
First Semester in
Numerical Analysis

with Julia
Giray Ökten

First Semester in Numerical Analysis with Julia

Giray Ökten
Department of Mathematics

Florida State University
Tallahassee FL 32306

Version 1.9, corrected 2020-10-12
Copyright © 2020, Giray Ökten

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike

4.0 International License.

You are free to:

Share—copy and redistribute the material in any medium or format

Adapt—remix, transform, and build upon the material

Under the following terms:

Attribution—You must give appropriate credit, provide a link to the license, and

indicate if changes were made. You may do so in any reasonable manner, but not in

any way that suggests the licensor endorses you or your use.

NonCommercial—You may not use the material for commercial purposes.

ShareAlike — If you remix, transform, or build upon the material, you must

distribute your contributions under the same license as the original.

This publication was made possible by an Alternative Textbook Grant issued by Florida

State University Libraries. This work is published by Florida State University Libraries,

116 Honors Way, Tallahassee, FL 32306.

DOI: 10.33009/jul

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.33009/jul

To my father Muzaffer Ökten

Contents

1 Introduction 6
1.1 Review of Calculus . 6
1.2 Julia basics . 9
1.3 Computer arithmetic . 27

2 Solutions of equations: Root-finding 49
2.1 Error analysis for iterative methods . 52
2.2 Bisection method . 53
2.3 Newton’s method . 58
2.4 Secant method . 68
2.5 Muller’s method . 71
2.6 Fixed-point iteration . 74
2.7 High-order fixed-point iteration . 83

3 Interpolation 86
3.1 Polynomial interpolation . 87
3.2 High degree polynomial interpolation . 105
3.3 Hermite interpolation . 110
3.4 Piecewise polynomials: spline interpolation 118

4 Numerical Quadrature and Differentiation 137
4.1 Newton-Cotes formulas . 137
4.2 Composite Newton-Cotes formulas . 143
4.3 Gaussian quadrature . 148
4.4 Multiple integrals . 155
4.5 Improper integrals . 163
4.6 Numerical differentiation . 164

2

CONTENTS 3

5 Approximation Theory 173
5.1 Discrete least squares . 173
5.2 Continuous least squares . 192
5.3 Orthogonal polynomials and least squares 195

References 211

Index 212

Preface

This book is based on my lecture notes for a junior level undergraduate course in Numerical
Analysis. As the title suggests, the content is the standard material covered in the first
semester of Numerical Analysis classes in the colleges in the United States. The reader is
expected to have studied calculus and linear algebra. Some familiarity with a programming
language is beneficial, but not required. The programming language Julia will be introduced
in the book.

The book presents the theory and methods, together with the implementation of the
algorithms using the Julia programming language (version 1.1.0). Incorporating coding and
computing within the main text was my primary objective in writing this book. The sim-
plicity of Julia allows bypassing the pseudocode, and writing a computer code directly after
the description of a method. It also minimizes the distraction the presentation of a computer
code might cause to the flow of the main narrative. The Julia codes are written without
much concern for efficiency; the priority is to write codes that follow the derivations pre-
sented in the text. The Julia software is free, under an MIT license, and can be downloaded
at https://julialang.org.

While writing this book, I badly needed a comic relief, and created a character, a college
student, who makes an appearance in each chapter. The character hopefully brings some
humor and makes Numerical Analysis more interesting to her fellow students! I thank
my daughter Arya Ökten, a college student majoring in applied mathematics herself, who
graciously agreed to let the character use her name! I also thank her for reading parts of the
earlier drafts and making the drawings in the book.

I thank my colleague Paul Beaumont who introduced me to Julia. I thank Sanghyun Lee
who used the book in his Numerical Analysis class and suggested several clarifications and
corrections that improved the book. I thank my colleagues Steve Bellenot, Kyle Gallivan,
Ahmet Göncü, and Mark Sussman for helpful discussions during the writing of the book.
Thanks to Steve for inspiring the example Arya and the letter NUH in Section 3.4, and
thanks to Ahmet for his help with the modeling of weather temperature data example in
Section 5.1. The book was supported by an Alternative Textbook Grant from the Florida

4

https://julialang.org

CONTENTS 5

State University Libraries. I thank Devin Soper, Director of Digital Scholarship, Matthew
Hunter, Digital Scholarship Technologist, and Laura Miller, Digital Scholarship Graduate
Assistant, for their help. Finally, I thank my students in my Numerical Analysis classes.
Their feedback was instrumental in the numerous revisions of the text.

Giray Ökten
December 2018
Tallahassee, Florida

Chapter 1

Introduction

1.1 Review of Calculus

There are several concepts and facts from Calculus that we need in Numerical Analysis. In
this section we will list some definitions and theorems that will be needed later. For the
most part functions in this book refer to real valued functions defined on real numbers R,
or an interval (a, b) ⊂ R.

Definition 1. 1. A function f has the limit L at x0, written as limx→x0 f(x) = L, if for
any ε > 0, there exists δ > 0 such that |f(x)− L| < ε whenever 0 < |x− x0| < δ.

2. A function f is continuous at x0 if limx→x0 f(x) = f(x0), and f is continuous on a set
A if it is continuous at each x0 ∈ A.

3. Let {xn}∞n=1 be an infinite sequence of real numbers. The sequence has the limit x,
i.e., limn→∞ xn = x (or, written as xn → x as n→∞) if for any ε > 0, there exists an
integer N > 0 such that |xn − x| < ε whenever n > N.

Theorem 2. The following are equivalent for a real valued function f :

1. f is continuous at x0

2. If {xn}∞n=1 is any sequence converging to x0, then limn→∞ f(xn) = f(x0).

Definition 3. We say f(x) is differentiable at x0 if

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

= lim
h→0

f(x0 + h)− f(x0)

h

exists.

6

CHAPTER 1. INTRODUCTION 7

Notation: Cn(A) denotes the set of all functions f such that f and its first n derivatives
are continuous on A. If f is only continuous on A, then we write f ∈ C0(A). C∞(A)

consists of functions that have derivatives of all orders, for example, f(x) = sinx or
f(x) = ex.

The following well-known theorems of Calculus will often be used in the remainder of the
book.

Theorem 4 (Mean value theorem). If f ∈ C0[a, b] and f is differentiable on (a, b), then
there exists c ∈ (a, b) such that f ′(c) = f(b)−f(a)

b−a .

Theorem 5 (Extreme value theorem). If f ∈ C0[a, b] then the function attains a minimum
and maximum value over [a, b]. If f is differentiable on (a, b), then the extreme values occur
either at the endpoints a, b or where f ′ is zero.

Theorem 6 (Intermediate value theorem). If f ∈ C0[a, b] and K is any number between
f(a) and f(b), then there exists c ∈ (a, b) with f(c) = K.

Theorem 7 (Taylor’s theorem). Suppose f ∈ Cn[a, b] and f (n+1) exists on (a, b), and x0 ∈
(a, b). Then, for x ∈ (a, b)

f(x) = Pn(x) +Rn(x)

where Pn is the nth order Taylor polynomial

Pn(x) = f(x0) + f ′(x0)(x− x0) + f ′′(x0)
(x− x0)2

2!
+ ...+ f (n)(x0)

(x− x0)n

n!

and Rn is the remainder term

Rn(x) = f (n+1)(ξ)
(x− x0)n+1

(n+ 1)!

for some ξ between x and x0.

Example 8. Let f(x) = x cosx− x.

1. Find P3(x) about x0 = π/2 and use it to approximate f(0.8).

2. Compute the exact value for f(0.8), and the error |f(0.8)− P3(0.8)|.

3. Use the remainder term R3(x) to find an upper bound for the error |f(0.8)− P3(0.8)|.
Compare the upper bound with the actual error found in part 2.

CHAPTER 1. INTRODUCTION 8

Solution. 1. First note that f(π/2) = −π/2. Differentiating f we get:

f ′(x) = cos x− x sinx− 1⇒ f ′(π/2) = −π/2− 1

f ′′(x) = −2 sinx− x cosx⇒ f ′′(π/2) = −2

f ′′′(x) = −3 cosx+ x sinx⇒ f ′′′(π/2) = π/2.

Therefore

P3(x) = −π/2− (π/2 + 1)(x− π/2)− (x− π/2)2 +
π

12
(x− π/2)3.

Then we approximate f(0.8) by P3(0.8) = −0.3033 (using 4-digits with rounding).

2. The exact value is f(0.8) = −0.2426 and the absolute error is |f(0.8) − P3(0.8)| =

0.06062.

3. To find an upper bound for the error, write

|f(0.8)− P3(0.8)| = |R3(0.8)|

where
R3(0.8) = f (4)(ξ)

(0.8− π/2)4

4!

and ξ is between 0.8 and π/2. We need to differentiate f one more time: f (4)(x) =

4 sinx+x cosx. Since 0.8 < ξ < π/2, we can find an upper bound for f (4)(x), and thus
an upper bound for R3(0.8), using triangle inequality:

|R3(0.8)| =
∣∣∣∣f (4)(ξ)

(0.8− π/2)4

4!

∣∣∣∣ = |4 sin ξ + ξ cos ξ| (0.01471)

≤ 0.05883| sin ξ|+ 0.01471|ξ|| cos ξ|.

Note that on 0.8 < ξ < π/2, sin ξ is a positive increasing function, and | sin ξ| <
sin(π/2) = 1. For the second term, we can find an upper bound by observing |ξ|
attains a maximum value of π/2 on 0.8 < ξ < π/2, and cos ξ, which is a decreasing
positive function on 0.8 < ξ < π/2, has a maximum value of cos 0.8 = 0.6967. Putting
these together, we get

|R3(0.8)| < 0.05883(1) + (0.01471)(π/2)(0.6967) ≈ 0.07493.

Therefore, our estimate for the actual error (which is 0.06062 from part 2) is 0.07493.

CHAPTER 1. INTRODUCTION 9

Exercise 1.1-1: Find the second order Taylor polynomial for f(x) = ex sinx about
x0 = 0.

a) Compute P2(0.4) to approximate f(0.4). Use the remainder term R2(0.4) to find an
upper bound for the error |P2(0.4)−f(0.4)|. Compare the upper bound with the actual
error.

b) Compute
∫ 1

0
P2(x)dx to approximate

∫ 1

0
f(x)dx. Find an upper bound for the error

using
∫ 1

0
R2(x)dx, and compare it to the actual error.

1.2 Julia basics

The first step is to download the Julia programming language from the Julia webpage
https://julialang.org. In this book I used Julia 1.1.0. There are different environments
and editors to run Julia. Here I will use the Jupyter environment https://jupyter.org.
Instructions on how to install software do not age well: I ran the command using IJulia;
jupyterlab() on the Julia terminal to install the Jupyter environment, but this could change
in the future versions of the software. There are several tutorials and other resources on Julia
at https://julialang.org where one can find up-to-date information on installing Julia
and Jupyter.

The Jupyter environment uses the so-called Jupyter notebook where one can write and
edit a Julia code, run the code, and export the work into various file formats including
Latex and pdf. Most of our interaction with Julia will be through the Jupyter notebooks.
One exception is when we need to install a package. A Julia package provides additional
functionality to the core programs, and there are numerous packages from visualization to
parallel computing and machine learning. To install a package, open Julia by clicking on
the software icon, which will open the Julia terminal, called Julia REPL (Read-Evaluate-
Print-Loop). In the Julia REPL, press] to enter the package mode. (To get back to the
Julia REPL press backspace, delete, or shift C.) Once in the package mode, typing "add
PackageName" will install the package. To learn more about packages, type Pkg in the Julia
1.1 documentation https://docs.julialang.org/en/v1/index.html.

After installing Julia and Jupyter, open a Jupyter notebook. Here is a screenshot of my
notebook:

https://julialang.org
https://jupyter.org
https://julialang.org
https://docs.julialang.org/en/v1/index.html

CHAPTER 1. INTRODUCTION 10

Let’s start with some basic computations.

In [1]: 2+3

Out[1]: 5

In [2]: sin(pi/4)

Out[2]: 0.7071067811865475

One way to learn about a function is to search for it online in the Julia documentation
https://docs.julialang.org/. For example, the syntax for the logarithm function is
log(b, x) where b is the base.

In [3]: log(2,4)

Out[3]: 2.0

Arrays

Here is the basic syntax to create an array:

In [4]: x=[10,20,30]

Out[4]: 3-element Array{Int64,1}:

10

20

30

https://docs.julialang.org/

CHAPTER 1. INTRODUCTION 11

An array of integers of 64 bits. If we input a real, Julia will change the type accordingly:

In [5]: x=[10,20,30,0.1]

Out[5]: 4-element Array{Float64,1}:

10.0

20.0

30.0

0.1

If we use space instead of commas, we obtain row vectors:

In [6]: x=[10 20 30 0.1]

Out[6]: 1×4 Array{Float64,2}:

10.0 20.0 30.0 0.1

To obtain a column vector, we transpose the row vector:

In [7]: x'

Out[7]: 4×1 LinearAlgebra.Adjoint{Float64,Array{Float64,2}}:

10.0

20.0

30.0

0.1

Here is another way to construct a 1-dim array, and some array operations:

In [8]: x=[10*i for i=1:5]

Out[8]: 5-element Array{Int64,1}:

10

20

30

40

50

In [9]: last(x)

Out[9]: 50

CHAPTER 1. INTRODUCTION 12

In [10]: minimum(x)

Out[10]: 10

In [11]: sum(x)

Out[11]: 150

In [12]: append!(x,99)

Out[12]: 6-element Array{Int64,1}:

10

20

30

40

50

99

In [13]: x

Out[13]: 6-element Array{Int64,1}:

10

20

30

40

50

99

In [14]: x[4]

Out[14]: 40

In [15]: length(x)

Out[15]: 6

Broadcasting syntax (or dot syntax) is an easy way to apply a function to an array:

In [16]: x=[1, 2, 3]

CHAPTER 1. INTRODUCTION 13

Out[16]: 3-element Array{Int64,1}:

1

2

3

In [17]: sin.(x)

Out[17]: 3-element Array{Float64,1}:

0.8414709848078965

0.9092974268256817

0.1411200080598672

Plotting

There are several packages for plotting functions and we will use the PyPlot package. To
install the package, open a Julia terminal. Here is how it looks like:

Press] to switch to the package mode, and then type and enter "add PyPlot". Your
terminal will look like this:

CHAPTER 1. INTRODUCTION 14

When the package is loaded, you can go back to the Jupyter notebook, and type
using PyPlot to start the package.

In [18]: using PyPlot

In [19]: x = range(0,stop=2*pi,length=1000)

y = sin.(3x);

plot(x, y, color="red", linewidth=2.0, linestyle="--")

title("The sine function");

CHAPTER 1. INTRODUCTION 15

Let’s plot two functions, sin 3x and cosx, and label them appropriately.

In [20]: x = range(0,stop=2*pi,length=1000)

y = sin.(3x);

z = cos.(x)

plot(x, y, color="red", linewidth=2.0, linestyle="--", label="sin(3x)")

plot(x, z, color="blue", linewidth=1.0, linestyle="-", label="cos(x)")

legend(loc="upper center");

Matrix operations

Let’s create a 3× 3 matrix:

In [21]: A=[-1 0.26 0.74; 0.09 -1 0.26; 1 1 1]

Out[21]: 3×3 Array{Float64,2}:

-1.0 0.26 0.74

0.09 -1.0 0.26

1.0 1.0 1.0

CHAPTER 1. INTRODUCTION 16

Transpose of A is computed as:

In [22]: A'

Out[22]: 3×3 LinearAlgebra.Adjoint{Float64,Array{Float64,2}}:

-1.0 0.09 1.0

0.26 -1.0 1.0

0.74 0.26 1.0

Here is its inverse.

In [23]: inv(A)

Out[23]: 3×3 Array{Float64,2}:

-0.59693 0.227402 0.382604

0.0805382 -0.824332 0.154728

0.516392 0.59693 0.462668

In [24]: A*inv(A)

Out[24]: 3×3 Array{Float64,2}:

1.0 -5.55112e-17 0.0

1.38778e-16 1.0 1.249e-16

-2.22045e-16 0.0 1.0

Let’s try matrix vector multiplication. Define some vector v as:

In [25]: v=[0 0 1]

Out[25]: 1×3 Array{Int64,2}:

0 0 1

Now try A ∗ v to multiply them.

In [26]: A*v

DimensionMismatch("matrix A has dimensions (3,3), matrix B has dimensions (1,3)")

CHAPTER 1. INTRODUCTION 17

Stacktrace:

[1] _generic_matmatmul!(::Array{Float64,2}, ::Char, ::Char,

::Array{Float64,2},::Array{Int64,2}) at /Users/osx/buildbot/slave/

package_osx64/build/usr/share/julia/stdlib/v1.1/LinearAlgebra/src/matmul.jl:591

[2] generic_matmatmul!(::Array{Float64,2}, ::Char, ::Char,

::Array{Float64,2}, ::Array{Int64,2}) at /Users/osx/buildbot/slave/

package_osx64/build/usr/share/julia/stdlib/v1.1/LinearAlgebra/src/matmul.jl:581

[3] mul! at /Users/osx/buildbot/slave/package_osx64/build/usr/share/julia/

stdlib/v1.1/LinearAlgebra/src/matmul.jl:175 [inlined]

[4] *(::Array{Float64,2}, ::Array{Int64,2}) at /Users/osx/buildbot/slave/

package_osx64/build/usr/share/julia/stdlib/v1.1/LinearAlgebra/src/matmul.jl:142

[5] top-level scope at In[26]:1

What went wrong? The dimensions do not match. A is 3 by 3, but v is 1 by 3. To enter v
as a 3 by 1 matrix, we need to type it as follows, using the transpose operation. (Check out
the correct dimension displayed in the output.)

In [27]: v=[0 0 1]'

Out[27]: 3×1 LinearAlgebra.Adjoint{Int64,Array{Int64,2}}:

0

0

1

In [28]: A*v

Out[28]: 3×1 Array{Float64,2}:

0.74

0.26

1.0

To solve the matrix equation Ax = v, type:

In [29]: A\v

CHAPTER 1. INTRODUCTION 18

Out[29]: 3×1 Array{Float64,2}:

0.3826037521318931

0.15472806518855411

0.4626681826795528

The solution to Ax = v can be also computed as x = A−1v as follows:

In [30]: inv(A)*v

Out[30]: 3×1 Array{Float64,2}:

0.3826037521318931

0.15472806518855398

0.4626681826795528

Powers of A can be computed as:

In [31]: A^5

Out[31]: 3×3 Array{Float64,2}:

-2.8023 0.395834 2.76652

0.125727 -1.39302 0.846217

3.74251 3.24339 4.51654

Logic operations

Here are some basic logic operations:

In [32]: 2==3

Out[32]: false

In [33]: 2<=3

Out[33]: true

In [34]: (2==2)||(1<0)

Out[34]: true

In [35]: (2==2)&&(1<0)

CHAPTER 1. INTRODUCTION 19

Out[35]: false

In [36]: iseven(4)

Out[36]: true

In [37]: iseven(5)

Out[37]: false

In [38]: isodd(5)

Out[38]: true

Defining functions

There are three ways to define a function. Here is the basic syntax:

In [39]: function squareit(x)

return x^2

end

Out[39]: squareit (generic function with 1 method)

In [40]: squareit(3)

Out[40]: 9

There is also a compact form to define a function, if the body of the function is a short,
simple expression:

In [41]: cubeit(x)=x^3

Out[41]: cubeit (generic function with 1 method)

In [42]: cubeit(5)

Out[42]: 125

Functions can be defined without being given a name: these are called anonymous func-
tions:

CHAPTER 1. INTRODUCTION 20

In [43]: x-> x^3

Out[43]: #5 (generic function with 1 method)

Using anonymous functions we can manipulate arrays easily. For example, suppose we
want to pick the elements of an array that are greater than 0. This can be done using the
function filter together with an anonymous function x->x>0.

In [44]: filter(x->x>0,[-2,3,4,5,-3,0])

Out[44]: 3-element Array{Int64,1}:

3

4

5

The function count is similar to filter, but it only computes the number of elements of
the array that satisfy the condition described by the anonymous function.

In [45]: count(x->x>0,[-2,3,4,5,-3,0])

Out[45]: 3

Types

In Julia, there are several types for integers and floating-point numbers such as Int8, Int64,
Float16, Float64, and more advanced types for Boolean variables, characters, and strings.
When we write a function, we do not have to declare the type of its variables: Julia figures
what the correct type is when the code is compiled. This is called a dynamic type system.
For example, consider the squareit function we defined before:

In [46]: function squareit(x)

return x^2

end

Out[46]: squareit (generic function with 1 method)

The type of x is not declared in the function definition. We can call it with real or integer
inputs, and Julia will know what to do:

In [47]: squareit(5)

CHAPTER 1. INTRODUCTION 21

Out[47]: 25

In [48]: squareit(5.5)

Out[48]: 30.25

Now let’s write another version of squareit which specifies the type of the input as a
64-bit floating-point number:

In [49]: function typesquareit(x::Float64)

return x^2

end

Out[49]: typesquareit (generic function with 1 method)

This function can only be used if the input is a floating-point number:

In [50]: typesquareit(5.5)

Out[50]: 30.25

In [51]: typesquareit(5)

MethodError: no method matching typesquareit(::Int64)

Closest candidates are:

typesquareit(!Matched::Float64) at In[49]:2

Stacktrace:

[1] top-level scope at In[51]:1

Clearly, dynamic type systems offer much simplicity and flexibility to the programmer,
even though declaring the type of inputs may improve the performance of a code.

CHAPTER 1. INTRODUCTION 22

Control flow

Let’s create an array of 10 entries of floating-type. A simple way to do is by using the
function zeros(n), which creates an array of size n, and sets each entry to zero. (A similar
function is ones(n) which creates an array of size n with each entry set to 1.)

In [52]: values=zeros(10)

Out[52]: 10-element Array{Float64,1}:

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Now we will set the elements of the array to values of sin function.

In [53]: for n in 1:10

values[n]=sin(n^2)

end

In [54]: values

Out[54]: 10-element Array{Float64,1}:

0.8414709848078965

-0.7568024953079282

0.4121184852417566

-0.2879033166650653

-0.13235175009777303

-0.9917788534431158

-0.9537526527594719

0.9200260381967907

-0.6298879942744539

-0.5063656411097588

CHAPTER 1. INTRODUCTION 23

Here is another way to do this. Start with creating an empty array:

In [55]: newvalues=Array{Float64}(undef,0)

Out[55]: 0-element Array{Float64,1}

Then use a while statement to generate the values, and append them to the array.

In [56]: n=1

while n<=10

append!(newvalues,sin(n^2))

n=n+1

end

newvalues

Out[56]: 10-element Array{Float64,1}:

0.8414709848078965

-0.7568024953079282

0.4121184852417566

-0.2879033166650653

-0.13235175009777303

-0.9917788534431158

-0.9537526527594719

0.9200260381967907

-0.6298879942744539

-0.5063656411097588

Here is how the if statement works:

In [57]: f(x,y)= if x < y

println("$x is less than $y")

elseif x > y

println("$x is greater than $y")

else

println("$x is equal to $y")

end

Out[57]: f (generic function with 1 method)

CHAPTER 1. INTRODUCTION 24

In [58]: f(2,3)

2 is less than 3

In [59]: f(3,2)

3 is greater than 2

In [60]: f(1,1)

1 is equal to 1

In the next example we use if and while to find all the odd numbers in {1, . . . , 10}. The
empty array created in the first line is of Int64 type.

In [61]: odds=Array{Int64}(undef,0)

n=1

while n<=10

if isodd(n)

append!(odds,n)

end

n=n+1

end

odds

Out[61]: 5-element Array{Int64,1}:

1

3

5

7

9

Here is an interesting property of the function return:

In [62]: n=1

while n<=20

if iseven(n)

CHAPTER 1. INTRODUCTION 25

return n

end

n=n+1

end

Out[62]: 2

Why did the above execution stop at 2? Let’s try println instead of return:

In [63]: n=1

while n<=20

if iseven(n)

println(n)

end

n=n+1

end

2

4

6

8

10

12

14

16

18

20

The function return causes the code to exit the while loop once it is evaluated, whereas
println does not have such behavior.

Random numbers

These are 5 uniform random numbers from (0,1).

In [64]: rand(5)

Out[64]: 5-element Array{Float64,1}:

0.9376491626727412

CHAPTER 1. INTRODUCTION 26

0.1284163826681064

0.04653895741144609

0.1368429062727914

0.2722585294980018

And these are random numbers from the standard normal distribution:

In [65]: randn(5)

Out[65]: 5-element Array{Float64,1}:

-0.48823807108918965

0.37003629963065005

0.8352411437298793

0.9626484585001113

1.1562363979173702

Here is a frequency histogram of 105 random numbers from the standard normal distri-
bution using 50 bins:

In [66]: y = randn(10^5);

hist(y,50);

Sometimes we are interested in relative frequency histograms where the height of each
bin is the relative frequency of the numbers in the bin. Adding the option "density=true"
outputs a relative frequency histogram:

In [67]: y = randn(10^5);

hist(y,50,density=true);

CHAPTER 1. INTRODUCTION 27

Exercise 1.2-1: In Julia you can compute the factorial of a positive integer n by the
built-in function factorial(n). Write your own version of this function, called factorial2,
using a for loop. Use the @time function to compare the execution time of your version and
the built-in version of the factorial function.

Exercise 1.2-2: Write a Julia code to estimate the value of π using the following
procedure: Place a circle of diameter one in the unit square. Generate 10,000 pairs of
random numbers (u, v) from the unit square. Count the number of pairs (u, v) that fall into
the circle, call this number n. Then n/10000 is approximately the area of the circle. (This
approach is known as the Monte Carlo method.)

Exercise 1.2-3: Consider the following function

f(x, n) =
n∑
i=1

i∏
j=1

xn−j+1.

a) Compute f(2, 3) by hand.

b) Write a Julia code that computes f . Verify f(2, 3) matches your answer above.

1.3 Computer arithmetic

The way computers store numbers and perform computations could surprise the beginner.
In Julia if you type (

√
3)2 the result will be 2.9....96, where 9 is repeated 15 times. Here are

CHAPTER 1. INTRODUCTION 28

two obvious but fundamental differences in the way computers do arithmetic:

• only finitely many numbers can be represented in a computer;

• a number represented in a computer can only have finitely many digits.

Therefore the numbers that can be represented in a computer exactly is only a subset of
rational numbers. Anytime the computer performs an operation whose outcome is not a
number that can be represented exactly in the computer, an approximation will replace the
exact number. This is called the roundoff error : error produced when a computer is used to
perform real number calculations.

Floating-point representation of real numbers

Here is a general model for representing real numbers in a computer:

x = s(.a1a2...at)β × βe (1.1)

where

s→ sign of x = ±1

e→ exponent, with bounds L ≤ e ≤ U

(.a1...at)β =
a1

β
+
a2

β2
+ ...+

at
βt

; the mantissa

β → base

t→ number of digits; the precision.

In the floating-point representation (1.1), if we specify e in such a way that a1 6= 0, then
the representation will be unique. This is called the normalized floating-point represen-
tation. For example if β = 10, in the normalized floating-point we would write 0.012 as
0.12× 10−1, instead of choices like 0.012× 100 or 0.0012× 10.

In most computers today, the base is β = 2. Bases 8 and 16 were used in old IBM
mainframes in the past. Some handheld calculators use base 10. An interesting historical
example is a short-lived computer named Setun developed at Moscow State University which
used base 3.

There are several choices to make in the general floating-point model (1.1) for the values
of s, β, t, e. The IEEE 64-bit floating-point representation is the specific model used in most
computers today:

CHAPTER 1. INTRODUCTION 29

x = (−1)s(1.a2a3...a53)22e−1023. (1.2)

Some comments:

• Notice how s appears in different forms in equations (1.1) and (1.2). In (1.2), s is
either 0 or 1. If s = 0, then x is positive. If s = 1, x is negative.

• Since β = 2, in the normalized floating-point representation of x the first (nonzero)
digit after the decimal point has to be 1. Then we do not have to store this number.
That’s why we write x as a decimal number starting at 1 in (1.2). Even though precision
is t = 52, we are able to access up to the 53rd digit a53.

• The bounds for the exponent are: 0 ≤ e ≤ 2047. We will discuss where 2047 comes
from shortly. But first, let’s discuss why we have e − 1023 as the exponent in the
representation (1.2), as opposed to simply e (which we had in the representation (1.1)).
If the smallest exponent possible was e = 0, then the smallest positive number the
computer can generate would be (1.00...0)2 = 1: certainly we need the computer to
represent numbers less than 1! That’s why we use the shifted expression e − 1023,
called the biased exponent, in the representation (1.2). Note that the bounds for
the biased exponent are −1023 ≤ e− 1023 ≤ 1024.

Here is a schema that illustrates how the physical bits of a computer correspond to the
representation above. Each cell in the table below, numbered 1 through 64, correspond to
the physical bits in the computer memory.

1 2 3 . . . 12 13 . . . 64

• The first bit is the sign bit: it stores the value for s, 0 or 1.

• The blue bits 2 through 12 store the exponent e (not e− 1023). Using 11 bits, one can
generate the integers from 0 to 211 − 1 = 2047. Here is how you get the smallest and
largest values for e:

e = (00...0)2 = 0

e = (11...1)2 = 20 + 21 + ...+ 210 =
211 − 1

2− 1
= 2047.

• The red bits, and there are 52 of them, store the digits a2 through a53.

Example 9. Find the floating-point representation of 10.375.

CHAPTER 1. INTRODUCTION 30

Solution. You can check that 10 = (1010)2 and 0.375 = (.011)2 by computing

10 = 0× 20 + 1× 21 + 0× 22 + 1× 23

0.375 = 0× 2−1 + 1× 2−2 + 1× 2−3.

Then
10.375 = (1010.011)2 = (1.010011)2 × 23

where (1.010011)2 × 23 is the normalized floating-point representation of the number. Now
we rewrite this in terms of the representation (1.2):

10.375 = (−1)0(1.010011)2 × 21026−1023.

Since 1026 = (10000000010)2, the bit by bit representation is:

0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 . . . 0

Notice the first sign bit is 0 since the number is positive. The next 11 bits (in blue) represent
the exponent e = 1026, and the next group of red bits are the mantissa, filled with 0’s after
the last digit of the mantissa. In Julia, we can get this bit by bit representation by typing
bitstring(10.375):

In [1]: bitstring(10.375)

Out[1]: "01000000001001001100"

Special cases: zero, infinity, NAN

In the floating-point arithmetic there are two zeros: +0.0 and −0.0, and they have special
representations. In the representation of zero, all exponent and mantissa bits are set to 0.
The sign bit is 0 for +0.0, and 1, for −0.0:

0.0→ 0 0 all zeros 0 0 all zeros 0

−0.0→ 1 0 all zeros 0 0 all zeros 0

When the exponent bits are set to zero, we have e = 0 and thus e− 1023 = −1023. This
arrangement, all exponents bits set to zero, is reserved for ±0.0 and subnormal numbers.
Subnormal numbers are an exception to our normalized floating-point representation, an
exception that is useful in various ways. For details see Goldberg [9].

Here is how plus and minus infinity is represented in the computer:

CHAPTER 1. INTRODUCTION 31

∞−→ 0 1 all ones 1 0 all zeros 0

−∞−→ 1 1 all ones 1 0 all zeros 0

When the exponent bits are set to one, we have e = 2047 and thus e− 1023 = 1024. This
arrangement is reserved for ±∞ as well as other special values such as NaN (not-a-number).

In conclusion, even though −1023 ≤ e − 1023 ≤ 1024 in (1.2), when it comes to rep-
resenting non-zero real numbers, we only have access to exponents in the following range:
−1022 ≤ e− 1023 ≤ 1023.

Therefore, the smallest positive real number that can be represented in a computer is

x = (−1)0(1.00 . . . 0)2 × 2−1022 = 2−1022 ≈ 0.2× 10−307

and the largest is

x = (−1)0(1.11 . . . 1)2 × 21023 =

(
1 +

1

2
+

1

22
+ ...+

1

252

)
× 21023

= (2− 2−52)21023

≈ 0.18× 10309.

During a calculation, if a number less than the smallest floating-point number is obtained,
then we obtain the underflow error. A number greater than the largest gives overflow
error.

Exercise 1.3-1: Consider the following toy model for a normalized floating-point rep-
resentation in base 2: x = (−1)s(1.a2a3)2 × 2e where −1 ≤ e ≤ 1. Find all positive machine
numbers (there are 12 of them) that can be represented in this model. Convert the numbers
to base 10, and then carefully plot them on the number line, by hand, and comment on how
the numbers are spaced.

Representation of integers

In the previous section, we discussed representing real numbers in a computer. Here we will
give a brief discussion of representing integers. How does a computer represent an integer n?
As in real numbers, we start with writing n in base 2. We have 64 bits to represent its digits
and sign. As in the floating-point representation, we can allocate one bit for the sign, and

CHAPTER 1. INTRODUCTION 32

use the rest, 63 bits, for the digits. This approach has some disadvantages when we start
adding integers. Another approach, known as the two’s complement, is more commonly
used, including in Julia.

For an example, assume we have 8 bits in our computer. To represent 12 in two’s
complement (or any positive integer), we simply write it in its base 2 expansion: (00001100)2.
To represent −12, we do the following: flip all digits, replacing 1 by 0, and 0 by 1, and
then add 1 to the result. When we flip digits for 12, we get (11110011)2 , and adding 1 (in
binary), gives (11110100)2. Therefore −12 is represented as (11110100)2 in two’s complement
approach. It may seem mysterious to go through all this trouble to represent −12, until you
add the representations of 12 and −12,

(00001100)2 + (11110100)2 = (100000000)2

and realize that the first 8 digits of the sum (from right to left), which is what the computer
can only represent (ignoring the red digit 1), is (00000000)2. So just like 12 + (−12) = 0 in
base 10, the sum of the representations of these numbers is also 0.

We can repeat these calculations with 64-bits, using Julia. The function bitstring out-
puts the digits of an integer, using two’s complement for negative numbers:

In [1]: bitstring(12)

Out[1]: "001100"

In [2]: bitstring(-12)

Out[2]: "110100"

You can verify that the sum of these representations is 0, when truncated to 64-digits.
Here is another example illustrating the advantages of two’s complement. Consider −3

and 5, with representations,

−3 = (11111101)2 and 5 = (00000101)2.

The sum of −3 and 5 is 2; what about the binary sum of their representations? We have

(11111101)2 + (00000101)2 = (100000010)2

and if we ignore the ninth bit in red, the result is (10)2, which is indeed 2. Notice that if
we followed the same approach used in the floating-point representation and allocated the
leftmost bit to the sign of the integer, we would not have had this property.

CHAPTER 1. INTRODUCTION 33

We will not discuss integer representations and integer arithmetic any further. How-
ever one useful fact to keep in mind is the following: in two’s complement, using 64
bits, one can represent integers between −263 = −9223372036854775808 and 263 − 1 =

9223372036854775807. Any integer below or above yields underflow or overflow error.

Example 10. From Calculus, we know that limn−>∞
nn

n!
=∞. Therefore, computing nn

n!
for

large n will cause overflow at some point. Here is a Julia code for this calculation:

In [1]: f(n)=n^n/factorial(n)

Out[1]: f (generic function with 1 method)

Let’s have a closer look at this function. The Julia function factorial(n) computes the
factorial if n is an integer, otherwise it computes the gamma function at n + 1. If we
call f with an integer input, then the above code will compute nn and factorial(n) using
integer arithmetic. Then it will divide these numbers, and to do so it will convert them to
floating-point numbers. Let’s compute f(n) = nn

n!
as n = 1, ..., 17:

In [2]: for n in 1:17

println(f(n))

end

1.0

2.0

4.5

10.666666666666666

26.041666666666668

64.8

163.4013888888889

416.1015873015873

1067.6270089285715

2755.731922398589

7147.658895778219

18613.926233766233

48638.8461384701

127463.00337621226

334864.627690599

0.0

-8049.824661838414

CHAPTER 1. INTRODUCTION 34

Notice that Julia computes 1616

16!
as 0.0, and passes the error to the next calculation.

Where exactly does the error occur? Julia can compute 16! correctly, however 1616 results
in overflow in integer arithmetic. Below we compute 1515 and 1616:

In [3]: 15^15

Out[3]: 437893890380859375

In [4]: 16^16

Out[4]: 0

Why does Julia return 0 for 1616? The answer has to do with the way Julia does integer
arithmetic. When an integer exceeding the maximum possible value is obtained, Julia wraps
around to the smallest integer, and continues the calculations. Between the computation
of 1515 and 1616 above, Julia crossed the maximum integer barrier, and wrapped around to
−263. If we switch from integers to floating-point numbers, Julia can compute 1616 without
any errors:

In [5]: 16.0^16.0

Out[5]: 1.8446744073709552e19

The function f(n) can be coded in a much better way if we use floating-point numbers,
and rewrite nn

n!
as n

n
n
n−1

...n
1
. Each fraction can be computed separately, and then multiplied,

which will slow down the growth of the numbers. Here is a new code using a for statement.

In [1]: function f(n)

pr=1.

for i in 1:n-1

pr=pr*n/(n-i)

end

return(pr)

end

Out[1]: f (generic function with 1 method)

The following syntax f.(1 : 16) evaluates f at each integer from 1 to 16.

In [2]: f.(1:16)

CHAPTER 1. INTRODUCTION 35

Out[2]: 16-element Array{Float64,1}:

1.0

2.0

4.5

10.666666666666666

26.04166666666667

64.8

163.4013888888889

416.10158730158724

1067.6270089285715

2755.7319223985887

7147.658895778218

18613.92623376623

48638.84613847011

127463.00337621223

334864.62769059895

881657.9515664611

The previous version of the code gave overflow error when n = 16. This version has no
difficulty in computing nn/n! for n = 16 and 17. In fact, we can go as high as n = 700,

In [3]: f(700)

Out[3]: 1.5291379839716124e302

but not n = 750.

In [4]: f(750)

Out[4]: Inf

Overflow in floating-point arithmetic yields the output Inf, which stands for infinity.

We will discuss several features of computer arithmetic in the rest of this section. The
discussion is easier to follow if we use the familiar base 10 representation of numbers instead
of base 2. To this end, we introduce the normalized decimal floating-point represen-
tation:

±0.d1d2...dk × 10n

where 1 ≤ d1 ≤ 9, 0 ≤ di ≤ 9 for all i = 2, 3, ..., k. Informally, we call these numbers k−digit
decimal machine numbers.

CHAPTER 1. INTRODUCTION 36

Chopping & Rounding

Let x be a real number with more digits the computer can handle: x = 0.d1d2 . . . dkdk+1 . . .×
10n. How will the computer represent x? Let’s use the notation fl(x) for the floating-point
representation of x. There are two choices, chopping and rounding:

• In chopping, we simply take the first k digits and ignore the rest: fl(x) = 0.d1d2 . . . dk.

• In rounding, if dk+1 ≥ 5 we add 1 to dk to obtain fl(x). If dk+1 < 5, then we simply
do as in chopping.

Example 11. Find 5-digit (k = 5) chopping and rounding values of the numbers below:

• π = 0.314159265...× 101

Chopping gives fl(π) = 0.31415 and rounding gives fl(π) = 0.31416.

• 0.0001234567

We need to write the number in the normalized representation first as 0.1234567×10−3.

Now chopping gives 0.12345 and rounding gives 0.12346.

Absolute and relative error

Since computers only give approximations to real numbers, we need to be clear on how we
measure the error of an approximation.

Definition 12. Suppose x∗ is an approximation to x.

• |x∗ − x| is called the absolute error

• |x∗−x|
|x| is called the relative error (x 6= 0)

Relative error usually is a better choice of measure, and we need to understand why.

Example 13. Find absolute and relative errors of

1. x = 0.20× 101, x∗ = 0.21× 101

2. x = 0.20× 10−2, x∗ = 0.21× 10−2

3. x = 0.20× 105, x∗ = 0.21× 105

Notice how the only difference in the three cases is the exponent of the numbers. The
absolute errors are: 0.01 × 10 , 0.01 × 10−2 , 0.01 × 105. The absolute errors are different
since the exponents are different. However, the relative error in each case is the same: 0.05.

CHAPTER 1. INTRODUCTION 37

Definition 14. The number x∗ is said to approximate x to s significant digits (or figures)
if s is the largest nonnegative integer such that

|x− x∗|
|x|

≤ 5× 10−s.

In Example 13 we had |x−x
∗|

|x| = 0.05 ≤ 5 × 10−2 but not less than or equal to 5 × 10−3.

Therefore we say x∗ = 0.21 approximates x = 0.20 to 2 significant digits (but not to 3 digits).
When the computer approximates a real number x by fl(x), what can we say about the

error? The following result gives an upper bound for the relative error.

Lemma 15. The relative error of approximating x by fl(x) in the k-digit normalized decimal
floating-point representation satisfies

|x− fl(x)|
|x|

≤

10−k+1 if chopping
1
2
(10−k+1) if rounding.

Proof. We will give the proof for chopping; the proof for rounding is similar but tedious. Let

x = 0.d1d2...dkdk+1...× 10n.

Then
fl(x) = 0.d1d2...dk × 10n

if chopping is used. Observe that

|x− fl(x)|
|x|

=
0.dk+1dk+2...× 10n−k

0.d1d2...× 10n
=

(
0.dk+1dk+2...

0.d1d2...

)
10−k.

We have two simple bounds: 0.dk+1dk+2... < 1 and 0.d1d2... ≥ 0.1, the latter true since the
smallest d1 can be, is 1. Using these bounds in the equation above we get

|x− fl(x)|
|x|

≤ 1

0.1
10−k = 10−k+1.

Remark 16. Lemma 15 easily transfers to the base 2 floating-point representation: x =

(−1)s(1.a2...a53)2 × 2e−1023, by

|x− fl(x)|
|x|

≤

2−t+1 = 2−53+1 = 2−52 if chopping
1
2
(2−t+1) = 2−53 if rounding.

CHAPTER 1. INTRODUCTION 38

Machine epsilon

Machine epsilon ε is the smallest positive floating point number for which fl(1+ ε) > 1. This
means, if we add to 1.0 any number less than ε, the machine computes the sum as 1.0.

The number 1.0 in its binary floating-point representation is simply (1.0 . . . 0)2 where
a2 = a3 = ... = a53 = 0. We want to find the smallest number that gives a sum larger than
1.0, when it is added to 1.0. The answer depends on whether we chop or round.

If we are chopping, examine the binary addition

a2 a52 a53

1. 0 ... 0 0
+ 0. 0 ... 0 1

1. 0 ... 0 1

and notice (0.0...01)2 =
(

1
2

)52
= 2−52 is the smallest number we can add to 1.0 such that the

sum will be different than 1.0.
If we are rounding, examine the binary addition

a2 a52 a53

1. 0 ... 0 0
+ 0. 0 ... 0 0 1

1. 0 ... 0 0 1

where the sum has to be rounded to 53 digits to obtain

a2 a52 a53

1. 0 ... 0 1
.

Observe that we have added (0.0...01)2 =
(

1
2

)53
= 2−53 to 1.0, which is the smallest number

that will make the sum larger than 1.0 with rounding.
In summary, we have shown

ε =

2−52 if chopping

2−53 if rounding
.

As a consequence, notice that we can restate the inequality in Remark 16 in a compact way
using the machine epsilon as:

|x− fl(x)|
|x|

≤ ε.

Remark 17. There is another definition of machine epsilon: it is the distance between 1.0
and the next floating-point number.

CHAPTER 1. INTRODUCTION 39

a2 a52 a53

number 1.0 1. 0 ... 0 0
next number 1. 0 ... 0 1
distance 0. 0 ... 0 1

Note that the distance (absolute value of the difference) is
(

1
2

)52
= 2−52. In this alternative

definition, machine epsilon is not based on whether rounding or chopping is used. Also, note
that the distance between two adjacent floating-point numbers is not constant, but it is
smaller for smaller values, and larger for larger values (see Exercise 1.3-1).

Propagation of error

We discussed the resulting error when chopping or rounding is used to approximate a real
number by its machine version. Now imagine carrying out a long calculation with many
arithmetical operations, and at each step there is some error due to say, rounding. Would
all the rounding errors accumulate and cause havoc? This is a rather difficult question to
answer in general. For a much simpler example, consider adding two real numbers x, y. In the
computer, the numbers are represented as fl(x), f l(y). The sum of these number is fl(x) +

fl(y), however, the computer can only represent its floating-point version, fl(fl(x) + fl(y)).

Therefore the relative error in adding two numbers is:∣∣∣∣(x+ y)− fl(fl(x) + fl(y))

x+ y

∣∣∣∣ .
In this section, we will look at some specific examples where roundoff error can cause prob-
lems, and how we can avoid them.

Subtraction of nearly equal quantities: Cancellation of leading digits

The best way to explain this phenomenon is by an example. Let x = 1.123456, y = 1.123447.

We will compute x−y and the resulting roundoff error using rounding and 6-digit arithmetic.
First, we find fl(x), f l(y) :

fl(x) = 1.12346, f l(y) = 1.12345.

CHAPTER 1. INTRODUCTION 40

The absolute and relative error due to rounding is:

|x− fl(x)| = 4× 10−6, |y − fl(y)| = 3× 10−6

|x− fl(x)|
|x|

= 3.56× 10−6,
|y − fl(y)|
|y|

= 2.67× 10−6.

From the relative errors, we see that fl(x) and fl(y) approximate x and y to six significant
digits. Let’s see how the error propagates when we subtract x and y. The actual difference
is:

x− y = 1.123456− 1.123447 = 0.000009 = 9× 10−6.

The computer finds this difference first by computing fl(x), f l(y), then taking their difference
and approximating the difference by its floating-point representation: fl(fl(x)− fl(y)) :

fl(fl(x)− fl(y)) = fl (1.12346− 1.12345) = 10−5.

The resulting absolute and relative errors are:

|(x− y)− (fl(fl(x)− fl(y)))| = 10−6

|(x− y)− (fl(fl(x)− fl(y)))|
|x− y|

= 0.1.

Notice how large the relative error is compared to the absolute error! The machine version
of x − y approximates x − y to only one significant digit. Why did this happen? When
we subtract two numbers that are nearly equal, the leading digits of the numbers cancel,
leaving a result close to the rounding error. In other words, the rounding error dominates
the difference.

Division by a small number

Let x = 0.444446 and compute x
10−5 in a computer with 5-digit arithmetic and rounding. We

have fl(x) = 0.44445, with an absolute error of 4× 10−6 and relative error of 9× 10−6. The
exact division is x

10−5 = 0.444446× 105. The computer computes: fl
(

x
10−5

)
= 0.44445× 105,

which has an absolute error of 0.4 and relative error of 9 × 10−6. The absolute error went
from 4 × 10−6 to 0.4. Perhaps not surprisingly, division by a small number magnifies the
absolute error but not the relative error.

Consider the computation of
1− cosx

sinx

CHAPTER 1. INTRODUCTION 41

when x is near zero. This is a problem where we have both subtraction of nearly equal
quantities which happens in the numerator, and division by a small number, when x is close
to zero. Let x = 0.1. Continuing with five-digit rounding, we have

fl(sin 0.1) = 0.099833, f l(cos 0.1) = 0.99500

fl

(
1− cos 0.1

sin 0.1

)
= 0.050084.

The exact result to 8 digits is 0.050041708, and the relative error of this computation is
8.5× 10−4. Next we will see how to reduce this error using a simple algebraic identity.

Ways to avoid loss of accuracy

Here we will discuss some examples where a careful rewriting of the expression to compute
can make the roundoff error much smaller.

Example 18. Let’s revisit the calculation of

1− cosx

sinx
.

Observe that using the algebraic identity

1− cosx

sinx
=

sinx

1 + cos x

removes both difficulties encountered before: there is no cancellation of significant digits and
division by a small number. Using five-digit rounding, we have

fl

(
sin 0.1

1 + cos 0.1

)
= 0.050042.

The relative error is 5.8× 10−6, about a factor of 100 smaller than the error in the original
computation.

Example 19. Consider the quadratic formula: the solution of ax2 + bx+ c = 0 is

r1 =
−b+

√
b2 − 4ac

2a
, r2 =

−b−
√
b2 − 4ac

2a
.

If |b| ≈
√
b2 − 4ac, then we have a potential loss of precision in computing one of the roots

due to cancellation. Let’s consider a specific equation: x2− 11x+ 1 = 0. The roots from the
quadratic formula are: r1 = 11+

√
117

2
≈ 10.90832691, and r2 = 11−

√
117

2
≈ 0.09167308680.

CHAPTER 1. INTRODUCTION 42

Next will use four-digit arithmetic with rounding to compute the roots:

fl(
√

117) = 10.82

fl(r1) = fl

(
fl(fl(11.0) + fl(

√
117))

fl(2.0)

)
= fl

(
fl(11.0 + 10.82)

2.0

)
= fl

(
21.82

2.0

)
= 10.91

fl(r2) = fl

(
fl(fl(11.0)− fl(

√
117))

fl(2.0)

)
= fl

(
fl(11.0− 10.82)

2.0

)
= fl

(
0.18

2.0

)
= 0.09.

The relative errors are:

rel error in r1=
∣∣∣∣10.90832691− 10.91

10.90832691

∣∣∣∣ = 1.5× 10−4

rel error in r2 =

∣∣∣∣0.09167308680− 0.09

0.09167308680

∣∣∣∣ = 1.8× 10−2.

Notice the larger relative error in r2 compared to that of r1, about a factor of 100, which is
due to cancellation of leading digits when we compute 11.0− 10.82.

One way to fix this problem is to rewrite the offending expression by rationalizing the
numerator:

r2 =
11.0−

√
117

2
=

(
1

2

)
11.0−

√
117

11.0 +
√

117

(
11.0 +

√
117
)

=

(
1

2

)
4

11.0 +
√

117
=

2

11.0 +
√

117
.

If we use this formula to compute r2 we get:

fl(r2) = fl

(
2.0

fl(11.0 + fl(
√

117))

)
= fl

(
2.0

21.82

)
= 0.09166.

The new relative error in r2 is:

rel error in r2 =

(
0.09167308680− 0.09166

0.09167308680

)
= 1.4× 10−4,

an improvement about a factor of 100, even though in the new way of computing r2 there
are two operations where rounding error happens instead of one.

Example 20. The simple procedure of adding numbers, even if they do not have mixed signs,
can accumulate large errors due to rounding or chopping. Several sophisticated algorithms
to add large lists of numbers with accumulated error smaller than straightforward addition
exist in the literature (see, for example, Higham [11]).

For a simple example, consider using four-digit arithmetic with rounding, and computing

CHAPTER 1. INTRODUCTION 43

the average of two numbers, a+b
2
. For a = 2.954 and b = 100.9, the true average is 51.927.

However, four-digit arithmetic with rounding yields:

fl

(
100.9 + 2.954

2

)
= fl

(
fl(103.854)

2

)
= fl

(
103.9

2

)
= 51.95,

which has a relative error of 4.43× 10−4. If we rewrite the averaging formula as a+ b−a
2
, on

the other hand, we obtain 51.93, which has a much smaller relative error of 5.78×10−5. The
following table displays the exact and 4-digit computations, with the corresponding relative
error at each step.

a b a+ b a+b
2

b− a b−a
2

a+ b−a
2

4-digit rounding 2.954 100.9 103.9 51.95 97.95 48.98 51.93
Exact 103.854 51.927 97.946 48.973 51.927
Relative error 4.43e-4 4.43e-4 4.08e-5 1.43e-4 5.78e-5

Example 21. There are two standard formulas given in textbooks to compute the sample
variance s2 of the numbers x1, ..., xn:

1. s2 = 1
n−1

[∑n
i=1 x

2
i − 1

n
(
∑n

i=1 xi)
2
]
,

2. First compute x̄ = 1
n

∑n
i=1 xi, and then s2 = 1

n−1

∑n
i=1(xi − x̄)2.

Both formulas can suffer from roundoff errors due to adding large lists of numbers if n is
large, as mentioned in the previous example. However, the first formula is also prone to error
due to cancellation of leading digits (see Chan et al [6] for details).

For an example, consider four-digit rounding arithmetic, and let the data be
1.253, 2.411, 3.174. The sample variance from formula 1 and formula 2 are, 0.93 and 0.9355,
respectively. The exact value, up to 6 digits, is 0.935562. Formula 2 is a numerically more
stable choice for computing the variance than the first one.

Example 22. We have a sum to compute:

e−7 = 1 +
−7

1
+

(−7)2

2!
+

(−7)3

3!
+ ...+

(−7)n

n!
.

The alternating signs make this a potentially error prone calculation.
Julia reports the "exact" value for e−7 as 0.0009118819655545162. If we use Julia to

compute this sum with n = 20, the result is 0.009183673977218275. Here is the Julia code
for the calculation:

CHAPTER 1. INTRODUCTION 44

In [1]: sum=1.0

for n=1:20

sum=sum+(-7)^n/factorial(n)

end

return(sum)

Out[1]: 0.009183673977218275

This result has a relative error of 9.1. We can avoid this huge error if we simply rewrite
the above sum as

e−7 =
1

e7
=

1

1 + 7 + 72

2!
+ 73

3!
+ ...

.

The Julia code for this computation using n = 20 is below:

In [2]: sum=1.0

for n=1:20

sum=sum+7^n/factorial(n)

end

return(1/sum)

Out[2]: 0.0009118951837867185

The result is 0.0009118951837867185, which has a relative error of 1.4× 10−5.

Exercise 1.3-2: The x-intercept of the line passing through the points (x1, y1) and
(x2, y2) can be computed using either one of the following formulas:

x =
x1y2 − x2y1

y2 − y1

or,

x = x1 −
(x2 − x1)y1

y2 − y1

with the assumption y1 6= y2.

a) Show that the formulas are equivalent to each other.

b) Compute the x-intercept using each formula when (x1, y1) = (1.02, 3.32) and (x2, y2) =

(1.31, 4.31). Use three-digit rounding arithmetic.

CHAPTER 1. INTRODUCTION 45

c) Use Julia (or a calculator) to compute the x-intercept using the full-precision of the
device (you can use either one of the formulas). Using this result, compute the relative
and absolute errors of the answers you gave in part (b). Discuss which formula is better
and why.

Exercise 1.3-3: Write two functions in Julia to compute the binomial coefficient
(
m
k

)
using the following formulas:

a)
(
m
k

)
= m!

k!(m−k)!
(m! is factorial(m) in Julia.)

b)
(
m
k

)
= (m

k
)(m−1

k−1
)× ...× (m−k+1

1
)

Then, experiment with various values for m, k to see which formula causes overflow
first.

Exercise 1.3-4: Polynomials can be evaluated in a nested form (also called Horner’s
method) that has two advantages: the nested form has significantly less computations, and
it can reduce roundoff error. For

p(x) = a0 + a1x+ a2x
2 + ...+ an−1x

n−1 + anx
n

its nested form is

p(x) = a0 + x(a1 + x(a2 + ...+ x(an−1 + x(an))...)).

Consider the polynomial p(x) = x2 + 1.1x− 2.8.

a) Compute p(3.5) using three-digit rounding, and three-digit chopping arithmetic. What
are the absolute errors? (Note that the exact value of p(3.5) is 13.3.)

b) Write x2 + 1.1x− 2.8 in nested form by these simple steps:

x2 + 1.1x− 2.8 = (x2 + 1.1x)− 2.8 = (x+ 1.1)x− 2.8.

Then compute p(3.5) using three-digit rounding and chopping using the nested form.
What are the absolute errors? Compare the errors with the ones you found in (a).

Exercise 1.3-5: Consider the polynomial written in standard form: 5x4 + 3x3 + 4x2 +

7x− 5.

a) Write the polynomial in its nested form. (See the previous problem.)

CHAPTER 1. INTRODUCTION 46

b) How many multiplications does the nested form require when we evaluate the poly-
nomial at a real number? How many multiplications does the standard form require?
Can you generalize your answer to any nth degree polynomial?

CHAPTER 1. INTRODUCTION 47

Arya and the unexpected challenges of data analysis

Meet Arya! Arya is a college student interested in math, biology, literature, and acting. Like
a typical college student, she texts while walking on campus, complains about demanding
professors, and argues in her blogs that homework should be outlawed.

Arya is taking a chemistry class, and she
performs some experiments in the lab to find
the weight of two substances. Due to diffi-
culty in making precise measurements, she
can only assess the weights to four-significant
digits of accuracy: 2.312 grams and 0.003982
grams. Arya’s professor wants to know the
product of these weights, which will be used
in a formula.

Arya computes the product using her calculator: 2.312 × 0.003982 = 0.009206384, and
stares at the result in bewilderment. The numbers she multiplied had four-significant digits,
but the product has seven digits! Could this be the result of some magic, like a rabbit
hopping out of a magician’s hat that was only a handkerchief a moment ago? After some
internal deliberations, Arya decides to report the answer to her professor as 0.009206. Do
you think Arya was correct in not reporting all of the digits of the product?

CHAPTER 1. INTRODUCTION 48

Sources of error in applied mathematics

Here is a list of potential sources of error when we solve a problem.

1. Error due to the simplifying assumptions made in the development of a mathematical
model for the physical problem.

2. Programming errors.

3. Uncertainty in physical data: error in collecting and measuring data.

4. Machine errors: rounding/chopping, underflow, overflow, etc.

5. Mathematical truncation error: error that results from the use of numerical methods
in solving a problem, such as evaluating a series by a finite sum, a definite integral by
a numerical integration method, solving a differential equation by a numerical method.

Example 23. The volume of the Earth could be computed using the formula for the volume
of a sphere, V = 4/3πr3, where r is the radius. This computation involves the following
approximations:

1. The Earth is modeled as a sphere (modeling error)

2. Radius r ≈ 6370 km is based on empirical measurements (uncertainty in physical data)

3. All the numerical computations are done in a computer (machine error)

4. The value of π has to be truncated (mathematical truncation error)

Exercise 1.3-6: The following is from "Numerical mathematics and computing" by
Cheney & Kincaid [7]:

In 1996, the Ariane 5 rocket launched by the European Space Agency exploded 40
seconds after lift-off from Kourou, French Guiana. An investigation determined that the
horizontal velocity required the conversion of a 64-bit floating-point number to a 16-bit signed
integer. It failed because the number was larger than 32,767, which was the largest integer of
this type that could be stored in memory. The rocket and its cargo were valued at $500 million.

Search online, or in the library, to find another example of computer arithmetic gone
very wrong! Write a short paragraph explaining the problem, and give a reference.

Chapter 2

Solutions of equations: Root-finding

Arya and the mystery of the Rhind papyrus

College life is full of adventures, some hopefully of intellectual nature, and Arya is doing her
part by taking a history of science class. She learns about the Rhind papyrus; an ancient
Egyptian papyrus purchased by an antiquarian named Henry Rhind in Luxor, Egypt, in
1858.

Figure 2.1: Rhind Mathematical Papyrus. (British Museum Image under a Creative Com-
mons license.)

The papyrus has a collection of mathematical problems and their solutions; a translation

49

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 50

is given by Chace and Manning [2]. The following is Problem 26, taken from [2]:

A quantity and its 1/4 added together become 15. What is the quantity?

Assume 4.

\1 4

\1/4 1

Total 5

As many times as 5 must be multiplied to give 15, so many times 4 must be
multiplied to give the required number. Multiply 5 so as to get 15.

\1 5

\2 10

Total 3

Multiply 3 by 4.

1 3

2 6

\4 12

The quantity is

12

1/4 3

Total 15

Arya’s instructor knows she has taken math classes and asks her if she could decipher
this solution. Although Arya’s initial reaction to this assignment can be best described using
the word "despair", she quickly realizes it is not as bad as she thought. Here is her thought
process: the question, in our modern notation is, find x if x+ x/4 = 15. The solution starts
with an initial guess p = 4. It then evaluates x+ x/4 when x = p, and finds the result to be
5: however, what we need is 15, not 5, and if we multiply both sides of p+ p/4 = 5 by 3, we
get (3p) + (3p)/4 = 15. Therefore, the solution is 3p = 12.

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 51

Here is a more general analysis of this solution technique. Suppose we want to solve the
equation g(x) = a, and that g is a linear map, that is, g(λx) = λg(x) for any constant λ.
Then, the solution is x = ap/b where p is an initial guess with g(p) = b. To see this, simply
observe

g(
ap

b
) =

a

b
g(p) = a.

The general problem

How can we solve equations that are far complicated than the ancient Egyptians solved? For
example, how can we solve x2 + 5 cosx = 0? Stated differently, how can we find the root p
such that f(p) = 0, where f(x) = x2 + 5 cosx? In this chapter we will learn some iterative
methods to solve equations. An iterative method produces a sequence of numbers p1, p2, ...

such that limn→∞ pn = p, and p is the root we seek. Of course, we cannot compute the exact
limit, so we stop the iteration at some large N , and use pN as an approximation to p.

The stopping criteria

With any iterative method, a key question is how to decide when to stop the iteration. How
well does pN approximate p?

Let ε > 0 be a small tolerance picked ahead of time. Here are some stopping criteria:
stop when

1. |pN − pN−1| < ε,

2.
∣∣∣pN−pN−1

pN

∣∣∣ < ε, pN 6= 0, or

3. |f(pN)| < ε.

However, difficulties can arise with any of these criteria:

1. It is possible to have a sequence {pn} such that pn − pn−1 → 0 but {pn} diverges.

2. It is possible to have |f(pN)| small (called residual) but pN not close to p.

In our numerical results, we will experiment with various stopping criteria. However, the
second criterion is usually preferred over the others.

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 52

Exercise 2.-1: Solve the following problems and discuss their relevance to the stopping
criteria.

a) Consider the sequence pn where pn =
∑n

i=1
1
i
. Argue that pn diverges, but limn→∞(pn−

pn−1) = 0.

b) Let f(x) = x10. Clearly, p = 0 is a root of f , and the sequence pn = 1
n
converges to

p. Show that f(pn) < 10−3 if n > 1, but to obtain |p− pn| < 10−3, n must be greater
than 103.

2.1 Error analysis for iterative methods

Assume we have an iterative method {pn} that converges to the root p of some function.
How can we assess the rate of convergence?

Definition 24. Suppose {pn} converges to p. If there are constants C > 0 and α > 1 such
that

|pn+1 − p| ≤ C|pn − p|α, (2.1)

for n ≥ 1, then we say {pn} converges to p with order α.

Special cases:

• If α = 1 and C < 1, we say the convergence is linear, and the rate of convergence is
C. In this case, using induction, we can show

|pn+1 − p| ≤ Cn|p1 − p|. (2.2)

There are some methods for which Equation (2.2) holds, but Equation (2.1) does not
hold for any C < 1. We still call these methods to be of linear convergence. An
example is the bisection method.

• If α > 1, we say the convergence is superlinear. In particular, the case α = 2 is called
quadratic convergence.

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 53

Example 25. Consider the sequences defined by

pn+1 = 0.7pn and p1 = 1

pn+1 = 0.7p2
n and p1 = 1.

The first sequence converges to 0 linearly, and the second quadratically. Here are a few
iterations of the sequences:

n Linear Quadratic
1 0.7 0.7

4 0.24 4.75× 10−3

8 5.76× 10−2 3.16× 10−40

Observe how fast quadratic convergence is compared to linear convergence.

2.2 Bisection method

Let’s recall the Intermediate Value Theorem (IVT), Theorem 6: If a continuous function f
defined on [a, b] satisfies f(a)f(b) < 0, then there exists p ∈ [a, b] such that f(p) = 0.

Here is the idea behind the method. At each iteration, divide the interval [a, b] into two
subintervals and evaluate f at the midpoint. Discard the subinterval that does not contain
the root and continue with the other interval.

Example 26. Compute the first three iterations by hand for the function plotted in Figure
(2.2).

-4 -3 -2 -1 0 1 2 3 4

-2.5

2.5

Figure 2.2

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 54

Step 1 : To start, we need to pick an interval [a, b] that contains the root, that is, f(a)f(b) < 0.
From the plot, it is clear that [0, 4] is a possible choice. In the next few steps, we
will be working with a sequence of intervals. For convenience, let’s label them as
[a, b] = [a1, b1], [a2, b2], [a3, b3], etc. Our first interval is then [a1, b1] = [0, 4]. Next we
find the midpoint of the interval, p1 = 4/2 = 2, and use it to obtain two subintervals
[0, 2] and [2, 4]. Only one of them contains the root, and that is [2, 4].

Step 2: From the previous step, our current interval is [a2, b2] = [2, 4]. We find the midpoint1

p2 = 2+4
2

= 3, and form the subintervals [2, 3], [3, 4]. The one that contains the root is
[3, 4].

Step 3: We have [a3, b3] = [3, 4]. The midpoint is p3 = 3.5. We are now pretty close to the
root visually, and we stop the calculations!

In this simple example, we did not consider

• Stopping criteria

• It’s possible that the stopping criterion is not satisfied in a reasonable amount of time.
We need a maximum number of iterations we are willing to run the code.

Remark 27. 1. A numerically more stable formula to compute the midpoint is a + b−a
2

(see Example 20).

2. There is a convenient stopping criterion for the bisection method that was not men-
tioned before. One can stop when the interval [a, b] at step n is such that |a− b| < ε.
This is similar to the first stopping criterion discussed earlier, but not the same. One
can also use more than one stopping criterion; an example is in the Julia code that
follows.

Julia code for the bisection method

In Example 26, we kept track of the intervals and midpoints obtained from the bisection
method, by labeling them as [a1, b1], [a2, b2], ..., and p1, p2, So at step n of the method, we
know we are working on the interval [an, bn] and its midpoint is pn. This approach will be
useful when we study the convergence of the method in the next theorem. However, keeping
track of the intervals and midpoints is not needed in the computer code. Instead, in the Julia
code below, we will let [a, b] be the current interval we are working on, and when we obtain

1Notice how we label the midpoints, as well as the endpoints of the interval, with the step number.

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 55

a new interval in the following step, we will simply call the new interval [a, b], overwriting
the old one. Similarly, we will call the midpoint p, and update it at each step.

In [1]: function bisection(f::Function,a,b,eps,N)

n=1

p=0. # to ensure the value of p carries out of the while loop

while n<=N

p = a+(b-a)/2

if f(p)==0 || abs(a-b)<eps

return println("p is $p and the iteration number is $n")

end

if f(a)f(p)<0

b=p

else

a=p

end

n=n+1

end

y=f(p)

println("Method did not converge. The last iteration gives $p with

function value $y")

end

Out[1]: bisection (generic function with 1 method)

Let’s use the bisection method to find the root of f(x) = x5 +2x3−5x−2, with ε = 10−4.
Note that [0, 2] contains a root, since f(0) < 0 and f(2) > 0. We set N = 20 below.

In [2]: bisection(x -> x^5+2x^3-5x-2,0,2,10^(-4.),20)

p is 1.319671630859375 and the iteration number is 16

The value of the function at the estimated root is:

In [3]: x=1.319671630859375;

x^5+2x^3-5x-2

Out[3]: 0.000627945623044468

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 56

Let’s see what happens if N is set too small and the method does not converge.

In [4]: bisection(x -> x^5+2x^3-5x-2,0,2,10^(-4.),5)

Method did not converge. The last iteration gives 1.3125 with

function value -0.14562511444091797

Theorem 28. Suppose that f ∈ C0[a, b] and f(a)f(b) < 0. The bisection method generates
a sequence {pn} approximating a zero p of f(x) with

|pn − p| ≤
b− a

2n
, n ≥ 1.

Proof. Let the sequences {an} and {bn} denote the left-end and right-end points of the
subintervals generated by the bisection method. Since at each step the interval is halved, we
have

bn − an =
1

2
(bn−1 − an−1).

By mathematical induction, we get

bn − an =
1

2
(bn−1 − an−1) =

1

22
(bn−2 − an−2) = ... =

1

2n−1
(b1 − a1).

Therefore bn − an = 1
2n−1 (b− a). Observe that

|pn − p| ≤
1

2
(bn − an) =

1

2n
(b− a) (2.3)

and thus |pn − p| → 0 as n→∞.

Corollary 29. The bisection method has linear convergence.

Proof. The bisection method does not satisfy (2.1) for any C < 1, but it satisfies a variant
of (2.2) with C = 1/2 from the previous theorem.

Finding the number of iterations to obtain a specified accuracy: Can we find n

that will ensure |pn − p| ≤ 10−L for some given L?

We have, from the proof of the previous theorem (see (2.3)) : |pn−p| ≤ 1
2n

(b−a). Therefore,
we can make |pn− p| ≤ 10−L, by choosing n large enough so that the upper bound 1

2n
(b− a)

is less than 10−L :
1

2n
(b− a) ≤ 10−L ⇒ n ≥ log2

(
b− a
10−L

)
.

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 57

Example 30. Determine the number of iterations necessary to solve f(x) = x5 +2x3−5x−
2 = 0 with accuracy 10−4, a = 0, b = 2.

Solution. Since n ≥ log2

(
2

10−4

)
= 4 log2 10 + 1 = 14.3, the number of required iterations is

15.

Exercise 2.2-1: Find the root of f(x) = x3 + 4x2 − 10 using the bisection method,
with the following specifications:

a) Modify the Julia code for the bisection method so that the only stopping criterion
is whether f(p) = 0 (remove the other criterion from the code). Also, add a print
statement to the code, so that every time a new p is computed, Julia prints the value
of p and the iteration number.

b) Find the number of iterations N necessary to obtain an accuracy of 10−4 for the root,
using the theoretical results of Section 2.2. (The function f(x) has one real root in
(1, 2), so set a = 1, b = 2.)

c) Run the code using the value for N obtained in part (b) to compute p1, p2, ..., pN (set
a = 1, b = 2 in the modified Julia code).

d) The actual root, correct to six digits, is p = 1.36523. Find the absolute error when pN
is used to approximate the actual root, that is, find |p− pN |. Compare this error, with
the upper bound for the error used in part (b).

Exercise 2.2-2: Find an approximation to 251/3 correct to within 10−5 using the bi-
section algorithm, following the steps below:

a) First express the problem as f(x) = 0 with p = 251/3 the root.

b) Find an interval (a, b) that contains the root, using Intermediate Value Theorem.

c) Determine, analytically, the number of iterates necessary to obtain the accuracy of
10−5.

d) Use the Julia code for the bisection method to compute the iterate from (c), and
compare the actual absolute error with 10−5.

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 58

2.3 Newton’s method

Suppose f ∈ C2[a, b], i.e., f, f ′, f ′′ are continuous on [a, b]. Let p0 be a "good" approximation
to p such that f ′(p0) 6= 0 and |p − p0| is "small". First Taylor polynomial for f at p0 with
the remainder term is

f(x) = f(p0) + (x− p0)f ′(p0) +
(x− p0)2

2!
f ′′(ξ(x))

where ξ(x) is a number between x and p0. Substitute x = p and note f(p) = 0 to get:

0 = f(p0) + (p− p0)f ′(p0) +
(p− p0)2

2!
f ′′(ξ(p))

where ξ(p) is a number between p and p0. Rearrange the equation to get

p = p0 −
f(p0)

f ′(p0)
− (p− p0)2

2

f ′′(ξ(p))

f ′(p0)
. (2.4)

If |p − p0| is "small" then (p − p0)2 is even smaller, and the error term can be dropped to
obtain the following approximation:

p ≈ p0 −
f(p0)

f ′(p0)
.

The idea in Newton’s method is to set the next iterate, p1, to this approximation:

p1 = p0 −
f(p0)

f ′(p0)
.

Equation (2.4) can be written as

p = p1 −
(p− p0)2

2

f ′′(ξ(p))

f ′(p0)
. (2.5)

Summary: Start with an initial approximation p0 to p and generate the sequence {pn}∞n=1

by

pn = pn−1 −
f(pn−1)

f ′(pn−1)
, n ≥ 1. (2.6)

This is called Newton’s method.

Graphical interpretation:
Start with p0. Draw the tangent line at (p0, f(p0)) and approximate p by the intercept p1

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 59

of the line:

f ′(p0) =
0− f(p0)

p1 − p0

⇒ p1 − p0 = − f(p0)

f ′(p0)
⇒ p1 = p0 −

f(p0)

f ′(p0)
.

Now draw the tangent at (p1, f(p1)) and continue.

Remark 31. 1. Clearly Newton’s method will fail if f ′(pn) = 0 for some n. Graphically
this means the tangent line is parallel to the x-axis so we cannot get the x-intercept.

2. Newton’s method may fail to converge if the initial guess p0 is not close to p. In Figure
(2.3), either choice for p0 results in a sequence that oscillates between two points.

0

1

p0

p0

Figure 2.3: Non-converging behavior for Newton’s method

3. Newton’s method requires f ′(x) is known explicitly.

Exercise 2.3-1: Sketch the graph for f(x) = x2−1. What are the roots of the equation
f(x) = 0?

1. Let p0 = 1/2 and find the first two iterations p1, p2 of Newton’s method by hand. Mark
the iterates on the graph of f you sketched. Do you think the iterates will converge to
a zero of f?

2. Let p0 = 0 and find p1. What are your conclusions about the convergence of the
iterates?

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 60

Julia code for Newton’s method

The Julia code below is based on Equation (2.6). The variable pin in the code corresponds to
pn−1, and p corresponds to pn. The code overwrites these variables as the iteration continues.
Also notice that the code has two functions as inputs; f and fprime (the derivative f ′).

In [1]: function newton(f::Function,fprime::Function,pin,eps,N)

n=1

p=0. # to ensure the value of p carries out of the while loop

while n<=N

p=pin-f(pin)/fprime(pin)

if f(p)==0 || abs(p-pin)<eps

return println("p is $p and the iteration number is $n")

end

pin=p

n=n+1

end

y=f(p)

println("Method did not converge. The last iteration gives $p with

function value $y")

end

Out[1]: newton (generic function with 1 method)

Let’s apply Newton’s method to find the root of f(x) = x5 + 2x3− 5x− 2, a function we
considered before. First, we plot the function.

In [2]: using PyPlot

In [3]: x=range(-2,2,length=1000)

y=map(x->x^5+2*x^3-5*x-2,x)

ax = gca()

ax.spines["bottom"].set_position("center")

ax.spines["left"].set_position("center")

ax.spines["top"].set_position("center")

ax.spines["right"].set_position("center")

ylim([-40,40])

plot(x,y);

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 61

The derivative is f ′ = 5x4 + 6x2 − 5, we set pin = 1, eps = ε = 10−4, and N = 20, in the
code.

In [4]: newton(x -> x^5+2x^3-5x-2,x->5x^4+6x^2-5,1,10^(-4),20)

p is 1.3196411672093726 and the iteration number is 6

Recall that the bisection method required 16 iterations to approximate the root in [0, 2]

as p = 1.31967. (However, the stopping criterion used in bisection and Newton’s methods
are slightly different.) 1.3196 is the rightmost root in the plot. But there are other roots of
the function. Let’s run the code with pin = 0.

In [5]: newton(x -> x^5+2x^3-5x-2,x->5x^4+6x^2-5,0,10^(-4),20)

p is -0.43641313299799755 and the iteration number is 4

Now we use pin = −2.0 which will give the leftmost root.

In [6]: newton(x -> x^5+2x^3-5x-2,x->5x^4+6x^2-5,-2,10^(-4),20)

p is -1.0000000001014682 and the iteration number is 7

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 62

Theorem 32. Let f ∈ C2[a, b] and assume f(p) = 0, f ′(p) 6= 0 for p ∈ (a, b). If p0 is chosen
sufficiently close to p, then Newton’s method generates a sequence that converges to p with

lim
n→∞

p− pn+1

(p− pn)2
= − f

′′(p)

2f ′(p)
.

Proof. Since f ′ is continuous and f ′(p) 6= 0, there exists an interval I = [p − ε, p + ε] on
which f ′ 6= 0. Let

M =
maxx∈I |f ′′(x)|
2 minx∈I |f ′(x)|

.

Pick p0 from the interval I (which means |p − p0| ≤ ε), sufficiently close to p so that
M |p− p0| < 1. From Equation (2.5) we have:

|p− p1| =
|p− p0||p− p0|

2

∣∣∣∣f ′′(ξ(p))f ′(p0)

∣∣∣∣ < |p− p0||p− p0|M < |p− p0| ≤ ε. (2.7)

Multiply both sides of |p− p1| < |p− p0| by M to get M |p− p1| < M |p− p0| < 1. Therefore,
we have obtained: |p− p1| < ε and M |p− p1| < 1. Repeating the same argument used in 2.7
to |p− p2|, we can show |p− p2| < ε and M |p− p2| < 1. Therefore by induction |p− pn| < ε

and M |p − pn| < 1, for all n. This implies that all the iterates pn are in the interval I so
f ′(pn) is never zero in Newton’s iteration.

If we replace p1 by pn+1, and p0 by pn in Equation (2.5), we get

p− pn+1 = −(p− pn)2

2

f ′′(ξ(p))

f ′(pn)
. (2.8)

Here ξ(p) is a number between p and pn. Since ξ(p) changes recursively with n, let’s update
our notation as: ξ(p) = ξn. Then, Equation (2.8) implies

|p− pn+1| ≤M |p− pn|2 ⇒M |p− pn+1| ≤ (M |p− pn|)2 .

Similarly, |p− pn| ≤M |p− pn−1|2, or M |p− pn| ≤ (M |p− pn−1|)2, and thus M |p− pn+1| ≤
(M |p− pn−1|)22 . By induction, we can show

M |p− pn| ≤ (M |p− p0|)2n ⇒ |p− pn| ≤
1

M
(M |p− p0|)2n .

Since M |p− p0| < 1, |p− pn| → 0 as n→∞. Therefore limn→∞ pn = p. Finally,

lim
n→∞

p− pn+1

(p− pn)2
= lim

n→∞
−1

2

f ′′(ξn)

f ′(pn)
,

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 63

and since pn → p, and ξn is between pn and p, ξn → p, and therefore

lim
n→∞

p− pn+1

(p− pn)2
= −1

2

f ′′(p)

f ′(p)

proving the theorem.

Corollary 33. Newton’s method has quadratic convergence.

Proof. Recall that quadratic convergence means

|pn+1 − p| ≤ C|pn − p|2,

for some constant C > 0. Taking the absolute values of the limit established in the previous
theorem, we obtain

lim
n→∞

∣∣∣∣ p− pn+1

(p− pn)2

∣∣∣∣ = lim
n→∞

|pn+1 − p|
|pn − p|2

=

∣∣∣∣12 f ′′(p)f ′(p)

∣∣∣∣ .
Let C ′ =

∣∣∣12 f ′′(p)f ′(p)

∣∣∣. From the definition of limit of a sequence, for any ε > 0, there exists

an integer N > 0 such that |pn+1−p|
|pn−p|2 < C ′ + ε whenever n > N. Set C = C ′ + ε to obtain

|pn+1 − p| ≤ C|pn − p|2 for n > N .

Example 34. The Black-Scholes-Merton (BSM) formula, for which Myron Scholes and
Robert Merton were awarded the Nobel prize in economics in 1997, computes the fair price
of a contract known as the European call option. This contract gives its owner the right
to purchase the asset the contract is written on (for example, a stock), for a specific price
denoted by K and called the strike price (or exercise price), at a future time denoted by T
and called the expiry. The formula gives the value of the European call option, C, as

C = Sφ(d1)−Ke−rTφ(d2)

where S is the price of the asset at the present time, r is the risk-free interest rate, and φ(x)

is the distribution function of the standard normal random variable, given by

φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt.

The constants d1,d2 are obtained from

d1 =
log(S/K) + (r + σ2/2)T

σ
√
T

, d2 = d1 − σ
√
T .

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 64

All the constants in the BSM formula can be observed, except for σ, which is called the
volatility of the underlying asset. It has to be estimated from empirical data in some way.
We want to concentrate on the relationship between C and σ, and think of C as a function
of σ only. We rewrite the BSM formula emphasizing σ:

C(σ) = Sφ(d1)−Ke−rTφ(d2)

It may look like the independent variable σ is missing on the right hand side of the above
formula, but it is not: the constants d1,d2 both depend on σ. We can also think about
d1,d2 as functions of σ.

There are two questions financial engineers are interested in:

• Compute the option price C based on an estimate of σ

• Observe the price of an option Ĉ traded in the market, and find σ∗ for which the BSM
formula gives the output Ĉ, i.e, C(σ∗) = Ĉ. The volatility σ∗ obtained in this way is
called the implied volatility.

The second question can be answered using a root-finding method, in particular, Newton’s
method. To summarize, we want to solve the equation:

C(σ)− Ĉ = 0

where Ĉ is a given constant, and

C(σ) = Sφ(d1)−Ke−rTφ(d2).

To use Newton’s method, we need C ′(σ) = dC
dσ
. Since d1,d2 are functions of σ, we have

dC

dσ
= S

dφ(d1)

dσ
−Ke−rT dφ(d2)

dσ
. (2.9)

Let’s compute the derivatives on the right hand side of (2.9).

dφ(d1)

dσ
=

d

dσ

(
1√
2π

∫
d1

−∞
e−t

2/2dt

)
=

1√
2π

 d

dσ

∫
d1

−∞
e−t

2/2dt︸ ︷︷ ︸
u

 .

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 65

We will use the chain rule to compute the derivative d
dσ

∫
d1

−∞
e−t

2/2dt︸ ︷︷ ︸
u

= du
dσ
:

du

dσ
=

du

dd1

dd1
dσ

.

The first derivative follows from the Fundamental Theorem of Calculus

du

dd1
= e−d1

2/2,

and the second derivative is an application of the quotient rule of differentiation

dd1
dσ

=
d

dσ

(
log(S/K) + (r + σ2/2)T

σ
√
T

)
=
√
T − log(S/K) + (r + σ2/2)T

σ2
√
T

.

Putting the pieces together, we have

dφ(d1)

dσ
=
e−d1

2/2

√
2π

(√
T − log(S/K) + (r + σ2/2)T

σ2
√
T

)
.

Going back to the second derivative we need to compute in equation (2.9), we have:

dφ(d2)

dσ
=

1√
2π

(
d

dσ

∫
d2

−∞
e−t

2/2dt

)
.

Using the chain rule and the Fundamental Theorem of Calculus we obtain

dφ(d2)

dσ
=
e−d2

2/2

√
2π

dd2
dσ

.

Since d2 is defined as d2 = d1 − σ
√
T , we can express dd2/dσ in terms of dd1/dσ as:

dd2
dσ

=
dd1
dσ
−
√
T .

Finally, we have the derivative we need:

dC

dσ
=
Se−

d1
2

2

√
2π

(
√
T −

log(S
K

) + (r + σ2

2
)T

σ2
√
T

)
+K

e−(rT+
d2

2

2
)

√
2π

(
log(S

K
) + (r + σ2

2
)T

σ2
√
T

)
(2.10)

We are ready to apply Newton’s method to solve the equation C(σ)− Ĉ = 0. Now let’s

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 66

find some data.
The General Electric Company (GE) stock is $7.01 on Dec 8, 2018, and a European call

option on this stock, expiring on Dec 14, 2018, is priced at $0.10. The option has strike price
K = $7.5. The risk-free interest rate is 2.25%. The expiry T is measured in years, and since
there are 252 trading days in a year, T = 6/252. We put this information in Julia:

In [1]: S=7.01

K=7.5

r=0.0225

T=6/252;

We have not discussed how to compute the distribution function of the standard normal
random variable φ(x) = 1√

2π

∫ x
−∞ e

−t2/2dt. In Chapter 4, we will discuss how to compute
integrals numerically, but for this example, we will use the built-in function Julia has for
φ(x). It is in a package called Distributions:

In [2]: using Distributions

The following defines stdnormal as the standard normal random variable.

In [3]: stdnormal=Normal(0,1)

Out[3]: Normal{Float64}(µ=0.0, σ=1.0)

The built-in function cdf(stdnormal,x) computes the standard normal distribution func-
tion at x. We write a function phi(x) based on this built-in function, matching our notation
φ(x) for the distribution function.

In [4]: phi(x)=cdf(stdnormal,x)

Out[4]: phi (generic function with 1 method)

Next we define C(σ) and C ′(σ). In the Julia code, we replace σ by x.

In [5]: function c(x)

d1=(log(S/K)+(r+x^2/2)*T)/(x*sqrt(T))

d2=d1-x*sqrt(T)

return S*phi(d1)-K*exp(-r*T)*phi(d2)

end

Out[5]: c (generic function with 1 method)

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 67

The function cprime(x) is based on equation (2.10):

In [6]: function cprime(x)

d1=(log(S/K)+(r+x^2/2)*T)/(x*sqrt(T))

d2=d1-x*sqrt(T)

A=(log(S/K)+(r+x^2/2)*T)/(sqrt(T)*x^2)

return S*(exp(-d1^2/2)/sqrt(2*pi))*(sqrt(T)-A)

+K*exp(-(r*T+d2^2/2))*A/sqrt(2*pi)

end

Out[6]: cprime (generic function with 1 method)

We then run the newton function to find the implied volatility which turns out to be
62%.

In [7]: function newton(f::Function,fprime::Function,pin,eps,N)

n=1

p=0. # to ensure the value of p carries out of the while loop

while n<=N

p=pin-f(pin)/fprime(pin)

if f(p)==0 || abs(p-pin)<eps

return println("p is $p and the iteration number is $n")

end

pin=p

n=n+1

end

y=f(p)

println("Method did not converge. The last iteration gives $p with

function value $y")

end

Out[7]: newton (generic function with 1 method)

In [8]: newton(x->c(x)-0.1,x->cprime(x),1,10^(-4),60)

p is 0.6237560597549227 and the iteration number is 40

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 68

2.4 Secant method

One drawback of Newton’s method is that we need to know f ′(x) explicitly to evaluate
f ′(pn−1) in

pn = pn−1 −
f(pn−1)

f ′(pn−1)
, n ≥ 1.

If we do not know f ′(x) explicitly, or if its computation is expensive, we might approximate
f ′(pn−1) by the finite difference

f(pn−1 + h)− f(pn−1)

h
(2.11)

for some small h. We then need to compute two values of f at each iteration to approximate
f ′. Determining h in this formula brings some difficulty, but there is a way to get around
this. We will use the iterates themselves to rewrite the finite difference (2.11) as

f(pn−1)− f(pn−2)

pn−1 − pn−2

.

Then, the recursion for pn simplifies as

pn = pn−1 −
f(pn−1)

f(pn−1)−f(pn−2)
pn−1−pn−2

= pn−1 − f(pn−1)
pn−1 − pn−2

f(pn−1)− f(pn−2)
, n ≥ 2. (2.12)

This is called the secant method. Observe that

1. No additional function evaluations are needed,

2. The recursion requires two initial guesses p0, p1.

Geometric interpretation: The slope of the secant line through the points (pn−1, f(pn−1))

and (pn−2, f(pn−2)) is f(pn−1)−f(pn−2)
pn−1−pn−2

. The x-intercept of the secant line, which is set to pn, is

0− f(pn−1)

pn − pn−1

=
f(pn−1)− f(pn−2)

pn−1 − pn−2

⇒ pn = pn−1 − f(pn−1)
pn−1 − pn−2

f(pn−1)− f(pn−2)

which is the recursion of the secant method.
The following theorem shows that if the initial guesses are "good", the secant method

has superlinear convergence. A proof can be found in Atkinson [3].

Theorem 35. Let f ∈ C2[a, b] and assume f(p) = 0, f ′(p) 6= 0, for p ∈ (a, b). If the initial
guesses p0, p1 are sufficiently close to p, then the iterates of the secant method converge to p

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 69

with
lim
n→∞

|p− pn+1|
|p− pn|r0

=

∣∣∣∣ f ′′(p)2f ′(p)

∣∣∣∣r1
where r0 =

√
5+1
2
≈ 1.62, r1 =

√
5−1
2
≈ 0.62.

Julia code for the secant method

The following code is based on Equation (2.12); the recursion for the secant method. The
initial guesses are called pzero and pone in the code. The same stopping criterion as in
Newton’s method is used. Notice that once a new iterate p is computed, pone is updated as
p, and pzero is updated as pone.

In [1]: function secant(f::Function,pzero,pone,eps,N)

n=1

p=0. # to ensure the value of p carries out of the while loop

while n<=N

p=pone-f(pone)*(pone-pzero)/(f(pone)-f(pzero))

if f(p)==0 || abs(p-pone)<eps

return println("p is $p and the iteration number is $n")

end

pzero=pone

pone=p

n=n+1

end

y=f(p)

println("Method did not converge. The last iteration gives $p with

function value $y")

end

Out[1]: secant (generic function with 1 method)

Let’s find the root of f(x) = cosx − x using the secant method, using 0.5 and 1 as the
initial guesses.

In [2]: secant(x-> cos(x)-x,0.5,1,10^(-4.),20)

p is 0.739085132900112 and the iteration number is 4

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 70

Exercise 2.4-1: Use the Julia codes for the secant and Newton’s methods to find
solutions for the equation sinx − e−x = 0 on 0 ≤ x ≤ 1. Set tolerance to 10−4, and take
p0 = 0 in Newton, and p0 = 0, p1 = 1 in secant method. Do a visual inspection of the
estimates and comment on the convergence rates of the methods.

Exercise 2.4-2:

a) The function y = log x has a root at x = 1. Run the Julia code for Newton’s method
with p0 = 2, ε = 10−4, N = 20, and then try p0 = 3. Does Newton’s method find the
root in each case? If Julia gives an error message, explain what the error is.

b) One can combine the bisection method and Newton’s method to develop a hybrid
method that converges for a wider range of starting values p0, and have better conver-
gence rate than the bisection method.

Write a Julia code for a bisection-Newton hybrid method, as described below. (You
can use the Julia codes for the bisection and Newton’s methods from the lecture notes.)
Your code will input f, f ′, a, b, ε, N where f, f ′ are the function and its derivative, (a, b)

is an interval that contains the root (i.e., f(a)f(b) < 0), and ε,N are the tolerance
and the maximum number of iterations. The code will use the same stopping criterion
used in Newton’s method.

The method will start with computing the midpoint of (a, b), call it p0, and use New-
ton’s method with initial guess p0 to obtain p1. It will then check whether p1 ∈ (a, b).
If p1 ∈ (a, b), then the code will continue using Newton’s method to compute the
next iteration p2. If p1 /∈ (a, b), then we will not accept p1 as the next iteration: in-
stead the code will switch to the bisection method, determine which subinterval among
(a, p0), (p0, b) contains the root, updates the interval (a, b) as the subinterval that con-
tains the root, and sets p1 to the midpoint of this interval. Once p1 is obtained, the
code will check if the stopping criterion is satisfied. If it is satisfied, the code will
return p1 and the iteration number, and terminate. If it is not satisfied, the code will
use Newton’s method, with p1 as the initial guess, to compute p2. Then it will check
whether p2 ∈ (a, b), and continue in this way. If the code does not terminate after N
iterations, output an error message similar to Newton’s method.

Apply the hybrid method to:

• a polynomial with a known root, and check if the method finds the correct root;

• y = log x with (a, b) = (0, 6), for which Newton’s method failed in part (a).

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 71

c) Do you think in general the hybrid method converges to the root, provided the initial
interval (a, b) contains the root, for any starting value p0? Explain.

2.5 Muller’s method

The secant method uses a linear function that passes through (p0, f(p0)) and (p1, f(p1)) to
find the next iterate p2.Muller’s method takes three initial approximations, passes a parabola
(quadratic polynomial) through (p0, f(p0)), (p1, f(p1)), (p2, f(p2)), and uses one of the roots
of the polynomial as the next iterate.

Let the quadratic polynomial written in the following form

P (x) = a(x− p2)2 + b(x− p2) + c. (2.13)

Solve the following equations for a, b, c

P (p0) = f(p0) = a(p0 − p2)2 + b(p0 − p2) + c

P (p1) = f(p1) = a(p1 − p2)2 + b(p1 − p2) + c

P (p2) = f(p2) = c

to get

c = f(p2)

b =
(p0 − p2)(f(p1)− f(p2))

(p1 − p2)(p0 − p1)
− (p1 − p2)(f(p0)− f(p2))

(p0 − p2)(p0 − p1)
(2.14)

a =
f(p0)− f(p2)

(p0 − p2)(p0 − p1)
− f(p1)− f(p2)

(p1 − p2)(p0 − p1)
.

Now that we have determined P (x), the next step is to solve P (x) = 0, and set the next
iterate p3 to its solution. To this end, put w = x − p2 in (2.13) to rewrite the quadratic
equation as

aw2 + bw + c = 0.

From the quadratic formula, we obtain the roots

ŵ = x̂− p2 =
−2c

b±
√
b2 − 4ac

. (2.15)

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 72

Let ∆ = b2 − 4ac. We have two roots (which could be complex numbers), −2c/(b +
√

∆)

and −2c/(b−
√

∆), and we need to pick one of them. We will pick the root that is closer to
p2, in other words, the root that makes |x̂− p2| the smallest. (If the numbers are complex,
the absolute value means the norm of the complex number.) Therefore we have

x̂− p2 =

 −2c
b+
√

∆
if |b+

√
∆| > |b−

√
∆|

−2c
b−
√

∆
if |b+

√
∆| ≤ |b−

√
∆|

. (2.16)

The next iterate of Muller’s method, p3, is set to the value of x̂ obtained from the above
calculation, that is,

p3 = x̂ =

p2 − 2c
b+
√

∆
if |b+

√
∆| > |b−

√
∆|

p2 − 2c
b−
√

∆
if |b+

√
∆| ≤ |b−

√
∆|

.

Remark 36. 1. Muller’s method can find real as well as complex roots.

2. The convergence of Muller’s method is superlinear, that is,

lim
n→∞

|p− pn+1|
|p− pn|α

=

∣∣∣∣f (3)(p)

6f ′(p)

∣∣∣∣
α−1
2

where α ≈ 1.84, provided f ∈ C3[a, b], p ∈ (a, b), and f ′(p) 6= 0.

3. Muller’s method converges for a variety of starting values even though pathological
examples that do not yield convergence can be found (for example, when the three
starting values fall on a line).

Julia code for Muller’s method

The following Julia code takes initial guesses p0, p1, p2 (written as pzero, pone, ptwo in the
code), computes the coefficients a, b, c from Equation (2.14), and sets the root p3 to p. It then
updates the three initial guesses as the last three iterates, and continues until the stopping
criterion is satisfied.

We need to compute the square root, and the absolute value, of possibly complex numbers
in Equations (2.15) and (2.16). The Julia function for the square root of a possibly complex
number z is Complex(z)0.5, and its absolute value is abs(z).

In [1]: function muller(f::Function,pzero,pone,ptwo,eps,N)

n=1

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 73

p=0

while n<=N

c=f(ptwo)

b1=(pzero-ptwo)*(f(pone)-f(ptwo))/((pone-ptwo)*(pzero-pone))

b2=(pone-ptwo)*(f(pzero)-f(ptwo))/((pzero-ptwo)*(pzero-pone))

b=b1-b2

a1=(f(pzero)-f(ptwo))/((pzero-ptwo)*(pzero-pone))

a2=(f(pone)-f(ptwo))/((pone-ptwo)*(pzero-pone))

a=a1-a2

d=(Complex(b^2-4*a*c))^0.5

if abs(b-d)<abs(b+d)

inc=2c/(b+d)

else

inc=2c/(b-d)

end

p=ptwo-inc

if f(p)==0 || abs(p-ptwo)<eps

return println("p is $p and the iteration number is $n")

end

pzero=pone

pone=ptwo

ptwo=p

n=n+1

end

y=f(p)

println("Method did not converge. The last iteration gives $p with

function value $y")

end

Out[1]: muller (generic function with 1 method)

The polynomial x5 + 2x3 − 5x − 2 has three real roots, and two complex roots that are
conjugates. Let’s find them all, by experimenting with various initial guesses.

In [2]: muller(x->x^5+2x^3-5x-2,0.5,1.0,1.5,10^(-5.),10)

p is 1.3196411677283386 + 0.0im and the iteration number is 4

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 74

In [3]: muller(x->x^5+2x^3-5x-2,0.5,0,-0.1,10^(-5.),10)

p is -0.43641313299908585 + 0.0im and the iteration number is 5

In [4]: muller(x->x^5+2x^3-5x-2,0,-0.1,-1,10^(-5.),10)

p is -1.0 + 0.0im and the iteration number is 1

In [5]: muller(x->x^5+2x^3-5x-2,5,10,15,10^(-5.),20)

p is 0.05838598289491982 - 1.8626227582154478im and the iteration number is 18

2.6 Fixed-point iteration

Many root-finding methods are based on the so-called fixed-point iteration; a method we
discuss in this section.

Definition 37. A number p is a fixed-point for a function g(x) if g(p) = p.

We have two problems that are related to each other:

• Fixed-point problem: Find p such that g(p) = p.

• Root-finding problem: Find p such that f(p) = 0.

We can formulate a root-finding problem as a fixed-point problem, and vice versa. For
example, assume we want to solve the root finding problem, f(p) = 0. Define g(x) = x−f(x),

and observe that if p is a fixed-point of g(x), that is, g(p) = p − f(p) = p, then p is a root
of f(x). Here the function g is not unique: there are many ways one can represent the
root-finding problem f(p) = 0 as a fixed-point problem, and as we will learn later, not all
will be useful to us in developing fixed-point iteration algorithms.

The next theorem answers the following questions: When does a function g have a fixed-
point? If it has a fixed-point, is it unique?

Theorem 38. 1. If g is a continuous function on [a, b] and g(x) ∈ [a, b] for all x ∈ [a, b],
then g has at least one fixed-point in [a, b].

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 75

2. If, in addition, |g(x) − g(y)| ≤ λ|x − y| for all x, y ∈ [a, b] where 0 < λ < 1, then the
fixed-point is unique.

Proof. Consider f(x) = g(x) − x. Assume g(a) 6= a and g(b) 6= b (otherwise the proof is
over.) Then f(a) = g(a) − a > 0 since g(a) must be greater than a if it’s not equal to a.
Similarly, f(b) = g(b)− b < 0. Then from IVT, there exists p ∈ (a, b) such that f(p) = 0, or
g(p) = p. To prove part 2, suppose there are two different fixed-points p, q. Then

|p− q| = |g(p)− g(q)| ≤ λ|p− q| < |p− q|

which is a contradiction.

Remark 39. Let g be a differentiable function on [a, b] such that |g′(x)| ≤ k for all x ∈ (a, b)

for some positive constant k < 1. Then the hypothesis of part 2 of Theorem 38 is satisfied
with λ = k. Indeed, from the mean value theorem

|g(x)− g(y)| = |g′(ξ)(x− y)| ≤ k|x− y|

for all x, y ∈ [a, b].

The following theorem describes how we can find a fixed point.

Theorem 40. If g is a continuous function on [a, b] satisfying the conditions

1. g(x) ∈ [a, b] for all x ∈ [a, b],

2. |g(x)− g(y)| ≤ λ|x− y|, for x, y ∈ [a, b] where 0 < λ < 1,

then the fixed-point iteration

pn = g(pn−1), n ≥ 1

converges to p, the unique fixed-point of g in [a, b], for any starting point p0 ∈ [a, b].

Proof. Since p0 ∈ [a, b] and g(x) ∈ [a, b] for all x ∈ [a, b], all iterates pn ∈ [a, b]. Observe that

|p− pn| = |g(p)− g(pn−1)| ≤ λ|p− pn−1|.

Then by induction, |p − pn| ≤ λn|p − p0|. Since 0 < λ < 1, λn → 0 as n → ∞, and thus
pn → p.

Remark 41. Theorem 40 still holds if the second condition |g(x) − g(y)| ≤ λ|x − y|, is
replaced by |g′(x)| ≤ k for all x ∈ [a, b] where 0 < k < 1. (See Remark 39).

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 76

Corollary 42. If g satisfies the hypothesis of Theorem 40, then the following error bounds
hold.

1. |p− pn| ≤ λn

1−λ |p1 − p0|

2. |p− pn| ≤ 1
1−λ |pn+1 − pn|

3. |p− pn+1| ≤ λ
1−λ |pn+1 − pn|

4. |p− pn| ≤ λn max{p0 − a, b− p0}

Geometric interpretation of fixed-point iteration
In Figures (2.4) and (2.5), take a starting value p0 close to p, and mark the first few

fixed-point iterations, p0, p1, p2. Observe that the fixed-point iteration converges in the first
graph, but diverges in the second one.

0

1

2

3

4

0

1

2

3

4

y = g(x)

y = x

p

Figure 2.4: Fixed-point iteration: |g′(p)| < 1.

0

1

2

3

4

0

1

2

3

4

y = g(x)

y = x

p

Figure 2.5: Fixed-point iteration: |g′(p)| > 1.

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 77

Example 43. Consider the root-finding problem x3 − 2x2 − 1 = 0 on [1, 3].

1. Write the problem as a fixed-point problem, g(x) = x, for some g. Verify that the
hypothesis of Theorem 40 (or Remark 41) is satisfied so that the fixed-point iteration
converges.

2. Let p0 = 1. Use Corollary 42 to find n that ensures an estimate to p accurate to within
10−4.

Solution. 1. There are several ways we can write this problem as g(x) = x :

(a) Let f(x) = x3 − 2x2 − 1, and p be its root, that is, f(p) = 0. If we let g(x) =

x−f(x), then g(p) = p−f(p) = p, so p is a fixed-point of g. However, this choice
for g will not be helpful, since g does not satisfy the first condition of Theorem
40: g(x) /∈ [1, 3] for all x ∈ [1, 3] (g(3) = −5 /∈ [1, 3]).

(b) Since p is a root for f , we have p3 = 2p2 + 1, or p = (2p2 + 1)1/3. Therefore, p is
the solution to the fixed-point problem g(x) = x where g(x) = (2x2 + 1)1/3.

• g is increasing on [1, 3] and g(1) = 1.44, g(3) = 2.67, thus g(x) ∈ [1, 3] for all
x ∈ [1, 3]. Therefore, g satisfies the first condition of Theorem 40.

• g′(x) = 4x
3(2x2+1)2/3

and g′(1) = 0.64, g′(3) = 0.56 and g′ is decreasing on [1, 3].
Therefore g satisfies the condition in Remark 41 with λ = 0.64.

Then, from Theorem 40 and Remark 41, the fixed-point iteration converges if
g(x) = (2x2 + 1)1/3.

2. Take λ = k = 0.64 in Corollary 42 and use bound (4):

|p− pn| ≤ (0.64)n max{1− 1, 3− 1} = 2(0.64n).

We want 2(0.64n) < 10−4, which implies n log 0.64 < −4 log 10 − log 2, or n >
−4 log 10−log 2

log 0.64
≈ 22.19. Therefore n = 23 is the smallest number of iterations that ensures

an absolute error of 10−4.

Julia code for fixed-point iteration

The following code starts with the initial guess p0 (pzero in the code), computes p1 = g(p0),
and checks if the stopping criterion |p1 − p0| < ε is satisfied. If it is satisfied the code
terminates with the value p1. Otherwise p1 is set to p0, and the next iteration is computed.

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 78

In [1]: function fixedpt(g::Function,pzero,eps,N)

n=1

while n<N

pone=g(pzero)

if abs(pone-pzero)<eps

return println("p is $pone and the iteration number is $n")

end

pzero=pone

n=n+1

end

println("Did not converge. The last estimate is p=$pzero.")

end

Out[1]: fixedpt (generic function with 1 method)

Let’s find the fixed-point of g(x) = x where g(x) = (2x2 + 1)1/3, with p0 = 1. We
studied this problem in Example 43 where we found that 23 iterations guarantee an estimate
accurate to within 10−4. We set ε = 10−4, and N = 30, in the above code.

In [2]: fixedpt(x->(2x^2+1)^(1/3.),1,10^-4.,30)

p is 2.205472095330031 and the iteration number is 19

The exact value of the fixed-point, equivalently the root of x3 − 2x2 − 1, is 2.20556943.
Then the exact error is:

In [3]: 2.205472095330031-2.20556943

Out[3]: -9.733466996930673e-5

A take home message and a word of caution:

• The exact error, |pn − p|, is guaranteed to be less than 10−4 after 23 iterations from
Corollary 42, but as we observed in this example, this could happen before 23 iterations.

• The stopping criterion used in the code is based on |pn − pn−1|, not |pn − p|, so the
iteration number that makes these quantities less than a tolerance ε will not be the
same in general.

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 79

Theorem 44. Assume p is a solution of g(x) = x, and suppose g(x) is continuously differen-
tiable in some interval about p with |g′(p)| < 1. Then the fixed-point iteration converges to p,
provided p0 is chosen sufficiently close to p. Moreover, the convergence is linear if g′(p) 6= 0.

Proof. Since g′ is continuous and |g′(p)| < 1, there exists an interval I = [p − ε, p + ε]

such that |g′(x)| ≤ k for all x ∈ I, for some k < 1. Then, from Remark 39, we know
|g(x) − g(y)| ≤ k|x − y| for all x, y ∈ I. Next, we argue that g(x) ∈ I if x ∈ I. Indeed, if
|x− p| < ε, then

|g(x)− p| = |g(x)− g(p)| ≤ |g′(ξ)||x− p| < kε < ε

hence g(x) ∈ I. Now use Theorem 40, setting [a, b] to [p−ε, p+ε], to conclude the fixed-point
iteration converges.

To prove convergence is linear, we note

|pn+1 − p| = |g(pn)− g(p)| ≤ |g′(ξn)||pn − p| ≤ k|pn − p|

which is the definition of linear convergence (with k being a positive constant less than 1).
We can actually prove something more:

lim
n→∞

|pn+1 − p|
|pn − p|

= lim
n→∞

|g(pn)− g(p)|
|pn − p|

= lim
n→∞

|g′(ξn)||pn − p|
|pn − p|

= lim
n→∞

|g′(ξn)| = |g′(p)|.

The last equality follows since g′ is continuous, and ξn → p, which is a consequence of ξn
being between p and pn, and pn → p, as n→∞.

Example 45. Let g(x) = x + c(x2 − 2), which has the fixed-point p =
√

2 ≈ 1.4142. Pick
a value for c to ensure the convergence of fixed-point iteration. For the picked value c,
determine the interval of convergence I = [a, b], that is, the interval for which any p0 from
the interval gives rise to a converging fixed-point iteration. Then write a Julia code to test
the results.

Solution. Theorem 44 requires |g′(p)| < 1. We have g′(x) = 1 + 2xc, and thus g′(
√

2) =

1 + 2
√

2c. Therefore

|g′(
√

2)| < 1⇒ −1 < 1 + 2
√

2c < 1

⇒ −2 < 2
√

2c < 0

⇒ −1√
2
< c < 0.

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 80

Any c from this interval works: let’s pick c = −1/4.

Now we need to find an interval I = [
√

2− ε,
√

2 + ε] such that

|g′(x)| = |1 + 2xc| =
∣∣∣1− x

2

∣∣∣ ≤ k

for some k < 1, for all x ∈ I. Plot g′(x) and observe that one choice is ε = 0.1, so that
I = [

√
2 − 0.1,

√
2 + 0.1] = [1.3142, 1.5142]. Since g′(x) is positive and decreasing on I =

[1.3142, 1.5142], |g′(x)| ≤ 1− 1.3142
2

= 0.3429 < 1, for any x ∈ I. Then any starting value x0

from I gives convergence.
For c = −1/4, the function becomes g(x) = x− x2−2

4
. Pick p0 = 1.5 as the starting point.

Using the fixed-point iteration code of the previous example, we obtain:

In [1]: function fixedpt(g::Function,pzero,eps,N)

n=1

while n<N

pone=g(pzero)

if abs(pone-pzero)<eps

return println("p is $pone and the iteration number is $n")

end

pzero=pone

n=n+1

end

println("Did not converge. The last estimate is p=$pzero.")

end

Out[1]: fixedpt (generic function with 1 method)

In [2]: fixedpt(x->x-(x^2-2)/4,1.5,10^(-5),15)

p is 1.414214788550556 and the iteration number is 9

The absolute error is:

In [3]: 1.414214788550556-(2^.5)

Out[3]: 1.2261774609001463e-6

Let’s experiment with other starting values. Although p0 = 2 is not in the interval of
convergence I, we expect convergence since g′(2) = 0:

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 81

In [4]: fixedpt(x->x-(x^2-2)/4,2,10^(-5),15)

p is 1.414214788550556 and the iteration number is 10

Let’s try p0 = −5. Note that this is not only outside the interval of convergence I, but
g′(−5) = 3.5 > 1, so we do not expect convergence.

In [5]: fixedpt(x->x-(x^2-2)/4,-5.,10^(-5),15)

Did not converge. The last estimate is p=-Inf.

Let’s verify the linear convergence of the fixed-point iteration numerically in this example.
We write another version of the fixed-point code, fixedpt2, and we compute pn−

√
2

pn−1−
√

2
for each

n. The code uses some functions we have not seen before:

• global list defines the variable list as a global variable, which allows us to access list
outside the function definition, where we plot it;

• Float64[] creates an empty array of dimension 1, with a float type;

• append!(list,x) appends x to the list.

In [6]: using PyPlot

In [7]: function fixedpt2(g::Function,pzero,eps,N)

n=1

global list

list=Float64[]

error=1.

while n<N && error>10^-5.

pone=g(pzero)

error=abs(pone-pzero)

append!(list,(pone-2^0.5)/(pzero-2^0.5))

pzero=pone

n=n+1

end

return(list)

end

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 82

Out[7]: fixedpt2 (generic function with 1 method)

In [8]: fixedpt2(x->x-(x^2-2)/4,1.5,10^(-7),15)

Out[8]: 9-element Array{Float64,1}:

0.27144660940672544

0.28707160940672327

0.291222000031716

0.2924065231373124

0.2927509058227538

0.292851556555365

0.2928810179561428

0.2928896454165901

0.29289217219391755

In [9]: plot(list);

Figure 2.6: Fixed-point iteration

The graph suggests the limit of pn−
√

2

pn−1−
√

2
exists and it is around 0.295, supporting linear

convergence.

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 83

2.7 High-order fixed-point iteration

In the proof of Theorem 44, we showed

lim
n→∞

|pn+1 − p|
|pn − p|

= |g′(p)|

which implied that the fixed-point iteration has linear convergence, if g′(p) 6= 0.
If this limit were zero, then we would have

lim
n→∞

|pn+1 − p|
|pn − p|

= 0,

which means the denominator is growing at a larger rate than the numerator. We could then
ask if

lim
n→∞

|pn+1 − p|
|pn − p|α

= nonzero constant

for some α > 1.

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 84

Theorem 46. Assume p is a solution of g(x) = x where g ∈ Cα(I) for some interval I that
contains p, and for some α ≥ 2. Furthermore assume

g′(p) = g′′(p) = ... = g(α−1)(p) = 0, and g(α)(p) 6= 0.

Then if the initial guess p0 is sufficiently close to p, the fixed-point iteration pn = g(pn−1), n ≥
1, will have order of convergence of α, and

lim
n→∞

pn+1 − p
(pn − p)α

=
g(α)(p)

α!
.

Proof. From Taylor’s theorem,

pn+1 = g(pn) = g(p) + (pn − p)g′(p) + ...+
(pn − p)α−1

(α− 1)!
g(α−1)(p) +

(pn − p)α

α!
g(α)(ξn)

where ξn is a number between pn and p, and all numbers are in I. From the hypothesis, this
simplifies as

pn+1 = p+
(pn − p)α

α!
g(α)(ξn)⇒ pn+1 − p

(pn − p)α
=
g(α)(ξn)

α!
.

From Theorem 44, if p0 is chosen sufficiently close to p, then limn→∞ pn = p. The order of
convergence is α with

lim
n→∞

|pn+1 − p|
|pn − p|α

= lim
n→∞

|g(α)(ξn)|
α!

=
|g(α)(p)|
α!

6= 0.

Application to Newton’s Method

Recall Newton’s iteration
pn = pn−1 −

f(pn−1)

f ′(pn−1)
.

Put g(x) = x − f(x)
f ′(x)

. Then the fixed-point iteration pn = g(pn−1) is Newton’s method. We
have

g′(x) = 1− [f ′(x)]2 − f(x)f ′′(x)

[f ′(x)]2
=
f(x)f ′′(x)

[f ′(x)]2

and thus
g′(p) =

f(p)f ′′(p)

[f ′(p)]2
= 0.

CHAPTER 2. SOLUTIONS OF EQUATIONS: ROOT-FINDING 85

Similarly,

g′′(x) =
(f ′(x)f ′′(x) + f(x)f ′′′(x)) (f ′(x))2 − f(x)f ′′(x)2f ′(x)f ′′(x)

[f ′(x)]4

which implies

g′′(p) =
(f ′(p)f ′′(p)) (f ′(p))2

[f ′(p)]4
=
f ′′(p)

f ′(p)
.

If f ′′(p) 6= 0, then Theorem 46 implies Newton’s method has quadratic convergence with

lim
n→∞

pn+1 − p
(pn − p)2

=
f ′′(p)

2f ′(p)

which was proved earlier in Theorem 32.

Exercise 2.7-1: Use Theorem 38 (and Remark 39) to show that g(x) = 3−x has a
unique fixed-point on [1/4, 1]. Use Corollary 42, part (4), to find the number of iterations
necessary to achieve 10−5 accuracy. Then use the Julia code to obtain an approximation,
and compare the error with the theoretical estimate obtained from Corollary 42.

Exercise 2.7-2: Let g(x) = 2x− cx2 where c is a positive constant. Prove that if the
fixed-point iteration pn = g(pn−1) converges to a non-zero limit, then the limit is 1/c.

Chapter 3

Interpolation

In this chapter, we will study the following problem: given data (xi, yi), i = 0, 1, ..., n, find a
function f such that f(xi) = yi. This problem is called the interpolation problem, and f is
called the interpolating function, or interpolant, for the given data.

Interpolation is used, for example, when we use mathematical software to plot a smooth
curve through discrete data points, when we want to find the in-between values in a table,
or when we differentiate or integrate black-box type functions.

How do we choose f? Or, what kind of function do we want f to be? There are several
options. Examples of functions used in interpolation are polynomials, piecewise polynomials,
rational functions, trigonometric functions, and exponential functions. As we try to find a
good choice for f for our data, some questions to consider are whether we want f to inherit
the properties of the data (for example, if the data is periodic, should we use a trigonometric
function as f?), and how we want f behave between data points. In general f should be
easy to evaluate, and easy to integrate & differentiate.

Here is a general framework for the interpolation problem. We are given data, and we
pick a family of functions from which the interpolant f will be chosen:

• Data: (xi, yi), i = 0, 1, ..., n

• Family: Polynomials, trigonometric functions, etc.

Suppose the family of functions selected forms a vector space. Pick a basis for the vector
space: φ0(x), φ1(x), ..., φn(x). Then the interpolating function can be written as a linear
combination of the basis vectors (functions):

f(x) =
n∑
k=0

akφk(x).

86

CHAPTER 3. INTERPOLATION 87

We want f to pass through the data points, that is, f(xi) = yi. Then determine ak so that:

f(xi) =
n∑
k=0

akφk(xi) = yi, i = 0, 1, ..., n,

which is a system of n + 1 equations with n + 1 unknowns. Using matrices, the problem is
to solve the matrix equation

Aa = y

for a, where

A =

φ0(x0) ... φn(x0)

φ0(x1) ... φn(x1)
...

φ0(xn) ... φn(xn)

 , a =

a0

a1

...
an

 , y =

y0

y1

...
yn

 .

3.1 Polynomial interpolation

In polynomial interpolation, we pick polynomials as the family of functions in the interpo-
lation problem.

• Data: (xi, yi), i = 0, 1, ..., n

• Family: Polynomials

The space of polynomials up to degree n is a vector space. We will consider three choices
for the basis for this vector space:

• Basis:

– Monomial basis: φk(x) = xk

– Lagrange basis: φk(x) =
∏n

j=0,j 6=k

(
x−xj
xk−xj

)
– Newton basis: φk(x) =

∏k−1
j=0(x− xj)

where k = 0, 1, ..., n.

Once we decide on the basis, the interpolating polynomial can be written as a linear combi-
nation of the basis functions:

pn(x) =
n∑
k=0

akφk(x)

where pn(xi) = yi, i = 0, 1, ..., n.

CHAPTER 3. INTERPOLATION 88

Here is an important question. How do we know that pn, a polynomial of degree at most
n passing through the data points, actually exists? Or, equivalently, how do we know the
system of equations pn(xi) = yi, i = 0, 1, ..., n, has a solution?

The answer is given by the following theorem, which we will prove later in this section.

Theorem 47. If points x0, x1, ..., xn are distinct, then for real values y0, y1, ..., yn, there is a
unique polynomial pn of degree at most n such that pn(xi) = yi, i = 0, 1, ..., n.

We mentioned three families of basis functions for polynomials. The choice of a family
of basis functions affects:

• The accuracy of the numerical methods to solve the system of linear equations Aa = y.

• The ease at which the resulting polynomial can be evaluated, differentiated, integrated,
etc.

Monomial form of polynomial interpolation

Given data (xi, yi), i = 0, 1, ..., n, we know from the previous theorem that there exists a
polynomial pn(x) of degree at most n, that passes through the data points. To represent
pn(x), we will use the monomial basis functions, 1, x, x2, ..., xn, or written more succinctly,

φk(x) = xk, k = 0, 1, ..., n.

The interpolating polynomial pn(x) can be written as a linear combination of these basis
functions as

pn(x) = a0 + a1x+ a2x
2 + ...+ anx

n.

We will determine ai using the fact that pn is an interpolant for the data:

pn(xi) = a0 + a1xi + a2x
2
i + ...+ anx

n
i = yi

for i = 0, 1, ..., n. Or, in matrix form, we want to solve
1 x0 x2

0 ... xn0

1 x1 x2
1 xn1

...
1 xn x2

n xnn

︸ ︷︷ ︸

A

a0

a1

...
an

︸ ︷︷ ︸

a

=

y0

y1

...
yn

︸ ︷︷ ︸

y

CHAPTER 3. INTERPOLATION 89

for [a0, ..., an]T where [·]T stands for the transpose of the vector. The coefficient matrix A is
known as the van der Monde matrix. This is usually an ill-conditioned matrix, which means
solving the system of equations could result in large error in the coefficients ai. An intuitive
way to understand the ill-conditioning is to plot several basis monomials, and note how less
distinguishable they are as the degree increases, making the columns of the matrix nearly
linearly dependent.

Figure 3.1: Monomial basis functions

Solving the matrix equation Aa = b could also be expensive. Using Gaussian elimination
to solve the matrix equation for a general matrix A requires O(n3) operations. This means
the number of operations grows like Cn3, where C is a positive constant.1 However, there
are some advantages to the monomial form: evaluating the polynomial is very efficient using
Horner’s method, which is the nested form discussed in Exercises 1.3-4, 1.3-5 of Chapter 1,
requiring O(n) operations. Differentiation and integration are also relatively efficient.

Lagrange form of polynomial interpolation

The ill-conditioning of the van der Monde matrix, as well as the high complexity of solving
the resulting matrix equation in the monomial form of polynomial interpolation, motivate us
to explore other basis functions for polynomials. As before, we start with data (xi, yi), i =

0, 1, ..., n, and call our interpolating polynomial of degree at most n, pn(x). The Lagrange
1The formal definition of the big O notation is as follows: We write f(n) = O(g(n)) as n → ∞ if and

only if there exists a positive constant M and a positive integer n∗ such that |f(n)| ≤Mg(n) for all n ≥ n∗.

CHAPTER 3. INTERPOLATION 90

basis functions up to degree n (also called cardinal polynomials) are defined as

lk(x) =
n∏

j=0,j 6=k

(
x− xj
xk − xj

)
, k = 0, 1, ..., n.

We write the interpolating polynomial pn(x) as a linear combination of these basis functions
as

pn(x) = a0l0(x) + a1l1(x) + ...+ anln(x).

We will determine ai from

pn(xi) = a0l0(xi) + a1l1(xi) + ...+ anln(xi) = yi

for i = 0, 1, ..., n. Or, in matrix form, we want to solve
l0(x0) l1(x0) ... ln(x0)

l0(x1) l1(x1) ln(x1)
...

l0(xn) l1(xn) ln(xn)

︸ ︷︷ ︸

A

a0

a1

...
an

︸ ︷︷ ︸

a

=

y0

y1

...
yn

︸ ︷︷ ︸

y

for [a0, ..., an]T .

Solving this matrix equation is trivial for the following reason. Observe that lk(xk) = 1

and lk(xi) = 0 for all i 6= k. Then the coefficient matrix A becomes the identity matrix, and

ak = yk for k = 0, 1, ..., n.

The interpolating polynomial becomes

pn(x) = y0l0(x) + y1l1(x) + ...+ ynln(x).

The main advantage of the Lagrange form of interpolation is that finding the interpolating
polynomial is trivial: there is no need to solve a matrix equation. However, the evaluation,
differentiation, and integration of the Lagrange form of a polynomial is more expensive than,
for example, the monomial form.

Example 48. Find the interpolating polynomial using the monomial basis and Lagrange
basis functions for the data: (−1,−6), (1, 0), (2, 6).

CHAPTER 3. INTERPOLATION 91

• Monomial basis: p2(x) = a0 + a1x+ a2x
2

 1 x0 x2
0

1 x1 x2
1

1 x2 x2
2

︸ ︷︷ ︸

A

a0

a1

a2

︸ ︷︷ ︸

a

=

y0

y1

y2

︸ ︷︷ ︸
y

⇒

 1 −1 1

1 1 1

1 2 4

a0

a1

a2

 =

−6

0

6

We can use Gaussian elimination to solve this matrix equation, or get help from Julia:

In [1]: A=[1 -1 1; 1 1 1; 1 2 4]

Out[1]: 3×3 Array{Int64,2}:

1 -1 1

1 1 1

1 2 4

In [2]: y=[-6 0 6]'

Out[2]: 3×1 Array{Int64,2}:

-6

0

6

In [3]: A\y

Out[3]: 3×1 Array{Float64,2}:

-4.0

3.0

1.0

Since the solution is a = [−4, 3, 1]T , we obtain

p2(x) = −4 + 3x+ x2.

• Lagrange basis: p2(x) = y0l0(x) + y1l1(x) + y2l2(x) = −6l0(x) + 0l1(x) + 6l2(x) where

l0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
=

(x− 1)(x− 2)

(−1− 1)(−1− 2)
=

(x− 1)(x− 2)

6

l2(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
=

(x+ 1)(x− 1)

(2 + 1)(2− 1)
=

(x+ 1)(x− 1)

3

CHAPTER 3. INTERPOLATION 92

therefore

p2(x) = −6
(x− 1)(x− 2)

6
+ 6

(x+ 1)(x− 1)

3
= −(x− 1)(x− 2) + 2(x+ 1)(x− 1).

If we multiply out and collect the like terms, we obtain p2(x) = −4 + 3x + x2, which
is the polynomial we obtained from the monomial basis earlier.

Exercise 3.1-1: Prove that
∑n

k=0 lk(x) = 1 for all x, where lk are the Lagrange basis
functions for n + 1 data points. (Hint. First verify the identity for n = 1 algebraically, for
any two data points. For the general case, think about what special function’s interpolating
polynomial in Lagrange form is

∑n
k=0 lk(x)).

Newton’s form of polynomial interpolation

The Newton basis functions up to degree n are

πk(x) =
k−1∏
j=0

(x− xj), k = 0, 1, ..., n

where π0(x) =
∏−1

j=0(x−xj) is interpreted as 1. The interpolating polynomial pn, written as
a linear combination of Newton basis functions, is

pn(x) = a0π0(x) + a1π1(x) + ...+ anπn(x)

= a0 + a1(x− x0) + a2(x− x0)(x− x1) + ...+ an(x− x0) · · · (x− xn−1).

We will determine ai from

pn(xi) = a0 + a1(xi − x0) + ...+ an(xi − x0) · · · (xi − xn−1) = yi,

CHAPTER 3. INTERPOLATION 93

for i = 0, 1, ..., n, or in matrix form

1 0 0 . . . 0

1 (x1 − x0) 0 0

1 (x2 − x0) (x2 − x0)(x2 − x1) 0
...

...
...

...
1 (xn − x0) (xn − x0)(xn − x1) . . .

∏n−1
i=0 (xn − xi)

︸ ︷︷ ︸

A

a0

a1

...
an

︸ ︷︷ ︸

a

=

y0

y1

...
yn

︸ ︷︷ ︸

y

for [a0, ..., an]T . Note that the coefficient matrix A is lower-triangular, and a can be solved
by forward substitution, which is shown in the next example, in O(n2) operations.

Example 49. Find the interpolating polynomial using Newton’s basis for the data:
(−1,−6), (1, 0), (2, 6).

Solution. We have p2(x) = a0 + a1π1(x) + a2π2(x) = a0 + a1(x+ 1) + a2(x+ 1)(x− 1). Find
a0, a1, a2 from

p2(−1) = −6⇒ a0 + a1(−1 + 1) + a2(−1 + 1)(−1− 1) = a0 = −6

p2(1) = 0⇒ a0 + a1(1 + 1) + a2(1 + 1)(1− 1) = a0 + 2a1 = 0

p2(2) = 6⇒ a0 + a1(2 + 1) + a2(2 + 1)(2− 1) = a0 + 3a1 + 3a2 = 6

or, in matrix form 1 0 0

1 2 0

1 3 3

a0

a1

a2

 =

−6

0

6

 .
Forward substitution is:

a0 = −6

a0 + 2a1 = 0⇒ −6 + 2a1 = 0⇒ a1 = 3

a0 + 3a1 + 3a2 = 6⇒ −6 + 9 + 3a2 = 6⇒ a2 = 1.

Therefore a = [−6, 3, 1]T and

p2(x) = −6 + 3(x+ 1) + (x+ 1)(x− 1).

Factoring out and simplifying gives p2(x) = −4 + 3x+x2, which is the polynomial discussed
in Example 48.

CHAPTER 3. INTERPOLATION 94

Summary: The interpolating polynomial p2(x) for the data, (−1,−6), (1, 0), (2, 6), repre-
sented in three different basis functions is:

Monomial: p2(x) = −4 + 3x+ x2

Lagrange: p2(x) =− (x− 1)(x− 2) + 2(x+ 1)(x− 1)

Newton: p2(x) =− 6 + 3(x+ 1) + (x+ 1)(x− 1)

Similar to the monomial form, a polynomial written in Newton’s form can be evaluated
using the Horner’s method which has O(n) complexity:

pn(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + ...+ an(x− x0)(x− x1) · · · (x− xn−1)

= a0 + (x− x0)(a1 + (x− x1)(a2 + ...+ (x− xn−2)(an−1 + (x− xn−1)(an)) · · ·))

Example 50. Write p2(x) = −6 + 3(x+ 1) + (x+ 1)(x− 1) using the nested form.

Solution. −6 + 3(x+ 1) + (x+ 1)(x− 1) = −6 + (x+ 1)(2 +x); note that the left-hand side
has 2 multiplications, and the right-hand side has 1.

Complexity of the three forms of polynomial interpolation: The number of multi-
plications required in solving the corresponding matrix equation in each polynomial
basis is:

• Monomial → O(n3)

• Lagrange → trivial

• Newton → O(n2)

Evaluating the polynomials can be done efficiently using Horner’s method for monomial
and Newton forms. A modified version of Lagrange form can also be evaluated using
Horner’s method, but we do not discuss it here.

Exercise 3.1-2: Compute, by hand, the interpolating polynomial to the data (−1, 0),
(0.5, 1), (1, 0) using the monomial, Lagrange, and Newton basis functions. Verify the three
polynomials are identical.

It’s time to discuss some theoretical results for polynomial interpolation. Let’s start with
proving Theorem 47 which we stated earlier:

CHAPTER 3. INTERPOLATION 95

Theorem. If points x0, x1, ..., xn are distinct, then for real values y0, y1, ..., yn, there is a
unique polynomial pn of degree at most n such that pn(xi) = yi, i = 0, 1, ..., n.

Proof. We have already established the existence of pn without mentioning it! The Lagrange
form of the interpolating polynomial constructs pn directly:

pn(x) =
n∑
k=0

yklk(x) =
n∑
k=0

yk

n∏
j=0,j 6=k

x− xj
xk − xj

.

Let’s prove uniqueness. Assume pn, qn are two distinct polynomials satisfying the conclusion.
Then pn−qn is a polynomial of degree at most n such that (pn−qn)(xi) = 0 for i = 0, 1, ..., n.

This means the non-zero polynomial (pn− qn) of degree at most n, has (n+1) distinct roots,
which is a contradiction.

The following theorem, which we state without proof, establishes the error of polynomial
interpolation. Notice the similarities between this and Taylor’s Theorem 7.

Theorem 51. Let x0, x1, ..., xn be distinct numbers in the interval [a, b] and f ∈ Cn+1[a, b].

Then for each x ∈ [a, b], there is a number ξ between x0, x1, ..., xn such that

f(x)− pn(x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)(x− x1) · · · (x− xn).

The following lemma is useful in finding upper bounds for |f(x)− pn(x)| using Theorem
51, when the nodes x0, ..., xn are equally spaced.

Lemma 52. Consider the partition of [a, b] as x0 = a, x1 = a+h, ..., xn = a+nh = b. More
succinctly, xi = a+ ih for i = 0, 1, ..., n and h = b−a

n
. Then for any x ∈ [a, b]

n∏
i=0

|x− xi| ≤
1

4
hn+1n!

Proof. Since x ∈ [a, b], it falls into one of the subintervals: let x ∈ [xj, xj+1]. Consider the
product |x − xj||x − xj+1|. Put s = |x − xj| and t = |x − xj+1|. The maximum of st given
s+ t = h, using Calculus, can be found to be h2/4, which is attained when x is the midpoint,

CHAPTER 3. INTERPOLATION 96

and thus s = t = h/2. Then

n∏
i=0

|x− xi| = |x− x0| · · · |x− xj−1||x− xj||x− xj+1||x− xj+2| · · · |x− xn|

≤ |x− x0| · · · |x− xj−1|
h2

4
|x− xj+2| · · · |x− xn|

≤ |xj+1 − x0| · · · |xj+1 − xj−1|
h2

4
|xj − xj+2| · · · |xj − xn|

≤ (j + 1)h · · · 2h
(
h2

4

)
(2h) · · · (n− j)h

= hj(j + 1)!
h2

4
(n− j)!hn−j−1

≤ hn+1n!

4
.

Example 53. Find an upper bound for the absolute error when f(x) = cos x is approximated
by its interpolating polynomial pn(x) on [0, π/2]. For the interpolating polynomial, use 5
equally spaced nodes (n = 4) in [0, π/2], including the endpoints.

Solution. From Theorem 51,

|f(x)− p4(x)| = |f
(5)(ξ)|
5!

|(x− x0) · · · (x− x4)|.

We have |f (5)(ξ)| ≤ 1. The nodes are equally spaced with h = (π/2−0)/4 = π/8. Then from
the previous lemma,

|(x− x0) · · · (x− x4)| ≤ 1

4

(π
8

)5

4!

and therefore
|f(x)− p4(x)| ≤ 1

5!

1

4

(π
8

)5

4! = 4.7× 10−4.

Exercise 3.1-3: Find an upper bound for the absolute error when f(x) = lnx is
approximated by an interpolating polynomial of degree five with six nodes equally spaced in
the interval [1, 2].

We now revisit Newton’s form of interpolation, and learn an alternative method, known
as divided differences, to compute the coefficients of the interpolating polynomial. This

CHAPTER 3. INTERPOLATION 97

approach is numerically more stable than the forward substitution approach we used earlier.
Let’s recall the interpolation problem.

• Data: (xi, yi), i = 0, 1, ..., n

• Interpolant in Newton’s form:

pn(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + ...+ an(x− x0) · · · (x− xn−1)

Determine ai from pn(xi) = yi, i = 0, 1, ..., n.

Let’s think of the y-coordinates of the data, yi, as values of an unknown function f

evaluated at xi, i.e., f(xi) = yi. Substitute x = x0 in the interpolant to get:

a0 = f(x0).

Substitute x = x1 to get a0 + a1(x1 − x0) = f(x1) or,

a1 =
f(x1)− f(x0)

x1 − x0

.

Substitute x = x2 to get, after some algebra

a2 =

f(x2)−f(x0)
x2−x1 − f(x1)−f(x0)

x1−x0
x2−x0
x2−x1

x2 − x0

which can be further rewritten as

a2 =

f(x2)−f(x1)
x2−x1 − f(x1)−f(x0)

x1−x0
x2 − x0

.

Inspecting the formulas for a0, a1, and a2 suggests the following new notation called divided
differences:

a0 = f(x0) = f [x0] −→ 0th divided difference

a1 =
f(x1)− f(x0)

x1 − x0

= f [x0, x1] −→ 1st divided difference

a2 =

f(x2)−f(x1)
x2−x1 − f(x1)−f(x0)

x1−x0
x2 − x0

=
f [x1, x2]− f [x0, x1]

x2 − x0

= f [x0, x1, x2] −→ 2nd divided difference

And in general, ak will be given by the kth divided difference:

ak = f [x0, x1, ..., xk].

CHAPTER 3. INTERPOLATION 98

With this new notation, Newton’s interpolating polynomial can be written as

pn(x) = f [x0] +
n∑
k=1

f [x0, x1, ..., xk](x− x0) · · · (x− xk−1)

= f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1) + . . .

+ f [x0, x1, ..., xn](x− x0)(x− x1) · · · (x− xn−1)

Here is the formal definition of divided differences:

Definition 54. Given data (xi, f(xi)), i = 0, 1, ..., n, the divided differences are defined
recursively as

f [x0] = f(x0)

f [x0, x1, ..., xk] =
f [x1, ..., xk]− f [x0, ..., xk−1]

xk − x0

where k = 0, 1, ..., n.

Theorem 55. The ordering of the data in constructing divided differences is not important,
that is, the divided difference f [x0, ..., xk] is invariant under all permutations of the arguments
x0, ..., xk.

Proof. Consider the data (x0, y0), (x1, y1), ..., (xk, yk) and let pk(x) be its interpolating poly-
nomial:

pk(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1) + ...

+ f [x0, ..., xk](x− x0) · · · (x− xk−1).

Now let’s consider a permutation of the xi; let’s label them as x̃0, x̃1, ..., x̃k. The interpolating
polynomial for the permuted data does not change, since the data x0, x1, ..., xk (omitting the
y-coordinates) is the same as x̃0, x̃1, ..., x̃k, just in different order. Therefore

pk(x) = f [x̃0] + f [x̃0, x̃1](x− x̃0) + f [x̃0, x̃1, x̃2](x− x̃0)(x− x̃1) + ...

+ f [x̃0, ..., x̃k](x− x̃0) · · · (x− x̃k−1).

The coefficient of the polynomial pk(x) for the highest degree xk is f [x0, ..., xk] in the first
equation, and f [x̃0, ..., x̃k] in the second. Therefore they must be equal to each other.

Example 56. Find the interpolating polynomial for the data (−1,−6), (1, 0), (2, 6) using
Newton’s form and divided differences.

CHAPTER 3. INTERPOLATION 99

Solution. We want to compute

p2(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1).

Here are the finite differences:

x f [x] First divided difference Second divided difference
x0 = −1 f [x0] = −6

f [x0, x1] = f [x1]−f [x0]
x1−x0 = 3

x1 = 1 f [x1] = 0 f [x0, x1, x2] = f [x1,x2]−f [x0,x1]
x2−x0 = 1

f [x1, x2] = f [x2]−f [x1]
x2−x1 = 6

x2 = 2 f [x2] = 6

Therefore
p2(x) = −6 + 3(x+ 1) + 1(x+ 1)(x− 1),

which is the same polynomial we had in Example 49.

Exercise 3.1-4: Consider the function f given in the following table.

x 1 2 4 6
f(x) 2 3 5 9

a) Construct a divided difference table for f by hand, and write the Newton form of the
interpolating polynomial using the divided differences.

b) Assume you are given a new data point for the function: x = 3, y = 4. Find the
new interpolating polynomial. (Hint: Think about how to update the interpolating
polynomial you found in part (a).)

c) If you were working with the Lagrange form of the interpolating polynomial instead of
the Newton form, and you were given an additional data point like in part (b), how
easy would it be (compared to what you did in part (b)) to update your interpolating
polynomial?

CHAPTER 3. INTERPOLATION 100

Example 57. Before the widespread availability of computers and mathematical software,
the values of some often-used mathematical functions were disseminated to researchers and
engineers via tables. The following table, taken from [1], displays some values of the gamma
function, Γ(x) =

∫∞
0
tx−1e−tdt.

x 1.750 1.755 1.760 1.765
Γ(x) 0.91906 0.92021 0.92137 0.92256

Use polynomial interpolation to estimate Γ(1.761).

Solution. The finite differences, with five-digit rounding, are:

i xi f [xi] f [xi, xi+1] f [xi−1, xi, xi+1] f [x0, x1, x2, x3]

0 1.750 0.91906
0.23

1 1.755 0.92021 0.2
0.232 26.667

2 1.760 0.92137 0.6
0.238

3 1.765 0.92256

Here are various estimates for Γ(1.761) using interpolating polynomials of increasing
degrees:

p1(x) = f [x0] + f [x0, x1](x− x0)⇒ p1(1.761) = 0.91906 + 0.23(1.761− 1.750) = 0.92159

p2(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1)

⇒ p2(1.761) = 0.92159 + (0.2)(1.761− 1.750)(1.761− 1.755) = 0.9216

p3(x) = p2(x) + f [x0, x1, x2, x3](x− x0)(x− x1)(x− x2)

⇒ p3(1.761) = 0.9216 + 26.667(1.761− 1.750)(1.761− 1.755)(1.761− 1.760) = 0.9216

Next we will change the ordering of the data and repeat the calculations. We will list
the data in decreasing order of the x-coordinates:

CHAPTER 3. INTERPOLATION 101

i xi f [xi] f [xi, xi+1] f [xi−1, xi, xi+1] f [x0, x1, x2, x3]

0 1.765 0.92256
0.238

1 1.760 0.92137 0.6
0.232 26.667

2 1.755 0.92021 0.2
0.23

3 1.750 0.91906

The polynomial evaluations are:

p1(1.761) = 0.92256 + 0.238(1.761− 1.765) = 0.92161

p2(1.761) = 0.92161 + 0.6(1.761− 1.765)(1.761− 1.760) = 0.92161

p3(1.761) = 0.92161 + 26.667(1.761− 1.765)(1.761− 1.760)(1.761− 1.755) = 0.92161

Summary of results: The following table displays the results for each ordering of the
data, together with the correct Γ(1.761) to 7 digits of accuracy.

Ordering (1.75, 1.755, 1.76, 1.765) (1.765, 1.76, 1.755, 1.75)

p1(1.761) 0.92159 0.92161
p2(1.761) 0.92160 0.92161
p3(1.761) 0.92160 0.92161
Γ(1.761) 0.9216103 0.9216103

Exercise 3.1-5: Answer the following questions:

a) Theorem 55 stated that the ordering of the data in divided differences does not matter.
But we see differences in the two tables above. Is this a contradiction?

b) p1(1.761) is a better approximation to Γ(1.761) in the second ordering. Is this expected?

c) p3(1.761) is different in the two orderings, however, this difference is due to rounding
error. In other words, if the calculations can be done exactly, p3(1.761) will be the
same in each ordering of the data. Why?

CHAPTER 3. INTERPOLATION 102

Exercise 3.1-6: Consider a function f(x) such that f(2) = 1.5713, f(3) =

1.5719, f(5) = 1.5738, and f(6) = 1.5751. Estimate f(4) using a second degree interpo-
lating polynomial (interpolating the first three data points) and a third degree interpolating
polynomial (interpolating the first four data points). Round the final results to four decimal
places. Is there any advantage here in using a third degree interpolating polynomial?

Julia code for Newton interpolation

Consider the following finite difference table.

x f(x) f [xi, xi+1] f [xi−1, xi, xi+1]
x0 y0

y1−y0
x1−x0 = f [x0, x1]

x1 y1
f [x1,x2]−f [x0,x1]

x2−x0 = f [x0, x1, x2]
y2−y1
x2−x1 = f [x1, x2]

x2 y2

Table 3.1: Divided differences for three data points

There are 2 + 1 = 3 divided differences in the table, not counting the 0th divided differ-
ences. In general, the number of divided differences to compute is 1 + ...+ n = n(n+ 1)/2.
However, to construct Newton’s form of the interpolating polynomial, we need only n di-
vided differences and the 0th divided difference y0. These numbers are displayed in red in
Table 3.1. The important observation is, even though all the divided differences have to be
computed in order to get the ones needed for Newton’s form, they do not have to be all
stored. The following Julia code is based on an efficient algorithm that goes through the
divided difference calculations recursively, and stores an array of size m = n+1 at any given
time. In the final iteration, this array has the divided differences needed for Newton’s form.

Let’s explain the idea of the algorithm using the simple example of Table 3.1. The code
creates an array a = (a0, a1, a2) of size m = n+ 1, which is three in our example, and sets

a0 = y0, a1 = y1, a2 = y2.

(The code actually numbers the components of the array starting at 1, not 0. We keep it 0
here so that the discussion uses the familiar divided difference formulas.)

CHAPTER 3. INTERPOLATION 103

In the first iteration (for loop, j = 2), a1 and a2 are updated:

a1 :=
a1 − a0

x1 − x0

=
y1 − y0

x1 − x0

= f [x0, x1], a2 :=
a2 − a1

x2 − x1

=
y2 − y1

x2 − x1

.

In the last iteration (for loop, j = 3), only a2 is updated:

a2 :=
a2 − a1

x2 − x0

=

y2−y1
x2−x1 −

y1−y0
x1−x0

x2 − x0

= f [x0, x1, x2].

The final array a is
a = (y0, f [x0, x1], f [x0, x1, x2])

containing the divided differences needed to construct the Newton’s form of the polynomial.
Here is the Julia function diff which computes the divided differences. The code uses a

function we have not used before: reverse(collect(j:m)). An example illustrates what it
does the best:

In [1]: reverse(collect(2:5))

Out[1]: 4-element Array{Int64,1}:

5

4

3

2

In the code diff the inputs are the x and y-coordinates of the data. The numbering of
the indices starts at 1, not 0.

In [2]: function diff(x::Array,y::Array)

m=length(x) #here m is the number of data points.

#the degree of the polynomial is m-1

a=Array{Float64}(undef,m)

for i in 1:m

a[i]=y[i]

end

for j in 2:m

for i in reverse(collect(j:m))

a[i]=(a[i]-a[i-1])/(x[i]-x[i-(j-1)])

end

CHAPTER 3. INTERPOLATION 104

end

return(a)

end

Out[2]: diff (generic function with 1 method)

Let’s compute the divided differences of Example 56:

In [3]: diff([-1, 1, 2],[-6,0,6])

Out[3]: 3-element Array{Float64,1}:

-6.0

3.0

1.0

These are the divided differences in the second ordering of the data in Example 57:

In [4]: diff([1.765,1.760,1.755,1.750],[0.92256,0.92137,0.92021,0.91906])

Out[4]: 4-element Array{Float64,1}:

0.92256

0.23800000000000995

0.6000000000005329

26.66666666668349

Now let’s write a code for the Newton form of polynomial interpolation. The inputs to
the function newton are the x and y-coordinates of the data, and where we want to evaluate
the polynomial: z. The code uses the divided differences function diff discussed earlier to
compute:

f [x0] + f [x0, x1](z − x0) + . . .+ f [x0, x1, ..., xn](z − x0)(z − x1) · · · (z − xn−1)

In [5]: function newton(x::Array,y::Array,z)

m=length(x) #here m is the number of data points, not the degree

of the polynomial

a=diff(x,y)

sum=a[1]

pr=1.0

for j in 1:(m-1)

CHAPTER 3. INTERPOLATION 105

pr=pr*(z-x[j])

sum=sum+a[j+1]*pr

end

return sum

end

Out[5]: newton (generic function with 1 method)

Let’s verify the code by computing p3(1.761) of Example 57:

In [6]: newton([1.765,1.760,1.755,1.750],[0.92256,0.92137,0.92021,0.91906],1.761)

Out[6]: 0.92160496

Exercise 3.1-7: This problem discusses inverse interpolation which gives another
method to find the root of a function. Let f be a continuous function on [a, b] with one
root p in the interval. Also assume f has an inverse. Let x0, x1, ..., xn be n + 1 distinct
numbers in [a, b] with f(xi) = yi, i = 0, 1, ..., n. Construct an interpolating polynomial Pn
for f−1(x), by taking your data points as (yi, xi), i = 0, 1, ..., n. Observe that f−1(0) = p, the
root we are trying to find. Then, approximate the root p, by evaluating the interpolating
polynomial for f−1 at 0, i.e., Pn(0) ≈ p. Using this method, and the following data, find an
approximation to the solution of log x = 0.

x 0.4 0.8 1.2 1.6
log x -0.92 -0.22 0.18 0.47

3.2 High degree polynomial interpolation

Suppose we approximate f(x) using its polynomial interpolant pn(x) obtained from (n+ 1)
data points. We then increase the number of data points, and update pn(x) accordingly. The
central question we want to discuss is the following: as the number of nodes (data points)
increases, does pn(x) become a better approximation to f(x) on [a, b]? We will investigate
this question numerically, using a famous example: Runge’s function, given by f(x) = 1

1+x2
.

We will interpolate Runge’s function using polynomials of various degrees, and plot the
function, together with its interpolating polynomial and the data points. We are interested

CHAPTER 3. INTERPOLATION 106

to see what happens as the number of data points, and hence the degree of the interpolating
polynomial, increases.

In [7]: using PyPlot

We start with taking four equally spaced x-coordinates between -5 and 5, and plot the
corresponding interpolating polynomial and Runge’s function. We also install a package
called LatexStrings which allows typing mathematics in captions of a plot using Latex.
(Latex is a typesetting program this book is written with.) To install the package type add
LaTeXStrings in the Julia terminal, before executing using LaTeXStrings.

In [8]: using LaTeXStrings

In [9]: f(x)=1/(1+x^2)

xi=collect(-5:10/3:5) # x-coordinates of the data, equally spaced from

#-5 to 5 in increments of 10/3

yi=map(f,xi) # the corresponding y-coordinates

xaxis=-5:1/100:5

runge=map(f,xaxis) # Runge's function values

interp=map(z->newton(xi,yi,z),xaxis) # Interpolating poly for the data

plot(xaxis,interp,label="interpolating poly")

plot(xaxis,runge,label=L"f(x)=1/(1+x^2)")

scatter(xi, yi, label="data")

legend(loc="upper right");

CHAPTER 3. INTERPOLATION 107

Next, we increase the number of data points to 6.

In [10]: xi=collect(-5:10/5:5) # 6 equally spaced values from -5 to 5

yi=map(f,xi)

interp=map(z->newton(xi,yi,z),xaxis)

plot(xaxis,interp,label="interpolating poly")

plot(xaxis,runge,label=L"f(x)=1/(1+x^2)")

scatter(xi, yi, label="data")

legend(loc="upper right");

The next two graphs plot interpolating polynomials on 11 and 21 equally spaced data.

In [11]: xi=collect(-5:10/10:5) # 11 equally spaced values from -5 to 5

yi=map(f,xi)

interp=map(z->newton(xi,yi,z),xaxis)

plot(xaxis,interp,label="interpolating poly")

plot(xaxis,runge,label=L"f(x)=1/(1+x^2)")

scatter(xi, yi, label="data")

legend(loc="upper center");

CHAPTER 3. INTERPOLATION 108

In [12]: xi=collect(-5:10/20:5) # 21 equally spaced values from -5 to 5

yi=map(f,xi)

interp=map(z->newton(xi,yi,z),xaxis)

plot(xaxis,interp,label="interpolating poly")

plot(xaxis,runge,label=L"f(x)=1/(1+x^2)")

scatter(xi, yi, label="data")

legend(loc="lower center");

CHAPTER 3. INTERPOLATION 109

We observe that as the degree of the interpolating polynomial increases, the polynomial
has large oscillations toward the end points of the interval. In fact, it can be shown that for
any x such that 3.64 < |x| < 5, supn≥0 |f(x)− pn(x)| =∞, where f is Runge’s function.

This troublesome behavior of high degree interpolating polynomials improves signifi-
cantly, if we consider data with x-coordinates that are not equally spaced. Consider the
interpolation error of Theorem 51:

f(x)− pn(x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)(x− x1) · · · (x− xn).

Perhaps surprisingly, the right-hand side of the above equation is not minimized when the
nodes, xi, are equally spaced! The set of nodes that minimizes the interpolation error is the
roots of the so-called Chebyshev polynomials. The placing of these nodes is such that there
are more nodes towards the end points of the interval, than the middle. We will learn about
Chebyshev polynomials in Chapter 5. Using Chebyshev nodes in polynomial interpolation
avoids the diverging behavior of polynomial interpolants as the degree increases, as observed
in the case of Runge’s function, for sufficiently smooth functions.

Divided differences and derivatives

The following theorem shows the similarity between divided differences and derivatives.

CHAPTER 3. INTERPOLATION 110

Theorem 58. Suppose f ∈ Cn[a, b] and x0, x1, ..., xn are distinct numbers in [a, b]. Then
there exists ξ ∈ (a, b) such that

f [x0, ..., xn] =
f (n)(ξ)

n!
.

To prove this theorem, we need the generalized Rolle’s theorem.

Theorem 59 (Rolle’s theorem). Suppose f is a differentiable function on (a, b). If f(a) =

f(b), then there exists c ∈ (a, b) such that f ′(c) = 0.

Theorem 60 (Generalized Rolle’s theorem). Suppose f has n derivatives on (a, b). If f(x) =

0 at (n + 1) distinct numbers x0, x1, ..., xn ∈ [a, b], then there exists c ∈ (a, b) such that
f (n)(c) = 0.

Proof of Theorem 58 . Consider the function g(x) = pn(x)−f(x). Observe that g(xi) = 0 for
i = 0, 1, ..., n. From generalized Rolle’s theorem, there exists ξ ∈ (a, b) such that g(n)(ξ) = 0,

which implies
p(n)
n (ξ)− f (n)(ξ) = 0.

Since pn(x) = f [x0]+f [x0, x1](x−x0)+ ...+f [x0, ..., xn](x−x0) · · · (x−xn−1), p(n)
n (x) equals

n! times the leading coefficient f [x0, ..., xn]. Therefore

f (n)(ξ) = n!f [x0, ..., xn].

3.3 Hermite interpolation

In polynomial interpolation, our starting point has been the x and y-coordinates of some
data we want to interpolate. Suppose, in addition, we know the derivative of the underlying
function at these x-coordinates. Our new data set has the following form.

Data:

x0, x1, ..., xn

y0, y1, ..., yn; yi = f(xi)

y′0, y
′
1, ..., y

′
n; y′i = f ′(xi)

CHAPTER 3. INTERPOLATION 111

We seek a polynomial that fits the y and y′ values, that is, we seek a polynomial H(x) such
that H(xi) = yi and H ′(xi) = y′i, i = 0, 1, ..., n. This makes 2n+ 2 equations, and if we let

H(x) = a0 + a1x+ ...+ a2n+1x
2n+1,

then there are 2n + 2 unknowns, a0, ..., a2n+1, to solve for. The following theorem shows
that there is a unique solution to this system of equations; a proof can be found in Burden,
Faires, Burden [4].

Theorem 61. If f ∈ C1[a, b] and x0, ..., xn ∈ [a, b] are distinct, then there is a unique
polynomial H2n+1(x), of degree at most 2n + 1, agreeing with f and f ′ at x0, ..., xn. The
polynomial can be written as:

H2n+1(x) =
n∑
i=0

yihi(x) +
n∑
i=0

y′ih̃i(x)

where

hi(x) = (1− 2(x− xi)l′i(xi)) (li(x))2

h̃i(x) = (x− xi)(li(x))2.

Here li(x) is the ith Lagrange basis function for the nodes x0, ..., xn, and l′i(x) is its derivative.
H2n+1(x) is called the Hermite interpolating polynomial.

The only difference between Hermite interpolation and polynomial interpolation is that
in the former, we have the derivative information, which can go a long way in capturing the
shape of the underlying function.

Example 62. We want to interpolate the following data:

x-coordinates : −1.5, 1.6, 4.7

y-coordinates : 0.071,−0.029,−0.012.

The underlying function the data comes from is cosx, but we pretend we do not know this.
Figure (3.2) plots the underlying function, the data, and the polynomial interpolant for the
data. Clearly, the polynomial interpolant does not come close to giving a good approximation
to the underlying function cosx.

CHAPTER 3. INTERPOLATION 112

Figure 3.2

Now let’s assume we know the derivative of the underlying function at these nodes:

x-coordinates : −1.5, 1.6, 4.7

y-coordinates : 0.071,−0.029,−0.012

y′-values : 1,−1, 1.

We then construct the Hermite interpolating polynomial, incorporating the derivative
information. Figure (3.3) plots the Hermite interpolating polynomial, together with the
polynomial interpolant, and the underlying function.

It is visually difficult to separate the Hermite interpolating polynomial from the un-
derlying function cosx in Figure (3.3). Going from polynomial interpolation to Hermite
interpolation results in rather dramatic improvement in approximating the underlying func-
tion.

CHAPTER 3. INTERPOLATION 113

Figure 3.3

Computing the Hermite polynomial

We do not use Theorem 61 to compute the Hermite polynomial: there is a more efficient
method using divided differences for this computation.

We start with the data:

x0, x1, ..., xn

y0, y1, ..., yn; yi = f(xi)

y′0, y
′
1, ..., y

′
n; y′i = f ′(xi)

and define a sequence z0, z1, ..., z2n+1 by

z0 = x0, z2 = x1, z4 = x2, ..., z2n = xn

z1 = x0, z3 = x1, z5 = x2, ..., z2n+1 = xn

i.e., z2i = z2i+1 = xi, for i = 0, 1, ..., n.

CHAPTER 3. INTERPOLATION 114

Then the Hermite polynomial can be written as:

H2n+1(x) =f [z0] + f [z0, z1](x− z0) + f [z0, z1, z2](x− z0)(x− z1)+

. . .+ f [z0, z1, ..., z2n+1](x− z0) · · · (x− z2n)

=f [z0] +
2n+1∑
i=1

f [z0,, zi](x− z0)(x− z1) · · · (x− zi−1).

There is a little problem with some of the first divided differences above: they are undefined!
Observe that

f [z0, z1] = f [x0, x0] =
f(x0)− f(x0)

x0 − x0

or, in general,

f [z2i, z2i+1] = f [xi, xi] =
f(xi)− f(xi)

xi − xi
for i = 0, ..., n.

From Theorem 58, we know f [x0, ..., xn] = f (n)(ξ)
n!

for some ξ between the min and max
of x0, ..., xn. From a classical result by Hermite & Gennochi (see Atkinson [3], page 144),
divided differences are continuous functions of their variables x0, ..., xn. This implies we can
take the limit of the above result as xi → x0 for all i, which results in

f [x0, ..., x0] =
f (n)(x0)

n!
.

Therefore in the Hermite polynomial coefficient calculations, we will put

f [z2i, z2i+1] = f [xi, xi] = f ′(xi) = y′i

for i = 0, 1, ..., n.

Example 63. Let’s compute the Hermite polynomial of Example 62. The data is:

i xi yi y′i

0 -1.5 0.071 1
1 1.6 -0.029 -1
2 4.7 -0.012 1

Here n = 2, and 2n+ 1 = 5, so the Hermite polynomial is

H5(x) = f [z0] +
5∑
i=1

f [z0, ..., zi](x− z0) · · · (x− zi−1).

The divided differences are:

CHAPTER 3. INTERPOLATION 115

z f(z) 1st diff 2nd diff 3rd diff 4th diff 5th diff

z0 = −1.5 0.071

f ′(z0) = 1

z1 = −1.5 0.071 −0.032−1
1.6+1.5 = −0.33

f [z1, z2] = −0.032 0.0065

z2 = 1.6 -0.029 −1+0.032
1.6+1.5 = −0.31 0.015

f ′(z2) = −1 0.10 -0.005

z3 = 1.6 -0.029 0.0055+1
4.7−1.6 = 0.32 -0.016

f [z3, z4] = 0.0055 0

z4 = 4.7 -0.012 1−0.0055
4.7−1.6 = 0.32

f ′(z4) = 1

z5 = 4.7 -0.012

Therefore, the Hermite polynomial is:

H5(x) =0.071 + 1(x+ 1.5)−0.33(x+ 1.5)2 + 0.0065(x+ 1.5)2(x− 1.6)+

+ 0.015(x+ 1.5)2(x− 1.6)2−0.005(x+ 1.5)2(x− 1.6)2(x− 4.7).

Julia code for computing Hermite interpolating polynomial

In [1]: using PyPlot

The following function hdiff computes the divided differences needed for Hermite in-
terpolation. It is based on the function diff for computing divided differences for Newton
interpolation. The inputs to hdiff are the x-coordinates, the y-coordinates, and the deriva-
tives yprime.

In [2]: function hdiff(x::Array,y::Array,yprime::Array)

m=length(x) # here m is the number of data points. Note n=m-1

#and 2n+1=2m-1

l=2m

z=Array{Float64}(undef,l)

a=Array{Float64}(undef,l)

for i in 1:m

z[2i-1]=x[i]

z[2i]=x[i]

end

CHAPTER 3. INTERPOLATION 116

for i in 1:m

a[2i-1]=y[i]

a[2i]=y[i]

end

for i in reverse(collect(2:m)) # computes the first divided

#differences using derivatives

a[2i]=yprime[i]

a[2i-1]=(a[2i-1]-a[2i-2])/(z[2i-1]-z[2i-2])

end

a[2]=yprime[1]

for j in 3:l #computes the rest of the divided differences

for i in reverse(collect(j:l))

a[i]=(a[i]-a[i-1])/(z[i]-z[i-(j-1)])

end

end

return(a)

end

Out[2]: hdiff (generic function with 1 method)

Let’s compute the divided differences of Example 62.

In [3]: hdiff([-1.5, 1.6, 4.7],[0.071,-0.029,-0.012],

[1,-1,1])

Out[3]: 6-element Array{Float64,1}:

0.071

1.0

-0.33298647242455776

0.006713436944043511

0.015476096374635765

-0.005196626333767283

Note that in the hand-calculations of Example 63, where two-digit rounding was used, we
obtained 0.0065 as the first third divided difference. In the Julia output above, this divided
difference is 0.0067.

The following function computes the Hermite interpolating polynomial, using the divided
differences obtained from hdiff, and then evaluates the polynomial at w.

CHAPTER 3. INTERPOLATION 117

In [4]: function hermite(x::Array,y::Array,yprime::Array,w)

m=length(x) # here m is the number of data points, not the

#degree of the polynomial

a=hdiff(x,y,yprime)

z=Array{Float64}(undef,2m)

for i in 1:m

z[2i-1]=x[i]

z[2i]=x[i]

end

sum=a[1]

pr=1.0

for j in 1:(2m-1)

pr=pr*(w-z[j])

sum=sum+a[j+1]*pr

end

return sum

end

Out[4]: hermite (generic function with 1 method)

Let’s recreate the Hermite interpolating polynomial plot of Example 62.

In [5]: xaxis=-pi/2:1/20:3*pi/2

x=[-1.5, 1.6, 4.7]

y=[0.071,-0.029,-0.012]

yprime=[1,-1,1]

funct=map(cos,xaxis)

interp=map(w->hermite(x,y,yprime,w),xaxis)

plot(xaxis,interp,label="Hermite interpolation")

plot(xaxis, funct, label="cos(x)")

scatter(x, y, label="data")

legend(loc="upper right");

CHAPTER 3. INTERPOLATION 118

Exercise 3.3-1: The following table gives the values of y = f(x) and y′ = f ′(x) where
f(x) = ex + sin 10x. Compute the Hermite interpolating polynomial and the polynomial
interpolant for the data in the table. Plot the two interpolating polynomials together with
f(x) = ex + sin 10x on (0, 3).

x 0 0.4 1 2 2.6 3
y 1 0.735 2.17 8.30 14.2 19.1
y′ 11 -5.04 -5.67 11.5 19.9 21.6

3.4 Piecewise polynomials: spline interpolation

As we observed in Section 3.2, a polynomial interpolant of high degree can have large oscil-
lations, and thus provide an overall poor approximation to the underlying function. Recall
that the degree of the interpolating polynomial is directly linked to the number of data
points: we do not have the freedom to choose the degree of the polynomial.

In spline interpolation, we take a very different approach: instead of finding a single
polynomial that fits the given data, we find one low-degree polynomial that fits every pair

CHAPTER 3. INTERPOLATION 119

of data. This results in several polynomial pieces joined together, and we typically impose
some smoothness conditions on different pieces. The term spline function means a function
that consists of polynomial pieces joined together with some smoothness conditions.

In linear spline interpolation, we simply join data points (the nodes), by line segments,
that is, linear polynomials. For example, consider the following figure that plots three data
points (xi−1, yi−1), (xi, yi), (xi+1, yi+1). We fit a linear polynomial P (x) to the first pair of
data points (xi−1, yi−1), (xi, yi), and another linear polynomial Q(x) to the second pair of
data points (xi, yi), (xi+1, yi+1).

xi-1 xi xi+1

yi-1

yi

yi+1

P(x)
Q(x)

Figure 3.4: Linear spline

Let P (x) = ax+ b and Q(x) = cx+ d. We find the coefficients a, b, c, d by solving

P (xi−1) = yi−1

P (xi) = yi

Q(xi) = yi

Q(xi+1) = yi+1

which is a system of four equations and four unknowns. We then repeat this procedure for
all data points, (x0, y0), (x1, y1), ..., (xn, yn), to determine all of the linear polynomials.

One disadvantage of linear spline interpolation is the lack of smoothness. The first
derivative of the spline is not continuous at the nodes (unless the data fall on a line). We
can obtain better smoothness by increasing the degree of the piecewise polynomials. In
quadratic spline interpolation, we connect the nodes via second degree polynomials.

CHAPTER 3. INTERPOLATION 120

xi-1 xi xi+1

yi-1

yi

yi+1

P(x)

Q(x)

Figure 3.5: Quadratic spline

Let P (x) = a0 + a1x + a2x
2 and Q(x) = b0 + b1x + b2x

2. There are six unknowns to de-
termine, but only four equations from the interpolation conditions: P (xi−1) = yi−1, P (xi) =

yi, Q(xi) = yi, Q(xi+1) = yi+1. We can find extra two conditions by requiring some smooth-
ness, P ′(xi) = Q′(xi), and another equation by requiring P ′ or Q′ take a certain value at one
of the end points.

Cubic spline interpolation

This is the most common spline interpolation. It uses cubic polynomials to connect the
nodes. Consider the data

(x0, y0), (x1, y1), ..., (xn, yn),

where x0 < x1 < ... < xn. In the figure below, the cubic polynomials interpolating pairs of
data are labeled as S0, ..., Sn−1 (we ignore the y-coordinates in the plot).

CHAPTER 3. INTERPOLATION 121

 x0 x1 xi+1

S0

Si-1
Si

Sn-1

 xi-1 xi xn-1 xn

Figure 3.6: Cubic spline

The polynomial Si interpolates the nodes (xi, yi), (xi+1, yi+1). Let

Si(x) = ai + bix+ cix
2 + dix

3

for i = 0, 1, ..., n− 1. There are 4n unknowns to determine: ai, bi, ci, di, as i takes on values
from 0 to n − 1. Let’s describe the equations Si must satisfy. First, the interpolation
conditions, that is, the requirement that Si passes through the nodes (xi, yi), (xi+1, yi+1):

Si(xi) = yi

Si(xi+1) = yi+1

for i = 0, 1, ..., n − 1, which gives 2n equations. The next group of equations are about
smoothness:

S ′i−1(xi) = S ′i(xi)

S ′′i−1(xi) = S ′′i (xi)

for i = 1, 2, ..., n− 1, which gives 2(n− 1) = 2n− 2 equations. Last two equations are called
the boundary conditions. There are two choices:

• Free or natural boundary: S ′′0 (x0) = S ′′n−1(xn) = 0

CHAPTER 3. INTERPOLATION 122

• Clamped boundary: S ′0(x0) = f ′(x0) and S ′n−1(xn) = f ′(xn)

Each boundary choice gives another two equations, bringing the total number of equations to
4n. There are 4n unknowns as well. Do these systems of equations have a unique solution?
The answer is yes, and a proof can be found in Burden, Faires, Burden [4]. The spline
obtained from the first boundary choice is called a natural spline, and the other one is
called a clamped spline.

Example 64. Find the natural cubic spline that interpolates the data (0, 0), (1, 1), (2, 0).

Solution. We have two cubic polynomials to determine:

S0(x) = a0 + b0x+ c0x
2 + d0x

3

S1(x) = a1 + b1x+ c1x
2 + d1x

3

The interpolation equations are:

S0(0) = 0⇒ a0 = 0

S0(1) = 1⇒ a0 + b0 + c0 + d0 = 1

S1(1) = 1⇒ a1 + b1 + c1 + d1 = 1

S1(2) = 0⇒ a1 + 2b1 + 4c1 + 8d1 = 0

We need the derivatives of the polynomials for the other equations:

S ′0(x) = b0 + 2c0x+ 3d0x
2

S ′1(x) = b1 + 2c1x+ 3d1x
2

S ′′0 (x) = 2c0 + 6d0x

S ′′1 (x) = 2c1 + 6d1x

The smoothness conditions are:

S ′0(1) = S ′1(1)⇒ b0 + 2c0 + 3d0 = b1 + 2c1 + 3d1

S ′′0 (1) = S ′′1 (1)⇒ 2c0 + 6d0 = 2c1 + 6d1

The natural boundary conditions are:

S ′′0 (0) = 0⇒ 2c0 = 0

S ′′1 (2) = 0⇒ 2c1 + 12d1 = 0

CHAPTER 3. INTERPOLATION 123

There are eight equations and eight unknowns. However, a0 = c0 = 0, so that reduces the
number of equations and unknowns to six. We rewrite the equations below, substituting
a0 = c0 = 0, and simplifying when possible:

b0 + d0 = 1

a1 + b1 + c1 + d1 = 1

a1 + 2b1 + 4c1 + 8d1 = 0

b0 + 3d0 = b1 + 2c1 + 3d1

3d0 = c1 + 3d1

c1 + 6d1 = 0

We will use Julia to solve this system of equations. To do that, we first rewrite the system
of equations as a matrix equation

Ax = v

where

A =

1 1 0 0 0 0

0 0 1 1 1 1

0 0 1 2 4 8

1 3 0 −1 −2 −3

0 3 0 0 −1 −3

0 0 0 0 1 6

, x =

b0

d0

a1

b1

c1

d1

, v =

1

1

0

0

0

0

.

We enter the matrices A, v in Julia and solve the equation Ax = v using the command
A\v.

In [1]: A=[1 1 0 0 0 0 ; 0 0 1 1 1 1; 0 0 1 2 4 8; 1 3 0 -1 -2 -3;

0 3 0 0 -1 -3; 0 0 0 0 1 6]

Out[1]: 6×6 Array{Int64,2}:

1 1 0 0 0 0

0 0 1 1 1 1

0 0 1 2 4 8

1 3 0 -1 -2 -3

0 3 0 0 -1 -3

0 0 0 0 1 6

In [2]: v=[1 1 0 0 0 0]'

CHAPTER 3. INTERPOLATION 124

Out[2]: 6×1 Array{Int64,2}:

1

1

0

0

0

0

In [3]: A\v

Out[3]: 6×1 Array{Float64,2}:

1.5

-0.5

-1.0

4.5

-3.0

0.5

Therefore, the polynomials are:

S0(x) = 1.5x− 0.5x3

S1(x) = −1 + 4.5x− 3x2 + 0.5x3

Solving the equations of a spline even for three data points can be tedious. Fortunately,
there is a general approach to solving the equations for natural and clamped splines, for any
number of data points. We will use this approach when we write Julia codes for splines next.

Exercise 3.4-1: Find the natural cubic spline interpolant for the following data:

x -1 0 1
y 1 2 0

Exercise 3.4-2: The following is a clamped cubic spline for a function f defined on
[1, 3]:

s(x) =

s0(x) = (x− 1) + (x− 1)2 − (x− 1)3, if 1 ≤ x < 2

s1(x) = a+ b(x− 2) + c(x− 2)2 + d(x− 2)3 if 2 ≤ x < 3.

Find a, b, c, and d, if f ′(1) = 1 and f ′(3) = 2.

CHAPTER 3. INTERPOLATION 125

Julia code for spline interpolation

In [1]: using PyPlot

The function CubicNatural takes the x and y-coordinates of the data as input, and
computes the natural cubic spline interpolating the data, by solving the resulting matrix
equation. The code is based on Algorithm 3.4 of Burden, Faires, Burden [4]. The output
is the coefficients of the m − 1 cubic polynomials, ai, bi, ci, di, i = 1, ...,m − 1 where m is
the number of data points. These coefficients are stored in the arrays a, b, c, d, which are
declared global, so that we can access these arrays later to evaluate the spline for a given
value w.

In [2]: function CubicNatural(x::Array,y::Array)

m=length(x) # m is the number of data points

n=m-1

global a=Array{Float64}(undef,m)

global b=Array{Float64}(undef,n)

global c=Array{Float64}(undef,m)

global d=Array{Float64}(undef,n)

for i in 1:m

a[i]=y[i]

end

h=Array{Float64}(undef,n)

for i in 1:n

h[i]=x[i+1]-x[i]

end

u=Array{Float64}(undef,n)

u[1]=0

for i in 2:n

u[i]=3*(a[i+1]-a[i])/h[i]-3*(a[i]-a[i-1])/h[i-1]

end

s=Array{Float64}(undef,m)

z=Array{Float64}(undef,m)

t=Array{Float64}(undef,n)

s[1]=1

z[1]=0

t[1]=0

for i in 2:n

CHAPTER 3. INTERPOLATION 126

s[i]=2*(x[i+1]-x[i-1])-h[i-1]*t[i-1]

t[i]=h[i]/s[i]

z[i]=(u[i]-h[i-1]*z[i-1])/s[i]

end

s[m]=1

z[m]=0

c[m]=0

for i in reverse(1:n)

c[i]=z[i]-t[i]*c[i+1]

b[i]=(a[i+1]-a[i])/h[i]-h[i]*(c[i+1]+2*c[i])/3

d[i]=(c[i+1]-c[i])/(3*h[i])

end

end

Out[2]: CubicNatural (generic function with 1 method)

Once the matrix equation is solved, and the coefficients of the cubic polynomials are
computed by CubicNatural, the next step is to evaluate the spline at a given value. This
is done by the following function CubicNaturalEval. The inputs are the value at which
the spline is evaluated, w, and the x-coordinates of the data. The function first finds the
interval [xi, xi+1], i = 1, ...,m− 1, w belongs to, and then evaluates the spline at w using the
corresponding cubic polynomial. Note that in the previous section the data and the intervals
are counted starting at 0, so the formulas used in the Julia code do not exactly match the
formulas given earlier.

In [3]: function CubicNaturalEval(w,x::Array)

m=length(x)

if w<x[1]||w>x[m]

return print("error: spline evaluated outside its domain")

end

n=m-1

p=1

for i in 1:n

if w<=x[i+1]

break

else

p=p+1

CHAPTER 3. INTERPOLATION 127

end

end

p is the number of the subinterval w falls into, i.e., p=i means

w falls into the ith subinterval $(x_i,x_{i+1}), and therefore

the value of the spline at w is

a_i+b_i*(w-x_i)+c_i*(w-x_i)^2+d_i*(w-x_i)^3.

return a[p]+b[p]*(w-x[p])+c[p]*(w-x[p])^2+d[p]*(w-x[p])^3

end

Out[3]: CubicNaturalEval (generic function with 1 method)

Next we will compare Newton and natural cubic spline interpolation when applied to
Runge’s function. We import the functions for Newton interpolation first.

In [4]: function diff(x::Array,y::Array)

m=length(x) # here m is the number of data points. the degree of

the polynomial n is m-1

a=Array{Float64}(undef,m)

for i in 1:m

a[i]=y[i]

end

for j in 2:m

for i in reverse(collect(j:m))

a[i]=(a[i]-a[i-1])/(x[i]-x[i-(j-1)])

end

end

return(a)

end

Out[4]: diff (generic function with 1 method)

In [5]: function newton(x::Array,y::Array,z)

m=length(x) # here m is the number of data points, not the

degree of the polynomial

a=diff(x,y)

sum=a[1]

pr=1.0

for j in 1:(m-1)

CHAPTER 3. INTERPOLATION 128

pr=pr*(z-x[j])

sum=sum+a[j+1]*pr

end

return sum

end

Out[5]: newton (generic function with 1 method)

Here is the code that computes the cubic spline, Newton interpolation, and plot them.

In [6]: using LaTeXStrings

xaxis=-5:1/100:5

f(x)=1/(1+x^2)

runge=f.(xaxis)

xi=collect(-5:1:5)

yi=map(f,xi)

CubicNatural(xi,yi)

naturalspline=map(z->CubicNaturalEval(z,xi),xaxis)

interp=map(z->newton(xi,yi,z),xaxis) # Interpolating polynomial for

the data

plot(xaxis,runge,label=L"1/(1+x^2)")

plot(xaxis,interp,label="Interpolating poly")

plot(xaxis,naturalspline,label="Natural cubic spline")

scatter(xi, yi, label="Data")

legend(loc="upper center");

CHAPTER 3. INTERPOLATION 129

The cubic spline gives an excellent fit to Runge’s function on this scale: we cannot visually
separate it from the function itself.

The following function CubicClamped computes the clamped cubic spline; the code is
based on Algorithm 3.5 of Burden, Faires, Burden [4]. The function CubicClampedEval
evaluates the spline at a given value.

In [7]: function CubicClamped(x::Array,y::Array,yprime_left,yprime_right)

m=length(x) # m is the number of data points

n=m-1

global A=Array{Float64}(undef,m)

global B=Array{Float64}(undef,n)

global C=Array{Float64}(undef,m)

global D=Array{Float64}(undef,n)

for i in 1:m

A[i]=y[i]

end

h=Array{Float64}(undef,n)

for i in 1:n

h[i]=x[i+1]-x[i]

end

u=Array{Float64}(undef,m)

u[1]=3*(A[2]-A[1])/h[1]-3*yprime_left

u[m]=3*yprime_right-3*(A[m]-A[m-1])/h[m-1]

for i in 2:n

u[i]=3*(A[i+1]-A[i])/h[i]-3*(A[i]-A[i-1])/h[i-1]

end

s=Array{Float64}(undef,m)

z=Array{Float64}(undef,m)

t=Array{Float64}(undef,n)

s[1]=2*h[1]

t[1]=0.5

z[1]=u[1]/s[1]

for i in 2:n

s[i]=2*(x[i+1]-x[i-1])-h[i-1]*t[i-1]

t[i]=h[i]/s[i]

z[i]=(u[i]-h[i-1]*z[i-1])/s[i]

end

CHAPTER 3. INTERPOLATION 130

s[m]=h[m-1]*(2-t[m-1])

z[m]=(u[m]-h[m-1]*z[m-1])/s[m]

c[m]=z[m]

for i in reverse(1:n)

C[i]=z[i]-t[i]*C[i+1]

B[i]=(A[i+1]-A[i])/h[i]-h[i]*(C[i+1]+2*C[i])/3

D[i]=(C[i+1]-C[i])/(3*h[i])

end

end

Out[7]: CubicClamped (generic function with 1 method)

In [8]: function CubicClampedEval(w,x::Array)

m=length(x)

if w<x[1]||w>x[m]

return print("error: spline evaluated outside its domain")

end

n=m-1

p=1

for i in 1:n

if w<=x[i+1]

break

else

p=p+1

end

end

return A[p]+B[p]*(w-x[p])+C[p]*(w-x[p])^2+D[p]*(w-x[p])^3

end

Out[8]: CubicClampedEval (generic function with 1 method)

In the following, we use natural and clamped cubic splines to interpolate data coming
from sinx at the x-coordinates: 0, π, 3π/2, 2π. The derivatives at the end points are both
equal to 1.

In [9]: xaxis=0:1/100:2*pi

f(x)=sin(x)

funct=f.(xaxis)

CHAPTER 3. INTERPOLATION 131

xi=[0,pi,3*pi/2,2*pi]

yi=map(f,xi)

CubicNatural(xi,yi)

naturalspline=map(z->CubicNaturalEval(z,xi),xaxis)

CubicClamped(xi,yi,1,1)

clampedspline=map(z->CubicClampedEval(z,xi),xaxis)

plot(xaxis,funct,label="sin(x)")

plot(xaxis,naturalspline,linestyle="--",label="Natural cubic spline")

plot(xaxis,clampedspline,label="Clamped cubic spline")

scatter(xi, yi, label="Data")

legend(loc="upper right");

Especially on the interval (0, π), the clamped spline gives a much better approximation to
sinx than the natural spline. However, adding an extra data point between 0 and π removes
the visual differences between the splines.

In [10]: xaxis=0:1/100:2*pi

f(x)=sin(x)

funct=f.(xaxis)

xi=[0,pi/2,pi,3*pi/2,2*pi]

yi=map(f,xi)

CubicNatural(xi,yi)

naturalspline=map(z->CubicNaturalEval(z,xi),xaxis)

CubicClamped(xi,yi,1,1)

CHAPTER 3. INTERPOLATION 132

clampedspline=map(z->CubicClampedEval(z,xi),xaxis)

plot(xaxis,funct,label="sin(x)")

plot(xaxis,naturalspline,linestyle="--",label="Natural cubic spline")

plot(xaxis,clampedspline,label="Clamped cubic spline")

scatter(xi, yi, label="Data")

legend(loc="upper right");

CHAPTER 3. INTERPOLATION 133

Arya and the letter NUH

Arya loves Dr. Seuss (who doesn’t?), and
she is writing her term paper in an English
class on On Beyond Zebra! 2. In this book
Dr. Seuss invents new letters, one of which is
called NUH. He writes:

And NUH is the letter I use to
spell Nutches
Who live in small caves, known as
Nitches, for hutches.
These Nutches have troubles, the
biggest of which is
The fact there are many more
Nutches than Nitches.

What does this letter look like? Well, some-
thing like this.

What Arya wants is a digitized version of the sketch; a figure that is smooth and can
be manipulated using graphics software. The letter NUH is a little complicated to apply a
spline interpolation directly, since it has some cusps. For such planar curves, we can use
their parametric representation, and use a cubic spline interpolation for x and y-coordinates
separately. To this end, Arya picks eight points on the letter NUH, and labels them as
t = 1, 2, ..., 8; see the figure below.

2Seuss, 1955. On Beyond Zebra! Random House for Young Readers.

CHAPTER 3. INTERPOLATION 134

Then for each point she eyeballs the x and y-coordinates with the help of a graph paper.
The results are displayed in the table below.

t 1 2 3 4 5 6 7 8
x 0 0 -0.05 0.1 0.4 0.65 0.7 0.76
y 0 1.25 2.5 1 0.3 0.9 1.5 0

The next step is to fit a cubic spline to the data (t1, x1), ..., (t8, x8), and another cubic
spline to the data (t1, y1), ..., (t8, y8). Let’s call these splines xspline(t), yspline(t), respec-
tively, since they represent the x and y-coordinates as functions of the parameter t. Plotting
xspline(t), yspline(t) will produce the letter NUH, as we can see in the following Julia codes.

First, load the PyPlot package, and copy and evaluate the functions CubicNatural and
CubicNaturalEval that we discussed earlier. Here is the letter NUH, obtained by spline
interpolation:

In [4]: t=[1,2,3,4,5,6,7,8]

x=[0,0,-0.05,0.1,0.4,0.65,0.7,0.76]

y=[0,1.25,2.5,1,0.3,0.9,1.5,0]

taxis=1:1/100:8

CubicNatural(t,x)

xspline=map(z->CubicNaturalEval(z,t),taxis)

CubicNatural(t,y)

yspline=map(z->CubicNaturalEval(z,t),taxis)

plot(xspline,yspline,linewidth=5);

CHAPTER 3. INTERPOLATION 135

This looks like it needs to be squeezed! Adjusting the aspect ratio gives a better image.
In the following, we use the commands

w, h = plt[:figaspect](2)
figure(figsize=(w,h))

to adjust the aspect ratio.

In [5]: t=[1,2,3,4,5,6,7,8]

x=[0,0,-0.05,0.1,0.4,0.65,0.7,0.76]

y=[0,1.25,2.5,1,0.3,0.9,1.5,0]

taxis=1:1/100:8

CubicNatural(t,x)

xspline=map(z->CubicNaturalEval(z,t),taxis)

CubicNatural(t,y)

yspline=map(z->CubicNaturalEval(z,t),taxis)

w, h = plt[:figaspect](2)

figure(figsize=(w,h))

plot(xspline,yspline,linewidth=5);

Exercise 3.4-3: Limaçon is a curve, named after a French word for snail, that appears
in the study of planetary motion. The polar equation for the curve is r = 1 + c sin θ where
c is a constant. Below is a plot of the curve when c = 1.

CHAPTER 3. INTERPOLATION 136

The x, y coordinates of the dots on the curve are displayed in the following table:

x 0 0.5 1 1.3 0 -1.3 -1 -0.5 0
y 0 -0.25 0 0.71 2 0.71 0 -0.25 0

Recreate the limaçon above, by applying the spline interpolation for plane curves ap-
proach used in Arya and the letter NUH example to the points given in the table.

Chapter 4

Numerical Quadrature and
Differentiation

Estimating
∫ b
a
f(x)dx using sums of the form

∑n
i=0wif(xi) is known as the quadrature

problem. Here wi are called weights, and xi are called nodes. The objective is to determine
the nodes and weights to minimize error.

4.1 Newton-Cotes formulas

The idea is to construct the polynomial interpolant P (x) and compute
∫ b
a
P (x)dx as an

approximation to
∫ b
a
f(x)dx. Given nodes x0, x1, ..., xn, the Lagrange form of the interpolant

is

Pn(x) =
n∑
i=0

f(xi)li(x)

and from the interpolation error formula Theorem 51, we have

f(x) = Pn(x) + (x− x0) · · · (x− xn)
f (n+1)(ξ(x))

(n+ 1)!
,

where ξ(x) ∈ [a, b]. (We have written ξ(x) instead of ξ to emphasize that ξ depends on the
value of x.)

Taking the integral of both sides yields∫ b

a

f(x)dx =

∫ b

a

Pn(x)dx︸ ︷︷ ︸
quadrature rule

+
1

(n+ 1)!

∫ b

a

n∏
i=0

(x− xi)f (n+1)(ξ(x))dx.︸ ︷︷ ︸
error term

(4.1)

137

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 138

The first integral on the right-hand side gives the quadrature rule:

∫ b

a

Pn(x)dx =

∫ b

a

(
n∑
i=0

f(xi)li(x)

)
dx =

n∑
i=0

∫ b

a

li(x)dx︸ ︷︷ ︸
wi

 f(xi) =
n∑
i=0

wif(xi),

and the second integral gives the error term.
We obtain different quadrature rules by taking different nodes, or number of nodes. The

following result is useful in the theoretical analysis of Newton-Cotes formulas.

Theorem 65 (Weighted mean value theorem for integrals). Suppose f ∈ C0[a, b], the Rie-
mann integral of g(x) exists on [a, b], and g(x) does not change sign on [a, b]. Then there
exists ξ ∈ (a, b) with

∫ b
a
f(x)g(x)dx = f(ξ)

∫ b
a
g(x)dx.

Two well-known numerical quadrature rules, trapezoidal rule and Simpson’s rule, are
examples of Newton-Cotes formulas:

• Trapezoidal rule
Let f ∈ C2[a, b]. Take two nodes, x0 = a, x1 = b, and use the linear Lagrange
polynomial

P1(x) =
x− x1

x0 − x1

f(x0) +
x− x0

x1 − x0

f(x1)

to estimate f(x). Substitute n = 1 in Equation (4.1) to get

∫ b

a

f(x)dx =

∫ b

a

P1(x)dx+
1

2

∫ b

a

1∏
i=0

(x− xi)f ′′(ξ(x))dx,

and then substitute for P1 to obtain∫ b

a

f(x)dx =

∫ b

a

x− x1

x0 − x1

f(x0)dx+

∫ b

a

x− x0

x1 − x0

f(x1)dx+
1

2

∫ b

a

(x− x0)(x− x1)f ′′(ξ(x))dx.

The first two integrals on the right-hand side can be evaluated easily: the first integral
is h

2
f(x0) and the second one is h

2
f(x1), where h = x1 − x0 = b− a. Let’s evaluate

∫ b

a

(x− x0)(x− x1)f ′′(ξ(x))dx.

We will use Theorem 65 for this computation. Note that the function (x−x0)(x−x1) =

(x − a)(x − b) does not change sign on the interval [a, b] and it is integrable: so this
function serves the role of g(x) in Theorem 65. The other term, f ′′(ξ(x)), serves the

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 139

role of f(x). Applying the theorem, we get∫ b

a

(x− a)(x− b)f ′′(ξ(x))dx = f ′′(ξ)

∫ b

a

(x− a)(x− b)dx

where we kept the same notation ξ, somewhat inappropriately, as we moved f ′′(ξ(x))

from inside to the outside of the integral. Finally, observe that∫ b

a

(x− a)(x− b)dx =
(a− b)3

6
=
−h3

6
,

where h = b− a. Putting all the pieces together, we have obtained∫ b

a

f(x)dx =
h

2
[f(x0) + f(x1)]− h3

12
f ′′(ξ).

• Simpson’s rule
Let f ∈ C4[a, b]. Take three equally-spaced nodes, x0 = a, x1 = a + h, x2 = b, where
h = b−a

2
, and use the second degree Lagrange polynomial

P2(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
f(x0) +

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
f(x1) +

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
f(x2)

to estimate f(x). Substitute n = 2 in Equation (4.1) to get

∫ b

a

f(x)dx =

∫ b

a

P2(x)dx+
1

3!

∫ b

a

2∏
i=0

(x− xi)f (3)(ξ(x))dx,

and then substitute for P2 to obtain∫ b

a

f(x)dx =

∫ b

a

(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
f(x0)dx+

∫ b

a

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
f(x1)dx+

+

∫ b

a

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
f(x2)dx+

1

6

∫ b

a

(x− x0)(x− x1)(x− x2)f (3)(ξ(x))dx.

The sum of the first three integrals on the right-hand side simplify as:
h
3

[f(x0) + 4f(x1) + f(x2)]. The last integral cannot be evaluated using Theorem 65
directly, like in the trapezoidal rule, since the function (x−x0)(x−x1)(x−x2) changes
sign on [a, b]. However, a clever application of integration by parts transforms the
integral to an integral where Theorem 65 is applicable (see Atkinson [3] for details),

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 140

and the integral simplifies as −h5

90
f (4)(ξ) for some ξ ∈ (a, b). In summary, we obtain

∫ b

a

f(x)dx =
h

3
[f(x0) + 4f(x1) + f(x2)]− h5

90
f (4)(ξ)

where ξ ∈ (a, b).

Exercise 4.1-1: Prove that the sum of the weights in Newton-Cotes rules is b− a, for
any n.

Definition 66. The degree of accuracy, or precision, of a quadrature formula is the largest
positive integer n such that the formula is exact for f(x) = xk, when k = 0, 1, ..., n, or
equivalently, for any polynomial of degree less than or equal to n.

Observe that the trapezoidal and Simpson’s rules have degrees of accuracy of one and
three. These two rules are examples of closed Newton-Cotes formulas; closed refers to the
fact that the end points a, b of the interval are used as nodes in the quadrature rule. Here is
the general definition.

Definition 67 (Closed Newton-Cotes). The (n+1)-point closed Newton-Cotes formula uses
nodes xi = x0 + ih, for i = 0, 1, ..., n, where x0 = a, xn = b, h = b−a

n
, and

wi =

∫ xn

x0

li(x)dx =

∫ xn

x0

n∏
j=0,j 6=i

x− xj
xi − xj

dx.

The following theorem provides an error formula for the closed Newton-Cotes formula.
A proof can be found in Isaacson and Keller [12].

Theorem 68. For the (n+ 1)-point closed Newton-Cotes formula, we have:

• if n is even and f ∈ Cn+2[a, b]∫ b

a

f(x)dx =
n∑
i=0

wif(xi) +
hn+3f (n+2)(ξ)

(n+ 2)!

∫ n

0

t2(t− 1) · · · (t− n)dt,

• if n is odd and f ∈ Cn+1[a, b]∫ b

a

f(x)dx =
n∑
i=0

wif(xi) +
hn+2f (n+1)(ξ)

(n+ 1)!

∫ n

0

t(t− 1) · · · (t− n)dt

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 141

where ξ is some number in (a, b).

Some well known examples of closed Newton-Cotes formulas are the trapezoidal rule
(n = 1), Simpson’s rule (n = 2), and Simpson’s three-eight rule (n = 3). Observe that in
the (n + 1)-point closed Newton-Cotes formula, if n is even, then the degree of accuracy
is (n + 1), although the interpolating polynomial is of degree n. The open Newton-Cotes
formulas exclude the end points of the interval.

Definition 69 (Open Newton-Cotes). The (n + 1)-point open Newton-Cotes formula uses
nodes xi = x0 + ih, for i = 0, 1, ..., n, where x0 = a+ h, xn = b− h, h = b−a

n+2
and

wi =

∫ b

a

li(x)dx =

∫ b

a

n∏
j=0,j 6=i

x− xj
xi − xj

dx.

We put a = x−1 and b = xn+1 .

The error formula for the open Newton-Cotes formula is given next; for a proof see
Isaacson and Keller [12].

Theorem 70. For the (n+ 1)-point open Newton-Cotes formula, we have:

• if n is even and f ∈ Cn+2[a, b]∫ b

a

f(x)dx =
n∑
i=0

wif(xi) +
hn+3f (n+2)(ξ)

(n+ 2)!

∫ n+1

−1

t2(t− 1) · · · (t− n)dt,

• if n is odd and f ∈ Cn+1[a, b]∫ b

a

f(x)dx =
n∑
i=0

wif(xi) +
hn+2f (n+1)(ξ)

(n+ 1)!

∫ n+1

−1

t(t− 1) · · · (t− n)dt,

where ξ is some number in (a, b).

The well-known midpoint rule is an example of open Newton-Cotes formula:

• Midpoint rule
Take one node, x0 = a+h, which corresponds to n = 0 in the above theorem to obtain∫ b

a

f(x)dx = 2hf(x0) +
h3f ′′(ξ)

3

where h = (b − a)/2. This rule interpolates f by a constant (the values of f at the
midpoint), that is, a polynomial of degree 0, but it has degree of accuracy 1.

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 142

Remark 71. Both closed and open Newton-Cotes formulas using odd number of nodes (n
is even), gains an extra degree of accuracy beyond that of the polynomial interpolant on
which it is based. This is due to cancellation of positive and negative error.

There are some drawbacks of Newton-Cotes formulas:

• In general, these rules are not of the highest degree of accuracy possible for the number
of nodes used.

• The use of large number of equally spaced nodes may incur the erratic behavior asso-
ciated with high-degree polynomial interpolation. Weights for a high-order rule may
be negative, potentially leading to loss of significance errors.

• Let In denote the Newton-Cotes estimate of an integral based on n nodes. In may not
converge to the true integral as n→∞ for perfectly well-behaved integrands.

Example 72. Estimate
∫ 1

0.5
xxdx using the midpoint, trapezoidal, and Simpson’s rules.

Solution. Let f(x) = xx. The midpoint estimate for the integral is 2hf(x0) where h =

(b − a)/2 = 1/4 and x0 = 0.75. Then the midpoint estimate, using 6-digits, is f(0.75)/2 =

0.805927/2 = 0.402964. The trapezoidal estimate is h
2

[f(0.5) + f(1)] where h = 1/2, which
results in 1.707107/4 = 0.426777. Finally, for Simpson’s rule, h = (b− a)/2 = 1/4, and thus
the estimate is

h

3
[f(0.5) + 4f(0.75) + f(1)] =

1

12
[0.707107 + 4(0.805927) + 1] = 0.410901.

Here is a summary of the results:
Midpoint Trapezoidal Simpson’s
0.402964 0.426777 0.410901

Example 73. Find the constants c0, c1, x1 so that the quadrature formula∫ 1

0

f(x)dx = c0f(0) + c1f(x1)

has the highest possible degree of accuracy.

Solution. We will find how many of the polynomials 1, x, x2, ... the rule can integrate exactly.
If p(x) = 1, then ∫ 1

0

p(x)dx = c0p(0) + c1p(x1)⇒ 1 = c0 + c1.

If p(x) = x, we get ∫ 1

0

p(x)dx = c0p(0) + c1p(x1)⇒ 1

2
= c1x1

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 143

and p(x) = x2 implies ∫ 1

0

p(x)dx = c0p(0) + c1p(x1)⇒ 1

3
= c1x

2
1.

We have three unknowns and three equations, so we have to stop here. Solving the three
equations we get: c0 = 1/4, c1 = 3/4, x1 = 2/3. So the quadrature rule is of precision two
and it is: ∫ 1

0

f(x)dx =
1

4
f(0) +

3

4
f(

2

3
).

Exercise 4.1-2: Find c0, c1, c2 so that the quadrature rule
∫ 1

−1
f(x)dx = c0f(−1) +

c1f(0) + c2f(1) has degree of accuracy 2.

4.2 Composite Newton-Cotes formulas

If the interval [a, b] in the quadrature is large, then the Newton-Cotes formulas will give poor
approximations. The quadrature error depends on h = (b−a)/n (closed formulas), and if b−a
is large, then so is h, hence error. If we raise n to compensate for large interval, then we face
a problem discussed earlier: error due to the oscillatory behavior of high-degree interpolating
polynomials that use equally-spaced nodes. A solution is to break up the domain into smaller
intervals and use a Newton-Cotes rule with a smaller n on each subinterval: this is known
as a composite rule.

Example 74. Let’s compute
∫ 2

0
ex sinxdx. The antiderivative can be computed using inte-

gration by parts, and the true value of the integral to 6 digits is 5.39689. If we apply the
Simpson’s rule we get:∫ 2

0

ex sinxdx ≈ 1

3
(e0 sin 0 + 4e sin 1 + e2 sin 2) = 5.28942.

If we partition the integration domain (0, 2) into (0, 1) and (1, 2), and apply Simpson’s rule

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 144

to each domain separately, we get∫ 2

0

ex sinxdx =

∫ 1

0

ex sinxdx+

∫ 2

1

ex sinxdx

≈ 1

6
(e0 sin 0 + 4e0.5 sin(0.5) + e sin 1) +

1

6
(e sin 1 + 4e1.5 sin(1.5) + e2 sin 2)

= 5.38953,

improving the accuracy significantly. Note that we have used five nodes, 0, 0.5, 1, 1.5, 2, which
splits the domain (0, 2) into four subintervals.

The composite rules for midpoint, trapezoidal, and Simpson’s rule, with their error terms,
are:

• Composite Midpoint rule
Let f ∈ C2[a, b], n be even, h = b−a

n+2
, and xj = a+ (j+ 1)h for j = −1, 0, ..., n+ 1. The

composite Midpoint rule for n+ 2 subintervals is

∫ b

a

f(x)dx = 2h

n/2∑
j=0

f(x2j) +
b− a

6
h2f ′′(ξ) (4.2)

for some ξ ∈ (a, b).

• Composite Trapezoidal rule
Let f ∈ C2[a, b], h = b−a

n
, and xj = a+jh for j = 0, 1, ..., n. The composite Trapezoidal

rule for n subintervals is∫ b

a

f(x)dx =
h

2

[
f(a) + 2

n−1∑
j=1

f(xj) + f(b)

]
− b− a

12
h2f ′′(ξ) (4.3)

for some ξ ∈ (a, b).

• Composite Simpson’s rule
Let f ∈ C4[a, b], n be even, h = b−a

n
, and xj = a+ jh for j = 0, 1, ..., n. The composite

Simpson’s rule for n subintervals is

∫ b

a

f(x)dx =
h

3

f(a) + 2

n
2
−1∑
j=1

f(x2j) + 4

n/2∑
j=1

f(x2j−1) + f(b)

− b− a
180

h4f (4)(ξ) (4.4)

for some ξ ∈ (a, b).

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 145

Exercise 4.2-1: Show that the quadrature rule in Example 74 corresponds to taking
n = 4 in the composite Simpson’s formula (4.4).

Exercise 4.2-2: Show that the absolute error for the composite trapezoidal rule decays
at the rate of 1/n2, and the absolute error for the composite Simpson’s rule decays at the
rate of 1/n4, where n is the number of subintervals.

Example 75. Determine n that ensures the composite Simpson’s rule approximates∫ 2

1
x log xdx with an absolute error of at most 10−6.

Solution. The error term for the composite Simpson’s rule is b−a
180
h4f (4)(ξ) where ξ is some

number between a = 1 and b = 2, and h = (b− a)/n. Differentiate to get f (4)(x) = 2
x3
. Then

b− a
180

h4f (4)(ξ) =
1

180
h4 2

ξ3
≤ h4

90

where we used the fact that 2
ξ3
≤ 2

1
= 2 when ξ ∈ (1, 2). Now make the upper bound less

than 10−6, that is,

h4

90
≤ 10−6 ⇒ 1

n4(90)
≤ 10−6 ⇒ n4 ≥ 106

90
≈ 11111.11

which implies n ≥ 10.27. Since n must be even for Simpson’s rule, this means the smallest
value of n to ensure an error of at most 10−6 is 12.

Using the Julia code for the composite Simpson’s rule that will be introduced next,
we get 0.6362945608 as the estimate, using 10 digits. The correct integral to 10 digits is
0.6362943611, which means an absolute error of 2× 10−7, better than the expected 10−6.

Julia codes for Newton-Cotes formulas

We write codes for the trapezoidal and Simpson’s rules, and the composite Simpson’s rule.
Coding trapezoidal and Simpson’s rule is straightforward.

Trapezoidal rule

In [1]: function trap(f::Function,a,b)

(f(a)+f(b))*(b-a)/2

end

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 146

Out[1]: trap (generic function with 1 method)

Let’s verify the calculations of Example 72:

In [2]: trap(x->x^x,0.5,1)

Out[2]: 0.42677669529663687

Simpson’s rule

In [3]: function simpson(f::Function,a,b)

(f(a)+4f((a+b)/2)+f(b))*(b-a)/6

end

Out[3]: simpson (generic function with 1 method)

In [4]: simpson(x->x^x,0.5,1)

Out[4]: 0.4109013813880978

Recall that the degree of accuracy of Simpson’s rule is 3. This means the rule integrates
polynomials 1, x, x2, x3 exactly, but not x4. We can use this as a way to verify our code:

In [5]: simpson(x->x,0,1)

Out[5]: 0.5

In [6]: simpson(x->x^2,0,1)

Out[6]: 0.3333333333333333

In [7]: simpson(x->x^3,0,1)

Out[7]: 0.25

In [8]: simpson(x->x^4,0,1)

Out[8]: 0.20833333333333334

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 147

Composite Simpson’s rule

Next we code the composite Simpson’s rule, and verify the result of Example 75. Note that
in the code the sequence index starts at 1, not 0, so the rule looks slightly different.

In [9]: function compsimpson(f::Function,a,b,n)

h=(b-a)/n

nodes=Array{Float64}(undef,n+1)

for i in 1:n+1

nodes[i]=a+(i-1)h

end

sum=f(a)+f(b)

for i in 3:2:n-1

sum=sum+2*f(nodes[i])

end

for i in 2:2:n

sum=sum+4*f(nodes[i])

end

return(sum*h/3)

end

Out[9]: compsimpson (generic function with 1 method)

In [10]: compsimpson(x->x*log(x),1,2,12)

Out[10]: 0.636294560831306

Exercise 4.2-3: Determine the value of n required to approximate∫ 2

0

1

x+ 1
dx

to within 10−4, and compute the approximation, using the composite trapezoidal and com-
posite Simpson’s rule.

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 148

Composite rules and roundoff error

As we increase n in the composite rules to lower error, the number of function evaluations
increases, and a natural question to ask would be whether roundoff error could accumulate
and cause problems. Somewhat remarkably, the answer is no. Let’s assume the roundoff error
associated with computing f(x) is bounded for all x, by some positive constant ε. And let’s
try to compute the roundoff error in composite Simpson rule. Since each function evaluation
in the composite rule incorporates an error of (at most) ε, the total error is bounded by

h

3

ε+ 2

n
2
−1∑
j=1

ε+ 4

n/2∑
j=1

ε+ ε

 ≤ h

3

[
ε+ 2

(n
2
− 1
)
ε+ 4

(n
2

)
ε+ ε

]
=
h

3
(3nε) = hnε.

However, since h = (b − a)/n, the bound simplifies as hnε = (b − a)ε. Therefore no matter
how large n is, that is, how large the number of function evaluations is, the roundoff error is
bounded by the same constant (b− a)ε which only depends on the size of the interval.

Exercise 4.2-4: (This problem shows that numerical quadrature is stable with respect
to error in function values.) Assume the function values f(xi) are approximated by f̃(xi), so
that |f(xi) − f̃(xi)| < ε for any xi ∈ (a, b). Find an upper bound on the error of numerical
quadrature

∑
wif(xi) when it is actually computed as

∑
wif̃(xi).

4.3 Gaussian quadrature

Newton-Cotes formulas were obtained by integrating interpolating polynomials with equally-
spaced nodes. The equal spacing is convenient in deriving simple expressions for the com-
posite rules. However, this placement of nodes is not necessarily the optimal placement. For
example, the trapezoidal rule approximates the integral by integrating a linear function that
joins the endpoints of the function. The fact that this is not the optimal choice can be seen
by sketching a simple parabola.

The idea of Gaussian quadrature is the following: in the numerical quadrature rule∫ b

a

f(x)dx ≈
n∑
i=1

wif(xi)

choose xi and wi in such a way that the quadrature rule has the highest possible accuracy.

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 149

Note that unlike Newton-Cotes formulas where we started labeling the nodes with x0, in
the Gaussian quadrature the first node is x1. This difference in notation is common in
the literature, and each choice makes the subsequent equations in the corresponding theory
easier to read.

Example 76. Let (a, b) = (−1, 1), and n = 2. Find the “best” xi and wi.
There are four parameters to determine: x1, x2, w1, w2. We need four constraints. Let’s

require the rule to integrate the following functions exactly: f(x) = 1, f(x) = x, f(x) = x2,
and f(x) = x3.

If the rule integrates f(x) = 1 exactly, then
∫ 1

−1
dx =

∑2
i=1 wi, i.e., w1 + w2 = 2. If the

rule integrates f(x) = x exactly, then
∫ 1

−1
xdx =

∑2
i=1wixi, i.e., w1x1+w2x2 = 0. Continuing

this for f(x) = x2, and f(x) = x3, we obtain the following equations:

w1 + w2 = 2

w1x1 + w2x2 = 0

w1x
2
1 + w2x

2
2 =

2

3

w1x
3
1 + w2x

3
2 = 0.

Solving the equations gives: w1 = w2 = 1, x1 = −
√

3
3
, x2 =

√
3

3
. Therefore the quadrature rule

is: ∫ 1

−1

f(x)dx ≈ f

(
−
√

3

3

)
+ f

(√
3

3

)
.

Observe that:

• The two nodes are not equally spaced on (−1, 1).

• The accuracy of the rule is three, and it uses only two nodes. Recall that the accuracy
of Simpson’s rule is also three but it uses three nodes. In general Gaussian quadrature
gives a degree of accuracy of 2n− 1 using only n nodes.

We were able to solve for the nodes and weights in the simple example above, however,
as the number of nodes increases, the resulting non-linear system of equations will be very
difficult to solve. There is an alternative approach using the theory of orthogonal polyno-
mials, a topic we will discuss in detail later. Here, we will use a particular set of orthogonal
polynomials {L0(x), L1(x), ..., Ln(x), ...} called Legendre polynomials. We will give a defini-
tion of these polynomials in the next chapter. For this discussion, we just need the following
properties of these polynomials:

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 150

• Ln(x) is a monic polynomial of degree n for each n.

•
∫ 1

−1
P (x)Ln(x)dx = 0 for any polynomial P (x) of degree less than n.

The first few Legendre polynomials are

L0(x) = 1, L1(x) = x, L2(x) = x2 − 1

3
, L3(x) = x3 − 3

5
x, L4(x) = x4 − 6

7
x2 +

3

35
.

How do these polynomials help with finding the nodes and the weights of the Gaussian
quadrature rule? The answer is short: the roots of the Legendre polynomials are the nodes
of the quadrature rule!

To summarize, the Gauss-Legendre quadrature rule for the integral of f over (−1, 1)

is ∫ 1

−1

f(x)dx =
n∑
i=1

wif(xi)

where x1, x2, ..., xn are the roots of the nth Legendre polynomial, and the weights are com-
puted using the following theorem.

Theorem 77. Suppose that x1, x2, ..., xn are the roots of the nth Legendre polynomial Ln(x)

and the weights are given by

wi =

∫ 1

−1

n∏
j=1,j 6=i

x− xj
xi − xj

dx.

Then the Gauss-Legendre quadrature rule has degree of accuracy 2n − 1. In other words, if
P (x) is any polynomial of degree less than or equal to 2n− 1, then∫ 1

−1

P (x)dx =
n∑
i=1

wiP (xi).

Proof. Let’s start with a polynomial P (x) with degree less than n. Construct the Lagrange
interpolant for P (x), using the nodes as x1, ..., xn

P (x) =
n∑
i=1

P (xi)li(x) =
n∑
i=1

n∏
j=1,j 6=i

x− xj
xi − xj

P (xi).

There is no error term above because the error term depends on the nth derivative of P (x),
but P (x) is a polynomial of degree less than n, so that derivative is zero. Integrate both

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 151

sides to get

∫ 1

−1

P (x)dx =

∫ 1

−1

[
n∑
i=1

n∏
j=1,j 6=i

x− xj
xi − xj

P (xi)

]
dx =

∫ 1

−1

[
n∑
i=1

P (xi)
n∏

j=1,j 6=i

x− xj
xi − xj

]
dx

=
n∑
i=1

[∫ 1

−1

P (xi)
n∏

j=1,j 6=i

x− xj
xi − xj

dx

]

=
n∑
i=1

[∫ 1

−1

n∏
j=1,j 6=i

x− xj
xi − xj

dx

]
P (xi)

=
n∑
i=1

wiP (xi).

Therefore the theorem is correct for polynomials of degree less than n. Now let P (x) be a
polynomial of degree greater than or equal to n, but less than or equal to 2n − 1. Divide
P (x) by the Legendre polynomial Ln(x) to get

P (x) = Q(x)Ln(x) +R(x).

Note that
P (xi) = Q(xi)Ln(xi) +R(xi) = R(xi)

since Ln(xi) = 0 , for i = 1, 2, ..., n. Also observe the following facts:

1.
∫ 1

−1
Q(x)Ln(x)dx = 0, since Q(x) is a polynomial of degree less than n, and from the

second property of Legendre polynomials.

2.
∫ 1

−1
R(x)dx =

∑n
i=1wiR(xi), since R(x) is a polynomial of degree less than n, and from

the first part of the proof.

Putting these facts together we get:∫ 1

−1

P (x)dx =

∫ 1

−1

[Q(x)Ln(x) +R(x)] dx =

∫ 1

−1

R(x)dx =
n∑
i=1

wiR(xi) =
n∑
i=1

wiP (xi).

Table 4.1 displays the roots of the Legendre polynomials L2, L3, L4, L5 and the corre-
sponding weights.

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 152

n Roots Weights

2 1√
3

= 0.5773502692 1

− 1√
3

= −0.5773502692 1

3 −(3
5
)1/2 = −0.7745966692 5

9
= 0.5555555556

0.0 8
9

= 0.8888888889

(3
5
)1/2 = 0.7745966692 5

9
= 0.5555555556

4 0.8611363116 0.3478548451

0.3399810436 0.6521451549

-0.3399810436 0.6521451549

-0.8611363116 0.3478548451

5 0.9061798459 0.2369268850

0.5384693101 0.4786286705

0.0 0.5688888889

-0.5384693101 0.4786286705

-0.9061798459 0.2369268850

Table 4.1: Roots of Legendre polynomials L2 through L5

Example 78. Approximate
∫ 1

−1
cosxdx using Gauss-Legendre quadrature with n = 3 nodes.

Solution. From Table 4.1, and using two-digit rounding, we have∫ 1

−1

cosxdx ≈ 0.56 cos(−0.77) + 0.89 cos 0 + 0.56 cos(0.77) = 1.69

and the true solution is sin(1)− sin(−1) = 1.68.

So far we discussed integrating functions over the interval (−1, 1). What if we have
a different integration domain? The answer is simple: change of variables! To compute∫ b
a
f(x)dx for any a < b, we use the following change of variables:

t =
2x− a− b
b− a

⇔ x =
1

2
[(b− a)t+ a+ b]

With this substitution, we have∫ b

a

f(x)dx =
b− a

2

∫ 1

−1

f

(
1

2
[(b− a)t+ a+ b]

)
dt.

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 153

Now we can approximate the integral on the right-hand side as before.

Example 79. Approximate
∫ 1

0.5
xxdx using Gauss-Legendre quadrature with n = 2 nodes.

Solution. Transform the integral using x = 1
2

(0.5t+ 1.5) = 1
2
(t

2
+ 3

2
) = t+3

4
, dx = dt

4
to get:

∫ 1

0.5

xxdx =
1

4

∫ 1

−1

(
t+ 3

4

) t+3
4

dt.

For n = 2

1

4

∫ 1

−1

(
t+ 3

4

) t+3
4

dt ≈ 1

4

(1

4
√

3
+

3

4

)(
1

4
√
3

+ 3
4

)
+

(
− 1

4
√

3
+

3

4

)(
− 1

4
√
3

+ 3
4

) = 0.410759,

using six digits. We will next use Julia for a five-node computation of the integral.

Julia code for Gauss-Legendre rule with five nodes

The following code computes the Gauss-Legendre rule for
∫ 1

−1
f(x)dx using n = 5 nodes.

The nodes and weights are from Table 4.1.

In [1]: function gauss(f::Function)

0.2369268851*f(-0.9061798459)+

0.2369268851*f(0.9061798459)+

0.5688888889*f(0)+

0.4786286705*f(0.5384693101)+

0.4786286705*f(-0.5384693101)

end

Out[1]: gauss (generic function with 1 method)

Now we compute 1
4

∫ 1

−1

(
t+3

4

) t+3
4 dt using the code:

In [2]: 0.25*gauss(t->(t/4+3/4)^(t/4+3/4))

Out[2]: 0.41081564812239885

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 154

The next theorem is about the error of the Gauss-Legendre rule. Its proof can be found in
Atkinson [3]. The theorem shows, in particular, that the degree of accuracy of the quadrature
rule, using n nodes, is 2n− 1.

Theorem 80. Let f ∈ C2n[−1, 1]. The error of Gauss-Legendre rule satisfies∫ b

a

f(x)dx−
n∑
i=1

wif(xi) =
22n+1(n!)4

(2n+ 1) [(2n)!]2
f (2n)(ξ)

(2n)!

for some ξ ∈ (−1, 1).

Using Stirling’s formula n! ∼ e−nnn(2πn)1/2, where the symbol ∼ means the ratio of the
two sides converges to 1 as n→∞, it can be shown that

22n+1(n!)4

(2n+ 1) [(2n)!]2
∼ π

4n
.

This means the error of Gauss-Legendre rule decays at an exponential rate of 1/4n as opposed
to, for example, the polynomial rate of 1/n4 for composite Simpson’s rule.

Exercise 4.3-1: Prove that the sum of the weights in Gauss-Legendre quadrature is 2,
for any n.

Exercise 4.3-2: Approximate
∫ 1.5

1
x2 log xdx using Gauss-Legendre rule with n = 2

and n = 3. Compare the approximations to the exact value of the integral.

Exercise 4.3-3: A composite Gauss-Legendre rule can be obtained similar to compos-
ite Newton-Cotes formulas. Consider

∫ 2

0
exdx. Divide the interval (0, 2) into two subintervals

(0, 1), (1, 2) and apply the Gauss-Legendre rule with two-nodes to each subinterval. Com-
pare the estimate with the estimate obtained from the Gauss-Legendre rule with four-nodes
applied to the whole interval (0, 2).

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 155

4.4 Multiple integrals

The numerical quadrature methods we have discussed can be generalized to higher dimen-
sional integrals. We will consider the two-dimensional integral∫ ∫

R

f(x, y)dA.

The domain R determines the difficulty in generalizing the one-dimensional formulas we
learned before. The simplest case would be a rectangular domain R = {(x, y)|a ≤ x ≤ b, c ≤
y ≤ d}. We can then write the double integral as the iterated integral∫ ∫

R

f(x, y)dA =

∫ b

a

(∫ d

c

f(x, y)dy

)
dx.

Consider a numerical quadrature rule∫ b

a

f(x)dx ≈
n∑
i=1

wif(xi).

Apply the rule using n2 nodes to the inner integral to get the approximation

∫ b

a

(
n2∑
j=1

wjf(x, yj)

)
dx

where the yj’s are the nodes. Rewrite, by interchanging the integral and summation, to get

n2∑
j=1

wj

(∫ b

a

f(x, yj)dx

)

and apply the quadrature rule again, using n1 nodes, to get the approximation

n2∑
j=1

wj

(
n1∑
i=1

wif(xi, yj)

)
.

This gives the two-dimensional rule∫ b

a

(∫ d

c

f(x, y)dy

)
dx ≈

n2∑
j=1

n1∑
i=1

wiwjf(xi, yj).

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 156

For simplicity, we ignored the error term in the above derivation, however, its inclusion is
straightforward.

For an example, let’s derive the two-dimensional Gauss-Legendre rule for the integral∫ 1

0

∫ 1

0

f(x, y)dydx (4.5)

using two nodes for each axis. Note that each integral has to be transformed to (−1, 1).

Start with the inner integral
∫ 1

0
f(x, y)dy and use

t = 2y − 1, dt = 2dy

to transform it to
1

2

∫ 1

−1

f

(
x,
t+ 1

2

)
dt

and apply Gauss-Legendre rule with two nodes to get the approximation

1

2

(
f

(
x,
−1/
√

3 + 1

2

)
+ f

(
x,

1/
√

3 + 1

2

))
.

Substitute this approximation in (4.5) for the inner integral to get

∫ 1

0

1

2

(
f

(
x,
−1/
√

3 + 1

2

)
+ f

(
x,

1/
√

3 + 1

2

))
dx.

Now transform this integral to the domain (−1, 1) using

s = 2x− 1, ds = 2dx

to get
1

4

∫ 1

0

(
f

(
s+ 1

2
,
−1/
√

3 + 1

2

)
+ f

(
s+ 1

2
,
1/
√

3 + 1

2

))
ds.

Apply the Gauss-Legendre rule again to get

1

4

[
f

(
−1/
√

3 + 1

2
,
−1/
√

3 + 1

2

)
+ f

(
−1/
√

3 + 1

2
,
1/
√

3 + 1

2

)

+ f

(
1/
√

3 + 1

2
,
−1/
√

3 + 1

2

)
+ f

(
1/
√

3 + 1

2
,
1/
√

3 + 1

2

)]
. (4.6)

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 157

Figure (4.1) displays the nodes used in this calculation.
�(1

3
, − 1

3)

-1 1

-1

1(− 1
3

, 1
3) (1

3
, 1

3)

(− 1
3

, − 1
3) (1

3
, − 1

3)

Figure 4.1: Nodes of double Gauss-Legendre rule

Next we derive the two-dimensional Simpson’s rule for the same integral,∫ 1

0

∫ 1

0
f(x, y)dydx, using n = 2, which corresponds to three nodes in the Simpson’s rule

(recall that n is the number of nodes in Gauss-Legendre rule, but n + 1 is the number of
nodes in Newton-Cotes formulas).

The inner integral is approximated as∫ 1

0

f(x, y)dy ≈ 1

6
(f(x, 0) + 4f(x, 0.5) + f(x, 1)) .

Substitute this approximation for the inner integral in
∫ 1

0

(∫ 1

0
f(x, y)dy

)
dx to get

1

6

∫ 1

0

(f(x, 0) + 4f(x, 0.5) + f(x, 1)) dx.

Apply Simpson’s rule again to this integral with n = 2 to obtain the final approximation:

1

6

[
1

6

(
f(0, 0) + 4f(0, 0.5) + f(0, 1) + 4(f(0.5, 0) + 4f(0.5, 0.5) + f(0.5, 1))

+ f(1, 0) + 4f(1, 0.5) + f(1, 1)

)]
. (4.7)

Figure (4.2) displays the nodes used in the above calculation.
For a specific example, consider the integral∫ 1

0

∫ 1

0

(π
2

sin πx
)(π

2
sinπy

)
dydx.

This integral can be evaluated exactly, and its value is 1. It is used as a test inte-

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 158

1

10 0.5

0.5

Figure 4.2: Nodes of double Simpson’s rule

gral for numerical quadrature rules. Evaluating equations (4.6) and (4.7) with f(x, y) =(
π
2

sin πx
) (

π
2

sin πy
)
, we obtain the approximations given in the table below:

Simpson’s rule (9 nodes) Gauss-Legendre (4 nodes) Exact integral
1.0966 0.93685 1

The Gauss-Legendre rule gives a slightly better estimate than Simpson’s rule, but using less
than half the number of nodes.

The approach we have discussed can be extended to regions that are not rectangular,
and to higher dimensions. More details, including algorithms for double and triple integrals
using Simpson’s and Gauss-Legendre rule, can be found in Burden, Faires, Burden [4].

There is however, an obvious disadvantage of the way we have generalized one-
dimensional quadrature rules to higher dimensions. Imagine a numerical integration problem
where the dimension is 360; such high dimensions appear in some problems from financial
engineering. Even if we used two nodes for each dimension, the total number of nodes would
be 2360, which is about 10100, a number too large. In very large dimensions, the only general
method for numerical integration is the Monte Carlo method. In Monte Carlo, we generate
pseudorandom numbers from the domain, and evaluate the function average at those points.
In other words, ∫

R

f(x)dx ≈ 1

n

n∑
i=1

f(xi)

where xi are pseudorandom vectors uniformly distributed in R. For the two-dimensional
integral we discussed before, the Monte Carlo estimate is∫ b

a

∫ d

c

f(x, y)dydx ≈ (b− a)(d− c)
n

n∑
i=1

f(a+ (b− a)xi, c+ (d− c)yi) (4.8)

where xi, yi are pseudorandom numbers from (0, 1). In Julia, the function rand() generates

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 159

a pseudorandom number from the uniform distribution between 0 and 1. The following code
takes the endpoints of the intervals a, b, c, d, and the number of nodes n (which is called the
sample size in the Monte Carlo literature) as inputs, and returns the estimate for the integral
using Equation (4.8).

In [1]: function mc(f::Function,a,b,c,d,n)

sum=0.

for i in 1:n

sum=sum+f(a+(b-a)*rand(),c+(d-c)*rand())*(b-a)*(d-c)

end

return sum/n

end

Out[1]: mc (generic function with 1 method)

Now we use Monte Carlo to estimate the integral
∫ 1

0

∫ 1

0

(
π
2

sin πx
) (

π
2

sin πy
)
dydx:

In [2]: mc((x,y)->(pi^2/4)*sin(pi*x)*sin(pi*y),0,1,0,1,500)

Out[2]: 0.9441778334708931

With n = 500, we obtain a Monte Carlo estimate of 0.944178. An advantage of the Monte
Carlo method is its simplicity: the above code can be easily generalized to higher dimensions.
A disadvantage of Monte Carlo is its slow rate of convergence, which is O(1/

√
n). Figure

(4.3) displays 500 pseudorandom vectors from the unit square.

Figure 4.3: Monte Carlo: 500 pseudorandom vectors

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 160

Example 81. Capstick & Keister [5] discuss some high dimensional test integrals, some with
analytical solutions, motivated by physical applications such as the calculation of quantum
mechanical matrix elements in atomic, nuclear, and particle physics. One of the integrals
with a known solution is ∫

Rs
cos(‖t‖))e−‖t‖

2

dt1dt2 · · · dts

where ‖t‖ = (t21 + . . . + t2s)
1/2. This integral can be transformed to an integral over the

s-dimensional unit cube as

πs/2
∫

(0,1)s
cos

[(
(F−1(x1))2 + . . .+ (F−1(xs))

2

2

)1/2
]
dx1dx2 · · · dxs (4.9)

where F−1 is the inverse of the cumulative distribution function of the standard normal
distribution:

F (x) =
1

(2π)1/2

∫ x

−∞
e−s

2/2ds.

We will estimate the integral (4.9) by Monte Carlo as

πs/2

n

n∑
i=1

cos

((F−1(x
(i)
1))2 + . . .+ (F−1(x

(i)
s))2

2

)1/2

where x(i) = (x
(i)
1 , . . . , x

(i)
s) is an s-dimensional vector of uniform random numbers between

0 and 1.

In [1]: using PyPlot

The following algorithm, known as the Beasley-Springer-Moro algorithm [8], gives an
approximation to F−1(x).

In [2]: function invNormal(u::Float64)

Beasley-Springer-Moro algorithm

a0=2.50662823884

a1=-18.61500062529

a2=41.39119773534

a3=-25.44106049637

b0=-8.47351093090

b1=23.08336743743

b2=-21.06224101826

b3=3.13082909833

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 161

c0=0.3374754822726147

c1=0.9761690190917186

c2=0.1607979714918209

c3=0.0276438810333863

c4=0.0038405729373609

c5=0.0003951896511919

c6=0.0000321767881768

c7=0.0000002888167364

c8=0.0000003960315187

y=u-0.5

if abs(y)<0.42

r=y*y

x=y*(((a3*r+a2)*r+a1)*r+a0)/((((b3*r+b2)*r+b1)*r+b0)*r+1)

else

r=u

if(y >0)

r=1-u

end

r=log(-log(r))

x=c0+r*(c1+r*(c2+r*(c3+r*(c4+r*(c5+r*(c6+r*(c7+r*c8)))))))

if(y<0)

x=-x

end

end

return x

end

Out[2]: invNormal (generic function with 1 method)

The following is the Monte Carlo estimate of the integral. It takes the dimension s and
the sample size n as inputs.

In [3]: function mc(s,n)

est=0

for j in 1:n

sum=0

for i in 1:s

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 162

sum=sum+(invNormal(rand()))^2

end

est=est+cos((sum/2)^0.5)

end

return pi^(s/2)*est/n

end

Out[3]: mc (generic function with 1 method)

The exact value of the integral for s = 25 is 1.356914 ∗ 106. The following code computes
the relative error of the Monte Carlo estimate with sample size n.

In [4]: relerror(n)=abs(mc(25,n)+1.356914*10^6)/(1.356914*10^6)

Out[4]: relerror (generic function with 1 method)

Let’s plot the relative error of some Monte Carlo estimates. First, we generate sample
sizes from 50,000 to 1,000,000 in increments of 50,000.

In [5]: samples=[n for n in 50000:50000:1000000];

For each sample size, we compute the relative error, and then plot the results.

In [6]: error=[relerror(n) for n in samples];

In [7]: plot(samples,error)

xlabel("Sample size (n)")

ylabel("Relative error");

Figure 4.4: Monte Carlo relative error for the integral (4.9)

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 163

4.5 Improper integrals

The quadrature rules we have learned so far cannot be applied (or applied with a poor perfor-
mance) to integrals such as

∫ b
a
f(x)dx if a, b = ±∞ or if a, b are finite but f is not continuous

at one or both of the endpoints: recall that both Newton-Cotes and Gauss-Legendre error
bound theorems require the integrand to have a number of continuous derivatives on the
closed interval [a, b]. For example, an integral in the form∫ 1

−1

f(x)√
1− x2

dx

clearly cannot be approximated using the trapezoidal or Simpson’s rule without any modifi-
cations, since both rules require the values of the integrand at the end points which do not
exist. One could try using the Gauss-Legendre rule, but the fact that the integrand does
not satisfy the smoothness conditions required by the Gauss-Legendre error bound means
the error of the approximation might be large.

A simple remedy to the problem of improper integrals is to change the variable of inte-
gration and transform the integral, if possible, to one that behaves well.

Example 82. Consider the previous integral
∫ 1

−1
f(x)√
1−x2dx. Try the transformation θ =

cos−1 x. Then dθ = −dx/
√

1− x2 and∫ 1

−1

f(x)√
1− x2

dx = −
∫ 0

π

f(cos θ)dθ =

∫ π

0

f(cos θ)dθ.

The latter integral can be evaluated using, for example, Simpson’s rule, provided f is smooth
on [0, π].

If the interval of integration is infinite, another approach that might work is truncation
of the interval to a finite one. The success of this approach depends on whether we can
estimate the resulting error.

Example 83. Consider the improper integral
∫∞

0
e−x

2
dx. Write the integral as∫ ∞

0

e−x
2

dx =

∫ t

0

e−x
2

dx+

∫ ∞
t

e−x
2

dx,

where t is the "level of truncation" to determine. We can estimate the first integral on the
right-hand side using a quadrature rule. The second integral on the right-hand side is the
error due to approximating

∫∞
0
e−x

2
dx by

∫ t
0
e−x

2
dx. An upper bound for the error can be

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 164

found easily for this example: note that when x ≥ t, x2 = xx ≥ tx, thus∫ ∞
t

e−x
2

dx ≤
∫ ∞
t

e−txdx = e−t
2

/t.

When t = 5, e−t2/t ≈ 10−12, therefore, approximating the integral
∫∞

0
e−x

2
dx by

∫ 5

0
e−x

2
dx

will be accurate within 10−12. Additional error will come from estimating the latter integral
by numerical quadrature.

4.6 Numerical differentiation

The derivative of f at x0 is

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
.

This formula gives an obvious way to estimate the derivative by

f ′(x0) ≈ f(x0 + h)− f(x0)

h

for small h. What this formula lacks, however, is it does not give any information about the
error of the approximation.

We will try another approach. Similar to Newton-Cotes quadrature, we will construct
the interpolating polynomial for f , and then use the derivative of the polynomial as an
approximation for the derivative of f .

Let’s assume f ∈ C2(a, b), x0 ∈ (a, b), and x0 + h ∈ (a, b). Construct the linear Lagrange
interpolating polynomial p1(x) for the data (x0, f(x0)), (x1, f(x1)) = (x0 + h, f(x0 + h)).
From Theorem 51, we have

f(x) =
x− x1

x0 − x1

f(x0) +
x− x0

x1 − x0

f(x1)︸ ︷︷ ︸
p1(x)

+
f ′′(ξ(x))

2!
(x− x0)(x− x1)︸ ︷︷ ︸

interpolation error

=
x− (x0 + h)

x0 − (x0 + h)
f(x0) +

x− x0

x0 + h− x0

f(x0 + h) +
f ′′(ξ(x))

2!
(x− x0)(x− x0 − h)

=
x− x0 − h
−h

f(x0) +
x− x0

h
f(x0 + h) +

f ′′(ξ(x))

2!
(x− x0)(x− x0 − h).

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 165

Now let’s differentiate f(x) :

f ′(x) = −f(x0)

h
+
f(x0 + h)

h
+ f ′′(ξ(x))

d

dx

[
(x− x0)(x− x0 − h)

2

]
+

(x− x0)(x− x0 − h)

2

d

dx
[f ′′(ξ(x))]

=
f(x0 + h)− f(x0)

h
+

2x− 2x0 − h
2

f ′′(ξ(x)) +
(x− x0)(x− x0 − h)

2
f ′′′(ξ(x))ξ′(x).

In the above equation, we know ξ is between x0 and x0 + h, however, we have no knowledge
about ξ′(x), which appears in the last term. Fortunately, if we set x = x0, the term with
ξ′(x) vanishes and we get:

f ′(x0) =
f(x0 + h)− f(x0)

h
− h

2
f ′′(ξ(x0)).

This formula is called the forward-difference formula if h > 0 and backward-difference
formula if h < 0. Note that from this formula we can obtain a bound on the error∣∣∣∣f ′(x0)− f(x0 + h)− f(x0)

h

∣∣∣∣ ≤ h

2
sup
x∈(a,b)

f ′′(x).

To obtain the forward-difference and backward-difference formulas we started with a
linear polynomial interpolant on two points. Using more points and a higher order interpolant
gives more accuracy, but also increases the computing time and roundoff error. In general,
let f ∈ Cn+1[a, b] and x0, x1, ..., xn are distinct numbers in [a, b]. We have

f(x) =
n∑
k=0

f(xk)lk(x) + f (n+1)(ξ)
(x− x0)(x− x1) · · · (x− xn)

(n+ 1)!

⇒ f ′(x) =
n∑
k=0

f(xk)l
′
k(x) + f (n+1)(ξ)

d

dx

[
(x− x0)(x− x1) · · · (x− xn)

(n+ 1)!

]
+

(x− x0)(x− x1) · · · (x− xn)

(n+ 1)!

d

dx
(f (n+1)(ξ)).

If x = xj for j = 0, 1, ..., n, the last term vanishes, and using the following result

d

dx
[(x− x0)(x− x1) · · · (x− xn)]x=xj

=
n∏

k=0,k 6=j

(xj − xk)

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 166

we obtain

f ′(xj) =
n∑
k=0

f(xk)l
′
k(xj) +

f (n+1)(ξ(xj))

(n+ 1)!

n∏
k=0,k 6=j

(xj − xk) (4.10)

which is called the (n+ 1)-point formula to approximate f ′(xj). The most common formulas
use n = 2 and n = 4. Here we discuss n = 2, that is, three-point formulas. The nodes are,
x0, x1, x2. The Lagrange basis polynomials and their derivatives are:

l0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
⇒ l′0(x) =

2x− x1 − x2

(x0 − x1)(x0 − x2)

l1(x) =
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
⇒ l′1(x) =

2x− x0 − x2

(x1 − x0)(x1 − x2)

l2(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
⇒ l′2(x) =

2x− x0 − x1

(x2 − x0)(x2 − x1)

These derivatives can be substituted in (4.10) to obtain the three-point formula. We can
simplify these formulas if the nodes are spaced equally, that is, x1 = x0 + h, x2 = x1 + h =

x0 + 2h. Then, we obtain

f ′(x0) =
1

2h
[−3f(x0) + 4f(x0 + h)− f(x0 + 2h)] +

h2

3
f (3)(ξ0) (4.11)

f ′(x0 + h) =
1

2h
[−f(x0) + f(x0 + 2h)]− h2

6
f (3)(ξ1) (4.12)

f ′(x0 + 2h) =
1

2h
[f(x0)− 4f(x0 + h) + 3f(x0 + 2h)] +

h2

3
f (3)(ξ2). (4.13)

It turns out that the first and third equations ((4.11) and (4.13)) are equivalent. To see
this, first substitute x0 by x0 − 2h in the third equation to get (ignoring the error term)

f ′(x0) =
1

2h
[f(x0 − 2h)− 4f(x0 − h) + 3f(x0)] ,

and then set h to −h in the right-hand side to get 1
2h

[−f(x0 + 2h) + 4f(x0 + h)− 3f(x0)],
which gives us the first equation.

Therefore we have only two distinct equations, (4.11) and (4.12). We rewrite these
equations below with one modification: in (4.12), we substitute x0 by x0 − h. We then
obtain two different formulas for f ′(x0) :

f ′(x0) =
−3f(x0) + 4f(x0 + h)− f(x0 + 2h)

2h
+
h2

3
f (3)(ξ0)→ three-point endpoint formula

f ′(x0) =
f(x0 + h)− f(x0 − h)

2h
− h2

6
f (3)(ξ1)→ three-point midpoint formula

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 167

The three-point midpoint formula has some advantages: it has half the error of the endpoint
formula, and it has one less function evaluation. The endpoint formula is useful if one does
not know the value of f on one side; a situation that may happen if x0 is close to an endpoint.

Example 84. The following table gives the values of f(x) = sinx. Estimate f ′(0.1), f ′(0.3)

using an appropriate three-point formula.
x f(x)

0.1 0.09983
0.2 0.19867
0.3 0.29552
0.4 0.38942

Solution. To estimate f ′(0.1), we set x0 = 0.1, and h = 0.1. Note that we can only use the
three-point endpoint formula.

f ′(0.1) ≈ 1

0.2
(−3(0.09983) + 4(0.19867)− 0.29552) = 0.99835.

The correct answer is cos 0.1 = 0.995004.

To estimate f ′(0.3) we can use the midpoint formula:

f ′(0.3) ≈ 1

0.2
(0.38942− 0.19867) = 0.95375.

The correct answer is cos 0.3 = 0.955336 and thus the absolute error is 1.59×10−3. If we use
the endpoint formula to estimate f ′(0.3) we set h = −0.1 and compute

f ′(0.3) ≈ 1

−0.2
(−3(0.29552) + 4(0.19867)− 0.09983) = 0.95855

with an absolute error of 3.2× 10−3.

Exercise 4.6-1: In some applications, we want to estimate the derivative of an unknown
function from empirical data. However, empirical data usually come with "noise", that is,
error due to data collection, data reporting, or some other reason. In this exercise we will
investigate how stable the difference formulas are when there is noise in the data. Consider
the following data obtained from y = ex. The data is exact to six digits. We estimate f ′(1.01)

x 1.00 1.01 1.02
f(x) 2.71828 2.74560 2.77319

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 168

using the three-point midpoint formula and obtain f ′(1.01) = 2.77319−2.71828
0.02

= 2.7455. The
true value is f ′(1.01) = e1.01 = 2.74560, and the relative error due to rounding is 3.6× 10−5.

Next, we add some noise to the data: we increase 2.77319 by 10% to 3.050509, and
decrease 2.71828 by 10% to 2.446452. Here is the noisy data:

x 1.00 1.01 1.02
f(x) 2.446452 2.74560 3.050509

Estimate f ′(1.01) using the noisy data, and compute its relative error. How does the
relative error compare with the relative error for the non-noisy data?

We next want to explore how to estimate the second derivative of f. A similar approach to
estimating f ′ can be taken and the second derivative of the interpolating polynomial can be
used as an approximation. Here we will discuss another approach, using Taylor expansions.
Expand f about x0, and evaluate it at x0 + h and x0 − h:

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2
f ′′(x0) +

h3

6
f (3)(x0) +

h4

24
f (4)(ξ+)

f(x0 − h) = f(x0)− hf ′(x0) +
h2

2
f ′′(x0)− h3

6
f (3)(x0) +

h4

24
f (4)(ξ−)

where ξ+ is between x0 and x0 + h, and ξ− is between x0 and x0 − h. Add the equations to
get

f(x0 + h) + f(x0 − h) = 2f(x0) + h2f ′′(x0) +
h4

24

[
f (4)(ξ+) + f (4)(ξ−)

]
.

Solving for f ′′(x0) gives

f ′′(x0) =
f(x0 + h)− 2f(x0) + f(x0 − h)

h2
− h2

24

[
f (4)(ξ+) + f (4)(ξ−)

]
.

Note that f (4)(ξ+)+f (4)(ξ−)
2

is a number between f (4)(ξ+) and f (4)(ξ−), so from the Intermediate
Value Theorem 6, we can conclude there exists some ξ between ξ− and ξ+ so that

f (4)(ξ) =
f (4)(ξ+) + f (4)(ξ−)

2
.

Then the above formula simplifies as

f ′′(x0) =
f(x0 + h)− 2f(x0) + f(x0 − h)

h2
− h2

12
f (4)(ξ)

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 169

for some ξ between x0 − h and x0 + h.

Numerical differentiation and roundoff error

Arya and the mysterious black box

College life is full of mysteries, and Arya
faces one in an engineering class: a black box!
What is a black box? It is a computer pro-
gram, or some device, which produces an out-
put when an input is provided. We do not
know the inner workings of the system, hence
comes the name black box. Let’s think of the
black box as a function f , and represent the
input and output as x, f(x). Of course, we
do not have a formula for f .

What Arya’s engineering classmates want to do is compute the derivative information
of the black box, that is, f ′(x), when x = 2. (The input to this black box can be any real
number.) Students want to use the three-point midpoint formula to estimate f ′(2):

f ′(2) ≈ 1

2h
[f(2 + h)− f(2− h)] .

They argue how to pick h in this formula. One of them says they should make h as small as
possible, like 10−8. Arya is skeptical. She mutters to herself, "I know I slept through some
of my numerical analysis lectures, but not all!"

She tells her classmates about the cancellation of leading digits phenomenon, and to

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 170

make her point more convincing, she makes the following experiment: let f(x) = ex, and
suppose we want to compute f ′(2) which is e2. Arya uses the three-point midpoint formula
above to estimate f ′(2), for various values of h, and for each case she computes the absolute
value of the difference between the three-point midpoint estimate and the exact solution e2.
She tabulates her results in the table below. Clearly, smaller h does not result in smaller
error. In this experiment, h = 10−6 gives the smallest error.

h 10−4 10−5 10−6 10−7 10−8

Abs. error 1.2× 10−8 1.9× 10−10 5.2× 10−11 7.5× 10−9 2.1× 10−8

Theoretical analysis

Numerical differentiation is a numerically unstable problem. To reduce the truncation error,
we need to decrease h, which in turn increases the roundoff error due to cancellation of
significant digits in the function difference calculation. Let e(x) denote the roundoff error in
computing f(x) so that f(x) = f̃(x)+e(x), where f̃ is the value computed by the computer.
Consider the three-point midpoint formula:∣∣∣∣∣f ′(x0)− f̃(x0 + h)− f̃(x0 − h)

2h

∣∣∣∣∣
=

∣∣∣∣f ′(x0)− f(x0 + h)− e(x0 + h)− f(x0 − h) + e(x0 − h)

2h

∣∣∣∣
=

∣∣∣∣f ′(x0)− f(x0 + h)− f(x0 − h)

2h
+
e(x0 − h)− e(x0 + h)

2h

∣∣∣∣
=

∣∣∣∣−h2

6
f (3)(ξ) +

e(x0 − h)− e(x0 + h)

2h

∣∣∣∣ ≤ h2

6
M +

ε

h

where we assumed |f (3)(ξ)| ≤ M and |e(x)| ≤ ε. To reduce the truncation error h2M/6 one
would decrease h, which would then result in an increase in the roundoff error ε/h. An
optimal value for h can be found with these assumptions using Calculus: find the value for
h that minimizes the function s(h) = Mh2

6
+ ε

h
. The answer is h = 3

√
3ε/M.

Let’s revisit the table Arya presented where 10−6 was found to be the optimal value for
h. The calculations were done using Julia, which reports 15 digits when asked for e2. Let’s
assume all these digits are correct, and thus let ε = 10−16. Since f (3)(x) = ex and e2 ≈ 7.4,
let’s take M = 7.4. Then

h = 3
√

3ε/M = 3
√

3× 10−16/7.4 ≈ 3.4× 10−6

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 171

which is in good agreement with the optimal value 10−6 of Arya’s numerical results.

Exercise 4.6-2: Find the optimal value for h that will minimize the error for the
formula

f ′(x0) =
f(x0 + h)− f(x0)

h
− h

2
f ′′(ξ)

in the presence of roundoff error, using the approach of Section 4.6.

a) Consider estimating f ′(1) where f(x) = x2 using the above formula. What is the
optimal value for h for estimating f ′(1), assuming that the roundoff error is bounded by
ε = 10−16 (which is the machine epsilon 2−53 in the 64-bit floating point representation).

b) Use Julia to compute

f ′n(1) =
f(1 + 10−n)− f(1)

10−n
,

for n = 1, 2, ..., 20, and describe what happens.

c) Discuss your findings in parts (a) and (b) and how they relate to each other.

Exercise 4.6-3: The function
∫ x

0
1√
2π
e−t

2/2dt is related to the distribution function
of the standard normal random variable; a very important distribution in probability and
statistics. Often times we want to solve equations like∫ x

0

1√
2π
e−t

2/2dt = z (4.14)

for x, where z is some real number between 0 and 1. This can be done by using Newton’s
method to solve the equation f(x) = 0 where

f(x) =

∫ x

0

1√
2π
e−t

2/2dt− z.

Note that from Fundamental Theorem of Calculus, f ′(x) = 1√
2π
e−x

2/2. Newton’s method will
require the calculation of ∫ pk

0

1√
2π
e−t

2/2dt (4.15)

where pk is a Newton iterate. This integral can be computed using numerical quadrature.
Write a Julia code that takes z as its input, and outputs x, such that Equation (4.14) holds.
In your code, use the Julia codes for Newton’s method and the composite Simpson’s rule
you were given in class. For Newton’s method set tolerance to 10−5 and p0 = 0.5, and for

CHAPTER 4. NUMERICAL QUADRATURE AND DIFFERENTIATION 172

composite Simpson’s rule take n = 10, when computing the integrals (4.15) that appear in
Newton iteration. Then run your code for z = 0.4 and z = 0.1, and report your output.

Chapter 5

Approximation Theory

5.1 Discrete least squares

Arya’s adventures in the physics lab

College life is expensive, and Arya is happy to land a job working at a physics lab for some
extra cash. She does some experiments, some data analysis, and a little grading. In one
experiment she conducted, where there is one independent variable x, and one dependent
variable y, she was asked to plot y against x values. (There are a total of six data points.)
She gets the following plot:

Figure 5.1: Scatter plot of data

Arya’s professor thinks the relationship between the variables should be linear, but we
do not see data falling on a perfect line because of measurement error. The professor is not

173

CHAPTER 5. APPROXIMATION THEORY 174

happy, professors are usually not happy when lab results act up, and asks Arya to come
up with a linear formula, something like y = ax + b, to explain the relationship. Arya first
thinks about interpolation, but quickly realizes it is not a good idea. (Why?). Let’s help
Arya with her problem.

Analysis of the problem

Let’s try passing a line through the data points. Figure (5.2) plots one such line, y = 3x−0.5,
together with the data points.

Figure 5.2: Data with an approximating line

There are certainly many other choices we have for the line: we could increase or decrease
the slope a little, change the intercept a bit, and obtain multiple lines that have a visually
good fit to the data. The crucial question is, how can we decide which line is the "best" line,
among all the possible lines? If we can quantify how good the fit of a given line is to the
data, and come up with a notion for error, perhaps then we can find the line that minimizes
this error.

Let’s generalize the problem a little. We have:

• Data: (x1, y1), (x2, y2), ..., (xm, ym)

and we want to find a line that gives the “best” approximation to the data:

• Linear approximation: y = f(x) = ax+ b

The questions we want to answer are:

CHAPTER 5. APPROXIMATION THEORY 175

1. What does "best" approximation mean?

2. How do we find a, b that gives the line with the "best" approximation?

Observe that for each xi, there is the corresponding yi of the data point, and f(xi) =

axi + b, which is the predicted value by the linear approximation. We can measure error by
considering the deviations between the actual y coordinates and the predicted values:

(y1 − ax1 − b), (y2 − ax2 − b), ..., (ym − axm − b)

There are several ways we can form a measure of error using these deviations, and each
approach gives a different line approximating the data. The best approximation means
finding a, b that minimizes the error measured in one of the following ways:

• E = maxi {|yi − axi − b|} ; minimax problem

• E =
∑m

i=1 |yi − axi − b|; absolute deviations

• E =
∑m

i=1(yi − axi − b)2; least squares problem

In this chapter we will discuss the least squares problem; the simplest one among the three
options. We want to minimize

E =
m∑
i=1

(yi − axi − b)2

with respect to the parameters a, b. For a minimum to occur, we must have

∂E

∂a
= 0 and

∂E

∂b
= 0.

We have:

∂E

∂a
=

m∑
i=1

∂E

∂a
(yi − axi − b)2 =

m∑
i=1

(−2xi)(yi − axi − b) = 0

∂E

∂b
=

m∑
i=1

∂E

∂b
(yi − axi − b)2 =

m∑
i=1

(−2)(yi − axi − b) = 0

CHAPTER 5. APPROXIMATION THEORY 176

Using algebra, these equations can be simplified as

b

m∑
i=1

xi + a

m∑
i=1

x2
i =

m∑
i=1

xiyi

bm+ a
m∑
i=1

xi =
m∑
i=1

yi,

which are called the normal equations. The solution to this system of equations is

a =
m
∑m

i=1 xiyi −
∑m

i=1 xi
∑m

i=1 yi

m (
∑m

i=1 x
2
i)− (

∑m
i=1 xi)

2 , b =

∑m
i=1 x

2
i

∑m
i=1 yi −

∑m
i=1 xiyi

∑m
i=1 xi

m (
∑m

i=1 x
2
i)− (

∑m
i=1 xi)

2 .

Let’s consider a slightly more general question. Given data

• Data: (x1, y1), (x2, y2), ..., (xm, ym)

can we find the best polynomial approximation

• Polynomial approximation: Pn(x) = anx
n + an−1x

n−1 + ...+ a0

where m will be usually much larger than n. Similar to the above discussion, we want to
minimize

E =
m∑
i=1

(yi − Pn(xi))
2 =

m∑
i=1

(
yi −

n∑
j=0

ajx
j
i

)2

with respect to the parameters an, an−1, ..., a0. For a minimum to occur, the necessary con-
ditions are

∂E

∂ak
= 0⇒ −

m∑
i=1

yix
k
i +

n∑
j=0

aj

(
m∑
i=1

xk+j
i

)
= 0

for k = 0, 1, ..., n. (we are skipping some algebra here!) The normal equations for polyno-
mial approximation are

n∑
j=0

aj

(
m∑
i=1

xk+j
i

)
=

m∑
i=1

yix
k
i (5.1)

for k = 0, 1, ..., n. This is a system of (n+ 1) equations and (n+ 1) unknowns. We can write
this system as a matrix equation

Aa = b (5.2)

CHAPTER 5. APPROXIMATION THEORY 177

where a is the unknown vector we are trying to find, and b is the constant vector

a =

a0

a1

...
an

 , b =

∑m

i=1 yi∑m
i=1 yixi
...∑m

i=1 yix
n
i

and A is an (n+ 1) by (n+ 1) symmetric matrix with (kj)th entry Akj, k = 1, ..., n+ 1, j =

1, 2, ..., n+ 1 given by

Akj =
m∑
i=1

xk+j−2
i .

The equation Aa = b has a unique solution if the xi are distinct, and n ≤ m − 1. Solving
this equation by computing the inverse matrix A−1 is not advisable, since there could be
significant roundoff error. Next, we will write a Julia code for least squares approximation,
and use the Julia function A\b to solve the matrix equation Aa = b for a. The \ operation
in Julia uses numerically optimized matrix factorizations to solve the matrix equation. More
details on this topic can be found in Heath [10] (Chapter 3).

Julia code for least squares approximation

In [1]: using PyPlot

The function leastsqfit takes the x and y-coordinates of the data, and the degree of the
polynomial we want to use, n, as inputs. It solves the matrix Equation (5.2).

In [2]: function leastsqfit(x::Array,y::Array,n)

m=length(x) # number of data points

d=n+1 # number of coefficients to determine

A=zeros(d,d)

b=zeros(d,1)

the linear system we want to solve is Ax=b

p=Array{Float64}(undef,2*n+1)

for k in 1:d

sum=0

for i in 1:m

sum=sum+y[i]*x[i]^(k-1)

end

b[k]=sum

CHAPTER 5. APPROXIMATION THEORY 178

end

p[i] below is the sum of the (i-1)th power of the x coordinates

p[1]=m

for i in 2:2*n+1

sum=0

for j in 1:m

sum=sum+x[j]^(i-1)

end

p[i]=sum

end

We next compute the upper triangular part of the coefficient

matrix A, and its diagonal

for k in 1:d

for j in k:d

A[k,j]=p[k+j-1]

end

end

The lower triangular part of the matrix is defined using the

fact the matrix is symmetric

for i in 2:d

for j in 1:i-1

A[i,j]=A[j,i]

end

end

a=A\b

end

Out[2]: leastsqfit (generic function with 1 method)

Here is the data used to produce the first plot of the chapter: Arya’s data:

In [3]: xd=[1,2,3,4,5,6];

yd=[3,5,9.2,11,14.5,19];

We fit a least squares line to the data:

In [4]: leastsqfit(xd,yd,1)

CHAPTER 5. APPROXIMATION THEORY 179

Out[4]: 2×1 Array{Float64,2}:

-0.7466666666666616

3.1514285714285704

The polynomial is −0.746667 + 3.15143x. The next function poly(x,a) takes the output
of a = leastsqfit, and evaluates the least squares polynomial at x.

In [5]: function poly(x,a::Array)

d=length(a)

sum=0

for i in 1:d

sum=sum+a[i]*x^(i-1)

end

return sum

end

Out[5]: poly (generic function with 1 method)

For example, if we want to compute the least squares line at 3.5, we call the following
functions:

In [6]: a=leastsqfit(xd,yd,1)

poly(3.5,a)

Out[6]: 10.283333333333335

The next function computes the least squares error: E =
∑m

i=1(yi − pn(xi))
2. It takes

the output of a = leastsqfit, and the data, as inputs.

In [7]: function leastsqerror(a::Array,x::Array,y::Array)

sum=0

m=length(y)

for i in 1:m

sum=sum+(y[i]-poly(x[i],a))^2

end

return sum

end

Out[7]: leastsqerror (generic function with 1 method)

CHAPTER 5. APPROXIMATION THEORY 180

In [8]: a=leastsqfit(xd,yd,1)

leastsqerror(a,xd,yd)

Out[8]: 2.607047619047626

Next we plot the least squares line and the data together.

In [9]: a=leastsqfit(xd,yd,1)

xaxis=1:1/100:6

yvals=map(x->poly(x,a),xaxis)

plot(xaxis,yvals)

scatter(xd,yd);

We try a second degree polynomial in least squares approximation next.

In [10]: a=leastsqfit(xd,yd,2)

xaxis=1:1/100:6

yvals=map(x->poly(x,a),xaxis)

plot(xaxis,yvals)

scatter(xd,yd);

CHAPTER 5. APPROXIMATION THEORY 181

The corresponding error is:

In [11]: leastsqerror(a,xd,yd)

Out[11]: 1.4869285714285703

The next polynomial is of degree three:

In [12]: a=leastsqfit(xd,yd,3)

xaxis=1:1/100:6

yvals=map(x->poly(x,a),xaxis)

plot(xaxis,yvals)

scatter(xd,yd);

CHAPTER 5. APPROXIMATION THEORY 182

The corresponding error is:

In [13]: leastsqerror(a,xd,yd)

Out[13]: 1.2664285714285708

The next polynomial is of degree four:

In [14]: a=leastsqfit(xd,yd,4)

xaxis=1:1/100:6

yvals=map(x->poly(x,a),xaxis)

plot(xaxis,yvals)

scatter(xd,yd);

The least squares error is:

In [15]: leastsqerror(a,xd,yd)

Out[15]: 0.7232142857142789

Finally, we try a fifth degree polynomial. Recall that the normal equations have a unique
solution when xi are distinct, and n ≤ m − 1. Since m = 6 in this example, n = 5 is the
largest degree with guaranteed unique solution.

CHAPTER 5. APPROXIMATION THEORY 183

In [16]: a=leastsqfit(xd,yd,5)

xaxis=1:1/100:6

yvals=map(x->poly(x,a),xaxis)

plot(xaxis,yvals)

scatter(xd,yd);

The approximating polynomial of degree five is the interpolating polynomial! What is
the least squares error?

Least squares with non-polynomials

The method of least squares is not only for polynomials. For example, suppose we want to
find the function

f(t) = a+ bt+ c sin(2πt/365) + d cos(2πt/365) (5.3)

that has the best fit to some data (t1, T1), ..., (tm, Tm) in the least-squares sense. This function
is used in modeling weather temperature data, where t denotes time, and T denotes the
temperature. The following figure plots the daily maximum temperature during a period
of 1,056 days, from 2016 until November 21, 2018, as measured by a weather station at
Melbourne airport, Australia1.

1http://www.bom.gov.au/climate/data/

http://www.bom.gov.au/climate/data/

CHAPTER 5. APPROXIMATION THEORY 184

To find the best fit function of the form (5.3), we write the least squares error term

E =
m∑
i=1

(f(ti)− Ti)2 =
m∑
i=1

(
a+ bti + c sin

(
2πti
365

)
+ d cos

(
2πti
365

)
− Ti

)2

,

and set its partial derivatives with respect to the unknowns a, b, c, d to zero to obtain the
normal equations:

∂E

∂a
= 0⇒

m∑
i=1

2

(
a+ bti + c sin

(
2πti
365

)
+ d cos

(
2πti
365

)
− Ti

)
= 0

⇒
m∑
i=1

(
a+ bti + c sin

(
2πti
365

)
+ d cos

(
2πti
365

)
− Ti

)
= 0, (5.4)

∂E

∂b
= 0⇒

m∑
i=1

(2ti)

(
a+ bti + c sin

(
2πti
365

)
+ d cos

(
2πti
365

)
− Ti

)
= 0

⇒
m∑
i=1

ti

(
a+ bti + c sin

(
2πti
365

)
+ d cos

(
2πti
365

)
− Ti

)
= 0, (5.5)

∂E

∂c
= 0⇒

m∑
i=1

(
2 sin

(
2πti
365

))(
a+ bti + c sin

(
2πti
365

)
+ d cos

(
2πti
365

)
− Ti

)
= 0

⇒
m∑
i=1

sin

(
2πti
365

)(
a+ bti + c sin

(
2πti
365

)
+ d cos

(
2πti
365

)
− Ti

)
= 0, (5.6)

CHAPTER 5. APPROXIMATION THEORY 185

∂E

∂d
= 0⇒

m∑
i=1

(
2 cos

(
2πti
365

))(
a+ bti + c sin

(
2πti
365

)
+ d cos

(
2πti
365

)
− Ti

)
= 0

⇒
m∑
i=1

cos

(
2πti
365

)(
a+ bti + c sin

(
2πti
365

)
+ d cos

(
2πti
365

)
− Ti

)
= 0. (5.7)

Rearranging terms in equations (5.4, 5.5, 5.6, 5.7), we get a system of four equations and
four unknowns:

am+ b
m∑
i=1

ti + c

m∑
i=1

sin

(
2πti
365

)
+ d

m∑
i=1

cos

(
2πti
365

)
=

m∑
i=1

Ti

a

m∑
i=1

ti + b

m∑
i=1

t2i + c
m∑
i=1

ti sin

(
2πti
365

)
+ d

m∑
i=1

ti cos

(
2πti
365

)
=

m∑
i=1

Titi

a
m∑
i=1

sin

(
2πti
365

)
+ b

m∑
i=1

ti sin

(
2πti
365

)
+ c

m∑
i=1

sin2

(
2πti
365

)
+ d

m∑
i=1

sin

(
2πti
365

)
cos

(
2πti
365

)
=

m∑
i=1

Ti sin

(
2πti
365

)
a

m∑
i=1

cos

(
2πti
365

)
+ b

m∑
i=1

ti cos

(
2πti
365

)
+ c

m∑
i=1

sin

(
2πti
365

)
cos

(
2πti
365

)
+ d

m∑
i=1

cos2

(
2πti
365

)
=

m∑
i=1

Ti cos

(
2πti
365

)

Using a short-hand notation where we suppress the argument
(

2πti
365

)
in the trigonometric

functions, and the summation indices, we write the above equations as a matrix equation:
m

∑
ti

∑
sin(·)

∑
cos(·)∑

ti
∑
t2i

∑
ti sin(·)

∑
ti cos(·)∑

sin(·)
∑
ti sin(·)

∑
sin2(·)

∑
sin(·) cos(·)∑

cos(·)
∑
ti cos(·)

∑
sin(·) cos(·)

∑
cos2(·)

︸ ︷︷ ︸

A

a

b

c

d

 =

∑
Ti∑
Titi∑

Ti sin(·)∑
Ti cos(·)

︸ ︷︷ ︸

r

Next, we will use Julia to load the data and define the matrices A, r, and then solve the
equation Ax = r, where x = [a, b, c, d]T .

We will use a package called JuliaDB to import data. After installing the package at the
Julia terminal with add JuliaDB, we load it in our notebook:

In [1]: using JuliaDB

CHAPTER 5. APPROXIMATION THEORY 186

We need the function dot, which computes dot products, and resides in the package Lin-
earAlgebra. Install the package with add LinearAlgebra and then load it. We also load
PyPlot.

In [2]: using LinearAlgebra

using PyPlot

We assume that the data which consists of temperatures is downloaded as a csv file in
the same directory where the Julia notebook is stored. Make sure the data has no missing
entries, and it is stored by Julia as an array of Float64 type. The function loadtable imports
the data into Julia as a table:

In [3]: data=loadtable("WeatherData.csv")

Out[3]: Table with 1056 rows, 1 columns:

Temp

28.7

27.5

28.2

24.5

25.6

25.3

23.4

22.8

24.1

32.1

38.3

30.3
...

20.9

30.3

30.1

16.4

18.4

19.8

19.1

27.1

31.0

CHAPTER 5. APPROXIMATION THEORY 187

27.0

22.7

The next step is to store the part of the data we need as an array. The function select
takes two arguments: the name of the table, and the column heading the contents of which
will be stored as an array. In our table there is only one column named Temp.

In [4]: temp=select(data, :Temp);

Let’s check the type of temp, its first entry, and its length:

In [5]: typeof(temp)

Out[5]: Array{Float64,1}

In [6]: temp[1]

Out[6]: 28.7

In [7]: length(temp)

Out[7]: 1056

There are 1,056 temperature values. The x-coordinates are the days, numbered t =

1, 2, ..., 1056. Here is the array that stores these time values:

In [8]: time=[i for i=1:1056];

Next we define the matrix A, taking advantage of the fact the matrix is symmetric. The
function sum(x) adds the entries of the array x.

In [9]: A=zeros(4,4);

A[1,1]=1056

A[1,2]=sum(time)

A[1,3]=sum(t->sin(2*pi*t/365),time)

A[1,4]=sum(t->cos(2*pi*t/365),time)

A[2,2]=sum(t->t^2,time)

A[2,3]=sum(t->t*sin(2*pi*t/365),time)

A[2,4]=sum(t->t*cos(2*pi*t/365),time)

A[3,3]=sum(t->(sin(2*pi*t/365))^2,time)

A[3,4]=sum(t->(sin(2*pi*t/365)*cos(2*pi*t/365)),time)

CHAPTER 5. APPROXIMATION THEORY 188

A[4,4]=sum(t->(cos(2*pi*t/365))^2,time)

for i=2:4

for j=1:i

A[i,j]=A[j,i]

end

end

In [10]: A

Out[10]: 4×4 Array{Float64,2}:

1056.0 558096.0 12.2957 -36.2433

558096.0 3.93086e8 -50458.1 -38477.3

12.2957 -50458.1 542.339 10.9944

-36.2433 -38477.3 10.9944 513.661

Now we define the vector r. The function dot(x,y) takes the dot product of the arrays
x, y. For example, dot([1, 2, 3], [4, 5, 6]) = 1× 4 + 2× 5 + 3× 6 = 32.

In [11]: r=zeros(4,1)

r[1]=sum(temp)

r[2]=dot(temp,time)

r[3]=dot(temp,map(t->sin(2*pi*t/365),time))

r[4]=dot(temp,map(t->cos(2*pi*t/365),time));

In [12]: r

Out[12]: 4×1 Array{Float64,2}:

21861.499999999996

1.1380310200000009e7

1742.0770653857649

2787.7612743690415

We can solve the matrix equation now.

In [13]: A\r

Out[13]: 4×1 Array{Float64,2}:

20.28975634590378

0.0011677302061853312

2.7211617643953634

6.88808560736693

CHAPTER 5. APPROXIMATION THEORY 189

Recall that these constants are the values of a, b, c, d in the definition of f(t). Here is the
best fitting function to the data:

In [14]: f(t)=20.2898+0.00116773*t+2.72116*sin(2*pi*t/365)+6.88809*cos(2*pi*t/365)

Out[14]: f (generic function with 1 method)

We next plot the data together with f(t):

In [15]: xaxis=1:1:1056

yvals=map(t->f(t),xaxis)

plot(xaxis,yvals,label="Least squares approximation")

xlabel("time (t)")

ylabel("Temperature (T)")

plot(temp,linestyle="-",alpha=0.5,label="Data")

legend(loc="upper center");

Linearizing data

For another example of non-polynomial least squares, consider finding the function f(x) =

beax with the best least squares fit to some data (x1, y1), (x2, y2), ..., (xm, ym). We need to

CHAPTER 5. APPROXIMATION THEORY 190

find a, b that minimize

E =
m∑
i=1

(yi − beaxi)2.

The normal equations are
∂E

∂a
= 0 and

∂E

∂b
= 0,

however, unlike the previous example, this is not a system of linear equations in the unknowns
a, b. In general, a root finding type method is needed to solve these equations.

There is a simpler approach we can use when we suspect the data is exponentially related.
Consider again the function we want to fit:

y = beax. (5.8)

Take the logarithm of both sides:

log y = log b+ ax

and rename the variables as Y = log y,B = log b. Then we obtain the expression

Y = ax+B (5.9)

which is a linear equation in the transformed variable. In other words, if the original variable
y is related to x via Equation (5.8), then Y = log y is related to x via a linear relationship
given by Equation (5.9). So, the new approach is to fit the least squares line Y = ax+B to
the data

(x1, log y1), (x2, log y2), ..., (xm, log ym).

However, it is important to realize that the least squares fit to the transformed data is not
necessarily the same as the least squares fit to the original data. The reason is the deviations
which least squares minimize are distorted in a non-linear way by the transformation.

Example 85. Consider the following data

x 0 1 2 3 4 5
y 3 5 8 12 23 37

to which we will fit y = beax in the least-squares sense. The following table displays the data
(xi, log yi), using two-digits:

x 0 1 2 3 4 5
Y = log y 1.1 1.6 2.1 2.5 3.1 3.6

CHAPTER 5. APPROXIMATION THEORY 191

We use the Julia code leastsqfit to fit a line to this data:

In [1]: x=[0,1,2,3,4,5]

y=[1.1,1.6,2.1,2.5,3.1,3.6]

leastsqfit(x,y,1)

Out[1]: 2×1 Array{Float64,2}:

1.09048

0.497143

Therefore the least squares line, using two-digits, is

Y = 0.5x+ 1.1.

This equation corresponds to Equation (5.9), with a = 0.5 and B = 1.1. We want to obtain
the corresponding exponential Equation (5.8), where b = eB. Since e1.1 = 3, the best fitting
exponential function to the data is y = 3ex/2. The following graph plots y = 3ex/2 together
with the data.

Exercise 5.1-1: Find the function of the form y = aex + b sin(4x) that best fits the
data below in the least squares sense.

x 1 2 3 4 5
y -4 6 -1 5 20

Plot the function and the data together.

CHAPTER 5. APPROXIMATION THEORY 192

Exercise 5.1-2: Power-law type relationships are observed in many empirical data.
Two variables y, x are said to be related via a power-law if y = kxα, where k, α are some
constants. The following data2 lists the top 10 family names in the order of occurrence
according to Census 2000. Investigate whether relative frequency of occurrences and the
rank of the name are related via a power-law, by

a) Let y be the relative frequencies (number of occurrences divided by the total number
of occurrences), and x be the rank, that is, 1 through 10.

b) Use least squares to find a function of the form y = kxα. Use linearization.

c) Plot the data together with the best fitting function found in part (b).

Name Number of Occurrences
Smith 2,376,206
Johnson 1,857,160
Williams 1,534,042
Brown 1,380,145
Jones 1,362,755
Miller 1,127,803
Davis 1,072,335
Garcia 858,289

Rodriguez 804,240
Wilson 783,051

5.2 Continuous least squares

In discrete least squares, our starting point was a set of data points. Here we will start with
a continuous function f on [a, b] and answer the following question: how can we find the
"best" polynomial Pn(x) =

∑n
j=0 ajx

j of degree at most n, that approximates f on [a, b]? As
before, "best" polynomial will mean the polynomial that minimizes the least squares error:

E =

∫ b

a

(
f(x)−

n∑
j=0

ajx
j

)2

dx. (5.10)

2https://www.census.gov/topics/population/genealogy/data/2000_surnames.html

https://www.census.gov/topics/population/genealogy/data/2000_surnames.html

CHAPTER 5. APPROXIMATION THEORY 193

Compare this expression with that of the discrete least squares:

E =
m∑
i=1

(
yi −

n∑
j=0

ajx
j
i

)2

.

To minimize E in (5.10) we set ∂E
∂ak

= 0, for k = 0, 1, ..., n, and observe

∂E

∂ak
=

∂

∂ak

∫ b

a

f 2(x)dx− 2

∫ b

a

f(x)

(
n∑
j=0

ajx
j

)
dx+

∫ b

a

(
n∑
j=0

ajx
j

)2

dx

= −2

∫ b

a

f(x)xkdx+ 2
n∑
j=0

aj

∫ b

a

xj+kdx = 0,

which gives the (n+ 1) normal equations for the continuous least squares problem:

n∑
j=0

aj

∫ b

a

xj+kdx =

∫ b

a

f(x)xkdx (5.11)

for k = 0, 1, ..., n. Note that the only unknowns in these equations are the aj’s, hence this is
a linear system of equations. It is instructive to compare these normal equations with those
of the discrete least squares problem:

n∑
j=0

aj

(
m∑
i=1

xk+j
i

)
=

m∑
i=1

yix
k
i .

Example 86. Find the least squares polynomial approximation of degree 2 to f(x) = ex on
(0, 2).

Solution. The normal equations are:

2∑
j=0

aj

∫ 2

0

xj+kdx =

∫ 2

0

exxkdx

CHAPTER 5. APPROXIMATION THEORY 194

k = 0, 1, 2. Here are the three equations:

a0

∫ 2

0

dx+ a1

∫ 2

0

xdx+ a2

∫ 2

0

x2dx =

∫ 2

0

exdx

a0

∫ 2

0

xdx+ a1

∫ 2

0

x2dx+ a2

∫ 2

0

x3dx =

∫ 2

0

exxdx

a0

∫ 2

0

x2dx+ a1

∫ 2

0

x3dx+ a2

∫ 2

0

x4dx =

∫ 2

0

exx2dx

Computing the integrals we get

2a0 + 2a1 +
8

3
a2 = e2 − 1

2a0 +
8

3
a1 + 4a2 = e2 + 1

8

3
a0 + 4a1 +

32

5
a2 = 2e2 − 2

whose solution is a0 = 3(−7 + e2), a1 = −3
2
(−37 + 5e2), a2 = 15

4
(−7 + e2). Then

P2(x) = 1.17 + 0.08x+ 1.46x2.

The solution method we have discussed for the least squares problem by solving the
normal equations as a matrix equation has certain drawbacks:

• The integrals
∫ b
a
xi+jdx = (bi+j+1 − ai+j+1) /(i + j + 1) in the coefficient matrix gives

rise to matrix equation that is prone to roundoff error.

• There is no easy way to go from Pn(x) to Pn+1(x) (which we might want to do if we
were not satisfied by the approximation provided by Pn).

There is a better approach to solve the discrete and continuous least squares problem using
the orthogonal polynomials we encountered in Gaussian quadrature. Both discrete and
continuous least squares problem tries to find a polynomial Pn(x) =

∑n
j=0 ajx

j that satisfies
some properties. Notice how the polynomial is written in terms of the monomial basis
functions xj and recall how these basis functions caused numerical difficulties in interpolation.
That was the reason we discussed different basis functions like Lagrange and Newton for the
interpolation problem. So the idea is to write Pn(x) in terms of some other basis functions

Pn(x) =
n∑
j=0

ajφj(x)

CHAPTER 5. APPROXIMATION THEORY 195

which would then update the normal equations for continuous least squares (5.11) as

n∑
j=0

aj

∫ b

a

φj(x)φk(x)dx =

∫ b

a

f(x)φk(x)dx

for k = 0, 1, ..., n. The normal equations for the discrete least squares (5.1) gets a similar
update:

n∑
j=0

aj

(
m∑
i=1

φj(xi)φk(xi)

)
=

m∑
i=1

yiφk(xi).

Going forward, the crucial observation is that the integral of the product of two functions∫
φj(x)φk(x)dx, or the summation of the product of two functions evaluated at some discrete

points,
∑
φj(xi)φk(xi), can be viewed as an inner product 〈φj, φk〉 of two vectors in a suitably

defined vector space. And when the functions (vectors) φj are orthogonal, the inner product
〈φj, φk〉 is 0 if j 6= k, which makes the normal equations trivial to solve. We will discuss
details in the next section.

5.3 Orthogonal polynomials and least squares

Our discussion in this section will mostly center around the continuous least squares problem,
however, the discrete problem can be approached similarly. Consider the sets C0[a, b], the
set of all continuous functions defined on [a, b], and Pn, the set of all polynomials of degree at
most n on [a, b]. These two sets are vector spaces, the latter a subspace of the former, under
the usual operations of function addition and multiplying by a scalar. An inner product on
this space is defined as follows: given f, g ∈ C0[a, b]

〈f, g〉 =

∫ b

a

w(x)f(x)g(x)dx (5.12)

and the norm of a vector under this inner product is

‖f‖ = 〈f, f〉1/2 =

(∫ b

a

w(x)f 2(x)dx

)1/2

.

Let’s recall the definition of an inner product: it is a real valued function with the following
properties:

1. 〈f, g〉 = 〈g, f〉

2. 〈f, f〉 ≥ 0, with the equality only when f ≡ 0

CHAPTER 5. APPROXIMATION THEORY 196

3. 〈βf, g〉 = β 〈f, g〉 for all real numbers β

4. 〈f1 + f2, g〉 = 〈f1, g〉+ 〈f2, g〉

The mysterious function w(x) in (5.12) is called a weight function. Its job is to assign
different importance to different regions of the interval [a, b]. The weight function is not
arbitrary; it has to satisfy some properties.

Definition 87. A nonnegative function w(x) on [a, b] is called a weight function if

1.
∫ b
a
|x|nw(x)dx is integrable and finite for all n ≥ 0

2. If
∫ b
a
w(x)g(x)dx = 0 for some g(x) ≥ 0, then g(x) is identically zero on (a, b).

With our new terminology and set-up, we can write the least squares problem as follows:

Problem (Continuous least squares) Given f ∈ C0[a, b], find a polynomial Pn(x) ∈ Pn that
minimizes ∫ b

a

w(x)(f(x)− Pn(x))2dx = 〈f(x)− Pn(x), f(x)− Pn(x)〉 .

We will see this inner product can be calculated easily if Pn(x) is written as a linear
combination of orthogonal basis polynomials: Pn(x) =

∑n
j=0 ajφj(x).

We need some definitions and theorems to continue with our quest. Let’s start with a formal
definition of orthogonal functions.

Definition 88. Functions {φ0, φ1, ..., φn} are orthogonal for the interval [a, b] and with re-
spect to the weight function w(x) if

〈φj, φk〉 =

∫ b

a

w(x)φj(x)φk(x)dx =

0 if j 6= k

αj > 0 if j = k

where αj is some constant. If, in addition, αj = 1 for all j, then the functions are called
orthonormal.

How can we find an orthogonal or orthonormal basis for our vector space? Gram-Schmidt
process from linear algebra provides the answer.

CHAPTER 5. APPROXIMATION THEORY 197

Theorem 89 (Gram-Schmidt process). Given a weight function w(x), the Gram-Schmidt
process constructs a unique set of polynomials φ0(x), φ1(x), ..., φn(x) where the degree of φi(x)

is i, such that

〈φj, φk〉 =

0 if j 6= k

1 if j = k

and the coefficient of xn in φn(x) is positive.

Let’s discuss two orthogonal polynomials that can be obtained from the Gram-Schmidt
process using different weight functions.

Example 90 (Legendre Polynomials). If w(x) ≡ 1 and [a, b] = [−1, 1], the first four polyno-
mials obtained from the Gram-Schmidt process, when the process is applied to the monomials
1, x, x2, x3, ..., are:

φ0(x) =

√
1

2
, φ1(x) =

√
3

2
x, φ2(x) =

1

2

√
5

2
(3x2 − 1), φ3(x) =

1

2

√
7

2
(5x3 − 3x).

Often these polynomials are written in its orthogonal form; that is, we drop the requirement
〈φj, φj〉 = 1 in the Gram-Schmidt process, and we scale the polynomials so that the value of
each polynomial at 1 equals 1. The first four polynomials in that form are

L0(x) = 1, L1(x) = x, L2(x) =
3

2
x2 − 1

2
, L3(x) =

5

2
x3 − 3

2
x.

These are the Legendre polynomials; polynomials we first discussed in Gaussian quadrature,
Section 4.33. They can be obtained from the following recursion

Ln+1(x) =
2n+ 1

n+ 1
xLn(x)− n

n+ 1
Ln−1(x),

n = 1, 2, . . ., and they satisfy

〈Ln, Ln〉 =
2

2n+ 1
.

Exercise 5.3-1: Show, by direct integration, that the Legendre polynomials L1(x) and
L2(x) are orthogonal.

3The Legendre polynomials in Section 4.3 differ from these by a constant factor. For example, in Section
4.3 the third polynomial was L2(x) = x2− 1

3 , but here it is L2(x) =
3
2 (x

2− 1
3). Observe that multiplying these

polynomials by a constant does not change their roots (what we were interested in Gaussian quadrature),
or their orthogonality.

CHAPTER 5. APPROXIMATION THEORY 198

Example 91 (Chebyshev polynomials). If we take w(x) = (1− x2)−1/2 and [a, b] = [−1, 1],
and again drop the orthonormal requirement in Gram-Schmidt, we obtain the following
orthogonal polynomials:

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x, ...

These polynomials are called Chebyshev polynomials and satisfy a curious identity:

Tn(x) = cos(n cos−1 x), n ≥ 0.

Chebyshev polynomials also satisfy the following recursion:

Tn+1(x) = 2xTn(x)− Tn−1(x)

for n = 1, 2, . . ., and

〈Tj, Tk〉 =

0 if j 6= k

π if j = k = 0

π/2 if j = k > 0.

If we take the first n + 1 Legendre or Chebyshev polynomials, call them φ0, ..., φn, then
these polynomials form a basis for the vector space Pn. In other words, they form a linearly
independent set of functions, and any polynomial from Pn can be written as a unique linear
combination of them. These statements follow from the following theorem, which we will
leave unproved.

Theorem 92. 1. If φj(x) is a polynomial of degree j for j = 0, 1, ..., n, then φ0, ..., φn are
linearly independent.

2. If φ0, ..., φn are linearly independent in Pn, then for any q(x) ∈ Pn, there exist unique
constants c0, ..., cn such that q(x) =

∑n
j=0 cjφj(x).

Exercise 5.3-2: Prove that if {φ0, φ1, ..., φn} is a set of orthogonal functions, then they
must be linearly independent.

We have developed what we need to solve the least squares problem using orthogonal
polynomials. Let’s go back to the problem statement:

CHAPTER 5. APPROXIMATION THEORY 199

Given f ∈ C0[a, b], find a polynomial Pn(x) ∈ Pn that minimizes

E =

∫ b

a

w(x)(f(x)− Pn(x))2dx = 〈f(x)− Pn(x), f(x)− Pn(x)〉

with Pn(x) written as a linear combination of orthogonal basis polynomials: Pn(x) =∑n
j=0 ajφj(x). In the previous section, we solved this problem using calculus by taking

the partial derivatives of E with respect to aj and setting them equal to zero. Now we will
use linear algebra:

E =

〈
f −

n∑
j=0

ajφj, f −
n∑
j=0

ajφj

〉
= 〈f, f〉 − 2

n∑
j=0

aj 〈f, φj〉+
∑
i

∑
j

aiaj 〈φi, φj〉

= ‖f‖2 − 2
n∑
j=0

aj 〈f, φj〉+
n∑
j=0

a2
j 〈φj, φj〉

= ‖f‖2 − 2
n∑
j=0

aj 〈f, φj〉+
n∑
j=0

a2
jαj

= ‖f‖2 −
n∑
j=0

〈f, φj〉2

αj
+

n∑
j=0

[
〈f, φj〉√
αj
− aj
√
αj

]2

.

Minimizing this expression with respect to aj is now obvious: simply choose aj =
〈f,φj〉
αj

so

that the last summation in the above equation,
∑n

j=0

[
〈f,φj〉√
αj
− aj
√
αj

]2

, vanishes. Then we
have solved the least squares problem! The polynomial that minimizes the error E is

Pn(x) =
n∑
j=0

〈f, φj〉
αj

φj(x) (5.13)

where αj = 〈φj, φj〉 . And the corresponding error is

E = ‖f‖2 −
n∑
j=0

〈f, φj〉2

αj
.

If the polynomials φ0, ..., φn are orthonormal, then these equations simplify by setting αj = 1.

We will appreciate the ease at which Pn(x) can be computed using this approach, via
formula (5.13), as opposed to solving the normal equations of (5.11) when we discuss some
examples. But first let’s see the other advantage of this approach: how Pn+1(x) can be

CHAPTER 5. APPROXIMATION THEORY 200

computed from Pn(x). In Equation (5.13), replace n by n+ 1 to get

Pn+1(x) =
n+1∑
j=0

〈f, φj〉
αj

φj(x) =
n∑
j=0

〈f, φj〉
αj

φj(x)︸ ︷︷ ︸
Pn(x)

+
〈f, φn+1〉
αn+1

φn+1(x)

= Pn(x) +
〈f, φn+1〉
αn+1

φn+1(x),

which is a simple recursion that links Pn+1 to Pn.

Example 93. Find the least squares polynomial approximation of degree three to f(x) = ex

on (−1, 1) using Legendre polynomials.

Solution. Put n = 3 in Equation (5.13) and let φj be Lj to get

P3(x) =
〈f, L0〉
α0

L0(x) +
〈f, L1〉
α1

L1(x) +
〈f, L2〉
α2

L2(x) +
〈f, L3〉
α3

L3(x)

=
〈ex, 1〉

2
+
〈ex, x〉

2/3
x+

〈
ex, 3

2
x2 − 1

2

〉
2/5

(
3

2
x2 − 1

2

)
+

〈
ex, 5

2
x3 − 3

2
x
〉

2/7

(
5

2
x3 − 3

2
x

)
,

where we used the fact that αj = 〈Lj, Lj〉 = 2
2n+1

(see Example 90). We will compute the
inner products, which are definite integrals on (−1, 1), using the five-node Gauss-Legendre
quadrature we discussed in the previous chapter. The results rounded to four digits are:

〈ex, 1〉 =

∫ 1

−1

exdx = 2.350

〈ex, x〉 =

∫ 1

−1

exxdx = 0.7358〈
ex,

3

2
x2 − 1

2

〉
=

∫ 1

−1

ex
(

3

2
x2 − 1

2

)
dx = 0.1431〈

ex,
5

2
x3 − 3

2
x

〉
=

∫ 1

−1

ex
(

5

2
x3 − 3

2
x

)
dx = 0.02013.

Therefore

P3(x) =
2.35

2
+

3(0.7358)

2
x+

5(0.1431)

2

(
3

2
x2 − 1

2

)
+

7(0.02013)

2

(
5

2
x3 − 3

2
x

)
= 0.1761x3 + 0.5366x2 + 0.9980x+ 0.9961.

Example 94. Find the least squares polynomial approximation of degree three to f(x) = ex

on (−1, 1) using Chebyshev polynomials.

CHAPTER 5. APPROXIMATION THEORY 201

Solution. As in the previous example solution, we take n = 3 in Equation (5.13)

P3(x) =
3∑
j=0

〈f, φj〉
αj

φj(x),

but now φj and αj will be replaced by Tj, the Chebyshev polynomials, and its corresponding
constant; see Example 91. We have

P3(x) =
〈ex, T0〉
π

T0(x) +
〈ex, T1〉
π/2

T1(x) +
〈ex, T2〉
π/2

T2(x) +
〈ex, T3〉
π/2

T3(x).

Consider one of the inner products,

〈ex, Tj〉 =

∫ 1

−1

exTj(x)√
1− x2

dx

which is an improper integral due to discontinuity at the end points. However, we can use
the substitution θ = cos−1 x to rewrite the integral as (see Section 4.5)

〈ex, Tj〉 =

∫ 1

−1

exTj(x)√
1− x2

dx =

∫ π

0

ecos θ cos(jθ)dθ.

The transformed integrand is smooth, and it is not improper, and hence we can use composite
Simpson’s rule to estimate it. The following estimates are obtained by taking n = 20 in the
composite Simpson’s rule:

〈ex, T0〉 =

∫ π

0

ecos θdθ = 3.977

〈ex, T1〉 =

∫ π

0

ecos θ cos θdθ = 1.775

〈ex, T2〉 =

∫ π

0

ecos θ cos 2θdθ = 0.4265

〈ex, T3〉 =

∫ π

0

ecos θ cos 3θdθ = 0.06964

Therefore

P3(x) =
3.977

π
+

3.55

π
x+

0.853

π
(2x2 − 1) +

0.1393

π
(4x3 − 3x)

= 0.1774x3 + 0.5430x2 + 0.9970x+ 0.9944.

CHAPTER 5. APPROXIMATION THEORY 202

Julia code for orthogonal polynomials

Computing Legendre polynomials

Legendre polynomials satisfy the following recursion:

Ln+1(x) =
2n+ 1

n+ 1
xLn(x)− n

n+ 1
Ln−1(x)

for n = 1, 2, . . . , with L0(x) = 1, and L1(x) = x.
The Julia code implements this recursion, with a little modification: the index n + 1 is

shifted down to n, so the modified recursion is: Ln(x) = 2n−1
n
xLn−1(x) − n−1

n
Ln−2(x), for

n = 2, 3,

In [1]: using PyPlot

using LaTeXStrings

In [2]: function leg(x,n)

n==0 && return 1

n==1 && return x

((2*n-1)/n)*x*leg(x,n-1)-((n-1)/n)*leg(x,n-2)

end

Out[2]: leg (generic function with 1 method)

Here is a plot of the first five Legendre polynomials:

In [3]: xaxis=-1:1/100:1

legzero=map(x->leg(x,0),xaxis)

legone=map(x->leg(x,1),xaxis)

legtwo=map(x->leg(x,2),xaxis)

legthree=map(x->leg(x,3),xaxis)

legfour=map(x->leg(x,4),xaxis)

plot(xaxis,legzero,label=L"L_0(x)")

plot(xaxis,legone,label=L"L_1(x)")

plot(xaxis,legtwo,label=L"L_2(x)")

plot(xaxis,legthree,label=L"L_3(x)")

plot(xaxis,legfour,label=L"L_4(x)")

legend(loc="lower right");

CHAPTER 5. APPROXIMATION THEORY 203

Least-squares using Legendre polynomials

In Example 93, we computed the least squares approximation to ex using Legendre polyno-
mials. The inner products were computed using the five-node Gauss-Legendre rule below.

In [4]: function gauss(f::Function)

0.2369268851*f(-0.9061798459)+

0.2369268851*f(0.9061798459)+

0.5688888889*f(0)+

0.4786286705*f(0.5384693101)+

0.4786286705*f(-0.5384693101)

end

Out[4]: gauss (generic function with 1 method)

We need the constant e, which resides in a package called Base.MathConstants.

In [5]: using Base.MathConstants

The inner product,
〈
ex, 3

2
x2 − 1

2

〉
=
∫ 1

−1
ex(3

2
x2 − 1

2
)dx is computed as

In [6]: gauss(x->((3/2)*x^2-1/2)*e^x)

Out[6]: 0.1431256282441218

Now that we have a code leg(x,n) that generates the Legendre polynomials, we can do
the above computation without explicitly specifying the Legendre polynomial. For example,
since 3

2
x2 − 1

2
= L2, we can apply the gauss function directly to L2(x)ex:

CHAPTER 5. APPROXIMATION THEORY 204

In [7]: gauss(x->leg(x,2)*e^x)

Out[7]: 0.14312562824412176

The following function polyLegCoeff(f::Function,n) computes the coefficients 〈f,Lj〉
αj

of

the least squares polynomial Pn(x) =
∑n

j=0
〈f,Lj〉
αj

Lj(x), j = 0, 1, ..., n, for any f and n, where
Lj are the Legendre polynomials. Note that the indices are shifted in the code so that j
starts at 1 not 0. The coefficients are stored in the global array A.

In [8]: function polyLegCoeff(f::Function,n)

global A=Array{Float64}(undef,n+1)

for j in 1:n+1

A[j]=gauss(x->leg(x,(j-1))*f(x))*(2(j-1)+1)/2

end

end

Out[8]: polyLegCoeff (generic function with 1 method)

Once the coefficients are computed, evaluating the polynomial can be done efficiently by
calling the array A. The next function polyLeg(x,n) evaluates the least squares polynomial
Pn(x) =

∑n
j=0

〈f,Lj〉
αj

Lj(x), j = 0, 1, ..., n, where the coefficients 〈f,Lj〉
αj

are obtained from the
array A.

In [9]: function polyLeg(x,n)

sum=0.;

for j in 1:n+1

sum=sum+A[j]*leg(x,(j-1))

end

return(sum)

end

Out[9]: polyLeg (generic function with 1 method)

Here we plot y = ex together with its least squares polynomial approximations of
degree two and three, using Legendre polynomials. Note that every time the function
polyLegCoeff is evaluated, a new global array A is obtained.

In [10]: xaxis=-1:1/100:1

polyLegCoeff(x->e^x,2)

CHAPTER 5. APPROXIMATION THEORY 205

deg2=map(x->polyLeg(x,2),xaxis)

polyLegCoeff(x->e^x,3)

deg3=map(x->polyLeg(x,3),xaxis)

plot(xaxis,map(x->e^x,xaxis),label=L"e^x")

plot(xaxis,deg2,label="Legendre least squares poly of degree 2")

plot(xaxis,deg3,label="Legendre least squares poly of degree 3")

legend(loc="upper left");

Computing Chebyshev polynomials

The following function implements the recursion Chebyshev polynomials satisfy: Tn+1(x) =

2xTn(x)−Tn−1(x), for n = 1, 2, ..., with T0(x) = 1 and T1(x) = x. Note that in the code the
index is shifted from n+ 1 to n.

In [11]: function cheb(x,n)

n==0 && return 1

n==1 && return x

2x*cheb(x,n-1)-cheb(x,n-2)

end

Out[11]: cheb (generic function with 1 method)

Here is a plot of the first five Chebyshev polynomials:

CHAPTER 5. APPROXIMATION THEORY 206

In [12]: xaxis=-1:1/100:1

chebzero=map(x->cheb(x,0),xaxis)

chebone=map(x->cheb(x,1),xaxis)

chebtwo=map(x->cheb(x,2),xaxis)

chebthree=map(x->cheb(x,3),xaxis)

chebfour=map(x->cheb(x,4),xaxis)

plot(xaxis,chebzero,label=L"T_0(x)")

plot(xaxis,chebone,label=L"T_1(x)")

plot(xaxis,chebtwo,label=L"T_2(x)")

plot(xaxis,chebthree,label=L"T_3(x)")

plot(xaxis,chebfour,label=L"T_4(x)")

legend(loc="lower right");

Least squares using Chebyshev polynomials

In Example 94, we computed the least squares approximation to ex using Chebyshev poly-
nomials. The inner products, after a transformation, were computed using the composite
Simpson rule. Below is the Julia code for the composite Simpson rule we discussed in the
previous chapter.

In [13]: function compsimpson(f::Function,a,b,n)

h=(b-a)/n

nodes=Array{Float64}(undef,n+1)

for i in 1:n+1

CHAPTER 5. APPROXIMATION THEORY 207

nodes[i]=a+(i-1)h

end

sum=f(a)+f(b)

for i in 3:2:n-1

sum=sum+2*f(nodes[i])

end

for i in 2:2:n

sum=sum+4*f(nodes[i])

end

return(sum*h/3)

end

Out[13]: compsimpson (generic function with 1 method)

The integrals in Example 94 were computed using the composite Simpson rule with
n = 20. For example, the second integral 〈ex, T1〉 =

∫ π
0
ecos θ cos θdθ is computed as:

In [14]: compsimpson(x->exp(cos(x))*cos(x),0,pi,20)

Out[14]: 1.7754996892121808

Next we write two functions, polyChebCoeff(f::Function,n) and polyCheb(x,n).
The first function computes the coefficients 〈f,Tj〉

αj
of the least squares polynomial Pn(x) =∑n

j=0
〈f,Tj〉
αj

Tj(x), j = 0, 1, ..., n, for any f and n, where Tj are the Chebyshev polynomials.
Note that the indices are shifted in the code so that j starts at 1 not 0. The coefficients are
stored in the global array A.

The integral 〈f, Tj〉 is transformed to the integral
∫ π

0
f(cos θ) cos(jθ)dθ, similar to the

derivation in Example 94, and then the transformed integral is computed using the composite
Simpson’s rule by polyChebCoeff.

In [15]: function polyChebCoeff(f::Function,n)

global A=Array{Float64}(undef,n+1)

A[1]=compsimpson(x->f(cos(x)),0,pi,20)/pi

for j in 2:n+1

A[j]=compsimpson(x->f(cos(x))*cos((j-1)*x),0,pi,20)*2/pi

end

end

Out[15]: polyChebCoeff (generic function with 1 method)

CHAPTER 5. APPROXIMATION THEORY 208

In [16]: function polyCheb(x,n)

sum=0.;

for j in 1:n+1

sum=sum+A[j]*cheb(x,(j-1))

end

return(sum)

end

Out[16]: polyCheb (generic function with 1 method)

Next we plot y = ex together with polynomial approximations of degree two and three
using Chebyshev basis polynomials.

In [17]: xaxis=-1:1/100:1

polyChebCoeff(x->e^x,2)

deg2=map(x->polyCheb(x,2),xaxis)

polyChebCoeff(x->e^x,3)

deg3=map(x->polyCheb(x,3),xaxis)

plot(xaxis,map(x->e^x,xaxis),label=L"e^x")

plot(xaxis,deg2,label="Chebyshev least squares poly of degree 2")

plot(xaxis,deg3,label="Chebyshev least squares poly of degree 3")

legend(loc="upper left");

The cubic Legendre and Chebyshev approximations are difficult to distinguish from the
function itself. Let’s compare the quadratic approximations obtained by Legendre and

CHAPTER 5. APPROXIMATION THEORY 209

Chebyshev polynomials. Below, you can see visually that Chebyshev does a better ap-
proximation at the end points of the interval. Is this expected?

In [18]: xaxis=-1:1/100:1

polyChebCoeff(x->e^x,2)

cheb2=map(x->polyCheb(x,2),xaxis)

polyLegCoeff(x->e^x,2)

leg2=map(x->polyLeg(x,2),xaxis)

plot(xaxis,map(x->e^x,xaxis),label=L"e^x")

plot(xaxis,cheb2,label="Chebyshev least squares poly of degree 2")

plot(xaxis,leg2,label="Legendre least squares poly of degree 2")

legend(loc="upper left");

In the following, we compare second degree least squares polynomial approximations for
f(x) = ex

2 . Compare how good the Legendre and Chebyshev polynomial approximations
are in the midinterval and toward the endpoints.

In [19]: f(x)=e^(x^2)

xaxis=-1:1/100:1

polyChebCoeff(x->f(x),2)

cheb2=map(x->polyCheb(x,2),xaxis)

polyLegCoeff(x->f(x),2)

leg2=map(x->polyLeg(x,2),xaxis)

plot(xaxis,map(x->f(x),xaxis),label=L"e^{x^2}")

CHAPTER 5. APPROXIMATION THEORY 210

plot(xaxis,cheb2,label="Chebyshev least squares poly of degree 2")

plot(xaxis,leg2,label="Legendre least squares poly of degree 2")

legend(loc="upper center");

Exercise 5.3-3: Use Julia to compute the least squares polynomial approximations
P2(x), P4(x), P6(x) to sin 4x using Chebyshev basis polynomials. Plot the polynomials to-
gether with sin 4x.

References

[1] Abramowitz, M., and Stegun, I.A., 1965. Handbook of mathematical functions: with
formulas, graphs, and mathematical tables (Vol. 55). Courier Corporation.

[2] Chace, A.B., and Manning, H.P., 1927. The Rhind Mathematical Papyrus: British
Museum 10057 and 10058. Vol 1. Mathematical Association of America.

[3] Atkinson, K.E., 1989. An Introduction to Numerical Analysis, Second Edition, John
Wiley & Sons.

[4] Burden, R.L, Faires, D., and Burden, A.M., 2016. Numerical Analysis, 10th Edition,
Cengage.

[5] Capstick, S., and Keister, B.D., 1996. Multidimensional quadrature algorithms at higher
degree and/or dimension. Journal of Computational Physics, 123(2), pp.267-273.

[6] Chan, T.F., Golub, G.H., and LeVeque, R.J., 1983. Algorithms for computing the sample
variance: Analysis and recommendations. The American Statistician, 37(3), pp.242-247.

[7] Cheney, E.W., and Kincaid, D.R., 2012. Numerical mathematics and computing. Cen-
gage Learning.

[8] Glasserman, P., 2013. Monte Carlo methods in Financial Engineering. Springer.

[9] Goldberg, D., 1991. What every computer scientist should know about floating-point
arithmetic. ACM Computing Surveys (CSUR), 23(1), pp.5-48.

[10] Heath, M.T., 1997. Scientific Computing: An introductory survey. McGraw-Hill.

[11] Higham, N.J., 1993. The accuracy of floating point summation. SIAM Journal on Sci-
entific Computing, 14(4), pp.783-799.

[12] Isaacson, E., and Keller, H.B., 1966. Analysis of Numerical Methods. John Wiley &
Sons.

211

Index

Absolute error, 36

Beasley-Springer-Moro, 159
Biased exponent, 29
Big O notation, 88
Bisection method, 53

error theorem, 56
Julia code, 54
linear convergence, 56

Black-Scholes-Merton formula, 63

Chebyshev nodes, 108
Chebyshev polynomials, 196

Julia code, 204
Chopping, 36
Composite Newton-Cotes, 142

midpoint, 143
roundoff, 146
Simpson, 143
trapezoidal, 143

Degree of accuracy, 139
Divided differences, 95

derivative formula, 109
Dr. Seuss, 132

Extreme value theorem, 7

Fixed-point iteration, 73, 75
application to Newton’s method, 83
error theorem, 78

geometric interpretation, 75
high-order, 82
high-order error theorem, 83
Julia code, 77

Floating-point, 28
decimal, 35
IEEE 64-bit, 28
infinity, 30
NAN, 30
normalized, 28
toy model, 31
zero, 30

Gamma function, 98
Gaussian quadrature, 147

error theorem, 153
Julia code, 152
Legendre polynomials, 148

Gram-Schmidt process, 195

Hermite interpolation, 109
computation, 112
Julia code, 114

Implied volatility, 64
Improper integrals, 162
Intermediate value theorem, 7
Interpolation, 85
Inverse interpolation, 104
Iterative method, 51

212

INDEX 213

stopping criteria, 51

Julia
abs, 72
Base.MathConstants, 202
bitstring, 30
Complex, 72
Distributions, 66
dot, 187
factorial, 33
global, 80
JuliaDB, 184
LatexStrings, 105
LinearAlgebra, 185
reverse, 102
standard normal distribution, 66

Lagrange interpolation, 88
Least squares, 172

continuous, 191
discrete, 172
Julia code
Chebyshev, 205
discrete, 176
Legendre, 202

linearizing, 188
non-polynomials, 182
normal equations, continuous, 192
normal equations, discrete, 175
orthogonal polynomials, 194

Legendre polynomials, 196
Julia code, 201

Linear convergence, 52

Machine epsilon, 38
alternative definition, 38

Mean value theorem, 7
Midpoint rule, 140

Monte Carlo integration, 157
Muller’s method, 70

convergence rate, 71
Julia code, 72

Multiple integrals, 153

Newton interpolation
Julia code, 101

Newton’s method, 58
error theorem, 62
Julia code, 60
quadratic convergence, 63

Newton-Cotes, 136
closed, 139
Julia code, 144
open, 140

Normal equations
continuous, 192
discrete, 175

Numerical differentiation, 163
three-point endpoint, 165
three-point midpoint, 166
backward-difference, 164
forward-difference, 164
noisy data, 166
roundoff, 168
second derivative, 167

Numerical quadrature, 136
midpoint rule, 140
Monte Carlo, 157
multiple integrals, 153
Newton-Cotes, 136
Simpson’s rule, 138
trapezoidal rule, 137

Orthogonal functions, 194
Orthogonal polynomials, 194

INDEX 214

Chebyshev, 196
Julia code, 201
Legendre, 196

Overflow, 31

Polynomial interpolation, 86
error theorem, 94
Existence and uniqueness, 93
high degree, 104
Lagrange basis functions, 88
monomial basis functions, 87
Newton basis functions, 91

Polynomials
nested form, 45
standard form, 45

Power-law, 190
Propagation of error, 39

adding numbers, 42
alternating sum, 43
cancellation of leading digits, 39
division by a small number, 40
quadratic formula, 41
sample variance, 43

Quadratic convergence, 52

Relative error, 36
Representation of integers, 31
Rhind papyrus, 48
Rolle’s theorem, 109

generalized, 109
Root-finding, 48
Rounding, 36
Runge’s function, 104

Secant method, 67
error theorem, 68
Julia code, 68

Significant digits, 36
Simpson’s rule, 138
Spline interpolation, 117

clamped cubic, 121
cubic, 119
Julia code, 123
linear, 118
natural cubic, 121
quadratic, 118
Runge’s function, 127

Stirling’s formula, 153
Subnormal numbers, 30
Superlinear convergence, 52

Taylor’s theorem, 7
Trapezoidal rule, 137
Two’s complement, 32

Underflow, 31

van der Monde matrix, 88

Weight function, 195
Weighted mean value theorem for integrals,

137

	NumAnJulia-coverandverso.pdf
	NumAnJulia_June_25_2020.pdf
	NumAnJulia-coverandverso
	NumAnJulia_June_25_2020

