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363 Foundations of computational mathematics, Hong Kong 2008, F. CUCKER, A. PINKUS & M. J. TODD (eds)
364 Partial differential equations and fluid mechanics, J. C. ROBINSON & J. L. RODRIGO (eds)
365 Surveys in combinatorics 2009, S. HUCZYNSKA, J.D. MITCHELL & C.M. RONEY-DOUGAL (eds)
366 Highly oscillatory problems, B. ENGQUIST, A. FOKAS, E. HAIRER & A. ISERLES (eds)
367 Random matrices: High dimensional phenomena, G. BLOWER
368 Geometry of Riemann surfaces, F. P. GARDINER, G. GONZALEZ-DIEZ & C. KOUROUNIOTIS (eds)
369 Epidemics and rumours in complex networks, M. DRAIEF & L. MASSOULIÉ
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Introduction

This book is an introduction to the theory of iteration of expanding and
non-uniformly expanding holomorphic maps and topics in geometric measure
theory of the underlying invariant fractal sets. Probability measures on these
sets yield information on Hausdorff and other fractal dimensions and prop-
erties. The book starts with a comprehensive chapter on abstract ergodic
theory, followed by chapters on uniform distance-expanding maps and thermo-
dynamical formalism. This material is applicable in many branches of
dynamical systems and related fields, far beyond the applications in this
book.

Popular examples of the fractal sets to be investigated are Julia sets for ratio-
nal functions on the Riemann sphere. The theory, which was initiated by Gaston
Julia [1918] and Pierre Fatou [1919–1920], has become very popular since the
publication of Benoit Mandelbrot’s book [Mandelbrot 1982] with beautiful com-
puter generated illustrations. Top mathematicians have since made spectacular
progress in the field over the last 30 years.

Consider, for example, the map f(z) = z2 for complex numbers z. Then the
unit circle S1 = {|z| = 1} is f -invariant, f(S1) = S1 = f−1(S1). For c ≈ 0, c �= 0
and fc(z) = z2 + c, there still exists an fc-invariant set J(fc) called the Julia set
of fc, close to S1, homeomorphic to S1 via a homeomorphism h satisfying the
equality f ◦ h = h ◦ fc. However, J(fc) has a fractal shape. For large c the curve
J(fc) pinches at infinitely many points; it may pinch everywhere to become a
dendrite, or even crumble to become a Cantor set.

These sets satisfy two main properties, standard attributes of ‘conformal
fractal sets’:

1. Their fractal dimensions are strictly larger than the topological dimension.
2. They are conformally ‘self-similar’: that is, arbitrarily small pieces have

shapes similar to large pieces via conformal mappings, here via iteration
of f .

To measure fractal sets invariant under holomorphic mappings, one applies
probability measures corresponding to equilibria in the thermodynamical for-
malism. This is a beautiful example of the interlacing of ideas from mathematics
and physics.

The following prototype lemma [Bowen, 1975, Lemma 1.1], resulting from
Jensen’s inequality applied to the function logarithm, stems from the thermody-
namical formalism.

1
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2 Introduction

Lemma. (Finite Variational Principle) For given real numbers φ1, . . . , φn the
quantity

F (p1, . . . pn) =
n∑

i=1

−pi log pi +
n∑

i=1

piφi

has maximum value P (φ1, ...φn) = log
∑n
i=1 e

φi as (p1, . . . , pn) ranges over the
simplex {(p1, . . . , pn) : pi ≥ 0,

∑n
i=1 pi = 1} and the maximum is attained only at

p̂j = eφj
( n∑

i=1

eφi
)−1

.

We can read φi, pi, i = 1, . . . , n as a function (potential), resp. probability
distribution, on the finite space {1, . . . , n}. The proof follows from the strict
concavity of the logarithm function.

Let us further follow Bowen [1975]. The quantity

S =
n∑

i=1

−pi log pi

is called the entropy of the distribution (p1, . . . , pn). The maximizing distribution
(p̂1, .., p̂n) is called the Gibbs or equilibrium state. In statistical mechanics φi =
−βEi, where β = 1/kT , T is the temperature of an external ‘heat source’ and k
is a physical (Boltzmann) constant. The quantity E =

∑n
i=1 piEi is the average

energy. The Gibbs distribution thus maximizes the expression

S − βE = S − 1
kT

E

or, equivalently, minimizes the so-called free energy E − kTS. Nature prefers
states with low energy and high entropy. It minimizes free energy.

The idea of the Gibbs distribution as a limit of distributions on finite spaces of
configurations of states (spins, for example) of interacting particles over increas-
ing to infinite, bounded parts of the lattice Z

d was first introduced in statistical
mechanics by Bogolyubov and Hacet [1949] where it plays a fundamental role.
It was applied in dynamical systems to study Anosov flows and hyperbolic dif-
feomorphisms at the end of the 1960s by Ja. Sinai, D. Ruelle and R. Bowen.
For more historical remarks see [Ruelle 1978a] or [Sinai 1982]. This theory met
the notion of entropy S, borrowed from information theory and introduced by
Kolmogorov as an invariant of a measure-theoretic dynamical system.

Later, the usefulness of these notions to the geometric dimensions became
apparent. It was already present in [Billingsley 1965], but papers by Bowen
[1979] and McCluskey & Manning [1983] were also crucial.

In order to illustrate the idea, consider the following example. Let Ti : I → I,
i = 1, . . . , n > 1, where I = [0, 1] is the unit interval, Ti(x) = λix + ai, where
λi, ai are real numbers chosen in such a way that all the sets Ti(I) are pairwise
disjoint and contained in I. Define the limit set Λ as follows:

Λ =
∞⋂

k=0

⋃

(i0,...,ik)

Ti0 ◦ · · · ◦ Tik(I) =
⋃

(i0,i1... )

lim
k→∞

Ti0 ◦ · · · ◦ Tik(x),
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Introduction 3

the latter union taken over all infinite sequences (i0, i1, . . . ), the former over
sequences of length k + 1. By our assumptions |λj | < 1: hence the limit exists,
and does not depend on x.

It occurs that its Hausdorff dimension is equal to the only number α for which

|λ1|α + · · · + |λn|α = 1.

Λ is a Cantor set. It is self-similar with small pieces similar to large pieces with
the use of linear (more precisely, affine) maps (Ti0 ◦ · · · ◦ Tik)−1. We call such a
Cantor set linear. We can distribute a measure μ by setting μ(Ti0 ◦· · ·◦Tik(I)) =(
λi0 . . . λik

)α. Then for each interval J ⊂ I centred at a point of Λ, its diameter
raised to the power α is comparable to its measure μ (this is immediate for the
intervals Ti0 ◦ · · · ◦ Tik(I)). (A measure with this property for all small balls
centred at a compact set, in a Euclidean space of any dimension, is called a
geometric measure.) Hence

∑
(diam J)α is bounded away from 0 and ∞ for all

economical (of multiplicity not exceeding 2) covers of Λ by intervals J .
Note that for each k the measure μ restricted to the space of unions of Ti0◦· · ·◦

Tik(I), each such interval viewed as one point, is the Gibbs distribution, where
we set φ((i0, . . . , ik)) = φα((i0, . . . , ik)) =

∑
l=0,...,k α log λil . The number α is

the unique zero of the pressure function P(α) = 1
k+1 log

∑
(i0,...,ik) e

φα((i0,...,ik)).
In this special affine example this is independent of k. In the general non-linear
case to define pressure one considers the limit as k goes to ∞.

The family Ti and compositions is an example, very popular in recent years,
of Iterated Function Systems [Barnsley 1988]. Note that on a neighbourhood of
each Ti(I) we can consider T̂ := T−1

i . Then Λ is an invariant repeller for the
distance-expanding map T̂ .

The relations between dynamics, dimension and geometric measure theory
start in our book with the theorem that the Hausdorff dimension of an expanding
repeller is the unique zero of the adequate pressure function for sets built with
the help of C1+ε usually non-linear maps in R or conformal maps in the complex
plane C (or in R

d, d > 2; in this case conformal maps must be Möbius, i.e. a
composition of inversions and symmetries, by Liouville’s theorem).

This theory was developed for non-uniformly hyperbolic maps or flows in
the setting of smooth ergodic theory: see [Katok & Hasselblatt 1995], [Mañé
1987]. Let us also mention [Ledrappier & Young 1985]. See [Pesin 1997] for
recent developments. The advanced chapters of our book are devoted to this
theory, but we restrict ourselves to complex dimension 1. So the maps are non-
uniformly expanding, and the main technical difficulties are caused by critical
points, where we have strong contraction, since the derivative by definition is
equal to 0 at critical points.

A direction not developed in this book is conformal iterated function systems
with infinitely many generators Ti. They occur naturally as return maps in many
important constructions, for example for rational maps with parabolic periodic
points, or in the induced expansion construction for polynomials [Graczyk &
Świa̧tek 1998]. See also the recent [Przytycki & Rivera-Letelier 2007]. Beautiful
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examples are provided by infinitely generated Kleinian groups. For a measure-
theoretic background see [Young 1999].

The systematic treatment of iterated function systems with infinitely many
generators can be found in [Mauldin & Urbanski 1996] and [Mauldin & Urbański
2003], for example. Recently this has been rigorously explored in the iteration of
entire and meromorphic functions.

Below is a short description of the content of the book.

Chapter 1 contains some introductory definitions and basic examples. It is a
continuation of this Introduction.

Chapter 2 is an introduction to abstract ergodic theory: here T is a
probability measure-preserving transformation. The reader will find proofs of
the fundamental theorems: the Birkhoff Ergodic Theorem and the Shannon–
McMillan–Breiman Theorem. We introduce entropy and measurable partitions,
and discuss canonical systems of conditional measures in Lebesgue spaces, the
notion of natural extension (inverse limit in the appropriate category). We fol-
low here Rokhlin’s Theory [Rokhlin 1949], [Rokhlin 1967]: see also [Kornfeld,
Fomin & Sinai 1982]. Next, to prepare for applications for finite-to-one ratio-
nal maps, we sketch Rokhlin’s theory on countable-to-one endomorphisms, and
introduce the notion of the Jacobian: see also [Parry 1969]. Finally we discuss
mixing properties (K-property, exactness, Bernoulli) and probability laws: the
Central Limit Theorem (abbr. CLT), the Law of Iterated Logarithm (LIL), the
Almost Sure Invariance Principle (ASIP) for the sequence of functions (random
variables on our probability space) φ ◦ Tn, n = 0, 1, . . . .

Chapter 3 is devoted to ergodic theory and thermodynamical formalism for
general continuous maps on compact metric spaces. The main point here is the
so called Variational Principle for pressure: compare with the Finite Variational
Principle lemma, above. We also apply functional analysis in order to explain
the Legendre transform duality between entropy and pressure. We follow here
[Israel 1979] and [Ruelle 1978a]. This material is applicable in large deviations
and multifractal analysis, and is directly related to the uniqueness question of
Gibbs states.

In Chapters 2 and 3 we often follow the beautiful book by Peter Walters
[Walters 1982].

In Chapter 4 distance-expanding maps are introduced. Analogously to
Axiom A diffeomorphisms [Smale 1967], [Bowen 1975] or endomorphisms
[Przytycki 1976] and [Przytycki 1977], we outline a topological theory: spectral
decomposition, specification, Markov partition, and start a ‘bounded distortion’
play with Hölder continuous functions.

In Chapter 5 thermodynamical formalism and mixing properties of Gibbs
measures for open distance-expanding maps T and Hölder continuous potentials
φ are studied. To a large extent we follow [Bowen 1975] and [Ruelle 1978a].
We prove the existence of Gibbs probability measures (states): m with Jacobian
being exp(−φ) up to a constant factor, and T -invariant μ = μφ equivalent to m.
The idea is to use the transfer operator Lφ(u)(x) =

∑
y∈T−1(x) u(y) expφ(y) on
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the Banach space of Hölder continuous functions u. We prove the exponential
convergence ξ−nLnφ(u) → (

∫
u dm)uφ, where ξ is the eigenvalue with the

largest absolute value and uφ the corresponding eigenfunction. One obtains
uφ = dm/dμ. We deduce CLT, LIL and ASIP, and the Bernoulli property for
the natural extension.

We provide three different proofs of the uniqueness of the invariant Gibbs
measure. The first, and simplest, follows [Keller 1998], the second relies on the
Finite Variational Principle, and the third on the differentiability of the pressure
function in adequate function directions.

Finally we prove Ruelle’s formula:

d2P (φ+ tu+ sv)/dt ds|t=s=0

= lim
n→∞

1
n

∫ (n−1∑

i=0

(u ◦ T i −
∫
u dμφ)

)

·
(
n−1∑

i=0

(v ◦ T i −
∫
v dμφ)

)

dμφ.

This expression for u = v is equal to σ2 in CLT for the sequence u ◦ Tn and
measure μφ.

(In the book we use the letter T to denote a measure-preserving trans-
formation. Maps preserving an additional structure, continuous, smooth or
holomorphic for example, are usually denoted by f or g.)

In Chapter 6 (Section 6.1) a metric space with the action of a distance-
expanding map f is embedded in a smooth manifold, and it is assumed that
the map extends smoothly (or only continuously) to a neighbourhood. Similarly
with hyperbolic sets [Katok & Hasselblatt 1995] we discuss basic properties. The
intrinsic property of f being an open map on X occurs equivalent to X being
repeller for the extension.

We call a repeller X with smoothly extended dynamics a Smooth Expanding
Repeller (SER).

If an extension is conformal, we say (X, f) is a conformal expanding repeller
(CER). In Section 6.2 we discuss some distortion theorems and holomorphic
motion to be used later in Section 6.4, and in Chapter 9 to prove the analytic
dependence of ‘pressure’ and the Hausdorff dimension of CER on a parameter.

In Section 6.3 we prove that for CER the density uφ = dm/dμ for measures
of harmonic potential is real-analytic (and extends so on a neighbourhood of X).
This will be used in Chapter 9 for the potential being − log |f ′|, in which case
μ is equivalent to a Hausdorff measure in the maximal dimension (geometric
measure).

In Chapter 7 we provide in detail D. Sullivan’s theory classifying Cr+ε

line Cantor sets via a scaling function, sketched in [Sullivan 1988], and dis-
cuss the realization problem [Przytycki & Tangerman 1996]. We also discuss
applications for Cantor-like closures of postcritical sets for infinitely renormal-
izable Feigenbaum quadratic-like maps of interval. The infinitesimal geometry
of these sets occurs independent of the map, which is one of the famous
Coullet–Tresser–Feigenbaum universalities.

In Chapter 8 we provide definitions of various ‘fractal dimensions’: Hausdorff,
box and packing. We also consider Hausdorff measures with gauge functions
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different from tα. We prove the ‘Volume Lemma’ linking, roughly speaking,
(global) dimension with local dimensions.

In Chapter 9 we develop the theory of conformal expanding repellers, and
relate pressure to the Hausdorff dimension.

Section 9.2 provides a brief exposition of multifractal analysis of the Gibbs
measure μ of a Hölder potential on CER X. We rely mainly on [Pesin 1997].
In particular, we discuss the function Fμ(α) := HD(Xμ(α)), where Xμ(α) :=
{x ∈ X : d(x) = α} and d(x) := limr→0 logμ(B(x, r))/ log r. The decomposition
X =

⋃
α(Xμ(α)) ∪ X̂, where the limit d(x), called the local dimension, does not

exist for x ∈ X̂, is called the local dimension spectrum decomposition.
Next we follow the easy (uniform) part of [Przytycki, Urbański & Zdunik

1989] and [Przytycki, Urbański & Zdunik 1991]. We prove that for CER (X, f)
and Hölder continuous φ : X → R, for κ = HD(μφ), the Hausdorff dimen-
sion of the Gibbs measure μφ (infimum of Hausdorff dimensions of sets of full
measure), either HD(X) = κ the measure μφ is equivalent to Λκ, the Haus-
dorff measure in dimension κ, and is a geometric measure, or μφ is singular
with respect to Λκ and the right gauge function for the Hausdorff measure
to be compared to μφ is Φ(κ) = tκ exp(c

√
log 1/t log log log 1/t). In the proof

we use LIL. This theorem is used to prove a dichotomy for the harmonic
measure on a Jordan curve ∂, bounding a domain Ω, which is a repeller for
a conformal expanding map. Either ∂ is real-analytic, or the harmonic mea-
sure is comparable to the Hausdorff measure with gauge function Φ(1). This
yields information about the lower and upper growth rates of |R′(rζ)|, for
r ↗ 1, for almost every ζ with |ζ| = 1 and univalent function R from the
unit disc |z| < 1 to Ω. This is a dynamical counterpart of Makarov’s the-
ory of boundary behaviour for general simply connected domains [Makarov
1985].

We prove, in particular, that for fc(z) = z2 + c, c �= 0, c ≈ 0 it holds that
1 < HD(J(fc)) < 2.

We show how to express another interesting function in the language of
pressure:

∫
|ζ|=1

|R′(rζ)|t |dζ| for r ↗ 1.
Finally, we apply our theory to the boundary of the von Koch ‘snowflake’

and more general Carleson fractals.
Chapter 10 is devoted to Sullivan’s rigidity theorem, saying that if two

non-linear expanding repellers (X, f), (Y, g) are Lipschitz conjugate (or more
generally if there exists a measurable conjugacy that transforms a geometric
measure on X to a geometric measure on Y ), then the conjugacy extends to a
conformal one. This means that measures classify non-linear conformal repellers.
This fact, announced in [Sullivan 1986] with only a sketch of the proof, is proved
here rigorously for the first time.

(This chapter is one of the oldest chapters in this book; we already made it
available in 1991 and many papers have since followed.)

In Chapter 11 we start to deal with non-uniform expanding phenomena. At
the heart of this chapter is the proof of the formula HD(μ) = hμ(f)/χμ(f)
for an arbitrary f -invariant ergodic measure μ of positive Laypunov exponent
χμ :=

∫
log |f ′| dμ.
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(The phrase ‘non-uniform expanding’ is used just to say that we consider
(typical points of) an ergodic measure with positive Lyapunov exponent. In
higher dimensions one uses the name ‘non-uniform hyperbolic’ for measures with
all Lyapunov exponents non-zero.)

It is so roughly because a small disc around z, whose n-th image is large, has
diameter of order |(fn)′(z)|−1 ≈ exp(−nχμ) and measure exp(−nhμ(f)) (the
Shannon–McMillan–Breiman theorem is involved here).

Chapter 12 is devoted to conformal measures: that is, probability mea-
sures with Jacobian Const exp(−φ) or more specifically |f ′|α in a non-uniformly
expanding situation, in particular for any rational mapping f on its Julia set J .
It is proved that there exists a minimal exponent δ(f) for which such a measure
exists, and that δ(f) is equal to each of the following quantities:

Dynamical dimension DD(J) := sup{HD(μ)}, where μ ranges over all
ergodic f -invariant measures on J of positive Lyapunov exponent.

Hyperbolic dimension HyD(J) := sup{HD(Y )}, where Y ranges over all
Conformal Expanding Repellers in J , or CERs that are Cantor sets.

It is an open problem whether for every rational mapping HyD(J) =
HD(J) = the box dimension of J , but for many non-uniformly expanding map-
pings these equalities hold. It is often easier to study the continuity of δ(f)
with respect to a parameter, than study the Hausdorff dimension directly. So
one obtains information about the continuity of dimensions due to the above
equalities.

Section 12.5 presents a recent approach via pressure for the potential function
−t log |f ′|, yielding a simple proof of the equalities of the above dimensions, see
[Przytycki, Rivera-Letelier & Smirnov 2004].

A large part of this book was written in the years 1990–1992, and was lectured
to graduate students by each of us in Warsaw, Yale and Denton. We neglected
to finish writing, but recently the methods in Chapter 12, relating hyperbolic
dimension to minimal exponent of conformal measure, were unexpectedly used
to study the dependence on ε of the dimension of the Julia set for z2 + 1/4 + ε,
for ε → 0 and other parabolic bifurcations, by A. Douady, P. Sentenac and
M. Zinsmeister [1997] and by C. McMullen [1996]. So we decided to make final
efforts. Meanwhile good books have appeared on some topics of our book: let
us mention [Falconer 1997], [Zinsmeister 1996], [Boyarsky & Góra 1997], [Pesin
1997], [Keller 1998], [Baladi 2000] but a lot of important material in our book is
new or has been made more easily accessible.

Acknowledgements. We are indebted to Krzysztof Barański for help with
figures and Pawel Góra for Figure 2.1. The first author acknowledges the support
of consecutive Polish KBN and MNiSW grants; the recent one is N201022233.
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Basic examples and
definitions

Let us start with definitions of dimensions. We shall come back to them in a
more systematic way in Chapter 8.

Definition 1.1. Let (X, ρ) be a metric space. We denote by the upper (lower)
box dimension of X the quantity

BD(X) (or BD(X)) := lim sup(lim inf)r→0
logN(r)
− log r

,

where N(r) is the minimal number of balls of radius r that cover X.

Sometimes the names capacity or Minkowski dimension or box-counting
dimension are used. The name ‘box dimension’ comes from the situation where
X is a subset of a Euclidean space R

d. Then one can consider only r = 2−n,
and N(2−n) can be replaced by the number of dyadic boxes [ k12−n ,

k1+1
2−n ] × · · · ×

[ kd

2−n ,
kd+1
2−n ], kj ∈ Z intersecting X.

If BD(X) = BD(X) we call the quantity the box dimension and denote it by
BD(X).

Definition 1.2. Let (X, ρ) be a metric space. For every κ > 0 we define
Λκ(X) = limδ→0 inf{∑∞

i=1(diamUi)κ}, where the infimum is taken over all
countable covers (Ui, i = 1, 2, . . . ) of X by sets of diameter not exceeding δ.
Λκ(Y ) defined as above on all subsets Y ⊂ X is called the κ-th outer Hausdorff
measure.

It is easy to see that there exists κ0 : 0 ≤ κ0 ≤ ∞ such that for all κ : 0 ≤
κ < κ0 Λκ(X) = ∞ and for all κ : κ0 < κ Λκ(X) = 0. The number κ0 is called
the Hausdorff dimension of X.

Note that if in this definition we replace the assumption: sets of diameter
not exceeding δ by equal δ, and limδ→0 by lim inf or lim sup, we obtain the box
dimension.

8
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A standard example to compare the two notions is the set {1/n, n = 1, 2, . . . }
in R. Its box dimension is equal to 1/2, and the Hausdorff dimension is 0. If one
considers {2−n} instead as introduced in the one obtains both dimensions as 0.
Also, linear Cantor sets, as introduced in the Introduction, have their Hausdorff
and box dimensions equal. The reason for this is self-similarity.

Example 1.3. Shift spaces. For every natural number d consider the space Σd

of all infinite sequences (i0, i1, . . . ) with in ∈ {1, 2, . . . , d}. Consider the metric

ρ((i0, i1, . . . ), (i′0, i
′
1, . . . )) =

∞∑

n=0

λn|in − i′n|

for an arbitrary 0 < λ < 1. Sometimes it is more convenient to use the metric

ρ((i0, i1, . . . ), (i′0, i
′
1, . . . )) = λ−min{n:in �=i′n},

equivalent to the previous one. Consider σ : Σd → Σd defined by σ((i0, i1, . . . ) =
(i1, . . . ). The metric space (Σd, ρ) is called the one-sided shift space and the map
σ the left shift. Often, if we do not specify metric but are interested only in the
Cartesian product topology in Σd = {1, . . . , d}Z

+
, we use the name topological

shift space.
One can consider the space Σ̃d of all two sides infinite sequences

(. . . , i−1, i0, i1, . . . ). This is called the two-sided shift space.
Each point (i0, i1, . . . ) ∈ Σd determines its forward trajectory under σ, but is

equipped with a Cantor set of backward trajectories. Together with the topology
determined by the metric

∑∞
n=−∞ λ|n||in − i′n| the set Σ̃d can be identified with

the inverse limit (in the topological category) of the system · · · → Σd → Σd

where all the maps → are σ.
Note that the limit Cantor set Λ in the Introduction, with all λi = λ, is

Lipschitz homeomorphic to Σd, with the homeomorphism h mapping (i0, i1, . . . )
to
⋂
k Ti0 ◦ · · · ◦ Tik(I). Note that for each x ∈ Λ, h−1(x) is the sequence of

integers (i0, i1, . . . ) such that for each k, T̂ k(x) ∈ Tik(I). This is called a coding
sequence. If we allow the end points of Ti(I) to overlap, and in particular λ = 1/d
and ai = (i− 1)/d, then Λ = I and h−1(x) =

∑∞
k=0(ik − 1)d−k−1.

One generalizes the one (or two) -sided shift space, sometimes called the full
shift space, by considering the set ΣA for an arbitrary d×d matrix A = (aij with
aij = 0 or 1 defined by

ΣA = {(i0, i1, . . . ) ∈ Σd : aitit+1 = 1 for every t = 0, 1, . . . }.

By the definition σ(ΣA) ⊂ ΣA. ΣA with the mapping σ is called a topological
Markov chain. Here the word topological is substantial; otherwise it is customary
to think of a finite number of states stochastic process – see Example 1.9.

Example 1.4. Adding machine. A complementary dynamics on Σd above
is given by the map T ((i0, i1, . . . )) = (1, 1, . . . , 1, ik + 1, ik + 1, . . . ), where k is
the least integer for which ik < d. Finally (d, d, d, . . . ) + 1 = (1, 1, 1, . . . ). (This
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is of course compatible with standard adding, except that here the sequences
are infinite to the right and the digits run from 1 to d, rather than from 0 to
d− 1.) Notice that unlike the previous example, with an abundance of periodic
trajectories, here each T -trajectory is dense in Σd (such a dynamical system is
called minimal).

Example 1.5. Iteration of rational maps. Let f : C → C be a holomorphic
mapping of the Riemann sphere C. Then it must be rational, i.e. the ratio of two
polynomials. We assume that the topological degree of f is at least 2. The Julia
set J(f) is defined as follows:

J(f) = {z ∈ C : ∀U 	 z, U open, the family of iterates fn = f ◦ · · · ◦ f |U , n
times, for n = 1, 2, . . . is not normal in the sense of Montel }.

A family of holomorphic functions ft : U → C is called normal (in the
sense of Montel) if it is pre-compact: that is, from every sequence of functions
belonging to the family one can choose a sub-sequence uniformly convergent (in
the spherical metric on the Riemann sphere C) on all compact subsets of U .

z ∈ J(f) implies for example, that for every U 	 z the family fn(U) covers
all C but at most two points. Otherwise by Montel’s theorem {fn} would be
normal on U .

Another characterization of J(f) is that J(f) is the closure of repelling peri-
odic points, namely those points z ∈ C for which there exists an integer n such
that fn(z) = z and |(fn)′(z)| > 1.

There are only a finite number of attracting periodic points, |(fn)′(z)| < 1:
they lie outside J(f), which is an uncountable ‘chaotic, expansive (repelling)’
Julia set. The lack of symmetry between attracting and repelling phenomena is
caused by the non-invertibility of f .

It is easy to prove that J(f) is compact, completely invariant: f(J(f)) =
J(f) = f−1(J(f)), either nowhere dense or equal to the whole sphere (to prove
this use Montel’s theorem).

For polynomials, the set of points whose images under iterates fn, n =
1, 2, . . . , tend to ∞, basin of attraction to ∞, is connected and completely
invariant. Its boundary is the Julia set.

Check that all these general definitions and statements are compatible with
the discussion of f(z) = fc(z) = z2 + c in the Introduction. As an introduction
to this theory we recommend, for example, the books [Beardon 1991], [Carleson
& Gamelin 1993], [Milnor 1999] and [Steinmetz 1993].

Figures 1.1–1.3 are computer pictures exhibiting some Julia sets: rabbit,
basilica1 and Sierpiński’s carpet of their mating (see [Bielefeld 1990]).

A Julia set can have Hausdorff dimension arbitrarily close to 0 (but not
0) and arbitrarily close to 2 or even exactly 2 (but not the whole sphere).
More precisely: a Julia set is always closed and either the whole sphere or
nowhere is dense. Recently examples have been found of quadratic polynomi-
als fc with a Julia set of positive Lebesgue measure (with c in the cardioid;
Example 6.1.10): see [Buff & Cheritat 2008]. See also http://picard.ups-tlse.fr/
adrien2008/Slides/Cheritat.pdf

1The name was proposed by Benoit Mandelbrot [Mandelbrot 1982], impressed by the
Basilica San Marco in Venice plus its reflection in flooded Piazza.
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.

.
.

0

Figure 1.1 Douady’s rabbit. Here f(z) = z2 + c, where c ≈ −0.123 + 0.749i
is a root of c3 + 2c2 + c + 1 = 0: see [Carleson & Gamelin 1993]. The three
distinguished points constitute a period 3 orbit. The arrows hint at the action
of f .

. .

Figure 1.2 Basilica. For decreasing c this shape appears at c = −3/4 with thicker
components. f(z) = z2 − 1. The critical point 0 is attracting of period 2.

Figure 1.3 The (outer) basilica mated with the rabbit. Here f(z) = z2+c
z2−1 , where

c = 1+
√−3
2 . Black is attracted to a period 3 orbit, white to period 2. The Julia

set is the boundary between black and white.



9780521438001c01 CUP/PUK February 17, 2010 21:28 Page-12

12 Basic examples and definitions

Figure 1.4 Sierpiński gasket, Sierpiński carpet and the boundary of a von Koch
snowflake.

Example 1.6. Complex linear fractals. The linear Cantor set construction
in R described in the Introduction can be generalized to conformal linear Cantor
and other fractal sets in C:

Let U ⊂ C be a bounded connected domain and Ti(z) = λiz + ai, where
λi, ai are complex numbers, i = 1, . . . , n > 1. Assume that closures clTi(U) are
pairwise disjoint and contained in U . The limit Cantor set Λ is defined in the
same way as in the Introduction.

In Chapter 10, Example 10.2.8, we shall note that it cannot be the Julia
set for a holomorphic extension of T̂ = T−1

i on Ti(U) for each i, to the whole
sphere C.

If we allow that the boundaries of Ti(U) intersect or intersect ∂U we obtain
other interesting examples (Figure 1.4).

Example 1.7. Action of Kleinian groups. Beautiful examples of fractal sets
arise as limit sets of the action of Kleinian groups on C.

Let Ho be the group of all homographies, namely the rational mappings of
the Riemann sphere of degree 1, i.e. of the form z �→ az+b

cz+d , where ad − bc �= 0,
for complex numbers a, b, c, d. Every discrete subgroup of Ho is called a Kleinian
group. If all the elements of a Kleinian group preserve the unit disc D = {|z| < 1},
the group is called Fuchsian.

Consider, for example, a regular hyperbolic 4n-gon in D (equipped with the
hyperbolic metric) centred at 0 (Figure 1.5). Denote the consecutive sides by
aji , i = 1, . . . , n, j = 1, . . . , 4 in the lexicographical order a1

1, . . . a
4
1, a

1
2, . . . . Each

side is contained in the corresponding circle Cji intersecting ∂D at right angles.
Denote the disc bounded by Cji by Dj

i .
It is not hard to see that the closures of Dj

i and Dj+2
i are disjoint for each i

and j = 1, 2.
Let gji , j = 1, 2 be the unique homography preserving D mapping aji to

aj+2
i and Dj

i to the complement of clDj+2
i . It is easy to see that the fam-

ily {gji } generates a Fuchsian group G. For an arbitrary Kleinian group G,
the Poincaré limit set Λ(G) =

⋃
limk→∞ gk(z), the union taken over all
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1
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1

a1
2

Figure 1.5 Regular hyperbolic octagon

sequences of pairwise different gk ∈ G such that gk(z) converges, where z is
an arbitrary point in C. It is not hard to prove that Λ(G) does not depend
on z.

For the above example Λ(G) = ∂D. If we change gji slightly (the circles Cji
change slightly), then either Λ(G) is a circle S (all new Cji intersect S at the
right angle), or it is a fractal Jordan curve. The phenomenon is similar to the
case of the maps z �→ z2 + c described in the Introduction and in more detail in
Section 9.5. For details see [Bowen 1979], [Bowen & Series 1979] and [Sullivan
1982].

If all the closures of the discs Dj
i , i = 1, . . . , n, j = 1, . . . , 4 become pairwise

disjoint, Λ(G) becomes a Cantor set (the group is called then a Schottky group
or a Kleinian group of Schottky type).

Example 1.8. Higher dimensions. Though the book is devoted to one-
dimensional real and complex iteration and arising fractals, Chapters 2–4 apply
to general situations. A basic example is Smale’s horseshoe. Take a square
K = [0, 1] × [0, 1] in the plane R

2 and map it affinely to a strip by squeez-
ing in the horizontal direction and stretching in the vertical, for example
f(x, y) = (1

5x + 1
4 , 3y − 1

8 ), and bend the strip by a new affine map g, which
maps the rectangle [ 15 ,

2
5 ] × [ 74 ,

23
8 ] to [35 ,

4
5 ] × [− 1

8 , 1]. The resulting composition
T = g ◦ f maps K to a ‘horseshoe’: see [Smale 1967, p. 773]

The map can be easily extended to a C∞-diffeomorphism of C by mapping
a ‘stadium’ extending K to a bent ‘stadium’, and mapping its complement to
the respective complement (Figure 1.6). The set ΛK of points not leaving K
under action of Tn, n = . . . ,−1, 0, 1, . . . is the cartesian product of two Cantor
sets. This set is T -invariant, ‘uniformly hyperbolic’. In the horizontal direction
we have contraction; in the vertical direction uniform expansion. The situation
is different from the previous examples of Σd or linear Cantor sets, where we had
uniform expansion in all directions.

Smale’s horseshoe is a universal phenomenon. It is always topologically
present for an iterate of a diffeomorphism f having a transversal homoclinic
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.

Figure 1.6 Horseshoe, stadium extension

point q for a saddle p (Figure 1.7). The latter says that the stable and unstable
manifolds W s(p) := {y : fn(y) → p},Wu(p) := {y : f−n(y) → p} as n → ∞
intersect transversally at q. For more details on hyperbolic sets see [Katok &
Hasselblatt 1995]. Compare heteroclinic intersections in Chapter 4, Exercise 4.8.

.

.

.

W s(p)

q

p

Wu(p)

Figure 1.7 Homoclinic point

Note that T |ΛK is topologically conjugate to the left shift σ on the two-sided
shift space Σ̃2: that is, there exists a homeomorphism h : ΛK → Σ̃2 such that
h ◦ T = σ ◦ h. Compare h in Example 1.3. T on ΛK is the inverse limit of the
mapping T̂ on the Cantor set described in the Introduction, similar to the inverse
limit Σ̃2 of σ on Σ2. The philosophy is that hyperbolic systems appear as inverse
limits of expanding systems.

A partition of a hyperbolic set Λ into local stable (unstable) sets, W s(x) =
{y ∈ Λ : (∀n ≥ 0)ρ(fn(x), fn(y)) ≤ ε(x)} for a small positive measurable
function ε, is an illustration of an abstract ergodic theory measurable parti-
tion ξ such that f(ξ) is finer than ξ, fn(ξ), n → ∞ converges to the partition
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into points, and the conditional entropy Hμ(f(ξ)|ξ) is maximal possible, equal
to the entropy hμ(f): all this holds for an ergodic invariant measure μ.

The inverse limit of the system · · · → S1 → S1 where all the maps are
z �→ z2, is called a solenoid. It has a group structure (. . . , z−1, z0)·(. . . , z′−1, z

′
0) =

(. . . , z−1 · z′−1, z0 · z′0), which is a trajectory if both factors are, since the map
z �→ z2 is a homomorphism of the group S1. Topologically the solenoid can be
represented as the attractor A of the mapping of the solid torus D × S1 into
itself f(z, w) = (1

3z + 1
2w,w

2). Its Hausdorff dimension is equal in this special
example to 1 + HD(A ∩ {w = w0}) = 1 + log 2

log 3 for an arbitrary w0, as Cantor
sets A∩{w = w0} have Hausdorff dimensions log 2

log 3 . These are linear Cantor sets,
discussed in the Introduction.

Especially interesting is the question of the Hausdorff dimension of A if
z �→ 1

3z is replaced by z �→ φ(z) not conformal; but this higher-dimensional
problem goes beyond the scope of our book.

If the map z �→ z2 in the definition of a solenoid is replaced by an arbi-
trary rational mapping, then if f is expanding on the Julia set, the solenoid is
locally the cartesian product of an open set in J(f) and the Cantor set of all
possible choises of backward trajectories. If, however, there are critical points
in J(f) (or converging under the action of fn to parabolic points in J(f)), the
solenoid (inverse limit) is more complicated: see [Lyubich & Minsky 1997] and
more recent papers for an attempt to describe it, together with a neighbour-
hood composed of trajectories outside J(f). We shall not discuss this in this
book.

Example 1.9. Bernoulli shifts and Markov chains. For every positive num-
bers p1, . . . , pd such that

∑d
i=1 pi = 1, one introduces on the Borel subsets of Σd

(or Σ̃d) a probability measure μ by extending to the σ-algebra of all Borel sets
the function μ(Ci0,i1,...,it) = p0p1 . . . pt, where Ci0,i1,...,it = {(i′0, i′1, . . . ) : i′s =
is for every s = 0, 1, . . . , t}. Each such C is called a finite cylinder.

The space Σd with left shift σ and measure μ is called a one-sided Bernoulli
shift.

On a topological Markov chain ΣA ⊂ Σd with A = (aij) and an arbitrary
d× d matrix M = pij such that

∑d
j=1 pij = 1 for every i = 1, . . . , d, pij ≥ 0 and

pij = 0 if aij = 0, one can introduce a probability measure μ on all Borel subsets
of ΣA by extending μ(Ci0,i1,...,it) = pi0pi0i1 . . . pit−1it . Here (p1, . . . , pd) is an
eigenvector of M∗, namely

∑
i pipij = pj , such that pi ≥ 0 for every i = 1, . . . , d

and
∑d
i=1 = 1.

The space ΣA with left shift σ and measure μ is called a one-sided Markov
chain.

Note that μ is σ-invariant. Indeed,

μ
(⋃

i

(Ci,i0,...,it)
)

=
∑

i

pipii0pi0i1 . . . pit−1it = pi0pi0i1 . . . pit−1it = μ(Ci0,...,it).

As in the topological case, if we consider Σ̃d rather than Σd, we obtain two-
sided Bernoulli shifts and two-sided Markov chains.
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Example 1.10. Tchebyshev polynomial. Let us consider the mapping T :
[−1, 1] → [−1, 1] of the real interval [−1, 1] defined by T (x) = 2x2 − 1. In the
co-ordinates z �→ 2z it is just a restriction to an invariant interval of the mapping
z �→ z2−2, already discussed in the Introduction. The interval [−1, 1] is the Julia
set of T .

Notice that this map is the factor of the mapping z �→ z2 on the unit circle
{|z| = 1} in C by the orthogonal projection P to the real axis. Since the length
measure l is preserved by z �→ z2, its projection is preserved by T . Its density
with respect to the Lebesgue measure on [−1, 1] is proportional to (dP/dl)−1, and
after normalization is equal to 1

π
1√

1−x2 . This measure satisfies many properties
of Gibbs invariant measures, discussed in Chapter 5, though T is not expanding;
it has a critical point at 0. This T is the simplest example of a non-uniformly
expanding map, to which the advanced parts of the book are devoted. See also
Figures 2.1 and 2.2 in Section 2.2.



9780521438001c02 CUP/PUK February 17, 2010 21:30 Page-17

2

Measure-preserving
endomorphisms

2.1 Measure spaces and the Martingale
Theorem

We assume that the reader is familiar with the basic elements of measure and
integration theory. For a complete treatment see, for example, [Halmos 1950]
or [Billingsley 1979]. We start with some basics to introduce the notation and
terminology.

A family F of subsets of a set X is said to be a σ-algebra if the following
conditions are satisfied:

X ∈ F , (2.1.1)
A ∈ F ⇒ Ac ∈ F (2.1.2)

and

{Ai}∞i=1 ⊂ F ⇒
∞⋃

i=1

Ai ∈ F . (2.1.3)

It follows from this definition that ∅ ∈ F : that the σ-algebra F is closed under
countable intersections and under subtractions of sets. If (2.1.3) is assumed only
for finite subfamilies of F then F is called an algebra. The elements of the
σ-algebra F will frequently be called measurable sets.

Notation 2.1.1. For any family F0 of subsets of X, we denote by σ(F0) the
least σ-algebra that contains F0, and we call it the σ-algebra generated by F0.

A function on a σ-algebra F , μ : F → [0,∞], is said to be σ-additive if for
any countable subfamily {Ai}∞i=1 of F consisting of mutually disjoint sets we
have

μ
( ∞⋃

i=1

Ai

)
=

∞∑

i=1

μ(Ai). (2.1.4)

17
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We say then that μ is a measure. If we consider in (2.1.4) only finite families of
sets, we say μ is additive. The two notions of additivity and of σ-additivity make
sense for a σ-algebra as well as for an algebra, provided that in the case of an
algebra one considers only families {Ai} ⊂ F such that

⋃
Ai ∈ F . The simplest

consequences of the definition of measure are the following:

μ(∅) = 0; (2.1.5)
if A,B ∈ F and A ⊂ B then μ(A) ≤ μ(B); (2.1.6)

if A1 ⊂ A2 ⊂ . . . and {Ai}∞i=1 ⊂ F then

μ
( ∞⋃

i=1

Ai

)
= sup

i
μ(Ai) = lim

i→∞
μ(Ai). (2.1.7)

We say that the triple (X,F , μ) with a σ-algebra F and μ a measure on F is
a measure space. In this book we shall always assume, unless otherwise stated,
that μ is a finite measure: that is, μ : F → [0,∞). By (2.1.6) this equivalently
means that μ(X) < ∞. If μ(X) = 1, the triple (X,F , μ) is called a probability
space and μ a probability measure.

We say that φ : X → R is a measurable function, if φ−1(J) ∈ F for every
interval J ⊂ R, equivalently for every Borel set J ⊂ R (compare Section 2.2). We
say that φ is μ-integrable if

∫ |φ| dμ < ∞. We write φ ∈ L1(μ). More generally,
for every 1 ≤ p < ∞ we write (

∫ |φ|p dμ)1/p = ‖φ‖p, and we say that φ belongs
to Lp(μ) = Lp(X,F , μ). If infμ(E)=0 supX\E |φ| < ∞, we say that φ ∈ L∞ and
denote the latter expression by ‖φ‖∞. The numbers ‖φ‖p, 1 ≤ p ≤ ∞ are called
Lp-norms of φ. We usually identify in this chapter functions that differ only on
a set of μ-measure 0. After these identifications the linear spaces Lp(X,F , μ)
become Banach spaces with the norms ‖φ‖∞.

We say that a property q(x), x ∈ X, is satisfied for μ almost every x ∈ X
(abbr: a.e.), or μ-a.e., if μ({x : q(x) is not satisfied}) = 0. We can consider q as
a subset of X with μ(X \ q) = 0.

We shall often use in this book the following two facts.

Theorem 2.1.2 (Monotone Convergence Theorem). Suppose φ1 ≤ φ2 ≤ . . . is
an increasing sequence of integrable, real-valued functions on a probability space
(X,F , μ). Then φ = limn→∞ φn exists a.e. and limn→∞

∫
φn dμ =

∫
φdμ. (We

allow +∞’s here.)

Theorem 2.1.3 (Dominated Convergence Theorem). If (φn)∞n=1 is a sequence
of measurable real-valued functions on a probability space (X,F , μ) and |φn| ≤ g
for an integrable function g, and φn → φ a.e., then φ is integrable and
limn→∞

∫
φn dμ =

∫
φdμ.

Recall now that if F ′ is a sub-σ-algebra of F and φ : X → R is a μ-
integrable function, then there exists a unique (mod 0) function, usually denoted
by E(φ|F ′), such that E(φ|F ′) is F ′-measurable and

∫

A

E(φ|F ′) dμ =
∫

A

φdμ (2.1.8)
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for all A ∈ F ′. E(φ|F ′) is called the conditional expectation value of the function
φ with respect to the σ-algebra F ′. Sometimes we shall use for E(φ|F ′) the
simplified notation φF ′ .

For F , generated by a finite partition A (cf. Section 2.3), one can think of
E(φ|σ(A)) as constant on each A ∈ A equal to the average

∫
A
φdμ/μ(A).

The existence of E(φ|F ′) follows from the well-known Radon–Nikodym The-
orem, which says that if ν 
 μ, with both measures defined on the same
σ-algebra F ′ (where ν 
 μ means that ν is absolutely continuous with respect
to μ, i.e. μ(A) = 0 ⇒ ν(A) = 0 for all A ∈ F ′), then there exists a unique
(mod 0) F ′-measurable, μ-integrable function Φ = dν/dμ : X → R

+, called the
Radon–Nikodym derivative, such that for every A ∈ F ′

∫

A

Φ dμ = ν(A).

To deduce (2.1.8) we set ν(A) =
∫
A
φdμ for A ∈ F ′. The trick is that we restrict

μ from F to F ′: that is, we apply the Radon–Nikodym Theorem for ν 
 μ|F ′ .
If φ ∈ Lp(X,F , μ) then E(φ|F ′) ∈ Lp(X,F ′, μ) for all σ-algebras F ′ with

Lp norms uniformly bounded. More precisely, the operators φ �→ E(φ|F ′) are
linear projections from Lp(X,F , μ) to Lp(X,F ′, μ), with Lp-norms equal to 1
(see Exercise 2.7).

For a sequence (Fn))∞n=1 of σ-algebras contained in F , denote by
∨∞
n=1 Fn

the smallest σ-algebra containing
⋃∞
n=1 Fn The latter union is usually not a

σ-algebra, but only an algebra (if the sequence is ascending). According to
Notation 2.1.1,

∨∞
n=1 Fn = σ(

⋃∞
n=1 Fn). Compare Section 2.6, where complete

σ-algebras of this form are considered in Lebesgue spaces.
We end this section with the following version of the Martingale Conver-

gence Theorem.

Theorem 2.1.4. If (Fn : n ≥ 1) is either an ascending or a descending sequence
of σ-algebras contained in F , then for every φ ∈ Lp(μ), 1 ≤ p <∞, we have

lim
n→∞E(φ|Fn) = E(φ|F ′), a.e. and in Lp,

where F ′ is equal either to
∨∞
n=1 Fn or to

⋂∞
n=1 Fn respectively.

Recall that a sequence of μ-measurable functions ψn : X → R, n = 1, 2, . . .
is said to converge in measure μ to ψ if for every ε > 0, limn→∞ μ({x ∈ X :
|ψn(x) − ψ(x)| ≥ ε}) = 0.

In this book we denote by 11A the indicator function of A, namely the function
equal to 1 on A and to 0 outside A.

Remark 2.1.5. For the existence of F ′ and the convergence in Lp in Theo-
rem 2.1.4, no monotonicity is needed. It is sufficient to assume that for every
A ∈ F the limit limE(11A|Fn) in measure μ exists.

We shall not provide here any proof of Theorem 2.1.4 in the full generality
(but see Exercise 2.5). However, let us at least provide a proof of Theorem 2.1.4
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(and of Remark 2.1.5 in the case limE(11A|Fn) = 11A) for the L2-convergence
for functions φ ∈ L2(μ). This is sufficient, for example, to prove the important
Theorem 2.8.6 (proof 2) later on in this chapter.

For any ascending sequence (Fn) we have the equality

L2(X,F ′, μ) =
⋃

n

L2(X,Fn, μ). (2.1.9)

Indeed, for every B,C ∈ F write B ÷ C = (B \ C) ∪ (C \ B), the so-called
symmetric difference of sets B and C. Note that for every B ∈ F ′ there exists a
sequence Bn ∈ Fn, n ≥ 1, such that μ(B ÷Bn) → 0.

This follows, for example, from Carathéodory’s argument: see the comments
after the statement of Theorem 2.7.2. We have μ(B) equal to the outer measure
of B constructed from μ restricted to the algebra

⋃∞
n=1 Fn. In the Remark 2.1.5

case, where we assumed limE(11A|Fn) = 11A, this is immediate.
Hence L2(X,Fn, μ) � 11Bn

→ 11B in L2(X,F , μ). Finally, to get (2.7.2), use
the fact that every function f ∈ L2(X,F ′, μ) can be approximated in the space
L2(X,F ′, μ) by the step functions, i.e. finite linear combinations of indicator
functions.

Therefore, since E(φ|Fn) and E(φ|F ′) are orthogonal projections of φ to
L2(X,Fn, μ) and L2(X,F ′, μ) respectively (exercise), we obtain E(φ|Fn) →
E(φ|F ′) in L2.

For a decreasing sequence Fn use the equality L2(X,F ′, μ) =
⋂
n L

2

(X,Fn, μ).

2.2 Measure-preserving endomorphisms;
ergodicity

Let (X,F , μ) and (X ′,F ′, μ′) be measure spaces. A transformation T : X →
X ′ is said to be measurable if T−1(A) ∈ F for every A ∈ F ′. If, moreover,
μ(T−1(A)) = μ′(A) for every A ∈ F ′, then T is called measure preserving. We
write μ′ = μ ◦ T−1 or μ′ = T∗(μ).

We call (X ′,F ′, μ′) a factor (or quotient) of (X,F , μ), and (X,F , μ) an
extension of (X,F , μ).

If a measure-preserving map T : X → X ′ is invertible, and the inverse T−1

is measurable, then clearly T−1 is also measure preserving. Therefore T is an
isomorphism in the category of measure spaces.

If (X,F , μ) = (X ′,F ′, μ′) we call T a measure-preserving endomorphism;
we shall also say that the measure μ is T–invariant, or that T preserves
μ. In the case of (X,F , μ) = (X ′,F ′, μ′) an isomorphism T is called an
automorphism.

If T and T ′ are endomorphisms of (X,F , μ) and (X ′,F ′, μ′) respectively, and
S : X → X ′ is a measure-preserving transformation from (X,F , μ) to (X ′,F ′, μ′)
such that F ′ ◦ S = S ◦ F , then we call T ′ : X → X ′ a factor of T : X → X and
T : X → X an extension of T : X ′ → X ′.
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For every μ-measurable φ we define UT (φ) = φ ◦ T .
UT is sometimes called the Koopman operator. We have the following easy

proposition:

Proposition 2.2.1. For φ ∈ L1(X ′,F ′, μ′) we have
∫
φ ◦ T dμ =

∫
φdμ ◦ T−1.

Moreover, for each p the adequate restriction of the Koopman operator UT :
Lp(X ′,F ′, μ′) → Lp(X,F , μ) is an isometry to the image, surjective if and only
if T is an isomorphism.

The isometry operator UT has been widely explored to understand measure-
preserving endomorphisms T . Especially convenient has been UT : L2(μ) →
L2(μ), the isometry of the Hilbert space L2(μ). Notice that it is an isomorphism
(that is unitary) if and only if T is an automorphism. For more properties see
Exercise 2.23.

We shall now prove the following very useful fact, in which the finiteness of
measure is a crucial assumption.

Theorem 2.2.2 (Poincaré Recurrence Theorem). If T : X → X is a (finite!)
measure-preserving endomorphism, then for every mesurable set A

μ
({x ∈ A : Tn(x) ∈ A for infinitely many n’s}) = μ(A).

Proof. Let
N = N(T,A) = {x ∈ A : Tn(x) /∈ A ∀n ≥ 1}.

We shall first show that μ(N) = 0. Indeed, N is measurable since N = A ∩⋂
n≥1 T

−n(X \ A). If x ∈ N , then Tn(x) /∈ A for all n ≥ 1 and, in particular,
Tn(x) /∈ N , which implies that x /∈ T−n(N), and consequently N ∩T−n(N) = ∅
for all n ≥ 1. Thus all the sets N , T−1(N), T−2(N), . . . are mutually disjoint,
since if n1 ≤ n2 then

T−n1(N) ∩ T−n2(N) = T−n1(N ∩ T−(n2−n1)(N)) = ∅.

Hence

∞ > μ

( ∞⋃

n=0

T−n(N)

)

=
∞∑

n=0

μ(T−n(N)) =
∞∑

n=0

μ(N).

Therefore μ(N) = 0. Now set k ≥ 1 and put

Nk = {x ∈ A : Tn(x) /∈ A ∀n ≥ k}.

Then Nk ⊂ N(T k, A) and therefore from what has been proved above it follows
that μ(Nk) ≤ μ(N(T k, A)) = 0. Thus

μ
({x ∈ A : Tn(x) ∈ A for only finitely many n’s}) = 0.

The proof is complete. ♣
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Definition 2.2.3. A measurable transformation T : X → X of a measure space
(X,F , μ) is said to be ergodic if for any measurable set A

μ(T−1(A) ÷A) = 0 ⇒ μ(A) = 0 or μ(X \A) = 0.

Recall the notation B ÷ C = (B \ C) ∪ (C \B).

Note that we did not assume in the definition of ergodicity that μ is T -
invariant (nor that μ is finite). Suppose that for every E of measure 0 the set
T−1(E) is also of measure 0. (In Chapter 5 we call this property of μ with respect
to T backward quasi-invariance. In the literature the name non-singular is also
used.) Then in the definition of ergodicity one can replace μ(T−1(A) ÷ A) = 0
by T−1(A) = A. Indeed, having A as in the definition, one can define A′ =⋂∞
n=0

⋃∞
m=n T

−m(A). Then μ(A′) = μ(A) and T−1(A′) = A′. If we assume that
the latter implies μ(A′) = 0 or μ(X \A′) = 0, then μ(A) = 0 or μ(X \A) = 0.

Remark 2.2.4. If T is an isomorphism then T is ergodic if and only if T−1 is
ergodic.

Let φ : X → R be a measurable function. For any n ≥ 1 we define

Snφ = φ+ φ ◦ T + . . .+ φ ◦ Tn−1. (2.2.1)

Let I = {A ∈ F : μ(T−1(A)÷A) = 0}. We call I the σ-algebra of T -invariant
(mod 0) sets. Note that every ψ : X → R, measurable with respect to I, is T -
invariant (mod 0): that is, ψ ◦ T = ψ on the complement of a set of measure μ
equal to 0.

Indeed, let A = {x ∈ X : ψ(x) �= ψ ◦ T (x)}, and suppose μ(A) > 0. Then
there exists a ∈ R such that either A+

a = {x ∈ A : ψ(x) < a,ψ ◦ T (x) > a} or
A−
a = {x ∈ A : ψ(x) > a,ψ ◦ T (x) < a} has positive μ-measure. In the case of

A+ we have ψ ◦ T > a on T−1(A+
a ). We conclude that ψ > a and ψ < a on

A+
a ∩ T−1(A+

a ) simultaneously, which contradicts A+
a ∩ T−1(A+

a ) = μ(A+
a ) > 0.

The case of A− can be dealt with similarly.

Theorem 2.2.5 (Birkhoff’s Ergodic Theorem). If T : X → X is a measure-
preserving endomorphism of a probability space (X,F , μ) and φ : X → R is an
integrable function, then

lim
n→∞

1
n
Snφ(x) = E(φ|I) for μ-a.e. x ∈ X .

If, in addition, T is ergodic, then

lim
n→∞

1
n
Snφ(x) =

∫
φdμ, for μ-a.e. x (2.2.2)

We say that the time average exists for μ-almost every x ∈ X. If T is ergodic,
we say that the time average equals the space average.
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2
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Figure 2.1 The plotted density of an invariant measure for T (x) = 2x2 − 1.
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Figure 2.2 The density of an invariant measure for T (x) = 2x2 − 1.

If φ = 11A, the indicator function of a measurable set A, then we deduce that
for μ-a.e. x ∈ X the frequency of hitting A by the forward trajectory of x is
equal to the measure (probability) of A: that is,

lim
n→∞#{0 ≤ j < n : T j(x) ∈ A}/n = μ(A). (2.2.3)

This means, for example, that if we choose a point in X being a bounded
invariant part of Euclidean space at random, its sufficiently long forward tra-
jectory fills X, with the density being approximately the density of μ with
respect to the Lebesgue measure, provided μ is equivalent to the Lebesgue
measure.

In Figure 2.1, for a randomly chosen x ∈ [−1, 1], the trajectory T j(x), j =
0, 1, . . . , n, for T (x) = 2x2 −1 is plotted. See Example 1.8. The interval [−1, 1] is
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1 2 k 1 2 k

Case 1 Case 2

Figure 2.3 Graph of k �→∑k−1
i=0 f ◦ T i(x), k = 1, 2, . . . . Case 1: Fn+1(x) = f(x)

(i.e. Fn(T (x)) ≤ 0). Case 2: Fn+1(x) = f(x) + Fn(T (x)) (i.e. Fn(T (x)) ≥ 0).

divided into k = 100 equal pieces. The computer calculated the number of hits
of each piece for n = 500 000. The resulting graph indeed resembles the graph of
1
π

√
1 − x2 (Figure 2.2), which is the density of the invariant probability measure

equivalent to the length measure. Compare Figures I.13 and I.14 in [Collet &
Eckmann 1980].

As a corollary of Birkhoff’s Ergodic Theorem, one can obtain von Neumann’s
Ergodic Theorem. This says that if φ ∈ Lp(μ) for 1 ≤ p < ∞, then the con-
vergence to E(φ|I) holds in Lp. This is not difficult: see for example [Walters
1982].

Proof of Birkhoff’s Ergodic Theorem. Let f ∈ L1(μ) and Fn = max{∑k−1
i=0 f ◦

T i : 1 ≤ k ≤ n}, for n = 1, 2, . . . . Then for every x ∈ X, Fn+1(x) −
Fn(T (x)) = f(x) − min(0, Fn(T (x))) ≥ f(x) and is monotone decreasing,
since Fn is monotone increasing. The two cases under min are illustrated in
Figure 2.3.

Define

A =
{
x : sup

n

n∑

i=0

f(T i(x)) = ∞
}
.

Note that A ∈ I. If x ∈ A, then Fn+1(x)−Fn(T (x)) monotonously decreases to
f(x) as n→ ∞. The Dominated Convergence Theorem implies, then, that

0 ≤
∫

A

(Fn+1 − Fn) dμ =
∫

A

(Fn+1 − Fn ◦ T ) dμ→
∫

A

fdμ. (2.2.4)

(We thus get
∫
A
f dμ ≥ 0, which is a variant of the so-called Maximal Ergodic

Theorem: see Exercise 2.3.)
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Notice that 1
n

∑n−1
k=0 f ◦ T k ≤ Fn/n: so, outside A, we have

lim sup
n→∞

1
n

n−1∑

k=0

f ◦ T k ≤ 0. (2.2.5)

Therefore, if the conditional expectation value fI of f is negative a.e., that is
if
∫
C
fdμ =

∫
C
fIdμ < 0 for all C ∈ I with μ(C) > 0, then, as A ∈ I, (2.2.4)

implies that μ(A) = 0. Hence (2.2.5) holds a.e. Now if we let f = φ − φI − ε,
then fI = −ε < 0. Note that φI ◦ T = φI implies that

1
n

n−1∑

k=0

f ◦ T k =
( 1
n

n−1∑

k=0

φ ◦ T k
)
− φI − ε.

So (2.2.5) yields

lim sup
n→∞

1
n

n−1∑

k=0

φ ◦ T k ≤ φI + ε a.e.

Replacing φ by −φ gives

lim inf
n→∞

1
n

n−1∑

k=0

φ ◦ T k ≥ φI − ε a.e.

Thus limn→∞ 1
n

∑n−1
k=0 φ ◦ T k = φI a.e. ♣

Recall that at the end opposite to the absolute continuity (see Section 2.1)
there is the notion of singularity. Two probability measures μ1 and μ2 on a
σ-algebra F are called mutually singular, μ1 ⊥ μ2, if there exist disjoint sets
X1,X2 ∈ F with μi(Xi) = 1 for i = 1, 2.

Theorem 2.2.6. If T : X → X is a map measurable with respect to a σ-algebra
F , and if μ1 and μ2 are two different T -invariant probability ergodic measures
on F , then μ1 and μ2 are mutually singular.

Proof. Since μ1 and μ2 are different, there exists a measurable set A such that

μ1(A) �= μ2(A). (2.2.6)

By Theorem 2.2.5 (Birkhoff’s Ergodic Theorem) applied to μ1 and μ2 there exist
sets X1,X2 ∈ F satisfying μi(Xi) = 1 for i = 1, 2 such that for every x ∈ Xi

lim
n→∞

1
n
Sn11A(x) = μi(A).

Thus in view of (2.2.6) the setsX1 andX2 are disjoint. The proof is complete. ♣
Proposition 2.2.7. If T : X → X is a measure-preserving endomorphism of a
probability space (X,F , ν), then ν is ergodic if and only if there is no T -invariant
probability measure on F absolutely continuous with respect to ν and different
from ν.
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Proof. Suppose that ν is ergodic and μ is a T -invariant probability measure on
F with μ
 ν. Then μ is also ergodic. Otherwise there would exist A ∈ F such
that T−1(A) = A and μ(A), μ(X \ A) > 0 so ν(A), ν(X \ A) > 0: thus ν would
not be ergodic. Hence, by Theorem 2.2.6, μ = ν.

Suppose in turn that ν is not ergodic, and let A ∈ F be a T -invariant set
such that 0 < ν(A) < 1. Then the conditional measure on A is also T -invariant,
but simultaneously it is distinct from ν and absolutely continuous with respect
to ν. The proof is complete. ♣

Observe now that the space M(F) of probability measures on F is a convex
set: i.e. the convex combination αμ+ (1−α)ν, 0 ≤ α ≤ 1, of two such measures
is again in M(F). The subspace M(F , T ) of M(F) consisting of T -invariant
measures is also convex.

Recall that a point in a convex set is said to be extreme if and only if it cannot
be represented as a convex combination of two distinct points with corresponding
coefficient 0 < α < 1. We shall prove the following theorem.

Theorem 2.2.8. The ergodic measures in M(F , T ) are exactly the extreme
points of M(F , T ).

Proof. Suppose that μ, μ1, μ2 ∈M(F , T ), μ1 �= μ2 and μ = αμ1 +(1−α)μ2 with
0 < α < 1. Then μ1 �= μ and μ1 
 μ. Thus, in view of Proposition 2.2.7, the
measure μ is not ergodic.

Suppose in turn that μ is not ergodic, and let A ∈ F be a T -invariant
set such that 0 < μ(A) < 1. Recall that, given B ∈ F with μ(B) > 0,
the conditional measure A �→ μ(A|B) is defined by μ(A ∩ B)/μ(B). Thus
the conditional measures μ(·|A) and μ(·|Ac) are distinct, T -invariant and μ =
μ(A)μ(·|A) + (1 − μ(A)μ(·|Ac). Consequently μ is not an extreme point in
M(F , T ). The proof is complete. ♣

In Section 2.8 we shall formulate a theorem on decomposition into ergodic
components that will clarify the situation better. This will correspond to the
Choquet Theorem in functional analysis: see Section 3.1.

2.3 Entropy of partition

Let (X,F , μ) be a probability space. A partition of (X,F , μ) is a subfamily (a
priori may be uncountable) of F consisting of mutually disjoint elements whose
union is X.

If A is a partition and x ∈ X, then the only element of A containing x is
denoted by A(x) or, if x ∈ A ∈ A, by A(x).

If A and B are two partitions of X, we define their join or joining:

A ∨ B = {A ∩B : A ∈ A, B ∈ B}.

We write A ≤ B if and only if B(x) ⊂ A(x) for every x ∈ X, which in other
words means that each element of the partition B is contained in an element of
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the partition A or equivalently A ∨ B = B. We sometimes say in this case that
B is finer than A, or that B is a refinement of A.

Now we introduce the notion of entropy of a countable (finite or infinite)
partition, and we collect its basic elementary properties. Define the function
k : [0, 1] → [0,∞], putting

k(t) =

{
−t log t for t ∈ (0, 1]
0 for t = 0

(2.3.1)

Check that the function k is continuous. Let A = {Ai : 1 ≤ i ≤ n} be a countable
partition of X, where n ≥ 1 is a finite integer or ∞. In the sequel we shall usually
write ∞.

The entropy of A is the number

H(A) =
∞∑

i=1

−μ(Ai) log μ(Ai) =
∞∑

i=1

k(μ(Ai)). (2.3.2)

If A is infinite, H(A) may happen to be infinite as well as finite.
Define

I(x) = I(A)(x) := − log μ(A(x)). (2.3.3)

This is called an information function. Intuitively I(x) is information on an
object x given by the experiment A in the logarithmic scale. Therefore the
entropy in (2.3.2) is the integral (the average) of the information function.

Note that H(A) = 0 for A = {X}, and that if A is finite – say, consisting of
n elements – then 0 ≤ H(A) ≤ log n and H(A) = log n if and only if μ(A1) =
μ(A2) = . . . = μ(An) = 1/n. This follows from the fact that the logarithmic
function is strictly concave.

In this section we deal only with one fixed measure μ. If, however, we need
to consider more measures simultaneously (see for example Chapter 3), we shall
use instead the notation Hμ(A) for H(A). We shall use also the notation Iμ(x)
for I(x).

Let A = {Ai : i ≥ 1} and B = {Bj : j ≥ 1} be two countable partitions of
X. The conditional entropy H(A|B) of A given B is defined as

H(A|B) =
∞∑

j=1

μ(Bj)
∞∑

i=1

−μ(Ai ∩Bj)
μ(Bj)

log
μ(Ai ∩Bj)
μ(Bj)

=
∑

i,j

−μ(Ai ∩Bj) log
μ(Ai ∩Bj)
μ(Bj)

. (2.3.4)

The first equality, defining H(A|B), can be viewed as follows. One considers
each element Bj as a probability space with conditional measure μ(A|Bj) =
μ(A)/μ(Bj) for A ⊂ Bj and calculates the entropy of the partition of the set Bj
into Ai ∩Bj . Then one averages the result over the space of Bj ’s. (This will be
generalized in Definition 2.8.3.)
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For each x denote − log μ(A(x)|B(x)) = − log μ(A(x)∩B(x)
μ(B(x)) ) by I(x) or

I(A|B)(x). The second equality in (2.3.4) can be rewritten as

H(A|B) =
∫

X

I(A|B) dμ. (2.3.5)

Note, by the way, that if B̃ is the σ-algebra consisting of all unions of ele-
ments of B (i.e. generated by B), then I(x) = − log μ((A(x) ∩ B(x))|B(x)) =
− logE(11A(x)|B̃)(x); compare (2.1.8).

Note finally that for any countable partition A we have

H(A|{X}) = H(A). (2.3.6)

Some further basic properties of the entropy of partitions are collected in the
following.

Theorem 2.3.1. Let (X,F , μ) be a probability space. If A, B and C are countable
partitions of X, then:

H(A ∨ B|C) = H(A|C) + H(B|A ∨ C) (a)
H(A ∨ B) = H(A) + H(B|A) (b)
A ≤ B ⇒ H(A|C) ≤ H(B|C) (c)
B ≤ C ⇒ H(A|B) ≥ H(A|C) (d)
H(A ∨ B|C) ≤ H(A|C) + H(B|C) (e)
H(A|C) ≤ H(A|B) + H(B|C). (f)

Proof. Let A = {An : n ≥ 1}, B = {Bm : m ≥ 1}, and C = {Cl : l ≥ 1}. Without
loss of generality we can assume that all these sets are of positive measure.
(a) By (2.3.4) we have

H(A ∨ B|C) = −
∑

i,j,k

μ(Ai ∩Bj ∩ Ck) log
μ(Ai ∩Bj ∩ Ck)

μ(Ck)
.

But
μ(Ai ∩Bj ∩ Ck)

μ(Ck)
=
μ(Ai ∩Bj ∩ Ck)
μ(Ai ∩ Ck)

μ(Ai ∩ Ck)
μ(Ck)

unless μ(Ai ∩ Ck) = 0. But then the left-hand side vanishes, and we need not
consider it. Therefore

H(A ∨ B|C) = −
∑

i,j,k

μ(Ai ∩Bj ∩ Ck) log
μ(Ai ∩ Ck)
μ(Ck)

−
∑

i,j,k

μ(Ai ∩Bj ∩ Ck) log
μ(Ai ∩Bj ∩ Ck)
μ(Ai ∩ Ck)

= −
∑

i,k

μ(Ai ∩ Ck) log
μ(Ai ∩ Ck)
μ(Ck)

+ H(B|A ∨ C)

= H(A|C) + H(B|A ∨ C).
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(b) Put C = {X} and apply (2.3.6) in (a).
(c) By (a)

H(B|C) = H(A ∨ B|C) = H(A|C) + H(B|A ∨ C) ≥ H(A|C).

(d) Since the function k defined by (2.3.1) is strictly concave, we have for every
pair i, j that

k
(∑

l

μ(Cl ∩Bj)
μ(Bj)

μ(Ai ∩ Cl)
μ(Cl)

)
≥
∑

l

μ(Cl ∩Bj)
μ(Bj)

k

(
μ(Ai ∩ Cl)
μ(Cl)

)

. (2.3.7)

But since B ≤ C, we can write above Cl ∩ Bj = Cl: hence the left-hand side

is equal to k
(
μ(Ai∩Bj)
μ(Bj)

)
, and we conclude with

k

(
μ(Ai ∩Bj)
μ(Bj)

)

≥
∑

l

μ(Cl ∩Bj)
μ(Bj)

k

(
μ(Ai ∩ Cl)
μ(Cl)

)

.

(Note that until now we have not used the specific form of the function k.)
Finally, multiplying both sides of (2.3.7) by μ(Bj), using the definition of k

and summing over i and j, we get

−
∑

i,j

μ(Ai ∩Bj) log
μ(Ai ∩Bj)
μ(Bj)

≥ −
∑

i,j,l

μ(Cl ∩Bj)μ(Ai ∩ Cl)
μ(Cl)

log
μ(Ai ∩ Cl)
μ(Cl)

= −
∑

i,l

μ(Cl)
μ(Ai ∩ Cl)
μ(Cl)

log
μ(Ai ∩ Cl)
μ(Cl)

,

or equivalently H(A|B) ≥ H(A|C).
Formula (e) follows immediately from (a) and (d), and formula (f) can

be proved by a straightforward calculation (its consequences are discussed in
Exercise 2.17). ♣

2.4 Entropy of an endomorphism

Let (X,F , μ) be a probability space, and let T : X → X be a measure-preserving
endomorphism of X. If A = {Ai}i∈I is a partition of X, then by T−1A we denote
the partition {T−1(Ai)}i∈I . Note that for any countable A

H(T−1A) = H(A). (2.4.1)

For all n ≥ m ≥ 0 denote the partition
∨n
i=0 T

−iA = A ∨ T−1(A) ∨ · · · ∨
T−n(A) =

∨n
i=m T

−i(A) by Anm. For m = 0 we shall sometimes use the notation
An.

Lemma 2.4.1. For any countable partition A,

H(An) = H(A) +
n∑

j=1

H(A|Aj
1). (2.4.2)
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Proof. We prove this formula by induction. If n = 0, it is a tautology. Suppose
it is true for n − 1 ≥ 0. Then with the use of Theorem 2.3.1(b) and (2.4.1) we
obtain

H(An) = H(An
1 ∨ A) = H(An

1 ) + H(A|An
1 )

= H(An−1) + H(A|An
1 ) = H(A) +

n∑

j=1

H(A|Aj
1).

Hence (2.4.2) holds for all n. ♣
Lemma 2.4.2. The sequences 1

n+1 H(An) and H
(A|An

1 ) are monotone decreas-
ing to a limit h(T,A).

Proof. The sequence H
(A|An

1 ), n = 0, 1, . . . is monotone decreasing, by Theorem
2.3.1(d). Therefore the sequence of averages is also monotone decreasing to the
same limit; furthermore, it coincides with the limit of the sequence 1

n+1 H(An)
by (2.4.2). ♣

The limit 1
n+1 H(An) whose existence has been shown in Lemma 2.4.2 is

known as the (measure–theoretic) entropy of T with respect to the partition A,
and is denoted by h(T,A), or by hμ(T,A) if one wants to indicate the measure
under consideration. Intuitively this means the limit rate of the growth of average
(integral) information (in a logarithmic scale), under consecutive experiments,
for the number of those experiments tending to infinity.

Remark. Write ak := H(Ak−1). In order to prove the existence of the limit
1

n+1 H(An), instead of relying on (2.4.2) and the monotonicity, we could use the
estimate

an+m = H(An+m−1) ≤ H(An−1) + H(An+m−1
n ) = an + H(Am−1) = an + am.

following from Theorem 2.3.1(e) and from (2.4.1), and apply the following:

Lemma 2.4.3. If {an}∞n=1 is a sequence of real numbers such that an+m ≤ an+
am for all n,m ≥ 1 (any such a sequence is called subadditive), then limn→∞ an
exists and equals infn an/n. The limit could be −∞, but if the an’s are bounded
below, then the limit will be non-negative.

Proof. Fix m ≥ 1. Each n ≥ 1 can be expressed as n = km+ i with 0 ≤ i < m.
Then

an
n

=
ai+km
i+ km

≤ ai
km

+
akm
km

≤ ai
km

+
kam
km

=
ai
km

+
am
m
.

If n → ∞ then also k → ∞ and therefore lim supn→∞
an

n ≤ am

m . Thus
lim supn→∞

an

n ≤ inf am

m . Now the inequality inf am

m ≤ lim infn→∞ an

n completes
the proof. ♣

Notice that there exists a subadditive sequence (an)∞n=1 such that the corre-
sponding sequence an/n is not eventually decreasing. Indeed, it suffices to observe
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that each sequence consisting of 1’s and 2’s is subadditive, and to consider such
a sequence having infinitely many 1’s and 2’s. If for an n > 1 we have an = 1
and an+1 = 2, we have an

n < an+1
n+1 .

One can consider an + Cn for any constant C > 1, making the example
strictly increasing.

Exercise. Prove that Lemma 2.4.3 remains true under the weaker assumption
that there exists c ∈ R such that an+m ≤ an + am + c for all n and m.

The basic elementary properties of the entropy h(T,A) are collected in the
next theorem.

Theorem 2.4.4. If A and B are countable partitions of finite entropy then

h(T,A) ≤ H(A) (a)
h(T,A ∨ B) ≤ h(T,A) + h(T,B) (b)
A ≤ B ⇒ h(T,A) ≤ h(T,B) (c)
h(T,A) ≤ h(T,B) + H(A|B) (d)
h(T, T−1(A)) = h(T,A) (e)
If k ≥ 1 then h(T,A) = h

(
T,Ak) (f)

If T is invertible and k ≥ 1, then h(T,A) = h
(
T,

k∨

i=−k
T i(A)

)
(g)

The standard proof (see for example [Walters 1982]) based on Theorem 2.3.1
and formula (2.3.2) is left for the reader as an exercise. Let us prove only
item (d).

h(T,A) = lim
n→∞

1
n

H(An−1) = lim
n→∞

1
n

(
H(An−1|Bn−1) + H(Bn−1)

)

≤ lim
n→∞

1
n

n−1∑

j=0

H(T−j(A)|Bn−1) + lim
n→∞

1
n

H(Bn−1)

≤ lim
n→∞

1
n

n−1∑

j=0

H(T−j(A)|T−j(B)) + h(T,B) ≤ H(A|B) + h(T,B).

Here is one more useful fact, stronger than Theorem 2.4.4(c):

Theorem 2.4.5. If T : X → X is a measure-preserving endomorphism of a
probability space (X,F , μ), A and Bm,m = 1, 2, . . . are countable partitions with
finite entropy, and H(A|Bm) → 0 as m→ ∞, then

h(T,A) ≤ lim inf
m→∞ h(T,Bm).

In particular, for Bm := Bm =
∨m
j=0 T

−j(B), one obtains h(T,A) ≤ h(T,B).
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Proof. By Theorem 2.4.4(d), we get for every positive integer m that

h(T,A) ≤ H(A|Bm) + h(T,Bm).

Letting m → ∞ this yields the first part of the assertion. If Bm = Bm, then
h(T,Bm) = h(T,B), by Theorem 2.4.4(f), and the second part of the theorem
follows as well. ♣

The (measure-theoretic) entropy of an endomorphism T : X → X is defined
as

hμ(T ) = h(T ) = sup
A

{h(T,A)}, (2.4.8)

where the supremum is taken over all finite (or countable of finite entropy)
partitions of X. See Exercise 2.21.

It is clear from the definition that the entropy of T is an isomorphism
invariant.

Later on (see Theorem 2.8.7, Remark 2.8.9, Corollary 2.8.10 and Exercise
2.18) we shall discuss the cases where H(A|Bn) → 0 for every A (finite or of
finite entropy). This will allow us to write hμ(T ) = limm→∞ h(T,Bm) or h(T ) =
h(T,B).

The following theorem is very useful.

Theorem 2.4.6. If T : X → X is a measure-preserving endomorphism of a
probability space (X,F , μ), then

h(T k) = k h(T ) for all k ≥ 1, (a)
If T is invertible then h(T−1) = h(T ). (b)

Proof. (a) Fix k ≥ 1. Since

lim
n→∞

1
n

H
(n−1∨

j=0

T−kj(
k−1∨

i=0

T−iA)) = lim
n→∞

k

nk
H
(nk−1∨

i=0

T−iA) = k h(T,A)

we have h
(
T k,
∨k−1
i=0 T

−iA) = k h(T,A). Therefore

k h(T ) = k sup
A finite

h(T,A) = sup
A

h
(
T k,

k−1∨

i=0

T−iA) ≤ sup
B

h(T k,B) = h(T k).

(2.4.3)

On the other hand, by Theorem 2.4.4(c), we get h(T k,A) ≤ h
(
T k,
∨k−1
i=0 T

−iA) =
k h(T,A), and therefore h(T k) ≤ k h(T ). The result follows from this and (2.4.3).

(b) In view of (2.4.1), for all finite partitions A we have

H
(n−1∨

i=0

T iA) = H
(
T−(n−1)

n−1∨

i=0

T iA) = H
(n−1∨

i=0

T−iA).

This completes the proof. ♣
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Let us end this section with the following theorem, to be used for example in
Section 3.6.

Theorem 2.4.7. If μ and ν are two probability measures on (X,F), both pre-
served by an endomorphism T : X → X, then for every a : 0 < a < 1 and the
measure ρ = aμ+ (1 − a)ν we have

hρ(T ) = ahμ(T ) + (1 − a)ν(T ).

In other words, the mapping μ �→ hμ is affine.

The proof can be found in [Denker, Grillenberger & Sigmund, 1976, Propo-
sition 10.13] or [Walters 1982, Theorem 8.1]. We leave it to the reader as an
exercise.

Hint: Prove first that for every A ∈ F we have

0 ≤ k(ρ(A))−ak(μ(A))−(1−a)k(ν(A)) ≤−(a log a)μ(A)−((1−a) log(1−a))ν(A),

using the concavity of the function k(t) = −t log t: see (2.3.1). Summing this up
over A ∈ A for a finite partition A, obtain

0 ≤ Hρ(A) − aHμ(A) − (1 − a)Hν(A) ≤ log 2.

Apply this to partitions An and use Theorem 2.4.6(a).

Remark. This theorem can be easily deduced from the ergodic decomposition
theorem (Theorem 2.8.11) for Lebesgue spaces: see Exercise 2.16. In the setting
of Chapter 3, for Borel measures on a compact metric space X, one can refer
also to Choquet’s Theorem 3.1.11.

2.5 Shannon–McMillan–Breiman Theorem

Let (X,F , μ) be a probability space, let T : X → X be a measure-preserving
endomorphism of X, and let A be a countable finite entropy partition of X.

Lemma 2.5.1 (Maximal inequality). For each n = 1, 2, . . . let fn = I(A|An
1 )

and f∗ = supn≥1 fn. Then for each λ ∈ R and each A ∈ A

μ({x ∈ A : f∗(x) > λ}) ≤ e−λ. (2.5.1)

Proof. For each A ∈ A and n = 1, 2, . . . let fAn = − logE(11A|An
1 ). Of course

fn =
∑
A∈A 11AfAn . Denote

BAn = {x ∈ X : fA1 (x), . . . , fAn−1(x) ≤ λ, fAn (x) > λ}.
Since BAn ∈ F(An

1 ), the σ-algebra generated by An
1 ,

μ(BAn ∩A) =
∫

BA
n

11A dμ =
∫

BA
n

E(11A|An
1 ) dμ =

∫

BA
n

e−f
A
n dμ ≤ e−λμ(BAn ).
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Therefore

μ({x ∈ A : f∗(x) > λ}) =
∞∑

n=1

μ(BAn ∩A) ≤ e−λ
∞∑

n=1

μ(BAn ) ≤ e−λ.

♣
Corollary 2.5.2. The function f∗ is integrable and

∫
f∗ dμ ≤ H(A) + 1.

Proof. Of course μ({x ∈ A : f∗ > λ}) ≤ μ(A), so μ({x ∈ A : f∗(x) > λ}) ≤
min{μ(A), e−λ}. So, by Lemma 2.5.1,

∫

X

f∗ dμ =
∑

A∈A

∫

A

f∗ dμ =
∑

A∈A

∫ ∞

0

μ{x ∈ A : f∗(x) > λ} dλ

≤
∑

A∈A

∫ ∞

0

min{μ(A), e−λ} dλ

=
∑

A∈A

(∫ − log μ(A)

0

μ(A) dλ+
∫ ∞

− log μ(A)

e−λ dλ
)

=
∑

A∈A

(
−μ(A)(log μ(A)) + μ(A)

)
= H(A) + 1.

♣
Note that if A is finite, then the integrability of f∗ follows from the integra-

bility of f∗|A for each A, following immediately from Lemma 2.5.1. The difficulty
with infinite A is that there is no μ(A) factor on the right-hand side of (2.5.1).

Corollary 2.5.3. The sequence (fn)∞n=1 converges a.e. and in L1.

Proof. E(11A|An
1 ) is a martingale to which we can apply Theorem 2.1.4. This

gives convergence a.e.: hence convergence a.e. of each fAn , and hence of fn. Now
convergence in L1 follows from Corollary 2.5.2 and the Dominated Convergence
Theorem. ♣

Theorem 2.5.4 (Shannon–McMillan–Breiman). Suppose that A is a countable
partition of finite entropy. Then there exist limits

f = lim
n→∞ I(A|An

1 ) and fI(x) = lim
n→∞

1
n

n−1∑

i=0

f(T i(x)) for a.e. x

and
lim
n→∞

1
n+ 1

I(An) = fI a.e. and in L1. (2.5.2)

Furthermore,

h(T,A) = lim
n→∞

1
n+ 1

H(An) =
∫
fI dμ =

∫
f dμ. (2.5.3)
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The limit f will gain a new interpretation in (2.8.6), in the context of
Lebesgue spaces, where the notion of information function I will be generalized.

Proof. First note that the sequence fn = I(A|An
1 ), n = 1, 2, . . . converges to an

integrable function f by Corollary 2.5.3. (Caution: though the integrals of fn
decrease to the entropy, Lemma 2.4.2, it is usually not true that fn decrease.)
Hence the a.e. convergence of time averages to fI holds by Birkhoff’s Ergodic
Theorem. It will suffice to prove (2.5.2), since then (2.5.3), the second equality,
holds by integration and the last equality by Birkhoff’s Ergodic Theorem, the
convergence in L1.

(In fact (2.5.3) already follows from Corollary 2.5.3. Indeed, limn→∞ 1
n+1

H(An) = limn→∞ H(A|An
1 ) = limn→∞

∫
I(A|An

1 ) dμ =
∫

limn→∞ I(A|An
1 ) dμ =∫

f dμ. )
Let us now establish some identities (compare Lemma 2.4.1). Let {An : n ≥

0} be a sequence of countable partitions. Then we have

I
( n∨

i=0

Ai

)
= I
(
A0|

n∨

i=1

Ai

)
+ I
( n∨

i=1

Ai

)

= I
(
A0|

n∨

i=1

Ai

)
+ I
(
A1|

n∨

i=2

Ai

)
+ · · · + I(An).

In particular, it follows from the above formula that for Ai = T−iA we have

I(An) = I(A|An
1 ) + I(T−1A|An

2 ) + . . .+ I(T−nA)
= I(A|An

1 ) + I(A|An−1
1 ) ◦ T + . . . I(A) ◦ Tn

= fn + fn−1 ◦ T + fn−2 ◦ T 2 + . . .+ f0 ◦ Tn,
where fk = I(A|Ak

1), f0 = I(A). Now
∣
∣
∣
∣

1
n+ 1

I(An) − fI

∣
∣
∣
∣ ≤
∣
∣
∣
∣

1
n+ 1

n∑

j=0

(fn−i ◦ T i − f ◦ T i)
∣
∣
∣
∣+
∣
∣
∣
∣

1
n+ 1

n∑

j=0

f ◦ T i − fI

∣
∣
∣
∣.

Since by Birkhoff’s Ergodic Theorem the latter term converges to zero both
almost everywhere and in L1, it suffices to prove that for n→ ∞

1
n+ 1

n∑

i=0

gn−i ◦ T i → 0 a.e. and in L1, (2.5.4)

where gk = |f − fk|.
Now, since T is measure preserving, for every i ≥ 0

∫
gn−i ◦ T idμ =

∫
gn−idμ.

Thus 1
n

∑n
i=0

∫
gn−i ◦ T i dμ = 1

n

∑n
i=0

∫
gn−i dμ → 0, since fk → f in L1 by

Corollary 2.5.3. Thus we have established the L1 convergence in (2.5.4).
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Now, let GN = supn>N gn. Of course GN is monotone decreasing, and since
gn → 0 a.e. (Corollary 2.5.3), we get GN ↘ 0 a.e.. Moreover, by Corollary 2.5.2,
G0 ≤ supn fn + f ∈ L1.

For arbitrary N < n we have

1
n+ 1

n∑

i=0

gn−i ◦ T i =
1

n+ 1

n−N−1∑

i=0

gn−i ◦ T i +
1

n+ 1

n∑

i=n−N
gn−i ◦ T i

≤ 1
n+ 1

n−N−1∑

i=0

GN ◦ T i +
1

n+ 1

n∑

i=n−N
G0 ◦ T i.

Hence for KN = G0 +G0 ◦ T + . . .+G0 ◦ TN

lim sup
n→∞

1
n+ 1

n∑

i=0

gn−i ◦ T i ≤ (GN )I + lim sup
n→∞

1
n+ 1

KN ◦ Tn−N = (GN )I a.e.,

where (GN )I = limn→∞ 1
n+1

∑n
i=0GN ◦ T i by Birkhoff’s Ergodic Theorem.

Now (GN )I decreases with N because GN decreases, and
∫

(GN )I dμ =
∫
GNdμ→ 0,

because GN are non-negative uniformly bounded by G0 ∈ L1 and tend to 0 a.e.
Hence (GN )I → 0 a.e. Therefore

lim sup
n→∞

1
n+ 1

n∑

i=0

gn−i ◦ T i → 0 a.e.

establishing the missing a.e. convergence in (2.5.4). ♣
As an immediate consequence of (2.5.2) and (2.5.3) for T ergodic, along with

fI =
∫
fI dμ, we get the following:

Theorem 2.5.5 (Shannon–McMillan–Breiman, ergodic case). If T : X → X is
ergodic and A is a countable partition of finite entropy, then

lim
n→∞

1
n
I(An−1)(x) = hμ(T,A) for a.e. x ∈ X.

The left-hand side expression in the above equality can be viewed as a local
entropy at x. The theorem says that at a.e. x the local entropy exists and is
equal to the entropy (compare comments after (2.3.2) and Lemma 2.4.2).

2.6 Lebesgue spaces, measurable partitions
and canonical systems of conditional
measures

Let (X,F , μ) be a probability space. We consider only complete measures (prob-
abilities), such that every subset of a measurable set of measure 0 is measurable.
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If a measure is not complete we can always consider its completion, that is, to
add to F all sets A for which there exists B ∈ F with A÷B contained in a set
in F of measure 0.

Notation 2.6.1. Consider A, an arbitrary partition of X, not necessarily count-
able nor consisting of measurable sets. We denote by Ã the sub σ-algebra of F
consisting of those sets in F that are unions of whole elements (fibres) of A.

Note that in the case where A ⊂ F , we have Ã ⊃ σ(A), the latter defined
in Notation 2.1.1, but the inclusion can be strict. For example, if A ⊂ F is the
partition of X into points, then σ(A) consists of all countable sets and their
complements in X, and Ã = F . Obviously Ã ⊃ {∅,X}.
Definition 2.6.2. The partition A is called measurable if it satisfies the following
separation property.

There exists a sequence B = (Bn)∞n=1 of subsets of Ã such that for any
two distinct A1, A2 ∈ A there is an integer n ≥ 1 such that either

A1 ⊂ Bn and A2 ⊂ X \Bn
or

A2 ⊂ Bn and A1 ⊂ X \Bn.

Since each element of the measurable partition A can be represented as an inter-
section of countably many elements Bn or their complements, each element of
A is measurable. Let us stress, however, that the measurability of all elements
of A is not sufficient for A to be a measurable partition (see Exercise 2.7). The
sequence B is called a basis for A.

Remark 2.6.3. A popular definition of an uncountable measurable partition A
is that there exists a sequence of finite partitions (recall that this means: finite
partitions into measurable sets) An, n = 0, 1, . . . , such that A =

∨∞
n=0 An. Here

(unlike later on) the join
∨

is in the set-theoretic sense, i.e. as {An1 ∩An2 ∩ · · · :
Ani

∈ Ani
, i = 1, . . . }. Clearly it is equivalent to the separation property in

Definition 2.6.2.

Notice that for any measurable map T : X → X ′ between probability mea-
sure spaces, if A is a measurable partition of X ′, then T−1(A) is a measurable
partition of X.

Now we pass to a very useful class of probability spaces: Lebesgue spaces.

Definition 2.6.4. We call a sequence B = (Bn)∞n=1 of subsets of F the basis of
(X,F , μ) if the two following conditions are satisfied:

(i) B ensures the separation property in Definition 2.6.2 for A = ε, the
partition into points, (i.e. B is a basis for ε);

(ii) for any A ∈ F there exists a set C ∈ σ(B) such that C ⊃ A and
μ(C \A) = 0.
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(Recall again, Notation 2.1.1, that σ(B) denotes the smallest σ-algebra
containing all the sets Bn ∈ B. Rokhlin used the name Borel σ-algebra.)

A probability space (X,F , μ) having a basis is called separable.
Now let ε = ±1 and B

(ε)
n = Bn if ε = 1 and B

(ε)
n = X \ Bn if ε = −1.

To any sequence of numbers εn, n = 1, 2, . . . there corresponds the intersection
⋂∞
n=1B

(εn)
n . By (i) every such intersection contains no more than one point.

A probability space (X,F , μ) is said to be complete with respect to a basis
B if all the intersections

⋂∞
n=1B

(εn)
n are non-empty. The space (X,F , μ) is said

to be complete (mod 0) with respect to a basis B if X can be included as a
subset of full measure into a certain measure space (X,F , μ) that is complete
with respect to its own basis B = (Bn) satisfying Bn ∩X = Bn for all n.

It turns out that a space that is complete (mod 0) with respect to one basis
is also complete (mod 0) with respect to every other basis.

Definition 2.6.5. A probability space (X,F , μ) complete (mod 0) with respect
to one of its bases is called a Lebesgue space.

Exercise. If (X1,F1, μ1) and (X2,F2, μ2) are two probability spaces with com-
plete measures, such thatX1 ⊂ X2, μ2(X2\X1) = 0 and F1 = F2|X1 , μ1 = μ2|F1

(where F2|X1 := {A∩X1 : A ∈ F2}), then the first space is Lebesgue if and only
if the second is.

It is not difficult to check (see Exercise 2.9) that (X,F , μ) is a Lebesgue space
if and only if (X,F , μ) is isomorphic to the unit interval (equipped with classical
Lebesgue measure) together with countably many atoms.

Theorem 2.6.6. Assume that T : X → X ′ is a measurable injective map from
a Lebesgue space (X,F , μ) onto a separable space (X ′,F ′, μ′), and pre-images of
the sets of measure 0 (or positive) are of measure 0 (or positive). Then the space
(X ′,F ′, μ′) is Lebesgue, and T−1 is a measurable map.

Note that, in particular, a measurable, measure-preserving, injective map
between Lebesgue spaces is an isomorphism. If X = X ′,F ⊃ F ′,F �= F ′ and
(X ′,F ′, μ′) is separable, then the above implies that (X,F , μ) is not Lebesgue.

Now let (X,F , μ) be a Lebesgue space and A be a measurable partition of
X. We say that a property holds for almost all atoms of A if and only if the
union of atoms for which it is satisfied is measurable, and of full measure. The
following fundamental theorem holds:

Theorem 2.6.7. For almost all A ∈ A there exists a Lebesgue space (A,FA, μA)
such that the following conditions are satisfied:

(1) If B ∈ F , then B ∩A ∈ FA for almost all A ∈ A.

(2) F-measurable for all B ∈ F , where A(x) is the element of A containing x.

(3)

μ(B) =
∫

X

μA(x)(B ∩A(x)) dμ(x). (2.6.1)
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Remark 2.6.8. One can consider the quotient (factor) space (X/A,FA, μA)
with X/A being defined just as A and with FA = p(Ã) (see Notation 2.6.1
for the tilde), and μA(B) = μ(p−1(B)), for the projection map p(x) = A(x).
It can be proved that the factor space is again a Lebesgue space. Then x �→
μA(x)(B ∩A(x)) is FA-measurable, and the property (2.6.1) can be rewritten in
the form

μ(B) =
∫

X/A
μA(B ∩A) dμA(A). (2.6.2)

Remark 2.6.9. If a partition A is finite or countable, then the measures μA are
just the conditional measures given by the formulae μA(B) = μ(A ∩B)/μ(A).

Remark 2.6.10. (2.6.1) can be rewritten for every μ-integrable function φ, or
non-negative μ-measurable φ, if we allow +∞-ies, as

∫
φdμ =

∫

X

(∫

A(x)

φ|A(x) dμA(x)

)

dμ(x). (2.6.3)

This is a version of Fubini’s Theorem.

The family of measures {μA : A ∈ A} is called the canonical system of
conditional measures with respect to the partition A. It is unique (mod 0) in the
sense that any other system μ′

A coincides with it for almost all atoms of A.
The method of construction of the system μA is via conditional expecta-

tions values with respect to the σ-algebra Ã. Having chosen a basis (Bn) of the
Lebesgue space (X,F , μ), for every finite intersection

B =
⋂

i

B
(εni

)
ni (2.6.4)

one considers φB := E(11B |Ã), which can be treated as a function on the factor
space X/A, unique on a.e. A ∈ A, and such that for all Z ∈ Ã

μ(B ∩ Z) =
∫

p(Z)

φB(A) dμA(A).

Clearly (Bn∩A)∞n=1 is a basis for all A. It is not hard to prove that for a.e. A, for
each B from our countable family (2.6.4), φB(A) as a function of B generates a
Lebesgue space on A, with μA(B) := φB(A). Uniqueness of φB yields additivity.

Theorem 2.6.11. If T : X → X ′ is a measurable map of a Lebesgue
space (X,F , μ) onto a Lebesgue space (X ′,F ′, μ′), then the induced map from
(X/ζ,Fζ , μζ) for ζ = T−1(ε), to (X ′,F ′, μ′) is an isomorphism.

Proof. This follows immediately from the fact that the factor space is a Lebesgue
space, and from Theorem 2.6.6. ♣

In what follows we consider partitions (mod 0): that is, we identify two par-
titions if they coincide, restricted to a measurable subset of full measure. For
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these classes of equivalence we use the same notation ≤,≥ as in Section 2.3.
They define a partial order. If Aτ is a family of measurable partitions of a mea-
sure space (unlike in previous sections, the family may be uncountable), then by
its product A =

∨
τ Aτ we mean the measurable partition A determined by the

following two conditions:
(i) A ≥ Aτ for every τ ;
(ii) if A′ ≥ Aτ for every τ and A′ is measurable, then A′ ≥ A.
Similarly, replacing ≥ by ≤, we define the intersection

∧
τ Aτ .

The product and intersection exist in a Lebesgue space (i.e. the partially
ordered structure is complete). They of course generalize the notions dealt with
in Section 2.4. Clearly, for a countable family of measurable partitions Aτ the
above

∨
and the set-theoretic one coincide (the assumption that the space is

Lebesgue and the reasoning (mod 0) is not needed). In Exercise 2.13 we give
some examples.

There is a natural one-to-one correspondence between the measurable par-
titions (mod 0) of a Lebesgue space (X,F , μ) and the complete σ-sub-algebras
of F , that is, such σ-algebras F ′ ⊂ F that the measure μ restricted to F ′ is
complete. This correspondence is defined by assigning to each A the σ-algebra
F(A) of all sets that coincide (mod 0) with the sets of Ã (defined at the begin-
ning of this section). To operations on the measurable partitions (mod 0) there
correspond operations on the corresponding σ-algebras. Namely, if Aτ is a family
of measurable partitions (mod 0), then

F(
∨

τ

Aτ ) =
∨

τ

F(Aτ ), F(
∧

τ

Aτ ) =
∧

τ

F(Aτ ).

Here
∧
τ F(Aτ ) =

⋂
τ F(Aτ ) is the set-theoretic intersection of the σ-algebras,

and
∨
τ F(Aτ ) is the set-theoretic intersection of all the σ-algebras that contain

all F(Aτ ).

For any measurable partition A and any μ-integrable function φ : X → R

write
E(f |A)(x) :=

∫
f |A(x) dμA(x) a.e. (2.6.5)

Note that by the definition of the canonical system of conditional mea-
sures and by the definition of conditional expectation value, for any measurable
partition A we get the identity

E(f |A) = E(f |F(A)). (2.6.6)

A sequence of measurable partitions An is called (monotone) increasing or
ascending if for all n1 ≤ n2 we have An1 ≤ An2 . It is called (monotone) decreasing
or descending if for all n1 ≤ n2 we have An1 ≥ An2 .

For a monotone increasing (decreasing) sequence of measurable partitions An

and A =
∨
nAn (A =

∧
nAn) we write An ↗ A (or An ↘ A). In the language

of measurable partitions of a Lebesgue space, owing to (2.6.6), the Martingale
Convergence Theorem 2.1.4 can be expressed as follows:
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Theorem 2.6.12. If An ↗ A or An ↘ A, then for every integrable function f ,
E(f |An) → E(f |A) μ a.s.

2.7 Rokhlin natural extension

We shall prove here the following very useful theorem:

Theorem 2.7.1. For every measure-preserving endomorphism T of a Lebesgue
space (X,F , μ) there exists a Lebesgue space (X̃, F̃ , μ̃) with measure-preserving
transformations πn : X̃ → X,n ≤ 0 satisfying T ◦πn−1 = πn, which is an inverse
limit of the system · · · T→ X

T→ X.
Moreover there exists an automorphism T̃ of (X̃, F̃ , μ̃) satisfying

πn ◦ T̃ = T ◦ πn (2.7.1)

for every n ≤ 0.

Recall that in category theory [Lang, 1965, Ch. 1], for a sequence (system) of

objects and morphisms · · · Mn−1→ On−1
Mn→ · · · M0→ O0 an object O equipped with

morphisms πn : O → On is called an inverse limit ifMn◦πn−1 = πn and for every
other O′ equipped with morphisms π′

n : O′ → On satisfying Mn ◦ π′
n−1 = π′

n

there exists a unique morphism M : O′ → O such that πn ◦M = π′
n for every

n ≤ 0.
In particular, if all On are the same (= O0), and additionally M1 : O0 → O0

is chosen, then for π′
n := Mn+1 ◦ πn : O → O0, n ≤ 0 there exists M : O → O

such that πn ◦M = π′
n = Mn+1 ◦ πn for every n. It is easy to see that M is an

automorphism.
In Theorem 2.7.1 the objects are probability spaces or probability spaces with

complete probabilities, and morphisms are measure-preserving transformations
or measure-preserving transformations up to sets of measure 0. (We have thus
multiple meanings of Theorem 2.7.1.)

Thus the first part of Theorem 2.7.1 produces T̃ satisfying (2.7.1) automati-
cally, via the category theory definition. The automorphism T̃ is called Rokhlin’s
natural extension of T ; compare the terminology at the beginning of Section 2.2.
This is a ‘minimal’ extension of T to an automorphism.

One can consider · · · Tn−1→ Xn
Tn→ Xn

Tn+1→ . . . in place of · · · T→ X
T→ X for all

n ∈ Z in the statement of Theorem 2.7.1. We have chosen a simplified version
with all Tn equal to T to simplify the notation, and since only such a version
will be used in this book.

In the proof of Theorem 2.7.1 we shall use the following.

Theorem 2.7.2 (Extension of Measure). Every probability measure ν (σ-
additive) on an algebra G0 of subsets of a set X can be uniquely extended to
a measure on the σ-algebra G generated by G0.
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This theorem can be proved with the use of the well-known Carathéodory’s
construction [Carathéodory, 1927, Ch. V]. We define the outer measure:

νe(A) = inf{ν(B) : B ∈ G0, A ⊂ B}
for every A ⊂ X.

We say that A is Carathéodory measurable if for every E ⊂ X the outer
measure νe satisfies

νe(E) = νe(E ∩A) + νe(E \A).

The family of these sets turns out to be a σ-algebra containing G0, and hence
containing G.

For a general definition of outer measures and a sketch of the theory see
Chapter 8.

Proof of Theorem 2.7.1. Denote Π = XZ− , the set theory Cartesian product of a
countable number of X’s, or more precisely the space of sequences (xn) of points
in X indexed by non-positive integers. For each i ≤ 0 denote by πi : Π → X the
projection to the i-th coordinate, πi((xn)n∈Z−) = xi.

We start by producing the inverse limit in the set-theoretic category. Set

X̃ = {(xn)n∈Z− : T (xn) = xn+1 ∀n < 0}. (2.7.2)

The mappings πn in the statement of Theorem 2.7.1 will be the restrictions of
the πn’s defined above to X̃.

We shall endow Π with a σ-algebra FΠ and probability measure μΠ, whose
restrictions to X̃ will yield the inverse limit (X̃, F̃ , μ̃). The measure μΠ will occur
to be ‘supported’ on X̃.

For each n ≤ 0 consider the σ-algebra Gn = π−1
n (F). Let FΠ,0 be the smallest

algebra of subsets of Π containing all σ-algebras Gn. It is easy to see that FΠ,0

consists of finite unions of pairwise disjoint ‘cylinders’
⋂0
i=n π

−1
i (Ci)), considered

for arbitrary finite sequences of sets Ci ∈ F , i = n, ..., 0 for an arbitrary n ∈ Z−.
Define

μΠ

( 0⋂

i=n

π−1
i (Ci)

)

:= μ

( 0⋂

i=n

T−(i−n)(Ci)
)

. (2.7.3)

We extend the definition to finite unions of disjoint cylindersAk by μΠ(
⋃
k Ak) :=∑

k μΠ(Ak).
To ensure that μΠ is well defined it is sufficient to prove the compatibility

condition:

μΠ

( 0⋂

i=n

π−1
i (Ci)

)

+ μΠ

(( ⋂

i:n≤i≤0,i 
=j
π−1
i (Ci)

)

∩ π−1
j (C ′

j)
)

= μΠ

(( ⋂

i:n≤i≤0,i 
=j
π−1
i (Ci)

)

∩ π−1
j (Cj ∪ C ′

j)
)

, (2.7.4)
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for all sequences Ci ∈ F , i = n, ..., 0 and C ′
j ∈ F disjoint from Cj . Fortu-

nately (2.7.4) follows immediately from (2.7.3) and from the additivity of the
measure μΠ.

The next step is to observe that μΠ is σ-additive on the algebra FΠ,0. For
this end we use the assumption that (X,F , μ) is a Lebesgue space.1 We just
assume that X is a full Lebesgue measure subset of the unit interval [0, 1], with
classical Lebesgue measure and atoms, and the σ-algebra of Lebesgue measurable
sets F : see Exercise 2.9. Now it is sufficient to apply the textbook fact that for
every Lebesgue measurable set C ⊂ [0, 1] and ε > 0 there exists a compact
set P ⊂ C with μ(C \ P ) < ε. (This is also often proved by the Lebesgue
measure construction via Carathéodory’s outer measure.) Compare the notion
of regularity of measure in Section 3.1.

Consider Π endowed with the product topology, compact by Tichonov’s The-
orem. Then all πi are continuous, and for every ε > 0 and for every cylinder
A =

⋂0
i=n π

−1
i (Ci)) we can find a compact cylinder K =

⋂0
i=n π

−1
i (Pi)), with

compact Pi ⊂ Ci, such that μΠ(A \ K) < ε. This follows from the definition
(2.7.3) and the T -invariance of μ. The same immediately follows for finite unions
of cylinders.

To prove the σ-additivity of μΠ on FΠ,0 it is sufficient to prove that for every
descending sequence of sets Ak ∈ FΠ,0, i = 1, 2, . . . if

⋂

k

Ak = ∅ then μΠ(Ak) → 0. (2.7.5)

Suppose to the contrary that there exists ε > 0 such that μΠ(Ak) ≥ ε for every
k. For each k, consider a compact set Kk ⊂ Ak such that μ(Ak \Kk) ≤ ε2−k−1.
Then all Lm :=

⋂m
k=1Kk are non-empty, since μΠ(Lm) ≥ ε/2. Hence

⋂∞
k=1Ak ⊃⋂∞

k=1 Lk �= ∅ as (Lk)∞k=1 is a descending family of non-empty compact sets. Thus
we have proved that μΠ is σ-additive on FΠ,0.

The measure μΠ extends to σ-additive measure on a σ-algebra generated by
FΠ,0 by Theorem 2.7.2. Set this extension to be our (Π,FΠ, μΠ).

Now we shall prove that the set Π\X̃ is μΠ-measurable, and that μΠ(Π\X̃) =
0. To this end we shall take care that the compact sets K = Kk lie in X̃. Denote

X̃n := {(xi)i∈Z− : T (xi) = xi+1 ∀n ≤ i < 0}. (2.7.6)

Let us recall that A =
⋂0
i=n π

−1
i (Ci)). Note that π−1

n (T−(i−n)(Ci)) ∩ X̃n ⊂
π−1(Ci), but they have the same measure μΠ, by the formula (2.7.3). Let Pn be
a compact subset of C ′

n :=
⋂0
i=n T

−(i−n)(Ci) such that μΠ(C ′
n \ Pn) < ε and

T j restricted to Pn is continuous for all j = 1, ..., n. This is possible by Luzin’s
Theorem.

Then all T j(Pn) are compact sets, and in particular are μ-measurable. Hence
each Qn :=

⋂0
i=n π

−1
i (T i−n(Pn)) belongs to FΠ,0, and in particular it is μΠ-

measurable. It is contained in X̃n, but need not be contained in X̃. To cope with
1This is a substantial assumption, overlooked by some authors: see the Bibliographical notes

at the end of this chapter.
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this problem, express A as AN =
⋂0
i=N π

−1
i (Ci)) for N arbitrarily large, setting

Ci = X for i : N ≤ i < n. Then find QN for AN and εn = ε2−N−1 and finally
set Q =

⋂
QN . The set Q is μΠ-measurable (even compact), contained in X̃ and

μΠ(A \Q) ≤ ε.
For A = Π we conclude with μΠ-measurable Q ⊂ X̃ with μΠ(Π \Q) ≤ ε, for

an arbitrary ε > 0. Hence μΠ(Π \ X̃ = 0.
Note that the measure μΠ is complete (i.e. all subsets of measurable sets of

measure 0 are measurable) by Carathéodory’s construction. Now we prove that
it is a Lebesgue space. Let B = (Bl)∞l=1 be a basis of (X,F , μ). Then clearly the
family BΠ := {π−1

n (Bl) : l ≥ 1, n ≤ 0} is a basis of the partition ε in Π. The
family BΠ generates the σ-algebra FΠ in the sense of Definition 2.6.4(ii)), because
B generates F in this sense, and by Carathéodory’s outer measure construction.
The probability space (Π,FΠ, μΠ) is complete with respect to BΠ since (X,F , μ)
is complete with respect to B, and by the Cartesian product definition.

Finally, let us restrict all the objects to X̃. In particular, F̃ := {A ∩ X̃ : A ∈
FΠ}, μ̃ is the restriction of μΠ to F̃ , and B̃ := {B ∩ X̃ : B ∈ BΠ}. The resulting
probability space (X̃, F̃ , μ̃) is complete (mod 0) with respect to B̃. Therefore it is
a Lebesgue space (see Definition 2.6.5): the extension required by the definition
is just (Π,FΠ, μΠ) with the basis BΠ.

Suppose (X ′,F ′, μ′) is any Lebesgue measure space, with measure-preserving
transformations π′

n : X ′ → X,n ≤ 0 satisfying T ◦ π′
n−1 = π′

n. Then define
M : X ′ → X̃ by

M(x′) = (. . . π′
n−1(x

′), π′
n(x

′), ..., π′
0(x

′)). (2.7.7)

We get πn ◦M = π′
n by definition. We leave the proof of the measurability of M

to the reader.
The uniqueness of M follows from the fact that if M(x′) = (. . . yn, . . . , y0)

for yj ∈ X, then from πn ◦M = π′
n μ

′-a.e., we get yn = π′
n(x

′) a.e. ♣
Remark 2.7.3. X̃ can be interpreted as the space of all backward trajectories
for T . The map T̃ : X̃ → X̃ can be defined by the formula

T̃ ((xn)n∈Z−) = (. . . , x−2, x−1, x0, T (x0)). (2.7.8)

X̃ could be defined in (2.7.2) as the space of full trajectories {(xn)n∈Z;T (xn) =
xn+1}. Then (2.7.8) is the shift to the left.

The formula (2.7.8) holds because T̃ , defined by it, satisfies (2.7.1), and
because of the uniqueness of maps T̃ satisfying (2.7.1)

Remark 2.7.4. Alternatively, to compact sets in X̃n we could find for all n ≤ 0
sets En,i ⊃ X̃n, with μ̃Π(En,i \X̃n) → 0 as i→ ∞, which are unions of cylinders
⋂0
i=−n π

−1
i (Ci). This agrees with the following general fact:

If a sequence of sets Σ generates a σ-algebra G with a measure ν on it (see
Definition 2.6.4(ii)), then for every A ∈ G there exists C ⊃ A with ν(C \A) = 0
such that C ∈ Σ′

dσδ: that is, C is a countable intersection of countable unions of
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finite intersections of sets belonging to Σ or their complements. Exercise: Prove
this general fact, using Carathéodory’s outer measure constructed on measurable
sets.

Remark 2.7.5. Another way to prove Theorem 2.7.1 is to construct F̃ and μ̃
on X̃ already at the beginning. One also defines μ̃ by the formula (2.7.3).

More specifically, for the maps πn restricted now to X̃, consider Gn = π−1
n (F).

Note that this is an ascending sequence of σ-algebras with growing |n|, because
π−1
n (A) = π−1

n−1(T
−1(A)) for every A ∈ F . Write F̃0 =

⋃
n≤0 Gn. This is an

algebra. For every A ∈ F and n ≤ 0 define μ̃(π−1
n (A)) := μ(A). This is well

defined, because if C = π−1
n (A1) = π−1

m (A2) for A1, A2 ∈ F and n < m, then
A1 = T−(m−n)(A2). Since T preserves μ, we have μ(A1) = μ(A2). This measure
is σ-additive on the algebra F̃0, since we managed to approximate ‘from below’
each of its elements by a compact set: see the proof of Theorem 2.7.1. Hence we
find F̃ and μ̃ on X̃ by Carathéodory’s theory.

Unfortunately, the measure space (X̃, F̃ , μ̃) is usually not complete with
respect to the basis B̃, constructed in the proof of Theorem 2.7.1. To make
it complete (mod 0) we need to extend it, and the only way we know how to
acomplish this is to construct the space (Π,FΠ, μΠ).

We end this section with another version of Theorem 2.7.1. First the following
definition:

Definition 2.7.6. Suppose that T is an automorphism of a Lebesgue space
(X,F , μ). Let ζ be a measurable partition. Assume it is forward invariant: that
is, T (ζ) ≥ ζ, or equivalently T−1(ζ) ≤ ζ. Then ζ is said to be exhausting if∨
n≥0 T

n(ζ) = ε.

Theorem 2.7.7. For every measure-preserving endomorphism T of a Lebesgue
space (X,F , μ) there exist a Lebesgue space (X̃, F̃ , μ̃), its automorphism T̃ , and a
forward invariant for T̃ exhausting measurable partition ζ, such that (X,F , μ) =
(X̃/ζ, F̃ζ , μ̃/ζ) the factor space (cf. Remark 2.6.8), and T is a factor of T̃ , that
is, T ◦ p = p ◦ T̃ for the projection p : X̃ → X.

Proof. Take (X̃, F̃ , μ̃) and T̃ from Theorem 2.7.1. Set ζ := π−1
0 (ε). By (2.7.1)

and T−1(ε) ≤ ε we get T̃−1(ζ) ≤ ζ.
If ε′ =

∨
n≥0 T

n(ζ) is not the partition of X̃ into points, then T̃ /ε′ is an
automorphism of (X̃/ε′, F̃ε′ , μ̃ε′). Moreover, if we denote by p′ the projection
from X̃ to X̃/ε′, then we can write πn = π′

n ◦ p′ for some maps π′
n for every

n ≤ 0. By the definition of inverse limit, p′ has an inverse, which is impossible.
The last part, that

∨
n≥0 T

n(ζ) is the partition of X̃ into points, has also
an immediate proof following directly from the form of X̃ in (2.7.2). Indeed,
for n ≥ 0 the element of Tn(ζ) containing x̃ = (. . . , x−2, x−1, x0) is the n-th
image of the element of ζ containing T̃−n(x̃) i.e. containing (. . . , x−n−1, x−n).
So it is equal to {(. . . , x′−n−1, x

′
−n, . . . , x

′
0) ∈ X̃ : x′−n = x−n)}. Intersecting over

n→ ∞, we obtain {x̃}. ♣
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2.8 Generalized entropy; convergence
theorems

This section contains generalizations of entropy notions (introduced in
Section 2.3) to the case of all measurable partitions. The triple (X,F , μ) is
assumed to be a Lebesgue space.

Definition 2.8.1. If A is a measurable partition of X, then its (generalized)
entropy is defined as follows:

H(A) = ∞ if A is not a countable partition (mod 0);
H(A) =

∑
A∈A −μ(A) log μ(A) if A is a countable partition (mod 0).

Lemma 2.8.2. If An and A are measurable partitions of X and An ↗ A, then
H(An) ↗ H(A).

Proof. Write H(A) =
∫
I(A) dμ, where I(A)(x) = − log μ(A(x)) is the informa-

tion function (compare Section 2.4). We set log 0 = −∞: hence I(A)(x) = ∞
if μ(A(x)) = 0. Write the same for An. As μ(An(x)) ↘ μ(A(x)) for a.e. x, the
convergence in our lemma follows from the Monotone Convergence Theorem. ♣
Definition 2.8.3. If A and B are two measurable partitions of X, then the
(generalized) conditional entropy H(A|B) = Hμ(A|B) of partition A subject to
B is defined by the following integral:

Hμ(A|B) =
∫

X/B
HμB

(A|B) dμB(B), (2.8.1)

where A∩B is the partition {A∩B : A ∈ A} ofB and {μB , B ∈ B} forms a canon-
ical system of conditional measures: see Section 2.7. For the integral in (2.8.1)
to be well defined we have to know that the function B �→ HμB

(A|B), B ∈ B is
measurable. In order to see this, choose a sequence of finite partitions An ↗ A
(see Remark 2.6.3). Each conditional entropy function HμB

(An|B) is measurable
as a function of B in the factor space (X/B,FB, μB), and hence of course as a
function on (X,F , μ), since it is a finite sum of measurable functions:

B �→ −μB(A ∩B) log μB(A ∩B) for A ∈ A.
Since An|B ↗ A|B for a.e. B, we obtain, by using Lemma 2.8.2, that
HμB

(An|B) → HμB
(A|B). Hence HμB

(A|B) is measurable, so our definition
of Hμ(A|B) makes sense (we allow ∞’s here).

Of course, (2.8.1) can be rewritten in the form
∫

X

HμB(x)(A|B(x)) dμ(x), (2.8.2)

with HμB
(A|B) understood as a constant function on each B ∈ B (compare

(2.6.1) with (2.6.2)). As in Section 2.3, we can write

Hμ(A|B) =
∫

X

I(A|B) dμ, (2.8.3)
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where I(A|B) is the conditional information function:

I(A|B)(x) := − logμB(x)(A(x) ∩ B(x)).

Indeed, I(A|B) is non-negative and μ-measurable as being equal to limn→∞
I(An|B) (a.e.), so (2.8.3) follows from (2.6.3).

Lemma 2.8.4. If {An : n ≥ 1} and A are measurable partitions, An ↘ A and
H(A1) <∞, then H(An) ↘ H(A).

Proof. The proof is similar to the proof of Lemma 2.8.2. ♣
Theorem 2.8.5. If A,B are measurable partitions and {An : n ≥ 1} is an
ascending (descending and H(A1|B) < ∞) sequence of measurable partitions
converging to A, then

lim
n→∞H(An|B) = H(A|B) (2.8.4)

and the convergence is respectively monotone.

Proof. Applying Lemmas 2.8.2 and 2.8.4 we get the monotone convergence
HμB

(An|B) → HμB
(A|B) for almost all B ∈ X/B. Thus the integrals in the

Definition 2.8.3 converge by the Monotone Convergence Theorem. ♣
Theorem 2.8.6. If A,B are measurable partitions and {Bn : n ≥ 1} is a
descending (ascending and H(A|B1) < ∞) sequence of measurable partitions
converging to B, then

lim
n→∞H(A|Bn) = H(A|B) (2.8.5)

and the convergence is respectively monotone.

Proof 1. Assume first that A is finite (or countable with finite entropy). Then
the a.e. convergence I(A|Bn) → I(A|B) follows from the Martingale Convergence
Theorem (more precisely from Theorem 2.6.12), applied to f = 11A, the indicator
functions of A ∈ A.

Now it is sufficient to prove that supn I(A|Bn) ∈ L1 in order to use the
Dominated Convergence Theorem (compare Corollary 2.5.3) and (2.8.3)). One
can repeat the proofs of Lemma 2.5.1 (for ascending Bn) and Corollary 2.5.2.

The monotonicity of the sequence H(A|Bn) relies on Theorem 2.3.1(d). How-
ever, for infinite Bn one needs to approximate Bn by finite (or finite entropy)
partitions. For details see [Rokhlin 1967, Sec. 5.12].

For A measurable, represent A as limj→∞ Aj for an ascending sequence of
finite partitions Aj , j = 1, 2, . . . ; then refer to Theorem 2.8.5. In the case of a
descending sequence Bn the proof is straightforward. In the case of ascending Bn
use

H(A|Bn)−H(Aj |Bn) = H(A|(Aj∨Bn)) ≤ H(A|(Aj∨B1)) = H(A|B1)−H(Aj |B1).

This implies that the convergence as j → ∞ is uniform with respect to n: hence
in the limit H(A|Bn) → H(A|B). ♣
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Proof 2. For A finite (or countable with finite entropy) there is a simpler way
to prove (2.8.5). By Theorem 2.1.4, for every A ∈ A, the sequence E(11A|F(Bn))
converges to E(11A|F(B)) in L2. Hence, for every A ∈ A, the sequence μBn(x)(A∩
Bn(x)) converges to μB(x)(A∩B(x)) in measure μ. By continuity of the function
k(t) = −t log t (compare Section 2.3), this implies the convergence

k(μBn(x)(A ∩ Bn(x))) → k(μB(x)(A ∩ B(x)))

in measure μ (we do not assume x ∈ A here). Summing over all A ∈ A we
obtain the convergence HμBn(x)(A|Bn(x)) → HμB(x)(A|B(x)) in measure μ. These
functions are uniformly bounded by log #A ( or by H(A) ) and non-negative:
hence we get the convergence in L1 and in consequence, owing to (2.8.2), we
obtain (2.8.5). (Note that we have not used the a.e. convergence coming from
Theorem 2.1.4, but only the convergence in L2, which has been proved there.) ♣

Observe that we can now rewrite the definition of the entropy hμ(T,A) from
Section 2.5 as follows:

hμ(T,A) = H(A|A−), where A− :=
∞∨

n=1

T−n(A). (2.8.6)

A countable partition B is called a countable (one-sided) generator for an
endomorphism of a Lebesgue space if Bm ↗ ε. Because of Theorem 2.8.6
we obtain the following facts, useful for computing the entropy for concrete
examples.

Theorem 2.8.7. (a) If Bm is a sequence of finite partitions of a Lebesgue
space, such that Bm ↗ ε, then, for any endomorphism T : X → X, h(T ) =
limm→∞ h(T,Bm).

(b) If B is a countable one-sided generator with finite entropy for an
endomorphism T of a Lebesgue space, then h(T ) = h(T,B).

Proof. By Theorem 2.8.6 for every finite partition A we have limm→∞ H(A|Bm) =
H(A|ε) = 0. Hence, in view of Theorem 2.4.5, h(T ) = limm→∞ h(T,Bm). This
proves (a). Theorem 2.4.5, together with the definition of a generator, also
proves (b). ♣

Remark 2.8.8. For T being an automorphism, one considers two-sided
countable (and in particular finite) generators, i.e. partitions of B for which∨∞
n=−∞ Tn(B) = ε. Then, as in the one-sided case, finiteness of H(B) implies

that h(T ) = h(T,B).

Remark 2.8.9. In both Theorem 2.8.6 and Theorem 2.8.7(a), the assump-
tion of monotonicity of Bm can be weakened. Assume, for example, that
A is finite and Bm → ε, in the sense that for every measurable set Y ,
E(11Y |Bm) → 11Y in measure, as in Remark 2.1.5. Then H(A|Bm) → 0: hence
h(T ) = limm→∞ H(T,Bm).
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Indeed, for H(A|Bm) → 0 just repeat Proof 2 of Theorem 2.8.6. The con-
vergence in measure μ of μBn(x)(A ∩ Bn(x))) to με(x)(A ∩ ε(x))) means that
E(11A|Bn) → 11A, which has just been assumed.

Corollary 2.8.10. Assume that X is a compact metric space, and that F is the
σ-algebra of Borel sets (generated by open sets). If supB∈Bm

(
diam(B)

) → 0 as
m→ ∞, then h(T ) = limm→∞ H(T,Bm).

Proof. It is sufficient to check E(11A|Bm) → 11A in measure. First note that for
every δ > 0 there exist an open set U and a closed set K such that K ⊂ A ⊂ U
and μ(U \ K) ≤ δ. This property is called the regularity of our measure μ,
and is true for every finite measure on the σ-algebra of Borel sets of a metric
space (compactness is not needed here). This can be proved by Carathéodory’s
argument: compare the proof of Theorem 2.1.4. That is, we construct the outer
measure with the help of open sets, as in the sketch of the proof of Theorem 2.7.2
(where we used G0), and we notice that since each closed set is an intersection
of a descending sequence of open sets, we shall have the same outer measure if,
in the construction of the outer measure, we use the algebra generated by open
sets. Now we can refer to Theorem 2.7.2.

Now, owing to the compactness of X, and hence K, for m large enough the
set A′ :=

⋃{B ∈ Bm : B ∩ K �= ∅} contains K and is contained in U : hence
μ(A÷A′) ≤ δ. This implies that
∫

X

|E(11A|Bm) − 11A| dμ =

∫

X\(A∪A′)
E(11A|Bm) dμ

+

∫

A÷A′
|E(11A|Bm) − 11A| dμ +

∫

A∩A′
11A − E(11A|Bm) dμ

≤ δ

μ(X \ A′)
μ(X \ (A ∪ A′)) + δ

+
(
1 − μ(A ∩ A′)

μ(A′)

)
μ(A ∩ A′) ≤ 3δ.

Hence μ{x : |E(11A|Bm) − 11A| ≥
√

3δ} ≤ √
3δ. ♣

For a simpler proof, omitting Theorem 2.8.6, see Exercise 2.18.

We end this section with the ergodic decomposition theorem and the ade-
quate entropy formula. Compare this with the Choquet Representation Theorem:
Theorem 3.1.11 and Theorem 3.1.13.

Let T be a measure-preserving endomorphism of a Lebesgue space. A measur-
able partition A is said to be T -invariant if T (A) ⊂ A for almost every A ∈ A.
The induced map TA = T |A : A → A is a measurable endomorphism of the
Lebesgue space (A,FA, μA). One calls TA a component of T .

Theorem 2.8.11. (a) There exists a finest measurable partition A (mod 0) into
T -invariant sets (called the ergodic decomposition). Almost all of its components
are ergodic.

(b) h(T ) =
∫
X/A h(TA) dμA(A).
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Proof. Part (a) will not be proved. Let us mention only that the ergodic decom-
position partition corresponds (see Section 2.6) to the completion of I, the
σ-subalgebra of F consisting of T invariant sets in F (compare Theorem 2.2.5).

To prove part (b) notice that for every T -invariant measurable partition A,
for every finite partition ξ and almost every A ∈ A, writing ξA for the partition
{s ∩A : s ∈ ξ}, we obtain

h(TA, ξA) = H(ξA|ξ−A ) =
∫

A

IμA
(ξA|ξ−A ) dμA.

Notice next that the latter information function is equal a.e. to Iμ(ξ|ξ− ∨ A)
restricted to A. Hence

∫

X/A
h(TA) dμA(A) =

∫

X/A
dμA

∫

A

IμA
(ξA|ξ−A ) dμA

=
∫

X

Iμ(ξ|ξ− ∨ A) dμ = H(ξ|ξ− ∨ A) = h(T, ξ).

The latter equality follows from an approximation of A by finite T -invariant
partitions η ↗ A and from

H(ξ|ξ− ∨ η) = H(ξ ∨ η|ξ− ∨ η−) = lim
n→∞

1
n

H((ξ ∨ η)n)

= lim
n→∞

1
n

H(ξn ∨ η) = lim
n→∞

1
n

H(ξn) = H(T, ξ).

Now let ξn be a sequence of finite partitions such that ξn ↗ ε. Then
h(T, ξn) ↗ h(T ) and h(TA, (ξn)A) ↗ h(TA). So h(T, ξn) =

∫
X/A h(TA, ξn)

dμA(A), and the Lebesgue Monotone Convergence Theorem proves (b) ♣

2.9 Countable-to-one maps, Jacobian and
entropy of endomorphisms

We start with a formulation of

Theorem 2.9.1 (Rokhlin’s fundamental theorem of cross-sections). Suppose
that A and B are two measurable partitions of a Lebesgue space (X,F , μ) such
that A ∩ B (see Definition 2.8.3) is countable (mod 0 with respect to μB) for
almost every B ∈ B. Then there exists a countable partition γ = {γ1, γ2, . . . } of
X (mod 0) such that each γj ∈ γ intersects almost every B at not more than
one point, which is then an atom of μB: in particular,

A ∨ B = γ ∨ B (mod 0).

Furthermore, if H(A|B) <∞, then γ can be chosen so that

H(γ) < H(A|B) + 3
√
H(A|B) <∞.



9780521438001c02 CUP/PUK February 17, 2010 21:30 Page-51

2.9 Countable-to-one maps 51

Definition 2.9.2. Let (X,F , μ) be a Lebesgue space. Let T : X → X be
a measurable endomorphism. We say that T is essentially countable to one if
the measures μA of a canonical system of conditional measures for the partition
A := T−1(ε) are purely atomic (mod 0 with respect to μA), for almost all A ∈ A.

Lemma 2.9.3. If T is essentially countable to one and preserves μ, then there
exists a measurable set Y ⊂ X of full measure such that T (Y ) ⊂ Y , and:

1. T−1(x) ∩ Y is countable for every x ∈ Y , i.e. T |Y is countable to one.
Moreover, for almost every x ∈ Y , T−1(x) ∩ Y consists only of atoms of the
conditional measure μT−1(x);

2. T (B) is measurable if B ⊂ Y is measurable;
3. T |Y is forward quasi-invariant: that is, μ(B) = 0 for B ⊂ Y implies

μ(T (B)) = 0.

Proof. Let Y ′ be the union of atoms mentioned in Definition 2.9.2. We can
write, because of Theorem 2.9.1, Y ′ =

⋃
j γj , so Y ′ is measurable. Set Y =

⋂∞
n=0 T

−n(Y ′). Denote the partition T−1(ε) in Y by ζ. Property 1 follows from
the construction. To prove 2 we use the fact that (Y/ζ,Fζ , μζ) is a Lebesgue
space and the factor map Tζ : Yζ → X is an automorphism (Th. 2.6.11). So, for
measurable B ⊂ Y , the set

{A ∈ ζ : μA(B ∩A) �= 0} = {A ∈ ζ : A ∩B �= ∅} (2.9.1)

is measurable by Theorem 2.6.7(2), and therefore its image under Tζ , equal to
T (B), is measurable. If μ(B) = 0, then the set in (2.9.1) has measure μζ equal to
0: hence, as Tζ is an isomorphism, we obtain the result that T (B) is measurable
and of measure 0. ♣

The key property in the above proof is the equality (2.9.1). Without assuming
that μA are purely atomic there could exist B of measure 0 with C := {A ∈ ζ :
μA(B ∩A) �= 0} not measurable in Fζ .

To have such a situation, just consider a non-measurable C ⊂ Y/ζ. Consider
the disjoint unionD := C∪Y and denote the embedded C by C ′. Finally, defining
measure on D, put μ(C ′) = 0 and μ on the embedded Y . Define T (c′) = T (c)
for C � c and c′ being the image of c under the above-mentioned embedding.
Thus C ′ is measurable, of measure 0, whereas T (C ′) is not measurable, because
C is not measurable and Tζ is an isomorphism.

Definition 2.9.4. Let (X,F , μ) and (X ′,F ′, μ′) be probability measure spaces.
Let T : X → X ′ be a measurable homomorphism. We say that a real, non-
negative, measurable function J is a weak Jacobian if there exists E of measure
0 such that for every measurable A ⊂ X \E on which T is injective, the set T (A)
is measurable and μ(T (A)) =

∫
A
J dμ. We say J is a strong Jacobian, or just a

Jacobian, if the above holds without assuming A ⊂ X \ E.
We say that T is forward quasi-invariant if (μ(A) = 0) ⇒ (μ′(T (A)) = 0).

Notice that, if T is forward quasi-invariant, then automatically a weak Jacobian
is a strong Jacobian.
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Proposition 2.9.5. Let (X,F , μ) be a Lebesgue space and T : X → X be
a measurable, essentially countable to one, endomorphism. Then there exists a
weak Jacobian J = Jμ. It is unique (mod 0). For T restricted to Y (Lemma 2.9.3)
J is a strong Jacobian.

Proof. Consider the partition γ = {γ1, γ2, . . . } given by Theorem 2.9.1 with
A = ε and B = T−1(ε). Then for each j the map T |γj∩Y is injective. Moreover,
by Lemma 2.9.3, T |γj∩Y maps measurable sets onto measurable sets and is for-
ward quasi-invariant. Therefore J exists on each γj ∩ Y by the Radon–Nikodym
theorem.

By the presentation of each A ⊂ Y as
⋃∞
j=1A ∩ γj the function J satisfies

the assertion of the proposition. The uniqueness follows from the uniqueness of
the Jacobian in the Radon-Nikodym theorem on each γj ∩ Y . ♣
Theorem 2.9.6. Let (X,F , ν) be a Lebesgue space. Let T : X → X be a ν-
preserving endomorphism, essentially countable to one. Then its Jacobian Jν ,
strong on Y defined in Lemma 2.9.3, and weak on X, has logarithm equal to
Iν(ε|T−1(ε)). (We do not need to assume here that T (Y ) ⊂ Y . I stands for the
information function: see Sections 2.4 and 2.8.)

Proof. Consider T already restricted to Y . Let Z ⊂ Y be an arbitrary measurable
set such that T is one–to–one on it. For each y ∈ Y denote by A(y) the element
of ζ = T−1(ε) containing y. We obtain

ν
(
T (Z)

)
= ν
(
T−1

(
T (Z)

))
=
∫

T−1
(
T (Z)

) 1 dν(y)

=
∫

T−1
(
T (Z)

)

(∫

A(y)

11Z(x)
/
νA(y){x}) dνA(y)(x)

)

dν(y)

=
∫

T−1
(
T (Z)

)(11Z(y)/νA(y){y}) dν(y) =
∫

Z

(1/νA(y){y}) dν(y).

Therefore Jν(y) = 1/νA(y){y}), and its logarithm is equal to Iν(ε|T−1(ε))(y).
♣

Theorem 2.9.6 gives rise to the so-called Rokhlin entropy formula:

Theorem 2.9.7. Let (X,F , μ) be a Lebesgue space. Let T : X → X be a measure
μ-preserving endomorphism, essentially countable to one. Suppose that on each
component A of the ergodic decomposition (cf. Theorem 2.8.11) the restriction
TA has a countable one-sided generator of finite entropy. Then

hμ(T ) = Hμ(ε|T−1(ε)) =
∫
Iμ(ε|T−1(ε)) dμ =

∫
log Jμ dμ.

Proof. The third equality follows from Theorem 2.9.6; the second equality is the
definition of the conditional entropy: see Sec. 2.8. To prove the first equality we
can assume, owing to Theorem 2.8.11, that T is ergodic. Then, for ζ, a countable
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one-sided generator of finite entropy, with the use of Theorems 2.8.5 and 2.8.7(b),
we obtain

H(ε|T−1(ε)) = H(ε|ζ−) = lim
n→∞H(ζn|ζ−) = H(ζ|ζ−) = h(T, ζ) = h(T ).

♣
Remark. The existence of a countable one-sided generator, without demanding
finite entropy, is a general, and not very difficult, fact. That is, the following
holds:

Theorem 2.9.8. Let (X,F , μ) be a Lebesgue space. Let T : X → X be a
μ-preserving aperiodic endomorphism, essentially countable to one. Then there
exists a countable one-sided generator, that is, a countable partition ζ such that
ζ ∨ ζ− = ε (mod 0).

Aperiodic means that there exists no B of positive measure and a positive
integer n so that Tn|B = id. For the proof see [Rokhlin, 1967, Sec. 10.12–13] or
[Parry 1969]. To construct ζ one uses the partition γ ascribed to ε and T−1(ε)
according to Theorem 2.9.1 and the so-called Rokhlin towers.

The existence of a one-sided generator with finite entropy is in fact equivalent
to H(ε|ε−) = h(T ) < ∞. The proof of the implication to the right is contained
in the proof of Theorem 2.9.7. The reverse implication (the construction of the
partition) is not easy: it uses in particular the estimate in Theorem 2.9.1.

The existence of a one-sided generator with finite entropy is a strong property.
It may fail even for exact endomorphisms: see Section 2.10 and Exercise 2.22.
Nor does its existence imply exactness (Exercise 2.22). On the contrary, for
automorphisms, two-sided generators, even finite, always exist, provided the map
is aperiodic.

2.10 Mixing properties

In this section we examine briefly some mixing properties of a measure-preserving
endomorphism that are stronger than ergodicity. A measure-preserving endomor-
phism is said to be weakly mixing if and only if for every two measurable sets A
and B

lim
n→∞

1
n

n−1∑

j=0

|μ(T−j(B) ∩A) − μ(A)μ(B)| = 0.

To see that a weakly mixing transformation is ergodic, suppose that T−1(B) = B.
Then T−k(B) = B for all k ≥ 0, and consequently for every n,

1
n

n−1∑

j=0

|μ(T−j(B) ∩B) − μ(B)μ(B)| = |μ(B) − μ(B)2| → 0.

Thus μ(B) − μ(B)2 = 0, and therefore μ(B) = 0 or 1.
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A measure-preserving endomorphism is said to be mixing if and only if for
every two measurable sets A and B

lim
n→∞μ(T−n(B) ∩A) − μ(A)μ(B) = 0.

Clearly, every mixing transformation is weakly mixing. The property equivalent
to the mixing property is the following: for all square integrable functions f
and g,

lim
n→∞

∫
f(g ◦ Tn) dμ =

∫
f dμ

∫
g dμ.

Indeed, the former property follows from the latter if we substitute the indicator
functions 11A, 11B in place of f, g respectively. To prove the opposite implication,
note that with the help of the Hölder inequality it is sufficient to restrict our
considerations to simple functions f =

∑
i ai11Ai

and g =
∑
j aj11Aj

, where (Ai)
and (Bj) are arbitrary finite partitions. Then

∣
∣
∣
∣

∫
f(g ◦ Tn) dμ−

∫
f dμ

∫
g dμ

∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∑

i,j

aibj(μ(Ai ∩ T−n(Bj)) − μ(Ai)μ(Bj))

∣
∣
∣
∣
∣
∣
→ 0

because every summand converges to 0 as n→ ∞.
In the sequel we shall also deal with stronger mixing properties. An endo-

morphism is called K-mixing if, for every measurable set A and every finite
partition A,

lim
n→∞ sup

B∈F(A∞
n )

|μ(A ∩B) − μ(A)μ(B)| = 0.

Recall that F(A∞
n ) for n ≥ 0 means the complete σ-algebra assigned to the par-

tition A∞
n =

∨∞
j=n T

−j(A). The following theorem provides us with alternative
definitions of the K-mixing property in the case when T is an automorphism.

Theorem 2.10.1. Let (X,F , μ) be a Lebesgue space and T : X → X be its
measure-preserving automorphism. Then the following conditions are equivalent:

(a) T is K-mixing.

(b) For every finite partition A Tail(A) :=
∧∞
n=0

∨∞
k=n T

−k(A) is equal to the
trivial partition ν = {X} (mod 0).

(c) For every finite partition A �= ν, hμ(T,A) > 0 (T has completely positive
entropy).

(d) There exists a forward invariant exhausting measurable partition α (i.e.
satisfying T−1(α) ≤ α, Tn(α) ↗ ε: see Definition 2.6.4) such that T−n(α) ↘ ν.

The property Tail(A) = ν is a version of the 0-1 Law. An automorphism
satisfying (d) is usually called a K-automorphism. The symbol K comes from
the name Kolmogorov. Each partition satisfying the properties of α in (d) is
called a K-partition.
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Remark. The properties (a)–(c) make sense for endomorphisms, and they are
equivalent (proofs are the same as for automorphisms). Moreover, they hold for
an endomorphism if and only if they hold for its natural extension.

Proof. (a part of) To show the reader what Theorem 2.10.1 is about, let us prove
some implications:

(a)⇒(b) Let A ∈ F(Tail(A)) for a finite partition A. Then, for every n ≥ 0,
A ∈ F(

∨∞
k=n T

−k(A)). Hence, by K-mixing, μ(A ∩ A) − μ(A)μ(A) = 0, and
therefore μ(A) = 0 or 1.

(b)⇒(c) Suppose (b) and assume h(T,A) = 0 for a finite partition A. Then
H(A|A−) = 0: hence I(A|A−) = 0 a.s. (see Section 2.8): hence A ≤ A−. Thus

∞∨

k=0

T−k(A) =
∞∨

k=1

T−k(A) and
∞∨

k=m

T−k(A) =
∞∨

k=n

T−k(A)

for every m,n ≥ 0. So ν =
∧∞
n=0

∨∞
k=n T

−k(A) =
∨∞
k=0 T

−k(A) ≥ A. So A = ν,
the trivial partition. Thus for every non-trivial partition A we have h(T,A) > 0.

(b)⇒(d) (in the case where there exists a finite two-sided generator B, mean-
ing that

∨∞
n=−∞ Tn(B) = ε). Note that α =

∨
T∞
n=0T

−n(B) is exhausting. ♣

Let us finish this section with the following useful definition:

Definition 2.10.2. A measure-preserving endomorphism is said to be exact if

∞∧

n=0

T−n(ε) = ν.

(Recall that ε is the partition into points, and ν is the trivial partition {X}.)

Exercise. Prove that exactness is equivalent to the property that μe(Tn(A)) →
1 for every A of positive measure (μe is the outer measure generated by μ), or
to the property that μ(Tn(A)) → 1 provided μ(A) > 0 and the sets Tn(A) are
measurable.

The property of being exact implies the natural extension to be a
K-automorphism (in Theorem 2.10.1(d) set for α the lift of ε). The converse
is of course false. The automorphisms of spaces that are not one-atom spaces are
not exact. Observe, however, that if T is an automorphism and α is a mea-
surable partition satisfying (d), then the factor mapping of T/α on X/α is
exact.

Exercise. Prove that T is the natural extension of T/α.

Recall finally (Section 2.9) that, even for exact endomorphisms, h(ε|T−1(ε))
can be strictly less than h(T ).
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2.11 Probability laws and Bernoulli property

Let (X,F , μ) be a probability space and, whenever it is needed, a Lebesgue
space, and let T : X → X be an endomorphism that preserves μ. Let f and g be
real-valued square-integrable functions on X. For every positive integer n, the
n-th correlation of the pair f, g, is the number

Cn(f, g) :=
∫
f · (g ◦ Tn) dμ−

∫
f dμ

∫
g dμ.

provided the above integrals exist. Note that owing to the T -invariance of μ we
can also write

Cn(f, g) =
∫

(f − Ef)
(
(g − Eg) ◦ Tn) dμ,

where Ef =
∫
f dμ and Eg =

∫
g dμ.

Keep g : X → R a square-integrable function. The limit

σ2 = σ2(g) = lim
n→∞

1
n

∫ (n−1∑

j=0

g ◦ T j − nEg
)2

dμ (2.11.1)

is called the asymptotic variance or dispersion of g, provided it exists. Write
g0 = g − Eg. Then we can rewrite the above formula as

σ2 = lim
n→∞

1
n

∫ (n−1∑

j=0

g0 ◦ T j
)2

dμ. (2.11.2)

Another useful expression for the asymptotic variance is the following:

σ2(g) =
∫
g2
0 dμ+ 2

∞∑

j=1

∫
g0 · (g0 ◦ T j) dμ. (2.11.3)

The convergence of the series of correlations Cn(g, g) in (2.11.3) easily implies
that σ2(g) from this formula is equal to σ2, defined in (2.11.1): compare the
computation in the proof of Theorem 2.11.3 later on.

We say that the Law of Iterated Logarithm, LIL, holds for g if σ2(g) exists
(i.e. the above series converges) and

lim sup
n→∞

∑n−1
j=0 g ◦ T j − nEg√

n log log n
=

√
2σ2 μ- almost surely. (2.11.4)

μ almost surely (a.s.) means μ almost everywhere (a.e.). This is the language of
probability theory.

We say that the Central Limit Theorem, CLT, holds, if for all r ∈ R, in the
case σ2 �= 0,

μ

({

x ∈ X :

∑n−1
j=0 g ◦ T j − nEg√

n
< r

})

→ 1
σ
√

2π

∫ r

−∞
e−t

2/2σ2
dt, (2.11.5)
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and in the case σ2 = 0 the convergence holds for r �= 0 with 0 on the right-hand
side for r < 0 and 1 for r > 0.

The LIL and CLT for σ2 �= 0 are often, and this is the case in Theorem 2.11.1
below, a consequence of the Almost Sure Invariance Principle, ASIP, which says
that the sequence of random variables g, g ◦ T , g ◦ T 2, centred at the expectation
value (that is, if Eg = 0), is approximated by the rate n1/2−ε with some ε > 0,
depending on δ in Theorem 2.11.1 below, by a martingale difference sequence
and a respective Brownian motion.

Theorem 2.11.1. Let (X,F , μ) be a probability space and T an endomorphism-
preserving μ. Let G ⊂ F be a σ-algebra. Write Gnm :=

∨n
j=m T

−j(G) (notation
from Section 2.6) for all m ≤ n ≤ ∞, and suppose that the following property,
called φ-mixing, holds:

There exists a sequence φ(n), n = 0, 1, . . . of positive numbers satisfying

∞∑

n=1

φ1/2(n) <∞, (2.11.6)

such that for every A ∈ Gm0 and B ∈ G∞
n , 0 ≤ m ≤ n, we have

|μ(A ∩B) − μ(A)μ(B)| ≤ φ(n−m)μ(A). (2.11.7)

Now consider a G∞
0 measurable function g : X → R such that

∫
|g|2+δ dμ <∞ for some δ > 0,

and that for all n ≥ 1
∫

|h− E(h|Gn0 )|2+δ) dμ ≤ Kn−s, for K > 0, s > 0 large enough. (2.11.8)

(A concrete formula for s, depending on δ, can be given.)
Then g satisfies CLT and LIL.

LIL for σ2 �= 0 is a special case, for ψ(n) =
√

2 log log n, of the following
property for a square integrable function g : X → R for which σ2 exists, provided∫
g dμ = 0: for every real positive non-decreasing function ψ:

μ

⎛

⎝

⎧
⎨

⎩
x ∈ X :

n∑

j=0

g(T j(x)) > ψ(n)
√
σ2n for infinitely many n

⎫
⎬

⎭

⎞

⎠ = 0 or 1

according to whether the integral
∫∞
1

ψ(t)
t exp(− 1

2ψ
2(t)) dt converges or diverges.

As we have already remarked, this theorem, for σ2 �= 0, is a consequence of
the ASIP and similar conclusions for standard Brownian motion. We do not give
the proofs here. For the ASIP and further references see [Philipp & Stout, 1975,
Chapters 4 and 7]. Let us discuss only the existence of σ2. This follows from the
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following consequence of (2.11.7): for α, β square integrable real-valued functions
on X, α measurable with respect to Gm0 and β measurable with respect to G∞

n ,
we have

∣
∣
∣
∣

∫
(αβ dμ− EαEβ) dμ

∣
∣
∣
∣ ≤ 2(φ(n−m))1/2‖α‖2‖β‖2. (2.11.9)

The proof of this inequality is not difficult, but is tricky, with the use of the
Hölder inequality: see [Ibragimov 1962] or [Billingsley 1968]. It is sufficient to
work with simple functions α =

∑
i ai11Ai

, β =
∑
j aj11Aj

for finite partitions
(Ai) and (Bj), as in dealing with mixing properties in Section 2.10. Note that if
instead of (2.11.7) we have the stronger

|μ(A ∩B) − μ(A)μ(B)| ≤ φ(n−m)μ(A)μ(B), (2.11.10)

as will be the case in Chapter 5, then we very easily obtain in (2.11.9) the estimate
by φ(n−m)‖α‖1‖β‖1, by the same computation as for mixing in Section 2.10.

We may assume that g is centred at the expectation value. Write g = kn+rn =
E(g|G[n/2]

0 ) + (g − E(g|G[n/2]
0 ). We have

∣
∣
∣
∣

∫
g(g ◦ Tn) dμ

∣
∣
∣
∣ ≤
∣
∣
∣
∣

∫
kn(kn ◦ Tn) dμ

∣
∣
∣
∣+
∣
∣
∣
∣

∫
kn(rn ◦ Tn) dμ

∣
∣
∣
∣

+
∣
∣
∣
∣

∫
rn(kn ◦ Tn) dμ

∣
∣
∣
∣+
∣
∣
∣
∣

∫
rn(rn ◦ Tn) dμ

∣
∣
∣
∣

≤ 2(φ(n− [n/2]))1/2‖kn‖2
2 + 2‖kn‖2‖rn‖2 + ‖rn‖2

2

≤ 2(φ(n− [n/2]))1/2‖kn‖2
2 + 2K[n/2]−s‖kn‖2 +K[n/2]−2s,

the first summand estimated according to (2.11.9). For s > 1 we thus obtain
convergence of the series of correlations.

Let us go back to the discussion of the φ-mixing property. If G is associated to
a finite partition that is a one-sided generator, φ-mixing with φ(n) → 0 as n→ ∞
(that is, weaker than (2.11.6)), implies K-mixing (see Section 2.10). Indeed, B
is the same in both definitions, whereas A in K-mixing can be approximated by
sets belonging to Gm0 . We leave the details to the reader.

Intuitively, both notions mean that any event B in the remote future weakly
depends on the present state A: that is, |μ(B) − μ(B|A)| is small.

In applications G will be usually associated to a finite or countable partition.
In Theorems 2.11.1 the case σ2 = 0 is easy. It relies on Theorem 2.11.3 below.

Let us first introduce the following fundamental definition:

Definition 2.11.2. Two functions f, g : X → R (or C) are said to be co-
homologous in a space K of real (or complex) -valued functions on X (or f is
said to be co-homologous to g), if there exists h ∈ K such that

f − g = h ◦ T − h. (2.11.11)

If f, g are defined mod 0, then (2.11.11) is understood a.s. This formula is called
a cohomology equation.
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Theorem 2.11.3. Let f be a square integrable function on a probability space
(X,F , μ), centred at the expectation value. Assume that

∞∑

n=0

n|
∫
f · (f ◦ Tn) dμ| <∞. (2.11.12)

Then the following three conditions are equivalent:
(a) σ2(f) = 0;
(b) All the sums Sn = Snf =

∑n−1
j=0 f ◦ T j have the norm in L2 (the space

square integrable functions) bounded by the same constant;
(c) f is co-homologous to 0 in the space H = L2.

Proof. The implication (c)⇒(a) follows immediately from (2.11.1) after substi-
tuting f = h ◦ T − h. Let us prove (a)⇒(b). Write Cj for the correlations∫
f · (f ◦ T j) dμ, j = 0, 1, . . . . Then

∫
|Sn|2 dμ = nC2

0 + 2
n∑

j=1

(n− j)Cj

= n
(
C2

0 + 2
∞∑

j=1

Cj

)
− 2n

∞∑

j=n+1

Cj − 2
n∑

j=1

j · Cj = nσ2 − In − IIn.

Since In → 0 and IIn stays bounded as n → ∞ and σ2 = 0, we deduce that all
the sums Sn are uniformly bounded in L2.

(b)⇒(c): f = h◦T−h for any h, a limit in the weak topology, of the sequence
1
nSn bounded in L2(μ). We leave this easy computation to the reader. (This
computation will be given in detail in the similar situation of the Bogolyubov–
Krylov Theorem, in Remark 3.1.14.) ♣

Now Theorem 2.11.1 for σ2 = 0 follows from (c), which gives
∑n−1
j=0 f ◦ T j =

h ◦ Tn − h, with the use of the Borel–Cantelli lemma.

Remark. Theorem 2.11.1 in the two-sided case: where g depends on Gj = T j(G)
for j = . . . ,−1, 0, 1, . . . for an automorphism T , also holds. In (2.11.8) one should
replace Gn0 by Gn−n.

Given two finite partitions A and B of a probability space and ε ≥ 0, we
say that B is ε-independent of A if there is a subfamily A′ ⊂ A such that
μ(
⋃A′) > 1 − ε, and for every A ∈ A′

∑

B∈B

∣
∣
∣
∣
μ(A ∩B)
μ(A)

− μ(B)
∣
∣
∣
∣ ≤ ε. (2.11.13)

Given an ergodic measure-preserving endomorphism T : X → X of a
Lebesgue space, a finite partition A is called weakly Bernoulli (abbr. WB) if
for every ε > 0 there is an N = N(ε) such that the partition

∨s
j=n T

−j(A) is
ε-independent of the partition

∨m
j=0 T

−j(A) for every 0 ≤ m ≤ n ≤ s such that
n−m ≥ N .
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Of course, in the definition of ε-independence we can consider any measurable
(possibly uncountable) partition A and write conditional measures μA(B) in
(2.11.13). Then for T an automorphism we can replace in the definition of WB∨s
j=n T

−j(A) by
∨s−n
j=0 T

−j(A) and
∨m
j=0 T

−j(A) by
∨m−n
j=−n T

−j(A), and set
n = ∞, n−m ≥ N . WB in this formulation becomes one more version of weak
dependence of the present (and future) from the remote past.

If ε = 0 and N = 1, then all partitions T−j(A) are mutually independent
(recall that A,B are said to be independent if μ(A∩B) = μ(A)μ(B) for every A ∈
A, B ∈ B.). We then say that A is Bernoulli. If A is a one-sided generator (two-
sided generator), then clearly T on (X,F , μ) is isomorphic to a one-sided (two-
sided) Bernoulli shift of �A symbols: see Chapter 1, Example 1.9. The following
famous theorem of Friedman and Ornstein holds.

Theorem 2.11.4. If A is a finite, weakly Bernoulli, two-sided generating parti-
tion of X for an automorphism T , then T is isomorphic to a two-sided Bernoulli
shift.

Of course, the standard Bernoulli partition (and in particular the number of
its states) in the above Bernoulli shift can be different from the image under the
isomorphism of the WB partition.

The Bernoulli shift above is unique in the sense that all two-sided Bernoulli
shifts of the same entropy are isomorphic [Ornstein 1970].

Note that φ-mixing in the sense of (2.11.10), with φ(n) → 0, for G associated
to a finite partition A, implies a weak Bernoulli property.

The Central Limit Theorem is a much weaker property than LIL. We end
this section with a useful abstract theorem that allows us to deduce CLT for g
without specifying G. This theorem, similarly to Theorem 2.11.1, can be proved
with the use of an approximation by a martingale difference sequence.

Theorem 2.11.5. Let (X,F , μ) be a probability space and T : X → X an
automorphism-preserving μ. Let F0 ⊂ F be a σ-algebra such that T−1(F0) ⊂ F0.
Denote Fn = T−n(F0) for all integers n = . . . ,−1, 0, 1, . . . Let g be a real-valued
square integrable function. If

∑

n≥0

‖E(g|Fn) − Eg‖2 + ‖g − E(g|F−n)‖2 <∞, (2.11.14)

then g satisfies CLT.

Exercises

Ergodic theorems, ergodicity

2.1. Prove that for any two σ-algebras F ⊃ F ′ and φ an F-measurable function,
the conditional expectation value operator Lp(X,F , μ) � φ→ E(φ|F ′) has norm
1 in Lp, for every 1 ≤ p ≤ ∞.
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Hint: Prove that E((ϑ ◦ |φ|)|F ′) ≥ ϑ ◦ E((|φ|)|F ′) for convex ϑ, and in
particular for t �→ tp.
2.2. Prove that if S : X → X ′ is a measure-preserving surjective map for
measure spaces (X,F , μ) and (X ′,F ′, μ′), and there are measure-preserving
endomorphisms T : X → X and T ′ : X ′ → X ′ satisfying S ◦ T = T ′ ◦ S,
then T ergodic implies T ′ is ergodic, but not vice versa. Prove that if (X,F , μ)
is Rokhlin’s natural extension of (X ′,F ′, μ′), then (X ′,F ′, μ′) implies (X,F , μ)
is ergodic.
2.3. (a) Prove the Maximal Ergodic Theorem: Let f ∈ L1(μ) for T a measure-
preserving endomorphism of a probability space (X,F , μ). Then for A := {x :
supn≥0

∑n
i=0 f(T i(x)) > 0} it holds that

∫
A
f ≥ 0.

(b) Note that this implies the Maximal Inequality for the so-called maximal
function f∗ := supn≥1

1
n

∑n−1
i=0 f(T i(x)):

μ({f∗ > α} ≤ 1
α

∫

{f∗>α}
f dμ, for every real α.

(c) Deduce Birkhoff’s Ergodic Theorem.
Hint: One can proceed directly. Another way is to first prove the a.e. conver-

gence on a set D of functions dense in L1. Decomposed functions in L2 in sums
g = h1 + h2 , where h1 is T invariant in the case where T is an automorphism
(i.e. h1 = h1 ◦ T ) and h2 = −g ◦ T + g. Consider only g ∈ L∞. If T is not an
automorphism, h1 = U∗(h1) for U∗ being conjugate to the Koopman operator
U(f) = f ◦ T : compare Sections 5.2 and 5.7. To pass to the closure of D use the
Maximal Inequality. One can also just refer to the Banach Principle below. Its
assumption, supn |Tnf | < ∞ a.e. for Tnf = 0

n−1

∑n−1
k=0 f ◦ T k, follows from the

Maximal Inequality. See [Petersen 1983].
2.4. Prove the Banach Principle: Let 1 ≤ p <∞ and let {Tn} be a sequence of
bounded linear operators on Lp. If supn |Tnf | < ∞ a.e. for each f ∈ Lp, then
the set of f for which Tnf converges a.e. is closed in Lp.
2.5. Let (X,F , μ) be a probability space, and let F1 ⊂ F2 ⊂ · · · ⊂ F be an
increasing to F sequence of σ-algebras and φ ∈ Lp, 1 ≤ p ≤ ∞. Prove the
Martingale Convergence Theorem in the version of Theorem 2.1.4, saying that
φn := E(φ|Fn) → E(φ|F) a.e. and in Lp.

Steps:
(a) Prove: μ{maxi≤n φi > α} ≤ 1

α

∫
{maxi≤n φi>α} φn dμ. (Hint: decompose

X =
⋃n
k=1Ak, where Ak := {maxi<k φi ≤ α < φk}, and use the Tchebyshev

inequality on each Ak. Compare Lemma 2.5.1.)
(b) Use the Banach Principle, first checking the convergence a.e. on the set

of indicator functions on each Fn.
2.6. For a Lebesgue integrable function f : R → R the Hardy–Littlewod
maximal function is

Mf(t) = sup
ε>0

1
2ε

∫ ε

−ε
|f(t+ s)| ds.
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(a) Prove the Maximal Inequality of F. Riesz, m({x ∈ R : Mf(x) > α}) ≤
2
α‖f‖1, for every α > 0, where m is the Lebesgue measure.
(b) Prove the Lebesgue Differentiation Theorem: For a.e. t

lim
ε→0

1
2ε

∫ ε

−ε
|f(t+ s)| ds = f(t).

Hint: Use the Banach Principle (Exercise 2.4), using the fact that the above
equality holds on the set of differentiable functions, which is dense in L1.
(c) Generalize this theory to f : R

d → R, d > 1; the constant 2 is then
replaced by another constant resulting from the Besicovitch Covering Theorem:
see Chapter 8.

Lebesgue spaces, measurable partitions

2.7. Let T be an ergodic automorphism of a probability non-atomic measure
space, and A its partition into orbits {Tn(x), n = . . . ,−1, 0, 1 . . . }. Prove that
A is not measurable.

Suppose we do not assume ergodicity of T . What is the largest measurable
partition, smaller than the partition into orbits? (Hint: Theorem 2.8.11.)
2.8. Prove that the following partitions of measure spaces are not measurable:

(a) Let T : S1 → S1 be a mapping of the unit circle with Haar (length)
measure defined by T (z) = e2πiαz for an irrational α. P is the partition into
orbits.

(b) T is the automorphism of the two-dimensional torus R
2/Z2, given by a

hyperbolic integer matrix of determinant 1. Let P be the partition into stable,
or unstable, lines (i.e. straight lines parallel to an eigenvector of the matrix).

(c) Let T : S1 → S1 be defined by T (z) = z2. Let P be the partition into
grand orbits, i.e. equivalence classes of the relation x ∼ y iff ∃m,n ≥ 0 such that
Tm(x) = Tn(y).
2.9. Prove that every Lebesgue space is isomorphic to the unit interval equipped
with the Lebesgue measure together with countably many atoms.
2.10. Prove that every separable complete metrisable (Polish) space with a
measure on the σ-algebra containing all open sets, minimal among complete
measures, is a Lebesgue space.

Hint: [Rokhlin, 1949, 2.7].
2.11. Let (X,F , μ) be a Lebesgue space. Then Y ⊂ X,μe(Y ) > 0 is measurable
iff (Y,FY , μY ) is a Lebesgue space, where μe is the outer measure, FY = {A∩Y :
A ∈ F} and μY (A) = μe(A∩Y )

μe(Y ) .
Hint: If B=(Bn) is a basis for (X,F , μ), then (B′

n) = (Bn ∩ Y ) is a basis for
(Y,FY , μY ). Add to Y one point for each sequence (B′

n
εn) whose intersection is

missing in Y , and in the space Ỹ obtained in such a way generate the complete
measure space (Ỹ , F̃ , μ̃) from the extension B̃ of the basis (B′

n). Borel sets with
respect to B in X correspond to Borel sets with respect to B̃, and sets of μ
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measure 0 correspond to sets of μ̃ measure 0. So measurability of Y implies
μ̃(Ỹ \ Y ) = 0.
2.12. Prove Theorem 2.6.6.

Hint: In the case where both spaces are unit intervals with standard Lebesgue
measure, consider all intervals J ′ with rational end points. Each J = T−1(J ′) is
contained in a Borel set BJ with μ(BJ \ J) = 0. Remove from X a Borel set of
measure 0 containing

⋃
J(BJ \ J). Then T becomes a Borel map: hence it is a

Baire function, and hence, owing to the injectivity, it maps Borel sets to Borel
sets.
2.13. (a) Consider the unit square [0, 1]× [0, 1] equipped with a Lebesgue mea-
sure. For each x ∈ [0, 1] let Ax be the partition into points (x′, y) for x′ �= x
and the interval {x} × [0, 1]. What is

∧
xAx ? Let Bx be the partition into the

intervals {x′} × [0, 1] for x′ �= x and the points {(x, y) : y ∈ [0, 1]}. What is∨
x Bx?

(b) Find two measurable partitions A,A′ of a Lebesgue space such that their
set-theoretic intersection (i.e. the largest partition such that A,A′ are finer than
this partition) is not measurable.
2.14. Prove that if F : X → X is an ergodic endomorphism of a Lebesgue space
then its natural extension is also ergodic.

Hint: See [Kornfeld, Fomin & Sinai, 1982, Sec. 10.4].
2.15. Find an example of T : X → X an endomorphism of a probability space
(X,F , μ), injective and onto, such that for the system · · · T→ X

T→ X, natural
extension does not exist.

Hint: Set X to be the unit circle and T irrational rotation. Let A be a set
consisting of exactly one point in each T -orbit. Set B =

⋃
j≥0 T

j(A). Notice that
B is not Lebesgue measurable, and that the outer measure of B is 1 (use unique
ergodicity of T , i.e. that (2.2.2) holds for every x).

Let F be the σ-algebra consisting of all the sets C = B ∩D for D Lebesgue
measurable; set μ(C) = Leb(D), and for C ⊂ X \ B, set μ(C) = 0. Note
that

⋂
n≥0 T

n(B) = ∅, and in the set-theoretic inverse limit the set π−1
−n(B) =

π−1
0 (Tn(B)) would be of measure 1 for every n ≥ 0.

Entropy, generators, mixing

2.16. Prove Theorem 2.4.7 provided (X,F , ρ) is a Lebesgue space, using
Theorem 2.8.11 (ergodic decomposition theorem) for ρ.
2.17. (a) Prove that in a Lebesgue space d(A,B) := H(A|B) + H(B|A) is a
metric in the space Z of countable partitions (mod 0) of finite entropy. Prove
that the metric space (Z, d) is separable and complete.

(b) Prove that if T is an endomorphism of the Lebesgue space, then the
function A → h(T,A) is continuous for A ∈ Z with respect to the above metric d.

Hint: |h(T,A) − h(T,B)| ≤ max{H(A|B),H(B|A)}. Compare the proof of
Theorem 2.4.5.



9780521438001c02 CUP/PUK February 17, 2010 21:30 Page-64

64 Measure-preserving endomorphisms

2.18. (a) Let d0(A,B) :=
∑
i μ(Ai÷Bi) for partitions of a probability space into

r measurable sets A = {Ai, i = 1, . . . , r} and B = {Bi, i = 1, . . . , r}. Prove that
for every r and every d > 0 there exists d0 > 0 such that if A,B are partitions
into r sets and d0(A,B) < d0, then d(A,B) < d

(b) Using (a) give a simple proof of Corollary 2.8.10. (Hint: Given an arbi-
trary finite A construct B ≤ Bm so that d0(A,B) is small for m large. Next use
(a) and Theorem 2.4.4(d).)

2.19. Prove that there exists a finite one-sided generator for every T , a contin-
uous positively expansive map of a compact metric space (see the definition of
positively expansive in Chapter 3, Section 3.5).

2.20. Compute the entropy h(T ) for Markov chains: see Chapter 1.

2.21. Prove that the entropy h(T ) defined as supremum of h(T,A) over finite
partitions, or over countable partitions of finite entropy, or as sup H(ξ|ξ−) over
all measurable partitions ξ that are forward invariant (i.e. T−1(ξ) ≤ ξ), is the
same.

2.22. Let T be an endomorphism of the two-dimensional torus R
2/Z2, given

by an integer matrix of determinant larger than 1 and with eigenvalues λ1, λ2

such that |λ1| < 1 and |λ2| > 1. Let S be the endomorphism of R
2/Z2, being the

Cartesian product of S1(x) = 2x (mod 1) on the circle R/Z and of S2(y) = y+α
(mod 1), the rotation by an irrational angle α. Which of the maps T, S is exact?
Which has a countable one-sided generator of finite entropy?

Answer: T does not have the generator, but it is exact. The latter holds
because for each small parallelepiped P spanned by the eigendirections there
exists n such that Tn(P ) covers the torus (that is, T is topologically exact;
see Definition 4.3.3) with multiplicity bounded by a constant not depending
on P . This follows from the fact that λj are algebraic numbers, and from Roth’s
theorem about Diophantine approximation. S is not exact, but it is ergodic and
has a generator.

2.23. (a) Prove that ergodicity of an endomorphism T : X → X for a prob-
ability space (X,F , μ) is equivalent to the non-existence of a non-constant
measurable function φ such that UT (φ) = φ, where UT is the Koopman operator:
see 2.2.1 and the notes following it.

(b) Prove that for an automorphism T , weak mixing is equivalent to the
non-existence of a non-constant eigenfunction for UT acting on L2(X,F , μ).

(c) Prove that if T is a K-mixing automorphism then L2�constant functions
decomposes in a countable product of pairwise orthogonal UT -invariant sub-
spaces Hi, each of which contains hi such that for each i all U jT (hi), j ∈ Z are
pairwise orthogonal and span Hi. (This property is called a countable Lebesgue
spectrum.)

Hint: Use condition (d) in 2.10.1.

2.24. Prove that if the definition of partition A ε-independent of partition B
is replaced by

∑
A∈A,B∈B |μ(A ∩ B) − μ(A)μ(B)|, then the definition of weakly

Bernoulli is equivalent to the old one. (Note that now the expression is symmetric
with respect to A,B.)
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Bibliographical notes

For the Martingale Convergence Theorem see for example [Doob 1953], [Billings-
ley 1979], [Petersen 1983] or [Stroock 1993]. Its standard proofs go via a maximal
function: see Exercise 2.5. We borrowed the idea of relying on the Banach Prin-
ciple in Exercise 2.4 from [Petersen 1983]. We followed the way to use a maximal
inequality in the proof of the Shannon, McMillan, Breiman Theorem in Section
2.5, Lemma 2.5.1, where we relied on [Petersen 1983] and [Parry 1969]. Remark
2.1.5 is taken from [Neveu, 1964, Ch. 4.3]: see for example [Hoover 1991] for a
more advanced theory. In Exercises 2.3–2.6 we again took the idea of relying on
the Banach Principle from [Petersen 1983].

Standard proofs of Birkhoff’s Ergodic Theorem also use the idea of maximal
function. This concerns in particular the extremely simple proof in Section 2.2,
which has been taken from [Katok & Hasselblatt 1995]. It uses Garsia’s celebrated
proof of the Maximal Ergodic Theorem.

Koopman’s operator was introduced by Koopman in the L2 setting in
[Koopman 1931].

For the material of Section 2.6 and related exercises see [Rokhlin 1949]. It
is also written in an elegant and very concise way in [Cornfeld, Fomin & Sinai
1982].

The consideration in Section 2.7 leading to the extension of the compati-
ble family μ̃Π,n to μ̃Π is known as the Kolmogorov Extension Theorem (or the
Kolmogorov Theorem on the existence of stochastic process). First, one verifies
the σ-additivity of a measure on an algebra; next one uses the Extension The-
orem 2.7.2. Our proof of σ-additivity of μ̃ on X̃ via the Lusin Theorem is also
a variant of Kolmogorov’s proof. The proofs of σ-additivity on algebras depend,
unfortunately, on topological concepts. Halmos wrote [Halmos 1950, p. 212]:
‘This peculiar and somewhat undesirable circumstance appears to be unavoid-
able.’ Indeed, the σ-additivity may be not true: see [Halmos 1950, p. 214]. Our
example of the non-existence of natural extension (Exercise 2.15) is in the spirit
of Halmos’s example. There might even be trouble with extending a measure
from cylinders in the product of two measure spaces: see [Marczewski & Ryll-
Nardzewski 1953] for a counter-example. On the other hand, product measures
extend to generated σ-algebras without any additional assumptions [Halmos
1950], [Billingsley 1979].

For Theorem 2.9.1, the existence of a countable partition into cross-sections,
see [Rokhlin 1949]; for bounds of its entropy, see for example [Rokhlin 1967, The-
orem 10.2], or [Parry 1969]. The simple proof of Theorem 2.8.6 via convergence
in measure has been taken from [Rokhlin 1967] and [Walters 1982]. The proof of
Theorem 2.8.11(b) is taken from [Rokhlin 1967, sec. 8.10-11 and 9.8].

For Theorem 2.9.6 see [Parry 1969, L. 10.5]; our proof is different. For the con-
struction of a one-sided generator and a two-sided generator see again [Rokhlin
1967], [Parry 1969] or [Cornfeld, Fomin & Sinai 1982]. The same are references
to the theory of measurable invariant partitions (exhausting and extremal), and
to the Pinsker partition, which we omitted because we do not need these notions
further in the book, but which are fundamental to a deeper understanding of the
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measure-theoretic entropy theory. Finally we encourage the reader to become
acquainted with the spectral theory of dynamical systems, and in particular
in relation to mixing properties: for an introduction see for example [Cornfeld,
Fomin & Sinai 1982], [Parry 1981] (in particular Appendix), and [Walters 1982].

Theorem 2.11.1 can be found in [Philipp & Stout 1975]. See also [Przytycki,
Urbański & Zdunik 1989]. For (2.11.9) see [Ibragimov 1962, 1.1.2] or [Billingsley
1968]. For Theorem 2.11.3 see [Leonov 1961], [Ibragimov 1962, 1.5.2] or [Przy-
tycki, Urbański & Zdunik 1989, Lemma 1]. Theorem 2.11.5 can be found in
[Gordin 1969]. We owe the idea of the proof of the exactness via Roth’s theorem
in 2.22 to Wieslaw Szlenk. Generalizations to higher dimensions lead to Wolfgang
Schmidt’s Diophantine Approximation Theorem.
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3

Ergodic theory on compact
metric spaces

In the previous chapter a measure preserved by a measurable map T was given a
priori. Here a continuous mapping T of a topological compact space is given, and
we look for various measures preserved by T . Given a real continuous function φ
onX we try to maximize the functional measure theoretical entropy +integral, i.e.
hμ(T ) +

∫
φdμ. Supremum over all probability measures on the Borel σ-algebra

turns out to be topological pressure, similar to P in the Finite Variational Prin-
ciple or P (α) for φα on the Cantor set, discussed in the Introduction. We discuss
equilibria, that is, measures on which supremum is attained. This chapter pro-
vides an introduction to the theory called thermodynamical formalism, which
will be the main technical tool in this book. We shall continue to develop the
thermodynamical formalism in more specific situations in Chapter 5.

3.1 Invariant measures for continuous
mappings

We recall in this section some basic facts from functional analysis needed to
study the space of measures and invariant measures. We recall the Riesz Rep-
resentation Theorem, weak∗ topology, and the Schauder Fixed Point Theorem.
We also recall the Krein–Milman Theorem on extremal points, and its stronger
form, the Choquet Representation Theorem. This gives a variant of the Ergodic
Decomposition Theorem from Chapter 2.

Let X be a topological space. The Borel σ-algebra B of subsets of X is defined
to be generated by open subsets of X. We call every probability measure on the
Borel σ-algebra of subsets of X a Borel probability measure on X. We denote the
set of all such measures by M(X).

Denote by C(X) the Banach space of real-valued continuous functions on X
with the supremum norm: sup |φ| := supx∈X |φ(x)|. Sometimes we shall use the

67



9780521438001c03 CUP/PUK February 5, 2010 17:25 Page-68

68 Compact metric spaces

notation ||φ||∞, introduced in Section 2.1 in L∞(μ), although it is compatible
only if μ is positive on open sets, even in the absence of μ.

Note that each Borel probability measure μ on X induces a bounded linear
functional Fμ on C(X) defined by the formula

Fμ(φ) =
∫
φdμ. (3.1.1)

One can extend the notion of measure and consider σ-additive set functions,
known as signed measures. Just as in the definition of measure from Section 2.1
consider μ : F → [−∞,∞) or μ : F → (−∞,∞] and keep the notation (X,F , μ)
from Chapter 2. The set of signed measures is a linear space. On the set of finite
signed measures – that is, with the range R – one can introduce the following
total variation norm:

v(μ) := sup

{
n∑

i=1

|μ(Ai)|
}

,

where the supremum is taken over all finite sequences (Ai) of disjoint sets in F .
It is easy to prove that every finite signed measure is bounded, and that it

has finite total variation. It is also not difficult to prove the following theorem.

Theorem 3.1.1 (Hahn–Jordan decomposition). For every signed measure μ
on a σ-algebra F there exist Aμ ∈ F and two measures μ+ and μ− such that
μ = μ+ − μ−, μ− is zero on all measurable subsets of Aμ, and μ− is zero on all
measurable subsets of X \Aμ.

Note that v(μ) = μ+(X) + μ−(X).
A measure (or signed measure) is called regular if for every A ∈ F and ε > 0

there exist E1, E2 ∈ F such that E1 ⊂ A ⊂ IntE2, and for every C ∈ F with
C ⊂ E2 \ E1 we have |μ(C)| < ε.

If X is a topological space, denote the space of all regular finite signed mea-
sures with the total variation norm by rca(X). The abbreviation ‘rca’ replaces
regular countably additive.

If F = B, the Borel σ-algebra, and X is metrizable, regularity holds for
every finite signed measure. This can be proved by Carathéodory’s outer measure
argument: compare the proof of Corollary 2.8.10.

Denote by C(X)∗ the space of all bounded linear functionals on C(X). This
is called the dual space (or conjugate space). Bounded means here bounded on
the unit ball in C(X), which is equivalent to continuous. The space C(X)∗ is
equipped with the norm ||F || = sup{F (φ) : φ ∈ C(X), |φ| ≤ 1}, which makes it
a Banach space.

There is a natural order in rca(X): ν1 ≤ ν2 if and only if ν2−ν1 is a measure.
Also in the space C(X)∗ one can distinguish positive functionals, similar to

measures amongst signed measures, as those that are non-negative on the set of
functions C+(X) := {φ ∈ C(X) : φ(x) ≥ 0 for every x ∈ X}. This gives the
order: F ≤ G for F,G ∈ C(X)∗ if and only if G− F is positive.

Remark that F ∈ C(X)∗ is positive if and only if ||F || = F (11), where 11 is
the function on X identically equal to 1. Also, for every bounded linear operator
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F : C(X) → C(X) that is positive, namely F (C+(X)) ⊂ C+(X), we have
||F || = |F (11)|.

Note that (3.1.1) transforms measures to positive linear functionals.
The following fundamental theorem of F. Riesz says more about the trans-

formation μ �→ Fμ in (3.1.1) (see [Dunford & Schwartz, 1958, pp. 373, 380] for
the history of this theorem).

Theorem 3.1.2 (Riesz Representation Theorem). If X is a compact Hausdorff
space, the transformation μ �→ Fμ defined by (3.1.1) is an isometric isomorphism
between the Banach space C(X)∗ and rca(X). Furthermore, this isomorphism
preserves order.

In the sequel we shall often write μ instead of Fμ and vice versa, and μ(φ)
or μφ instead of Fμ(φ) or

∫
φdμ.

Note that in Theorem 3.1.2 the hard part is the existence: that is, that for
every F ∈ C(X)∗ there exists μ ∈ rca(X) such that F = Fμ. The uniqueness is
just the following.

Lemma 3.1.3. If μ and ν are finite regular Borel signed measures on a compact
Hausdorff space X, such that

∫
φdμ =

∫
φdν for each φ ∈ C(X), then μ = ν.

Proof. This is an exercise in the use of the regularity of μ and ν. Let η :=
μ− ν = η+ − η− in the Hahn–Jordan decomposition. Suppose that μ 	= ν. Then
η+ (or η−) is non-zero, say η+(X) = η+(Aη) = ε > 0, where Aη is the set
defined in Theorem 3.1.1. Let E1 be a closed set and E2 be an open set, such
that E1 ⊂ Aη ⊂ E2, η−(E2 \ Aη) < ε/2 and η+(Aη \ E1) < ε/2. There exists
φ ∈ C(X) with values in [0, 1] identically equal 1 on E1 and 0 on X \ E2. Then

∫
φdη =

∫

E1

φdη +
∫

Aη\E1

φdη +
∫

E2\Aη

φdη +
∫

X\E2

φdη

=
∫

E1

φdη+ +
∫

Aη\E1

φdη+ −
∫

E2\Aη

φdη−

≥ η+(E1) −
∫

E2\Aη

φdη−

≥ ε− ε/2 > 0. (3.1.2)

♣
The space C(X)∗ can be also equipped with the weak∗ topology. In the case

where X is metrizable – that is, if there exists a metric on X such that the
topology induced by this metric is the original topology on X – weak∗ topology
is characterized by the property that a sequence {Fn : n = 1, 2, . . .} of functionals
in C(X)∗ converges to a functional F ∈ C(X)∗ if and only if

lim
n→∞Fn(φ) = F (φ) (3.1.3)

for every function φ ∈ C(X).
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If we do not assume X to be metrizable, weak∗ topology is defined as the
smallest topology in which all elements of C(X) are continuous on C(X)∗ (recall
that φ ∈ C(X) acts on F ∈ C(X)∗ by F (φ)). One says weak∗ to distinguish this
topology from the weak topology, where one considers all continuous functionals
on C(X)∗ and not only those represented by f ∈ C(X). This discussion of
topologies of course concerns every Banach space B and its dual B∗.

Using the bijection established by the Riesz Representation Theorem we can
move the weak∗ topology from C(X)∗ to rca(X) and restrict it to M(X). The
topology onM(X) obtained in this way is usually called the weak∗ topology on the
space of probability measures (sometimes one omits ∗ to simplify the language
and notation, but one still has in mind weak∗, unless stated otherwise). In view
of (3.1.3), if X is metrizable, this topology is characterized by the property that
a sequence {μn : n = 1, 2, . . .} of measures in M(X) converges to a measure
μ ∈M(X) if and only if

lim
n→∞μn(φ) = μ(φ) (3.1.4)

for every function φ ∈ C(X). Such a convergence of measures will be called
a weak∗ convergence or weak convergence, and can be also characterized as
follows.

Theorem 3.1.4. Suppose that X is metrizable (we do not assume compactness
here). A sequence {μn : n = 1, 2, . . .}, of Borel probability measures on X con-
verges weakly to a measure μ if and only if limn→∞ μn(A) = μ(A) for every
Borel set A such that μ(∂A) = 0.

Proof. Suppose that μn → μ and μ(∂A) = 0. Then there exist sets E1 ⊂ IntA
and E2 ⊃ A such that μ(E2 \ E1) = ε is arbitrarily small. Indeed, metrizabil-
ity of X implies that every open set, and in particular intA, is the union of a
sequence of closed sets, and every closed set is the intersection of a sequence of
open sets. For example, IntA =

⋃∞
n=1{x ∈ X : infz/∈intA ρ(x, z) ≥ 1/n} for a

metric ρ.
Next, there exist f, g ∈ C(X) with range in the unit interval [0, 1] such that

f is identically 1 on E1, 0 on X \ intA, g identically 1 on clA and 0 on X \ E2.
Then μn(f) → μ(f) and μn(g) → μ(g). As μ(E1) ≤ μ(f) ≤ μ(g) ≤ μ(E2) and
μn(f) ≤ μn(A) ≤ μn(g), we obtain

μ(E1) ≤ μ(f) = lim
n→∞μn(f) ≤ lim inf

n→∞ μn(A)

≤ lim sup
n→∞

μn(A) ≤ lim
n→∞μn(g) = μ(g) ≤ μ(E2).

As also μ(E1) ≤ μ(A) ≤ μ(E2), letting ε→ 0 we obtain limn→∞ μn(A) = μ(A).
Proof in the opposite direction follows from the definition of an integral:

approximate an arbitrary continuous function f uniformly by simple functions
∑k
i=1 εi11Ei

, where Ei = {x ∈ X : εi ≤ f(x) < εi+1}, for an increasing sequence
εi, i = 1, . . . , k such that εi − εi−1 < ε and μ(f−1({εi})) = 0, with ε → 0. It is
possible to find such numbers εi because only countably many sets f−1(a) for
a ∈ R can have non-zero measure. ♣
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Example 3.1.5. The assumption μ(∂A) = 0 is substantial. LetX be the interval
[0, 1]. Denote by δx the delta Dirac measure concentrated at the point x, which
is defined by the formula

δx(A) =

{
1, if x ∈ A

0, if x /∈ A

for all sets A ∈ B .
Consider non-atomic probability measures μn supported respectively on the

ball B(x, 1
n ). The sequence μn converges weakly to δx but does not converge

on {x}.
Of particular importance is the following theorem.

Theorem 3.1.6. The space M(X) is compact in the weak∗ topology.

This theorem follows immediately from compactness in the weak∗ topology of
any subset of C(X)∗ closed in weak∗ topology, which is bounded in the standard
norm of the dual space C(X)∗ (compare for example [Dunford & Schwartz,
1958, V.4.3], where this result is proved for all spaces dual to Banach spaces).
M(X) is weak∗-closed, since it is closed in the dual space norm, and convex
by the Hahn–Banach Theorem. (Caution: convexity is a substantial assumption.
Indeed, the unit sphere in an infinite dimensional Banach space, for example, is
never weak∗-closed, as 0 is in its closure.)

It turns out (see [Dunford & Schwartz, 1958, V.5.1]) that if X is compact
metrizable, then every weak∗-compact subset of the space C(X)∗ with weak∗

topology is metrizable: hence, in particular, M(X) is metrizable. (Caution:
C(X)∗ itself is not metrizable for infinite X. The reason is for example that
it does not have a countable basis of topology at 0.)

Let now T : X → X be a continuous transformation of X. The mapping
T is measurable with respect to the Borel σ-algebra. At the very begining of
Section 2.2 we defined T -invariant measures μ to satisfy the condition μ = μ ◦
T−1. This means that Borel probability T -invariant meaures are exactly the
fixed points of the transformation T∗ : M(X) → M(X) defined by the formula
T∗(μ) = μ ◦ T−1.

We denote the set of all T -invariant measures in M(X) by M(X,T ). This
notation is consistent with the notation from Section 2.2. We omit here the
σ-algebra F because it is always the Borel σ-algebra B.

Noting that
∫
φd(μ ◦ T−1) =

∫
φ ◦ T dμ for any μ ∈ M(X) and any inte-

grable function φ (Proposition 2.2.1), it follows from Lemma 3.1.3 that a Borel
probability measure μ is T -invariant if and only if for every continuous function
φ : X → R ∫

φdμ =
∫
φ ◦ T dμ. (3.1.5)

In order to look for fixed points of T∗ one can apply the following very general
result, whose proof (and the definition of locally convex topological vector spaces,
abbreviation: LCTVS) can be found for example in [Dunford & Schwartz 1958]
or [Edwards 1995].
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Theorem 3.1.7 (Schauder–Tychonoff Theorem [Dunford & Schwartz, 1958,
V.10.5]). If K is a non-empty compact convex subset of an LCTVS, then any
continuous transformation H : K → K has a fixed point.

Assume from now on that X is compact and metrizable. In order
to apply the Schauder–Tychonoff Theorem consider the LCTVS C(X)∗ with
weak∗ topology and K ⊂ C(X)∗, being the image of M(X) under the identi-
fication between measures and functionals, given by the Riesz Representation
Theorem. With this identification we can consider T∗ acting on K. Note that T∗
is continuous on M(X) (or K) in the weak∗ topology. Indeed, if μn → μ weakly∗,
then for every continuous function φ : X → R, since φ ◦ T is continuous, we get
μn(φ◦T ) → μ(φ◦T ), i.e. T∗(μn)(φ) → T∗(μ)(φ), hence T∗(μn) → T∗(μ) weakly∗.

We obtain

Theorem 3.1.8 (Bogolyubov–Krylov Theorem [Walters 1982, 6.9.1]). If T :
X → X is a continuous mapping of a compact metric space X, then there exists
on X a Borel probability measure μ invariant under T .

Thus our space M(X,T ) is non-empty. It is also weak∗ compact, since it is
closed as the set of fixed points for a continuous transformation.

As an immediate consequence of this theorem and Theorem 2.8.11 (the
Ergodic Decomposition Theorem), we get the following:

Corollary 3.1.9. If T : X → X is a continuous mapping of a compact met-
ric space X, then there exists a Borel ergodic probability measure μ invariant
under T .

We shall use the notation Me(X,T ) for the set of all ergodic measures in
M(X,T ). Write also E(M(X,T )) for the set of extreme points in M(X,T ).

Thus, because of Theorem 2.2.8 and Corollary 3.1.9, we know that
Me(X,T ) = E(M(X,T )) 	= ∅.

In fact, Corollary 3.1.9 can be obtained in a more elementary way without
using Theorem 2.8.11: it now follows immediately from Theorem 2.2.8 and the
following theorem.

Theorem 3.1.10 (Krein–Milman theorem on extremal points [Dunford &
Schwartz, 1958, V.8.4]). If K is a non-empty compact convex subset of an
LCTVS, then the set E(K) of extreme points of K is non-empty; moreover K is
the closure of the convex hull of E(K).

Below we state Choquet’s Representation Theorem, which is stronger than
the Krein–Milman theorem. It corresponds to the Ergodic Decomposition
Theorem (Theorem 2.8.11). We formulate it in C(X)∗ with weak∗ topology as in
[Walters, 1982, p. 153]. The reader can find a general LCTVS version in [Phelps
1966]. For example, it is sufficient to add to the assumptions of the Krein–Milman
theorem the metrizability of K.

We rely here also on [Ruelle 1978a, Appendix A.5], where the reader can find
further references.
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Theorem 3.1.11 (Choquet Representation Theorem). Let K be a non-empty
compact convex set in M(X) with weak∗ topology, for X a compact metric space.
Then for every μ ∈ K there exists a ‘mass distribution’, i.e. a measure αμ ∈
M(E(K)), such that

μ =
∫
mdαμ(m).

This integral converges in weak∗ topology, which means that for every f ∈ C(X)

μ(f) =
∫
m(f) dαμ(m). (3.1.6)

Note that we have already had a formula analogous to (3.1.6) in Remark
2.6.10.

Note that the Krein–Milman Theorem follows from the Choquet Represen-
tation Theorem because one can weakly approximate αμ by measures on E(K)
with finite support (finite linear combinations of Dirac measures).

Exercise. Prove that if we allow αμ to be supported on the closure of E(K),
then the existence of such αμ follows from the Krein–Milman Theorem.

Example 3.1.12. For K = M(X) we have E(K) = {Dirac measures on X}.
Then αμ{δx : x ∈ A} = μ(A) for every A ∈ B defines a Choquet representation
for every μ ∈M(X). (Exercise)

Choquet’s Theorem asserts the existence of αμ satisfying (3.1.6) but does
not claim uniqueness, which is usually not true. A compact closed set K with
the uniqueness of αμ satisfying (3.1.6) for every μ ∈M(K) is called simplex (or
Choquet simplex).

Theorem 3.1.13. The set K = M(X) or K = M(X,T ) for every continuous
T : X → X is a simplex.

A proof in the case of K = M(X) is very easy: see Example 3.1.12. A proof
for K = M(X,T ) is not hard either. The reader can look in [Ruelle 1978a,
A.5.5]. The proof there relies on the fact that two different measures μ1, μ2 ∈
E(M(X,T )) are singular (see Theorem 2.2.6). Observe that ||μ1 − μ2|| = 2. One
proves in fact that for every μ1, μ2 ∈M(X,T ), ||αμ1 − αμ2 || = ||μ1 − μ2||.

Let us go back to the Schauder–Tychonoff Theorem (Theorem 3.1.7). We
shall use it in this book later, in Section 5.2, for maps different from T∗. The
Bogolyubov–Krylov Theorem proved above with the help of Theorem 3.1.7 has
a different, more elementary proof owing to the fact that T∗ is affine. A general
theorem on the existence of a fixed point for a family of commuting continuous
affine maps on K is called the Markov–Kakutani Theorem [Dunford & Schwartz,
1958, V.10.6], [Walters, 1982, 6.9]).

Remark 3.1.14. An alternative proof of Theorem 3.1.8. Take an arbitrary
ν ∈M(X) and consider the sequence

μn = μn(ν) =
1
n

n−1∑

j=0

T j∗ (ν).
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In view of Theorem 3.1.4, it has a weakly convergent sub-sequence, say {μnk
:

k = 1, 2, . . .}. Denote its limit by μ. We shall show that μ is T -invariant.
We have

T∗(μnk
) = T∗

⎛

⎝ 1
nk

nk−1∑

j=0

T j∗ (ν)

⎞

⎠ =

⎛

⎝ 1
nk

nk−1∑

j=0

T j+1
∗ (ν)

⎞

⎠ .

So for every φ ∈ C(X) we have

|μ(φ) − T∗(μ(φ))| =
∣
∣
∣
∣ lim
k→∞

(
μnk

(φ) − T∗(μnk
)(φ)

)∣∣
∣
∣

≤ lim
k→∞

1
nk

|ν(φ) − Tnk∗ (ν)(φ)| ≤ lim
k→∞

2
nk

||φ||∞ = 0.

This, in view of Lemma 3.1.3, finishes the proof.

Remark 3.1.15. If in the above proof we consider ν = δx, a Dirac measure, then
T j∗ (δx) = δT j(x) and μn(φ) = 1

n

∑n−1
j=0 φ(T j(x)). If we have a priori μ ∈M(X,T )

then

μn(δx) =
1
n

n−1∑

j=0

δT j(x)

is weakly convergent for μ-a.e. x ∈ X by Birkhoff’s Ergodic Theorem.

Remark 3.1.16. Recall that in Birkhoff’s Ergodic Theorem (Chapter 2), for
μ ∈M(X,T ) for every integrable function φ : X → R one considers
limn→∞ 1

n

∑n−1
j=0 φ(T j(x)) for a.e. x. This ‘almost every’ depends on φ. If X is

compact, as is the case in this chapter, one can reverse the order of quantifiers
for continuous functions.

That is, there exists Λ ∈ B such that μ(Λ) = 1 and for every φ ∈ C(X) and
x ∈ Λ the limit limn→∞ 1

n

∑n−1
j=0 φ(T j(x)) exists.

Remark 3.1.17. We could take in Remark 3.1.14 an arbitrary sequence νn ∈
M(X) and take μn := μn(νn). This gives a general method of constructing
measures in the space M(X,T ): see for example the proof of the Variational
Principle in Section 3.5. This point of view is taken from [Walters 1982].

We end this section with the following lemma, useful in the sequel.

Lemma 3.1.18. For every finite partition P of the space (X,B, μ), with X a
compact metric space, B the Borel σ-algebra and μ ∈M(X,T ), if

∑
A∈P μ(∂A) =

0, then the entropy Hν(P) is a continuous function of ν ∈ M(X,T ) at μ. The
entropy hν(T,P) is upper semi-continuous at μ.

Proof. The continuity of Hν(P) follows immediately from Theorem 3.1.4. This
fact, applied to the partitions

∨n−1
i=1 T

−i P, gives the upper semi-continuity of
hν(T,P) being the limit of the decreasing sequence of continuous functions
1
n Hν(

∨n−1
i=1 T

−i P). See Lemma 2.4.3. ♣
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3.2 Topological pressure and topological
entropy

This section is of topological character, and no measure is involved. We intro-
duce and examine here some basic topological invariants coming from the
thermodynamic formalism of statistical physics.

Let U = {Ai}i∈I and V = {Bj}j∈J be two covers of a compact metric space
X, that is UU = UV = X. We define the new cover U ∨ V, putting

U ∨ V = {Ai ∩Bj : i ∈ I, j ∈ J} (3.2.1)

and we write
U ≺ V ⇐⇒ ∀j∈J∃i∈IBj ⊂ Ai. (3.2.2)

Let, as in the previous section, T : X→X be a continuous transformation of
X. Let φ : X → R be a continuous function. In the context of this book such a
function is often called a potential. Let U be a finite, open cover of X. For every
integer n ≥ 1, we set

Un = U ∨ T−1(U) ∨ . . . ∨ T−(n−1)(U),

for every set Y ⊂ X,

Snφ(Y ) = sup

{
n−1∑

k=0

φ ◦ T k(x) : x ∈ Y

}

,

and for every n ≥ 1,

Zn(φ,U) = inf
V

{
∑

U∈V
expSnφ(U)

}

, (3.2.3)

where V ranges over all covers of X contained (in the sense of inclusion) in Un.
The quantity Zn(φ,U) is sometimes called the partition function.

Lemma 3.2.1. The limit P(φ,U) = limn→∞ 1
n logZn(φ,U) exists, and moreover

it is finite. In addition, P(φ,U) ≥ −||φ||∞.

Proof. Fix m,n ≥ 1 and consider arbitrary covers V ⊂ Um, G ⊂ Un of X. If
U ∈V and V ∈G then

Sm+nφ(U ∩ T−m(V )) ≤ Smφ(U) + Snφ(V )

and thus

exp
(
Sm+nφ(U ∩ T−m(V ))

) ≤ expSmφ(U) expSnφ(V ).

Since U ∩T−m(V ) ∈ V∨T−m(G) ⊂ Um∨T−m(Un) = Um+n, we therefore obtain

Zm+n(φ,U) ≤
∑

U∈V

∑

V∈G
exp
(
Sm+nf(U ∩ T−m(V ))

)

≤
∑

U∈V

∑

V∈G
expSmφ(U) expSnφ(V )

=
∑

U∈V
expSmφ(U) ×

∑

V∈G
expSnφ(V ). (3.2.4)
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Ranging now over all V and G as specified in (3.2.3), we get Zm+n(φ,U) ≤
Zm(φ,U) · Zn(φ,U). This implies that

logZm+n(φ,U) ≤ logZm(φ,U) + logZn(φ,U).

Moreover, Zn(φ,U) ≥ exp(−n||φ||∞). So logZn(φ,U) ≥ −n||φ||∞. Now to
complete the proof we apply Lemma 2.4.3. ♣

Notice that although, in the notation P(φ,U), the transformation T does not
directly appear, this quantity obviously also depends on T . If we want to indi-
cate this dependence we write P(T, φ,U), and similarly Zn(T, φ,U) for Zn(φ,U).
Given an open cover V of X let

osc(φ,V) = sup
V ∈V

(
sup{|φ(x) − φ(y)| : x, y ∈ V }).

Lemma 3.2.2. If U and V are finite open covers of X such that U � V, then
P(φ,U) ≥ P(φ,V) − osc(φ,V).

Proof. Take U ∈ Un. Then there exists V = i(U) ∈ Vn such that U ⊂ V . For
every x, y ∈ V we have |Snφ(x) − Snφ(y)| ≤ osc(φ,V)n, and therefore

Snφ(U) ≥ Snφ(V ) − osc(φ,V)n. (3.2.5)

Let now G ⊂ Un be a cover of X and let G̃ = {i(U) : U ∈ Un}. The family G̃ is
also an open finite cover of X and G̃ ⊂ Vn. In view of (3.2.5) and (3.2.3) we get

∑

U∈G
expSnφ(U) ≥

∑

V∈G̃
expSnφ(V )e− osc(φ,V)n ≥ e− osc(φ,V)nZn(φ,V).

Therefore, applying (3.2.3) again, we get Zn(φ,U) ≥ exp(− osc(φ,V)n)Zn(φ,V).
Hence P(φ,U) ≥ P(φ,V) − osc(φ,V). ♣
Definition 3.2.3 (topological pressure). Consider now the family of all
sequences (Vn)∞n=1 of open finite covers of X such that

lim
n→∞ diam(Vn) = 0, (3.2.6)

and define the topological pressure P(T, φ) as the supremum of upper limits

lim sup
n→∞

P(φ,Vn),

taken over all such sequences. Note that, by Lemma 3.2.1, P(T, φ) ≥ −||φ||∞.

The following lemma gives us a simpler way to calculate topological pressure,
showing that in fact we do not have to take the supremum in its definition.

Lemma 3.2.4. If (Un)∞n=1 is a sequence of open finite covers of X such that
limn→∞ diam(Un) = 0, then the limit limn→∞ P(φ,Un) exists and is equal to
P(T, φ).
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Proof. Assume first that P(T, φ) is finite, and fix ε > 0. By the definition of
pressure and uniform continuity of φ there exists W, an open cover of X, such
that

osc(φ,W) ≤ ε

2
and P(φ,W) ≥ P(T, φ) − ε

2
. (3.2.7)

Fix now q ≥ 1 so large that, for all n ≥ q, diam(Un) does not exceed a Lebesgue
number of the cover W. Take n ≥ q. Then Un � W, and applying (3.2.7) and
Lemma 3.2.2 we get

P(φ,Un) ≥ P(φ,W) − ε

2
≥ P(T, φ) − ε

2
− ε

2
= P(T, φ) − ε. (3.2.8)

Hence letting ε→ 0, lim infn→∞ P(φ,Un) ≥ P(T, φ). This completes the proof in
the case of finite pressure P(T, φ). Note also that the same proof actually goes
through in the infinite case. ♣

Since in the definition of numbers P(φ,U) no metric was involved, they do
not depend on a compatible metric under consideration. And since also the
convergence to zero of diameters of a sequence of subsets of X does not depend
on a compatible metric, we come to the conclusion that the topological pressure
P(T, φ) is independent of any compatible metric (this of course depends on the
topology).

Readers familiar with directed sets will notice easily that the family of all
finite open covers U of X equipped with the relation ‘≺’ is a directed set, and
topological pressure P(T, φ) is the limit of the generalized sequence P(φ,U).
However, we can assure them that this remark will not be used anywhere in this
book.

Definition 3.2.5 (topological entropy). If the function φ is identically zero, the
pressure P(T, φ) is usually called the topological entropy of the map T , and is
denoted by htop(T ). Thus we can define

htop(T ) := sup
U

lim sup
n→∞

1
n

log
(

inf
Un≺V

#V
)

.

Note that, because φ ≡ 0, we could replace limdiam(U)→0 P(φ,U) in the definition
of topological pressure by supU here, and V being a subset of Un by Un ≺ V.

In the rest of this section we establish some basic elementary properties of
pressure and provide its more effective characterizations. Applying Lemma 3.2.2,
we obtain the following.

Corollary 3.2.6. If U is a finite, open cover of X, then P(T, φ) ≥ P(φ,U) −
osc(φ,U).

Lemma 3.2.7. P(Tn, Snφ) = nP(T, φ) for every n ≥ 1. In particular,
htop(Tn) = nhtop(T ).

Proof. Put g = Snφ. Take U , a finite open cover of X. Let U = U∨T−1(U)∨. . .∨
T−(n−1)(U). Since now we are actually dealing with two transformations T and
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Tn, we do not use the symbol Un, in order to avoid possible misunderstandings.
For any m ≥ 1 consider an open set U ∈ U ∨ T−1(U) ∨ . . . ∨ T−(nm−1)(U) =
U ∨ T−n(U) ∨ . . . ∨ T−n(m−1)(U). Then for every x ∈ U we have

mn−1∑

k=0

φ ◦ T k(x) =
m−1∑

k=0

g ◦ Tnk(x),

and therefore Smnφ(U) = Smg(U), where the symbol Sm is considered here with
respect to the map Tn. Hence Zmn(T, φ,U) = Zm(Tn, g,U), and this implies
that P(Tn, g,U) = nP(T, φ,U). Since, given a sequence (Uk)∞k=1 of open covers
of X whose diameters converge to zero, the diameters of the sequence of its
refinements Uk also converge to zero, applying Lemma 3.2.4 now completes the
proof. ♣
Lemma 3.2.8. If T : X → X and S : Y → Y are continuous mappings of
compact metric spaces, and π : X → Y is a continuous surjection such that
S ◦ π = π ◦ T , then for every continuous function φ : Y → R we have P(S, φ) ≤
P(T, φ ◦ π).

Proof. For every finite, open cover U of Y we get

P(S, φ,U) = P(T, φ ◦ π, π−1(U)). (3.2.9)

In view of Corollary 3.2.6 we have

P(T, φ ◦ π) ≥ P(T, φ ◦ π, π−1(U)) − osc(φ ◦ π, π−1(U))
= P(T, φ ◦ π, π−1(U)) − osc(φ,U). (3.2.10)

Let (Un)∞n=1 be a sequence of open finite covers of Y whose diameters converge to
0. Then also limn→∞ osc(φ,Un)) = 0 and therefore, using Lemma 3.2.4, (3.2.9)
and (3.2.10) we obtain

P(S, φ) = lim
n→∞P(S, φ,Un) = lim

n→∞P(T, φ ◦ π, π−1(Un)) ≤ P(T, φ ◦ π).

The proof is complete. ♣
In the sequel we shall need the following technical result.

Lemma 3.2.9. If U is a finite open cover of X, then P(φ,Uk) = P(φ,U) for
every k ≥ 1.

Proof. Fix k ≥ 1 and let γ = sup{|Sk−1φ(x)| : x ∈ X}. Since Sk+n−1φ(x) =
Snφ(x) + Sk−1φ(Tn(x)), for every n ≥ 1 and x ∈ X we get

Snφ(x) − γ ≤ Sk+n−1φ(x) ≤ Snφ(x) + γ.

Therefore, for every n ≥ 1 and every U ∈ Uk+n−1,

Snφ(U) − γ ≤ Sk+n−1φ(U) ≤ Snφ(U) + γ.

Since (Uk)n = Uk+n−1, these inequalities imply that

e−γZn(φ,Uk) ≤ Zn+k−1(φ,U) ≤ eγZn(φ,Uk).
Letting now n→ ∞, the required result follows. ♣
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3.3 Pressure on compact metric spaces

Let ρ be a metric on X. For every n ≥ 1 we define the new metric ρn on X by
putting

ρn(x, y) = max{ρ(T j(x), T j(y)) : j = 0, 1, . . . , n− 1}.
Given r > 0 and x ∈ X, by Bn(x, r) we denote the open ball in the metric ρn
centred at x and of radius r. Let ε > 0 and let n ≥ 1 be an integer. A set F ⊂ X
is said to be (n, ε)-spanning if and only if the family of balls {Bn(x, ε) : x ∈ F}
covers the space X. A set S ⊂ X is said to be (n, ε)-separated if and only if
ρn(x, y) ≥ ε for any pair x, y of different points in S. The following fact is
obvious.

Lemma 3.3.1. Every maximal, in the sense of inclusion, (n, ε)-separated set
forms an (n, ε)-spanning set.

We should like to emphasize here that the word ‘maximal’ refering to sep-
arated sets will in this book always be understood in the sense of inclusion
and not in the sense of cardinality. We finish this section with the following
characterization of pressure.

Theorem 3.3.2. For every ε > 0 and every n ≥ 1 let Fn(ε) be a maximal
(n, ε)-separated set in X. Then

P(T, φ) = lim
ε→0

lim sup
n→∞

1
n

log
∑

x∈Fn(ε)

expSnφ(x)

= lim
ε→0

lim inf
n→∞

1
n

log
∑

x∈Fn(ε)

expSnφ(x).

Proof. Fix ε > 0, and let U(ε) be a finite cover of X by open balls of radii ε/2.
For any n ≥ 1 consider U , a subcover of U(ε)n such that

Zn(φ,U(ε)) =
∑

U∈U
expSnφ(U),

where Zn(φ,U(ε)) was defined by formula (3.2.3). For every x ∈ Fn(ε), let U(x)
be an element of U containing x. Since Fn(ε) is an (n, ε)-separated set, we deduce
that the function x �→ U(x) is injective. Therefore

Zn(φ,U(ε)) =
∑

U∈U
expSnφ(U) ≥

∑

x∈Fn(ε)

expSnφ(U(x)) ≥
∑

x∈Fn(ε)

expSnφ(x).

Thus, by Lemma 3.2.1,

P(φ,U(ε)) ≥ lim sup
n→∞

1
n

log
∑

x∈Fn(ε)

expSnφ(x).
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Hence, letting ε→ 0 and applying Lemma 3.2.4, we get

P(T, φ) ≥ lim sup
ε→0

lim sup
n→∞

1
n

log
∑

x∈Fn(ε)

expSnφ(x). (3.3.1)

Now let V be an arbitrary finite open cover of X, and let δ > 0 be a Lebesgue
number of V. Take ε < δ/2. Since for any k = 0, 1, . . . , n − 1 and for every
x ∈ Fn(ε),

diam
(
T k(Bn(x, ε))

) ≤ 2ε < δ,

we conclude that, for some Uk(x) ∈ V,

T k(Bn(x, ε)) ⊂ Uk(x).

Since the family {Bn(x, ε) : x ∈ Fn(ε)} covers X (by Lemma 3.3.1), this implies
that the family {U(x) : x ∈ Fn(ε)} ⊂ Vn also covers X, where U(x) = U0(x) ∩
T−1(U1(x)) ∩ . . . ∩ T−(n−1)(Un−1(x)). Therefore

Zn(φ,V) ≤
∑

x∈Fn(ε)

expSnφ(U(x)) ≤ exp
(
osc(φ,V)n)

∑

x∈Fn(ε)

expSnφ(x).

Hence
P(φ,V) ≤ osc(φ,V) + lim inf

n→∞
1
n

log
∑

x∈Fn(ε)

expSnφ(x),

and consequently

P(φ,V) − osc(φ,V) ≤ lim inf
ε→0

lim inf
n→∞

1
n

log
∑

x∈Fn(ε)

expSnφ(x).

Letting diam(V) → 0, we get

P(T, φ) ≤ lim inf
ε→0

lim inf
n→∞

1
n

log
∑

x∈Fn(ε)

expSnφ(x).

Combining this and (3.3.1) completes the proof. ♣
Frequently we shall use the notation

P(T, φ, ε) := lim sup
n→∞

1
n

log
∑

x∈Fn(ε)

expSnφ(x)

and
P(T, φ, ε) := lim inf

n→∞
1
n

log
∑

x∈Fn(ε)

expSnφ(x).

These limits also depend on the sequence (Fn(ε))∞n=1 of maximal (n, ε)-separated
sets under consideration. However, it will be always clear from the context which
sequence is being considered.
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3.4 Variational Principle

In this section we shall prove the theorem called the Variational Principle. It has
a long history, and establishes a useful relationship between measure-theoretic
dynamics and topological dynamics.

Theorem 3.4.1 (Variational Principle). If T : X → X is a continuous transfor-
mation of a compact metric space X, and φ : X → R is a continuous function,
then

P(T, φ) = sup
{

hμ(T ) +
∫
φdμ : μ ∈M(T )

}

,

where M(T ) denotes the set of all Borel probability T -invariant measures on X.
In particular, for φ ≡ 0,

htop(T ) = sup{hμ(T ) : μ ∈M(T )}.
The proof of this theorem consists of two parts. In Part I we show that

hμ(T ) +
∫
φdμ ≤ P(T, φ) for every measure μ ∈ M(T ), and Part II is devoted

to proving the inequality sup{hμ(T ) +
∫
φdμ : μ ∈M(T )} ≥ P(T, φ).

Proof of Part I. Let μ ∈ M(T ). Fix ε > 0 and consider a finite partition U =
{A1, . . . , As} of X into Borel sets. One can find compact sets Bi ⊂ Ai, i =
1, 2, . . . , s, such that for the partition V = {B1, . . . , Bs,X \ (B1 ∪ . . . ∪ Bs)} we
have

Hμ(U|V) ≤ ε,

where the conditional entropy Hμ(U|V) has been defined in (2.3.3). Therefore,
as in the proof of Theorem 2.4.4(d), we get for every n ≥ 1 that

Hμ(Un) ≤ Hμ(Vn) + nε. (3.4.1)

Our first aim is to estimate from the above the number Hμ(Vn) +
∫
Snφdμ.

Putting bn =
∑
B∈Vn expSnφ(B), keeping the notation k(x) = −x log x, and

using concavity of the logarithmic function, we obtain by Jensen inequality

Hμ(Vn) +
∫
Snφdμ ≤

∑

B∈Vn

μ(B)
(
Snφ(B) − log μ(B)

)

=
∑

B∈Vn

μ(B) log
(
eSnφ(B)/μ(B)

)

≤ log

(
∑

B∈Vn

eSnφ(B)

)

. (3.4.2)

(Compare the Finite Variational Principle in the Introduction).
Now take 0 < δ < 1

2 inf{ρ(Bi, Bj) : 1 ≤ i 	= j ≤ s} > 0 so small that

|φ(x) − φ(y)| < ε (3.4.3)

whenever ρ(x, y) < δ. Consider an arbitrary maximal (n, δ)-separated set En(δ).
Fix B ∈ Vn. Then, by Lemma 3.3.1, for every x ∈ B there exists y ∈ En(δ) such
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that x ∈ Bn(y, δ), whence |Snφ(x) − Snφ(y)| ≤ εn by (3.4.3). Therefore, using
the finiteness of the set En(δ), we see that there exists y(B) ∈ En(δ) such that

Snφ(B) ≤ Snφ(y(B)) + εn (3.4.4)

and
B ∩Bn(y(B), δ) 	= ∅.

The definitions of δ and of the partition V imply that, for every z ∈ X,

#{B ∈ V : B ∩B1(z, δ) 	= ∅} ≤ 2.

Thus
#{B ∈ Vn : B ∩Bn(z, δ) 	= ∅} ≤ 2n.

Therefore the function Vn � B �→ y(B) ∈ En(δ) is at most 2n to 1. Hence, using
(3.4.4),

2n
∑

y∈En(δ)

expSnφ(y) ≥
∑

B∈Vn

exp
(
Snφ(B) − εn

)
= e−εn

∑

B∈Vn

expSnφ(B).

Taking now the logarithms of both sides of this inequality, dividing them by n
and applying (3.4.2), we get

log 2 +
1
n

log

⎛

⎝
∑

y∈En(δ)

expSnφ(y)

⎞

⎠ ≥ −ε+
1
n

log

(
∑

B∈Vn

expSnφ(B)

)

≥ 1
n

Hμ(Vn) +
1
n

∫
Snφdμ− ε.

So, by (3.4.1),

1
n

log

⎛

⎝
∑

y∈En(δ)

expSnφ(y)

⎞

⎠ ≥ 1
n

Hμ(Un) +
∫
φdμ− (2ε+ log 2).

In view of the definition of entropy hμ(T,U), presented just after Lemma 2.4.2,
by letting n→ ∞ we get

P(T, φ, δ) ≥ hμ(T,U) +
∫
φdμ− (2ε+ log 2).

Applying now Theorem 3.3.2 with δ → 0 and next letting ε → 0, and finally
taking supremum over all Borel partitions U , leads us to

P(T, φ) ≥ hμ(T ) +
∫
φdμ− log 2.

And applying with every n ≥ 1 this estimate to the transformation Tn and to
the function Snφ, we obtain

P(Tn, Snφ) ≥ hμ(Tn) +
∫
Snφdμ− log 2
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or equivalently, by Lemma 3.2.7 and Theorem 2.4.6(a),

nP(T, φ) ≥ nhμ(T ) + n

∫
φdμ− log 2.

Dividing both sides of this inequality by n and then letting n→ ∞, the proof of
Part I follows. ♣

In the proof of Part II we shall need the following two lemmas.

Lemma 3.4.2. If μ is a Borel probability measure on X, then for every ε > 0
there exists a finite partition A such that diam(A) ≤ ε and μ(∂A) = 0 for every
A ∈ A.

Proof. Let E = {x1, . . . , xs} be an ε/4-spanning set (that is, with respect to the
metric ρ = ρ1) of X. Since for every i ∈ {1, . . . , s} the sets {x : ρ(x, xi) = r},
ε/4 < r < ε/2, are closed and mutually disjoint, only countably many of them
can have positive measure μ. Hence there exists ε/4 < t < ε/2 such that, for
every i ∈ {1, . . . , s},

μ({x : ρ(x, xi) = t}) = 0. (3.4.5)

Define inductively the sets A1, A2, . . . , As, putting A1 = {x : ρ(x, x1) ≤ t} and
for every i = 2, 3, . . . , s

Ai = {x : ρ(x, xi) ≤ t} \ (A1 ∪A2 ∪ . . . ∪Ai−1).

The family U = {A1, . . . , As} is a partition of X with diameter not exceeding
ε. Using (3.4.5) and noting that generally ∂(A \B) ⊂ ∂A ∪ ∂B, we conclude by
induction that μ(∂Ai) = 0 for every i = 1, 2, . . . , s. ♣

Proof of Part II. Fix ε > 0 and let En(ε), n = 1, 2, . . ., be a sequence of maximal
(n, ε)-separated sets in X. For every n ≥ 1 define measures

μn =

∑
x∈En(ε) δx expSnφ(x)
∑
x∈En(ε) expSnφ(x)

and mn =
1
n

n−1∑

k=0

μn ◦ T−k,

where δx denotes the Dirac measure concentrated at the point x (see (3.1.2)).
Let (ni)∞i=1 be an increasing sequence such that mni

converges weakly, say to m,
and

lim
i→∞

1
ni

log
∑

x∈Eni
(ε)

expSnφ(x) = lim sup
n→∞

1
n

log
∑

x∈En(ε)

expSnφ(x). (3.4.6)

Clearly m ∈ M(T ). In view of Lemma 3.4.2 there exists a finite partition γ
such that diam(γ) ≤ ε and μ(∂G) = 0 for every G ∈ γ. For any n ≥ 1 put
gn =

∑
x∈En(ε) expSnφ(x). Since #(G∩En(ε)) ≤ 1 for every G ∈ γn, we obtain
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Hμn
(γn) +

∫
Snφdμn =

∑

x∈En(ε)

(− log μn(x) + Snφ(x)
)
μn(x)

=
∑

x∈En(ε)

expSnφ(x)
gn

(

Snφ(x) − log
(

expSnφ(x)
gn

))

= g−1
n

∑

x∈En(ε)

expSnφ(x)
(
Snφ(x) − Snφ(x) + log gn

)

= log gn. (3.4.7)

Now fix M ∈ N and n ≥ 2M . For j = 0, 1, . . . ,M − 1, let s(j) = E(n−jM ) − 1,
where E(x) denotes the integer part of x. Note that

s(j)∨

k=0

T−(kM+j)γM = T−jγ ∨ . . . ∨ T−(s(j)M+j)−(M−1)γ

= T−jγ ∨ . . . ∨ T−((s(j)+1)M+j−1)γ

and
(s(j) + 1)M + j − 1 ≤ n− j + j − 1 = n− 1.

Therefore, setting Rj = {0, 1, . . . , j− 1, (s(j)+1)M + j, . . . , n− 1}, we can write

γn =
s(j)∨

k=0

T−(kM+j)γM ∨
∨

i∈Rj

T−iγ.

Hence

Hμn
(γn) ≤

s(j)∑

k=0

Hμn

(
T−(kM+j)γM

)
+ Hμn

⎛

⎝
∨

i∈Rj

T−iγ

⎞

⎠

≤
s(j)∑

k=0

Hμn◦T−(kM+j)(γM ) + log

⎛

⎝#

⎛

⎝
∨

i∈Rj

T−iγ

⎞

⎠

⎞

⎠ .

Summing now over all j = 0, 1, . . . ,M − 1, we get

M Hμn
(γn) ≤

M−1∑

j=0

s(j)∑

k=0

Hμn◦T−(kM+j)(γM ) +
M−1∑

j=0

log(#γ#Rj )

≤
n−1∑

l=0

Hμn◦T−l(γM ) + 2M2 log #γ

≤ nH 1
n

∑n−1
l=0 μn◦T−l(γM ) + 2M2 log #γ.

And applying (3.4.7) we obtain

M log

⎛

⎝
∑

x∈En(ε)

expSnφ(x)

⎞

⎠ ≤ nHmn
(γM ) +M

∫
Snφdμn + 2M2 log #γ.
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Dividing both sides of this inequality by Mn, we get

1
n

log

⎛

⎝
∑

x∈En(ε)

expSnφ(x)

⎞

⎠ ≤ 1
M

Hmn
(γM ) +

∫
φdmn + 2

M

n
log #γ.

Since ∂T−1(A) ⊂ T−1(∂A) for every set A ⊂ X, the measure m of the
boundaries of the partition γM is equal to 0. Therefore, letting n → ∞ along
the sub-sequence {ni}, we conclude from this inequality, Lemma 3.1.18 and
Theorem 3.1.4 that

P(T, φ, ε) ≤ 1
M

Hm(γM ) +
∫
φdm.

Now letting M → ∞, we get

P(T, φ, ε) ≤ hm(T, γ) +
∫
φdm ≤ sup

{

hμ(T ) +
∫
φdμ : μ ∈M(T )

}

.

Finally, applying Theorem 3.3.2 and letting ε↘ 0, we get the desired inequality.
♣

Corollary 3.4.3. Under the assumptions of Theorem 3.4.1,

P(T, φ) = sup{hμ(T ) +
∫
φdμ : μ ∈Me(T )},

where Me(T ) denotes the set of all Borel ergodic probability T -invariant measures
on X.

Proof. Let μ ∈ M(T ), and let {μx : x ∈ X} be the ergodic decomposition of μ.
Then hμ =

∫
hμx

dμ(x) and
∫
φdμ =

∫
(
∫
φdμx) dμ(x). Therefore

hμ +
∫
φdμ =

∫ (

hμx
+
∫
φdμx

)

dμ(x),

and consequently there exists x ∈ X such that hμx
+
∫
φdμx ≥ hμ +

∫
φdμ,

which completes the proof. ♣

Corollary 3.4.4. If T : X → X is a continuous transformation of a compact
metric space X, φ : X → R is a continuous function and Y is a forward invariant
subset of X (i.e. T (Y ) ⊂ Y ), then P(T |Y , φ|Y ) ≤ P(T, φ).

Proof. The proof follows immediatly from Theorem 3.4.1 by the remark that
each T |Y -invariant measure on Y can be treated as a measure on X, and it is
then T -invariant. ♣

3.5 Equilibrium states and expansive maps

We keep in this section the notation from the previous one. A measure μ ∈M(T )
is called an equilibrium state for the transformation T and function φ if

P(T, φ) = hμ(T ) +
∫
φdμ.
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The set of all these measures will be denoted by E(φ). In the case φ = 0 the
equilibrium states are also called maximal measures. Similarly to Corollary 3.4.4
(and in fact more easily) one can prove the following.

Proposition 3.5.1. If E(φ) 	= ∅, then E(φ) contains ergodic measures.

As the following example shows, there exist transformations and functions
that admit no equilibrium states.

Example 3.5.2. Let {Tn : Xn → Xn}n≥1 be a sequence of continuous mappings
of compact metric spaces Xn, such that for every n ≥ 1

htop(Tn) < htop(Tn+1) and sup
n

htop(Tn) <∞. (3.5.1)

The disjoint union ⊕∞
n=1Xn of the spaces Xn is a locally compact space, and let

X = {ω} ∪ ⊕∞
n=1Xn be its Alexandrov one-point compactification. Define the

map T : X → X by T |Xn
= Tn and T (ω) = ω. The reader can check easily that

T is continuous. By Corollary 3.4.4, htop(Tn) ≤ htop(T ) for all n ≥ 1. Suppose
that μ is an ergodic maximal measure for T . Then μ(Xn) = 1 for some n ≥ 1,
and therefore

htop(T ) = hμ(Tn) ≤ htop(Tn) < htop(Tn+1) ≤ htop(T ),

which is a contradiction. In view of Proposition 3.5.1, this shows that T has no
maximal measure.

A more difficult problem is to find a transitive and smooth example without
maximal measure (see for instance [Misiurewicz 1973]).

The remaining part of this section is devoted to providing sufficient conditions
for the existence of equilibrium states. We start with the following simple general
criterion, which will provide the basis for obtaining all others.

Proposition 3.5.3. If the function M(T ) � μ → hμ(T ) is upper semi-
continuous, then each continuous function φ : X → R has an equilibrium
state.

Proof. By the definition of weak∗ topology the function M(T ) � μ → ∫
φdμ

is continuous. Therefore the lemma follows from the assumption, the weak∗-
compactness of the set M(T ), and Theorem 3.4.1 (the Variational Principle). ♣

As an immediate consequence of Theorem 3.4.1 we obtain the following.

Corollary 3.5.4. If htop(T ) = 0, then each continuous function on X has an
equilibrium state.

A continuous transformation T : X → X of a compact metric space X
equipped with a metric ρ is said to be (positively) expansive if and only if

∃δ > 0 such that (ρ(Tn(x), Tn(y)) ≤ δ ∀n ≥ 0 ) =⇒ x = y.
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The number δ that appears in this definition is called an expansive constant for
T : X → X.

Although, at the end of this section, we shall introduce a related but different
notion of expansiveness of homeomorphisms, we shall frequently omit the word
‘positively’. Note that the property of being expansive does not depend on the
choice of a metric compatible with the topology. From now on in this chapter
the transformation T will be assumed to be positively expansive, unless stated
otherwise. The following lemma is an immediate consequence of expansiveness.

Lemma 3.5.5. If A is a finite Borel partition of X with diameter not exceed-
ing an expansive constant, then A is a generator for every Borel probability
T -invariant measure μ on X.

The main result concerning expansive maps is as follows.

Theorem 3.5.6. If T : X → X is expansive, then the function M(T ) � μ →
hμ(T ) is upper semi-continuous, and consequently (by Proposition 3.5.3) each
continuous function on X has an equilibrium state.

Proof. Let δ > 0 be an expansive constant of T , and let μ ∈ M(T ). By
Lemma 3.4.2 there exists a finite partition A of X such that diam(A) ≤ δ
and μ(∂A) = 0 for every A ∈ A.

Consider now a sequence (μn)∞n=1 of invariant measures converging weakly
to μ. In view of Lemma 3.5.5 and Theorem 2.8.7(b), we have

hν(T ) = hν(T,A)

for every ν ∈ M(T ), and in particular for ν = μ and ν = μn with n = 1, 2, . . . .
Hence, because of Lemma 3.1.18,

hμ(T ) = hμ(T,A) ≥ lim sup
n→∞

hμn
(T,A) = lim sup

n→∞
hμn

(T ).

The proof is complete. ♣
Below we prove three additional interesting results about expansive maps.

Lemma 3.5.7. If U is a finite open cover of X with diameter not exceeding an
expansive constant of an expansive map T : X → X, then limn→∞ diam(Un) = 0.

Proof. Let U = {U1, U2, . . . , Us}. By expansiveness for every sequence (an)∞n=0

of elements of the set {1, 2, . . . , s}

#

( ∞⋂

n=0

T−n(Uan
)

)

≤ 1

and hence

lim
k→∞

diam

(
k⋂

n=0

T−n(Uan
)

)

= 0.
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Therefore, given a fixed ε > 0, there exists a minimal finite k = k({an}) such
that

diam

(
k⋂

n=0

T−n(Uan
)

)

< ε.

Note now that the function {1, 2, . . . , s}N � {an} �→ k({an}) is continuous: what
is more, it is locally constant. Thus, by compactness of the space {1, 2, . . . , s}N,
this function is bounded, say by t, and therefore

diam(Un) < ε

for every n ≥ t. The proof is complete. ♣
Combining now Lemma 3.2.4, Lemma 3.5.7 and Lemma 3.2.9, we get the

following fact corresponding to Theorem 2.8.7 (b).

Proposition 3.5.8. If U is a finite open cover of X with diameter not exceeding
an expansive constant, then P(T, φ) = P(T, φ,U).

As the last result of this section we shall prove the following.

Proposition 3.5.9. There exists a constant η > 0 such that ∀ ε > 0∃n(ε) ≥ 1,
such that

ρ(x, y) ≥ ε =⇒ ρn(ε)(x, y) > η.

Proof. Let U = {U1, U2, . . . , Us} be a finite open cover of X with diameter not
exceeding an expansive constant δ, and let η be a Lebesgue number of U . Fix
ε > 0. In view of Lemma 3.5.7 there exists an n(ε) ≥ 1 such that

diam(Un(ε)) < ε. (3.5.2)

Let ρ(x, y) ≥ ε, and suppose that ρn(ε)(x, y) ≤ η. Then

∀ (0 ≤ j ≤ n(ε) − 1) ∃ (Uij ∈ U) such that T j(x), T j(y) ∈ Uij

and therefore

x, y ∈
n(ε)−1⋂

j=0

T−j(Uij ) ∈ Un(ε).

Hence diam(Un(ε)) ≥ ρ(x, y) ≥ ε, which contradicts (3.5.2). The proof is
complete. ♣

As we mentioned at the begining of this section, there is a notion related to
positive expansiveness that makes sense only for homeomorphisms. We say that
a homeomorphism T : X → X is expansive if and only if

∃δ > 0 such that (ρ(Tn(x), Tn(y)) ≤ δ ∀n ∈ Z) =⇒ x = y.

We shall not explore this notion in this book; we want only to emphasize that for
expansive homeomorphisms analogous results (with obvious modifications) can
be proved (in the same way) as for positively expansive mappings. Of course,
each positively expansive homeomorphism is expansive. However, if there exists
a positively expansive homeomorhism T : X → X for X a compact metric space,
then X is finite. See for example [Coven & Keane 2006].
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3.6 Topological pressure as a function
on the Banach space of continuous
functions; the issue of uniqueness of
equilibrium states

Let T : X → X be a continuous mapping of a compact topological space X.
We shall discuss here the topological pressure function P : C(X) → R, P(φ) =
P(T, φ). Assume that the topological entropy is finite, htop(T ) < ∞. Hence the
pressure P is also finite, because for example

P(φ) ≤ htop(T ) + supφ. (3.6.1)

This estimate follows directly from the definitions: see Section 2.2. It is also an
immediate consequence of Theorem 3.4.1 (the Variational Principle) in the case
where X is metrizable.

Let us start with the following easy theorem.

Theorem 3.6.1. The pressure function P is Lipschitz continuous with the
Lipschitz constant 1.

Proof. Let φ ∈ C(X). Recall from Section 3.2 that in the definition of pressure
we have considered the following partition function:

Zn(φ,U) = inf
V

{
∑

U∈V
expSnφ(U)

}

,

where V ranges over all covers of X contained in Un. Now, if also ψ ∈ C(X),
then we obtain for every open cover U and positive integer n that

Zn(ψ,U)e−||φ−ψ||∞n ≤ Zn(φ,U) ≤ Zn(ψ,U)e||φ−ψ||∞n.

Taking limits, if n ↗ ∞ we get P(ψ) − ||φ− ψ||∞ ≤ P(φ) ≤ P(ψ) + ||φ− ψ||∞:
hence |P(ψ) − P(φ)| ≤ ||ψ − φ||∞. ♣
Theorem 3.6.2. If X is a compact metric space, then the topological pressure
function P : C(X) → R is convex.

We provide two different proofs of this important theorem: one elementary,
the other relying on the Variational Principle (Theorem 3.4.1).

Proof 1. By Hölder inequality applied with the exponents a = 1/α, b = 1/(1−α),
so that 1/a+ 1/b = α+ 1 − α = 1, we obtain for an arbitrary finite set E ⊂ X

1
n

log
∑

E

eSn(αφ)+Sn(1−α)ψ) =
1
n

log
∑

E

eαSn(φ)e(1−α)Sn(ψ)

≤ 1
n

log

(
∑

E

eSn(φ)

)α(∑

E

eSn(ψ)

)1−α

≤ α
1
n

log

(
∑

E

eSn(φ)

)

+ (1 − α)
1
n

log

(
∑

E

eSn(ψ)

)

.
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To conclude the proof, now apply the definition of pressure with E = Fn(ε) that
are (n, ε)-separated sets: see Theorem 3.3.2. ♣
Proof 2. It is sufficient to prove that the function

P̂ := sup
μ∈M(X,T )

Lμφ where Lμφ := hμ(T ) + μφ

(where μφ abbreviates
∫
φ dμ: see Section 3.1) is convex, because by the

Variational Principle P̂(φ) = P(φ).
That is, we need to prove that the set

A := {(φ, y) ∈ C(X) × R : y ≥ P̂ (φ)}
is convex. Observe, however, that by its definition A =

⋂
μ∈M(X,T ) L

+
μ , where by

L+
μ we denote the upper half-space {(φ, y) : y ≥ Lμφ}. Since all the half-spaces

L+
μ are convex, the set A is convex as their intersection. ♣

Remark 3.6.3. We can write Lμφ = μφ − (−hμ(T )). The function P̂(φ) =
supμ∈M(T ) Lμφ defined on the space C(X) is called the Legendre–Fenchel
transform of the convex function μ �→ −hμ(T ) on the weakly∗-compact con-
vex set M(T ). We shall abbreviate the name Legendre–Fenchel transform to
LF-transform. Observe that this transform generalizes the standard Legendre
transform of a strictly convex function h on a finite dimensional linear space,
say R

n,
y �→ sup

x∈Rn

{〈x, y〉 − h(x)},

where 〈x, y〉 is the scalar (inner) product of x and y.

Note that −hμ(T ) is not strictly convex (unless M(X,T ) is a one-element
space), because it is affine: see Theorem 2.4.7.

Proof 2 just repeats the standard proof that the Legendre transform is convex.
In the sequel we shall need the so-called geometric form of the Hahn–Banach

Theorem (see [Bourbaki, 1981, Theorem 1, Chapter 2.5], or Chapter 1.7 of
[Edwards 1995]).

Theorem 3.6.4 (Hahn–Banach). Let A be an open convex non-empty subset of
a real topological vector space V , and let M be a non-empty affine subset of V
(linear subspace moved by a vector) that does not meet A. Then there exists a
codimension 1 closed affine subset H that contains M and does not meet A.

Suppose now that P : V → R is an arbitrary convex continuous function on a
real topological vector space V . We call a continuous linear functional F : V → R

tangent to P at x ∈ V if

F (y) ≤ P (x+ y) − P (x) (3.6.2)

for every y ∈ V . We denote the set of all such functionals by V ∗
x,P . (Sometimes

the term supporting functional is used in the literature.)
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Applying Theorem 3.6.4 we easily prove that for every x the set V ∗
x,P is non-

empty. Indeed, we can consider the open convex set A = {(x, y) ∈ V × R} : y >
P (x)} in the vector space V × R with the product topology and the one-point
set M = {x, P (x)}, and define a supporting functional we look for as having the
graph H − {x, P (x)} in V × R.

We would also like to bring to the reader’s attention another general fact
from functional analysis, as follows

Theorem 3.6.5. Let V be a separable Banach space and P : V → R be a convex
continuous function. Then for every x ∈ V the function P is differentiable at x
in every direction (Gateaux differentiable), or in a dense (in the weak topology)
set of directions, if and only if V ∗

x,P is a singleton.

Proof. Suppose first that P is not differentiable at some point x and direction
y. Choose an arbitrary F ∈ V ∗

x,P . Non-differentiability in the direction y ∈ V
implies that there exist ε > 0 and a sequence {tn}n≥1 converging to 0 such that

P (x+ tny) − P (x) ≥ tnF (y) + ε|tn|. (3.6.3)

In fact, we can assume that all tn, n ≥ 1, are positive by passing to a sub-
sequence and replacing y by −y if necessary. We shall prove that (3.6.3) implies
the existence of F̂ ∈ V ∗

x,P \ {F}. Indeed, take Fn ∈ V ∗
x+tny,P

. Then, by (3.6.2)
applied for Fn at x+ tny and −tny in place of x and y, we have

P (x) − P (x+ tny) ≥ Fn(−tny). (3.6.4)

The inequalities (3.6.3) and (3.6.4) give

tnF (y) + εtn ≤ tnFn(y).

Hence
(Fn − F )(y) ≥ ε. (3.6.5)

In the case when P is Lipschitz continuous, and this is the case for topological
pressure (see Theorem 3.6.1), which we are mostly interested in, all Fn’s, n ≥ 1,
are uniformly bounded. Indeed, let L be a Lipschitz constant of P . Then, for
every z ∈ V and every n ≥ 1,

Fn(z) ≤ P (x+ tny + z) − P (x+ tny) ≤ L||z||.
So ||Fn|| ≤ L for every n ≥ 1. Thus there exists F̂ = limn→∞ Fn, a weak∗-limit of
a sequence {Fn}n≥1 (sub-sequence of the previous sequence). We used here the
fact that a bounded set is metrizable in weak∗-topology (compare section 3.1).

By (3.6.5) (F̂ − F )(y) ≥ ε. Hence F̂ 	= F . Since

P (x+ tny + v) − P (x+ tny) ≥ Fn(v) for all n and v ∈ V

passing with n to ∞ and using continuity of P , we conclude that F̂ ∈ V ∗
x,P .

If we do not assume that P is Lipschitz continuous, we restrict Fn to the one-
dimensional space spanned by y: that is, we consider Fn|Ry. In view of (3.6.5),
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for every n ≥ 1 there exists 0 ≤ sn ≤ 1 such that Fn(sny)−F (sny) = ε. Passing
to a sub-sequence, we may assume that limn→∞ sn = s for some s ∈ [0, 1]. Define

fn = snFn|Ry + (1 − sn)F |Ry.
Then fn(y) − F (y) = ε: hence ||fn − F |Ry|| = ε

||y|| for every n ≥ 1. Thus the
sequence {fn}n≥1 is uniformly bounded and, consequently, it has a weak-∗ limit
f̂ : Ry → R. Now we use Theorem 3.6.4 (Hahn–Banach) for the affine set M
being the graph of f̂ translated by (x, P (x)) in V × R. We extend M to H and
find the linear functional F̂ ∈ V ∗

x,P whose graph is H − (x, P (x)), continuous
since H is closed. Since F̂ (y) − F (y) = f̂(y) − F (y) = ε, F̂ 	= F .

Suppose now that V ∗
x,P contains at least two distinct linear functionals, say

F and F̂ . So F (y)− F̂ (y) > 0 for some y ∈ V . Suppose on the contrary that P is
differentiable in every direction at the point x. In particular, P is differentiable
in the direction y. Hence

lim
t→0

P (x+ ty) − P (x)
t

= lim
t→0

P (x− ty) − P (x)
−t

and consequently

lim
t→0

P (x+ ty) + P (x− ty) − 2P (x)
t

= 0.

On the other hand, for every t > 0, we have P (x + ty) − P (x) ≥ F (t) = tF (y)
and P (x− ty) − P (x) ≥ F̂ (−ty) = −tF̂ (y): hence

lim inf
t→0

P (x+ ty) + P (x− ty) − 2P (x)
t

≥ F (y) − F̂ (y) > 0,

which is a contradiction.
In fact F (y)− F̂ (y) = ε > 0 implies F (y′)− F̂ (y′) ≥ ε/2 > 0 for all y′ in the

neighbourhood of y in the weak topology defined just by {y′ : (F − F̂ )(y− y′) <
ε/2}. Hence P is not differentiable in a weak*-open set of directions. ♣

Let us go back now to our special situation:

Proposition 3.6.6. If μ ∈ M(T ) is an equilibrium state for φ ∈ C(X), then
the linear functional represented by μ is tangent to P at φ.

Proof. We have
μ(φ) + hμ = P(φ)

and for every ψ ∈ C(X)

μ(φ+ ψ) + hμ ≤ P(φ+ ψ).

Subtracting the sides of the equality from the respective sides of the latter
inequality we obtain μ(ψ) ≤ P(φ+ψ)−P(φ), which is just the inequality defining
tangent functionals. ♣

As an immediate consequence of Proposition 3.6.6 and Theorem 3.6.5 we get
the following.
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Corollary 3.6.7. If the pressure function P is differentiable at φ in every direc-
tion, or at least in a dense (in the weak topology) set of directions, then there is
at most one equilibrium state for φ.

Because of this Corollary, in future (see Chapter 5), in order to prove unique-
ness it will be sufficient to prove differentiability of the pressure function in a
weak*-dense set of directions.

The next part of this section will be devoted to a sort of reversal of Propo-
sition 3.6.6 and Corollary 3.6.7, and to a better understanding of the mutual
Legendre–Fenchel transforms −h and P. This is a beautiful topic, but will not
have applications in the rest of this book. Let us start with a characterization of
T -invariant measures in the space of all signed measures C(X)∗ formulated by
means of the pressure function P.

Theorem 3.6.8. For every F ∈ C(X)∗ the following three conditions are
equivalent:

(i) For every φ ∈ C(X) it holds that F (φ) ≤ P(φ).

(ii) There exists C ∈ R such that for every φ ∈ C(X) it holds that F (φ) ≤
P(φ) + C.

(iii) F is represented by a probability-invariant measure μ ∈M(X,T ).

Proof. (iii) ⇒ (i) follows immediately from the Variational Principle:

F (φ) ≤ F (φ) + hμ(T ) ≤ P(φ) for every φ ∈ C(X).

(i) ⇒ (ii) is obvious. Let us prove that (ii) ⇒ (iii). Take an arbitrary non-negative
φ ∈ C(X): that is, such that for every x ∈ X,φ(x) ≥ 0. For every real t < 0 we
have

F (tφ) ≤ P(tφ) + C.

Since tφ ≤ 0, it immediately follows from (3.6.1) that P(tφ) ≤ P(0). Hence
F (tφ) ≤ P (0) + C. So

|t|F (φ) ≥ −(C + P(0)), hence F (φ) ≥ −(C + P(0))
|t| .

Letting t → −∞, we obtain F (φ) ≥ 0. We estimate the value of F on constant
functions t. For every t > 0 we have F (t) ≤ P(t) + C ≤ P(0) + t + C. Hence
F (1) ≤ 1 + P(0)+C

t . Similarly F (−t) ≤ P(−t) +C = P(0)− t+C, and therefore
F (1) ≥ 1− P(0)+C

t . Letting t→ ∞ we thus obtain F (1) = 1. Therefore, by The-
orem 3.1.1 (the Riesz Representation Theorem), the functional F is represented
by a probability measure μ ∈ M(X). Let us finally prove that μ is T -invariant.
For every φ ∈ C(X) and every t ∈ R we have by (i) that

F (t(φ ◦ T − φ)) ≤ P(t(φ ◦ T − φ)) + C.
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It immediately follows from Theorem 3.4.1 (the Variational Principle) that
P(t(φ ◦ T − φ)) = P(0). Hence

|F (φ ◦ T ) − F (φ)| ≤
∣
∣
∣
∣
P(0) + C

t

∣
∣
∣
∣.

Thus, letting |t| → ∞, we obtain F (φ ◦ T ) = F (φ), i.e T -invariance of μ. ♣
We shall prove the following.

Corollary 3.6.9. Every functional F tangent to P at φ ∈ C(X), that is, F ∈
C(X)∗φ,P , is represented by a probability T -invariant measure μ ∈M(X,T ).

Proof. Using Theorem 3.6.1, we get for every ψ ∈ C(X) that

F (ψ) ≤ P(φ+ψ)−P(φ) ≤ P(ψ)+|P(φ+ψ)−P(ψ)|−P(φ) ≤ P(ψ)+||φ||∞−P(φ).

So condition (ii) of Theorem 3.6.8 holds: hence (iii) holds, which means that F
is represented by μ ∈M(X,T ). ♣

We can now almost reverse Proposition 3.6.6. That is, being a functional
tangent to P at φ implies being an ‘almost’ equilibrium state for φ.

Theorem 3.6.10. It holds that F ∈ C(X)∗φ,P if and only if F , or actually
the measure μ = μF ∈ M(X,T ) representing F , is a weak∗-limit of measures
μn ∈M(X,T ) such that

μnφ+ hμn
(T ) → P(φ).

Proof. In one way the proof is simple. Assume that μ = limn→∞ μn in the weak∗

topology and μnφ + hμn
(T ) → P (φ). We proceed as in Proof of Proposition

3.6.6. In view of Theorem 3.4.1 (the Variational Principle) μn(φ+ψ)+hμn
(T ) ≤

P(φ+ ψ) which means that μn(ψ) ≤ P(φ+ ψ) − (μnφ+ hμn
(T )). Thus, letting

n→ ∞, we get μ(ψ) ≤ P(φ+ ψ) − P(φ). This means that μ ∈ C(X)∗φ,P.
Now, let us prove our theorem in the other direction. Recall again that the

function μ �→ hμ(T ) on M(X,T ) is affine (Theorem 2.4.7), and hence concave.
Set hμ(T ) = lim supν→μ hν(T ), with ν → μ in weak*-topology. The function
μ �→ hμ(T ) is also concave and upper semi-continuous on M(T ) = M(X,T ). In
the sequel we shall prefer to consider the function μ �→ −hμ(T ), which is lower
semi-continuous and convex.

We need the following.

Lemma 3.6.11 (On composing two LF-transformations.). For every μ ∈M(T )

sup
ϑ∈C(X)

(

μϑ− sup
ν∈M(T )

(νϑ− (−hν(T )))

)

= −hμ(T )), (3.6.6)

which, because of the Variational Principle, takes the form

sup
ϑ∈C(X)

(
μϑ− P(ϑ)

)
= −hμ(T )). (3.6.7)
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Proof. To prove (3.6.6), observe first that for every ϑ ∈ C(X),

μϑ− sup
ν∈M(T )

(νϑ− (−hν(T ))) ≤ μϑ− (μϑ− (−hμ(T ))) = −hμ(T )).

Note that we obtained above −hν(T )) rather than merely −hν(T )), by taking
all sequences μn → μ, writing on the right-hand side of the above inequality the
expression μϑ− (μnϑ− (−hμn

ϑ(T ))), and letting n→ ∞. So

sup
ϑ∈C(X)

(

μϑ− sup
ν∈M(T )

(νϑ− (−hν(T )))

)

≤ −hμ(T ). (3.6.8)

This says that the LF-transform of the LF-transform of −hμ(T ) is less than or
equal to −hμ(T ). The preceding LF-transform was discussed in Remark 3.6.3.
The following LF-transformation, leading from ϑ→ P(ϑ) to ν → −(−hν(T )), is
defined by supϑ∈C(X)

(
μϑ− P(ϑ)

)
.

Let us now prove the opposite inequality. We refer to the following conse-
quence of the geometric form of the Hahn–Banach Theorem [Bourbaki, 1981,
Chapter II.§5. Prop. 5].

Let M be a closed convex set in a locally convex vector space V . Then
every lower semi-continuous convex function f defined on M is the supremum
of a family of functions bounded above by f , which are restrictions to M of
continuous affine functions on V .

We shall apply this theorem to V = C∗(X) endowed with the weak∗-topology,
to f(ν) = hν(T ). We use the fact that every linear functional continuous with
respect to this topology is represented by an element belonging to C(X). (This is
a general fact concerning dual pairs of vector spaces [Bourbaki, 1981, Ch. II.§6.
Prop. 3].) Thus, for every ε > 0, there exists ψ ∈ C(X) such that for every
ν ∈M(T )

(ν − μ)(ψ) ≤ −hν(T ) − (−hμ(T )) + ε. (3.6.9)
So

μψ − sup
ν∈M(T )

(νψ − (−hν(T ))) ≥ −hμ(T ) − ε.

Letting ε→ 0, we obtain

sup
ϑ∈C(X)

(

μϑ− sup
ν∈M(T )

(νϑ− (−hν(T )))

)

≥ −hμ(T ).

♣
Continuation of Proof of Theorem 3.6.10. Fix μ = μF ∈ C(X)∗φ,P. From μψ ≤
P(φ+ ψ) − P(φ) we obtain

P(φ+ ψ) − μ(φ+ ψ) ≥ P(φ) − μφ for all ψ ∈ C(X).

So
inf

ψ∈C(X)
{P(ψ) − μψ} ≥ P(φ) − μφ. (3.6.10)

This expresses the fact that the supremum (– infimum above) in the definition
of the LF-transform of P at F is attained at φ at which F is tangent to P.
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By Lemma 3.6.11 and (3.6.10) we obtain

hμ ≥ P(φ) − μφ. (3.6.11)

So, by the definition of hμ, there exists a sequence of measures μn ∈M(T ) such
that limn→∞ μn = μ and limn→∞ hμn

≥ P(φ) − μφ. The proof is complete. ♣
Remark 3.6.12. In Lemma 3.6.11 we considered as μ = μF an arbitrary μ ∈
M(T ); we did not assume that μF is tangent to P, i.e. that F ∈ C(X)∗φ,P. Then
considering ε > 0 in (3.6.9) was necessary; without ε > 0 this formula might be
false: see Example 3.6.15.

In the proof of Theorem 3.6.10, for μ ∈ C(X)∗φ,P, we obtain from (3.6.11)
and the inequality hν(T ) ≤ P(φ) − νφ for every ν ∈M(T ) that

hν(T ) − hμ(T ) ≤ (μ− ν)φ, (3.6.12)

which is just (3.6.9) with ε = 0.
The meaning of this is that if μ = μF is tangent to P at φ, then φ is tangent

to −h, the LF-transform of P, at μ.
Conversely, if ψ satisfies (3.6.12), i.e. ψ is tangent to −h at μ ∈M(T ), then,

as in the second part of the proof of Theorem 3.6.10 we can prove the inequality
analogous to (3.6.10), namely that

sup
ν∈M(T )

νψ − (−hμ(T )) = P(ψ) ≤ μψ − (−hμ(T )).

Hence μ is tangent to P at ψ.

Assume now the upper semi-continuity of the entropy hμ(T ) as a function of
μ. Then, as an immediate consequence of Theorem 3.6.10, we obtain the following
corollary.

Corollary 3.6.13. If the entropy is upper semi-continuous, then a functional
F ∈ C(X)∗ is tangent to P at φ ∈ C(X) if and only if it is represented by a
measure that is an equilibrium state for φ.

Recall that the upper semi-continuity of entropy implies the existence of
at least one equilibrium state for every continuous φ : X → R, already by
Proposition 3.5.3.

Now we can complete Corollary 3.6.7.

Corollary 3.6.14. If the entropy is upper semi-continuous, then the pressure
function P is differentiable at φ ∈ C(X) in every direction, or in a set of direc-
tions dense in the weak topology, if and only if there is at most one equilibrium
state for φ.

Proof. This corollary follows directly from Corollary 3.6.13 and Theorem 3.6.5.
♣
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After discussing functionals tangent to P, and proving that they coincide
with the set of equilibrium states for maps for which the entropy is upper semi-
continuous as the function on M(T ), the question arises of whether all measures
in M(T ) are equilibrium states of some continuous functions. The answer given
below is no.

Example 3.6.15. We shall construct a measure m ∈ M(T ) that is not an
equilibrium state for any φ ∈ C(X). Here X is the one-sided shift space Σ2

with the left-side shift map σ. Since this map is obviously expansive, it follows
from Theorem 3.5.6 that the entropy function is upper semi-continuous. Let
mn ∈ M(σ) be the measure equidistributed on the set Pern of points of period
n: that is,

mn =
∑

x∈Pern

1
Card Pern

δx,

where δx is the Dirac measure supported by x. mn converge weakly∗ to μmax,
the measure of maximal entropy: log 2. (Check that this follows, for example,
from Part II of the proof of the Variational Principle.) Let tn, n = 0, 1, 2, . . . be
a sequence of positive real numbers such that

∑∞
n=0 tn = 1. Finally, define

m =
∞∑

n=0

tnmn.

Let us prove that there is no φ ∈ C(X) tangent to h at m. Let μn =
Rnμmax +

∑n−1
j=0 tjmj , where Rn =

∑∞
j=n tj . We have of course hmn

(σ) = 0,
n = 1, 2, . . . . Therefore hm(σ) = 0 . This follows for example from Theo-
rem 2.8.11 (the Ergodic Decomposition Theorem), or just from the fact that
h is affine on M(σ), Theorem 2.4.7.

Thus, since h is affine,

hμn
(σ) − hm(σ) = Rn hμmax(σ) = Rn log 2, (3.6.13)

and for an arbitrary φ ∈ C(Σ2)

(μn −m)φ =

⎛

⎝Rnμmax −
∞∑

j=n

tjmj

⎞

⎠φ ≤ Rnεn, (3.6.14)

where εn → 0 as n → ∞ because mj → μmax. The inequalities (3.6.13) and
(3.6.14) prove that φ is not ‘tangent’ to h atm. More precisely, we obtain hμn

(σ)−
hm(σ) > (μn −m)φ for n large: that is,

−hμn
(σ) − (−hm(σ)) > (μn −m)ψ

for ψ = −φ, opposite to the tangency inequality (3.6.12). So, by Remark 3.6.12,
m is not tangent to any φ for the pressure function P.

In fact it is easy to see that m is not an equilibrium state for any φ ∈
C(Σ2) directly. For an arbitrary φ ∈ C(Σ2) we have μmaxφ < P(φ), because
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hμmax(σ)> 0. So mnφ < P(φ) for all n large enough as mn → μmax. Also,
mnφ ≤ P(φ) for all n’s. So for m being the average of mn’s we have mφ =
mφ+ hm(σ) < P(φ). So φ is not an equilibrium state.

The measure m in this example is very non-ergodic: this is necessary, as will
follow from Exercise 3.15.

Exercises

Topological entropy

3.1. Let T : X → X and S : Y → Y be two continuous maps of compact metric
spaces X and Y respectively. Show that htop(T × S) = htop(T ) + htop(S).
3.2. Prove that if T : X → X is an isometry of a compact metric space X, then
htop(T ) = 0.
3.3. Show that if T : X → X is a local homeomorphism of a compact connected
metric space and d = #T−1(x) (note that it is independent of x ∈ X), then
htop(T ) ≥ log d.
3.4. Prove that if f : M →M is a C1 endomorphism of a compact differentiable
manifold M , then htop(f) ≥ log deg(f), where deg(f) means degree of f .

Hint: Look for (n, ε)-separated points in f−n(x) for ‘good’ x.
See [Misiurewicz & Przytycki 1977] or [Katok & Hasselblatt 1995].
3.5. Let S1 = {z ∈ C : |z| = 1} be the unit circle, and let fd : S1 → S1 be the
map defined by the formula fd(z) = zd. Show that htop(fd) = log d.
3.6. Let σA : ΣA → ΣA be the shift map generated by the incidence matrix A.
Prove that htop(σA) is equal to the logarithm of the spectral radius of A.
3.7. Show that for every continuous potential φ, P(φ) ≤ htop(T ) + sup(φ) (see
(3.6.1)).
3.8. Provide an example of a topologically transitive diffeomorphism without
measures of maximal entropy.
3.9. Provide an example of a topologically transitive diffeomorphism with at
least two measures of maximal entropy.
3.10. Find a sequence of continuous maps Tn : Xn → Xn such that htop(Tn+1) >
htop(Tn) and limn→∞ htop(Tn) <∞.

Topological pressure: functional analysis approach

3.11. Prove that for an arbitrary convex continuous function P : V → R on a
real Banach space V the set of tangent functionals:

⋃
x∈V V

∗
x,P is dense in the

norm topology in the set of so-called P -bounded functionals:

{F ∈ V ∗ : (∃C ∈ R) such that (∀ x ∈ V ), F (x) ≤ P (x) + C}.

Remark. The conclusion is that for P being the pressure function on C(X),
tangent measures are dense in M(X,T ): see Theorem 3.5.6. Hint: This follows
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from the Bishop-Phelps Theorem (see [Bishop & Phelps 1963] or [Israel 1979,
pp. 112–115]), which can be stated as follows:

For every P -bounded functional F0, for every x0 ∈ V and for every ε > 0
there exists x ∈ V and F ∈ V ∗ tangent to P at x such that

‖F − F0‖ ≤ ε and ‖x− x0‖ ≤ 1
ε

(
P (x0) − F0(x0) + s(F0)

)
,

where s(F0) := supx′∈V {F0x
′ − P (x′)} (this is −h, the LF-transform of P ).

The reader can imagine F0 as asymptotic to P and estimate how far the
tangency point x of a functional F is close to F0.
3.12. Prove that in the situation from Exercise 3.11, for every x ∈ V , the set
V ∗
x,P is convex and weak∗-compact.

3.13. Let Eφ denote the set of all equilibrium states for φ ∈ C(X).
(i) Prove that Eφ is convex.
(ii) Find an example that Eφ is not weak∗-compact.
(iii) Prove that extremal points of Eφ are extremal points of M(X,T ).
(iv) Prove that almost all measures in the ergodic decomposition of an arbi-

trary μ ∈ Eφ belong also to Eφ. (One says that every equilibrium state has a
unique decomposition into pure, i.e. ergodic, equilibrium states.)

Hints: In (ii) consider a sequence of Smale horseshoes of topological entropies
log 2 converging to a point fixed for T . To prove (iii) and (iv) use the fact that
entropy is an affine function of measure.
3.14. Find an example showing that part (iii) of Exercise 3.13 is false if we
consider C(X)∗φ,P rather than Eφ.

Hint: An idea is to have two fixed points p, q and two trajectories (xn), (yn)
such that xn → p, yn → q for n → ∞ and xn → q, yn → p for n → −∞.
Now take a sequence of periodic orbits γk approaching {p, q} ∪ {xn} ∪ {yn}
with periods tending to ∞. Take their Cartesian products with corresponding
invariant subsets Ak of small horseshoes of topological entropies less than log 2
but tending to log 2, with the diameters of the horseshoes shrinking to 0 as
k → ∞. Then, for φ ≡ 0, the set C(X)∗φ,P consists of exactly one measure:
1
2 (δp + δq). (One cannot repeat the proof in Exercise 3.13(iii) with the function
hμ instead of the entropy function hμ, because hμ is no longer affine!)

This is Peter Walters’ example: for details see [Walters 1992].
3.15. Suppose that the entropy function hμ is upper semi-continuous (then for
each φ ∈ C(x) C(X)∗φ,P = Eφ: see Corollary 3.6.13). Prove that:

(i) Every μ ∈ M(T ) that is a finite combination of ergodic masures μ =∑
tjmj , mj ∈ M(T ), is tangent to P; more precisely, there exists φ ∈ C(X)

such that μ,mj ∈ C(X)∗φ,P, and moreover they are equilibrium states for φ.
(ii) If μ =

∫
Me(T )

mdα(m), where Me(X,T ) consists of ergodic measures in
M(X,T ) and α is a probability non-atomic measure on Me(X,T ), then there
exists φ ∈ C(X), which has uncountably many ergodic equilibria in the support
of α.

(iii) The set of elements of C(X) with uncountably many ergodic equilibria
is dense in C(X).
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Hint: By the Bishop–Phelps Theorem (see Remark in Exercise 3.11) there
exists ν ∈ Eφ arbitrarily close to μ. Then in its ergodic decomposition there are
all the measures μj , because all ergodic measures are far apart from each other
(in the norm in C(X)∗). These measures, by Exercise 3.13, belong to the same
Eφ, which proves (i). For more details and proofs of (ii) and (iii) see [Israel 1979,
Theorem V.2.2] or [Ruelle 1978a, 3.17, 6.15].

Remark. In statistical physics the occurence of more than one equilibrium for
φ ∈ C(X) is called ‘phase transition’. Part (iii) says that the set of functions
with ‘very rich’ phase transition is dense. For further discussion see also [Israel,
1979, V.2].
3.16. Prove the following. Let P : V → R be a continuous convex function on
a real Banach space V with norm ‖ · ‖V . Suppose P is differentiable at x ∈ V in
every direction. Let W ⊂ V be an arbitrary linear subspace with norm ‖ · ‖W ,
such that the embedding W ⊂ V is continuous and the unit ball in (W, ‖ · ‖W ) is
compact in (V, ‖ · ‖V ). Then P |W is differentiable in the sense that there exists
a functional F ∈ V ∗ such that for y ∈W it holds that

|P (x+ y) − P (x) − F (y)| = o(‖y‖W ).

Remark. In Chapter 4 we shall discuss W being the space of Hölder continuous
functions with an arbitrary exponent α < 1, and the entropy function will be
upper semi-continuous. So the conclusion will be that uniqueness of the equi-
librium state at an arbitrary φ ∈ C(X) is equivalent to differentiability in the
direction of this space of Hölder functions.
3.17. (Walters) Prove that the pressure function P is Frechet differentiable at
φ ∈ C(X) if and only if P is affine in a neighbourhood of φ. Prove also the
following conclusion: P is Frechet differentiable at every φ ∈ C(X) if and only if
T is uniquely ergodic, that is, if M(X,T ) consists of one element.
3.18. Prove S. Mazur’s Theorem: If P : V → R is a continuous convex function
on a real separable Banach space V , then the set of points at which there exists
a unique functional tangent to P is dense Gδ.

Remark. In the case of the pressure function on C(X), this says that for a dense
Gδ set of functions there exists at most one equilibrium state. Mazur’s Theorem
contrasts with the theorem from Exercise 3.15(iii).
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4

Distance-expanding maps

We devote this chapter to a study in detail of the topological properties of
distance-expanding maps. Often, however, weaker assumptions will be sufficient.
We always assume that the maps are continuous on a compact metric space X,
and we usually assume that the maps are open, which means that open sets have
open images. This is equivalent to saying that if f(x) = y and yn → y, then there
exist xn → x such that f(xn) = yn for n large enough.

In view of Section 4.6, in theorems with assertions of topological character,
only the assumption that a map is expansive leads to the same conclusions as
if we assumed that the map is expanding. We shall prove in Section 4.6 that
for every expansive map there exists a metric compatible with the topology on
X given by an original metric, such that the map is distance-expanding with
respect to this new metric.

Recall that for (X, ρ), a compact metric space, a continuous mapping T :
X → X is said to be distance-expanding (with respect to the metric ρ) if there
exist constants λ > 1, η > 0 and n ≥ 0, such that for all x, y ∈ X,

ρ(x, y) ≤ 2η =⇒ ρ(Tn(x), Tn(y)) ≥ λρ(x, y). (4.0.1)

We say that T is distance-expanding at a set Y ⊂ X if the above holds for
all z ∈ Y and for every x, y ∈ B(z, η) .

In the sequel we shall always assume that n = 1: that is, that

ρ(x, y) ≤ 2η =⇒ ρ(T (x), T (y)) ≥ λρ(x, y), (4.0.2)

unless otherwise stated. One can achieve this in two ways:
(1) If T is Lipschitz continuous (say with constant L > 1), replace the metric

ρ(x, y) by
∑n−1
j=0 ρ(T

j(x), T j(y)). Of course, then λ and η change. As an exercise
the reader can check that the number 1 + (λ− 1)

(
L−1
Ln−1

)
can play the role of λ

in (4.0.2).
Note that the ratio of both metrics is bounded; in particular, they yield the

same topologies.
For another improvement of ρ, working without assuming Lipschitz continuity

of T , see Lemma 4.6.3.

102
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(2) Work with Tn instead of T .
Sometimes, in order to simplify notation, we shall write expanding, instead

of distance-expanding.

4.1 Distance-expanding open maps: basic
properties

Let us first make a simple observation relating the properties of being expanding
and being expansive.

Theorem 4.1.1. The distance-expanding property implies forward expansive
property.

Proof. By the definition of ‘expanding’ above, if 0 < ρ(x, y) ≤ 2η, then
ρ(T (x), T (y)) ≥ λρ(x, y) . . . ρ(Tn(x), Tn(y)) ≥ λnρ(x, y), until for the first time
n it happens that ρ(Tn(x), Tn(y)) > 2η. Such n exists, since λ > 1. Therefore T
is forward expansive, with expansivness constant δ = 2η. ♣

Let us prove now a lemma where we assume only T : X → X to be a
continuous open map of a compact metric space X. We do not need to assume
in this lemma that T is distance-expanding.

Lemma 4.1.2. If T : X → X is a continuous open map, then for every η > 0
there exists ξ > 0 such that T (B(x, η)) ⊃ B(T (x), ξ) for every x ∈ X.

Proof. For every x ∈ X let

ξ(x) = sup{r > 0 : T (B(x, η)) ⊃ B(T (x), r)}.

Since T is open, ξ(x) > 0. Since T (B(x, η)) ⊃ B(T (x), ξ(x)), it suffices to show
that ξ = inf{ξ(x) : x ∈ X} > 0. Suppose conversely that ξ = 0. Then there
exists a sequence of points xn ∈ X such that

ξ(xn) → 0 as n→ ∞, (4.1.1)

and, as X is compact, we can assume that xn → y for some y ∈ X. Hence
B(xn, η) ⊃ B(y, 1

2η) for all n large enough. Therefore

T (B(xn, η)) ⊃ T

(

B

(

y,
1
2
η

))

⊃ B(T (y), ε) ⊃ B

(

T (xn),
1
2
ε

)

for some ε > 0 and again for every n large enough. The existence of ε such
that the second inclusion holds follows from the openness of T . Consequently
ξ(xn) ≥ 1

2ε for these n, which contradicts (4.1.1). ♣
Definition 4.1.3. If T : X → X is an expanding map, then by (4.0.1), for
all x ∈ X, the restriction T |B(x,η) is injective, and therefore it has the inverse
map on T (B(x, η)). (The same holds for expanding at a set Y for all x ∈ Y .)
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If additionally T : X → X is an open map, then, in view of Lemma 4.1.2, the
domain of the inverse map contains the ball B(T (x), ξ). So it makes sense to
define the restriction of the inverse map,

T−1
x : B(T (x), ξ) → B(x, η). (4.1.2)

Observe that for every y ∈ X and every A ⊂ B(y, ξ),

T−1(A) =
⋃

x∈T−1(y)

T−1
x (A). (4.1.3)

Indeed, the inclusion ⊃ is obvious. So suppose that x′ ∈ T−1(A). Then y′ =
T (x′) ∈ B(y, ξ). Hence y ∈ B(y′, ξ). Let x = T−1

x′ (y). As T−1
x and T−1

x′ coincide
on y, they coincide on y′, because they map y′ into B(x, η), and T is injective
on B(x, η). Thus x′ = T−1

x (y′).
The formula (4.1.3) for all A = B(y, ξ) implies that T is a so-called covering

map.
(This property is in fact a standard definition of a covering map except that,

for general covering maps, on non-compact spaces ξ may depend on y. We have
proved in fact that a local homeomorphism of a compact space is a covering
map.)

From now on throughout this section, wherever the notation T−1 appears,
we assume also the expanding property, i.e. (4.0.2). We then get the following.

Lemma 4.1.4. If x ∈ X and y, z ∈ B(T (x), ξ) then

ρ(T−1
x (y), T−1

x (z)) ≤ λ−1ρ(y, z).

In particular, T−1
x (B(T (x), ξ)) ⊂ B(x, λ−1ξ) ⊂ B(x, ξ) and

T (B(x, λ−1ξ)) ⊃ B(T (x), ξ) (4.1.4)

for all ξ > 0 small enough (which specifies the inclusion in Lemma 4.1.2).

Definition 4.1.5. For every x ∈ X, every n ≥ 1 and every j = 0, 1, . . . , n − 1
write xj = T j(x). In view of Lemma 4.1.4, the composition

T−1
x0

◦ T−1
x1

◦ . . . ◦ T−1
xn−1

: B(Tn(x), ξ) → X

is well defined, and will be denoted by T−n
x .

Below we collect the basic elementary properties of maps T−n
x . They follow

immediately from (4.1.3) and Lemma 4.1.4. For every y ∈ X

T−n(A) =
⋃

x∈T−n(y)

T−n
x (A) (4.1.5)

for all sets A ⊂ B(y, ξ);

ρ(T−n
x (y), T−n

x (z)) ≤ λ−nρ(y, z) for all y, z ∈ B(Tn(x), ξ); (4.1.6)

T−n
x (B(Tn(x), r)) ⊂ B(x,min{η, λ−nr}) for every r ≤ ξ. (4.1.7)

Remark. All these properties also hold, and the notation makes sense, for
open maps T : X → X expanding at Y ⊂ X, provided x, T (x), . . . , Tn(x) ∈ Y .
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4.2 Shadowing of pseudo-orbits

We keep the notation of Section 4.1. We consider an open, distance-expanding
map T : X → X with the constants η, λ, ξ.

Let n be a non-negative integer or +∞. Given α ≥ 0, a sequence (xi)n0 is
said to be an α-pseudo-orbit (alternatively called: α-orbit, α-trajectory, α-T -
trajectory) for T : X → X of length n+ 1 if, for every i = 0, . . . , n− 1,

ρ(T (xi), xi+1) ≤ α. (4.2.1)

Of course, every (genuine) orbit (x, T (x), . . . , Tn(x)), x ∈ X, is an α-pseudo-
orbit for every α ≥ 0. We shall prove a kind of converse fact, that in the case
of open, distance-expanding maps, each ‘sufficiently good’ pseudo-orbit can be
approximated (shadowed) by an orbit. To make this precise we proceed as follows.
Let β > 0. We say that an orbit of x ∈ X, β-shadows the pseudo-orbit (xi)n0 if
and only if for every i = 0, . . . , n

ρ(T i(x), xi) ≤ β. (4.2.2)

Definition 4.2.1. We say that a continuous map T : X → X has the shadowing
property if for every β > 0 there exists α > 0 such that every α-pseudo-orbit of
finite or infinite length can be β-shadowed by an orbit.

Note that, owing to the compactness of X, the shadowing property for all
finite n implies shadowing with n = ∞.

Here is a simple observation yielding the uniqueness of the shadowing.
Assume only that T is expansive (cf. Section 3.2).

Proposition 4.2.2. If 2β is less than an expansiveness constant of T (we do
not need to assume here that T is expanding with respect to the metric ρ), and
(xi)∞0 is an arbitrary sequence of points in X, then there exists at most one point
x whose orbit β-shadows the sequence (xi)∞i=0.

Proof. Suppose the forward orbits of x and y β-shadow (xi). Then for every n ≥ 0
we have ρ(Tn(x), Tn(y)) ≤ 2β. Then since 2β is the expansiveness constant for
T , we get x = y. ♣

We shall now prove some less trivial results, concerning the existence of β-
shadowing orbits.

Lemma 4.2.3. Let T : X → X be an open, distance-expanding map. Let 0 <
β < ξ , 0 < α ≤ min{(λ− 1)β, ξ}. If (xi)∞0 is an α-pseudo-orbit, then the points
x′i = T−1

xi
(xi+1) are well defined, and

(a) For all i = 0, 1, 2, . . . , n− 1,

T−1
x′

i
(B(xi+1, β)) ⊂ B(xi, β)

and consequently, for all i = 0, 1, . . . , n, the compositions

Si := T−1
x′
0
◦ T−1

x′
1
◦ . . . ◦ T−1

x′
i−1

: B(xi, β) → X

are well defined.
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(b) The sequence of closed sets Si(B(xi, β)), i = 0, 1, . . . , n, is descending.

(c) The intersection
n⋂

i=0

Si(B(xi, β)

is non-empty, and the forward orbits (for times 0, 1, . . . , n) of all the points of
this intersection β-shadow the pseudo-orbit (xi)n0 .

Proof. x′i are well defined by α ≤ ξ. In order to prove (a), observe that by (4.1.7)
we have

T−1
x′

i
(B(xi+1, β)) ⊂ B(x′i, λ−1β) ⊂ B(xi, λ−1β + λ−1α)

and λ−1β + λ−1α ≤ β as α ≤ (λ− 1)β. Statement (b) follows immediately from
(a). The first part of (c) follows immediately from (b) and the compactness of
the space X. To prove the second part denote the intersection that appears in
(c) by A. Then T i(A) ⊂ B(xi, β) for all i = 0, 1, . . . , n. Thus the forward orbit
of every point in A, β shadows (xi)n0 . The proof is complete. ♣

As an immediate consequence of Lemma 4.2.3 we get the following.

Corollary 4.2.4 (Shadowing lemma). Every open, distance-expanding map sat-
isfies the shadowing property. More precisely, for all β > 0 and α > 0 as in
Lemma 4.2.3 every α-pseudo-orbit (xi)n0 can be β-shadowed by an orbit in X.

As a consequence of Corollary 4.2.4 we shall prove the following.

Corollary 4.2.5 (Closing lemma). Let T : X → X be an expansive map, satis-
fying the shadowing property. Then for every β > 0 there exists α > 0 such that
if x ∈ X and ρ(x, T l(x)) ≤ α for some l ≥ 1, then there exists a periodic point
of period l whose orbit β-shadows the pseudo-orbit (x, T (x), . . . , T l−1(x)). The
choice of α to β is the same as in the definition of shadowing.

In particular, the above holds for every T : X → X an open, distance-
expanding map.

Proof. We can assume without loss of generality that 2β is less than the expansiv-
ness constant for T . Since ρ(x, T l(x)) ≤ α, the sequence made up as the infinite
concatenation of the sequence (x, T (x), . . . , T l−1(x)) is an α-pseudo-orbit. Hence,
by shadowing with n = ∞, there is a point y ∈ X whose orbit β-shadows this
pseudo-orbit. But note that then the orbit of the point T l(y) also does this, and
therefore, by Proposition 4.2.2, T l(y) = y. The proof is complete. ♣

Note that the assumption T is expansive is substantial. The adding machine
map (see Example 1.4) satisfies the shadowing property, whereas it has no
periodic orbits at all. In fact the same proof yields the following periodic
shadowing.
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Definition 4.2.6. We say that a continuous map T : X → X satisfies the
periodic shadowing property if for every β > 0 there exists α > 0 such that for
every finite n and every periodic α-pseudo-orbit x0, . . . , xn−1 – that is, a sequence
of points x0, . . . , xn−1 such that ρ(T (xi), x(i+1)(modn)) ≤ α – there exists a point
y ∈ X of period n such that for all 0 ≤ i < n, ρ(T i(y), xi) ≤ β.

Note that shadowing and periodic shadowing can hold for maps that are not
expansive. One can just add artificially the missing periodic orbits, of periods 2n,
to the adding machine space. This example in fact appears as the non-wandering
set for any Feigenbaum-like map of the interval: see Section 7.6.

4.3 Spectral decomposition; mixing properties

Let us start with general observations concerning iterations of continuous
mappings.

Definition 4.3.1. Let X be a compact metric space. We call a continuous
mapping T : X → X topologically transitive if for all non-empty open sets
U, V ⊂ X there exists n ≥ 0 such that Tn(U) ∩ V = ∅. By compactness of X,
topological transitivity implies that T maps X onto X.

Example 4.3.2. Consider a topological Markov chain ΣA, or Σ̃A in a one-sided
or two-sided shift space of d states: see Example 1.3. Observe that the left-shift
map s on the topological Markov chain is topologically transitive if and only if
the matrix A is irreducible: that is, for each i, j there exists an n > 0 such that
the i, j-th entry Ani,j of the n-th composition matrix An is non-zero.

One can consider a directed graph consisting of d vertices such that there is
an edge from a vertex vi to vj iff Ai,j = 0; then one can identify elements of
the topological Markov chain with infinite paths in the graph (that is, sequences
of edges indexed by all integers or non-negative integers, depending on whether
we consider the two-sided or the one-sided case, such that each edge begins at
the vertex, where the preceding edge ends). Then it is easy to see that A is
irreducible if and only if for every two vertices v1, v2 there exists a finite path
from vi to vj .

A notion stronger than topological transitivity, which makes non-trivial sense
only for non-invertible maps T , is the following.

Definition 4.3.3. A continuous mapping T : X → X for a compact metric
space X is called topologically exact (or locally eventually onto) if for every open
set U ⊂ X there exists n > 0 such that Tn(U) = X.

In Example 4.3.2, in the one-sided shift space case, topological exactness is
equivalent to the property that there exists n > 0 such that the matrix An has
all entries positive. Such a matrix is called aperiodic.

In the two-sided case, aperiodicity of the matrix is equivalent to topological
mixing of the shift map. We say a continuous map is topologically mixing if for
every non-empty open set U, V ⊂ X there exists N > 0 such that for every
n ≥ N we have Tn(U) ∩ V = ∅.
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Proposition 4.3.4. The following three conditions are equivalent:

(1) T : X → X is topologically transitive.

(2) For all non-empty open sets U, V ⊂ X and every N ≥ 0 there exists n ≥ N
such that Tn(U) ∩ V = ∅.
(3) There exists x ∈ X such that every y ∈ X is its ω-limit point: that is, for
every N ≥ 0 the set {Tn(x)}∞n=N is dense in X.

Proof. Let us prove first the implication (1)⇒(3). So, suppose T : X → X is
topologically transitive. Then for every open non-empty set V ⊂ X, the set

K(V ) := {x ∈ X : there exists n ≥ 0 such that Tn(x) ∈ V } =
⋃

n≥0

T−n(V )

is open and dense in X. Let {Vk}k≥1 be a countable basis of topology of X. By
Baire’s Category Theorem, the intersection

K :=
⋂

k≥1

⋂

N≥0

K(T−N (Vk))

is a dense Gδ subset of X. In particular, K is non-empty, and by its definition
the trajectory (Tn(x))∞n=N is dense in X for every x ∈ K. Thus (1) implies (3).

Let us now prove that (3)⇒(2). Indeed, if (Tn(x))∞0 is a trajectory satisfying
the condition (3), then for all non-empty open sets U, V ⊂ X and N ≥ 0, there
exist n ≥ m > 0, n − m ≥ N such that Tm(x) ∈ U and Tn(x) ∈ V . Hence
Tn−m(U)∩V = ∅. Thus (3) implies (2). Since (2) implies (1) trivially, the proof
is complete. ♣
Definition 4.3.5. A point x ∈ X is called wandering if there exists an open
neighhbourhood V of x such that V ∩ Tn(V ) = ∅ for all n ≥ 1. Otherwise x is
called non-wandering. We denote the set of all non-wandering points for T by Ω
or Ω(T ).

Proposition 4.3.6. For T : X → X satisfying the periodic shadowing property,
the set of periodic points is dense in the set Ω of non-wandering points.

Proof. Given β > 0, let α > 0 come from the definition of shadowing. Take any
x ∈ Ω(T ). Then by the definition of Ω(T ) there exists y ∈ B(x, α/2) and n > 0
such that Tn(y) ∈ B(x, α/2). So ρ(y, Tn(y)) ≤ α. Therefore (y, T (y), . . . , Tn(y))
can be β-shadowed by a periodic orbit. Since we can take β arbitrarily small, we
obtain the density of periodic points in Ω(T ). ♣
Remark 4.3.7. It is not true that for every open, distance-expanding map
T : X → X we have Per = X. Here is an example. Let X = {(1/2)n : n =
0, 1, 2, . . . } ∪ {0}. Let T ((1/2)n) = (1/2)n−1 for n > 0, T (0) = 0, T (1) = 1. Let
the metric be the restriction to X of the standard metric on the real line. Then
T : X → X is distance-expanding, but Ω(T ) = Per(T ) = {0} ∪ {1}. See also
Exercise 4.3.
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Here is the main theorem of this section. Its assertion holds under the assump-
tion that T : X → X is open, and distance-expanding, and even under weaker
assumptions below.

Theorem 4.3.8 (on the existence of spectral decomposition). Suppose that T :
X → X is an open map that also satisfies the periodic shadowing property, and
is expanding at the set of non-wandering points Ω(T ) (equal here to Per(T ), the
closure of the set of periodic points, by Proposition 4.3.6). Then Ω(T ) is the
union of finitely many disjoint compact sets Ωj , j = 1, . . . , J , with

(T |Ω(T ))−1(Ωj) = Ωj

and each T |Ωj
is topologically transitive.

Each Ωj is the union of k(j) disjoint compact sets Ωkj , which are cyclically
permuted by T and such that T k(j)|Ωk

j
is topologically exact.

Proof of Theorem 4.3.8. Let us start by defining an equivalence relation ∼ on
Per(T ). For x, y ∈ Per(T ) we write x ∼→ y if for every ε > 0 there exist x′ ∈ X
and positive integer m such that ρ(x, x′) < ε and Tm(x′) = Tm(y). We write
x ∼ y if x ∼→ y and y ∼→ x. Of course, for every x ∈ Per(T ), x ∼ x, so the
relation is symmetric.

Now we shall prove it is transitive. Suppose that x ∼ y and y ∼ z. Let ky, kz
denote periods of y, z respectively.

Let x′ be close to x and Tn(x′) = Tn(y) = y; an integer n satisfiying the
latter equality exists, since we can take an integer so that the first equality
holds, and then take any larger integer divisible by ky. Choose n divisible by
kykz. Next, since T is open, for y′ close enough to y, with Tm(y′) = Tm(z) = z
for m divisible by kz, there exists x′′ close to x′ such that Tn(x′′) = y′. Hence
Tn+m(x′′) = Tm(y′) = z = Tn+m(z), since both m and n are divisible by kz.
Thus x ∼ z. We have thus shown that ∼ is an equivalence relation. This proof
is illustrated in Figure 4.1.

(Figure 4.2 illustrates transitivity for hyperbolic sets Per(T ) – see Exercises
or [Katok & Hasselblatt 1995] – where x ∼ y if the unstable manifold of x

y

x x x

Tm(y ) = Tm(z) = zTn(x ) = Tn(y) = y

Figure 4.1 Transitivity: the expanding case.
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intersects the stable manifold of y transversally. In our expanding case the role
of transversality is played by the openness of T .)

So far we have not used the expanding assumption.
Observe now that for all x, y ∈ Per(T ), ρ(x, y) ≤ ξ implies x ∼ y.

Indeed, we can take x′ = T
−nkxky
x (y) for n arbitrarily large. Then x′ is arbi-

trarily close to x, and Tnkxky (x′) = y = Tnkxky (y). Hence the number of
equivalence classes of ∼ is finite. Denote them by P1, . . . , PN . Moreover, the
sets P1, . . . , PN are pairwise disjoint, and the distances between them are at
least ξ. We have T (Per(T )) = Per(T ), and if x ∼ y then T (x) ∼ T (y).
The latter follows directly from the definition of ∼. So T permutes the sets
Pi. This permutation decomposes into the cyclic permutations we were look-
ing for. More precisely: consider the partition of Per(T ) into sets of the
form

∞⋃

n=0

Tn(Pi), i = 1, . . . , N.

The unions are in fact formed over finite families. It does not matter in which
place the closure is placed in these unions, because X is compact, so for every
A ⊂ X we have T (A) = T (A). We consider this partition as a partition
into the Ωj ’s we were looking for. The Ωkj ’s are the summands Tn(Pi) in the
unions.

Observe now that T is topologically transitive on each Ωj .
Indeed, if periodic x, y belong to the same Ωj , there exist x′ ∈ B(x, ξ) and

y′ ∈ B(y, ξ) such that Tn(x′) = Tn0(y) and Tm(y′) = Tm0(x) for some natural
numbers n,m and n0 ≤ ky,m0 ≤ kx. For an arbitrary β > 0 choose α > 0 from
the definition of periodic shadowing, and consider x′′, y′′ such that ρ(x′′, x) ≤
α, ρ(y′′, y) ≤ α and Tn1(x′′) = x′, Tm1(y′′) = y′ for some natural numbers
n1,m1, existing by the expanding property at Per(T ). Then the sequence of
points T (x′′), . . . , Tn1+n+ky−n0(x′′), T (y′′), . . . , Tm1+m+kx−m0(y′′) is a periodic
α-pseudo-orbit, of period n1 + n + ky − n0 + m1 + m + kx − m0, so it can
be β-shadowed by a periodic orbit. Thus there exists z ∈ Per(T ) such that
ρ(z, x) ≤ β and ρ(TN (z), y) ≤ β for an integer N > 0. Now take arbitrary open
sets U and V in X intersecting Ωj and consider periodic points x ∈ Ωj ∩ U and
y ∈ Ωj ∩ V .

Take β such that B(x, β) ⊂ U and B(y, β) ⊂ V . We find a periodic point
z as above. Note that, provided β ≤ ξ, z ∼ x and TN (z) ∼ y. We obtain
TN (z) ∈ TN (U ∩ Ωj) ∩ (V ∩ Ωj), so this set is non-empty. This proves the
topological transitivity of T |Ωj

.
Note that we proved that the orbits (their finite parts) x′′, . . . , Tn1(x′′) =

x′, . . . , Tn(x′) and y′′, . . . , Tm1(y′′) = y′, . . . , Tm(y′), with n1, n and m1,m arbi-
trarily large, can be arbitrarily well shadowed by parts of periodic orbits. This
corresponds to the approximation of a transversal homoclinic orbit or of cycles
of transversal heteroclinic orbits by periodic ones, in the hyperbolic theory for
diffeomorphisms (see also Exercise 4.6).
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This analogy justifies the name heteroclinic cycle points for the points x′ and
y′, or heteroclinic cycle orbits for their orbits as discussed above. Thus we have
proved:

Lemma 4.3.9. Under the assumptions of Theorem 4.3.8, every heteroclinic
cycle point is a limit of periodic points.

The following is interesting in itself:

Lemma 4.3.10. T |
Per(T )

is an open map.

Proof. Fix x, y ∈ Per(T ) and ρ(T (x), y) ≤ ε ≤ ξ/3. Since T is open, by
Lemma 4.1.2, and because of the expanding property at Per(T ), there exists
ŷ = T−1

x (y) ∈ B(x, λ−1ξ/3). We want to prove that ŷ ∈ Per(T ).
There exist z1, z2 ∈ Per(T ) such that ρ(z1, x) ≤ λ−1ξ/3 and ρ(z2, y) ≤ ξ/3.

Hence ρ(T (z1), z2) ≤ ξ, hence T (z1) ∼ z2, and hence z1 and z2 belong to the
same Ωj . Then T−1

x (z2) is a heteroclinic cycle point, so by Lemma 4.3.9 T−1
x (z2),

and hence ŷ, are limits of periodic points. ♣

Continuation of the proof of Theorem 4.3.8. We can now prove the
topological exactness of T k(j)|Ωk

j
. Fix Ωkj = Pi with T k(j)(Pi) = Pi. Let

{xs}, s = 1, . . . , S be a ξ′/2-spanning set in Pi, where ξ′ is a constant hav-
ing the properties of ξ for the map T |Per, existing by the openness of T |

Per(T )

(Lemmas 4.1.2 and 4.3.10). Write k(Pi) =
∏S
s=1 kxs

. Take an arbitrary open set
U ⊂ Pi. It contains a periodic point x.

Note that for every ball B = B(y, r) in Per(T ) with the origin at y ∈ Per(T )
and radius r less than η and λ−kyξ′, we have T ky (B) ⊃ B(y, λkyr). Repeating
this step by step, we obtain Tnk(y)(B) ⊃ B(y, ξ′): see (4.1.7).

Let us go back to U and consider Bx = B(x, r) ⊂ U with r ≤ λ−k(Pi)ξ′. Then
Tnk(Pi)(Bx) is an increasing family of sets for n = 0, 1, 2, . . . .

By the definition of ∼, the set
⋃
n≥0 T

nk(Pi)(Bx) contains {xs : s = 1, . . . , S},
because the points xs are in the relation ∼ with x. This uses the fact proved above
(see Lemma 4.3.9) that x′ in the definition of ∼, such that Tm(x′) = Tm(xs),
belongs to Per(T ). It belongs even to Pi, since for z ∈ Per(T ) close to x′ we have
z ∼ xs, with the use of the same x′ as that of heteroclinic cycle points. Hence,
by the observation above,

⋃
n≥0 T

nk(Pi)(Bx) contains the ball B(xs, ξ′) for each
s. So it contains Pi. Since Tnk(Pi)(Bx) is an increasing family of open sets in
Per(T ) that is compact, just one of these sets covers Per(T ). The topological
exactness and therefore Theorem 4.3.8 is proved. ♣
Remark 4.3.11. In Theorem 4.3.8 one can replace the assumption of periodic
shadowing by just PerT = Ω(T ). (By analogy to Axiom A diffeomorphisms we
can call an open map T : X → X expanding on Ω(T ), and such that Per(T ) =
Ω(T ), an Axiom A Ω-distance-expanding map.)

Indeed, in the proof of Theorem 4.3.8 we used shadowing only to approx-
imate heteroclinic cycle points by periodic ones. It is sufficient, however, to
notice that heteroclinic cycle points are non-wandering, by the openness of T .
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(In particular, periodic shadowing is not needed in Lemma 4.3.9 to conclude the
non-wandering.)

This yields topological transitivity of each T |Ωj
with the proof as before. We

find the periodic point z by Per(T ) = Ω(T ).

We do not know whether expanding on Ω(T ) implies Ω(T ) = Per(T ); for
diffeomorphisms hyperbolic on Ω it does not.

As a corollary, we obtain the following two theorems.

Theorem 4.3.12. Let T : X → X be a continuous mappping for X a compact
metric space. Assume that T is open distance-expanding, or at least expanding
at the set Per(T ) satisfying the periodic shadowing property. Then, if T is topo-
logically transitive, or is surjective and its spectral decomposition consists of just
one set Ω1 =

⋃k(1)
k=1 Ωk1 , the following properties hold:

(1) The set of periodic points is dense in X, which is thus equal to Ω1.

(2) For every open U ⊂ X there exists N = N(U) such that
⋃N
j=0 T

j(U) = X.

(3) (∀r > 0)(∃N)(∀x ∈ X)
⋃N
j=0 T

j(B(x, r)) = X.

(4) The following specification property holds: for every β > 0 there exists a
positive integer N such that for every n ≥ 0 and every T -orbit (x0, . . . xn) there
exists a periodic point y of period not larger than n+N whose orbit for the times
0, . . . , n β-shadows (x0, . . . xn).

Proof. By topological transitivity, for every open set U there exists n ≥ 1 such
that Tn(U) ∩ U = ∅ (use condition (2) in Proposition 4.3.4 for N = 1). Hence
for the set Ω of non-wandering points we have Ω = X. This gives the density of
Per(T ) by Proposition 4.3.6.

If we assume only that there is one Ω1(= Ω = Per(T )) in the spectral decom-
position, then for an arbitrary z ∈ X we find by the surjectivity of T an infinite
backward orbit z−n of z. Note that z−n → Ω and Tn(z) → Ω, which follows eas-
ily from the definition of Ω. So for every α > 0 there exist w1, w2 ∈ Per(T )
and natural numbers k, n such that T k(w2) ∼ w1, ρ(w1, z−n) ≤ α, and
ρ(w2, T

n(z)) ≤ α. This allows us to find a periodic point in B(z, β), where
β > 0 is arbitrarily small and α is chosen for β from the periodic shadowing
property.

We conclude that X =
⋃J
j=1 Ωj , each Ωj is T -invariant, closed, and also

open since Ωj ’s are at least ξ-distant from each other. So J = 1. Otherwise, by
topological transitivity, for j = i there exists n such that Tn(Ωj)∩Ωi = ∅, which
would contradict the T -invariance of Ωj .

Thus X =
⋃k(1)
k=1(Ω

k
1), and assertion (2) follows immediately from the

topological exactness of T k(1) on each set Ωk1 , k = 1, . . . , k(1).
Property (3) follows from (2), where given r we choose N = max{N(U)}

associated to a finite cover of X by sets U of diameter not exceeding r/2. Indeed,
then for every B(x, r) the set U containing x is a subset of B(x, r).
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Now let us prove the specification property. By property (3), for every α > 0
there exists N = N(α) such that for every v, w ∈ X there exists m ≤ N and
z ∈ B(v, α) such that Tm(z) ∈ B(w,α).

Consider any T -orbit x0, . . . xn. Then consider an α-pseudo-orbit x0, . . . xn−1,
z, . . . , Tm−1(z) with m ≤ N and z ∈ B(xn, α, Tm(z)) ∈ B(x0, α). By Corollary
4.2.5 we can β-shadow it by a periodic orbit of period n+m ≤ n+N . ♣

The same proof yields this.

Theorem 4.3.13. Let T satisfy the assumptions of Theorem 4.3.12, and let it
be also topologically mixing: that is, k(1) = 1. Then

(1) T is topologically exact: that is, for every open U ⊂ X there exists N = N(U)
such that TN (U) = X.

(2) (∀r > 0)(∃N)(∀x ∈ X) TN (B(x, r)) = X.

4.4 Hölder continuous functions

For distance-expanding maps, Hölder continuous functions play a special role.
Recall that a function φ : X → C (or R) is said to be Hölder continuous with an
exponent 0 < α ≤ 1 if and only if there exists C > 0 such that

|φ(y) − φ(x)| ≤ Cρ(y, x)α

for all x, y ∈ X. All Hölder continuous functions are continuous; if α = 1 they
are usually called Lipschitz continuous.

Let C(X) denote, as in previous chapters, the space of all continuous, real
or complex-valued functions defined on a compact metric space X, and for ψ :
X → C we write ‖ψ‖∞ := sup{|ψ(x)| : x ∈ X} for its supremum norm. For
any α > 0 let Hα(X) denote the space of all Hölder continuous functions with
exponent α > 0. If ψ ∈ Hα(X), let

ϑα,ξ(ψ) = sup
{ |ψ(y) − ψ(x)|

ρ(y, x)α
: x, y ∈ X, x = y, ρ(x, y) ≤ ξ

}

and

ϑα(ψ) = sup
{ |ψ(y) − ψ(x)|

ρ(y, x)α
: x, y ∈ X,x = y

}

.

Note that

ϑα(ψ) ≤ max
{

2||ψ||∞
ξα

, ϑα,ξ(ψ)
}

.

The reader can check easily that Hα(X) becomes a Banach space when
equipped with the norm

‖ψ‖Hα
= ϑα(ψ) + ‖ψ‖∞.

Thus, in future, to estimate ||ψ||Hα
it is sufficient to estimate ϑα,ξ(ψ) and

||ψ||∞.
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The following result is a straightforward consequence of the Arzela–Ascoli
Theorem.

Theorem 4.4.1. Any bounded subset of the Banach space Hα(X) with the norm
‖·‖Hα

is relatively compact as a subset of the Banach space C(X) with the supre-
mum norm ‖ · ‖∞. Moreover, if {ψn : n = 1, 2, . . .} is a sequence of continuous
functions in Hα(X) such that ‖xn‖Hα

≤ C for all n ≥ 1 and some constant
C, and if limn→∞ ‖ψn − ψ‖∞ = 0 for some ψ ∈ C(X), then ψ ∈ Hα(X) and
‖ψ‖Hα

≤ C.

Now let us formulate a simple but very basic lemma that demonstrates coher-
ence of the expanding property of T and the Hölder continuity property of a
function.

Lemma 4.4.2 (Pre-Bounded Distortion Lemma for Iteration). Let T : X → X
be a distance-expanding map and φ : X → C be a Hölder continuous function
with the exponent α. Then for every positive integer n and all x, y ∈ X such that

ρ(T j(x), T j(y)) < 2η for all j = 0, 1, . . . , n− 1, (4.4.1)

we have, with C(T, φ) :=
(
ϑα(φ)
1−λ−α

)
,

|Snφ(x) − Snφ(y)| ≤ C(T, φ)ρ(Tn(x), Tn(y))α, (4.4.2)

where Snφ(z) :=
∑n−1
j=0 φ ◦ T j(x).

If T is open we can assume x, y ∈ T−n
z (B(Tn(z), ξ) for a point z ∈ X, instead

of (4.4.1). Then in (4.4.2) we can replace ϑα by ϑα,ξ.

The point of (4.4.2) is that the coefficient C(T, φ) = ϑα(φ)
1−λ−α does not depend

on x, y or on n.

Proof. By (4.0.2) we have ρ(T j(x), T j(y)) ≤ λ−(n−j)ρ(Tn(y), Tn(z)) for every
0 ≤ j ≤ n. Hence

|φ(T j(y)) − φ(T j(z))| ≤ ϑα(φ)λ−(n−j)αρ(Tn(y), Tn(z))α.

Thus

|Snφ(y) − Snφ(z)| ≤ ϑα(φ)ρ(Tn(y), Tn(z))α
n−1∑

j=0

λ−(n−j)α

≤ ϑα(φ)ρ(Tn(y), Tn(z))α
∞∑

j=0

λ−jα

=
ϑα(φ)

1 − λ−α
ρ(Tn(y), Tn(z))α.

The proof is complete. ♣
For an open distance-expanding topologically transitive map we can replace

topological pressure, defined in Chapter 3, by a corresponding notion related to
a ‘tree’ of pre-images of an arbitrary point.
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Proposition 4.4.3. If T : X → X is a topologically transitive open distance-
expanding map, then for every Hölder continuous potential φ : X → R and for
every x ∈ X there exists the limit

Px(T, φ) := lim
n→∞

1
n

log
∑

x∈T−n(x)

expSnφ(x),

and it is equal to the topological pressure P(T, φ). In addition, there exists a
constant C such that for all x, y ∈ X and every positive integer n

∑
x∈T−n(x) expSnφ(x)

∑
y∈T−n(y) expSnφ(y)

< C. (4.4.3)

Proof. If ρ(x, y) < ξ then (4.4.3) follows immediately from Lemma 4.4.2 with the
constant, C = C1 := exp(C(T, φ)ξα), since this is the bound for the ratio of corre-
sponding summands for each backward trajectory, by Lemma 4.4.2. Now observe
that by the topological transitivity of T there exists N (depending on ξ) such
that for all x, y ∈ X there exists 0 ≤ m < N such that Tm(B(x, ξ))∩B(y, ξ) = ∅.
Indeed, by condition (3) in Proposition 4.3.4 we can find two blocks of a trajec-
tory of z with dense ω-limit set, say T k(z), . . . , T k

′
(z) and T l(z), . . . , T l

′
(z) with

l > k′, each ξ-dense in X. Then we set N = l′ − k. We can find t between k and
k′ and s between l and l′ so that T t(z) ∈ B(x, ξ) and T s(z) ∈ B(y, ξ). We have
m := s− t ≤ N .

Now fix arbitrary x, y ∈ X. There therefore exists a point y′ ∈ T−m(B(y, ξ))
∩B(x, ξ). We then have

∑

x∈T−n(x)

expSnφ(x) ≤ C1

∑

y′∈T−n(y′)

expSnφ(y′)

= C1 exp(−Smφ(Tn(y′)))
∑

y′∈T−n(y′)

expSn+mφ(y′)

≤ C1 exp(−m inf φ)
∑

y′∈T−(n+m)(Tm(y′))

expSn+mφ(y′)

≤ C1 exp(−m inf φ)
∑

y′∈T−(n+m)(Tm(y′))

expSnφ(Tm(y′)) expSmφ(y′)

≤ C1 exp(m supφ−m inf φ)
∑

y′∈T−(n+m)(Tm(y′))

expSnφ(Tm(y′))

≤ C1 exp(2N ||φ||∞)DN
∑

y′∈T−n(Tm(y′))

expSnφ(y′)

≤ C2
1 exp(2N ||φ||)DN

∑

y∈T−n(y)

expSnφ(y),

where D = sup{#(T−1(z)) : z ∈ X} <∞. This proves (4.4.3).
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Observe that each set T−n(x) is (n, 2η)-separated, whence

lim sup
n→∞

1
n

log
∑

x∈T−n(x)

expSnφ(x) ≤ P(T, φ),

by the characterization of pressure given in Theorem 3.3.2.
In order to prove the opposite inequality, fix ε < 2ξ, and for every n ≥ 1 an

(n, ε)-separated set Fn. Cover X by finitely many balls

B(z1, ε/2), B(z2, ε/2), . . . , B(zk, ε/2).

Then Fn = Fn ∩
(⋃k

j=1 T
−n(B(zj , ε/2)

))
, and therefore

∑

z∈Fn

exp(Snφ(z)) ≤
k∑

j=1

∑

Fn∩T−n(B(zj ,ε/2))

exp(Snφ(z)).

Consider an arbitrary j and y ∈ Fn ∩T−n(B(zj , ε/2)). Let zj,y ∈ T−n(zj) be
defined by y ∈ T−n

zj,y
(B(zj , ε/2). We shall show that the function y �→ zj,y is injec-

tive. Indeed, suppose that zj = zj,a = zj,b for some a, b ∈ Fn ∩ T−n(B(zj , ε/2)).
Then

ρ(T l(a), T l(b)) ≤ ρ(T l(a), T l(zj)) + ρ(T l(zj), T l(b)) ≤ ε

2
+
ε

2
= ε

for every 0 ≤ l ≤ n. So a = b, since Fn is (n, ε)-separated.
Hence, using Lemma 4.4.2 (compare (4.4.3)), we obtain

∑

z∈Fn

exp(Snφ(z)) ≤
k∑

j=1

C
∑

zj

exp(Snφ(zj)) ≤ kC2
∑

x∈T−n(x)

exp(Snφ(x)).

Letting n↗ ∞, next ε→ 0, and then applying Theorem 3.3.2, we therefore get

P(T, φ) ≤ lim inf
n→∞

1
n

log
∑

x∈T−n(x)

expSnφ(x).

Thus

lim inf
n→∞

1
n

log
∑

x∈T−n(x)

expSnφ(x) ≥ P(T, φ) ≥ lim sup
n→∞

1
n

log
∑

x∈T−n(x)

expSnφ(x).

So lim inf = lim sup above, the limit exists and is equal to P(T, φ). ♣
Remark 4.4.4. It follows from Proposition 4.4.3, the proof of the Variational
Principle Part II (see Section 3.4), and the expansiveness of T that for every
x ∈ X every weak limit of the measures 1

n

∑n−1
k=0 μn ◦ T−k, for

μn =

∑
x∈T−n(x) δx expSnφ(x)
∑
x∈T−n(x) expSnφ(x)

,
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and δx denoting the Dirac measure concentrated at the point x, is an equilibrium
state for φ. In fact, in our very special situation we can say a lot more about the
measures involved. Chapter 5 will be devoted to this end.

Let us finish this section with one more very useful fact (compare Theorem
2.11.3.)

Proposition 4.4.5. Let T : X → X be an open, distance-expanding, topo-
logically transitive map. If φ, ψ ∈ Hα(X), then the following conditions are
equivalent.

(1) If x ∈ X is a periodic point of T , and if n denotes its period, then Snφ(x)−
Snψ(x) = 0.

(2) There exists a constant C > 0 such that for every x ∈ X and integer n ≥ 0,
we have |Snφ(x) − Snψ(x)| ≤ C.

(3) There exists a function u ∈ Ha such that φ− ψ = u ◦ T − u.

Proof. The implications (3) =⇒ (2) =⇒ (1) are very easy. The first is obtained by
summing up the equation in (3) along the orbit x, T (x), . . . , Tn−1(x), which gives
C = 2 sup |u|. The second holds because otherwise, if Snφ(x)−Snψ(x) = K = 0
for x of period n, then we have Sjnφ(x) − Sjnψ(x) = jK, which contradicts (2)
for j large enough. Now let us prove (1) =⇒ (3). Let x ∈ X be a point such
that for every N ≥ 0 the orbit (xn)∞N is dense in X. Such x exists by topological
transitivity of T : see Proposition 4.3.4. Write η = φ−ψ. Define u on the forward
orbit of x, the set A = {Tn(x)}∞0 by u(xn) = Snη(x). If x is periodic then X is
just the orbit of x, and the function u is well defined owing to the equality in (1).
So, suppose that x is not periodic. Set xn = Tn(x). Then xn = xm for m = n:
hence u is well defined on A. We shall show that it extends in a Hölder continuous
manner to A = X. Indeed, if we take points xm, xn ∈ A such that m < n and
ρ(xm, xn) < ε for ε small enough, then xm, . . . , xn−1 can be β-shadowed by a
periodic orbit y, . . . , Tn−m−1(y) of period n −m by Corollary 4.2.5, where ε is
related to β in the same way as α is related to β in that corollary. Then by
Lemma 4.4.2,

|u(xn) − u(xm)| = |Snη(x) − Smη(x)| = |Sn−mη(xm)|
= |Sn−mη(xm) − Sn−mη(y)| ≤ ϑ(φ)αεα.

In particular, we proved that u is uniformly continuous on A, which allows us to
extend u continuously to A. By taking limits we see that this extension satisfies
the same Hölder estimate on A as on A. Also, the equality in (3), true on A,
extends to A by the definition of u and by the continuity of η and u . The proof
is complete. ♣
Remark 4.4.6. The equality in (3) is called the cohomology equation, and u is a
solution of this equation: compare Section 2.11. Here the cohomology equation is
solvable in the space K = Hα. Note that in proving (3) =⇒ (2) we used only the
assumption that u is bounded. So, going through (2) =⇒ (1) =⇒ (3) we prove
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that if the cohomology equation is solvable with u bounded, then automatically
u ∈ Hα. The reader will see later that frequently, even under assumptions of T
weaker than expanding, to prove that u is a ‘good’ function it suffices to assume u
to be measurable and finite almost everywhere, for some probability T -invariant
measure with support X. Often u is forced to be as regular as φ and ψ are. These
types of theorem are called Livśic-type theorems.

4.5 Markov partitions and symbolic
representation

We shall prove in this section that the topological Markov chains (Chapter 1,
Example 1.3) describe quite precisely the dynamics of general open expanding
maps.

This can be done through so-called Markov partitions of X. The sets of a
partition will play the role of ‘cylinders’ {i0 = Const} in the symbolic space ΣA.

Definition 4.5.1. A finite cover � = {R1, . . . , Rn} of X is said to be a Markov
partition of the space X for the mapping T if diam(�) < min{η, ξ} and the
following conditions are satisfied.

(a) Ri = IntRi for all i = 1, 2, . . . , d.

(b) IntRi ∩ IntRj = ∅ for all i = j.

(c) IntRj ∩ T (IntRi) = ∅ =⇒ Rj ⊂ T (Ri) for all i, j = 1, 2, . . . , d.

Theorem 4.5.2. For an open, distance-expanding map T : X → X there exist
Markov partitions of arbitrarily small diameters.

Proof. Fix β < min{η/4, ξ} and let α be the number associated to β as in
Lemma 4.2.3. Choose 0 < γ ≤ min{β/2, α/2} so small that

ρ(x, y) ≤ γ =⇒ ρ(T (x), T (y)) ≤ α/2. (4.5.1)

Let E = {z1, . . . , zr} be a γ-spanning set of X. Define the space Ω by putting

Ω = {q = (qi) ∈ EZ
+

: ρ(T (qi), qi+1) ≤ α for all i ≥ 0}.
By definition, all elements of the space Ω are α-pseudo-orbits, and therefore, in
view of Corollary 4.2.4 and Lemma 4.2.3, for every sequence q ∈ Ω there exists
a unique point whose orbit β-shadows q. Denote this point by Θ(q). In this way
we have defined a map Θ : Ω → X. We shall need some of its properties.

Let us show first that Θ is surjective. Indeed, since E is a γ-spanning set, for
every x ∈ X and every i ≥ 0 there exists qi ∈ E such that

ρ(T i(x), qi) < γ.

Therefore, using also (4.5.1),

ρ(T (qi), qi+1) ≤ ρ(T (qi), T (T i(x)))+ρ(T i+1(x), qi+1) < α/2+γ ≤ α/2+α/2 = α
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for all i ≥ 0. Thus q = (qi)∞i=0 ∈ Ω and (as γ < β) x = Θ(q). The surjectivity of
Θ is proved.

Now we shall show that Θ is continuous. For this aim we shall need the
following notation. If q ∈ Ω then we put

q(n) = {p ∈ Ω : pi = qi for every i = 0, 1, . . . , n}. (4.5.2)

To prove continuity suppose that p, q ∈ Ω, p(n) = q(n) with some n ≥ 0, and
put x = Θ(q), y = Θ(p). Then for all i = 0, 1, . . . , n,

ρ(T i(x), T i(y)) ≤ ρ(T i(x), qi) + ρ(pi, T i(y)) ≤ β + β = 2β.

As β < η, we therefore obtain by (4.0.2) that

ρ(T i+1(x), T i+1(y)) ≥ λρ(T i(x), T i(y))

for i = 0, 1, . . . , n − 1, (see (4.1.6)), and consequently ρ(x, y) ≤ λ−n2β. The
continuity of Θ is proved.

Now for every k = 1, . . . , r define the sets

Pk = Θ({q ∈ Ω : q0 = zk}).

Since Θ is continuous, Ω is a compact space, and the sets {q ∈ Ω : q0 = zk} are
closed in Ω, all sets Pk are closed in X.

Denote
W (k) = {l : ρ(T (zk), zl) ≤ α}.

The following basic property is satisfied:

T (Pk) =
⋃

l∈W (k)

Pl. (4.5.3)

Indeed, if x ∈ Pk then x = Θ(q) for q ∈ Ω with q0 = zk. By the definition of Ω
we have q1 = zl for some l ∈W (k). We obtain T (x) ∈ Pl.

Conversely, let x ∈ Pl for l ∈ W (k). This means that x = Θ(q) for some
q ∈ Ω with q0 = zl. By the definition of W (k) the concatenation zkq belongs to
Ω, and therefore the point T (Θ(zkq)) β-shadows q. Thus T (Θ(zkq)) = Θ(q) = x,
and hence x ∈ T (Pk).

Let now

Z = X \
∞⋃

n=0

T−n(
r⋃

k=1

∂Pk
)
.

Note that the boundary set ∂Pk := Pk \ IntPk is closed, by definition. It is also
nowhere dense, since Pk itself is closed. Indeed, by the definition of interior, each
point in ∂Pk is a limit of a sequence of points belonging to X \ Pk, and hence
belonging to X \ Pk, but not belonging to ∂Pk. Since T is open, also all the
sets T−n(∂Pk) are nowhere dense. They are closed by the continuity of T . We
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conclude, referring to the Baire Theorem, that Z is dense in X; its complement
is of the first Baire category.

For any x ∈ Z denote

P (x) = {k ∈ {1, . . . , r} : x ∈ Pk},

Q(x) =
{
l /∈ P (x) : Pl ∩ (

⋃

k∈P (x)

Pk) = ∅
}
,

and

S(x) =
⋂

k∈P (x)

IntPk \
⎛

⎝
⋃

k∈Q(x)

Pk

⎞

⎠ =
⋂

k∈P (x)

IntPk \
⎛

⎝
⋃

k/∈P (x)

Pk)

⎞

⎠ .

We shall show that the family {S(x) : x ∈ Z} is in fact finite and, moreover, that
the family {S(x) : x ∈ Z} is a Markov partition of diameter not exceeding 2β.

Indeed, since diam(Pk) ≤ 2β for every k = 1, . . . , r we have

diam(S(x)) ≤ 2β. (4.5.4)

As the sets S(x) are open, we have

Int S(x) = S(x) (4.5.5)

for all x ∈ Z. This proves the property (a) in Definition 4.5.1.
We shall now show that for every x ∈ Z

T (S(x)) ⊃ S(Tx). (4.5.6)

Note first that for K(x) :=
⋃
k∈P (x) Pk ∪

⋃
l∈Q(x) Pl we have diam(K(x)) ≤ 8β

and therefore, by the assumption β < η/4, the map T restricted to K(x) (and
even to its neighbourhood U ) is injective.

Consider k ∈ P (x). Then there exists l ∈ W (k) such that T (x) ∈ Pl
(see (4.5.3)), and using the definition of Z we get T (x) ∈ Int(Pl). Using
the injectivity of T |U and the continuity of T , and then (4.5.3), we obtain
IntPk ⊃ T |−1

U (Int(T (Pk)): hence

T (IntPk) ⊃ Int(T (Pk)) ⊃ IntPl ⊃ S(T (x)),

and therefore

T

⎛

⎝
⋂

k∈P (x)

IntPk

⎞

⎠ ⊃ S(T (x)). (4.5.7)

Now consider k ∈ Q(x). Observe that by the injectivity of T |K(x) the
assumption x /∈ Pk implies T (x) /∈ Pl, l ∈W (k).

Thus, using (4.5.3), we obtain

T (Pk) ⊂
⋃

l/∈P (T (x))

Pl.
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Hence

T

⎛

⎝
⋃

l∈Q(x)

Pl

⎞

⎠ ∩ S(T (x)) = ∅.

Combining this and (4.5.7) gives

T

⎛

⎝
⋂

k∈P (x)

IntPk \
⎛

⎝
⋃

k∈Q(x)

Pk

⎞

⎠

⎞

⎠ ⊃ S(T (x)),

which means that formula (4.5.6) is satisfied, and therefore

T (S(x)) ⊃ S(Tx). (4.5.8)

We shall now prove the following claim.

Claim. If x, y ∈ Z then either S(x) = S(y) or S(x) ∩ S(y) = ∅.
Indeed, if P (x) = P (y) then also Q(x) = Q(y) and consequently S(x) = S(y).

If P (x) = P (y) then there exists k ∈ P (x) ÷ P (y), say k ∈ P (x) \ P (y). Hence
S(x) ⊂ IntPk and S(y) ⊂ X \ Pk. Therefore S(x) ∩ S(y) = ∅ and the claim is
proved.

(One can write the family S(x) as
∨
k=1,...,r{IntPk,X\Pk}: compare notation

in Chapter 2. Then the assertion of the claim is immediate.)
Since the family {P (x) : x ∈ Z} is finite, so is the family {S(x) : x ∈ Z}.

Note that S(x) ∩ S(y) = ∅ implies IntS(x) ∩ IntS(y) = ∅. This is a general
property of pairs of open sets: U ∩V = ∅ implies U ∩V = ∅ implies IntU ∩V = ∅
implies IntU ∩ V = ∅ implies IntU ∩ IntV = ∅.

Since
⋃
x∈Z S(x) ⊃ Z and Z is dense in X, we thus have

⋃
x∈Z S(x) = X.

That the family {S(x) : x ∈ Z} is a Markov partition for T of diameter not
exceeding 2β now follows from (4.5.5), (4.5.6), (4.5.4) and from the claim. The
proof is complete. ♣
Remark 4.5.3. If in Theorem 4.5.2 we omit the assumption that T is an open
map, but assume that X ⊂ W and T extends to an open map in W , then the
assertion about the existence of the Markov partition holds for X̃, an arbitrarily
small T invariant extension of X.

The proof is the same. One finds X̃ := Θ(Ω) ⊃ X; it need not be equal to X.
The only difficulty is to verify that the sets T−j(∂Pk) for all j ≥ 1 are nowhere
dense. We can prove it by assuming that λ > 2, where it follows immediately
from the following lemma.

Lemma 4.5.4. For each cylinder [q0, . . . , qn] its Θ-image contains an open set
in X̃.

Proof. Let L := sup |T ′|. Assume γ << α. Choose an arbitrary qn+1, . . . such
that for all j ≥ n we have ρ(T (qj), qj+1) ≤ γ. Let x = Θ((q0, . . . )). We prove
that every y ∈ X̃ close enough to x, ρ(x, y) ≤ ε, belongs to Θ([q1, . . . , qn]).
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Since y ∈ X̃, by forward invariance of X̃ we get Tn+1(y) ∈ X̃. Hence there
exists a sequence of points z0, · · · ∈ E such that Tn+1(y) = Θ((z0, . . . )). As a
consequence the sequence s = (q0, . . . , qn, z0, z1, . . . ) of points in E satisfies the
following

ρ
(
T (qj), qj+1

) ≤ α for j = 0, 1, . . . , n− 1.

ρ
(
T (qn), z0

) ≤ ρ
(
T (qn), qn+1

)
+ ρ
(
qn+1, T

n+1(x)
)

+ ρ
(
Tn+1(x), Tn+1(y)

)

+ρ
(
Tn+1(y), z0

) ≤ γ +
1/λ

1 − 1/λ
γ + Ln+1ε+

1/λ
1 − 1/λ

α ≤ α,

as we can assume λ > 2 and

ρ(T (zj), zj+1) ≤ α for j = 0, 1, ....

Therefore Θ(s) = y and s ∈ [q0, ..., qn]. ♣
Therefore there is an arbitrary small extension of X to a compact set X̃ that

is F = Tn invariant for an integer n > 0 and has Markov partition {Ri} for F .
Then take X̂ =

⋃
j≥0 T

j(X̃). It is easy to check that the family of the closures
of the intersections of the sets T−j

Tn−j(x)(IntRi), for x ∈ IntRk and interiors in

X̃ constitutes a Markov partition of X̂ for T .

Example 4.5.5. It is not true that in the situation of Remark 4.5.3 one can
always extend X to a T -invariant set X̃, in an arbitrarily small neighbourhood
of X, on which T is open (i.e. (X̃, T ) is a repeller: see Section 6.1). Indeed,
consider in the plane the set X, being the union of a circle together with its
diameter interval. It is easy to find a mapping T defined on a neighbourhood of
X, preserving X, smooth and expanding. Then at least one of the pre-images of
one of two triple points (end points of the diameter) is not a triple point. Denote
it by A. T restricted to X is not open at A. Adding a short arc γ starting at
A, disjoint from X (except A), a pre-image of an arc in X does not make T
open. Indeed, it is not open at the second end of γ. (It is not open either at
T -pre-images of A, but we can cope with this trouble by adding pre-images of γ
under iteration of T .)

On the other hand, (X,T ) can be extended to a repeller if X is a Cantor set.
This fact will be applied in Section 11.6.

Proposition 4.5.6. Let T : W → W be an open continuous map of a compact
metric space (W,ρ). Let X ⊂ W be a T -invariant Cantor set, such that T is
expanding in a neighbourhood U of X: that is, (4.0.1) holds for x, y ∈ U . Then,
in an arbitrarily small neighbourhood of X in W , there exists a Cantor set X̃
containing X such that T is open on it.

Proof. One can change the metric ρ onW to a metric ρ′ giving the same topology,
such that (X,T ) is distance-expanding on U in ρ′ in the sense of (4.0.2): see
Section 4.1 for T Lipschitz or the formula defining ρ′ in Lemma 4.6.3 in the
general case.
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First we prove that there exist arbitrarily small r > 0 such that B(X, r) :=
{z ∈ W : ρ′(z,X) < r} ⊂ U , consists of a finite number of open domains
Uk(r) ⊂W , with pairwise disjoint closures in W .

For any z, z′ ∈ B(X, r) define z ∼r z′ if there exists a sequence x1, ..., xn ∈ X
such that z ∈ B(x1, r), z′ ∈ B(xn, r) and for all k = 1, ..., n − 1, B(xk, r) ∩
B(xk+1, r) = ∅, the balls in (W,ρ′). This is an equivalence relation: each equiva-
lence class contains a point in X, and for x ∈ Vr∩X,x′ ∈ V ′

r∩X ′ for two different
equivalence classes Vr, V ′

r , we have ρ(x, x′) ≥ r. So by compactness of X there is
at most a finite number of the equivalence classes. Denote their number by N(r).
Clearly, for every r < r′ for every Vr there exists Vr′ such that Vr ⊂ Vr′ and
every Vr′ contains some Vr. Hence the function r �→ N(r) is monotone decreas-
ing. Let r1 > r2 > ... > rn > ...↘ 0 be the sequence of consecutive points of its
discontinuity. Take any r > 0 not belonging to this sequence. Let rj < r < rj−1.
Denote ε = (rj−1 − r)/2. Consider two different sets Vr and V ′

r . Suppose there is
z0 ∈ V r ∩ V ′

r. Then there are points z ∈ Vr and z′ ∈ V ′
r such that ρ′(z, z′) < ε.

Then z ∼r+ε z′. So both Vr and V ′
r are contained in the same equivalence class

of ∼r+ε. So N(r) > N(r + ε), which contradicts the definition of ε.

Observe that supk diamUk(r) → 0 as r → 0 since X is a Cantor set. Indeed,
for every δ > 0 there is a covering of X by pairwise disjoint closed sets Aj
of diameter < δ. Then for r < infj �=j′ dist(Aj , Aj′)/2 each two distinct Aj , Aj′
belong to different ∼r equivalence classes.

Thus we can assume, for Uk = Uk(r), that diamUk < ξ. So we can consider
the branches of g = T−1

x on Uk’s for all x ∈ X: see Lemma 4.1.2. Then each
g maps Ūk into some Uk′ because it is a contraction (by the factor λ−1). Then
denote g by gk′,k. Finally define

X̃ =
∞⋂

n=0

⋃

k1,...,kn

gk1,k2 ◦ gk2,k3 ◦ ... ◦ gkn−1,kn
(Ukn

), (4.5.9)

the union over all k1, ..., kn such that gkj ,kj+1 exist for all j = 1, ..., n−1. It follows
that for r small enough the family of sets {Uk(r) ∩ X̃} is a Markov partition of
X̃ with pairwise disjoint ‘cylinders’, and (X̃, T ) is topologically conjugate to a
topological Markov chain: see Example 1.3. Hence T is open on X̃ (see more
details below). ♣

Each Markov partition gives rise to a coding (symbolic representation) of
T : X → X as follows (an example was provided in Proposition 4.5.6 above).

Theorem 4.5.7. Let T : X → X be an open, distance-expanding map. Let
{R1, . . . , Rd} be a Markov partition. Let A = (ai,j) be a d×d matrix with ai,j = 0
or 1 according to whether the intersection T (IntRi)∩IntRj is empty or not. Then
consider the corresponding one-sided topological Markov chain ΣA with the left
shift map σ : ΣA → ΣA: see Example 1.3. Define the map π : ΣA → X by
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π((i0, i1, . . . )) =
∞⋂

n=0

T−n(Rin).

Then π is a well-defined Hölder continuous mapping onto X, and T ◦ π = π ◦ σ.
Moreover, π|π−1(X\⋃∞

n=0 T
−n(

⋃
i ∂Ri)) is injective.

Proof. For an arbitrary sequence (i0, i1, . . . ) ∈ ΣA, ai,j = 1 implies T (Rin) ⊃
Rin+1 . Since diamRin < 2η, T is injective on Rin : hence there exists an inverse
branch T−1

Rin
onRin+1 The subscriptRin indicates that we take the branch leading

to Rin : compare notation from Section 4.1. Thus T−1
Rin

(Rin+1) ⊂ Rin . Hence

T−1
Ri0

T−1
Ri1

. . . T−1
Rin

(Rin+1) ⊂ T−1
Ri0

T−1
Ri1

. . . T−1
Rin−1

(Rin).

So
⋂
n≥0 T

−n(Rin) = ∅, as the intersection of a descending family of compact
sets. We have used here that

T−1
Ri0

. . . T−1
Rin−1

(Rin) = T−1
Ri0

. . . T−1
Rin−2

(T−1(Rin) ∩Rin−1)

= T−1
Ri0

. . . T−1
Rin−3

(T−2(Rin) ∩ T−1Rin−1 ∩Rin−2)

= . . .

=
n⋂

k=0

T−k(Rik),

following from T−1
Rik

(A) = T−1(A) ∩Rik for every A ⊂ Rik+1 , k = 0, . . . , n− 1.
Our infinite intersection consists of only one point, since diam(Ri) are all less

than an expansivness constant.
Let us prove now that π is Hölder continuous. Indeed, ρ′((in), (i′n)) ≤ λ−N1

implies in = i′n for all n = 0, . . . , N − 1, where the metric ρ′ comes from
Example 1.3, with the factor λ = λ(ρ′) > 1. Then, for x = π((in)), y = π((i′n))
and every n : 0 ≤ n < N we have Tn(x), Tn(y) ∈ Rin : hence ρ(Tn(x), Tn(y)) ≤
diamRin ≤ ξ, and hence ρ(x, y) ≤ λ−(N−1)ξ. Therefore π is Hölder continuous,
with exponent min{1, log λ/ log λ(ρ′)}.

Let us deal now with the injectivity. If x = π((in)) and Tn(x) ∈ IntRin for
all n = 0, 1, . . . , then Tn(x) /∈ Rj for all j = in. So, if x ∈ ⋂n T−n(Ri′n), then all
i′n = in.

Finally, π maps ΣA onto X. Indeed, by definition, π(ΣA) contains X \⋃∞
n=0

T−n(
⋃
i ∂Ri) which is dense in X. Since π(ΣA) is compact, it is therefore equal

to X. ♣
Remark. One should not think that π is always injective on the whole ΣA.
Consider for example the mapping of the unit interval T (x) = 2x(mod 1):
compare Example 1.5. Then the dyadic expansion of x is not unique for
x ∈ ⋃∞

n=0 T
−n({ 1

2}). Dyadic expansion is the inverse, π−1, of the coding obtained
from the Markov partition [0, 1] = {[0, 1

2 ], [12 , 1]}.
Recall finally that σ : ΣA → ΣA is an open, distance-expanding map. The

partition into the cylinders Ci := {(in) : i0 = i} for i = 1, . . . , d, is a Markov
partition into closed-open sets. The corresponding coding π is just the identity.
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Another fact concerning a similarity between (ΣA, σ) and (X,T ) is the
following theorem.

Theorem 4.5.8. For every Hölder continuous function φ : X → R the function
φ◦π is Hölder continuous on ΣA and the pressures coincide, P(T, φ) = P(σ, φ◦π).

Proof. The function φ ◦ π is Hölder continuous as a composition of Hölder con-
tinuous functions. Consider next an arbitrary point x ∈ X \⋃∞

n=0 T
−n(
⋃
i ∂Ri).

Then, using Proposition 4.4.3 for T and σ, we obtain

P(T, φ) = Px(T, φ) = Pπ−1(x)(σ, φ ◦ π) = P(σ, φ ◦ π).

The middle equality follows directly from the definitions. ♣

Finally we shall prove that π is injective in the measure-theoretic sense.

Theorem 4.5.9. For every ergodic Borel probability measure μ on ΣA, invari-
ant under the left-shift map σ, positive on open sets, the mapping π yields an
isomorphism between the probability spaces (ΣA,FΣA

, μ) and (X,FX , μ ◦ π−1),
for F respective (completed) Borel σ-algebras, conjugating the shift map σ to the
transformation T : X → X (i.e. π ◦ σ = T ◦ π).

Proof. The set ∂ =
⋃d
i=1 ∂(Ri), and hence π−1(∂), have non-empty open

complements in ΣA. Since T (∂) ⊂ ∂, we have σ(π−1(∂)) ⊂ π−1(∂): hence
π−1(∂)) ⊂ σ−1(π−1(∂)). Since μ is σ-invariant, we conclude by ergodicity of
μ that μ(π−1(∂)) is equal either to 0 or to 1. But the complement of π−1(∂),
as a non-empty open set, has positive measure μ. Hence μ(π−1(∂)) = 0. Hence
μ(E) = 0 for E :=

⋃∞
n=0 σ

−n(π−1(∂)), and by Theorem 4.5.7 π is injective on
ΣA \ E. This proves that π is the required isomorphism. ♣

4.6 Expansive maps are expanding
in some metric

Theorem 4.1.1 says that distance-expanding maps are expansive. In this section
we prove the following much more difficult result, which can be considered as a
sort of converse statement, and which provides an additional strong justification
for exploring expanding maps.

Theorem 4.6.1. If a continuous map T : X → X of a compact metric space
X is (positively) expansive, then there exists a metric on X, compatible with
the topology, such that the mapping T is distance-expanding with respect to this
metric.

The proof of Theorem 4.6.1 given here relies heavily on the topological result
of Frink (see [Frink 1937], comp. [Kelley, 1955, p. 185]), which we state below
without proof.
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Lemma 4.6.2 (The Metrization Lemma of Frink). Let {Un}∞n=0} be a sequence
of open neighborhoods of the diagonal Δ ⊂ X ×X such that U0 = X ×X,

∞⋂

n=1

Un = Δ, (4.6.1)

and for every n ≥ 1
Un ◦ Un ◦ Un ⊂ Un−1. (4.6.2)

Then there exists a metric ρ, compatible with the topology on X, such that for
every n ≥ 1,

Un ⊂ {(x, y) : ρ(x, y) < 2−n} ⊂ Un−1. (4.6.3)

We shall also need the following, almost obvious, result.

Lemma 4.6.3. If T : X → X is a continuous map of a compact metric space
X, and Tn is distance-expanding for some n ≥ 1, then T is distance-expanding
for n = 2 with respect to some metric compatible with the topology on X.

Proof. Let ρ be a compatible metric with respect to which Tn is distance-
expanding, and let λ > 1 and η > 0 be constants such that

ρ(Tn(x), Tn(y)) ≥ λρ(x, y)

whenever ρ(x, y) < 2η. Put ξ = λ
1
n and define the new metric ρ′ by setting

ρ′(x, y) = ρ(x, y) +
1
ξ
ρ(T (x), T (y)) + . . .+

1
ξn−1

ρ(Tn−1(x), Tn−1(y)).

Then ρ′ is a metric on X compatible with the topology and ρ′(T (x), T (y)) ≥
ξρ′(x, y) whenever ρ′(x, y) < 2η. ♣

Now we can pass to the proof of Theorem 4.6.1.

Proof of Theorem 4.6.1. Let d be a metric on X compatible with the topology,
and let 3θ > 0 be an expansive constant associated to T which does not exceed
the constant η claimed in Proposition 3.5.9. For any n ≥ 1 and γ > 0 let

Vn(γ) = {(x, y) ∈ (X ×X) : d(T j(x), T j(y)) < γ for every j = 0, . . . , n}.
Then in view of Proposition 3.5.9 there exists M ≥ 1 such that

VM (3θ) ⊂ {(x, y) : d(x, y) < θ}. (4.6.4)

Define U0 = X ×X and Un = VMn(θ) for every n ≥ 1. We shall check that the
sequence {Un}∞n=0 satisfies the assumptions of Lemma 4.6.2. Indeed, (4.6.1) fol-
lows immediately from expansiveness of T . Now we shall prove condition (4.6.2).
We shall proceed by induction. For n = 1 nothing has to be proved. Suppose
that (4.6.2) holds for some n ≥ 1. Let (x, u), (u, v), (v, y) ∈ Un+1. Then by the
triangle inequality

d(T j(y), T j(x)) < 3θ for every j = 0, . . . , (n+ 1)M.
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Therefore, using (4.6.4), we conclude that

d(T j(y), T j(x)) < θ for every j = 0, . . . ,Mn.

Equivalently (x, y) ∈ VMn(θ) = Un, which completes the proof of (4.6.2).
So, we have shown that the assumptions of Lemma 4.6.2 are satisfied, and

therefore we obtain a compatible metric ρ on X satisfying (4.6.3). In view of
Lemma 4.6.3 it suffices to show that T 3M is expanding with respect to the met-
ric ρ. So suppose that 0 < ρ(x, y) < 1

16 . Then by (4.6.1) there exists an n ≥ 0
such that

(x, y) ∈ Un \ Un+1. (4.6.5)

As 0 < ρ(x, y) < 1
16 , this and (4.6.3) imply that n ≥ 3. It follows from (4.6.5) and

the definitions of Un and VMn(θ) that there exists Mn < j ≤ (n+1)M such that
d(T j(y), T j(x)) ≥ θ. Since 3 ≤ n we conclude that d(T i(T 3M (x)), T i(T 3M (y))) ≥
θ for some 0 ≤ i ≤ (n − 2)M , and therefore (T 3M (x), T 3M (y)) /∈ Un−2.
Consequently, by (4.6.3) and (4.6.5) we obtain that

ρ(T 3M (x), T 3M (y)) ≥ 2−(n−1) = 2 · 2−n > 2ρ(x, y).

The proof is complete. ♣

Exercises

4.1. Prove the following Shadowing Theorem generalizing Corollary 4.2.4 (Shad-
owing lemma) and Corollary 4.2.5 (Closing lemma):

Let T : X → X be an open map, expanding at a compact set Y ⊂ X. Then
for every β > 0 there exists α > 0 such that for every map Γ : Z → Z for a
set Z and a map Φ : Z → B(Y, α) satisfying ρ(TΦ(z),ΦΓ(z)) ≤ α for every
z ∈ Z, there exists a map Ψ : Z → X satisfying TΦ = ΦΓ (hence T (Y ′) ⊂ Y ′ for
Y ′ = Ψ(Z)) and such that for every z ∈ Z, ρ(Ψ(z),Φ(z)) ≤ β. If Z is a metric
space and Γ,Φ are continuous, then Ψ is continuous. If T (Y ) ⊂ Y and the map
T |Y : Y → Y be open, then Y ′ ⊂ Y .

(Hint: See Section 6.1.)
4.2. Prove the following Structural Stability Theorem.

Let T : X → X be an open map with a compact set Y ⊂ X such that
T (Y ) ⊂ Y . Then for every λ > 1 and β > 0 there exists α > 0 such that if
S : X → X is distance-expanding at Y with the expansion factor λ and for all
y ∈ Y ρ(S(y), T (y)) ≤ α then there exists a continuous mapping h : Y → X such
that Sh|Y = hT |Y ; in particular, S(Y ′) ⊂ Y ′ for Y ′ = h(Y ), and ρ(h(z), z) ≤ β.

Hint: Apply the previous exercise for Z = Y,Γ = T |Y ,Φ = id, T = S and
Y = Y . Compare also Section 6.1.
4.3. Prove that if T : X → X is an open, distance-expanding map and X is
compact connected, then T : X → X is topologically exact.
4.4. Prove that for T : X → X a continuous map on a compact metric space X
the topological entropy is attained on the set of non-wandering points: that is,
htop(T ) = htop(T |Ω(T ).
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Hint: Use the Variational Principle (Theorem 3.4.1).

4.5. Prove Lemma 4.3.9 and hence Theorem 4.3.8 (Spectral Decomposition)
without the assumption of periodic shadowing, assuming that T is a branched
covering of the Riemann sphere.

4.6. Prove the existence of stable and unstable manifolds for hyperbolic sets and
Smale’s Spectral Decomposition Theorem for Axiom A diffeomorphisms.

An invariant set Λ for a diffeomorphism T : X → X of a compact manifold
X, is called hyperbolic if there exist constants λ > 1 and C > 0 such that
the tangent bundle on XΛ, TΛX decomposes into DT -invariant sub-bundles
TΛX = TuΛX ⊕T sΛX such that ||DTn(v)|| ≥ Cλn for all v ∈ TuΛX and n ≥ 0 and
||DTn(v)|| ≥ Cλn for all v ∈ T sΛX and n ≤ 0.

Prove that for every x ∈ Λ the sets Wu(x) = {y ∈ X : ρ(Tn(x), Tn(y)) →
0 as n → −∞}, and W s(x) = {y ∈ X : ρ(Tn(x), Tn(y)) → 0 as n → ∞} are
immersed manifolds. (They are called unstable and stable manifolds.)

Assume next that a diffeomorphism T : X → X satisfies Smale’s Axiom A
condition: that is, the set of non-wandering points Ω is hyperbolic and Ω = Per.

Then the relation between periodic points is as follows. x ∼ y if there are
points z ∈ Wu(x) ∩W s(y) and z′ ∈ Wu(y) ∩W s(x) where Wu(x) and W s(y),
and Wu(y) and W s(x) respectively, intersect transversally: that is, the tangent
spaces to these manifolds at z and z′ span the whole spaces tangent to X.

Prove that this relation yields spectral decomposition, as in Theorem 4.3.8,
with the topological transitivity assertion rather than topological exactness, of
course (Figure 4.2).

As one of the steps prove a lemma corresponding to Lemma 4.3.9 about
approximation of transversal heteroclinic cycle points by periodic ones. That is,

W s(z)

z

Wu(y)

Wu(x)

y
W s(x)

x

W s(y)

Wu(x)

Figure 4.2 Transitivity for diffeomorphisms.
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assume that x1, x2, . . . , xn are hyperbolic periodic points (i.e. their orbits are
hyperbolic sets) for a diffeomorphism, and Wu

xi
has a point pi of transversal

intersection with W s
x(i+1)modn

for each i = 1, . . . , n. Then pi ∈ Per.
(For the theory of hyperbolic sets for diffeomorphisms see for example

[Katok & Hasselblatt 1995].)

4.7. Prove directly that 1) =⇒ 2) in Proposition 4.4.5, using the specification
property, Theorem 4.3.12.

4.8. Suppose T : X → X is a distance-expanding map on a closed surface. Prove
that there exists a Markov partition for an iterate TN compatible with a cell
complex structure. That is, elements Ri of the partitions are topological discs,
the one-dimensional ‘skeleton’

⋃
i ∂Ri is a graph consisting of a finite number of

continuous curves (‘edges’) intersecting one another only at end points, called
‘vertices’. The intersection of each two Ri is empty or one vertex or one edge;
each vertex is contained in two or three edges.

(Hint: Start with any cellular partition, with Ri being nice topological discs
and correct it by adding or subtracting components of T−N (Ri), T−2N (Ri), etc.
See [Farrell & Jones 1979] for details.)

4.9. Prove that if T is an expanding map of the two-dimensional torus R
2/Z2, a

factor map of a linear map of R
2 given by an integer matrix with two irrational

eigenvalues of different moduli (for example
(

0 11
−1 7

)
but not

(
2 0
0 3

)
), then ∂Ri

cannot be differentiable.
(Hint: Smooth curves Tn(∂Ri) become more and more dense in R

2/Z2 as n→
∞, stretching in the direction of the eigenspace corresponding to the eigenvalue
with a larger modulus. So they cannot omit IntRi.

The same argument, looking backwards, says that the components of
T−n(IntRi) are dense and very distorted, since the eigenvalues have different
moduli. The curve ∂Ri must manoeuvre between them, so it is ‘fractal’. See
[Przytycki & Urbański 1989] for more details.)

Bibliographical notes

The Shadowing Lemma in the hyperbolic setting has appeared in [Anosov
1970], [Bowen 1979] and [Kushnirenko 1972]. See [Katok & Hasselblatt 1995]
for the variant as in Exercise 4.1. In the context of C1-differentiable (dis-
tance) expanding maps on smooth compact manifolds, the shadowing property
was proved in [Shub 1969], where structural stability was also extablished.
D. Sullivan introduced in [Sullivan 1982] the notion of a telescope for the sequence
T−1
x′

i
(B(xi+1, β)) ⊂ B(xi, β) to capture a shadowing orbit, and hence to prove

the stability of expanding repellers: compare Section 6.1 in the context of hyper-
bolic rational functions. This stability was also proved in [Przytycki 1977]. Later
a comprehensive monograph on shadowing by S. Yu. Pilyugin [Pilyugin 1999]
appeared.

The existence of spectral decomposition in the sense of Theorem 4.3.8 (see
Exercise 4.6) was first proved by S. Smale [Smale 1967] for diffeomorphisms,
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called by him Axiom A, defined by the property that the set of non-wandering
points Ω is hyperbolic and Ω = Per: see also [Katok & Hasselblatt 1995]
and further historical information therein. In a topological setting an anal-
ogous theory was founded by [Bowen 1970], for (introduced by him) Axiom
A∗ homeomorphisms. Axiom A endomorphisms were studied in [Przytycki
1977], comprising the diffeomorphisms and expanding (smooth) cases. For open,
distance-expanding maps Ω = Per (Proposition 4.3.6) corresponds to the anal-
ogous fact for Anosov diffeomorphisms. It is not known whether Ω = X for all
Anosov diffeomorphisms. It is not true for some distance-expanding endomor-
phisms (Remark 4.3.7), but it is true for T smooth and X a connected smooth
manifold (Exercise 4.3): see [Shub 1969].

The construction of the Markov partition in Section 4.5 is similar to the con-
struction for basic sets of Axiom A diffeomorphisms in [Bowen 1975]. The case
of X not locally maximal for T has been studied recently in the case of diffeo-
morphisms [Crovisier 2002], [Fisher 2006]. The non-invertible case is considered
here for the first time, to our knowledge.

For a general theory of cellular Markov partitions, including Exercise 4.8,
see [Farrell & Jones 1993]. The fact that the Hausdorff dimension of the
boundaries of two-dimensional cells is greater than 1, and in particular their
non-differentiability, Exercise 4.9, follows from [Przytycki & Urbański 1989].
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5

Thermodynamical
formalism

In Chapter 3 (Theorem 3.5.6) we proved that for every positively expansive map
T : X → X of a compact metric space and an arbitrary continuous function φ :
X → R there exists an equilibrium state. In Remark 4.4.4 we provided a specific
construction for T an open, distance-expanding topologically transitive map and
a Hölder continuous function φ. Here we shall construct this equilibrium measure
with greater care and study its amazing regularity with respect to the ‘potential’
function φ, its ‘mixing’ properties and uniqueness. So, for the entire chapter
we fix an open, continuous, distance-expanding, topologically transitive map
T : X → X of a compact metric space (X, ρ), with constants η, λ, ξ introduced in
Chapter 4.

5.1 Gibbs measures: introductory remarks

A probability measure μ on X and the Borel σ-algebra of sets is said to be a
Gibbs state (measure) for the potential φ : X → R if there exist P ∈ R and
C ≥ 1 such that for all x ∈ X and all n ≥ 1,

C−1 ≤ μ
(
T−n
x (B(Tn(x), ξ))

)

exp(Snφ(x) − Pn)
≤ C. (5.1.1)

If in addition μ is T -invariant, we call μ an invariant Gibbs state (or measure).
We denote the set of all Gibbs states of φ by Gφ. It is obvious that if μ

is a Gibbs state of φ, and ν is equivalent to μ with Radon–Nikodym deriva-
tives uniformly bounded from above and below, then ν is also a Gibbs state.
The following proposition shows that the converse is also true, and it identifies
the constant P appearing in the definition of Gibbs states as the topological
pressure of φ.

131
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Proposition 5.1.1. If μ and ν are Gibbs states associated to the map T and
a Hölder continuous function φ, and the corresponding constants are denoted
respectively by P,C and Q,D, then P = Q = P(T, φ), and the measures μ and
ν are equivalent with mutual Radon–Nikodym derivatives uniformly bounded.

Proof. Since X is a compact space, there exist finitely many points x1, . . . , xl ∈
X such that B(x1, ξ) ∪ . . . ∪B(xl, ξ) = X. We claim that for every compact set
A ⊂ X, every δ > 0, and for all n ≥ 1 large enough,

μ(A) ≤ CDl exp((Q− P )n)(ν(A) + δ). (5.1.2)

By the compactness of A, and by the regularity of the measure ν, there exists
ε > 0 such that ν(B(A, ε)) ≤ ν(A) + δ. Fix an integer n ≥ 1 so large that
ξλ−n < ε

2 , and for every 1 ≤ i ≤ l let

X(i) = {x ∈ T−n(xi) : A ∩ T−n
x (B(xi, ξ)) 	= ∅}.

Then

A ⊂
l⋃

i=1

⋃

x∈X(i)

T−n
x (B(xi, ξ)) ⊂ B(A, ε),

and, since for any fixed 1 ≤ i ≤ l the sets T−n
x (B(xi, ξ)) for x ∈ T−n(xi) are

mutually disjoint, it follows from (5.1.1) that

μ(A) ≤ μ

⎛

⎝
l⋃

i=1

⋃

x∈X(i)

T−n
x (B(xi, ξ))

⎞

⎠ ≤
l∑

i=1

∑

x∈X(i)

μ
(
T−n
x (B(xi, ξ))

)

≤ C

l∑

i=1

∑

x∈X(i)

exp(Snφ(x) − Pn)

= C exp((Q− P )n)
l∑

i=1

∑

x∈X(i)

exp(Snφ(x) −Qn)

≤ CD exp((Q− P )n)
l∑

i=1

∑

x∈X(i)

ν
(
T−n
x (B(xi, ξ))

)

≤ CD exp((Q− P )n)lν(B(A, ε))
≤ CDl exp((Q− P )n)(ν(A) + δ).

Exchanging the roles of μ and ν we also obtain

ν(A) ≤ CDl exp((P −Q)n)(μ(A) + δ) (5.1.3)

for all n ≥ 1 large enough. So, if P 	= Q, say P < Q, then it follows from (5.1.3)
applied to the compact set X that ν(X) = 0. Hence P = Q, and as, by regularity
of μ and ν, (5.1.2) and (5.1.3) continue to be true for all Borel subsets of X,
we conclude that μ and ν are equivalent, with the Radon–Nikodym derivative
dμ/dν bounded from above by CDl and from below by (CDl)−1 (letting δ → 0).
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It is left to show that P = P(T, φ). Looking at the expression after the third
inequality sign in our estimates of μ(A) with A = X, we get

0 = logμ(X) ≤ logC + log

⎛

⎝
l∑

i=1

∑

x∈X(i)

exp(Snφ(x))

⎞

⎠− Pn.

Since for every i, X(i) is an (η, n)-separated set, taking into account division by
n in the definition of pressure, we can replace

∑
i here by a largest summand for

each n. We get P ≤ P (T, φ).
On the other hand, for an arbitrary x ∈ X,
∑

y∈T−n(x)

exp(Snφ(y) − Pn) ≤ C
∑

y∈T−n(x)

μ
(
T−n
y (B(x, ξ))

) ≤ Cμ(X) = C

gives P(T, φ) = Px(T, φ) ≤ P , for Px defined in 4.4.3 applicable owing to the
topological transitivity of T . The proof is complete. ♣
Remark 5.1.2. In order to prove Proposition 5.1.1, except the part identifying
P as P(T, φ), we used only the inequalities

C−1 ≤ μ
(
T−n
x (B(Tn(x), ξ)

)
expPn

ν
(
T−n
x (B(Tn(x), ξ)

)
expQn

≤ C.

We needed the function φ in (5.1.1) and its Hölder continuity only to prove that
P = Q = P (T, φ). Hölder continuity also allows us to replace x in Snφ(x) by an
arbitrary point contained in T−n

x (B(Tn(x), ξ)).

Remark 5.1.3. For R = {R1, . . . , Rd}, a Markov partition of diameter smaller
than ξ, (5.1.1) produces a constant C depending on R (see Exercise 5.1) such
that

C−1 ≤ μ
(
Rj0,...,jn−1)

exp(Snφ(x) − Pn)
≤ C (5.1.4)

for every admissible sequence j0, j1, . . . , jn−1 and every x ∈ Rj0,...,jn−1 . In
particular, (5.1.4) holds for the shift map of a one-sided topological Markov
chain.

The following completes Proposition 5.1.1.

Proposition 5.1.4. If φ and ψ are two arbitrary Hölder continuous functions
on X, then the following conditions are equivalent:

(1) φ−ψ is co-homologous to a constant in the space of bounded functions (see
Definition 2.11.2).

(2) Gφ = Gψ.

(3) Gφ ∩Gψ 	= ∅.
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Proof. Of course, (2) implies (3). That (1) implies (2) is also obvious. If (3) is
satisfied, that is if there exists μ ∈ Gφ ∩Gψ, then it follows from (5.1.1) that

D−1 ≤ exp(Sn(φ)(x) − Sn(ψ)(x) − nP(φ) + nP(ψ)) ≤ D

for some constant D, all x ∈ X and n ∈ N. Applying logarithms we see that
condition (2) in Proposition 4.4.5 is satisfied with φ and ψ replaced by φ−P(φ)
and ψ − P(ψ) respectively. Hence, by this proposition, φ − P (φ) and ψ − P(ψ)
are co-homologous, which completes the proof. ♣

We shall prove later that the class of Gibbs states associated to T and φ is not
empty (Section 5.3) and contains exactly one Gibbs state, which is T -invariant
(Corollary 5.2.14). Actually we shall prove a stronger uniqueness theorem. We
shall prove that any invariant Gibbs state is an equilibrium state for T and φ,
and prove (Section 5.6) uniqueness of the equilibrium states for open expanding
topologically transitive maps T and Hölder continuous functions φ : X → R.

Proposition 5.1.5. A probability T -invariant Gibbs state μ is an equilibrium
state for T and φ.

Proof. Consider an arbitrary finite partition P into Borel sets of diameter less
than min(η, ξ). Then for every x ∈ X we have T−n

x (B(Tn(x), ξ)) ⊃ Pn(x),
where Pn(x) is the element of the partition Pn =

∨n
j=0 P that contains x.

Hence μ
(
T−n
x (B(Tn(x), ξ))

) ≥ μ(Pn(x)). Therefore by the Shannon–McMillan–
Breiman Theorem and (5.1.1) we obtain

hμ(T ) ≥ hμ(T,P) ≥
∫ (

lim sup
n→∞

1
n

(n P(T, φ)) − Snφ(x)
)

dμ = P(T, φ)−
∫
φdμ

or, in other words, hμ(T ) +
∫
φdμ ≥ P(T, φ) which just means that μ is an

equilibrium state. ♣

5.2 Transfer operator and its conjugate;
measures with prescribed Jacobians

Suppose first that we are in the situation of Chapter 2: that is, T is a measurable
map. Suppose that m is backward quasi-invariant with respect to T : that is,

T∗(m) = m ◦ T−1 ≺ m. (5.2.1)

(Sometimes this property is called non-singular.) Then by the Radon–Nikodym
Theorem there exists an m-integrable function Φ : X → [0,∞) such that for
every measurable set A ⊂ X we have

m(T−1(A)) =
∫

A

Φdm.
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One writes d(m ◦ T−1)/dm = Φ. In the situation of this chapter, where T is a
local homeomorphism (it does not need expanding yet), if T−1 has d branches
on a ball B(x, ξ) mapping the ball onto U1, . . . , Ud respectively, then

Φ =
d∑

j=1

Φj where Φj := d(m ◦ (T |Uj
)−1)/dm.

If we consider measures absolutely continuous with respect to a backward quasi-
invariant ‘reference measure’ m, then the transformation μ �→ T∗(μ) can be
rewritten in the language of densities with respect to m as follows:

dμ/dm �→ d(T∗μ)/dm =
d∑

j=1

(
(dμ/dm) ◦ (T |Uj

)−1
)
Φj . (5.2.2)

It is convenient to define

Ψ(z) =
d(m ◦ (T |Uj

)−1)
dm

(T (z)), (5.2.3)

that is, Ψ = Φj ◦ T for z ∈ Uj . Note that Ψ is defined on a set whose T -image
has full measure (which is possibly larger than just a set of full measure, in the
case where a set of measure zero is mapped by T to a set of positive measure).
See Section 5.6 for further discussion.

The transformation in (5.2.2) can be considered as a linear operator Lm :
L1(m) → L1(m), called the transfer operator,

Lm(u)(x) =
∑

x∈T−1(x)

u(x)Ψ(x).

This definition makes sense, because if we change u on a set A of measure 0,
then even if m(T (A)) > 0, we have Φj |T (A)∩B(x,ξ) = 0 m-a.e.: hence Lm(u) does
not depend on the values of u on T (A). We have the convention that if u is not
defined (on a set of measure 0) and Ψ = 0, then uΨ = 0.

The transformation Lm in fact makes sense in a more general situation, where
T : X → X is a measurable map of a probability space (X,F ,m), backward
quasi-invariant (non-singular), finite (or countable) to one. Instead of Uj we
write X =

⋃
Xj , where Xj are measurable, pairwise disjoint, and for each j the

map T |Xj
→ T (Xj) is a measurable isomorphism.

Proposition 5.2.1.
∫

Lm(u) dm =
∫
u dm for all u ∈ L1(m). (5.2.4)

Conversely, if (5.2.4) holds where in the definition of Lm we put an arbitrary m
integrable function Ψ, then Ψ satisfies (5.2.3).

Proof. It is sufficient to consider u = 11A the indicator function for an arbitrary
measurable A ⊂ Xj . We have
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∫
Lm(11A) dm =

∫

T (A)

Ψ ◦ (T |Xj
)−1 dm =

∫

T (A)

Φj dm = m(A),

the latter true by change of coordinates if and only if Φj is Jacobian as above.
Compare Lemma 5.2.5. ♣

It follows from (5.2.4) that Lm restricted to non-negative functions is an
isometry in the L1(m) norm. The transfer operator Lm : L1(m) → L1(m) is an
example of a Markov operator: see Exercise 5.4.

By (5.2.2) we obtain the following characterization of probability T -invariant
measures absolutely continuous with respect to m.

Proposition 5.2.2. The probability measure μ = hm for h ∈ L1(m), h ≥ 0, is
T -invariant if and only if

Lm(h) = h.

Remark 5.2.3. For the operator Lm we have the identity

Lm
(
f · (g ◦ T )

)
= Lm(f) · g. (5.2.5)

making sense for any measurable functions f, g : X → R. Hence, using (5.2.4),
for all f ∈ L∞(μ) and g ∈ L1(μ), we get

∫
f · (g ◦ T ) dm =

∫
Lm(f · (g ◦ T )) dm =

∫
Lm(f) · g dm, (5.2.6)

and, iterating this equality, we get
∫
f · (g ◦ Tn) dm =

∫
Lnm(f) · g dm (5.2.7)

for all n = 1, 2, . . . .

Remark 5.2.4. Since Lm acts on L1(m), we can consider the conjugate (another
name: adjoint) operator L∗

m : L∞(m) → L∞(m). Notice that
∫

L∗
m(f) · g dm =

∫
f · Lm(g) dm =

∫
Lm((f ◦ T ) · g) dm =

∫
(f ◦ T ) · g dm,

by definition and (5.2.4). Hence L∗
m(f) = f ◦ T .

Recall from Section 2.2 that h → h ◦ T is called the Koopman operator,
here acting on L∞(m). So the operator conjugate to Lm is this Koopman
operator. If one considers both operators acting on L2(m), which is the case
for m being T invariant (see Exercise 5.3), then these operators are mutually
conjugate.

Continuous case

After this introduction, the appearance of the following linear operator, called
the Perron–Frobenius–Ruelle or Ruelle or Araki or also transfer operator, is not
surprising:
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Lφ(u)(x) =
∑

x∈T−1(x)

u(x) exp(φ(x)). (5.2.8)

If the function φ is fixed, we sometimes omit the subscript φ at L. The function
φ is often called a potential function. This term is compatible with the term
used for φ in Section 5.1 for P = 0. It will become clear later on. The transfer’s
conjugate operator will be our tool to find a backward quasi-invariant measure
m such that Ψ will be a scalar multiple of expφ: hence Lm will be a scalar
multiple of Lφ. Then in turn we shall look for fixed points of Lm to find invariant
measures. Restricting our attention to expφ, we restrict considerations to Ψ
strictly positive defined everywhere. One sometimes allows φ to have the value
−∞, but we do not consider this case in our book. See, for example, [Keller
1998].

Let us now be more specific. Let φ : X → R be a continuous func-
tion. Consider Lφ acting on the Banach space of continuous functions Lφ :
C(X) → C(X). It is a continuous linear operator, and its norm is equal to
supx

∑
x∈T−1(x) exp(φ(x)) = supLφ(11), as this is a positive operator: that is, it

maps real non-negative functions to real non-negative functions (see Section 3.1).
Consider the conjugate operator L∗

φ : C∗(X) → C∗(X). Note that as conjugate
to a positive operator it is also positive, that is, it transforms measures into
measures.

Lemma 5.2.5. For every μ ∈ C∗(X) and every Borel set A ⊂ X on which T is
injective,

L∗
φ(μ)(A) =

∫

T (A)

exp(φ ◦ (T |A)−1)dμ. (5.2.9)

Proof. It is sufficient to prove (5.2.9) for A ⊂ B(x, r) with any x ∈ X and r > 0
such that T is injective on B(x, 2r) (say r = η). Now approximate in point-
wise convergence the indicator function χA by uniformly bounded continuous
functions with support in B = B(x, 2r). We have, for any such function f ,

L∗
φ(μ)(f) = μ(Lφ(f)) =

∫

T (B)

(f exp(φ)) ◦ (T |B)−1dμ.

We used here the fact that the only branch of T−1 mapping T (B) to the support
of f is the one leading T (B) to B. Passing with f to the limit χA on both sides
(Dominated Convergence Theorem, Section 2.1) gives (5.2.9). ♣

Observe that whereas Lφ transports a measure from the past (more precisely,
transports a density: see (5.2.2)), L∗

φ pulls a measure back from the future with
Jacobian expφ ◦ T−1. This is the right operator to use, to look for the missing
‘reference measure’ m.

Definition 5.2.6. J is called the weak Jacobian if J : X → [0,∞) and there
exists a Borel set E ⊂ X such that μ(E) = 0 and for every Borel set A ⊂ X on
which T is injective, μ(T (A \ E)) =

∫
A
Jdμ.
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Recall from Chapter 2 (Definition 2.9.4) that a measurable function J : X →
[0,∞) is called the Jacobian or the strong Jacobian of a map T : X → X with
respect to a measure μ if for every Borel set A ⊂ X on which T is injective
μ(T (A)) =

∫
A
Jdμ. In particular, μ is forward quasi-invariant (cf. Lemma 2.9.3

and Definition 2.9.4).
Notice that if μ is backward quasi-invariant then the condition that J is the

weak Jacobian translates to μ(A) =
∫
T (A)

1
J◦(T |A)−1 dμ.

Corollary 5.2.7. If a probability measure μ satisfies L∗
φ(μ) = cμ (i.e. μ is an

eigen-measure of L∗
φ corresponding to a positive eigenvalue c), then c exp(−φ) is

the Jacobian of T with respect to μ.

Proof. Substitute cμ in place of L∗(μ) in (5.2.9). It then follows that μ is back-
ward quasi-invariant, and c exp(−φ) is the weak Jacobian of T with respect to μ.
Since 1

exp(−φ) = expφ is positive everywhere, c exp(−φ) is the strong Jacobian
of T . ♣

Theorem 5.2.8. Let T : X → X be a local homeomorphism of a compact
metric space X, and let φ : X → R be a continuous function. Then there exists
a Borel probability measure m = mφ and a constant c > 0, such that L∗

φ(m) =
cm. The function c exp(−φ) is the strong Jacobian for T with respect to the
measure m.

Proof. Consider the map l(μ) := L∗(μ)
L∗(μ)(11) on the convex set of probability mea-

sures on X, that is, on M(X), endowed with the weak* topology (Section 3.1).
The transformation l is continuous in this topology, since μn → μ weak* implies
for every u ∈ C(X) that L∗(μn)(u) = μn(L(u)) → μ(L(u)) = L∗(μ)(u).
As M(X) is weak* compact (see Theorem 3.1.6) we can use Theorem 3.1.7
(the Schauder-Tychonoff Fixed Point Theorem) to find m ∈ M(X) such that
l(m) = m. Hence L∗(m) = cm for c = L∗(m)(11). Thus T has the Jacobian equal
to c exp(−φ), by Corollary 5.2.7. ♣

Note again that we write expφ in order to guarantee that it never vanishes, so
that there exists the Jacobian for T with respect to m. To find an eigen-measure
m for L∗ (i.e. with a weak Jacobian being a multiple of exp(−φ) ) we could
perfectly well allow expφ = 0.

We have the following complementary fact in the case when Jacobian J exists.

Proposition 5.2.9. If T : X → X is a local homeomorphism of a compact
metric space X, and a Jacobian J with respect to a probability measure m exists,
then for every Borel set A

1
d

∫

A

J dm ≤ m(T (A)) ≤
∫

A

J dm,

where d is the degree of T (d := supx∈X T−1({x})). In particular, if m(A) = 0,
then m(T (A)) = 0.
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Proof. Let us partition A into finitely many Borel sets, say A1, A2, . . . , An, of
diameters so small that T restricted to each of them is injective. Then, on the
one hand,

m(T (A)) = m

(
n⋃

i=1

T (Ai)

)

≤
n∑

i=1

m(T (Ai)) =
n∑

i=1

∫

Ai

J dm =
∫

A

J dm,

and on the other hand, since the multiplicity of the family {T (Ai) : 1 ≤ i ≤ n}
does not exceed d,

m(T (A)) = m

(
n⋃

i=1

T (Ai)

)

≥ 1
d

n∑

i=1

m(T (Ai)) =
1
d

n∑

i=1

∫

Ai

J dm =
1
d

∫

A

J dm.

The proof is complete. ♣
Let us go back to T , a distance-expanding topologically transitive open map.

Proposition 5.2.10. The measure m produced in Theorem 5.2.8 is positive on
non-empty open sets. Moreover, for every r > 0 there exists α = α(r) > 0 such
that for every x ∈ X, m(B(x, r)) ≥ α.

Proof. For every open U ⊂ X there exists n ≥ 0 such that
⋃n
j=0 T

j(U) = X
(Theorem 4.3.12). So, by Proposition 5.2.9, m(U) = 0 would imply that 1 =
m(X) ≤∑n

j=0m(T j(U)) = 0, a contradiction.
Passing to the second part of the proof, let x1, . . . , xm be an r/2-net in

X and α := min1≤j≤m{m(B(xj , r/2))}. Since for every x ∈ X there exists j
such that ρ(x, xj) ≤ r/2, we have B(x, r) ⊃ B(xj , r/2), and so m(B(x, r)) ≥
m(B(xj , r/2)). Thus it is enough to set α(r) := α. ♣
Proposition 5.2.11. The measure m is a Gibbs state of φ and log c = P(T, φ).

Proof. We have for every x ∈ X and every integer n ≥ 0,

m(B(Tn(x), ξ)) =
∫

T−n
x (B(Tn(x),ξ))

cn exp(−Snφ) dm.

Since, by Lemma 4.4.2, the ratio of the supremum and infimum of the integrand
of the above integral is bounded from above by a constant C > 0 and is bounded
from below by C−1, we obtain

1 ≥ m(B(Tn(x), ξ)) ≥ C−1cn exp(−Snφ(x))m
(
T−n
x (B(Tn(x), ξ))

)

and

α(ξ) ≤ m(B(Tn(x), ξ)) ≤ Ccn exp(−Snφ(x))m(T−n
x (B(Tn(x), ξ)

)
).

Hence

α(ξ)C−1 ≤ m(T−n
x (B(Tn(x), ξ)))

exp(Snφ(x) − n log c)
≤ C,

and therefore m is a Gibbs state. That log c = P(T, φ) now follows from
Proposition 5.1.1. ♣
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We now give a simple direct proof of the equality log c = P(T, φ). First note
that by the definition of Lφ and a simple inductive argument, for every integer
n ≥ 0,

Lnφ(u)(x) =
∑

x∈T−n(x)

u(x) exp(Snφ(x)). (5.2.10)

The estimate (4.4.3) can be rewritten as

C−1 ≤ Ln(11)(x)/Ln(11)(y) ≤ C for every x, y ∈ X. (5.2.11)

Now cn = cnm(11) = (L∗)n(m)(11) = m(Ln(11)), and hence

log c = lim
n→∞

1
n

logm(Ln(11)) = P(T, φ),

where the last equality follows from (5.2.11) and Proposition 4.4.3.
Note that in the last equality above we used the property thatm is a measure,

or more precisely that the linear functional corresponding to m is positive. For
m a signed eigen-measure and c a complex eigenvalue for L∗ we would obtain
only log |c| ≤ P (T, φ) (one should consider a function u such that sup |u| = 1
and m(u) = 1 rather than the function 11), and indeed the point spectrum of L∗

is usually large: see for example [Baladi, 2000, Theorem 2.5].
We are now in a position to prove some ergodic properties of Gibbs states.

Theorem 5.2.12. If T : X → X is an open, topologically exact, distance-
expanding map, then the system (T,m) is exact in the measure-theoretic sense:
that is, for every A of positive measure m(Tn(A)) → 1 as n → ∞ (see
Definition 2.10.2 and the exercise following it).

Proof. Let E be an arbitrary Borel subset of X with m(E) > 0. By regularity
of the measure m we can find a compact set A ⊂ E such that m(A) > 0. Fix
an arbitrary ε > 0. As in the proof of Proposition 5.1.1, we find for every n
large enough, a cover of A by sets Dν of the form T−n

x (B(xi, ξ)), x ∈ X(i), i =
1, . . . , l such that m(

⋃
ν Dν) ≤ m(A) + ε. Hence m(

⋃
ν(Dν \A)) ≤ ε . Since the

multiplicity of this cover is at most l, we have
∑

ν

m(Dν \A) ≤ lε.

Hence ∑
ν m(Dν \A)
∑
ν m(Dν)

≤ lε

m(A)
.

Therefore for all n large enough there exists D = Dν = T−n
x (B), with some

B = B(xi, ξ)), 1 ≤ i ≤ l, such that

m(D \A)
m(D)

≤ lε

m(A)
.
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Hence, as B \ Tn(A) ⊂ Tn(D \A),

m(B \ Tn(A))
m(B)

≤
∫
D\A c

n exp(−Snφ)dm
∫
D
cn exp(−Snφ)dm

≤ C2m(D \A)
m(D)

≤ C2 lε

m(A)
.

By the topological exactness of T , there exists N ≥ 0 such that for every i we
have TN (B(xi, ξ)) = X. In particular, TN (B) = X. So, using Proposition 5.2.9,
we get

m(X \ TN (Tn(A))) ≤ m(TN (B \ Tn(A))) ≤ cN (inf expφ)−N
Clε

m(A)
.

Letting ε→ 0, we obtainm(X\TN (Tn(A))) → 0 as n→ ∞. Hencem(TN+n(A))
→ 1. ♣

We have considered here a special Gibbs measure m = mφ. Notice, however,
that by Proposition 5.1.1 the assertion of Theorem 5.2.12 holds for every Gibbs
measure associated to T and φ.

Corollary 5.2.13. If T : X → X is an open, topologically transitive, distance-
expanding map, then for every Hölder potential φ : X → R, every Gibbs measure
for φ is ergodic.

Proof. By Theorem 4.3.8 and Theorem 4.3.12 there exists a positive integer N
such that TN is topologically mixing on a TN -invariant closed-open set Y ⊂ X,
where all T j(Y ) are pairwise disjoint and

⋃
j=0,...,N−1 T

j(Y ) = X. So our TN |Y ,
being also an open expanding map, is topologically exact by Theorem 4.3.8, and
hence exact in the measure-theoretic sense by Theorem 5.2.12. Let m(E) > 0.
Then there is k ≥ 0 such that m(E∩T k(Y )) > 0. Then for every j = 0, . . . , N−1
we have m(TNnT j(E ∩ T k(Y ))) → m(T j(T k(Y ))): hence m(

⋃
n≥0 T

n(E)) → 1.
For E being T -invariant this yields m(E) = 1. This implies ergodicity. ♣

With the use of Proposition 2.2.7 we get the following fact, promised in
Section 5.1.

Corollary 5.2.14. If T : X → X is an open, topologically transitive, distance-
expanding map, then for every Hölder continuous potential φ : X → R, there is
at most one invariant Gibbs measure for φ.

5.3 Iteration of the transfer operator; existence
of invariant Gibbs measures

It is convenient to consider the normalized operator Lφ with φ = φ − P(T, φ).
We have Lφ = e−P(T,φ) Lφ (recall that P(T, φ) = log c). Then for the reference
measure m = mφ satisfying L∗

φ(m) = eP(φ)m we have L∗
φ
(m) = m: that is,
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∫
udm =

∫
Lφ(u)dm for every u ∈ C(X). (5.3.1)

For a fixed potential φ we often denote Lφ by L0. By (5.2.11), for all x, y ∈ X,
and all non-negative integers n,

Ln0 (11)(x)/Ln0 (11)(y) ≤ C. (5.3.2)

Multiplying this inequality by Ln0 (11)(y) and then integrating with respect to
the variables x and y we get respectively the first and the third of the following
inequalities:

C−1 ≤ inf Ln0 (11) ≤ supLn0 (11) ≤ C. (5.3.3)

By (4.4.2), for every x, y ∈ X such that x ∈ B(y, ξ) we have an inequality that
is more refined than (4.4.3):

Lnφ(11)(x)
Lnφ(11)(y)

=

∑
x∈T−n(x) expSnφ(x)

∑
y∈T−n(y) expSnφ(y)

≤ sup
x∈T−n(x)

expSnφ(x)
expSnφ(yn(x))

≤ exp(C1ρ(x, y)α), (5.3.4)

where C1 = ϑα(φ)
1−λ−α and yn(x) := T−n

x (y). By this estimate and by (5.3.3) we get
for all n ≥ 1 and all x, y ∈ X such that x ∈ B(y, ξ), the following:

Ln0 (11)(x) − Ln0 (11)(y) =
(Ln0 (11)(x)
Ln0 (11)(y)

− 1
)
Ln0 (11)(y)

≤ C| exp(C1ρ(x, y)α) − 1| ≤ C2ρ(x, y)α (5.3.5)

with C2 depending on C,C1 and ξ.

Proposition 5.3.1. There exists a positive function uφ ∈ Hα(X) such that
L0(uφ) = uφ and

∫
uφ dm = 1.

Proof. By (5.3.5) and (5.3.3) the functions Ln0 (11) have uniformly bounded norms
in the space Hα(X) of all Hölder continuous functions: see Section 4.4. Hence by
the Arzela–Ascoli Theorem there exists a limit uφ ∈ C(X) for a sub-sequence
of un = 1

n

∑n−1
j=0 Lj0(11), n = 1, . . . . Of course, uφ ∈ Hα(X), C−1 ≤uφ≤C, and

using (5.3.3), a straightforward computation shows that L0(uφ) = uφ (com-
pare 3.1.14). Also,

∫
uφ dm = limn→∞

∫
un dm =

∫
11 dm = 1. The proof is

complete. ♣
Combining this proposition, Proposition 5.2.2, Proposition 5.2.11 and Corol-

lary 5.2.14, we get the following.

Theorem 5.3.2. For every Hölder continuous function φ : X → R there exists
a unique invariant Gibbs state associated to T and φ, namely μφ = uφmφ.

In the rest of this section we study in detail the iteration of L0 on the real
or complex Banach spaces C(X) and an Hα.
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Definition 5.3.3. We call a bounded linear operator Q : B → B on a Banach
space B almost periodic if for every b ∈ B the family {Qn(b)}∞n=0 is relatively
compact: that is, its closure in B is compact in the norm topology.

Proposition 5.3.4. The operators Ln0 acting on C(X) have the norms uniformly
bounded for all n = 1, 2, . . . .

Proof. By the definition of L, by (5.3.3) and by
∫ Ln0 (11) dμφ = 1, for every

u ∈ C(X) we get

sup |Ln0 (u)| ≤ sup |u| supLn0 (11) ≤ C sup |u|. (5.3.6)

♣
Remark that in the proof above, instead of referring to the form of L, one

can refer only to the fact that L is a positive operator: hence its norm is attained
at 11.

Consider an arbitrary function h : [0,∞) → [0,∞) such that h(0) = 0,
continuous at 0 and monotone increasing. We call such a function an abstract
modulus of continuity. If u : X → C is a function such that there is ξ > 0 such
that for all x, y ∈ X with ρ(x, y) ≤ ξ

|u(x) − u(y)| ≤ h(ρ(x, y)), (5.3.7)

we say that h is a modulus of continuity of u. Given also b ≥ 0, we denote by
Cbh(X) the set of all functions u ∈ C(X) such that ‖u‖∞ ≤ b and h is a modulus
of continuity of u with fixed ξ > 0. By the Arzela–Ascoli Theorem each Cbh(X)
is a compact subset of C(X).

Theorem 5.3.5. The operator L0 : C(X) → C(X) is almost periodic. Moreover,
if b ≥ 0, h is an abstract modulus of continuity, θ ≥ 0, and ξ as in Lemma 4.1.2,
then for all φ ∈ Hα with ϑα(φ) ≤ θ there exist b̂ and Ĉ depending only on b and
θ such that for the abstract modulus of continuity ĥ(t) = Ĉ(tα + h(t))

{Ln0 (u) : u ∈ Cbh(X), n ≥ 0} ⊂ C b̂
ĥ
(X). (5.3.8)

Proof. It follows from (5.3.6) that we can set b̂ = Cb. For every x ∈ X and n ≥ 0
denote exp(Snφ(x)) by En(x). Consider arbitrary points x ∈ X and y ∈ B(x, ξ).
Use the notation yn(x) := T−n

x (y), the same as in (5.3.4). Fix u ∈ Cbh By (5.3.5)
and (5.3.3) we have for every u ∈ C(X)

|Ln0 (u)(x) − Ln0 (u)(y)| =
∣
∣
∣

∑

x∈T−n(x)

u(x)En(x) − u(yn(x))En(yn(x)
∣
∣
∣

≤
∣
∣
∣

∑

x∈T−n(x)

u(x)(En(x) − En(yn(x)))
∣
∣
∣

+
∣
∣
∣

∑

x∈T−n(x)

En(yn(x))(u(x) − u(yn(x))
∣
∣
∣
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≤ ‖u‖∞C2ρ(x, y)α + Ch

(

sup
x∈T−n(x)

|u(x) − u(yn(x))|
)

≤ bC2ρ(x, y)α + Ch(λ−nρ(x, y))
≤ bC2ρ(x, y)α + Ch(ρ(x, y)). (5.3.9)

Therefore we are done by setting Ĉ := max(bC2, C). ♣

For u ∈ Hα we obtain the fundamental estimate (5.3.10).

Theorem 5.3.6. There exist constants C3, C4 > 0 such that for every u ∈ Hα,
all n = 1, 2, . . . and λ > 1 from the expanding property of T ,

ϑα(Ln0 (u)) ≤ C3λ
−nαϑα(u) + C4‖u‖∞. (5.3.10)

Proof. Continuing the last line of (5.3.9) and using ρ(x, yn(x)) ≤ λ−nρ(x, y), we
obtain

|Ln0 (u)(x) − Ln0 (u)(y)| ≤ ‖u‖∞C2ρ(x, y)α + Cϑα,ξ(u)λ−nαρ(x, y)α.

This proves (5.3.10), provisionally with ϑα,ξ rather than ϑα, with C3 = C from
(4.4.3) and (5.3.3) and with C4 = C2 (recall that the latter constant is of
order CC1 where C1 appeared in (5.3.4)). To get a bound on ϑα replace C4

by max{C4, 2C/ξα}, see (5.3.6) and Section 4.4. ♣

Corollary 5.3.7. There exist an integer N > 0 and real numbers 0 < τ <
1, C5 > 0 such that for every u ∈ Hα,

‖LN0 (u)‖Hα
≤ τ‖u‖Hα

+ C5‖u‖∞. (5.3.11)

Proof. This Corollary immediately follows from (5.3.10) and Proposition 5.3.4.
♣

In fact a reverse implication, yielding (5.3.10) for iterates of LN , holds:

Proposition 5.3.8. (5.3.11) together with (5.3.6) imply

∃C6 > 0 ∀n = 1, 2, . . . ‖LnN0 (u)‖Hα
≤ τn‖(u)‖Hα

+ C6‖u‖∞. (5.3.12)

Proof. Substitute in (5.3.11) LN0 (u) in place of u etc. n times using ‖Lj0(u)‖∞ ≤
C‖u‖∞. We obtain (5.3.12) with C6 = CC5/(1 − τ). ♣

5.4 Convergence of Ln; mixing properties
of Gibbs measures

Recall that by Proposition 5.3.1 there exists a positive function uφ ∈ Hα(X)
such that L0(uφ) = uφ and

∫
uφdmφ = 1.
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It is convenient to replace the operator L0 = Lφ by the operator L̂ = L̂φ,
defined by

L̂(u) =
1
uφ

L0(uuφ).

If we denote the operator of multiplication by a function w by the same
symbol w, then we can write

L̂(u) = u−1
φ ◦ L0 ◦ uφ.

Since L̂ and L0 are conjugate by the operator uφ, their spectra are the same.
In addition, as this operator uφ is positive, non-negative functions go to non-
negative functions. Hence measures are mapped to measures by the conjugate
operator.

Proposition 5.4.1. L̂ = Lψ where ψ = φ+ log uφ − log uφ ◦ T = φ−P(T, φ) +
log uφ − log uφ ◦ T.
Proof.

L̂(u)(x) =
1

uφ(x)

∑

T (x)=x

u(x)uφ(x) expφ(x)

=
∑

T (x)=x

u(x) exp(φ(x) + log uφ(x) − log uφ(x)).

♣
Note that the eigenfunction uφ for L0 has changed to the eigenfunction 11 for

L̂. In other words, we have the following.

Proposition 5.4.2. L̂(11) = 11: that is, for every x ∈ X
∑

x∈T−1(x)

expψ(x) = 1. (5.4.1)

♣
Note that the Jacobian of T with respect to the Gibbs measure μ = uφm

(see Theorem 5.3.2) is (uφ ◦ T )(exp(−φ))u−1
φ = exp(−ψ). So for ψ the ref-

erence measure (with Jacobian exp(−ψ)) and the invariant Gibbs measure
coincide.

Note that passing from Lφ, through Lφ, to Lψ we have been replacing φ by
co-homological (up to a constant) functions. By Proposition 5.1.4 this does not
change the set of Gibbs states.

One can think of the transformation u �→ u/uφ as new coordinates on C(X)
or Hα(X) (real or complex-valued functions). L0 changes in these coordinates to
Lψ, and the functional m(u) changes to m(uφu). The latter (denote it by mψ) is
the eigen-measure for L∗

ψ with eigenvalue 1. It is positive because the operator
uφ is positive (see the comment above). So exp(−ψ) is the Jacobian for mψ by
Corollary 5.2.7. Hence, by (5.4.1), mψ is T -invariant. This is our invariant Gibbs
measure μ.

Proposition 5.3.4 applied to L̂ takes the following form.
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Proposition 5.4.3. ‖L̂‖∞ = 1.

Proof. sup |L̂(u)| ≤ sup |u| because L̂ is an operator of ‘taking an average’ of u
from the past (by Proposition 5.4.2). The equality follows from L̂(11) = 11. ♣

The topological exactness of T gives a stronger result, as follows.

Lemma 5.4.4. Let T : X → X be a continuous, topologically exact, distance-
expanding open map. Suppose that g : [0,∞) → [0,∞) is an abstract modulus of
continuity. Then for every K > 0 and δ1 > 0 there exist δ2 > 0 and n > 0 such
that

• for all φ ∈ Hα with ‖φ‖Hα
≤ K and

• for all u ∈ C(X,R) with g being its modulus of continuity and such that∫
udμ = 0 and ‖u‖∞ ≥ δ1,

we have for L̂ = L̂φ
‖L̂n(u)‖∞ ≤ ‖u‖∞ − δ2.

Proof. Fix ε > 0 so small that g(ε) < δ1/2. Let n be ascribed to ε according
to Theorem 4.3.13(2): that is, ∀x Tn(B(x, ε)) = X . Since

∫
udμ = 0, there

exist y1, y2 ∈ X such that u(y1) ≤ 0 and u(y2) ≥ 0. For an arbitrary x ∈ X
choose x′ ∈ B(y1, ε)∩ T−n(x) (it exists by the definition of n). We have u(x′) ≤
u(y1) + g(ε) ≤ δ1/2 ≤ ‖u‖∞ − δ1/2. So:

L̂n(u)(x) = u(x′) expSnψ(x′) +
∑

x∈T−n(x)\{x′}
u(x) expSnψ(x)

≤ (‖u‖∞ − δ1/2) expSnψ(x′) + ‖u‖∞
∑

x∈T−n(x)\{x′}
expSnψ(x)

≤ ‖u‖∞
⎛

⎝
∑

x∈T−n(x)

expSnψ(x)

⎞

⎠− (δ1/2) expSnψ(x′)

= ‖u‖∞ − (δ1/2) expSnψ(x′).

Similarly for x′′ ∈ B(y2, ε) ∩ T−n(x):

L̂n(u)(x) ≥ −‖u‖∞ + (δ1/2) expSnψ(x′′).

Thus we have proved our lemma with δ2 := (δ1/2) infx∈X expSnψ(x). To com-
plete the proof we need to relate δ2 to φ rather than to ψ. To this end, note
that for every x ∈ X we have ψ(x) ≥ φ(x) − 2 log ‖(uφ)‖∞ − P (T, φ) ≥
−3 log ‖(uφ)‖∞−htop(T ), and ‖uφ)‖∞ ≤ C, where C depends on K: see (5.3.3),
(4.4.2), (4.4.3). ♣

We shall prove now a theorem that completes Proposition 5.3.4 and
Theorem 5.3.5.
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Theorem 5.4.5. For every u ∈ C(X,C), and T a continuous, topologically
exact, distance-expanding open map, we have for c = eP (T,φ)

lim
n→∞ ‖c−nLnφ(u) −mφ(u)uφ‖∞ = 0. (5.4.2)

In particular, if
∫
u dμ = 0, then

lim
n→∞ ‖L̂n(u)‖∞ = 0. (5.4.3)

Moreover, the convergences in (5.4.2) and (5.4.3) are uniform for u ∈ Cbh
and φ in an arbitrary bounded subset H of in Hα(X).

Proof. For real-valued u, with
∫
udμ = 0, the sequence an(u) := ‖L̂n(u)‖∞ is

monotone decreasing, by Proposition 5.4.3. Suppose that limn→∞ an = a > 0.
By Theorem 5.3.5 all the iterates L̂n(u) have a common modulus of continuity g.
So applying Lemma 5.4.4 with this g and δ1 = a we find n0 and δ2 > 0 such
that ‖L̂n0

(L̂n(u))‖∞ ≤ ‖L̂n(u)‖∞ − δ2 for every n ≥ 0. So, for n such that
‖L̂n(u)‖∞ < a+δ2, we obtain ‖L̂n+n0(u)‖∞ < a, which contradicts the definition
of a. This proves (5.4.3) for u real-valued. For u complex-valued with

∫
udμ = 0,

decompose u into the real and complex parts.
To prove (5.4.2), note first that, for an arbitrary u ∈ C(X,C) the convergence

in (5.4.3) yields, owing to L̂(11) = 11,

||L̂n(u) − μ(u)11||∞ = ||L̂n(u− μ(u)11)||∞ → 0.

Now change coordinates on C(X) to go back to L0 and then replace it by c−1Lφ.
One obtains (5.4.2).

For the last part of the theorem, set

an := sup{||L̂nφ(u) : φ ∈ H,u ∈ Cbh;u ≥ 0}
and proceed in the same way as above, with the help of the full power of
Lemma 5.4.4. ♣

Note that (5.4.2) means weak*-convergence of measures

lim
n→∞

∑

x∈T−n(x)

c−n exp(Snφ(x))δx → uφ(x)mφ

for every x ∈ X. Using (5.4.2) also for u = 11, we obtain

lim
n→∞Lnφ(11)(x))−1

∑

x∈T−n(x)

(exp(Snφ(x))δx → mφ. (5.4.4)

In the sequel one can consider either C(X,R) or C(X,C). Let us choose
C(X,C).

Note that by L∗
φ(mφ) = cmφ, we have the L-invariant decomposition

C(X) = span(uφ) ⊕ ker(mφ). (5.4.5)
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For u ∈ span(uφ) we have Lφ(u) = cu. On ker(mφ), by Theorem 5.4.5, c−n

Lnφ → 0 in strong topology. Denote (Lφ)|ker(mφ) by Lker,φ. For Lker,φ restricted
to Hα we can say more about the above convergence.

Theorem 5.4.6. There exists an integer n > 0 such that for c = eP (T,φ)

‖c−nLnker,φ‖Hα
< 1.

Proof. Again, it is sufficient to consider a real-valued function u with μ(u) = 0
and the operator L̂. Set δ = min{1/8C4, 1/4}, with C4 taken from (5.3.10).
By Theorem 5.3.6 for u such that ‖u‖Hα

≤ 1, all functions L̂n(u) have the
same modulus of continuity g(ε) = C7ε

α with C7 = C3 + C4 > 0. Hence from
Theorem 5.4.5 we conclude that (∃n1)(∀n ≥ n1)(∀u : ‖u‖Hα

≤ 1)

‖L̂n(u)‖∞ ≤ δ. (5.4.6)

Next, for n2 satisfying C3λ
−n2αC7 + C4δ ≤ 1/4, again by Theorem 5.3.6, we

obtain
ϑα(L̂n2(L̂n1(u)) ≤ 1/4.

Hence ‖L̂n1+n2(u)‖Hα
≤ 1/2. The theorem has thus been proved with n =

n1 + n2. ♣
Note that Theorem 5.4.5 could be deduced from Theorem 5.4.6 by

approximation of continuous functions uniformly by Hölder ones, and using
Proposition 5.3.4.

Corollary 5.4.7. The convergences in Theorem 5.4.5 for u ∈ Hα are expo-
nential: that is, there exist 0 < τ < 1 and C ≥ 0 such that for every function
u ∈ Hα

‖c−nLnφ(u) −mφ(u)uφ‖∞ ≤ ‖c−nLnφ(u) −mφ(u)uφ‖Hα

≤ C‖u−mφ(u)uφ‖Hα
τn. (5.4.7)

In particular, if
∫
udμ = 0, then

‖L̂n(u)‖∞ ≤ ‖L̂n(u)‖Hα
≤ C‖u‖Hα

τn. (5.4.8)

Remark 5.4.8. Theorem 5.4.6 along with (5.4.5) and the fact that c−1Lφ(uφ) =
uφ implies that the spectrum of the operator Lφ : Hα → Hα consists of two parts:
the number c = eP (T,φ), which is its simple and isolated eigenvalue; and the rest,
contained in a disc centred at 0 with radius < c. There thus exists a ‘spectral
gap’. An isolated eigenvalue moves analytically for an analytic family of transfer
operators induced by analytic families of maps T and potential functions φ,
yielding the analyticity of P (T, φ). See Section 6.4 and the notes at the end of
this chapter.

Now we can study the ‘mixing’ properties of the dynamical system (T, μ) for
our invariant Gibbs measure μ. Roughly speaking, the speed of mixing is related
to the speed of convergence of Lnker,φ to 0.
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The first dynamical (mixing) consequence of Theorem 5.4.6 is the following
result, known in the literature as the exponential decay of correlations: see the
definition in Section 2.11.

Theorem 5.4.9. There exist C ≥ 1 and ρ < 1 such that for all f ∈ Hα and all
g ∈ L1(μ),

Cn(f, g) ≤ Cρn‖f − Ef‖Hα
‖g − Eg‖1.

Proof. Set F = f − Ef, G = g − Eg, and consider L̂ acting on C(X), as a
restriction of Lμ acting on L1(μ). By (5.2.7) and (5.4.8) we obtain

|Cn(f, g)| =
∣
∣
∣
∣

∫
F · (G ◦ Tn) dμ

∣
∣
∣
∣ =

∣
∣
∣
∣

∫
L̂n(F ) ·Gdμ

∣
∣
∣
∣ ≤ Cτn‖F‖Hα

‖G‖1.

♣
Exercise. Prove that for all μ square-integrable functions f, g one has

∫
f ·

(g ◦ Tn) dμ → Ef · Eg. (Hint: Approximate f and g by Hölder functions. Of
course, the information on the speed of convergence would become lost.)

The convergence in the exercise is one of several equivalent definitions of
the mixing property: see Section 2.10. However, we proved earlier the stronger
property, measure-theoretical exactness (Theorem 5.2.12).

We can make better use of the exponential convergence in Theorem 5.4.9 for
T being the shift on the one-sided shift space:

Theorem 5.4.10. Let σ : ΣA → ΣA be a topologically mixing topological
one-sided Markov chain with the alphabet {1, . . . , d} and σ the left shift (see
Chapter 1). Let F be the σ-algebra generated by the partition A into 0-cylinders,
that is, sets with fixed 0-th symbol. For every 0 ≤ k ≤ l denote by F l

k the σ-
algebra generated by Al

k =
∨l
j=k T

−j(A), that is, by the sets (cylinders) with
fixed k, k+ 1, . . . , l’th symbols. Let φ : ΣA → R be a Hölder continuous function.

Then there exist 0 < ρ < 1 and C > 0 such that for every n ≥ k ≥ 0, every
function f : ΣA → R measurable with respect to Fk

0 and every μφ-integrable
function g : ΣA → R

∣
∣
∣
∣

∫
f · (g ◦ Tn) dμφ − Ef · Eg

∣
∣
∣
∣ ≤ Cρn−k‖f − Ef‖1‖g − Eg‖1. (5.4.9)

Proof. Assume Ef = Eg = 0. By Theorem 5.4.9,
∣
∣
∣
∣

∫
f · (g ◦Tn) dμ

∣
∣
∣
∣ =

∣
∣
∣
∣

∫
g · L̂n−k(L̂k(f)) dμ

∣
∣
∣
∣ ≤ ‖g‖1Cρ

n−k‖L̂k(f)‖Hα
. (5.4.10)

Decompose f into real and imaginary parts, and represent each one by the dif-
ference of nowhere-negative functions. This allows us, in the estimates to follow,
to assume that f ≥ 0.

Notice that for every cylinder A ∈ A and x ∈ A, in the expression

L̂k(f)(x) =
∑

Tk(y)=x

f(y) expSkψ(y)
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there is no dependence of f(y) on x ∈ A, because f is constant on cylinders of
Ak

0 . So
supA L̂k(f)
infA L̂k(f ≤ sup

B∈Ak
0

sup
y,y′∈B

exp
(
Skψ(y) − Skψ(y′)

) ≤ C,

with the constant C resulting from Section 4.4. So

sup
A

L̂k(f) ≤ C

μ(A)

∫
L̂k(f) dμ =

C

μ(A)
‖f‖1 ≤

(
C

infA∈A μ(A)

)

‖f‖1 = C ′‖f‖1,

where the last equality defines C ′.
It is still left to estimate the pseudonorms ϑα,ξ and ϑα of L̂k(f): cf.

Section 4.4. We assume that ξ is less than the minimal distance between the
cylinders in A. We have, similarly to (5.3.5), for x, y belonging to the same
cylinder A ∈ A,

|L̂k(f)(x) − L̂k(f)(y)| =
∣
∣
∣
∣

( L̂k(f)(x)
L̂k(f)(y)

− 1
)∣
∣
∣
∣|L̂k(f)(y)|

≤ (expC1ρ(x, y)α − 1)‖C ′‖f‖1 ≤ C ′′ρ(x, y)α‖f‖1.

for a constant C ′′.
Hence ϑα,ξ(L̂k(f)) ≤ ‖f‖1C

′′ and, passing to ϑα as in Section 4.4, we get

ϑα(L̂k(f)) ≤ ‖f‖1 max{C ′′, 2C ′ξ−α}.
Thus, continuing (5.4.10), we obtain for a constant C that

Cn(f, g) ≤ ‖f‖1‖g‖1Cρ
n−k.

♣
An immediate corollary from Theorem 5.4.10 is that for every B1 ∈ Fk

0 and
a Borel B2 (i.e. B2 ∈ F∞

0 ),

|μ(B1 ∩ T−n(B2)) − μ(B1)μ(B2)| ≤ Cρn−kμ(B1)μ(B2). (5.4.11)

Compare this with (2.11.10). Therefore, for any non-negative integer t and every
A ∈ Fk

0 , ∑

B∈At
0

|μ(T−n(B)|A) − μ(B)| ≤ Cρn−k,

for the conditional measures μ(·|A), with respect to A.
This means that A satisfies the weak Bernoulli property: hence the natural

extension (X̃, T̃ , μ̃) is measure-theoretically isomorphic to a two-sided Bernoulli
shift (see Section 2.11).

Corollary 5.4.11. Every continuous, topologically exact, distance-expanding
open map T : X → X, with invariant Gibbs measure μ = μφ for a
Hölder continuous function φ : X → R, has the natural extension (X̃, T̃ , μ̃)
measure-theoretically isomorphic to a two-sided Bernoulli shift.
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Proof. Let π : ΣA → X be the coding map from a one-sided topological Markov
chain, due to a Markov partition: see Theorem 4.5.7. Since the map π is Hölder
continuous, the function φ ◦ π : ΣA → R is also Hölder continuous: hence we
have the invariant Gibbs measure μφ◦π. For this measure we can apply Theorem
5.4.10 and its corollaries. Recall also that by Theorem 4.5.9 π yields a measure-
theoretical isomorphism between μφ◦π and μφ◦π ◦ π−1. Therefore, to complete
the proof, it is sufficient to prove the following.

Lemma 5.4.12. The measures μφ and μφ◦π ◦ π−1 coincide.

Proof. The function exp(−φ ◦ π + P − h) for h := log uφ◦π + log uφ◦π ◦ σ),
is the strong Jacobian for the shift map σ and the measure μφ◦π, where P is
the topological pressure for both (σ, φ ◦ π) and (T, φ): see Theorem 4.5.8. Since
π yields a measure-theoretical isomorphism between μφ◦π and μφ◦π ◦ π−1, the
measure μφ◦π ◦ π−1 is forward quasi-invariant under T with the strong Jacobian
exp(−φ + P − h ◦ π−1). T with respect to μφ has a strong Jacobian of the
same form, possibly with a priori different h co-homologous to 0 in bounded
functions. Therefore the two measures are equivalent: hence, as they are ergodic,
they coincide. ♣

5.5 More on almost periodic operators

In this section we show how to deduce Theorem 5.4.5 (on convergence) and
Theorem 5.4.6 and Corollary 5.4.7 (exponential convergence) from general func-
tional analysis theorems. We do not need this later in this book, but the theorems
are useful in other important situations.

Recall (Definition 5.3.3) that Q : F → F a bounded linear operator of a
Banach space is called almost periodic if for every b ∈ F the sequence Qn(b) is
relatively compact. By the Banach–Steinhaus Theorem there is a constant C ≥ 0
such that ‖Qn‖ ≤ C for every n ≥ 0.

Theorem 5.5.1. If Q : F → F is an almost periodic operator on a complex
Banach space F , then

F = F0 ⊕ Fu, (5.5.1)

where F0 = {x ∈ F : limn→∞An(x) = 0}, and Fu is the closure of the linear
subspace of F generated by all eigenfunctions of eigenvalues of modulus 1.

Adding additional assumptions one gains additional information on the above
decomposition.

Definition 5.5.2. Let F = C(X), and suppose Q : F → F is positive: that
is, f ≥ 0 implies Q(f) ≥ 0. Then Q is called primitive if for every f ∈ C(X),
f ≥ 0, f 	≡ 0 there exists n ≥ 0 such that for every x ∈ X it holds that
Qn(f)(x) > 0. If we change the order of the quantifiers to ‘for every x there
exists n’, then we call Q non-decomposable.

Theorem 5.5.3. For Q : C(X) → C(X), a (real or complex) linear almost
periodic positive primitive operator of spectral radius equal to 1, we have
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(1) dim(C(X)u) = 1 in the decomposition (5.5.1)

(2) the eigenvalue corresponding to C(X)u is equal to 1, and the respective
eigenfunction uQ is positive (everywhere > 0).

(3) In addition there exists a probability measure mQ on X invariant under the
conjugate operator Q∗, such that for every u ∈ C(X) we have the strong
convergence

Qn(u) → uQ

∫
u dmQ.

Proof. This is just a repetition of considerations of Sections 5.2–5.4. Find first
a probability measure m such that Q∗(m) = m as in Theorem 5.2.8 (we leave
to the reader the proof that the eigenvalue is equal to 1). Next observe that
by the almost periodicity of Q the sequence of averages an := 1

n

∑n−1
j=0 Q

j(11)
is relatively compact (an exercise). Let uQ be any function in the limit. Then
uQ ≥ 0 is an eigenfunction for the eigenvalue 1. It is not identically 0, since∫
andm = 1 for all n ≥ 0. We have uQ = Q(uQ) > 0, because Q is non-

decomposable. Finally, for Q̂(u) := Q(uuQ)u−1
Q we have Q̂(11) = 11 and we repeat

the proof of Theorem 5.4.5, replacing the property of topological exactness by
primitivity. ♣

Notice that this yields Theorem 5.4.5 because of the following proposition.

Proposition 5.5.4. If an open expanding map T is topologically exact, then for
every continuous function φ the transfer operator Q = Lφ is primitive.

The proof is easy: it is in fact contained in the proof of Lemma 5.4.4.
Assume now only that T is topologically transitive. Let Ωk denote the sets

from spectral decomposition X = Ω =
⋃n
k=1 Ωk, as in Theorem 4.3.8. Write

uQ ∈ C(X) for an eigenfunction of the operator Q as before. Now note (exercise!)
that the space Fu for the operator Q = Lφ is spanned by n eigenfunctions
vt =

∑n
k=1 χΩkλ−tkuQ, t = 1, . . . , n, where χ means indicator functions, with

λ = ε2πi/n. Each vt corresponds to the eigenvalue λt. Thus the set of these
eigenvalues is a cyclic group.

It is also an easy exercise to describe Fu if X = Ω =
⋃J
j=1

⋃k(j)
k=1 Ωkj . The set

of eigenvalues is the union of J cyclic groups. It is harder to understand Fu and
the corresponding set of eigenvalues for T open expanding, without assuming
Ω = X.

A general theorem related to Theorem 5.4.6 and Corollary 5.4.7 is the
following.

Theorem 5.5.5 (Ionescu Tulcea and Marinescu). Let (F, | · |) be a Banach space
equipped with a norm |·|, and let E ⊂ F be its dense linear subspace. E is assumed
to be a Banach space with respect to a norm ‖ · ‖ defined on it. Let Q : F → F
be a bounded linear operator that preserves E, whose restriction to E is also
bounded with respect to the norm ‖ · ‖.
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Suppose the following conditions are satisfied.

(1) If (xn : n = 1, 2, . . .) is a sequence of points in E such that ‖xn‖ ≤ K1

for all n ≥ 1 and some constant K1, and if limn→∞ |xn − x| = 0 for some
x ∈ F , then x ∈ E and ‖x‖ ≤ K1.

(2) There exists a constant K such that |Qn| ≤ K for all n = 1, 2, . . . .

(3) ∃N ≥ 1 ∃τ < 1 ∃K2 > 0 ‖QN (x)‖ ≤ τ‖x‖ +K2|x| for all x ∈ E.

(4) For any bounded subset A of the Banach space E with norm ‖ · ‖, the
set QN (A) is relatively compact as a subset of the Banach space F with
norm | · |.

Then

(5) There exist at most finitely many eigenvalues of Q : F → F of modulus 1,
say γ1, . . . , γp.

(6) Let Fi = {x ∈ F : Q(x)= γix}, i= 1, . . . , p. Then Fi⊂E and dim(Fi)<∞.

(7) The operator Q : F → F can be represented as

Q =
p∑

i=1

γiQi + S,

where Qi and S are bounded, Qi(F ) = Fi, supn≥1 |Sn| <∞ and

Q2
i = Qi, QiQj = 0 (i 	= j), QiS = SQi = 0

Moreover,

(8) S(E) ⊂ E and S|E considered as a linear operator on (E, ‖ · ‖) is bounded,
and there exist constants K3 > 0 and 0 < τ̃ < 1 such that

‖Sn|E‖ ≤ K3τ̃
n

for all n ≥ 1.

The proof of this theorem can be found in [Ionescu Tulcea & Marinescu 1950].
Now, in view of Theorem 4.4.1 and Corollary 5.3.7, Theorem 5.5.5 applies

to the operator Q = Lφ : C(X) → C(X) if one substitutes F = C(X),
E = Hα(X). If T is topologically exact and in consequence Q is primitive on
C(X), then dim(⊕Fi) = 1 and the corresponding eigenvalue is equal to 1, as in
Theorem 5.5.3.

5.6 Uniqueness of equilibrium states

We have already proved the existence (Theorem 5.3.2) and uniqueness
(Corollary 5.2.14) of invariant Gibbs states, and proved that invariant Gibbs
states are equilibrium states (Proposition 5.1.5). Here we shall give three different
proofs of the uniqueness of equilibrium states.
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Let ν be a T -invariant measure, and let a finite real function Jν be the
corresponding Jacobian in the weak sense; Jν is defined ν-a.e. By the invariance
of ν we have ν(E) = 0 ⇒ ν(T−1(E)) = ν(E) = 0: that is, ν is backward quasi-
invariant. At the beginning of Section 5.2 we defined in this situation Ψ = Φx ◦T
with Φx = dν◦T−1

x

dν defined for ν-a.e. point in the domain of a branch T−1
x . (In

Section 5.2 we used the notation Φj for Φx.) By definition, Φx is strong Jacobian
for T−1

x .
Notice that for ν-a.e. z

(Jν ◦ T−1
x ) · Φx(z) =

{
1, if Φx(z) 	= 0;
0, if Φx(z) = 0.

(5.6.1)

Indeed, after removal of {z : Φx(z) = 0}, the measures ν and ν ◦ T−1 are equiv-
alent: hence Jacobians of T and T−1

x are mutual reciprocals. We can fix Jν on
the set T−1({z : Φx(z) = 0}) arbitrarily, since this set has measure ν equal to 0.

Recall that we have defined Lν : L1(ν) → L1(ν), the transfer operator
associated with the measure ν, as follows:

Lν(g)(x) =
∑

y∈T−1(x)

g(y)Ψ(y).

Recall that if T maps a set A of measure 0 to a set of positive measure, then
Ψ is specified, equal to 0, on a subset of A that is mapped by T to a set of full
measure ν in T (A).

Then, since ν is T -invariant, Lν(11) = 11, and for every ν-integrable function g
we have

∫ Lν(g) dν =
∫
g dν: compare (5.2.4).

Lemma 5.6.1. Let ψ : X → R be a continuous function such that Lψ(11) = 11
(that is, for every x,

∑
y∈T−1(x) exp(ψ(y)) = 1), and let ν be an ergodic equi-

librium state for ψ. Then Jν is strong Jacobian and Jν = exp(−ψ) ν-almost
everywhere.

Proof. The proof is based on the following computation using the inequality
1 + log(x) ≤ x, with the equality only for x = 1.

1 =
∫

11 dν ≥
∫

Lν(Jν expψ) dν =
∫
Jν expψ dν

≥
∫ (

1 + log(Jν expψ
)
) dν = 1 +

∫
ψdν +

∫
log Jν dν

= 1 +
∫
ψdν + hν(T ) ≥ 1.

To obtain the first inequality, write

Lν(Jν expψ)(x) =
∑

y∈T−1(x)

Jν(y)(expψ(y))Ψ(y),

which is equal to 1 if Ψ(y) > 0 for all y ∈ T−1(x)), or < 1 otherwise. This follows
from (5.6.1) and from

∑
y∈T−1(x) expψ(y) = 1.



9780521438001c05 CUP/PUK February 5, 2010 18:28 Page-155

5.6 Uniqueness of equilibrium states 155

The last inequality follows from
∫
ψdν + hν(T ) = P (ψ) ≥ lim sup

n→∞
1
n

log
∑

y∈T−n(x)

expSnψ(y) = 0,

(see Theorem 3.3.2), since all points in T−n(x) are (n, η)-separated, for η > 0
defined in Chapter 4.

Therefore all the inequalities in this proof must become equalities. Thus the
Jacobian Φx 	= 0 for each branch T−1

x and Jν = exp(−ψ), ν- a.e. ♣
Note that we have not assumed above that ψ is Hölder. Now, we shall

assume it.

Theorem 5.6.2. There exists exactly one equilibrium state for each Hölder
continuous potential φ.

Proof. Let ν be an equilibrium state for φ. As in Section 5, set ψ = φ−P (T, φ)+
log uφ◦T−log uφ, and ν is also the equilibrium state for ψ. Then by Lemma 5.6.1
its Jacobian is strong Jacobian, equal to exp(−ψ). Hence

ν
(
T−n
z (B(Tn(z), ξ))

)
=
∫

B(Tn(z),ξ)

exp (Snψ(T−n
z (x))

)
dν(x)

=
∫

B(Tn(z),ξ)

uφ(x)
uφ(Tn(x))

exp(Snφ− nP (T, φ))(T−n
z (x)) dν(x).

So, by the Pre-Bounded Distortion Lemma (Lemma 4.4.2),

inf |uφ|
sup |uφ|BC

−1 ≤ ν
(
T−n
z (B(Tn(z), ξ))

)

exp(Snφ− nP (T, φ))(z)
≤ sup |uφ|

inf |uφ| C,

where B = inf{ν(B(y, ξ)}. It is positive, by Proposition 5.2.10.
Therefore ν is an invariant Gibbs state for φ, unique by Corollary 5.2.14. ♣

Remark 5.6.3. The knowledge that exp(−ψ) is weak Jacobian automatically
implies that it is a strong Jacobian. Indeed, by the invariance of ν we have

∑

y∈T−1(x)

Φy(y) = 1 =
∑

y∈T−1(x)

expψ(y),

and each non-zero summand on the left is equal to a corresponding summand
on the right. So there are no summands equal to 0.

Uniqueness. Proof II. We shall provide the second proof of Lemma 5.6.1. It is
not so elementary as the previous one, but it exhibits a relation with the Finite
Variational Principle in the Introduction.

For every y ∈ X put A(y) := T−1
(
T
({y})

)
. Let {νA} denote the canonical

system of conditional measures for the partition of X into the sets A = A(y):
see Section 2.6.
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Since there exists a finite one-sided generator (see Lemma 3.5.5), with the
use of Theorem 2.9.7 we obtain

0 = P(T, ψ) = hν(T ) +
∫
ψ dν = Hν

(
ε | T−1(ε)

)
+
∫
ψ dν

=
∫ ( ∑

z∈A(y)

νA(y)({z})
(− log

(
νA(y)({z})

)
+ ψ(z)

))
dν(y).

The latter expression is always negative except for the case νA(y)(z) =
expψ(z) ν-a.e. by the Finite Variational Principle. So for a set Y = T−1

(
T (Y )

)

of full measure ν, for every y ∈ Y we have

νA(y)({y}) = expψ(y), and in particular νA(y)({y}) 	= 0. (5.6.2)

Hence, for every Borel set Z ⊂ Y such that T is 1–to–1 on it, we can repeat
the calculation in the proof of Theorem 2.9.6 and get

ν
(
T (Z)

)
=
∫

Z

1/νA(y)({y}) dν(y).
So our Jacobian for T |Y is equal to 1/νA(y), and hence to exp(−ψ) by (5.6.2),
and it is strong on Y . Observe finally that ν

(
T (X \ Y )

)
= 0 because X \ Y =

T−1
(
T (X \ Y )

)
and ν is T -invariant. So exp(−ψ) is a strong Jacobian on X.

Uniqueness. Proof III. Because of Corollary 3.6.7 it is sufficient to prove the
differentiability of the pressure function φ �→ P(T, φ) at Hölder continuous φ, in
a set of directions dense in the weak topology on C(X).

Lemma 5.6.4. Let φ : X → R be a Hölder continuous function with exponent
α, and let μφ denote the invariant Gibbs measure for φ. Let F : X → R be an
arbitrary continuous function. Then, for every x ∈ X,

lim
n→∞

∑
y∈T−n(x)

1
nSnF exp(Snφ)(y)

∑
y∈T−n(x) exp(Snφ)(y)

=
∫
F dμφ. (5.6.3)

In addition, the convergence is uniform for an equi-continuous family of F ’s and
for φ’s in a bounded subset of the Banach space of Hölder functions Hα(X).

Proof. The left-hand side of (5.6.3) can be written in the form

lim
n→∞

1
n

∑n−1
j=0 Lnφ(F ◦ T j)(x)
Lnφ(11)(x)

= lim
n→∞

1
n

∑n−1
j=0 Ln−j(F · Lj(11))(x)

Ln(11)(x)
, (5.6.4)

where L = L0 = e−P (T,φ)Lφ.
Since by Theorem 5.3.5 F · Lj(11) is an equi-continuous family of functions,

we obtain the uniform convergence

Ln−j(F · Lj(11))(x) → uφ(x)
∫
F · Lj(11) dmφ

as n− j → ∞: see Theorem 5.4.5.
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Therefore we can continue (5.6.4) to get

lim
n→∞

1
n

∑n−1
j=0 uφ(x)

∫
F · Lj(11) dmφ

uφ(x)
= lim
n→∞

1
n

n−1∑

j=0

∫
F · Lj(11) dmφ =

∫
F dμφ,

since Lj(11) uniformly converges to uφ and μφ = uφmφ. ♣
Now we shall calculate the derivative dP(T, φ + tγ)/dt for all Hölder con-

tinuous functions φ, γ : X → R at every t ∈ R. In particular, this will give
differentiability at t = 0. Thus our dense set of directions is spanned by the
Hölder continuous functions γ.

Theorem 5.6.5. We have
d

dt
P(T, φ+ tγ) =

∫
γ dμφ+tγ (5.6.5)

for all t ∈ R.

Proof. Write

Pn(t) :=
1
n

log
∑

y∈T−n(x)

exp(Sn(φ+ tγ))(y) (5.6.6)

and

Qn(t) :=
dPn
dt

(t) =
1
n

∑
y∈T−n(x) Snγ(y) exp(Sn(φ+ tγ))(y)
∑
y∈T−n(x) exp(Sn(φ+ tγ)(y)

. (5.6.7)

By Lemma 5.6.4, limn→∞Qn(t) =
∫
γ dμφ+tγ and the convergence is locally

uniform with respect to t. Since, in addition, limn→∞ Pn(t) = P(T, φ + tγ), we
conclude that P(T, φ + tγ) = limn→∞ Pn(t) is differentiable, and the derivative
is equal to the limit of derivatives: limn→∞Qn(t) =

∫
γ dμφ+tγ . ♣

Note that the differential (Gateaux) operator γ �→ ∫
γ dμφ is indeed the one

from Proposition 3.6.6. Note also that a posteriori, by Corollary 3.6.7, we have
proved that for φ Hölder continuous, P(T, φ) is differentiable in the direction of
every continuous function. This is obvious in general: two different supporting
functionals are differently restricted to any dense subspace.

5.7 Probability laws and σ2(u, v)

The exponential convergences in Section 5.4 allow us to prove the probability
laws.

Theorem 5.7.1. Let T : X → X be an open, distance-expanding topologically
exact map and μ be the invariant Gibbs measure for a Hölder continuous function
φ : X → R. Then if g : X → R satisfies

∞∑

n=0

‖L̂n(g − μ(g))‖2 <∞, (5.7.1)
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and in particular if g is Hölder continuous, then the Central Limit Theorem
(CLT) holds for g. If g is Hölder continuous then the Law of Iterated Logarithm
(LIL) holds.

Proof. We first show how CLT can be deduced from Theorem 2.11.5. We can
assume μ(g) = 0. Let (X̃, F̃ , μ̃) be the natural extension (see Section 2.7). Recall
that X̃ can be viewed as the set of all T -trajectories (xn)n∈Z (or backward tra-
jectories), T̃ ((xn)) = (xn+1) and πn((xn)) = xn. It is sufficient now to check
(2.11.14) for the automorphism T̃ the function g̃ = g ◦ π0 and F̃0 = π−1

0 (F) for
the completed Borel σ-algebra F . Since g̃ is measurable with respect to F̃0 it is
also measurable with respect to all F̃n = T̃−n(F̃0) for n ≤ 0: hence g̃ = E(g̃|F̃n).
So we need only to prove

∑∞
n≥0 ‖E(g̃|F̃n)‖2 <∞.

Since for n ≥ 0 we have π0 ◦ T̃n = T̃n ◦ π0, we have E(g̃|F̃n) = E(g|Fn) ◦ π0.
So we need to prove that

∑∞
n≥0 ‖E(g|Fn)‖2 <∞.

Let us start with a general fact concerning an arbitrary probability space
(X,F , μ) and an endomorphism T preserving μ.

Lemma 5.7.2. Let U denote the unitary operator on L2(X,F , μ) associated
to T , namely U(f) = f ◦ T (called the Koopman operator: see the beginning
of Section 5.2 and Section 2.2). Let U∗ be the operator conjugate to U , acting
also on L2(X,F , μ). Then for every k ≥ 0 the operator UkU∗k is the orthogonal
projection of H0 = L2(X,F , μ) onto Hk = L2(X,T−k(F), μ).

Proof. For each k ≥ 0 the function Uk(u) = u ◦ T k is measurable with respect
to T−k(F), so the range of UkU∗k is indeed in Hk = L2(X,T−k(F), μ).

For any u, v ∈ H0 write
∫
u · v dμ = 〈u, v〉, the scalar product of u and v. For

arbitrary f, g ∈ H0 we calculate

〈UkU∗k(f), g ◦ T k〉 = 〈UkU∗k(f), Uk(g)〉
= 〈U∗k(f), g〉 = 〈f, Uk(g)〉 = 〈f, g ◦ T k〉.

It is clear that all functions in Hk = L2(X,T−k(F), μ) are represented by g ◦T k
with g ∈ L2(X,F , μ). Therefore, by the above equality for all h ∈ Hk, we obtain

〈f − UkU∗k(f), h〉 = 〈f, h〉 − 〈f, h〉 = 0. (5.7.2)

In particular, for f ∈ Hk we conclude from (5.7.2) for h = f − UkU∗k(f) that
〈f − UkU∗k(f), f − UkU∗k(f)〉 = 0: hence UkU∗k(f) = f . Therefore UkU∗k is
a projection onto Hk, which is orthogonal by (5.7.2). ♣

Since the conditional expectation value f �→ E(f |T−k(F)) is also the
orthogonal projection onto Hk we conclude that E(f |T−k(F)) = UkU∗k(f).

Now let us pass to our special situation of Theorem 5.7.1.

Lemma 5.7.3. For every f ∈ L2(X,F , μ) we have U∗(f) = L̂(f).

Proof. 〈U∗f, g〉 = 〈f, Ug〉 =
∫
f · (g ◦ T ) dμ =

∫ L̂(f · (g ◦ T )) dμ =
∫

(L̂(f)) ·
g dμ = 〈L̂(f), g〉: compare (5.2.7). ♣
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Proof of Theorem 5.7.1. Conclusion. We can assume that μ(g) = 0. We have

∞∑

n≥0

‖E(g|Fn)‖2 =
∞∑

n≥0

‖UnU∗n(g)‖2 =
∞∑

n≥0

‖L̂n(g)‖2 <∞,

where the inequality been assumed in (5.7.1). Thus CLT has been proved by
applying Theorem 2.11.5. If g is Hölder continuous it satisfies (5.7.1). Indeed
L̂k(g) converges to 0 in the sup norm exponentially fast as k → ∞ by Corol-
lary 5.4.7 (see (5.4.8)). This implies the same convergence in L2: hence the
convergence of the above series. ♣

We have proved CLT and LIL using Theorem 2.11.5. Now let us show how
to prove CLT and LIL with the use of Theorem 2.11.1, for Hölder continuous g.
As in the proof of Corollary 5.4.11, let π : ΣA → X be the coding map from
a one-sided topological Markov chain with d symbols generated by a Markov
partition: see Section 4.5. Since π is Hölder continuous, if g and φ are Hölder
continuous, then the compositions g ◦π, φ ◦π are also Hölder continuous. π is an
isomorphism between the measures μφ◦π on ΣA and μφ on X: see Section 4.5 and
Lemma 5.4.12. The function g ◦ π satisfies the assumptions of Theorem 2.11.1
with respect to the σ-algebra F associated to the partition of ΣA into 0-th cylin-
ders: see Theorem 5.4.10. φ-mixing follows from (5.4.10), and the estimate in
(2.11.8) is exponential with an arbitrary δ, owing to the Hölder continuity of
g ◦ π. Hence, by Theorem 2.11.1, g ◦ π, and therefore g satisfy CLT and LIL.

In Section 5.6 we calculated the first derivative of the pressure function. Here,
using the same method, we calculate the second derivative, and we see that it is
a dispersion (asymptotic variance) σ2: see Section 2.11.

Theorem 5.7.4. For all φ, u, v : X → R Hölder continuous functions there
exists the second derivative, given by Ruelle’s formula:

∂2

∂s∂t
P(T, φ+ su+ tv)|s=t=0 = lim

n→∞
1
n

∫
Sn(u− μφu)Sn(v− μφv) dμφ, (5.7.3)

where μφ is the invariant Gibbs measure for φ. In particular,

∂2

∂t2
P(T, φ+ tv)|t=0 = σ2

μφ
(v)

(where σ2
μφ

(v) is the asymptotic variance discussed in CLT, Section 2.11). In
addition, the function (s, t) �→ P(T, φ+ su+ tv) is C2-smooth.

Proof. By Section 5.6 (see (5.6.3), (5.6.7)):

∂2

∂s∂t
P(T, φ+ su+ tv)|t=0

=
∂

∂s
lim
n→∞

1
n

∑
y∈T−n(x) Snv(y) expSn(φ+ su)(y)
∑
y∈T−n(x) expSn(φ+ su)(y)

. (5.7.4)
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Now we change the order of ∂/∂s and lim. This will be justified if we prove the
uniform convergence of the resulting derivative functions.

With x ∈ X and n fixed we abbreviate further in the notation
∑
y∈T−n(x) to

∑
y and compute

Fn(s) :=
∂

∂s

(∑
y Snv(y) expSn(φ+ su)(y)
∑
y expSn(φ+ su)(y)

)

=

∑
y Snu(y)Snv(y) expSn(φ+ su)(y)

∑
y expSn(φ+ su)(y)

−
(∑

y Snu(y) expSn(φ+ su)(y)
)(∑

y Snv(y) expSn(φ+ su)(y)
)

(∑
y expSn(φ+ su)(y)

)2

=
Ln((Snu)(Snv)

)
(x)

Ln(11)(x)
− Ln(Snu)(x)

Ln(11)(x)
Ln(Snv)(x)
Ln(11)(x)

.

As in Section 5.6 we write here L = L0 = e−P (T,φ+su)Lφ+su. It is useful to write
the later expression for Fn(s) in the form

Fn(s) =
∫

(Snu)(Snv) dμs,n −
∫

(Snu) dμs,n
∫

(Snv) dμs,n (5.7.5)

or

Fn(s) =
n−1∑

i,j=0

∫
(u ◦ T i − μs,n(u ◦ T i))(v ◦ T j − μs,n(v ◦ T j)) dμs,n, (5.7.6)

where μs,n is the probability measure distributed on T−n(x) according to the
weights exp(Sn(φ+ su))(y)/

∑
y expSn(φ+ su)(y).

Note that 1
nFn(s), with Fn(s) as in the formula (5.7.6), already resembles

(5.7.3), because μs,n → mφ+su in the weak∗-topology: see (5.4.4). However, we
need a little more work.

For each i, j denote the respective summand in (5.7.6) by Ki,j . To simplify
the notation, denote u ◦ T i by ui and v ◦ T j by vj . We have

Ki,j =
Ln((ui − μs,nui)(vj − μs,nvj)

)
(x)

Ln(11)(x)
,

and for 0 ≤ i ≤ j < n, using (5.2.7) twice,

Ki,j =
Ln−j

((Lj−i((u− μs,nui)Li(11))
)(
v − μs,nvj

))
(x)

Ln(11)(x)
. (5.7.7)

By Corollary 5.4.7 for τ < 1 and Hölder norm ‖ · ‖Hα
for an exponent α > 0,

transforming the integral as in the proof of Theorem 5.4.9, we get

‖Lj−i((u− μs,nui)Li(11)) − uφ+su

(∫
ui dmφ+su − μs,nui)

)

‖Hα
≤ Cτ j−i,
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where C depends only on Hölder norms of u and φ + su. The difference in the
large parentheses (denote it by Di,n) is bounded by Cτn−i in the Hölder norm,
again by Corollary 5.4.7.

We conclude that for all j the functions

Lj :=
∑

i≤j
Lj−i((u− μs,nui)Li(11))

are uniformly bounded in the Hölder norm ‖ · ‖Hα
by a constant C, depending

again only on ||u||Hα
and ||φ+ su||Hα

. Hence summing over i ≤ j in (5.7.7) and
applying Ln−j we obtain

∥
∥
∥

j∑

i=0

Ki,j −
j∑

i=0

∫
(ui − μs,nui)(vj − μs,nvj) dmφ+su

∥
∥
∥
∞

≤ Cτn−j .

Here C also depends on ||v||Hα
. We can replace the first sum by the second sum

without changing the limit in (5.7.4), since after summing over j = 0, 1, . . . , n−1,
dividing by n and passing with n to ∞, they lead to the same result. Let us now
show that μs,n can be replaced by mφ+su in the above estimate without changing
the limit in (5.7.4). Indeed, using the formula ab − a′b′ = (a − a′)b′ + a(b − b′),
we obtain

∣
∣
∣
∣

∫
(ui −mφ+suui)(vj −mφ+suvj) dmφ+su

−
∫

(ui − μs,nui)(vj − μs,nvj) dmφ+su

∣
∣
∣
∣

≤ |(μs,nui −mφ+suui) × (mφ+suvj − μs,nvj)

+
∣
∣
∣
∣

∫
(ui −mφ+suui) × (μs,nvj −mφ+suvj) dmφ+su

∣
∣
∣
∣.

Since Di,n ≤ Cτn−i and Dj,n ≤ Cτn−j , the first summand is bounded above by
τn−iτn−j . Note that the second summand is equal to 0. Thus our replacement
is justified.

The last step is to replace m = mφ+su by the invariant Gibbs measure
μ = μφ+su.

Similarly as above we can replace m by μ in mui,mvi. Indeed,

|mui − μui| =
∣
∣
∣
∣

∫
u · Li(11) dm−

∫
uuφ+su dm

∣
∣
∣
∣

=
∣
∣
∣
∣

∫
u · (Li(11) − uφ+su) dm

∣
∣
∣
∣ ≤ Cm(u)τ i. (5.7.8)

Thus the resulting difference is bounded by Cm(u)m(v)τ iτ j . Finally we justify
the replacement of m by μ at the second integral in the previous formula. To
simplify the notation write F = u − μu,G = v − μv. Since j ≥ i, using (5.7.8),
we can write
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∣
∣
∣
∣

∫
(F ◦ T i)(G ◦ T j) dm−

∫
(F ◦ T i)(G ◦ T j) dμ

∣
∣
∣
∣ =

=
∣
∣
∣
∣

∫
(F · (G ◦ T j−i)) ◦ T i dm−

∫
(F · (G ◦ T j−i)) ◦ T i dμ

∣
∣
∣
∣

≤ Cτ i
∫

|F · (G ◦ T j−i)| dm ≤ Cm(F )m(G)τ iτ j−i = Cm(F )m(G)τ j

by Theorem 5.4.9 (exponential decay of correlations), the latter C depending
again on the Hölder norms of u, v, φ+ su. Summing over all 0 ≤ i ≤ j < n gives
the bound Cm(F )m(G)

∑n−1
j=0 jτ

j , and our replacement is justified. For i > j

we do the same replacements, changing the roles of u and v. The C2-smoothness
follows from the uniformity of the convergence of the sequence of the functions
Fn(s), for φ+ tv in place of φ, with respect to the variables (s, t), resulting from
the proof. ♣

Exercises

5.1. Prove that (5.1.1) with an arbitrary 0 < ξ′ ≤ ξ in place of ξ implies (5.1.1)
for every 0 < ξ′ ≤ ξ (with C depending on ξ′).
5.2. Let A = (aij) be a non-zero k × k matrix with all entries non-negative.
Assume that A is irreducible: that is, that for any pair (i, j) there is some n > 0
such that the (i, j)-th entry anij of An is positive. Prove that there is a unique pos-
itive eigenvalue λ with left (row) and right (column) eigenvectors v = (v1, . . . , vk)
and u = (u1, . . . , uk) with all coordinates positive. The eigenvalue λ is simple.
All other eigenvalues have absolute values smaller than λ.

Check that the matrix P = (pij) with pij := viaij/λvj is stochastic: that
is, 0 ≤ pij ≤ 1 and

∑
i pij = 1 for all j = 1, . . . , k. (One interprets pij as the

probability of i under the condition j. Caution: often the roles of i and j are
opposite.) Note that q = (u1v1, . . . , ukvk) satisfies Pq = q (it is the stationary
probability distribution).

Prove that for each pair (i, j) limn→∞ λ−nanij → uivj .
Identify the vectors u and v for a piecewise affine (piecewise increasing) map-

ping of the interval T : [0, 1] → [0, 1]. More precisely, let 0 = x1 < x2 < . . . <
xk < xk+1 = 1, and for each i = 1, . . . , k let xi = yi,1 < yi,2 < . . . < yi,k+1 =
xi+1. Consider T affine on each interval [yi,j , yi,j+1) mapping it onto [xj , xj+1),
such that T ′ = Const aij . Consider the potential function φ = − logF ′. What is
the eigen-measure of the related transfer operator? What is the invariant Gibbs
measure? Compare Exercise 5.7.
5.3. Prove that if a probability measure m is T -invariant then Lm(L2(m)) ⊂
L2(m), and the norm of L in L2(m) is equal to 1.
5.4. A linear operator Q : L1(μ) → L1(μ) for a measure space (X,F , μ)
(we allow μ to be infinite, say σ-finite) is called a Markov operator if for all
u ≥ 0, u ∈ L1(μ) the following two conditions hold:

(a) Q(u) ≥ 0 (compare the notion of positive operator).
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(b) ||Q(u)||1 = ||u||1 (compare (5.2.4).
(This notion generalizes the notion of a transfer operator Lm: see Section 5.2.)

Prove that

(1) ||Q(u)||1 ≤ ||u||1 for all u ∈ L1(μ).

(2) If |Qn(u)| ≤ g for some positive u, g ∈ L1(μ) and all n = 1, 2, . . . , then there
exists non-zero u∗ ∈ L1(μ) such that Q(u∗) = u∗.

(3) Suppose additionally that there is a compact set A ⊂ L1 such that for d the
distance in L1, for every u ∈ L1(μ) it holds that d(Qn(u), A) → 0 as n → ∞.
(This property is called strongly constrictive.)

Then there exist two finite sequences of non-negative functions gi ∈
L1(μ), ki ∈ L∞(μ), i = 1, . . . , p, and a linear bounded operator S : L1(μ) →
L1(μ) such that for every u ∈ L1(μ)

Q(u) =
r∑

i=1

λi(u)gi + S,

where λi(u) =
∫
uki dμ, the functions gi have disjoint supports and are permuted

by Q, and ||QnS(u)||1 → 0 as n→ ∞.
Hint: See the Spectral Decomposition Theorem in [Lasota & Mackey 1985]

and [Lasota, Li & Yorke 1984].

(4) Suppose additionally that there is A ⊂ X with μ(A) > 0 such that for
every u ∈ L1(μ) we have Qn(u) > 0 on A for all n large enough. Then
lim ||Qn(u) − (

∫
u dμ)u∗||1 = 0. (This property is called asymptotically stable.)

Hint: Deduce this from (3): see the Asymptotic Stability Section in [Lasota &
Mackey 1985] .

(5) Prove that if a Markov operator Q satisfies the following lower bound function
property:

There exists a non-negative integrable function h : X → R such that ||h||1 > 0
and such that for every non-negative u ∈ L1(μ) with ||u||1 = 1,

lim
n→∞ ||min(Qn(u) − h, 0)||1 = 0,

then Q is asymptotically stable.
Hint: Consider u ∈ L1(μ) with

∫
u dμ = 0 and decompose it into positive and

negative parts u = u+ + u−. Using h, observe that by iterating Q on u+ and u−

we achieve the cancelling h− h. For details see [Lasota & Mackey 1985].
(Note that the existence of the lower bound function u replaces the assump-

tion on the existence of the set A in (4) and allows us to get rid of the
constrictivness assumption.)
5.5. Consider a measure space (X,F , μ) and a measurable functionK : X×X →
R, non-negative and such that

∫
X
K(x, y) dμ(x) = 1 for all y ∈ X (such a function

is called a stochastic kernel). Define the associated integral operator by

P (u)(x) =
∫

X

K(x, y)u(y) dμ(y), for u ∈ L1(μ).
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Consider the convolutions

Kn(x, y) :=
∫
K(x, zn−1)K(zn−1, zn−2) . . .K(z1, y) dμ(zn−1) . . . dμ(z1).

Prove that if there exists n ≥ 0 such that
∫
X

infyKn(x, y) dμ(x) > 0, then Q
is asymptotically stable.
5.6. Let T : X → X be a measurable backward quasi-invariant endomorphism
of a measure space (X,F ,m). Suppose there exist disjoint sets A,B ⊂ X, both
of positive measure m, with T (A) = X.

Prove that for Lm : L1(m) → L1(m) being the transfer operator as in Sec-
tion 5.2, all λ with |λ| < 1 belong to its spectrum. In particular, 1 is not an
isolated eigenvalue (there is no spectral gap: compare Remark 5.4.8). Is there a
spectral gap for Lφ for T : X → X an open expanding topologically transitive
map, acting on C(X) for Hölder continuous φ? (In Corollary 5.4.7 we restrict
the domain of Lφ to Hölder continuous functions.)

Hint: Prove that all λ, |λ| < 1 belong to the spectrum of the conjugate Koop-
man operator on L∞(m). Indeed, L∗−λId is not onto, and hence not invertible.
No function that is identically 0 on A and non-zero on B is in the image.
5.7. Let I1, I2, . . . , IN be a partition of the unit interval [0, 1] into closed sub-
intervals (up to end points, that is, every two neighbours have a common end
point). Let T : [0, 1] → [0, 1] be a piecewise C1+ε expanding mapping. This
means that the restriction of T to each Ij has an extension to a neighbourhood
of the closure of Ij that is differentiable with the first derivative Hölder contin-
uous of the modulus larger than 1. Suppose that each T (Ij) is a union of some
Ii’s (Markov property), and for each Ij there is n such that Tn(Ij) = [0, 1].

Prove the following so-called Folklore Theorem: There is an exact (in the
measure-theoretic sense) T -invariant probability measure μ on [0, 1] equivalent
to the length measure l, with dμ

dl bounded and bounded away from 0, Hölder
continuous on each Ij .

Hint: Consider the potential function φ = − log |T ′|.
5.8. For T as in Exercise 5.7 assume that T is C2 on Ij ’s, but do not
assume Markov property. Prove that there exists a finite number of T -invariant
probability measure absolutely continuous with respect to the length measure l.

Hint: This is the famous Lasota–Yorke Theorem [Lasota & Yorke 1973].
Instead of Hölder continuous functions consider the transfer operator L on the
functions of a bounded variation of the derivative.

In fact, by the Ionescu Tulcea, Marinescu Theorem 5.5.5 item (8), there
exists a spectral gap (see Remark 5.4.8), so we can prove probability laws as in
Theorem 5.7.1.
5.9. Prove the existence of an invariant Gibbs measure, Theorem 5.3.2, for φ
satisfying the following Bowen’s condition: there exist δ > 0 and C > 0 with the
property that whenever ρ(T i(x), T i(z)) ≤ δ for 0 ≤ i ≤ n− 1, then

∣
∣
∣
∣

n−1∑

i=0

φ(T i(x)) − φ(T i(z))
∣
∣
∣
∣ ≤ C,
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and for T : X → X an open topologically transitive map of a compact metric
space that is non-contracting: that is, there exists η > 0 such that for all x, y ∈ X
ρ(x, y) ≤ η implies ρ(T (x), T (y)) ≥ ρ(x, y).

For m satisfying L∗
φ(m) = cm (see Theorem 5.2.8) prove the convergences

(5.4.2) and (5.4.3).
Hint: See [Walters 1978].

Bibliographical notes

In writing Sections 5.1–5.4 we relied mainly on the books [Bowen 1975] and
[Ruelle 1978a]. See also [Zinsmeister 1996] and [Baladi 2000].

References to the facts in Section 5.5 concerning almost periodic operators
can be found in [Lyubich & Lyubich 1986] and [Lyubich 1983]. For the proof
of the Ionescu Tulcea & Marinescu Theorem see [Ionescu Tulcea & Marinescu
1950]. For Markov operators see [Lasota & Mackey 1985].

As mentioned in the Introduction, the first, simplest, proof of uniqueness of
equilibrium follows [Keller 1998]. The second is similar to one in [Przytycki 1990].
The idea is taken from Ledrappier’s papers: see for example [Ledrappier 1984].

For the Perron–Frobenius theory for finite matrices (Exercise 5.2) see for
example [Walters 1982] and the references therein.

The Folklore Theorem in Exercise 5.7 can be found for example in
[Boyarsky & Góra 1997].

The consequences of holomorphic dependence of the operator on parameters
(and in particular the holomorphic dependence of an isolated eigenvalue of multi-
plicity one: see Remark 5.4.8) are comprehensively written in [Kato 1966]. See
our Section 6.4.

We owe Exercise 5.6 to R. Rudnicki.
In the following chapters we shall discuss special open distance-expanding

maps (X,T ) with X embedded in a smooth manifold and T smooth (Cr).
Then the transfer operator for Cr or real-analytic potential can be restricted
to Ck, k ≤ r. The bigger k, the more continuous spectrum is lost. In the C∞ and
Cω (real-analytic) cases the transfer operator has only a pointwise spectrum. For
this rich theory and references see for example [Baladi 2000].
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6

Expanding repellers in
manifolds and in the
Riemann sphere:
preliminaries

In this chapter we shall consider a compact metric space X with an open,
distance-expanding map T on it, embedded isometrically into a smooth Rie-
mannian manifold M . We shall assume that T extends to a neighbourhood U
of X to a mapping f of class C1+ε for some 0 < ε ≤ 1 or smoother, including
real-analytic. C1+ε and more general Cr+ε for r = 1, 2, . . . means that the r-th
derivative is Hölder continuous with the exponent ε for ε < 1 and Lipschitz
continuous for ε = 1. We shall also assume that there exists a constant λ > 1
such that for every x ∈ U and for every non-zero vector v tangent to M at x,
||Df(v)|| > λ||v|| holds, where || · || is the norm induced by the Riemannian
metric. The pair (X, f) will be called an expanding repeller and f an expanding
map. If f is of some class A, e.g. Cα or analytic, we shall say that the expanding
repeller is of that class, or that this is an A-expanding repeller. In particular,
if f is conformal we call (X, f) a conformal expanding repeller, abbreviated to
CER. Finally, if we skip the assumption that T = f |X is open on X, we shall
call (X, f) an expanding set. Sometimes, to distinguish the domain of f , we shall
write (X, f, U).

In Sections 6.2 and 6.3 we provide some introduction to conformal expanding
repellers, studying the transfer operator, postponing the main study to Chapters
9 and 10, where we shall use tools of geometric measure theory.

In Section 6.4 we discuss analytic dependence of the transfer operator on
parameters.

166
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6.1 Basic properties

For any expanding set there exist constants playing an analogous role to
constants for (open) distance-expanding maps:

Lemma 6.1.1. For any expanding set (X, f) with λ,U as in the definition and f
differentiable, for every η > 0 small enough, there exists U ′ ⊂ U a neighbourhood
of X such that B(X, η) ⊂ U ′, B(U ′, η) ⊂ U and for every x ∈ U ′ the map
f is injective on B(x, η). Moreover, f(B(x, η)) ⊃ B(f(x), η) and f increases
distances on B(x, η) by at least the factor λ.

Proof. We leave the proof to the reader as an easy exercise: compare the proof
of Lemma 6.1.2. ♣

In the sequel we shall consider expanding sets together with the constants η, λ
from Lemma 6.1.1. Write also ξ := λη. For the expanding repeller (X, f) these
constants satisfy the properties of the constants η, ξ, λ for the distance-expanding
map T = f |X onX, provided η is small enough: compare Lemmas 4.1.2 and 4.1.4.
For every x ∈ X we can consider the branch f−1

x on B(f(x), ξ), mapping f(x)
to x, extending the branch T−1

x defined on B(f(x), ξ) ∩ X. Similarly, we can
consider such branches of f−1 for x ∈ U ′.

Now let X be a compact subset of M forward invariant, that is, f(X) ⊂ X,
for a continuous mapping f defined on a neighbourhood U of X. We say that
X is a repeller if there exists a neighbourhood U ′ of X in U such that for every
y ∈ U ′ \X there exists n > 0 such that fn(y) /∈ U ′. In other words,

X =
⋂

n>0

f−n(U ′). (6.1.1)

In the lemma below we shall see that the extrinsic property of being a repeller is
equivalent to the intrinsic property of being open for f on X. It is a topological
lemma; no differentiability is invoked.

Lemma 6.1.2. Let X be a compact subset of M forward invariant for a con-
tinuous mapping f defined on its neighbourhood U . Suppose that f is an open
map on U . Then if X is a repeller, f |X is an open map in X. Conversely, if f
is distance-expanding on a neighbourhood of X and f |X is an open map, then X
is a repeller: that is, it satisfies (6.1.1).

Proof. If f |X were not open there would exist a sequence of points xn ∈ X
converging to x ∈ X a point y ∈ X such that f(y) = x and an open set V in
M containing y so that no xn is in f(V ∩ X) . But as f is open there exists
a sequence yn ∈ V , yn → y and f(yn) = xn for all n large enough. Thus the
forward trajectory of each yn stays in every U ′, even in X except yn itself, which
is arbitrarily close to X with n respectively large. This contradicts the repelling
property.

Conversely, suppose that X is not a repeller. Then for U ′′ = B(X, r) ⊂ U ′

(U ′ from Lemma 6.1.1) with an arbitrary r < ξ there exists x ∈ U ′′ \ X such
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that its forward trajectory is also in U ′′. Then there exists n > 0 such that
dist(fn(x),X) < λdist(fn−1(x),X). Let y be a point inX closest to fn(x). Then
by Lemma 6.1.1 there exists y′ ∈ B(fn−1(x), η) such that f(y′) = y and by the
construction y′ /∈ X. Thus, letting r → 0, we obtain a sequence of points xn not
in X but converging to x0 ∈ X with images in X. So f(xn) /∈ f |X(B(x0, η)∩X)
because they are f -images of xn ∈ B(x0, η) \ X for n large enough and f is
injective on B(x0, η). But f(xn) → f(x0). So f(x0) does not belong to the
interior of f |X(B(x0, η) ∩X), so f |X is not open. ♣

To complete the description we provide one more fact.

Proposition 6.1.3. If (X, f) is an expanding set in a manifold M , then it is
a repeller iff there exists U ′′ a neighbourhood of X in M such that for every
sequence of points xn ∈ U ′′, n = 0,−1,−2, . . . ,−N , where N is any positive
number or ∞, such that f(xn) = xn+1 for n < 0, that is, for every backward
trajectory in U ′′, there exists a backward trajectory yn ∈ X such that xn ∈
B(yn, η).

Additionally, if (X, f) is an expanding repeller and f maps X onto X, then
for every x0 ∈ U ′′ there exist xn and yn as above.

Proof. If U ′′ is small enough, then by the openess of f |X , if f(y) = z ∈ X and
y ∈ U ′′ then y ∈ X: compare the Proof of Lemma 6.1.2. So, given xn, defining
yn = f−1

xn
(yn+1), starting with y0 ∈ X such that ρ(x0, y0) < ξ, we prove that

yn ∈ X.
Conversely, if fn(x) ∈ U ′′ for all n = 0, 1, . . . , then for each n we consider

fn(x), fn−1(x), . . . , x as a backward trajectory and find a backward trajectory
y(n)0, y(n)−1, . . . , y(n)−n in X such that fn−i(x) ∈ B(y(n)−i, η) for all i =
0, . . . , n. In particular, we deduce that ρ(x, y(n)−n) ≤ ηλ−n. We conclude that
the distance of x from X is arbitrarily small: that is, x ∈ X.

To prove the last assertion, given only x0 we find y0 ∈ X close to x0; next,
take any backward trajectory yn ∈ X existing by the ‘onto’ assumption and find
xn = f−1

xn
(yn+1) by induction, analogously to finding yn for xn above. ♣

Remark 6.1.4. The condition after ‘iff’ in this proposition (for N = ∞) can be
considered in the ‘inverse limit’, saying that every backward trajectory in U ′′ is
in the ‘unstable manifold’ of a backward trajectory in X.

Now we shall prove a lemma corresponding to the Shadowing Lemma 4.2.4.
For any two mappings F,G on the common domain A, to a metric space with a
metric ρ, we write dist(F,G) := supx∈A ρ(f(x), g(x)). Recall that we say that a
sequence of points (yi) β-shadows (xi) if ρ(xi, yi) ≤ β.

Lemma 6.1.5. Let (X, f, U) be an expanding set in a manifold M . Then for
every β : 0 < β < η there exist ε, α > 0 (it is sufficient that α + ε < (λ −
1)β) such that if a continuous mapping g : U → M is α-C0-close to f , that
is, dist(f, g) ≤ α, then every ε − f-trajectory x = x0, x1, . . . , xn in U ′ can be
β-shadowed by at least one g-trajectory. In particular, there exists Xg, a compact
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forward g-invariant set, that is, such that g(Xg) ⊂ Xg, and a continuous mapping
hgf : Xg →M such that dist(hgf , id|Xg

) ≤ β and hgf (Xg) = X.
If g is Lipschitz continuous, then hgf is Hölder continuous.

Proof. This is similar to that of the Shadowing Lemma, but needs some more
care. If we treat xi, i = 0, . . . , n as an α + ε-trajectory for g we cannot refer
to the proof of the Shadowing Lemma because we have not assumed that g is
expanding.

However, let us make similar choices as there, for β < η let α+ ε = β(λ− 1).
Then, by Lemma 6.1.1,

f(clB(xi, β)) ⊃ clB(f(xi), λβ), i = 0, 1, . . . , n. (6.1.2)

We left this in the proof of Lemma 6.1.1 as an exercise. One proof could use
an integration.

We shall give, however, a standard topological argument, proving (6.1.2) with
λ′ ≤ λ arbitrarily close to λ for β small enough, using the local approximation of
f by Df , which will also be of use later on for g. This argument corresponds to
Rouché’s theorem in one complex variable (preservance of the index of a curve
under small perturbation).

In the closed ball B1 = clB(xi, β) for β small enough, f is β(λ−λ′)-C0-close
to Df (locally it makes sense to compare f with Df using local charts on the
manifold M). To get β independent of i we use f being C1.

Hence f and Df are homotopic as maps of the sphere S1 = ∂B1 to M \ z
for any z ∈ B(f(xi), λ′β), just along the intervals joining the correspond-
ing image points. If z were missing in f(B1) then we could project f(B1) to
S2 = ∂B(f(xi), λ′β) along the radii from z. Denote such a projection from any
w by Pw.

Pz ◦ f |S1 : S1 → S2 is not homotopic to a constant map, because it
is homotopic to Pz ◦ Df |S1 , which is homotopic to Pf(xi) ◦ DF |S1 by using
Pt, t ∈ [z, f(xi)], and finally Pf(xi) ◦ Df |S1 is not homotopic to a constant
because Df is an isomorphism (otherwise, composing with Df−1 we would get
the identity on S1 homotopic to a constant map).

On the other hand, Pz ◦ f |S1 is homotopic to a constant, since it extends to
the continuous map Pz ◦ f |B1 .

Precisely the same topological argument shows that, setting xn+1 = f(xn),

g(clB(xi, β)) ⊃ clB(f(xi), λ′β − α) ⊃

clB(xi+1, λ
′β − α− ε) ⊃ clB(xi+1, β) i = 0, 1, . . . , n. (6.1.3)

So the intersection A(x) :=
⋂n
j=0 g

−j(clB(xj , β)) is non-empty, and the
forward g-trajectory of any point in A(x) β-shadows xi, i = 0, . . . , n− 1.

The sequence B(x0, β) → f(B(x0, β)) ⊃ B(x1, β) → f(B(x1, β)) ⊃
B(x2, β) → . . . is called a telescope. The essence of the proof was the existence
and the stability of telescopes.
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To prove the last assertion, let ε = 0, xi ∈ X and n = ∞. For the above sets
A(x) = A(x, g, β) set

X(g, β) =
⋃

x∈X
A(x, g, β) Xg = clX(g, β).

Suppose β < η. Then for x, y ∈ X x �= y we have A(x) ∩ A(y) = ∅, because
the constant of expansiveness of f on X is 2η. This allows us to define hgf (y) = x
for every y ∈ A(x).

If y ∈ clA(x) then, by the definition, for every n ≥ 0 fn(y) ∈ clA(fn(x)).
This proves the g-invariance of Xg, and hgf ◦ g = f ◦ hgf . The continuity of hgf
holds, because for an arbitrary n, if y, y′ ∈ X(g, β) and dist(y, y′) is small enough,
say less than ε(n), then dist(gj(y), gj(y′)) < η− β for every j = 0, 1, . . . , n. ε(n)
does not depend on y, y′, since g is uniformly continuous on a compact neighbour-
hood of X in M . Then dist(f j(x), f j(x′)) < 2η, where x = hgf (y), x′ = hgf (y′).
Hence dist(x, x′) < λ−n2η. We obtain hgf uniformly continuous on X(g, β):
hence it extends continuously to the closure Xg. ♣

If g is Lipschitz continuous with dist(g(y) − g(y′)) ≤ Ldist(y, y′), then we
set ε(n) := (η − β)L−n. Then, for dist(y, y′) ≤ ε(n), we get dist(x, x′) ≤
λ−n2η = Mε(n)log λ/ logL for M = ( 1

η−β )log λ/ logL2η. In consequence, hgf is
Hölder continuous with exponent log λ/ logL.

The existence of hgf does not depend on the construction of Xg. That is, the
following holds.

Proposition 6.1.6. Let Y be a forward g-invariant subset of U ′ ⊃ X defined in
Lemma 6.1.1, for continuous g : U → M α-close to f . Then, for every β : 0 <
β < η and for every α : 0 < α < β(λ − 1) there exists a unique transformation
hgf : Y → U such that hgf ◦ g = f ◦ hgf and ρ(hgf , id|Y ) < β . (We call
such a transformation hgf a semiconjugacy to the image.) This transformation
is continuous, and ρ(hgf , id|Y ) ≤ α

λ−1 . If g|Y is positively expansive and 2β is
less than the constant of expansiveness, then hgf is injective (called a conjugacy
to the image Xf ). If X is a repeller, then Xf ⊂ X. If g is Lipschitz continuous,
then hgf is Hölder continuous.

Proof. Each g-trajectory yn in Y is an α-f -trajectory, and we can refer to Lemma
6.1.5 for α playing the role of ε and g = f . We find an f -trajectory (xn) such
that ρ(xn, yn) ≤ α/(λ − 1), and define hgf (yn) = xn. The uniqueness follows
from the positive expansivness of f with constant 2η > 2β. The continuity can
be proved as in Lemma 6.1.5. ♣
Proposition 6.1.7. Let (X, f, U) be an expanding set. Then there exists U a
neighbourhood of f in C1 topology, that is, U = {g : U → M : g ∈ C1, ρ(f, g) <
α, ||Df(x)−Dg(x)|| < α ∀x ∈ U}, for a number α > 0, such that for every g ∈ U
there exists an expanding repeller Xg for g and a homeomorphism hgf : Xg → X
such that hgf ◦ g = f ◦ hgf on Xg. Moreover, for each x ∈ X the function
U → M defined by g �→ xg := h−1

gf (x) is Lipschitz continuous, where U is con-
sidered with the metric ρ(g1, g2) (in C0 topology). All hgf and their inverses are
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Hölder continuous, with the same exponent and common upper bound of their
Hölder norms.

Proof. For U small enough, all g ∈ U are also expanding, with the constant λ
possibly replaced by a smaller constant but also larger than 1 and η,with U ′ the
same. Then Xg and hgf exist, by Lemma 6.1.5. Since g is expanding, and hence
expansive on Xg, hgf is injective by Proposition 6.1.6.

To prove the Lipschitz continuity of xg, consider g1, g2 ∈ U . Then

h = h−1
g2f

◦ hg1f : Xg1 → Xg2

is a homeomorphism, such that ρ(g1, g2) < 2α/(λ − 1) < β for appropriate α,
where λ is taken to be common for all g ∈ U .

On the other hand, by Proposition 6.1.6 applied to g2 in place of f and g1 in
place of g, for the forward invariant set Y = Xg1 there exists a homeomorphism
hg1g2 : Y →Xg2 conjugating g1 to g2. We have ρ(hg1g2 , id|Xg1

)<ρ(g1, g2)/(λ−1).
By the uniqueness in Lemma 6.1.5, we have h = hg1g2 : hence ρ(h, id|Xg1

) <
ρ(g1, g2)/(λ− 1), which yields the desired Lipschitz continuity of xg. ♣

The Hölder continuity of hgf and h−1
gf follows from Lemma 6.1.5. The uni-

form Hölder exponent results from the existence of a common Lipschitz constant
and expanding exponent for g C1-close to f . The uniformity of the Hölder norm
follows from the formula, completing the proof of Lemma 6.1.5.

Examples

Example 6.1.8. Let f : M →M be an expanding mapping on a compact man-
ifold M : that is, the repeller X is the whole manifold. Then f is C1-structurally
stable. This means that there exists U , a neighbourhood of f in C1 topology, such
that for every g : M → M in U there exists a homeomorphism hgf : M → M
conjugating g and f .

This follows from Proposition 6.1.7. Note that Xg = M , since, being homeo-
morphic to M , it is a boundaryless manifold of the same dimension as M , and
it is compact: hence, if U is small enough, it is equal to M (note that we have
not assumed connectedness of M).

A standard example of an expanding mapping on a compact manifold is an
expanding endomorphism of a torus f : T

d = R
d/Zd → T

d: that is, a linear
mapping of R

d given by an integer matrix A, mod Z
d.

Example 6.1.9. Let f : C
d → C

d be the Cartesian product of z2’s: that is,
f(z1, . . . , zd) = (z2

1 , . . . , z
2
d). Then the torus T

d = {|zi| = 1, i = 1, . . . , d}
is an expanding repeller. By Proposition 6.1.7 it is stable under small C1

(particularly complex analytic) perturbations g. This means, in particular,
that there exists a topological d-dimensional torus invariant under g close
to T

d.

Example 6.1.10. Let fc : C̄ → C̄ be defined by fc(z) = z2 + c, c ≈ 0:
compare the Introduction and Chapter 1. As in Example 6.1.9, there exists a
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M0

Figure 6.1 Mandelbrot set

Jordan curve Xfc
close to the unit circle that is an fc-invariant repeller and a

homeomorphic conjugacy hfcf0 . It is not hard to see that Xfc
= J(fc), the Julia

set: see Example 1.5.
The equation of a fixed point for fc is z2

c + c = zc, and if we want a fixed
point zc to be attracting (note that there are two fixed points, except c = 1/4)
we want |f ′c(zc)| = |2zc| < 1. This means that c is in the domain M0 bounded
by the cardioid c = −(λ/2)2 + λ/2 for λ in the unit circle (Figure 6.1).

It is not hard to prove that M0 is precisely the domain of c where the homeo-
morphisms hfcf0 , and in particular their domainsXfc

, exist. EachXfc
is a Jordan

curve, (Xfc
, fc) is an expanding repeller, and the ‘motion’ c �→ zc := h−1

fcf0
(z)

is holomorphic for each z in the unit circle Xf0 : see Section 6.2. In fact, Xfc
is

equal to the Julia set J(fc) for fc. At c in the cardioid, a self-pinching of Xfc

occurs at infinitely many points.
M0 is a part of the Mandelbrot set M where J(fc) is connected. When c

leaves M, the Julia set crumbles into a Cantor set. (However, in the Hausdorff
distance between sets, it can explode: see [Douady, Sentenac & Zinsmeister,
1997].)

6.2 Complex dimension one;
bounded distortion and other techniques

The basic property is the so-called Bounded Distortion for Iteration. We have
have already seen that kind of lemma, Lemma 4.4.2 (Pre-Bounded Distortion
Lemma for Iteration), used extensively in Chapter 5. Here it will finally get its
geometric sense.

Definition 6.2.1. We say that V , an open subset of C or R, has distortion with
respect to z ∈ V bounded by C if there exist R > r > 0 such that R/r ≤ C and
B(z, r) ⊂ V ⊂ B(z,R).
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Lemma 6.2.2 (Bounded Distortion Lemma for Iteration). Let (X, f) be a C1+ε

-expanding set in R or a conformal expanding set in C. Then there exists a
constant C > 0 such that:

1. For every x ∈ X and n ≥ 0, for every r ≤ ξ the distortion of the set
f−nx (B(fn(x), r)) with respect to x is less than expCr in the conformal case and
less than expCrε in the real case.

2. The same bound holds for the distortion of fn(B(x, r′)) for any r′ > 0
under the assumption f j(B(x, r′)) ⊂ B(f j(x), r) for every j = 1, . . . , n.
Moreover,

3. If y1, y2 ∈ B(x, r′) then ρ(fn(y1),f
n(x))

ρ(fn(y2),fn(x)) : ρ(y1,x)ρ(y2,x)
< expCr or expCrε.

Finally, in terms of derivatives,
4. expCr and expCrε bound the fractions

|(fn)′(x)|
r/diam f−nx (B(fn(x), r))

and
|(fn)′(x)|

diam fn(B(x, r′))/r′

from above, and the inverses bound these fractions from below.
5. For y1, y2 ∈ f−nx (B(fn(x), r)),

| (f
n)′(y1)

fn)′(y2)
− 1| < Cr or Crε.

Proof. Cr and Crε bound the additive distortions of the functions log |(fn)′|
and Arg(fn)′ (in the complex holomorphic case) on the sets f−nx (B(fn(x), r))
and B(x, r′). Indeed, these functions are of the form Snψ for Hölder ψ = log |f ′|
or Arg f ′: see Chapter 4. We use the Pre-Bounded Distortion Lemma 4.4.2. To
conclude the assertions involving diameters, integrate |(fn)′| or the inverse along
curves. ♣

In the conformal situation, in C, instead of refering to Lemma 6.2.2, one can
often refer to the Koebe Distortion Lemma, putting g = fn or inverse.

Lemma 6.2.3 (Koebe Distortion Lemma in the Riemann sphere). Given ε > 0
there exists a constant C = C(ε) such that for every λ : 0 < λ < 1 for every
conformal (holomorphic univalent) map on the unit disc in C to the Riemann
sphere C, g : D → C, such that diam(C \ g(D)) ≥ ε, for all y1, y2 ∈ λD,

|g′(y1)/g′(y2)| ≤ C(1 − λ)−4,

diameter and derivatives in the Riemann sphere metric.

One can replace D by any disc B(x, r) ⊂ C with diam C \ B(x, r) ≥ ε and
y1, y2 ∈ B(x, λr).

This lemma follows easily (Exercise 6.2) from the classical lemma in the
complex plane: see for example [Carleson & Gamelin, 1993, Section I.1].

Lemma 6.2.4 (Koebe Distortion Lemma). For every holomorphic univalent
function g : D → C for every z ∈ D,

1 − |z|
(1 + |z|)3 ≤ |g′(z)

g′(0)
≤ 1 + |z|

(1 − |z|)3 .
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Remark 6.2.5. In the situation of Lemma 6.2.3, with a fixed arbitrary
g : D → C, there exists C = C(g) such that for all y, y1, y2 ∈ λD

C−1(1 − λ) ≤ |g′(0)/g′(y)| ≤ C(1 − λ)−1

and and in particular

|g′(y1)/g′(y2)| ≤ C(1 − λ)−2.

Of fundamental importance is the so-called holomorphic motion approach:

Definition 6.2.6. Let (X, ρX) and (Y, ρY ) be metric spaces. We call a mapping
f : X → Y quasi-symmetric if there exists a constant M > 0 such that for all
x, y, z ∈ X if ρX(x, y) = ρX(x, z), then ρY (f(x), f(y)) ≤MρY (f(x), f(z)).

In the case where X is an open subset of a Euclidean space of dimension at
least 2, the name quasi-conformal is usually used. In this case several equivalent
definitions are used.

Definition 6.2.7. Let A be a subset of C. A mapping iλ(z), for λ ∈ D the unit
disc and z ∈ A, is called a holomorphic motion of A if:

(i) for every λ ∈ D the mapping iλ is an injection;
(ii) for every z ∈ A the mapping λ �→ iλ(z) is holomorphic;
(iii) i0 is the identity (i.e. inclusion of A in C).

Lemma 6.2.8 (Mañé, Sad, Sullivan’s λ-lemma: see [Mañé, Sad & Sullivan
1983]). Let iλ(z) be a holomorphic motion of A ⊂ C. Then every iλ has a
quasi-symmetric extension iλ : A → C, which is an injection, for every z ∈ A
the mapping λ → iλ(z) is holomorphic, and the map D × A � (λ, z) �→ iλ(z) is
continuous.

Note that the assumption that the domain of lambdas is complex is sub-
stantial. If, for example, the motion is only for λ ∈ R, then the lemma is false.
Consider, for example, the motion of C such that the lower half-plane moves
in one direction, iλ(z) = z + λ, and the upper (closed) half-plane moves in the
opposite direction, iλ(z) = z − λ. Then iλ is not even continuous. However, this
motion cannot be extended to complex lambdas, to injections.

Proof. The proof is based on the following. Any holomorphic map of D to the
triply punctured sphere C \ {0, 1,∞} is distance non-increasing for the hyper-
bolic metrics on D and C \ {0, 1,∞} (Schwarz Lemma). Choose three points of
A and renormalize i (i.e. for each iλ compose it with a respective homography)
so that the images by iλ of these three points are constantly 0, 1 and ∞. (We
can assume A is infinite; otherwise the Lemma is trivial.)

For any three other points x, y, z ∈ A, consider the functions

x(λ) = iλ(x), y(λ) = iλ(y), z(λ) = iλ(z), w(λ) = (y(λ) − x(λ))/y(λ).

These functions avoid 0, 1, ∞. Fix any 0 < m < M < ∞. Let y(0) ∈ A and
y(0) be in the ring P (m,M) = {m ≤ |y| ≤M}. Then |x(0)− y(0)| small implies
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w(0) small: hence for any λ ≤ R for an arbitrary constant R : 0 < R < 1 the
hyperbolic distance between w(0) and w(λ) in C \ {0, 1,∞} is less than R, and
hence w(λ) is small. Therefore x(λ) − y(λ) is small.

Thus each iλ is uniformly continuous on A∩ P (m,M). Moreover, the family
iλ is equi-continuous for |λ| ≤ R

The annulus P (m,M) for m < 1 < M contains 1, so permuting the roles of
0, 1, ∞ we see that the annuli cover the sphere. So iλ has a continuous extension
to A. The extensions for |λ| ≤ R are equi-continuous.

Similarly we prove that if |x(0) − y(0)| is large, then x(λ) − y(λ) is large.
Therefore these extensions are injections.

To prove iλ is quasi-symmetric consider g(λ) = x(λ)−y(λ)
x(λ)−z(λ) . This function also

omits 0, 1, ∞. Assume |g(0)| = 1. Then for |λ| ≤ R < 1 the hyperbolic distance
of g(λ) from the unit circle is not larger than R. Therefore |g(λ)| is uniformly
bounded for |λ| ≤ R.

Note finally that for each x ∈ A the map λ �→ iλ(x) is holomorphic, as the
limit of holomorphic functions iλ(z), z → x, z ∈ A. In particular, it is con-
tinuous. So, owing to the equicontinuity of the family iλ, i is continuous on
D ×A. ♣

Remark 6.2.9. For X ⊂ C a topologically transitive expanding repeller for f
holomorphic, the λ-lemma gives a new proof of stability under holomorphic per-
turbations of f to g: see Lemma 6.1.5 and Proposition 6.1.6. One can choose a
periodic orbit P ⊂ X and consider A =

⋃∞
n=0(f |X)−n(P ). By Theorem 4.3.12(2),

A is dense in X. By the Implicit Function Theorem P moves holomorphically
under small holomorphic perturbations g = gλ of f . So A moves holomorphi-
cally, staying close to X (by the repelling property of (X, f)). So hfg’s can
be defined as iλ : X → Xg. Owing to the λ-lemma we conclude they are
quasi-symmetric.

Remark 6.2.10. The maps iλ of the holomorphic motion in Lemma 6.2.8 are
Hölder continuous. Moreover, for λ ∈ A any compact subset of D, they have a
common Hölder exponent β = βA and a common norm in Hβ .

This follows from Slodkowski’s theorem [Slodkowski 1991], which says that
the motion iλ(z) extends to the whole Riemann sphere: see also [Astala,
Iwaniec & Martin 2009]. Then we refer to the fact that each quasi-symmetric
(K-quasi-conformal) homeomorphism is Hölder continuous with exponent 1/K
and uniformly bounded Hölder norm: see [Ahlfors 1966].

6.3 Transfer operator for conformal expanding
repeller with harmonic potential

We consider a conformal expanding repeller: that is, an expanding repeller (X, f)
for X ⊂ C and f conformal on a neighbourhood of X. This is a preparation for
a study in Chapters 9 and 10.
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We mainly consider potentials of the form φ = −t log |f ′| for all t real and
related transfer operators Lφ on (continuous) real functions on X: see Section
5.2. We proved in Chapter 5 that L has a unique positive eigenfunction uφ, and
there exist mφ on X the eigenmeasure of L∗, and μφ the invariant Gibbs measure
equivalent to it, and uφ is the Radon–Nikodym derivative dμφ

dmφ
. Our aim is to

prove that uφ has a real-analytic extension to a neighbourhood of X.
We begin with the following.

Definition 6.3.1. A conformal expanding repeller f : X → X is said to be real-
analytic if X is contained in a finite union of real-analytic curves with closures
pairwise disjoint.

The union of these curves will be denoted by Γ = Γf . Frequently in such a
context we will alternatively speak about the real analyticity of the set X.

Theorem 6.3.2. If f : X → X is an orientation-preserving conformal expand-
ing repeller, X ⊂ C, then the Radon–Nikodym derivative u = uφ = dμφ/dmφ

has a real-analytic real-valued extension on a neighbourhood of X in C. If f is
real-analytic, then u has a real-analytic extension on a neighbourhood of X in Γ
and a complex-valued complex analytic extension on a neighbourhood in C.

Proof. Since f is conformal and orientation preserving, f is holomorphic on a
neighbourhood of X in C. Take r > 0 so small that for every x ∈ X, every
n ≥ 1 and every y ∈ f−n(x) the holomorphic inverse branch f−ny : B(x, 2r) → C

sending x to y is well defined.
Suppose first that (X, f) is real-analytic. (We could deduce this case from

the general case, but we separate it as it is simpler.)
Take an atlas of real-analytic maps (charts) φj : Γj → R for Γj the compo-

nents of Γ; they extend complex-analytically to a neighbourhood of Γ in C. (If
Γj is a closed curve we can use Arg.)

For x ∈ Γj ∩ J(f) we write Γj(x) and φj(x). For all k ≥ 1 and all y ∈ f−k(x)
consider, for r small enough, the positive real-analytic function on φj(x)(B(x, r))

z �→ |(f−ky )′(φ−1
j(x)(z))|

for all z ∈ φj(x)(Γj(x) ∩ B(x, r)). Consider the following sequence of complex
analytic functions on z ∈ φj(x)(B(x, r)):

gn(z) =
∑

y∈f−n(x)

(
(f−ny )′(φ−1

j(x)(z))
)t

exp(−nP (t)),

where P (t) = P(f |X ,−t log |f ′|) denotes the pressure.
There is no problem here with raising to the t-th power, since B(x, r), the

domain of all |(f−ny )′|, is simply connected. Since the latter functions are positive
in R, we can choose the branches of the t-th powers to also be positive in R. By
the Koebe Distortion Lemma (or Bounded Distortion for Iteration Lemma 6.2.2)
for r small enough and every w = B′ := φ−1

j(x)(z) ∈ B(x, r), every n ≥ 1 and every
y ∈ f−n(x) we have |(f−ny )′(w)| ≤ K|(f−ny )′(x)|. Hence |gn(z)| ≤ Kgn(x). Since,
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by (5.4.2) with u ≡ 1 and c = P (t), the sequence gn(x) converges, we see that
the functions {gn|B′}n≥1 are uniformly bounded. So they form a normal family
in the sense of Montel, and hence we can choose a convergent sub-sequence gnj

.
Since gn(z) converges to u ◦φ−1

j(x)(z) for all z ∈ X ∩B′, it follows that gnj
◦φj(x)

converges to a complex-analytic function on B(x, r) extending u.
Let us pass now to the proof of the first part of this proposition. That is,

we relax the X-th real analyticity assumption, and we want to construct a real-
analytic real-valued extension of u to a neighbourhood of X in C. Our strategy is
to work in C

2, to use an appropriate version of Montel’s theorem and, in general,
to proceed similarly as in the first part of the proof. So, fix v ∈ X. Now identify
C, where our f acts, to R

2 with coordinates x, y, the real and complex parts of
z. Embed this into C

2 with x, y complex. Denote the above C = R
2 by C0. We

may assume that v = 0 in C0. Given k ≥ 0 and vk ∈ f−k(v), define the function
ρvk

: BC0(0, 2r) → C (the ball in C0) by setting

ρvk
(z) =

(f−kvk
)′(z)

(f−kvk )′(0)
,

Since BC0(0, 2r) ⊂ C0 is simply connected and ρvn
nowhere vanishes, all the

branches of logarithm log ρvn
are well defined on BC0(0, 2r). Choose this branch

that maps 0 to 0 and denote it also by log ρvn
. By Koebe’s Distortion Theo-

rem, |ρvk
| and |Arg ρvk

| are bounded on B(0, r) by universal constants K1,K2

respectively. Hence | log ρvk
| ≤ K = (logK1) +K2. We write

log ρvk
=

∞∑

m=0

amz
m,

and note that by Cauchy’s inequalities

|am| ≤ K/rm. (6.3.1)

We can write for z = x+ iy in C0

Re log ρvk
= Re

∞∑

m= 0

am(x+iy)m =
∞∑

p,q= 0

Re
(

ap+q

(
p+ q

q

)

iq
)

xpyq :=
∑

cp,qx
pyq.

In view of (6.3.1), we can estimate |cp,q| ≤ |ap+q|2p+q ≤ Kr−(p+q)2p+q. Hence
Re log ρvk

extends, by the same power series expansion
∑
cp,qx

pyq, to the poly-
disc DC2(0, r/2), and its absolute value is bounded there from above by K. Now
for every k ≥ 0 consider a real-analytic function bk on BC0(0, 2r) by setting

bk(z) =
∑

vk∈f−k(0)

|(f−kvk
)′(z)|t exp(−kP (t)).

By (5.4.2) the sequence bk(0) is bounded from above by a constant L. Each
function bk extends to the function

Bk(z) =
∑

vk∈f−k(0)

|(f−kvk
)′(0)|t etRe log ρvk

(z) exp(−kP (t)).
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whose domain, similarly to the domains of the functions Re log ρvk
, contains the

polydisc DC2(0, r/2). Finally, we get for all k ≥ 0 and all z ∈ DC2(0, r/2)

|Bk(z)| =
∑

vk∈f−k(0)

|(f−kvk
)′(0)|t eRe(tRe log ρvk

(z)) exp(−kP (t))

≤
∑

vk∈f−k(0)

|(f−kvk
)′(0)|t et|Re log ρvk

(z)| exp(−kP (t))

≤ eKt
∑

vk∈f−k(0)

|(f−kvk
)′(0)|t exp(−kP (t)) ≤ eKt L.

Now by Cauchy’s integral formula (in DC2(0, r/2)) for the second derivatives we
prove that the family Bn is equi-continuous on, say, DC2(0, r/3). Hence we can
choose a uniformly convergent sub-sequence, and the limit function G is complex
analytic and extends u on X ∩ B(0, r/3), by (5.4.2). Thus we have proved that
u extends to a complex analytic function in a neighbourhood of every v ∈ X in
C

2, that is, real-analytic in C0. These extensions coincide on the intersections
of the neighbourhoods, otherwise X is real-analytic and we are in the case con-
sidered at the beginning of the proof. See Chapter 10, Lemma 10.1.4, for more
details. ♣

In Theorem 6.3.2 we wanted to be concrete, and considered the potential
function −t log |f ′| (normalized). In fact, we proved the following more general
theorem.

Theorem 6.3.3. If f : X → X is an orientation-preserving conformal expand-
ing repeller, X ⊂ C, and φ is a real-valued function on X that extends to a
harmonic function on a neighbourhood of X in C, then uφ = dμφ/dmφ has a
real-analytic real-valued extension on a neighbourhood of X in C.

Proof. We can assume that pressure P(f, φ) = 0. As in the previous proof, choose
0 ∈ X. Assume that r is small enough that all vk ∈ f−k(0) and all k = 1, 2, . . . all
the branches f−k on B(0, r) and the compositions φ◦f−k exist, and are bounded
by a constant K > 0. They are harmonic as the compositions of holomorphic
functions with harmonic φ. We have

bk(z) =
∑

vk∈f−k(0)

eSk(φ)(z) ≤ e2K
∑

vk∈f−k(0)

eSk(φ(0)) ≤ e2KL,

where L = supk Lφk(11)(0). We have used the estimate (6.3.1) for harmonic
functions uvk

= Sk(φ)(z)−Sk(φ)(0) =
∑∞
m=0 amz

m, where for each vk we define
Sk(φ)(z) =

∑k−1
i=0 φ(f i(f−kvk

(z).
This version of (6.3.1) follows from the Poisson formula for harmonic func-

tions uvk
, which are uniformly bounded on B(0, r) owing to the uniform exponen-

tial convergence to 0 of |f−i(0) − f−k(z)| as i→ ∞. See for example Harnack’s
inequalities in [Hayman & Kennedy, 1976, Section 1.5.6, Example 2]. ♣
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Remark 6.3.4. The proofs of Theorem 6.3.2 and Theorem 6.3.3 are the same.
In Theorem 6.3.2 we explicitly write complex analytic power series extension in
C

2 of log |(f−k)′|, whereas in Theorem 6.3.3 we observe that a general harmonic
function is real-analytic, and discuss in particular its domain in complex exten-
sion. For a more precise description of domains of complex extensions of harmonic
functions (in any dimension) see [Hayman & Kennedy, 1976, Section 1.5.3]; more
references are provided there.

Remark 6.3.5. A version of Theorem 6.3.3 holds in the real case (say if X is in a
finite union of pairwise disjoint circles and straight lines), with finite smoothness.

That is, if we assume the potential φ is Cr+ε for r ≥ 1, 0 ≤ ε ≤ 1 and
r + ε > 1, then for m the density uφ of the invariant Gibbs measure μφ with
respect to the eigenmeasure mφ of L (see the beginning of this section) is Cr+ε.

For a sketch of the proof see Chapter 7, Section 7.4, and Exercise 7.5. See also
[Boyarsky & Góra 1997]. This is related to the Cr+ε-rigidity: see Exercise 6.1.

6.4 Analytic dependence of transfer operator
on potential function

In this section we prove a fundamental theorem about the real-analytic depen-
dence of transfer operators acting on the Banach space of Hölder continuous
functions, with respect to the vector space of real-valued Hölder continuous
potentials, and then we derive some consequences concerning the real-analytic
dependence of pressure with respect to potential and a conformal expanding map
(repeller) depending pointwise complex-analytically on a complex parameter. We
shall apply Mañé, Sad and Sullivan’s λ-lemma: see Section 6.2. In Chapter 9
we shall deduce the real-analytic dependence of the Hausdorff dimension of a
conformal expanding repeller, on a parameter.

Let T be a continuous open topologically mixing distance-expanding map on
a compact metric space (X, ρ): cf. Chapters 4 and 5. For every point x ∈ X
define Hβ;x to be the Banach space of complex-valued Hölder continuous func-
tions with exponent β, whose domain is the ball B(x, δ) with δ > 0 so small that
all the inverse branches of T are well defined on B(x, δ): for example δ ≤ ξ in
Section 4.1. The Hölder variation ϑβ and the Hölder norm || · ||β = || · ||Hβ

are
defined in the standard way: see Chapter 4.

Let L(F ) and L(F1, F2) denote the spaces of continuous linear operators from
F to itself or from F1 to F2, respectively, for F, F1, F2 Banach spaces.

For every function Φ : G→ L(Hβ) for any set of parameters G and for every
x ∈ X define the function Fx : G→ L(Hβ ,Hβ;x) by the formula

Φx(λ)(ψ) = Φ(λ)(ψ)|B(x,δ).

Sometimes we write Φ(λ)x.
We start with the following.
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Lemma 6.4.1. Let G be an open subset of a complex plane C, and fix a func-
tion Φ : G → L(Hβ). If for every x ∈ X the function Φx : G → L(Hβ ,Hβ;x) is
complex analytic and sup{||Φx(λ)||β : x ∈ X : λ ∈ G} < +∞, then the function
Φ : G→ L(Hβ) is complex analytic.

Proof. Fix λ0 ∈ G and take r > 0 so small that the disc centred at λ0 of radius r,
D(λ0, r), is contained in G. Then for each x ∈ X and some ax,n ∈ L(Hβ ,Hβ;x),

Φx(λ) =
∞∑

n=0

ax,n(λ− λ0)n λ ∈ D(λ0, r),

with convergence in the operator norm.
Put M = sup{||Φx(λ)||β : x ∈ X : λ ∈ G} < +∞. It follows from Cauchy’s

inequalities that
||ax,n||β ≤Mr−n. (6.4.1)

Now, for every n ≥ 0, define the operator an by

an(φ)(z) = az,n(φ)(z), φ ∈ Hβ , z ∈ X.

Then
||an(φ)||∞ ≤ ||az,n||∞||φ||∞ ≤ ||az,n||β ||φ||β . (6.4.2)

Now, if |z − x| < δ, then for every φ ∈ Hβ and every w ∈ D(x, δ) ∩D(z, δ),

∞∑

n=0

ax,n(φ)(w)(λ− λ0)n = (Φx(λ)(φ))(w) = (Φ(λ)(φ))(w) = (Φz(λ)(φ))(w)

=
∞∑

n=0

az,n(φ)(w)(λ− λ0)n

for all λ ∈ D(λ0, r). The uniqueness of the coefficients of a Taylor series expansion
implies that, for all n ≥ 0,

ax,n(φ)(w) = az,n(φ)(w).

Since x, z ∈ D(x, δ) ∩D(z, δ), we thus get, using (6.4.1),

|an(φ)(z) − an(φ)(x)| = |az,n(φ)(z) − ax,n(φ)(x)| = |ax,n(φ)(z) − ax,n(φ)(x)|
≤ ||ax,n(φ)||β |x− z|β ≤ ||ax,n||β ||φ||β |x− z|β
≤Mr−n||φ||β |x− z|β .

Consequently, ϑβ(an(φ)) ≤ Mr−n||φ||β . Combining this with (6.4.2), we obtain
||an(φ)||β ≤ 2Mr−n||φ||β . Thus an ∈ L(Hβ) and ||an||β ≤ 2Mr−n. Thus the
series ∞∑

n=0

an(λ− λ0)n
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converges absolutely uniformly on D(λ0, r/2) and ||∑∞
n=0 an(λ− λ0)n||β ≤ 2M

for all λ ∈ D(λ0, r/2). Finally, for every φ ∈ Hβ and every z ∈ X,

( ∞∑

n=0

an(λ− λ0)n
)

(φ)(z) =
∞∑

n=0

an(φ)(z)(λ− λ0)n =
∞∑

n=0

az,n(φ)(z)(λ− λ0)n

=

( ∞∑

n=0

az,n(λ− λ0)n
)

(φ)(z) = Φz(λ)(φ)(z)

= (Φ(λ)φ)(z).

So Φ(λ)(φ) =
(∑∞

n=0 an(λ− λ0)n
)
(φ) for all φ ∈ Hβ , and consequently,

Φ(λ) =
∑∞
n=0 an(λ− λ0)n, λ ∈ D(λ0, r/2). The proof is complete. ♣

The main technical result of this section concerning the analytic dependence
of the transfer operator Lφλ

on the parameter λ is the following.

Theorem 6.4.2. Suppose that G is an open subset of the complex space C
d with

some d ≥ 1. If, for every λ ∈ G, φλ : X → C is a β-Hölder complex-valued
potential, H = sup{||φλ||β : λ ∈ G} < ∞, and for every z ∈ X the function
λ �→ φλ(z), λ ∈ G, is holomorphic, then the map λ �→ Lφλ

∈ L(Hβ), λ ∈ G, is
holomorphic.

Proof. We have for all λ ∈ G and all v ∈ X that

|| exp
(
φλ ◦ T−1

v

)||∞ ≤ eH , (6.4.3)

where T−1
v is the branch of T−1 on B(T (v), δ) mapping T (v) to v: compare the

notation in Section 4.1. By virtue of Hartog’s Theorem, in order to prove our the-
orem we may assume without loss of generality that d = 1: that is, G ⊂ C. Now
fix λ0 ∈ G and take a radius r > 0 so small that B(λ0, r) ⊂ G. By our assump-
tions the function λ �→ exp

(
φλ◦T−1

v (z)) is holomorphic for every z ∈ B(T (v), δ).
Consider its Taylor series expansion

exp
(
φλ ◦ T−1

v (z)
)

=
∞∑

n=0

av,n(z)(λ− λ0)n, λ ∈ B(λ0, r).

In view of Cauchy’s inequalities and (6.4.3) we get

|av,n(z)| ≤ eHr−n, (6.4.4)

and, for w, z ∈ B(T (v), δ), also using Cauchy’s inequalities,

|av,n(w) − av,n(z)| ≤ r−n sup
λ∈G

| exp
(
φλ ◦ T−1

v (w)
)− exp

(
φλ ◦ T−1

v (z)
)|

≤ ĉr−n|w − z|β , (6.4.5)
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where ĉ is a constant that depends only on T and H. Take an arbitrary φ ∈ Hβ

and consider the product av,n(z) · φ(T−1
v (z)). In view of (6.4.4) and (6.4.5) we

obtain

|av,n(w)φ(T−1
v (w)) − av,n(z)φ(T−1

v (z))|
≤ |av,n(w) − av,n(z)| · ||φ||∞ + |av,n(z)| · ||φ||βLβ |w − z|β
≤ r−n(ĉ+ eHLβ)||φ||β |w − z|β
= ĉ1r

−n||φ||β |w − z|β ,

where ĉ1 = ĉ(1+Lβ) and L is a common Lipschitz constant for all branches T−1
v

coming from the expanding property. Combining this and (6.4.4), we conclude
that the formula Nv,nφ(z) = av,n(z)φ(T−1

v (z)) defines a bounded linear operator
Nv,n : Hβ → Hβ;x, where x = T (v), and

||Nv,n||β ≤ (eH + ĉ1)r−n.

Consequently the function λ �→ Nv,n(λ − λ0)n, λ ∈ B(λ0, r/2), is analytic, and
||Nv,n(λ− λ0)n||β ≤ 2−n(eH + ĉ1). Thus the series

Aλ,v =
∞∑

n=0

Nv,n(λ− λ0)n, λ ∈ D(λ0, r/2),

converges absolutely uniformly in the Banach space L(Hβ ,Hβ,x), ||Aλ,v||β ≤
2(eH+ĉ1), and the function λ �→ Aλ,v ∈ L(Hβ ,Hβ;x), λ ∈ B(λ0, r/2), is analytic.
Hence Lλ,x =

∑
v∈f−1(x)Aλ,v ∈ L(Hβ ,Hβ;x),

||Lλ,x||β ≤ 2N(T )(eH + ĉ1),

where N(T ) is the number of pre-images of a point in X, and the function
λ �→ Lλ,x, λ ∈ D(λ0, r/2), is analytic. Since Lλ,x = (Lφλ

)x, invoking Lemma
6.4.1 concludes the proof. ♣

Note that a function from a complex vector space to a complex Banach space
is called holomorphic if its restriction to any complex finite dimensional affine
subspace is holomorphic: see [Dunford & Schwartz, 1958, Definition VI.10.5]. So
Theorem 6.4.2 yields the analyticity of

Hβ � φ �→ Lφ ∈ L(Hβ)

mentioned in the introduction to this section: complex analyticity, and also real
analyticity after restricting the function to the real space Hb.

Remark 6.4.3. In the proof one can omit reference to Lemma 6.4.1 by con-
sidering the operators Lφλ

directly, rather than considering individual branches
T−n
v and the operators Aλ,v first.
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Now consider an expanding conformal repeller (X, f, U), in C, f : U → C

conformal, preserving X, T = f |X , and holomorphic perturbations fλ : U → C,
λ ∈ Λ, where Λ is an open subset of C

d, fλ0 = f for some λ0 ∈ Λ. Let
iλ : X → Xλ be the corresponding holomorphic motion coming from Lemma
6.2.8 and Remark 6.2.9 (d > 1 does not cause problems).

Our goal is to prove that the pressure function

(λ, t) �→ P(λ, t) = P(fλ,−t log |f ′λ|) ∈ R for t ∈ R

is real-analytic. The idea is to consider potentials φλ,t = −t log |f ′λ| ◦ iλ :
X → R, (λ, t) ∈ Λ × R, to embed them into a holomorphic family to satisfy
the assumptions of Theorem 6.4.2, and then to use Kato’s Theorem for pertur-
bations of linear operators. Indeed, by Lemma 6.2.8, for every z ∈ X the function
λ �→ Ψz(λ) = log |f ′λ(iλ(z))| − log |f ′(z)| is harmonic on Λ, and Ψz(λ0) = 0. Fix
r > 0 so small that B(λ0, 2r) ⊂ Λ. Then

M = sup{|Ψz| : (z, λ) ∈ X ×B(λ0, r)} < +∞.

So each function Ψz extends holomorphically to λ ∈ BC2d(λ0, r/2). We shall use
the same symbol Ψz for this extension, and

M1 = sup{|Ψz(λ)| : (z, λ) ∈ X ×BC2d(λ0, r/2)} < +∞.

Since all the functions iλ, λ ∈ B(λ0, r), are Hölder continuous with a common
Hölder exponent, say β, and a common Hölder norm for the exponent β (see
Proposition 6.1.7 or Remark 6.2.10), an easy application of Cauchy inequalities
gives that for all λ ∈ BC2d(λ0, r/2) the function z �→ Ψz(λ) is Hölder continuous
with exponent β, and the corresponding Hölder norms are uniformly bounded,
say by M2. Thus the potentials

φλ,t(z) = −tΨz(λ) + t log |f ′(z)|, (λ, t) ∈ BC2d(λ0, r/2) × U,

for any bounded U ⊂ C satisfy the assumptions of Theorem 6.4.2, and for
all (λ, t) ∈ B(λ0, r/2) × R, we have φλ,t = −t log |f ′λ ◦ iλ|. As an immediate
application of this theorem, we get the following.

Lemma 6.4.4. The function

(λ, t) �→ Lφλ,t
∈ L(Hβ), (λ, t) ∈ BC2d(λ0, r/2) × C,

is holomorphic.

Since for all (λ, t) ∈ B(λ0, r/2)×R, exp(P(λ, t) is a simple isolated eigenvalue
of Lφλ,t

∈ L(Hβ) depending continuously on (λ, t), it follows from Lemma 6.4.4
and Kato’s perturbation theorem for linear operators that there exists a holomor-
phic function γ : BC2d(λ0, R)×C → C (R ∈ (0, r/2] sufficiently small) such that
γ(λ, t) is an eigenvalue of the operator Lφλ,t

for all (λ, t) ∈ BC2d(λ0, R)×C and
γ(λ, t) = exp(P(λ, t)) for all (λ, t) ∈ B(λ0, R) × R. Consequently, the function
(λ, t) �→ P(λ, t), (λ, t) ∈ B(λ0, R) × R, is real-analytic, and as real analyticity is
a local property, we finally get the following.

Theorem 6.4.5. The pressure function (λ, t) �→ P(fλ,−t log |f ′λ|), t ∈ R, is
real-analytic.
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Exercises

6.1. Let f, g : S1 → S1 be two C1+ε-expanding maps of the circle 0 < ε ≤ 1.
Prove that if there is a conjugacy h, that is, a homeomorphism h : S1 → S1,
such that g ◦ h = h ◦ f and h has at least one point x of differentiability
and h′(x) �= 0,±∞, then h ∈ C1+ε. If r = 2, 3, ...,∞, ω (the latter means
real-analytic) and 0 ≤ ε ≤ 1, and if f, g ∈ Cr+ε, then h ∈ Cr+ε.

Hint: The proof can follow the lines of the Cantor repellers case (see
Chapter 7), or the proof of Theorem 9.5.5 (the second method) in the analytic
case.
6.2. Conclude Lemma 6.2.3 from Lemma 6.2.4.

Hint (due to K. Barański): Given y1, y2, change the coordinates on C by a
spherical isometry such that ∞ �∈ g(D) and dist (g(yi),∞) ≥ ε/4, for i = 1, 2.

Bibliographical notes

Lemma 6.1.2 and Proposition 6.1.3, establishing the equivalence of various prop-
erties of being a repeller for an expanding set, correspond to the equivalence
for hyperbolic subsets of properties ‘local product structure’ being ‘isolated’
and ‘unstable set’ being the union of unstable manifolds of ‘individual tra-
jectories’: see [Katok & Hasselblatt, 1995, Section 18.4]. For the theory of
hyperbolic endomorphisms, particularly in the inverse limit (backward trajec-
tories) language, as in Remark 6.1.4, see [Przytycki 1976] and [Przytycki 1977].
In [Przytycki 1977] some examples of Axiom A endomorphisms, whose basic sets
are expanding repellers, are discussed. Example 6.1.9 was studied by M. Denker
and S.-M. Heinemann in [Denker & Heinemann 1998]. Theorem 6.3.2 was stated,
and applied as in our Chapter 10, in [Sullivan 1986]. Compare [Krzyzewski 1982].
For Section 6.4 compare [Urbański & Zinsmeister 2001] or [Mauldin & Urbański,
2003, Section 2.6.]. Theorem 6.4.5 holds in a setting more general than expanding:
see Section 12.5, [Stratmann & Urbański 2003] and [Przytycki & Rivera–Letelier
2008]. For Exercise 6.1 and related considerations see in particular [Shub &
Sullivan 1985], [Jiang 1996] and [Cui 1996]. See also the recent [Jordan et al.
2010] for the multifractal analysis of the conjugacy h in the case where it is not
differentiable, with f, g piecewise expanding: compare Section 9.2.
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7

Cantor repellers in the line;
Sullivan’s scaling function;
application in Feigenbaum
universality

After the very general previous chapters we want for a while to concentrate on
the real one-dimensional situation, that is, fractals in the line. In Exercise 6.1
we discussed expanding maps of the circle. The aim of this chapter is to
study thoroughly Cantor sets in the line with expanding maps on them (gen-
eralizing, but in some features more difficult than the whole circle case: see
Remark 7.1.11). Starting from Chapter 9 we shall work mainly with the one-
dimensional complex case (conformal fractals), the main aim of this book. Some
consideration from this section will be continued, including the complex case, in
Chapter 10.

In Section 7.1 we supply a one-sided shift space Σd (see Chapter 1) with
ambient real one-dimensional differentiable structures, basically C1+ε (Hölder
continuous differentials). In Section 7.2 we ask when does the shift map extend
C1+ε to a neighbourhood of the Cantor set being an embedding of Σd into a
real line. In the case where it does, we have a C1+ε expanding repeller: see
the definition at the beginning of Chapter 6. There a scaling function appears,
which is a complete geometric invariant for C1+ε-equivalence (conjugacy). It
happens that scaling functions also classify Cr+ε equivalence classes for Cr+ε

Cantor expanding repellers, for all r = 1, 2, . . . ,∞, 0 ≤ ε ≤ 1, r + ε > 1,
and for the real-analytic case. Section 7.3 is devoted to this (for ε > 0, for
ε = 0 see Section 7.4). However, scaling functions ‘see’ the smoothness of
the Cantor repeller – that is, the smoother the differentiable structure, the
less scaling functions can occur: see examples at the end of Section 7.2 and
Section 7.4.

185
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In Section 7.5 we define so-called generating families of expanding maps. This
is a bridge towards Section 7.6, where Feigenbaum’s universality, concerning the
geometry of the Cantor set being the closure of the forward trajectory of the
critical point of the quadratic-like map of the interval, will be discussed.

Whereas the proofs in Sections 7.1–7.5 are very detailed, Section 7.6 has a
sketchy character. We do not involve much in the theory of iterations of maps
of the interval. We refer the reader to [Collet & Eckmann 1980] and [de Melo &
van Strien 1993].

For the universality see [Sullivan 1991] and [McMullen 1996], where the key
theorem towards this, the exponential convergence of renormalizations, has been
proved with the use of complex methods. (For more references see the notes at
the end of this chapter.)

In Section 7.6 we just show how the exponential convergence yields the C1+ε

equivalence of Cantor sets being closures of post-critical sets.
Most of this chapter is written on the basis of Dennis Sullivan’s paper

[Sullivan 1988], completed in [Przytycki & Tangerman 1996].

7.1 C1+ε-equivalence

For simplicity we shall consider here only the class H of homeomorphic embed-
dings of Σd into the unit interval [0, 1] ⊂ R such that the order is preserved: that
is, for h : Σd → R, if α = (α0, α1, . . . ), β = (β0, β1, . . . ) ∈ Σd, αj = βj for all
j < n and αn < βn, then h(α) < h(β). In Section 7.5 we need to consider more
general situations, but the basic facts stay precisely the same.

Consider an arbitrary h ∈ H. For every j0, j1, . . . , jn ∈ {1, . . . , d}, n > 0,
denote by Ij0,...,jn the closed interval with ends h((j0, j1, . . . , jn, 1, 1, 1, . . . ))
and h((j0, j1, . . . , jn, d, d, d, . . . )). The interval [h((1, 1, . . . )), h((d, d, . . . ))] will
be denoted by I. For jn < d denote by Gj0,...,jn the open interval with
ends h((j0, j1, . . . , jn, d, d, d, . . . )) and h((j0, j1, . . . , jn+1, 1, 1, 1, . . . )): the let-
ters G stand for gaps here because of the disjointness with h(Σd). Denote
En =

⋃
(j0,...,jn) Ij0,...,jn . We see that h(Σd) is a Cantor set

⋂∞
n=0En.

Definition 7.1.1. Given h ∈ H and w = (j0, j1, . . . , jn), where each jt ∈
{1, . . . , d}, we call the sequence of numbers Aj(h,w) :=

|I
w,

j+1
2

|
|Iw| for j odd,

Aj(h,w) :=
|G

w,
j
2
|

|Iw| for j even, j = 1, . . . , 2d−1, the ratio geometry of w (|·| denote
lengths here). The ratio geometry is the function w �→ (Aj(h,w), j = 1, . . . 2d−1).

Definition 7.1.2. We say h ∈ H has bounded geometry if the ratios Aj(h,w) are
uniformly, for all w, j, bounded away from zero. We denote the space of h’s from
H with the bounded geometry by Hb. We say h ∈ H has exponential geometry
if |Ij0,...,jn | converge to 0 uniformly exponentially fast in n, and not faster. We
denote the space of h’s from H with exponential geometry by He. Observe that
He ⊃ Hb.
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Definition 7.1.3. Given h1, h2 ∈ H, we say they have equivalent geometries if
Aj(h1,w)
Aj(h2,w) converge to 1 uniformly in length of w. We say h1, h2 have exponentially
equivalent geometries if the convergence is exponentially fast with the length of w.

One can easily check that exponential geometry is the property of the geo-
metric equivalence classes, and that bounded geometry is the property of the
exponentially equivalent geometry classes.

Definition 7.1.4. We say that h1, h2 ∈ H are C1+ε-equivalent if there exists an
increasing C1+ε-diffeomorphism φ of a neighbourhood of h1(Σd) to a neighbour-
hood of h2(Σd) such that φ|h1(Σd)◦h1 = h2. We call φ|h1(Σd) canonical conjugacy,
as it is uniquely determined by h1 and h2. So Cr+ε means that the canonical
conjugacy extends Cr+ε.

Each class of equivalence will be called a C1+ε-structure for Σd. These defi-
nitions are valid also for C1+ε replaced by Cr+ε for every r = 0, 1, . . . ,∞, ω, 0 ≤
ε ≤ 1. For ε = 0 this means the continuity of the r-th derivative: for 0 < ε < 1
it is Hölder continuity, and for ε = 1 Lipschitz continuity. ω means real-analytic.
(Compare this notation with Exercise 6.1.)

Proposition 7.1.5. Let h1, h2 ∈ H. Then if they are C1-equivalent, they have
equivalent geometries.

We leave a simple proof to the reader. Also, the following holds.

Theorem 7.1.6. Let h1, h2 ∈ He. Then h1, h2 are C1+ε-equivalent for some
ε > 0 if and only if h1 and h2 have exponentially equivalent geometries.

Proof. We shall use the fact that a real function φ on a bounded interval is
C1+ε-smooth if and only if there exists a constant C > 0 such that for every
x < y < z ∣

∣
∣
∣
φ(y) − φ(x)

y − x
− φ(z) − φ(y)

z − y

∣
∣
∣
∣ < C(z − x)ε (7.1.1)

(this is an easy calculus exercise).
Suppose there exists a diffeomorphism φ, as in the definition of equivalence.

As φ is a diffeomorphism, we can write (7.1.1) for it in a multiplicative form,
and obtain for each w = (j1, j2, . . . , jn) and j = 1, . . . , d and intervals for h1

∣
∣
∣
∣
|φ(Iwj)|
|Iwj | /

|φ(Iw)|
|Iw| − 1

∣
∣
∣
∣ < Const |Iw|ε (7.1.2)

and the analogous inequalities for the gaps. Changing order in this bifraction we
obtain Aj(h1,w)

Aj(h2,w) converging to 1 exponentially fast with n, the length of w. We
have used here the assumption h1 ∈ He to get |Iw| ≤ exp−δn for some δ > 0.
Thus we have proved the ‘only if’ part of the theorem. Using Sullivan’s words, we
have proved that the ratio geometry is determined exponentially fast in length
of w by the C1+ε-structure.
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Now we shall prove the ‘if’ part of the theorem. Let us first fix some nota-
tion. For every m ≥ 0 denote by Gm the set of all intervals Ij0,j1,...,jm and
Gj0,j1,...,jm .

We must extend the mapping h2 ◦ h−1
1 : h1(Σd) → h2(Σd) to a mapping φ

on all the gaps Gw for h1. (We could use the Whitney Extension Theorem – see
Remark 7.1.7 – but we shall give a direct proof.) The extension will be denoted
by φ. For each two points u < v on which φ is already defined we denote φ(v)−φ(u)

v−u
by R(u, v). We shall also use the notation R(J) if u, v are ends of an interval J .

Given Gj0,j1,...,jn with the ends a < b, we want to have the derivatives

φ′(a) = lim
m→∞R(Jm(a)), φ′(b) = lim

m→∞R(Jm(b)), (7.1.3)

where Jm(a), Jm(b) ∈ Gm,m ≥ n, all Jm(a) have the right end a and all Jm(b)
have the left end b.

It is easy to see that the limits exist, and are uniformly bounded and uni-
formly bounded away from 0 for all G’s. This follows from the following distortion
estimate (compare Section 6.2):

For every j0, . . . , jm, if J ⊂ Ij0,...,jm = I and J ∈ Gk, k > m, then
∣
∣
∣
∣
R(J)
R(I)

− 1
∣
∣
∣
∣ ≤ Const exp−mδ. (7.1.4)

Here δ is the exponent of the assumed convergence in the notion of the exponen-
tial equivalence of geometries. This property can be called the bounded distortion
property : compare Section 6.2.

To prove (7.1.4) observe that there is a sequence Ij0,...,jm = Jm ⊃ Jm+1 ⊃
· · · ⊃ Jk = J of intervals such that Jj ∈ Gj , and by the assumptions of the
theorem,

1 − Const exp−(j − 1)δ ≤
∣
∣
∣
∣
R(Ij)
R(Ij−1)

∣
∣
∣
∣ ≤ 1 + Const exp−(j − 1)δ.

We obtain (7.1.4) by multiplying these inequalities over j = m+ 1, . . . , k.
If x ∈ Ij0,...,jm = I is the end point of any gap, then

∣
∣
∣
∣
φ′(x)
R(I)

− 1
∣
∣
∣
∣ ≤ Const exp−mδ. (7.1.5)

(In fact x can be any point of h1(Σd) in I, but there is no need here to define φ′

at these points except the ends of gaps. Compare Remark 6.3.4.)
To get (7.1.5) one should consider an infinite sequence of intervals containing

x, and consider the infinite product over j = m+ 1, . . .
Later on we shall also use a constant ε > 0 such that, for every s ≥ 0,

exp−sδ ≤ Const inf
J∈Gs

|J |ε. (7.1.6)

Such an ε exists because, by the exponential geometry assumption, infJ∈Gs |J |
cannot converge to 0 faster than exponentially.
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We can go back to our interval (a, b). We extend φ′ linearly to the interval
[a, a+b2 ] and linearly to [a+b2 , b], continuously to [a, b]. Moreover, we are careful to
choose φ′(a+b2 ) = t such that

∫
[a,b]

φ′(x)dx = φ(b) − φ(a). But our gap Gj0,...,jn
is in the interval Ij0,...,jn−1 , so, by (7.1.5),

∣
∣
∣
∣
R(a, b)
φ′(a)

− 1
∣
∣
∣
∣ < Const exp−(n− 1)δ,

and the same for φ′(b). This, and the computation

R(a, b) =

∫
[a,b]

φ′(x)dx

b− a
=

1
2
(b− a)

(
φ′(a) + t

2
+
φ′(b) + t

2

)

/(b− a)

=
1
4
(φ′(a) + φ′(b) + 2t),

show that
∣
∣
∣
∣

t

φ′(a)
− 1
∣
∣
∣
∣,

∣
∣
∣
∣

t

φ′(b)
− 1
∣
∣
∣
∣ < Const exp−nδ. (7.1.7)

In particular, t > 0: hence φ is increasing.
Now we need to prove the property (7.1.1). It is sufficient to consider points

x, y, z in gaps, because h1(Σd) is nowhere dense.
We shall construct a finite family A(x, y) of intervals in

⋃∞
m=0 Gm ‘joining’

the gaps in which x and y lie. Suppose x < y, and let n be the largest integer such
that x, y belong to the same element of Gn. If x, y belong to different elements
of G0, we take n = −1.

If x, y belong to a gap Gj0,..,jn , then A(x, y) is empty. If they belong
to Ij0,..,jn , then they belong to different intervals J(x, n + 1), J(y, n + 1)
of Gn+1. We account to A(x, y) all the intervals in Gn+1 lying between
J(x, n + 1) and J(y, n + 1), excluding J(x, n + 1) and J(y, n + 1) them-
selves. We shall continue with J(x, n + 1); the procedure for J(y, n + 1) is
analogous.

If J(x, n+ 1) is a gap, we end the process: nothing new will be accounted to
A(x, y) from this side. In the opposite case we account to A(x, y) all the intervals
of Gn+2 in J(x, n+1) to the right of x not containing x, and denote the one that
contains x by J(x, n+2). We continue this procedure by induction until J(x,m)
is, for the first time, a gap.

Thus the ‘joining’ set A(x, y) has been constructed.
Consider first the case A(x, y) = ∅. It is easy to see that both x and y belong

to Gj0,...,jn . Suppose x, y ∈ (a, a+b2 ], where a, b are ends of the gap and t will be
the value of φ′ in the middle, as in the previous notation. For u ∈ [x, y], by the
linearity of φ′ and using (7.1.7), we obtain

|φ′(u) − φ′(x)| ≤ 2(u− x)
b− a

|t− φ′(a)| ≤ Const
(u− x)
b− a

φ′(a) exp−nδ.
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Next, using the fact that φ′(a) is uniformly bounded, and by (7.1.6), we get

R(x, y) =
∫

[x,y]

φ′(u)du/(y − x) ≤ φ′(x)
(

1 + Const
y − x

b− a
(b− a)ε

)

≤ φ′(x) (1 + Const(y − x)ε) (7.1.8)

and the analogous bound from below. Cases where x, y are to the right of a+b
2

can be dealt with similarly. We can also write φ′(y) instead of φ′(x) in (7.1.8).
Finally, if x < a+b

2 < y, we obtain (7.1.8) by summing up the estimates for
(x, a+b2 ] and [a+b2 , y).

Consider the case A(x, y) �= ∅. Let m ≥ n be the smallest integer such that
there exists Jj0,...,jm ∈ A(x, y) ∩ Gm, (J can be I or G, which means it can be a
gap or a non-gap).

Denote the right end of the gap containing x by x′, and the left end of the
gap containing y by y′.

We obtain, with the use of (7.1.4),

R(x′, y′) =

∑
J∈A(x,y) |φ(J)|
∑
J∈A(x,y) |J |

≤ R(Ij0,...,jm−1)(1+Const exp−(m−1)δ). (7.1.9)

We have used the fact that all J ∈ A(x, y) are in Ij0,...,jm−1 . By (7.1.7) we
obtain

φ′(x′) ≤ R(Ij0,...,jm−1)(1 + Const exp−mδ).
From these and the analogous inequalities to the other side we finally obtain

∣
∣
∣
∣
R(x′, y′)
φ′(x)

− 1
∣
∣
∣
∣ ≤ Const exp−mδ ≤ Const(y′ − x′)ε. (7.1.10)

A similar inequality holds for φ′(y).
We shall now conclude. By (7.1.8) and (7.1.10), each two consecutive terms

in the sequence

φ′(x), R(x, x′), φ′(x′), R(x′, y′), φ′(y′), R(y′, y), φ′(y)

have the ratio within the distance from 1 bounded by Const(y − x)ε. So
∣
∣
∣
∣
R(x, y)
φ′(y)

− 1
∣
∣
∣
∣ < Const(y − x)ε. (7.1.11)

Recall now that to prove (7.1.1) we picked also a third point: z > y. If y, z
play the role of the previous x, y, we obtain

∣
∣
∣
∣
R(y, z)
φ′(y)

− 1
∣
∣
∣
∣ < Const(z − y)ε.

So ∣
∣
∣
∣
R(x, y)
R(y, z)

− 1
∣
∣
∣
∣ < Const(z − x)ε.

Using the uniform boundedness of R’s we obtain this in the additive form,
that is, (7.1.1). The theorem is proved.
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Remark 7.1.7. We can shorten the above proof by referring to the Whitney
Extension Theorem (see for example [Stein 1970]).

Indeed, we can define φ′(x) for every x ∈ h1(Σd), x =
⋂∞
m=0 Ij0,...,jm , by the

formula (as (7.1.3)) φ′(x) = limR(Ij0,...,jm).
Then the estimate (7.1.8) for all x, y ∈ h1(Σd), rewritten as

φ(y) = φ(x) + φ′(x)(y − x) +O(|y − x|1+ε),
which, together with Hölder continuity of φ′ with exponent ε (see (7.1.5) and
(7.1.6)) are precisely the assumptions for the Whitney Theorem, which asserts
that φ has a C1+ε extension.

Remark 7.1.8. It is essential to assume in Theorem 7.1.6 that the conver-
gence Aj(h1,w)

Aj(h2,w) → 1 is exponential: that is, that the geometries are exponentially
equivalent. Otherwise φ′(a) in (7.1.3) may not exist.

To prove the existence of φ′ on h1(Σd), the uniform convergence of the finite
products (in the case where they end with expressions involving gaps) or infinite

products
∏
n

Ajn+1 (h1,(j0,...,jn))

Ajn+1 (h2,(j0,...,jn)) is sufficient.

Remark 7.1.9. For each h1, h2 ∈ H the order-preserving mapping φ : h1(Σd) →
h2(Σd) is quasi-symmetric (see Definition 6.2.6). The equivalence of the geome-
tries is equivalent to the 1-quasi-symmetric equivalence: cf. Exercise 7.2.

Example 7.1.10. It can occur that above φ : h1(Σd) → h2(Σd) is Lipschitz
continuous but all extensions are non-differentiable at every point in h1(Σd).

Let hi : Σ3 → R be defined by h1((j0, . . . )) = a =: .a1a2 . . . in the
development of a in base 6, where

as = 0 if js = 1, as = 2 if js = 2 and as = 5 if js = 3 for h1

and
as = 0 if js = 1, as = 3 if js = 2 and as = 5 if js = 3 for h2.

See Figure 7.1.

0 1 2 3 4 5 6

Figure 7.1 ‘Generators’ of two differentiably different Cantor sets.

Remark 7.1.11. In the case where φ conjugates expanding maps belonging
to C1+ε on the circle, this cannot happen. For example, Lipschitz conjugacy
has points of differentiability: hence by the expanding property of, say, ana-
lytic maps involved, it is analytic (see Chapter 9). For Cantor sets, as above,
if they are non-linear (see Chapter 10 for definition), then φ Lipschitz implies
φ analytic. However, for linear sets, as in this example, an additional invariant
is needed to describe classes of C1+ε-equivalence, the so-called scaling function:
see Section 7.2.
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7.2 Scaling function: C1+ε-extension
of the shift map

So far we have not discussed dynamics. Recall, however, that we have on Σd the
left-side shift map s(j0, j1, . . . ) = (j1, . . . ). We seek a condition about the ratio
geometry for h ∈ H under which s, or more precisely h ◦ s ◦ h−1, extends C1+ε

to a neighbourhood of h(Σd).

Definition 7.2.1. For the ratio geometry of h ∈ H we consider the sequence of
functions to R

2d−1:

Sn(j−n, . . . , j−1) = (Sn(j−n, . . . , j−1)j , j = 1, . . . , 2d− 1) :=
(Aj(h, (j−n, . . . , j−1)), j = 1, . . . , 2d− 1).

We call this a scaling sequence of functions. The limit

S(. . . , j−2, j−1) = lim
n→∞Sn(j−n, . . . , j−1),

if it exists, is called a scaling function. By the definition,

2d−1∑

j=1

Sn(·)j ≡
2d−1∑

j=1

S(·)j ≡ 1.

Let us now discuss the domain of Sn, S. These functions are defined on one-
sided sequences of symbols from {1, . . . , d}, and so formally on Σd. We want to
be more precise, however.

Consider the natural extension of Σd: that is, a two-sided shift space Σ̃d =
{(. . . , j−1, j0, j1, . . . )}. Then S can be considered as a function on Σ̃d, but for each
(. . . , j−1, j0, j1, . . . ) depending only on the past (. . . , j−2, j−1). The functions Sn
depend only on the finite past.

Definition 7.2.2. The domain of S and Sn is the factor of Σ̃d, where we forget
about the present and future: that is, we forget about the coordinates j0, j1, . . . .
We call this factor a dual Cantor set, and denote it by Σd∗. The range of S and
Sn is the 2d−2-dimensional simplex Simp2d−2 being the convex hull of the 2d−1
points (0, . . . , 1, . . . , 0), with 1 at the position j = 1, 2, . . . , 2d− 1.

Thus S is not a function on h(Σd), but if we consider h(Σd) with the shift
map h ◦ s ◦ h−1 then we can see the dual Cantor set, that is, the domain of S
and Sn, as the set of all infinite choices of consecutive branches of (h◦s◦h−1)−1

on h(Σd).
Note that if instead of (h(Σd), h ◦ s ◦ h−1) we considered an arbitrary, say

a distance-expanding, repeller, we could define backward branches only locally:
that is, there would be no natural identification of fibres of the past over two
different distant points of the repeller.

Proposition 7.1.5 yields the following.

Proposition 7.2.3. If h1, h2 ∈ H are C1-equivalent, and there exists a scaling
function S for h1, then h2 has also a scaling function, equal to the same S.
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This says, in particular, that C1-equivalence preserves the scaling function.
Note that this is not the case for Lipschitz equivalence: see Example 7.1.10.

From Theorem 7.1.6 we easily deduce the following.

Theorem 7.2.4. If h ∈ He and h ◦ s ◦ h−1 extends to a C1+ε-mapping sh on a
neighbourhood of h(Σd), then

Sn
Sn+1

→ 1; the convergence is uniformly exponentially fast. (7.2.1)

Conversely, if h ∈ H and (7.2.1) is satisfied, then h ∈ He, and h ◦ s ◦ h−1

extends to a C1+ε-mapping.

Proof. Consider the sets Σdi = {α ∈ Σd : α0 = i} for i = 1, . . . , d. Each Σdi
can be identified with Σd by Li((α0, α1, . . . )) = (i, α0, α1, . . . ). Of course, hi :=
h ◦ Li ∈ H. Denote h ◦ s ◦ h−1 : h(Σdi ) → h(Σd) by si. We have si ◦ hi = h.
So, by Theorem 7.1.6, all si extend C1+ε if and only if Aj(h,w)

Aj(hi,w) converge to 1

uniformly exponentially fast in length of w. These ratios are equal to Aj(h,w)
Aj(h,iw) –

that is, Sn

Sn+1
, n being the length of w. So we obtain precisely the assertion of

our theorem.
To apply Theorem 7.1.6 we used the observation that (7.2.1) easily implies

h ∈ Hb (by a sort of bounded distortion for iterates of the h ◦ s ◦ h−1 property).
In particular, h ∈ He: see Proposition 7.2.9. ♣
Example 7.2.5. Note that sh of class C1+ε (even Cω) does not imply h ∈ He.
Indeed, consider h such that sh has a parabolic point, for example sh(x) = x+6x2

for 0 ≤ x ≤ 1/3 and sh(x) = 1 − 3(1 − x) for 2/3 ≤ x ≤ 1.

Remark 7.2.6. The assertions of Theorems 7.1.6 and 7.2.4 stay true if each
Cantor set is constructed with the help of the intervals Ij0,...,jn as before, but
we do not assume that the left end of Ij0,...,jn,1 coincides with the left end
of Ij0,...,jn , or that the right end of Ij0,...,jn,d coincides with the right end of
Ij0,...,jn .

So there might be some ‘false’ gaps in Ij0,...,jn to the left of Ij0,...,jn,1 and to
the right of Ij0,...,jn,d. In the definitions of bounded and exponential geometry
we do not assume anything about these gaps; they may shrink faster than expo-
nentially as n → ∞. But wherever ratios are involved – in Aj(h1, w), Aj(h2, w)
in Theorem 7.1.6 or S, Sn in Theorem 7.2.4 – we take these gaps into account,
so j = 0, 1, . . . , 2d.

The condition sufficient in Theorem 7.1.6 to C1+ε-equivalence is that
Aj(h1, w) −Aj(h2, w) → 0 exponentially fast.

The condition sufficient in Theorem 7.2.4 to the C1+ε-extentiability of h◦ s◦
h−1 is that Sn → S exponentially fast.

To prove these assertions, observe that if we extend gaps of the n + 1-th
generation (between Ij0,...,jn,j and Ij0,...,jn,j+1, j = 1, . . . , d− 1) by false gaps of
higher generations to get real gaps of the resulting Cantor set, then they and the
remaining intervals satisfy the assumptions of Theorems 7.1.6 and 7.2.4.
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This remark will be used in Section 7.4.

Definition 7.2.7. We say that h ∈ H satisfying (7.2.1) has an exponentially
determined geometry. The set of such h’s will be denoted by Hed.

Definition 7.2.8. Let j = (jn)n=...,−2,−1, j
′ = (j′n)n=···−2,−1 ∈ Σd∗. Denote by

j ∩ j′ the sequence (j−N , . . . , j−1) with N = N(j, j′) the largest integer (or ∞),
such that j−n = j′−n for all n ≤ N . For an arbitrary δ > 0 define the metric ρδ
on Σd∗ by

ρδ(j, j′) = exp−δN(j, j′).

Let us make the following simple observation.

Proposition 7.2.9. (a) He ⊃ Hb ⊃ Hed.
(b) If h ∈ Hed, then the scaling function S exists as Hölder continuous with

respect to any metric ρδ (see Definition 7.2.8), and S(·)i are bounded away from
0 and 1.

(Observe, however, that the converse is false. One can take each Sn constant,
and hence S constant, but Sn

S converging to 1 slower than exponentially, so h /∈
Hed.)

(c) If h ∈ Hed, then (h(Σd), sh) is a C1+ε expanding repeller. (We shall also
use the words C1+ε-Cantor repeller in the line.)

Proof. We leave (a) and (b) to the reader (the second inclusion in (a) has already
been noted in the proof of Theorem 7.2.4) and prove (c). Similar to the way we
proved property (7.1.5) in Theorem 7.1.6, we obtain the existence of a constant
C > 0 such that, for x = h((j0, j1, . . . )) ∈ Σd and n ≥ 0,

C−1 < |(snh)′(x)|/
|I|

|Ij0,...,jn |
< C.

As h ∈ He, and in particular |Ij0,...,jn | → 0 uniformly, we obtain |(snh)′(x)| > 1
for all n large enough and all x.

It follows from Theorem 7.1.6 that classes of C1+ε-equivalence in Hed are
parametrized by Hölder continuous functions on Σd∗ (as scaling functions). To
have one-to-one correspondence we need only to prove the existence theorem.

Theorem 7.2.10. For every Hölder continuous function S : Σd∗ → R
2d−1
+ such

that
2d−1∑

j=1

S(·)j ≡ 1 (7.2.2)

there exists h ∈ Hed such that S is the scaling function of h.

First let us state the existence lemma:

Lemma 7.2.11. Given numbers Aw,j > 0 for every w = (j0, . . . , jn), n =
0, 1, . . . , j = 1, . . . 2d − 1, such that

∑2d−1
j=1 Aw,j = 1, there exists h ∈ H such

that Aw,j = Aj(h,w): that is, h has the prescribed ratio geometry.
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Proof of Lemma 7.2.11. One builds a Cantor set by removing gaps of consecutive
generations, from each Iw gaps of lengths Aw,j |Iw|, j even, so that the intervals
not removed have lengths Aw,j , j odd, j = 1, . . . , 2d− 1. ♣
Proof of Theorem 7.2.10. Let Aw,j := S((. . . , 1, 1, w))j . By (7.2.2),

∑2d−1
j=1 Aw,j =

1, so we can apply Lemma 7.2.11. Property (6.4.11) (exponential convergence)
follows immediately from the Hölder continuity of S and the fact that S is
bounded away from 0 as positive continuous on the compact space Σd∗. ♣

Summary: C1+ε-structures in Hed are in a one-to-one correspondence with
the Hölder continuous scaling functions on the dual Cantor set.

Until now we have not been interested in ε in C1+ε. It occurs, however, that
scaling functions ‘see’ ε. First we introduce a metric ρS on Σd∗ depending only
on a scaling function S, so that for a constant K > 0, for every j, j′,

1
K

≤ |Ij ∩ j′ |
ρS(j, j′)

≤ K. (7.2.3)

Definition 7.2.12.

ρS(j, j′) = sup
w

n=N(j∩ j′)∏

t=1

S(wj−nj−n+1...j−t−1)jt

supremum over all w left infinite sequences of symbols in {1, . . . , d}.
The estimate (7.2.3) follows easily from the exponential determination of

geometry: we leave the details to the reader.

Theorem 7.2.13. Fix 0 < ε ≤ 1. The following are equivalent:
1. There exists h ∈ Hed, a C1+ε embedding: that is, h ◦ s ◦ h−1 extends to sh

being C1+ε, with scaling function S.
2. The scaling S is Cε on (Σd∗, ρS). (Here C1 means Lipschitz.)

Proof. Substituting φ = sh, we can write (7.1.2), for all n > N and all i =
1, 2, . . . , 2d− 1, in the form

|Sn(j−n, . . . , j−1)i − Sn−1(j−n, . . . , j−1)i| ≤ Const |Ij−n,...,j−1 |ε.
Summing up this geometric series for an arbitrary j ∈ Σd∗ over n = N,N +
1, . . . for N = N(j, j′), doing the same for another j′ ∈ Σd∗, and noting that
|SN (j−N , . . . , j−1) = |SN (j′−N , . . . , j−1), yields

|S(j)i − S(j′)i| ≤ Const |Ij∩j′ |ε.
Applying (7.2.3) to the right-hand side, we see that S is Hölder continuous with
respect to ρS .

For the proof to the other side see the proof of Theorem 7.2.10. The con-
struction gives the property (6.4.1a) for φ = sh, the extension as in the proof of
Theorem 7.1.6. ♣
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Example 7.2.14. For every 0 < ε1 < ε2 ≤ 1 there exists S admitting a C1+ε1

embedding h ∈ Hed, but not C1+ε2 . We find S as follows. For an arbitrary
(small) ν : 0 < ν < (ε1 − ε2)/2 we can easily find a function S : Σd∗ → Simp2d−2

that is Cε1+ν but is not Cε2−ν , in the metric ρδ, δ > log d (Definition 7.2.8).

We can in fact find S so that for every j ∈ Σd∗ and i = 1, 3, . . . , 2d − 1
we have | − logS(j)i/δ − 1| < ν/3. (If d ≥ 3 we can even have S(j)i = log δ
constant for i = 1, 3, . . . , 2d − 1, changing only gaps, i even.) Then, for all j, j′

and N = N(j, j′), and a constant K > 0,

K−1(exp−Nδ)1−ν/2 ≤ |Ij∩j′ | ≤ K(exp−Nδ)1+ν/3.

Since ρδ(j, j′) = exp−Nδ we conclude that S is at best (1+ ε2 − ν)/(1− ν/3) <
ε2-Hölder with respect to ρS . Hence sh cannot be C1+ε2 , by Theorem 7.2.13.
Meanwhile, a construction as in the proof of Theorem 7.2.10 gives S being ε1-
Hölder: hence sh is C1+ε1 .

7.3 Higher smoothness

Definition 7.3.1. For every r = 1, 2, . . . ,∞, ω and 0 ≤ ε ≤ 1 we can consider
in He the subset Cr+εH of such h’s that h ◦ s ◦ h−1 extends to a neighbourhood
of h(Σd) to a function of class Cr+ε.

By Theorem 7.2.4, for r + ε > 1,

Cr+εH ⊂ Hed.

Theorem 7.3.2 (On Cr+ε-rigidity). If h1, h2 ∈ Cr+εH, 0 ≤ ε ≤ 1, r + ε > 1,
have equivalent geometries, then h1, h2 are Cr+ε-equivalent. That is, there exists
a Cr+ε-diffeomorphism φ of a neighbourhood of h1(Σd) to a neighbourhood of
h2(Σd) such that

φ|h1(Σd) ◦ h1 = h2. (7.3.1)

In other words, the canonical conjugacy extends Cr+ε.

We shall prove this theorem here for ε > 0. A different proof in Section 7.4
will also contain the case of ε = 0.

Remark 7.3.3. For h1, h2 in the class in H of functions having a scaling func-
tion, the condition that h1, h2 have equivalent geometries means that the scaling
functions are the same. In the more narrow class Hed it means that the canoni-
cal conjugacy φ extends C1+δ for some δ > 0: see Theorem 7.1.6. The virtue of
Theorem 7.3.2 is that the more narrow the class, the better φ is forced to be.
This is again a Livshic-type theorem.

Before proving Theorem 7.3.2, let us make a general calculation.
For any sequence of Cr real maps Fj , j = 1, . . . ,m, consider the r-th deriva-

tive of the composition (Fm ◦ · · · ◦ F1)(r), supposing that the maps can be
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composed – that is, that the range of each Fj is in the domain of Fj+1. We
start with

(Fm ◦ · · · ◦ F1)′(z) =
m∏

j=1

F ′
j(zj−1),

where z0 = z and zj = Fj(zj−1).
Differentiating again, we see that

(Fm ◦ · · · ◦ F1)′′(z) =
m∑

j=1

(j−1∏

i=1

(F ′
i (zi−1)

)2(
m∏

i=j+1

F ′
i (zi−1)

)(
F ′′
j (zj−1)

)
.

By induction we obtain

(Fm ◦ · · · ◦ F1)(r)(z) =
∑

1≤j1,...,jr−1≤m
W r
j1,...,jr−1

(z),

where
W r
j1,...,jr−1

(z) = Φj1,...,jr−1(z)Pj1,...,jr−1(z),

where for j′1, . . . , j
′
r−1 denoting a permutation of j1, . . . , jr−1 so that j′1 ≤ · · · ≤

j′r−1 we denote

Φj1,...,jr−1(z) :=
(j

′
1−1∏

i=1

(F ′
i (zi−1))

)r(
j′2−1∏

i=j′1+1

(F ′
i (zi−1))

)r−1
. . .
( m∏

i=j′r−1+1

(F ′
i (zi−1))

)

(7.3.2)
and

Pj1,...,jr−1(z) =
r′−1∏

i=1

Pji(z),

where each Pji is the sum of at most (r − 1)! terms of the form
∏
∑
ts=r,max ts≥2 F

(ts)
ji

(zji−1). Above we replaced r by r′ ≤ r, since if some js
repeats, we consider it in the above product only once.

This can be seen by considering, for each j1, . . . , jr−1, tree graphs with ver-
tices at m levels, 0, . . . ,m− 1 – that is, derivatives at z0, . . . , zm−1 – each vertex
(except for level 0) joined to the previous level vertices by the number of edges
equal to the order of the derivative. Φ gathers levels with only first derivatives,
P the remaining ones.

By induction, when we consider the first derivative of the product related to
the tree T corresponding to the r-th derivative, we obtain a sum of expressions
corresponding to trees, each received from the T by adding a branch from a
vertex in T of a level jr − 1, composed of new vertices vi at levels 0 ≤ i < jr − 1
and edges ei joining vi to vi+1. Since the number of vertices in T at each level,
and in particular level jr − 1, is at most r, we have at most r graphs that arise
from T by differentiating at the level jr − 1.

Proof of Theorem 7.3.2. The method, passing to small and then to large scale,
is similar to the method of the second proof of Theorem 9.5.5.
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Choose an arbitrary sequence of branches of s−nh1
on a neighbourhood of

h1(Σd), and denote them by gn, n = 1, 2, . . . .
We have ψ a diffeomorphism, assuring C1+δ-equivalence: see Remark 7.3.3

above. (In fact we shall use only C1.) We define on a neighbourhod of h1(Σd)

φn = snh2
◦ ψ ◦ gn.

Of course, φn = ψ on h1(Σd). However sh1 , sh2 are defined only on neigh-
bourhoods Uν = B(hν(Σd), ε) of hν(Σd), for some ε > 0, ν = 1, 2. As shν

are
expanding, we can assume s−1

hν
(Uν) ⊂ Uν , so all the maps gn are well defined.

We shall now explain why all the φn above are well defined.
Observe first that owing to the assumption that ψ is a C1 diffeomorphism

(7.3.1), and that h1(Σd) has no isolated points, there exists a constant C > 0
such that for every x ∈ h1(Σd), j ≥ 0,

C−1 < |(sjh1
)′(x)/|(sjh2

)′(ψ(x))| < C. (7.3.3)

So by the bounded distortion property for iterates of shν
(following from

the expanding property and the C1+ε-smoothness: see Lemma 6.2.2), for every
j = 0, 1, . . . , n, if we already know that sjh2

◦ ψ ◦ gn is defined on B :=
B(h1(Σd), η/(2C2 supψ′)), we obtain

sjh2
ψgn(B) ⊂ B(h2(Σd), η). (7.3.4)

So sj+1
h2

◦ ψ ◦ gn is defined on B, and so on, up to j = n. (The 2 in the
denominator of the radius of B is a bound, taking care about the distortions,
sufficient for η small enough. Note the possibility that Ui is not connected, but
this has no influence on the proof.)

We shall find a conjugacy φ from the assertion of the theorem being the limit
of a uniformly convergent sub-sequence of φn, so it will also be ψ on h1(Σd):
hence (7.2.2) will hold.

Choose a sequence xn ∈ gn(h1(Σd)). Instead of φn, consider

φ̃n = snh2
◦ Ln ◦ gn,

where Ln(w) = ψ(xn) + ψ′(xn)(w − xn).
Observe first that

distC0(φn, φ̃n) → 0 for n→ ∞. (7.3.5)

Indeed,
φn(z) − φ̃n(z) = snh2

(ψ(gn(z))) − snh2
(Ln(gn(z))).

As |gn(z) − xn| → 0 for n→ ∞, we have, by the C1-smoothness of ψ,

ψ(gn(z)) − Ln(gn(z))
gn(z) − xn

→ 0.
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So because of the bounded distortion property for the iterates of sh2 , and
using also the property ψ′(x0) �= 0, we get

snh2
(ψ(gn(z))) − snh2

(Ln(gn(z)))
snh2

(ψ(gn(z))) − snh2
(ψ(xn))

→ 0,

and hence (7.3.5). We have also proved that all φ̃n are well defined on a
neighbourhood of h1(Σd), similarly to the way we obtained (7.3.4).

Thus we can consider φ̃n’s, all of which are Cr+ε. We need to prove that their
r-th derivatives are uniformly bounded in Cε. Then, by the Arzela–Ascolli the-
orem, we can choose a sub-sequence φ̃(r)

nk uniformly convergent to a Cε function.
(Here we use ε > 0.) By the calculus theorem that the limit of derivatives is the
derivative of the limit, we shall obtain the assertion that a uniformly convergent
sub-sequence of φ̃n has the limit Cr+εsmooth.

We shall use our calculations of (Fm ◦ · · · ◦ F1)(r) preceding the proof of
Theorem 7.3.2. We can assume that r ≥ 2, as for r = 1 the theorem has already
been proved (see Theorem 7.1.6). For m = 2n + 1 we set as F1, . . . , Fn the
branches of s−1

h1
, which composition gives gn. We set Fn+1 = Ln. Finally, for

j = n+ 2, . . . , 2n+ 1 we set Fj = sh2 .
For every sequence j1, . . . , jr−1 we assign the number

T (j1, . . . , jr−1) =
∑

{ji : ji ≤ n} +
∑

{m− ji : ji ≥ n+ 1}.

For any x, z in a neighbourhood of h1(Σd) sufficiently close to each other,
and α = (j1, . . . , jr−1) we have

|W r
α(x) −W r

α(z)| =
∣
∣
∣
∣

(
Φα(x)
Φα(z)

− 1
)

Pα(x) + (Pα(x) − Pα(z)))Φα(z)
∣
∣
∣
∣. (7.3.6)

By (7.3.2), organizing the products there in
∏j′1−1
i=1

∏j′2−1
i=1 · · ·∏m

i=1 (after
multiplying by the missing terms F ′

j′s
), using bounded distortion of iterates of

shnu, ν = 1, 2, we obtain
∣
∣
∣
∣

(
Φα(x)
Φα(z)

− 1
)∣
∣
∣
∣ ≤ Const r|x− z|ε.

Observe also that, using |xj − zj | ≤ Const |x− z|,
|Pα(x) − Pα(z)| ≤ Const |x− z|ε,

and Pα(x) is bounded by a constant independent of n (depending only on r).
Finally we have

|Φα(z)| ≤ ConstλT (α), (7.3.7)

where λ is an arbitrary constant such that 1 < λ−1 < inf |s′h1
|, inf |s′h2

|.
We have here used (7.3.2). The crucial observation leading from (7.3.2) to

(7.3.7) was the existence of a constant C > 0 such that, for every 0 < i ≤ j ≤ n,

C−1 < (Fi ◦ · · · ◦ Fj)′(zj−1) · (Fm−i ◦ · · · ◦ Fm−j)′(zm−j−1) < C,
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following from (7.3.3). We also need to refer again to the bounded distortion
property for the iterates of shν

, as, z’s do not need to belong to hν(Σd), the
unlike the x’s in (7.3.3).

Thus, by (7.3.6) and the estimates following it, we obtain

|(snh2
◦ Ln ◦ gn(x) − snh2

◦ Ln ◦ gn(z))(r)|
≤

∑

j1,...,jr−1

Const |x− z|ελT (j1,...,jr−1)

≤Const |x− z|ε
∞∑

T=0

2T rλT ≤ Const |x− z|ε

because Card{(j1, . . . , jr−1) : T (j1, . . . , jr−1) ≤ T} ≤ 2T r.
The proof of Theorem 7.3.2 in the Cr+ε case for every r = 1, 2, . . . ,∞ is now

complete. We need to consider the Cω case separately. The maps shν
extend

holomorphically to neighbourhoods of hν(Σd) in C, the complex plane in which
the interval I is embedded. As in the Cr+ε, r = 1, . . . ,∞, case, we see that
there are neighbourhoods Uν of hν(Σd) in C such that φ̃n are well defined on
U1 and φ̃n(U1) ⊂ U2. By the definition, they are holomorphic. Now we can
use Montel’s Theorem. So there exists a sub-sequence φ̃nj

, nj → ∞ as j → ∞,
uniformly convergent on compact subsets of U1 to a holomorphic map. The proof
is complete; it was simpler for r = ω than for r �= ω. For similar considerations
see also Section 9.5. ♣

Summary. We have the following situation. In H above the equivalence of
geometries and even the exponential equivalence of geometries do not induce any
reasonable smoothness. In He the exponential equivalence of geometries does
work: it implies C1+ε-equivalence. In Hb even the equivalence of geometries
starts to work: it implies that the canonical conjugacy is 1-quasisymmetric. This
we have not discussed: see Exercise 7.2. In Hed the equivalence of geometries,
which now means the same as exponential equivalence, yields C1+ε-equivalence.
The higher smoothness of H then forces the same smoothness of the conjugacy.

We shall show in Chapter 10 that in Cω in a subclass of non-linear Cantor
sets even a weaker equivalence of geometries, not taking gaps into account, forces
Cω-equivalence (we have mentioned this already at the end of Section 7.1).

7.4 Scaling function and smoothness; Cantor
set valued scaling function

The question arises as to which scaling functions appear in which classes Cr+ε

(compare Example 7.2.14). We shall give some answers below.
For simplification we assume I = [0, 1].

Definition 7.4.1. Scaling with values in Cantor sets. Given a scaling function
S on Σd∗, we define a scaling function Ŝ with values in H rather than Simp2d−2.
For each j = (. . . , j−2, j−1) ∈ Σd∗ we define Ŝ(j) ∈ H by induction, as follows.
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Suppose for every j ∈ Σd∗ and i0, . . . , in the interval I(j)i0,...,in is already
defined. (For an empty string we set [0, 1].) Then for every in+1 = 1, 2, . . . , d we
define I(j)i0,...,in,in+1 as the 2in+1 − 1’th interval of the partition of I(j)i0,...,in
determined by the proportions S(j, i0, . . . , in)i, i = 1, 2, . . . , 2d− 1. We conclude
with Ŝ(j)(i0, i1, . . . ) =

⋂∞
n=0 I(j)i0,...,in .

Denote the Cantor set Ŝ(j)(Σd) by Can(j).

Theorem 7.4.2. For a scaling function S and r = 1, 2, . . . ,∞, ε : 0 ≤ ε ≤ 1
with r + ε > 1, or r = ω, the following conditions are equivalent:

(1) There exists a Cr+ε, or Cω (real-analytic) embedding h ∈ Hed with scaling
function S (we assume here that in the definition of Cr+ε, see Definition 7.3.1,
sh maps each component of its domain diffeomorphically onto [0, 1]).

(2) For every j, j′ ∈ Σd∗ there exists a Cr+ε, or Cω respectively, diffeomor-
phism Fj′|j : [0, 1] → [0, 1] mapping Can(j) to Can(j′).

Proof. Let us prove (1) ⇒ (2) For any j ∈ Σd∗ and n ≥ 1 denote j(n) =
(j−n, . . . , j−1). Write

Fj(n) := ((sh)n|Ij−n,...,j−1
) ◦A−1

j(n),

where Aj(n) is the affine rescaling of Ij−n,...,j−1 to [0, 1]. Given j, j′ ∈ Σd∗ and
n, n′ ≥ 1, define

Fj′(n′)|j(n) := F−1
j′(n′) ◦ Fj(n).

Finally, define
Fj′|j := lim

n,n′→∞
Fj′(n′)|j(n).

The convergence, even exponential, easily follows from sh ∈ C1+ε. The fact that
Fj′|j maps Can(j) to Can(j′) follows from the definitions.

In the case of Cω there is a neighbourhood U of [0, 1] in the complex plane so
that all (sh)n|−1

Ij−n,...,j−1
extend holomorphically, injectively, to U . This is so since

(h(Σd), ŝh), where ŝh is a holomorpic extension of sh, is a conformal expanding
repeller. With the use of the Koebe Distortion Lemma (Chapter 6), one concludes
that all Fj′(n′)|j(n) have a common domain in C, containing [0, 1], on which they
are uniformly bounded. So, for a given j, j′, a sub-sequence is convergent to a
holomorphic function: hence Fj′|j is analytic.

Consider now the Cr+ε case.
Let us prove first the following claim.

Claim 7.4.3. Let F1, F2, . . . be Cr+1 maps of the unit interval [0, 1] for r ≥
1, 0 ≤ ε ≤ 1, r + ε > 1. Assume all Fm are uniform contractions: that is, there
exist 0 < λ1 ≤ λ2 < 1 such that for every m and every x ∈ [0, 1] it holds that
λ1 ≤ |F ′

m(x)| ≤ λ2. Then there exists C > 0 such that, for all m,

||Fm ◦ · · · ◦ F1||Cr+ε ≤ C||Fm ◦ · · · ◦ F1||C1 .

(We set the convention that we omit the supremum of the modulus of the
functions in the norms in Cr+ε; we consider only derivatives.)
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Proof of the claim. Consider first ε > 0. We use (7.3.6) and the estimates that
follow it. (7.3.7) is replaced by

|Φα(z)| ≤ Const |(Fm ◦ · · · ◦ F1)′(z)|λT̂ (α)
2 ,

where for α = (j1, . . . , jr−1) we define T̂ (α) = j1 + .. + jr−1. We conclude for
r ≥ 2 with

|(Fm ◦ · · · ◦ F1)(r)(x) − (Fm ◦ · · · ◦ F1)(r)(z)|
≤ Const |x− z|ε|(Fm ◦ · · · ◦ F1)′(z)|

∑

α

λ
T̂ (α)
2

≤ Const |x− z|ε|(Fm ◦ · · · ◦ F1)′(z)|
∞∑

T=0

T rλT2

≤ Const |(Fm ◦ · · · ◦ F1)′(z)||x− z|ε.

For r = 1 there is no summation over α, and the assertion is immediate.
For ε = 0 we get

|(Fm ◦ · · · ◦ F1)(r)(z)| ≤
∑

α

|Φα(z)Pα(z)| ≤ Const
∑

α

|(Fm ◦ · · · ◦ F1)′(z)|λT̂ (α)
2

≤ Const |(Fm ◦ · · · ◦ F1)′(z)|.

The claim is proved. ♣
We apply the claim to F1, F2, . . . being inverse branches of sh on [0, 1]. Let

λ be the supremum of the contraction rate |s′h|−1. Given j ∈ Σd∗ and integers
n,m ≥ 0, we get for z ∈ Ij−n,...j−1

||(smh |Ij−(n+m),...j−1
)−1||Cr+ε ≤ C|((smh |Ij−(n+m),...j−1

)−1)′(z)|.

If we rescale the domain and range to [0, 1] we obtain, using bounded distortion
of smh ,

||Fj(n+m)|j(n)||Cr+ε ≤ C
|Ij−n,...,j−1 |r+ε
|Ij−(n+m),...,j−1 |

|((smh |Ij−(n+m),...j−1
)−1)′(z)|

≤ Const |Ij−n,...j−1 |r+ε−1. (7.4.1)

The right-hand expression in this estimate does not depend on m and tends
(exponentially quickly) to 0 as n→ ∞, for r > 1.

Note that
F−1
j(n+m) = Fj(n+m)|j(n) ◦ F−1

j(n). (7.4.2)

Therefore for the sequence F−1
j(n) we have verified a condition that is reminiscent

of Cauchy’s condition. However, to conclude convergence in Cr+ε, we still need
to do some work.
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For r = 1 we have uniform exponential convergence of |(F−1
j(n))

′(z)|, since
|(Fj(n+m)|j(n))′| → 1 uniformly exponentially quickly as n → ∞. This holds
since Fj(n)([0, 1]) = [0, 1], by integration of the second derivative, or, in the
case of merely C1+ε, since distortion of Fj(n+m)|j(n) tends exponentially to 1 as
n→ ∞.

For r > 1, ε = 0 the derivatives of F−1
j(n) of orders 2, . . . , r tend uniformly to

0, since Fj(n+m)|j(n) tend uniformly to identity in Cr as n → ∞. One can see
this using our formula for the composition of two maps, as in (7.4.2), or, more
simply, by substituting a Taylor expansion series up to order r of one map in the
other.

For ε > 0 the sequence F−1
j(n) has been proved in (7.4.1) to be uniformly

bounded in Cr+ε, and every convergent sub-sequence has the same limit, being
the limit in Cr. Therefore this is a limit in Cr+ε.

If we denote the limit by Gj , we conclude that

Fj′|j = Gj′ ◦G−1
j , (7.4.3)

defined above as Cr+ε.
The proof of (2) ⇒ (1). The embedding h in the proof of Theorem 7.2.10

is the correct one. Indeed, Ŝ(. . . , 1, 1) coincides with h by construction, and
sh = sŜ = F(...,1,1)|(...,1,i) ◦Ai, where Ai is rescaling to [0, 1] of Ii, i = 1, . . . , d in
the ratio geometry of Ŝ(. . . , 1, 1). ♣
Remark 7.4.4. Theorem 7.4.2 (or, more precisely, smoothness of Gj in (7.4.3))
yields a new proof of Theorem 7.3.2, in full generality, that includes the case
ε = 0. Indeed, one can define φ = Gj(h2)−1 ◦ Gj(h1) for an arbitrary j ∈ Σd∗,
where Gj(hi), i = 1, 2 means Gj for hi.

In the case where the ranges of sh1 , sh2 are not the whole [0, 1], we define
Gj as the limit of Fj(n+n0)|j(n0), so φ is defined only on some Ij−n0 ,...,j−1 , for n0

large enough that this F makes sense. Then we define φ on a neighbourhood of
h1(Σd) as sn0

h2
◦ φ ◦ (sh1 |Ij−n0

,...,j−1
)−n0 .

Theorem 7.4.5. For every r = 1, 2, . . . and ε : 0 ≤ ε < 1 with r + ε > 1 there
is a scaling function S such that there is h ∈ Hed, a Cr+ε embedding with the
scaling function S, but there is no Cr+ε

′
embedding with ε′ > ε. There is also S

admitting a C∞ embedding, but not real-analytic.

This theorem addresses Example 7.2.14 in particular, giving a different
approach.

Proof. Consider d > 1 disjoint closed intervals Ij in [0, 1], with I1 having 0 as
an end point, and f mapping each Ij onto [0, 1], so that f |Ij

is affine for each
j = 2, . . . , d and Cr+ε on I1 but not Cr+ε

′
, say at 0 (or C∞ but not analytic at

0). This produces h ∈ Cr+εH. Choose any sequence j ∈ Σd∗ not containing 1’s,
say j = (. . . , 2, 2, 2). Then, for the arising scaling function S, we have

Ŝ(j) = h and Ŝ(j1) = A ◦ (f |I1)−1 ◦ h,
where A is the affine rescaling of I1 to [0, 1].
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So f |I1 ◦ A−1 : [0, 1] → [0, 1] maps the Cantor set Can(j1) to Can(j). Its
restriction to Can(j1) cannot extend Cr+ε

′
, since its derivatives up to order

r are already computable on C and f (r) is not ε′-Hölder, by construction. So
S cannot admit Cr+ε

′
embedding by Theorem 7.4.2. The case of C∞ but not

analytic is dealt with similarly. ♣

7.5 Cantor set generating families

We shall discuss here a general construction of a C1+ε Cantor repeller in R,
which will be used in the next section.

Definition 7.5.1. We call a family of maps F = {fn,j : n = 0, 1, . . . , j =
1, ..., d} of a closed interval I ⊂ R into itself a Cantor set generating family if the
following conditions are satisfied.

All fn,j are C1+ε-smooth and uniformly bounded in the C1+ε-norm; they
preserve an orientation in R. There exist numbers 0 < λ1 < λ2 < 1 such that for
every n, j λ1 < |(fn,j)′| and |fn,j(I)|

|I| < λ2 (a natural stronger assumption would
be |fn,j)′| < λ2, but we need the weaker one for later use).

For every n all the intervals fn,j(I) are pairwise disjoint and ordered according
to j’s, and the gaps between them are bounded away from 0.

Given a Cantor set generating family F = {fn,j : n = 0, 1, . . . , j = 1, ..., d},
we write

Ij0,...,jn(F ) := (f0,j0 ◦ · · · ◦ fn,jn)(I)

Then we obtain the announced Cantor set as

C(F ) :=
∞⋂

n=0

En(F ), where En(F ) =
⋃

(j0,...,jn)

Ij0,...,jn(F )

and the corresponding coding h(F ) defined by

h(F )((j0, j1, . . . )) =
⋂

n→∞
Ij0,...,jn(F ).

It is easy to see that h(F ) has bounded geometry (we leave it as an exercise
for the reader).

Theorem 7.5.2. Let Fν = {fν,n,j : n = 0, 1, . . . , j = 1, ..., d} be two Cantor set
generating families, for ν = 1 and ν = 2. Suppose that for each j = 1, . . . , d

lim
n→∞distC0(f1,n,j , f2,n,j) = 0

and the convergence is exponential.
Then h(F1) and h(F2) are C1+ε-equivalent.
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Proof. Observe that the notation is consistent with that at the beginning
of Section 7.1, except that the situation is more general; it is like that in
Remark 7.2.6.

For every s ≤ t, ν = 1, 2, we denote (fν,(s,js) ◦ · · · ◦ fν,(t,jt))(I) by
Iν,(s,js),...,(t,jt). For every such Iw we denote the left end by lIw and the right
end by rIw. Observe that, although we have not assumed |f ′ν,n,j | < λ2, we can
deduce from our weaker assumptions (using the bounded distortion property for
the iterates) that there exists k ≥ 1 so that for every l ≥ 0 and ji, i = 0, . . . , k−1
we have |(fν,l+k−1,jk−1 ◦ · · · ◦ fν,l+i,ji ◦ · · · ◦ fν,l,j0)′| < λ2 < 1. In future, to sim-
plify our notation we assume, however, that k = 1. The general case can be dealt
with, for example, by considering the new family of k compositions of the maps
of the original family.

For every w = ((s, js), (s+1, js+1), . . . , (t, jt)), w′ = ((s+1, js+1), . . . , (t, jt))
we have

|lI1,w − lI2,w| ≤ |f1,s,js(lI1,w′) − f1,s,js(lI2,w′)|
+ |f1,s,js(lI2,w′) − f2,s,js(lI2,w′)
≤ |lI1,w′ − lI2,w′ | + Const exp−δs

(7.5.1)

for some δ > 0 lower bound of the exponential convergence in the assumptions
of the theorem.

Thus for every w = ((m, jm), . . . , (n, jn)) we obtain for t = n, by induction
for s = n− 1, n− 2, . . . ,m,

|lI1,w) − lI2,w| ≤ Const exp−δm. (7.5.2)

For every j = 1, . . . , d we obtain a similar estimate with w replaced by w, (n+
1), j). We also obtain similar inequalities for the right ends.

As a result of all this we obtain
∣
∣
∣
∣
|I1,w,(n+1,j)|

|I1,w| − |I2,w,(n+1,j)|
|I1,w|

∣
∣
∣
∣ ≤ Constλ−(n−m)

1 exp−δm.

Now, iterating by fν,m−1, fν,m−2, . . . , fν,0 for ν = 1, 2 hardly changes the
proportions, as we are already in a small scale; more precisely we get
∣
∣
∣
∣
Ij0,...,jn,j(F1)
Ij0,...,jn(F1)

− Ij0,...,jn,j(F2)
Ij0,...,jn(F2)

∣
∣
∣
∣ ≤ Const

(
(λ−(n−m)

1 exp−δm) + λ
(n−m)ε
2

)
.

(7.5.3)
The same holds for gaps in numerators, including ‘false’ gaps: that is, for

j = 0, . . . , d.
Now we pick m = (1 − κ)n, where κ is a constant such that 0 < κ < 1 and

κ log λ−1
1 − (1 − κ)δ := ϑ < 0.

Then the bound in (7.5.3) is replaced by (expϑn) + λ
(εκ)n
2 , which converges

to 0 exponentially fast for n→ ∞.
So our theorem follows from Theorem 7.1.6 or, more precisely, from its variant

described in Remark 7.2.6. ♣



9780521438001c07 CUP/PUK February 17, 2010 14:58 Page-206

206 Cantor repellers in the line

We have also the following theorem.

Theorem 7.5.3. Let F = {fn,j : n = 0, 1, . . . , j = 1, ..., d} be a Cantor set
generating family such that, for every j,

fn,j → f∞,j uniformly as n→ ∞.

Then the shift map on the Cantor set C(F ) extends C1+ε.

Proof. For any Cantor set generating family Φ, every w = (j0, . . . , jn), j ∈
{0, . . . , 2d}, we use the notation Aj(Φ, w) as in Definition 7.1.1, that is, for j
odd Aj(Φ, w) = Iwj′ (Φ)

Iw(Φ) , where j′ = j+1
2 . The similar definition is for j’s even

with gaps in the numerators. We are again in the situation of Remark 7.2.6,
including j = 0, d.

Consider, together with F , the family F ′ = {f ′n,j : n = 0, 1, . . . , j = 1, .., d},
where f ′n,j = fn+1,j . For every w = (j0, . . . , jn), j ∈ {0, . . . , 2d}, say j odd and
i ∈ {1, . . . , d}, we rewrite the definitions for clarity:

A(F, iw) =
|Iiwj′(F )|
|Iiw(F )| =

|f0,i ◦ f1,j0 ◦ · · · ◦ fn+1,jn ◦ fn+2,j(I)|
|f0,i ◦ f1,j0 ◦ · · · ◦ fn+1,jn(I)|

Aj(F ′, w) =
|f1,j0 ◦ · · · ◦ fn+1,jn ◦ fn+2,j(I)|

|f1,j0 ◦ · · · ◦ fn+1,jn(I)|
We have ∣

∣
∣
∣
Aj(F, iw)
Aj(F ′, w)

− 1
∣
∣
∣
∣ ≤ Const exp−δn

for some constant δ > 0 related to the distortion of f0,i on the interval f1,j0 ◦
· · · ◦ fn+1,jn(I).

So
|Aj(F, iw) −Aj(F ′, w)| ≤ Const exp−δn.

But
|Aj(F ′, w) −Aj(F,w)| ≤ Const exp−δn

for some δ′ > 0, because the pair of the families F, F ′ satisfies the assumptions
of Theorem 7.5.2.

Thus |Aj(F, iw) − Aj(F,w)| converge to 0 uniformly exponentially fast in
length of w. So we can apply Theorem 7.2.4, or more precisely the variant from
Remark 7.2.6. The proof of Theorem 7.5.3 is complete. ♣

7.6 Quadratic-like maps of the interval; an
application to Feigenbaum’s universality

We show here how to apply the material of Section 7.5 to study ‘attracting’
Cantor sets, which are closures of forward orbits of critical points, appearing for
Feigenbaum-like and more general so-called ‘infinitely renormalizable’ unimodal
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maps of the interval. The original map on such a Cantor set is not expanding at
all, but one can view these sets almost as expanding repellers by constructing
for them so-called generating families of expanding maps.

We finish this chapter with a beautiful application: Feigenbaum’s First Uni-
versality. It was numerically discovered by M. J. Feigenbaum and independently
by P. Coullet and Ch. Tresser.

Rigorously, this universality has been explained ‘locally’ by O. Lanford, who
proved the existence of the renormalization operator fixed point, and later on
for large classes of maps by D. Sullivan, who applied quasi-conformal maps tech-
niques, and then, more completely, by several other mathematicians, particularly
the fundamental contribution by C. McMullen [McMullen 1996]. We refer the
reader to Sullivan’s breakthrough paper [Sullivan 1991]: ‘Bounds, quadratic dif-
ferentials and renormalization conjectures’. Fortunately a small piece of this can
be easily explained with the use of the elementary Theorems 7.5.2 and 7.5.3; we
shall explain it below.

Let us start with a standard example called a logistic family (Figure 7.2):
the one-parameter family of maps of the interval I = [0, 1] into itself fλ(x) =
λx(1 − x). For 1 < λ < 3 there are two fixed points in [0, 1], a source at 0 i.e.
|f ′λ(0)| > 1 and a sink xλ, |f ′λ(xλ)| < 1, attracting all the points except 0,1 under
iterations of fλ. For λ = 3 this sink changes to a neutral fixed point, namely
|f ′λ(xλ)| = 1, or more precisely f ′λ(xλ) = −1. For λ growing beyond 3 this point
changes to a source, and nearby an attracting periodic orbit of period 2 arises.
f2 maps the interval I0 = [x′λ, xλ] into itself (x′λ denotes the point symmetric to
xλ with respect to the critical point 1/2).

If λ continues to grow, the left point of this period 2 orbit crosses 1/2, and the
derivative of f2

λ at this point changes from positive to negative until it reaches
the value −1. The periodic orbit starts to repel, and an attracting periodic orbit
of period 4 arises. For f2 on I0 this means the same bifurcation as before: a
periodic orbit of period 2 arises. The respective interval containing 1/2 invari-
ant for f4 will be denoted by I2, and soon. Denote the values of λ where the

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 7.2 Logistic family.
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λ1 λ2 λ∞

Figure 7.3 Bifurcation diagram.

consecutive orbits of periods 2n arise, by λn. For the limit parameter λ∞ =
limn→∞ λn there are periodic orbits of all periods 2n, all of them sources: see
Figure 7.3.

In effect, for λ∞ we obtain a Cantor set C(fλ∞) =
⋂∞
n=1

⋃2n−1
k=0 fkλ∞(In).

This Cantor set attracts all points except the above-mentioned sources. It
contains the critical point 1/2, and is precisely the closure of its forward
orbit.

Instead of the quadratic polynomials one can consider a quite arbitrary one-
parameter family gλ of C2 maps of the unit interval with one critical point
where the second derivative does not vanish, and such that gλ(0) = gλ(1) = 0 so
that, roughly, the parameter raises the graph. Again, one obtains period doubling
bifurcations, and for the limit parameter λ∞(g) one obtains the same topological
picture as above. We say the map is Feigenbaum-like. Feigenbaum’s and Coullet,
Tresser’s numerical discovery was that the deeper ratios in the Cantor set the
weaker dependence of the ratios on the family, and that the ratios at the critical
point stabilize with the growing magnifications. Moreover, the limit quantities
do not depend on g.

Another numerical discovery, which will not be discussed here (see for exam-
ple [Avila, Lyubich & de Melo 2003] for a rigorous explanation) was that λn/λn+1

has a limit as n → ∞. Moreover, this limit does not depend on g. We call it
Feigenbaum’s Second Universality.

Let us pass to the description of a general situation:

Definition 7.6.1. For any closed interval [a, b] we call a mapping f : [a, b] →
[a, b] smooth quadratic-like if f(a) = f(b) = a and f can be decomposed into
f = Q ◦h, where Q is a quadratic polynomial and h is a smooth diffeomorphism
of I. The word ‘smooth’ will be applied below for C2. Here we allow a > b:
in such a case the interval [b, a] is under consideration, of course; its right end
rather than the left is a fixed point, and the map has a minimum at the critical
point. If a = 0, b = 1 we say that f is normalized.
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We call f infinitely renormalizable if there exists a decreasing sequence of
intervals In, n = 0, 1, 2, . . . all containing the critical point cf and a sequence of
integers dn ≥ 2 such that for every n all f j(In) have pairwise disjoint interiors
for j = 0, 1, . . . ,Dn − 1, where Dn :=

∏
i=0,...,n di and fDn(In) maps In into

itself.
We call the numbers dn and the order in which the intervals f j(In) are placed

in I a combinatorics of f . Finally, we say that an infinitely renormalizable f
has bounded combinatorics if all dn are uniformly bounded. We write C(f) =
⋂∞
n=0

⋃Dn−1
k=0 fk(In).

It may happen that the maps fDn on In are not quadratic-like because the
assumption f(a) = f(b) = a is not satisfied.

Consider, however, an arbitrary f : [a, b] → [a, b] that is smooth quadratic-
like and renormalizable, which means that there exists I0 ⊂ [a, b] containing cf
and an integer d > 1 such that all f j(I0) have pairwise disjoint interiors for
j = 0, 1, . . . , d − 1 and fd(I0) ⊂ I0. Then I0 can be extended to an interval I ′0
for which all f j(I ′0) still have pairwise disjoint interiors, fd maps I ′0 into itself,
and fd on I ′0 is quadratic-like. The proof is not hard: the reader can do it as an
exercise, or look into [Collet & Eckmann 1980]. The periodic end of I ′0 is called
a restrictive central point.

We define the rescaling map Rf as an affine map that transforms I ′0 onto I,
and

f1 := Rf ◦ fd ◦R−1
f (7.6.1)

is normalized. We call the operator f �→ f1 the renormalization operator, and
denote it by R. (Caution: d, I ′0 and so R have not been uniquely defined, but
this will not affect the correctness of the considerations that follow; in particular,
in the infinitely renormalizable case, C(f) does not depend on these objects, as
the closure of the forward orbit of the critical point: see the remark ending the
proof of Theorem 7.6.3.)

Now, for an arbitrary smooth quadratic-like map f of I = [0, 1], infinitely
renormalizable with a bounded combinatorics, we consider a sequence of maps
fn defined by induction: f0 = f , fn = R(fn−1). The domain I ′0 for the renormal-
ization of fn is denoted by In, and we have the affine rescaling map Rn := Rfn

from In onto I and fn+1 = R(fn) = Rn ◦ fdn ◦R−1
n .

Now we can formulate the fundamental Sullivan–McMullen’s Theorem.

Theorem 7.6.2. Suppose f and g are two C2-quadratic-like maps of I =
[0, 1], both infinitely renormalizable, with the same bounded combinatorics. Then
dist(Rfn

, Rgn
) → 0 as n → ∞. Moreover, both sequences fn and gn stay uni-

formly bounded as C1+ε-quadratic-like maps (that is, h’s and h−1’s in the Q ◦ h
decomposition stay uniformly bounded in C1+ε), and

distC0(fn, gn) → 0.

In the case where f, g are real-analytic, the convergence is exponentially fast,
even in the C0-topology in complex functions on a neighbourhood of I in C.
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The intuitive meaning of the above is that the larger the magnification of a
neighbourhood of 0 is, the more similar the respective iterates of f and g look.
The same geometry of the depths of the Cantor sets would mean that the similar
looks close to zero propagate to the Cantor sets.

Now we can fulfil our promise and, relying on the results of this section,
prove this propagation property. That is, relying on Theorem 7.6.2, we can prove
rigorously Feigenbaum’s First Universality.

Theorem 7.6.3. Suppose f and g are two C2-quadratic-like maps of I = [0, 1],
both infinitely renormalizable with the same bounded combinatorics. Suppose also
that the convergences in the assertion of Theorem 7.6.2 are exponential. Then
C(f) and C(g) are C1+ε-equivalent Cantor sets.

Proof. Related to f , we define a generating family (Definition 7.5.1) F =
{fn,j , n = 0, 1, . . . , j = 1, . . . , dn}. That is, we define

fn,j = f−(dn−j+1)
n ◦R−1

n , (7.6.2)

where each f
−(dn−j+1)
n means the branch leading to an interval containing

f j−1(In).
The C1+ε uniform boundedness of fn,j ’s follows immediately from the bound-

edness asserted in Theorem 7.6.2 if we know (see the next paragraph) that all
In’s have lengths bounded away from 0. Indeed, if we denote fn = Q ◦ hn, we
have

fn,j = h−1
n ◦Q−1 ◦ · · · ◦ h−1

n ◦Q−1 ◦R−1
n

with all h−1
n uniformly bounded in C1+ε and Q−1 as well, because their

domains are far from the critical value f(cfn
). Also, |(Rn)′|’s are uniformly

bounded.
Now fdn

n (In) ⊂ In with In arbitrarily small and dn’s uniformly bounded,
together with the uniform boundedness of fn’s asserted in Theorem 7.6.2, would
result in the existence of a periodic sink attracting cf . Indeed, |(fn)′| would be
small on In, as |(fdn−1)′| is bounded on fn(In) by a constant not depending on
n. So |(fdn)′| on In would be small: hence its graph has a unique intersection
with the diagonal, which is a sink attracting In.

This is almost the end of the proof, because we construct the analo-
gous generating family G for g and refer to Theorem 7.1.6. The convergence
assumed there can be proved similarly to the way we proved the uniform C1+ε-
boundedness above. This also concerns the assumptions involving λ1 and λ2 in
the definition of the generating families. Still, however, some points should be
explained:

1. For each n the intervals fn,j(I) in Definition 7.5.1 were ordered in R accord-
ing to the order < in the integers j. Here this is not so. Moreover, fn,j here
do not all preserve the orientation in R. Finally, the dn’s are not all equal to
the same integer d. Fortunately, all done we have before is also correct in this
situation.
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2. The intervals fn,j(I) may have common ends here: in particular, the
assumption about gaps in the definition of the generating family may not be satis-
fied. In this case we replace I by a slightly smaller interval and restrict all fn,j ’s to
it. We can do this because for each J = fn,j(I) we have dist(C(f), ends of J) >
Const > 0. This is so because for every normalized renormalizable f , if f(cf )
is close to 1, then a very large d is needed in order to have fd(cf ) ∈ I0 unless
sup |f ′| is very large. But all dn are uniformly bounded in our infinitely renormal-
izable case, and the derivatives |(fn)′| are uniformly bounded. So, for every n,
fn(cfn

) is not very close to 1, f2
n(cfn

) is not very close to 0, and C(fn) ⊂ [fn(cfn
),

f2
n(cfn

)].
We managed to present C(f) and C(g) as subsets of Cantor sets C(F ), C(G)

for generating families. But, by the construction, every interval Ij0,...,jn(F ) in
the definition of C(F ) contains an interval of the form f j(In), 0 ≤ j < Dn:
hence every component of C(F ) contains a component of C(f). So C(f) = C(F )
and similarly C(g) = C(G). Hence C(f) and C(g) are Cantor sets indeed,
and everything we have proved concerning C(F ), C(G) concerns them as well.
Observe that, by the definition, every f j(In) contains f j(cf ): hence C(f)
can be defined in the intrinsic way, independently of the choice of In’s, as
cl
⋃∞
j=0 f

j(cf ).
The following specification of Theorems 7.6.2 and 7.6.3 holds.

Theorem 7.6.4. Let f be a C2 quadratic-like map of [0, 1], infinitely renormal-
izable with a bounded combinatorics. Suppose it is periodic: that is, that for some
n2 > n1 ≥ 0 fn1 and fn2 have the same combinatorics. Then there exists g, a
real-analytic quadratic-like map of [0, 1], such that for t := n2 − n1, Rt(g) = g
and distC0(fn, gn−n1) → 0 as n→ ∞.

If the convergence is exponential, then the shift map on C(f tn1
) extends

C1+ε.

On the proof. The existence of g is another fundamental result in this
theory, which we shall not prove in this book. (The first, computer-assisted, proof
was provided by O. Lanford [Lanford 1982] for d = 2, i.e. for the Feigenbaum-
like class.) Then the convergence follows from Theorem 6.4.29. Indeed, from
Rt(g) = g we obtain the convergence of (f tn1

)n,j to g. If the convergences are
exponential (which is the case if f is real-analytic) then the shift map extends
C1+ε because of Theorem 7.5.3. Note that instead of C(f) we consider C(f tn1

).
This is so because

dn1+t−1∏

j=dn1

dj =
dn1+2t−1∏

j=dn1+t

dj = · · · := d,

and it makes sense to speak about the shift map on Σd. For f itself, if we denote
χ∞
j=0{1, . . . , dj} by Σ(d0, d1, . . . ), we can speak only about the left-side shift map

from Σ(d0, d1, . . . ) to Σ(d1, . . . ).
Observe again that the embedding of Σd into I does not need to preserve the

order, but this does not affect the validity of Theorem 7.5.3.
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The set C(f) is presented as the union of D =
∏n1−1
j=0 dj Cantor sets, which

are embeddings of Σd, of the form f j(C(f tn1
)), j = 0, . . . , n1−1, each of which has

an exponentially determined geometry and Hölder continuous scaling function.

Remarks 7.6.5. (1) Observe for f being any smooth quadratic-like infinitely
renormalizable map of I and the corresponding generating family F , that as
some fn,j may change the orientation, the corresponding intervals Ij0,...,jn,j(F )
have their order in Ij0,...,jn(F ) the same as or opposite to that of the Ij(F )’s in
I, according to whether there is an even or odd number of ji, i = 0, . . . , n such
that fi,ji changes the orientation.

(2) Recall that C(f) has a 1-to-1 coding h : Σ(d0, d1, . . . ) → C(f), defined
by h(j0, j1, . . . ) =

⋂
n→∞ Ij0,...,jn(F ). Let us write here j = 0, . . . , dn − 1 rather

than j = 1, . . . , dn. Then f yields on Σ(d0, d1, . . . ) the map Φ(f)(j0, j1, . . . ) =
(0, 0, . . . , ji + 1, ji+1, . . . ), where i is the first integer such that ji �= di − 1, or
Φ(f)(j0, j1, . . . ) = (0, 0, 0 . . . ) if for all i we have ji = di − 1. Φ is sometimes
called the adding machine: compare Example 1.4. If all dn = p the map Φ is
just the adding of the unity in the group of p-adic numbers. For dn different
we have the group structure on Σ(d0, d1, . . . ) of the inverse limit of the system
· · · → Zd2d1d0 → Zd1d0 → Zd0 , and Φ(f) is also the adding of the unity.

If we denote the shift map from Σ(d0, d1, . . . ) to Σ(d1, . . . ) by s, we obtain
the equality

Φ(f1) ◦ s = s ◦ Φ(f)d0

(the indexing in (7.6.2) has been adjusted to ensure this). On I0 this corresponds
to (7.6.1).

(3) The combinatorics of an infinitely renormalizable f is determined by the
so-called kneading sequence K(f), defined as a sequence of letters L and R, where
n = 1, 2, . . . such that at the n’th place we have L or R depending on whether
fn(cf ) is left or right of cf in R (we leave this as an exercise for the reader). So
in Theorems 7.6.2–7.6.4 we can write ‘the same kneading sequences’, instead of
‘the same combinatorics’.

Also, the property renormalizable (and hence infinitely renormalizable) can
be inferred from the look of the kneading sequence. A renormalization with I0
and fd(I0) ⊂ I0 implies, of course, that the kneading sequence is of the form
AB1AB2AB3 . . . , where each Bi is L or R, and A is a block built from L’s and
R’s of length d− 1. The converse is also true; the proof is related to the proof of
the existence of the restrictive central point. One can do this as an exercise, or
look into [Collet & Eckmann 1980].

(4) Let us now return to the example fλ∞ , or more generally gλ∞(g),
mentioned at the beginning of this section. We have dn = 2 for all n (Rn
change orientation). So we can apply Theorems 7.6.3 and 7.6.4, which explain
Feigenbaum’s and Coullet-Tresser’s discoveries.

Observe that gλ∞(g) is exceptional among smooth quadratic-like infinitely
renormalizable maps: except for a sequence of periodic sources, every point is
attracted to C(f). The topological entropy is equal to 0. For every infinitely
renormalizable map with a different kneading sequence there is an invariant
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repelling Cantor set (in fact, some of its points can be blown up to intervals).
Topological entropy is positive on it. One says that such a map is already chaotic,
whereas gλ∞(g) is on the boundary of chaos.

Exercises

7.1. For maps as in Definition 7.6.1, prove the existence of the restrictive central
point.

Hint: Consider the so-called Guckenheimer set,

Gd ={x : distf (fd(x), cf ) < distf (x, cf ) and

distf (f j(x), cf ) > distf (x, cf ) for j = 1, . . . , d− 1},
where distf (x, y) = |h(x) − h(y)| in the decomposition f = Q ◦ h.
7.2. Suppose f and g are smooth quadratic-like maps of I = [0, 1], both infinitely
renormalizable, with the same bounded combinatorics as in Theorem 7.6.2. Using
the fact asserted there that distC0(fn, gn) → 0, but not assuming that the conver-
gence is exponential, prove that the standard conjugacy φ between C(f) and C(g)
is 1-quasi-symmetric, or more precisely that for every x, y, z ∈ C(f), x > y > z,
|x−y|/|y−z| < Const we have |φ(x)−φ(y)|/|φ(y)−φ(z)|

|x−y|/|y−z| → 1 as x−z → 0. In partic-
ular, if the scaling function S(f) exists for f , then it exists for g and S(f) = S(g),
for the scaling functions for the related generating families.

Hint: One can modify the proof of Theorem 7.5.2. Instead of exp−δs in
(7.5.1) one has some an converging to 0 as n→ ∞. Then in (7.5.2) we estimate
by
∑n
s=m as and then consider m = m(n) so that n−m→ ∞ but

∑n
s=m as → 0

as n→ ∞.
7.3. Let f and g be unimodal maps of the interval [0, 1] (f unimodal means
continuous, having a unique critical point c, being strictly increasing to the left
of it and strictly decreasing to the right of it, f(c) = 1), having no interval
J on which all iterates are monotone. Prove that f and g are topologically
conjugate if and only if they have the same kneading sequences (see Remark 7.6.5,
item 3.)
7.4. Prove that for f ∈ C3 a unimodal map of the interval with no attracting
(from both or one side) periodic orbit, if the Schwarzian derivative Sf is negative,
then there are no homtervals, that is, intervals on which all iterates of f are
monotone.

Hint: First prove that there is no homterval whose forward orbit is disjoint
with a neighbourhood of the critical point cf (A. Schwartz’s Lemma. One does
not use Sf < 0 here; C1+1 is sufficient.)

Next use the property implied by Sf < 0, that for all n and every interval J
on which (fn)′ is non-zero, (fn)′ is monotone on J .

For details see for example [Collet & Eckmann 1980].
7.5. Prove the Cr+ε version of the so-called Folklore Theorem, saying that if
0 = a0 < a1 < · · · < an−1 < an = 1 and for each i = 0, . . . , n − 1, fi :
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[ai, ai+1] → [0, 1] onto, each fi is Cr+ε for r ≥ 2, 0 ≤ ε ≤ 1, r + ε > 2 and
|f ′i | ≥ Const > 1, then for f defined as fi on each (ai, ai+1), there exists an
f invariant probability μ equivalent to the Lebesgue measure, with the density
bounded away from 0, of class Cr−1+ε.

Formulate and prove an analogous version for Cantor sets h(Σd) with ‘shifts’
h ◦ s ◦ h−1, as in Section 7.2.

Hint: The existence of μ follows from the Hölder property of the potential
function φ = − log |f ′|: see Chapter 5. μ is the invariant Gibbs measure. Its
density is limn→∞ Lnφ(11)(x) =

∑
y∈f−n(x) |(fn)′(y)|−1. Each summand consid-

ered along an infinite backward branch, after rescaling, converges in Cr−1+ε: see
Theorem 7.4.2, smoothness of Gj .

A slightly different proof can be found for example in [Boyarsky & Góra
1997].
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8

Fractal dimensions

In the first section of this chapter we provide a more complete treatment of outer
measure, begun in Chapter 2. The rest of the chapter is devoted to presentation
of basic definitions and facts related to Hausdorff and packing measures, Haus-
dorff and packing dimensions of sets and measures, and ball (or box) -counting
dimensions.

8.1 Outer measures

In Section 2.1 we introduced the abstract notion of measure. At the beginning
of this section we want to show how to construct measures starting with func-
tions of sets called outer measures, which are required to satisfy much weaker
conditions. Our exposition of this material is brief, and the reader should find
its complete treatment in all handbooks of geometric measure theory (see for
example [Rogers 1970], [Falconer 1985], [Falconer 1997], [Mattila 1995] or [Pesin
1997]). This approach has already been applied in Chapter 2: see Theorem 2.7.2.

Definition 8.1.1. An outer measure on a set X is a function μ defined on all
subsets of X taking values in [0,∞] such that

μ(∅) = 0, (8.1.1)
μ(A) ≤ μ(B) if A ⊂ B (8.1.2)

and

μ
( ∞⋃

n=1

An

)
≤

∞∑

n=1

μ(An) (8.1.3)

for any countable family {An : n = 1, 2, . . .} of subsets of X.
A subset A of X is called μ-measurable or simply measurable with respect to

the outer measure μ if and only if

μ(B) ≥ μ(B ∩A) + μ(B \A) (8.1.4)

216
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for all sets B ⊂ X. Check that the opposite inequality follows immediately from
(8.1.3). Check also that if μ(A) = 0 then A is μ-measurable.

Theorem 8.1.2. If μ is an outer measure on X, then the family F of all
μ-measurable sets is a σ-algebra, and the restriction of μ to F is a measure.

Proof. Obviously X ∈ F . By symmetry of (8.1.4), A ∈ F if and only if Ac ∈ F .
So the conditions (2.1.1) and (2.1.2) of the definition of σ-algebra are satisfied.
To check the condition (2.1.3) that F is closed under countable union, suppose
that A1, A2, . . . ∈ F and let B ⊂ X be any set. Applying (8.1.4) in turn to
A1, A2, . . . we get for all k ≥ 1

μ(B) ≥ μ(B ∩A1) + μ(B \A1)
≥ μ(B ∩A1) + μ((B \A1) ∩A2) + μ(B \A1 \A2)
≥ . . .

≥
k∑

j=1

μ
((
B \

j−1⋃

i=1

Ai

)
∩Aj

)
+ μ

(
B \

k⋃

j=1

Aj
)

≥
k∑

j=1

μ
((
B \

j−1⋃

i=1

Ai

)
∩Aj

)
+ μ

(
B \

∞⋃

j=1

Aj
)

and therefore

μ(B) ≥
∞∑

j=1

μ
((
B \

j−1⋃

i=1

Ai

)
∩Aj

)
+ μ

(
B \

∞⋃

j=1

Aj
)
. (8.1.5)

Since

B ∩
∞⋃

j=1

Aj =
∞⋃

j=1

(
B \

j−1⋃

i=1

Ai

)
∩Aj ,

using (8.1.3) we thus get

μ(B) ≥ μ
( ∞⋃

j=1

(
B \

j−1⋃

i=1

Ai

)
∩Aj

)
+ μ

(
B \

∞⋃

j=1

Aj
)
.

Hence condition (2.1.3) is also satisfied, and F is a σ-algebra. To see that μ is
a measure on F , that is, that condition (2.1.4) is satisfied, consider mutually
disjoint sets A1, A2, . . . ∈ F and apply (8.1.5) to B =

⋃∞
j=1Aj . We get

μ
( ∞⋃

j=1

Aj

)
≥

∞∑

j=1

μ(Aj).

Combining this with (8.1.3) we conclude that μ is a measure on F . ♣
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Now, let (X, ρ) be a metric space. An outer measure μ on X is said to be a
metric outer measure if

μ(A ∪B) = μ(A) + μ(B) (8.1.6)

for all positively separated sets A,B ⊂ X: that is, satisfying the following
condition

ρ(A,B) = inf{ρ(x, y) : x ∈ A, y ∈ B} > 0.

We assume the convention that ρ(A, ∅) = ρ(∅, A) = ∞.
Recall that the Borel σ-algebra on X is the σ-algebra generated by open, or

equivalently closed, sets. We want to show that if μ is a metric outer measure
then the family of all μ-measurable sets contains this σ-algebra. The proof is
based on the following version of Carathéodory’s Lemma.

Lemma 8.1.3. Let μ be a metric outer measure on (X, ρ). Let {An : n =
1, 2, . . .} be an increasing sequence of subsets of X, and denote A =

⋃∞
n=1An. If

ρ(An, A \An+1) > 0 for all n ≥ 1, then μ(A) = limn→∞ μ(An).

Proof. By (8.1.2) it is sufficient to show that

μ(A) ≤ lim
n→∞μ(An). (8.1.7)

If limn→∞ μ(An) = ∞, there is nothing to prove. So, suppose that

lim
n→∞μ(An) = sup

n
μ(An) <∞. (8.1.8)

Let B1 = A1 and Bn = An \ An−1 for n ≥ 2. If n ≥ m + 2, then Bm ⊂ Am
and Bn ⊂ A \An−1 ⊂ A \Am+1. Thus Bm and Bn are positively separated, and
applying (8.1.6) we get for every j ≥ 1

μ
( j⋃

i=1

B2i−1

)
=

j∑

i=1

μ(B2i−1) and μ
( j⋃

i=1

B2i

)
=

j∑

i=1

μ(B2i). (8.1.9)

We also have for every n ≥ 1

μ(A) = μ
( ∞⋃

k=n

Ak

)
= μ

(
An ∪

∞⋃

k=n+1

Bk

)

≤ μ(An) +
∞∑

k=n+1

μ(Bk) ≤ lim
l→∞

μ(Al) +
∞∑

k=n+1

μ(Bk). (8.1.10)

Since the sets
⋃j
i=1B2i−1 and

⋃j
i=1B2i appearing in (8.1.9) are both contained

in A2j , it follows from (8.1.8) and (8.1.9) that the series
∑∞
k=1 μ(Bk) converges.

Therefore (8.1.7) follows immediately from (8.1.10). The proof is complete. ♣
Theorem 8.1.4. If μ is a metric outer measure on (X, ρ), then all Borel subsets
of X are μ-measurable.
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Proof. Since the Borel sets form the least σ-algebra containing all closed subsets
of X, it follows from Theorem 8.1.2 that it is enough to check (8.1.4) for every
non-empty closed set A ⊂ X and every B ⊂ X. For all n ≥ 1, let Bn = {x ∈
B \A : ρ(x,A) ≥ 1/n}. Then ρ(B ∩A,Bn) ≥ 1/n, and by (8.1.6)

μ(B ∩A) + μ(Bn) = μ((B ∩A) ∪Bn) ≤ μ(B). (8.1.11)

The sequence {Bn}∞n=1 is increasing and, since A is closed, B \A =
⋃∞
n=1Bn. In

order to apply Lemma 8.1.3 we shall show that

ρ(Bn, (B \A) \Bn+1) > 0

for all n ≥ 1. And indeed, if x ∈ (B \ A) \ Bn+1, then there exists z ∈ A with
ρ(x, z) < 1/(n+ 1). Thus, if y ∈ Bn, then

ρ(x, y) ≥ ρ(y, z) − ρ(x, z) > 1/n− 1/(n+ 1) =
1

n(n+ 1)
,

and consequently ρ(Bn, (B \ A) \ Bn+1) > 1/n(n + 1) > 0. Applying now
Lemma 8.1.3 with An = Bn shows that μ(B \A) = limn→∞ μ(Bn). Thus (8.1.4)
follows from (8.1.11). The proof is complete. ♣

8.2 Hausdorff measures

Let φ : [0,∞) → [0,∞) be a non-decreasing function continuous at 0, positive
on (0,∞), and such that φ(0) = 0. Let (X, ρ) be a metric space. For every δ > 0
define

Λδφ(A) = inf
{ ∞∑

i=1

φ(diam(Ui))
}
, (8.2.1)

where the infimum is taken over all countable covers {Ui : i = 1, 2, . . .} of A of
diameter not exceeding δ. Conditions (8.1.1) and (8.1.2) are obviously satisfied
with μ = Λδφ. To check (8.1.3) let {An : n = 1, 2, . . .} be a countable family of
subsets of X. Given ε > 0 for every n ≥ 1 we can find a countable cover {Uni :
i = 1, 2, . . .} of An of diameter not exceeding δ such that

∑∞
i=1 φ(diam(Uni )) ≤

Λδφ(An) + ε/2n. Then the family {Uni : n ≥ 1, i ≥ 1} covers
⋃∞
n=1An, and

Λδφ
( ∞⋃

n=1

An

)
≤

∞∑

n=1

∞∑

i=1

φ(diam(Uni )) ≤
∞∑

n=1

Λδφ(An) + ε.

Thus, letting ε→ 0, (8.1.3) follows, proving that Λδφ is an outer measure. Define

Λφ(A) = lim
δ→0

Λδφ(A) = sup
δ>0

Λδφ(A). (8.2.2)

The limit exists, but may be infinite, since Λδφ(A) increases as δ decreases. Since
all Λδφ are outer measures, the same argument also shows that Λφ is an outer
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measure. Moreover, Λφ turns out to be a metric outer measure, since if A and B
are two positively separated sets in X, then no set of diameter less than ρ(A,B)
can intersect both A and B. Consequently

Λδφ(A ∪B) = Λδφ(A) + Λδφ(B)

for all δ < ρ(A,B), and letting δ → 0 we get the same formula for Λφ, which is
just (8.1.6) with μ = Λφ. The metric outer measure Λφ is called the Hausdorff
outer measure associated to the function φ. Its restriction to the σ-algebra of
Λφ-measurable sets, which by Theorem 8.1.4 includes all the Borel sets, is called
the Hausdorff measure associated to the function φ.

As an immediate consequence of the definition of the Hausdorff measure and
the properties of the function φ, we get the following.

Proposition 8.2.1. The Hausdorff measure Λφ is non-atomic.

Remark 8.2.2. A particular role is played by functions φ of the form t �→ tα,
t, α > 0, and in this case the corresponding outer measures are denoted by Λδα
and Λα.

Remark 8.2.3. Note that if φ1 is another function, but such that φ1 and φ
restricted to an interval [0, ε), ε > 0, are equal, then the outer measures Λφ1 and
Λφ are also equal. So, in fact, it is sufficient to define the function φ only on an
arbitrarily small interval [0, ε).

Remark 8.2.4. Note that we get the same values for Λδφ(A), and consequently
also for Λφ(A), if the infimum in (8.2.1) is taken only over covers consisting of
sets contained in A. This means that the Hausdorff outer measure Λφ(A) of A
is its intrinsic property: that is, it does not depend on which space contains the
set A. If we treated A as the metric space (A, ρ|A) with the metric ρ|A induced
from ρ, we would get the same value for the Hausdorff outer measure.

If, however, we took the infimum in (8.2.1) only over covers consisting of
balls, we could get a different ‘Hausdorff measure’ which (depending on φ) need
not even be equivalent to the Hausdorff measure just defined. To ensure this last
property φ is from now on assumed to satisfy the following condition.

There exists a function C : (0,∞) → [1,∞) such that, for every a ∈ (0,∞)
and every t > 0 sufficiently small (depending on a),

C(a)−1φ(t) ≤ φ(at) ≤ C(a)φ(t). (8.2.3)

Since (ar)t = atrt, all functions φ of the form r �→ rt, considered in
Remark 7.2.2, satisfy (8.2.3) with C(a) = at. Check that all functions
r �→ rt exp(c

√
log 1/r log log log 1/r, c ≥ 0 also satisfy (8.2.3) with a suitable

function C.

Definition 8.2.5. A countable collection {(xi, ri) : i = 1, 2, . . .} of pairs
(xi, ri) ∈ X × (0,∞) is said to cover a subset A of X if A ⊂ ⋃∞

i=1B(xi, ri),
and is said to be centred at the set A if xi ∈ A for all i = 1, 2, . . .. The radius
of this collection is defined as supi ri, and its diameter as the diameter of the
family {B(xi, ri) : i = 1, 2, . . .}.



9780521438001c08 CUP/PUK February 8, 2010 15:06 Page-221

8.2 Hausdorff measures 221

For every A ⊂ X and every r > 0 let

ΛBrφ (A) = inf
{ ∞∑

i=1

φ(ri)
}
, (8.2.4)

where the infimum is taken over all collections {(xi, ri) : i = 1, 2, . . .} centred at
the set A, covering A and of radii not exceeding r. Let

ΛBφ (A) = lim
r→0

ΛBrφ (A) = sup
r>0

ΛBrφ (A). (8.2.5)

The limit exists by the same argument as used for the limit in (8.2.2). We shall
prove the following.

Lemma 8.2.6. For every set A ⊂ X,

1 ≤ Λφ(A)
ΛBφ (A)

≤ C(2)

Proof. Since the diameter of any ball does not exceed its double radius, since the
diameter of any collection {(xi, ri) : i = 1, 2, . . .} also does not exceed its double
radius, and since the function φ is non-decreasing and satisfies (8.2.3), we see
that, for every r > 0 small enough,

∞∑

i=1

φ(diam(B(xi, ri))) ≤
∞∑

i=1

φ(2ri) ≤ C(2)
∞∑

i=1

φ(ri),

and therefore Λ2r
φ (A) ≤ C(2)ΛBrφ (A). Thus, letting r → 0,

Λφ(A) ≤ C(2)ΛBφ (A). (8.2.6)

On the other hand, let {Ui : i = 1, 2, . . .} be a countable cover of A consisting of
subsets of A. For every i ≥ 1 choose xi ∈ Ui, and put ri = diam(Ui). Then the
collection {(xi, ri) : i = 1, 2, . . .} covers A, is centred at A, and

∞∑

i=1

φ(ri) =
∞∑

i=1

φ(diam(Ui)),

which implies that ΛBδφ (A) ≤ Λδφ(A) for every δ > 0. Thus ΛBφ (A) ≤ Λφ(A),
which combined with (8.2.6) completes the proof. ♣
Remark 8.2.7. The function of sets ΛBφ need not be an outer measure, since
condition (8.1.2) need not be satisfied. Since we shall never be interested in
exact computation of a Hausdorff measure, only in establishing its positiveness
or finiteness, or in comparing the ratio of its value with some other quantities
up to bounded constants, we shall be dealing mostly with ΛBδφ and ΛBφ , always
using the symbols Λδφ(A) and Λφ(A).
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8.3 Packing measures

As in the previous section, let φ : [0,∞) → [0,∞) be a non-decreasing function
such that φ(0) = 0, and let (X, ρ) be a metric space. A collection {(xi, ri) : i =
1, 2, . . .} centred at a set A ⊂ X is said to be a packing of A if and only if, for
any pair i = j,

ρ(xi, xj) ≥ ri + rj .

This property is not generally equivalent to the requirement that all the balls
B(xi, ri) be mutually disjoint. It is obviously so if X is a Euclidean space. For
every A ⊂ X and every r > 0 let

Π∗r
φ (A) = sup

{ ∞∑

i=1

φ(ri)
}
, (8.3.1)

where the supremum is taken over all packings {(xi, ri) : i = 1, 2, . . .} of A of
radius not exceeding r. Let

Π∗
φ(A) = lim

r→0
Π∗r
φ (A) = inf

r>0
Π∗r
φ (A). (8.3.2)

The limit exists since Π∗r
φ (A) decreases as r decreases. In contrast to ΛBφ , the

function Π∗
φ satisfies condition (8.1.2), but it also need not be an outer measure,

since this time condition (8.1.3) need not be satisfied. To obtain an outer measure
we put

Πφ(A) = inf
{∑

Π∗
φ(Ai)

}
, (8.3.3)

where the supremum is taken over all covers {Ai} of A. The reader can check
easily, with arguments similar to the case of Hausdorff measures, that Πφ is
already an outer measure and, what is more, a metric outer measure on X. It will
be called the outer packing measure associated to the function φ. Its restriction
to the σ-algebra of Πφ-measurable sets, which by Theorem 8.1.4 includes all the
Borel sets, will be called the packing measure associated to the function φ.

Proposition 8.3.1. For every set A ⊂ X it holds that Λφ(A) ≤ C(2)Πφ(A).

Proof. First we shall show that, for every set A ⊂ X and every r > 0,

Λ2r
φ (A) ≤ C(2)Π∗r

φ (A) (8.3.4)

Indeed, if there is no finite maximal (in the sense of inclusion) packing of the set
A of the form {(xi, r)}, then for every k ≥ 1 there exists a packing {(xi, r) : i =
1, . . . , k} of A, and therefore Π∗r

φ (A) ≥∑k
i=1 φ(r) = kφ(r). Since φ(r) > 0, this

implies that Π∗r
φ (A) = ∞, and (8.3.4) holds. Otherwise, let {(xi, r) : i = 1, . . . , l}

be a maximal packing of A. Then the collection {(xi, 2r) : i = 1, . . . , l} covers A,
and therefore

Λ2r
φ (A) ≤

l∑

i=1

φ(2r) ≤ C(2)lφ(r) ≤ C(2)Π∗r
φ (A).
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That is, (8.3.4) is satisfied. Thus, letting r → 0, we get

Λφ(A) ≤ C(2)Π∗
φ(A). (8.3.5)

So, if {An}n≥1 is a countable cover of A, then

Λφ(A) ≤
∞∑

n=1

Λφ(Ai) ≤ C(2)
∞∑

n=1

Π∗
φ(Ai).

Hence, applying (8.3.3), the lemma follows. ♣

8.4 Dimensions

As in the two previous sections, let (X, ρ) be a metric space. Recall (compare
Remark 8.2.2) that Λt, t > 0, is the Hausdorff outer measure on X associated to
the function r �→ rt, and all Λδt are of corresponding meaning. Fix A ⊂ X. Since
for every 0 < δ ≤ 1 the function t �→ Λδt (A) is non-increasing, so is the function
t→ Λt(A). Furthermore, if s < t, then for every 0 < δ

Λδs(A) ≥ δs−tΛδt (A),

which implies that, if Λt(A) is positive, then Λs(A) is infinite. Thus there is a
unique value, HD(A), called the Hausdorff dimension of A, such that

Λt(A) =

{
∞ if 0 ≤ t < HD(A)
0 if HD(A) < t <∞ (8.4.1)

Note that, similar to Hausdorff measures (compare Remark 8.2.4), the Haus-
dorff dimension is consequently also an intrinsic property of sets, and does not
depend on their complements. The following is an immediate consequence of the
definitions of the Hausdorff dimension and the outer Hausdorff measures.

Theorem 8.4.1. The Hausdorff dimension is a monotonic function of sets: that
is, if A ⊂ B then HD(A) ≤ HD(B).

We shall prove the following.

Theorem 8.4.2. If {An}n≥1 is a countable family of subsets of X, then

HD(∪nAn) = sup
n
{HD(An)}.

Proof. Inequality HD(∪nAn) ≥ supn{HD(An)} is an immediate consequence of
Theorem 8.4.1. Thus, if supn{HD(An)} = ∞, there is nothing to prove. So,
suppose that s = supn{HD(An)} is finite, and consider an arbitrary t > s. In
view of (8.4.1), Λt(An) = 0 for every n ≥ 1, and therefore, since Λt is an outer
measure, Λt(∪nAn) = 0. Hence, by (8.4.1) again, HD(∪nAn) ≤ t. The proof is
complete. ♣
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As an immediate consequence of this theorem, Proposition 8.2.1 and formula
(8.4.1) we get the following.

Proposition 8.4.3. The Hausdorff dimension of any countable set is equal to 0.

In exactly the same way as the Hausdorff dimension HD, one can define the
packing∗ dimension PD∗ and packing dimension PD using respectively Π∗

t (A)
and Πt(A) instead of Λt(A). The reader can check easily that results analogous
to Theorem 8.4.1, Theorem 8.4.2 and Proposition 8.4.3 are also true in these
cases. As an immediate consequence of these definitions and Proposition 8.3.1
we get the following.

Lemma 8.4.4. HD(A) ≤ PD(A) ≤ PD∗(A) for every set A ⊂ X.

Now we shall define the third basic dimension – the ball-counting dimen-
sion, frequently also called the box-counting dimension, Minkowski dimension
or (limit) capacity. Let A be an arbitrary subset of the metric space (X, ρ). We
first need the following.

Definition 8.4.5. For every r > 0 consider the family of all collections {(xi, ri)}
(see Definition 8.2.5) of radius not exceeding r, which cover A and are centred
at A. Put N(A, r) = ∞ if this family is empty. Otherwise define N(A, r) to be
the minimum of all cardinalities of elements of this family. Note that one gets
the same number if one considers the subfamily of collections of radius exactly
r and even only its subfamily of collections of the form {(xi, r)}.

Now the lower ball-counting dimension and upper ball-counting dimension of
A are defined respectively by

BD(A) = lim inf
r→0

logN(A, r)
− log r

and BD(A) = lim sup
r→0

logN(A, r)
− log r

. (8.4.2)

If BD(A) = BD(A), the common value is called simply the ball-counting dimen-
sion, and is denoted by BD(A). The reader can easily prove the next theorem,
which explains the reason for the name ‘box-counting dimension’. The other
names will not be discussed here.

Proposition 8.4.6. Fix n ≥ 1. For every r > 0 let L(r) be any partition (up to
the boundaries) of R

n into closed cubes of sides of length r. For any set A ⊂ R
n

let L(A, r) denote the number of cubes in L(r) that intersect A. Then

BD(A) = lim inf
r→0

logL(A, r)
− log r

and BD(A) = lim sup
r→0

logL(A, r)
− log r

.

Remark 8.4.7. The ball-counting dimension has properties that distinguish it
qualitatively from the Hausdorff and packing dimensions. For instance, BD(A) =
BD(A) and BD(A) = BD(A). So, in particular, there exist countable sets of
positive ball-counting dimensions, for example the set of rational numbers in
the interval [0, 1]. Furthermore, there exist compact countable sets with this
property, such as the set {1, 1/2, 1/3, . . . , 0} ⊂ R. On the other hand, in many
cases (see Theorem 8.6.7) all these dimensions coincide.
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Now we shall provide other characterizations of ball-counting dimension,
which in particular will be used to prove Lemma 8.4.9 and consequently The-
orem 8.4.10, which establishes most general relations between the dimensions
considered in this section.

Let A ⊂ X. For every r > 0 define P (A, r) to be the supremum of cardinalities
of all packings of the set A of the form {(xi, r)}. First we shall prove the following.

Lemma 8.4.8. For every set A ⊂ R
n and every r > 0

N(A, 2r) ≤ P (A, r) ≤ N(A, r).

Proof. Let us start with the proof of the first inequality. If P (A, r) = ∞, there
is nothing to prove. Otherwise, let {(xi, r) : i = 1, . . . , k} be a packing of A with
k = P (A, r). Then this packing is maximal in the sense of inclusion, and therefore
the collection {(xi, 2r) : i = 1, . . . , l} covers A. Thus N(A, 2r) ≤ l = P (A, r).
The first part of Lemma 8.4.8 is proved.

If N(A, r) = ∞, the second part is obvious. Otherwise consider a finite pack-
ing {(xi, r) : i = 1, . . . , k} of A and a finite cover {(yj , r) : j = 1, . . . , l} of A
centred at A. Then for every 1 ≤ i ≤ k there exists 1 ≤ j = j(i) ≤ l such that
xi ∈ B(yj(i), r), and every ball B(yj , r) can contain at most one element of the
set {xi : i = 1, . . . , k}. So the function i �→ j(i) is injective, and therefore k ≤ l.
The proof is complete. ♣

As an immediate consequence of Lemma 8.4.8 we get the following.

BD(A) = lim inf
r→0

logP (A, r)
− log r

and BD(A) = lim sup
r→0

logP (A, r)
− log r

. (8.4.3)

Now we are in a position to prove the following.

Lemma 8.4.9. For every set A ⊂ X we have PD∗(A) = BD(A).

Proof. Take t < BD(A). In view of (8.4.3) there exists a sequence {rn : n =
1, 2, . . .} of positive reals converging to zero and such that P (A, rn) ≥ r−tn for
every n ≥ 1. Then Π∗rn

t (A) ≥ rtP (A, rn) ≥ 1, and consequently Π∗
t (A) ≥ 1.

Hence t ≤ PD∗(A), and therefore BD(A) ≤ PD∗(A).
In order to prove the converse inequality consider s < t < PD∗(A). Then

Π∗
t (A) = ∞, and therefore for every n ≥ 1 there exists a finite packing

{(xn,i, rn,i) : i = 1, . . . , k(n)} of A of radius not exceeding 2−n and such that

k(n)∑

i=1

rtn,i > 1. (8.4.4)

Now for every m ≥ n let

ln,m = #{i ∈ {1, . . . , k(n)} : 2−(m+1) < rn,i ≤ 2−m}.
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Then by (8.4.4)
∞∑

m=n

ln,m2−mt > 1. (8.4.5)

Suppose that ln,m < 2ms(1 − 2(s−t)) for every m ≥ n. Then

∞∑

m=n

ln,m2−mt < (1 − 2(s−t))
∞∑

m=0

2m(s−t) = 1,

which contradicts (8.4.5). Thus for every n ≥ 1 there exists m = m(n) ≥ n such
that

ln,m ≥ 2ms(1 − 2(s−t)).

Hence P (A, 2−(m+1)) ≥ 2ms(1 − 2(s−t)), and so

logP (A, 2−(m+1))
(m+ 1) log 2

≥ sm log 2 + log(1 − 2s−t)
(m+ 1) log 2

.

Thus, letting n→ ∞ (then also m = m(n) → ∞), we obtain BD(A) ≥ s. ♣
Combining Lemma 8.4.4 and Lemma 8.4.9 and checking easily that HD(A) ≤

BD(A), we obtain the following main general relation connecting all the
dimensions under consideration.

Theorem 8.4.10. For every set A ⊂ X

HD(A) ≤ min{PD(A),BD(A)} ≤ max{PD(A),BD(A)} ≤ BD(A) = PD∗(A).

We finish this section with the following definition.

Definition 8.4.11. Let μ be a Borel measure on (X, ρ). We write

HD�(μ) = inf{HD(Y ) : μ(Y ) > 0} and HD�(μ) = inf{HD(Y ) : μ(X\Y ) = 0}.
In the case where HD�(μ) = HD�(μ), we call it the Hausdorff dimension of the
measure μ and write it HD(μ).

An analogous definition can be formulated for the packing dimension,
with notation PD�(μ),PD�(μ),PD(μ), and the name packing dimension of the
measure μ.

8.5 Besicovitch Covering Theorem; Vitali
Theorem and density points

In this section the main result is the Besicovitch Covering Theorem. Although
this theorem often seems to be omitted in classical geometric measure theory,
we consider it one of most powerful geometric tools when dealing with some
aspects of fractal sets. We refer the reader to Section 8.6 to verify our opinion.
We deduce also easily two other fundamental classical theorems: the Vitali-type
Covering Theorem, and the Density Points Theorem.



9780521438001c08 CUP/PUK February 8, 2010 15:06 Page-227

8.5 Besicovitch Covering Theorem 227

Theorem 8.5.1 (Besicovitch Covering Theorem). Let n ≥ 1 be an integer. Then
there exists a constant b(n) > 0 such that the following claim is true.

If A is a bounded subset of R
n then for any function r : A → (0,∞)

there exists {xk : k = 1, 2, . . .} a countable subset of A such that the collec-
tion B(A, r) = {B(xk, r(xk)) : k ≥ 1} covers A and can be decomposed into b(n)
packings of A.

In particular, it follows from Theorem 8.5.1 that #{B ∈ B : x ∈ B} ≤
b(n). Exactly the same proof (word by word) goes through if open balls in
Theorem 8.5.1 are replaced by closed ones.

For any x ∈ R
n, any 0 < r ≤ ∞ and any 0 < α < π by Con(x, α, r) we shall

denote any solid central cone with vertex x, radius r and angle α, that is for an
arbitrary straight half-line l starting at x Con(x, α, r) = Con(l, x, α, r) := {y ∈
R
n : 0 < |y − x| < r,∠(y − x, l) ≤ α} ∪ {x}.

The proof of Theorem 8.5.1 is based on the following obvious geometric
observation.

Observation 8.5.2. Let n ≥ 1 be an integer. Then there exists α(n) > 0 so
small that the following holds. If x ∈ R

n, 0 < r < ∞, if z ∈ B(x, r) \ B(x, r/3)
and x ∈ Con(z, α(n),∞), then the set Con(z, α(n),∞) \ B(x, r/3) consists of
two connected components, one of z and one of ‘∞’, and that one containing z
is contained in B(x, r).

Proof of Theorem 8.5.1. In the sequel we consider balls in R
n. We shall construct

the sequence {xk : k = 1, 2, . . .} inductively. Let

a0 = sup{r(x) : x ∈ A}.
If a0 = ∞, then one can find x ∈ A with r(x) so large that B(x, r(x)) ⊃ A, and
the proof is complete.

If a0 < ∞, choose x1 ∈ A so that r(x1) > a0/2. Fix k ≥ 1 and assume that
the points x1, x2, . . . , xk have been already chosen. If A ⊂ B(x1, r(x1)) ∪ . . . ∪
B(xk, r(xk)), then the selection process is finished. Otherwise put

ak = sup{r(x) : x ∈ A \ (B(x1, r(x1)) ∪ . . . ∪B(xk, r(xk))
)}

and take
xk+1 ∈ A \ (B(x1, r(x1)) ∪ . . . ∪B(xk, r(xk))

)
(8.5.1)

such that
r(xk+1) > ak/2. (8.5.2)

In order to shorten the notation from now on throughout this proof we shall
write rk for r(xk). By (8.5.1) we have xl /∈ B(xk, rk) for all pairs k, l with k < l.
Hence

‖xk − xl‖ ≥ r(xk). (8.5.3)

It follows from the construction of the sequence (xk) that

rk > ak−1/2 ≥ rl/2 (8.5.4)
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and therefore rk/3+rl/3 < rk/3+2rk/3 = rk. Joining this and (8.5.3) we obtain

B(xk, rk/3) ∩B(xl, rl/3) = ∅ (8.5.5)

for all pairs k, l with k = l, since then either k < l or l < k.
Now we shall show that the balls {B(xk, rk) : k ≥ 1} cover A. Indeed,

if the selection process stops after finitely many steps, this claim is obvious.
Otherwise it follows from (8.5.5) that limk→∞ rk = 0, and if x /∈ ⋃∞

k=1B(xk, rk)
for some x ∈ A then by construction rk > ak−1/2 ≥ r(x)/2 for every k ≥ 1. The
contradiction obtained proves that

⋃∞
k=1B(xk, rk) ⊃ A.

The main step of the proof is given by the following.

Claim. For every z ∈ R
n and any cone Con(z, α(n),∞) (α(n) given by

Observation 8.5.2),

#{k ≥ 1 : z ∈ B(xk, rk) \B(xk, rk/3) and xk ∈ Con(z, α(n),∞)} ≤ 12n.

Denote by Q the set of integers whose cardinality is to be estimated. If Q = ∅,
there is nothing to prove. Otherwise let i = minQ. If k ∈ Q and k = i, then
k > i and therefore xk /∈ B(xi, ri). In view of this, Observation 8.5.2 applied
with x = xi, r = ri, and the definition of Q, we get ‖z − xk‖ ≥ 2ri/3, whence

rk ≥ ‖z − xk‖ ≥ 2ri/3. (8.5.6)

On the other hand, by (8.5.4) we have rk < 2ri, and therefore B(xk, rk/3) ⊂
B(z, 4rk/3) ⊂ B(z, 8ri/3). Thus, using (8.5.5), (8.5.6) and the fact that the n-
dimensional volume of balls in R

n is proportional to the nth power of radii, we
obtain #Q ≤ (8ri/3)n/(2ri/9)n = 12n. The proof of the claim is complete.

Clearly there exists an integer c(n) ≥ 1 such that for every z ∈ R
n the space

R
n can be covered by at most c(n) cones of the form Con(z, α(n),∞). Therefore

it follows from the claim that, for every z ∈ R
n,

#{k ≥ 1 : z ∈ B(xk, rk) \B(xk, rk/3)} ≤ c(n)12n.

Thus, applying (8.5.5),

#{k ≥ 1 : z ∈ B(xk, rk) ≤ 1 + c(n)12n. (8.5.7)

Since the ball B(0, 3/2) is compact, it contains a finite subset P such that⋃
x∈P B(x, 1/2) ⊃ B(0, 3/2). Now for every k ≥ 1 consider the composition of

the map R
n � x �→ rkx ∈ R

n and the translation determined by the vector from
0 to xk. Denote by Pk the image of P under this affine map. Then #Pk = #P ,
Pk ⊂ B(xk, 3rk/2), and

⋃

x∈Pk

B(x, rk/2) ⊃ B(0, 3rk/2). (8.5.8)

Consider now two integers 1 ≤ k < l such that

B(xk, rk) ∩B(xl, rl) = ∅. (8.5.9)
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Let y ∈ R
n be the only point lying on the interval joining xl and xk at the

distance rk− rl/2 from xk. As xl /∈ B(xk, rk), by (8.5.9) we have ‖y−xl‖ ≤ rl+
rl/2 = 3rl/2, and therefore by (8.5.8) there exists z ∈ Pl such that ‖z−y‖ < rl/2.
Consequently z ∈ B(xk, rl/2+rk−rl/2) = B(xk, rk). Thus, applying (8.5.7) with
z being the elements of Pl, we obtain the following:

#{1 ≤ k ≤ l − 1 : B(xk, rk) ∩B(xl, rl) = ∅} ≤ #P (1 + c(n)12n) (8.5.10)

for every l ≥ 1.
Putting b(n) = #P (1 + c(n)12n) + 1, this property allows us to decompose

the set N of positive integers into b(n) subsets N1,N2, . . . ,Nb(n) in the following
inductive way. For every k = 1, 2, . . . , b(n) set Nk(b(n)) = {k}, and suppose that
for every k = 1, 2, . . . , b(n) and some j ≥ b(n) mutually disjoint families Nk(j)
have been already defined, so that

N1(j) ∪ ... ∪ Nb(n)(j) = {1, 2, . . . , j}.

Then by (8.5.10) there exists at least one 1 ≤ k ≤ b(n) such that B(xj+1, rj+1)∩
B(xi, ri) = ∅ for every i ∈ Nk(j). We set Nk(j + 1) = Nk(j) ∪ {j + 1} and
Nl(j + 1) = Nl(j) for all l ∈ {1, 2, . . . , b(n)} \ {k}. Putting now for every k =
1, 2, . . . , b(n)

Nk = Nk(b(n)) ∪ Nk(b(n) + 1) ∪ . . . ,
we see from the inductive construction that these sets are mutually disjoint,
that they cover N, and that for every k = 1, 2, . . . , b(n) the families of balls
{B(xl, rl) : l ∈ Nk} are also mutually disjoint. The proof of the Besicovitch
Covering Theorem is complete. ♣

We should like to emphasize here once more that the same statement remains
true if open balls are replaced by closed ones. It also remains true if instead of
balls one considers n-dimensional cubes, but then the proof, based on the same
idea, is technically considerably easier.

We can easily deduce from the Besicovitch Covering Theorem some other
fundamental facts.

Theorem 8.5.3 (Vitali-type Covering Theorem). Let μ be a probability Borel
measure on R

n, let A ⊂ R
n be a Borel set, and let B be a family of closed balls

such that each point of A is the centre of arbitrarily small balls of B: that is,

inf{r : B(x, r) ∈ B} = 0 for all x ∈ A.

Then there is a finite or countable infinite collection B(A) of disjoint balls Bi ∈ B
such that

μ
(
A \

⋃

i

Bi
)

= 0.

Proof. (See [Mattila 1995].) We assume A is bounded, leaving the unbounded
case to the reader. We may assume μ(A) > 0. The measure μ restricted to a
compact ball B(0, R) such that A ⊂ B(0, R/2) is Borel and hence regular: see
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the comments preceding Theorem 3.1.2. Hence there exists an open set U ⊂ R
n

containing A and such that

μ(U) ≤ (1 + (4b(n))−1)μ(A),

where b(n) is as in the Besicovitch Covering Theorem 8.5.1. By that theorem,
applied for closed balls, we can decompose B into packings B1, ...,Bb(n) of A
contained in U : that is, each Bi consists of disjoint balls and

A ⊂
b(n)⋃

i=1

⋃
Bi ⊂ U.

Then μ(A) ≤∑b(n)
i=1 μ

(⋃Bi
)
, and consequently there exists an i such that

μ(A) ≤ b(n)μ
(⋃Bi

)
.

Further, for some finite subfamily B′
i of Bi,

μ(A) ≤ 2b(n)μ
(⋃B′

i

)
.

Letting A1 = A \ (
⋃B′

i

)
, we get

μ(A1) ≤ μ
(
U \

⋃
B′
i

)
= μ(U) − μ

(⋃B′
i

)

≤ (1 +
1
4
(b(n))−1 − 1

2
(b(n))−1

)
μ(A) = uμ(A)

with u := 1 − 1
4 (b(n))−1 < 1.

Next, consider A1 in the role of A before. Since A1 ⊂ R
n \ (⋃B′

i

)
, which is

open, we find a packing, playing the role of B′
i contained in it, so disjoint with

B′
i. We get the measure of a non-covered remnant bounded above by u2μ(A).

We can continue, exhausting the whole A except at most a set of measure 0. ♣

Theorem 8.5.4 (On points of density). Let μ be a probability Borel measure on
R
n and A ⊂ R

n be a Borel set. Then the limit

lim
r→0

μ(A ∩B(x, r))
μ(B(x, r))

exists and is equal to 1 for μ-almost every x ∈ R
n.

Proof. Suppose the set of points in A where the limit above is not 1 (or does
not exist) has positive measure. Then there exists a < 1 and Borel A′ ⊂ A of
positive measure μ such that for every x ∈ A′ there is a sequence ri ↘ 0 such
that μ(A′ ∩B(x, ri))/μ(B(x, ri)) < a. Let B(A′) be the collection of balls whose
existence is asserted in Theorem 8.5.3, contained in an arbitrary open set U
containing A′. Then

μ(A′) =
∑

B∈B(A′)

μ(A′ ∩B) < a
∑

B∈B(A′)

μ(B) ≤ aμ(U).

This gives a contradiction for U sufficiently small. ♣



9780521438001c08 CUP/PUK February 8, 2010 15:06 Page-231

8.6 Frostman-type lemmas 231

These theorems are an introduction to ‘differentiation’ theory: compare
Exercise 2.6.

8.6 Frostman-type lemmas

In this section we shall explain how some knowledge about a measure of small
balls versus diameter yields information about dimensions of support of the
measure.

Let a function φ : [0,∞) → [0,∞) satisfy the same conditions as in Sec-
tion 8.2, including (8.2.3), and moreover let φ be continuous. We start with the
following.

Theorem 8.6.1. Let n ≥ 1 be an integer, and let b(n) be the constant claimed
in Theorem 8.5.1 (Besicovitch Covering Theorem). Assume that μ is a Borel
probability measure on R

n, and A is a bounded Borel subset of R
n. If there exists

C ∈ (0,∞], (1/∞ = 0), such that
(a) for all (but countably many maybe) x ∈ A

lim sup
r→0

μ(B(x, r))
φ(r)

≥ C

then Λφ(E) ≤ b(n)
C μ(E) for every Borel set E ⊂ A. In particular, Λφ(A) <∞.

or
(b) for all x ∈ A

lim sup
r→0

μ(B(x, r))
φ(r)

≤ C <∞

then μ(E) ≤ CΛφ(E) for every Borel set E ⊂ A.

Proof. (a) In view of Proposition 8.2.1 we can assume that E does not intersect
the exceptional countable set. Fix ε > 0 and r > 0. Since μ is a regular measure,
there exists an open set G ⊃ E such that μ(G) ≤ μ(E) + ε. By openness of G,
and by assumption (a), for every x ∈ E there exists 0 < r(x) < r such that
B(x, r(x)) ⊂ G and (1/C + ε)μ(B(x, r)) ≥ φ(r). Let {(xk, r(xk)) : k ≥ 1} be the
cover of E obtained by applying Theorem 8.5.1 (Besicovitch Covering Theorem)
to the set E. Then

Λrφ(E) ≤
∞∑

k=1

φ(r(xk)) ≤
∞∑

k=1

(C−1 + ε)μ(B(xk, r(xk)))

≤ b(n)(C−1 + ε)μ(
∞⋃

k=1

B(xk, r(xk))) ≤ b(n)(C−1 + ε)(μ(E) + ε)

.

Letting r → 0 we thus obtain Λφ(E) ≤ b(n)(1/C + ε)(μ(E) + ε), and therefore
letting ε→ 0 part (a) follows (note that the proof is correct with C = ∞!).

(b) Fix an arbitrary s > C. Since for every r > 0 the function x �→
μ(B(x, r))/φ(r) is measurable, and since the supremum of a countable sequence
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of measurable functions is also a measurable function, we conclude that for every
k ≥ 1 the function ψk : A→ R is measurable, where

ψk(x) = sup
{
μ(B(x, r))

φ(r)
: r ∈ Q ∩ (0, 1/k]

}

,

and Q denotes the set of rational numbers. For every k ≥ 1 let Ak = ψ−1
k ((0, s]).

In view of the measurability of the functions ψk, all the sets Ak are measurable.
Take an arbitrary r ∈ (0, 1/k]. Then there exists a sequence {rj : j = 1, 2, . . .} of
rational numbers converging to r from above. Since the function φ is continuous
and the function t �→ μ(B(x, t)) is non-decreasing, we have, for every x ∈ Ak,

μ(B(x, r))
φ(r)

≤ lim
j→∞

μ(B(x, rj))
φ(rj)

≤ s.

So, if F ⊂ Ak is a Borel set and if {(xi, ri) : i = 1, 2, . . .} is a collection centred
at the set F , covering F and of radius not exceeding 0 < r ≤ 1/k, then

∞∑

i=1

φ(ri) ≥ s−1
∞∑

i=1

μ(B(xi, ri)) ≥ s−1μ(F ).

Hence Λrφ(F ) ≥ s−1μ(F ), and letting r → 0 we get

Λφ(E) ≥ Λφ(F ) ≥ s−1μ(F ).

By the assumption of (b), ∪kAk = A, and therefore, putting Bk = Ak \ (A1 ∪
A2 ∪ . . . ∪ Ak−1), k ≥ 1, we see that the family {Bk : k ≥ 1} is a countable
partition of A into Borel sets. Therefore if E ⊂ A then

Λφ(E) =
∞∑

k=1

Λφ(E ∩Ak) ≥ s−1
∞∑

k=1

μ(E ∩Ak) = s−1μ(E).

So letting s↘ C completes the proof. ♣
In an analogous way, using the Besicivitch Covering Theorem, decomposition

into packings, one can prove the following.

Theorem 8.6.2. Let n ≥ 1 be an integer, and let b(n) be the constant claimed
in Theorem 8.5.1 (Besicovitch Covering Theorem). Assume that μ is a Borel
probability measure on R

n and A is a bounded subset of R
n. If there exists C ∈

(0,∞], (1/∞ = 0), such that
(a) for all x ∈ A

lim inf
r→0

μ(B(x, r))
φ(r)

≤ C

then μ(E) ≤ b(n)CΠφ(E) for every Borel set E ⊂ A.
or
(b) for all x ∈ A

lim inf
r→0

μ(B(x, r))
φ(r)

≥ C <∞

then Πφ(E) ≤ C−1μ(E) for every Borel set E ⊂ A. In particular, Πφ(A) <∞.
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Note that each Borel measure μ defined on a Borel subset B of Rn can, in a
canonical way, be considered as a measure on R

n by putting μ(A) = μ(A ∩ B)
for every Borel set A ⊂ R

n.
As a simple consequence of Theorem 8.6.1 we shall prove the following.

Theorem 8.6.3 (Frostman’s Lemma). Suppose that μ is a Borel probability
measure on R

n, n ≥ 1, and A is a bounded Borel subset of R
n.

(a) If μ(A) > 0 and there exists θ1 such that for every x ∈ A

lim inf
r→0

logμ(B(x, r))
log r

≥ θ1

then HD(A) ≥ θ1.
(b) If there exists θ2 such that for every x ∈ A

lim inf
r→0

logμ(B(x, r))
log r

≤ θ2

then HD(A) ≤ θ2.

Proof. (a) Take any 0<θ<θ1. Then, by the assumption, lim supr→0 μ(B(x, r))/
rθ ≤ 1. Therefore, applying Theorem 8.6.1(b) with φ(t) = tθ, we obtain Λθ(A) ≥
μ(A) > 0. Hence HD(A) ≥ θ by definition (8.4.1), and consequently HD(A) ≥ θ1.

(b) Take now an arbitrary θ > θ2. Then by the assumption lim supr→0

μ(B(x, r))/rθ ≥ 1. Therefore, applying Theorem 8.6.1(a) with φ(t) = tθ we
obtain Λθ(A) < ∞, whence HD(A) ≤ θ and consequently HD(A) ≤ θ2. The
proof is complete. ♣

Similarly we can prove a consequence of Theorem 8.6.2.

Theorem 8.6.4. Suppose that μ is a Borel probability measure on R
n, n ≥ 1,

and A is a bounded Borel subset of R
n.

(a) If μ(A) > 0 and there exists θ1 such that for every x ∈ A

lim sup
r→0

logμ(B(x, r))
log r

≥ θ1

then PD(A) ≥ θ1.
(b) If there exists θ2 such that for every x ∈ A

lim sup
r→0

logμ(B(x, r))
log r

≤ θ2

then PD(A) ≤ θ2.

Let μ be a Borel probability measure on a metric spaceX. For every x ∈ X we
define the lower and upper pointwise dimension of μ at x by putting respectively

dμ(x) = lim inf
r→0

log μ(B(x, r))
log r

and dμ(x) = lim sup
r→0

log μ(B(x, r))
log r

.
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Suppose now that X ⊂ R
d with Euclidean metric. Then the following theo-

rem on the Hausdorff and packing dimensions of μ, defined in Definition 7.4.10,
follows easily from Theorems 8.6.3 and 8.6.4.

Theorem 8.6.5.

HD�(μ) = ess inf dμ, PD�(μ) = ess inf dμ and

HD�(μ) = ess sup dμ(x), PD�(μ) = ess sup dμ(x).

Proof. Recall that the μ-essential infimum (ess inf) of a measurable function φ
and the μ-essential supremum (ess sup) are defined by

ess inf(φ) = sup
μ(N)=0

inf
x∈X\N

φ(x) and ess sup(φ) = inf
μ(N)=0

sup
x∈X\N

φ(x).

So, to begin with, for θ1 := ess inf φ we have

μ{x : φ(x) < θ1} = 0 and (∀θ > θ1)μ{x : φ(x) < θ} > 0.

Indeed, if μ{x : φ(x) < θ1} > 0 then there exists θ < θ1 with μ{x : φ(x) ≤ θ} > 0:
hence for every N with μ(N) = 0 we have infX\N φ ≤ θ, and hence ess inf φ ≤ θ,
which is a contradiction. If there exists θ > θ1 with μ{x : φ(x) < θ} = 0 then
for N = {x : φ(x) < θ} we have infX\N φ ≥ θ, and hence hence ess inf φ ≥ θ, a
contradiction.

This, applied to φ = dμ, yields for every A with μ(A) > 0 the existence of
A′ ⊂ A with μ(A′) = μ(A) > 0 such that for every x ∈ A′ dμ(x) ≥ θ1: hence
HD(A) ≥ HD(A′) ≥ θ1 by Theorem 8.6.3(a), and hence HD�(μ) ≥ θ1.

On the other hand, for every θ > θ1 μ{x : dμ(x) < θ} > 0, and by Theo-
rem 8.6.3(b) HD({x : dμ(x) < θ}) ≤ θ: therefore HD�(μ) ≤ θ. Letting θ → θ1 we
get HD�(μ) ≤ θ1. We conclude that HD�(μ) = θ1.

Similarly one proceeds to prove HD�(μ) = ess sup dμ(x) and to deal with the
packing dimension, refering to Theorem 8.6.4. ♣

Then by the definition of ess inf there exists Y ⊂ X ⊂ R
n, a Borel set such

that μ(Y ) = 1 and for every x ∈ Y dμ(x) ≥ θ1. Hence for every A ⊂ X with
μ(A) > 0 we have μ(A∩Y ) > 0, and for every x ∈ A∩Y , dμ(x) ≥ θ1. So, using
Theorem 8.6.3(a), we get HD(A) ≥ HD(A ∩ Y ) ≥ θ1. Hence by the definition of
HD� we get HD� ≥ θ1. Other parts of Theorem 8.6.5 follow from the definitions,
and Theorems 8.6.4 and 8.6.3(a) similarly. ♣
Definition 8.6.6. Let X be a Borel bounded subset of R

n, n ≥ 1. A Borel
probability measure on X is said to be a geometric measure with an exponent
t ≥ 0 if and only if there exists a constant C ≥ 1 such that

C−1 ≤ μ(B(x, r))
rt

≤ C

for every x ∈ X and every 0 < r ≤ 1.

We shall prove the following.
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Theorem 8.6.7. If X is a Borel bounded subset of R
n, n ≥ 1, and μ is a

geometric measure on X with an exponent t, then BD(X) exists and

HD(X) = PD(X) = BD(X) = t

Moreover, the three measures μ, Λt and Πt on X are equivalent, with bounded
Radon–Nikodym derivatives.

Proof. The last part of the theorem follows immediately from Theorem 8.6.1 and
Theorem 8.6.2 applied for A = X. Consequently also t = HD(X) = PD(X) and
therefore, in view of Theorem 8.4.10, we need only show that BD(X) ≤ t. And,
indeed, let {(xi, r) : i = 1, . . . , k} be a packing of X. Then

krt ≤ C

k∑

i=1

μ(B(xi, r)) ≤ C,

and therefore k ≤ Cr−t. Thus P (X, r) ≤ Cr−t, whence logP (X, r) ≤ logC −
t log r. Applying formula (8.4.3) completes the proof. ♣

In particular, it follows from this theorem that every geometric measure
admits exactly one exponent. Numerons examples of geometric measures will
be provided in subsequent chapters.

Bibliographical notes

The history of the notions and development of the geometric measure theory is
very long, rich and complicated, and its outline exceeds the scope of this book.
We refer the interested reader to the books [Falconer 1997] and [Mattila 1995]
and other books mentioned in the introduction to this chapter.
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9

Conformal expanding
repellers

Conformal expanding repellers (abbreviation CERs) have already been defined in
Chapter 6, and some basic properties of expanding sets and repellers in dimension
one were discussed in Section 6.2. A more advanced geometric theory in the real
one-dimensional case was covered in Chapter 7.

Now we have a new tool: the Frostman Lemma and related facts from
Chapter 8. Equipped with the theory of Gibbs measures, and with the pressure
function, we are able to develop a geometric theory of CERs, with Hausdorff
measures and dimension playing the crucial role. We shall present this theory for
C1+ε conformal expanding repellers in R

d. The main case of our interest will be
d = 2. Recall (Section 6.2) that the assumed conformality forces for d = 2 that
f is holomorphic or anti-holomorphic, and for d ≥ 3 that f is locally a Möbius
map. Conformality for d = 1 is meaningless, so we assume C1+ε in order to be
able to rely on the Bounded Distortion for Iteration lemma.

We shall outline a theory of Gibbs measures from the point of view of multi-
fractal spectra of dimensions (Section 9.2) and pointwise fluctuations due to the
Law of Iterated Logarithm (Section 9.3).

For d = 2 we shall apply this theory to study the boundary FrΩ of a simply
connected domain Ω, and in particular a simply connected immediate basin of
attraction to a sink for a rational mapping of the Riemann sphere.

To simplify our considerations we shall usually restrict them to cases where
the mapping on the boundary is expanding, and sometimes we assume that the
boundary is a Jordan curve, for example for the mapping z �→ z2 + c for |c|
small.

In Section 9.5 we study the harmonic measure on Fr Ω. We adapt the results
of Section 9.3 to study its pointwise fluctuations, and we prove that, except for
special cases, these fluctuations occur. We shall derive from this information
about the fluctuations of the radial growth of the derivative of the Riemann
mapping R from the unit disc D to Ω. In Section 9.6 we discuss integral means

236
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∫
∂D

|R′(rz)|t |dz| as r ↗ 1. In Section 9.7 we provide other examples of Ω, the
von Koch snowflake and Carleson’s (generalized) snowflakes.

9.1 Pressure function and dimension

Let f : X → X be a topologically mixing (equivalently: topologically exact)
conformal expanding repeller in R

d. As before, we abbreviate the notation for
the pressure P(f, φ), to P(φ). We start with the following technical lemma.

Lemma 9.1.1. Let m be a Gibbs state (not necessarily invariant) on X, and
let φ : X → R be a Hölder continuous function. Assume P(φ) = 0. Then there
is a constant E ≥ 1 such that for all r small enough and all x ∈ X there exists
n = n(x, r) such that

logE + Snφ(x)
− logE − log |(fn)′(x)| ≤

logm(B(x, r))
log r

≤ − logE + Snφ(x)
logE − log |(fn)′(x)| . (9.1.1)

Proof. Take an arbitrary x ∈ X. Fix r ∈ (0, C−1ξ), and let n = n(x, r) ≥ 0 be
the largest integer so that

|(fn)′(x)|rC ≤ ξ, (9.1.2)

where C = CMD is the multiplicative distortion constant (corresponding to the
Hölder continuous function log |f ′|), as in the Distortion Lemma for Iteration
(Lemma 6.2.2): see Definition 6.2.1. Then

f−nx (B(fn(x), ξ)) ⊃ B(x, ξ|(fn)′(x)|−1C−1) ⊃ B(x, r). (9.1.3)

Now take n0 such that λn0−1 ≥ C2. We then obtain

|(fn+n0)′|rC−1 ≥ ξ. (9.1.4)

Hence, again by the Distortion Lemma for Iteration,

f−n−n0
x (B(fn+n0(x), ξ)) ⊂ B

(
x, ξ|(fn+n0)′(x)|−1C

) ⊂ B(x, r). (9.1.5)

By the Gibbs property of the measure m (see (5.1.1)), for a constant E ≥ 1 (the
constant C in (5.1.1)) we can write

E−1 ≤ expSnφ(x)
m(f−nx (B(fn(x), ξ)))

and
expSn+n0φ(x)

m(f−(n+n0)
x (B(fn+n0(x), ξ)))

≤ E.

Using this, (9.1.3), (9.1.5), the inequality Sn+n0φ(x) ≥ Snφ(x) + n0 inf φ, and
finally increasing E so that the new logE is larger than the old logE − n0 inf φ,
we obtain

logE + Snφ(x) ≥ logm(B(x, r)) ≥ − logE + Snφ(x). (9.1.6)

Using (9.1.2) and (9.1.4), denoting L = sup |f ′|, and applying logarithms, we
now obtain

logE + Snφ(x)
log |(fn)′(x)|−1 − n0 logL+ log ξ

≤ logm(B(x, r)
log r

≤ − logE + Snφ(x)
log |(fn)′(x)|−1ξ

.
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Increasing E further so that logE ≥ n0 logL − log ξ, we can rewrite it in the
‘symmetric’ form of (9.1.1). ♣

When we studied the pressure function φ �→ P(φ) in Chapters 3 and 5 the
linear functional ψ �→ ∫

ψdμφ appeared. This was the Gateaux differential of
P at φ (Theorem 3.6.5, Proposition 3.6.6 and (5.6.5)). Here the presence of an
ambient smooth structure (one-dimensional or conformal) distingushes ψ’s of the
form −t log |f ′|. We obtain a link between the ergodic theory and the geometry
of the embedding of X into R

d.

Definition 9.1.2. Let μ be an ergodic f -invariant probability measure on X.
Then by Birkhoff’s Ergodic Theorem, for μ-almost every x ∈ X, the limit
limn→∞ 1

n log |(fn)′(x)| exists and is equal to
∫

log |f ′|dμ. We call this number
the Lyapunov characteristic exponent of the map f with respect to the measure
μ, and we denote it by χμ(f). In our case of expanding maps considered in this
chapter we obviously have χμ(f) > 0.

This definition does not demand the expanding property. It makes sense for
an arbitrary invariant subset X of R

d or the Riemann sphere C̄, for f conformal
(or differentiable in the real case) defined on a neighbourhood of X. There is no
problem with the integrability because log |f ′| is upper bounded on X. We do not
exclude the possibility that χμ = −∞. The notion of a Lyapunov characteristic
exponent will play a crucial role in subsequent chapters, where non-expanding
invariant sets will be studied.

Theorem 9.1.3 (Volume Lemma, expanding map and Gibbs measure case).
Let m be a Gibbs state for a topologically mixing conformal expanding repeller
X ∈ R

d and a Hölder continuous potential φ : X → R . Then for m-almost every
point x ∈ X there exists the limit

lim
r→0

logm(B(x, r))
log r

.

Moreover, this limit is almost everywhere constant and is equal to hμ(f)/χμ(f),
where μ denotes the only f-invariant probability measure equivalent to m.

Proof. We can assume that P(φ) = 0. We can achieve this by subtracting P(φ)
from φ; the Gibbs measure class will stay the same (see Proposition 5.1.4). In
view of the Birkhoff Ergodic Theorem, for μ-a.e x ∈ X we have

lim
n→∞

1
n
Snφ(x) =

∫
φdμ and lim

n→∞
1
n

log |(fn)′(x)| = χμ(f).

Combining these equalities with (9.2.1), along with the observation that n =
n(x, r) → ∞ as r → 0, and using also the equality hμ(f) +

∫
φdμ = P(φ) = 0,

we conclude that

lim
r→0

logμ(B(x, r))
log r

=
hμ(f)
χμ(f)

.

The proof is complete. ♣
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As an immediate consequence of this lemma and Theorem 8.6.5 we get the
following.

Theorem 9.1.4. If μ is an ergodic Gibbs state for a conformal expanding repeller
X ∈ R

d and a Hölder continuous potential φ on X, then there exist Hausdorff
and packing dimensions of μ and

HD(μ) = PD(μ) = hμ(f)/χμ(f). (9.1.7)

Using the above technique, we can find a formula for the Hausdorff dimension
and other dimensions of the whole set X. This is the solution of the non-linear
problem, corresponding to the formula for the Hausdorff dimension of the linear
Cantor sets discussed in the introduction.

Definition 9.1.5 (Geometric pressure). Let f : X → X be a topologically
mixing conformal expanding repeller in R

d. We call the pressure function

P(t) := P(−t log |f ′|)
a geometric pressure function.

As f is Lipschitz continuous (or as f is forward expanding), the function
P(t) is finite (see comments at the beginning of Section 3.6). As |f ′| ≥ λ > 1,
it follows directly from the definition that P(t) is strictly decreasing from +∞
to −∞. In particular, there exists exactly one parameter t0 such that P(t0) = 0
(Figure 9.1).

We first prove the following.

Theorem 9.1.6 (Existence of geometric measures). Let t0 be defined by P(t0) =
0. Write φ for −t0 log |f ′| restricted to X. Then each Gibbs state m corresponding
to the function φ is a geometric measure with the exponent t0. In particular,
limr→0

logm(B(x,r))
log r = t0 for every x ∈ X.

P(t)

t0

Figure 9.1 Geometric pressure function.



9780521438001c09 CUP/PUK February 17, 2010 21:39 Page-240

240 Conformal expanding repellers

Proof. We put in (9.1.1) φ = −t0 log |f ′|. Then using (9.1.2), (9.1.4) and
sup |f ′| ≤ L to replace |(fn)′(x)|−1 by r, we obtain

logE + t0 log r
− logE + log r

≤ logm(B(x, r))
log r

≤ − logE + t0 log r
logE + log r

with a corrected constant E. Hence

logE + t0 log r
log r

≤ logm(B(x, r))
log r

≤ − logE + t0 log r
log r

(9.1.8)

for further corrected E. In consequence

t0 ≤ log
(
m(B(x, r))/E

)

log r
and

log
(
Em(B(x, r))

)

log r
≤ t0,

and hence
m(B(x, r))/E ≤ rt0 and Em(B(x, r)) ≥ rt0 .

(In the denominators we passed in the proof of Lemma 9.1.1 from r to
|(fn)′(x)|−1 and here we passed back, so at this point the proof could be short-
ened. That is, we could deduce (9.1.8) directly from (9.1.6). However, we also
needed to pass from |(fn)′(x)|−1 to r in numerators, and this point could not be
simplified.) ♣

As an immediate consequence of this theorem and Theorem 8.6.7 we get the
following.

Corollary 9.1.7. The Hausdorff dimension of X is equal to t0. Moreover, it is
equal to the packing and Minkowski dimensions. All Gibbs states corresponding
to the potential φ = −t0 log |f ′|, as well as t0-dimensional Hausdorff and packing
measures, are mutually equivalent with bounded Radon–Nikodym derivatives.

Remarks and summary

The straight line tangent to the graph of P(t) at each t ∈ R is the graph of the
affine function

Lt(s) := hμt
(f) + sχμt

(f),

where μt is the invariant Gibbs measure for the potential −t log |f ′|. Indeed, by
the Variational Principle (Theorem 3.4.1) Lt(t) = P(t) and Lt(s) ≤ P(t) for all
s ∈ R: compare Section 3.6. The points where the graph of Lt intersects the
domain and range axes are respectively HD(μt), by (9.1.7) and Theorem 5.6.5,
and hμt

(f). The derivative is equal to −χμt
(f). Corollary 9.1.7 says in particular

that HD(μt0) = HD(X).
For example, in Figure 9.1 the tangent through the point of intersection of

the graph of P(t) with the range axis intersects the domain axis at the Hausdorff
dimension of the measure with maximal entropy.

As in Theorem 9.1.6, we can prove that for every x ∈ X and t ∈ R we have
for all r small

μt(B(x, r)) ∼ rtε−P(t),
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where ∼ means that the mutual ratios are bounded. Compare (5.1.1). This jus-
tifies the name ‘geometric pressure’. This topic will be developed further in the
next section on multifractal spectra. In Section 12.5 we shall introduce geometric
pressure in the case where a Julia set contains critical points.

More on the Volume Lemma

We end this section with a version of the Volume Lemma for a Borel probability
invariant measure on the expanding repeller (X, f). In Chapter 11 we shall prove
this without the expanding assumption, assuming only positivity of the Lyapunov
exponent (although also assuming ergodicity), and the proof will be difficult. So
we first prove a simpler version, which will be needed in the next section. We
start with a simple fact following from the Lebesgue Differentiation Theorem:
see for example [Lojasiewicz 1988, Theorem 7.1.4], [Mattila 1995], and compare
also Exercise 2.6(b). We provide a proof, since it is very much in the spirit of
Chapter 8.

Lemma 9.1.8. Every non-decreasing function k : I → R defined on a bounded
closed interval I ⊂ R is Lipschitz continuous at Lebesgue almost every point in I.
In other words, for every ε > 0 there exist L > 0 and a set A ⊂ I such that
|I \ A| < ε, where | · | is the Lebesque measure in R, and at each r ∈ A the
function k is Lipschitz continuous with the Lipschitz constant L.

Proof. Suppose, on the contrary, that

B = {x ∈ I : sup{y ∈ I : x = y,
|k(x) − k(y)|

|x− y| } = ∞}

has positive Lebesgue measure. Write I = [a, b]. We can assume, by taking a
subset, that B is compact and contains neither a nor b. For every x ∈ B choose
x′ ∈ I, x′ = x such that

|k(x) − k(x′)|
|x− x′| > 2

k(b) − k(a)
|B| . (9.1.9)

Replace each pair x, x′ by y, y′ with (y, y′) ⊃ [x, x′], and y, y′ so close to x, x′

that (9.1.9) still holds for y, y′ instead of x, x′. (In the case where x or x′ equals
a or b we do not make the replacement.) We shall use for y, y′ the old notation
x, x′, assuming x < x′.

Now from the family of intervals (x, x′) choose a finite family I covering
our compact set B. From this family it is possible to choose a subfamily of
intervals whose union still covers B and which consists of two subfamilies I1

and I2 of pairwise disjoint intervals. Start with I1 = (x1, x
′
1) ∈ I with min-

imal possible x = x1 and maximal in I in the sense of inclusion. Having
found I1 = (x1, x

′
1), . . . , In = (xn, x′n), we choose In+1 as follows. Consider

In+1 := {(x, x′) ∈ I : x ∈ ⋃
i=1,...,n Ii, x

′ > supi=1,...,n x
′
i}. If In+1 is non-

empty, we set (xn+1, x
′
n+1) so that x′n+1 = max{x′ : (x, x′) ∈ In+1}. If

In+1 = ∅, we set (xn+1, x
′
n+1) so that xn+1 is minimal possible to the right

of max{x′i : i = 1, . . . , n} or equal to it, and maximal in I.
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In this construction the intervals (xn, x′n) with even n are pairwise disjoint,
since each (xn+2, x

′
n+2) has not been a member of In+1. The same is true for

odd n’s. We define Ii for i = 1, 2 as the family of (xn, x′n) for even, respectively
odd, n.

In view of the pairwise disjointness of the intervals of the families I1 and I2,
monotonicity of k and (9.1.9), we get that

k(b) − k(a) ≥
∑

n∈I1

k(x′n) − k(xn) > 2
k(b) − k(a)

|B|
∑

n∈I1

(x′n − xn)

and the similar inequality for n ∈ I2. Hence, taking into account that I1 ∪ I2

covers B, we get

2(k(b)−k(a))> 2
k(b) − k(a)

|B|
∑

n∈I1∪I2

(x′n−xn) ≥ 2
k(b)− k(a)

|B| |B|= 2(k(b)−k(a)),

which is a contradiction. ♣
Corollary 9.1.9. For every Borel probability measure ν on a compact metric
space (X, ρ) and for every r > 0 there exists a finite partition P = {Pt, t =
1, . . . ,M} of X into Borel sets of positive measure ν and with diam(Pt) < r for
all t, and there exists C > 0 such that for every a > 0

ν(∂P,a) ≤ Ca, (9.1.10)

where ∂P,a :=
⋂
t

(⋃
s �=tB(Ps, a)

)
.

Proof. Let {x1, . . . , xN} be a finite r/4-net in X. Fix ε ∈ (0, r/4N). For each
function t �→ ki(t) := ν(B(xi, t)), t ∈ I = [r/4, r/2], apply Lemma 9.1.8 and find
appropriate Li and Ai, for all i = 1, . . . , N . Let L = max{Li, i = 1, . . . , N} and
let A =

⋂
i=1,...,N Ai. The set A has positive Lebesgue measure by the choice

of ε. So we can choose its point r0 different from r/4 and r/2. Therefore, for
all a < a0 := min{r0 − r/4, r/2 − r0} and for all i ∈ {1, 2, . . . , n}, we have
ν(B(xi, r0 + a) \B(xi, r0 − a)) ≤ 2La. Hence, putting

Δ(a) =
⋃

i

(
B(xi, r0 + a) \B(xi, r0 − a)

)
,

we get ν(Δ(a)) ≤ 2LNa. Define P = {⋂Ni=1B
κ(i)(xi, r0)} as a family over

all functions κ : {1, . . . , N} → {+,−}, where B+(xi, r0) := B(xi, r0) and
B−(xi, r0) := X \ B(xi, r0), except κ yielding sets of measure 0, in partic-
ular except empty intersections. After removing from X a set of measure 0,
the partition P covers X. Since r0 ≥ r/4, the balls B(xi, r0) cover X. Hence,
for each non-empty Pt ∈ P, at least one value of κ is equal to +. Hence
diam(Pt) ≤ 2r0 < r.

Note now that ∂P,a ⊂ Δ(a). Let x ∈ ∂P,a. Since P covers X there exists t0
such that x ∈ Pt0 , so x /∈ Pt for all t = t0. However, since x ∈ ⋃t�=t0 B(Pt, a),
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there exists t1 = t0 such that dist(x, Pt1) < a. Let B = B(xi, r0) be such that
Pt0 ⊂ B+ and Pt1 ⊂ B−, or vice versa. In the case where x ∈ Pt0 ⊂ B+, by the
triangle inequality ρ(x, xi) > r0 − a, and since ρ(x, xi) < r0 we get x ∈ Δ(a). In
the case where x ∈ Pt0 ⊂ B− we have x ∈ B(xi, r0 + a) \B(xi, r0) ⊂ Δ(a).

We conclude that ν(∂P,a) ≤ ν(Δ(a)) ≤ 2LNa for all a < a0. For a ≥ a0 it
suffices to take C ≥ 1/a0. So the corollary is proved, with C = max{2LN, 1/a0}.

♣
Remark. If X is embedded, for example, in a compact manifold Y , then we
can view ν as a measure on Y ; we find a partition P of Y , and then ∂P,a =
B(
⋃
t=1,,,.M ∂Pt, a), provided M ≥ 2. This justifies the notation ∂P,a.

Corollary 9.1.10. Let ν be a Borel probability measure on a compact metric
space (X, ρ), and let f : X → X be an endomorphism measurable with respect to
the Borel σ-algebra on X and preserving measure ν. Then for every r > 0 there
exists a finite partition P = {Pt, t = 1, . . . ,M} of X into Borel sets of positive
measure ν and with diam(Pt) < r such that for every δ > 0 and ν-a.e. x ∈ X
there exists n0 = n0(x) such that, for every n ≥ n0,

B(fn(x), exp(−nδ)) ⊂ P(fn(x)). (9.1.11)

Proof. Let P be the partition from Corollary 9.1.9. Fix an arbitrary δ > 0. Then,
by Corollary 9.1.9,

∞∑

n=0

ν(∂P,exp(−nδ))) ≤
∞∑

n=0

C exp(−nδ) <∞.

Hence, by the f -invariance of ν, we obtain

∞∑

n=0

ν(f−n(∂P,exp(−nδ))) <∞.

Applying now the Borel–Cantelli Lemma for the family {f−n(∂P,exp(−nδ))}∞n=1,
we conclude that for ν-a.e x ∈ X there exists n0 = n0(x) such that for every
n ≥ n0 we have x /∈ f−n(∂P,exp(−nδ)), so fn(x) /∈ ∂P,exp(−nδ). Hence, by
the definition of ∂P,exp(−nδ), if fn(x) ∈ Pt for some Pt ∈ P, then fn(x) /∈
⋃
s �=tB

(
Ps, exp(−nδ)). Thus

B(fn(x), exp−nδ) ⊂ P.

The proof is complete. ♣

Theorem 9.1.11 (Volume Lemma, expanding map and an arbitrary measure
case). Let ν be an f-invariant Borel probability measure on a topologically exact
conformal expanding repeller (X, f), where X ⊂ R

d. Then

HD�(ν) ≤ hν(f)
χν(f)

≤ HD�(ν). (9.1.12)
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If in addition ν is ergodic, then for ν-a.e. x ∈ X

lim
r→0

log ν(B(x, r))
log r

=
hν(f)
χν(f)

= HD(ν). (9.1.13)

Proof. Fix the partition P coming from Corollary 9.1.9 with r = min{ξ, η},
where η > was defined in (4.0.1). Then, as we saw in Chapter 5,

Pn+1(x) ⊂ f−nx (B(fn(x), ξ)) (9.1.14)

for every x ∈ X and all n ≥. We shall now work to get a sort of opposite inclusion.
Consider an arbitrary δ > 0 and x so that (9.1.11) from Corollary 9.1.10 is
satisfied for all n ≥ n0(x). For every 0 ≤ i ≤ n define k(i) = [i δ

log λ + log ξ
log λ ] +

1, λ > 1 being the expanding constant for f : X → X (see (4.0.1)). Hence
exp(−iδ) ≥ ξλ−k, and therefore f−kfi(x)(B(f i+k(x), ξ)) ⊂ B(f i(x), exp−iδ). So,
using (9.1.11) for i in place of n, we get

f−(i+k)
x (B(f i+k(x), ξ)) ⊂ f−ix (P(f i(x))

for all i ≥ n0(x). From this estimate for all n0 ≤ i ≤ n, we conclude that

f−(n+k(n))
x (B(fn+k(n)(x), ξ) ⊂ Pn+1

n0
(x).

Notice that for ν-a.e. x there is a > 0 such that B(x, a) ⊂ Pn0(x), by the
definition of ∂P . Therefore, for all n large enough,

f−(n+k(n))
x (B(fn+k(n)(x), ξ)) ⊂ Pn(x). (9.1.15)

It follows from (9.1.15) and (9.1.14), with n+ k(n) in place of n, that

lim
n→∞− 1

n
log ν(Pn(x)) ≤ lim inf

n→∞
− log ν

(
f
−(n+k(n))
x (B(fn+k(n)(x), ξ))

)

n

≤ lim sup
n→∞

− log ν(f−(n+k(n))
x (B(fn+k(n)(x), ξ)))

n

≤ lim
n→∞− 1

n
log ν(Pn(x))(Pn+k(n)+1)(x).

The limits on the far left and far right-hand sides of these inequalities exist for
ν-a.e. x by the Shennon–McMillan–Breiman Theorem (Theorem 2.5.4: see also
(2.5.2)), and their ratio is equal to limn→∞ n

n+k(n) = 1 + δ
log λ . Letting δ → 0,

we obtain the existence of the limit and the equality

hν(f,P, x) := lim
n→∞− 1

n
log ν(Pn(x)) = lim

n→∞
− log ν(f−nx (B(fn(x), ξ)))

n
.

(9.1.16)
In view of Birkhoff’s Ergodic Theorem, the limit

χν(f, x) := lim
n→∞

1
n

log |(fn)′(x)| (9.1.17)
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exists for ν-a.e. x ∈ X. Dividing the left and right sides of (9.1.16) by the
corresponding sides of (9.1.17) and using (9.1.2)–(9.1.5), we get

lim
r→0

log ν(B(x, r))
log r

=
hν(f,P, x)
χν(f, x)

.

Since, by the Shennon–McMillan–Breiman Theorem (formula (2.5.3)) and
Birkhoff’s Ergodic Theorem,

∫
hν(f,P, x) dν(x)∫
χν(f, x) dν

=
hν(f,P)
χν(f)

=
hν(f)
χν(f)

.

The latter equality holds since f is expansive and diam(P) is less than the
expansivness constant of f , which exceeds η.

There thus exists a positive measure set where hν(f,P,x)
χν(f,x) ≤ hν(f)

χν(f) , and a
positive measure set where the opposite inequality holds. Therefore

lim
r→0

log ν(B(x, r))
log r

≤ hν(f)
χν(f)

,

and the opposite inequality also holds on a positive measure set. In view of
the definitions of HD� and HD� (Definition 8.4.11), and by Theorem 8.6.5, this
finishes the proof of the inequalities (9.1.12) in our theorem. In the ergodic case
hν(f,P, x) = hν(f) and χν(f, x) = χν(f) for ν-a.e. x ∈ X. So (9.1.13) holds. ♣

9.2 Multifractal analysis of Gibbs state

In the previous section we linked to a (Gibbs) measure only one dimension num-
ber, HD(m). Here one of our aims is to introduce one-parameter families of
dimensions, so-called spectra of dimensions. In these definitions we do not need
the mapping f . Let ν be a Borel probability measure on a metric space X. Recall
from Section 8.6 that, given x ∈ X, we defined the lower and upper pointwise
dimension of ν at x by putting respectively

dν(x) = lim inf
r→0

log ν(B(x, r))
log r

and dν(x) = lim sup
r→0

log ν(B(x, r))
log r

.

If dν(x) = dν(x), we call the common value the pointwise dimension of ν at x,
and we denote it by dν(x). The function dν is called the pointwise dimension of
the measure ν: compare Chapter 8. For any α ≤ 0 ≤ ∞ write

Xν(α) = {x ∈ X : dν(x) = α}.
The domain of dν , that is, the set

⋃
αXν(α), is called a regular part of X, and

its complement X̂ a singular part. The decomposition of the set X as

X =
⋃

0≤α≤∞
Xν(α) ∪ X̂
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is called the multifractal decomposition with respect to the pointwise
dimension.

Define the Fν(α)-spectrum for pointwise dimensions (another name: dimen-
sion spectrum for pointwise dimensions), a function related to the Hausdorff
dimension, by

Fν(a) = HD(Xν(α)),

where we define the domain of Fν as {α : Xν(α) = ∅}.
Note that by Theorem 9.1.6, if (X, f) is a topologically exact expanding

conformal repeller and ν = μ−HD(X) log |f ′|, then all Xν(α) are empty except
Xν(HD(X)). In particular, the domain of Fν is in this case just one point,
HD(X).

Let for every real q = 1

Rq(ν) :=
1

q − 1
lim
r→0

log
∑N
i=1 ν(Bi)

q

log r
,

where N = N(r) is the total number of boxes Bi of the form Bi = {(x1, . . . , xd) ∈
R
d : rkj ≤ xj ≤ r(kj+1), j = 1, . . . , d} for integers kj = kj(i) such that ν(Bi) >

0. This function is called the Rényi spectrum for dimensions, provided the limit
exists. It is easy to check (Exercise 9.1) that it is equal to the Hentschel–Procaccia
spectrum

HPq(ν) :=
1

q − 1
lim
r→0

log infGr

∑
B(xi,r)∈Gr

ν(B(xi, r))q

log r
,

where infimum is taken over all Gr being finite or countable coverings of the
(topological) support of ν by balls of radius r centred at xi ∈ X, or

HPq(ν) :=
1

q − 1
lim
r→0

log
∫
X
ν(B(x, r))q−1dν(x)

log r
,

provided the limits exist. For q = 1 we define the information dimension I(ν) as
follows. Set

Hν(r) = inf
Fr

(
−
∑

B∈Fr

ν(B) log ν(B)
)
,

where infimum is taken over all partitions Fr of a set of full measure ν into Borel
sets B of diameter at most r. We define

I(ν) = lim
r→0

Hν(r)
− log r

,

provided the limit exists. A complement to Theorem 8.6.5 is that

HD�(ν) ≤ I(ν) ≤ PD�(ν). (9.2.1)

For the proof see Exercise 9.5. Note that for Rényi andHP dimensions it does not
make any difference whether we consider coverings of the topological support (the
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smallest closed set of full measure) of a measure or any set of full measure, since
all balls have the same radius r, so we can always choose locally finite (number
independent of r) subcovering. These are ‘box type’ dimension quantities.

A priori there is no reason for the function Fν(α) to behave nicely. If ν is an
f -invariant ergodic measure for (X, f), a topologically exact conformal expand-
ing repeller, then at least we know that for α0 = HD(ν), we have dν(x) = α0 for
ν-a.e. x (by the Volume Lemma: Theorem 9.1.3 and Theorem 9.1.4 for a Gibbs
measure ν of a Hölder continuous function and by Theorem 9.1.11 in the general
case). So, in particular, we know at least that the domain of Fα(ν) is non-empty.
However, for α = α0 we then have ν(Xν(α)) = 0, so Xν(α) are not visible for the
measure ν. Whereas the function HPq(ν) can be determined by the statistical
properties of a ν-typical (a.e.) trajectory, the function Fν(α) seems intractable.
However, if ν = μφ is an invariant Gibbs measure for a Hölder continuous func-
tion (potential) φ, then miraculously the above spectra of dimensions happen
to be real-analytic functions and −Fμφ

(−p) and HPq(μφ) are mutual Legendre
transforms. Compare this with the pair of Legendre–Fenchel transforms, pressure
and entropy (Remark 3.6.3). Thus fix an invariant Gibbs measure μφ correspond-
ing to a Hölder continuous potential φ. We can assume without losing generality
that

P(φ) = 0.

Indeed, starting from an arbitrary φ, we can achieve this without changing μφ
by subtracting from φ its topological pressure (as at the beginning of the proof
of Theorem 9.1.3). Having fixed φ, in order to simplify the notation we denote
Xμφ

(α) by Xα and Fμφ
by F . We define a two-parameter family of auxiliary

functions φq,t : X → R for q, t ∈ R, by setting

φq,t = −t log |f ′| + qφ.

Lemma 9.2.1. For every q ∈ R there exists a unique t = T (q) such that
P(φq,t) = 0.

Proof. This lemma follows from the fact that the function t �→ P(φq,t) is decreas-
ing from ∞ to −∞ for every q (see comments preceding Theorem 9.1.6 and at
the beginning of Section 3.6) and the Darboux theorem. ♣

We deal with invariant Gibbs measures μφq,T (q) , which we denote for abbre-
viation by μq, and with the measure μφ, so we need to know a relation between
them. This is explained in the following.

Lemma 9.2.2. For every q ∈ R there exists C > 0 such that for all x ∈ X and
r > 0

C−1 ≤ μq(B(x, r))
rT (q)μφ(B(x, r))q

≤ C. (9.2.2)

Proof. Let n = n(x, r) be defined as in Lemma 9.1.1. Then, by (9.1.6), (9.1.2)
and (9.1.4), the ratios

μφ(B(x, r))
expSnφ(x)

,
μq(B(x, r))

|(fn)′(x)|−T (q) exp qSnφ(x)
,

r

|(fn)′(x)|−1
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are bounded from below and above by positive constants independent of x, r.
This yields the estimates (9.2.2). ♣

Let us prove the following.

Lemma 9.2.3. For any f-invariant ergodic probability measure τ on X and for
τ -a.e. x ∈ X, we have

dμφ
(x) =

∫
φdτ

− ∫ log |f ′|dτ .

Proof. Using formula (9.1.1) in Lemma 9.1.1 and Birkhoff ’s Ergodic Theorem,
we get

dμφ
(x) = lim

n→∞
Snφ(x)

log |(fn)′(x)|−1
=

limn→∞ 1
nSnφ(x)

limn→∞ 1
n log |(fn)′(x)|−1

=
∫
φdτ

− ∫ log |f ′|dτ .

♣

One can conclude from this that the singular part X̂ of X has zero measure
for every f -invariant τ . Yet the set X̂ is usually large: see Exercise 9.4.

On the Legendre transform. Let k = k(q) : I → R∪{−∞,∞} be a continuous
convex function on I = [α1(k), α2(k)], where −∞ ≤ α1(k) ≤ α2(k) ≤ ∞, except
for the case where I is only −∞ or only ∞. That is, I is either a point in R,
or a closed interval, or a closed semi-line jointly with −∞ or with ∞, or else
R ∪ {−∞,∞}. We also assume that k on (α1, α2) is finite.

The Legendre transform of k is the function g of a new variable p, defined by

g(p) = sup
q∈I

{pq − k(q)}.

Its domain is defined as the closure in R ∪ {−∞,∞} of the set of points p in R,
where g(p) is finite, and g is extended to the boundary by the continuity.

It can be easily proved (Exercise 9.2) that the domain of g is also either
a point, or a closed interval, or a semi-line, or R (with ±∞). More pre-
cisely, the domain is [α1(g), α2(g)], where α1(g) = −∞ if α1(k) is finite, or
α1(g) = limx→ −∞ k′(x) if α1(k) = −∞. The derivative means here a one-sided
derivative, it does not matter whether left or right.

Similarly, one describes α2(g) replacing −∞ by ∞.
It is also easy to show that g is a continuous convex function (on its domain),

and that the Legendre transform is involutive. We then say that the functions k
and g form a Legendre transform pair.

Proposition 9.2.4. If two convex functions k and g form a Legendre transform
pair, then g(k′(q)) = qk′(q) − k(q), where k′(q) is any number between the left-
and right-hand side derivative of k at q, defined as −∞,∞ at q = α1(k), α2(k)
respectively, if α1(k), α2(k) are finite. The formula also holds at αi(g) if the
arising 0 · ∞ and ∞−∞ are defined appropriately.
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Note that if k is C2 with k′′ > 0, and therefore strictly convex, then also
g′′ > 0 at all points k′(q) for α1(k) < q < α2(k): therefore g is strictly convex
on [k′(α1(k)), k′(α2(k))]. Outside this interval g is affine in its domain. If the
domain of k is one point then g is affine on R, and vice versa.

We are now in a position to formulate our main theorem in this section,
gathering in particular some facts already proven.

Theorem 9.2.5.

(a) The pointwise dimension dμφ
(x) exists for μφ-almost every x ∈ X and

dμφ
(x) =

∫
φdμφ

− ∫ log |f ′|dμφ = HD(μφ) = PD(μφ).

(b) The function q �→ T (q) for q ∈ R is real-analytic, T (0) = HD(X), T (1)= 0,

T ′(q) =
∫
φdμq∫

log |f ′|dμq < 0

and T ′′(q) ≥ 0.

(c) For all q ∈ R we have μq(X−T ′(q)) = 1, where μq is the invariant Gibbs
measure for the potential φq,T (q), and HD(μq) = HD(X−T ′(q)).

(d) For every q ∈ R, F (−T ′(q)) = T (q) − qT ′(q): that is, p �→ −F (−p) is the
Legendre transform of T (q). In particular, F is continuous at −T ′(±∞)
the boundary points of its domain, as the Legendre transform is, and for
α /∈ [−T ′(∞),−T ′(−∞)] the sets Xμφ

(α) are empty, so these α’s do not
lie in the domain of F (see the definition), as they do not belong to the
domain of the Legendre transform.

(This emptiness property is called completness of the F -spectrum.)

If the measures μφ and μ−HD(X) log |f ′| (the latter discussed in Theorem
9.1.6 and Corollary 9.1.7) do not coincide, then T ′′ > 0 and F ′′ < 0:
that is, the functions T and F are respectively strictly convex on R and
strictly concave on [−T ′(∞),−T ′(−∞)], which is a bounded interval in
R

+ = {α ∈ R : α > 0}. If μφ = μ−HD(X) log |f ′| then T is affine, and the
domain of F is one point −T ′.

(e) For every q = 1 the HP and Rényi spectra exist (i.e. limits in the defi-
nitions exist) and T (q)

1−q = HPq(μφ) = Rq(μφ). For q = 1 the information
dimension I(μφ) exists, and

lim
q→1,q �=1

T (q)
1 − q

= −T ′(1) = HD(μφ) = PD(μφ) = I(μφ).

For outlines of the graphs of T and F see Figures 9.2 and 9.3. See also
Exercise 9.3. Compare [Pesin 1997, Figures 17a, 17b].
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q

T (q)

HD(X)

−T (1) = HD(μϕ)

1

Figure 9.2 Graph of T .

α

F (α)

−T (−∞)

HD(X)

−T (0)−T (1)

HD(μϕ)

−T (∞)

Figure 9.3 Graph of F .

Proof. 1. Since P(φ) = 0, part (a) is an immediate consequence of Theo-
rem 9.1.3, and its second and third equalities follow from Theorem 9.1.4. The
first equality is also a special case of Lemma 9.2.3 with τ = μφ.

2. We shall prove some statements of part (b). The function φq,t =
−t log |f ′| + qφ, from C

2 to Cθ(X), where θ is a Hölder exponent of the func-
tion φ, is affine. Since by [Ruelle, 1978a, Corollary 7.10], or our Section 6.4,
the topological pressure function P : Cθ → R is real-analytic, then the compo-
sition that we denote P(q, t) is real-analytic. Hence the real-analyticity of T (q)
follows immediately from the Implicit Function Theorem once we verify the non-
degeneracy assumption. In fact, C2-smoothness of P(q, t) is sufficient to proceed
further (here only C1), which has been proved in Theorem 5.7.4.
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Indeed, owing to Theorem 5.6.5, for every (q0, t0) ∈ R
2

∂ P(q, t))
∂t

|(q0,t0) = −
∫

X

log |f ′|dμq0,t0 < 0, (9.2.3)

where μq0,t0 is the invariant Gibbs state for the function φq0,t0 . Differentiating
the equality P(q, t) = 0 with respect to q, we obtain

0 =
∂ P(q, t)
∂t

|(q,T (q)) · T ′(q) +
∂ P(q, t))

∂q
|(q,T (q)). (9.2.4)

Hence we obtain the standard formula

T ′(q) = −∂ P(q, t))
∂q

|(q,T (q))

/∂ P(q, t)
∂t

|(q,T (q)).

Again, using (5.6.5) and P(φq,T (q)) = 0, we obtain

T ′(q) =
∫
φdμq∫

log |f ′|dμq ≤ −hμq
(f)

∫
log |f ′|dμq < 0, (9.2.5)

the latter true since the entropy of any invariant Gibbs measure for a Hölder
function is positive: see for example Theorem 5.2.12.

The equality T (0) = HD(X) is just Corollary 9.1.7. T (1) = 0 follows from
the equality P(φ) = 0.

3. The inequality T ′′(q) ≥ 0 follows from the convexity of P(q, t): see Theorem
3.6.2. Indeed, the assumption that the part of R

3 above the graph of P(q, t) is
convex implies that its intersection with the plane (q, t) is also convex. Since
∂ P(q,t))

∂t |(q0,t0) < 0, this is the part of the plane above the graph of T . Hence T
is a convex function.

In the above consideration we avoided an explicit computation of T ′′.
However, to discuss strict convexity (part of (d)) it is necessary to compute it.

Differentiating (9.2.4) with respect to q we obtain the standard formula

T ′′(q) =
T ′(q)2 ∂

2 P(q,t)
∂t2 + 2T ′(q)∂

2 P(q,t)
∂q∂t + ∂2 P(q,t)

∂q2

−∂ P(q,t)
∂t

(9.2.6)

with the derivatives of P taken at (q, T (q)). The numerator is equal to

(
T ′(q)

∂

∂t
+

∂

∂q

)2

P(q, t) = σ2
μq

(−T ′(q) log |f ′| + φ)

by Theorem 5.7.4, since this is the second-order derivative of P : C(X) → R in
the direction of the function −T ′(q) log |f ′| + φ.

The inequality σ2 ≥ 0, true by definition, implies T ′′ ≥ 0, since the
denominator in (9.2.6) is positive by (9.2.3).
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By Theorem 2.11.3 σ2
μq

(−T ′(q) log |f ′| + φ) = 0 if and only if the function
−T ′(q) log |f ′|+ φ is co-homologous to a constant, say to a. It follows then from
the equality in (9.2.5) that a =

∫
a dμq =

∫
(−T ′(q) log |f ′|+φ)dμq = 0. Therefore

T ′(q) log |f ′| is co-homologous to φ and, as P(φ) = 0, also P(T ′(q) log |f ′|) = 0.
Thus, by Theorem 9.1.6 and Corollary 9.1.7, T ′(q) = −HD(X) and consequently
φ is co-homologous to the function −HD(X) log |f ′|. This implies that μφ =
μ−HD(X) log |f ′|, the latter being the equilibrium (invariant Gibbs) state of the
potential −HD(X) log |f ′|. Therefore, in view of our formula for T ′′, if μφ =
μ−HD(X) log |f ′|, then T ′′(q) > 0 for all q ∈ R.

4. We prove (c). By Lemma 9.2.3 applied to τ = μq, there exists a set X̃q ⊂ X,
of full measure μq, such that for every x ∈ X̃q there exists

dμφ
(x) = lim

r→0

log μφ(B(x, r))
log r

=
∫
φdμq

− ∫ log |f ′|dμq = −T ′(q),

the latter proved in (b). Hence X̃q ⊂ X−T ′(q). Therefore μq(X−T ′(q)) = 1.
By Lemma 9.2.2, for every B = B(x, r)

| log μq(B) − T (q) log r − q logμφ(B)| < C

for some constant C ∈ R. Hence
∣
∣
∣
∣
logμq(B)

log r
− T (q) − q

logμφ(B)
log r

∣
∣
∣
∣→ 0 (9.2.7)

as r → 0.
Using (9.2.7), observe that for every x ∈ X−T ′(q), in particular for every

x ∈ X̃q,

lim
r→0

logμq(B)
log r

= T (q) + q lim
r→0

logμφ(B)
log r

= T (q) − qT ′(q).

Although X̃q can be much smaller than X−T ′(q), amazingly their Hausdorff
dimensions coincide. Indeed, the measure μq restricted to either X̃q or to X−T ′(q)
satisfies the assumptions of Theorem 8.6.3 with θ1 = θ2 = T (q) − qT ′(q).
Therefore

HD(X̃q) = HD(X−T ′(q)) = T (q) − qT ′(q) (9.2.8)

and consequently
F (−T ′(q)) = T (q) − qT ′(q).

Remarks. (a) If we consider sets larger than Xν(α), replacing the pointwise
dimension dν in the definition by the lower pointwise dimension dν , we obtain
the same Hausdorff dimension spectra, again by Theorem 8.6.3. This means that
the Fν(α) spectrum is the same: in particular, it is given by the same Legendre
transform formula in the case ν = μφ. There is no singular part.

(b) Note that (9.2.8) means that HD(X−T ′(q)) is the value where the straight
line tangent to the graph of T at (q, T (q)) intersects the range axis.
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(c) Note that we used f -invariance of μφ only in estimating HD(X−T ′(q))
from below (we used Birkhoff’s Ergodic Theorem). In the estimate from above
we used only (5.1.1). In a more general setting it is sufficient that this measure
is conformal. See Chapter 12 and [Gelfert, Przytycki & Rams 2009].

In the next steps of the proof the following will be useful.

Claim (Variational Principle for T ). For any f -invariant ergodic probability
measure τ on X, consider the following linear equation of variables q, t:

∫
φq,tdτ + hτ (f) = 0.

That is,

t = tτ (q) =
hτ (f)

∫
log |f ′|dτ + q

∫
φdτ

∫
log |f ′|dτ . (9.2.9)

Then for every q ∈ R

T (q) = sup
τ
{tτ (q)} = tμq

(q),

where the supremum is taken over all f -invariant ergodic probability measures
τ on X.

Proof of the claim. Since
∫
φq,tdτ + hτ (f) ≤ P(φq,t), and since ∂ P(q,t)

∂t < 0
(compare the proof of convexity of T ), we obtain

tτ (q) ≤ T (q).

On the other hand, by (9.2.9), and using P(φq,T (q) = 0, we obtain

tμq
(q) =

hμq
(f) + q

∫
φdμq∫

log |f ′|dμq =
T (q)

∫
log |f ′|dμq∫

log |f ′|dμq = T (q).

The claim is proved. ♣
5. We continue the proof of Theorem 9.2.5. We shall prove the missing parts

of (d). We have already proved that

F (−T ′(q)) = HD(X−T ′(q)) = HD(μq) = T (q) − qT ′(q).

Note that [−T ′(∞),−T ′(−∞)] ⊂ R
+ ∪ {0,∞} since T ′(q) < 0 for all q. Note

finally that

−T ′(−∞) = lim
q→−∞

− ∫ φdμq∫
log |f ′|dμq ≤ sup(−φ)

inf log |f ′| <∞

and

−T ′(∞) = lim
q→∞

− ∫ φdμq∫
log |f ′|dμq .

The expressions under lim are positive (see (9.2.5)). It is enough now to prove
that they are bounded away from 0 as q → ∞. To this end, choose q0 such that
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T (q0) < 0. By our claim (Variational Principle for T ), tμq
(q0) ≤ T (q0). Since

tμq
(0) ≥ 0, we get

−q0
∫
φdμq∫

log |f ′|dμq = tμq
(0) − tμq

(q0) ≥ |T (q0)|.

Hence − ∫ φdμq∫
log |f ′|dμq

≥ |T (q0)|/q0 > 0 for all q.
6. To complete the proof of (d) we need to prove the formula for F

at −T ′(±∞) (in the case where T is not affine) and prove that for α /∈
[−T ′(∞),−T ′(−∞)] the sets Xμφ

(α) are empty. First note the following.
6a. For any f -invariant ergodic probability measure τ on X, there exists

q ∈ R ∪ {±∞} such that
∫
φdτ

∫
log |f ′|dτ =

∫
φdμq∫

log |f ′|dμq (9.2.10)

(limq→±∞ in the ±∞ case).
Indeed, by the claim, the graphs of the functions tτ (q) and T (q) do not

intersect transversally (they can be only tangent), and hence the first graph,
which is a straight line, is parallel to a tangent to the graph of T at a point
(q0, T (q0), or one of its asymptotes, at −∞ or +∞. Now (9.2.10) follows from
the same formula (9.2.9) for τ = μq0 , since the graph of tμq0

is tangent to the
graph of T just at (q0, T (q0)). (Note that the latter sentence proves the formula
T ′(q) =

∫
φdμq∫

log |f ′|dμq
in a different way than in 2., namely via the Variational

Principle for T .).
6b. Proof that Xα = ∅ for α /∈ [−T ′(∞),−T ′(−∞)]. Suppose there exists

x ∈ X with α := dμφ
(x) /∈ [−T ′(∞),−T ′(−∞)]. Consider any sequence of

integers nk → ∞ and real numbers b1, b2 such that

lim
k→∞

1
nk
Snφ(x) = b1, lim

k→∞
1
nk

(− log |(fn)′(x)|) = b2

and b1/b2 = α. Let τ be any weak∗-limit of the sequence of measures

τnk
:=

1
nk

nk−1∑

j=0

δfj(x),

where δfj(x) is the Dirac measure supported at f j(x): compare Remark 3.1.15.
Then

∫
φdτ = b1 and

∫
(− log |f ′|)dτ = b2.

Because of the Choquet Theorem (Section 3.1) (or the Decomposition into
Ergodic Components Theorem, Theorem 2.8.11) we can assume that τ is ergodic.
Indeed, τ is an ‘average’ of ergodic measures. So among all ergodic measures ν
involved in the average, there is ν1 such that

∫
φdν1∫ − log |f ′|dν1 ≤ α and ν2 such that

∫
φdν2∫ − log |f ′|dν2 ≥ α. If α < −T ′(∞) we consider ν1 as an ergodic τ ; if α > −T ′(−∞)

we consider ν2. For the ergodic τ found in this way the limit α can be different
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from that for the original τ , but it will not belong to [−T ′(∞),−T ′(−∞)], and we
shall use the same symbol α to denote it. By Birkhoff’s Ergodic Theorem applied
to the functions φ and log |f ′|, for τ -a.e. x we have limn→∞

Sn(φ)(x)
− log |(fn)′(x)| = α.

Hence, applying Lemma 9.2.3, we get

α = dμφ
(x) =

∫
φdτ

− ∫ log |f ′|dτ .

Finally, note that by (9.2.10) there exists q ∈ R such that α =
∫
φdμq

− ∫ log |f ′|dμq
,

whence α ∈ [−T ′(∞),−T ′(−∞)]. This contradiction completes the proof. ♣

Remark. We have in fact proved that, for all x ∈ X, any limit number of
the quotients logμφ(B(x, r)/ log r as r → 0 lies in [−T ′(∞),−T ′(−∞)], the
fact stronger than dμφ

(x) ∈ [−T ′(∞),−T ′(−∞)] for all x in the regular part
of X.

6c. On F (−T ′(±∞)). Consider any τ being a weak*-limit of a sub-sequence
of μq as q tends to, say, ∞. We shall try to proceed with τ in the same way as we
did with μq, although we shall meet some difficulties. We do not know whether τ
is ergodic (and choosing an ergodic one from the ergodic decomposition we may
loose the convergence μq → τ). Nevertheless using the Birkhoff Ergodic Theorem
and proceeding as in the proof of Lemma 9.2.3, we get

∫
limn→∞ 1

nSnφ(x) dτ(x)
− ∫ limn→∞ 1

n log |(fn)′(x)| dτ(x) =
∫
φdτ

− ∫ log |f ′| dτ = lim
q→∞

∫
φdμq

− ∫ log |f ′|dμq
= lim
q→∞(−T ′(q)) = −T ′(∞)

with the convergence over a sub-sequence of q’s. Since we know already that

dμφ
(x) =

limn→∞ 1
nSnφ(x)

− limn→∞ 1
n log |(fn)′(x)| ≥ −T ′(∞),

we obtain for every x in a set X̃τ of full measure τ that the limit dτ (x) = −T ′(∞).
We conclude with X̃τ ⊂ X−T ′(∞).

Now we use the Volume Lemma for the measure τ . There is no reason for
it to be Gibbs, nor ergodic, so we need to refer to the version of the Volume
Lemma coming from Theorem 9.1.11. We obtain

HD(X−T ′(∞)) ≥ HD�(τ) ≥ hτ (f)
∫

log |f ′| dτ ≥ lim inf
q→∞

hμq
(f)

χμq
(f)

= lim
q→∞T (q) − qT ′(q) = F (−T ′(∞)).

We have used here the upper semi-continuity of the entropy function ν → hν(f)
at τ owing to the expanding property (see Theorem 3.5.6).
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It is only left to estimate HD(X−T ′(∞)) from above. As for μq, we have for
every q and x ∈ X−T ′(∞) (see (9.2.7)) that

lim
r→0

log μq(B)
log r

= T (q) + q lim
r→0

log μφ(B)
log r

= T (q) − qT ′(∞) ≤ T (q) − qT ′(q).

Hence HD(X−T ′(∞)) ≤ T (q)−qT ′(q). Letting q → ∞, we obtain HD(X−T ′(∞)) ≤
F (−T ′(∞)).

7. HP and Rényi spectra. Recall that topological supports of μφ and μq
are equal to X, since these measures, as Gibbs states for Hölder functions, do
not vanish on open subsets of X owing to Proposition 5.2.10. For every Gr a
finite or countable covering X by balls of radius r of multiplicity at most C we
have

1 ≤
∑

B∈Gr

μq(B) ≤ C.

Hence, by Lemma 9.2.2,

C−1 ≤ rT (q)
∑

B∈Gr

μφ(B)q ≤ C

with another appropriate constant C. Taking logarithms and, for q = 1, dividing
by (1 − q) log r yields (e) for q = 1.

8. Information dimension. For q = 1 we have limq→1,q �=1
T (q)
1−q = −T ′(1)

by the definition of the derivative. It is equal to HD(μφ) = PD(μφ) by (a) and
(b) and equal to I(μφ) by Exercise 9.5. ♣

9.3 Fluctuations for Gibbs measures

In Section 9.2, given an invariant Gibbs measure μφ, we studied a fine structure of
X, a stratification into sets of zero measure (except the stratum of typical points),
treatable with the help of Gibbs measures of other functions. Here we shall
continue the study of typical (μφ-a.e.) points. We shall replace Birkhoff’s Ergodic
Theorem by a more refined one: the Law of Iterated Logarithm (Section 2.11), the
Volume Lemma in a form more refined than Theorem 9.1.11, and the Frostman
Lemma in the form of Theorem 8.6.1.

For any two measures μ, ν on a σ-algebra (X,F), not necessarily finite, we
use the notation μ � ν for μ absolutely continuous with respect to ν, the
same as in Section 2.1, and μ ⊥ ν for μ singular with respect to ν: that is,
if there exist measurable disjoint sets X1,X2 ⊂ X of full measure, that is,
μ(X \ X1) = ν(X \ X2) = 0, generalizing the notation for finite measures: see
Section 2.2. We write μ � ν if the measures are equivalent: that is, if μ� ν and
ν � μ.

The symbol logk means iteration of the log function k times. As in Chapter 8,
Λα means the Hausdorff measure with the gauge function α, Λκ abbreviates Λtκ ,
and HD means Hausdorff dimension.
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Theorem 9.3.1. Let f : X → X be a topologically exact conformal expanding
repeller. Let φ : X → R be a Hölder continuous function and let μφ be its
invariant Gibbs measure. Denote κ = HD(μφ).

Then either

(a) the following conditions, equivalent to each other, hold:

(a1) φ is co-homologous to −κ log |f ′| up to an additive constant, i.e. φ+
κ log |f ′| is co-homologous to a constant in Hölder functions; then
this constant must be equal to the pressure P(f, φ) so we can say that
ψ := φ+κ log |f ′|−P(f, φ) is a coboundary (see Definition 2.11.2 and
Remark 4.4.6),

(a2) μφ � Λκ on X,

(a3) κ = HD(X)

or

(b) ψ = φ+ κ log |f ′| is not co-homologous to a constant, μφ ⊥ Λκ, and more-
over, there exists c0 > 0, (c0 =

√
2σ2

μφ
(ψ)/χμφ

(f)), such that with the

gauge function αc(r) = rκ exp(c
√

log 1/r log3 1/r):

(b1) μφ ⊥ Λαc
for all 0 < c < c0, and

(b2) μφ � Λαc
for all c > c0.

Remark. Also, μφ ⊥ Λαc0
holds: see Exercise 9.8.

Proof. Note first that by Theorem 9.1.4
∫
ψ dμφ =

∫
φdμφ+HD(μφ)χμφ

−P(φ) =
∫
φdμφ+hμφ

(f)−P(φ) = 0, (9.3.1)

since μφ is an equilibrium state. If φ+κ log |f ′| is co-homologous to a constant a,
then for a Hölder function u we have

∫
(φ+κ log |f ′|−a)dμφ =

∫
(u◦f−u)dμφ = 0

hence a = P(φ). Therefore ψ is indeed a coboundary.
By Proposition 5.1.4 the property (a1) is equivalent to μφ = μ−κ log |f ′| (the

potentials co-homologous up to an additive constant have the same invariant
Gibbs measures, and vice versa). Finally, since two co-homologous continuous
functions have the same pressure (by definition), P(−κ log |f ′|) = P(φ−P(φ)) =
0, so, by Corollary 9.1.7, κ = HD(X) and μφ = μ−κ log |f ′| � Λκ. We have proved
that (a1) implies (a2) and (a3).

(a2) implies that Λκ is non-zero finite on X: hence HD(X) = κ i.e. (a3).
Finally (a3), i.e. κ = HD(μφ) = HD(X) implies hμφ

(f) − κχμφ
(f) = 0 by

Theorem 9.1.4 and P(−κ log |f ′|) = 0 by Corollary 9.1.7. Hence μφ is an invari-
ant equilibrium state for −κ log |f ′|. By the uniqueness of equilibrium measure
(Chapter 5), μφ = μ−κ log |f ′|: hence (a1). (This implication can be called
uniqueness of the measure-maximizing Hausdorff dimension.)

Let us now discuss part (b). Suppose that ψ is not co-homologous to a con-
stant. In this case σ2

μφ
(ψ) > 0: see Theorem 2.11.3. We can assume that P(φ) = 0,



9780521438001c09 CUP/PUK February 17, 2010 21:39 Page-258

258 Conformal expanding repellers

because subtracting the constant P(φ) from the original φ does not change the
Gibbs measure.

Let us invoke (9.1.6) and the conclusion from (9.1.2) and (9.1.4), namely

K−1 expSnφ(x) ≤ μ(B(x, r)) ≤ K expSnφ(x) (9.3.2)

and
K−1|(fn)′(x)|−1 ≤ r ≤ K|(fn)′(x)|−1 (9.3.3)

for a constant K ≥ 1 not depending on x and r > 0 and for n = n(x, r) defined
by (9.1.2).

Note that for F (t) :=
√
t log2 t, for every s0 ≥ 0 there exists t0 such that for

all s : −s0 ≤ s ≤ s0, s = 0 and t ≥ t0 we have |(F (t + s) − F (t))/s| < 1. This
follows from the Lagrange Theorem and dF/dt→ 0 as t→ ∞, easy to calculate.

Substituting t = log |(fn)′(x)| and denoting
√

log(|(fn)′(x)|) log3(|(fn)′(x)|)
by gn(x), we get for r > 0 small enough

μφ(B(x, r))
rκ exp(c

√
log 1/r log3 1/r)

≤ K exp(Snφ(x)
(K|(fn)′(x)|)−κ exp(cF (log |(fn)′(x)| − logK))

=
Q exp(Snφ(x)

|(fn)′(x)|−κ exp(cgn(x))

for Q := Kκ+1+c exp c, and similarly

μφ(B(x, r))
rκ exp(c

√
log 1/r log3 1/r)

≥ Q−1 exp(Snφ(x)
|(fn)′(x)|−κ exp(cgn(x))

.

We rewrite these inequalities in the form

− logQ + gn(x)
(
Snφ(x) + κ log |(fn)′(x)|

gn(x)
− c

)

≤ log

(
μφ(B(x, r))

rκ exp(c
√

log 1/r log3 1/r)

)

≤ logQ+ gn(x)
(
Snφ(x) + κ log |(fn)′(x)|

gn(x)
− c

)

. (9.3.4)

We have Snφ+κ log |(fn)′| = Snψ, so we need to evaluate the following upper
limit:

lim sup
n→∞

Snψ(x)
√

log |(fn)′(x)| log3 |(fn)′(x)|
.

By the Law of Iterated Logarithm (see (2.11.3)) and Theorems 5.7.1 and 2.11.1,
for μφ-a.e. x ∈ X, and writing σ2 = σ2

μφ
, we have

lim sup
n→∞

Snψ(x)
√
n log2(n)

=
√

2σ2. (9.3.5)
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Applying the Birkhoff Ergodic Theorem to the function log |f ′|, for μφ-a.e. x ∈
X, and writing cn = log |(fn)′(x)| = Sn log |f ′|(x), we obtain

lim
n→∞

√
cn log2 cn√
n log2 n

=
√
χμ lim

n→∞

√
log2 cn√
log2 n

= √
χμφ

. (9.3.6)

Here limn→∞
√

log2 cn√
log2 n

= 1, since

log2 cn
log2 n

− 1 =
log(log(cn)/ log(n))

log2 n
→ 0.

This is true, since the numerator is bounded; in fact it tends to 0. Indeed, the
assumption that cn/n→ χμ, and in particular that cn/n is bounded and bounded
away from 0, implies log(cn)/ log(n) → 1: hence its logarithm tends to 0.

Combining (9.3.5) with (9.3.6) we obtain for μφ-a.e. x the following formula:

lim sup
n→∞

Snψ(x)
√

log |(fn)′(x)| log3 |(fn)′(x)|
=

√
2σ2

χμφ

= c0. (9.3.7)

Therefore, because gn → ∞ as n → ∞, for c < c0, both the left- and the
right-hand-side expressions in (9.3.4) tend to ∞. Hence the middle expression in
(9.3.4) also tends to ∞. Analogously for c > c0 these expressions tend to −∞.
Applying exp, we get rid of the log and obtain

lim sup
r→0

μφ(B(x, r))
rκ exp(c

√
log 1/r log3 1/r)

=

⎧
⎨

⎩

∞ if c <
√

2σ2

χμφ

0 if c >
√

2σ2

χμφ

(9.3.8)

Therefore, by Theorem 8.6.1, μφ ⊥ Λαc
for all c <

√
2σ2

χμφ
and μφ � Λgc

for all

c >
√

2σ2

χμφ
. The proof is complete. ♣

Note that this proof is done without the use of Markov partitions, unlike the
proof in [Przytycki, Urbański & Zdunik 1989], though it is virtually the same.

The last display, (9.3.8), is known as an LIL Refined Volume Lemma, here in
the expanding map, Gibbs measure case: compare Theorem 9.1.3.

Above, (9.3.8) has been obtained from (9.3.7) via (9.3.4). Instead, using
(9.3.2) and (9.3.3), one can obtain from (9.3.7) the following, equivalent to
(9.3.8).

Lemma 9.3.2 (LIL Refined Volume Lemma). For μφ-a.e. x

lim sup
r→0

log(μφ(B(x, r))/rκ)
√

log 1/r log3 1/r
=

√
2σ2

χμφ

= c0.
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9.4 Boundary behaviour of the Riemann map

In this and the next section we shall apply the results of Section 9.3 to the confor-
mal expanding repeller (X, f) for X at least a two-points set, being the boundary
FrΩ of a connected, simply connected open domain Ω in the Riemann sphere
C. A model example is Ω, the immediate basin of attraction to an attracting
fixed point for a rational mapping, and in particular a basin of attraction to ∞
for a polynomial with X = J(f), the Julia set. We shall assume the expanding
property only for technical reasons (and the nature of Chapter 9): for a more
general case see [Przytycki 1986a], [Przytycki, Urbański & Zdunik 1989] and
[Przytycki, Urbański & Zdunik 1991]. In this section we shall consider a large
class of invariant measures. In the next section we shall apply the results to
harmonic measure. We shall interpret the results in terms of the radial growth
of |R′(tζ)| for R : D → Ω a Riemann map, that is, a holomorphic bijection from
the unit disc D to Ω , for a.e. ζ ∈ ∂D and t↗ 1.

We start with some general useful facts. Let Ω be an arbitrary open connected
simply connected domain in C. Denote by R : D → Ω a Riemann mapping, as
above.

Lemma 9.4.1. For any sequence xn ∈ D , xn → ∂D if and only if R(xn) → FrΩ.

Proof. If a sub-sequence of R(xn) does not converge to FrΩ, then we find its con-
vergent sub-sequence R(xni

) → y ∈ D. So xni
→ R−1(y) ∈ D, which contradicts

xn → ∂D. The converse implication can be proved similarly. ♣
Now let U be a neighbourhood of Fr Ω in C, and f : Ω ∩ U → Ω be a

continuous map, which extends continuously on cl(Ω∩U), mapping FrΩ in FrΩ.
Define g : R−1(Ω ∩ U) → D by g = R−1 ◦ f ◦R.

Lemma 9.4.2. For any sequence xn ∈ R−1(Ω ∩ U), xn → ∂D iff g(xn) → ∂D.

Proof. The implication to the right follows from Lemma 9.4.1 and the continuity
of f at FrΩ. Conversely, if g(xn) → ∂D, then by Lemma 9.4.1 R(g(xn)) =
f(R(xn)) → FrΩ. Hence R(xn) → Fr Ω; otherwise a sub-sequence of R(xn)
converges to x ∈ Ω and f(x) ∈ Fr Ω, which contradicts f(Ω ∩ U) ⊂ Ω. Hence,
again by Lemma 9.4.1, xn → ∂D. ♣

Proposition 9.4.3 (on desingularization). Suppose f as above extends holo-
morphically to U , a neighbourhood of Fr Ω. Then g = R−1 ◦ f ◦ R on
R−1(Ω ∩ U) extends holomorphically to g1 on a neighbourhood of ∂D, satisfy-
ing I ◦ g1(z) = g1 ◦ I for the inversion I(z) = z̄−1. This g1 has no critical points
in ∂D.

Proof. Let W1 = {z : r1 < |z| < 1} for r1 < 1 large enough that clW1 ⊂
R−1(Ω ∩ U) and W1 contains no critical points for g. It is possible, since f has
only a finite number of critical points in every compact subset of U , and hence
in a neighbourhood of FrΩ: hence g has a finite number of critical points in a
neighbourhood of ∂D in D. Let W2 = {z : r2 < |z| < 1} for r2 < 1 large enough
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that if z ∈ W2 ∩ g(x), then x ∈ W1. Consider V , a component of g−1(W2). By
the above definitions g is a covering map on V . V contains a neighbourhood
of ∂D, since by Lemma 9.4.2 V contains points arbitrarily close to ∂D, and
if x1 ∈ V and x2 ∈ g−1(W2) with x1, x2 close enough to ∂D then an arc δ
joining x1 to x2 (an interval in polar coordinates) is also close enough to ∂D that
g(δ) ⊂ W2. Hence x2 ∈ V . Let d be the degree of g on V . Then there exists a
lift g̃ : V →W3 := {z : r1/d2 < |z| < 1}, that is, a univalent holomorpic mapping
such that (g̃(x))d = g.

The mapping g̃ extends continuously from V to g̃1 on V ∪ ∂D

by Carathéodory’s theorem (see for example [Collingwood & Lohwater, 1966,
Chapter 3.2]). Formally, this theorem says that a holomorphic bijection between
two Jordan domains extends to a homeomorphism between the closures. How-
ever, the proof for annuli (W3 and V ) is the same. We use the fact that ∂D are
the corresponding components of the boundaries. (One can also intersect V with
small discs B with origins in ∂D: consider g|B∩V on the topological discs B ∩V ,
and get the continuity of the extensions to ∂D directly from Carathéodory’s the-
orem.) Finally, define the extension of g to V ∪ ∂D by g1(x) = (g̃1)d. It extends
holomorphically to a neighbourhood of ∂D by the Schwarz reflection principle.
g′1(z) = 0 for z ∈ ∂D since g1(V ) ⊂ D and g1(V ∗) ⊂ C \ cl D, where V ∗ is the
image of V by the inversion I. ♣
Remark 9.4.4. We can consider g1 on a neighbourhood of ∂D as stretching the
possibly wild set FrΩ lifting (a part of) f and extending to g1 not having critical
points. The lemma on desingularization applies to all periodic simply connected
Fatou domains for rational mappings, and in particular to Siegel discs and basins
of attraction to periodic orbits. In the latter case the following applies.

Proposition 9.4.5. Let f : U → C be a holomorphic mapping preserving Fr Ω
and mapping U ∩ Ω in Ω as before. Assume also that

⋂

n≥0

f−n(U ∩ cl Ω) = Fr Ω. (9.4.1)

Then the extension g1 of g = R−1 ◦ f ◦ R provided by Proposition 9.4.3 is
expanding on ∂D; moreover, (∂D, g1) is a conformal expanding repeller.

Proof. By (9.4.1), for every x ∈ U ∩ Ω there exists n > 0 such that fn(x) /∈ U .
Hence, owing to Lemma 9.4.1, there exists r1 < 1 such that W1 = {z : r1 ≤
|z| < 1} ⊂ R−1(U ∩ Ω), and for every z ∈ W1 there exists n > 0, for which
gn(z) /∈W1.

Next observe that by Lemma 9.4.2 there exists r2 : r1 < r2 < 1 such that if
|g(z)| > r2 then |z| > r1. Moreover, there exists r3 < 1 such that if r3 < |z| < 1
then for all n ≥ 0 |g−n(z)| < r2. By g−n(z) we understand here any point in
this set. Indeed, suppose there exist sequences rn ↗ 1 rn < |zn| < 1 and mn > 0
such that r1 ≤ |g−mn(zn)| ≤ r2 and r2 < |g−m(zn)| for all 0 ≤ m < mn. Then
for z0 a limit point of the sequence g−mn(zn) we have |gm(z)| ≥ r1 for all m ≥ 0,
which contradicts the first paragraph of the proof.
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Moreover, for every 0 < r < 1 there exists n(r) > 0 such that if r3 < |z| < 1
and n ≥ n(r) then |g−n(z)| ≥ r. Otherwise a limit point z0 = limmn→∞ g−mn(zn)
for r3 < |zn| would satisfy gm(z0) ≤ r2 for all m ≥ 0: a contradiction.
By the symmetry given by I the same holds for 1 < |z| < r−1

3 . Hence⋂
n≥0 g

−n({z : r3 < |z| < r−1
3 }) = ∂D, that is, ∂D is a repeller for g: see

Chapter 4 S.1.
Let zn be a g1-trajectory in ∂D, g(zn) = zn−1, n = 0,−1, . . . . Then for all

n ≥ 0 there exist univalent branches g−n1 onB(z0, r3) mapping z0 to z−n and such
that g−n1 (B(z0, r3)) ⊂ {z : r2 < |z| < r−1

2 }. Moreover, g−n1 (B(z0, r3)) → ∂D.
With z0 fixed consider all branches Gz0,ν,n of g−n1 on B(z0, r3) indexed by ν
and n. This family is normal, and the limit functions have values in ∂D. Since
∂D has an empty interior, all the limit functions are constant. Hence there
exists n(z0) such that for all n ≥ n(z0) and Gν,n for all z ∈ B(z0, r3/2) we
have |G′

z0ν,n(z)| < 1. If we take a finite family of points z0 such that the
discs B(z0, r3/2) cover ∂D, then for all Gz0,ν,n with n ≥ max{n(z0)} and
z ∈ B(z0, r3/2) |G′

z0ν,n(z)| < 1. Hence for all z ∈ ∂D and n ≥ max{n(z0)}
|(gn)′(z)| > 1, which is the expanding property. ♣

Now we pass to the main topic of this section, the boundary behaviour of R.
We shall denote g1, the extension of g, simply by g.

Definition 9.4.6. We say that for z ∈ ∂D, x → z non-tangentially if x ∈ D , x
converges to z and there exists 0 < α < π/2 such that for x close enough to z ,
x belongs to the so-called Stoltz angle:

Sα(z) = z · (1 + {x ∈ C \ {0} : π − α ≤ Arg(x) ≤ π + α}).

We say that x→ z radially if x = tz for t↗ 1. For any φ a real or complex-valued
function on D it is said that φ has a non-tangential or radial limit at z ∈ ∂D if
φ(x) has a limit for x→ z non-tangentially or radially respectively.

Theorem 9.4.7. Assume that (X, f) is a conformal expanding repeller for X =
FrΩ ⊂ C̄ for a domain Ω ⊂ C. Let R : D → Ω be a Riemann mapping. Then

lim sup
|x|→1

log |R′(x)|
− log(1 − |x|) < 1.

(This is better than the generally true non-sharp inequality, following from
Remark 6.2.5.) In particular, R extends to a Hölder continuous function on cl D.
Denote the extension by the same symbol R. Let g be as before and let its exten-
sion (in Proposition 9.4.3) also be denoted by g. Then the equality f ◦R = R ◦ g
extends to cl D.

If μ is a g-invariant ergodic probability measure on ∂D, then the non-
tangential limit

lim
x→z

log |R′(x)|
− log(1 − |x|)
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exists for μ-almost every point z ∈ ∂D, and is constant almost everywhere.
Denote this constant by χμ(R). Then

χμ(R) = 1 − χμ◦R−1(f)
χμ(g)

, (9.4.2)

where the measure μ ◦ R−1 = R∗(μ) is well defined (and Borel) owing to the
continuity of R on ∂D.

Proof. Fix δ > 0 such that for every z ∈ ∂D there exists a backward branch g−nz
of g−n on B(gn(z), δ) mapping gn(z) to z. Such δ exists since g is expanding, by
Proposition 9.4.5: compare the Proof of Proposition 9.4.3.

By the expanding property of g or by the Koebe Distortion Lemma we can
assume that the distortion for all g−nz is bounded on B(gn(z), δ) by a constant K.

For x ∈ Sα(z) and |x − z| < δ/2 denote by n = n(x, z, δ) the least non-
negative integer such that |gn+1(x) − gn+1(z)| ≥ δ/2. Such n exists if δ is small
enough, again since g is expanding. We get for α, as in Definition 9.4.6,

1 − |gn(x)|
|gn(z) − gn(x)| ≥

1
π

(
π

2
− α)K−1. (9.4.3)

Otherwise there exists w ∈ ∂D such that |w − gn(x)| < |gn(z) − gn(x)|αK−1 <
δ/2. Then w ∈ B(gn(z), δ) so w is in the domain of g−nz and we obtain 1 −
|x| ≤ |g−nz (w) − x| < |z − x|α, a contradiction. We used here the fact that
g−nz (gn(x)) = x, true since |gj(z) − gj(x)| < δ/2 for all j = 0, 1, . . . , n and g is
expanding (two different pre-images of a point are far from one another).

From the above bound of distortion it also follows that

K−1 ≤ |(gn)′(x)|
|(gn)′(z)| ≤ K, (9.4.4)

and, writing ||g′|| = sup1−δ/2≤|x|≤1 |g′(x)|,

(K||g′||)−1δ/2 ≤ |z − x| · |(gn)′(x)| ≤ Kδ/2. (9.4.5)

By fn ◦R = R ◦ gn we have R′(x) = ((fn)′(R(x)))−1R′(gn(x))(gn)′(x). Because
of (9.4.3), 1 − |gn(x)| ≥ δ/2 ||g′||−1αK−1: hence there exists a constant C > 0
such that, for all z ∈ ∂D and x, n as above,

C−1 ≤ |R′(gn(x))| ≤ C.

We conclude with
|R′(x)| ≤ λ−nf C||g′||n,

where λf is the expanding constant for f . Hence, with the use of (9.4.5) to the
denominator, we obtain

lim sup
|x|→1

log |R′(x)|
− log 1 − |x| ≤ lim sup

x→z

−n log λf + log |(gn)′(z)|
log |(gn)′(z)| ≤ 1 − log λf

||g′|| < 1.
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If we consider x1, x2 ∈ D close to each other and also close to ∂D, we find y ∈ D

and z1, z2 ∈ ∂D such that |y| ≤ min{|x1|, |x2|}, |xi − y| ≤ 2|x1 − x2| for i = 1, 2
and the intervals joining xi to y are in the Stoltz angles Sπ/4(zi). By integra-
tion of |R′| along these intervals one obtains Hölder continuity of R on D with
an arbitrary exponent smaller than a := 1 − log λf

||g′|| (a more careful considera-
tion yields the exponent a) and a definite Hölder norm, thus Hölder extending
to cl D.

Now we pass to χμ(R). Since the Riemann map extends to R : clD1 → Fr Ω
uniformly continuous, R(gn(x)) lies close to R(gn(z)). Let f−nR(z) be a holomorphic
inverse branch of fn defined on some small neighbourhood of R(gn(z)), contain-
ing R(gn(x)) and sending R(gn(z)) = fn(R(z)) to R(z). Then f−nR(z)(R(gn(x)) =
x, and applying Koebe’s Distortion Theorem or bounded distortion for iterates
we obtain

K̂−1 ≤ |(fn)′(R(x))|
|(fn)′(R(z))| ≤ K̂ (9.4.6)

for some constant K̂ independent of z, x and n.
By Birkhoff’s Ergodic Theorem there exists a Borel set Y ∈ ∂D such that

μ(Y ) = 1 and

lim
k→∞

1
k

log |(gk)′(z)| = χμ(g) and lim
n→∞

1
k

log |(fk)′(R(z))| = χμ◦R−1(f)

for all z ∈ Y .
We conclude that, for all z ∈ Y and x ∈ Sα(z),

lim
x→z

− log |R′(x)|
log(1 − |x|) = lim

x→z

log |(fn)′(R(z))|−1 + log |(gn)′(x)|
log(1 − |x|) = 1 − χμ◦R−1(f)

χμ(g)
.

♣

9.5 Harmonic measure; ‘fractal vs. analytic’
dichotomy

We continue to study FrΩ ⊂ C, the boundary of a simply connected domain
Ω ⊂ C̄, and the boundary behaviour of a Riemann map R : D → Ω, in the
presence of a map f as in the previous section, with the use of harmonic measure,
although most of the theory holds under the weak assumption that f is boundary
repelling to the side of Ω, as in Proposition 9.4.5. We call such a domain an RB-
domain. We assume in most of this section, for simplicity, a stronger property
that f is expanding on Fr Ω, and sometimes that Ω is a Jordan domain: that is,
FrΩ is a Jordan curve.

Harmonic measure ω(x,A) = ωΩ(x,A), for x ∈ Ω and A ⊂ FrΩ Borel sets,
is a harmonic function with respect to x and a Borel probability measure with
respect to A, such that for every continuous φ : ∂Ω → R the function φ̃(x) :=∫
φ(z) dω(x, z) is a harmonic extension of φ to Ω, continuous on cl Ω. Its existence
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is called the solution of the Dirichlet problem. For simply connected Ω with a
non-one-point boundary it always exists. If R(0) = x0 then ω(x0, ·) = R∗(l),
where l is the normalized length measure on ∂D . Of course, R∗(l) makes sense
if R is continuous on cl D. However, it also makes sense in general, if we consider
the extension of R by the radial limit, which exists l-a.e. by the Fatou Theorem
[Pommerenke 1992], [Collingwood & Lohwater 1966].

Since all the Riemann maps differ by compositions with homographies
(Möbius maps) preserving the unit circle, all the harmonic measures ω(x, ·) for
x ∈ Ω are equivalent, and the corresponding Radon–Nikodym derivatives are
bounded away from zero and infinity. If we are interested only in this equiva-
lence class we write ω without specifying the point x, and call it a harmonic
measure, or a harmonic measure equivalence class on FrΩ viewed from Ω.

Harmonic measure ω(x, ·) can be defined as the probability distribution of the
first hit of Fr Ω by the Brownian motion starting from x. This is a very intuitive
and inspiring point of view.

For more information about harmonic measures in C we refer the reader for
example to [Pommerenke 1992] or [Tsuji 1959].

In the presence of f boundary repelling to the side of Ω, the lift g defined in
Proposition 9.4.3, extended to ∂D, is expanded by Proposition 9.4.5, and hence
by Chapter 5 there exists a g-invariant measure μ equivalent to l, which is a Gibbs
measure for the potential − log |g′| (with real-analytic density, see Chapter 6.2).
So the equivalence class ω contains an f -invariant measure – that is, R∗(μ) –
allowing us to apply ergodic theory.

If Ω is a simply connected basin of attraction to ∞ for a polynomial f of
degree d ≥ 2, then ω = ω(∞, ·) is a measure of maximal entropy, log d: see
[Brolin 1965]. This measure is often called balanced measure.

A major theorem is Makarov’s Theorem [Makarov 1985] that HD(ω) = 1.
This is a general result, true for any simply connected domain Ω as above, with
no dynamics involved. We shall provide here a simple proof in the dynamical
context, in the presence of expanding f for Jordan Fr Ω.

We start with a simple general observation.

Lemma 9.5.1. If for l-a.e. z ∈ ∂D there exists a radial limit χ(R)(z) :=
limx→z

− log |R′(x)|
log(1−|x|) , then

∫
χ(R)(z) dl = 0.

(In fact the assumption of the existence of the limit for l-a.e. z, equal to 0,
is always true by Makarov’s Theorem.)

Proof. We have
∫
χ(R) dl =

∫
lim
r→1

log |R′(rz)|
− log(1 − r)

dl(z)

= lim
r→1

1
− log(1 − r)

∫
log |R′(rz)| dl(z) = 0.

We could change the order of integral and limit above, owing to the bounds
−2 ≤ log |R′(rz)|

− log(1−r) ≤ 2 for all r sufficiently close to 1, following from the Koebe
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Distortion Lemma: see Section 6.2. The latter expression is equal to 0, since
log |R′(rz)| is a harmonic function, so the integral is equal to log |R′(0)|, which
does not depend on r. ♣
Corollary 9.5.2. Suppose that f is a holomorphic mapping preserving Fr Ω
repelling to the side of Ω. Then, for μ the g-invariant measure equivalent to the
length measure l,

χR∗(μ)(f) = χμ(g) > 0 (9.5.1)
hR∗(μ)(f) = hμ(g) (9.5.2)

and HD(ω) = 1, for ω, the harmonic measure on FrΩ viewed from Ω.

Proof. We prove this corollary only in the case where (Fr Ω, f) is an expanding
conformal repeller and Ω is a Jordan domain. Then, as we have already mentioned
in the introduction to this section, R∗(μ) is a probability f -invariant measure in
the class of harmonic measure ω.

In view of Theorem 9.4.7, χ(R) exists and is constant l-a.e. equal to χμ(R):
hence by Lemma 9.5.1 it is equal to 0. Hence by (9.4.2) we get (9.5.1). The
property (8.5.2) is immediate in the Jordan case, since R is a homeomorphism
from ∂D to Fr Ω by Carathéodory’s theorem, conjugating g with f .

Hence
hR∗(μ)(f)
χR∗(μ)

=
hμ(g)
χμ(g)

.

Since HD(μ) = 1, an immediate application of Theorem 9.1.11 for f and g (the
Volume Lemma) completes the proof. ♣

From now on we assume that Ω is Jordan and f expanding. Then the f -
invariant measure R∗(μ), the R∗-image of the Gibbs g-invariant measure μ, is
itself a Gibbs measure (see below), and we can apply the results of Section 9.3,
that is, Theorem 9.3.1.

Theorem 9.5.3. The harmonic measure class ω on FrΩ contains an f-invariant
Gibbs measure for the map f : Fr Ω → FrΩ and the Hölder continuous potential
− log |g′| ◦R−1. The pressure satisfies P (f,− log |g′| ◦R−1) = 0.

Proof. Recall that the Jacobian Jl(g) of g : ∂D → ∂D with respect to the length
measure l is equal to |g′|: hence l is a Gibbs measure for φ = − log |g′| containing
in its class a g-invariant Gibbs measure μ. The pressure satisfies P = P (g, φ) = 0
by direct checking of the condition (5.1.1), or since Jl(g) = eφ−P = |g′|e−P .

Since R is a topological conjugacy between g : ∂D → ∂D and f : FrΩ → FrΩ,
we automatically get the Gibbs property (5.1.1) for the measure R∗(l) in the
class of harmonic measure ω, for f and φ ◦ R−1. We also get P (f, φ ◦ R−1) =
P (g, φ) = 0. We obtain the Gibbs f -invariant measure R∗(μ) in the class of ω
for the potential function φ ◦R−1, which is Hölder since R−1 is Hölder.

(Note that in Theorem 9.4.7 we proved that R is Hölder, not knowing a
priori that R extends continuously to ∂D. Here we assume that FrΩ is Jordan,
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so R extends to a homeomorphism by Carathéodory’s theorem: hence R−1 makes
sense. Therefore the proof that R−1 is Hölder is straightforward: go from small
scale to large scale by fn, then back on the R−1 image by g−n, the appropriate
branch, and use bounded distortion for the iterates, Chapter 6.2.) ♣
Theorem 9.5.4. Let f : Fr Ω → FrΩ be a conformal expanding repeller, where
Ω is a Jordan domain. Then either

(a) ω � Λ1 on ∂Ω, which is equivalent to the property that the functions log |g′|
and log |f ′ ◦R| are co-homologous, and else equivalent to HD(∂Ω) = 1, or

(b) ω ⊥ Λ1, which implies the existence of c0 > 0 such that with the gauge
function αc(t) = t exp(c

√
log(1/t) log3(1/t)),

ω ⊥ Λαc
for all 0 ≤ c < c0

and
ω � Λαc

for all c > c0.

Proof. The property that log |g′| and log |f ′ ◦R| are co-homologous implies that
the functions − log |g′ ◦ R−1| and − log |f ′| are co-homologous (with respect to
the map f : ∂Ω → ∂Ω). By Theorem 9.5.3 ω contains in its equivalence class
an invariant Gibbs state of the potential − log |g′ ◦R−1|. By Corollary 9.5.2 κ =
HD(ω) = 1. Since P(f,− log |f ′|) = P(f,− log |g′ ◦R−1|) = P(g,− log |g′|) = 0, it
follows from Corollary 9.1.7 that the cohomology is equivalent to HD(FrΩ) = 1,
and to the property that ω is equivalent to the one-dimensional Hausdorff
measure on FrΩ. So part (a) of Theorem 9.5.4 is proved.

Suppose now that log |g′| and log |f ′ ◦ R| are not co-homologous. Then
− log |g′◦R−1| and − log |f ′| are not co-homologous. Let μ be the invariant Gibbs
state of − log |g′ ◦R−1| in the class of ω. By κ = 1 we get part (b) immediately
from Theorem 9.3.1(b) for X = Fr Ω. ♣

Now we shall take a closer look at case (a), of a rectifiable Jordan curve FrΩ.
In particular we shall conclude that this curve must be real-analytic.

Theorem 9.5.5. If f : FrΩ → FrΩ is a conformal expanding repeller, Ω is a
Jordan domain and HD(Fr Ω) = 1 (or any other condition in case (a) in Theorem
9.5.4), then FrΩ is a real-analytic curve.

If additionally we assume that f extends holomorphically onto C, that is, f
is a rational function, and Ω is completely invariant, namely f−1(Ω) = Ω, then
R is a homography, FrΩ is a geometric circle, and f is a finite Blaschke product
in appropriate holomorphic coordinates on C. That is,

f(z) = θ

d∏

i=1

z − ai
1 − āiz

,

with d the degree of f , |θ| = 1 and |ai| < 1.
Finally, if f is a polynomial and Ω is completely invariant, then in appropri-

ate coordinates f(z) = zd.
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For a stronger version, where Ω is assumed only to be forward invariant rather
than completely invariant, and for a counterexample, see Exercise 9.12.

Proof. Condition (a2) in Theorem 9.5.4 means that R : ∂D → FrΩ transports
the length measure on ∂D to the measure equivalent to the Hausdorff measure
Λ1 on FrΩ.

The idea now is to look at Fr Ω from outside. We denote D1 = D, R1 =: D →
Ω and denote S1 = ∂D. Consider a Riemann map R2 : D2 := {z : |z| > 1} →
C\ cl Ω = Ω∗. By Carathéodory’s Theorem, R2 (analogously to R1) extends to a
homeomorphism from clD2 to cl Ω∗. Denote the extension to cl Di by the same
symbols Ri.

The map g1 extending R−1
1 ◦f◦R1 (see Proposition 9.4.3), as being expanding,

is a local homeomorphism on a neighbourhood of S1 in clD1. Since Ω is a Jordan
domain, R1 is a homeomorphism between closures, clD1 to cl Ω. So f is a local
homeomorphism, an open neighborhood U of FrΩ in cl FrΩ. In conclusion, since
f has no critical points in FrΩ, there exists an open neighborhood U of Fr Ω
such that f is defined on U ∩ Ω∗ and maps it into Ω∗.

Indeed, if Ω∗ � zn → z ∈ FrΩ and cl Ω � f(zn) → f(z), then, since f is a local
homeomorphism on a neighbourhood of FrΩ in cl Ω (see the paragraph above),
there exists cl Ω � wn → z such that f(wn) → f(z). This contradicts the assump-
tion that f has no critical points in FrΩ: that is, f is a local homeomorphism in
a neighbourhood of Fr Ω in C.

Therefore, analogously to g1, we can define g2 = R−1
2 ◦ f ◦ R2, the lift of f

via the Riemann map R2 on the set D2 intersected with a sufficiently thin open
annulus surrounding S1, and consider the extensions of R2 and g2 to the closure
clD2: see Figure 9.4.

Set

h = R−1
2 ◦R1|S1 : S1 → S1.

Composing, if necessary, R2 with a rotation we may assume that h(1) = 1. Our
first objective is to demonstrate that h is real-analytic.

Let μi = uil be gi-invariant Gibbs measures for potentials − log |g′i|, that is,
gi-invariant measures equivalent to length measure l, for i = 1, 2 respectively. In
view of Section 6.2, the densities u1 and u2 are both real-analytic.

Now we refer to the F. and M. Riesz Theorem (or Riesz–Privalov: see for
example [Pommerenke, 1992, Chapter 6.3]), which says that FrΩ a rectifiable
Jordan curve implies that the map R2 : ∂D → Fr Ω transports the length measure

h

R2

R1

Figure 9.4 Broken egg argument.
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on S1 to the measure equivalent to Λ1 on FrΩ. (Recall that we stated a simi-
lar fact on R1 at the beginning of the proof, which followed directly from the
assumptions, without referring to the Riesz theorem.) We conclude that h∗(μ1)
is equivalent to μ2. Since h establishes conjugacy between g1 and g2, the measure
h∗(μ1) is g2-invariant.

Now comes the main point. The measures μ2 and h(μ1) are ergodic, and
hence equal, by Theorem 2.2.6: that is,

h(μ1) = μ2.

Therefore, writing a(t) = 1
2π log h(e2πit), a : [0, 1] → [0, 1] , denoting b1(t) =

∫ t
0
u1(e2πit) dt and b2(t) =

∫ t
0
u2(e2πit) dt, noting that by h(1) = 1 we have

a(0) = 0, we get for all t : 0 ≤ t ≤ 1

b1(t) = b2(a(t)).

The functions bi are real-analytic and invertible, since ui are positive. Therefore
we can write inverse functions and conclude that a = b−1

2 ◦ b1 is real-analytic.
Hence h is real-analytic.

The function h extends to a holomorphic function on a neighbourhood of S1,
and we can replace R2 by R3 = R2 ◦h in a neighbourhood of S1 in D2. By defini-
tion, R1 considered on clD1 and R3 outside D1 coincide on S1. So by Peinleve’s
Lemma they glue together to a holomorphic mapping R on a neighbourhood of
S1. So R(S1) is a real-analytic curve, and the proof of the first part is complete.

Suppose now that f extends to a rational function on C, and Ω is completely
invariant. Then Ω∗ is also completely invariant, and both domains are basins
of attraction to sinks, p1 ∈ Ω and p2 ∈ C \ cl Ω respectively (use the Brouwer
Theorem and the Schwarz Lemma). Let Ri defined above satisfy R1(0) = p1 and
R2(∞) = p2. The maps gi = R−1

i ◦f ◦Ri preserving Di and S1 must be Blaschke
products. Let a1, . . . , ad be the zeros of g1 in D1 with counted multiplicities.
Their number is d, since d is the degree of f , and R1(ai) are f -pre-images of p.
Denote B1(z) =

∏d
i=1

z−ai

1−āiz
. Each factor z−ai

1−āiz
is a homography preserving S1,

so their product also preserves S1.
For B1, as above, g1/B1 is holomorphic on D1, has no zeros there, and its

continuous extension to S1 (see Section 9.4) preserves S1. Hence by the Maxi-
mum Principle applied to g1/B1 and B1/g1 the function g1/B1 is a constant λ1.
So g1 = λ1B for |λ1| = 1. In fact, as one of the zeros of B is 0, as 0 = R−1

1 (p1)
is a fixed point for g1, we can write

g1(z) = λ1z

d∏

i=2

z − ai
1 − āiz

.

Similarly we prove that

g2(z) = λ2z

d∏

i=2

z − a′i
1 − ā′iz

.

for 1/ā′i the poles of g2 in D2.
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Note that each Blaschke product B, for which 0 is a fixed point, preserves the
length measure l on ∂D. Indeed, let φ be an arbitrary real continuous function
on ∂D and φ̃ its harmonic extension to D. Then

∫
φdl = φ̃(0) = φ̃(B(0)) =

∫
φ ◦B dl, (9.5.3)

since φ̃ ◦ B is harmonic as a composition of a holomorphic mapping with a
harmonic function. We conclude that both g1 and g2 preserve the length measure
l. Hence h = id andR1 = R2 on S1 glue together to a homographyR on C , g1 and
g2 extend each other holomorphically to g := g1 = g2 on C, and f = R ◦ g ◦R−1.

Finally, if f is a polynomial, then ∞ is a pole of multiplicity d: hence
g(z) = zd. ♣

Example 9.5.6. In Section 6.1, Example 6.1.10, we provided an example of an
expanding repeller, an invariant Jordan curve for fc(z) = zd + c for d = 2 and
c ≈ 0. Similarly, for any d ≥ 2 there exists an invariant Jordan curve Jc, being a
Julia set for fc, cutting the Riemann sphere C̄ into two components, Ω and Ω∗,
which are basins of attraction to a fixed point pc near 0 and to the fixed point
at ∞. The existence of the expanding repeller Jc follows from Proposition 6.1.7.
The rest of the scenario is an easy exercise. We can conclude from Theorem 9.5.5
that c = 0 implies HD(Jc) > 1.

Now we present another proof of Theorem 9.5.5, avoiding the Riesz Theorem,
and so more applicable in other situations: see for example Exercise 9.14.

Proof of Theorem 9.5.5, a second method. It is convenient now to use the half-
plane rather than a disc, so we consider a univalent conformal map R : {z ∈ C :
�z > 0} → Ω extending to a homeomorphism R : cl{�z ≥ 0} ∪∞ → cl Ω.

By our assumptions, R is absolutely continuous on the real axis R. Denote
the restriction of R to this axis by Ψ. Then Ψ(x) is differentiable a.e., and it is
equal to the integral of its derivative: see [Pommerenke, 1992, Chapter 6.3].

Therefore Ψ′ = 0 on a set of positive Lebesgue measure in R. By Egorov’s
Theorem Ψ(x+h)−Ψ(x)

h −Ψ′(x) → 0 uniformly for |h| → 0, h = 0, except for a set
of an arbitrarily small measure (for a finite measure equivalent to Lebesgue). To
be concrete, there exists c > 0 and a sequence of numbers εn ↘ 0 such that the
following set has positive Lebesgue measure:

Q = {x ∈ R : c ≤ |Ψ′(x)| ≤ 1/c, |Ψ(x+ h) − Ψ(x) − Ψ′(x)h| ≤ |h|/n if |h| ≤ εn}.

Let μ denote, as before, the probability g-invariant measure on R equivalent to
Lebesgue (remember that we have replaced the unit disc by the upper half-plane,
but we use the same notation R, g and μ). We shall prove that R extends to a
holomorphic map on a neighbourhood in C of any point in R – that is, it is
real-analytic on R – by using the formula

R = fn ◦R ◦ g−n.
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The point is to choose the right backward branches g−n so that R in the centre
in the above identity is almost affine. We shall use the natural extension (R̃, μ̃, g̃)
(see Section 2.8), where R̃ can be understood as the space of g-trajectories and
π = π0 maps R̃ to R and is defined by π(xn, n = . . . ,−1, 0, 1, . . . ) = x0. (We
shall use this method more extensively in Chapter 11.)

Since g is ergodic, g̃−1 is ergodic (see Section 2.2 and Exercise 2.14), and
in conclusion there exists x0 ∈ R and a sequence Gj of backward branches
of g−nj defined on an interval I with x0 in the middle, r := |I|/2, such that
xj := Gj(x0) ∈ Q for all j = 1, 2, . . . . Define affine maps

Aj(y) := Ψ′(xj)(y − xj) + Ψ(xj) (9.5.4)

from R to C.
First we show that we have uniform convergence on I as j → ∞:

Ψj := fnj ◦Aj ◦Gj → Ψ. (9.5.5)

With fixed Gj and x ∈ I, denote y := gj(x0) and y + h := Gj(x). If
λ
−nj
g diams(I) < εn for λg the expanding constant for g, where diams denotes

the diameter in the spherical metric, then by the definition of the set Q, taking
into account that Ψ(y) = Aj(y), we obtain

∣
∣
∣
∣
Ψ(y + h) − Ψ(y)
Aj(y + h) − Ψ(y)

− 1
∣
∣
∣
∣ ≤

(1/nj)|h|
|Ψ′(y)h| ≤ 1/nj

c
. (9.5.6)

Then by bounded distortion for iterates of f , Lemma 6.2.2, we obtain for a
constant C ≥ 1 depending on f

∣
∣
∣
∣
fnj Ψ(y + h) − fnj Ψ(y)
fnjAj(y + h) − fnj Ψ(y)

− 1
∣
∣
∣
∣ ≤ eCr/njc. (9.5.7)

To use Lemma 6.2.2 we need to check its assumptions (we consider x =
Ψ(y), y1 = Ψ(y + h), y2 = Aj(y + h) in the notation of Lemma 6.2.2): that
is, to check that for all k = 0, 1, . . . , nj

|fkΨ(y + h) − fkΨ(y)| < r and |fkAj(y + h) − fkΨ(y)| < r. (9.5.8)

The first estimate follows immediately from the expanding property of f , that
is, the estimate |fkΨ(y + h) − fkΨ(y)| ≤ λ

nj−k
f diam Ψ(I) < r, where λf is the

expanding constant for f .
The second estimate can be proved by induction, jointly with (9.5.7) for all

fk, k = 0, 1, . . . , nj in place of fnj in (9.5.7). For each k0, having assumed (9.5.8)
for all k ≤ k0, we obtain (9.5.7) for fk0 in place of fnj , by Lemma 6.2.2. In
particular, the bound is by 1 − λ−1

f if nj is large enough.
Hence in the fraction, writing k = k0, we get in the denominator

|fkAj(y + h) − fkΨ(y)| ≤ diam Ψ(I), since the numerator is bounded by
λ
−(nj−k)
f diam Ψ(I) ≤ λ−1

f diam Ψ(I). Hence |fk+1Aj(y + h) − fk+1Ψ(y)| <
K diam Ψ(I) = r.
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Note that in the course of induction we verify that the consecutive points
fkAj(y + h), as being close to FrΩ, belong to the domain of f .

Now we calculate, using fnj ◦ Ψ ◦Gj = Ψ for all j and (9.5.7), that

|Ψj(x) − Ψ(x)| = |Ψj(x) − Ψj(x0) − (Ψ(x) − Ψ(x0))|

=
∣
∣
∣
∣
fnj Ψ(y + h) − fnj Ψ(y)
fnjAj(y + h) − Ψ(x0)

− 1
∣
∣
∣
∣ · |fnjAj(y + h) − Ψ(x0)|

≤ eCr/njc)|fnjAj(y + h) − Ψ(x0)|,
which tends to 0 for j → ∞.

Now consider Ψj as defined on a complex neighbourhood of I. To this end
consider Aj as affine maps of C, given by the same formula (9.5.4) as before. By
(9.5.8), considered for complex x and consequently complex h, the maps Ψj are
well defined and uniformly bounded. Thus we can apply the Montel Theorem
and choose a convergent sub-sequence from Ψj . The limit must be a holomorphic
extension of Ψ by uniqueness, because it is equal to Ψ on I.

Finally, Ψ extends holomorphically to a neighbourhood of every z ∈ R ∪∞,
since by the topological exactness of g there exists x ∈ I and an integer n ≥ 0
such that gn(x) = z. So, on a neighbourhood of z, we define the extension Ψ =
fn ◦Ψ◦g−nx , where Ψ in the centre has been already defined in a neighbourhood
of I. ♣

Now we shall prove the following corresponding fact on the radial behaviour
of Riemann mapping.

Theorem 9.5.7. Let f : Fr Ω → FrΩ be a conformal expanding repeller with
Ω a Jordan domain. Depending on whether c(ω) = 0 or c(ω) = 0, either ∂Ω is
real-analytic and the Riemann map R : D1 → Ω and its derivative R′ extend
holomorphically beyond ∂D1, or for almost every z ∈ ∂D1,

lim sup
r→1

|R′(rz)| exp c
√

log(1/1 − r) log3(1/1 − r) =

{
∞ if c ≤ c(ω)
0 if c > c(ω)

(9.5.9)

and

lim sup
r→1

(|R′(rz)| exp c
√

log(1/1 − r) log3(1/1 − r))−1 =

{
∞ if c ≤ c(ω)
0 if c > c(ω)

(9.5.10)
Moreover, the radial limsup can be replaced by the non-tangential one.

Proof. Let n > 0 be the least integer for which gn(rz) ∈ B(0, r0) for some fixed
r0 < 1. We have R′(rz) = ((fn)′(R(rz)))−1 · R′(gn(rz)) · (gn)′(rz). Hence, for
some constant K > 0 independent of r and z,

K−1 ≤ |R′(rz)|
|((fn)′(R(rz)))−1| · |R′(gn(rz))| ≤ K.

By the Bounded Distortion Theorem the rz in the denominator can be replaced
by z, and n depends on r as described by (9.1.2) with r replaced by 1 − r. Now
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we proceed as in the proof of Theorem 9.3.1, replacing deviations of Sn(φ) −
P (φ)n + κ log |(fn)′(x)| by the deviations of log |(gn)′(x)| − log |(fn)′(x)|. The
proof is complete. ♣

9.6 Pressure versus integral means of the
Riemann map

In this section we establish a close relation between the integral means of deriva-
tives of the Riemann map to a domain Ω and the topological pressure of the
function −t log |f ′| for a mapping f on the boundary of Ω. This links holomor-
phic dynamics with analysis, because in the notion of β below f is not involved.
Given t ∈ R, define

β(t) = lim sup
r→1

log
∫
∂D

|R′(rz)|tdl(z)
− log(1 − r)

, (9.6.1)

the integral with respect to the length measure. We shall prove the following.

Theorem 9.6.1. Assume that (Fr Ω, f) is a conformal expanding repeller (as in
Theorem 9.4.7). If the lifted (desingularized) map g : ∂D → ∂D is of the form
z �→ zd, d ≥ 2, then

β(t) = t− 1 +
P(f,−t log |f ′|)

log d
. (9.6.2)

In particular, in (9.6.1) limsup can be replaced by lim.

Proof. Fix 0 < r < 1. Fix n = n(r) to be the first integer for which |gn(rz)| < r0
for z ∈ ∂D, where r0 < 1 is a constant such that f is defined on a neighbourhood
of clR({r0 ≤ |w| ≤ 1}). Note that n is independent of z, and that there exists a
constant A ≥ 1 such that A−1 ≤ |R′(w)| ≤ A for all w ∈ B(0, r0).

Then, for all z ∈ ∂D,

|R′(rz)|t = |R′(gn(rz))|t (|gn)′(rz)|t
|(fn)′(R(rz))|t .

Divide ∂D into dn arcs Ij , j = 0, . . . , dn − 1 with the end points zj := e(2πi)j/d
n

and zj+1. Note that {zj := j = 0, . . . , dn − 1} = g−n({1}).
By Hölder continuity of the continuous extension of R to cl D (see Theo-

rem 9.4.7), f ′ ◦R is Hölder continuous on cl D. Hence there is a constant K > 0
such that the ratio |(fn)′(R(w1))/(fn)′(R(w2))| is bounded by K for all n all j
and w1, w2 ∈ rIj , (see Chapter 4). Hence

∫

Ij

|(fn)′(R(rz))|−tdl(z) � (2πrd−n|(fn)′(R(rzj))|−t|,

where � means the equality up to a bounded factor.
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By our definition of n, rd0 ≤ rd
n ≤ r0: hence d log(r0) ≤ dn log r ≤ log(r0).

Since there exists a constant B ≥ 1 such that B−1(1 − r) ≤ − log r ≤ B(1 − r)
for all r sufficiently close to 1, we get B−1 log 1/r0 ≤ dn(1 − r) ≤ Bd log 1/r0.
Therefore − logB+log log 1/r0 ≤ n log d+log(1−r) ≤ logB+log log 1/r0+log d.
Hence n log d−C ≤ − log(1− r) ≤ n log d+C for some constant C. Thus, using
|gn)′(rz)| = dn|rz|dn−1 � dn,

lim
r→1

log
∫
∂D

|R′(rz)|tdl(z)
− log(1 − r)

= lim
n→∞

1
n log d

log
( dn−1∑

j=0

2πrd−ndnt|(fn)′(R(rzj))|−t
)

= − 1 + t+
∑

lim
n→∞

1
n log d

log
∑

j

|fn)′(R(rzj))|−t

= t− 1+
P(g,−t log |f ′| ◦R)

log d
= t− 1+

P(f,−t log |f ′|)
log d

.

Above, to get pressures, we use the equalities

|(fn)′(R(rzj))|−t = expSn(− log |f ′| ◦R)(rzj),

where Sn(φ) =
∑n−1
k=0 φ ◦ gk with φ = −t log |f ′| ◦R, and apply the definition of

pressure Px(T, φ) provided in Proposition 4.4.3. To get P(g,−t log |f ′| ◦ R) we
replace n-th pre-images rzj of the point gn(rzj) (not depending on j) by pre-
images of gn(zj) = 1, therefore computing P1(g, φ). As φ is Hölder continuous
we can apply Lemma 4.4.2, so the latter pressure is indeed P(g, φ).

Now replace 1 by an arbitrary r0 : 0 < r0 < 1 close to 1 so that φ is defined on
its all gn-pre-images, n = 0, 1, .... Then P1(g, φ) = Pr0(g, φ), the latter defined
by the same formula as in Proposition 4.4.3 (though r0 /∈ ∂D, our repeller for
g), since R hence φ are Hölder continuous.

To get P(f,−t log |f ′|) we replace pre-images of r0 by pre-images of R(r0)
using the fact thatR is injective on D. We obtain Pr0(g, φ)= PR(r0)(f,−t log |f ′|),
and the latter expression can be replaced by PR(1)(f,−t log |f ′|). This is equal
to P(f,−t log |f ′|), owing to the Hölder continuity of −t log |f ′|. The topological
transitivity of f on FrΩ assumed in Proposition 4.4.3 used here follows from the
topological transitivity of g on ∂D.

Finally, limsup can be replaced by lim in β(t), since lim in Px(T, φ) exists in
Proposition 4.4.3. The proof is complete. ♣
Remark 9.6.2. The equality (9.2.7) holds even if we do not assume that f is
expanding on FrΩ; it is sufficient to assume boundary repelling to the side of
Ω, as in Proposition 9.4.5. To this end we need to define pressure appropriately.
The above proof works for Px(f,−t log |f ′|) for an arbitrary x ∈ Ω close to FrΩ:
see also [Binder, Makarov & Smirnov 2003, Lemma 2].

This pressure does not depend on x ∈ Ω by the Koebe Distortion Lemma for
iteration of branches of f−1 in Ω: see Section 6.2. This notion makes sense, and
is also independent of x for x ∈ FrΩ for ‘most’ x: see [Przytycki 1999] for the
case where Ω is a basin of infinity for a polynomial. Compare Section 12.5.
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Remark 9.6.3. If f is of degree d on Ω simply connected and f expanding on
Fr Ω, then

F (α) := inf
t∈R

(

t+
αP (t)
log d

)

(9.6.3)

for P (t) := P (f,−t log |f ′|) is the spectrum of dimensions of measure with
maximal entropy Fμmax(α): see the beginning of Section 9.2 and Exercise 9.6.

If f is a polynomial and Ω basin of ∞, then measure with maximal entropy is
the harmonic measure ω (from ∞: see [Brolin 1965]): hence (9.6.3) is the formula
for the spectrum of dimensions of harmonic measure related to the Hausdorff
dimension.

One can ask under what conditions the same formula would hold for a simply
connected Ω in the absence of f , where in place of P (t)/ log d one puts β(t)−t+1:
compare (9.6.1).

Remark 9.6.4. The following conjecture is of interest. For B(t) := supβ(t),
the supremum being taken over all simply connected domains with a boundary
consisting of more than one point, and for Bpoly(t) := supΩ β(t) the supremum
taken over Ω being simply connected basins of attraction to ∞ for polynomials,

B(t) = Bpoly(t).

It is known that Bt = Bsnowflake(t), where Bsnowflake(t) is defined as the supβ(t)
with supremum taken over Ω being complements of Carleson’s snowflakes: see
Section 9.7.

Remark 9.6.5. The following is called the Brennan conjecture: BBSC(−2) = 1
(BSC means the supremum over bounded simply connected domains).

This has been verified for Ω simply connected basins of ∞ for quadratic
polynomials in [Barański, Volberg, & Zdunik 1998], the variant saying that

∫ ∫

D

|R′|−2+ε |dz|2 <∞.

A stronger conjecture is that

B(t) = |t|2/4 for |t| ≤ 2 and |t| − 1 for |t| ≥ 2.

9.7 Geometric examples: snowflake and
Carleson’s domains

This last section of this chapter is devoted to applying the results of preceding
sections to geometric examples such as Koch’s snowflake and Carleson’s example.
Following the idea of the proof of Theorems 9.3.1, 9.5.4 and 9.5.5, and coping with
additional technicalities (see [Przytycki, Urbański & Zdunik, 1991, Theorem C,
Section 6]), one can prove the following.
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Theorem 9.7.1. Let Ω be a simply connected domain in C, with the boundary
FrΩ = ∂Ω being a Jordan curve. Let ∂j, j = 1, 2 . . . , k be a finite family of
compact arcs in ∂Ω with pairwise disjoint interiors. Denote

⋃
∂j by ∂ (we do

not assume that this curve is connected). Assume that there exists a family of
conformal maps fj, j = 1, . . . , k (which may reverse the orientation on C) on
neighbourhoods Uj of ∂j. For every j assume that fj(Ω ∩ Uj) ⊂ Ω, |f ′j | > 1 on
Uj, and

fj(∂Ω ∩ Uj) ⊂ ∂Ω. (9.7.1)

Assume also the Markov partition property: for every j = 1, . . . k, fj(∂j) =⋃
s∈Ij

∂s for some subset Ij ⊂ {1, 2, . . . , k}. Consider the k× k matrix A = Ajk,
where Ajk = 1 if k ∈ Ij and Ajk = 0 if k /∈ Ij. Assume that A is aperiodic: that
is, there exists n such that all the entries of An are positive (compare Section 4.3).
Then there exists a transition parameter c(ω, ∂) ≥ 0 such that, for the harmonic
measure ω on ∂Ω viewed from Ω, restricted to ∂, the claims of Theorem 9.5.4
and Theorem 9.5.5 (the analyticity of ∂ in the case c(ω, ∂) = 0) hold for ∂.

Here (9.7.1) is a crucial assumption, allowing us to prove Theorem 9.7.1.
To have it satisfied, one sometimes needs to construct a sophisticated Markov
partition of ∂Ω rather than a natural one: see the snowflake example below
(Figure 9.5) and Chapter 1. See also the discussion in [Makarov 1986].

Example 9.7.2 (the snowflake). To every side of an equilateral triangle, in the
middle we glue from outside a three times smaller triangle. To every side of
the resulting polygon we glue again an equilateral triangle three times smaller,
and so on infinitely many times. The triangles do not overlap in this construc-
tion and the boundary of the resulting domain Ω is a Jordan curve. This Ω is
called Koch’s snowflake (Figure 9.5). It was first described by Helge von Koch
in 1904.

A9

A2

A7 A5

A6

A11 A1
.

A3
.

..

.

A10
. .

A8 A4
.

.

.

A0.

.

Figure 9.5 Snowflake.
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Figure 9.6 A fragment of the snowflake.

Denote the curve in ∂Ω joining a point x ∈ ∂Ω to y ∈ ∂Ω in the clockwise
direction just by xy. For every ∂i := AiAi+1(mod12) ⊂ ∂Ω, i = 0, 1, . . . , 11, we
consider its covering by the curves 12, 23, 34, 45, 56 in Ω: see Figure 9.6. This
covering, together with the affine maps

12, 34 → 16 (preserving orientation on ∂Ω)
23 → 61 (reversing orientation)
56 → 36 (preserving orientation)
45 → 63 (reversing orientation)

gives a Markov partition of ∂i satisfying the assumptions of Theorem 9.7.1.
Since ∂Ω (and all its subcurves) is definitely not real-analytic (HD(∂Ω) =

log 4/ log 3), the assertion of Theorem 9.7.1 is valid with c(ω, ∂i) > 0. We may
denote c(ω, ∂i), by c(ω) since it is independent of ∂i by symmetry.

Example 9.7.3 (Carleson’s domain). We recall Carleson’s construction from
[Carleson 1985]. We fix a broken line γ with the first and last segment lying in
the same straight line in R

2, with no other segments intersecting the segment
1, d− 1 (see Figure 9.7).

Then we take a regular polygon Ω1 with vertices T0, T1, . . . , Tn and glue to
every side of it, from outside, the rescaled, not mirror-reflected, curve γ so that
the ends of the glued curve coincide with the ends of the side. The resulting curve
bounds a second polygon Ω2. Denote its vertices by A0, A1, . . . (Figure 9.8). Then
we again glue the rescaled γ to all sides of Ω2 and obtain a third-order polygon
Ω3 with vertices B0, B1, . . .. Then we build Ω4 with vertices C0, C1, . . .Ω5 with
D0,D1, . . . etc.

Assume that there is no self-intersecting of the curves ∂Ωn in this construc-
tion. Moreover, assume that in the limit we obtain a Jordan curve L = L(Ω1, γ) =
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. .

.
.

d− 2

0 1 dd− 1
. .

2

Figure 9.7 Construction of Carleson’s domain.

C2

Ti

A0 = B0

B1

A1 = Bd

B2d−1

Ad−1 = Bd2−d

A2

B2d+1
C̃2

Ti+1

Ad = Bd

Bd2−1

Figure 9.8 Carleson’s domain.

∂Ω. The natural Markov partition of each curve TiTi+1in L into curves AjAj+1

with f(AjAj+1) = TiTi+1, considered by Carleson, does not satisfy the property
(9.7.1), so we cannot succeed with it. Instead we proceed as follows. Define in
an affine fashion

f(Bd(j−1)+1Bdj−1) = A1Ad−1

for every j = 1, 2 . . . , d. Now divide every arc Bdj−1Aj for j = 1, 2 . . . , d and
AjBdj+1, j = 1, 2 . . . , d into curves with ends in the vertices of the polygon
Ω4 : Cj ∈ Bdj−1Aj , C̃j ∈ AjBdj+1 respectively, the closest to Aj(= Aj). Let, for
j = 1, 2, . . . , d− 1,
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f(CjAj) = Bdj−1Aj , f(Bdj−1C
j) = Ad−1Bd2−1,

f(AjC̃j) = AjBdj+1, f(C̃jBdj+1) = B1A1.

This gives a Markov partition of B1Bd2−1 with aperiodic transition matrix: see
the discussion after Definition 4.3.3 and Theorem 4.5.7. Instead of the broken line
γ in the construction of Ω, we can consider the line γ(2), consisting of d2 segments,
which arises by glueing to every side of γ a rescaled γ. Consecutive gluing of the
rescaled γ(2) to the polygon Ω1 gives consecutively Ω3,Ω5 etc. The same construc-
tion as above gives a Markov partition of D1Dd4−1 in TiTi+1. By continuing this
procedure we approximate TiTi+1, so from Theorem 9.7.1 and from the symmetry
we deduce that there exists a transition parameter c(ω) such that the assertion
of Theorem 9.5.4(b) is satisfied. Observe that Carleson’s assumption that the
broken line 1, 2, . . . , d−1 does not intersect 1, d− 1 has not been needed in these
considerations. Also, the assumption that Ω1 is a regular polygon can be omit-
ted; one can prove that c(ω) does not depend on TiTi+1 by considering a Markov
partition with aperiodic transition matrix, which involves all the sides of Ω1

simultaneously.

Exercises

Multifractal analysis

9.1. Prove the equalities of Rényi and Hentschel–Procaccia spectra.

9.2. Prove Proposition 9.2.4 about Legendre transform pairs and the remarks
preceding and following it.

9.3. Prove for α = −T ′(1) that F (α) = α and F ′(α) = 1 and F ′(−T ′(±∞)) =
±∞ (see Figure 9.3).

9.4. Prove that if φ is not co-homologous to −HD(X) log |f ′| then the singular
part X̂ of X is non-empty. Moreover, HD(X̂) = HD(X).

Hint: Using the Shadowing Lemma from Chapter 4, find trajectories that
have blocks close to blocks of trajectories typical for μ−HD(X) log |f ′| of length
N interchanging with blocks close to blocks typical for μφ of length εN , for N
arbitrarily large and ε > 0 arbitrarily small.

9.5. Define the lower and upper information dimension I(ν) and I(ν), replacing,
in the definition of I(ν), the limit limr by the lower and upper limits respectively.
Prove that HD�(ν) ≤ I(ν) ≤ I(ν) ≤ PD�(ν): see (9.2.1).

Sketch of the proof. For an arbitrary ε > 0 there exist C > 0 and A ⊂ X, with
ν(X\A) ≤ ε such that for all r small enough there exists a partition Fr ofA, satis-
fying Hν(r)+ ε ≥ −∑B∈Fr

ν(B) log ν(B) ≥∑B∈Fr
ν(B)HD�(ν) log 1

C diamB ≥
HD�(ν)(1 − ε) log 1

Cr .
On the other hand, for the partition Br of X into intersections with boxes

(cubes) of sides of length r (compare Proposition 8.4.6 and the partition involved
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in the definition of Rényi dimension, but consider here disjoint cubes, that is,
open from one side), we have

I(ν) = lim sup
r→0

Hν(r)
− log r

≤ lim sup
r→0

−∑B∈Br
ν(B) log ν(B)

− log r

≤ lim sup
r→0

∫
log ν(Br(x)) dν(x)

log r
≤
∫ (

lim sup
r→0

log ν(Br(x))
log r

)
dν(x) ≤ PD�(ν),

where Br(x) denotes the cube of side r containing x.
Prove that it has been valid here to use cubes instead of balls in the definition

of dν(x). To this end prove that for ν-a.e. x ∈ X, we have lim log ν(Br(x))
log ν(B(x,r)) = 1.

Use the Borel–Cantelli Lemma.
Prove that we could use Fatou’s Lemma (changing the order of limsup

and integral), owing to the existence of a ν-integrable function that bounds
from above all the functions log ν(B(x, r))/ log r (or log ν(Br(x))/ log r). Use
the Borel–Cantelli Lemma again for, say, r = 2−k.

9.6. Let μ = μφ be a measure of maximal entropy on a topologically exact
conformal expanding repeller X such that every point x ∈ X has exactly d
pre-images (so φ = − log d). Prove (deduce from Theorem 9.2.5) that F (α) =
inft∈R

(
t+ αP(t)

log d

)
, or more concretely F (α) = T + αP(T )

log d , where α = − log d
P ′(T ) .

9.7. Let φi : X → R be Hölder continuous functions for i = 1, . . . , k and μφi
their

Gibbs measures. Define Xα1,...,αk
= {x ∈ X : dμi

(x) = αi for all i = 1, . . . , k}.
Define φq1,...,qk,t = −t log |f ′|+∑i qiφi and T (q1, . . . , qk) as the only zero of the
function t �→ P(φq1,...,qk,t). Prove the same properties of T as in Theorem 9.2.5,
and in particular that

HD(Xα1,...,αk
) = inf

(q1,...,qk)∈Rk

∑

i

qiαi + T (q1, . . . , qk),

wherever the infimum is finite.

Fluctuations for Gibbs measures

9.8. Prove μφ ⊥ Λαc0
in case (b) of Theorem 9.3.1.

Hint: Use a function more refined than
√

2σ2n log log n: see the Kolmogorov
test after Theorem 2.11.1. Use LIL (upper bound) for Sn(log |φ′| − χμφ

) (the
Birkhoff Ergodic Theorem as used above is not suficient). For details see
[Przytycki, Urbański & Zdunik 1989].

9.9. Prove a theorem analogous to Theorem 9.3.1, comparing μφ with packing
measures. In particular, prove that, for ψ not a co-boundary, for the gauge func-
tion αc(r) = rκ exp(−c√log 1/r log3 1/r) and c0 =

√
2σ2

μφ
(ψ)/χμφ

(f) it holds
that μφ � Παc

for all 0 < c < c0, and μφ ⊥ Παc
for all c > c0.
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Harmonic measure

9.10. Prove (9.5.2) – that is, hR∗(μ)(f) = hμ(g) – in the case where f is expand-
ing, but not assuming that Ω is Jordan. To this end prove that R is finite-to-one
on ∂D.
9.11. Prove that if Ω is a Jordan domain with boundary preserved by a con-
formal expanding map f defined on its neighbourhood, and harmonic measures
ωΩ and ω

C\cl Ω on FrΩ (that is, harmonic measures on FrΩ viewed from inside
and outside) are equivalent, then they are equivalent to the Hausdorff measure
Λ1 (and hence Fr Ω is real-analytic).

Remark. A part of this theorem holds without assuming the existence of f : see
Bishop et al. [1989]. It has an important intuitive meaning. Harmonic measure is
supported on a set exposed to the side from which it is defined, easily accessible
by Brownian motion. These sets in Fr Ω viewed from inside and outside are very
different, except for the case, where FrΩ is rectifiable.
9.12. Prove that if (Fr Ω, f) is an expanding conformal repeller for a rational
function f , FrΩ is an analytic Jordan curve, and Ω is a basin of attraction
to a sink, then Fr Ω is a geometric circle. (The assumption that Ω is a basin
of attraction is weaker than the assumption that Ω is completely invariant in
Theorem 9.5.5.)

Hint: Owing to the analyticity of Fr Ω, a Riemann map R : D → Ω extends
holomorphically to a neighbourhood U of cl D. Consider g a Blaschke product
extending R−1fR defined on D. We can assume that g has a sink at ∞. Next,
extend R to C holomorphically by fn ◦R ◦ g−n, with branches g−n and n large
enough that g−n(z) ∈ U . Check that the extension does not depend on the choice
of the branches g−n. If g is not of the form g(z) = Azd, then the above formula
defines R on C. If g(z) = Azd, prove separately that R does not have an essential
singularity at ∞. Finally prove that the extended R is invertible. For details see
[Brolin 1965, Lemma 9.1].

If we do not assume anything about the f -invariance of Ω or Ω∗, then Jordan
Fr Ω need not be a geometric circle. Consider, for example, the mapping F (x, y) =
(4x, 4y) on the 2-torus R

2/Z2 and its factor, the so-called Lattés map, f :=
PFP−1 on the Riemann sphere, where P is the Weierstrass elliptic function.
Then P ({y = 1/4 + Z}) is an f -invariant expanding repelling Jordan curve, but
it is not a geometric circle (we owe this example to A. Eremenko).
9.13. Prove that if for two conformal expanding repellers (J1, f1) and (J2, f2) in
C being Jordan curves, the multipliers at all periodic orbits in J corresponding
by a conjugating homeomorphism h, coincide, that is, for each periodic point
q ∈ J1 of period n we have |(fn1 )′(q)| = |(fn2 )′(h(q))|, then the conjugacy extends
to a conformal map to neighbourhoods.
9.14. Let A : R

d/Zd → R
d/Zd be a hyperbolic toral automorphism given by an

integer matrix of determinant 1. Let Φ(x1, . . . , xd) = (ε2πix1 , . . . , ε2πixd) map this
torus to the torus T d = {|z1| = · · · = |zd| = 1} ⊂ C

d. It extends to C
d/Zd. Define

B = ΦAΦ−1. Let f be a holomorphic perturbation of B on a neighbourhood of
T d. Prove that close to T d there is a topological torus S invariant for f such that
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A on T d and f on S are topologically conjugate by a homeomorphism h close to
identity. Prove that if for each A-periodic orbit p,A(p), . . . , An−1(p) of period n
absolute values of eigenvalues of differentials DAn(p) and of Dfn(h(p)) coincide
(one says that Lyapunov spectra of periodic orbits coincide), then h extends to
a holomorphic mapping on a neighbourhood of T d.
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look proves that for any Ω with f defined on a neighbourhood of FrΩ with
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either HD(Fr Ω) > 1, and in fact even the hyperbolic dimension HyD(X) > 1
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10

Sullivan’s classification of
conformal expanding
repellers

This chapter relies on ideas of the proof of the rigidity theorem drafted by
D. Sullivan in the Proceedings of Berkeley’s International Congress of Mathe-
maticians in 1986: see [Sullivan 1986]. In Chapter 7, Example 7.1.10 shows that
two expanding repellers can be Lipschitz conjugate, but not analytically (nor
even differentially) conjugate.

So in Chapter 7 we provided an additional invariant, the scaling function for
an expanding repeller in the line, taking ‘gaps’ into account, and proved that it
determined the C1+ε-structure.

In this chapter, following Sullivan, we distinguish a class of conformal expand-
ing repellers (CERs) called non-linear, and prove that the class of equivalence
of the geometric measure, and in particular the class of Lipschitz conjugacy,
determines the conformal structure.

This is amazing: a holomorphic structure preserved by a map is determined
by a measure.

10.1 Equivalent notions of linearity

Definition 10.1.1. Consider a CER (X, f) for compact X ⊂ C. Denote by Jf
the Jacobian of f with respect to the Gibbs measure μX equivalent to a geometric
measure mX on X. We call (X, f) linear if one of the following conditions holds:

(a) The Jacobian Jf , is locally constant.
(b) The function HD(X) log |f ′| is co-homologous to a locally constant

function on X.
(c) The conformal structure on X admits a conformal affine refinement so

that f is affine (that is, there exists an atlas {ϕt} that is a family of conformal

284
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injections φt : Ut → C where
⋃
t Ut ⊃ X such that all the maps φtφ−1

s and
φtfφ

−1
s are affine).

Recall that as the conformal map f may change the orientation of C on some
components of its domain, we can write |f ′| but not f ′ unless f is holomorphic.

Proposition 10.1.2. The conditions (a), (b) and (c) are equivalent.

Before we prove this proposition we single out from CER’s, real-analytic
repellers (this repeats Definition 6.3.1).

Definition 10.1.3. We call (X, f) real-analytic if X is contained in the union of
a finite family of real-analytic open arcs and closed curves with pairwise disjoint
closures.

Lemma 10.1.4. If there exists a connected open domain U in C intersecting
X for a CER (X, f), and if there exists a real-analytic function k on it equal
identically 0 on U ∩X but not on U , then (X, f) is real-analytic.

Proof. Pick an arbitrary x ∈ U ∩ X. Then in a neighbourhood V of x the set
E = {k = 0} is a finite union of pairwise disjoint real-analytic curves and of the
point x. This follows from the existence of a finite decomposition of the germ
of E at x into irreducible germs and from the form of each such germ: see for
example Proposition 5.8 in [Malgrange 1967]. As the sets fn(X∩V ), n ≥ 0 cover
X, X is compact, and f is open on X, we conclude that X is contained in a
finite union of real-analytic curves γj and a finite set of points A such that the
closures of γj can intersect only in A.

Suppose that there exists a point x ∈ X such that X is not contained in
any real-analytic curve in every neighbourhood of x. Then the same is true
for every point z ∈ X ∩ f−n{x}, n ≥ 0, and hence for an infinite number of
points (because pre-images of x are dense in X by the topological exactness of
f : see Chapter 4). But we proved above that the number of such points is finite,
so we have arrived at a contradiction. We conclude that X is contained in a
one-dimensional real-analytic submanifold of C. ♣
Proof of Proposition 10.1.2.

(a)⇒ (b). Let u be the eigenfunction Lu = u for the transfer operator
L = Lφ for the function φ = −κ log |f ′|, where κ = HD(X), as in Section 5.3.
Here the eigenvalue λ = exp P(f, φ) is equal to 1: see Section 9.1.

For an arbitrary z ∈ X we have, in its neighbourhood in X,

Const = log Jf = κ log |f ′(x)| + log u(f(x)) − log u(x) (10.1.1)

(b)⇒ (c). The function u extends to a real-analytic function uC in a neigh-
bourhood of X (see Section 6.3), so the function log Jf extends to a real-analytic
function log JfC by the right-hand-side equality in the formula (10.1.1), for uC

instead of u. We have two cases: either log JfC is not locally constant on every
neighbourhood ofX, and then by Lemma 10.1.4 (X, f) is real-analytic, or log JfC

is locally constant. Let us first consider the latter case.
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Fix z ∈ X. Choose an arbitrary sequence of points zn ∈ X, n ≥ 0 such
that f(zn) = zn−1, and choose branches f−nν mapping z to zn. Because of the
expanding property of f they are all well defined on a common domain around
z. For every x close to z denote xn = f−nν (x). We have dist(xn, zn) → 0, so by
(10.1.1) for log JfC

∞∑

n=1

κ(log |f ′(xn)| − log |f ′(zn)|)

= log uC(x) − log uC(z) + lim
n→∞(log uC(zn) − log uC(xn))

= log uC(x) − log uC(z).

(10.1.2)

We conclude that log uC(x) is a harmonic function in a neighbourhood of z
in C as the limit of a convergent series of harmonic functions; we use the fact
that the compositions of harmonic functions with the conformal maps f−nν are
harmonic. Close to z we take a so-called harmonic conjugate function h so that
log u(x) + ih(x) is holomorphic.

Write Fz = exp(log u+ ih), and denote by F̃z a primitive function for Fz in
a neighbourhood of z. This is a chart, because Fz(z) 
= 0. The atlas given by the
charts F̃z is affine (conformal) by the construction. We have, owing to (10.1.1)
for the extended u,

|(F̃f(z) ◦ f ◦ F̃−1
z )′(Fz(x))| = uC(f(x))|f ′(x)|/uC(x) = Const,

so the differential of f is locally constant in our atlas.
In the case where (X, f) is real-analytic we consider just the charts φt, being

primitive functions of u on real-analytic curves containing X into R with unique
complex extensions to neighbourhoods of these curves into a neighbourhood of
R in C. The equality log JfC = Const holds on these curves, so the derivatives
of φtfφ−1

s are locally constant.
(c)⇒ (a). Denote the maps φtfφ−1

s by f̃t,s. In a neighbourhood (in X) of
an arbitrary z ∈ X we have

u(x) = lim
n→∞Ln(1)(x) = lim

n→∞

∑

y∈f−n(x)

|(fn)′(y)|−κ

= lim
n→∞ |φ′(x)|κ

∑

y

|φ′(y)|−κ|f̃ ′(y)|−nκ

= Const lim
n→∞ |φ′(x)|κ

∑

y

f̃ ′(y)|−nκ = |φ′(x)|κ Const .

(10.1.3)

To simplify the notation we have omitted the indices at φ and f̃ here; of
course, they depend on z and y’s more precisely on the branches of f−n on
our neighbourhood of z mapping z to y’s . Const also depends on z. We could
omit the functions φ′(y) in the last line of (10.1.3), because the diameters of the
domains of φ′(y) that were involved converged to 0 when n → ∞ owing to the
expanding property of f , so these functions were almost constant.
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Hence, owing to (10.1.3), in a neighbourhood of every x ∈ X we get

Jf(x) = Const u(f(x))|f ′(x)|κ/u(x) = Const |f̃ ′(x)|κ = Const . ♣

Remark 10.1.5. In the (b)⇒(c) part of the proof of Proposition 10.1.2, as
−κ log |f ′| is harmonic we do not need to refer to Section 5.4 for the real-
analyticity of u. The formula (10.1.2) gives a harmonic extension of u to a
neighbourhood of an arbitrary z ∈ X, depending on the choice of the sequence
(zn). If two extensions u1, u2 do not coincide on a neighbourhood of z, then in a
neighbourhood of z, X ⊂ {u1 − u2 = 0}.

If equation (10.1.1) does not extend to a neighbourhood of z, then again
X ⊂ {v = Const} for a harmonic function v extending the right-hand side of
(10.1.1).

In both cases (X, f) happens to be real-analytic, and to prove it we do not
need to refer to Malgrange’s book as in the proof of Lemma 10.1.4. Indeed, for
any non-constant harmonic function k on a neighbourhood of x ∈ X such that
X ⊂ {k = 0} we consider a holomorphic function F such that k = F and
F (x) = 0. Then E = {k = 0} = {F = 0}. If F has a d-multiple zero at x
then it is a standard fact that E is a union of d analytic curves intersecting at x
within the angle π

d .
We end this section by giving one more condition implying linearity.

Lemma 10.1.6. Suppose for a CER (X, f) that there exists a Hölder contin-
uous line field in the tangent bundle on a neighbourhood of X, invariant under
the differential of f . In other words, there exists a complex-valued, nowhere-
zero Hölder continuous function α such that, for every x in a neighbourhood
of X,

Argα(x) + Arg f ′(x) = Argα(f(x)) + ε(x)π (10.1.4)

where ε(x) is a locally constant function equal to 0 or 1. This is in the case where
f preserves the orientation at x; if it reverses the orientation we replace Arg f ′

in (10.2.1) by −Arg f̄ ′.
Then (X, f) is linear.

Proof. As in the proof of Proposition 10.1.2, calculation (10.1.2), if f is
holomorphic we have for x in a neighbourhood of z ∈ X in C

Argα(z) − Argα(x) =
∞∑

n=1

(Arg(f ′(zn)) − Arg(f ′(xn))).

If we allow f to reverse the orientation, then we replace Arg f ′ by −Arg f̄ ′ in the
above formula for such n that f changes the orientation in a neighbourhood of
xn. So Argα(x) is a harmonic function. Close to z we find a conjugate harmonic
function h, so we get a family of holomorphic functions Fz = exp(−h+ iArgα,
which primitive functions give the atlas we have looked for.
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Remark 10.1.7. The condition for (X, f) in Lemma 10.1.6 is stronger than
the linearity property. Indeed, we can define f on the union of the discs D1 =
{|z| < 1} and D2 = {|z − 3| < 1} by f(z) = 5 exp 2πϑi on D1, where ϑ is
irrational, and f(z) = 5(z−3) on D2. This is an example of an iterated function
system from Section 5.5. We get a CER (X, f), where X =

⋂∞
n=0 f

−n({|z| < 5}).
It is linear because it satisfies condition (c). Meanwhile 0 ∈ X, f(0) = 0 and
f ′(0) = 5 exp 2πϑi, so equation (10.1.4) has no solution at x = 0 for any iterate
of f .

Remark 10.1.8. If we assume, in place of (10.1.4), that Arg f ′(x) −
Argα(f(x))−Argα(x) is locally constant, then we get the condition equivalent
to linearity.

10.2 Rigidity of non-linear CERs

In this section we shall prove the main theorem of Chapter 10.

Theorem 10.2.1. Let (X, f), ((Y, g) be two non-linear conformal expanding
repellers in C. Let h be an invertible mapping from X onto Y , preserving Borel
σ-algebras and conjugating f to g, h◦f = g◦h. Suppose that one of the following
assumption is satisfied:

1. h and h−1 are Lipschitz continuous.
2. h and h−1 are continuous and preserve so-called Lyapunov spectra: that is,

for every periodic x ∈ X and integer n such that fn(x) = x we have |(fn)′(x)| =
|(gn)′(h(x))|.

3. h∗ maps a geometric measure mX on X to a measure equivalent to a
geometric measure mY on Y .

Then h extends from X (or from a set of full measure mX in case 3) to a
conformal homeomorphism on a neighbourhood of X.

First we discuss the assumptions. The equivalence of conditions 1 and 2 easily
follows from Proposition 4.4.5, with the use of ‘bounded distortion’ (exercise).
Condition 1 implies 3 by the definition of geometric measures 6.6.5. One of the
steps of the proof of the theorem will assert that 3 implies 1 under the non-
linearity assumption. Without this assumption the assertion may be false. A
positive result is that if h is continuous, then, for a constant C > 0 and every
x1, x2 ∈ X,

C <
|h(x1) − h(x2)|HD(Y )

|x1 − x2|HD(X)
< C−1.

(We leave the proof to the reader.)
It may happen that HD(X) 
= HD(Y ), for example if X is a 1/3 – Cantor

set, and for g we remove each time half of the interval from the middle.
A basic observation to prove Theorem 10.2.1 is that

Jg ◦ h = Jf and moreover Jgj ◦ h = Jf j (10.2.1)
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for every integer j > 0. This follows from gj ◦ h = h ◦ f j and Jh ≡ 1. Recall
that we consider Jacobians with respect to the Gibbs measures equivalent to
geometric measures.

Observe finally that (X, f) linear implies (Y, g) linear. Indeed, if (X, f) is
linear then Jf and hence Jg admit only a finite number of values, in view of
Jg ◦ h = Jf . As Jg is continuous, this implies that Jg is locally constant: that
is, (Y, g) is linear.

Lemma 10.2.2. If a CER (X, f) is non-linear, then there exists x ∈ X such
that gradJfC(x) 
= 0.

Proof. If gradJfC ≡ 0 on X, then as JfC is real-analytic we have either
gradJfC ≡ 0 on a neighbourhood of X in C, or by Lemma 10.1.4 (X, f) is
real-analytic and gradJfC ≡ 0 on real-analytic curves containing X. In both
cases we obtain by integration Jf locally constant on X, which contradicts the
non-linearity assumption.

Now we shall prove the theorem in the simplest case to show the reader the
main idea, working later also in the general case.

Proposition 10.2.3. The assertion of Theorem 10.2.1 holds if we suppose
additionally that (X, f) and Y, g) are real-analytic and the conjugacy h is
continuous.

Proof. Let M,N be real-analytic manifolds containing X,Y respectively. By the
non-linearity ofX and Lemma 10.2.2 there exists x ∈ X and its neighbourhood U
inM such that F := JfC|U : U → R has a real-analytic inverse F−1 : F (U) → U .
Then in view of (10.2.1) h−1 = F−1 ◦ JgC on h(U ∩ X), so h−1 on h(U ∩ X)
extends to a real-analytic map on a neighbourhood of h(U ∩X) in N .

Now we use the assumption that h−1 is continuous, so h(U ∩ X) contains
an open set v in Y . There exists a positive integer n such that gn(V ) = Y :
hence for every y ∈ Y there exists a neighbourhood W of y in N such that a
branch g−nν of g−n mapping y and even W ∩Y into V is well defined. So we have
h−1 = fn ◦ h−1 ◦ g−nν extended on W to a real-analytic map. This gives a real-
analytic extension of h−1 on a neighbourhood of Y , because two such extensions
must coincide on the intersections of their domains by the real-analyticity and
the fact that Y has no isolated points.

Similarly, using the non-linearity of (Y, g) and the continuity of h we prove
that h extends analytically. By the analyticity and again the lack of isolated
points in X and Y the extensions are inverse to each other, so h extends even
to a biholomorphic map.

Now we pass to the general case.

Lemma 10.2.4. Suppose that there exists x ∈ X such that gradJfC(x) 
= 0
in the case where X is real-analytic, or there exists an integer k ≥ 1 such that
det(grad JfC, grad(JfC ◦ fk)) 
= 0 in the other case.

(In other words, we suppose that JfC (JfC, JfC◦fk) gives a coordinate system
on a real (complex) neighbourhood of x.)

Assume the analogous property for (Y, g).
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Let h : X → Y satisfy property 3 assumed in Theorem 10.2.1. Then h extends
from a set of full geometric measure in X to a bi-Lipschitz homeomorphism of
X onto Y conjugating f with g.

Proof. We can suppose that HD(X) ≥ HD(Y ): recall that HD denotes Haus-
dorff dimension. Pick x with the property assumed in the lemma. Let U be its
neighbourhood in M (as in the proof of Proposition 10.2.3) or in C if (X, f)
is not real-analytic, so that F := (JfC, JfC ◦ fk) is an embedding on U . Let
y ∈ Y be a density point of the set h(U ∩X) with respect to the Gibbs measure
μY equivalent to the geometric measure mY . (Recall that we have proved that
almost every point is a density point for an arbitrary Borel probability measure
on a Euclidean space in Chapter 8, Theorem 8.5.4, relying on Besicovitch’s The-
orem.) So if we denote (JgC, JgC ◦ gk) in a neighbourhood (real or complex) of
y by G, we have for every δ > 0 such ε0 = ε0(δ) > 0 that for every 0 < ε < ε0:

μY (B(y, ε) ∩ h(U ∩X))
μY (B(y, ε))

> 1 − δ

and
h−1 = F−1 ◦G on h(U ∩X).

(Observe that the last equality may be false outside h(U∩X), even very close
to y, because h−1 may map such points to (JfC, JfC ◦ fk)−1 ◦G with a branch
of (JfC, JfC ◦ fk)−1 different from F−1.)

Now for every ε > 0 small enough there exists an integer n such that
diam gnB(y, ε) is greater than a positive constant, gn|B(y,ε) is injective, and the
distortion of gn on B(y, ε) is bounded by a constant C, both constants depending
only on (Y, g). Then if ε < ε0(δ) we obtain for Yδ := gn(h(U ∩X) ∩B(y, ε))

μY (gn(B(y, ε)) \ Yδ)
μY (gn(B(y, ε)))

< C
μY (B(y, ε) \ h(U ∩X))

μY (B(y, ε))
< Cδ.

So
μY (Yδ)

μY (gn(B(y, ε)))
> 1 − Cδ. (10.2.2)

We have

|(fn)′(h−1(y))|HD(X) ≤ Const Jf(h−1(y))

= Const Jg(y) ≤ Const |(fn)′(y)|HD(Y ).

As we assumed HD(X) ≥ HD(Y ) we obtain

|(fn)′(h−1(y))| ≤ Const |(fn)′(y)|HD(Y )/HD(X) ≤ Const |(fn)′(y)|. (10.2.3)

Then, owing to the bounded distortion property for iteration of f and g,
we obtain that h−1 = fnh−1g−1 is Lipschitz on Yδ with Lipschitz constant
independent of δ, or more precisely bounded by Const sup ‖D(F−1 ◦G‖, where
F−1 ◦G is considered on a real (complex) neighbourhood of y and Const is that
from (10.2.3).
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There exists an integerK > 0 such that for every n, gKgnB(y, ε(n)) covers Y .
Because Jg is bounded, separated from 0, this gives that h−1 on gK(Yδ) is
Lipschitz with a Lipschitz constant independent from δ and μ(gK(Yδ)) > 1 −
Const δ for δ arbitrarily small. We conclude that h−1 is Lipschitz on a set of full
measure μY , so it has a Lipschitz extension to Y .

We conclude also that HD(X) = HD(Y ). Otherwise diamh−1(Yδ) → 0, so
because suppμX = X we would get diamX = 0. So we can interchange above
the roles of (X, f) and (Y, g) and prove that h is Lipschitz.

The next step will assert that for non-linear repellers the assumptions of
Lemma 10.2.4 about the existence of coordinate systems are satisfied.

Lemma 10.2.5. If (X,f) is a non-linear CER then there either exists x ∈ X
such that gradJfC(x) 
= 0 in the case where X is real-analytic, or there exists
an integer k ≥ 1 such that det(gradJfC, grad(JfC ◦ fk)) 
= 0 in the case where
(X,f) is not real-analytic.

Proof. We know already from Lemma 10.2.2 that there exists x̂ ∈ X such that
gradJfC(z) 
= 0, so we may restrict our considerations to the case where (X, f)
is not real-analytic.

Suppose the lemma is false. Then for all k > 0 the functions

Φk := det(grad JfC, grad(JfC ◦ fk))

are identically equal to 0 on X. Let W be a neighbourhood of x̂ in C, where
grad JfC 
= 0.

Let us consider on W the line field V orthogonal to gradJfC. Because of the
topological exactness of f on X for every x ∈ X, there exists y ∈ W ∩ X and
n ≥ 0 such that fn(y) = x.

Thus define at x
Vx := Dfn(Vy). (10.2.4)

We shall now prove that if x = fk(y) = f l(z) for some y, z ∈W ∩X, k, l ≥ 0,
then

Dfk(Vy) = Df l(Vz). (10.2.5)

If (10.2.5) is false, then close to x there exist x′ ∈ X and m ≥ 0 such that
fm(x′) ∈W (we again refer to the topological exactness of f) and Dfk(Vy′) 
=
Df l(Vz′), where fk(y′) = f l(z′) = x′, y′ ∈ X is close to y, and z′ ∈ X is close
to z. We obtain Dfk+m(Vy′) 
= Df l+m(Vz′), so either Dfk+m(Vy′) 
= Vfm(x′) or
Df l+m(Vz′) 
= Vfm(x′). Consider the first case (the second is of course similar).
We obtain that Jf and Jf ◦ fk+m give a coordinate system in a neighbourhood
of y′: that is, Φk+m(y′) 
= 0, contrary to the supposition.

Thus formula (10.2.4) defines a line field at all points of X that is
Df -invariant. Observe, however, that the same formula defines a real-analytic
extension of the line field to a neighbourhood of x in C, because V is real-
analytic on a neighbourhood of y ∈ W , and f is analytic. Each two such germs
of extensions related to two different pre-images of x must coincide, because
they coincide on X; otherwise (X, f) would be real-analytic. Now we can choose
a finite cover Bj = B(xj , δj) of a neighbourhood of X with discs, xj ∈ X, so that
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for the respective Fj-branches of f−nj leading xj into W we have Fj(3Bj) ⊂W ,
where 3Bj := B(xj , 3δj). Hence the formula (10.2.4) defines V on 3Bj . So if
Bi ∩ Bj 
= ∅, then we have 3Bi ⊂ Bj or vice versa. So 3Bi ∩ 3Bj ∩X 
= 0, and
hence the extensions of V on 3Bi and 3Bj , and in particular on Bi and on Bj ,
coincide on the intersection. This is so because they coincide on the intersection
with X, and (X, f) is not real-analytic.

(We used 3δ because it can happen that Bi ∩Bj 
= ∅ but Bi ∩Bj ∩X = ∅.)
Thus V extends real-analytically to a neighbourhood of X. This field is

Df -invariant on a neighbourhood of X, because we can define it in a neighbour-
hood of x ∈ X and f(x) by (10.2.4), taking the same y ∈W∩X, where fn(y) = x,
fn+1(y) = f(x). So by Lemma 10.1.6 (X, f) is linear, which contradicts the
assumption that (X, f) is non-linear.

Corollary 10.2.6. If for (X, f), (Y, g) the assumptions of Theorem 10.2.1 are
satisfied, and if (Y, g) is real-analytic, then (X, f) is real-analytic too.

Proof. Because of Lemma 10.2.5 the assumptions of Lemma 10.2.4 are satisfied.
So h−1 = F−1 ◦ G on a neighbourhood of y ∈ Y by the continuity of h−1 (see
notation in the proof of Lemma 10.2.4). Denote a real-analytic manifold that
Y is contained in by N . Then JgC 
= Const on any neighbourhood of y in N .
Otherwise h−1 would be constant, but y is not isolated in Y , and so h−1 would
not be injective.

Recall that we can consider F−1 ◦G as a real-analytic extension of h−1 to a
neighbourhood V of y in N . So the differential of F−1G is 0 at most at isolated
points, and so different from 0 at a point y′ ∈ V ∩ Y . We conclude, owing to
the continuity of h, that in a neighbourhood of h−1(y′), X is contained in a
real-analytic curve. So (X, f) is a real-analytic repeller.

Now we shall collect together what we have done and make a decisive step in
proving Theorem 10.2.1: that is, we shall prove that the conjugacy extends to a
real-analytic diffeomorphism.

Proof of Theorem 10.2.1. If both (X, f) and (Y, g) are real-analytic, then the
conjugacy extends real-analytically to a real-analytic manifold and so complex
analytically to its neighbourhood by Proposition 10.2.3. Its assumptions hold
by Lemmas 10.2.4 and 10.2.2. If both (X, f) and (Y, g) are not real-analytic (a
mixed situation is excluded by Corollary 10.2.6), then by Lemma 10.2.4, which
assumptions hold because of Lemma 10.2.5, we can assume that the conjugacy h
is a homeomorphism of X onto Y . But h−1 extends to a neighbourhood of y ∈ Y
in C to a real-analytic map. We use here again the notation of Lemma 10.2.4 and
proceed precisely as in Proposition 10.2.3, Lemma 10.2.4 and Corollary 10.2.6
by writing h−1 = F−1 ◦ G. This gives a real-analytic extension of h−1 to a
neighbourhood of an arbitrary y ∈ Y by the formula fn ◦ h−1 ◦ g−1

ν , precisely as
in the proof of Proposition 10.2.3.

For two different branches F1, F2 of g−n1 , g−n2 respectively, mapping y into
the domain of F−1 ◦ G, germs of the extensions must coincide because they
coincide on the intersection with Y : see Lemma 10.1.4.
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Now we build a real-analytic extension of h−1 to a neighbourhood of Y in
the same way as we extended V in the proof of Lemma 10.2.5, again using the
assumption (Y, g) is not real-analytic. Similarly we extend h.

Denote the extensions by h̃, ˜h−1. We have ˜h−1 ◦ h̃ and h̃ ◦ ˜h−1 equal to the
identity on X,Y respectively. Then these compositions extend to the identities to
neighbourhoods, otherwise (X, f) or (Y, g) would be real-analytic. We conclude
that h̃ is a real-analytic diffeomorphism. Finally, observe that gh̃ = h̃f on a
neighbourhood of X, because this equality holds on X itself, and our functions
are real-analytic; otherwise (X, f) would be real-analytic.

The only thing we still need to prove is the following:

Lemma 10.2.7. If (X, f) is a non-linear CER, not real-analytic, and there is
a real-analytic diffeomorphism h on a neighbourhood of X to a neighbourhood of
Y for another CER (Y, g) such that h(X) = Y and h conjugates f with g in a
neighbourhood of X, then h is conformal.

Proof. Suppose for simplification that f, g and h preserve the orientation of C;
we shall comment on the general case at the end.

For any orientation-preserving diffeomorphism Φ of a domain in C into C

denote the complex dilatation function by ωΦ. Recall that ωΦ := dΦ
dz̄ /

dΦ
dz . (The

reader not familiar with the complex dilatation and its properties is advised to
read the first 10 pages of the classical Ahlfors book [Ahlfors 1966].) The geometric
meaning of the argument of ωΦ(z) may be explained by the equality 1

2ωΦ = α,
where α corresponds to the direction in which the differential DΦ at z attains
its maximum. In other words, it is the direction of the smaller axis of the ellipse
in the tangent space at z which is mapped by DΦ to the unit circle. Of course,
this makes sense if ω(z) 
= 0. Observe finally that ω(z) = 0 if and only if dΦdz̄ = 0.
Let us now return to our concrete maps.

If dh
dz̄ ≡ 0 on X, then as dh

dz̄ is a real-analytic function we have dh
dz̄ ≡ 0 on

a neighbourhood of X; otherwise (X, f) would be real-analytic. But this means
that h is holomorphic, which proves our lemma. It remains to prove that the
case dh

dz̄ 
≡ 0 on X is impossible.
Observe that if dh

dz̄ (x) = 0 then dh
dz̄ (f(x)) = 0, because h = ghf−1

ν on a
neighbourhood of f(x) for the branch f−1

ν of f−1 mapping f(x) to x, and because
g and f−1

ν are conformal. So if there exists x ∈ X such that dh
dz̄ (x) 
= 0, then

this also holds for all x’s from a neighbourhood, and as a consequence of the
topological exactness of f for all x in a neighbourhood of X. Thus we have a
complex-valued function ωh that is nowhere zero on a neighbourhood of X.

Recall now that for any two orientation-preserving diffeomorphisms Φ and
Ψ, if Ψ is holomorphic then

ωΨ◦Φ = ωΦ

and if Φ is conformal then

ωΨ ◦ Φ =
(

Φ′

|Φ′|
)2

ωΨ◦Φ = ωΦ.
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Applying this to the equation h ◦ f = g ◦ h we obtain

ωh ◦ f =
(
f ′

|f ′|
)2

ωh◦f =
(
f ′

|f ′|
)2

ωg◦h =
(
f ′

|f ′|
)2

ωh.

Thus α(x) := 1
2ωh(x) satisfies equation (10.1.4), and by Lemma 10.1.6 (X, f)

is linear, which contradicts our assumption that it is non-linear.
In the case where a diffeomorphism reverses the orientation, we write every-

where above ωΦ̄ instead of ωΦ, and if Φ is conformal-reversing orientation we
write Φ̄′ instead of Φ′. Additionally, some omegas should be conjugated in the
formulae above. We also arrive at (10.1.4). (In this situation the complex nota-
tion is not convenient. Everything becomes trivial if we act with differentials on
line fields. We leave writing this down to the reader.)

Example 10.2.8. If fc(z) = z2 + c for c ∈ M0 (see Example 6.1.9 and Exam-
ple 9.5.6 (for zd + c)), then the Julia set J(fc) = Xfc

is a Jordan curve and
(Xfc

, fc) is non-linear, except for c = 0.
Indeed, if it is linear, then by Definition 10.1.1 (a) the function

−HD(Xfc
) log |f ′| is co-homologous to constant on Xfc

, because this set is
connected. Hence, by Theorem 9.5.5, fc(z) = z2, that is, c = 0.

In fact (J(f), f |J(f)) is non-linear for every rational map f without critical
points in its Julia set J(f), and in particular f expanding on J(f), except for
f(z) = zd, |d| ≥ 2. This follows from [Zdunik 1990]: compare [Przytycki &
Urbański 1999, Section 3].

Example 10.2.9. Let X be a Cantor set in the line R, which is an image by
h of Σd as in Section 7.1: that is, h ∈ H. Consider the map h ◦ s ◦ h−1, where
s is the shift to the left on Σd. Suppose that this map extends to sh, which
is locally affine: that is, the scaling function stabilizes, Sn/Sn+1 ≡ 1 for all n
large enough (compare Theorem 7.2.4). Then the repeller (X, sh) is linear, by
Definition 10.1.1 (c).

Remark 10.2.10. In the presence of critical points in J(f) for f non-exceptional
(that is, with parabolic orbifold) J(f) contains non-linear invariant expanding
repellers for f . See [Przytycki & Urbański 1999, Section 3], [Zdunik 1990] and
[Prado 1997].

Bibliographical notes

As we have already mentioned, this chapter relies on ideas by Dennis Sullivan:
see [Sullivan 1986]. Written in 1991, this was followed by many papers applying
its ideas: see for example [Przytycki & Urbański 1999], [Mauldin, Przytycki &
Urbański 2001] and [Urbański 2001] in R

d, d ≥ 3. See also [Mauldin & Urbański
2003, section 7.3]. In recent years this rigidity has been intensively applied in
studies of the iterations of entire and meromorphic maps.
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11

Holomorphic maps with
invariant probability
measures of positive
Lyapunov exponent

11.1 Ruelle’s inequality

Let X be a compact subset of the Riemann sphere C, and let A(X) denote the
set of all continuous maps f : X → X that can be analytically extended to an
open neighbourhood U(f) of X. In this section we work only with the standard
spherical metric on C, normalized so that the area of C is 1. In particular, all
the derivatives are computed with respect to this metric.

Let us recall and extend Definition 9.1.2. Let μ be an f -invariant Borel prob-
ability measure on X. Since |f ′| is bounded, the integral

∫
log |f ′| dμ is well

defined, and moreover
∫

log |f ′| dμ < +∞. The number

χμ = χμ(f) =
∫

log |f ′| dμ

is called the Lyapunov characteristic exponent of μ and f . Note that∫
log |f ′|dμ = −∞ is not excluded. In fact it is possible, for example if X = {0}

and f(z) = z2.
On the other hand, for every rational function f : C → C and every

f -invariant μ supported on the Julia set J(f) (see Chapter 1, Example 1.6),
it holds that χμ ≥ 0. For the proof see [Przytycki 1993]. We shall often assume
χμ > 0; compare Definition 9.1.2. We say, then, that μ is a hyperbolic measure
(following [Katok & Hasselblatt 1995]).

By the Birkhoff Ergodic Theorem (Theorem 2.2.5) the Lyapunov character-
istic exponent

χμ(x) = lim
n→∞

1
n

log |(fn)′(x)|

295
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exists for a.e. x and
∫
χμ(x) dμ(x) = χμ. (In fact one allows log |f ′| with integral

−∞ here, so one needs to extend Theorem 2.2.5 slightly. This is not difficult.)
This section is devoted to prove the following.

Theorem 11.1.1 (Ruelle’s inequality). If f ∈ A(X), then hμ(f) ≤
2
∫

max{0, χμ(x)} dμ. For ergodic μ this yields hμ(f) ≤ 2max{0, χμ}.
Proof. Consider a sequence of positive numbers ak ↘ 0, and Pk, k = 1, 2, . . .
an increasing sequence of partitions of the sphere C consisting of elements of
diameters ≤ ak and of (spherical) areas ≥ 1

4a
2
k. Check that such partitions exist.

For every g ∈ A(X), x ∈ X and k ≥ 1 let

N(g, x, k) = #{P ∈ Pk : g(Pk(x) ∩ U(g)) ∩ P 	= ∅}.
Our first aim is to show that, for every k > k(g) large enough,

N(g, x, k) ≤ 4π(|g′(x)| + 2)2. (11.1.1)

Fix x ∈ X and consider k so large that Pk(x) ⊂ U(g) and a Lipschitz constant
of g|Pk(x) does not exceed |g′(x)| + 1. Thus the set g(Pk(x)) is contained in the
ball B(g(x), (|g′(x)| + 1)ak). Therefore, if g(Pk(x)) ∩ P 	= ∅, then

P ⊂ B(g(x), (|g′(x)| + 1)ak + ak) = B(g(x), (|g′(x)| + 2)ak).

Hence N(g, x, k) ≤ π(|g′(x)| + 2)2a2
k/

1
4a

2
k = 4π(|g′(x)| + 2)2, and (11.1.1) is

proved.
Let N(g, x) = supk>k(g)N(g, x, k). In view of (11.1.1) we get

N(g, x) ≤ 4π(|g′(x)| + 2)2. (11.1.2)

Now note that for every finite partition A one has

h(g,A) = lim
n→∞

1
n+ 1

H(An)

= lim
n→∞

1
n+ 1

(
H(g−n(A)|An−1) + · · · + H(g−1(A)|A) + H(A)

)

≤ lim
n→∞

1
n

(
H(g−n(A)|g−(n−1)(A)) + · · · + H(g−1(A)|A)

)

= H(g−1(A)|A). (11.1.3)

(Compare this computation with that done in Theorem 2.4.5 or in the proof of
Theorem 2.5.4, which would result in h(g,A) ≤ H(A|g−1(A)).) Going back to
our situation, since

HμPk(x)(g
−1(Pk)|Pk(x)) ≤ log #{P ∈ Pk : g−1(P ) ∩ Pk(x) 	= ∅} = logN(g, x, k)

and by Theorem 2.8.7a, we obtain

hμ(g) ≤ lim sup
k→∞

Hμ(g−1(Pk)|Pk) = lim sup
k→∞

∫
HμPk(x)(g

−1(Pk)|Pk(x)) dμ(x)

≤ lim sup
k→∞

∫
logN(g, x, k) dμ(x) ≤

∫
logN(g, x) dμ(x).
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Applying this inequality to g = fn (n ≥ 1 an integer) and employing (10.1.2)
we get

hμ(f) =
1
n

hμ(fn) ≤ 1
n

∫
logN(fn, x) dμ(x) =

∫
1
n

logN(fn, x) dμ(x)

≤
∫

1
n

log 4π(|(fn)′(x)| + 2)2 dμ(x).

Since 0 ≤ 1
n log(|(fn)′(x)|+2)2 ≤ 2(log

(
supX |f ′|)+1) and limn→∞ 1

n log(|(fn)′(x)|+
2) = max{0, χμ(x)} for μ-a.e x ∈ X, it follows from the Dominated Convergence
Theorem (Section 2.1) that

hμ(f) ≤ lim
n→∞

∫
1
n

log(|(fn)′(x)| + 2)2 dμ(x) =
∫

max{0, 2χμ(x)} dμ.

The proof is complete. ♣

11.2 Pesin’s theory

In this section we work in the same setting and follow the same notation as in
Section 11.1.

Lemma 11.2.1. If μ is a Borel finite measure on R
n, n ≥ 1, a is an arbitrary

point of R
n and the function z → log |z−a| is μ-integrable, then for every C > 0

and every 0 < t < 1, ∑

n≥1

μ(B(a,Ctn)) <∞.

Proof. Since μ is finite and since, given t < s < 1, there exists q ≥ 1 such that
Ctn ≤ sn for all n ≥ q, without losing generality we may assume that C = 1.
Recall that given b ∈ R

n, and two numbers 0 ≤ r < R, R(b, r, R) = {z ∈ C : r ≤
|z − b| < R}. Since − log(tn) ≤ − log |z − a| for every z ∈ B(a, tn) we get the
following:

∑

n≥1

μ(B(a, tn)) =
∑

n≥1

nμ(R(a, tn+1, tn)) =
−1
log t

∑

n≥1

− log(tn)μ(R(a, tn+1, tn))

≤ −1
log t

∫

B(a,t)

− log |z − a| dμ(z) < +∞.

The proof is complete. ♣
Lemma 11.2.2. If μ is a Borel finite measure on C, n ≥ 1, and log |f ′| is μ
integrable, then the function z → log |z−c| ∈ L1(μ) for every critical point c of f .
If additionally μ is f-invariant, then also the function z → log |z−f(c)| ∈ L1(μ).

Proof. That log |z−c| ∈ L1(μ) follows from the fact that near c we have C−1|z−
q|q−1 ≤ |f ′(z)| ≤ C|z− c|q−1, where q ≥ 2 is the order of the critical point c and
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C ≥ 1 is a universal constant, and since out of any neighbourhood of the set of
critical points of f , |f ′(z)| is uniformly bounded away from zero and infinity. In
order to prove the second part of the lemma consider a ray R emanating from
f(c) such that μ(R) = 0 and a disc B(f(c), r) such that f−1

c : B(f(c), r)\R → C,
an inverse branch of f sending f(c) to c, is well defined. Let D = B(f(c), r) \R.
We may additionally require r > 0 to be so small that |z− f(c)| � |f−1

c (z)− c|q.
It suffices to show that the integral

∫
D

log |z − f(c)| dμ(z) is finite. And indeed,
by f -invariance of μ we have

∫

D

log |z − f(c)| dμ(z) =
∫

X

1D(z) log |z − f(c)| dμ(z)

�
∫

X

1D(z) log |f−1
c (z) − c|q dμ(z)

=
∫

X

(1D ◦ f)(z) log |z − c|q dμ(z)

=
∫

X

1f−1(D) log |z − c|q dμ(z).

Note here that the function 1D(z) log |f−1
c (z) − c|q is indeed well defined on X,

and that, unlike most of our comparability signs, the sign in the formula above
means an additive comparability. The finiteness of the last integral follows from
the first part of this lemma. ♣
Theorem 11.2.3. Let (Z,F , ν) be a measure space with an ergodic measure-
preserving automorphism T : Z → Z. Let f : X → X be a continuous map
from a compact set X ⊂ C onto itself, having a holomorphic extension onto
a neighbourhood of X (f ∈ A(X)). Suppose that μ is an f-invariant ergodic
measure on X with positive Lyapunov exponent. Suppose also that h : Z → X is
a measurable mapping such that ν ◦ h−1 = μ and h ◦ T = f ◦ h ν-a.e.. Then for
ν-a.e. z ∈ Z there exists r(z) > 0 such that the function z → r(z) is measurable,
and the following is satisfied.

For every n ≥ 1 there exists f−nxn
: B(x, r(z)) → C, an inverse branch of fn

sending x = h(z) to xn = h(T−n(z)). In addition, for an arbitrary χ, −χμ(f) <
χ < 0 (not depending on z) and a constant K(z),

|(f−nxn
)′(y)| < K(z) eχn and

|(f−nxn
)′(w)|

|(f−nxn )′(y)| ≤ K

for all y, w ∈ B(x, r(z)). K is here the Koebe constant corresponding to the
scale 1/2.

Proof. Suppose first that μ
(⋃

n≥1 f
n(Crit(f))

)
> 0. Since μ is ergodic this

implies that μ must be concentrated on a periodic orbit of an element w ∈⋃
n≥1 f

n(Crit(f)). This means that w = fq(c) = fq+k(c) for some q, k ≥ 1 and
c ∈ Crit(f), and

μ({fq(c), fq+1(c), . . . , fq+k−1(c)}) = 1.
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Since
∫

log |f ′| dμ > 0, |(fk)′(fq(c))| > 1. Thus the theorem is obviously true for
the set h−1({fq(c), fq+1(c), . . . , fq+k−1(c)}) of ν measure 1.

So, suppose that μ
(⋃

n≥1 f
n(Crit(f))

)
= 0. Set R = min{1,dist(X,C\U(f))}

and fix λ ∈ (e
1
4χ, 1). Consider z ∈ Z such that x = h(z) /∈ ⋃n≥1 f

n(Crit(f)),

lim
n→∞

1
n

log |(fn)′(h(T−n(z))| = χμ(f),

and xn = h(T−n(z)) ∈ B(f(Crit(f)), Rλn) only for finitely many n’s. We shall
first demonstrate that the set of points satisfying these properties is of full mea-
sure ν. Indeed, the first requirement is satisfied by our hypothesis, and the second
is due to Birkhoff’s Ergodic Theorem. In order to prove that the set of points
satisfying the third condition has ν measure 1, not that

∑

n≥1

ν
(
Tn(h−1(B(f(Crit(f)), Rλn)))

)
=
∑

n≥1

ν
(
h−1(B(f(Crit(f)), Rλn))

)

=
∑

n≥1

μ(B(f(Crit(f)), Rλn)) <∞,

where the last inequality is due to Lemmas 11.2.2 and 11.2.1. The application
of the Borel–Cantelli Lemma now finishes the demonstration. Now fix an inte-
ger n1 = n1(z) so large that xn = h(T−n(z)) /∈ B(f(Crit(f)), Rλn) for all
n ≥ n1. Note that because of our choices there exists n2 ≥ n1 such that
|(fn)′(xn)|−1/4 < λn for all n ≥ n2. Finally, set S =

∑
n≥1 |(fn)′(xn)|−1/4,

bn = 1
2S

−1|(fn+1)′(xn+1)|−1
4 , and

Π = Π∞
n=1(1 − bn)−1,

which converges since the series
∑
n≥1 bn converges. Choose now r = r(z) so

small that 16r(z)ΠKS3 ≤ R, all the inverse branches f−nxn
: B(x0,Πr(z)) →

C are well defined for all n = 1, 2, . . . , n2 and diam
(
f−n2
xn2

(B
(
x0, rΠk≥n2(1 −

bk)−1)
) ≤ λn2R. We shall show by induction that for every n ≥ n2 there exists

an analytic inverse branch f−nxn
: B
(
x0, rΠk≥n(1− bk)−1

)→ C, sending x0 to xn
and such that

diam
(
f−nxn

(B
(
x0, rΠk≥n(1 − bk)−1)

) ≤ λnR.

Indeed, for n = n2 this follows immediately from our requirements imposed
on r(z). So, suppose that the claim is true for some n ≥ n2. Since xn =
f−nxn

(x0) /∈ B(Crit(f), Rλn), and since λnR ≤ R, there exists an inverse branch
f−1
xn+1

: B(xn, λnR) → C sending xn to xn+1. Since diam
(
f−nxn

(B
(
(x0, rΠk≥n(1−

bk)−1)
) ≤ λnR, the composition f−1

xn+1
◦ f−nxn

B
(
x0, rΠk≥n(1− bk)−1) → C is well

defined and forms the inverse branch of fn+1 that sends x0 to xn+1. By the
Koebe distortion theorem we now estimate
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diam
(
f−(n+1)
xn+1

(B
(
x0, rΠk≥n+1(1 − bk)−1))

)

≤ 2rΠk≥n+1(1 − bk)−1|(fn+1)′(xn+1)|−1Kb−3
n

≤ 16rΠKS3|(fn+1)′(xn+1)|−1|(fn+1)′(xn+1)| 34
= 16rΠKS3|(fn+1)′(xn+1)|− 1

4

≤ Rλn+1,

where we wrote the last inequality sign because of our choice of r and the number
n2. Putting r(z) = r/2, the second part of this theorem now follows as a combined
application of the equality limn→∞ 1

n log |(fn)′(xn)| = χμ(f) and the Koebe
distortion theorem. ♣

As an immediate consequence of Theorem 11.2.3 we get the following.

Corollary 11.2.4. Assume the same notation and asumptions as in Theo-
rem 11.2.3. Fix ε > 0. Then there exist a set Z(ε) ⊂ Z, the numbers r(ε) ∈ (0, 1)
and K(ε) ≥ 1 such that μ(Z(ε)) > 1 − ε, r(z) ≥ r(ε) for all z ∈ Z(ε) and with
xn = h(T−n(z))

K(ε)−1 exp(−(χμ + ε)n) ≤ |(f−nxn
)′(y)|

≤ K(ε) exp(−(χμ − ε)n) and
|(f−nxn

)′(w)|
|(f−nxn )′(y)| ≤ K

for all n ≥ 1, all z ∈ Z(ε) and all y, w ∈ B(x0, r(ε)). K is here the Koebe
constant corresponding to the scale 1/2.

Remark 11.2.5. In our future applications the system (Z, f, ν) will be usually
given by the natural extension of the holomorphic system (f, μ).

11.3 Mañé’s partition

In this section, basically following Mañé’s book [Mañé 1987], we construct the
so-called Mañé’s partition, which will play an important role in the proof of a
part of the Volume Lemma given in the next section. We begin with the following
elementary fact.

Lemma 11.3.1. If xn ∈ (0, 1) for every n ≥ 1 and
∑∞
n=1 nxn < ∞, then∑∞

n=1 −xn log xn <∞.

Proof. Let S = {n : − log xn ≥ n}. Then
∞∑

n=1

−xn log xn =
∑

n/∈S
−xn log xn +

∑

n∈S
−xn log xn ≤

∞∑

n=1

nxn +
∑

n∈S
−xn log xn.

Since n ∈ S means that xn ≤ e−n, and since log t ≤ 2
√
t for all t ≥ 1, we have

∑

n∈S
xn log

1
xn

≤ 2
∞∑

n=1

xn

√
1
xn

≤ 2
∞∑

n=1

e−
1
2n <∞.

The proof is complete. ♣
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The next lemma is the main and simultaneously the last result of this section.

Lemma 11.3.2. If μ is a Borel probability measure concentrated on a bounded
subset M of a Euclidean space, and ρ : M → (0, 1] is a measurable function such
that log ρ is integrable with respect to μ, then there exists a countable measurable
partition, called Mañé’s partition, P of M , such that Hμ(P) <∞ and

diam(P(x)) ≤ ρ(x)

for μ-almost every x ∈M .

Proof. Let q be the dimension of the Euclidean space containing M . Since M
is bounded, there exists a constant C > 0 such that for every 0 < r < 1 there
exists a partition Pr of M of diameter ≤ r and which consists of at most Cr−q

elements. For every n ≥ 0 put Un = {x ∈ M : e−(n+1) < ρ(x) ≤ e−n}. Since
log ρ is a non-positive integrable function, we have

∞∑

n=1

−nμ(Un) ≥
∞∑

n=1

∫

Un

log ρ dμ =
∫

M

log ρ dμ > −∞

so that ∞∑

n=1

nμ(Un) < +∞. (11.3.1)

Now define P as the partition whose atoms are of the form Q∩Un, where n ≥ 0
and Q ∈ Prn

, rn = e−(n+1). Then

Hμ(P) =
∞∑

n=0

(−
∑

Un⊃P∈P
μ(P ) log μ(P )

)
.

But for every n ≥ 0

−
∑

Un⊃P∈P
μ(P ) log μ(P ) = μ(Un)

∑

P

− μ(P )
μ(Un)

log
( μ(P )
μ(Un)

)

− μ(Un)
∑

P

μ(P )
μ(Un)

log(μ(Un))

≤ μ(Un)(logC − q log rn) − μ(Un) log μ(Un)
≤ μ(Un) logC + q(n+ 1)μ(Un) − μ(Un) log μ(Un).

Thus, summing over all n ≥ 0, we obtain

Hμ(P) ≤ logC + q + q

∞∑

n=0

nμ(Un) +
∞∑

n=0

−μ(Un) log μ(Un).

Therefore, looking at (11.3.1) and Lemma 10.3.1, we conclude that Hμ(P) is
finite. Also, if x ∈ Un, then the atom P(x) is contained in some atom of ¶rn

and
therefore

diam(P(x)) ≤ rn = e−(n+1) < ρ(x).
Now the remark that the union of all the sets Un is of measure 1 completes the
proof. ♣
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11.4 Volume Lemma and the formula
HD(μ) = hμ(f)/χμ(f)

In this section we keep the notation of Sections 11.1 and 11.2, and our main
purpose is to prove the following two results, which generalize the respective
results in Chapter 9.

Theorem 11.4.1. If f ∈ A(X) and μ is an ergodic f-invariant measure with
positive Lyapunov exponent, then HD(μ) = hμ(f)/χμ(f).

Theorem 11.4.2 (Volume Lemma). With the assumptions of Theorem 11.4.1

lim
r→0

log(μ(B(x, r)))
log r

=
hμ(f)
χμ(f)

for μ-a.e. x ∈ X.

In view of Theorem 8.6.5, Theorem 11.4.1 follows from Theorem 11.4.2, and
we need only prove the latter one. Let us first prove

lim inf
r→0

log(μ(B(x, r)))
log r

≥ hμ(f)
χμ(f)

(11.4.1)

for μ-a.e. x ∈ X. By Corollary 9.1.10 there exists a finite partition P such that
for an arbitrary ε > 0 and every x in a set Xo of full measure μ there exists
n(x) ≥ 0 such that, for all n ≥ n(x),

B(fn(x), e−εn) ⊂ P(fn(x)). (11.4.2)

From now on let us work in the natural extension (X̃, f̃ , μ̃). Let X̃(ε) and r(ε)
be given by Corollary 11.2.4: that is, X̃(ε) = Z(ε). In view of Birkhoff’s Ergodic
Theorem there exists a measurable set F̃ (ε) ⊂ X̃(ε) such that μ̃(F̃ (ε)) = μ̃(X̃(ε))
and

lim
n→∞

1
n

n−1∑

j=1

χX̃(ε) ◦ f̃n(x̃) = μ̃(X̃(ε))

for every x̃ ∈ F̃ (ε). Let F (ε) = π(F̃ (ε)). Then μ(F (ε)) = μ̃(π−1(F (ε)) ≥
μ̃(F̃ (ε)) = μ̃(X̃(ε)) converges to 1 if ε ↘ 0. Consider now x ∈ F (ε) ∩ Xo, and
take x̃ ∈ F̃ (ε) such that x = π(x̃). Then by the above there exists an increasing
sequence {nk = nk(x) : k ≥ 1} such that f̃nk(x̃) ∈ X̃(ε) and

nk+1 − nk
nk

≤ ε (11.4.3)

for every k ≥ 1. Moreover, we can assume that n1 ≥ n(x). Consider now an
integer n ≥ n1 and the ball B

(
x,Cr(ε) exp(−(χμ + (2 + log ‖f ′‖)ε)n)

)
, where

0 < C < (Kr(ε))−1 is a constant (possibly depending on x) so small that

fq
(
B(x,Cr(ε) exp−(χμ + (2 + log ‖f ′‖)ε)n)

) ⊂ P (fq(x)) (11.4.4)
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for every q ≤ n1, and K(ε) ≥ 1 is the constant appearing in Corollary 11.2.4.
Take now any q, n1 ≤ q ≤ n, and associate k such that nk ≤ q ≤ nk+1.
Since f̃nk(x̃) ∈ X̃(ε), and since π(f̃nk(x̃)) = fnk(x), Corollary 11.2.4 produces
a holomorphic inverse branch f−nk

x : B(fnk(x), r(ε)) → C of fnk such that
f−nk
x (fnk(x)) = x and

f−nk
x

(
B(fnk(x), r(ε))

) ⊃ B
(
x,K(ε)r(ε)−1 exp(−(χμ + ε)nk)

)
.

Since B(x,Cr(ε) exp−(χμ + (2 + log ‖f ′‖)ε)n) ⊂ B
(
x,K(ε)−1r(ε) exp−(χμ +

ε)nk)
)
, it follows from Corollary 11.2.4 that

fnk
(
B(x,Cr(ε) exp−(χμ + (2 + log ‖f ′‖)ε)n)

) ⊂⊂ B
(
fnk(x),

CKr(ε)e−χµ(n−nk) exp(ε(nk − (2 + log ‖f ′‖)n))
)
.

Since n ≥ nk, and since by (11.4.3) q − nk ≤ εnk, we therefore obtain

fq
(
B(x,Cr(ε) exp−(χμ + (2 + log ‖f ′‖)ε)n)

) ⊂
⊂ B(fq(x), CK(ε)r(ε)e−χµ(n−nk) exp(ε(nk − (2 + log ‖f ′‖)n))
× exp((q − nk) log ‖f ′‖)

⊂ B(fq(x), CK(ε)r(ε) exp
(
ε(nk log ‖f ′‖ + nk − 2n− n log ‖f ′‖))

⊂ B(fq(x), CK(ε)r(ε)e−εn) ⊂ B(fq(x), e−εq).

Combining this, (11.4.2) and (11.4.4), we get

B
(
x,Cr(ε) exp−(χμ + (2 + log ‖f ′‖)ε)n)

) ⊂
n∨

j=0

f−j(P)(x).

Therefore, applying Theorem 2.5.5 (the Shannon–McMillan–Breiman Theorem),
we have

lim inf
n→∞ − 1

n
log μ

(
B(x,Cr(ε) exp−(χμ+(2+log ‖f ′‖)ε)n)

) ≥ hμ(f,P) ≥ hμ(f)−ε.

This means that, denoting the number Cr(ε) exp−(χμ + (2 + log ‖f ′‖)ε)n) by
rn, we have

lim inf
n→∞

log μ(B(x, rn)
log rn

≥ hμ(f) − ε

χμ(f) + (2 + log ‖f ′‖)ε .

Now, since {rn} is a geometric sequence, and since ε > 0 can be taken arbitrarily
small, we conclude that for μ-a.e. x ∈ X

lim inf
n→∞

logμ(B(x, r)
log r

≥ hμ(f)
χμ(f)

.

This completes the proof of (11.4.1).
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Remark. Since here X ⊂ C, we could have considered a partition P of a neigh-
bourhood of X in C, where ∂P,a would have a more standard sense: see remark
after Corollary 9.1.9.

Now let us prove that

lim sup
r→0

log(μ(B(x, r)))
log r

≤ hμ(f)/χμ(f) (11.4.5)

for μ-a.e. x ∈ X.
In order to prove this formula we again work in the natural extension

(X̃, f̃ , μ̃), and we apply Pesin theory. In particular, the sets X̃(ε), F̃ (ε) ⊂ X̃(ε)
and the radius r(ε), produced in Corollary 11.2.4, have the same meaning as in
the proof of (11.4.1). To begin with, note that there exist two numbers R > 0
and 0 < Q < min{1, r(ε)/2} such that the following two conditions are satisfied:

If z /∈ B(Crit(f), R), then f |B(z,Q) is injective. (11.4.6)
If z ∈ B(Crit(f), R), then f |B(z,Q dist(z,Crit(f))) is injective. (11.4.7)

Observe also that if z is sufficiently close to a critical point c, then f ′(z)
is of order (z − c)q−1, where q ≥ 2 is the order of the critical point c. In
particular, the quotient of f ′(z) and (z − c)q−1 remains bounded away from
0 and ∞, and therefore there exists a constant number B > 1 such that
|f ′(z)| ≤ B dist(z,Crit(f)). So, in view of Lemma 11.2.2, the logarithm of
the function ρ(z) = Qmin{1,dist(z,Crit(f)) is integrable, and consequently
Lemma 11.3.2 applies. Let P be the Mañé’s partition produced by this lemma.
Then B(x, ρ(x)) ⊃ P(x) for μ-a.e. x ∈ X, say for a subset Xρ of X of measure 1.
Consequently

Bn(x, ρ) =
n−1⋂

j=0

f−j
(
B(f j(x), ρ(f j(x)))

) ⊃ Pn0 (x) (11.4.8)

for every n ≥ 1 and every x ∈ Xρ. By our choice of Q and the definition of ρ, the
function f is injective on all balls B(f j(x), ρ(f j(x))), j ≥ 0, and therefore fk is
injective on the set Bn(x, ρ) for every 0 ≤ k ≤ n−1. Now, let x ∈ F (ε)∩Xρ and
let k be the greatest subscript such that q = nk(x) ≤ n− 1. Denote by f−qx the
unique holomorphic inverse branch of fq produced by Corollary 11.2.4, which
sends fq(x) to x. Clearly Bn(x, ρ) ⊂ f−q(B(fq(x), ρ(fq(x)))), and since fq is
injective on Bn(x, ρ) we even have

Bn(x, ρ) ⊂ f−qx (B(fq(x), ρ(fq(x)))).

By Corollary 11.2.4, diam
(
f−qx (B(fq(x), ρ(fq(x))))

) ≤ K exp(−q(χμ−ε)). Since,
by (11.4.3), n ≤ q(1 + ε), we finally deduce that

Bn(x, ρ) ⊂ B

(

x,K exp
(

−nχμ − ε

1 + ε

))

.
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Thus, in view of (11.4.8),

B

(

x,K exp
(

−nχμ − ε

1 + ε

))

⊃ Pn0 (x).

Therefore, denoting the radius of the ball above by rn, it follows from the
Shanon–McMillan–Breiman theorem that, for μ-a.e x ∈ X,

lim sup
n→∞

− 1
n

log μ(B(x, rn) ≤ hμ(f,P) ≤ hμ(f).

So

lim sup
n→∞

log μ(B(x, rn)
log rn

≤ hμ(f)
χμ(f) − ε

(1 + ε).

Now, since {rn} is a geometric sequence, and since ε can be taken arbitrarily
small, we conclude that for μ-a.e. x ∈ X

lim sup
n→∞

logμ(B(x, r)
log r

≤ hμ(f)
χμ(f)

.

This completes the proof of (11.4.5) and, because of (11.4.1), also the proof of
Theorem 11.4.2. ♣

11.5 Pressure-like definition of the functional
hμ +

∫
φ dμ

In this section we prepare some general tools used in the next section to approxi-
mate topological pressure on hyperbolic sets. No smoothness is assumed here; we
work in a purely metric setting only. Our exposition is similar to that contained
in Chapter 3.

Let T : X → X be a continuous map of a compact metric space (X, ρ), and
let μ be a Borel probability measure on X. Given ε > 0 and 0 ≤ δ ≤ 1, a set
E ⊂ X is said to be μ− (n, ε, δ)-spanning if

μ
( ⋃

x∈E
Bn(x, ε)

)
≥ 1 − δ.

Let φ : X → R be a continuous function. We define

Qμ(T, φ, n, ε, δ) = inf
E

{∑

x∈E
expSnφ(x)

}
,

where the infimum is taken over all μ−(n, ε, δ)-spanning sets E. The main result
of this section is the following.

Theorem 11.5.1. For every 0 < δ < 1 and every ergodic measure μ,

hμ(T ) +
∫
φdμ = lim

ε→0
lim inf
n→∞

1
n

logQμ(T, φ, n, ε, δ)

= lim
ε→0

lim sup
n→∞

1
n

logQμ(T, φ, n, ε, δ).
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Proof. Denote the number following the first equality sign by Pμ(T, φ, δ), and
the number following the second equality sign by Pμ(T, φ, δ). First, following
essentially the proof of Part I of Theorem 3.4.1, we shall show that

Pμ(T, φ, δ) ≥ hμ(T ) +
∫
φdμ. (11.5.1)

Indeed, as in that proof, consider a finite partition U = {A1, . . . , As} of X into
Borel sets and compact sets Bi ⊂ Ai, i = 1, 2, . . . , As}, such that for the partition
V = {B1, . . . , Bs,X \ (B1 ∪ . . . ∪ Bs)} we have Hμ(U|V) ≤ 1. For every θ > 0
and q ≥ 1, set

Xq =
{

x ∈ X : − 1
n

logμ
(Vn(x)) ≥ hμ(T,V) − θ for all n ≥ q

1
n
Snφ(x) ≥

∫
φdμ− θ for all n ≥ q

}

.

Now fix 0 ≤ δ < 1. It follows from the Shannon–McMillan–Breiman Theorem
and Birkhoff’s Ergodic Theorem that for q large enough μ(Xq) > δ. Take 0 <
ε < 1

2 min{ρ(Bi, Bj) : 1 ≤ i < j ≤ s} > 0 so small that

|φ(x) − φ(y)| < θ

if ρ(x, y) ≤ ε. Since for every x ∈ X the set Bn(x, ε) ∩Xq can be covered by at
most 2n elements of Vn,

μ(Bn(x, ε) ∩Xq) ≤ exp
(
n(log 2 − hμ(T,V) + θ)

)
.

Now let E be a μ − (n, ε, δ)-spanning set for n ≥ q, and consider the set E′ =
{x ∈ E : Bn(x, ε) ∩Xq 	= ∅}. Take any point y(x) ∈ Bn(x, ε) ∩Xq. Then by the
choice of ε, Snφ(x) − Snφ(y) > −nθ. Therefore we have

∑

x∈E
expSnφ(x) exp

(

−n
(

hμ(T,V) +
∫
φdμ− 3θ − log 2

))

≥
∑

x∈E′
expSnφ(x) exp

(

−n
(

hμ(T,V) +
∫
φdμ− 3θ − log 2

))

=
∑

x∈E′
exp
(
Snφ(x) − n

∫
φdμ

)
exp
(

−n(hμ(T,V) − 3θ − log 2)
)

=
∑

x∈E′
exp
(

Snφ(x) − Snφ(y) + Snφ(y) − n

∫
φdμ

)

× exp
(−n(hμ(T,V) − 3θ − log 2

))

≥
∑

x∈E′
exp(−nθ) exp(−nθ) exp(2nθ) exp

(−n(hμ(T,V) − θ − log 2)
)

=
∑

x∈E′
exp
(
n(log 2 − hμ(T,V) + θ)

)

≥
∑

x∈E′
μ(Bn(x, ε) ∩Xq) ≥ μ(Xq) − δ > 0,
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which implies that

Qμ(T, φ, n, ε, δ) ≥ hμ(T,V) +
∫
φdμ− 3θ − log 2.

Since θ > 0 is an arbitrary number, and since hμ(T,U) ≤ hμ(T,V) +Hμ(U|V) ≤
hμ(T,V) + 1, letting ε→ 0, we get

Pμ(T, φ, δ) ≥ hμ(T,U) − 1 +
∫
φdμ− log 2.

Therefore, by the definition of entropy of an automorphism, Pμ(T, φ, δ) ≥
hμ(T ) +

∫
φdμ − log 2 − 1. Using now the standard trick, always applied in

this setting, whose point is to replace T by its arbitrary iterates T k and φ by
Skφ, we obtain kPμ(T, φ, δ) ≥ k hμ(T ) + k

∫
φdμ − log 2 − 1. So, dividing this

inequality by k, and letting k → ∞, we finally obtain

Pμ(T, φ, δ) ≥ hμ(T ) +
∫
φdμ.

Now let us prove that

Pμ(T, φ, δ) ≤ hμ(T ) +
∫
φdμ, (11.5.2)

where Pμ(T, φ, δ) denotes limsup appearing in the statement of Theorem 11.5.1.
Fix 0 < δ < 1; then ε > 0 and θ > 0. Let P be a finite partition of X of
diameter ≤ ε. By the Shannon–McMillan–Breiman Theorem and Birkhoff’s
Ergodic Theorem there exists a Borel set Z ⊂ X such that μ(Z) > 1 − δ
and

1
n
Snφ(x) ≤

∫
φdμ+ θ and − 1

n
logμ(Pn(x)) ≤ hμ(T ) + θ (11.5.3)

for every n large enough and all x ∈ Z. From each element of Pn having
a non-empty intersection with Z choose one point obtaining, say, a set
{x1, x2, . . . , xq}. Then Bn(xj , ε) ⊃ Pn(xj) for every j = 1, 2, . . . , q, and there-
fore the set {x1, x2, . . . , xq} is μ − (n, ε, δ)-spanning. By the second part of
(10.5.3) we have q ≤ exp(n(hμ(T ) + θ)). Using also the first part of (10.5.3), we
get

q∑

j=1

expSnφ(xj) ≤ exp(n(hμ(T ) + θ +
∫
φdμ+ θ)).

Therefore Qμ(T, φ, n, ε, δ) ≤ exp(n(hμ(T ) + θ +
∫
φdμ+ θ)), and letting conse-

qutively n → ∞ and ε → 0, we obtain Pμ(T, φ, δ) ≤ hμ(T ) +
∫
φdμ+ 2θ. Since

θ is an arbitrary positive number, (11.5.2) is proved. This and (11.5.1) complete
the proof of Theorem 11.5.1. ♣
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11.6 Katok’s theory: hyperbolic sets, periodic
points, and pressure

In this section we return to the setting of Section 10.1. Let X be a compact
subset of the closed complex plane C, and let f : X → X be a continuous map
that can be analytically extended to an open neighbourhood U = U(f) of X.

Let μ be an f -invariant ergodic measure on X with positive Lyapunov expo-
nent, and let φ : U → R be a real continuous function. Our first aim is to show
that the number hμ(f)+

∫
φdμ can be approximated by the topological pressures

of φ on hyperbolic subsets of U , and then as a straightforward consequence we
shall obtain the same approximation for the topological pressure P(f, φ).

Theorem 11.6.1. If μ is an f-invariant ergodic measure on X with positive
Lyapunov exponent χμ, and if φ : U → R is a real-valued continuous function,
then there exists a sequence Xk, k = 1, 2, . . ., of compact f-invariant subsets of
U , (topologically) Cantor sets, such that for every k the restriction f |Xk

is a
conformal expanding repeller,

lim inf
k→∞

P(f |Xk
, φ) ≥ hμ(f) +

∫
φdμ, (11.6.1)

and if μk is any ergodic f-invariant measure on Xk, then the sequence μk, k =
1, 2, . . ., converges to μ in the weak-*-topology on U . Moreover χμk

(f |Xk
) =∫

log |f ′| dμk → ∫
log |f ′| dμ = χμ(f). If X is repelling then one finds Xk ⊂ X.

In particular, μk can be supported by individual periodic orbits in Xk. For
more properties of Xk see the remarks after the proof.

Proof. Since P(f |Xk
, φ + c) = P(f |Xk

, φ) + c, and since hμ(f) +
∫

(φ + c) dμ =
hμ(f)+

∫
φdμ+c, adding a constant if necessary, we can assume that φ is positive:

that is, that inf φ > 0. As in Section 10.2, we work in the natural extension
(X̃, f̃ , μ̃). Given δ > 0, let X̃(δ) and r(δ) be produced by Corollary 11.2.4. The
set π(X̃(δ)) is assumed to be compact. This corollary implies the existence of a
constant χ′ > 0 (possibly with a smaller radius r(δ)) such that

diam
(
f−nxn

(B(π(x̃), r(δ))
) ≤ e−nχ

′
(11.6.2)

for all x̃ ∈ X̃(δ) and n ≥ 0. Fix a countable basis {ψj}∞j=1 of the Banach space
C(U) of all continuous real-valued functions on U . Fix θ > 0 and an integer
s ≥ 1. In view of Theorem 11.5.1 and continuity of functions φ and ψi there
exists ε > 0 so small that

lim inf
n→∞

1
n

logQμ(T, φ, n, ε, δ) − (hμ(f) +
∫
φdμ) > −θ, (11.6.3)

if |x− y| < ε, then
|φ(x) − φ(y)| < θ (11.6.4)
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and
|ψi(x) − ψi(y)| < 1

2
θ (11.6.5)

for all i = 1, 2, . . . , s.
Set β = r(δ)/2, and fix a finite β/2-spanning set of π(X̃(δ)), say {x1, . . . , xt}.

That is, B(x1, β/2) ∪ . . . ∪ B(xt, β/2) ⊃ π(X̃(δ/2)). Let U be a finite partition
of X with diameter < β/2, and let n1 be sufficiently large that

exp(−n1χ
′) < min{β/3,K−1}. (11.6.6)

Given n ≥ 1, define

X̃n,s = {x̃ ∈ X̃(δ) : f̃q(x̃) ∈ X̃(δ) and π(f̃q(x̃)) ∈ U(π(x̃))
for some q ∈ [n+ 1, (1 + θ)n]
∣
∣
∣
∣
1
k
Sk(ψi)(π(x̃)) −

∫
ψi dμ

∣
∣
∣
∣ <

1
2
θ

for every k ≥ n and all i = 1, 2, . . . , s}.
By Birkhoff’s Ergodic Theorem, limn→∞ μ(X̃n,s) = μ(X̃(δ)) > 1 − δ. Therefore
there exists n ≥ n1 so large that μ(X̃n,s) > 1 − δ. Let Xn,s = π((X̃n,s)). Then
μ(Xn,s) > 1 − δ, and let En ⊂ Xn,s be a maximal (n, ε)-separated subset of
Xn,s. Then En is a spanning set of Xn,s, and therefore it follows from (11.6.3)
that, for all n large enough,

1
n

log
∑

x∈En

expSnφ(x) − (hμ(f) +
∫
φdμ) > −θ.

Equivalently,
∑

x∈En

exp(Snφ(x)) > exp(n(hμ(f) +
∫
φdμ− θ)).

For every q ∈ [n+ 1, (1 + θ)n], let

Vq = {x ∈ En : fq(x) ∈ U(x)},
and let m = m(n) be a value of q that maximizes

∑
x∈Vq

exp(Snφ(x)). Since
⋃(1+θ)n
q=n+1 Vq = En, we thus obtain

∑

x∈Vm

expSnφ(x) ≥ (nθ)−1

(1+θ)n∑

q=n+1

∑

x∈Vq

expSnφ(x)

≥ (nθ)−1
∑

x∈En

exp(Snφ(x)) ≥ exp(n(hμ(f) +
∫
φdμ− 2θ)).

Consider now the sets Vm ∩ B(xj , β/2), 1 ≤ j ≤ t, and choose the value
i = i(m) of j that maximizes

∑
x∈Vm∩B(xj ,β/2)

exp(Snφ(x)). Thus, writing Dm

for Vm ∩B(xi(m), β/2), we have Vm =
⋃t
j=1 Vm ∩B(xi, β/2) and
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∑

x∈Dm

expSnφ(x) ≥ 1
t

exp(n(hμ(f) +
∫
φdμ− 2θ)).

Since φ is positive, this implies that
∑

x∈Dm

expSmφ(x) ≥ 1
t

exp(n(hμ(f) +
∫
φdμ− 2θ)). (11.6.7)

Now, if x ∈ Dm, then |fm(x) − xi| ≤ |fm(x) − x| + |x − xi| < β/2 + β/2 = β,
and therefore

fm(x) ∈ B(xi, β) ⊂ B(fm(x), 2β).

Thus, by (11.6.2) and as m ≥ n ≥ n1, we have diam
(
fx−m(B(fm(x), 2β)

) ≤
exp(−mχ′) < β/3, where x̃ ∈ π−1(x) ∩ X̃n,s. Therefore

f−mx (B(xi, β)) ⊂ B

(

xi,
β

2
+
β

3

)

= B

(

xi,
5
6
β

)

.

In particular,
f−mx (B(xi, β)) ⊂ B(xi, β). (11.6.8)

Consider now two distinct points y1, y2 ∈ Dm. Then f−my2 (B(xi, β)) ∩
f−my1 (B(xi, β)) = ∅, and decreasing β slightly, if necessary, we may assume that

f−my2 (B(xi, β)) ∩ f−my1 (B(xi, β)) = ∅.
Let

ξ = min
{
β,min

{
dist

(
f−my2 (B(xi, β)), f−my1 (B(xi, β)

)
: y1, y2 ∈ Dm, y1 	= y2

}}
.

Now define inductively the sequence of sets {X(j)}∞j=0 contained in U(f) by
setting

X(0) = (B(xi, β) and X(j+1) =
⋃

x∈Dm

f−mx (X(j)).

By (11.6.8),{X(j)}∞j=0 is a descending sequence of non-empty compact sets, and
therefore the intersection

X∗ = X∗(θ, s) =
∞⋂

j=0

X(j)

is also a non-empty compact set. Moreover, by the construction fm(X∗) = X∗,
fm|X∗ is topologically conjugate to the full one-sided shift generated by an alpha-
bet consisting of #Dm elements, and it immediately follows from Corollary 11.2.4
that fm|X∗ is an expanding map. Since fm|X∗ is an open map, by Lemma 6.1.2
the triple (fm,X∗, Um) is a conformal expanding repeller with a sufficiently
small neighborhood Um of X∗. Thus (f,X(θ, s),Ws), is a conformal expanding
set, where

X(θ, s) =
m−1⋃

l=0

f l(X∗) and Ws =
m−1⋃

l=0

f l(Um).
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This can be extended to a conformal expanding repeller X̂(θ, s) in Ws by
Proposition 4.5.6.

Now fix an integer j ≥ 1. For any j-tuple (z0, z1, . . . , zj−1), zl ∈ Dm choose
exactly one point y from the set f−mzj−1

◦f−mzj−2
◦. . .◦f−mz0 (X∗), and denote the made-

up set by Aj . Since, by (11.6.4) and (11.6.6), Sjmφ(y) ≥∑j−1
l=0 Smφ(zl) − jmθ,

we see that
∑

y∈Aj

expSjmφ(y) ≥ (
∑

x∈Dm

expSmφ(x)
)j exp(−jmθ)

and
1
j

log
∑

y∈Aj

expSjmφ(y) ≥ log
∑

x∈Dm

expSmφ(x) −mθ.

In view of the definition of ξ, the set Aj is (j, ξ)-separated for fm, and ξ is an
expansive constant for fm. Hence, letting j → ∞, we obtain

P(fm|X∗ , Smφ) ≥ log
∑

x∈Dm

expSmφ(x) −mθ

≥ n
(
hμ(f) +

∫
φdμ− 2θ

)− log t−mθ,

where the last inequality was written in view of (11.6.7). Since n + 1 ≤ m ≤
n(1 + θ), and since inf φ > 0 (and consequently hμ(f) +

∫
φdμ > 0), we get

P(f |X̂(θ,s), φ) ≥ P(f |X(θ,s), φ) =
1
m

P(fm|X(θ,s), Smφ) ≥ 1
m

P(fm|X∗ , Smφ)

≥ 1
1 + θ

(

hμ(f) +
∫
φdμ− 2θ

)

− log t
m

− θ.

Supposing now that n (and consequently also m) was chosen sufficiently large,
we get

P(f |X(θ,s), φ) ≥ 1
1 + θ

(hμ(f) +
∫
φdμ) − 4θ.

If now ν is any ergodic f -invariant measure on X̂(θ, s), then it follows from the
definition of the set X̃n,s, the construction of the set X(θ, s) and since X̂(θ, s) is
arbitrarily close to it, and else by the Birkhoff Ergodic Theorem, that | ∫ ψi dν−∫
ψi dμ| < θ for every i = 1, 2, . . . , s. A similar estimate for log |f ′| follows from

the definition of X̃(δ) and Corollary 11.2.4. Therefore, for example, the sets
Xk = X̂(1/k, k) satisfy the assertions of Theorem 11.6.1.

Finally, if the set X is repelling, that is if
⋂
n≥0 f

−n(U) = X, then the sets
Xk are all contained in X. ♣
Remark 11.6.2. In fact the sets Xk in Theorem 11.6.1 can be found
independent of φ.

To see this, set φ ≡ 0. Find Xk for this function. We get

lim sup
k→∞

htop(f |Xk) ≥ hμ(f).
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Let μk be a measure of maximal entropy on Xk, for k = 1, 2, ...: that is, hμk
(f) =

htop(f |Xk
). Consider an arbitrary continuous function φ : U → R. Then μk →

μ weakly*: hence
∫
φ dμk → ∫

φ dμ. Hence, with the use of the Variational
Principle,

lim inf
k→∞

P(f |Xk
, φ) ≥ lim inf

k→∞
(
hμk

(f) +
∫
φ dμk

) ≥ hμ(f) +
∫
φdμ.

Note also that although for the maximal measures μk we have

lim inf
k→∞

hμk
(f) ≥ hμ(f),

this need not be true for all sequences μk.
It is possible to find the setsXk with f topologically mixing on them, common

for (finite) families of measures μ, and thus common for families of φ in Corol-
lary 11.6.4, by building ‘bridges’. For details see [Gelfert, Przytycki & Rams
2009] (based on [Prado 1997]).

Remark 11.6.3. One can find (correct) Xk above so that each fXk
is

topologically transitive, and even topologically mixing.
This follows from the general Theorem 4.3.8 on the existence of spectral

decomposition. It implies that for each k there exists Ωk ⊂ Xk such that f |Ωk

is open (see Lemma 4.3.10), topologically transitive, and satisfying htop(f |Ωk
) =

htop(f |Xk
) (see Exercise 4.4). Hence, using μk measures of maximal entropy on

Ωk, we obtain (11.6.1) as in Remark 11.6.2.
In fact one can prove that (f,Xk), found in the proof of Theorem 11.6.1,

are already topologically transitive. Indeed, (fn,X∗(θ, s)) are topologically mix-
ing, since by construction they are topologically conjugate with one-sided shifts.
Hence each (f,X(θ, s)) is topologically transitive. So the transition matrix
A = (ai,j), considered in the proof of Proposition 4.5.6, defined by ai,j = 1
if there exists gi,j : Uj → Ui, a branch of f−1 with non-empty g(Uj) ∩ X, and
0 otherwise, is irreducible. This follows from the existence of a trajectory dense
in X. The same matrix A is the transition matric of a topological Markov chain
ΣA topologically conjugate to the resulting (f,Xk).

This (f,Xk) extends to a topologically mixing Cantor expanding repeller by
adding a ‘bridge’ of length mutually prime with respect to m. We leave this to
the reader as an exercise.

Corollary 11.6.4. If P(f, φ) > supφ, then there exists a sequence Xk, k =
1, 2, . . ., of compact f-invariant subsets of an arbitrarily small neighbourhood of
X such that for every k, (Xk, f |Xk

) is a Cantor conformal expanding repeller
satisfying

lim inf
k→∞

P(f |Xk
, φ) ≥ P(f, φ). (11.6.9)

If X is repelling, then one finds Xk ⊂ X and

lim
k→∞

P(f |Xk
, φ) = P(f, φ).
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Proof. By the Variational Principle P(f, φ) = limk→∞(hνk
(f) +

∫
φdνk) for a

sequence of Borel probability measures νk on X. Because P(f, φ) > supφ we
have hνk

(f) > 0 for k large enough. Hence, owing to Ruelle’s inequality (Theo-
rem 11.1.1), χνk

> 0. Now we apply Theorem 11.6.1 and for each k large enough
find Xk satisfying the assertion of the theorem for μ = νk such that

P(f |Xk
, φ) ≥ hνk

(f) +
∫
φdνk − 1/k.

Any limit for k → ∞ satisfies (11.6.9). In the case where X is repelling, the
estimate from the other side follows immediately from Xk ⊂ X.

Our last immediate conclusion concerns periodic points.

Corollary 11.6.5. If f : X → X is repelling and htop(f) > 0, then f has
infinitely many periodic points. Moreover, the number of periodic points of period
n grows exponentially fast with n.

Exercises

11.1. Prove the following general version of Theorem 11.1.1. LetX be a compact
f -invariant subset of a smooth Riemannian manifold for a C1 mapping f : U →
M , defined on a neighbourhood U of X. Let μ be an f -invariant Borel probability
measure X. Then

hμ(f) ≤
∫

X

max{0, χ+
μ (x)} dμ(x),

where χ+
μ (x) = limn→∞ 1

n log ‖(Dfn)∧‖. HereDfn is the differential and (Dfn)∧

is the exterior power, the linear operator between the exterior algebras generated
by the tangent spaces at x and fn(x). The norm is induced by the Riemann
metric. ‖(Dfn)∧‖ is the supremum of the volumes of Dfn-images of unit cubes
in k-dimensional subspaces of TxM with k = 0, 1, . . . ,dimM .
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Theorem 11.1.1 relies on [Ruelle 1978b].
The content of Sections 11.2, 11.5 and 11.6 corresponds to facts from Pesin’s
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ment 5]. For Theorem 11.2.3 see for example [Przytycki, Urbański & Zdunik
1989]. Mañé’s partition for diffeomorphisms was discussed in [Mañé 1987]. Ref-
erences to the Volume Lemma are for example [Mañé 1988], [Przytycki 1985] and
[Ledrappier 1984].

The problem of constructing Xk ⊂ X in the case where (X, f) is not a
repeller, in Theorem 11.6.1, was recently dealt with in [Przytycki 2005a]

The theorem in Exercise 11.1 is due to Ruelle: see Ruelle [1978b]. Compare
Theorem 11.1.1.
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Conformal measures

12.1 General notion of conformal measures

Let T : X → X be a continuous map of a compact metric space (X, ρ), and let
g : X → R be a non–negative measurable function. A Borel probability measure
m on X is said to be g–conformal for T : X → X if

m(T (A)) =
∫

A

g dm (12.1.1)

for any Borel set A ⊂ X, such that T |A is injective and T (A) is Borel measurable.
Sets with this property will be called special sets.

If g > 0, then T is backward quasi-invariant (non-singular) with respect to
the g-conformal measure m: see Chapter 5, Section 5.2.

Now consider an arbitrary Borel probability measure m on X, backward
quasi-invariant for T . Assume that T is uniformly bounded to one or countable
to one, that is, X =

⋃
Xj , where Xj are measurable, pairwise disjoint, and for

each j the map T |Xj
→ T (Xj) is a measurable isomorphism, as in Section 5.2.

Denote ĝ := d(m ◦ (T |Xj
)−1)/dm.

Consider, as in Section 5.2, the operator Lm : L1(m) → L1
m, defined in the

present notation and the notation of (5.2.8) by

Lm(u)(x) = Llog ĝ(x) =
∑

T (y)=x

u(y)ĝ(y).

So, for all u ∈ L1(m),
∫

L∗
m(11)u dm =

∫
11Lm(u) dm =

∫
u dm

(see (5.2.4)). We conclude that, by Proposition 5.2.1, if m is a g-conformal
measure and g > 0, then ĝ = 1/g and

L∗
− log g(11) = L∗

m(11) = 11. (12.1.2)

314
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Conversely, if m is backward quasi-invariant, ĝ > 0 and (12.1.2) holds, then for
g = 1/ĝ the measure m is g-conformal.

Note that even if T is continuous, Lm need not map C(X) into C(X), unlike
for T open, continuous. However, if we assume Lm : C(X) → C(X) and T being
uniformly bounded to one, then L∗

m : C∗(X) → C∗(X). Then, under the above
constraints concerning positivity, we conclude with the following proposition.

Proposition 12.1.1. A probability measure m is g-conformal if and only if

L∗
− log g(m) = m.

Now, since we can have troubles with the operator L∗ for T not open, we
shall provide another general method of constructing conformal measures, called
the Patterson–Sullivan method. The construction will make use of the following
simple fact. For a sequence {an : n ≥ 1} of reals the number

c = lim sup
n→∞

an
n

(12.1.3)

will be called the transition parameter of {an : n ≥ 1}. It is uniquely determined
by the property that ∑

n≥1

exp(an − ns)

converges for s > c and diverges for s < c. For s = c the sum may converge or
diverge. By a simple argument one obtains the following.

Lemma 12.1.2. There exists a sequence {bn : n ≥ 1} of positive reals such that

∞∑

n=1

bn exp(an − ns)

{
<∞ s > c

= ∞ s ≤ c

and limn→∞ bn

bn+1
= 1.

Proof. If
∑

exp(an − nc) = ∞, put bn = 1 for every n ≥ 1. If
∑

exp(an −
nc) < ∞, choose a sequence {nk : k ≥ 1} of positive integers such that
limk→∞ nkn

−1
k+1 = 0 and εk := ank

n−1
k − c→ 0. Setting

bn = exp
(

n

(
nk − n

nk − nk−1
εk−1 +

n− nk−1

nk − nk−1
εk
))

for nk−1 ≤ n < nk,

it is easy to check that the lemma follows. ♣
Getting back to dynamics, let {En}∞n=1 be a sequence of finite subsets of X

such that
T−1(En) ⊂ En+1 for every n ≥ 1. (12.1.4)

Let φ : X → R be an arbitrary measurable function of bounded absolute value.
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Functions of the form −φ+ Const will play the role of ‘potential’ functions;
exp(−φ+ Const) corresponds to the Jacobian g discussed above.

Let
an = log

( ∑

x∈En

exp(Snφ(x))
)
,

where Snφ =
∑

0≤k<n φ ◦ T k. Denote by c the transition parameter of this
sequence. Choose a sequence {bn : n ≥ 1} of positive reals as in Lemma 11.1.2
for the sequence {an : n ≥ 1}. For s > c define

Ms =
∞∑

n=1

bn exp(an − ns) (12.1.5)

and the normalized measure

ms =
1
Ms

∞∑

n=1

∑

x∈En

bn exp(Snφ(x) − ns)δx, (12.1.6)

where δx denotes the unit mass at the point x ∈ X. Let A be a special set. Using
(12.1.4) and (12.1.6) it follows that

ms(T (A)) =
1
Ms

∞∑

n=1

∑

x∈En∩T (A)

bn exp(Snφ(x) − ns)

=
1
Ms

∞∑

n=1

∑

x∈A∩T−1En

bn exp(Snφ(T (x)) − ns)

=
1
Ms

∞∑

n=1

∑

x∈A∩En+1

bn exp[Sn+1φ(x) − (n+ 1)s] exp(s− φ(x))

− 1
Ms

∞∑

n=1

∑

x∈A∩(En+1\T−1En)

bn exp(Snφ(T (x)) − ns). (12.1.7)

Set

ΔA(s) =
∣
∣
∣
∣

1
Ms

∞∑

n=1

∑

x∈A∩En+1

bn exp[Sn+1φ(x) − (n+ 1)s] exp(s− φ(x))

−
∫

A

exp(c− φ) dms

∣
∣
∣
∣

and observe that

ΔA(s) =
1
Ms

∣
∣
∣

∞∑

n=1

∑

x∈A∩En+1

exp[Sn+1φ(x) − (n+ 1)s]

× exp(−φ(x))
[
bne

s − bn+1e
c
]− b1

∑

x∈A∩E1

ec−s
∣
∣
∣
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≤ 1
Ms

∞∑

n=1

∑

x∈A∩En+1

∣
∣
∣
∣
bn
bn+1

− ec−s
∣
∣
∣
∣bn+1 exp(s− φ(x))

× exp[Sn+1φ(x) − (n+ 1)s] +
1
Ms

b1 exp(c− s) �(A ∩ E1)

≤ 1
Ms

∞∑

n=1

∑

x∈En+1

∣
∣
∣
∣
bn
bn+1

− ec−s
∣
∣
∣
∣bn+1 exp(s− φ(x))

× exp[Sn+1φ(x) − (n+ 1)s] +
1
Ms

b1 exp(c− s) �E1.

By Lemma 11.1.2 we have limn→∞ bn+1/bn = 1 and lims↓cMs = ∞. Therefore

lim
s↓c

ΔA(s) = 0 (12.1.8)

uniformly for all special sets A.
Any weak accumulation point, when s ↘ c, of the measures {ms : s > c}

defined by (12.1.6) will be called a limit measure (associated to the function φ
and the sequence {En : n ≥ 1}).

In order to find conformal measures among the limit measures, it is necessary
to examine (12.1.7) in greater detail. To begin with, for a Borel set D ⊂ X,
consider the following condition:

lim
s↓c

1
Ms

∞∑

n=1

∑

x∈D∩(En+1\T−1En)

bn exp[Snφ(T (x)) − ns] = 0. (12.1.9)

We shall need the following definitions.
A point x ∈ X is said to be singular for T if at least one of the following two

conditions is satisfied:

There is no open neighbourhood U of x such that T |U is injective.
(12.1.10)

∀ε>0∃0<r<ε such that T (B(x, r)) is not an open subset of X. (12.1.11)

The set of all singular points is denoted by Sing(T ), the set of all points
satisfying condition (12.1.10) is denoted by Crit(T ), and the set of all points
satisfying condition (12.1.11) is denoted by X0(T ).

It is easy to give examples where X0 ∩Crit(T ) �= ∅. If T : X → X is an open
map, no point satisfies condition (12.1.11): that is, X0(T ) = ∅.
Lemma 12.1.3. Let m be a Borel probability measure on X, and let Γ
be a compact set containing Sing(T ). If (12.1.1) for g integrable holds for
every special set A whose closure is disjoint from Γ and such that m(∂A) =
m(∂T (A)) = 0, then (12.1.1) continues to hold for every special set A disjoint
from Γ.

Proof. Let A be a special set disjoint from Γ. Fix ε > 0. Since on the complement
of Γ the map T is open, for each point x ∈ A there exists an open neighbourhood
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U(x) of x such that T |U(x) is a homeomorphism, m(∂U(x)) = m(∂T (U(x))) = 0,
U(x) ∩ Γ = ∅, and such that

∫

∪U(x)\A
g dm < ε.

Choose a countable family {Uk} from {U(x)} that covers A, and define recur-
sively A1 = U1 and An = Un \⋃k<n Uk. By the assumption of the lemma, each
set Ak satisfies (11.1.1) and hence

m(T (A)) = m
( ∞⋃

k=1

T (A ∩Ak)
)
≤

∞∑

k=1

m(T (Ak))

=
∞∑

k=1

∫

Ak

g dm =
∫

A

g dm+
∞∑

k=1

∫

Ak\A
g dm

≤
∫

A

g dm+ ε.

If ε→ 0, it follows that

m(T (B)) ≤
∫

B

g dm

for any special setB disjoint from Γ. Using this fact, the lower bound form(T (A))
is obtained from the following estimate, if ε→ 0:

m(T (A)) = m
( ∞⋃

k=1

T (A ∩Ak)
)

=
∞∑

k=1

m(T (A ∩Ak))

=
∞∑

k=1

(m(T (Ak)) −m(T (Ak \A))) ≥
∞∑

k=1

∫

Ak

g dm−
∫

Ak\A
g dm

=
∫

∪k≥1Ak

g dm−
∫

∪k≥1Ak\A
g dm ≥

∫

A

g dm− ε.

This proves the lemma. ♣
Lemma 12.1.4. Let φ : X → R be a function of bounded absolute value and m be
a limit measure as above, and let Γ be a compact set containing Sing(T ). Assume
that every special set D ⊂ X with m(∂D) = m(∂T (D)) = 0 and D̄ ∩ Γ = ∅
satisfies condition (12.1.9). Then m(T (A)) =

∫
A

exp(c− φ) dm for every special
set A disjoint from Γ.

Proof. Let D ⊂ X be a special set such that D̄ ∩ Γ = ∅ and m(∂D) =
m(∂T (D)) = 0. It follows immediately from (12.1.7)–(12.1.9) that m(T (D)) =∫
D

exp(c− φ) dm. Applying Lemma 12.1.3 completes the proof. ♣
Lemma 12.1.5. Let m be a limit measure. If condition (12.1.9) is satisfied for
D = X, then m(T (A)) ≥ ∫

A
exp(c− f) dm for every special set A disjoint from

Crit(T ).
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Proof. Suppose first that A is compact and m(∂A) = 0. From (11.1.7), (12.1.8)
and the assumption one obtains

lim
s∈J

|ms(T (A)) −
∫

A

exp(c− φ) dms| = 0,

where J denotes the sub-sequence along which ms converges to m. Since T (A)
is compact, this implies

m(T (A)) ≥ lim inf
s∈J

ms(T (A)) = lim
s∈J

∫

A

exp(c− φ) dms =
∫

A

exp(c− φ) dm.

Now, drop the assumption that m(∂A) = 0 but keep A compact, and assume
additionally that for some ε > 0 the ballB(A, ε) is also special. Choose a descend-
ing sequence An of compact subsets of B(A, ε) whose intersection equals A and
m(∂An) = 0 for every n ≥ 0. By what has already been proved,

m(T (A)) = lim
n→∞m(T (An)) ≥

∫

An

exp(c− φ) dm =
∫

A

exp(c− φ) dml.

The next step is to prove the lemma for A, an arbitrary open special set disjoint
from Crit(T ), by partitioning it by countably many compact sets. Then one
approximates from above special sets of sufficiently small diameters by special
open sets, and the last step is to partition an arbitrary special set disjoint from
Crit(T ) by sets of such small diameters that the lemma holds. ♣

Lemma 12.1.6. Let Γ be a compact subset of X containing Sing(T ). Suppose
that for every integer n ≥ 1 there are a continuous function gn : X → X and a
measure mn on X satisfying (12.1.1) for g = gn and for every special set A ⊂ X
with

A ∩ Γ = ∅ (a)

and satisfying

mn(B) ≥
∫

B

gn dmn

for any special set B ⊂ X such that B ∩ Crit(T ) = ∅. Suppose, moreover, that
the sequence {gn}∞n=1 converges uniformly to a continuous function g : X → R.
Then for any weak accumulation point m of the sequence {mn}∞n=1 we have

m(T (A)) =
∫

A

g dm (b)

for all special sets A ⊂ X such that A ∩ Γ = ∅ and

m(T (B)) ≥
∫

B

g dm (c)

for all special sets B ⊂ X such that B ∩ Crit(T ) = ∅.
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Moreover, if (a) is replaced by

A ∩ (Γ \ (Crit(T ) \X0(T ))) = ∅, (a′)

then for any x ∈ Crit(T ) \X0(T )

m({T (x)}) ≤ g(x)m({x}) ≤ q(x)m({T (x)}), (d)

where q(x) denotes the maximal number of pre-images of single points under the
transformation T restricted to a sufficiently small neighbourhood of x.

The proof of property (b) is a simplification of the proof of Lemma 12.1.4,
and the proof of property (c) is a simplification of the proof of Lemma 12.1.5.
The proof of (d) uses the same techniques and is left for the reader.

12.2 Sullivan’s conformal measures and
dynamical dimension: I

As in Chapter 11, let X denote a compact subset of the Riemann sphere C, and
let f ∈ A(X), which means that f : X → X is a continuous map that can be
analytically extended to an open neighbourhood U(f) of X.

Let t ≥ 0. Any |f ′|t-conformal measure for f : X → X is called a t-conformal
Sullivan’s measure or, even shorter, a t-conformal measure. Rewriting (12.1.1)
this means that

m(f(A)) =
∫

A

|f ′|t dm (12.2.1)

for every special set A ⊂ X. An obvious but important property of conformal
measures is formulated in the following.

Lemma 12.2.1. If f : X → X is topologically exact, then every Sullivan’s
conformal measure is positive on non-empty open sets of X.

In particular, it follows from this lemma that if f is topologically exact, then
for every r > 0

M(r) = inf{m(B(x, r)) : x ∈ X} > 0 (12.2.2)

Denote by δ(f) the infimum over all exponents t ≥ 0 for which a t-conformal
measure for f : X → X exists. Call δ(f) the conformal dimension of X.

Our aim in the next two sections is to show the existence of conformal mea-
sures and, moreover, to establish more explicit dynamical characterization of the
number δ(f). We are going to prove that, under some additional assumptions,
δ(f) coincides with the dynamical dimension DD(X) of X and the hyperbolic
dimension HyD(X) of X, which are defined as follows:

DD(X) = sup{HD(μ) : μ ∈M+
e (f)}

HyD(X) = sup{HD(Y ) : f |Y is a conformal expanding repeller}.
In HyD one can even restrict Y to being topological Cantor sets.
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In this section we shall prove the following two results.

Lemma 12.2.2. If f : X → X is topologically exact, then DD(X) ≤ δ(f).

Proof. Our main idea ‘to get to a large scale’ is the same as in [Denker &
Urbański 1991b]. However, to carry it out we use Pesin’s theory, described in
Section 10.2, instead of Mañé’s partition, applied in [Denker & Urbański 1991b].
So, let μ ∈ M+

e (f) and let m be a t-conformal measure. We again work in
the natural extension (X̃, f̃ , μ̃). Fix ε > 0, and let X̃(ε) and r(ε) be given
by Corollary 11.2.4. In view of the Birkhoff Ergodic Theorem there exist a
measurable set F̃ (ε) ⊂ X̃(ε) such that μ̃(F̃ (ε)) = μ̃(X̃(ε)) and an increasing
sequence {nk = nk(x̃) : k ≥ 1} such that f̃nk(x̃) ∈ X̃(ε) for every k ≥ 1. Let
F (ε) = π(F̃ (ε)). Then μ(F (ε)) = μ̃(π−1(F (ε)) ≥ μ̃(F̃ (ε)) ≥ 1 − ε. Consider
now x ∈ F (ε), and take x̃ ∈ F̃ (ε) such that x = π(x̃). Since f̃nk(x̃) ∈ X̃(ε),
and since π(f̃nk(x̃) = fnk(x), Corollary 11.2.4 produces a holomorphic inverse
branch f−nk

x : B(fnk(x), r(ε)) → C of fnk such that f−nk
x fnk(x) = x and

f−nk
x

(
B(fnk(x), r(ε))

) ⊂ B
(
x,K|(fnk)′(x)|−1r(ε)

)
.

Set rk(x) = K|(fnk)′(x)|−1r(ε). Then by Corollary 11.2.4 and the t-conformality
of m,

m(B(x, rk(x))) ≥ K−t|(fnk)′(x)|−tm(B(fnk(x), r(ε))
)

≥M(r(ε))−1K−2tr(ε)−trk(x)t.

Therefore it follows from Theorem 8.5.1 (the Besicovitch Covering Theorem)
that Λt(F (ε)) ≤ M(r(ε))K2tr(ε)tb(2) < ∞. Hence HD(F (ε)) ≤ t. Since
μ
(⋃∞

n=1 F (1/n)
)

= 1, it implies that HD(μ) ≤ t. This completes the proof. ♣
Theorem 12.2.3. If f : X → X is topologically exact and X is a repelling set
for f , then HyD(X) = DD(X).

Proof. In order to see that HyD(X) ≤ DD(X) note only that in view of The-
orems 5.3.2 and 9.1.6 and Corollary 9.1.7 there exists μ ∈ M+

e (f |Y ) ⊂ M+
e (f)

such that HD(μ) = HD(Y ) . In order to prove that DD(X) ≤ HyD(X) we shall
use Katok’s theory from Section 11.6 applied to μ, an arbitrary ergodic invariant
measure of positive entropy. First, for every integer n ≥ 0, define on X a new
continuous function

φn = max{−n, log |f ′|}.
Then φn ≥ log |f ′| and φn ↘ log |f ′| pointwise on X. Since, in addition, φn ≤
log ||f ′||∞, it follows from the Lebesgue Monotone Convergence Theorem that
limn→∞

∫
φn dμ = χμ(f) =

∫
log |f ′| dμ > 0. Fix ε > 0. Then for all n sufficiently

large, say n ≥ n0,
∫
φndμ ≤ χμ/(1 − ε), which implies that

hμ(f) = HD(μ)χμ ≥ (1 − ε)HD(μ)
∫
φn dμ. (12.2.3)

Fix such n ≥ n0. Let Xk ⊂ X, k ≥ 0, be the sequence of conformal expand-
ing repellers produced in Theorem 11.6.1 for the measure μ and the function
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−HD(μ)φn, and let μk be an equilibrium state of the map f |Xk
and the

potential −HD(μ)φn restricted to Xk. It follows from the second part of Theo-
rem 11.6.1 that limk→∞

∫
φn dμk =

∫
φn dμ > 0. Thus, by Theorem 11.6.1 and

(12.2.3),

lim inf
k→∞

(
hμk

−HD(μ)
∫
φn dμk

)
= lim inf

k→∞
P
(
f |Xk

,−HD(μ)φn
)

≥ hμ(f) − HD(μ)
∫
φn dμ ≥ −εHD(μ)

∫
φn dμ.

Hence, for all k large enough,

hμk
≥ HD(μ)

∫
φn dμk − 2εHD(μ)

∫
φn dμ

≥ HD(μ)
∫
φn dμk − 3εHD(μ)

∫
φn dμk

= (1 − 3ε)HD(μ)
∫
φn dμk ≥ (1 − 3ε)HD(μ)

∫
log |f ′| dμk.

Thus

HD(Xk) ≥ HD(μk) =
hμk

(f)
χμk

≥ (1 − 3ε)HD(μ).

So, letting ε→ 0 completes the proof. ♣

12.3 Sullivan’s conformal measures and
dynamical dimension: II

In this section f : C → C is assumed to be a rational map of degree ≥ 2, and
X is its Julia set J(f). Nevertheless, it is worth mentioning that some results
proved here continue to hold under the weaker assumption that f |X is open or X
is a perfect locally maximal set for f . By Crit(f) we denote the set of all critical
points contained in the Julia set J(f).

Lemma 12.3.1. If z ∈ J(f) and {fn(z) : n ≥ 0} ∩ Crit(f) = ∅, then the series∑∞
n=1 |(fn)′(z)|

1
3 diverges.

Proof. Putting ∞ in Crit (f), we can assume that the forward orbit of z is
bounded away from ∞, and use the Euclidean metric on C. By the assumption
there exists ε > 0 such that for every n ≥ 0 the map f restricted to the ball
B(fn(z), ε) is injective. Since f is uniformly continuous, there exists 0 < α < 1
such that, for every x ∈ C,

f(B(x, αε)) ⊂ B(f(x), ε). (12.3.1)
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Suppose that the series
∑∞
n=1 |(fn)′(z)|

1
3 converges. Then there exists n0 ≥ 1

such that supn≥n0
(2|(fn)′(z)|) 1

3 < 1. Choose 0 < ε1 = ε2 = . . . = εno
< αε so

small that for, every n = 1, 2, . . . , n0,

fn restricted to the ball B(z, εn) is injective (12.3.2)

and
fn(B(z, εn)) ⊂ B(fn(z), ε). (12.3.3)

For every n ≥ n0 define εn+1 inductively by

εn+1 = (1 − (2|(fn)′(z)|) 1
3 )εn. (12.3.4)

Then 0 < εn < αε for every n ≥ 1. Assume that (12.3.2) and (12.3.3) are satisfied
for some n ≥ n0. Then by the Koebe Distortion Lemma 6.2.4 and (12.3.4) the
set fn(B(z, εn+1)) is contained in the ball centred at fn(z) and of radius

εn+1|(fn)′(z)| 2
(1 − εn+1/εn)3

=
2εn+1|(fn)′(z)|

2|(fn)′(z)| = εn+1 < αε.

Therefore, since f is injective on B(fn(z), ε), formula (12.3.2) is satisfied for
n+ 1, and using also (12.3.1) we get

fn+1(B(z, εn+1)) = f
(
fn(B(z, εn+1))

) ⊂ f(B(fn(z), αε)) ⊂ B(fn+1(z), ε).

Thus (12.3.3) is satisfied for n+ 1.
Let εn ↘ ε0. Since the series

∑∞
n=1 |(fn)′(z)|

1
3 converges, it follows from

(11.3.4) that ε0 > 0. Clearly, (12.3.2) and (12.3.3) remain true with εn replaced
by ε0. It follows that the family {fn|B(z, 12 ε0)

}∞n=1 is normal, and consequently
z /∈ J(f). This contradiction completes the proof. ♣

As an immediate consequence of this lemma and of Birkhoff’s Ergodic
Theorem we get the following.

Corollary 12.3.2. If μ is an ergodic f-invariant measure for which there exists
a compact set Y ⊂ J(f) such that μ(Y ) = 1 and Y ∩ Crit(f) = ∅, then χμ ≥ 0.

In fact the assumption Y ∩ Crit(f) = ∅ is not needed: see [Przytycki 1993].
Compare Theorem 12.3.10.

Now let Ω be a finite subset of
⋃∞
n=1 f

n(Crit(f)) such that

Ω ∩ {fn(c) : n = 1, 2 . . .} �= ∅ for every c ∈ Crit(f) (12.3.5)

and
Ω ∩ Crit(f) = ∅. (12.3.6)

Sets satisfying these conditions exist, since no critical point of f lying in J(f)
can be periodic. Now let V ⊂ J(f) be an open neighbourhood of Ω, and define
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K(V ) to be the set of those points of J(f) whose forward trajectory avoids V .
Equivalently this means that

K(V ) = {z ∈ J(f) : fn(z) /∈ V for every n ≥ 0} =
∞⋂

n=0

f−n(J(f) \ V ).

Hence K(V ) is a compact subset of J(f) and f(K(V )) ⊂ K(V ). Consequently
we can consider the dynamical system f |K(V ) : K(V ) → K(V ). Note that
f(K(V )) = K(V ) does not hold for all sets V , and that usually f−1(K(V )) �⊂
K(V ). Simple considerations based on (11.3.5) and the definition of sets K(V )
give the following.

Lemma 12.3.3. Crit(f |K(V )) ⊂ Crit(f) ∩ K(V ) = ∅, K(V )0(f) = Sing(f) ⊂
∂V , and −t log |f ′| is a well-defined continuous function on K(V ).

Now fix z ∈ K(V ) and set En = f |−nK(V )(z), n ≥ 0. Then En+1 = f |−1
K(V )(En),

and therefore the sequence {En} satisfies (11.1.9) with D = K(V ). Take t ≥ 0
and let c(t, V ) be the transition parameter associated to this sequence and the
function −t log |f ′|. Put P(t, V ) = P(f |K(V ),−t log |f ′|). We shall prove the
following.

Lemma 12.3.4. c(t, V ) ≤ P(t, V ).

Proof. Since K(V ) is a compact set disjoint from Crit(f), the map f |K(V ) is
locally 1-to-1, which means that there exists δ > 0 such that f |K(V ) restricted
to any set with diameter ≤ δ is 1-to-1. Consequently, all the sets En are (n, ε)-
separated for ε < δ. Hence the required inequality c(t, V ) ≤ P(t, V ) follows
immediately from Theorem 3.3.2. ♣

The standard straightforward arguments showing continuity of topological
pressure also prove the following.

Lemma 12.3.5. The function t �→ c(t, V ) is continuous.

Set
s(V ) = inf{t ≥ 0 : c(t, V ) ≤ 0} < +∞.

We shall prove the following.

Lemma 12.3.6. s(V ) ≤ DD(J(f)).

Proof. Suppose that DD(J(f)) < s(V ), and take 0 ≤ DD(J(f)) < t < s(V ).
From this choice, and by Lemma 12.3.4, we have 0 < c(t, V ) ≤ P(t, V ), and by
the Variational Principle (Theorem 3.4.1) there exists μ ∈ Me(fK(V )) ⊂ Me(f)
such that P(t, V ) ≤ hμ(f) − tχμ(f) + c(t, V )/2. Therefore, by Corollary 12.3.2
and Lemma 12.3.3, we get hμ(f) ≥ c(t, V )/2 > 0, and applying additionally
Theorem 11.1.1 (Ruelle’s inequality), χμ(f) > 0. Hence it follows from
Theorem 11.4.1 that

t ≤ HD(μ) − 1
2
c(t, V )
χμ

< HD(μ) ≤ DD(J(f)).

This contradiction completes the proof. ♣
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Let m be a limit measure on K(V ) associated to the sequence En and
the function −s(V ) log |f ′|. Since c(0, V ) ≥ 0 and s(V ) < ∞, it follows from
Lemma 12.3.5 that c(s(V ), V ) = 0. Therefore, applying Lemma 12.1.4 and
Lemma 12.1.5 with Γ = ∂V , we see thatm(f(A)) ≥ ∫

A
|f ′|s(V ) dm for any special

set A ⊂ K(V ) and m(f(A)) =
∫
A
|f ′|s(V ) dm for any special set A ⊂ K(V ) such

that A ∩ ∂V = ∅. Treating m as a measure on J(T ) and using straightforward
measure-theoretic arguments we now deduce from this that

m(f(A)) ≥
∫

A

|f ′|s(V ) dm (12.3.7)

for any special set A ⊂ J(f) and

m(f(A)) =
∫

A

|f ′|s(V ) dm (12.3.8)

for any special set A ⊂ J(f) such that A ∩ V̄ = ∅. Now we are in position to
prove the following.

Lemma 12.3.7. For every Ω there exist 0 ≤ s(Ω) ≤ DD(J(f)) and a Borel
probability measure m on J(f) such that

m(f(A)) ≥
∫

A

|f ′|s(Ω) dm

for any special set A ⊂ J(f) and

m(f(A)) =
∫

A

|f ′|s(Ω) dm

for any special set A ⊂ J(f) disjoint from Ω.

Proof. For every n ≥ 1 let Vn = B(Ω, 1
n ), and let mn be the measure on J(f) sat-

isfying (12.3.7) and (12.3.8) for the neighbourhood Vn. Using Lemma 12.1.6 we
shall show that any weak* limit m of the sequence of measures {mn}∞n=1 satisfies
the requirements of Lemma 12.3.7. First observe that the sequence {s(Vn)}∞n=1

is non-decreasing, and denote its limit by s(Ω). Therefore the sequence of contin-
uous functions gn = |f ′|s(Vn), n = 1, 2, . . ., defined on J(f), converges uniformly
to the continuous function g = |f ′|s(Ω). Let A be a special subset of J(f) such
that

A ∩ (Sing(f) ∪ Ω) = ∅. (12.3.9)

Then one can find a compact set Γ ⊂ J(f) disjoint from A and such that Int(Γ) ⊃
Sing(f)∪Ω. So, using also Lemma 12.3.3, we see that for any n sufficiently large,
say n ≥ q,

Vn ⊂ Γ and Vn ∩ Crit(f) = ∅. (12.3.10)

Therefore, by (12.3.7) and (12.3.8), we conclude that Lemma 12.1.6 applies to
the sequence of measures {mn}∞n=q and the sequence of functions {gn}∞n=q. Hence
the first property required in our lemma is satisfied for any special subset of
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J(f) disjoint from Crit(f), and since A ∩ Γ = ∅, the second property is satisfied
for the set A. So, since any special subset of J(f) disjoint from Sing(f) ∪ Ω
can be expressed as a disjoint union of special sets satisfying (12.3.9), an easy
computation shows that the second property is satisfied for all special sets disjoint
from Sing(f)∪Ω. Therefore, in order to complete the proof, it is enough to show
that the second requirement of the lemma is satisfied for every point of the set
Sing(f). First note that by (12.3.10) and (12.3.8) formula (a′) in Lemma 12.1.6
is satisfied for every n ≥ q and every x ∈ Crit(f) \J(f)0(f). As f : J(f) → J(f)
is an open map, the set J(f)0(f) is empty, and Sing(f) = Crit(f). Consequently,
formula (d) of Lemma 11.1.6 is satisfied for any critical point c ∈ J(f) of f . Since
g(c) = |f ′(c)|s(Ω) = 0, this formula implies that m(f()) ≤ 0. Thus m({f(c)}) =
0 = |f ′(c)|s(Ω)m({c}). The proof is complete. ♣
Lemma 12.3.8. Let m be the measure constructed in Lemma 12.3.7. If for some
z ∈ J(f) the series S(t, z) =

∑∞
n=1 |(fn)′(z)|t diverges, then m({z}) = 0, or a

positive iteration of z is a parabolic point of f . Moreover, if z itself is periodic,
then m({f(z)}) = |f ′(z)|tm({z}).
Proof. Suppose that m({z}) > 0. Assume first that the point z is not eventually
periodic. Then by the definition of a conformal measure on the complement of
some finite set we get 1 ≥ m({fn(z) : n ≥ 1}) ≥ m({z})∑∞

n=1 |(fn)′(z)|t = ∞,
which is a contradiction. Hence z is eventually periodic, and therefore there
exist positive integers k and q such that fk(fq(z)) = fq(z). Since fq(z) ∈ J(f),
and since the family of all iterates of f on a sufficiently small neighbourhood
of an attractive periodic point is normal, this implies that |(fk)′(fq(z))| ≥ 1.
If |(fk)′(fq(z))| = λ > 1 then, again by the definition of a conformal measure
on the complement of some finite set, m({fq(z)}) > 0 and m({fkn(fq(z))}) ≥
λntm({fq(z)}). Thus m({fkn(fq(z))}) converges to ∞, which is a contradiction.
Therefore |(fk)′(fq(z))| = 1, which finishes the proof of the first assertion of the
lemma. In order to prove the second assertion assume that q = 1. Then, again
using the definition of conformal measures on the complement of some finite set,
we get m({f(z)}) ≥ m({z})|f ′(z)|t, and on the other hand

m({z}) = m({fk−1(f(z))}) ≥ m({f(z)})|(fk−1)′(f(z))|t = m({f(z)})|f ′(z)|−t.

Therefore m({f(z)}) = m({z})|f ′(z)|t. The proof is complete. ♣
Corollary 12.3.9. If for every x ∈ Crit(f) one can find y(x) ∈ {fn(x) : n ≥ 0}
such that the series S(t, y(x)) diverges for every 0 ≤ t ≤ DD(J(f)), then there
exists an s-conformal measure for f : J(f) → J(f) with 0 ≤ s ≤ DD(J(f)).

Proof. Let m be the measure constructed in Lemma 12.3.7. Since S(t, y(x))
diverges for every 0 ≤ t ≤ DD(J(f)), we see that y(x) /∈ Crit(f). If for some
x ∈ Crit(f), y(x) is a non-periodic point, eventually falling into a parabolic
point, then let z(x) be this parabolic point; otherwise put z(x) = y(x). The
set Ω = {z(x) : x ∈ Crit(f)} meets the conditions (12.3.5) and (12.3.6), and
is contained in

⋃∞
n=1 f

n(Crit(f)). Since for every t ≥ 0 and z ∈ J(f) the
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divergence of the series S(t, z) implies the divergence of the series S(t, f(z)), it
follows immediately from Lemma 12.3.7 and Lemma 12.3.8 that the measure m
is s-conformal. ♣

Fortunately, the assumptions on the existence of y(x) with the divergence of
(t, y(x)) hold. They follow from the following fact, for which we refer the reader
to [Przytycki 1993] and omit the proof here.

Theorem 12.3.10. For every f-invariant probability measure μ on J(f),∫
log |f ′| dμ ≥ 0, in particular log |f ′| is μ-integrable. For μ ergodic this reads

that the Lyapunov characteristic exponent is non-negative, χμ(f) ≥ 0. For μ a.e.
y,

lim sup
n→∞

|(fn)′(y)| ≥ 1.

Now we are in position to finish the proof of the following main result of this
section.

Theorem 12.3.11. HyD(J(f)) = DD(J(f)) = δ(f), and there exists a δ(f)-
conformal measure for f : J(f) → J(f).

Proof. For every x ∈ Crit(f) the set {fn(x) : n ≥ 0} is closed and forward
invariant under f . Therefore, in view of Theorem 3.1.8 (the Bogolubov–Krylov
Theorem), there exists μ ∈ Me(f) supported on {fn(x) : n ≥ 0}. By Theo-
rem 12.3.10 there exists at least one point y(x) ∈ {fn(x) : n ≥ 0} such that
lim supn→∞ |(fn)′(y(x))| ≥ 1, and consequently the series S(t, y(x)) diverges for
every t ≥ 0. So, in view of Corollary 12.3.9, there exists an s-conformal measure
for f : J(f) → J(f) with 0 ≤ s ≤ DD(J(f)). Combining this with Lemma 12.2.2
and Theorem 12.2.3 completes the proof. ♣

12.4 Pesin’s formula

Theorem 12.4.1 (Pesin’s formula). Assume that X is a compact subset of the
closed complex plane C, and that f ∈ A(X). If m is a t-conformal measure for
f , and μ ∈M+

e (f) is absolutely continuous with respect to m, then HD(μ) = t =
δ(f).

Proof. In view of Lemma 12.2.2 we need only prove that t ≤ HD(μ), and in order
to do this we essentially combine the arguments from the proof of Lemma 12.2.2
and the proof of formula (11.4.1). So, we work in the natural extension (X̃, f̃ , μ̃).
Fix 0 < ε < χμ/3, and let X̃(ε) and r(ε) be given by Corollary 11.2.4. In view of
the Birkhoff Ergodic Theorem there exists a measurable set F̃ (ε) ⊂ X̃(ε) such
that μ̃(F̃ (ε)) ≥ 1 − 2ε and

lim
n→∞

1
n

n−1∑

j=1

χX̃(ε) ◦ f̃n(x̃) = μ̃(X̃(ε))
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for every x̃ ∈ F̃ (ε). Let F (ε) = π(F̃ (ε)). Then μ(F (ε)) = μ̃(π−1(F (ε)) ≥
μ̃(F̃ (ε)) ≥ 1 − 2ε. Consider now x ∈ F (ε) ∩ Xo, and take x̃ ∈ F̃ (ε) such that
x = π(x̃). Then by the above there exists an increasing sequence {nk = nk(x) :
k ≥ 1} such that f̃nk(x̃) ∈ X̃(ε) and

nk+1 − nk
nk

≤ ε (12.4.1)

for every k ≥ 1. Moreover, Corollary 11.2.4 produces holomorphic inverse
branches f−nk

x : B(fnk(x), r(ε)) → C of fnk such that f−nk
x fnk(x) = x and

f−nk
x

(
B(fnk(x), r(ε))

) ⊂ B
(
x,K|(fnk)′(x)|−1r(ε)

)
.

Set rk = rk(x) = K−1|(fnk)′(x)|−1r(ε). By Corollary 11.2.4 rk ≤ K−2

exp
(−(χμ − ε)nk

)
r(ε). So, using Corollary 11.2.4 again and (12.4.1) we can

estimate

rk = rk+1|(fnk+1−nk)′(fnk(x))| ≤ rk+1K exp
(
χμ + ε)(nk+1 − nk)

)

≤ rk+1K exp
(
χμ + ε)nk+1ε

) ≤ Krk+1 exp
(
χμ − ε)2nk+1ε

)

≤ rk+1K(K−2r(ε)r−1
k+1)

2ε = K1−4εr(ε)2εr1−2ε
k+1 .

Take now any 0 < r ≤ r1, and find k ≥ 1 such that rk+1 < r ≤ rk. Then using
this estimate, t-conformality of m, and invoking Corollary 11.2.4 once more,
we get

m(B(x, r)) ≤ m(B(x, rk)) ≤ Kt|(fnk)′(x)|−tm(B(x, r(ε)))

≤ K2tr(ε)−trtk ≤ K(3−4ε)tr(ε)2εtr(1−2ε)t.

So, by Theorem 8.5.1 (the Besicovitch Covering Theorem), Λ(1−2ε)t(X) ≥
Λ(1−2ε)t(F (ε)) > 0, whence HD(X) ≥ (1 − 2ε)t. Letting ε → 0 completes the
proof. ♣

Remark 12.4.2. For m being the Riemann measure on C, which is 2-conformal
by definition, HD(m) = 2 is obvious, even without assuming the existence of μ.

Of course, there exist 2-conformal measures for which no μ ∈ M+
e (f) with

μ� m exists. Take, for example, f(z) = z2 + 1/4. It has a parabolic fixed point
z = 1/2, as f ′(1/2) = 1. Put m(1/2) = 1, and for each n ≥ 0 and w ∈ f−n(1/2)
put m(w) = |(fn)′(w)|−t. For t ≥ 2 the series Σ :=

∑
n,w |(fn)′(w)|−t converges

(Exercise; use the Koebe Distortion Theorem). Normalize m by dividing by Σ.
Check that there is no μ ∈ M+

e with μ � m. In this example, for t = δ(f), the
measure μ exists. However, this is not always the case. Consider f(z) = z2 − 3/4
and m built as above, starting from the fixed point −1/2. See [Aaronson, Denker
& Urbański 1993].

Other nice examples and estimates, for ∞-renormalizable polynomials, can
be found in [Avila & Lyubich 2008] and [Levin & Świa̧tek 2009], with other
references therin.

For an arbitrary 2-conformal m the equality hμ(f)/χμ(f) = HD(μ) = 2, that
is, hμ(f) = 2χμ(f), is non-trivial. For m Riemann measure, the first equality is
non-trivial. In higher dimensions its analogue is usually called the Pesin formula:
see [Mañé 1987]. It corresponds to Rokhlin’s equality in Theorem 2.9.7.
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The following theorem, converse to Theorem 12.4.1, holds. We formulate it
for f a rational function on C and X its Julia set. We shall not prove it here.
We refer to [Ledrappier 1984] and the recent [Dobbs 2008].

Theorem 12.4.3. If m is a t-conformal measure supported on J(f) for f : C →
C a rational function of degree at least 2 on the Riemann sphere, and μ is an
f-invariant ergodic probability measure on J(f) of positive Lyapunov exponent
such that HD(μ) ≥ t, then μ � m. Moreover, the density dμ/dm is bounded
away from 0. In particular, μ is unique satisfying these properties.

12.5 More about geometric pressure and
dimensions

Here we provide a simple proof of HyD(J(f)) = δ(f) (see Theorem 12.3.11),
omitting the construction via the sets K(V ) and omitting Pesin’s theory.

Let f : C → C be a rational mapping of degree d ≥ 2 on the Riemann sphere
C. Here we denote by Crit(f) the set of all critical points in C: that is, f ′(x) = 0
for x ∈ Crit(f). As before, the symbol J = J(f) stands for the Julia set of
f . Absolute values of derivatives and distances are considered with respect to
the standard Riemann sphere metric. We consider pressures below for all t > 0.
All the pressures will occur to coincide, giving rise to a generalization of the
geometric pressure P(t) introduced in Section 9.1 in the uniformly expanding
case.

Definition 12.5.1 (Tree pressure). For every z ∈ C define

Ptree(z, t) := lim sup
n→∞

1
n

log
∑

fn(x)=z

|(fn)′(x)|−t.

Definition 12.5.2 (Hyperbolic pressure).

Phyp(t) := sup
X

P(f |X ,−t log |f ′|),

where the supremum is taken over all compact f -invariant (that is, f(X) ⊂ X)
Cantor-repelling hyperbolic (expanding) subsets of J . The property of X being a
Cantor set can be skipped, giving the same definition: compare Theorem 11.6.1.

P(f |X ,−t log |f ′|) denotes the standard topological pressure for the contin-
uous mapping f |X : X → X and continuous real-valued potential function
−t log |f ′| on X, as in the previous sections.

Note that these definitions imply that Phyp(t) is a continuous monotone
decreasing function of t.

In the definition of the hyperbolic pressure one can restrict the supremum
to be over Cantor-repelling hyperbolic sets X such that f |X is topologically
transitive: see Remark 11.6.3.
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Definition 12.5.3 (Conformal pressure). Set PConf(t) := log λ(t), where

λ(t)= inf{λ > 0 : there is μ, a λ|f ′|t− conformal probability measure on J(f)}.

We know that the set of λ’s above is non-empty, from Section 12.3. However,
we want this section to be independent. So the existence of λ(t) will be proved
again later, more directly.

In the sequel we shall call any λ|f ′|t-conformal probability measure on J(f) a
(λ, t)-conformal measure for f , and call a (1, t)-conformal measure a t-conformal
measure for f .

Proposition 12.5.4. For each t > 0 the number PConf(t) is attained: that is,
there exists a (λ, t)-conformal measure with log λ = PConf(t).

This proposition follows from the following (compare the proof of Lemma
12.3.7).

Lemma 12.5.5. If μn is a sequence of (λn, t)-conformal measures for f on J(f)
for an arbitrary t > 0, weakly* convergent to a measure μ, and λn → λ, then μ
is a (λ, t)-conformal measure.

Proof. Let E ⊂ J be a Borel set on which f is injective. Then E can be decom-
posed into a countable union of critical points and sets Ei pairwise disjoint and
such that f is injective on a neighbourhood V of clEi. For every ε there exist
compact set K and open U such that K ⊂ Ei ⊂ U ⊂ V and μ(U)−μ(K) < ε and
μ(f(U))−μ(f(K)) < ε. Consider an arbitrary continuous function χ : J → [0, 1]
so that χ is 1 on K and 0 on J \ U . Then there exists s : 0 < s < 1 such that
for A = χ−1([s, 1]), μ(∂f(A)) = 0. Then the weak* convergence of μn implies
μn(f(A)) → μ(f(A)), as n → ∞: see Theorem 3.1.4. Moreover, this weak*
convergence and λn → λ imply

∫
χλn|f ′|tdμn → ∫

χλ|f ′|tdμ. Therefore from
μn(f(A)) =

∫
A
λn|f ′|tdμn, letting ε→ 0, we obtain μ(f(Ei)) =

∫
Ei
λ|f ′|tdμ.

If E = {c}, where c ∈ Crit(f) ∩ J(f), then for every r > 0 small enough
and for all n, we have μn(f(B(c, r))) ≤ 2(supk λk)(2r)t, and since the bound is
independent of n we get μ(f(c)) = 0: hence μ(f(c)) =

∫
c
|f ′|tdμ, as f ′(c) = 0. ♣

Remark 12.5.6. For a continuous map T : X → X of a compact metric space
X, for an integrable function g : X → R, and for an arbitrary ε ≥ 0, a probability
measure m on X is said to be ε-g-conformal if for every special set A ⊂ X we
have

|m(T (A)) −
∫

A

g dm| ≤ ε.

Compare (12.1.1). Then, in Lemma 12.5.5, it is sufficient to assume that μn is a
sequence of εn-λn|f ′|t-conformal measures, with εn → 0.

Definition 12.5.7. We call z ∈ C safe if

(1) z /∈ ⋃∞
j=1 f

j(Crit(f)) and

(2) lim infn→∞ 1
n log dist(z, fn(Crit(f))) = 0.
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Remark 12.5.8. For every safe z ∈ C and every t > 0 the pressure Ptree(z, t)
is finite. Indeed, if z /∈ B(fn(Crit(f)), ελ−n) for all n = 1, 2, ... and some
ε > 0 and λ > 1, then for each x ∈ f−n(z) the mapping fn is univalent
on Compx f−nB(fn(Crit(f)), ε2λ

−n), with distortion bounded by a constant
C > 0: see the Koebe Distortion Lemma 6.2.3. Recall that Compx denotes the
component containing x. Hence

|(fn)′(x)| ≥ C−1
ε
2λ

−n

diam Compx f−nB(z, ε2λ
−n ≥ C−1 ε

2
λ−n.

Summing up over x, and letting λ→ 1 and n→ ∞, we obtain

Ptree(z, t) ≤ log deg f. (12.5.1)

Definition 12.5.9. We call a point z ∈ C expanding (or hyperbolic) if there
exist Δ > 0 and λ = λz > 1 such that for all n large enough fn is univalent on
Compz f−n(B(fn(z),Δ)) and |(fn)′(z)| ≥ λn.

Proposition 12.5.10. The set S of expanding safe points in J is non-empty.
Moreover, HD(S) ≥ HyD(J).

Proof. The set NS of non-safe points is of zero Hausdorff dimension. This follows
from NS ⊂ ⋃∞

j=1 f
j(Crit(f))∪⋃ξ<1

⋂∞
n=1

⋃∞
j=nB(f j(Crit(f)), ξj), finiteness of

Crit(f), and from
∑
n(ξ

n)t < ∞ for every 0 < ξ < 1 and t > 0. Therefore the
existence of expanding safe points in J follows from the existence of hyperbolic
sets X ⊂ J with HD(X) > 0. Note that every point in a hyperbolic set X is
expanding. ♣

Theorem 12.5.11. For all t > 0, all expanding safe z ∈ J and all w ∈ C

Ptree(z, t) ≤ Phyp(t) ≤ PConf(t) ≤ Ptree(w, t).

We shall provide a proof later on. Now let us state corollaries.

Corollary 12.5.12. For all t > 0 Phyp(t) = PConf(t) and HyD(J) = δ(f).

Proof. The first equality follows from Theorem 12.5.11 and the existence of
expanding safe points in J , and the second from the fact that both quanti-
ties are first zeros of Phyp(t) and PConf(t). We shall prove the latter, including
the existence of a finite zero.

First notice that Phyp(t) is monotone decreasing, which follows immediately
from the monotone decreasing of P(X, t) := P(f |X ,−t log |f ′|) for every expand-
ing repeller X ⊂ J : see for example the discussion after Theorem 9.1.4 and
Definition 12.5.2. Continuity follows from the equicontinuity of the family P(X, t)
following, using the definition of pressure, from its uniform Lipschitz continuity
with the Lipschitz constant sup log |f ′|. (In fact, by the Variational Principle the
Lipschitz constant of all P(X, t) is bounded by supμ χμ(f), the supremum over
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all probability f -invariant measures on J .) If t0 is the first zero of Phyp(t) (we
have not yet excluded the case Phyp(t) > 0 for all t; in such a case write t0 = ∞)
and t0(X) is zero of P(X, t), then P(X, t) → Phyp(t) for all t implies t0(X) → t0.
Since t0(X) = HD(X) ≤ 2 (see Corollary 9.1.7), t0 is finite.

Observe finally that δ(f) is also the first zero t0 of PConf(t) (which we know
already to be equal to Phyp(t)). It cannot be larger, because there exists a
t0-conformal measure, owing to Proposition 12.5.4. It cannot be smaller, since
PConf(t) > 0 for t < t0. ♣

We obtain also a simple proof of the following.

Corollary 12.5.13. Ptree(z, t) does not depend on z for z ∈ J repelling safe.

Proof of Theorem 12.5.11. 1. We prove first that Ptree(z, t) ≤ Phyp(t). Fix
repelling safe z = z0 ∈ J and λ = λz0 > 1 according to Definition 12.5.9.
Since z0 is repelling, we have for δ = Δ/2, l = 2αn and all n large enough

W := Compz0 f
−lB(f l(z0), 2δ) ⊂ B(z, ελ−αn),

and f l is univalent on W . Since z0 is safe we have

B(z0, λ−αn) ∩
2n⋃

j=1

f j(Crit(f)) = ∅

for arbitrary constants ε, α > 0.
By the Koebe Distortion Lemma for ε small enough, for every 1 ≤ j ≤ 2n

and zj ∈ f−j(z0) we have

Compzj
f−jB(z0, ελ−αn) ⊂ B(zj , δ).

Let m = m(δ) be such that fm(B(y, δ/2)) ⊃ J for every y ∈ J . Then, putting
y = f l(z0), for every zn ∈ f−n(z0) we find z′n ∈ f−m(zn) ∩ fm(B(y, δ/2)).
Hence the component Wzn

of f−m(Compzn
f−n(B(z0, ελ−αn)) containing z′n is

contained in ⊂ B(y, 3
2δ)), and fm+n is univalent on Wzn

(provided m ≤ n).
Therefore fm+n+l is univalent from W ′

zn
:= Comp(f−(m+n+l)(B(y, 2δ)) ⊂

Wzn
onto B(y, 2δ). The mapping

F = fm+n+l :
⋃

zn∈f−n(z0)

W ′
zn

→ B(y, 2δ)

has no critical points: hence Z :=
⋂∞
k=0 F

−k(B(y, 2δ)) is a repelling expanding
F -invariant Cantor subset of J .

We obtain for a constant C > 0 resulting from distortion and L = sup |f ′|,

P(F |Z ,−t log |F ′|) ≥ log
(
C

∑

zn∈f−n(z0)

|(fm+n+l)′(z′n)|−t
)

≥ log
(
C

∑

zn∈f−n(z0)

|(fn)′(zn)|−tL−t(m+l)
)
. (12.5.2)
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Hence on the expanding f -invariant set Z ′ :=
⋃m+n+l−1
j=0 f j(Z) we obtain

P(f |Z′ ,−t log |f ′|) ≥ 1
m+ n+ l

P(F,−t log |F ′|)

≥ 1
m+ n+ l

(
logC − t(m+ l) logL+ log

∑

zn∈f−n(z0)

|(fn)′(zn)|−t
)
.

Passing with n to ∞ and next letting α↘ 0 we obtain

P(f |Z′ ,−t log |f ′|) ≥ Ptree(z0, t).

Finally one can find an f -invariant repelling expanding Cantor set Z ′′

containing Z ′, contained in J as in the proof of Theorem 11.6.1, relying on
Proposition 4.5.6. The latter inequality for Z ′′ in place of Z ′ is of course satisfied.

Note that we proved by the way that P (z0, t) <∞ for z0 safe and repelling.
This is, however, weaker than (12.5.1), proved for all z safe.

2. Phyp(t) ≤ PConf(t). Let μ be an arbitrary (λ, t)-conformal measure on J .
From the topological exactness of f on J (see [Carleson & Gamelin 1993]) we get∫
U
λN |(fN )′|tdμ ≥ 1. Hence μ(U) > 0 (compare Lemma 12.2.1).
Let X be an arbitrary f -invariant non-empty isolated hyperbolic subset of

J . Then, for U small enough, (∃C)(∀x0 ∈ X)(∀n ≥ 0)(∀x ∈ X ∩ f−n(x0)) fn

maps Ux = Compx f−n(U) onto U univalently with distortion bounded by C.
So, for every n,

μ(U) ·
∑

x∈f−n(x0)∩X
λ−n|(fn)′(x)|−t ≤ C

∑

x∈f−n(x0)∩X
μ(Ux) ≤ C.

Hence

P(f |X ,− log λ− t log |f ′|) ≤ 0, hence P(f |X ,−t log |f ′|) ≤ log λ.

3. Now we prove PConf(t) ≤ Ptree(w, t), and in particular that the definition
of PConf(t) makes sense. The proof is via the Patterson–Sullivan construction, as
started in Section 11.5.1, but it is much simpler and direct, omitting approxima-
tion via K(V )’s in the following sections. We can assume that Ptree(w, t) < ∞,
otherwise there is nothing to prove.

Let us assume first that w is such that for any sequence wn ∈ f−n(w) we
have wn → J . This means that w is not in an attracting periodic orbit, nor in a
Siegel disc, nor in a Herman ring: see [Carleson & Gamelin 1993]. Assume also
that w is not periodic. Let Ptree(w, t) = λ. Then for all λ′ > λ

∑

x∈f−n(w)

(λ′)−n|(fn)′(x)|−t → 0

exponentially fast, as n → ∞. We find a sequence of numbers φn > 0 such
that limn→∞ φn/φn+1 → 1, and for An :=

∑
x∈f−n(w) λ

−n|(fn)′(x)|−t the series
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∑
n φnAn is divergent: compare Lemma 12.1.2. For every λ′ > λ consider the

measure

μλ′ =
∞∑

n=0

∑

x∈f−n(w)

Dx · φn · (λ′)−n|(fn)′(x)|−t/Σλ′ ,

where Dx is the Dirac delta measure at x, and Σλ′ is the sum over all x of the
weights at Dx, so that μλ′(J) = 1. Notice that m′

λ is (1/Σλ′)-(λ′|f ′|t)-conformal.
Indeed, the only point where this purely atomic measure is not conformal is

w. But f(w) does not belong to
⋃
n≥0 f

−n({w}), since w is not periodic: hence
μλ′({f(w)}) = 0.

Finally we find a (λ, t)-conformal measure μ as a weak* limit of a convergent
sub-sequence of μλ′ as λ′ ↘ λ: see Lemma 12.5.5 and Remark 12.5.6.

If w is in an attracting periodic orbit that is one of at most two exceptional
fixed points (∞ for polynomials, 0 or ∞ for z �→ zk, in adequate coordinates),
then it is a critical value, so Ptree(w, t) = ∞. If w is in a non-exceptional periodic
orbit or in a Siegel disc or Herman ring S, take w′ ∈ f−1(w) neither in the
periodic orbit of w, nor in the periodic orbit of S in the latter cases. Then for
w′ we have the first case: hence PConf(f) ≤ Ptree(w′, t) ≤ Ptree(w, t). The latter
inequality follows from

Ptree(w′, t) = lim sup
n→∞

1
n− 1

∑

x∈f−(n−1)(w′)

|(f−(n−1))′(x)|−t ≤

≤ lim sup
n→∞

1
n

∑

x∈f−(n−1)(w′)

|(fn)′(x)|−t sup
z∈C

|f ′|t ≤ Ptree(w, t).

♣

Remark 12.5.14. There is a direct simple proof of Ptree(z, t) ≤ PConf(t) for
μ-a.e. z, using the Borel–Cantelli Lemma: see [Przytycki 1999, Theorem 2.4].

Remark 12.5.15. In [Przytycki 1999, Th.3.4] a stronger completing Corollary
11.5.13 has been proved, also by elementary means, namely that Ptree(z, t) does
not depend on z ∈ C except for a zero Hausdorff dimension set of z’s.

To complete this section it is worth mentioning one more definition of
pressure: see [Przytycki 1999] and [Przytycki, Rivera-Letelier & Smirnov 2004].

Definition 12.5.16.

Pvarhyp(t) = sup{hμ(f) − tχμ(f)},

the supremum taken over all f -invariant probability ergodic measures on J with
positive Lyapunov exponent: that is, over all hyperbolic f -invariant measures.

The inequalities Phyp(t) ≥ Pvarhyp(t) ≥ Phyp(t) hold by Theorem 11.6.1 and
the Variational Principle, Theorem 3.4.1, respectively.
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Remark 12.5.17. In conclusion we can denote all the pressures above by
P(t), as anticipated at the beginning of this section, and call it geometric
pressure.

A remarkable dichotomy holds for rational maps: either P(t) is strictly
decreasing to −∞ as t ↗ ∞, or P(t) ≡ 0 for all t ≥ t0 = HyD(J). The first
happens precisely for so-called Topological Collet–Eckmann maps, (abbr. TCE
maps). Here is one characterization of this class, which explains another name:
non-uniformly hyperbolic. A rational map fC → C is TCE if and only if

inf
μ
χμ(f) > 0,

the infimum taken over all probability f -invariant measures on J . For details of
this theory see [Przytycki, Rivera–Letelier & Smirnov 2003].

Remark 12.5.18. In the definition of tree pressure lim sup can be replaced by
lim, which occurs to exist (compare Proposition 4.4.3). Indeed, writing for any
z ∈ X, for any topologically transitive expanding repeller X ⊂ J(f)

∑

fn(x)=z,x∈X
|(fn)′(x)|−t ≤

∑

fn(x)=z,x∈J(f)

|(fn)′(x)|−t,

and applying lim inf 1
n on both sides, one obtains Phyp(t) ≤ P−

tree(t), where
the superscript ‘minus’ means we take lim inf instead lim sup in the defini-
tion of the tree pressure. Note that for the left-hand sum the limit exists, by
Proposition 4.4.3.

Bibliographical notes

Section 12.1 roughly follows [Denker & Urbański 1991a]. However, here the set
Sing need not be finite; this is the version introduced and used in [Denker &
Urbański 1991b]. Sections 12.2 and 12.3 follow [Denker & Urbański 1991b],
with some simplifications. For example, the proof of Lemma 12.2.2 is much
simpler.

The construction of conformal measures was first sketched in [Sullivan 1983],
and followed an analogous notion and construction by S.J. Patterson on the limit
sets of a Kleinian group.

The content of Section 12.5 has been extracted from [Przytycki, Rivera-
Letelier & Smirnov 2004]: see [Przytycki 2005b].
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217.

[Marczewski & Ryll-Nardzewski 1953] E. Marczewski, C. Ryll-Nardzewski:
Remarks on the compactness and non direct products of measures. Fund.
Math. 40 (1953), 165–170.

[Mattila 1995] P. Mattila: Geometry of Sets and Measures in Euclidean Spaces,
Fractals and Rectifiability. Cambridge University Press, 1995.

[Mauldin & Urbanski 1996] D. Mauldin, M. Urbański: Dimensions and measures
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Systems: Geometry and Dynamics of Limit Sets. Cambridge University
Press, 2003.

[Mauldin, Przytycki & Urbanski 2001] D. Mauldin, F. Przytycki & M. Urbanski:
Rigidity of conformal iterated function systems. Compos. Math. 129 (2001),
273–299.

[McCluskey & Manning 1983] H. McCluskey, A. Manning: Hausdorff dimension
for horseshoes. Ergod. Th. and Dynam. Sys. 3 (1983), 251–260.

[McMullen 1996] C. McMullen: Renormalization and 3-Manifolds Which Fiber
Over the Circle. Annals of Mathematics Studies 142, Princeton University
Press, 1996.

[de Melo & Pinto 1999] W. de Melo, A. Pinto: Rigidity of C2 renormalizable
unimodal maps Commun. Math. Phys. 208 (1999), 91–105.

[de Melo & van Strien 1993] W. de Melo, S. van Strien: One-Dimensional
Dynamics. Springer-Verlag, Berlin, 1993.

[Milnor 1999] J. Milnor: Dynamics in One Complex Variable. Vieweg, Wies-
baden, 1999, 2000; Princeton University Press, 2006.

[Misiurewicz 1973] M. Misiurewicz: Diffeomorphism without any measure with
maximal entropy. Bull. Acad. Pol. Sci 21 (1973), 903–910.



9780521438001ref CUP/PUK February 17, 2010 15:07 Page-344

344 References

[Misiurewicz 1976] M. Misiurewicz: A short proof of the variational principle for
a Z

N

+ action on a compact space. Astérisque 40 (1976), 147–187.
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4e ser., 40 (2007), 135–178.

[Przytycki & Rivera–Letelier 2008] F. Przytycki, J. Rivera–Letelier: Nice induc-
ing schemes and the thermodynamics of rational maps. arXiv:0806.4385

[Przytycki, Rivera–Letelier & Smirnov 2003] F. Przytycki, J. Rivera-Letelier,
S. Smirnov: Equivalence and topological invariance of conditions for non-
uniform hyperbolicity in the iteration of rational maps. Invent. Math.
151(1) (2003), 29–63.



9780521438001ref CUP/PUK February 17, 2010 15:07 Page-346

346 References

[Przytycki, Rivera-Letelier & Smirnov 2004] F. Przytycki, J. Rivera-Letelier,
S. Smirnov: Equality of pressures for rational functions. Ergod. Th. and
Dynam. Sys. 23 (2004), 891–914.

[Przytycki & Rohde 1998] F. Przytycki, S. Rohde: Porosity of Collet–Eckmann
Julia sets. Fund. Math. 155 (1998), 189–199.

[Przytycki & Tangerman 1996] F. Przytycki, V. Tangerman: Cantor sets in the
line: scaling functions and the smoothness of the shift-map. Nonlinearity 9
(1996), 403–412.
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[Przytycki, Urbański & Zdunik 1989] F. Przytycki, M. Urbański, A. Zdunik:
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Mathématique de France, Paris, 1996. English translation: Thermody-
namic Formalism and Holomorphic Dynamical Systems, SMF/AMS Texts
and Monographs, 2, 2000.



9780521438001ind CUP/PUK February 10, 2010 20:24 Page-349

Index

ϑα,ξ, 113
ϑα, 113
0-1 Law, 54
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