk) = tk, then hk is a unit length section of
hom(E,E ′) over Uk. The transitions functions are

gklsk = sl ,

ḡkltk = tl .

For hom(E,E ′) we see that

Ll (sk) = hk (glksl)

= glkLl (sl)

= glktl
= glkḡkltk
= (gkl)

−1 ḡkltk

Thus

Ll = (gkl)
−1 ḡklLk.
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This shows that

e
(
hom

(
E,E ′

))
= −

√
−1

2π
∑

i
dλi∧d log

(
(gki)

−1 ḡki

)
=

√
−1

2π
∑

i
dλi∧d log(gki)−

√
−1

2π
∑

i
dλi∧d log(ḡki)

= −e(E)+ e
(
E ′
)
.

The proof is similar for tensor products using

sl⊗ tl = (gklsk)⊗ (ḡkltk)

= gkl ḡkl (sk⊗ tk) .

�

4.5. Characteristic Classes

All vector bundles will be complex and for convenience also have Hermitian struc-
tures. Dimensions etc will be complex so a little bit of adjustment is sometimes necessary
when we check where classes live. Note that complex bundles are always oriented since
Glm (C)⊂ Gl+2m (R) .

We are looking for a characteristic class c(E) ∈ H∗ (M) that can be written as

c(E) = c0 (E)+ c1 (E)+ c2 (E)+ · · · ,
c0 (E) = 1 ∈ H0 (M) ,

c1 (E) ∈ H2 (M) ,

c2 (E) ∈ H4 (M) ,

...
cm (E) ∈ H2m (M) ,

cl (E) = 0, l > m

For a 1 dimensional or line bundle we simply define c(E) = 1+ c1 (E) = 1+ e(E) . There
are two more general properties that these classes should satisfy. First they should be
natural in the sense that

c(E) = F∗
(
c
(
E ′
))

where F : M→M′ is covered by a complex bundle map E→ E ′ that is an isomorphism on
fibers. Second, they should satisfy the product formula

c
(
E⊕E ′

)
= c(E)∧ c

(
E ′
)

=
m+m′

∑
p=0

p

∑
i=0

ci (E)∧ cp−i
(
E ′
)

for Whitney sums.
There are two approaches to defining c(E) . In [Milnor-Stasheff] an inductive method

is used in conjunction with the Gysin sequence for the unit sphere bundle. As this approach
doesn’t seem to have any advantage over the one we shall give here we will not present it.
The other method is more abstract, clean, and does not use the Hermitian structure. It is
analogous to the construction of splitting fields in Galois theory and is due to Grothendieck.
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First we need to understand the cohomology of H∗ (P(E)) . Note that we have a natural
fibration π : P(E)→M and a canonical line bundle τ (P(E)) . The Euler class of the line
bundle is for simplicity denoted

e = e(τ (P(E))) ∈ H2 (P(E)) .

The fibers of P(E)→M are Pm−1 and we note that the natural inclusion i : Pm−1→ P(E)
is also natural for the tautological bundles

i∗ (τ (P(E))) = τ
(
Pm−1)

thus showing that

i∗ (e) = e
(
τ
(
Pm−1)) .

As e
(
τ
(
Pm−1

))
generates the cohomology of the fiber we have shown that the Leray-Hirch

formula for the cohomology of the fibration P(E)→M can be applied. Thus any element
ω ∈ H∗ (P(E)) has an expression of the form

ω =
m

∑
i=1

π
∗ (ωi)∧ em−i

where ωi ∈ H∗ (M) are unique. In particular we can write:

0 = (−e)m +π
∗ (c1 (E))∧ (−e)m−1 + · · ·+π

∗ (cm−1 (E))∧ (−e)+π
∗ (cm (E))

=
m

∑
i=0

π
∗ (ci (E))∧ (−e)m−i

This means that H∗ (P(E)) is an extension of H∗ (M) with a unique monic polynomial

pE (t) = tm + c1 (E) tm−1 + · · ·+ cm−1 (E) t + cm (E)

such that pE (−e) = 0. Moreover, the total Chern class is defined as

pE (1) = c(E) = 1+ c1 (E)+ · · ·+ cm (E) .

The reason for using −e rather than e is that −e restricts to the form ω on the fibers of
P(E) .

THEOREM 4.5.1. Assume that we have vector bundles E →M and E ′→M′ both of
rank m, and a smooth map F : M→M′ that is covered by a bundle map that is fiberwise
an isomorphism. Then

c(E) = F∗
(
c
(
E ′
))

.

PROOF. We start by selecting a Hermitian structure on E ′ and then transfer it to E by
the bundle map. In that way the bundle map preserves the unit sphere bundles. Better yet,
we get a bundle map

π
∗ (E)→

(
π
′)∗ (E ′)

that also yields a bundle map

τ (P(E))→ τ
(
P
(
E ′
))

.

Since the Euler classes for these bundles is natural we have

F∗
(
e′
)
= e
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and therefore

0 = F∗
(

m

∑
i=0

ci
(
E ′
)
∧
(
−e′
)m−i

)

=
m

∑
i=0

F∗ci
(
E ′
)
∧ (−e)m−i

Since ci (E) are uniquely defined by

0 =
m

∑
i=0

ci (E)∧ (−e)m−i

we have shown that

ci (E) = F∗ci
(
E ′
)
.

�

The trivial bundles Cm⊕M all have c(Cm⊕M) = 1. This is because these bundles are
all pull-backs of the bundle Cm⊕{0} , where {0} is the 1 point space.

To compute e(τ (Pn)) recall that τ (Pn) is the conjugate of Pn+1−{p} → Pn which
has dual ηPn = ω. Since conjugation reverses orientation on 1 dimensional bundles this
shows that e(τ (Pn)) =−ω.

The Whitney sum formula is established by proving the splitting principle.

THEOREM 4.5.2. If a bundle π : E →M splits E = L1⊕·· ·⊕Lm as a direct sum of
line bundles, then

c(E) =
m

∏
i=1

(1+ e(Li)) .

PROOF. We pull back all classes to E without changing notation. We know that
c(E) = pE (1) so it suffices to identify pE with the monic polynomial of degree m de-
fioned by p(t) = ∏

m
i=1 (t + e(Li)). To prove this we need to show that

p(−e) =
m

∏
i=1

(−e+ e(Li)) = 0.

Note that we can identify−e+e(Li) with the Euler class of hom(τ,Li). With that in mind:

m

∏
i=1

(−e+ e(Li)) = e

(
m⊕

i=1

hom(τ,Li)

)
= e(hom(τ,L1⊕·· ·⊕Lm))

= e(hom(τ,E))

= e
(

hom
(

τ,τ⊕ τ
⊥
))

= e(hom(τ,τ))∧ e
(

hom
(

τ,τ⊥
))

= 0.

Where the last equality follows from the fact that hom(τ,τ) has the identity map as a
nowhere vanishing section. �
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The splitting principle can be used to compute c(TPn) . First note that TPn' hom
(

τ (Pn) ,τ (Pn)⊥
)
.

Thus

TPn⊕C = hom
(

τ (Pn) ,τ (Pn)⊥
)
⊕C

= hom
(

τ (Pn) ,τ (Pn)⊥
)
⊕hom(τ (Pn) ,τ (Pn))

= hom
(

τ (Pn) ,τ (Pn)⊥⊕ τ (Pn)
)

= hom
(
τ (Pn) ,Cn+1)

= hom(τ (Pn) ,C)⊕·· ·⊕hom(τ (Pn) ,C) .

Thus

c(TPn) = c(TPn⊕C)
= (1+ω)n+1 .

This shows that

ci (TPn) =

(
n+1

i

)
ω

i

which conforms with

e(TPn) = cn (TPn) = (n+1)ω
n.

We can now finally establish the Whitney sum formula.

THEOREM 4.5.3. For two vector bundles E→M and E ′→M we have

c
(
E⊕E ′

)
= c(E)∧ c

(
E ′
)
.

PROOF. First we repeatedly projectivize so as to create a map Ñ→M with the prop-
erty that it is an injection on cohomology and the pull-back of E to Ñ splits as a direct sum
of line bundles. Then repeat this procedure on the pull-back of E ′ to Ñ until we finally get
a map F : N→M such that F∗ is an injection on cohomology and both of the bundles split

F∗ (E) = L1⊕·· ·⊕Lm,

F∗
(
E ′
)

= K1⊕·· ·⊕Km′

The splitting principle together with naturality then implies that

F∗
(
c
(
E⊕E ′

))
= c

(
F∗
(
E⊕E ′

))
= c(L1)∧·· ·∧ c(Lm)∧ c(K1)∧·· ·∧ c(Km′)

= c(F∗ (E))∧ c
(
F∗
(
E ′
))

= F∗c(E)∧F∗c
(
E ′
)

= F∗
(
c(E)∧ c

(
E ′
))

.

Since F∗ is an injection this shows that

c
(
E⊕E ′

)
= c(E)∧ c

(
E ′
)
.

�
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4.6. The Gysin Sequence

This sequence allows us to compute the cohomology of certain fibrations where the
fibers are spheres. As we saw above, these fibrations are not necessarily among the ones
where we can use the Hirch-Leray formula. This sequence uses the Euler class and will
recapture the dual, or Thom class, from the Euler class.

We start with an oriented vector bundle π : E → M. It is possible to put a smoothly
varying inner product structure on the vector spaces of the fibration, using that such bundles
are locally trivial and gluing inner products together with a partition of unity on M. The
function E→ R that takes v to |v|2 is then smooth and the only critical value is 0. As such
we get a smooth manifold with boundary

D(E) = {v ∈ E : |v| ≤ 1}

called the disc bundle with boundary

S (E) = ∂D(E) = {v ∈ E : |v|= 1}

being the unit sphere bundle and interior

intD(E) = {v ∈ E : |v|< 1} .

Two different inner product structures will yield different disc bundles, but it is easy to see
that they are all diffeomorphic to each other. We also note that intD(E) is diffeomorphic
to E, while D(E) is homotopy equivalent to E. This gives us a diagram

→ H p
c (intD(E)) → H p (D(E)) → H p (S (E)) → H p+1

c (intD(E)) →
↓ ↑ l ↑

→ H p
c (E) → H p (E) → H p (S (E)) 99K H p+1

c (E) →
where the vertical arrows are simply pull-backs and all are isomorphims. The connecting
homomorphism

H p (S (E))→ H p+1
c (intD(E))

then yields a map
H p (S (E)) 99K H p+1

c (E)

that makes the bottom sequence a long exact sequence. Using the Thom isomorphism

H p−m (M)→ H p
c (E)

then gives us a new diagram

→ H p−m (M)
e∧−→ H p (M) → H p (S (E)) 99K H p+1−m (M) →

↓ ηM ∧π∗ (·) l l ↓
→ H p

c (E) → H p (E) → H p (S (E)) → H p+1
c (E) →

Most of the arrows are pull-backs and the vertical arrows are isomorphisms. The first
square is commutative since π∗i∗ (ηM) = π∗ (e) is represented by ηM in Hm (E) . This
is simply because the zero section I : M → E and projection π : E → M are homotopy
equivalences. The second square is obviously commutative. Thus we get a map

H p (S (E)) 99K H p+1−m (M)

making the top sequence exact. This is the Gysin sequence of the sphere bundle of an
oriented vector bundle. The connecting homomorphism which lowers the degree by m−1
can be constructed explicitly and geometrically by integrating forms on S (E) along the
unit spheres, but we won’t need this interpretation.
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The Gysin sequence also tells us how the Euler class can be used to compute the
cohomology of the sphere bundle from M.

To come full circle with the Leray-Hirch Theorem we now assume that E → M is a
complex bundle of complex dimension m and construct the projectivized bundle

P(E) =
{
(p,L) | L⊂ π

−1 (p) is a 1 dimensional subspace
}

This gives us projections
S (E)→ P(E)→M.

There is also a tautological bundle

τ (P(E)) = {(p,L,v) | v ∈ L} .
The unit-sphere bundle for τ is naturally identified with S (E) by

S (E) → S (τ (P(E))) ,
(p,v) → (p,span{v} ,v) .

This means that S (E) is part of two Gysin sequences. One where M is the base and
one where P(E) is the base. These two sequences can be connected in a very interesting
manner.

If we pull back E to P(E) and let

τ
⊥ =

{
(p,L,w) | w ∈ L⊥

}
be the orthogonal complement then we have that

π
∗ (e(E)) = e(π∗ (E)) = e(τ (P(E)))∧ e

(
τ
⊥
)
∈ H∗ (P(E)) .

Thus we obtain a commutative diagram

H p−2 (P(E)) e(τ)∧·−→ H p (P(E))
↘ ↗ ↘ ↗

H p−1 (S (E)) ↑ e
(
τ⊥
)
∧π∗ (·) ↑ π∗ H p (S (E))

↗ ↘ ↗ ↘
H p−2m (M)

e(E)∧·−→ H p (M)

What is more we can now show in two ways that

span
{

1,e, ...,em−1}⊗H∗ (M)→ H∗ (P(E))
is an isomorphism. First we can simply use the Leray-Hirch result by noting that the classes
1,e, ...,em−1 when restricted to the fibers are the usual cohomology classes of the fiber Pm.
Or we can use diagram chases on the above diagram.

4.7. Further Study

There are several texts that expand on the material covered here. The book by [Guillemin-Pollack]
is the basic prerequisite for the material covered in the early chapters. The cohomology
aspects we cover here correspond to a simplified version of [Bott-Tu]. Another text is
the well constructed [Madsen-Tornehave], which in addition explains how characteristic
classes can be computed using curvature. The comprehensive text [Spivak, vol. V] is also
worth consulting for many aspects of the theory discussed here. For a more topological ap-
proach we recommend [Milnor-Stasheff]. Other useful texts are listed in the references.
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