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Foreword 

This book is an outgrowth of the twelfth Summer Mathematical Institute of 
the American Mathematical Society, which was devoted to Algebraic Groups 
and Discontinuous Subgroups. The Institute was held at the University of 
Colorado in Boulder from July 5 to August 6, 1965, and was financed by the 
National Science Foundation and the Office of Naval Research. The present 
volume consists of the Institute lecture notes, in part slightly revised, and of a 
few papers written somewhat later. 

From the beginning, it was understood that a comprehensive exposition of 
the arithmetic aspects of algebraic groups should be a central aim of the Institute. 
In order to survey effectively the topics chosen for discussion, some important 
parts of the theory of Lie groups and algebraic groups had to be omitted, and the 
program was concentrated around five major themes: linear algebraic groups and 
arithmetic groups, adeles and arithmetic properties of algebraic groups, auto­
morphic functions and spectral decomposition of L 2-spaces of coset spaces, 
holomorphic automorphic functions on bounded symmetric domains and moduli 
problems, vector valued cohomology and deformation of discrete subgroups. 
The lectures fulfilled diverse needs, and accordingly the papers in this book are 
intended to serve various purposes : to supply background material, to present 
the current status of a topic, to describe some basic methods, to give an exposition 
of more or less known material for which there is no convenient reference, and 
to present new results. It is hoped that this collection of papers will facilitate 
access to the subject and foster further progress. 

iii 

A. Borel 
G.D. Mostow 



Contents 

I. Algebraic Groups, Arithmetic Groups 
Linear Algebraic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

BY ARMAND BOREL 

Reduction Theory for Arithmetic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
BY ARMAND BOREL 

Rationality Properties of Linear Algebraic Groups . . . . . . . . . . . . . . . . . . . . 26 
BY ARMAND BOREL AND T. A. SPRINGER 

Classification of Algebraic Semisimple Groups . . . . . . . . . . . . . . . . . . . . . . . 33 
BY J. TITS 

p-adic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 
BY FRAN<;OIS BRUHAT 

Generalized Tits System (Bruhat Decomposition) on p-Adic Semisimple 
Groups........................................................ 71 

BY NAGAYOSHI IWAHORI 

On Rational Points on Projective Varieties Defined Over a Complete 
Valuation Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 

BY TSUNEO TAMAGAWA 

Groups Over Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 
BY BERTRAM KosTANT 

Subgroups of Finite Index in Certain Arithmetic Groups . . . . . . . . . . . . . . 99 
BY H. MATSUMOTO 

The Problem of the Maximality of Arithmetic Groups. . . . . . . . . . . . . . . . . 104 
BY NELO D. ALLAN 

II. Arithmetic Properties of Algebraic Groups. Adele Groups 
Adeles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 

BY TSUNEO TAMAGA WA 

On Tamagawa Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 
BY T AKASHI ONO 

The Siegel Formula for Orthogonal Groups. I........................ 133 
BY J. G. M. MARS 

The Siegel Formula for Orthogonal Groups. II . . . . . . . . . . . . . . . . . . . . . . . 138 
BY J. G. M. MARS 

The Volume of the Fundamental Domain for Some Arithmetical Subgroups 
of Chevalley Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 

BY R. P. LANGLANDS 
v 



vi CONTENTS 

Galois Cohomology of Linear Algebraic Groups. . . . . . . . . . . . . . . . . . . . . . 149 
BY T. A. SPRINGER 

Hasse Principle for H 1 of Simply Connected Groups . . . . . . . . . . . . . . . . . . 159 
BY MARTIN KNESER 

Nonabelian H 2 in Galois Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 
BY T. A. SPRINGER 

Inseperable Galois Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 
BY PIERRE CARTIER 

Strong Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 
BY MARTIN KNESER 

III. Automorphic Functions and Decomposition of L 2(G/r) 

Introduction to Automorphic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 
BY ARMAND BOREL 

The Decomposition of L 2(G/r) for r = SL(2, Z) . . . . . . . . . . . . . . . . . . . . . 211 
BY R. GODEMENT 

The Spectral Decomposition of Cusp-Forms . . . . . . . . . . . . . . . . . . . . . . . . . 225 
BY R. GODEMENT 

Eisenstein Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 
BY R. P. LANGLANDS 

Dimension of Spaces of Automorphic Forms. . . . . . . . . . . . . . . . . . . . . . . . . 253 
BY R. P. LANGLANDS 

Spherical Functions and Ramanujan Conjecture . . . . . . . . . . . . . . . . . . . . . . 258 
BY lcHIRO SATAKE 

Algebraic Curves Mod p and Arithmetic Groups . . . . . . . . . . . . . . . . . . . . . 265 
BY Y ASUT AKA IHARA 

Discrete Subgroups of PL(2, k j.I) . . . . . . . . . . . • • • . • . • • • • . . . • • . • . . . . . . . • 272 
BY Y ASUTAKA IHARA 

IV. Bounded Symmetric Domains, Holomorphic Automorphic 
Forms, Moduli 

On Compactifications of Orbit Spaces of Arithmetic Discontinuous Groups 
Acting on Bounded Symmetric Domains. . . . . . . . . . . . . . . . . . . . . . . . . . . 281 

BY WALTER L. BAILY, JR. 

Fourier-Jacobi Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 
BY WALTER L. BAILY, JR. 

On the Desingularization of Sa take Compactifications . . . . . . . . . . . . . . . . . 301 
BY JuN-ICHI IGusA 

Classical Theory of 0-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 
BY WALTER L. BAILY, JR. 

Moduli of Abelian Varieties and Number Theory..................... 312 
BY GORO SHIMURA 



CONTENTS vii 

Hecke's Polynomial as a Generalized Congruence Artin £-function...... 333 
BY MICHIO KUGA 

Fiber Varieties over a Symmetric Space Whose Fibers Are Abelian 
Varieties....................................................... 338 

BY MICHIO KUGA 

Families of Abelian Varieties......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 
BY DAVID MUMFORD 

Sympiectic Representations of Algebraic Groups. . . . . . . . . . . . . . . . . . . . . . 352 
BY lcHIR.O SATAKE 

The Modular Groups of Hilbert and Siegel . . . . . . . . . . . . . . . . . . . . . . . . . . 358 
BY WILLIAM F. HAMMOND 

Quantum Mechanical Commutation Relations and Theta Functions..... 361 
BY PIERRE CARTIER 

V. Quotients of Symmetric Spaces. Deformations 

Cohomologies of Vector-values Forms on Compact, Locally Symmetric 
Riemann Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 

BY SHINGO MURAKAMI 

On Deformations of Lattices in Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 400 
BY How ARD GARLAND 

On Deformations of Discrete Groups in the Noncompact Case . . . . . . . . . 405 
BY How ARD GARLAND 

On the Conjugacy of Subgroups of Semisimple Groups................ 413 
BY G.D. MOSTOW 

Index............................................................ 421 
Authors.......................................................... 425 



I. ALGEBRAIC GROUPS, ARITHMETIC GROUPS 



Linear Algebraic Groups 
BY 

ARMAND BOREL 

This is a review of some of the notions and facts pertaining to linear algebraic 
groups. From §2 on, the word linear will usually be dropped, since more general 
algebraic groups will not be considered here. 

I. The notion of linear algebraic group. According to one's taste about natura­
lity and algebraic geometry, it is possible to give several definitions of linear 
algebraic groups. The first one is not intrinsic at all but suffices for what follows. 

1.1. Algebraic matrix group. Let n be an algebraically closed field. We shall 
denote by M(n, Q) the group of all n x n matrices with entries in n and by 
GL(n, Q) the group of all n x n invertible matrices. GL(n, Q) is an affine subvariety 
of '1"2+ 1 through the identification 

g = (gij).-. (g 11• g12• ·", gnn• (det g)- 1i 
The set M(n, Q) carries a topology-the Zariski topology-the closed sets being 
the algebraic subsets of M(n, Q) = Q"2

• The ring GL(n, Q) is an open subset of 
M(n, Q) and carries the induced topology. 

A subgroup of G of GL(n, Q) is called an algebraic matrix group if G is a 
closed subset of GL(n, Q), i.e., if there exist polynomials Pa. e Q[X 1 i. X 12, • • • , X nnl 
(a e J) such that 

G = {g = (gii) e GL(n, Q)lpa.(gi) = 0, (a e J)}. 

The coordinate ring Q[G] of G, i.e., the ring of all regular functions on G, is the 
Q-algebra generated by the coefficients gii and (det g)- 1• It is the quotient ring 
Q[Xii• Z ]//, where I is the ideal of polynomials in the n2 + 1 letters Xii• Z 
vanishing on G, considered as a subset of nn•+ 1, via the above imbedding of 
GL(n, Q) in Q" 2 + 1. 

When B is a subring of n, we shall denote by GL(n, B) the set of n x n matrices 
g with entries in B, such that det g is a unit in B, and by G8 the intersection 
G n GL(n,B). 

Let k be a subfield of n. The algebraic matrix group G is defined over k or is 
a k-group if the ideal I of polynomials annihilated by G has a set of generators 
in k[Xii• Z). If Ik denotes the ideal of all polynomials with coefficients in k 
vanishing on G, the quotient ring k[Xii, ZJ/lk = k[G] is the coordinate ring of G 
over k. 

REMARK. If the field k is not perfect, it is not enough to assume that G is 
k-closed (i.e., that G is defined by a set of equations with coefficients in k) to 
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4 ARMAND BOREL 

concludt: that G is defined over k; one can only infer that G is defined over a 
purely inseparable extension k' of k. 

The following variant of the definition eliminates the choice of a basis. 
1.2. Algebraic groups of automorphisms of a vector space. Let Vbe an n-dimen­

sional vector space over n, and GL(V) the group of all automorphisms of V. 
Every base of V defines an isomorphism of GL(V) with GL(n, ni A subgroup G 
of GI...(V) is called an algebraic group of automorphisms of V if any such iso­
morphism maps G onto an algebraic matrix group. 

Let k be a subfield of n Assume that V has a k-structure, i.e., that we are given 
a vector subspace V,. over k of V such that V = V,. ® tn The subgroup of G of 
G L( V) is then defined over k if there exists a basis of V,. such that the corresponding 
isomorphism p: GL(V)-+ GL(n, '1) maps G onto a k-group in the previous sense. 

1.3. Affine algebraic group. Let G be an affine algebraic set. It is an affine 
algebraic group if there are given morphisms 

µ:G x G-+ G, µ(a, b) =ab, 
p:G-+G, p(a)=a- 1, 

of affine sets, with the usual properties. G is an affine algebraic group defined 
over kif G, µand p are defined over k. One can prove that every affine algebraic 
group defined over k is isomorphic to an algebraic matrix group defined over le. 

1.4. Functorial definition of affine algebraic groups. Sometimes one would like 
not to emphasize a particular algebraically closed extension of the field k. For 
instance in the case of adele groups, an algebraically closed field containing 
every p-adic completion of a number field k is a cumbersome object. Let G be a 
k-group in the sense of §1.l. Then for any k-algebra A, we may consider the set G,. 
of elements of GL(n, A) whose coefficients annihilate the polynomials in It. 
It is a group, which may be identified to the group Homt(k[G), A) of k-homo­
morphisms of k[G] into A. Furthermore, to any homomorphism p:A-+ B of 
k-algebras corresponds canonically a homomorphism G.4 -+ G8 • Thus we may 
say that a k-group is a functor from k-algebras to groups, which is representable 
by a k-algebra k[G] of finite type, such that I( ® k[G] has no ·nilpotent element, I( 
being an algebraic closure of k. (The last requirement stands for the condition 
that I k ® n is the ideal of all polynomials vanishing on G, it would be left out 
in a more general context.) This definition was introduced by Cartier as a short 
cut to the notion of (absolutely reduced) ''affine scheme of groups over k." The 
functors corresponding to the general linear group and the special linear group, 
will be denoted Gl.n and SLn, and (GLn)A by GLn(A) or GL(n, A). 

Usually the more down to earth point of view of algebraic matrix groups will 
be sufficient. 

1.5. Connected component of the identity. An algebraic set is reducible ifit is the 
union of two proper closed subsets; it is non connected if it is the union of two 
proper disjoint closed subsets. An algebraic group is irreducible if and only if 
it is connected. To avoid confusion with the irreducibility of a linear group, 
we shall usually speak of connected algebraic groups. The connected component 
of the identity of G will be denoted by G0. The index of G0 in G is finite. 
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If Q = C, every affine algebraic group G can be viewed as a complex Lie 
group; then G is connected as an algeqraic group, if and only if G is connected 
as a Lie group. When G is defined over R, Ga. is ·a closed subgroup of GL(n, R) 
and hence a real Lie group. It is not true that for a connected algebraic R-group, 
the Lie group Ga. is also connected, but in any case it has only finitely many 
connected components. The connected component of the identity for the usual 
topology will be denoted G~. 

Let G be connected. Then Q[G] is an integral domain. Its field of fractions 
Q(G) is the field of rational functions on G. The quotient field of k[G) is a sub­
field of Q(G), consisting of those rational functions which are defined over k. 

1.6. The Lie algebra of an algebraic group. A group variety is nonsingular, 
so that the tangent space at every point is well defined The tangent space g at e 
can be identified with the set of Cl-derivations of Q[G) which commute with 
right translations. g, endowed with the Lie algebra structure defined by the usual 
vector space structure and bracket operations on derivations, is the Lie algebra of 
g. Of course, G and G0 have the same Lie algebra If G is connected, g could 
alternatively be defined as the Lie algebra of Cl-derivations of the field Q(G). 
which commute with right translations (and the definition would then be valid 
for any algebraic group linear or not). If G is defined over k, we have g = 91c ®A 
where 91c·is the set of derivations which leave k[G) stable. If the characteristic 
p of k is ~O. then g and 9k are restricted Lie algebras, in the sense of Jacobson. 
However the connection between an algebraic group and its Lie algebra in 
characteristic p ~ 0 is weaker than for a Lie group ; for instance, there does not 
correspond a subgroup to every restricted Lie subalgebra of g, and it may happen 
that several algebraic subgroups have the same Lie algebra 

The group G operates on itself by inner automorphisms. The differential of 
Int g : x 1-+ g · x · g- 1 (x, g e G) at e is denoted Ad~. The map g 1-+ Ad~ is a 
k-morphism (in the sense of 2.1) of G into GL(g), called the adjoint representation 
ofG. 

1.7. Algebraic transformation group. If G is an algebraic group and V is an 
algebraic set, G operates morphically on V (or G is an algebraic transformation 
group) when there is given a morphism -r: G x V -+ V with the usual properties 
of transformation groups. It operates k-morphically if G, V and -r are defined 
over k. 

An elementary, but basic, property of algebraic transformation groups is the 
existence of at least one closed orbit (e.g. an orbit of smallest possible dimension 
[l, §16)). 

2. Homomorphism, characters, subgroups and quotient groups of algebraic 
groups. 

2.1. Homomorphisms of algebraic groups. Let p, G, G' be algebraic groups and 
p: G0 -+ G0 be a map. It is a morphism of algebraic groups if: 

(1) pis a group homomorphism from G0 to G0; 
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(2) the transposed map p0 of p is a homomorphism of O(G'] into O[G] (if 
f e O(G'],f is a map from G0 ton and p0(/) = f 0 p). In case G and G' are defined 
over k, the map p is a k-morphism if moreover p0 maps k[G'] into k[G1 The 
differential dp at the identity element of the morphism p: G -+ G' defines a 
homomorphism dp: g --+ !-1' of the corresponding Lie algebras. 

A rational representation of G is a morphism p: G -+ GLm. Let G be considered 
as a matrix group so that n[G] = O[g11 , .. • ,gnn• (detg)- 1 ]. Each coefficient 
of the matrix p(g),g E G, is then a polynomial in g 1i. g 12, • · • ,gnn• (detg)- 1• 

2.2. Characters. A character of G is a rational representation of degree 1; 
x: G-+ GL 1. The set of characters of G is a commutative group, denoted by 
X(G) or G. The group G is finitely generated; it is free if G is connected [8]. If one 
wants to write the composition-law in G multiplicatively, the value at g e G of 
x e G should be noted x(g). But since one is accustomed to add roots of Lie 
algebras, it is also natural to write the composition in G additively. The value of 
x at g will then be denoted by gx. To see the similarity between roots and charac­
ters take n = C; if Xe g, the Lie algebra of G, (ex)X = edx<X>, where di is the 
differential of dx at e; dx is a linear form over g. In the sequel, we shall often not 
make any notational distinction between a character and its differential at e. 

2.3. Subgroups, quotients (4, 7]. Let G be an algebraic group defined over k, 
H a closed subgroup of G; it is a k-subgroup of G if it is defined over k as an alge­
braic group. H is in particular k-closed. The converse need not be true. The homo­
geneous space G/H can be given in a natural way a structure of quasi-projective 
algebraic set defined over k. (A quasi-projective algebraic set is an algebraic set 
isomorphic to an open subset of a projective set.) The projection n: G -+ G/H is 
a k-morphism of algebraic sets which is "separable" (dn is surjective everywhere) 
such that every morphism </> : G --+ V, constant along the cosets of H, can be 
factored through n:. Moreover, G acts on G/H as an algebraic group of transforma­
tion; if His a normal k-subgroup of G, then G/H is an algebraic group defined 
over k. 

Assume that in G there exist a subgroup H and a normal subgroup N such that 
(1) G is the semidirect product of H and N as abstract group, 
(2) the map µ: H x N --+ G, with µ(h, n) = hn, is an isomorphism of algebraic 

varieties. 
Then G is called the semidirect product of the algebraic groups H and N. 
In characteristic zero the condition (2) follows from (1). In characteristic p > 0, 

it is equivalent with the transversality of the Lie algebras of H and N or with the 
regularity of dµ at the origin, but does not follow from (1). 

2.4. Jordan decomposition of an element of an algebraic group [I, 41 Let 

geGL(n,n), 

g can be written uniquely as the product g ~ g, · g", where g. is a semisimple 
matrix (i.e., g. can be made diagonal) and gn is a unipotent matrix (i.e., the only 
eigenvalue of g,. is 1, or equivalently g" - I is nilpotent) and g, · g" = g" · g,. 
If G is an algebraic matrix group and g e G, one proves that g" and g. belong also 
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to G and that the decomposition of g in a semisimple and an unipotent part does 
not depend on the representation of G as a matrix group. More generally, if 
</>: G -+ G' is a morphism of algebraic groups and g e G, then </>(g~) = [ </>(g)]1 

and </>(g") = [ </>(g)Jn. If g E G1c, g. and gn are rational over a purely inseparable 
extension of k. · 

3. Algebraic tori [l, 3, 4]. An algebraic group G is an algebraic torus if G is 
isomorphic to a product of d copies of GL1 (where d = dim G). 

If Q = C, an algebraic torus is isomorphic to (C*)", and so is not an ordinary 
torus. However, the algebraic tori have many properties analogous to those of 
usual tori in compact real Lie groups. Since in what follows the tori in the topo­
logical sense will occur rarely, the adjective "algebraic" will be dropped. 

3.1. THEOREM. For a connected algebraic group G the following conditions are 
equivalent : 

(1) G is a torus; 
(2) G consists only of semisimple elements; 
(3) G, considered as matrix group, can be made diagonal. 

Property (3) means that there always exists a basis of Q" such that G is represented 
by diagonal matrices with respect to that basis. Each diagonal element of the 
matrix, considered as a function on G, is then a character. 

Let T be a torus of dimension d. Every element xe T can be represented by 
(x1, · · ·, xd), with xi e Q•. A character x of T can then be written 

x(x) = xi1xj2 ... x~d 

with ni E Z hence f' ';: Zd. 

3.2. THEOREM. Let T be a torus defined over k. The following conditions are 
equivalent : 

( 1) All characters of T are defined over k : f' = f',.. 
(2) T has a diagonal realization over k. 
(3) For every representation p: T-+ GLm, defined over k, the group p(T) is 

diagonalizable over k. 

DEFINITION. If T satisfies these three equivalent conditions, T is called a split 
k-torus, and is said to split over k. 

If T splits over k, so does every subtorus and quotient of T. There always 
exists a finite separable Galois-extension k' /k such that T splits over k'. The 
Galois-group operates on f: This action determines completely the k-structure 
of T. The subgroup f',. is the set of characters left fixed by the Galois group. 

DEFINITION. A torus Tis called anisotropic over k if 1',. = { 1 }. The anisotropic 
tori are very close to the usual compact tori. Let k = R. If dim T = 1, there are 
two possibilities; either T splits over k, and then Ta -;: R*, or T is anisotropic 
over k; then Tis isomorphic over k with S02 , and Ta= S0(2, R) is the circle 
group. In the general case Ta is compact if and only if T is anisotropic over R 
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(this is also true if R is replaced by a p-adic fieldi In this case, Ta is a topological 
torus (product of circle groups). 

3.3. THEOREM. Let T be a k-torus. There exist two uniquely defined k-subtori 
T,, and T,,, such that 

( 1) T,, splits over k, 
(2) T.. is anisotropic over k, 
(3) T,, n T.. is finite and T = T,, · T,,. 

This decomposition is compatible with morphisms of algebraic groups. (Property 
3 will be abbreviated by saying that Tis the almost direct product of T,, and T,,.) 

If S is a k-subtorus of T, then there exists a k-subtorus S' such that T is almost 
direct product of S and S'. 

EXAMPLE. If k = R, T = T1 · T2 · · · • • T,, where every 1i is one dimensional. 
The product is an almost direct product. 

4. Solvable, nilpotent and unipotent groups. 
4.1. DEFINITION. The algebraic group G is unipotent if every element of G is 

uni potent. 
EXAMPLE. If dim G = 1 and G is connected unipotent then G is isomorphic to 

the additive group of the field; 

G ~Ga ={geGL2lg = G :)}. 
A connected and unipotent matrix group is conjugate to a group of upper­

triangular matrices with ones in the diagonal. Hence it is nilpotent; more pre­
cisely there exists a central series 

G = G0 ::i G1 ::i • · · ::i Gi ::i Gi+i ::i • · • ::i G" = {e} 

such that G;/Gi+ 1 ~ Ga. Conversely, if there exists a normal series ending with 
{e} such that Gi/G;+ 1 ~ G0 , where Gi is an algebraic subgroup of G, then G is 
uni potent. 

In characteristic 0, a unipotent algebraic group is connected, and the exponen­
tial is a bijective polynomial mapping from the Lie algebra g to G; the inverse 
map is the logarithm In characteristic p > 0, this is no more true; in that case, 
G is a p-group. 

DEFINITION. G is a solvable (resp. nilpotent) algebraic group, if it is solvable 
(resp. nilpotent) as an abstract group. 

4.2. We now state some basic properties of a connected solvable group G. 
(1) (Theorem of Lie-Kolchin): If G is represented as a matrix group, it is 

conjugate (over Q) to a group of triangular matrices [ll 
(2) If G operates on a complete algebraic variety (in particular on a projective 

variety) then G has a fixed point [l]. 
(3) The set of unipotent elements in G is a normal connected subgroup U. 

If G is defined over k, it has a maximal torus defined over k; G is the semidirect 
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product, as algebraic group, of T and U; any two maximal tori defined over k are 
conjugate by an element of Gk (Rosenlicht, Annali di Mat. (iv), 61 (1963), 97-120; 
see also [3, § 11 ]). 

(4) G has a compositicn series 

G = G0 => G1 => • • • => Gi => Gi+l => • • · => Gn = {e} 

where the Gi are algebraic subgroups of G such that GJGi+ 1 is isomorphic with 
Ga or GL1• 

(5) The group G is nilpotent if and only if it is the direct product of a maximal 
torus T and of a unipotent subgroup U. In this case T (resp. U) consists of all 
semisimple (resp. unipotent) elements of G. 

Properties (1) and (2) are closely connected In fact (2) implies (1): take the 
manifold of full flags (see §5.3) of the ambient vector space V, on which G acts 
in a natural way. Let F be a flag fixed by G; if one chooses a basis of V adapted 
to F, then G is triangular. On the other hand, for projective varieties, (2) follows 
immediately from <n Property (4) is an immediate consequence of <n ID (3), 
one has to take care that, in contradistinction to the existence of a maximal 
torus defined over k, the normal subgroup U need not be defined over k, although 
it is k-closed [8). 

4.3. DEFINITION. Let G be a connected solvable group defined over le. G splits 
over k if there exists a composition series 

G = G0 => G1 => · • • => Gi => Gi+ 1 => • • • => Gm = {e} 

consisting of connected k-subgroups of G such that GJGi+ 1 is isomorphic over 
k with G0 or GL1• 

In particular, every torus T of G splits then over k. Conversely, when k is 
perfect, if the maximal tori of G which are defined over k split over k, then so does 
G. 

Let G be a connected solvable k-group which splits over k, and V a k-variety 
on which G operates k-morphically. Then: (a) if Vis complete and V,. is not empty, 
G has a fixed point in V,. [8); (b) if G is transitive on V, the set V,. is not empty [7J 

5. Radical. Parabolic subgroups. Reductive groups. 
5.1. DEFINITIONS. Let G be an algebraic group. The radical R(G) of G is the 

greatest connected normal subgroup of G; the unipotent radical Ru(G) is the 
greatest connected unipotent normal subgroup of G. The group G is semisimple 
(resp. reductive) if R(G) = {e} (resp. Ru(G) = {e}). 

The definitions of R(G) and Ru(G) make sense, because if H, H' are connected 
normal and solvable (resp. unipotent) subgroups, then so is H · H'. Both radicals 
are k-closed if G is a k-group. Clearly, R(G) = R(G0 ) and Ru(G) = Ru(G0 ). 

The quotient G/R(G) is semisimple, and G/Ru(G) is reductive. In characteristic 
zero, the uni potent radical has a complement; more precisely: Let G be defined 
over k. There exists a maximal reductive k-subgroup H of G such that 

G = H · Ru(G), 
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the product being a semidirect product of algebraic groups. If H' is a reductive 
subgroup of G defined over k, then H' is conjugate over k to a subgroup of H. 
In characteristic p > 0, this theorem is false (not just for questions of insepara­
bility): according to Chevalley, there does not always exist a complement to the 
unipotent radical, moreover there are easy counter-examples to the conjugacy 
property [3]. 

5.2. THEOREM. Let G be an algebraic group. The following conditions are 
equivalent : 

(1) G0 is reductive, 
(2) G0 = S · G', where S is a central torus and G' is semisimple, 
(3) G0 has a locally faithful fully reducible rational representation, 
(4) If moreover the characteristic of 0. is 0, all rational representations of G are 

fully reducible. 

If G is a k-group, and k = R, these conditions are also equivalent to the 
existence of a matrix realization of G such that G• is "self-adjoint" 

In property (2) G' is the commutator subgroup !'J(G) of G; it contains every 
semisimple subgroup of G. The group G is separably isogenous to S x G' and 
every torus T of G is separably isogenous to (T n S) x (T n G'). 

5.3. THEOREM [ll Let G be a connected algebraic group. 
(1) All maximal tori of Gare conjugate. Every semisimple element is contained in a 

torus. The centralizer of any subtorus is connected. 
(2) All maximal connected solvable subgroups are conjugate. Every element of G 

belongs to one such group. 
(3) If P is a closed subgroup of G, then G/P is a projective variety if and only if 

P contains a maximal connected solvable subgroup. 

The rank of G is the common dimension of the maximal tori, (notation rk(G)). 
A closed subgroup P of G is called parabolic, if G/P is a projective variety. 

Following a rather usual practice, the speaker will sometimes allow himself 
to abbreviate "maximal connected closed solvable subgroup" by "Borel sub­
group." 

EXAMPLE. G = GLn. A.flag in a vector space Vis a properly increasing sequence 
of subspaces 0 #- V1 c · · · c V, c V,+ 1 = V. The sequence (d;) 

(d; = dim v;, i = 1,. .. t)) 

describes the type of the flag. If d; = i and t = dim V - 1, we speak of a full 
flag. 



LINEAR ALGEBRAIC GROUPS 11 

A parabolic subgroup of G Lnis the stability group of a flag F in '1". G/P is 
the manifold of flags of the same type as F, and is well known to be a projective 
variety. A Borel subgroup is the stability group of a full flag. In a suitable basis, 
it is the group of all upper triangular matrices. 

5.4. With respect to rationality question one can state that if G is a connected 
algebraic group defined over k, then 

(1) G has a maximal torus defined over k (Grothendieck [S], see also [2Ji 
The centralizer of any k-subtorus is defined over k ([S], [3, §10]). 

(2) If k is infinite and G is reductive, Gk is Zariski dense in G (Grothendieck 
[SL see also [2]). · 

(3) If k is infinite and perfect, Gk is Zariski dense in G (Rosenlicht [8]). 
Rosenlicht has constructed an example of a one dimensional unipotent group 

defined over a field k of characteristic 2 such that G is not isomorphic to G,. 
over k and Gk is not dense in G [Bi An analogous example exists for every positive 
characteristic (Cartier). 

6. Structure theorems for reductive groups. The results stated below are proved 
in [Ji Over perfect fields, some of them are established in [6], £9i 

6.1. Root systems. Let V be a finite dimensional real vector space endowed 
with a positive nondegenerate scalar product. A subset «I> of V is a root system 
when 

(1) «I> consists of a finite number of nonzero vectors that generate V, and is 
symmetric («I>= -«I>). 

(2) for every ix E «I>, s..(«I>) = «I>, where s11 denotes reflection with respect to the 
hyperplane perpendicular to ix. 

(3) if ix, PE «I>, then 2(1X, P)/(ix, IX) E Z. The group generated by the symmetries 
s11 (ix E «I>) is called the Weyl group of «I> (notation W(«I>)i It is finite. The integers 
2(1X, P)/(ix, ix) are called the Cartan integers of «I>. Condition (3) means that for 
every ix and P of «I>, (s11(p) - P> is an integral multiple of ix, since 

s11(P) = P - 21X(IX, P)/(ix, IX). 

For the theory of reductive groups we shall have to enlarge slightly the notion 
of root system: if Mis a subspace of V, we say that «I> is a root system in (N, M) 
if it generates a subspace P supplementary to M, and is a root system in P. 
The Weyl group W(«I>) is then understood to act trivially on M. 

A root system «I> in Vis the direct sum of «I>' c: V' and «I>" c: V", if V = V' Ef) V" 
and «I> = «I>' u «!>". The root system is called irreducible if it is not the direct sum 
of two subsystems. 

6.2. Properties of root systems. 
(1) Every root system is direct sum of irreducible root systems. 
(2) If IX and A.IX E «I>, then A. = ± 1, ±!, or ± 2. 
The root system «I> is called reduced when for every IX E «I>, the only multiples 

of IX belonging to «I> are ±ix. To every root system «I>, there belongs two natural 
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reduced systems by removing for every ex e <I> the longer (or the shorter) multiple 
of ex: 

<l>s = {ex E <l>licx ~<I>}, 

<l>e = {exe<l>l2ex~<I>}. 

(3) The only reduced irreducible root systems are the usual ones: 

An (n ~ 1), B" (n ~ 2), Cn (n ~ 3), Dn (n ~ 4), 

G2, F 4 , E6 , E7 , E8• 

(4) For each dimension n, there exists one irreducible nonreduced system, 
denoted by BC" (see below). 

EXAMPLES. Bn: Take R" with the standard metric and basis {x1> · · ·, xn}· 

Bn ={±(xi± xi) (i <J1 and ±x; (1 ~ i ~ n)}. 

W(B") = { s e GL(n, R)ls a product of a permutation matrix 
with a symmetry with respect to a coordinate subspace} 

Cn = {±(X; ± Xj) 

W(Cn) = W(Bn), 

BC = { + (x. + x ·) n - I - J 

W(BCn) = W(Bn). 

(i < j) and ±2x; (1 ~ i ~ n)}, 

(i < j), ±x; and ±2x; (1 ~ i ~ n)}, 

DEFINITION. A hyperplane of Vis called singular if it is orthogonal to a root 
ex e <I>. A Weyl-chamber c0 is a connected component of the complement of the 
union of the singular hyperplanes. 

To a Weyl-chamber, is associated an ordering of the roots defined by: 

ex > 0, if (ex, v) > 0 for every v in c0. . 

The root ex is simple (relative to the given ordering) if it is not the sum of two 
positive roots. The set of simple roots is denoted by ~ Ii is connected if it cannot 
be written as the union of Ii' u Ii" where Ii' is orthogonal to Ii". 

(5) The Weyl group acts simply transitively on the Weyl-chambers (i.e., there 
is exactly one element of the Wey) group mapping a given Weyl-chamber on to 
another one). 

(6) Every root of <I> is the sum of simple roots with integral coefficients of the 
same sign. 

(7) The root system <I> is irreducible if and only if Ii is connected. 
6.3. Roots of a reductive group, with reference to a torus. Let G be a reductive 

group, and S a torus of G. It operates on the Lie-algebra g of G by the adjoint 
representation. Since S consists of semisimple elements, Ad9 S is diagonalizable 

Q = g~l E9lI,.g~S) 
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where 

g~s> = {Xe g!Ad s(x) = s" · X} (a:eS; a =1: O). 

The set Cl>(G, S) of roots of G relative to the torus Sis the set of nontrivial char­
acters of S appearing in the above decomposition of the adjoint representation 
If T => S, every root of G relative to T that is not trivial on S defines a root 
relative to S. If Tis maximal Cl)(G, T) = Cl>(G) is the set of roots of Gin the usual 
sense. 

6.4. Anisotropic reductive groups. A connected reductive group G defined over 
k is called anisotropic over k, if it has no k-split torus S =I: { e}. 

EXAMPLES. (1) Let F be a nondegenerate quadratic form on a k-vector space 
V with coefficients in k. Let G = O(F) be the orthogonal group of F. The group 
G is anisotropic over k if and only if F does not represent 0 over k, i.e., if Va: 
has no nonzero isotropic vector. 

PROOF. Assume v is an isotropic vector. Then there exists a hyperbolic plane 
through v and in a suitable basis the quadratic form becomes 

F(x1, ... 'Xn) = X1X2 + F'(x3, ... 'xn>· 

If A E il*, the set of transformations 

(i ~ 3) 

is a torus of G split over k. Conversely if there exists a torus S of G which splits 
over k, diagonalize S. There is a vector v e Va: - { 0} and a nontrivial character 
x e S, such that s(v) = siv. Since si =I: ± 1 for some s, and F(v) = F(s(v)), one has 
F(v) = 0 and vis isotropic. 

(2) If k = R or is a p-adic field, G is anisotropic over k if and only if G1: is 
compact If k is an arbitrary field of characteristic 0, G is anisotropic over k if 
and only if G" has no uni potent element =I: e and li1: = { 1 }. 

6.5. Properties of reductive k-groups. Let G be a connected reductive group 
defined over k. 

(1) The maximal k-split tori of G are conjugate over k (i.e., by elements of G1:i 
If S is such a maximal k-split torus, the dimension of S is called the k-rank of 
G (notation: rk"(G)i Z(S) is the connected component of N(si The finite group 
N(S)/Z(S) is called the Weyl group of G relative to k (notation: 1:WCG)i Every 
coset of N(S)/Z(S) is represented by an element rational over k: N(S) = N(S)1:Z(si 

(2) The elements of Cl>(G, S), where S is a maximal k-split torus are called the 
k-roots, or roots relative to k. We write "Cl> or 1:Cl>(G) for Cl>(G, si This is a root 
system in (S ® R, M) where M is the vector space over R generated by the 
characters which are trivial on Sn !?J(G). The Weyl group of G relative to k and 
the Weyl group of "Cl> are isomorphic: 

If G is simple over k, "Cl> is irreducible. 
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(3) The minimal parabolic k-subgroups P of G are conjugate over k. Further­
more there exists a k-split torus S such that 

P = Z(S) · R"(P) 

where the semidirect product is algebraic and everything is defined over k. If P 
and P' are minimal parabolic k-subgroups containing a maximal k-split torus S, 
then P n P' contains the centralizer of S. The minimal parabolic k-subgroups 
containing Z(S) are in (l, 1) correspondence with the Wey! chambers: P cor­
responds to the Weyl chamber C if the Lie algebra of R"(P) is L,.> 0 g~>, where 
the ordering of the roots is associated to the Weyl-chamber C. The Weyl group 
kW(G) permutes in a simply transitive way the minimal parabolic k-subgroups 
containing Z(S). The unipotent radical of a minimal parabolic k-subgroup is a 
maximal unipotent k-subgroup, at least for a field of characteristic 0. 

(4) Bruhat decomposition of Gk. Put V = Ru(P), where P is a minimal para­
bolic k-subgroup. Then 

Gk= Uk ·N(S)k ·Uk, 

and different elements of N(S)k define different double cosets; more generally if 
n, n'eN(S): UnU = Un'U<::>n = n'. Choose for every we kW a representative 
n.., e N(S)k; then the above equality can be written as 

the union being dir.joint. 

Gk= U Uk ·n.., ·Pk, 
WEkW 

One can phrase this decomposition in a more precise way. If we fix we "W, 
then there exist two k-subgroups u;., and U~ of U, such that U = u;., x U:\, as 
an algebraic variety and such that the map of U~. x P onto Unwf' sending (x, y) 
onto xn..,y is a biregular map defined over k. This decomposition gives rise to a 
cellular decomposition of G,./Pk. Let n be the projection of G onto G/P. Then 

(G/P)k = GJPk = U n:(U;.,,k). 
WEkW 

If k is algebraically closed, u;., .. as a unipotent group is isomorphic to an affine 
space. So one gets a cellular decomposition of G/P. 

(5) Standard parabolic k-subgroups (with respect to a choice of S and Pi Let 
k«I> be the root system of G relative to k defined by the totus S. The choice of the 
minimal parabolic k-subgroup P determines a Weyl chamber of ,.cl> and so a set 
of positive roots. Let ,.A be the set of simple k-roots for this ordering. If 0 is a 
subset of kl\, denote by Se the identity component of n,.ee ker cc. Se is a k-split 
torus, the dimension of which is dim Se = rkk(G) - card 0. The standard para­
bolic k-subgroup defined by 0 is then the subgroup kPe generated by Z(Se) 
and U. That subgroup can be written as the semidirect product Z(Se). Ue, 
where Ue = R"(P8 ). The Lie algebra of Ue is L g11 , the sum going over all positive 
roots that are not linear combination of elements in 0. 

(6) Every parabolic k-subgroup is conjugate over k to one and only one 
standard parabolic k-subgroup. In particular, if two parabolic k-subgroups are 
conjugate over n, they are already conjugate over k. 
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(7) Let W8 be the subgroup of the Weyl group 1cW generated by the reflections 
s,. for oc e 0. Then if 0 and 0' are two subsets of 1c.:1, 

1cP8 ,1c\GJ1cP8 .,1c ~ W8 \1cK7W8 •. 

6.6. EXAMPLES. (1) G = GL(n), 

S ~ ~oup 00 Wagonal matti= ~{C ~~ .. .:.) } 
where A.i e S is such that sJ..; = sii. S is obviously a split torus and is maximal. 
A minimal parabolic k-subgroup P is given by the upper triangular matrices, 
which is in this case a Borel subgroup. The unipotent radical U of P is given by 
the group of upper triangular matrices with ones in the diagonal. If eii is the 
matrix having all components zero except that with index (i,J) equal .to 1, 
AdG s(eii) = (sJ..;/sJ..;)eii. So the positive roots are A.i - A.i (i < 11 since the Lie 
algebra of U is generated by eii (i < j). The simple roots are (A. 1 - A.2, A.2 - A.3, • · • , 

A.n-l - A."). The Weyl group is generated bys,., where a is a positive root; since for 
oc = A.i - A.i, s,. permutes the i and j axis, 1 W ~ 6", the group of permutations 
of the basis elements. The parabolic subgroups are the stability groups of flags. 

(2) G "splits over k" (i.e., G has a maximal torus which splits over ki Example 
(1) enters in this category. The k-roots are just the usual roots. A minimal para­
bolic k-subgroup is a maximal connected solvable subgroup. If k is algebraically 
closed G always splits over k and this gives just the usual properties of semi­
simple or reductive linear groups. 

(3) G is the orthogonal group SO(F) of a nondegenerate quadratic form F on 
a vector space V,. (where, to be safe, one takes char k =F 2i In a suitable basis 

F(x1, • • ·, Xn) = X1Xn + X2Xn- l + · · · + X4Xn-q+ 1 + Fo(X4 + 1• • • ·, Xn-q) 

where F0 does not represent zero rationally. The index of F, the dimension of 
the maximal isotropic subspaces in V,., is equal to q. A maximal k-split torus S 
is given by the set of following diagonal matrices: 

1. 
. 1 

0 
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Let SO(F 0 ) denote the proper orthogonal group of the quadratic form F0 , 

imbedded in SO(F) by acting trivially on x1, · • ·, Xq, Xn-q+ 1, ... , Xn· Then 
Z(S) = S x SO(F0 ). The minimal parabolic k-subgroups are the stability groups 
of the full isotropic flags. For the above choice of S, and ordering of the co­
ordinates, the standard full isotropic flag is 

(ei] c: (e1, e2 ] c: · · · c: (e1, · · ·, eql 
The corresponding minimal parabolic k-subgroup takes then the form 

where A0 and A4 are upper triangular q x q matrices, Be SO(F0 ), with additional 
relations that insure that P c: SO(F). The unipotent radical U of P is the set of 
matrices in P, where B = I, A0, A4 are unipotent, and 

'A4 ·J ·A2 + 'A3 ·Q ·A3 + 'A2 ·J ·A4 = 0, 

where Q is the matrix of the quadratic form F 0, J is the q x q matrix with one's 
in the nonprincipal diagonal and zeros elsewhere, and u is the transposition 
with respect to the same diagonal, (0 M = J' MJi To determine the positive 
roots, one has to let S operate on U. To compute the root spaces it is easier to 
diagonalize Q: qii = di · tv Three cases are to be considered. 

i < j ~ q ; A.; - A. i is a root ; the corresponding root space is generated by 
eii - en- i+ i,n-i+ 1 ; the multiplicity of the root is 1. 

i ~ q < j ~ n - q; A.; is a root with multiplicity n - 2q; the corresponding 
root space is generated by 

d-1 
eii - i ei,n-i+ 1 (q + 1 ~ j < n - qi 

i < j ~ q; A.; + A. i is a root with multiplicity one; the corresponding root 
space is generated by ei,n-i+l - ei.n-i+l· The simple roots are 

and A.4 if n =I= 2q, A.11 _ 1 + A.4 if n = 2q. The Weyl group consists of all products of 
permutation matrices with symmetries with respect to a coordinate subspace 
(of any dimension if n =I= 2q of even dimension if n = 2q). The group SO(F) splits 
if and only if q = (n/2l If it does not split, there exist roots with multiplicity > 1. 
The parabolic k-subgroups are the stability subgroups of rational isotropic 
flags. The parabolic k-subgroups are conjugate over k if and only if there exists 
an element of G1r. mapping one flag onto the other; by Witt's theorem this is 
possible if and only if the two flags have the same type. 
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(4) When one starts with a hermitian form, the same considerations apply, 
except that one gets a root system of type BC,. 

(5) For real Lie groups, this theory is closely connected with the Iwasawa 
and Cartan decompositions. If g is the real Lie algebra of G., G being a con­
nected algebraic reductive group, then g ·= t + p, where g is the Lie algebra of a 
maximal compact subgroup of G •. Then G = K ·(exp 1)). Let a be a maximal 
commutative subalgebra of l). Then A = exp a is the topological connected com­
ponent of the groups of real points in a torus S which is maximal among R-split 
tori. (On the Riemannian symmetric space G,,/K, it represents a maximal totally 
geodesic flat subspace.) 

N(A)• = N(S)• = [K n N(A)] ·A, 
and 

Z(S)• = (K n Z(A)) ·A; 

the group Kn Z(A) is usually denoted by M. The Wey) group .w(G, S) is 
isomorphic to (Kn N(A))/M, i.e., to the Wey) group of the symmetric space·G/K 
as introduced by E. Cartan. Similarly •"' may be identified to the set of roots of 
the symmetric pair (G, K). Let n be the Lie subalgebra generated by the root 
spaces corresponding to positive roots n = L,.> 0 l)~s>, ex e .(J)(G, S), for some 
ordering. Let N = exp n. Then G = K ·A · N is an Iwasawa decomposition and 
M ·A · N is the group of real points of a minimal parabolic R-group. Assume G• 
simple and G/K to be a bounded symmetric domain. Then there are two possi­
bilities for the root system •"': 

G./K is a tube domain<=>•"' is of type C,, 

G,,/K is not a tube domain<=>•"' is of type BC,. 

7. Representations in characteristic zero (3). We assume here the ground field 
to be of characteristic zero, and G to be semisimple, connected. Let P = Z(S) · U 
be a minimal parabolic k-group, where U = Ru(P), and S is a maximal k-split 
torus. We put on X(S) an ordering such that u is the sum of the positive k-root 
spaces. 

Assume first k to be algebraically closed Let p: G --. GL(V) be an irreducible 
representation. It is well known that there is one and only one line DP c: V which 
is stable under P. The character defined by the I-dimensional representation of 
P in V is the highest weight A.P of p. The orbit G(D p) = 'II P is a closed homo­
geneous cone (minus the origini The stability group of DP is a standard parabolic 
group PP :::::> P. The stability groups of the Jines in 'l/P are conjugate to PP, and 
these Jines are the only ones to be stable under some parabolic subgroup of G. 
Every highest weight A.P is a sum A.P = L .. eA c,. ·A,. (c,. ~ 0, c,. e Z) of the funda­
mental highest weights A,. (and conversely if G is simply connected), where A,. 
is defined by 2(A.., /J) -(/J, /Jr 1 = ~..,(ex, fJ e 6.i 

We want to indicate here a "relativization" of these facts for a nonnecessarily 
algebraically closed k. 
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Let T be a maximal torus of G, defined over k, containing S. We choose an 
ordering on X(T) compatible with the given one on X(S) (i.e., if rt > 0, and 
r(rx) "::/= 0, then r(rx) > 0 where r: X(T) --+ X(S) is the i:estriction homomorphism. 
The k-weights of p are the restrictions to S of the weights of p with respect to T; 
the highest k-weight µP is the restriction of A.P. It follows from standard facts 
that every k-weight µ is of the form 

µ = µP - L m11(µ)11, (« e A), 

with 

m'"(µ)e Z, m'"(µ) ~ 0. 

Let 

0(µ) = {cxe,.Alm11(µ) "::/= O}. 

Then 0 e "A is a 0(µ), for some k-weight µ, if and only if 0(µ) u µP is connected. 
Let us say that p is strongly rational over k if it is defined over k and if the cone 

G(D p) has a rational point over k. This is the case if and only if the above co­
efficients e 11 satisfy the following conditions: 

e" = 0 if r(cx) = 0, e 11 = e 11 if r(«) = r(/J) (ex, /3 e A). 

The highest weight of a strongly rational representation is a sum, with positive 
integral coefficients, of fundamental highest weights M 11(/3 e 1cA) where 

L r(AJ 
0<EA,r(11)=/I 

(and conversely if G is simply connectedi The M 11(/3 e 1cA) satisfy relations of the 
form (M11,y) = dp · b11 ,y, with d11 > 0. They will be called the fundamental highest 
k-weights. 

Assume k e C. Let p be strongly rational over k. Put on the representation 
space a Hilbert structure. Let v e DP - 0. Then the function </J: G--+ R+ defined 
by ' 

tP (g) = llp(g) ·vii. 
satisfies 

If in particular k = Q, such functions appear in the discussion of fundamental 
sets and of Eisenstein series for arithmetic groups. 
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Reduction Theory for Arithmetic Groups 
BY 

ARMAND BOREL 

This lecture is devoted to the statement of results concerning fundamental 
sets for arithmetic groups. The notation of [3] is used. 

1.1. Arithmetic groups. We recall that two subgroups A, B of a group Care 
commensurable if A n B has finite index in A and in B. 

DEFINITION. Let G be an algebraic Q-group. A subgroup r of Ga is called an 
arithmetic group (or an arithmetic subgroup of G) if there exists a faithful rational 
representation p: G -+ GL" defined over Q such that p(r) is commensurable with 
p(G)n GL(n, Z). (The same condition is then automatically fulfilled for every 
faithful Q-representation of G.) 

The arithmetic group r is a discrete subgroup of Ga. It will act on Ga by right 
translations. If X = ~Ga. where K is a maximal compact subgroup of Ga, 
then r operates also on x as a properly discontinuous group of translations. 

One could apparently generalize the definition of arithmetic groups by starting 
from a number field k, an algebraic group G defined over k, a faithful k-representa­
tion p: G --+ GL" and taking as arithmetic group a subgroup of G,. commensur­
able with G0 k = GL"(n, o")n p(G), where o• is the ring of integers of k. But this 
class of arithmetic groups is the same as the one which was first defined Indeed 
if G' = R"1aG is obtained from G by restriction of the ground field from k to Q 
(see [SD, using a basis of o" over Z, it is easy to see that Gz ~ G0 k. On the other 
hand r will usually not be discrete in Ge. , 

1.2. THEOREM. Let p: G -+ G' be a surjective Q-morphism of algebraic groups. 
If r is an arithmetic subgroup of G, then p(r) is an arithmetic subgroup of G'. 

This is proved for isogenies in [4, §6), for general Q-morphisms in [2i Two 
simple consequences are: 

(1) Let G = H · N be a semidirect product defined over Q. Then r 1 • r 2 is an 
arithmetic subgroup of G if r 1 is arithmetic in H and r 2 in N. 

(2) Let G be the almost direct product of two normal Q-subgroups G1 and G2 

(ie., G is Q-isogeneous to G1 x G2). If r is an arithmetic subgroup of G, then 
r; = r n G; is arithmetic in G; and r 1 • r 2 is commensurable with r. 

DEFINITION. Let r be an arithmetic group in G. The subgroup 

C(r) = {g e Galg · r · g- 1 commensurable with r}, 

is called the commensurability subgroup of r. One has always that Ga c C(r). 

20 
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If G,, is compact, r is finite, every conjugate of r is commensurable to r, and so 
C(r) = G,,. 

1.3. THEOREM [2]. Let N be the greatest normal Q-subgroup of a semisimple 
algebraic Q-group G, such that N 11 is compact. If 7t is the projection of G onto 
G' = G/N, then C(r) = 7t- 1(Go) ("\ G,,. 

For instance, if G is Q-simple, with center reduced to {e}, then C(r) = G0 . 
However, if Ge has a nontrivial center, this need not be so, as is already seen in 
the case where 

r = SLn,Z· 

1.4. Fundamental sets for arithmetic groups. Let G be an algebraic Q-group 
and r an arithmetic subgroup of G. 

DEFINITION. A subset 0 of G11 is called a fundamental set for r if: 
(FO) Kn = n, where K is some maximal compact subgroup of G,,; 
(Fl) n. r = G,,; 
(F2) for any g in C(r), the set of translates Oy, '}'Er, that meet 0 · g is finite. 
One could replace (F2) by the weaker condition: 
(F2') {y E r1n n 0 · }' ::I- 0} is finite. 

But the stronger condition ensures that when one has a fundamental set n for 
r one can construct a fundamental set O' for a commensurable subgroup r by 
taking O' = U~er·irnrnc;. The condition (F2) then goes over tor'. This would 
apparently not be the case with the weaker condition (F2'). 

Due to condition (FO), the projection O' = 7t(il) of a fundamental set il in 
G,, into X = K:\_G11 satisfies the conditions 

(Fl)x n·.r=x, 

and (F2). A subset of X verifying (Fl)x and (F2) will be called a fundamental 
set for r in X. Thus n is a fundamental set for r in G,, if and only O' = 7t(il) 
is one in X, and then n = n:- 1(0'). 

If G is unipotent, then G,Jr is compact. Since G is the semidirect product 
G = H · Ru(G) of a reductive Q-group and of its uni potent radical, it follows from 
(1.2) that the discussion of fundamental sets is easily reduced to the case of 
reductive groups, or of semisimple groups and tori. 

When G,Jr is compact, there is often no need to have more information about 
the shape of a fundamental set. The purpose of the reduction theory outlined 
here is (a) to give a criterion for compactness, (b) in the noncompact case, to 
describe fundamental sets in which the complement of big compact subsets is a 
union of subsets which have properties similar to those of the cusps of funda­
mental domains for fuchsian groups. 

1.5. THEOREM [4, 7). Let G be a Q-group. G,Jr is compact if and only if 
~& = 0 and every unipotent element of G0 belongs to Ru(G). 
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Let in particular G be reductive. Then GR/r is compact if and only if G is 
anisotropic over Q. 

EXAMPLES. (l) SO(.f) where Fis an anisotropic quadratic form with rational 
coefficients. 

(2) Let G' be the multiplicative group of a finite extension field k of Q. 
G = Rk1QG' is an algebraic group defined over Q. It contains a Q-subgroup N 
consisting of all elements of k of norm l. The group N is anisotropic and so N /r, 
where r is an arithmetic subgroup of N, is compact. This is equivalent with the 
main part of Dirichlet's unit theorem. 

1.6. Siegel domains. Siegel domains are defined in the cases where Gair is 
not compact. The reductive group G contains then a nontrivial maximal Q-split 
torus S. Let P be a minimal parabolic subgroup containing S. The group P is 
different from G and P = Z(S) · U = M · S · U, wi1ere U is the unipotent radical 
of P, Mn Sis finite, Mis reductive and anisotropic over Q (in particular every 
Q-character of P or Z(S) is trivial on M). Denote by 0 <1> the sets of roots of G 
with respect to S. The choice of P orders this set; let 0 A be the set of simple roots 
of 0 <1> with respect to this ordering. For every t ER+, define in A = S~ the subset 

A,= {aEAla'" ~ t for every a:EQA}. 

Since every positive root is a positive linear combination of simple roots, there 
exists a C > 0 such that also a'" ~ C for every positive root a: in 0<1>. A funda­
mental property of A, is expressed by the following: 

1.7. LEMMA. If w is a compact set in (M · U)R, then the set 

{awa- 1la EA,} 

is relatively compact. 

PROOF. w is contained in a product w1 · w2 where w1 is compact in Mand w2 

is compact in U. Since M centralizes S, awa- 1 c w1 aw2a- 1 and it is enough to 
prove the lemma for w compact in U. Since U is unipotent over a field of charac­
teristic zero, the logarithm is a bijection of U onto its Lie algebra u. If u E U, 
log u = L .. > 0 c .. · x .. and log(a · u · a- 1) = La>oa'" · c,. · x ... But a'" for a:> 0 stays 
bounded in A 1• So log( a · u · a- 1) stays bounded as a E A 1 and u E w. The expo­
nential being continuous, this proves the lemma. 

1.8. Siegel domains. We keep the same notation as above. Let K be a maximal 
compact subgroup of Ga such that the Lie algebra of K is orthogonal to that of 
Sa. Let w be a compact neighborhood of e in (M · U)a = Ma· UR· The subset 
6 = K ·A,· w is called a Siegel domain for G. If n:: G-+ X = K\GR, then 
n:(6) = 6' = u · 6 (where o is the coset K) is called a Siegel domain in X. The 
set (Kn P) · A 1 • w is a Siegel domain in Pa. Since Ga is generated by Kand PR, 
one has then 6' = o · 6 = o · A, · w. 

EXAMPLES. (1) G = SL(2, R), r = SL(2, Z), and x = S0(2, R)\SL(2, R) is the 
upper half plane. To be in agreement with the rest of this lecture, we let G act 
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on X on the right by putting 

z · g = (a · z + c) · (b · z + d)- 1, (g = (: : ) e SL(2, R)i 

Let 

P={(: ~-1)}. S={(~ ~-1)}• U={C ~)} 
The positive root corresponding to this choice of U is cc(a) = a- 2• The fixed point 
of K is i. Let w be the set of elements in U for which lcl ~ C. Then 6' is the 
rectangular domain : 

6' = i ·A,· w = {z e X, !Re zl ~ C, Im z ~ t- 1 }. 

It contains the classical fundamental domain lzl ~ 1, Re z ~ ! if C ~ ! and 
t2 ~ ~. 

(2) G = GL(n, R), K = O(n, R), S (resp. U, resp. P) group of diagonal (resp. 
unipotent upper triangular, resp. upper triangular) matrices. Then Xis the space 
of positive nondegenerate quadratic forms in n variables. A, is the set of diagonal 
matrices with positive entries a; verifying aJa;+ 1 ~ t. The natural projection of 
G onto X = ~ G is the map g 1-+ 'g · g. The image of the Siegel domain K · A, · w 
in X is then the set of matrices 

'u·a·u 

It is well known to be a fundamental set if t2 ~ ~. and if w contains all matrices 
u = (u;i) e U such that luiil ~ ! (i =i: j). 

1.9. LEMMA. A Siegel domain has finite Haar measure. 

PROOF. We have 

G1t = K · P• = K ·A· (M · U) •. 
The second decomposition is not unique but determined up to an element of the 
compact group K n M. By standard facts on Haar measures, we have: 

f dg = f "'dg 
e K·A·(M·U)a 

= c . f dk · f ax da dv 
K A,·w 

where </> is the characteristic function of 6, dv is the Haar measure of M · U and 
x = det Adua. We have x = L.,E4 c.,cc and c., > 0. The only integral one has to 
evaluate to prove the finiteness is that extended over A,; up to a constant factor, 
it is a product over cc e 0 L\ of integrals of the form 

f ~IX) exp(c.,x) dx, 
which are finite since c,. > 0. 
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l.10. THEOREM. Let G be a connected semisimple algebraic group defined over 
Q, and r an arithmetic subgroup of G. 

(1) There exists a.finite subset C of Ga and a Siegel domain 6 such that Q = 6C 
is afundamental set in Gafor r. The set C contains then at least one representative 
for every double coset f\Ga/Pa· (In particular the number of such double cosets is 
.finite.) 

(2) Conversely if C is a .finite subset of Ga containing a representative for every 
double coset of r\Ga/Pa, then there exists a Siegel domain 6 such that Q = 6 · C 
is a fundamental set in GR for r. 

It follows immediately from the lemma and the theorem that GR/r has finite 
invariant volume. 

1.11. THEOREM. Let G be an algebraic group defined over Q, r an arithmetic 
subgroup of Ga. Then GR/r has .finite volume if and only if G~ has no characters 
defined over Q. (Gg = {O}.) 

Writing G0 = H · Z · U, where U is the unipotent radical and Z the central 
torus of a maximal reductive subgroup, the condition states that Z is anisotropic 
over Q. 

Theorem 1.11 is proved in [4] and Theorem 1.10 is announced in [l]. For 
proofs which are different from those of (1, 4], see [6]. 

In n, the complement of a compact set is the union of sets of the form KA,· w · c 
(c E Ga, r > 0, r sufficiently small). These are to be viewed as the analogues of the 
"cusps" for fuchsian groups. The minimum number of cusps is then the number 
of elements in r\G0/Pa or, equivalently, the number of conjugacy classes of 
minimal parabolic Q-subgroups under r. 

EXAMPLES. If F is a quadratic form defined over Q and G = SO(F), Pa is the 
stability group of a full isotropic flag. Then the minimal number of cusps for a 
fundamental set n is the number of transitivity classes of full isotropic flags 
under r. The same is true for Sp(n). Since Sp(n, Z) is transitive on the full isotropic 
flags, the minimum number of cusps for the modular group is 1, as is well 
known by Siegel's construction of a fundamental domain in this case. More 
generally, (2, Lemma l], we have Ga= Gz ·Pa if G splits over Q, and Gz is the 
group of integral points for the canonical Z-structure on G introduced by 
Chevalley, and described in [S]. In this case, there is only one cusp. 

l .12. Minimum principles connected with fundamental domains. 

EXAMPLE. 1. Let x = { z E M(n, C)l'Z = Z, Im z > O} be the Siegel upper half 
plane, 6 a Siegel domain which is a fundamental domain for the modular group 
r. Consider for fixed z Ex the function f(Zy) = det(Im z. y)- 1 defined on r. 
It is well known that this function has a minimum on Z · r and that this mini­
mum is taken in a point of z . r n e. 
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2. Let G = GL(,n), and 6 a suitable big Siegel domain in Ga. It is known from 
the Hermite or the Minkowski reduction theory that, if llxll denotes the length 
of the vector x e Rn, then for every g e R, the function fg(y) = llgy(e1)11 from 
GL(n, Z) to R+ attains a minimum in 6. 

Such minimum principles hold for every semisimple algebraic group defined 
over Q. Let P be a minimal parabolic Q-subgroup of G; 0 A the set of simple 
roots of G relative to this choice of a minimal parabolic subgroup. Take in P 
a set of fundamental weights Am such that (Au fJ) = dm~mfl• (ex, fJ e 0 A), and dm > 0. 

1.13. THEOREM. Let Xe P with X = LcmAm (cm ~ 0) and fa function from Ga 
to R + satisfying f (x, p) = f(x)IPxl (p e Pa). Take for C a set of representatives of 
the double cosets of ~G,JP0 . Then there exists a Siegel domain 6 in Ga such that 
for any x e Ga thefunctionfx(c, y) = f(x · c · y) attains a minimum in C · r n x- 1 • 6; 
in other words, there exist c0 e C, Yoe r such that xc0 y0 e 6 andf(xc0y0 ) ~f(xcy) 
(c e G', y e r). 

The Minkowski reduction theory in GLn makes use of n - 1 successive minima. 
This approach was generalized to adele groups of arbitrary semisimple groups 
in [6]. The number of successive minima is equal to rk0(G), and the functions 
which are minimized are associated to fundamental strongly Q-rational repre­
sentations, in the sense of [3, §7). There is an analogue of this for Ga and r, 
which also generalizes §1.13, where, given an integer r in (1 ~ r ~ rk0G), one 
takes successive minima of r functions. The two cases just mentioned then 
correspond to r = 1, r = rk0 G. The formulation of this result is however more 
complicated than in the adele case, because fundamental sets for r in Ga have in 
general more than one cusp. Details will be given in a future publication of the 
speaker. 
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Rationality Properties of Linear Algebraic Groups 
BY 

ARMAND BOREL AND T. A. SPRINGER 

In this lecture, G is a connected linear algebraic group, g its Lie algebra, k a 
field of definition for G and p the characteristic of k. Our purpose is to sketch, for 
infinite k, a proof of 

THEOREM A. (i) G contains a maximal torus and a Cartan subgroup defined over k. 
(ii) Let G be reductive. Then G is unirational over k. In particular, if k is infinite, 

Gk is Zariski dense in G. 

(G unirational over k means that there exists a k-morphism of a k-open subset 
of an affine space into G, whose image contains a nonempty open subset of G.) 

This theorem is due to Rosenlicht [6] over perfect fields, to Grothendieck [5] 
in the general case. In contrast with [5], we shall give a proof which does not use 
schemes: however, it is in part based on similar ideas. We presuppose the theory 
of algebraic groups over an algebraically closed field [1], [4]. 

Notation. The Lie algebra of an algebraic group H, M, · · · is denoted by the cor­
responding German letter. Ad refers to the adjoint representation of G in g, 
and ad to the representation of g into itself defined by ad X(Y) = [X, Y]. As is 
well known, ad is the differential of Ad. 9 A stands for g · A · g- 1 (g E G, A c G). 
For XE g, we let ZG(X) = {g E G, Ad g(X) = X} and zG(X) = {YE g, [Y, X] = O}. 
Clearly, ZG(X) is a closed subgroup, whose Lie algebra is contained in z6 (X). 
If no confusion can arise, we drop the subscript G. 

Let p #- 0. We denote by [p]: X -+ XIPI the pth power operation in g. It is defined 
over k: if g c gg"' then XIPI = XP. In particular, if [X, Y] = 0, then 

(X + Y)IPI = XIPI + ylPI. 

If q = p• is a power of p, we write [q] for [pf. The pth power operation commutes 
with differentials of morphisms. 

1. ·Jordan decomposition in g. The centralizer of a semisimple element. 
1.1. DEFINITION. An element XE g is semisimple (resp. nilpotent) if it belongs 

to the Lie algebra of a sub-torus (resp. unipotent subgroup) of G. 

1.2. LEMMA. Let G = T· Ube solvable, with one-dimensional unipotent radical U, 
where Tis a maximal torus of G. Let XE t. Then there are two possibilities: 

(1) [X, u] = 0, Z(X) = G. 
(2) [X, u] #- 0, Z(X) = T; the map u ........ Ad u(X) - X is an isomorphism of U 

onto the additive algebraic group Add( u) of u. Every element X + Z (Z E u) is 
semisimple. 

26 
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Let 7t: G -+ G' = G/U be the canonical projection. Then d7t maps t isomor­
phically onto g', and G' is commutative. Therefore, Ad g(X) - Xe u (g e G). 

Assume [X, u] = 0, and identify G to a matrix group. If Z(X) =F G, there exists 
u e U such that Ad u(X) = X + U (U e u - 0). But then Ad u(X) is on the one 
hand a semisimple matrix (being tangent to a torus), and on the other hand is 
the sum of a semisimple and a nonzero nilpotent matrix, commuting with each 
other, a contradiction. 

Let now [X, u] =F 0. Since ad is the differential of Ad, this implies that Z(X) =F G. 
Since Z(X) ::i T, it follows, for dimensional reasons, that Z(X)0 = T. However, 
in a connected solvable group, the centralizer and the normalizer of a torus are 
connected, and coincide [1]. Since [t, u] =F 0, Tis not central, hence Norm(T) = T 
and Z(X) = T. Let Ye u - 0. Then Ad u(X) - X = c(u) · Y. Obviously c is a 
morphism of U into the additive group of u, injective since Z(X) = T, hence bijec­
tive. Thus every element X + Z (Z e u) is conjugate to X, hence is semisimple. 
The relation [X, u] =F 0 implies that the differential of c is an isomorphism, 
therefore c is birational, biregular. · 

1.3. PROPOSITION. Every XE g can be written uniquely as X = X 1 + Xn with 
x. semisimple, Xn nilpotent, [X., XnJ = 0. For any morphism 7t: G-+ GLn, 
d7t(X) = d7t(X.) + d7t(Xn) is the Jordan decomposition of d7t(X). 

Let X = x. + Xn be one decomposition of X with x. semisimple, Xn nilpotent 
and [X., Xn] = 0. Then d7t(X.) (resp. d7t(Xn)) is tangent to a torus (resp. a uni­
potent group), hence is a semisimple (resp. nilpotent) matrix, whence the second 
assertion. Using a matrix realization of G, this implies the uniqueness of this 
decomposition. There remains to show its existence. We assume first G to be 
solvable, and proceed by induction on dim G. Let U = Ru(G) be the unipotent 
radical of G. There exists a connected one-dimensional subgroup N of the center 
of U which is normal in G. Let 7t: G -+ G' = G/N be the canonical projection. 
Let Xe g. By induction assumption, 

d7t(X) = A' + B' (A', B' e g'; A' semisimple, B' nilpotent, [A', B'] = 0). 

Since Ru(G') = 7t(Ru(G)), and every torus of G' is the image of a torus of G, this 
yields 

X=A+B (A semisimple, B nilpotent, d7t(A) = A', d7t(B) = B'). 

Let T be a maximal torus whose Lie algebra contains A. Since every rational 
representation of Tis fully reducible, we may write u = r EE> n, with r stable under 
Ad T. Writing 

we have then 

[A, Bi]= 0, 

If C = 0, we are done, so assume C =F 0. By Lemma 1.2, applied to T· N, the 
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sum A + B 2 is semisimple, hence the decomposition X = x. + X" with X. =A 
+ B2 , Xn = B1 has the required properties. 

This proves Proposition 1.3 for solvable groups. The general case follows by 
using the following Lemma [5, XIV, Theoreme 4.11]: 

1.4. LEMMA. Let B be a Borel subgroup of G. Then g = U geG Ad g(b). 

The proof is similar to that given in [3, VI] for the corresponding statement 
in G ; it uses the two following facts, which follow from properties of reductive 
groups: B is the normalizer of b in G, and there exists an element Xe b which 
is not contained in any conjugate of b distinct from b. 

1.5. PROPOSITION. Let XE g be semisimple. Then z(X) is the Lie algebra of Z(X). 

Since z(X) contains the Lie algebra of Z(X), it is enough to show that dim z(X) 
;;;; dim Z(X). 

(a) G solvable. We let U, N, 7t: G-+ G' = G/N be as in the previous proof, 
and let T be a maximal torus whose Lie algebra contains X. Let X' = d7t(X}. 
The Lie algebra g is the direct sum of n and of a subspace r stable under Ad T, 
whence immediately, 

dim z(X) = z(X) n n + dim z(X'). 

By Lemma 1.2, dim z(X) n n = dim Z(X) n N; by induction dim Za-(X') 
= dim z(X} It suffices therefore to show that 7t(Z(X)) = Za.(X'). 

Let g' e Za-(X'). There exists g E G such that 7t(g) = g', hence such that Ad g(X) 
= X + Y (YE n). There is something to prove only if Y ~ 0. Since Ad g(X) is 
semisimple, and Y is nilpotent, we must have [X, Y] ~ 0 by the uniqueness of the 
Jordan decomposition. By Lemma 1.2, there exists then n e N such that Ad n(X) 
= X - Y. We have then Ad n · g(X) = X, and 7t(n · g) = g'. 

(b) G not solvable. Let T be a maximal torus whose Lie algebra contains X. 
It follows from known facts about reductive groups that G has two Borel sub­
groups B, B', normalized by T, which generate G, such that g = b + b', b n b' 
= t + u (u Lie algebra of U = Ru(G)) (see [3, §2]). Let c, c' be supplementary 
subspaces oft + u in b and b' respectively, stable under Ad T. The Lie algebra 
z(X) is the direct sum of its intersections with c, c' and t + u, say p, q, r. By (a) 
p + r and q + r belong to the Lie algebra of Z(X), hence dim Z(X) ~ dim z(Xi 

REMARK. Using induction and the relation 7t(Z(X)) = Z(,.(X') proved above, 
one sees easily that Z(X) is connected if G is solvable. Examples show that this 
need not be the case when G is semisimple. 

1.6. PROPOSITION. Let Xe g be semisimple. Then Ad G(X) is closed. 

Identify G with a matrix group. Let L be the set of YE g which annihilate the 
minimal polynomial of X, and such that ad Y has the same characteristic poly­
nomial as ad X. This is an algebraic subset of g, stable under Ad G. Let YE L. 
Its minimal polynomial divides that of X, hence has only simple factors, and Y is a 
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semisimple matrix. By Proposition 1.3, it is a semisimple element of g, in the 
sense of Definition 1.1, consequently, (Proposition 1.5), dim Z(Y) is equal to the 
multiplicity of the eigenvalue zero of ad Y. By the definition of L, and Proposition 
1.5, this implies dim Z(Y) = dim Z(X). As a consequence, the orbits of G in L 
are all of the same dimension, hence are closed [l, §16]. 

1.7. CoROLLARY. Assume that every semisimple element of g is central in g. 
Then the set of all semisimple elements of g is a subspace s defined over k, which is 
the Lie algebra of every maximal torus of G. 

Let T be a maximal torus of G. Then t c s. Let X e g be semisimple. By the 
conjugacy of maximal tori in G, there exists g e G such that Ad g(X) c t. By 
assumption [X, g] = 0, hence (Proposition 1.5), Z(X) = G and Ad g(X) = X. 
Thus s c t. There remains to see that s is defined over k, in other words, that it is 
generated over /( by elements of 91. This is obvious in char. 0 (or in fact over a 
perfect field, since in this case the Jordan decomposition is over the groundfield), 
so we assume p =fi 0. There exists a power q of p such that Xl'J = 0, whenever 
X is nilpotent. For arbitrary X we have Xl'l = (X1 + Xn)1' 1 = X~'1 + X~'1 

= ~,1 c t (notation of §1.3). Thus [q]: X >-+ X1'1 maps g into t. On the other 
hand, t can be diagonalized, hence the restriction of [q] to t is bijective. Thus, 
Im[q] = t. But [q] is a morphism of g, viewed as an algebraic set, into itself, 
obviously defined over k. Therefore, Im[q] is also defined over k. 

2. Inseparable isogenies. The main tools which will allow us to get hold of fields 
of definition in char. p =fi 0 are the criterion of multiplicity one of intersection 
theory, and the following result of Barsotti and Serre ((7, Theoreme I], (3, §7)). 

21. PROPOSITION. Let m be an ideal of g which is stable under the pth power 
operation and under Ad G. Then there exists one and, up to k-isomorphism, only 
one k-group G' with the following properties: (i) there exists a purely inseparable 
k-isogeny 7t: G -+ G' such that ker dn = m; (ii) every purely inseparable k-isogeny 
(}: G -+ G" such that ker d(} => m can be k-factored through n. 

We also write G/m for G'. Note that, since 7t is purely inseparable, 7t is a 
bijective morphism of G onto G'. 

2.2. PROPOSITION. Let G be not nilpotent, and assume that every semisimple 
element of g is central. Let T be a maximal torus of G. Then there exists a k-group 
G', such that not all semisimple elements of g' are central, and a purely inseparable 
k-isogeny n: G-+ G', whose differential dn had t as kernel. The Lie algebra g' is 
the direct sum of dn(g) and of the Lie algebra of any maximal torus. 

Let <I> = <l>(G, T) be the set of roots of G with respect to T(nontrivial characters 
of Tin g, under the adjoint representation). Since G is not nilpotent, Tis not 
central, and <I> is not empty. (To see this, use the fact that G is generated by two 
solvable subgroups containing T, and the "lemme de devissage" of [4], Exp. 9, 
Lemme 2) 
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g is the direct sum of the Lie algebra of Z(T) and of the root spaces 

9a = {XeglAdt(X) = t"· X, (te T)} (a E Cl>). 

Let da be the differential of a: T-+ GL 1. It is a linear form on t, and we have 

[ Y, X] = da(Y) · X (YE t, XE g0 ). 

It is easily seen that the differential of a character x of Tis zero if and only if x is 
divisible by p, in the character group X(T) of T. Let c be the smallest positive 
integer such that Cl> ¢ pc+ 1 • X(T). The elements oft are central in g if and only 
if c ~ 1. We prove Proposition 2.2 by induction on c. 

By Corollary 1. 7, tis the set of all semisimple elements of g and is defined over k. 
By Proposition 1.5, every Xe t is centralized by G. Since t is the Lie algebra of 
an algebraic group, it is stable under pth power operation therefore (Proposition 
2.1), there exists a purely inseparable isogeny n 1 : G-+ G1 = G/t. 

It follows from Proposition 1.3 that dn 1(g) consists of nilpotent elements; 
therefore if T' is a maximal torus of G, then t' r. dn 1 (g) = 0, hence, for dimensional 
reasons, g' = t' EB dn 1(g) (direct sum of vector spaces). This applies in particular 
to the Lie algebra t1 of T1 = n(T), which implies readily that 17t 1 maps Cl>(G 1, T1) 

onto <l>(G, T). On the other hand, it follows from dn(t) = 0 that 17t 1 maps X(T') 
into p · X(T). Thus, if d is the smallest positive integer such that 

we have d < c. If d = 0, then t' is not central, and we take G' = G1• If d ~ 1, 
we apply the induction assumption and get n': G1 -+ G', with ker dn' = t 1, satisfy­
ing our conditions for G1. Then n = n' o n 1 : G -+ G' has all the required proper­
ties. 

3. Proof of Theorem A. 
3.1. Regular elements. Let nil X be the multiplicity of the eigenvalue zero of 

ad X (XE g), and let n(g) = minxe9nil(X). An element Xis regular if nil(X) = n(g), 
singular otherwise. Clearly nil X = nil x. (notation of §1.3), hence X is regular 
if and only if X. is so. If p -=F 0, then X and XIPJ are simultaneously regular or 
singular. 

Let k be infinite. Then there exists a semisimple regular element Ye 91:· In 
fact, the set S of singular elements is a proper algebraic subset (the set of zeros 
of the last nonidentically vanishing coefficient of the Killing equation), hence 
we may find Xe gk which is regular. Let X = x. + Xn be its Jordan decomposi­
tion. If p = 0, take Y = Y.; if not, there exists a power q of p such that X~91 = 0. 
Then put Y = Xl91. 

In the sequel, k is infinite. 
3.2. Proof of Theorem A (i). A Cartan subgroup is the centralizer of a maximal 
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torus [I], and the centralizer of a k-torus is defined over k [2, §10]. It suffices 
therefore to prove the existence of a maximal torus defined over k. We use 
induction on dim G. 

Let first G be nilpotent, then G = T x U (Tunique maximal torus, U unipotent 
radical). If k is perfect, Tis defined over 'k. If not, we let q be a power of p such 
that U4 = {e}. Then G4 = T4 = T, hence g1-+ g4 is a morphism of G onto T, 
clearly defined over k, and T is defined over k. (This argument, phrased slightly 
differently, is due to Rosenlicht [6].) Let now G be not nilpotent. We let 1t: G1-+ G' 
be the identity if not all of the semisimple elements of g are central, and be as in 
Proposition 2.2 otherwise. 

By §3.1, there exists a semisimple regular element YE g~. By construction of 
G', we have n(g') "# dim G, hence z(Y) "# g'. 

We let G operate on g' by Adon. Clearly, G(Y) =Ad G'(Y), hence G(Y) is 
closed (Proposition 1.6). Let Z6 (Y) be the isotropy group of Y. Then n(Z6 (Y)) 
= Z6 .(Y), hence (Proposition 1.5), dim Z6 (Y) = dim g - n(g') and Z6 (Y)0 is a 
proper closed subgroup of G. We want to prove that it is defined over k. This is 
clear in char. 0 (or if k is perfect) so let p "# 0. Let/be the map g1-+ Ad n(g)(Y) of 
G onto G(Y). It is defined over k. We claim that it is separable. To show this, 
it suffices to prove that dfe: X 1-+ Y + [dn(X), Y] maps g onto the tangent space 
to G(Y) at Y. By 1.5, this tangent space is equal to Y + [g', Y], so that our assertion 
is clear if 1t is the identity. If 1t "# Id, we are in the situation of Proposition 22. 
Then dn(g) is an ideal of g', obviously stable under Ad G', which is a supple­
mentary subspace of the Lie algebra of any maximal torus of G'. Since Y is 
contained in such an algebra, we see that [ Y, g'] = [ Y, dn(g)], whence our assertion. 
It follows that the graph r off in G x G(Y), and G x { Y}, cut each other 
transversally. By the criterion of multiplicity one [8, VI, §2, Theorem 6] the 
cycle, sum of the irreducible components of r n (G x {Y}) = Z6 (Y), each with 
coefficient one, is rational over k, hence (Z6 (Y))0 is defined over k [8, Pro­
position 1, p. 208l By induction assumption Z6 (Y)0 has a maximal torus Tdefined 
over k. But Z6 ( Y) contains at least one maximal torus of G, hence Tis a maximal 
torus of G. 

3.3. Proof of Theorem A (ii). Let now G be reductive. The result is known if 
G is a torus [6], so we again use induction on dim G. The group Z 6 (Y)0 considered 
above is reductive; in fact, it contains a maximal torus T, and it is clear that 
Cl>(Z6 (Y)0, T) is a symmetric subset of <l>(G, T) (see [2, §2.3, Remark]). We want to 
prove that the groups Z6 (Y)0 , where Y varies over the regular semisimple 
elements YE gl. generate G. Let H be the group they generate and H' = n(H); 
assume H' "# G. There exists then a regular element XE gi, not in ~·. We have 
then z(Xs) ¢ ~·.hence z(X~41) = z(Xs) ¢ ~·for every power q of p. We can therefore 
find a regular semisimple element YE gl. such that nil z(Y) ¢ ~·. Since z(Y) is 
the Lie algebra of Z(Y) = n(Z6 (Y)) by Proposition 1.5, it follows that Z6 (Y)0 ¢ H, 
contradicting the definition of H. Thus H = G. There exist consequently finitely 
many connected reductive proper k-subgroups H; (i = 1, · · · , t), such that the 
product mapping (hi,···,h,)1-+ hi···· ·h, of Hi x ··· x H, into G is a surjective 
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k-morphism of the underlying algebraic varieties. By induction assumption, each 
H; is unirational over k, hence so is G. 

REMARKS. (1) Let X be a regular element in g. Its nilspace n(X), i.e. the set of 
Ying which are annihilated by some power of ad Y, is by definition in [SJ a Cartan 
subalgebra of g. We have n(X) = n(X,) = z(X.), and, by Proposition 1.5, z(XJ 
is the Lie algebra of Z(X .). It follows that the subgroups of type (C) of [SJ are the 
centralizers in G of the regular semisimple elements of g. 

(2) In the same context, one can also prove that a reductive k-group splits 
over a finite separable extension of the groundfield, that the variety of Cartan 
subgroups of G is rational over k [S], give alternate proofs of some structure 
theorems of Rosenlicht's about unipotent groups acted upon by tori, and of the 
conjugacy over k of maximal k-tori in a solvable k-group. Details will be given 
elsewhere. 
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Classification of Algebraic Semisimple Groups 
BY 

J. TITS 

This is mostly an exposition of known results. However, part of the final 
classification, given at the end in the form of tables, a few propositions in §§2 and 
3, and various improvements in the statements of other results may be new. The 
bibliographical references following each title serve a double purpose, historical 
and technical : they refer either to papers where, to the best knowledge of the 
author, the stated results have been announced first, or to places where proofs 
(or further information) are supplied. In general, proofs are given or sketched here, 
only when they are not available in the literature. A detailed justification of the 
classification tables would require much space and will not be found in this paper 
(the author hopes to write it down at some other occasion); however, using the 
indications given here or in the cited literature, the reader should not have much 
difficulty in reconstructing the arguments, except perhaps for some rather tricky 
existence proofs. At this point it should be mentioned that discussions with M. 
Kneser have been of considerable help in the final setting up of these tables; 
without him, several ugly question marks would still spoil them. 

I. Algebraically closed fields, Dynkin diagrams. 
1.1. Dynkin diagrams ([3], [S], [7], [11], [13], [29], [47]). 
1.1.1. Notations. All semisimple groups considered in this paper are assumed 

to be connected. The following notations are used throughout the §1 : K is an 
algebraically closed field, G a semisimple algebraic group defined over K, T a 
maximal torus of G, N its normalizer, X = X*(T) the character group of T, 
l: c X the set of all roots (of G relative to T). In X ® R we choose a scalar 
product ( , ) invariant under the Weyl group W = N /T (which operates on X 
in the obvious way) and an ordering, Ii is the set of all simple roots (with respect 
to that ordering), - µis the dominant (i.e. maximal) root and we set fl' = flu {µ}. 
If G is almost simple (i.e. has no proper infinite normal subgroup), µ depends only 
on fl, that is, is the minimal root for any ordering for which fl is the set of simple 
roots. (When G is not almost simple, there is little interest in consideringµ and fl'.) 
For every root ex e, l:, we denote by ex*: X ® R -+ R the linear form defined by 

ex*(x) = 2(ex, x)/(a., rx). 

One has ex*(l:) c Z. 
1.1.2. Ordinary Dynkin diagram. For every pair a., fJ of distinct elements of fl', 
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we have one of the following sets of relations, possibly after interchanging IX and f3: 
(i) IX*(/J) = /J*('Y.) = 0, 

(ii) IX*(/J) = /J*(r:x.) = - 1, 
(iii) a*(/J) = -1, /3*(1X) = - 2, 
(iv) 1X*(/3) = -1, /3*(1X) = - 3. 

To build the Dynkin diagram of G, one represents the elements of A by points 
(the vertices of the diagram) and one joins the points representing IX and f3 as 
follows, according as to which one of the above sets of conditions is fulfilled: 

(i) q P. 

(ii) IX p 

(iii) IX I > IP 
(iv) Cl I ) lP 

(In the last case, it is often suitable to use a quadruple segment instead of a 
triple one,_ for reasons which wiU appear in §1.3.2 ;- here we shall however use the­
above-notation, which is the most common.}-

1.1.3. Affine ( = extended) Dynkin diagram. Assume first that G is almost simple. 
The construction described abgve for the Dynkin diagram, when applied to the 
set A' instead of the set A, gives rise to a new diagram, called the affine (or ex,. 
tended) Dynkin diagrarn of G. If G is not almost simple, we define its affine Dynkin 
diagram as the disjoint union of those of its almost simple normal subgroups. 
Since the affine Dynkin diagram is a function of the root S-ystem :E, which is 
determined up to isometry by the (ordinary) Dynkin diagram,. it will be meaning­
ful to talk about the affine diagram associated with (or extension- of) a- given 
Dynkin dragram. 

The main purpose of §1 is to indicate how important data relative to a group G 
can be read- on its Dynkin diagrams. 

1.2. Classijication- up to isogeny ((7}, [11]). 
1.2.1. lsogenies. An isogeny is a surjective homomorphism with-finite- kernel. 

If G and Hare gmups defined over K, an isogeny <P :H--+ G is said to be central 
if for every K-algebra A, the kernel of the homomorphism-if> A: H .._-+ GA iS-central 
in HA. (We denote by GA and HA the groups of points of G and H with coefficients 
in: A.; for the meaning of t-hese notions, see [Ci}.> .Every separable isogeny of a 
connected group G is central. We shall say that two groups G, G' are (strictly) 
isogenous if there is a group H and two (central) isogenies H--+ G and H--+ G'. 
This relation is transitive. 

1.2.2. The main theorem. 

THEOREM 1. The fietd K being given, a semisimple group G is characteri~ed up to­
strict isog en y by its D ynkin diagram. It is almost simple if and only if the diagram 
is connected. Any semisimple group G is strictly isagenous to a direct product of 
simple- groups whose Dynkin diagrams are the connected components of the diagram 
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of G. The complete list of Dynkin diagrams of almost simple groups is given in 
Table I ; each diagram of that table determines a strict isogeny class of almost 
simple groups over any given field K. 

Table I gives simultaneously the ordinary and the affine Dynkin diagrams of 
each group: the strokes which join the vertex µ to the other vertices (and which 
therefore complement the ordinary diagram to give the affine one) are drawn in 
broken lines. 

We mention further that the only almost simple groups which are isogenous 
without being strictly isogenous are the groups of types Bn and C", for the same 
n ;;;;; 3, over a field of characteristic 2. 

Notice that Theorem 1 gives us the right to talk about "the Dynkin diagram 
of a strict isogeny class." 

1.3. Weyl groups ([S], [7], [29], [34], [47]). 
1.3.1. Let V = X .(T) ® R be the dual of X ® R. There is an obvious action 

of the Weyl group W = N /T on V; we shall occasionally identify W with its 
canonical image in GL(V). For every root a (which we view as a linear form on 
V) and every integer i e Z, we denote by r ar,i the reflection with respect to the hyper­
plane a- 1 (i~ defined by means of some euclidean metric invariant under W(which 
metric one chooses is irrelevant). Finally, we set rar = rar,o· 

1.3.2. Generators and relations. The Weyl group contains all the rar(a e I:), and 
is generated by the r .. (a e A). As an "abstract" group, it is defined by the relations 

(r .. rpr·11 = 1, 

where ex, p run through A, mu = 1 and m .. p = 2 (resp. 3, 4, 6) when ex ¥= (J and the 
pair ex, (J satisfies the set of relations (i) (resp. (ii), (iii), (iv)) in §1.1.2. 

1.3.3. ,-iffine Weyl group. Let G be almost simple. The group generated by all 
r .. ,; is called the affine Weyl group of G. Set r~ = r .. if ex e A, and r~ = r,,, 1• Then, 
the affine Weyl group is generated by the r~ (ex e A') and is defined, as an abstract 
group, by the relations 

(r~/Jrm" = 1, 

where the m .. p are defined as above. 
1.4. Coefficients of the dominant root; dimension ([3], [5], [14], [24], [33]). 
1.4.l. The group G is again assumed to be almost simple. Set - µ = ~:C,.cx 

and c,, = 1 so that 

and, for every p e A', 

(1) 

:L c,.cx = o, 
are A' 

L c,.(J*(cx) = 0. 
areA' 

In this formula, it suffices of course to extend the summation to the set Cp of all 
elements ex of A' which are connected to p in the affine Dynkin diagram. When 
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all roots of G have equal length, (1) becomes 

(2) 2cp = L ell. 
lleC11 

The formulae (1) and (2) give an effective way to compute rapidly the ell. For 
instance, in the case of £ 6 , one finds successively, when numbering the simple 
roots as in Table I, c6 = 2c11 = 2, c3 = 2c6 - c,, = 3, c2 = 2ch c3 = 2c2 - c1 = 3ch 
thus c1 = 1, c2 = 2, and similarly, c5 = 1 and c4 = 2. 

1.4.2. If r = #A is the rank of G and c = Llle4 ell, the dimension of G is given 
by the formula 

dimG = r·(c + 2). 

For instance, dim E6 = 6 · (1 + 2 + 3 + 2 + 1 + 2 + 2) = 78. 
1.5. Classification up to isomorphism; automorphism group and center ([31 [5], 

[7], [12), [14), [29]). 
1.5.l. Opposition involution. There exists a unique involutory permutation i 

of the simple roots such that the mapping ix -+ - i(ix) extends to an operation of 
the Weyl group. This permutation i, called the opposition involution, induces an 
automorphism of the Dynkin diagram~- It can be determined by the following 
rule: i leaves invariant each connected component of~ and induces a nontrivial 
automorphism on a given component ~o if and only if ~o is of type An, Din+ 1 

or E6 . (Notice that the diagrams of these types have a single nontrivial auto­
morphism.) Whenever q} is connected and possesses a nontrivial automorphism, i 
is that automorphism, except in the case of D2n. Once one knows that, for the 
type Dm, the parity of m plays an essential role, there are two easy ways to remem­
ber "which is which": since A 3 = D3, the type D 2n+ 1 must behave like the types 
A, that is, i cannot be the identity; on the other hand, since i is "characteristic," 
that is, invariant by the automorphism group of~. it follows from the symmetry 
of order 3 of the diagram D4 that i must be the identity for this type, and therefore 
also for all types D2". 

1.5.2. The cocenter C*. To each strict isogeny class t'§ of semisimple groups, 
we shall associate a certain finite commutative group C* = C*(t'§), which will 
turn out to be the dual of the center of the simply connected group in t'§ (see 
§§1.5.4 and 1.5.5), and whose knowledge permits an immediate classification up to 
isomorphism of the groups int'§ ( §1.5.4). Here, we give a "natural" definition of c• 
in terms of roots and weights. In §1.5.3, it will be seen how c• can be deduced 
from the Dynkin diagrams oft'§. 

In the space V* = X ® R (1.1.1), let X be the group generated by I: and let X 
be the group of all v* EV* such that ix*(v*) E Z for all ix EI: (§1.1.1). (X is called 
the weight group of the root system.) The group C* is then defined as the quotient 
X/X. Its Pontrjagin dual, which we shall denote by C = C(t'§) is canonically 
isomorphic (and will be identified) with the quotient x.1x •. where 

x.(c V = X.(T) ® R) 
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is generated by the a*, with a e I:, and X * consists of all v e V such that a(v)e Z 
for all a e I:. 

1.5.3. Automorphism groups of Dynkin diagrams. As before, !i) denotes the 
Dynkin diagram of G and !i)' its associate affine diagram. Every automorphism 
of !i) extends uniquely to an automorphism !i)'; therefore, we can identify the 
group Aut(!i)) of automorphisms of !i) with a subgroup of Aut(!i)'). There is a 
natural, effective action, which we want to describe, of the group C defined 
in §1.5.2 on !i)'. For every x e X *' the affine Weyl group W' contains a unique 
element whose product with the translation v>-+ v + x leaves invariant the 
"fundamental chamber" { v e Vla(v) > 0 for all a e I: and µ(v) < 1 }, that is, 
permutes the fixed hyperplanes of the reflexions r~ with a e ~' (§1.3.3). Through the 
permutation of~' thus defined, we obtain an action of x on !i)'. It can be shown 
that the translations belonging to W' are exactly the translations by elements 
of X *' and that W' operates trivially on the quotient X .IX•. From this, it follows 
immediately that the mapping X * __. Aut !i)' which has just been defined is a 
homomorphism whose kernel is X *' and induces therefore a monomorp.hism 
C __. Aut(!i)'). 

We now indicate a few properties of the group C, considered as a subgroup 
of Aut(!i)'). Notice that, since !i)' characterises I: (up to isometry) which, in tum, 
determines C, we are allowed to talk about "the group C of an affine Dynkin 
diagram !i)"', a group which we denote by C(!i)'). 

(1) If the diagram !i)' is the disjoint union of a set of subdiagrams !i)j, the 
group C(!i)') is the direct product of the groups C(!i)i), where C(!i)i) is made to 
operate trivially on !i)j whenever j "# i. 

(2) The group C is a normal subgroup of Aut(!i)'), one has Aut(!i)) n C = { 1} 
and Aut(!i)') = Aut(!i)) · C. In other words, Aut(!i)') is the semidirect product of 
Aut(!i)) and C. In particular, there is a natural action of Aut(.!?iJ) on C. 

(3) Every element c e C is transformed in its inverse by the opposition involu­
tion i (that is, ici- 1 = c- 1). 

(4) If !i)' is connected, the set of all vertices a such that c,. = 1, with the notation 
of §1.4.l, is invariant under Aut(!i)'), and the group C is simply transitive on it. 

The subgroup C of Aut(!i)') is completely characterized by (1), (3~ and either 
one of the properties (2) and (4). More interesting perhaps, from a mnemo­
nic point of view, is the fact (1) and (2) alone, together with the fact that C is 
commutative, characterize C except when !i) has a component of type D; in this 
case, it must be remembered that 

C(D2n) ~ (Z/2Z) x (Z/2Z), C(D2n+ 1) ~ Z/4Z. 
1.5.4. Classification up to isomorphism; simply connected and adjoint groups. 

To each group G of the strict isogeny class r§, we can associate the subgroup 
C'(G) = X .(T)/X • of C, or equivalently the subgroup C*(G) = X*/X* of C*; 
we set C(G) = X.fX.(T) = C/C'(G). The classification up to isomorphism of the 
groups in <§ is now given by the 

PROPOSITION 1. Two groups G, G' e <§ are isomorphic if! the groups C'(G) and 
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C'(G') are conjugate in Aut(fiJ'). There exists a central isogeny G --+ G' !ff C'(G) 
is conjugate in Aut(!}') to a subgroup of C'(G'). Every subgroup of C = C(<§) is the 
gwup C'(G) of some group GE CfJ. 

Notice that the characteristic of the ground field plays no role here. 
It follows from the proposition above that <§ contains a "biggest group" ii 

(such that C(G) = C) and a "smallest group" G (such that C(G) = {1 }). For any G 
in<§, the groups G and G (together with central isogenies ii--+ G and G --+ G) are 
respectively called the simply connected or universal covering of G, and the adjoint 
group of G. 

The second statement of the proposition can be made more precise. Any 
central isogeny G --+ G' induces in a natural way an injection C'(G)--+ C'(G'). 
For a given G, the central isogenies <P: G -+ G' are thus exactly classified, up to 
equivalence, by the subgroups of C(G) (two isogenies <P': G --+ G' and <P": G--+ G" 
are called equivalent if there exists an isomorphism f: G'--+ G" such that 
<P" =fa </J'). The isogeny <P is separable (resp. purely inseparable) iff the index 
[C(G): C(G')] is prime to the characteristic p of the ground field (resp. is a power 
of p). 

1.5.5. Center. The center !r'(G) of G is canonically isomorphic with the group 
Hom(C*(G), K*), where K* is the multiplicative group of K. If one adopts a 
"classical", nonschematical point of view (that is, if one overlooks the nilpotent 
elements in the structural sheave of G), !r'(G) is therefore isomorphic with the 
quotient of C(G) by its p-primary component, where p is the characteristic of K. 

1.5.6. Automorphism group. The group Aut(G) of all K-automorphisms of G is 
the semidirect product of the group Int(G) of all inner automorphisms and a 
finite group A, canonically isomorphic with the normalizer of C(G) in Aut(~). 
In particular, if G is simply connected or adjoint, A = Aut(~). 

1.6. Parabolic subgroups ([4], [7], [37], [39]). There is a natural one-to-one 
correspondence between the conjugacy classes of parabolic subgroups of G, 
and the subsets of the set A of all simple roots. To a subset 0 c: A is associated 
the conjugacy class containing the parabolic subgroup generated by T and by the 
groups u a (oc EA) and u - a (oc E 0), where u a denotes the "one-parameter root 
group" corresponding to the root oc. In particular, the conjugacy class associated 
to the empty set is the class of all Borel subgroups, and the conjugacy class 
associated with A is { G]. 

2. Non algebraically closed field. Index and anisotropic kernels. 
2.1. Introduction; notations ([2], [4]). We now go over to the case where the 

ground field k is arbitrary. Our main aim is the proof of a theorem which is a 
sort of analogue for the algebraic semisimple groups (and to a certain extent a 
generalization) of Witt's theorem characterizing a quadratic form by means of 
its index and anisotropic kernel. 

The following notations will be used all through §§2 and 3; k is a field, 
K the separable closure of k, r = Gal(K/k) the Galois group, G a semisimple 
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group defined over k (which splits over K by Grothendieck's theorem), S a 
maximal k-split torus of G, Ta maximal torus containing S and defined over k. 
Compatible orders are chosen in the character groups X*(S) and X*(T). Finally, 
we denote by A the system of simple roots of G with respect to T, A0 the sub­
system of those roots which vanish on S and tA the system of simple relative 
(k- )roots (i.e. the set of restrictions to S of the elements of A). 

2.2. Anisotropic kernels ([ 4), [27], [38], [ 40], [ 43]). Let !!"(S) be the centralizer 
of S, let ~!?l'(S) be its derived group and let Z0 be the maximal anisotropic 
subtorus of the center of !?l'(S). Then, the groups ~!?l'(S) and ~!?l'(S) · Z0 , which 
are, up to k-isomorphisms, independent of the choice of S, are respectively called 
the semisimple anisotropic kernel and the (reductive) anisotropic kernel of G. 
Notice that A0 is the set of simple roots of ~!?l'(S) (with respect to the maximal 
torus T n ~!?l'(S) and to a suitable ordering of its character group), and that the 
product ~!?l'(S) · Z0 is almost direct (i.e. is a direct product up to isogeny). If 
~ !?l'(S) = { 1}, which means that !?l'(S) = T, the group G is said to be quasi-split. 

2.3. Index ([4], [26], [27], [38], [40], [42]). We first define an action, called the 
•-action, of r on A. The elements of A are in canonical 1-1 correspondence with 
the conjugacy classes of maximal parabolic subgroups of G ( §1.6); since G is 
split over K, these conjugacy classes are "defined over K" and therefore permuted 
by r. Through the above correspondence, r acts on A ; the permutation of A 
corresponding to u e r will be denoted by u•. It can also be defined as follows: 
since K is separably closed, Tis split over K, therefore all its characters are 
defined over K and r operates naturally on X*(T); then, u(A) is the system of 
simple root for a certain ordering of X*(T), there exists a well-defined element 
w of the Weyl group for which w(u(A)) = A, and we set u• = w o u. When the 
•-action of r on A is trivial (resp. not trivial), the group G is said of inner (resp. 
outer) type, and called an inner (resp. outer) form of KG (the same group, con­
sidered as defined over K). 

We call (k-) index of the group G the data consisting of A (together with the 
Dynkin diagram of G), A0 and the •-action of r on A. The following diagrammatic 
representation of the index will be used: the Dynkin diagram of G is drawn in 
such a way that vertices belonging to the same orbit of r are close to each other 
and the orbits-called distinguished orbits-whose elements do not belong to A0 

are circled (for an example, see §2.5.5, or Table II). Strictly speaking, this represen­
tation gives only the orbits of r in A and not its full action; however, in most 
"practical cases", this amounts to the same, once the group {uJu* =id} (or, 
equivalently, the fixed field of this group) is known. 

Notice that the index of the semisimple anisotropic kernel of G can be deduced 
from the index of G by simply removing the vertices of the Dynkin diagram of G 
which do not belong to A0 (together with the strokes ending in such vertices). 
When G is quasi-split, all orbits of r in A are distinguished (i.e. A0 = 0). 

2.4. An example; orthogonal groups. The following example shows the relation 
between the above notions of anisotropic kernel and index, and the corresponding 
notions for quadratic forms. Let G = kSO(f) be the special orthogonal group 
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of a nondege~erate quadratic form f in 2n + 1 variables and let r be the index 
off and fo be its anisotropic kernel (a form in n - 2r variables). Then, the index 
of G is 

\ --~~~~_,/ ~,~~~~--.. v v 
r vertices n - r vertices 

and its anisotropic kernel is kSO(f0 ). (For the case of an even number of variables, 
and other examples, see Table II.) 

2.5. How to deduce the relative root systemfrom the index ([4], [40]). 
2.5.1. Two elements of Li which do not belong to Li0 have the same restriction 

to S if and only if they belong to the same orbit of r. More precisely, S is the 
connected component of the subgroup of T defined by the following system of 
equations (where t ET): 

,x(t) = 1 for all cc E L\0 , 

/J(t) = (a*(fl))(t) for all fl E Li and all O" Er. 
(1) 

It follows that the elements of "Li are in canonica_l 1-1 correspondence with the 
orbits of r in Li-Li0 ; the orbit corresponding toy E "Li will be denoted by (!)1 • 

The above equations show that the torus S is known once the index of G is 
given; so therefore the relative root system and the relative Weyl group. To 
determine them explicitly is an easy exercise of which we state the results right 
away. 

2.5.2. Relative root system. We introduce in X*(T) ® R a scalar product ( , ), 
invariant under the Wey! group, and identify X*(S) ® R with the subspace of 
X*(T) ® R orthogonal to all characters vanishing on S. Let ca/I, with cc, p E Li 
(resp. "Li), be the coefficients of the inverse of the matrix whose coefficients are 
the scalar products of pairs of elements of Li (resp. "Li). Then, for all y, b E .A. 
one has 

To describe the relative root system completely, there remains to determine, 
for each simple root y E kLi, the largest integer n( = 1 or 2) such that ny is a relative 
root. This is done as follows. Let !!JJ be the subdiagram of the Dynkin diagram 
of G. whose vertices are the elements of Li0 u (!)1 , and let !!JJ' be any connected 
component of !!JJ whose vertices do not all belong to Li0 . Then, n is the sum of 
the coefficients of the roots belonging to (!) 1 , in the expression as linear combina­
tion of simple roots of the dominant root of the root system corresponding to 
the Dynkin diagram !!JJ' (cf. §1.4.1; for an example, see §2.5.5). 

2.5.3. Relative Wey/ group. Let y, b E .a be two relative simple roots, and let 
m16 be the order of the product r1r,, of the reflexions _with respect to y and b 
(so that the relative Weyl group is defined, as an abstract group, by the relations 

r~ = (ryr,,r~· = 1). 
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The orders my6 are given by the formulae 

cos(n/my6) = (y, 6)2/(y, y)(6, 6). 

However, one can also determine mya without computing first the (JI, 6)'s, which, 
by the method of §2.5.2, may be rather long. Let/0 (resp./y;fti;/y6) be the number 
of roots of the root system whose Dynkin diagram is the subdiagram of the 
diagram of G having as vertices the elements of A0 (resp. A0 u llly;A0 u lll6 ; 

A0 u lll y u lll 6). Then, 

2(/ya - fo) 
my,, = fy + h - 2fo · 

2.5.4. Parabolic subgroups. Let &' be a conjugacy class of parabolic subgroups 
of G and let A' c A be the associated set of simple roots (§1.6). Then,&' contains 
a parabolic subgroup defined over kif and only if A' contains A0 and is invariant 
under the *-action of r (§2.3). The class&' is said to be defined over k whenever 
A' is invariant under r; in that case, &' has a natural structure of projeCtive 
algebraic variety defined over k, whose (possibly nonexistent) rational points are 
the parabolic subgroups in &' which are defined over k. 

2.5.5. An example. Let the index of G be 

:>---G>· 
The simple roots of E6 being numbered as in Table I, the orbits of r in A - A0 

are {1, 5} and {6}. Let us denote by y and 6 the corresponding relative roots. 
We have 

2 -1 0 0 0 4 5 6 4 2 3 

-1 2 -1 0 0 5 10 12 8 4 6 

0 -1 2 -1 0 6 12 18 12 6 9 
=t 

12 10 5 6 0 0 -1 2 -1 4 8 

0 0 0 -1 2 4 6 5 4 3 

0 0 -1 0 0 6 9 6 3 6 

Therefore 

(()I, y) 

(6, y) 

(y, 6)) = 3 . (4 -1- 2 + 4 + 2 
(6, 6) 3 + 3 

3+3r 1 = ( 1 
6 t -1 -~)-

The diagram whose set of vertices is A0 u llly (resp. A0 u lll6) is of type A5 

(resp. D4); the sum of the coefficients of the roots 1, 5 (resp. the coefficient of 
the root 6) in the dominant root of the corresponding root system is 2 (resp. 11 
therefore 2y is a root (resp. 26 is not a root) and the relative root system is of 
type BC2 • 
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The diagrams whose sets of vertices are A0 , A0 u f!J1 , A0 u f!J 6 , A0 u (!) 1 u f!J, 
are respectively of type A3, A 5, D4 and E 6 . We have therefore, with the notations 
of §2.5.3, 

fo = 12, f 1 = 30, fd = 24, f 1a = 72, 
and 

2. (72 - 12) 
my., = (54 - 24) = 4' 

which is coherent with the preceding conclusions. 
Among the 26 conjugacy classes of parabolic subgroups of G, 24 are defined 

over k and 22 contain a parabolic subgroup defined over k. 
2.6. Isogeny. 
2.6.1. Simply connected covering and adjoint group. 

PROPOSITION 2. We recall that G is a semisimple group defined over k. There 
exists a sequence 

G~G2...+G, 

where G is simply connected and defined over k, G is adjoint and defined over k 
and ft, it are two central k-isogenies. The groups G, G and the isogenies it and it 
are unique up to k-isomorphism. 

PROOF. The theory of split groups ([4, §2], [9]) shows that there exists a sequence 

G'~G'~G', 

unique up to k-isomorphism, where the three groups are split over k, G' (resp. G') 
is simply connected (resp. adjoint), G' is K-isomorphic with G, and ft', it' are 
central k-isogenies. Furthermore, the isogenies if' and it' induce monomorphisms 
¢: AutK(G') -+ AutK(G') and ef>: Aut_rdG') -+ Aut_rdG') (where AutK means "the 
group of K-automorphisms"). The group G can be identified with G' twisted 
by a cocycle IX of r with values in AutK(G'). Twisting G' and G' respectively by 
{fi*(IX) and (/)*(IX) we obtain the desired groups G and G. The unicity-that is, the 
fact that G and Gare necessarily obtained in that way-follows immediately from 
the unicity of the sequence G' -+ G' -+ G' and the injectivity of ¢ and i/), since G 
and G are split over K by Grothendieck's theorem ([4, §2.14], [9]) (a posteriori, 
the proposition shows that G and G split over every splitting field of G). 

2.6.2. Definitions. The groups G and G of the preceding proposition will be 
called respectively the simply connected covering and the adjoint group of G. 

Two groups will be said (strictly) isogenous over k or k-isogenous if all the 
groups and (central) isogenies which occur in the definition of §1.2.1 are defined 
over k. 

2.6.3. PROPOSITION 3. ~f two semisimp/e groups defined over k are strictly k­
isogenous, their indices are isomorphic and their anisotropic kernels and anisotropic 
semisimple kernels are strictly k-isogenous. 
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PROOF. It follows from the definition of the strict isogeny and from Proposi­
tion 2 that the simply connected coverings of the two groups are k-isomorphic. 
Therefore we may assume, without loss of generality, that the two groups in 
question are G and its simply connected covering ii. Besides the general conven­
tions of §2.1, we keep the notations of the proof of Proposition 2, and we 
denote by T' a maximal k-split torus of ii', and by T' its image in G'. Since all 
maximal K-tori of G are conjugate over K, we can assume, without loss of 
generality, that the cocycle oc has value in the normalizer of T' in Auta:(G'), and 
that T' twisted by oc coincides with T. But then, cj;•(oc) has values in the normalizer 
of T' in Auta:(G'), and the torus T' twisted by ci>*(oc) is a maximal k-torus Tof ii, 
whose projection in G is T. Let S be the maximal k-split subtorus of T. Since 
ff is an isogeny, ff(S) = S. The torus S is a maximal split torus of ii, otherwise, 
it would be contained in a bigger split torus S 1 and ff(S 1) would be a split torus 
containing properly S. The proposition is now an immediate consequence of 
the fact that the roots of G with respect to S are the image by ft* of the roots. of 
G with respect to S, and that :if(9'(S)) = 9'(S). · 

2.6.4. REMARK. There may exist k-isogenous groups with different k-ranks, 
and a fortiori different indices. Example: if k is a field of characteristic 2 and 
if Q is a nondegenerate quadratic form in three variables, with defect 1, which 
does not represent 0 (the existence of such a form implies that k is not perfect) 
the groups SL2 and 0 3(Q) are k-isogenous and their relative ranks are respectively 
1 and 0. (The proofs of these statements are essentially found in [4, §4.26), 
although the explicit example given there is incorrect, since the quadratic form 
Q which is written down obviously represents 0.) 

, 2.7. A Witt-type theorem/or the semisimple groups ([27), [38), [40)). 

2.7.1. THEOREM 2. A semisimple group G defined over k is determined up to 
k-isomorphism by its K-isomorphism class, its index and its semisimple anisotropic 
kernel. More precisely, let G' be another group defined over k, let G0 and G0 be 
the semisimple anisotropic kernels of G and G', and assume that there exists an 
isomorphism, of the index of G on the index of G' which is induced by a K-iso­
morphism of G on G', and whose restriction to the index of G0 (cf last paragraph 
of §2.3) is induced by a k-isomorphism of G0 on G0. Then, ' is also induced by a 
k-isomorphism of G on G'. 

PROOF. Let S' be a maximal k-split torus of G'. We identify G0 (resp. G(i) with 
~9'(S) (resp. ~9'(S')) and we set IO = T 11 G0 (for the meaning of S, T, see §2.1). 
The hypothesis of the theorem means that there exists a K-isomorphism </>: G-+ G' 
and a k-isomorphism I/I: G0 -+ G0 such that <P(S) = S', that <P is compatible with 
the •-actions of r on the sets of simple roots (§2.3), and that <PIGo and I/I differ 
only by an inner automorphism of G0. Since the tori </>(T0 ) and l/J(T0) are both 
split over K, there is no loss of generality in assuming, after combining <P with 
an inner automorphism by an element of G0.a:, that <P and I/I coincide on T0 

[4, §4.21 and §5.3). We set T0 = </1(T0 ) and T' = </1(T), and denote by x the 
isomorphism X*(T) -+ X*(T') induced by q,- 1. 
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Since S' and T 0 are defined over k, so is T' = 1r(S' · T0). From the assumption 
made, that <P is compatible with the *-actions of r, it follows that, for every 
a er, the homomorphism q,- 1a- 1<J>a: X*(T)-+ X*(T) is induced by an element 
w of the Weyl group. Since the restrictions of </> to T0 and S are defined over k, 
w induces the identity on To and S, and therefore is the identity (because 
1r(T0 • S) = T). Thus, <Pa = a<J>, which means that the restriction of </> to Tis 
defined over k. 

The one-parameter group corresponding to a root oc (of G relative to T) will 
be denoted by U". For every simple relative root ye 1~. let I:y (resp. I:2 y) be the 
set of all absolute roots whose restrictions to Sis y (resp. 2y), and let U1y> (resp. U 2y) 
be the subgroup of G generated by the U .. with oc e I:y u I:2y (resp. oc e I:2y). The 
group Vy = U1y/U 2 y is defined over k and has a natural structure of vector space 
defined over k [4, §3.17]. The torus Tacts on Vy (through its action on U1Y> by 
inner automorphisms1 this representation of Tin VY is defined over k and its 
weights are the elements of I:y. Similarly, V~ = </>(U1yi)/</>( U 2y) is a vector space 
defined over k on which T' acts, the weights of this action being the elements of 
x(I:y). It is now easy to show-we leave it to the reader-that there exists a 
vector space isomorphism Ly: Vy-+ V~, defined over k which is compatible with 
the actions of T and T' and the isomorphism tf> 11·: T-+ T'. For each y e tA we 
choose such a Ly. 

For every simple root oc e ~. let ef> .. : U .. -+ U xlcal be the K-isomorphism defined 
as follows. If oc e ~0• ef> .. is the restriction of t/I to u .. , and if the restriction of oc 
to S is y, <i> .. is the unique homomorphism which makes the diagram 

u .. ~ux(a) 
! ! 
J(~ V' y y 

commutative (the vertical arrows are the natural projections; they are injective). 
It follows from the proof of Theorem 2.13 in [4], that there exists a unique 
K-isomorphism cP: G-+ G' whose restrictions to the U a's and Tcoincide respec­
tively with ef> .. and <PIT· We claim that <i> is in fact a k-isomorphism. To prove 
this, it suffices to show that <i>K: GK -+ Gi is compatible with the action of r. 
But it follows immediately from the way cPa has been obtained and from the fact 
that <PIT is defined over k, that the restriction of <i>K to the Ua,K's and to TK are 
compatible with the action of r. In other words, if a er, the homomorphisms 
cPK and a- 1ef,Ka coincide on U a,K and TK. Since a- 1</>Ka is the restriction to GK 
of a K-isomorphism G-+ G', it follows from the unicity of ef, that a- 1ef>Ka = ef,K, 
which finishes the proof. 

2.7.2. REMARKS. (a) The group G is already determined, up to k-isomorphism, 
by its K-isomorphism class, its index and its semisimple anisotropic kernel, 
given up to k-isogeny. More precisely, it would suffice, in the statement of the 
theorem, to assume that the restriction of i to the index of the semisimple 
anisotropic kernel of G is induced by a k-isogeny. Indeed, this isogeny is then 
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automatically an isomorphism, as a result of the fact that ' is induced by an 
isomorphism of G. 

(b) The group G is determined up to strict k-isogeny by its strict K-isogeny 
class, its index and the k-isogeny class of its semisimple anisotropic kernel. 
This is an immediate consequence of the preceding theorem and the Proposi­
tions 2 and 3. 

(c) The reader will have no difficulty to state for the reductive groups a theorem 
analogous to Theorem 2. 

(d) There is a trivial but sometimes useful generalization of the Theorem 2, 
which we want to mention. Let S' be any k-split torus in G, let A' be the set of 
simple roots of G with respect to some maximal torus T' containing S' and some 
ordering of X*(T') compatible with an ordering of X*(S'~ and let A0 be the set 
of simple roots vanishing on S'. Exactly as in §2.3, we can define the *-action 
of r on A'. Let us call partial index (relative to S') the data consisting of A' 
(together with the Dynkin diagram), A0 and the *-action of r on A'. Then, in 
the statement of §2.7.1, one can replace the index and the semisimple anisotropic 
kernel respectively by the partial index relative to some k-split torus S' and the 
"corresponding semisimple kernel" !i)fl'(S') (which is still defined over k, but is 
no longer anisotropic in general). 

3. Oassification. According to the Theorem 2, the problem of classifying the 
semisimple algebraic groups over a given field k can be decomposed into two 
steps which can roughly be formulated as follows: 

(1) Find all admissible indices of semisimple groups over k; 
(2) For a given index, find all possible semisimple anisotropic kernels. 
These two questions will be discussed here. However, we shall not consider 

the problem of classifying all anisotropic groups over k, which theoretically falls 
under (2) and is usually by far the most difficult part of the classification problem. 

3.1. Preliminary reductions. 
3.1.1. Reduction to the simply connected (or to the adjoint) case. Let there be 

given a simply connected group G defined over k, a group G' defined over K 
and a central K-isogeny x': G-+ G'. Under which condition does G' admit a 
k-structure such that x' becomes a k-isogeny? More correctly, under which 
condition does there exist a group G, defined over k, and an isomorphism 
f: G'-+ G such that f 0 x' is a k-isogeny? The answer is easy to formulate in 
terms of the index of G: Following §1.5, we can associate to G a finite group 
C(G) = C and the isogeny x' is then characterized up to equivalence by a sub­
group C' of C (the kernel of the homomorphism C-+ C(G') induced by n'). 
Through its *-action on the Dynkin diagram of G, the Galois group operates 
on C, by §1.5.3 (2). Then: 

The group G exists if and only if C' is invariant by r. In that case, G is unique 
up to isomorphism (more precisely, given two solutions f: G'-+ G and f1 : G'-+ G1 

of the above problem, there exists a k-isomorphism <P : G -+ G 1 such that f 1 = <P of). 
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The proof of this assertion, which goes along the line of §2.6.1, is quite easy 
and will not be developed here. 

Notice that the condition imposed on C' is automatically satisfied when G' 
is an adjoint group (C' = C). The classification of adjoint groups over k is 
therefore completely equivalent with the classification of simply connected groups. 

3.1.2. Reduction to the absolutely simple case. Let k' be a field such that 
k c k' c K, let A = Gal(K/k'), let H be a semisimple group defined over k' 
which splits over K, and let G = Rk'!k(H) be the group obtained from H by 
restriction of the scalar .fieid from k' to k. (We shall not give here the definition 
of the functor Rk'/k• which can be found in [4]; let us just indicate that it is the 
algebro-geometrical analogue of the process of going over from a complex 
manifold to the underlying real manifold, and that the dimension of G is that 
of H multiplied by [k': k]). 

The k-index of G can be deduced as follows from the k' -index of H: tf denoting 
the Dynkin diagram of H, Jet !!} be the disjoint union of [k': k] copies of & indexed 
by the elements of r/A; identify the copy indexed by A/A with tf itself; let r 
operate on ~ in such a way that r permutes the copies of 8 in agreement with 
the natural action of r on r/A, and so that the restriction of the action of r on 
!!} to A and tff' coincides with the *-action of A on 8; finally, distinguish in !!} 
the vertices of If which are distinguished in the k' -index of H and all their 
transformed elements of r. 

If H0 denotes the semisimple anisotropic kernel of H (over k'), the semisimple 
anisotropic kernel of G is Rk'/k(H 0 ). 

The reduction announced in the title of this section is now achieved by the 
following proposition. 

Every semisimple simply connected group defined over k is in a unique way a 
direct product of almost k-simple simply connected groups (a group is almost 
k-simple if it has no infinite normal subgroup defined over k). If G is almost k-simple 
and simply connected, there exists a field k' and an (absolutely) almost simple 
simply connected group H defined over k', such that G ~ k Rk'/k(H). 

In that proposition, "simply connected" may be everywhere replaced by 
"adjoint," in which case, the "almost" can be dropped. 

3.2. Some necessary conditions (independent of the ground field) for the admis­
sibility of indices ([4], [38), [40]). 

3.2.1. Self-opposition. The index of a group G is invariant under the opposition 
involution i (that is, i commutes with the *-action of r, and leaves invariant L\0). 

3.2.2. An induction process. If, from the index of a group G, one removes a 
distinguished orbit (!) (together with all strokes which have at least one endpoint 
in l!J), the result is again an admissible index. (It is the index of the group !!}~(S') 
where S' is the connected component of the intersection of the kernels of all 
relative simple roots which do not correspond to (!).) This, together with §3.2.1, 
provides an inductive process to exclude many indices from admissibility. 

EXAMPLE. Consider an index whose underlying Dynkin diagram !!} is of type 
An and such that the *-action of r on this diagram is trivial. The vertices of !i) 
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being given the natural ordering from 1 ton (see Table I), let a 1 < a2 < · · · < a, 
be the distinguished vertices. Then, one has a1 = i · (n + 1)/(r + 1). The proof 
goes by induction on r. When r = l, the statement follows from §3.2.1. Assume 
now that r > 1. The assertion above for l9 = {a,} implies, by virtue of the 
induction hypothesis, that a1 = i · a,/r. Similarly, for l9 = { ~.- 1 }, we have 

a, - a,_ 1 = n + 1 - a,. 

These two relations imply the statement. 
3.2.3. Other admissibility conditions for indices may be deduced from the 

formulae in §§2.5.2 and 2.5.3, which must lead to actual root systems and Weyl 
groups. For instance, the numbers m11 of §2.5.3 must be integers, equal to 2, 3, 
4 or 6, and the integer n of §2.5.2 must be ~ 2. This last condition excludes such 
indices as 

I 
or 

3.3. Further admissibility conditions, for various special gro1'nd fields. 
3.3.1. Finite.fields ([20], [31], [33], [43]). If the ground field k is finite L\0 =0; in 

other words every orbit of r in .'.\ is distinguished. This holds, more generally, 
whenever the cohomological dimension of k is 1. 

3.3.2. Real numbers ([17], [18], [26], [40]). Let k = R and K = C. Then, if G 
is anisotropic, the unique nonneutral element of r operates on the Dynkin 
diagram by the opposition involution. 

3.3.3. p-adics ([23], [45]). Let k be the field of p-adic numbers (for some p). 
Then, a group G which is anisotropic and absolutely almost simple is of inner 
type A" ( §2.3). 

Notice that the two preceding statements give admissibility criterions (over the 
reals and the p-adics) for arbitrary diagrams, since the removal of all distinguished 
vertices from an admissible diagram must give rise to an admissible "anisotropic 
diagram" (in the p-adic case, one must occasionally also make use of the reduction 
of §3.1.2). 

EXAMPLE. The index 

I 
cannot occur over the reals (whereas it does over the p-adics) and the index 
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cannot occur over the p-adics (whereas it does over the reals). 
3.3.4. Number fields ([I], [19]). By means of the "Hasse principle," one can 

also use §§3.3.2 and 3.3.3 to exclude certain indices in the case of number fields. 
All admissibility conditions stated in §3.3 are necessary conditions. Only in 

the first case (finite fields) are they also sufficient ([20], [31], [33), [43]). A com­
plete list of all effectively admissible indices over the various types of fields 
considered here is given in Table II. 

3.4. Necessary and sufficient conditions on the anisotropic kernel ([30], [31], [38)). 
3.4.1. Statement of the problem; notations. The problem we want to study is the 

following: 
Given an index J, consisting of a Dynkin diagram!!), an action ofr = Gal(K/k) 

on !!) and a set d 0 , invariant by r, of vertices of!!) (the nondistinguished vertices~ 
and given a group A, defined and anisotropic over k, whose index J 0 is (modulo a 
preassigned identification) the subindex of J having d 0 as set of vertices, then under 
which condition does there exist a group G, defined over k, with index J, whose 
semisimple anisotropic kernel is strictly isogenous to A, the isogeny being com­
patible with the given injection J 0 _. J? 

(Concerning the fact that we want A to be the kernel only up to strict isogeny, 
see §§2.7.2(b) and 3.1.1.) There is no loss of generality in assuming-which we 
shall do-that the group A is simply connected. 

We call !1) 0 the underlying Dynkin diagram of J 0 (that is, the subdiagram of~ 
whose set of vertices is d 0), Gd a semisimple adjoint k-split group whose Dynkin 
diagram is !!) (after preassigned identification), G" a semisimple adjoint k-quasi­
split group whose diagram is !!) and such that the *-action of r on !!) is the one 
given by J, Td a maximal k-split torus of Gd, and T" a maximal k-torus of G4 

containing a maximal k-split torus Ttd. We choose orderings in the character 
groups X*(Td) and X*(T"), the ordering in X*(T") being compatible with an 
ordering in X*(T"d). The simple roots with respect to these orderings are in 
canonical 1-1 correspondence with the vertices of!!), and will usually be repre­
sented by the same letters. We denote by~ (resp. S") the connected component 
of the subgroup of Td (resp. T") defined by the equations (1) of §2.5.l. 

In view of the various identifications which have been made, both the groups 
G~ = ~~(Sd) and G6 = !'}~(S") have !1)0 as Dynkin diagrams. In particular, 
they are strictly isogenous to A. Furthermore, the *-operation of r on !1)0 is 
the same for the two groups G6 and A. From all this, it follows that the group 
A can be viewed, either as the simply connected covering G~ of G~ twisted 
by a 1-cocycle •d of r with values in Aut~G/i), or as Gg twisted by a 1-cocycle 
•"of r with values in IntK(Go) = Gtx; here, AutK (resp. IntK) denotes the group 
of K-automorphisms (resp. ihe group of inner K-automorphisms), and Go is 
the adjoint group of G0. 
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3.4.2. Cohomological formulation of the condition. An operation of r on the 
Dynkin diagram g; being given, to each element of r is associated a coset of 

Aut(G") modulo Int(Gd) (§1.5.6); we shall say that a 1-cocycle of r in a subgroup 
of Autrc(Gd) is compatible with the action of r on !!} if it sends each element of r 
in the corresponding coset. If H denotes ·an algebraic group defined over k, two 
1-cocycle -r, 'l'1 of r with values in Autrc(H) will be called innerly cohomologous, 
if there is an element c of Intrc(H) such that -r'(y) = c- 1 • -r(y) · y(c) for every ye r. 

PROPOSITION 4. Let BK be the centralizer of Sd in AutK(Gd). Then, each one of the 
following two conditions is necessary and sufficient for the existence of the group 
G (§3.4.1). 

(i) The cocycle -rd is innerly cohomologous with a cocycle of the form <P*('l'), where 
'l' e Z 1(r, BK) is a cocycle ofr, with values in BK, compatible with the given action of 
r on!!}, and where <J>*:Z1(r,BK)-+ Z 1(r,AutK(G~)) denotes the mapping ofl-cocycle 
sets induced by the homomorphism BK-+ AutK(Gi), composed of the restriction 
homomorphism BK-+ AutK(G~) and the natural injection AutK(G~)-+ AutK(G~). 

(ii) The cohomology class of the cocycle 'l'q belongs to the image of the homo­
morphism H 1(r, ~(S~K) -+ H 1(r, Gi.K) induced by the natural projection 

~(Sq)K -+ Gi_K 

(here, ~ stands for "centralizer in Gq"; notice that Gi is the quotient of ~(S4) by 
its center). 

PROOF. If the condition (i) is satisfied, the group Gd twisted by the cocycle -r has 
all the properties required from G. Conversely, suppose that G exists. By §2.6.1 
we can assume, without loss of generality, that G is an adjoint group. Let S be a 
maximal k-split torus of G. From the assumptions made on G and the definition 
of S", it follows tnat there exists a K-isomorphism <P: G-+ Gd, compatible with 
the given identification of the Dynkin diagrams of Gd and G, and such that 
<P{S) = Sd. Then, the cocycle 'l' defined by -r(y) = y(<J>) o q,- 1 has the properties 
required in the condition (i). 

The proof for condition (ii) is similar. 
3.4.3. Linear representations: terminology, notations. In the next proposition, 

we want to interpret the condition (i) of §3.4.2 as an existence condition for certain 
linear representations of A defined over k. 

Let {Pi: A -+ GL(fli)li e J} be a finite set of linear representations of A defined 
over K, and let there be given a permutation action of r on this set, or, what 
amounts to the same, on the set of indices I. Then, we shall say that the rep­
resentation ©Pi• together with the given action of r, is r-equivalent to a rep­
resentation p :A -+ GL(V) defined over k, if there exists a K-isomorphism 
I/I: © V; -+ V such that p is the composed homomorphism A -+ GL( © V;) -+ GL(V) 
(where the first arrow is ©Pi and the second one is induced by 1/1), and such that, 
for all ye r and all i e J, y(l/l(fli)) = l/ICJ-;,(i)). If the action of r on I is trivial, this 
simply means that each Pi is equivalent to a representation defined over k. 

We choose once and for all a K-isomorphism <P: A -+ G~. Given a linear 
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representation p: G~ ..... GL(V) of G~, we shall denote by the same symbol p this 
representation lifted to G~ (that is, composed with the canonical isogeny G'o ..... G~). 
and also the representation p o <P of A. A representation of A obtained in that 
fashion will be said to factorize through G~; if p: G~ ..... GL(V) is an isomorphism 
of G~ on a subgroup of GL(V), we shall say that p: A ..... GL(V)factorizes through 
a faithful representation of G~ (at this point, it should perhaps be recalled that 
G~ is the isogenous image of A which is imbedded in the adjoint group G"). 

Let A stand here for the set of all simple roots of G", and let Q be the set of all 
integral linear combinations w of elements of A such that P*(w) ~ 0 for all Pe A0 • 

For every we Q, the restriction of w to T~ = T 11 n G~, is the dominant weight of 
a certain irreducible representation of G~ defined over k. 1 This representation, 
and the corresponding representations of Gti and A, will be denoted by p,,,. It is 
customary to characterize an equivalence class of irreducible representations of a 
split group by a set of nonnegative integers attached to the simple roots, namely 
the "normal coordinates" of the dominant weight (see for instance [4, §12.2]). 
For the representation p,,,, these numbers are P*(w). Particularly important is the 
case where we A'= (A - A0) u {-µ}(where -µis the dominant root of G"); 
these integers are then immediately read on the affine Dynkin diagram !iJ'. 

The action of r on A given by J induces an action of r on Q; it is this action 
which the following proposition refers to 

3.4.4. Representation-theoretical formulation of the condition. 

PROPOSITION 5. Let ff be a.finite subset of Q invariant by r. Then, a necessary 
condition for the existence of the group G is that the sum of the representations 
p00(w E ff), together with the given action of r on Q', be r-equivalent with a rep­
resentation of A defined over k. If Q' = A - £10 , this condition is also sufficient. 

COROLLARY 1. A necessary condition for the existence of G is that the re­
presentation P--,,. (where-µ denotes the dominant root of G") be equivalent with a 
representation defined over k. 

We shall only briefly sketch the 
PROOF OF PROPOSITION 5. The following notations will be used : V,,, is the 

vector space over k in which the representation p,,,: G~ (or Gti. or A)-+ GL(V,,,) 
is given, 

f' is the image of r by the homomorphism r -+ Aut(!iJ) given by J, B is the cen­
tralizer of Sd in the algebraic group Aut(G"), and Bis the inverse image off' by the 
natural homomorphism B-+ Aut(!iJ) (§1.5.6). The group Bis (over K) the semi­
direct product of ii0 = .?l'(S") (centralizer in G") and a finite group canonically 

1 The author has been told-but has not verified-that the theory of linear representations developed 
in [7] in the algebraically closed case works equally well for split groups over arbitrary fields. If the 
reader is not willing to accept this fact, he may feel safer in assuming, from now on, that char k = O; 
however, this restriction is undoubtedly much too strong since all results obtained here may already 
be established-by somewhat more complicated arguments-in the framework of the classical 
representation theory, provided the characteristic of k is "not too small" ( # 2, 3 and possibly 5). 
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isomorphic with t; we choose, once and for ali such a semidirect decomposition 
of fj and identify the finite group in question with r itself. 

We now extend p to a representation p: B -+ GL(V) such that {J(y)(V"') = Ji;,cw> 
for every ye f (notice that, as a subgroup of Aut(~), f operates on L1, and there­
fore also on Q'}. This is done as follows: 'First extend p to a representation 

p0 : IJ0 -+ GL(V) 
by imposing that, for every element t of the center of fJ0 , p0(t) leaves invariant 
each V"' and induces on V"' the scalar multiplication by w(t) (this expression 
has a meaning since t e Td); then, choose in each V"' an eigenvector v"' belonging 
to the dominant weight; finally, notice that, in view of the unicity of the rep­
resentation with a given dominant weight and because of Schur's lemma, µ0 

extends uniquely to a representation p of fj such that {J(y)(v"') = Vy(w) for ally E f 
and all w e Q'. 

Now, assume that the group G exists. Then, there exists a 1-cocycle • e Z 1(r, BIC) 
satisfying the condition (i) of §3.4.2. The compatibility of T with the action of r 
on~ implies that-re Z 1(r, BIC}. But we have defined an action of IJIC on the object 
(G~, V, p) (BIC operates on Gd by the lifting of restrictions of inner automorphisms, 
and on V through {J). We can therefore twist that object by T, and we obtain that 
way the representation of A (more precisely, of a group k-isomorphic with A) 
whose existence we had to establish. 

Conversely, suppose that Q' = L1 - l10, and that the condition stated is 
satisfied. This condition means that there exists a representation p': A -+ GL(V') 
of A defined over k, having certain properties which we do not repeat here. The 
two objects (A, V', p') and (G~, V, p) are K-isomorphic; therefore, the first one is 
isomorphic with the second one twisted by a cocycle •' of r with values in 
AutIC(G~, V, p). But it is easy to see that, in the special case considered here (that is, 
the case where ff = L1 - L10), the group IJ0 is canonically isomorphic (through 
the natural action of IJ0 on G~ and the representation ~0) with the group of all 
automorphisms of the object (G~, ~. Pw(w e Q')). As a consequence, the action 
considered above of BIC on (G~, V, p) defines an injection of BIC in AutIC(G~, V, p). 
Furthermore, the conditions imposed on the representation p' imply that the 
cocycle -r' has values in the image of BIC by this injection; lifting it to BIC, we obtain 
a cocycle -re Z 1(r, BIC) satisfying the condition (i) of §3.4.2, and the group G 
exists by Proposition 4. 

3.4.5. The case of inner forms. When the action of r on~ given by J is trivial, 
the Propositions 4 and 5 can be given a much simpler and (for the second one} 
more general form. Notice that in that case, there is no difference between Gd 
and G4, and that we can set -rd = -r4, which is now a 1-cocycle with values in G~,IC 
(where the bar means, as before, "adjoint group"). 

PROPOSITION 6. Assume that r operates trivially on~. Then, the group G exists 
if and only if the cohomology class of Td in H 1(r, ~.K) belongs to the image of the 
homomorphism H 1(r, G~.K)-+ H 1(r, G~.K) induced by the canonical projection. 

PROOF. Setting S1 = Sd/(Sd n G~) (where the intersection must be understood 
in the set theoretical sense), we have a short exact sequence 
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{1}-+ G~.a:-+ !l'(Sd)a:-+ S1,a:-+ {1}. 

(Notice that there is a purely inseparable extension S1 -+ !l'(S11)/G~, which is not 
always an isomorphism.) Since S1 is a k-split torus, we have, by Hilbert Theorem 
90, H 1(r, S1,K) = {O}. Now, it follows from the cohomology sequence associated 
with the above exact sequence that the homomorphism 

H 1(r, G~.K)-+ H 1(r, !l'(S")K) 

induced by the inclusion is surjective. Our proposition is then an immediate 
consequence of the second part of Proposition 4. 

PROPOSITION 7. Assume that r operates trivially on ~. Let p be any i"educible 
linear representation of A defined over K which factorizes through G~; then, a 
necessary condition for the existence of the group G is that p be equivalent with a 
representation of A defined over k. Let {p1} be a set of irreducible linear rep­
resentations of A defined over K whose direct sum factorizes through a faithful 
representation of G~ (§3.4.3); then, a necessary and sufficient condition for the 
existence of G is that each Pi be equivalent with a representation of A defined over k. 

PROOF. We may assume that p considered as a representation of G~, is defined 
over k. Let V be the vector space over k in which this representation is made. 
If the group G exists, the Proposition 6 shows that we can find a 1-cocycle 
t E Z 1(r, G~,K) whose image in Z 1(r, ~.K) is cohomologous with t 11• Twisting the 
object (G~. V, p) (on which G~.IC operates in the obvious way) by this cocycle t, 
we obtain the representation of A searched for. 

We now pass to the proof of the second part of the proposition, and first make 
an assumption similar to the one above, namely that the p1 : G~ -+ GL(Y;) are 
representations defined over k. Let H be the connected component of the (alge­
braic) group of automorphisms of the object (<%, {Y;}, {p1}). Assume that each 
p1, considered as a representation of A, is equivalent with a representation 
p;: A -+ GL(V;) defined over k. Then, the object (A, {v;}, {p;}) is isomorphic with 
the object (G~, { V;}, {pi}) twisted by a certain 1-cocycle in Z 1(r, HK) whose image 
in GtK (by the obvious homomorphism H -+ Gti) is cohomologous to t"; in 
particular, the cohomology class of t 11 belongs to the image of the homomorphism 
H 1(r, HK)-+ H1(r, 01,,K). On the other hand, if (Bp1 is a faithful representation 
of G~, there is a natural injection G~ -+ H (the group ~ operates on ~ by lifting 
of inner automorphisms, and on Y; through p1) and H is an almost direct product 
(i.e. a direct product up to central isogeny) of G~ and a k-split torus. Then, 
exactly by the same argument as in the proof of Proposition 6, one shows that the 
homomorphism H 1(r, G~.K)-+ H 1(r, HK) is surjective. Therefore, the cohomology 
class of t 11 belongs to the image of the homomorphism H 1(r, G~,K)-+ H 1(r, G~.K), 
and it follows from the preceding proposition that G exists. 

3.4.6. REMARK. In §3.4, we have always assumed that the group A was aniso­
tropic; however, everything which has been said generalizes immediately to the 
(slightly) more general situation described in §2.7.2 (d). 
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TABLE I: Dynkin Diagrams 

EXPLANATIONS 
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See §§1.l and 1.2.2. The vertex representing the minimal root is called µ; 
the vertices of the ordinary diagram are numbered in order to enable references. 

(E,) 

-----· • • • t----t:::;):::: 2 3 n-2 n....:1 n 

~ ~:~ ...... ---· ••• t-1 -~I x:<=1 
µ 2 3 n-2 n-1 

µ .. 
I . 
i 

I r -------- ... ·--------11 2 3 n-3 n-2 n-1 
Tµ 

I 

I 

r 

n 

3 

t---11---11--...,jl .... 
7

_....+l --+1 -----+ 

2 4 5 

2 3 4 5 6 µ 

r 
:----+----1!---1~---11--·5---11----1~ 

t---1!=:1:(::::11--+! - -~ 

( 1----t 
2 µ 
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TABLE II: Indices 

EXPLANATIONS 

In this table, we enumerate all possible indices of absolutely simple groups 
(for the definition of the index and the diagrammatical representation, see §2.3; 
for the nonabsolutely simple case, see §3.1.2); all the indices which_are listed can 
effectively occur over suitably chosen fields. 

The letters n, r, d, a, m all denote nonnegative integers; n and r are respectively 
the absolute rank and the relative rank of the considered group, in other words, 
they are respectively equal to the total number of vertices and to the number of 
distinguished orbits of the diagram; in particular, they verify the relation 
0 ~ r ~ n; all other conditions imposed on n, r, d are stated explicitly in each case. 

The numbers attached to braces always indicate the total number of vertices 
in the part of the diagram spanned by the braces in question. 

In the case of the classical types, the indices cannot be drawn completely, 
because of the indeterminacy of the rank n; as they are represented, the pictures 
should be self-explanatory; however, to exclude any possibility of misinter­
pretation, we give separately, in those cases, the list of distinguished orbits, where 
we use the numbering of vertices fixed by Table I. 

In order to make easier, later references to this table, we propose a notation for 
the various indices. In the symbol 9 X~ ... n and r are respectively the absolute and 
the relative rank, g denotes (as already in [43]) the order of the quotient of the 
Galois group r which operates effectively on the Dynkin diagram (in case the 
diagram has no nontrivial automorphism, g is necessarily = 1, and we omit it in 
the symbol) and tis a further invariant: in the case of classical types, tis the degree 
of a certain division algebra which occurs in the definition of the considered form, 
and in the case of exceptional types we have chosen as characteristic number t 
the dimension of the anisotropic kernel ; in order to emphasize the difference 
between these two cases, we put t between parentheses when it stands for the 
degree of a division algebra. (N.B. Here, by degree of a central division algebra, 
we mean the square root of its dimension.) In the case of real forms of exceptional 
groups, the correspondence between our present notation ftX~.r and the notation 
Xn(iJ jntroduced in [37] (where i was the Cartan "index") is given by the relation 
i = r - t. 

F means "finite fields," R "the field of real numbers," p "p-adic fields" and 
n "number fields"; in the part of the table which deals with the exceptional 
types,"+" means "exists," and"-," "does not exist." When we say that a form 
exists over-say-number fields, it means that there exist number fields where 
the form occurs. Everything which we say about finite fields except the non­
existence of 6 D~. 2 , extends to an arbitrary field of cohomological dimension 1. 

In the classical case, we give an "explicit" description of the groups having 
the various indices. Actually, we describe only one representative of each strict 



CLASSIFICATION OF ALGEBRAIC SEMISIMPLE GROUPS SS 

isogeny class; furthermore, the groups we describe are in fact abstract groups, 
but they are all, in a natural and rather obvious way, the groups of rational 
points of the algebraic groups we have in mind. The notations SL, Sp· · · are those 
of Dieudonne [10], except that we write SU and SO instead of u+ and 0 +. For 
further information concerning the classification in the classical case, see [46] 
(which has been extensively used to set up that part of the present table) and [25]. 

[x] means "the largest integer ~ x." 

TYPE 1An 

(!Aid)) t---4•••1 ~, ... ,EB ··········I E9 l•••I EB ..... ~ 
n,r ----v-' '--y-J ~~ 

d-1 d-1 d-1 d-1 

Conditions: d · (r + 1) = n + 1, d ~ 1. 
Distinguished vertices: d, 2d, · · · , rd 
Description: Special linear group SL,+ 1 (D1 where D is a central division algebra 

of degree d over k. 
Special fields: Over F, d = 1; over R, d = 1 or 2; over p and n, d may be 

arbitrary. 

TYPE 2An 

2(d - 1) 2(d - 1) ... 2(d - 1) 

' 
(When n + 1 = 2rd, the right end becomes : : : ~ .) 

Conditions: din + 1, d ~ 1, 2rd ~ n + 1. 

····~ .. ' .,_,.,..., 

···--­... ...._.......... 

v 
n - 2rd 

Distinguished orbits: (d, n + .1 - d), (2d, n + 1 - 2d), ···,(rd, n + 1 - rd). 
Description: Special unitary group SU1n+IJ/d(D, h1 where Dis a central division 

algebra of degree d over a quadratic extension k' of k with an involution of the 
second kind u such that k = {x e k'lx°' = x}, and his a nondegenerate hermitian 
form of index r relative to a. 

Special fields: Over F, d = 1 and r = [(n + 1)/2]; over R, d = 1; over p, d = 1 
and n = 2r - 1, 2r or 2r + 1; over n, there is no special restriction on d and r. 

@---G ... <B---@--+---tl ..• ~ 
,__ __ _,, ·------v v 

r n-r 
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Conditions: 
Distinguished vertices: 1, 2, · · · , r. 
Description: Special orthogonal group S02n+ 1(k, q), where q is a quadratic 

form of index r, and defect 1 in case char k = 2. 
Special.fields: Over F, r = n; over p, r = nor n - 1; over Rand n, there is no 

special restriction on r. 

(C~~~) 
1--1···1 ~ •••. , 6) , ......... , $ , ... , ee I • . • t---t:(::t 

v ~ '-v-' 
d-1 d-1 

~ 
d - 1 n - rd 

(When n = rd, the right end becomes ~ ). 

Conditions: d = 2al2n, d ~ 1 ; if d = 1, n = r. 
Distinguished vertices: d, 2d, · · · , rd. 
Description: Special unitary group SU 2n1J..D, h), where D is a division algebra 

of degree d over k, and h is a nondegenerate antihermitian sesquilinear form of 
index r relative to an involution u of the first kind such that D" (the space of 
symmetric elements) has dimension !d(d + 1). When d = 1, the group becomes 
simply Sp2n(k). An equivalent description, when d > 1 and char k ':!= 2, is: 
SU ln/d(D, h), where D is as above, and h is a nondegenerate hermitian form of 
index r relative to an involution u of the first kind such that dim D" = !tJ(d - 1). 

Special.fields: Over F, d = 1; over Rand n, d = 1 (and r = n) or d = 2; over p, 
d = 1 (and r = n) or d = 2 and n = 2r or 2r - 1. 

TYPE 1Dn 

(1 D!,".~) 

~<i!~e , ......... , •~e ····---< 
' I d-1 d-1 d-1 v 

n - rd 

(When n - rd ~ 2, the right end has one of the following forms : 

... ti' ifn=2r d=2· 
~ , , 

··· < ifn~nl,d"'J; ... < if n = rd + 2; 

the case n = rd + 1 cannot occur.) 
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Conditions: d = 2°12n, d ~ 1, rd ~ n, n :;. rd + 1. 
Distinguished vertices: d, 2d, · · · , rd. 

57 

Description: If char k # 2, special unitary group SU 2n14(D, h~ where D is a 
central division algebra of degree 2 over k, and h is a nondegenerate hermitian 
form of discriminant 1 and index r, relative to an involution u of the first kind 
such that D" (the space of symmetric elements) has dimension fd(d + 1). An 
equivalent description is, when d > 1 : SU 2n1tJCD, h) where D is as above, and h is a 
nondegenerate antihermitian form of discriminant 1 and index r, relative to an 
involution u of the first kind such that dim D" = jd(d - 1). 

If char k = 2, "special orthogonal group" S02n14(D, h~ where Dis as above, and 
h is a nondegenerate and nondefective "quadratic form" of discriminant 1 and 
index r, relative to an involution of the first kind of D (with a suitable extension 
of the notion of quadratic form, introduced in the quaternion case by E. A. M. 
Seip-Hornix (28)). 

Special fields: Over F, d = 1 and n = r; over R, d = 1 and n - r = On, or 
d = 2 and n = 2r; over p, d = 1 and r = n or n - 2, or d = 2 and n = 2r or 
2r + 3 ; over n, d = 1 and n - r = 2m, or d = 2 and n - 2r = 2m or 3. 

TYPE 2D. 

(2D~~!) 
-···• e , ... ,ii, ......... , Ee, •••• G: •···..---C: 

~~ 
d - 1 

v 
n - rd 

" 

(When n = rd + 1, which implies d = 1 or 2, the right end becomes respectively 

···~ ... ~.) 

Conditions: d = 2°l2n, d ~ 1, rd;:;:!! n - 1. 
Distinguished orbits: d, 2d, · · · , rd; the last one is replaced by (n - 1, n) when 

n=rd+l. 
Description: The same as for 1 D~~~. except that all forms in question have now 

discriminant :;. 1. 
Special.fields: Over F, d = 1 and n = r + 1; over R, d = 1 and n - r = 2m + l, 

or d = 2 and n = 2r + 1 ; over p, d = 1 and n = r + 1, or d = 2 and n = 2r + 1 
or 2r + 2; over n, d = 1 or 2, and there is no special condition on r. 
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TYPES 3D4 AND 6D4 

Symbol Index Special fields 
F R p n 

JD2s } : J + 4,0 ( 
6D2s l + 4,0 

3D9 }~ { + 4.1 

6D9 + 4,1 

3D2 }~{ + + + 4,2 

6D2 + + 4,2 

TYPE 1E6 

Symbol Index Special fields 
F R " n 

1 £78 
6,0 

I + 

l £~~2 <i)l-----lf---... I----© _ + + 

l £16 
6,2 1--~+---Ip.a.+..--+--~I - + + 

1 £~.6 (t>1---<@--I--ot1@---;© + + + + 

REMARK. 1 £~~2 is the form which can be realized as collineation group of a 
Cayley plane ([15), [32], [35]); 1 £~~2 is the form which is constructed by means of 
an associative division algebra of degree 3 ([38], [44]). 
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TYPE 2£6 

Symbol Index Special fields 
F R p n 

2£78 
6,0 ~ + + 

2£35 
6,1 ~ + 

2£29 
6,1 ~ + 

2£16' 
6,2 ~ + + 

2£16" 
6,2 ~ + 

2£2 
6,4 ~ + + + + 

REMARKS. ~E~~~ is the real form of E6 which gives rise to a bounded sym-
metric domain. In the list given at the end of (42], the index 2 E~~1 has been 
erroneously omitted. 

TYPE E1 
Symbol Index Special fields 

I F R p n 
£133 + + 7,0 

£78 
7,1 (f) I 

£66 
7,1 

r Q) 

£48 
7,1 ~ 

I 
£31 

7,2 ~ I ED + 

£28 
7,3 @ (;:) I © + + 

Et4 9 I @ © + + + 

E~.1 @ ~ 9 I e ED + + + + 
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REMARK. E~~3 is the form which is constructed by means of a division Cayley 
algebra ([16), [36), [41)); over the reals, it is also the form which gives rise to a 
bounded symmetric domain. 

TYPE E8 

Symbol Index Special fields 
F R p n 

E24B 
8,0 I + + 

(?) E133 
8,1 © I 

E91 
8,1 

I ED -

E'S 8,2 G Ee I -

E66 ©- T © -8,2 

Ela 
8,4 (f) Ee EB I (ti - + + 

E~.s @ Ii:) EE:' @ I Ql @ + + + + 

REMARK. Ei~ is the form which is constructed by means of a Cayley division 
algebra ([16), (44)). 

TYPE F4 

Symbol Index Special fields 
F R p n 

p52 
4,0 < + + 

p21 
4,1 <l> < + + 

F~.4 <D en ~~ ~ © + + + + 
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REMARK. A group of type F 4 is always the automorphism group of an excep­
tional simple Jordan algebra J ((8), [15), [22)); the three diagrams above cor­
respond respectively to the cases where J does not have nonzero nilpotent ele­
ments, has such elements but does not have two nonproportional orthogonal 
ones, and finally has nonproportional orthogonal nilpotent elements. 

TYPE G2 

Symbol Index Special fields 
F R p n 

Gt4 
2,0 I ( I + + 

Gt2 @ ( © + + + + 

REMARK. A group of type G2 is always the automorphism group of a Cayley 
algebra ([21), [31)); the two diagrams above correspond respectively to the eases 
where this algebra is a division algebra, and is split. 
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p-adic Groups 
BY 

FRAN<;OIS BRUHAT 

l. Bounded subgroups. If G is a real connected Lie group, then the following 
two statements are well known: 

(1) Any compact subgroup of G is contained in a maximal compact subgroup 
ofG. 

(2) Two maximal compact subgroups are conjugate by an inner automorphism. 
Now let P be the quotient field of a complete discrete valuation ring (!). Let 

p be the maximal ideal of (!), and let 7t be a generator of p, and K be the residue 
field of (!) by p, i.e., p = t!ht, K = (!)/p. P is locally compact for the topology 
induced by the valuation if and only if K is a finite field. 

Let G be a linear algebraic group defined over P, realized in GL(V) where V 
is a vector space defined over P. Let Gp be the group of P-rational points of G. 
Gp can be considered as a subset of GL(n, P), and also a subset of the ambient 
space P"2 of GL(n, P). With the topology induced by P"'. Gp is a topological 
group. If Pis locally compact, then Gp is locally compact. 

Let K be a subgroup of Gp, then the following three statements are equivalent: 
(i) There exists a locally faithful matricial rational representation p of G defined 

over P s.t. the coordinates of the elements of p(K) are bounded, 
(ii) For any matricial rational representation, the coordinates of the elements of 

p(K) are bounded. 
(iii) For any rational linear representation p of G in a vector space V over P, 

there exists a lattice Lin V s.t. p(k)L = L for any k in K. 
If K satisfies one of the above conditions, K is called a bounded subgroup 

of Gp. 
The condition (iii) implies that any bounded subgroup is contained in an 

open and bounded subgroup. On the other hand,· the open and bounded sub­
groups of G are related with the structure of Gas group scheme over the ring(!): 
let P[G) the affine algebra of G. The product in G gives a structure of coalgebra 
on P[G], i.e., a linear map d: P[G)--. P[G] @p P[G] which is defined by the 
condition: 

d(f) = Lfi ®Ji' - f(xy) = Lfi(x)fj'(y). 

Now, an {!}-structure for G is an {!}-subalgebra of finite type d[ G] such that 
P[G) = Pd[G) and d(d[G)) c: d[G) ®4!1 d[G). 

EXAMPLE. Let G = GL(V), let L a lattice in Vp, (gii) the matrix of g e G with 
respect to some basis of L. Then the algebra d[GL] = (!)[gii• (det(gii))- 1] is an 

63 
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{!I-structure for GL(V). More generally, if G is a subgroup defined over P of 
GL(V), the image of J?l[GL(V)] in P[G] is an l9-structure for G. It can be shown 
that any l9-structure may be obtained in this way. 

If J1I is an l9-structure on G, then for any l9-algebra B (commutative, with 
unit) the set GB= Homti(d, B) is a group. In particular, Gti can be considered as 
a subset of Gp= Homti(d, P) = Homp(P[G], P), and is a bounded and open 
subgroup of Gp. 

We can also "reduce mod p": the algebra J?l/p.!11 over the residual field K 
is the affine algebra of a group scheme over K (which is not necessarily connected, 
nor reduced). If J1I /pd is the affine algebra of a connected algebraic group defined 
over K, we shall say that the reduction mod p of J1I is "good." In this case, the 
canonical map : G ti -+ GK is surjective. 

2. Existence and classification of maximal bounded subgroups. If G is an 
additive group of affine line G0 , then G has no maximal bounded subgroup, 
because (G0 )p = Ul97t-n. More generally it can be proved that if G is not reduc­
tive and if the characteristic of Pis zero, then Gp has no maximal compact sub­
groups. (If the characteristic of P is positive, there may exist a unipotent group 
defined over P without P-rational point, except e, so the above statement is no 
longer true.) In any way the interesting cases are that of reductive or semi­
simple groups. Then we have an existence theorem: 

THEOREM (LANGLANDS). 1 If P is a locally compact field, and G is a reductif?e 
group, tlien any compact subgroup of Gp is contained in a maximal compact sub­
group of Gp. 

PROOF. We may assume G c GL(V1 and irreducible. It suffices to show there 
is no infinite sequence of open compact subgroups K,, s.t. K,, ~ K,,+ 1 ~ • • •• 

Take a lattice L in Vp, and let X,, = { x e Llk.x e L for any k e K,,}. It is obvious 
that X,, is Kn-invariant and X,, ¢ 7tL. Let Y,. = X,, n (L - 7tL). Since X,, is a 
closed subset of L, Y,. is compact nonempty. Let Y be the intersection of all Y,., 
then Y is nonempty. Let X be the intersection of all X,,, then X has a nonzero 
vector of Vp, and is invariant under any K,,. Let Wbe the P-vector space generated 
by X. The Zariski closure Cl(UK,,) of UK,, is open for the P-topology, and closed 
under Zariski topology, so Cl(UK,,) = Gp, Wis a nontrivial invariant subspace 
and Xis a lattice in Vp. Now UK,, fixes X invariant, and consequently compact. 
Therefore, there is no infinite sequence 

K,,; K,, ~ K,,+ 1 ~ • • • in Gp. 

For classical groups (at least in the strict sense and if the characteristic of the 
residual field K is not 21 one knows the complete classification of conjugacy 
classes of maximal bounded subgroups. 

1 During this Institute, Tamagawa has indicated to me another method of proof, which is valid 
also for the nonlocally compact case and gives the existence of maximal bounded subgroups. 
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EXAMPLE 1. Gp= SL(n, D), D = a division algebra of center P. A maximal 
bounded subgroup is the stabilizer of a lattice in D" and any two maximal 
bounded subgroup of Gp are conjugate under GL(n, D1 but the number of con­
jugacy classes of bounded subgroups under inner automorphisms is equal to 
n = rkp(G) + 1. 

EXAMPLE 2. Gp = PGL(n, P). Let K be a maximal bounded subgroup of Gp, 
and K the inverse image of K in GL(n, P). It can be shown that there exists a 
divisor d of n and a sequence of d lattices L0 :::> L 1 :::> • • • :::> L,, = nL0 in P", 
with dimK(LJL;+ 1) = n/d, such that K is exactly the set of those elements of 
GL(n, P) which keep globally invariant the infinite sequence formed by the 
lattices ~L1 (0 ~ i < d, k e Z). (The proof is given in [4] with the assumption that 
the characteristic p of K does not divide n. But it is possible to give a more direct 
proof, which is valid in any case.) One sees that the number of classes of maximal 
bounded subgroups in PGL" is equal to the number of divisors of n. The n classes 
of maximal bounded subgroups of SLn give exactly one class for the isogenous 
group PGLn, but other classes appear. · 

EXAMPLE 3. G = SO(Q1 Q is a quadratic form over a vector space V over P 
(char P #: 2). Let K be a bounded subgroup of Gp, then K fixes a lattice L in 
Vp; K c: End(L). Q induces an involution * in End (V). Since g* = g- 1 for 
g e Gp, K c: End L n (End L)* n Gp. If K is maximal bounded, then 

K =End Ln (End L)* n Gp. 

Now consider the set S of all the orders of End (Vp) which can be written as 
n n n• by some maximal order n of End (Vp). Let Cl> be the symmetric bilinear 
form attached to Q, e;(i = 1 · · · n) be a basis of a lattice L; then (End L) n (End L)* 
is maximal in S if and only if any elementary divisor of the matrix (Cl>(e;, ei)) is 
either 1 or n (up to a constant factor). The number of conjugacy classes of such 
lattices is finite. Since any maximal bounded subgroup K is contained in a 
maximal element of S, the number of conjugacy classes of maximal bounded 
subgroups of Gp is finite. 

Let L0 be a lattice in Vp, generated by a "Witt basis", i.e. a basis e1, • • ·, e. 
of Vp satisfying the following conditions: 

(a) e1o · · ·, e, (resp. en-r+ 1o ···,en) generate over P a maximal isotropic sub­
space Vi (resp. V3) of Vp; 

(b) Cl>(e;, en+l-j) = b;i for 1 ~ i,j ~ r; 
(c) e,+ 1o • • ·, en-r generate over P the orthogonal V2 of Vi + V3 (which is a 

maximal anisotropic subspace of Vp) and generate over the unique maximal 
(!}-integral lattice of V2• 

Now let L5 be the lattice generated by ne1o • • ·, ne., e.+ 1o ···,en with 0 ~ s ~ r. 
Then the orders n. = End L. n (End L.)• are maximal elements of S and if 
char K #: 2, any maximal element of S is conjugate to some n. by an element of 
Gp. 

Then (at least if char K #: 2), there is exactly r + 1 classes of maximal bounded 
subgroups, represented by the subgroups K. = n. n Gp for 0 ~ s ~ r. 
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Similar results hold for the other types of classical groups (symplectic, unitary, 
etc.) [6]. 

3. lwasawa and Cartan decompositions. 
G =connected semisimple group over P, 
A = maximal P-split torus, 
N = normalizer of A in G, 
Z = centralizer of A in G, 
U = unipotent radical of a minimal parabolic subgroup r of G over P, 

associated to A, 
r = ZU, W = Np/Zp, 
Y = the group of P-rational characters of Z, 

ztl = (z E zpllx(z)lp = 1 for any x E Y}, D = Zp/Ztl. 
Let b be the canonical map Zp-+ D. Then Dis isomorphic to Z' where r is the 

P-rank of G, and D/b(Ap) is of finite index. W acts on D, Ap. Let 

At= {aeAplioc(a)lp ~ 1 for any positive oceX(A)}, 

o+ = {de DI there exists a positive integer n with nd E ~At)}. 

CONJECTURE I. There exists a maximal bounded subgroup K of Gp satisfying 
the following conditions : 

(i) K -::JZt1,NP c KZt1, 
(ii) Gp = KZpU P (Iwasawa Decomposition), 

(iii) Gp= KZpK (Cartan Decomposition), more precisely there is a one to one 
correspondence between JC\Gp/K and o+. 

(iv) (a) If l'.5(z) ED+ then KzK fl KzU p = Kz; 
(b) there exists an order on D s.t. if z, z+ E Zp, b(z+)e o+ and 

Kz+K fl KzUp :F0, 

then l'.5(z) ~ b(z+). 
This Conjecture I is true for classical groups (at least in the strict sense: uni­

modular group of a division algebra or groups of matrices of determinant 1 
keeping invariant on i;-hermitian form), for split groups (of any isogeny type), 
and for quasi-split groups (at least with an unramified splitting field). 

REMARK. The condition (iv) is often a consequence of the others, as soon as K 
is given as the stabilizer of a lattice L in the space V of a representation p of G, 
defined over P, with some properties like: 

(a) Lis a direct sum ofsublattices Li(l ~ i ~ m); each vector subspace V; = PL1 

is stable by Z(A)p. Let z, z' E Z(A)p and z;, z; be their restrictions to V;. If for all i 
zi and z; have the same invariant factors (with respect to L;), then z' E zZ(A)t1. 
Moreover, if b(z) ED+, then the invariant factors of zi are less than those of Z;+ 1• 

(b) If u e Gp, then p(u) is unipotent, upper triangular for the block decomposi­
tion, i.e., (p(u) - Id)(V;) c V1 + - + Jlj_ 1 for 1 ~ i ~ m. 

On the other hand, it is possible that (iv) is too strong and has to be replaced 
by a weaker condition (cf. [8]). 



p-ADIC GROUPS 

EXAMPLE 1. 
D = division quaternion over P, 
& = the ring of integers of D, 
p = ff & = the maximal ideal of t9, 

Vp = n-dimensional vector space over 'D, 
Cl> = hermitian form on Vp, 
G = SU(V, Cl>) = special unitary group of (V, Cl>). 

67 

For a &-lattice L in Vp, the norm n(L) of L is the smallest ideal g of D s.t. 
Cl>(x, y) e g and there exists an element i; in g satisfying Cl>(x, x) = i; + ~ for any 
x,y in L. 

Now let L be a maximal lattice of norm iJ. Then L has a canonical Witt 
basis e1 ···en satisfying the similar conditions as in §2, Example 3. With respect 
to this base one can take : 

a,, 

Ap= 1 

-1 a, 

A1 1 

0 

G' = the special unitary group corresponding to the anisotropic part of (V, Cl>). 
K = stabilizer of L. 
U = G n (upper triangular matrices with diagonal 1). 
If g e Gp, g(L) is a maximal lattice of some norm. We can prove the existence 

of a basis e; of L s.t. L = Le;&, g(L) = L e;nv; and get the decomposition (iii). 
Condition (iv) can be proved in the same way as in [2]. 

D = Z p/ZtJ = Z' is realized as 

diag(ffv' ... ffv•, 1, ... 1, jf"-v •... w-v·), 
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'5(A,.) = diag(if 2 ' 1 · •• 1l2 '•, 1 · .. ), D+ is the subset of D satisfying v1 ;:ii v2 ;:ii··· ;:ii v,. 
Let g = k 1 d+ k2 = du, k1, k2 e K, d+ e D +, u e U ,., d == diag(1f"'1 • • • ) e D. 

(

jfloll 

du= 
0 

·. 

But the elementary divisors of g are the same as those of d+, so v1 ~ µ 1• By 
induction we can show the condition (iv), where the order is the lexico-graphic 
order. 

EXAMPLE 2. 
G = semisimple with split torus over P (Chevalley type). 
g =Lie algebra of G. 

Xm• Hm = Chevalley base of g. 
L = l'J-module generated by Xm• Hm. 
K = stabilizer of L. 

Then (i) - (iv) are satisfied [3], [7]. 
REMARK 1. There exist maximal bounded subgroups for which (ii~ (iii) and (iv) 

are not true (even if P is locally compact). 
REMARK 2. There may exist several classes of maximal bounded subgroups 

satisfying (I), even not isomorphic. 

4. Tits system in a simply connected group. Let us assume K is finite and let .!ii 
an l'J-structure on G, which has a good reduction with G semisimple over K, of 
same type as G. Then G is split or quasi-split with unramified splitting field, the 
el-structure .!ii is given as §3. Example 2, and the Conjecture I is true for K = Gf). 
But in other cases, we may have an l'J-structure .!ii, which does not have a good 
reduction, and, nevertheless, the Conjecture I is still true for K = Gf). Moreover, 
this Sil has the following properties, which we state as a conjecture, because we 
are not able to prove them in the general case : 

CONJECTURE II. If G is a connected semisimple simply connected group defined 
over P, there exists an l'J-structure .!ii on G such that: 

(i) Gf) satisfies the conditions of the Conjecture I. 
(ii) The l'J-structure determined by .!ii on the maximal split torus A is the 

canonical one (i.e., given by the algebra generated by the characters) and so has 
a good reduction on a torus A, split over K. 

(iii) There exists a connected reductive algebraic group a= defined over K, 
containing A as a maximal K-split torus, and a morphism of group scheme 
from the reduced group scheme G to a=, inducing the identity on A, such that, 
if p is the associated map from G ti to GK, the inverse image B = p - 1(BiJ of the 
set of rational points of a minimal parabolic subgroup B of G= containing A, 
constitutes with the subgroup N = N(A),. a Tits system (or a (B.N. pair)) in G,.. 
The Weyl group W = N/B n N of this Tits system is an affine Weyl group, 
extension of the P-Weyl group of G by z•. 
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This conjecture has been firstly proved by N. lwahori and H. Matsumoto in 
the split case [7] (for the lD-structure of §3 Example 2) then by H. Hijikata for 
quasi-split case [5] and classical cases [6]. 

REMARK. A triple of groups (G, B, N) is called a "Tits system" if it s~tisfies the 
following : · 

(0) G is generated by Band N, B n N is a normal subgroup of N, W = N /B n N 
is called the Weyl group of the Tits system. 

(1) Wis generated by involutive elements re/, r2 = 1, 
(2) rBr- 1 =F B for any re/, 
(3) rBw c: BrwB u BwB for any re I and any we W. 
If (G, B, N) is a Tits system, then: 
(1) w-+ BwB gives a bijective map from Wto B\G/B. 
(2) For any subset J of I, let WJ be the group generated by r (re J), then 

GJ = BWi-B is a group. GJ = N G(GJ). GJ is conjugate to G" if and only if K = J. 
Any subgroup of G containing B has the form of GJ. 

As a consequence if the Conjecture II is true, Gp has at least r + 1 classes of 
maximal bounded subgroups where r = rkp(G). Actually Whas r + 1 generators 
I= {wi. · · · w., w0 }, and a maximal bounded subgroup K; (i = 0, 1, · · · r) is given 
by K; = BWr-1w,1B. 

CONJECTURE (II) (iv). Any maximal bounded subgroup of Gp contains a con­
jugate of B. 

REMARK. (iv) is known for classical groups modulo some exception in the case 
of characteristic of K = 2. [6]. 

Added in November 1965. During the conference, considerable progress was 
made towards an affirmative solution of the conjectures above. It also appeared 
that the properties thus established have interesting applications; for instance, 
they provide a simplified approach to Kneser's theorem on H 1 of simply con­
nected groups over the p-adics. A joint paper on this subject is in preparation, 
by F. Bruhat and J. Tits. 

These results were exposed orally by J. Tits at the conference. The precise 
form on which they are given in the mimeographed notes of his talk must 
however be somewhat modified; in particular, it is not true that minimal k­
parahoric subgroups of a group G-as defined in these notes-are conjugate 
by elements of G,.. In fact, the notion of k-parahoric subgroup given there does 
not appear to be "the good one" when G does not split over an unramified 
extension of k. 

On the other hand, the methods sketched there turn out to give further results. 
For instance, it can be shown that the Conjecture (II) (iv) above is essentially a 
consequence of the other parts of that conjecture and, in particular, is true in 
the split case. 
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Generalized Tits System (Bruhat Decomposition) 

on p-Adic Semisimple Groups 
BY 

NAGAYOSHI IW AHORI 

1. Generalized Tits system. In order to describe the situation where the 
algebraic group G is not simply connected (cf. Bruhat's talk; also see [31 [8]). 
we have to generalize the notion of Tits system (or BN-pair, see Tits [13]) as 
follows. 

Let G be a group and B, N subgroups of G. The triple (G, B, N) is called a 
generalized Tits system if the following conditions (i) - (vi) are all satisfied. 

(i) H = B n N is a normal subgroup of N. 
(ii) The factor group N /H is a semidirect product of a subgroup 0 and a normal 

subgroup W:N/H = O· W. 
(iii) There exists a system of generators of W consisting of involutive elements 

w1 (i e /) with the following properties (iii; tx) and (iii; p). [We assume that w1 #; 1 
and that w1 #; wi (for i #; 1). We also identify the index set I with the generator 
system {w1 ; i e I}]. 

(iii; cc) For any u in ow and for any W; in /, 

uBw1 c Buw1B u BuB. 

(For any element u and T in OW, uBT is defined as the set aBf where a and i' are 
elements of N projecting to u, T respectively. Obviously uBT is thus well defined. 
Similarly BuB is defined.) 

(iii; P> w1Bwj" 1 # B for all w1 in I. 
(iv) Any element p in 0 normalizes I: pl p- 1 = I. 
(v) pBp- 1 = B for all pin fi; Bp # B for any peO - {1}. 
(vi) G is generated by Band N. 

Wis called the Weyl group of(G, B, N); OW= N/H is called the generalized Weyl 
group of (G, B, N). 

Let now (G, B, N) be a generalized Tits system. Then, Tits [13] (cf. also Iwahori 
and Matsumoto [8, §2]~ one can prove the following main properties of the 
generalized Tits system (G, B, N). 

(a) G = U aenw BuB (disjoint union) 
(b) The normalizer N(B) of B in G is given by 

N(B) = U BpB = BOB = BO = OB. 
pell 

Furthermore, N(B)/B is isomorphic with 0. 
71 
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(c) For any subgroup Hof G containing B, there exist a unique subgroup 0 11 

of n and a unique subset J 8 of I such that H = B(011 W(J ,,))B; where W(J ,,) 
means the subgroup of W generated by J 8 . Moreover, J 11 is normalized by 
every element p in 0 8 : pJ 8 p- 1 = J 11 • The pair (08 , J 8 ) is called associated 
with the subgroup H. 

(d) Conversely, let (O', J) be a pair of a subgroup O' of n and a subset J of I 
such that J is normalized by every element of O'. (Such a pair will be called an 
admissible pair.) Then there exists a unique subgroup H such that G => H ::> B 
and that O' = 0 8 , J = J 8 . Thus the mapping H -+ (08 , J ,,) is a bijection from 
the set of all subgroups between G and B onto the set of all admissible pairs. 

(e) Let L be the normalizer in G of a subgroup H containing B. Let (011, J 8 ), 

(OL, J L) be the admissible pairs associated to H, L respectively. Then, 

(f) Let H; (i = 1, 2) be subgroups of G containing B and (O;. J;) (i = 1, 2) the 
admissible pairs associated to H to H 2 respectively. Then the following conditions 
(ocHy) are equivalent: 

(oc) H 1 and H 2 are conjugate in G, 
(/I) H 1 and H 2 are conjugate by an element in N(B), 
(y) p01p- 1 = n 2 and pJ1p- 1 = J 2 for some pin n. 

(g) G0 = BWB is a normal subgroup of G and (G0 , B, N0) is a Tits system with 
Was its Wey) group, where N0 = N n G0• Moreover G/G0 ~ n. 

(h) For any element g in G, the automorphism of G0 defined by x -+ gxg- 1 

preserves the Tits system (Go. B, N0 ) up to the conjugacy in G0, i.e., there exists 
an element g0 in G0 such that gBg- 1 = g0Bg0 1, gN ~- 1 = g0N 0g0 1• 

According to a remark of Tits, (g) and (h), provide the following alternative 
description of generalized Tits systems, which make them appear as sort of 
nonconnected analogues of the usual ones. 

To begin with, let us recall the notion of saturation for a Tits system. In general, 
a generalized Tits system (G,B, N) is called saturated if 

BnN = n nBn- 1• 

neN 

Note that any generalized Tits system (G, B, N) can be modified into a saturated 
one (G, B, N*) without changing the factor group N/B n N. In fact, N* is given 
as N* = N · H* where H* = nneNnBn- 1 . Conversely, starting from a saturated 
system (G, B, N*) one gets other systems by replacing N* by any subgroup N 
such that N · H* = N*. 

Suppose now that G0 is a normal subgroup of a group G and let (G0, B0 , N 0) 

be a saturated Tits system on G0 • We assume that, for any element g in G, the 
automorphism x-+ gxg- 1 of G0 preserves the Tits system (G0, B0 , N 0) up to 
the conjugacy in G0 (cf. (h) above). Then we get a saturated, generalized Tits 
system (G, B, N) on G, where N = rN0, r = NG(B) n NG(N0), B = B0 • (NG(X) 
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means the normalizer of X in G.) Furthermore, N /B 11 N is isomorphic to the 
semidirect product n · W, where W is the Weyl group of (G0 , B0 , N 0) and 
n = NG(B)/B. This procedure exhausts all saturated generalized Tits systems. 

2. Existence of a generalized Tits system on p-adic semisimple algebraic 
groups. (Supplements to Bruhat's talk.) Let k be a local field, i.e., a field with 
nontrivial, nonarchimedean, discrete valuation. We denote by 0 (resp. p, resp. n) 
the ring of integers (resp. the unique maximal ideal in .0, resp. a generator of 
the ideal p). We also denote by "the residue class field .O/p. 

Now let G be a connected, semisimple algebraic group of Chevalley type over 
the local field k. Let A be a maximal k-split torus of G and 4) the root system of 
(G, A). We denote by Pr (resp. by P) the Z-module generated by all roots (resp. 
by all weights). Note that Pr and Pare lattices of the vector space (4))11 spanned 
by 4) over R. We recall also that an element .It in (4))11 is in P if and only if 
2(.ll, a.)/(cx, a.) is in Z for all a. in 4), where ( , ) is a suitable inner product in (4))11 

(cf. Borel's talk p. 13). In particular, one has P ::::> Pr and Pf Pr is a finite abelian 
group. 

Now it is known that there is associated canonically a sublattice r such that 
P => r ::::>Pr and that A1:;;;;: Hom(r, k*) (cf. [3D. We denote by h (X) the element 
in A1: which corresponds to x in Hom(r, k*). Also for each root a., there is 
associated a rational homomorphism x,.: G,.-+ G defined over k, where G,. is 
the additive group of the universal domain. (Note that G is simply connected 
(resp. the adjoint group, i.e., centerless) if and only if the associated lattice r 
coincides with P (resp. with Pr).) 

Now let N be the normalizer of A in G. We shall now construct a generalized 
Tits system (G1;, B, N1c) on G1: by taking a certain subgroup B. Let (fit> be the 
Chevalley lattice in the Lie algebra @1: of G over k (cf. Bruhat's talk and also 
Cartier's talk). We denote by Gt> the stabilizer of the Chevalley lattice (fit> in G1:: 

Gt> = {g e G1:; Ad(g)Cf>t> = Cf>ti}· 

Then one can show (8) that Gt> is generated by the following elements in G1:: 

x,.(t) (t e .0; a. e 4)) and 

h(x) <x e Hom(r, .O*)), 

where .O* means the group of invertible elements in 0. Thus it is seen that the 
homomorphism </J of GJC defined by the reduction mod p maps Gt> onto the 
Chevalley group G" over " associated to the lattice r. Thus one gets a "good 
reduction" (cf. Bruhat's talk). 

Now let us fix a linear ordering in 4). Then this determines a Borel subgroup 
B" of G". Put 

B = </J- 1(B,J 

As in the case where G is simply connected, the subgroup B thus defined is unique 
up to the conjugacy by elements in G1c (see Bruhat's talk). Now one can show (8) 
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that our subgroup B is generated by the following elements in G": 

x.,(t) (tep,oce<I>+) 

X11(t) (t E 0, p E <I>_) 

h(x) <x e Hom(r, O*)). 

Note that one gets A 0 = N" n B, and A0 is generated by the elements h(x), 
x e Hom(r, 0*). 

Our main purpose here is the following: 

THEOREM. (G", B, N") is a generalized Tits system on G". 

For the proof of this theorem together with other properties of B, see [8]. 
Let us describe here the structure of the factor group N,JB n N" = N,JA0 . To 
begin with, we recall the notion of the affine Weyl group W(<I>) associated to the 
root system <I>. We denote by w.,,. (a; e <I>, v e Z) the reflection mapping of the 
Euclidean space (<l>)R with respect to the hyperplane {x e (<l>)R; (oc, x) = v}, i.e., 

w.,..(x) = x - (x, oc) · a;• + va;•, 

where a;* = 2oc/(oc, oc). We denote by W(<I>) the group generated by the reflections 
w., , (oc e <I>, v e Z), and call it the affine Weyl group associated to <I>. Note that 
th~ Weyl group W(<I>). is the subgroup of W(<I>) generated by the reflections 
w ... o (a; e <I>), and that W(<I>) is the semidirect product of W(<I>) and the normal 
subgroup D consisting of the translations of the following form: x --. x + d, 
where dis in the lattice r.l = {d E (<I>).; (d, "/) E z for all "/Er}. Thus W(<I>) = 
W(<I>) · D, D ~ r i ~ Hom(r, Z). 

Now one gets [8] N ,J A0 ~ n · W(<I>) (semidirect product) where n is a finite 
abelian group isomorphic with P/r. The set I of generating involutive elements 
of W(<I>) appearing in the structure of the generalized Tits system (G1;, B, N1:) is 
given as follows [8]: let <I> = <1>1 u · · · u <I>, be the decomposition of the root 
system <I> into irreducible components <l>i. Let 6i = {oc~>, · · ·, ocl'.1} be the set of 
all simple roots in <I>; (relative to the given ordering) and a:H1 the highest root in <1>1• 

Then I is given by 
I= {w .. y>,o (1 ~ i ~ r, 1 ~ j ~ n w.,i;i, 1 (1 ~ i ~ r)}. 

We refer to [8, §1] as for the more detailed description of the groups n · W(<I>), 
W(<I>). 

We note that the analogue of the above theorem is also true for a reductive 
algebraic group G defined over a local field k which has a k-split maximal torus. 

EXAMPLE. Let G = GLn. Then G" = GL(n, k) and G0 = GL(n, 0). With respect 
to the usual ordering of roots, we get 

- (0"'. . . p ) -(k"'. . . 0) 
B- , A"- . . . . . . 

0 ~· 0 ~ 
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Moreover we have N" =A"· Sn, where Sn is the subgroup of G,. consisting of all 
permutation matrices. (Hence Sn may be regarded as the symmetric group of 
degree n.) Put 

Then A"= A0 · D (direct product) with A0 = A1c n B, and one gets N,. = A0 (DSn) 
(semidirect product). Thus one gets [4] a generalized Tits system (G1c, B, N,.) 
with the following factor group: 

N,JBn N1r. ~ il· W, 
where n ~ N(B)/B ~ z and w is generated by involutive elements Wi. •• :' Wn 

in DSn given by 
0 0 1t 

W. -
-( Ii- i 01 01 0 ) 1 

(1 ;;;;; i;;;;; n - 1), · Wn= 0 0 

' 0 Jn-i-1 1 

0 0 

Note that N(B) = {w}B is a semidirect product where w is an element in DSn 
given by 

Furthermore we have wwiw- 1 = Wi+ 1 (1 ;;;;; i;;;;; n; wn+ 1 = w1). 

3. A characterization of the subgroup B (cf. §2) for locally compact ground 
fields. In this section we assume that k is a locally compact field with the (finite) 
residue class field " of characteristic p. 

Let G be a semisimple algebraic group defined over k. One sees then that for 
any open compact subgroup K of G", the normalizer N(K) of K in G,. is also 
open and compact. Using this fact, one can prove the following theorem: 

THEOREM (SYLOW). Let G be a semisimple algebraic group defined over k. Then 
G" has a maximal pro-p-subgroup S. Furthermore, any pro-p-subgroup of G11 is 
contained in a conjugate of S. 
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We recall the terminologies used above: pro-finite group means the projective 
limit of finite groups; pro-p-group means the projective limit of finite p-groups. 

Thus any two maximal pro-p-subgroup of G1c are conjugate. A maximal pro-p­
subgroup of G,. is called a Sylow subgroup of G,.. 

COROLLARY. Let B be the normalizer in G,. of a Sylow subgroup S of G1;. Then, 
distinct subgroups of G,. containing B are never mutually conjugate in G1c, and each 
of them equals its own normalizer in G1c. 

Now for simply connected, semisimple groups of Chevalley type, we have the 
following 

PROPOSITION (MATSUMOTO). Let G be a connected, simply connected, semisimple 
group of Chevalley type over k. Then our subgroup iJ of G1; introduced in §2 is 
the normalizer of a Sylow subgroup of G1c. 

This proposition gives in a certain sense a "p--analytic" characterization of 
our BN -pair structure in G1;. 

4. Applications. 
4.1. Maximal compact subgroups. Let G be a connected, semisimple algebraic 

group of Chevalley type over a local field k. Then, since we have a generalized 
Tits system (G1c, B, N1c) on G1c (cf. §2), we can determine the conjugacy classes of 
subgroups of Gk containing a conjugate of B. Thus, in particular, when k is 
locally compact, we can determine the conjugacy classes of maximal compact 
subgroups of G". As an example, we shall give a table of the number s of conjugacy 
classes of the maximal compact subgroups of G1c containing B, when G is the 
adjoint group of simple groups [8]. 

Type of G 

A, 
B1 and C, 
D, (l = 2m + 1) 
D1 (l = 2m) 
E6 
£7 
Ea 
F4 
Gi 

s 

the number of (positive) divisors of l + 1 
l + 1 
l 
l + 2 
5 
8 
9 
5 
3 

Also, if G is simply connected and simple, then s = I + 1, when I is the rank 
of G [8]. 

We note that these values of s are shown to be the number of conjugacy classes 
of maximal compact subgroups of Gk by Hijikata [51 when G is of classical type. 
Thus it is an interesting question to prove (or disprove) this fact in general. 
Or one may formulate in the following way: 
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CONJECTURE 1. Let G be a connected, semisimple algebraic group of Chevalley 
type over a locally compact field k. Then, every maximal compact subgroup K of 
G,. contains a conjugate of B (the subgroup introduced in §2). 

In other words, B has a fixed point on the homogeneous space G,J K. In this 
respect, the following conjecture concerning the structure of the homogeneous 
space G,JB seems to be interesting. 

Let Ge be a connected, simply connected, complex semisimple Lie group 
(which is an algebraic linear group as is well known). Let k be the formal power 
series field C((t)) of one variable over C and .0 be the ring of integral power 
series ink: 

Then p = t · 0. Thus we can consider our subgroup B (in §2) in G1c. One has 
G,, = U0 n; BuB. Hence G1c/B is a disjoint union of the sets BuB/B. Now -it is 
easy to show that BuB/B has the structure of a complex affine cell of dimension 
A(u~ where A.(u) is the word-length of u relative to the generators given in §2 of 
the affine Weyl group ~(cf. [SD. The subset G0 /B of G,JB is easily identified 
with the generalized flag manifold Ge/Be. where Be is a Borel subgroup of Ge, 
because Ge c G1c and Gen B =Be. Under this setting, let us state the following 

CoNJECTURE 2. There exists a structure of a topological space of G,J B with the 
following properties: 

(i) G,JB is an infinite dimensional CW-complex. 
(ii) G,,/B = U0 .w (BuB/B) is a cellular decomposition of GJB. Each cell BuB/B 

is homeomorphic to R2A<0 >. 
(iii) The Poincare series P(GJB, t) of GJB is equal to the product of the Poincare 

polynomial P(Ge/Be, t) of Ge/Be with Poincare series P(n(.Gc), t) of the loop space 
on Ge. Note that these Poincare series are given by Bott as follows, using the 
exponents ml>· · · , m1 of Ge: 

I 

P(Ge/Be. t) = n (1 + t 2 + t 4 + ... + t 2m 1) = L t2A<a>, 
i=l aeW 

I 

P(n(.Gc), t) = n (1 - imr 1• 

i=l 

Or, more strongly, 
(iii)' GJB is homeomorphic to the product space Ge/Be x n(.Gc). (Or G._/B 

has the same homotopy type as the above product space.) 
(iv) (Tits) GJB is the inductive limit of projective varieties of finite dimension. 

(A more precise statement of this conjecture has been given by Tits in his talk.) 

4.2. Elementary divisor theorem. Let .0 be a Dedekind domain with the 
quotient field k. Then each prime ideal p of .0 defines a nontrivial, discrete, 
nonarchimedian valuation x-+ lxlP of the quotient field k of .0. The localization 
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of .0 relative to p is denoted by .OP, i.e., .OP is the ring of integers of k relative to 
the valuation x-+ lxlp· Then .0 is the intersection of all localizations .OP of .0. 

Now let G be a connected, semisimple algebraic group of Chevalley type 
over k. Then, fixing a Chevalley lattice in the Lie algebra <Dk, one has the sub­
groups G0 , G0 of Gk. Let A be the associated maximal k-split torus. Then by the 
structure of ge~eralized Tits system on Gk with respect to the valuation x -+ lxlP' 
one sees that [8] Gk = G0 AkGo for all prime ideal p in .0. Thus a natural 
question arises: can one replace Go. by Go= npGo,. i.e., does one get 

Gt= GoAtGo? 

Now, this is not true in general. A counter example is obtained by Y. Ibara 
for the case G = SL2, k = Q(.j(- 5)), .0 = "the principal order in k." On the 
other hand, this fact is known to be valid together with some uniqueness property 
when .0 is a principal ideal domain and G is of classical type. (It is called the 
elementary divisor theorem.) In this respect, it is seen that a similar theorem is 
true for any semisimple groups of Chevalley type. 

Thus, let k be the quotient field of a principal ideal domain .0. Let G be a 
connected, semisimple algebraic group of Chevalley type over k. Let r be the 
lattice between the weight-lattice P and the root lattice P, associated to G (cf. §2). 
We denote x-+ h(x) the isomorphism from Hom(r, k*) onto Ak, where A is a 
k-split maximal torus of A. Fixing a Chevalley lattice associated to A, the sub­
group G0 is defined. Now, fixing an ordering in the root system <I> of (G, A), one 
gets the notion of a dominant element in Ak; i.e., an element h(x) e Ak with 
x e Hom(r, k*) is called dominant if x(<I>+) c .0. We denote by A; the set of all 
dominant elements in Ak. Then, A; is a semigroup in Ak. A; contains a sub­
group A0 = {h(x); x(r) c .0*}. Under these settings, we get the following elemen­
tary divisor theorem. 

THEOREM (MATSUMOTO). Gk = G0 A; G0 . Moreover, the space G0\G,JG0 of 
double cosets of Gk mod G0 is bijective with A; /A0 by the natural mapping 
a· A0 -+ G0 · a· G0 . 

5. Hecke rings auoclated to a generalized Tits system. (Cf. Shimura's talk.) 
Let us recall the notion of the Hecke ring Jf'(G, B) associated to a pair of a 
group G and a subgroup B of G such that B is commensurable with any of its 
conjugates, i.e., [B: B n o-Bu- 1 ] < oo for all u in G. Let Jf' = Jf'(G, B) be the 
free Z-module spanned by the double cosets S0 = BuB (u e G). Then a mul~i­
plication is defined in Jf' as follows: 

sos. = L m~ . .sp. 
p 

where m~ .• is the number of cosets of the form Bx contained in (Bu- 1 Bp) n (B-rB). 
It is seen that m~ .• is independent of the choice of the representatives u, -r, p in 
the double coset; moreover, given u, -r, the number of the double cosets BpB 
satisfying m~ .• =I- 0 is finite. Furthermore, it is shown that Jf'(G, B) becomes an 
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associative algebra with the unit element over Z (see e.g. [7]). K being any field 
(or commutative ring), Jlt'(G, B) ®z K is denoted by Jlt' K.(G, B) and is called the 
Hecke algebra of the pair (G, B) over K. 

Now let us assume that (G, B, N) be a generalized Tits system on G with the 
factor group OW= N/B f"I N and standard involutive generators I= {wJ of W. 
For any <1 e W, we denote by A.(<1) the length of a reduced expression of <1 in terms 
of I. Consider the normal subgroup G0 = BWB of G and the induced Tits system 
(G0, B0 , N 0) on G0 where B0 = B, N 0 = N f"I G0• Then, as is seen easily, B is 
commensurable with any conjugate in G if and only if B0 is commensurable with 
any conjugate in G0 • Moreover, when this is the case, Jlt'(G, B) is obtained from 
Jlt'(G0 , B0) as follows: we note that n acts on the ring Jt'(G0 , B0 ) as a group of 
automorphisms as follows: for pen and for <1 e W, B0 <1B0 -+ B0 (p<1p- 1 )B0 , 

or putting Sa= B0 aB0 , we express this automorphism by Sa-+ p(Sa) = Spap-'· 
Now introduce a new multiplication in the tensor product Z[O) ®z Jlt'(G0 , B0 ) 

as follows (Z[n] means the group ring of n over Z): 

(p ® S.,) (p' ® S.,.) = pp' ® (PT 1(S.,)S.,. 

for any p, p' en and <1, <1' e W. Then one obtains a new ring structure on 

Z[O) ®z Jt'(Go, Bo). 

The ring thus obtained is denoted by Z[O] ®zJt'(G0 , B0 ), and is called the twisted 
tensor product of Z[O), Jt'(G0 , B0 ). Now we get 

PROPOSITION. Jt'(G, B) :;;;; Z(O) @z Jt'(G0 , B0 ). 

Thus the question about the structure of the Hecke ring Jlt'(G, B) for a genera­
lized Tits system (G, B, N) is reduced to the case where (G, B, N) is a usual Tits 
system; and in this case, the question was settled by [10) as follows. 

Let (G, B, N) be a Tits system with the Weyl group W, and let I= {w;} the 
standard involutive generators of W. Suppose that B is commensurable with 
w;Bw;- 1 for any w; e J. Then B is commensurable with any of its conjugates in G. 
Furthermore, for a reduced expression <1 = w;, · · . w;, (r = A.(<1)) of <1 e W, one has 

Thus the first half of the following theorem is obtained. 

THEOREM [10). The set {S;; i e J} generates the ring Jlt'(G, B). A system of 
defining relations for this generator { S;} is given as follows: 

s~ = q,. 1 + (q, - 1). S; (for all i E /), 

(S;Sl"'' = (Sis;r'', if the order of w;wi is 2m;i < oo, 

(S;Sir''S; = (Sisir;si, if the order ofw;wi is 2mii + 1 < oo. 

where q; is the number of cosets of the form Bx contained in Bw;B. 
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EXAMPLE 1. Let k be a local field such that JC = 0/p is finite. Let G be a simply 
connected, semisimple algebraic group of Chevalley type over k. Then the Tits 
system (G,., B, N,.) in §2 satisfies the assumption made above relative to the 
commensurability of B with its conjugates. More precisely, for u e W, BuB 
contains qA!O'J cosets of the form Bx, where q is the cardinality of the residue 
class field "· In particular, all q/s in the above theorem are equal to q in this 
case. Furthermore, the order of any w1w1 is always finite. [Especially, if G is SL2, 

then it is seen (this is due to Oscar Goldman) that .1f' 0 (G,., B) a:: Q(W1 where W 
is the affine Weyl group of SL2• (Note that Wis isomorphic with the free product 
of two copies of Z 2 ( = cyclic group of order 2).) 

In this case, Gri is also commensurable with any of its conjugate in G11 • More­
over, one can show that the Hecke ring .1t"(G11 , Gri) is commutative and is iso­
morphic with the polynomial ring in I variables over Z (I being the rank of G) 
(see [1], [11], (12)). We note the following formula for the number of cosets of 
the form Gri · x in Gri · h(:x.) · Gri (with h(:x.) e At). We may assume that :x.(A.) = n<"·"> 
for some deD = pJ.. = {xe('1>)8 ;(x,P) c: Z}. Then the number# desired is 
given by 

# = ql(lf) L qA<O'>, . 
O"eW~ 

where (regarding D c: W as in §2~ 

e(d) = Min A.(dw) 
weW 

L l<d, ex) - 11 + L l(d, ex)I. 
11e•+;(11,lf)>O 11~+;(11,lf);!!O 

and WJ is the following subset of W. Let W., be the subgroup of W defined by 
W., = { u e W; u(d) = d}. Then W., is generated by the w11;,o with (ex1, d) = 0 
(al>···, ex1 being the simple roots). Now WJ is defined by 

WJ = {ueW;A.(wu)~A.(u)foranyweW,.}. 

(See Kostant [9].) 
We note also that, if k is the quotient field of a principal ideal domain 0, the 

Hecke ring J't'(G,., Gri) of a simply connected, semisimple algebraic group G of 
Chevalley type over k is isomorphic with the tensor product of the Hecke rings 
J't'(G11 , Gri,.>: 

EXAMPLE 2. Let G be a finite group and (G, B, N) be a Tits system on G with 
the Weyl group W. Then one has 

THEOREM (TITS). Let k be an algebraically closed.field whose characteristic does 
not divide the orders of G, W. Then .1f' 11(G, B) a:: k[W]. 

See the appendix for the proof. 
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Appendix: Proof After Tits of .Jf'" ( G, B) - k[ W] for a 
Finite Tits System 
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1. Rings obtained by a specialization. Let A be an associative algebra over a 
commutative ring .0. Let</> be a homomorphism of .0 into a commutative ring 
.O'. Then one has an 0-module structure on O' by IX· p = </>(1X)P (IX e 0, p e O'). 
Thus one may consider the tensor product 

A.,,= A ®0 0', 

which has an obvious algebra-structure over .O'. Note that if </> is surjective, then 
the homomorphism </>* : A --+ A.,, defined by </>*(a) = a ® 1 is also surjective and 
Ker(</>*) = Ker(</>). Thus 

A.,,~ A/A· Ker(</>). 

In particular, if A is a free .0-module of finite rank with a basis {uA}, then A.,, 
is also a free O'-module with a basis {</>*(uA)}. The structure constants {CA,.} 
of A relative to { uA} are mapped by </> into the structure constants { </>( q,.)} of 
A., relative to {</>*(uJ}. Hence, /l., /l.' being the discriminants of A, A.,, respectively, 
one has </>(!l.) = /l.'. 

For the special case where 0 is a polynomial ring k[ti. t2, • • • t,] over a field 
k and </> is the specialization 0 --+ k over k defined by </>(t;) = IX;, we denote A.,, 
also by A(IX;) for brevity. 

PROPOSITION 1. Let 0 = k[t 1, • • ·, t,] be the polynomial ring over an algebraically 
closed field k. Suppose that A is an associative algebra over 0 such that 

(i) A is a free 0-module of finite rank, and 
(ii) the discriminant !l.(t b • • ·, t,) of A (relative to a basis of A) is not zero. Then 

for any (1X1) e k', (P;) e k' such that /l.(IX;) #: 0, !l.(ft;) #: 0, one has A(1X1) ~ A(P;) as 
k-algebra. 

For the proof, we note that A(1X1) is separable, semisimple and refer to Ger­
stenhaber (14]. Also we note that an elementary proof is possible for this 
particular case. In fact, n being the algebraic closure of the quotient field of 0, 
one gets the following isomorphism as n-algebra 

A ®en~ A(1X1) ® 11 0. 

2. An algebra associated with a Coxeter group. By Proposition 1 above, in 
order to prove :Yt'11(G, B) ~ k[Wl it is enough to show the existence of an algebra 
A over some polynomial ring 0 = k[t i. · · ·, t,] with above conditions and the 
existence of two points (1X1) e k', (P;) e k' such that 

/l.(cx1) #: 0, /l.(ft1) #: 0, A(1X1) ~ :Yt',.(G, B), A(ft1) ~ k[W]. 

Now such an algebra was constructed by Tits as follows. 
Let W be an Coxeter group with a fundamental generating involution R = {r}, 
i.e., the defining relations for R are obtained by (rsr" = 1 (n,. being the order of 
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rs for all r and s in R; n" = 1). Denote by l(w) the length of we W relative to 
R. Then 

LEMMA l. If r, s e Rand we W satisfy l(rws) = l(w), l(rw) = l(ws), thens = w- 1rw. 

Now let k be any commutative ring. Let C be the set of conjugacy classes 
represented by elements in R, and let { u., v.; c e C} be indeterminates over k. 
We write also u,, v. for u., v. for r inc. Denote by 0 the polynomial ring 

k[u., v.; c e C]. 

PROPOSITION l. Let V be the free 0-module spanned by W. Then there exists a 
K-bilinear, associative multiplication • in V such that 

if l(rw) > l(w), 

= u.rw + v.w, if l(rw) < l(w). 

Moreover, such a multiplication is unique. 

PROOF. Uniqueness is obvious. Let us prove the existence. Define 

P., A..e End0 (V) (reR) 

as follows: 
P.(w) = rw if l(rw) > l(w), 

= u.rw + v.w, if l(rw) < l(w), 

A..(w) = wr if l(rw) > l(w), 

= u.wr + v,w, if l(rw) < l(w). 

Then, using Lemma 1, one can check P,A.. = A..P. for any r, s e R. Let 9l (resp. 2) 
be the 0-subalgebras of End0 (V) generated by {P,; re R} (resp. by {A.,; re R}). 
It is seen that the mappings p•: 9l -+ V, A.•: 2 -+ V defined by p*(t/J) = t/J(l)· 

(t/J e 9l), A.*(1/1) = l/J(l) (I/I e 2) are both bijective. 
In fact, for any reduced expression w = r 1 · • • rn, one has 

p*(p., ... p,J = w. 

Thul? p* is surjective. Same is true for A.•. lnjectivity of p* is seen as follows from 
the commutativity of P., A., above: let p*(t/J) = 0. Then t/J(l) = 0. Hence 

0 = l/l(t/J(l)) = t/J(l/J(l)) 
for all I/I e 2. Hence t/J = 0 by the surjectivity of A.•. 

Now define the product v•v'(v, v' e V) by 

v•v' = p*{p*- 1(v) · p* - 1(v')} 

= {p•- 1(v)}(v'). 
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Then one sees that * defines an algebra structure on V such that r•w = P ,(w1 
which completes the proof. 

Now let us return to the given Tits structure (G, B, W). We assume that k is 
an algebraically closed field whose characteristic does not divide the orders of 
G, W. Using above notations, one sees that the .0-algebra A = (V, *) associated 
to the Coxeter group W (cf. [lOD has the following properties: 

(1) The discriminant A(u., v.; c e C) of A (note that this is a polynomial in the 
u., v.) is not zero. 

(2) By the specialization u. --. tx., v. --. P. (c e C; tx., P. e k1 A gives rise to an 
algebra A(tx., {J.) over k. In particular, by the theorem above one obtains 

A(q., q.- 1) ~ Jft' ,.(G, B) where q. is the number of B-cosets in BrB, where rec, 

A(l, 0) ~ k[W]. 

Note that Jft',.(G,B) and k[W] are both semisimple algebras over k (cf. [7D. 
Thus, by our assumption on the characteristic of k, we get A(txi) #: 0, A({Ji) #- 0 for 
(txi) = (q., q •. ,), ({Ji) = (1, 0). This completes the proof. 
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On Rational Points on Projective Varieties Defined 

Over a Complete Valuation Field 1 

BY 

TSUNEO TAMAGAWA 

l. Let k be a field with a nonarchimedian valuation I j, kn+ 1 denote the vector 
space over k of all (n + 1)-tuples of elements of k and 11% denote the projective 
space of all one-dimensional subspaces of kn+ 1. The one-dimensional subspace 
spanned by x e kn+ 1 will be denoted by (x). The norm of x = (x0 , • • ·, xn) is 
defined by llxll = Max(jx0 !, · · ·, lxnj). Let/(X0, • • ·, Xn) be a homogeneous poly­
nomial of degreed ink. Then the value llxll-"lf(x)j is uniquely determined by the 
point P = (x) e Pt, so we denote it by j/(P)I. If /(x) = 0, we simply write 
/(P) = 0. The norm 11/11 of a polynomial/(X0 , · · ·, X.) = L ciO · · · inX~ · · · X~" is 
defined by II f JI = Max(lciO · · · inl). Obviously we have l/(P)I ~ II f II for all Pe P;. 
A set of homogeneous polynomials / 1, · · · ,fN in k will be called a zero set if we 
have 

M(/1. · · · ,,h) = InfPePaMax(l/1(P)I. · · ·• l/~P)I) = 0. 
le 

Let n be a universal domain containing k. Namely n is an algebraically closed 
field containing k such that there exist infinitely many elements inn which are 
algebraically independent over k. We denote the projective space ro by P". 

We will prove the following theorems: 

THEOREM 1. Assume that k is complete and perfect. If a set {/1, · · • , fN} of 
homogeneous polynomials / 1, • • ·, fN in k is a zero set, then there exists a point 
P0 e P'k such that / 1(P0 ) = 0, · · · ,f~P0) = 0. 

THEOREM 2. Assume that k is complete and perfect. Let V c pn be a variety 
defined over k, and V.. denote the set of all k-rational points on V. Let </J be a rational 
funcfion on V defined over k. If </J is defined at all points of V.,, then l</J(P)j is bounded 
on V.,. 

An immediate consequence of Theorem 2 is the following: 

THEOREM 3. Assume that k is complete and perfect. Let G be a reductive algebraic 
group defined over k such that there is no subtorus of G which splits over k. Then 
the group G,. of all k-rational elements of G is bounded. 

1 This work is partly supported by NSF Contract No. 4428. 
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If k is locally compact, then the space P% is compact with respect to its natural 
topology. Hence we have quick proofs of Theorem 1 and Theorem 2 by using the 
compactness of Pl; and continuity of If (P)I or l</>(P)I. In this case, the field k is not 
necessarily perfect. 

2. Let { / 1, • • • , fN} be a set of homogeneous polynomials in k. Then the set 
A(/1, • • • ,JN) of all Pe pn with / 1 (P) = 0, · · · ,f ~P) = 0 is a k-closed subset of 
P". Conversely if A is a k-closed set in pn, the ideal 9l(A) of k[X0,X1,···,X.] 
generated by all homogeneous polynomials f with f (P) = 0 for all Pe A is 
homogeneous and has a finite base {!1, ···,JN} consisting of homogeneous poly­
nomials. If A = B 1 u · · · u B, is the decomposition of a k-closed set A into the 
k-irreducible components Bb · · ·, B, of A, then the dimension of A is defined to 
be the maximum of dim B 1, • • • , dim B,. 

LEMMA 1. Let {!1, • · · ,fM} and {g1, · • ·, &v} be sets of homogeneous polynomials 
in k. If we have A(f1t · · · ,f M) c: A(g 1, .. · , gN) and {!1, · · · ,f M} is a zero set,· then 
{g 1• • • • , gN} is a zero set. 

PROOF. From Nullstellensatz of Hilbert, we have 

i = l, · · ·, N, 

where p is a positive integer and H;i are homogeneous polynomials in k such 
that deg H;i + degjj = p deg g;. Then for Pe P% we have 

I g;(P) Ip ;:ii! M!ll <llHijll IJ.i<P>I>· 
J 

Our assertion is easily proved from this inequality. 
A k-closed set A c: pn will be called a Z-set if a homogeneous base {!1, • • • , fN} 

of 9l(A) is a zero set. We have the following lemma. 

LEMMA 2. If U1t · · · ,f'N} is a zero set, then A(f1, • • • ,f,,) is a Z-set. If A is a 
Z-set, then all k-closed sets containing A are Z-sets. If A and B are k-closed sets 
such that A u B is a Z-set, then either A or B is a Z-set. 

PROOF. The first two assertions are immediate consequences of Lemma 1. 
Put A = A(/1 •... ,fM) and B = B(g1 .... '&v). If {flt ... ,JM} and {g1 •... '&v} are 
not zero sets, then for every point Pe 11%, we have 

Max (jf.{P)ll gi(P) I; 1 ;;;;; i;;;;; M, 1 ;;;;; j;;;;; N) ~ M(f1t · · · ,fM)M(gb · .. , gN) > 0. 

Hence the set {J;gi; 1 ;;;;; i ;;;;; M, 1 ;;;;; j ;:ii! N} is not a zero set. This set defines the 
k-closed set A u B, so A u B is not a Z-set. 

COROLLARY. If a k-closed set A is a Z-set, then one of k-irreducible components 
of A is a Z-set. 

Now the following theorem is obviously equivalent with Theorem 1. The 
theorem is also true without the perfectness assumption. 
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THEOREM 4. Assume that k is complete and perfect. If A c P" is a Z-set, then 
Ak = An Pi! is not empty. 

We have to note something about the empty set 0. Since ~(0) = k[X0 • • • Xn], 
~(0) is obviously not a Z-set. If uh ... ,JN} is a set of homogeneous poly­
nomials in k such that there is no point Pe pn with f 1(P) = 0, · · ·, f JP) = 0, 
then {!1, ···,JN} is not a zero set. For if Ji e k for some i, then our assertion is 
obvious. If f; ~ k, 1 ~ i ~ N, then 0 = (0, · · ·, 0) is the only common zero of 
f 1, ···,JN in nn+ 1, so we have 

Xf = L H iifj, 
J 

O~i~n. 

with homogeneous polynomials H 11 • Then {Xg, · · ·, x:} is not a zero set, so 
U1· ···.!NJ is not a zero set. 

3. Now we assume that k is perfect. Let A be a k-irreducible closed set in P". 
The set of all x e nn+ 1 with (x) e A together with 0 is denoted by A. A is a k­
irreducible closed set in nn + 1 . A generic point (xo. x h .•• ' Xn) of A will be called 
a homogeneous generic point of A. Let r denote the dimension of A. Then the 
dimension of (x0, x 1, · · · , xn) over k is r + 1. Since k is perfect, k(x0 , • • ·, Xn) is a 
separably generated extension of k. The set A will be called a k-irreducible set 
in a general position if the following conditions are satisfied: 

(1) k(x0 , · • ·, x,+ 1) = k(x0, • • ·, x,.), 
(2) x,+ i. · · ·, x" are integral over k[x0 , • • ·, x,], 
(3) X,+ 1 is separably algebraic over k(xo. · · ·, x,). 

LEMMA 3. There exist (n + 1) x (n + 1) matrix U = (u;i) in k, 0 ~ i,j ~ n, 
such that det(ui) # 0 and the projective transformation T defined by 

(x)T= (x· U) 

transforms A in a general position. 

PROOF. From normalization lemma, we can find (n + l)(r + 1) elements uii• 
0 ~ i ~ n, 0 ~ j ~ r such that Yi = L, ui1x;, 0 ~ j ~ r, are algebraically indepen­
dent over k and x0 , · • • , xn are integral and separable over k[y0 , • • ·, y,]. Now we 
can find u0, + i. · · · , u,., + 1 so that y, + 1 = L, u;, + 1 X; generates the field k(xo. · · · , x") 
over k(Yo. · · · , y,), and the matrix (u;i), 0 ~ j ~ r + 1, is of rank r + 1. Now we 
can add n - r - J columns to (uii) so that the matrix (uii), 0 ~ i, j ~ n is non­
singular. Such construction is possible because k is perfect and infinite (0. Zariski 
and P. ·Samuel (2, Chapter V, Theorem 8, p. 266]). 

The set A is a Z-set if and only if AT is a Z-set. Now we assume that A is in a 
general position. Let GiX 0, Xi.···, X,, Xi), r + 1 ~ j ~ n, be an irreducible 
polynomial in k such that II G i II = 1 and G Ax0 , x., · · · , x,, xi) = 0. yv e have a 
polynomial Gi for each r + 1 ~ j ~ n. Put G(X) = G,+ 1(X), and 

H(X) = oG(X)/oX,+ t· 
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Since x. + 1 is separably algebraic over k(x0 , • • • , x,), the polynomial H(X) is not 
equal to 0. If di is the degree of GJ{X), then GiX) contains a term cX1'· Hence 
the ideal generated by X 0 , • • ·, x. and ~(A) contains X~++1 •, • • ·, X~". Hence if 
Ut>"',JN} is a base of ~(A), then {X0,· .. ,X • .ft> .. .,fN} is not a zero set. 
Also we see that the specialization (x0,"· · ·, x,)-+ (0, · · ·, 0) over k is uniquely 
extended to the specialization (xo. · · · , xn) -+ (0, · · · , 0). Hence the rational 
mapping x, of pn onto pr+ 1 defined by ((a0 , ···,an)) -+ ((a0 , ···,a.+ 1)) is 
defined at every point of A. Assume that A is a Z-set. Since {X0 , • · ·, X.,f1, • • • ,.fN} 
is not a zero set, we have M(X0, · · ·, X., ft>···, fN) = c > 0. Hence if 0 < £ < c, 
for every Pe pt, P = ((a0 , ···,an)), with lf1(P)I < £, · · ·, l.fN(P)I < £, we have 
Max(la0 1, · · ·, lanl)lla 11- 1 ;;:;;; c. Hence x. is defined at P with 

lf1cP>I < £,···.If JP)I < £. 

Now x. is a birational morphism of A onto a k-irreducible set A' = x,(A) of 
P'. The set A' is defined by the polynomial G(X 0, • • • , X •+ 1). Let P' be a point on A' 
such that H(P') =F 0. Such P' is a simple point of an absolutely irreducible com­
ponent V' of A', and does not lie on any other component of A'. Since x,+ 2, • • ·, Xn 

are integral over k[xo. · · · , x,], there exist only a finite number of points in 
x; 1(P') n A, and they lie on an absolutely irreducible component V of A. 
Obviously x. induces a birational morphism of V onto V'. Since P' is a simple 
point on V' and x,- 1(P') n Vis a finite, nonempty set, x; 1(P') consists of only one 
point P, and the restriction of x; 1 to V' is defined at P' ("Zariski's Main 
Theorem," cf. A. Weil [l, Chapter VI, Theorem 13, p. 164]). Hence Pis a simple 
point of V, and k(P') = k(P). So if P' is rational over k, then P is also rational 
over k. 

4. Now we assume that k is complete, and {!1, · · · , fN, H} is not a zero set. 
Put µ = M(f1, ···,JN, H). Since llGll = 1, we have llHll ;;:;;; 1 and 0 < µ ;;:;;; 1. 
We choose £ so that 0 < £ < Min(!µ 2, cµ). We have a = (a0 , ···,an) such that 
!!all = 1, lf1(a)I < £, • • ·, lfN(a)I < £ and IG(a)I < £. Then we have H(a) ~ µ and 
Max(la0 1, ···,la.+ 11) ~ c. Put F(T) = G(a0 , ···,a., T). Then F(a.+ 1) = 
G(a0 , ···,a.+ 1) and (dF/dT)(a,+ 1) = H(a). 
We have the following series:· 

Then we have 
b0 = a,+ t> b1 = b0 - F(b0 )F'(b0)- 1, b2 = b1 - F(b1)F'(b1)- 1, .. " 

IFCb1)I = IHF")(bo)(F(bo)F'(bo)- 1rl;;:;;; e2µ- 2 < !£. 
IF'(b1)I = IF'(bo)I ~ µ, 

... 1 
IF(b.)I < 2· £, 

IF'(b,)I ~ µ. 

Hence there exists a limit lim,_ 00 bv = a~+ 1, and F(a~+ 1) = G(a0, ···,a,, a~+ 1) = 0, 
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H(a0, ···,a,, a~+ 1) :fl: 0. Now we see that at least one of a0, ···,a, is not equal to 0. 
If a0 = · · · = a, = 0, then Ja,+ iJ !!:; c and Ja~+ 1J ~ C, a contradiction. Hence 
P' = ((a0, ···,a,, a~+ i)) satisfies all our conditions. 

LEMMA 4. Assume that k is perfect and complete. Let A be a k-irreducible closed 
set in a general position (x0, xh · · · , Xn) a homogeneous generic point of A over k, 
G(X 0 , · · ·, X •+ i) an irreducible polynomial in k with G(x0 , • • ·, x,+ 1) = 0 and 
H(X O• ... ' X,+ 1) denote the polynomial oG/oX,+ I• Lets denote the k-closed set of 
all P with H(P) = 0. If A is a Z-set but A n S is JIOt a Z-set, then A n 11% = At 
is not empty. In this case, A is absolutely irreducible. 

PROOF. Let {!1, ···,JN} be a homogeneous base of ~(A). By assumption, we 
see that {/1, · • • , fN} is a zero set but Ui. · · · , fN, H} is not a zero set. Hence we 
have a simple point P' e n,(A) n pt+ 1 and a simple point n,- 1(P') n A which is 
rational over k. Now A is k-irreducible, so if P lies on a component of A, then P 
lies on every component of A. Hence A contains only one component, so A is 
absolutely irreducible (and defined over k since k is perfect). 

5. PROOF OF THEOREM 4. We use the induction with respect to the dimension 
of A.2 Assume that dim A = 0. We may assume that A is k-irreducible and in a 
general position. Then Lemma 4 shows that A= At= {P}. Now we assume our 
assertion is true for all Z-set of dimension less than r. Let A be a Z-set of dimen­
sion r. We may assume that A is k-irreducible and in a general position. Using 
the same notations in Lemma 4, we see that if A n S is not a Z-set, then A• is not 
empty. If A n S is a Z-set, then S is a hypersurface and dim(A n S) = r - 1. 
Hence we have (An S)1c :fl: 0. 

PROOF OF THEOREM 2. Let Q be a generic point of V over k. For every Pe Yt, 
there exist a pair of homogeneous polynomials F(X), G(X) e k[X °' · · ·, X 11 ) 

such that G(P) :P 0 and <f>(Q)·= F(Q)/G(Q). The set of all P' e V with G(P') :P 0 
is a k-open subset of V, and V1c is covered by a finite number of such open sets. 
Hence we have a finite number of pairs (F 1, G1), • • ·, (F., G.) of homogeneous 
polynomials in k such that deg Fi = deg Gi> <f>(Q) = F J.Q)/Gi(Q) and for every 
Pe Yt there exists i, 1 ~ i ~ S, such that <f>(P) = F J.P)/Gi(P). Let {!1, • • ·, fN} 
be a homogeneous base of the ideal ~(V). Then there is no Pe 11% with 

f 1(P) = 0, .. · ,f~P) = 0, 

G1(P) = 0, ... , G,(P) = 0. Hence from Theorem 1, we see that {f., ... ,fN,G1,· .. ,G.} 
is not a zero set. Putµ = M(/i. · · ·, fN, Gi. · · ·, G.) > 0. For every Pe Yt, we have 
JGJ.P)j ~ µ for some i, hence 

J</>(P)J = JFi(P)j JGi(P)J- 1 ~ JJF;JJµ- 1 ~ Max(JJF1 JJ, .. ·, JJF.JJ)µ- 1. 

PROOF OF THEOREM 3. Since G has no k-split subtorus and is reductive, there 
exists a morphism f of G into a projective variety V defined over k such that f 

2 The idea of using the induction over dim A was suggested by M. Kneser in a conversation with 
the author. 
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is defined over k, f is bi rational and biregular at every point Pe G, f (G) is a 
k-open subset of V and f (Gt) = Yt. If u is a rational function on G which is holo­
morphic at every point of G, then</> = u o 1- 1 is a rational function on Vwhich is 
defined at every point Pe Vi.. From Theorem 2, l<J>I is bounded on J'i., so lu(g)I 
is bounded on Gt. Since matrix coefficients of G are holomorphic functions on G, 
Gt is bounded. 
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Groups Over Z 
BY 

BERTRAM KOSTANT 

1. Preliminaries. 
1.1. Let C be a commutative ring with l. Let A be a coalgebra over C with 

diagonal map d : A -+ A ®c A (it is assumed A has a counit e : A -+ C) and let R 
be an algebra over C with multiplication m : R ®c R -+ R (it is assumed R has 
a unit p : C -+ R). Then one knows that Home( A, R) has the structure of an algebra 
over C with unit where if f, g e Homc(A, R) the product f * g E Homc(A, R) is 
defined by 

f * g = m o (f ® g) o d. 

That is, one has a commutative diagram 

A~A®A 
f •g ! ! !® g. 

R...,!!!-R®R 

In particular if we put R = C the dual A' = Homc(A, C) has the structure of 
an algebra. 

Now assume that A is a Hopf algebra (A is an algebra and coalgebra such that 
d and e are homomorphisms and ep is the identity on C). 

By an antipode on A we mean an element (necessarily unique if it exists) 
s e Homc(A, A) such that I * s = s *I = e where I is the identity on A and * is 
as above with A taken for R. From now on Hopf algebra means Hopf algebra 
with antipode. 

1.2. Now assume A is a Hopf algebra over C and R is any commutative 
C-algebra. Then if 

GR = {! e Home( A, R)I f is an algebra homomorphism} 

one sees immediately that GR is a group under * where 

1- 1(a) = f (sa) for anyfeGR, aeA. 

Thus one has a functor R -+ GR from all commutative algebras over R into 
groups and the functor is represented by A. 

Now if C is the set of integers Z then we may drop the word algebra so that 
R -+ GR is a functor from all commutative rings R to groups. 

90 
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EXAMPLE. If A = Z[Xii• 1/D], i,j, = 1, 2, · · ·, n, where the X;i are indeter­
minates and D = det(X;i), then A is a Hopf algebra over Z where 

dX;j = Lx'" ® x"i' 
k 

so that dD = D®D. Also e(X;i) = 0 and s(Xii) = (-l)i+i cofactor Xi;/D. Here 
GR = Gl(n, R) for any commutative ring R. 

In the example above if one replaces A by its quotient with respect to the ideal 
generated by D - 1 then one obtains GR = Sl(n, R) for any commutative ring R. 

More generally for any semisimple Lie group G we will define a Hopf algebra 
Z(G) over Z with the following properties: 

(1) Z(G) is a finitely generated commutative integral domain; 
(2) for any field k 

k(G) = Z(G) ®z k 

is an affine algebra defining a semisimple algebraic group over k which is ·split 
over k, and is of the same type as G; 

(3) Q(G) defines Gover Q, where Q is the field of rational numbers. 
1.3. From now on C = Z. Let B be a Hopf algebra over Z. An ideal I !: B 

will be said to be of finite type if B/l is a finitely generated free Z-module. If I 
and I' are of finite type then the kernel I A I' of the composed map 

B_!_.. B ® B-+ B/l ® B/I' 

is again clearly of finite type defining an operation on the set of all such ideals. 
A family F of ideals of finite type will be said to be admissible if 

(1) n1eF I = (0); 
(2) s(J) E F for all I E F; 
(3) F is closed under A 
Now given such a family put 

AF = {f e H~m(B, Z)jfll = 0 for some I e F}. 

It is immediate then that AF has the structure of a Hopf algebra over Z. The 
multiplication in Ap is defined as the transpose of the diagonal map in B. (It 
exists since F is closed under A) The diagonal map in AF is defined as the 
transpose of the multiplication in B. (It exists since each f e AF vanishes on an 
ideal of finite type in B.) The antipode is simply the transpose of the antipode 
in B. (It exists since Fis closed under s.) 

1.4. Now let G be a complex semisimple Lie group and let g be its Lie algebra. 
Let U be the universal enveloping algebra of g so that U is a Hopf algebra over C 
where 

dx=x®l+l®x 
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for any x e g. Also s is given by s(x) = 0 for any x e g and s is the anti-auto­
morphism of U defined by s(x) = -x for any x e g. 

We will now define a Hopf algebra B over Z where B s:; U. The family of 
ideals F will be defined by G and one puts 

Z(G) =A,. 

2. The definition and structure of B. Let ~ be a Cartan subalgebra of g and 
let L1 be the corresponding set of roots. 

Chevalley has shown (see [l]) the existence of a set of root vectors e•, <Pe ..1., 
such that if q,, i/J, q, + i/J e L1 then 

[e•, eo;] =±re•+"' 

where re Z + (the set of nonnegative integers) is the minimum integer such that 
(ad e_•)'e.; = 0 and if h• = [e.,e-•] then 

We fix thee• as above and put 9z equal to the Z span of all thee• and h• for 
<Pe ..1.. We recall some facts from [l] which, in fact, are easy to check. Let L1+ 
be a system of positive roots and let Il = (oc1' • • ·, oc1) be the corresponding set 
of simple roots. Put hi = h111, i = l, 2, · · · , l, for simplicity. Then one has 

PROPOSITION 1. The elements h1, · · ·, h1 together with all e•, <Pe L1 form a free 
Z-basis of Sz· 

REMARK 1. Proposition 1 is of course only really a statement about the Z-span 
of the h• and the statement is of course well known. 

Now it is clear that 9z is a Lie algebra over Z. Somewhat less obvious is the 
following fact of [1]: 

PROPOSITION 2. 9z is stable under (ad e,.)"/n! for any <Pe L1 and ne Z+. 

REMARK 2. If h, e and f is a basis of the Lie algebra of Sl(2, C) where [h, e] = 2e, 
[h,f] = -2f and (e,f) = h then Proposition 2 in essence reduces to the follow­
ing fact: If v1, • • ·, V1c is a basis of an irreducible Sl(2, C) module consisting of 
h-eigenvectors such that 

then the Z-span of the vi is stable under e"'/m! andr/n! for all n, me Z +· 

We now define B to be the algebra generated over Z by all elements e4,/n! e U 
for all </> e 11 and n e Z +. 

2.2. To prove that B is a Hopf algebra over Z with suitable properties we 
shall need some multiplication relations in U. 
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If h, e e g where [h, e] = A.e for some scalar A. then one easily establishes 

(2.1.1) p(h)e"' = e'"p(h + A.m) 

for any me Z + and polynomial p e C[X). 
Now if u e U is arbitrary and me Z + put 

u(u - 1) · · · (u - m + 1) 
Cum= I . . m. 

Somewhat less trivial than (2.1.1) is the following useful relation among the 
generators of the Lie algebra of Sl(2, C). 

LEMMA 1. Leth, e,f e g where [h, e] = 2e, [h,f) = -2/ and [e,f) = h. Then 
for any n,meZ+ one has 

e'" r I; r-j e'"-j 
m! n! = i~O (n - j)!C11-m-n+li.i(m - J)! 

where k is the minimum of n and m. 

PROOF. One first of all proves directly from the bracket relation that 

r r f'"-l 
e1 =1 e + ( _ l) 1(h - m + 1). n. n. m . 

Lemma 1 is then just an exercise using (2.1.1), the relation above, and induction 
on m. 

2.3. A sequence of C-linear independent elements to u<nl e U, n = 0, 1, 2, · · ·, 
where u<01 = 1, is called a sequence of divided powers in case 

lft 

du<"' = L uw ® u<" - j) 

i=O 

for all n. It is clear of course that the Z-space of the u<"1 is a coalgebra over Z. 
EXAMPLE. If x e g and u<nl = x" /n ! then clearly u<"1 is a sequence of divided 

powers. Another example is obtained by putting u<"1 = C,,,n: 
Now assume more generally that for each fixed i = 1, 2, · · · , k one is given 

elements u~"' e U, n = 0, 1, 2, · · ·, forming a sequence of divided powers and that if 

where N = (ni. · · · , n,.) e Z\, the uN over all Ne Z\ are C-linearly independent. 
Let V be the Z-span of all uN. It is then clear that Vis a coalgebra over Zand 
if D = Homz(V. Z) then D, as in §1.1, has the structure of a commutative algebra. 
But the point is that the algebra structure on D is particularly easy to describe. 

Let «i e D, i = 1, 2, · · ·, k, be such that y1(rw) = 0 for all N except Yi(ui11) = 1. 
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We leave it as an exercise to prove 

PROPOSITION 3. For any N = (n1, · · ·, nk) e Z\ let YN = Y1 1 • • • Yt·· Then one 
has YN(uM) = 0 unless M = N and YN(uN) = 1 sv that Dis the ring of formal power 
series 

D = Z[[Yio · · ·, Yt]J. 

2.4. Now introduce the partial ordering in Ii where </> < I/I in case I/I - </> can 
be written as a sum of positive roots. Then simply order Ii+ so that Ii+ = 
(</> 1, </> 2 , ···,</>,)where </>; < <Pi implies i ~ j. 

Let n be the complex nilpotent Lie algebra spanned by all e"' where </> e Ii+ 
and let U(n) ~ U be the universal enveloping algebra of n. In each r-tuple 
M = (m1, • • • , m,) where m; e Z + put 

so that the elements eM form a Birkhoff-Witt basis of U(n). 
Now Jet E be the Z-algebra in U(n) generated over Z by e~/n! for all </> e Ii 

and neZ+. 

LEMMA 2. The elements eM, over all MeZ'+,for afree Z-basis of E. 

PRooF. Let E 1 be the Z-span of all eM for ME Z'+. Since the eM are independent 
over C they certainly form a free Z-basis of E1 and E 1 s;;;; E. Since E1 contains 
the generators of E, to prove E1 = E we have only to show that E1 is closed 
under multiplication. 

We first observe that for any 1 ~ j ~ r there exists si E Homc(g, C) such that 
(1) si vanishes on all root vectors e"', (2) si(h"'} = 1 and (3) s1 takes values in Z 
on 9z· Indeed this is clear from Proposition 1 since any root, e.g., </>1 can be 
embedded in a system of simple roots. · 

Now consider the adjoint representation of n on g. Extending to U(n) one 
has that g is a U(n) module. If F = Homc(U(n), C) and 1 ~ j ~ r let Jj e F be 
defined by · 

Jj(u) = si(u · e_"') 

for any u E U(n). If Mi = (m1 •... 'm,) is defined by mi = 0 for i ¢ j and mj = 1, 
then clearly Jj(eM) = l, that is, Jj(e"') = 1. On the other hand if one orders Z'+ 
lexicographically it is immediate that Jj(eM) = 0 for all M > Mi. 

But now by Proposition 2 Jj must take values in Z on E. Now since U(n) is 
a coalgebra F is an algebra over C. For any N = (n1, · • · , n,) put fN = Jr• · · · 
f~· E F. But now since E is the algebra generated over Z by all e"Jn ! it follows 
that dE is in the Z-span of all elements in U(n) ®c U(n) of the form u ® v where 
u1 v e E. Consequently fN also takes values in Z on E for any Ne Z'+. But E 1 s;;;; E 
and by Proposition 3 one has fN(eN) = 1 and fN(eM) = 0 for all M > N. 
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Now assume E1 is not an algebra. Then there exists N, M such that eNeM ¢ £ 1. 
That is, since the ep, Pe Z":+. are a C-basis of U(n) and one writes 

there exists cp such that Cp ¢ Z. Let L be minimal with this property. But then 
fL(eNeM) ¢ Z. This however contradicts the fact thatfL takes integral values on E. 

REMARK 3. We note here that Lemma 2 may be strengthened in that the same 
conclusion is true when we use any ordering in A+. Indeed iffM is defined in the 
same way as eM except with respect to a different ordering in A+ and 

r 

IMI = L m; 
i= 1 

for M =(mi.···, m.) then by the Birkhoff-Witt theorem there exists M' e Z'+ 
such that IM'I = IMI and 

eM - fM· = LCNeN 

where the sum is over N such that INI < IMI. But the cN lie in Z by Lemma 2. 
The result then follows by induction on IMI. 

2.5. If X is an indeterminate one knows that C x ,n for all n e Z + form a free 
Z-basis of the Z-ring R of all polynomials p in C[X] such that p(n) e Z for all 
n e Z. Since Cx-m,n e R for any me Z and is of degree n it is clear that the poly­
nomial Cx-m,n is an integral combination of Cx,., for 0 ~ j ~ n. 

Now for any K = (k1 •... 'ki) E Z1+ let hK = c,,,,lc, ... c,,,,lc,· It is then clear that 
the hK over all K e Z1+ is a C-basis of the universal enveloping algebra U(~) 
of~- On the other hand from above and §2.3 it is also clear that the Z-span H 
of all hK is a Hopf algebra over Z. Also from above, H contains C1i, -n;,1c for any 
keZ+ and m;eZ. 

We have defined eM e U(n) for any Me Z'+· Now similarly define 

for any Ne Z'+. 
Recall that B is the Z-algebra generated over Z by all '4/n ! for q, e A, n e Z +. 

THEOREM 1. The elements 

fNhKeM 

for all N, Me Z":+. and Ke Z~ form a free Z-basis of B. 

PROOF. For convenience put n = 2r + l and for any Pe Z~ write P = (N, K, M) 
and put bp = fNhKeM. By the Birkhoff-Witt theorem it is clear that the bp form 
a C-basis of U. Let U z be the Z-span of all br We first show that U z !;;;;; B. For 
this it is clearly enough to show that if h = h;, 1 ~ i ~ l and k e Z + then C11,1c e B. 
Put e = e,.,, and f = e_,,,1 so that h, e and f satisfy the conditions of Lemma 1. 
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Assume inductively that c,,,i e B for all j < k. Then by Lemma 1 one has 
(ek/k!)(fk/k!) = Cu plus terms all involving eP/p!, /4/q! and c,,_m,j where 
p, q e Z +• me Z and j < k. By induction therefore c,,,11 e B so that U z s;; B. 

With the same definition of h, e,f as above we now show that U z is stable 
under right multiplication by e" /n !, r /n ! and c,,,n for any n E z +. For the case 
of en/n! the result is immediate by Lemma 2. For C,,,n the result follows from 
(2.1.1) since t/J(h) e Z for all roots of q, e A so that eMC•.• = C,,-rn,neM for some 
meZ. 

Finally we want to show bpf"/n! = fNhKeMf"fn! lies in Uz for all P. Since 
the argument above shows that U z is stable under left multiplication by f N 

and hK it is enough to show that eMf"/n! e Uz for all M. But by Remark 3 we 
can change the order of the roots in A+ without changing E. Order the roots 
in A+ so that t/J, = IX; and let S be the set of all Me ZO:.. where m, = 0. We must 
therefore show 

for all Me S, m, n e Z+. But by Lemma 1, (e'"/m!)(f"/n!) can be rewritten as an 
integral sum of elements of the form 

p ei 
~C11,1c71· 
l. J. 

Hence we have only to show eMf"fn!e Uz where MeS. 
But now one knows that the set (t/Ji. · · ·, tPr- i. -ix1) forms a new system of 

positive roots (obtained from A+ by the reflection corresponding to ix1). Hence 
Lemma 2 and particularly Remark 3 apply to this new system. Thus eMf"fn! 
can be written as an integral sum of elements of the form (fi/j!)eN where again 
N e S. But these all lie in U z. Thus U z is stable under right multiplication by 
en/n!,f"/n! and c,,,11:. By symmetry the same is true for left multiplication. 

Now consider the adjoint representation of g on U. This extends to U so that 
U is a U-module and if Ui is the finite dimensional subspace spanned by all 
products of g with itself at mostj times then one knows that Ui is a U-submodule. 
It is also clear that if U~ = U z n Ui then U~ is a Z-form of U z with a free 
Z-basis consisting of all bp where IPI ~ j. 

But if x e g and u e U then ad x(u) = xu - ux. Hence 

ad(~)u = I (-l)i e"-i 1 u;. 
n. i=O (n-J). J. 

Thus U~ is stable under ad(e"/n!) and similarly ad(f"/n!) for all n. It follows 
therefore if 7t; (recall e = e111) is the representation of SL(2, C) on U defined by 
ad h, ad e and ad f and we let a1 = n1(e12 - e21) where e1i, i = 1, 2, are the 
matrix units in M2(C) then U~ and hence Uz is stable under a1• If Xis the group 
generated by the a, for all i then U z is stable under X and one knows there is a 
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homomorphism a-+ ii of X onto the Weyl group W such that ae• = ±e,,. for 
all a e X. Since every root is W-conjugate to a simple root it follows therefore 
that U z is stable under right multiplication by t;,/n ! for all </> e A and n e Z +. 
This implies U z = B. 

2.6. If we regard U~) as the algebra 'of all polynomials on the dual space 
I)' to I), then for any f e I)' one has that 

Thus if L s;; h' is the group of all integral linear forms on I) then h,,,(f) e Z for 
all Me Z'+. In fact, using the standard basis of L it follows easily that H is 
exactly the set of all p e U(l)) which take integral values on L. Furthermore 
(since the same is true for R and Z; see §2.5) given any finite subset F s;; L 
and A. e F there exists p e H such that p(A.) = 1 and p(p) = 0 for u e F and µ fl: A.. 

Now assume that Vis an arbitrary finite dimensional U-module. Let A( V) s;; L 
be the set of weights of V and for each µ e A(V) let V" be the corresponding 
weight space. 

AZ-form Vz of V(V = Vz ®zC) is called admissible if it is stable under B. 

CoROLLARY 1 TO THEOREM 1. There exists an admissible Z1orm Uz in V. 
Moreover if Vz is any admissible Z1orm in V and V~ = Vz n V" for µ e A(V) 
then 

Vz = E9 V~. 
pe4(Y) 

PROOF. To prove the existence of an admissible Z-form it is enough to assume 
V is U-irreducible. Let v be a highest weight vector and put Vz = B · v. Since 
f,,, · v fl: 0 for only a finite number of M it is clear that Vz is finitely generated 
over Z, stable under B and generates V over C. Furthermore Vz is a direct sum 
of the V~ = Vz n V" for µ e A(V). To prove Vz is a Z-form of V we have only 
to show that if c" · · ·, c• e C are independent over Z and Vi,···, v• e V! are 
such that L c;v; = 0 then one already has V; = 0 for all i. Indeed if, say, Vi fl: 0, 
there exists p e E (see §2.4) of weight A. - µ (where A. is the highest weight of V) 
such that p ·Vi fl: 0. But for all i, p · v1 = m;v for some m; e Z since p · v1 is of 
the form q1v where q1 e H by Theorem 1. Hence 

0 = p · (L c;v1) =(L c;m;)v 

contradicting the fact that the c; are Z-independent since we have mi fl: 0. 
Thus Vz is a Z-form of V. 

Now assume Vz is any Z-form of V. For each µ e A(V) let p,. e H be such that 
p,.(µ) = 1 and p,.(y) = 0 for all ye A(V~ y fl: µ. But then L,. p,. operates as the 
identity on V and if we Vz and w,. = p,. · w then w = L,.w,. and w,. e V~. This 
proves the direct sum decomposition stated in the corollary. 

It follows from its definition but clearer from Theorem 1 that B is a Hopf 
algebra over Z. 
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THEOREM 2. If J ~ V is any ideal of.finite codimension in V then I= B n V 
is an ideal of.finite type in B. 

PROOF. Put V = V/I so that by left multiplication Vis a finite dimensional 
V-module. Since an admissible Z-form exists Bis represented by m x m matrices 
with coefficients in Z where m = dim V. This implies J is an ideal of finite type 
in B. 

Now let A index all equivalence classes of finite dimensional modules for G. 
Regard these as modules for V and let J 11 ~ V, for oc e A, be the corresponding 
kernels. If I,. = J 11 n B then it follows easily from Theorem 2 that the I 11, oc e A, 
form an admissible family F of ideals of finite type in B. One puts Z(G) = A,, 
(see §1.4) defining the Hopf algebra Z(G). 

If Vis any one of these modules and Vz is an admissible Z-form in V with 
Z basis vi and wi is the dual basis then one always has J,1 e Z(G) where 

f;,{u) = (u · v,, w1) 

for u e B. The fact that Z(G) is finitely generated is a consequence of the following 
theorem of Chevalley. 

THEOREM 3. If G is faithfully represented in V then Z(G) is exactly the algebra 
generated over Z by the fii· 

REMARK 4. The definition given here for Z(G) provides the following normal 
form for Z(G). Let bp be the basis of B given in Theorem 1 (see prooO. Let 
S = Homz(B, Z) and let Yi e S, i = 1, 2, · · ·, n, be orthogonal to all bp except the 
basis e"', hi of gz and the Yi define a dual basis to this basis of gz in the order 
indicated by Theorem 1. Then (by §2.3) if }'p = rl'1 • • • }':" where P = (p1, • • • Pn) 
one has }'p(bQ) = ~PQ· Furthermore Z(G) ~ Sand Sis the ring of formal power 
series 

S = Z[[Y1 · · · YnJ1. 
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Subgroups of Finite Index in· Certain Arithmetic Groups 

BY 

H. MATSUMOTO 

Introduction. Let k be an algebraic number field and o the ring of integers of k. 
Let G be a connected algebraic group defined over k and G0 its subgroup of 
integral points. For every ideal q #= (0) of o, the full congruence subgroup 
G0(q) modulo q is obviously of finite index in G0 • 

The purpose of this talk is to discuss a converse to this for certain groups. We 
have the following theorem: 

THEOREM. Let G be a connected simply connected simple group of rank ~ 2 
and split over Q. Then every subgroup of finite index of Gz contains Gz(q) for 
some ideal q #= (0) of Z. 

This means that the set of all full congruence subgroups of G is cofinal in the 
set of all arithmetic subgroups of G. This is of much interest especially when G is 
a. symplectic group. As is well known, the analogous statement is false for SL2• 

The theorem was given for SLn (n ~ 3) and Sp2n (n ~ 2), independently, in 
(21 (61 [7]. Mennicke (yet unpublished) bas proved it for all simple groups., but 
his original proof involves a case-by-case discussion. His arguments are essentially 
as follows : he reduces the problem first to the cases where G = SL3, Sp4, and 
then, by means of clever matrix computations, to some arithmetic properties of 
Z, which are verified in virtue of Dirichlet's theorem on arithmetic progressions. 

In this talk, we shall show how the problem can be reduced to cases of lower 
rank, making use of the theory of semisimple group schemes over Z due to 
Chevalley [5], discussed by Cartier and Kostant [3] at this Institute. 

REMARK. It seems likely that the theorem is in fact true if Q and Z are replaced 
by a number field k and its ring of integers o. In fact, for a given k, the reduction 
theorem whose proof is sketched below shows that if the theorem is true for 
G = SL 3,0 , Sp4 ,0 , then it is true for any G which is simple, simply connected, 
and splits over k. Moreover, Mennicke has shown that the theorem is true for 
G = SL3 ,0 , Sp4 ,0 , if o verifies the following condition, which we state for a 
commutative ring A : for x, y e A, let us denote by n(x, y) the smallest positive 
integer n such that y" is congruent mod x to a unit of A. If x, y are coprime in A, 
then the g.c.d. of the numbers n(x + ty, y) (t e A) is equal to one. 

I. Groups over Z. Let us recall briefly some definitions and results in [3]. 
Let G be a connected semisimple algebraic group of automorphisms of a 

vector space U over C and Ha maximal torus of G. Let g, ~be the Lie algebras 
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of G, H respectively, <I> the system of roots of G relative to H and fl a system of 
simple roots in <I>. We take, as in Cartier's lecture, a Chevalley lattice Sz of g 
and an admissible lattice U z of U, gz = g n End(U z) = ~z + L,. .. Zx,., g11 = Cx,., 
and we define a Hopf algebra Z[G] over Z of G. Q[G] = Z[G] ®z Q induces a 
Q-structure of G. 

If X is a connected subgroup of G defined over Q, the inclusion map ': X -+G 
induces a Hopf algebra homomorphism r:C[G]-+ C[X], and Z[X] will denote 
the subalgebra i(Z[G]) over Z of C[X]. For the semisimple subgroups X of G 
considered later, this Z[X] will be exactly the Hopf algebra associated with X 
view,ed as a semisimple group. 

Now let p be an irreducible rational representation of G in V and Vz an 
admissible lattice of Vwith respect to 9z and ~z· We have Vz = L.i. Vz n v.i. where 
A. runs through the weights of p with respect to H and VA is the weight space of A.. 
Let us take a basis of Vz, {v1, v2, ••• , vm}, compatible with the above decom­
position and such that v1 e v.i., with A. 1 the highest weight of p relative to fl. 
When we express p in terms ofthis basis, p(g)v i = L~= 1 tiJ{g)vh we have tlJ e Z[ G] 
and the action of G on V induces a ring homomorphism p of Z[V] into Z[G] 
® Z[V]. 

Let us introduce some subgroups of G. Let P be the stabilizer in G of VA•, N+ 
the unipotential radical of P, S the maximal reductive subgroup of P containing 
Hand G' the derived group of S. Denote by n+, s, g' the Lie algebras of N+, S, G' 
respectively. We can write n+ = L,.eecn+>g11 , s = ~ + L .. eet•>g11 , and g' = g' n ~ 
+ Liz&el•l g11 • Let m be the subalgebra of g generated by 9±.., cc e fl n <l>(n+), and 
put n- = Lize•in•i9-iz and~·= m n ~- Let N- and H' be the connected sub­
groups of G whose Lie algebras are respectively n - and Is'. We have S = H'G' 
with H' n G' finite. These subgroups of G are all defined over Q. 

Now the map </>: N- x N+ x S-+ G defined by <J>(n-, n+, s) = n-n+s is an 
isomorphism of algebraic varieties of N- x N+ x S onto an affine open set n 
in G. If H' n G' = {e}, the map Y,:H' x G'-+ S defined by Y,(h',g') = h'g' is also 
an isomorphism of algebraic varieties. Furthermore, we have the following 

PROPOSITION 1. (i) C['1] = C[G].[t!11 ] with t11 E Z[G] and t 11(e) = 1. </>induces 
a ring isomorphism ;j, of Z[ G][t 11 1 ] to Z[N-] ® Z[N +] ® Z[S]. 

(ii) If H' n G' = {e}, then I/I induces a ring isomorphism t[, of Z[S] to Z[H'] 
® Z[G']. 

This proposition follows from a theorem in [S] and in [3]. We note that if G 
is simply connected one always has H' n G' = {e}. 

2. Reformulation of the problem. Leto be a commutative ring with unity. The 
set of ring homomorphisms of Z[G] into o, GD= Hom(Z[G], o), has a group 
structure induced by the Hopf algebra structure of Z[ G]. With a connected 
subgroup X of G defined over Q, we associated the homomorphism r: Z[G] 
-+ Z[Xl and thereby we obtain an injection of X D = Hom(Z[Xl o) into GD: 
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thus X 0 is a subgroup of G0 • In particular, for a root subgroup N" = exp g,., oc e Cl>, 
we have a subgroup N: of G0 • 

The elements in the union of N:, oc e Cl>, are called elementary unipotents of G0 

(with respect to Bz and ~z). 
o is fixed once for all and we put r = G~. For every ideal q of o, we get a reduc­

tion homomorphism of r into G01q = Hom(Z[G1 o/q), whose kernel is denoted 
by rq. One can see later that this reduction map is surjective, for example, if 
G is simply connected and if o/q is semilocal. 

Now let us define some subgroups of r. Let E be the subgroup of r generated 
by the elementary unipotents in r, and, for every ideal q of o, let Eq be the smallest 
normal subgroup of E containing the elementary unipotents in rq. 

We see easily that the theorem in the Introduction is a consequence of the 
following 

THEOREM I. If G is simply connected and simple of rank ~ 2 and if o = Z, we 
have, with the above notations, r q = Eq for every ideal q of o. 

In fact, we know that the statements of these theorems are equivalent and that 
this fact remains valid when o is the ring of integers of an algebraic number field 
(cf. [ID. 

3. A reduction lemma. In this section we shall always assume the following: 
(Al) G is simply connected and simple . 

. (A2) o is a commutative ring with unity such that, for every ideal q not con­
tained in the radical of o, o/q is semilocal. 

Under these assumptions, we shall show, for r = Hom(Z[G], o), how one can 
reduce to cases of lower rank the question whether rq and Eq are equal. 

For this purpose we need a representation of G satisfying certain conditions. 
Let us consider the following condition on an irreducible representation p of G : 

(Pdm) Every nonzero weight of p (with respect to H) is transformed into the 
highest weight of p by an element of the Weyl group of G (with respect to H). 

We recall a proposition in (4, expose 20): 

PROPOSITION 2. If p is a nontrivial irreducible representation of G satisfying 
(Pdm), then every nonzero weight of p is of multiplicity 1 and the multiplicity of 
the weight zero is the number of simple roots appearing among the nonzero weights. 

We know (loc. cit.) that there exist at least min {rk(G), [CJ} fundamental repre­
sentations of G satisfying (Pdm), where rk(G) is the rank of G and [C] the order 
of the center C of G. 

We shall fix a fundamental representation of G satisfying (Pdm) and the 
following supplementary condition (Deg): p is of degree greater than 2 and its 
highest weight A.1 is not sum of any two simple roots. 

One can see easily that (Deg) is automatically fulfilled by any nontrivial 
irreducible representation of G satisfying (Pdm) unless G is isomorphic to SL2 , 

SL3 or Sp4• Thus, if G is of rank ~ 2, there exists at least one fundamental 
representation of G satisfying (Pdm) and (Deg). 
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We shall now apply the results of §1 to such a fundamental representation p 
of G in V. First, we take an admissible lattice Vz of V and modify it so as to 
coincide with Vz + V~, where V~ is the largest lattice of the zero-weight space 
v0 such that Vz + V~ remains an admissible lattice of V (cf. Proposition 2). 
As in §1, we have subgroups N-, H', N+, G' of G, defined with respect top. 
We have H' n G' = {e}, Z[H'] = Z[t11IH, (t 11IH)- 1 ], and, since G is simply 
connected, so is G'. Therefore, Proposition 1 gives us the ring isomorphism 

w = (( ® 1 ® if,) o ¢: Z[G][ti}]-+ Z[N-] ® Z[N+] ® Z[H'] ® Z[G']. 

Z[G] is the Hopf algebra associated with G' viewed as a semisimple group and 
r' = G~ = Hom(Z[G'], o) is a subgroup of r. We have r~ = rq n r'. For the 
unipotent subgroups N±, we see easily that N: n rq c Eq. 

The dual action p: Z[V]-+ Z[G] ® Z[V) defines an action of r on V.,, where 
V0 = Hom(Z[VJ, o) = Vz ® zO. In virtue of Proposition 2, we can see in what 
manner r and E act on V.. in terms of our basis { vh v2, • • ·, vm}: r acts on V.,, 
grosso modo, in as simple a manner as SLn.o does naturally on V0 (n ~ 3). So 
using arguments similar to those in [1] and [2], we can show the following 

LEMMA 1. Let v be an element of V0 such that v = v 1 mod q V0 • Then there exists 
a g E Eq such that p(g)v - v1 EI;= 2 qvi. 

This allows us to obtain our reduction lemma: namely, 

THEOREM 2. The notations and assumptions being as above, we have rq = Eqr~ 
for every ideal q of o. 

SKETCH OF PROOF. Let g be an element of r q. By Lemma I, there is a g I E Eq 

such that g 1g maps t 11 to 1. Hence g1g belongs to Hom(Z[G][ti-.1 ], o) and there­
fore, by means of w, it can be written in the form g1g = n-n+ h'g' where n- EN;, 
n+ eN:, h'eH~ and g'er~. We see easily then that h' = e and that n-,n+ are 
in r q, hence in Eq. This implies that g is in Eqr~. 

We note some consequences of this theorem (cf. [1], [6]). 

COROLLARY 1. Assume rk(G) ~ 2. Then Eq is a normal subgroup of r and we 
have [r,rq) c Eq. 

COROLLARY 2. (i) If o is semilocal, rq is equal to Eq for every ideal q of o. 
(ii) If o is euclidean, r is equal to E. 

Now if G' has a simple factor of rank ~ 2, we can apply Theorem 2 to r~. 
to obtain rq = Eqr"q where r" comes from a subgroup G" of rank rk(G) - 2. 
Actually, we can always take p in such a way that G' is simple; therefore we have 
rq = Eqr~ = · · · = Eqr~-o, where I= rk(G) and r(l-ll is isomorphic to SL 2• 

Finally if G is of type G 2, we see easily that G has a subgroup G* containing 
G'H and isomorphic to SL 3 • We have therefore rq = Eqr~ = Eqr:. 

Thus, the problem of knowing whether the equality rq = Eq holds is reduced 
to cases of lower ranks and, under certain circumstances, to the cases of SL2, 

SL3 and Sp4. 
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These remarks, together with the results for SL3 and Sp4 in (2), (6) and (7), 
complete the proof of Theorem 1. 
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The Problem of the Maximality of Arithmetic Groups 
BY 

NELO D. ALLAN 

I. Introduction. Our purpose is to give a survey of the known results on the 
maximality of arithmetic groups. The problem of finding extensions of an arith­
metic group was first treated by Hurwitz who found an extension of SI.(0~ 0 
being the ring of integers of a number field k. Later on, about 1938, Hecke 
proved that Sl2(Z) is maximal in Sl.(Ri In 1955 Maass proved that the Hurwitz 
group is the only maximal arithmetic group containing the Hilbert-Blumental 
group, up to a central extension. In 1957 Gutnik solved the problem of the 
maximality of Gz for all paramodular groups G. Recently Greenberg solved 
the problem of the maximality of Fuchsian groups, and Ramanathan and 
Christian generalized Maass results to the case of the Hilbert-Siegel modular 
group; also Ramanathan proved, in several cases, that an arithmetic group is 
contained in only finitely many maximal arithmetic groups. This result has been 
generalized by Borel, who also generalizes the results of Hecke and Gutnik; 
there is also a generalization of these results in another direction, obtained by 
myself. We understand that H. C. Wang has also results concerning the max­
imality of discrete subgroups of some Lie groups. We would like to mention that 
with the help of the strong approximation theorem, we can lift the results of 
Hijikata, Bruhat-Satake, and Iwahori-Matsumoto, from the local case to the 
global case, to prove the maximality of G0 in Gt. 

2. General problems. Let G be a connected, semisimple linear algebraic group 
defined over an algebraic number filed k; say G c: Sl.(C). We say that a subgroup 
A of G is arithmetic if A is commensurable to G0 , i.e., A - G0 • We shall assume 
that any arithmetic group is Zariski dense in G; this is true if G has no connected 
normal subgroup N, defined over k, such that (Rtia(N))8 is compact. 

Given an arithmetic group A, the first problem that arises is .. how many" 
maximal groups are there that contain A. The solution of this problem was first 
given by Ramanathan for some classical groups, and later on by Borel, in general; 
there are only finitely many maximal arithmetic groups containing A. 1 We shall 
sketch the proof of this result, because of its simplicity. 

1 More recently H. C. Wang proved that if G is a semisimple real Lie group without compact 
factors, then any discrete subgroup of G with fundamental domain of finite measure is contained in 
only finitely many maximal discrete subgroups of G. 
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Let L = A(A, 0) be the enveloping algebra of A, i.e., the 0-order generated by 
the elements of A in Mn(k). The Zariski density of A implies the existence of 
A, A.' e 0 such that 

(1) 

We shall prove first the following lemma: 

LEMMA (BoRELi If G is centerless and G is irreducible as a matrix group, then 
any arithmetic group is contained in G11.. 

PROOF. First we can find A0 c: G0 such that Ac: N(A0), where N(A0) is the 
normaliz.er of A0 in G. The Zariski density of A0 is equivalent to the existence 
of n2 independent elements, over k, in A0, say M 1, ···,Mn e A0 and with the 
help of these elements we can define a representation 'I' of Gin Mn(C) by assigning 
to every ge G the matrix 'l'(g) = (cx11.(g)) where cx1i is defined by g- 1 M1g = L«1,,M1• 

Since G is centerless, 'I' is faithful, hence it is an isomorphism over k, and con­
sequently 'l'(G11.) = ('l'(G))11.. Now our assertion follows from the fact that 'l'(A) 
c: 'l'(N(A0)) c: ('l'(G))11.. 

With a slight modification of this argument we obtain the following results: 
(a) Under the same hypothesis as in lemma, the commensurability group of 

A is G •. 
(b) In general (G not necessarily centerless), NJA) - A, for all A c: G., where 

NJA) = N(A)n G11.. 
Now we are in the position to prove our assertion. We first observe that the 

property of being a maximal arithmetic group remains unchanged under an 
isogeny; hence we may assume that G is centerless. Since the enveloping algebra 
of an arithmetic group contained in G• is an 0-order in the algebra Mn(k), and 
every such order is contained in only finitely many maximal orders, it follows 
that A is contained in only finitely many maximal arithmetic groups, and these 
groups are among the groups obtained by intersecting the maximal orders con­
taining L, with G. 

If G is not centerless, we have the following result: if A is maximal in G11., then 
there exists a unique maximal arithmetic group containing A, namely the nor­
malizer N(A) of A in G. Moreover N(A)/A is an abelian group such that the order 
of each one of its elements divides n. 

This result is obtained from the following lemma, which also tell us the "shape" 
of any element in N(Ai 

LEMMA. Let 0 be an algebraically closed field, G be a matrix subgroup of 
SIJO), and k be the quotient field of a Dedekind domain 0 contained in 0. Let A 
be a subgroup of G• such that for any A' - A the formula (1) is satisfied for some 
A, A.' e 0, and N 11.(A) = !J.. Then every g e N(A) can be written as (gii) and ~i e k for 
all i,j = 1, · · ·, n. Moreover the ideal ~i) can be written as ~~/!l where ~iJ and 
!) are ideals in 0 such that the ideal class of ~•i is independent of i and j, g1i :I: 0, 
and!) divides i•- 1• In particular g = g' .::Ja, with g' e M.(k) and a e k. 
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If we denote by JU the subgroup of N(A) consisting of those g where a can be 
taken as a unit of.O, then we have a natural injection ofq//A into Un= U/U n .0, 
where U is the group of all nth roots of all units of .0. If we assume that A. is 
divisible only by principal primes, and if we denote by D(n, A.) the group D/D" 
where D is the free abelian group generated by all P.rime divisors of A., then there 
exists an injection of N(A)/q/ into the direct product of the subgroup IC(n, k) of 
the ideal class group of k, consisting of those ideal classes whose order divides n 
by the group D(n, A.). This injection is the mapping which associates to every 
g E G the pair (ideal class of m:ii• class of '.1' in D(n, A.)). 

3. Relation with the local theory. We shall investigate the relation between 
global and local maximality. First we observe that a maximal arithmetic group 
contained in Gk is the intersection of maximal compact subgroups of G1c.· For, 
if A is maximal in Gk, then for every finite spot ~. the p-adic closure (A)" of A 
is contained in only finitely many maximal compact subgroups of G1c 8 ; we 
choose one among them and call it A•; now the intersection of all A• for ~ finite, 
intersected with Gk, gives A. We observe that if ~ does not divide A., then 
A• = G0 ,,; also the intersection with Gk of maximal compact ~-adic groups may 
not be a maximal arithmetic group. 

One would like to find conditions under which local maximality at all finite 
spots, implies global maximality, because the local problem is easier to handle; 
in particular we want to find conditions on the representation of G such that Gti 
is maximal in Gk if and only if G09 is maximal in Gk• for all finite~- This is true, 
for instance, if G is simply connected, because here we can use the approximation 
theorem. We observe that to prove the "only if" part, we need the trivial con­
dition (Ge)• = G0 " for all~; which is a consequence of the strong approximation 
theorem, and is also verified in most of the examples listed in the next section. 

As an application, we consider an admissible lattice for a simply connected 
Chevalley type group over k, then G0 is maximal in G1c because the local max­
imality condition holds here (Borel-Matsumoto-Iwahori). More generally we 
consider a maximal k-torus T and a set of simple roots oc1, · • ·, oc, with respect to 
T; we choose a Chevalley basis {Xa., Ha.} for the Lie Algebra g of G. If 

r 

oc0 = L m;oc;, 
i= 1 

is the maximal root of G, then for every root oc = L~= 1 q;oc;, we can define the 
Bruhat exponents µ;(oc) as being 1, 0, or -1, according as whether q; = m;. 
0 ~ q; < m;, or q; < 0, respectively. Now we choose numbers n"" in .0 such that 
at every prime~ the lattice generated by n:i<a.>x"", Ha.} is the Bruhat lattice in g; 
consequently the groups Ge of units oft in this lattice are maximal in G1c because 
G0 " is maximal in Gk" for all ~- It is conjectured that this result holds for any 
split group over k. Also it is conjectured that any maximal arithmetic group 
contained in G1c is conjugate to one of such groups, provided that the class number 
of k is one. This is a generalization of the Example 3 of the next section. 
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4. Known results on the maximality of Ge. 
(1) General results. If Lis an admissible lattice for G, a Chevalley type group 

over k, then Ge is maximal in G1c provided that the class number of k is one. 
Gz is maximal in G,, (Borel-Matsumotoi 

(2) G = Sln(C). In this case Ge is maximal in G1c for any k, and d/J/Ge - Un, 
N(Ge)/d/J - IC(n, ki In the case of Ge = Sl2(.0), we can describe N(Ge) as 
follows: If g e Gl2(.0) and det(g) = s is a unit of .0, then g/ J(s), hence d/J /Ge - U 2. 
If 'I is an ideal class in IC(2, k), '12 = 1, and if ~1 and ~2 are two distinct primes 
in 'I, then ~f = (w1), ~~ = (w2), with w1, w2 e .0; hence we can find a, be .0, 
such that aw1 - bw2 = 1. Therefore the matrix 

g = (aJ(w1) bJ(w2)) 
JCw2) JCw1) 

lies in N(Gc) provided the choice of the w1, w2 e .0 is such that J(w1) · J(w2) e .0, 
because we can easily verify that g = (gli), with (gi) = 9li, where 9lii are non­
principal ideals in .0 lying in 'I for all i,j = 1, 2 

(3) G = Sp(F), where 
'F= -F, F = (-~ ~)· 

and~ is diagonal { 1, d2, • • ·, dp}, ~ e Mp(.0), and d1 divide di+ 1 for all i = 1, · · ·, p - 1. 
ae is maximal in G11 if and only if dP is square free, in this case d/J/Ge - U2 and 
N(Ge)/d/J - IC(2, k) x T where T = {e} if p is odd, and T = D(2,d.+ 1/d.) if 
p = 2s is even and dP is divisible only by principal primes. To get the ideal 
classes and units in N(Ge) we just embed N(Sl2(.0)) in N(Ge) in a natural way. 
These results generalize the results of Gutnik (k = Q) and the results of Ramana­
than-Christian (~ = identity). 

(4) G = SU(F) = the Special Unitary Group of F. In this case k is an imaginary 
quadratic extension of a real number field k0 and F is the same matrix as in (3) 
but now ~ e M p(.00) where .00 is the ring of integers of k0• We have that Ge ~ 
maximal in G,. if for every prime ~dividing dP, neither ~2 divides dP, nor~~ 
divides dP. The converse is true if dP is only divisible by principal primes. The 
image of d/J/Ge is contained in the subgroup U' of Un consisting of the classes of 
all ~ s where ~(s) · ~(e) e k0 ; also this image contains the group 

(Uoh = U0/U0 ri .00 

where U 0 is the group of all square roots of units of .Oo- If dP is only divisible by 
invariant primes and it is square free, then N(Ge)/d/J - IC(n, k)' x T, where 
T= {e} or D(2,ds+ 1/ds) according as whether pis odd, or pis even, p = 2s. 
Here IC(n, k)' denotes the subgroup of IC(n, k) consisting of all classes 'I such 
that 'l/n = tt?j = 1, and there exists ~ e 'I, ~n = (w), and wW = in, for some 
AEOo-

(5) G = SO(S) = the Special Orthogonal Group of S, where Se Mn(O), is the 
matrix (sii), i,j = 1, 2, 3 with s;3 = s31 = EP, the p by p identity, s22 = V, 
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V = 1 Ve M.(.O) is positive definite, det(V) is a unit, and s1J = 0, otherwise; also 
n = 2p + rand p > 1. We shall assume that 2 is square free ink. In this case we 
may always assume, by replacing V by 'f Vf,f e Gl,,(0), if necessary, that V = (v1J), 
v- 1 = (w11), and either 2 divides all v11 and all wiJ• or 2 divides all v11 and all wJJ 

with the exception of i = r and j = r - 1 or else r. In the first case Ge is always 
maximal in G1c. In the second case the same is true provided that for any prime ~ 
dividing 2, ~2 does not divide w •• and ~2 does not divide v._ 1. _ 1 or else v ... 
Under these conditions, every element of N(Gc) is a matrix with algebraic integral 
entries only. In particular, if n is odd, then Ge is maximal in G, because in this 
case G is centerless. If Vis the r by r identity matrix, then Ge is maximal in G11 

if 4 does not divide r, and G'll is not maximal in G,. if r = 4. 
(6) G = SU(S), where Sis taken as in (5), but here we assume that Vis hermitian 

positive, and k is an imaginary quadratic extension of a real number field k0• 

If r is even and there exists an element of 0 with trace one, then Ge is maximal 
in G,., and every matrix in N(Gc) has only algebraic integral entries. If r is odd 
and !T denotes the ideal tr,.11c0(.0), then if !T is prime in k0 we always may assume 
that .r divides vu and wJi with exception of v •• and w •• , and in this case the same 
result, as above, is true. 

(7) G = Group of units of a quaternion form. Let D be an involutorial quaternion 
algebra of first kind over a real number field k and let D * = D ®11 R. Let 0 be a 
maximal order in D and He M,,(0) be a quaternion hermitian or skew hermitian 
matrix. Let G = SU(H) = {g e M,,(D *)lg* Hg = H} where • denotes the exten­
sion of the involution of D to M,,(D *). Again if A is any subgroup of Ga, A - G0 , 

then we can find a number A., A.' e 0 such that 

where L = A(A, .0) is the 0-order of A in M,,( D), provided that G is noncompact. 
We also have that, if ti is maximal in G0 , then there exists a unique maximal 
arithmetic group containing A and this group is N(A). N(A)/A is finite abelian 
and everyone of its elements has order dividing 2. Every g e N(A) can be written 
as g\/a, with g' e M,,(D) and a e k. If we denote by iJ/J the subgroup of N(A) 
consisting of those elements g where a can be taken as a unit of .0 then iJ/J /A - U 2• 

Also there exists a number A. 1 e 0 depending only on A. and 0 such that, if A.1 is 
only divisible by principal primes, then N(A)//J// is isomorphic to a subgroup of 
IC(2, k) x D(2, .A. 1). We fix now a basis of Dover k consisting of 1, w1, w2, w1 w2 e 0 
such that wf =a, w~ = b, a,be.O, and w1w2 + w2w1 = 0. Then we can take 
A. 1 = 2abA.. In particular, if a, b #= ± 1 and 2ab is only divisible by principal 
primes, and H is the matrix F considered in (3) with ~ being the identity matrix, 
then G0 is maximal in Ga, /J/J/G0 - U 2 and N(G0 )//J// - IC(2, k) x T where T 
is a subgroup of D(2, 2ab) with order at least 4. If His the matrix S considered in 
(5). Then G0 is maximal in Ga. provided that there exists in 0 an element with 
trace one; /J///G0 is isomorphic to a subgroup of U2 and N(G0 )//J// is isomorphic 
to a subgroup of IC(2, k) x D(2, 2ab). 
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S. Appllcadons to bounded domains. We would like to point out how to find 
maximal discontinuous groups acting in some bounded domains. If G is a con­
nected semisimple linear group defined over k such that G/K is a bounded domain 
where K is a maximal compact subgroup of G, then Ge acts discontinuously in 
the product, PJ, of s == [k: Q] copies of irreducible bounded domains. In general 
N(Ge) is too big in the sense that it cannot be embedded in the identity com­
ponent, T(PJ)0 , of the group of isometries of 9). In the case where G is either of 
orthogonal type or of symplectic type then the biggest subgroup of N(Gc) which 
can be embedded in T(9')0 consists of the elements where g == g' · J a with a 
being a totally positive number. We shall denote it by N(Ge)•. Then there exists 
a unique maximal (in T(9')0) discontinuous group containing Ge, and this group 
is the direct product of N(Ge)* by the center of T(9')0 • 
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1. Valuations. Let k be an algebraic number field. Denote the r1 real em­
beddings of k into C by {a1, a2, • • ·, ar,} and the 2r2 = n - r 1 nonreal embeddings 
by { ar, + 11ar,+2• • • ·, ar, +r2 ; <tr,+ 11 • • ·, O'r, +r2 }. For each real a we define a (real) 
valuation of k by: 

locl....,... = loc"I for oc ek; 

if a is nonreal, we define 

locl, ...... = loc"l2 = oc"oc'. 

The r 1 + r2 archimedean valuations thus obtained are denoted 

{I I,..,,, •... ' I 1, ...... ; I 1,.., .• , +I ••• 'I 1, ........ .}. 
Each of these defines in k a metric with respect to which k is a topological field ; 
the completion of k with respect to 11,..,,, is denoted by k,..,,, and is topologically 
isomorphic to the field of real numbers for i = 1, · · · , r 1' and to the field of 
complex numbers for i = r1 + 1, · · ·, r1 + '2· 

For each (integral) prime ideal p in the ring of algebraic integers fJ of le, we 
define a nonarchimedean valuation I I, by: 

for ocek 

where N, is the norm of p and ord,(oc) is the power to which the prime ideal p 
occurs in the factorization of the principal ideal (oc). Each such valuation defines a 
metric in k whose completion is denoted by k, ; the latter is a locally compact, 
totally-disconnected topological field. The compact, open subring fJ, of k, defined 
by 

is called the ring of integers in k,; its unit group U, is defined by 

u, = {Pek,jlPI, = 1} 

and is compact. 
These valuations satisfy the following Product Formula: 

TI locl, = 1 for all oc e k* 
p 

where the product is taken over all the valuations defined above. 

113 
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We call these valuations "primes"; the archimedean ones are referred to as 
"infinite primes." 

2. Definition of adele ring. Let S be a finite set of primes containing all the 
infinite ones. We put the product topology in the Cartesian product 

As= (!J eP) (!l k9) 
and get a locally compact ring (addition and multiplication component-wise). 
For S c S' there is a natural injection <P: As -+ As· with <P of (As) open in As·· 
Thus in 

A d!f" l' A t - im s 
s 

there is a unique topology such that each As is open. At is a locally compact 
topological ring. 

3. Adelized variety. Let V be an affine variety contained in '2" and defined 
over k and let~ be the (prime) ideal of Vin k[X 1, • · ·, Xn1· The set of points 

VA = {(a1, a2, ···,an) e Al;jF(a" ···,an)= 0 for all Fe~} 

is called the adelized variety of V over k. 
Alternately, we can define VA as the limit of VA. where 

vA. = ( n vtl.) x (n v,..)· 
pflS peS 

For the case of an abstract variety we proceed as follows. Let V" · · ·, V,, be 
affine varieties. Let V be a set and f; an injection f;: V; -+ V for i = 1, 2, · · · , n. 
Suppose: 

n 

(1) v = u f;(V;) 
i= 1 

(2) The mapping 7;i taking! i 1(p) to f; 1(p) is a birational mapping defined for 
all pef;(V;)n Ji~). 

Then {(f1> V1), ···,<Jn, Vn)} is called an abstract variety (usually just denoted 
V) and is said to be defined over kin case the {V;} and {7;i} are defined over k. 
Assume V is defined over k and set 

n 

Vt1. = U /;[( "i)t1.) 
i= 1 

for finite p, 

n 

v,.. = u f;[("i)11 J 
i=l 
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VA. and VA are now defined by: 

VA.= (n V(IJ,) X (n J',,,)• 
pfiS peS 

and 

It can be shown that this definition is independent of the affine covering 
{(f1, V1), ···,(Jn, V,,)} for V; more precisely, if Fis a morphism of V = U 7= 1 fi(V,) 
to W = U~ 1 g1{Rj) and V, W, and Fare defined over k, then F maps v,,, into 
W., for almost all p-thus, if F is an isomorphism, VA is isomorphic to WA. 

EXAMPLE. Let v = 0" - {O }. Define v, c: O"+ 1 by 

v, = {(a1 •... 'an, 1/a;)} 

for i = 1, 2, · · ·, n. Let n: O"+ 1 -+ O" map (xb · · ·, x.+ 1) to (x1, · · · x,,). Then 
V = {(nb Yi),···, (n,,, V,,)} is an abstract variety defined over the prime field. 
(V,)11 , is the subset of k; 

(V,)(11. = {(ab a2, • • ·,a,,, l/a;)lg~ :: : ~: j = l, 2, ... , n}· 
Moreover, 

V(I}, = {(ab a2, ···,a..) lat least one a1 is a unit}, 

Yi..= {(ab a2, ···,a,,) lat least one a1 is nonzero}. 

For x e n.u, k; we write n,(x) = (a1. az, ... ' a,,) with a; e k,. VA is the set of 
all x e n, k; such that: 

(1) for each p, at least one a1 is ¢ 0, 
(2) for almost all p, all a1 are integers and at least one is a unit. 

4. Adillzed group. For a linear algebraic group G defined over k, the group 
operations can be extended to G A1c• which is thereby a locally compact group. 
ExAMPL~. (1) Let G be the additive group e. Then GA,.= A1:. 
(2) If G is the multiplicative group k* ~ GI 1> then GA,. is the group of units of 

the adele ring; i.e., GA,. is the group of elements a = (a,) e n k, such that : 
(i) a, ¢ 0 for all p, ' 

(ii) a, e U, for almost all p. 
(k~,. is the .. idele group" of Chevalley.) 

(3) G = Sl(n, k). GA,. is the set of all x e n, Sl(n, k,) such that n,(x) e Sl(n, (!),) 

for almost all p. 
(4) G = Gl(n, k). GA,. is the set of all x En Gl(n, k,) such that n,(x) e Gl(n, (!),) 

p 

for almost all p ; i.e., 
(i) det(n,(x)) ¢ 0 for all p, 

(ii) det ( n,(x)) e U, for almost all p, 
(iii) n,(x) e Gl(n, (!) ,) for almost all p. 
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NOTE. Given a morphism <P: G-+ G' we can extend to a morphism rPAkGAk -+GAk 
(where G, G', and <Pare defined over k). It is not always true that rPAk is superlative 
when <P is--nor is it true that rPAk(GAJ must be open in GAk; however, rPAk(GAJ 
is closed in GAk· 

Let G be a connected algebraic group defined over k with algebraic subgroup H 
also defined over k. The morphism n: G-+ G/H = S extends to a morphism 
nAk: GAk-+ s .... k. In some cases n .... k is surjective and we can identify s .... k with 
GA) H Ak ; e.g., if there exists a rational cross-section <P defined over k on an open 
set (</J: S-+ G and no <P = identity on S) then this is the case. 

5. Certain homogeneous spaces. There is a natural injection of k into A 11 ; 

viz., iX -+ (ix, ix,· · · ). In this way, k is identified with a discrete subgroup of A 11 and 
A,jk is compact. More generally, we identify kn with the diagonal in A; and for 
any affine variety V defined over k then V,. is discrete in VAk. 

NoTE. If Vis not an affine variety, this is not necessarily so. However, if G is an 
algebraic group, Gk is a discrete subgroup of G Ak because G is embedded in an 
affine space, the homogeneous space G .... /G11 • 

Assume G connected and let X 11(G) be the group of (rational) characters of G 
defined over k. For each XeX11(G) and geG .... k we have an idele gx. We define: 

11gx11 d~" l/Jx(g) d~" n 1g:1p 
p 

(where gP = np(g)). The mapping I/Ix sends GAk into the multiplicative group of 
positive real numbers, R. Now, Xk(G) is a free abelian group on a finite number of 
generators, say {Xi.···, Xm}· Set Gt = n :'°= 1 ker I/Ix;· By the product formula, 
we see that G~k :::::> G11 • 

THEOREM (BOREL·-HARISH-CHANDRA). G~k/G,. has finite invariant volume 
(hence G~k is unimodular); moreover, if G11 has no unipotent elements, G~JG11 is 
compact. 

6. Restriction of the ground field. 
DEFINITION. Let K/k be a separable extension of (finite) degree d and let 

:E =. {uh u2, · · · , ud} be the dist+nct isomorphisms of K (over k) into the algebraic 
closure IC. Let V be a variety defined over K. Let W be a variety defined over k 
and P: W-+ V a morphism defined over K (which automatically induces a 
morphism P'" : W -+ va• defined over Ka; for each i = 1, 2, · · · , d) for which the 
morphism 

pa• x ··· x pa":W-+ ya• x va2 x ··· x ya" 

is biregular. Then we say that the pair (W, P) is the restriction of V to k and 
we write (W, P) = RK111(V). 
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REMARK. (1) For any other (W', P') satisfying these conditions, there exists a 
morphism <P defined over k such that the following diagram commutes: 

W'P'"• x •.. XP''tl V"• x ... x V"d 

~ ~~ ... xpod 

w 
In particular, the restriction is unique. 

(2) For any variety defined over K and K/k separable of degree d < oo, the 
restriction exists. · 

(3) If RK1.,(V) = W, there is a 1-1 correspondence between the points of Wt and 
those of Vire. 

EXAMPLE. Let V = G0 be the additive group of n. Let {oc., oc2, ···,ex.,} be any 
basis for K/k. Set W = O" = G0 x · · · x G0 , taken d times, and P: W-+ V the 
morphism defined by P(u.,u2, ···,u11) = L~=• ociu,. 

Let k' be an extension of k. For a,, a; e :r., we say 

if there exists an isomorphism a over k' such that a;= ap (note that the auto­
morphisms operate on the right herei In this way, :r. is partitioned into the 
disjoint union of subsets I: = U I:i. For each i, choose a ai e I:1• Then 

RK/1(V) ~ n Rg, .. , . .,.1.,.(V"'). 

In case k' is kP, we can use this to identify WA. with VA •. 

7. Measure on VA •• Let V be a nonsingular variety of dimension n defined over 
k; and let w be an algebraic n-form defined over k such that 

(1) w #: 0 everywhere on V. 
(2) w is holomorphic on V; i.e., choosing local uniformizing parameters 

{x.,x2,···,x,.} at a point ve Vwe have 

w = <PJ.x) dx 1 /\. dx2 /\. • • • /\. dx,. 

with </1,,(x) holomorphic in a neighborhood of v. 
Let k be an algebraic number field. Fix a point v e Va.. and local uniformizing 

parameters {x., · · ·, x11 } with x,(v) = 0. Then we can write 

ro = </1,,(x) dx1 /\. dx2 /\. • • • /\. dx11 • 

Since v is a simple point, the formal expansion 

</1,,(x) = L Cva···v,,x'i1 • • • x:" 

converges in some p-adic neighborhood U of v which can (via {x1, • • ·, x11}) be 
identified with the set of points U1 c le; defined by : 

U1 = {(C 1, C2, • • ·, C11); c, e kP and IC1lp < e}. 
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A measure is defined on U as follows : 
(1) normalize the Haar-measure dx" on k" by the condition that 

i dx" = 1, 
~. 

(2) taking the product measure l</>v(x)l"ldx 1 · • • dx"I" on k" we have a measure 
on U., 

(3) we transfer this measure back to U. 
It can be shown that on the overlap of U and U', two such measures coincide 
and hence we get a well-defined measure lwl" on V,. .. 

THEOREM. For almost all p, 

f lwl" = (q-d) x (number of points on the reduced variety V,) 
v~. 

where q = N". 

Let G be an algebraic group defined over k and co a left-invariant form. On 
Gk, we have a measure lwl" as constructed above. For each finite prime p we 
define 

µ" = I iw1". 
G~ 

If G is semisimple, the product 0 µ", p finite, converges absolutely. Then we can 
define the product measure on the open subset 

n G~. x n G"· 
"finite p infinite 

of GAk• and this in turn determines a measure GAk· By suitable choice of con­
vergence faCtOTS ;_P' it Can be arranged in many Other CaSeS that nfl(Apµp) COn­
VergeS absolutely. (This will be taken up in Ono's lectures to follow.) We point 
out that the measure on G Ak does not depend on co, because of the product 
formula: 

ICwl" = ICl"lwl" and 

n let"= i. 
p 

DEFINITION. Let G be a semisimple algebraic group over k. The Tamagawa 
number i-(G) is defined by 

i-(G) = IDl-dimG/2 j lwl < oo, 
JGAk/Gk 
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where D is the discriminant of k; i.e., 

(tx~· ···<'J ix'!'2· .. <2 
D = absolute value of det t : 

txr" <" 
for a minimal basis of k over Q. 

REMARK. 

T(Sl(n) = 1; T(Sp(2n)) = 1; T(O+(n, S)) = 2 

where S is a symmetric n x n matrix and 0 + means the proper orthogonal 
group of the associated quadratic form. 

8. Connection between Sieprs theory aml T(O+(n, S)) = 2. Let S be an n x n 
positive definite symmetric integral matrix. For every prime number p, let A,,..(S) 
be the number of solutions of the congruence 

'XSX = S (modp"'). 

Then for sufficiently large positive integer v, }p-U/l)H(•- 1>Apv(S) is independent 
of v, and the value will be denoted by txp(S). If p-!" 2 det S, we have 

tx,J..S) = !p-11121"1"- u Ap(S). 

For the infinite prime p00, we define tx00(S) as follows. Let '11 be a compact neigh­
borhood of S, and U be the set of all X with 'XSX e '11. Then U is also a compact 
set in the affine space of all n x n real matrices. We define tx00(S) by the limits 

1 • Iudx 
}"hm-I-. 

u .. s udS 

To explain Siegel's theorem, we have to introduce the notion of genus. Two 
integral symmetric matrices S1 and S2 are called locally equivalent if for every 
prime (finite or infinite) p, there exists a matrix X P in QP which is integral and 
unimodular if pis finite, such that S2 = 'X~1XP. The local equivalency defines 
the notion of genus. S1 and S2 are called strongly equivalent if there exists an 
integral unimodular matrix X of determinant + 1 such that S2 = 'XS1X. This 
equivalency defines the notion of the class. The genus of S consists of a finite 
number of classes. Let Sh···, s, be a set of representatives of those classes. 
For each s., the order of the group of all proper unimodular matrices X with 
'XS1X = S; will be denoted by E(s;). Then Siegel's theorem asserts that 

9 <X,,(S) (,t1 l/E(S;)) = 2. 

Now we try to interpret this result to our language. Let G be the algebraic group 
of the n x n matrices with 'XSX = S and det S = 1. Let x1i, 1 ~ i, j ~ n be 
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coordinate functions of X = (x11) in the n2-dimensional affine space M(n) of all 
n x n matrices, and t1i, 1 ~ i ~ j ~ n be coordinate functions of the !n(n + 1)­
dimensional affine space of all n x n symmetric matrices. Put 'XSX = T. Then 
t11 are polynomials of x1i, so we have a !n(n - 1) form ID such that 

n 

/\ dxii = /\ dtii A ID. 
i,j=l i~j 

Now we have the injection map, of G into M(n), so that &(l.O) = w is a !n(n - 1)­
form on G. It is easy to see that 

f lwl, = a,(S) 
Gtip 

p = finite 

and L lwl oo = <Xoo(S). 
a.,. 

Hence we have f lwl = CT a,(S). 
IlGtipxGa,. P 

Now the group U =CT Gti. x Ga.., is an open subgroup of G;1, and we have the 
double coset decomposition 

G.11 = Ua 1Ga u Ua2 Ga u · · · u Ua,Ga. 

Hence the volume of G;1/Ga is equal to 

n i,(S) L 1/ord(aj 1Uajn Ga>· 

Now we study the meaning of ord(a;- 1 Ua;Ga). For every a e G;1, we have 'aSa = S. 
Now there exists a rational matrix A such that a = uA - 1 where u = (u,) belongs 
to GL(n);1 and all u, are unimodular. Then by the definition, 'ASA belongs to 
the same genus of S. The class of 'ASA is uniquely determined by the double 
coset UaGa, and E('ASA) is equal to the order of a- 1 ua11 Ga· Hence we have 

•(G) = volume (G ;1/Ga) = n a,(S) L l/E(Si). 

To prove that •(G) = 2, we use the induction with respect ton. For n = 3 and 4, 
we c~n easily calculate •(G) because in these cases, G is of type A1 or Ai x Ai, 
and •(G) is obtained by comparing with 1:(<~) where G is the simply connected 
covering of G. For n ~ 5, we refer to Siegel-Weil's theorem. If S indefinite, we 
need some modification. Namely, in this case, U is not compact, and the order of 
the group U(S) of all proper unimodular matrices X with 'XSX = S is also 
infinite. However, U(S) operates on U from the left side, and we can construct 
a fundamental domain fF of good shape. Now we define p(S) by 

Jim Volume (jO) = p(S). 
•-o Volume (U) 
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Siegel's theorem in this case is as follows: 

0 ac,.(S)(,l:p(S1)) = 2 . 
• 

If we observe the fact that 

p(S) = f lwl..,, 
G.,,/V(S) 

the interpretation of this formula to our language is also easy. 

Rm!RENCE 

A Weil. .A.tletes anti algebraic groups, Lecture Notes, The Institute for Advanced Study, Princeton, 
N.J., 1961. 



On Tamagawa Numbers 
BY 

TAKASHI ONO 

We want to determine the Tamagawa number of semisimple groups modulo 
Weil's conjecture on simply connected groups. We begin with an Appendix to 
Tamagawa's talk [5]. 

I. Number of rational points. Let k be an algebraic number field, G be a 
connected linear algebraic group defined over k. We denote by G<Pl the algebraic 
group defined over the residue field k<P> = o/p obtained from G by the reduction 
modulo p. Let w be a left invariant highest differential form on G defined over k. 
On each local group Gv = Gk.,• w induces a Haar measure wv and we have 

f wp = q-dimG [GL~iiJ ~ vp(G) 
Gop 

for almost all p, where q = Np. We say that G has the property (C) if 0~ vp(G) 
is absolutely convergent, where 0~ means the product over almost all p. Since 
k is of characteristic zero G is decomposed as G = UTS where U = R,,(G) 
(unipotent radical), UT= R(G) (radical), TS = A reductive, T = the identity 
component of the center of A, S = the derived group of A, G = U A is semidirect 
product with U normal and A is isogenous to T x S. Since such a decomposition 
commutes with the reduction modulo p, for almost all p, we have vp(G) = 
vp(U)vp(T)vp(S) for almost all p. Thus the problem of finding the convergence 
factors is reduced to the cases in which G is unipotent, a torus or semisimple: 

(1) If G = U is unipotent, then G is a semidirect product of Ga's and so 
vp(G) = 1. Hence all unipotent groups have the property (C) and no convergence 
factors are necessary. 

(2) If G = T is a torus, let K be a finite Galois splitting field for T over k with 
the Galois group <» = ffi(K/k). Then f = (T)K is a Z-free ffi-module of rank 
d = ~im T. Let p be a finite prime of k, unramified relative to K/k. Let ~ be a 
prime of K over p and a" be the Frobenius substitution of~- If e;, 1 ~ i ~ d, is 
a Z-basis for f, we have an integral representation a--+ M(a) of (fj defined by 

= M(a) 

122 
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Then, [J1f!,] = det(q/11 - M(a")) and hence 

vp(n = det(/11 - q- 1 M(a")) = Lp(l, 'XT• K/k)- 1 

where 'X.T is the character of the representation a -+ M(a). Thus T has the property 
(C) if and only if T= {e} or equivalently if and only if f = {O}. 

(3) If G = S is semisimple, let s. denote a maximal compact subgroup of 
the complex Lie group S. By Hopf, we have 

d I 

L b.t· = n c1 + tl··-1> 
v=O l=l" 

where b. (resp. I) is the Betti number (resp. rank) of s.. From Chevalley and 
Steinberg's result we see that 

I I 

" n (q"· - o ~ rs~~!, 1 ~ " n (q"· + o 
1=1 i=l 

(N = the number of positive roots of S) and so 
I I n (I - q-"·) ~ vp(S) ~ n (1 + q-•·i 

1=1 i= 1 

Since b1 = b2 = 0, we have a1 ~ 2 for all i, hence the property (C) holds and no 
convergence factors are necessary for semisimple groups. 

· The above argument shows that a connected algebraic group G has the 
property (C) if and only if G = U ·Sor equivalently if and only if G = {O}. 

2. Definition or t( G) for unimodular groups. A connected algebraic group G is 
called unimodular if the form win §1 is also right invariant. We have the following 
chains of containment : 

unimodular 

/ 
~ctive 

. / ~- 1 umpotent torus sem1S1mp e 
I - I I 

G0 Gm simply connected. 

Hence, in defining t(G) for a unimodular group G defined over k, it would be 
quite natural to require that t(G) = 1 if G is G0 , Gm or simply connected: it turns 
out that t(G0 ) = 1 is essentially equivalent to the definition of ~1c. the discriminant 
of k, and t(Gm) = 1 is equivalent to the well-known class number relation 
hg = Res.= 1C1c(s) fork. On the other hand, 

t (simply connected) = 1 

is the Weil's conjecture which is known to be true for a large part of classical 
groups (Weil, Tamagawa), for some exceptional groups (Demazure, Mars) and 
for Chevalley groups (Langlands), but is not yet completely solved. 
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We now define t(G). Let GA be the adele group. Put G~ = {x e GA, lleA(x)ll = 1 
for all e E (C),.}. Then GA/G~ is isomorphic to the vector group R', r = rank (G)t. 
As a measure on G AIG~ we take the usual measure of R', which we denote by 
d(GA/G~). Since G,. is discrete in GA, we define dG" to be the canonical discrete 
measure. We could then define the Tamagawa number, t(G), as the measure one 
has to give to the measure finite space G~/G,. in order that 

dGA = d(GA/G~) d(G~/G") dG,., 

where dG A is some canonical measure on GA to be determined. Motivated by the 
classical class number relation for the case Gm mentioned above, we shall define 
dGA as follows. We take a finite Galois extension K/k so that G = (G)K. As in 
the case of tori, G becomes a Z-free ©(K/k)-module and we denote by XG the 
character of the corresponding integral representation of ©(K/k). It is to be 
noticed that XG = XT when G = U · T· S in the sense of §1, because G ®z Q 
~ T®z Q as representation spaces of ©(K/k). As a measure on GA, we take 

dGA = PG 11L1,.i-dimG/l n Wun Lp(l, XG)wp 
u/oo p 

where PG = lim ..... 1 (s - lf L(s, XG). (Notice that L(s, XG) has a pole of order r at 
s = 1 where r = rank (G),. = multiplicity of the trivial character in XG·) Since 
LP(l, XG)vp(G) = LP(l, XT)vp(T)vp(S)vp(U) = vp(S) for almost all p, we see from §1 
that dG A is well defined. Furthermore, it is not difficult to show that dG A is 
intrinsic, i.e., it is independent of the choice of K/k and w. Thus, the definition 

is settled. One verifies easily the following functorial properties : 
(i) -c(G x G'} = -c(G)-c(G'), 
(ii) if G is defined over a finite extension K of k, then 

tK(G) = -c,.(RK11<(G)). 

3. Tamagawa number of tori. Let ©(k) be the full Galois group of 'li./k, 'Ii. being 
the algebraic closure of k. Denote by "(k) the category of tori defined over k and 
by i-(k) the category of finitely generated Z-free continuous ©(k)-modules. For 
a finite Galois extension K of k, let <'C(K/k) denote the subcategory of "(k) con­
sisting of all Te "(k) such that T splits over K, and <i(K/k) denote the category 
of finitely generated Z-free ©(K/k)-modules. Then "(k) (resp. <i(k)) is the union 
of <'C(K/k) (resp. <i(K/k)) where K runs over all finite Galois subextensions of 'Ii.fie. 
It is fundamental that "(k) and <i(k) are mutually dual under the correspondence 
T-+ f. For T, T' e <'C(K/k), 

T~ T'<=>f'~ f' 
" 

as ©(K/k)-modules. 
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Furthermore, 

T;:t T' (k-isogenous)~ f®zQ ~ f' ®zQ~xr - Xr·· 

Let K/k be a (not necessarily Galois) finite extension and L/K be a finite 
extension such that L/k is Galois. We can then define the functor R.K/1': r/(L/K) 
-+ rl(L/k) by requiring that the following diagram be commutative: 

'(l(L/K) ~ '(l(L/k) 
! ! 

ri(L/ K) J11:,~ r/(L/k~ 

In view of the universal mapping property of the functor R""'' one can verify 
that R.K1"(M) - Z[CD(L/k)] ®zclllL/lf.)J M for Me <i(L/K), ie., the representation 
of CD(L/k) by R.K1"(M) is "induced" by the representation of the subgroup CD{L/K) 
by M. As an application, we can get a structure theorem on tori: namely, take a 
Te '(l(K/k), K/k being Galois this time. Since Xr is rational in the sense of finite 
groups, we have, by Arlin, Xr - Lvqvxf,v, qv e Q, where xf.v is the induced char­
acter of the trivial character Xi ,v of a cyclic subgroup of CD(K/k). Rewrite the 
relation as 

mxr + L m.tXf..t - L m,.xf.,. 
A II 

with positive integers m, mot, m,. and translate in the language of tori Then we 
get 

(*) T"' x n (RKA/1:G,,.)"'A ;:t n (R1e,.111G,,.)"'" (k-isogenous), 
A II 

this will be used in the following ti)-lemma. 
Denote by L+('(l(k)) the set of all positive real valued functions on '(l(k) and 

by ti) the set of all assignments <P: k -+ "'" e L+('(l(k)) with the following properties 
(ti)l), (ti)2), (ti)3): 

(ti)l) </J"(T x T') - </J11(T)</J"(T1, 

(ti)2) tPK - "'" 0 RK/11 

(ti)3) <P"(T) - 1 when Te '(l(K/k) and tis CD(K/k)-projective. 

It is easily checked that ti) forms a group with the multiplication defined by 
(</Jl/l),.(T) = <P11(T')l/l"(T) for Te '(l(k~ For a short exact sequence (E) over k of 
tori in '(l(k) 

(E):O-+ T'-+ T-+ T"-+ 0 

we define a function <P"(E)(<P e ti)) by the alternating product 

,,, (E) = tP"(T')</J"(T'1 
"'" "'"( T) . 

.,_LEMMA. If <Pe ti) is such that for any k and for any short exact sequence (E) of 
'(l(k) we have </J"(E) - 1, then <P = 1. 
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Since this lemma is crucial in the formal aspect of our theory, we reproduce 
here the proof in [2] suggested by Tate. Take any finite Galois extension K/k 
and call G the Grothendieck group of ~(K/k). By definition, the additive group 
G is generated by the symbol [T] together with the relation [T] = [T'] + [T"] 
whenever 0--+ T'--+ T-+ T" -+ 0 (exact). By the assumption on </>. ti)(T] = cP1c(T) 
defines a homomorphism of G into R+. the multiplicative group of positive reals. 
Now, by the duality, G can be viewed as the Grothendieck group of <i(K/k), i.e., 
such a group for Z-representations of ©(K/k). Denote by G<l the Grothendieck 
group of Q-representations of ©(K/k) and by (J the homomorphism G -+ G<l 
given by O[M] = [M ®z Q]. Since R+ is torsion free and Ker() is finite by Swan, 
<PIKer () = 1. This implies that if T, T' e ~(K/k) are k-isogenous, then 

T®zQ ~ f'' ®zQ 

and hence [T] - [T'] e Ker 9, and consequently cP1c(T) = cf>,,(T'). Applying this 
argument to the structure Theorem (*) for Te CC(K/k) and using (Cl>l), («1>2), («1>3), 
we get </J1c(T) = 1 for any k and any Te ~(k), i.e., <P = 1 e Cl>, q.e.d. 

Examples of elements in Cl>. First of all, t e Cl> (of course!). Also, the following 
two elements, h and i, come immediately to our mind: 

h,,(T) = [H 1(k, T)], 

i1c(T) = [Ker(H 1(k, T)--+ 0 H 1(kv, T))]. 
v 

An interesting fact is that those three elements t, h and i are dependent in the 
torsion free group Cl>: more precisely, we have 

THEOREM. rih- 1 = 1. 

SKETCH OF PROOF. In view of Cl>-lemma, it is enough to show that 

for any short exact sequence 

(E): . 0-+ T'~T~T"-+O 

with T', T, T" e C(K/k). Passing to the cohomology of the dual of (E), we get an 
exact sequence 

(**) 

On the other hand, (E) induces a natural homomorphism 
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Then, 

By a Fubini type argument, we can show that 

(***) t11.(E) = [Cok(t)11.] · Indµ. 

By chasing diagrams, we get 

(****) 1 d _[Ker{] 
n µ - i11.(E) ' 
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where {is the homomorphism H 1(TA,/TK.)-+ H 1(TA,/T1c) induced by (E). From 
(**), (***), (****), there remains to prove that 

(*****) [Ker eJ [Ker {] = h11.(E~ 

For this purpose, the Nakayama-Tate duality is useful. It says that the pairing 

H 2 -r(f) x Hr(TA.JT1r.)-+ H2(1,c/K*) 

irlduced by the natural pairing 

t x 7A,.JT1r.-+ l,c/K* (idele class group of K) 

is dual. Applying this (r = 1) to the following situation: 

H 1(f) x H1(TA.JT1r.)-+ H2(1,c/K*) 

·l Tc 
H 1(f1 x H 1(TA.JT'g,) -+ H 2(1,c/K*), 

l T 
Cok., · Ker{ 

we get Cok '1 ~ Ker {, and so 

[Ker e][Ker {] = [Ker e][Cok '71 = ~:: ~ [Cok e][Ker '7] 

h11(T;) h,.(T") h11(T) 
= h,.(T) h,.(T) [Im eJ [Ker '11 = h,.(E), 

which proves (*****), q.e.d. 
REMARK. Since (***) is a basis for the characterization of t, we see that as far 

as the tori are concerned, the Tamagawa number (as an element in «!)) is the 
unique solution (t = h/i) of the following axioms: 
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(<l>l ') For any short exact sequence (E) in <c(k), we have 

t,.(E) = [Cok(t),.] · Indµ 

(<1>2) tK = t,. 0 RK/k 

(<1>3) (normalization) -r,.(T) = 1 when Te <c(K/k) and 1' is <f>(K/k)-projective. 
REMARK. If Te ~(K/k) and K/k is cyclic, we can show that i,,.(T) = l, i.e., 

-r,.(T) = h,.(T). To a cyclic extension K/k, n = [K: k], one can attach the exact 
sequence 

N=norm 

0 -+ Ker N -+ RK/kGm-----+ Gm -+ 0. 

One sees easily that t,.(Ker N) = n. If K/k is quadratic (n = 2), Ker N is a special 
orthogonal group of the binary form belonging to K/k and thus we obtain a 
special case of Siegel's theorem on quadratic forms. For noncyclic K/k, the group 
Ker N still makes sense. E.g., take k = Q and K = Q(J5, ..)29, Jl09, ..)281). 
Then, 

1 
ta(Ker N) = 20 _" 

with 0 ~ K ~ 4, which is not an integer. This is due to the nonvalidity of the 
Hasse norm theorem for K/Q. 

4. Determination of t (semisimple) mod. Weil's conjecture. Let G be a con­
nected semisimple algebraic group defined over a number field k. Let (ii,f) 
be the universal covering group of G defined over k. Since (G,f) is unique up to 
isomorphisms over k, the fundamental group F = Ker f, which is a central finite 
algebraic subgroup of C defined over k, is invariantly attached to G. Hence, it is 
natural to expect that the relative Tamagawa number t(G)/t(G) can be described 
in terms of invariants of F as a <f>(k) ( = <f>(IC/k))-module. 

EXAMPLES. (1) If G = 0 + (f),f being a quadratic form over k (n ~ 3, n: the num­
ber of variables), then C =Spin(/). The fact that t(O+(f)) = 2 (Siegel's theorem) 
and t (Spin(/)) = 1 was the Tamagawa's discovery at the beginning of the theory 
of the Tamagawa numbers and motivated the Weil's Princeton lecture (1959-60) 
and others. Anyway, we have t(G)/r(G) = 2 =the degree of the covering. 

(2) If G = PSL(n), then C = SL(n). We have t(G) = 1 (Minkowski-Siegel) and 
t(G) = n {Tamagawa-Weil) and so again T(G)/r(C) = n = [F] = the degree of 
the covering. 

(3) If G = PSU(n, K/k) (projective special unitary group relative to a quadratic 
extension K/k), then C = SU{n, K/k). We know that t(G) = 1 (Weil~ This time, 
we have 

{ 1 n: odd 
-r(G)/t(G) = t(G) = 2 n: even, 

and so the relative number is not equal to the degree ( = n) of the covering. This 
example also shows that the fact T(G) = 1 is not characteristic for the simply 
connected groups. 
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Our formula in the Main Theorem will explain all those phenomena. 
Coming back to our general situation, let F == Hom(F, G.,.) == Hom(F, (i)*~ 

Then F is again a Qj(k)-module. Put 

~1 == { u e Ci(k), ~· = ~ for all ~ e F}. 

Since ~I is an open normal subgroup of Ci(k), the corresponding field K1/k is a 
finite Galois extension.Fis then a Ci(K1/k)-module. Let r be the group ring of 
Ci(K1/k) over Z. For a suitable natural number m, we have the exact sequence 

0 +- t +- m· [ +- M +- 0, 

where Me C(K1/ki Dualizing, we get the exact sequence over k: 

o-F-T'__. T__.0, 

where T == (R«,.1,,,G.,.)"' and t == M with T, Te 'l(K1/ki Since f' == mr is 
Qj(Kp/k)-free we have 't(T') == 1 by ('1>3~ This cohomological triviality of T is 
crucial in the following arguments. If we imbed Finto C x T' by the diagonal 
mapping and put G* == (C x T')/F, this being a connected reductive group, 
we get the commutative diagram 

(V) 
0 

0 l 
"'F-T' 

l f'~ 
(H) 0 __. C- G* 2-+ T __. 0 

~l 
G 

l 
0 

where (H) (resp. (V)) denotes t~e horizontal (resp. vertical) short exact sequence, 
and everything is defined over le. 

Let 

and 

We have then 

(#) 
't(G) = 't(T)'t(V) = 'E(T) 't(V) 
't((':) 'E(T')'E(H) 't(H) 
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since i:(T') = 1. Consider now i:(V). Since f' is ffi(Kp/k)-free, (V) admits a rational 
section (G -+ G*) over k. From this and the fact that i:(T') = 1 it follows that 

(# #) i:(V) = [Cok('l)k] 

by a Fubini type argument. Next, consider i:(H). The sequence (H) induces 
naturally a homomorphism µ: T,,/K(Gt) -+ TA/K(G~). Again by a Fubini type argu­
ment we get 

[Cok µ] [TA: K(G~)T,,] 
i:(H) = Indµ = [Kerµ] = [K(G~) n T,,: K(Gt)] 

We now claim that [Kerµ]= [Cok µ] = 1 by the simply connectedness of G. 
The following two facts are fundamental : 

(K 1) H 1(kp, G) = 0 (p # oo) (Kneser). 
(K 2) The Hasse map H 1(k, G)-+ 0v H 1(kv, G) is injective (Kneser and Harder). 

(After my talk, I learned from Kneser that the proof of (K2) for groups of type 
Es is not yet completed. However, as far as the relative theory is concerned, we 
do not have to worry about Es because the group of this type has no proper 
covering and hence the factor of type Es in general semisimple group G has no 
contribution to the relative Tamagawa number i:(G)/i:(G).) Now take any 
t E K(G~) n T,,. Then K- 1(t) is a principal homogeneous space for G over k which 
has a rational point over kv for every v. Thus, by (K2), K- 1(t) contains a g* E G:, 
i.e., t = K(g*) E K(G:>, which proves that [Kerµ] = 1. Next, we consider Cok µ. 
Denote by T~ the topological identity component of T00 = nvloo T,, •. It is known 
that T00 = T~ · T,, (Serre and Tate). Hence, to show that [Cok µ] = 1, it is enough 
to see that T~ c: K(G~) where T~ = T! x n· ~ T,, . Now, the map KA: G~ -+ TA 

- :p.,..C() p 

is open since Ker " = G is connected, and so K( G:) = T,,p for almost all p. Let S be 
the finite set of finite places p for which K(G:p) ~ T,,p. Take an adele t = (tv) ET~. 
For p ¢ S, we have tP = K(g;) with g: E G:p. For p ES, we can find a g; E G:. 
such that tP = K(g;) since the principal homogeneous space K- 1(tp) for G over kP 
has a rational point in G: by (K1). For v loo, we again have tv = K(g:) because 
T! is connected. Thus • t = K(g~) with g~ = (g:) E G~, which proves that 
[Cok µ] = 1. Hence, 

(# # #) i:(H) = 1 

From(#),(##),(###) and Theorem in §3 we get 

(# # # #) 
i:(G) h(T) 
i:(G) = i(T) [Cok('l)k] 

where h(T) = [H 1(k, f)], i(T) = (Ker(H 1(k, T)-+ nv fl 1(kv, T))]. We can simplify 
( # # # #) a little by noticing that since 
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is exact we have the exact sequence 

0-+ (f)11 c.i)I: (f')11 -+ (1)11 -+ H 1(f) -+ H 1(f') == 0 

relative to @(Kt/k) and therefore 

[Cok(1)11)h(T) == [(1}11) ~ h0(t). 
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But since l': is semisimple, it is easily checked that [Cok(1)11 ] == [Cok(t)1i] and 
hence 

(#####) 

Finally, by Hasse-Brauer-Noether theorem we get 

i(n = i2(F) = [ Ker(H2(k, F)-+ I) H2(k,,, F)~ 
and 

i2(F) = i1(P) = [ Ker(H1(k,P)-+ l)H1(k,,,P))] 

by Tate duality. From ( # # # # #) we get our 

MAIN TllEoREM. 

T(G} h0(t) 
T(l:) = M" 

CoROLLARY 1. If Kt/k is cyclic, then T(G)/T(l':) = h0(P~ 

COROLLARY 2 lfG is of Chevalley type over k, then T(G)/T(l':) == [Fi 

In fact, F is contained in any k-trivial maximal torus of l':. So the action of 
@(k) on Fis the same as the action of @(k) on the roots of unity. Then, clearly P 
is @(k)-trivial and hence Kt= k. Thus we get i 1(t) = i(n = 1 and h0(P) = [PJ = [F1 
q.e.d. Corollary 2 explains Example (2) since G = PSL(n) is of Chevalley type. 

CoROLLARY 3. If [F] = 2, then T(G)/T(l':) = 2. 

In fact, evidently P is @(k)-trivial. Corollary 3 explains Example (1) since 
Spin(/) is the double covering of o+(/). 

Absolutely simple groups. Let G be absolutely simple. For this case we can 
check, case by case, that i 1(t) = 1. Thus, T(G)/T(l':) = h0(P). We shall of course be 
interested in the case where the action of @(k) on Pis not trivial, i.e., P""-"> ~ P, 
or equivalently Kt ii? k. Actually, such a case can happen only for groups of 
type A1 (I ~ 2), the adjoint group of type D1 (I ~ 4) and the adjoint group of type 
E6• We get the following table: 
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Type [Kt:k] [F] t(G)/t(G) = h0(1) 

A1 (I~ 2) 2 a factor of l + 1 1 l =even 
2 l =odd 

D4 
2 

4 
2 

3, 6 1 

D1 (l ~ 5) 2 4 2 

E6 2 3 1 

The group G = PSV(n, K/k) (n ~ 3) in Example (1) belongs to A1 with 
l=n-1. 

REMARK. It is desirable to extend the definition of r(G) to arbitrary (non­
connected, nonunimodular) group G. In particular, how should one define r(G) 
for a finite group G over k? Though I do not know the correct definition, the 
quantity h0(G)/i1(G) in the main theorem will suggest something at least for G 
finite commutative. 

REFERENCES 

1. T. Ono, Arithmetic of algebraic tori, Ann. of Math. 74 (1961), 101-139. 
2. --, On the Tamagawa number of algebraic tori, Ann. of Math. 78 (1963), 47-73. 
3. --, On the relative theory of Tamagawa numbers, Ann. of Math. 82 (1965), 88-111. 
4. A. Weil, Adeles and algebraic groups, Institute for Advanced Study, Princeton, N.J., 1961. 
S. T. Tamagawa, Adeles, Proc. Sympos. Pure Math., vol. 9, Amer. Math. Soc., Providence, R.1., 

1966, pp. 113-121. 



The Siegel Formula for· Orthogonal Groups. I 
BY 

J. G. M. MARS 

1. Let k be an algebraic numberfield, Q a nondegenerate quadratic form on a 
vector space X" over k, dim" X" = m ~ 5. X will denote the algebraic variety 
defined over k such that XK = K ®" X" for any extension K of k; the extension 
of Q to X will be denoted by Q. Let G = SO( Q) be the special orthogonal group 
of Q. So G is a semisimple algebraic group defined over k. 

As a consequence of Witt's theorem, two points x,ye XK, #:- 0, belong_ to a 
same orbit of GK if and only if Q(x) = Q(y). Hence the orbits of G in X which 
contain points of X1i: are the sets U(i) = {x e XIQ(x) = i, x #:- O} (i e k such that 
U(i)" is not empty) and {O}. If i Ek and ei E U(i)1c. the isotropy group of ei in 
G is an algebraic group Hi defined over k and the mapping g-+ g(eJ induces an 
isomorphism of G/Hi onto U(i). Using Witt's theorem we see that GK/Hi.K = U(i)K 
for any extension K of k; moreover, GA/Hi,A = U(i)A (with topology); here GA 
is the adelic group attached to G etc., and the identifications are obtained from 
the mapping g -+ g(ei>· 

Let dg, dh1 be invariant gaugeforms on G, Hi (gaugeform = differential form of 
maximal degree defined over k without zeros or poles); then 1'1 = dg/dh1 is 
defined and is an invariant gaugeform on G/H1 = U(i). Let ldglA.• ldh1IA• ID1IA. be 
the Tamagawa measures derived from dg, dhi, Di and the convergence factors 1. 
Then ldglA. = IDilA.ldhilA.. Now we have 

r 11\1A. f. F(gh>ldhlA. = r 1dg1A. L F(g')') 
JGAfHA HA/Hk JG A/Gk Gk/Hk 

for FeL1(GA./H1c),H = H 1• 

Talcing fll(g(e1)) instead of F(g), with appropriate function Cl> on XA, we get 

(1) t(Hi) r Cl>IDilA. = f ldglA. L. fll(g(e)), . 
JU(i)A GAIG• (eU(•)• 

where t(Hi) is the Tamagawa number of H 1• Now Hi is either the special 
orthogonal group of a nondegenerate quadratic form in m-1 variables or an 
extension by a uni potent group of the special orthogonal group of a nondegenerate 
quadratic form in m-2 variables. Assuming that the Tamagawa number of any 
special orthogonal group in m-1 or m-2 variables is 2 we are going to prove that 
the Tamagawa number of G is 2. Then the Tamagawa number of any special 
orthogonal group is 2, provided we know that this is so in dimension 3 and 4. 
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The latter is proved by Weil in [I) using the classical isomorphisms for the groups 
in question and zeta-functions. 

It follows from the Hasse principle for quadratic forms (U(i)t empty=> U(i)11 

empty) that formula (1) is valid for all i e k. Summation over i e k then gives 
(modulo convergence): 

(2) l(<I>) = L .. ,G. ~~. <l>(g(e))ldgl,. = 2 ~ I(i)A <1>l!\l11 + -r(G)<l>(O). 

It is clear that l(<I>) = I(ci>), if ci> is defined by 

<i>{y) = f <l>(x)x([x, y Dldxl,., 
x ... 

where [x, y] = Q(x + y) - Q(x) - Q(y) and x is a character of A such that the 
bicharacter x(xy) defines an isomorphism between A and its dual group such that 
the discrete subgroup k of A corresponds to itself by duality. We define Xv by 
x(x) = fl Xv(xu) if x = (xv) e A. If <I> is of Schwartz-Bruhat type it will follow 
from considerations below that the sum over i e k in (2) converges absolutely ; 
we also know that -r(G) is finite, so /(<I>) is defined for <I> of Schwartz-Bruhat type. 
We recall that if <I> is of Schwartz-Bruhat type, so is ci>. 

2. Applying Proposition 1 of [2) to the map Q: X kv = Xv -+ kv we find the 
following. There exists a uniquely determined family of positive measures (µi)ieA:v 
on Xv such that 

(a) support µi c {x EX vlQ(x) = i}, 
(b) for any continuous function <I> with compact support on Xv the function 

F 111 on kv defined by F 111(i) = J <I> dµi is continuous and satisfies J F 111ldilv = J<1>ldxl11 • 

Moreover, for any <I> of Schwartz-Bruhat type F 111 (defined as above) is continuous, 
integrable over kv, satisfies J F111ldil., = J <I>ldxl., and has as Fourier transform the 
function F 111 defined by 

F 111(i) = l <l>(x)x11(iQ(x))ldxl 11 (i e k.,). 
x. 

LEMMA l. The measures µ;are carried by the sets 

U.,(i) = {xe X.,IQ(x) = i,x # O}. 

PROOF. For i # 0 there is nothing to prove. µ0 is the sum of a measure carried 
by U.,(O) and a measure with support {O}, but the latter must be 0 since 

µ0(tx) = ltlm- 2µ0 (x) (t Ek:). 

Since the mapping Q from X onto the affine line is everywhere submersive 
except in 0, we may consider on each U(i) the gaugeform 1'; defined by 

(3) 1'i(x) = (d~;x));· 
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1'; is invariant under G, so it differs from the form 1'; introduced above (viz. as 
quotient dg/dhj by a factor e k* <11';1..t is of course not changed when 1'; is replaced 
by p1';, p Ek*). 

In the same way, taking kv as groundfield and considering Q as a morphism of 
varieties defined over kv one defines gaugeforms 1'v,i (i e kv) by a formula analo­
gous to (3). The forms 1'v,i determine measures l1'v,ilv on U(i)v satisfying 

r ct>ldxlv = r ldilv f. ct>l1'v,ilv 
JXu-(0) J,.u Uu(i) 

for continuous Cl> with compact support c Xv - {O}. The family of measures 
l1'v,ilv (i e kv) is the only one with those properties. So, using Lemma I and the 
fact that {O} has measure 0 for ldxlv we see that 

µi = l1'v,ilv (i E k.,). 

Let us return to the adelic case. Take Cl> of the form 

Cl>(x) = n Cf> ,,(x,,) (x = (X,,) E X ,.t), 

where Cl>v is of Schwartz-Bruhat type for all v and Cl>v is the characteristic function 
of X~ ( = X 0 J for almost all v. It is easily seen now that 

P .(i) = f Cl>(x)x(iQ(x))ldxl..t = fl f, ct>,,x,,(ivQCx))!dxlv 
XA v Xu 

(i = (iv) e A) is the Fourier transform of 

(4) n f. ct>vl1'v,iulv· 
V Uuliul 

If in (4) all iv are equal to i e k, (4) becomes 

n I. Cl>vl1'ilv = f, ct>l1'il..t 
v U(ilu U(i)A 

since U(i) has convergence factors 1. We may now apply Proposition 2 of [2) 
which says that the Poisson formula is valid for F •: 

(5) 

(both series are absolutely convergent). 
REMARK 1. In order to know that we are allowed to apply Propositions 1 and 

2 of [2) to our case we have to verify the conditions (A) and (B) occurring in those 
propositions. This may be done by estimating the integrals J Cl>,,(x)xv(ivQ(x))ldxlv· 

3. Put Cl>,(x) = Cl>(tx) (t e A*) and consider J(Cl>,). 

LEMMA 2. Write X A = X co x X' where X co is the direct product of the X,, for v 
infinite and X' the restricted direct product of the other Xv· Let E be a closed 
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subset of X A which does not contain any point of the form (0, x'). Let C be a compact 
subset of the Schwartz-Bruhat space attached to X A and let N be a positive real 
number. Then there exists a function Cl»0 in the Schwartz-Bruhat space such that 

if Cl» e C, t ~ 1, x e E (a, denotes the idele of k which has the component t at each 
infinite place and 1 at the finite places). 

For a proof see [3] (Lemme 7). 
From formula (2) we find 

/(Cl»,) = 2 L f, cD,ll\IA + 2ltl2 -"' f, e!»l1'olA + t(G)cI>(O). 
iek• U(i)A U(O)A 

The sum over i e k* here is O(ltl-N) for any N as ltl -+ oo (write t = ca,p with 
c in a fixed compact subset of A* and p in k*, and apply Lemma 2). So we have 

(6) lim /(Cl»,) = t(G)cI>(O). 
lrl-+ co 

On the other hand, we may put (5) into (2). That gives 

/(ci>) = /(Cl») = 2 ~ LA Cll(x)x(iQ(x))ldxl,. + t(G)cI>(O). 

Replacing Cl» by ci> _, - , we get 

ltl"'I(CI»,) = 2 L f ci>(c 1 x)x(iQ(x))ldxlA + t(G)ci>(O), 
iek XA 

/(Cl»,) = 2 ~LA ci>(x)x(it2Q(x))ldxl,. + t(G)ci>(O)ltl-"'· 

Using the estimations mentioned in Remark 1 one can prove that 

(7) j~• LA ci>(x)x(it2Q(x))ldxlA 

tends too if ltl -+ oo. So 

(8) lim /(Cl»,) = 2Cll(O). 
lrl-+oo 

Comparison of (6) and (8) gives t(G) = 2. 
Finally, here is Siegel's formula: 
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REMARK 2. In order to prove that (7) tends to 0 if ltl -+ oo one may also use 
Fourier transform: 

f &(x)x(it2Q(x))ldxl..c = ltl-'" .f (Jl(x)x( - ;- 1 t- 2Q(x))ldxl..c• 
XA XA 

and apply (5) once more. In fact, this is what is done in [2l The version given 
above, however, does not need the Fourier transform of a quadratic character 
and can also be given in certain cases where one has, e.g., a cubic invariant 
instead of the quadratic invariant Q (an example is the group of the generic 
cubic form of an exceptional Jordan algebra of dimension 27, see [3D. 
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The Siegel Formula for Orthogonal Groups. II 
BY 

J. G. M. MARS 

This is a resume of Weil's paper Sur la formule de Siegel dans la theorie des 
groupes classiques, (Acta Math. 113 (1965), 1-87) for the case of an orthogonal 
group. 

1. Notations. Let k be an algebraic numberfield, Q a nondegenerate quadratic 
form on km given by a nonsingular symmetric matrix h in M,,.(k) (Q(u) = 'uhu for 
u e k"'). Let Xk be the linear space of all linear maps k•-+ km; X,. can be identified 
with the space M m,n(k) of m x n-matrices with coefficients in k. If x e X k> Q ox is a 
quadratic form on k" with matrix 'xhx. Let J(X)k be the linear space of all quad­
ratic forms on k"; we identify it with the space of all symmetric matrices in 
Mn(k). X,. and J(X),. are the sets of points over k of algebraic varieties X and J(X) 
obtained in the usual way. We define a morphism ix: X-+ J(X) by 

ix(x) = 'xhx (xeX). 

J(X) is identified with its dual by means of the symmetric bilinear form tr(w1w2) 

on J(X) x J(X). 
We put G = O(Q), G1 = SO(Q), C: = Spin (Q); so G, G1 and G are algebraic 

groups defined over k, G 1 is the identity component of G and G is the simply 
connected covering of G1• G and G1 may be considered as groups of matrices in 
Mm. 

Finally Sp(X) or Sp will denote the (algebraic) group of matrices s e M ln 

satisfying 'ses = e, where 

e = ( 0 1.) 
-1. 0 . 

P is the parabolic subgroup of Sp consisting of the matrices 

{~ :)esp. 
2. Unitary operators. It can be proved that there exists a unitary representation 

r of Sp(X),. on L 2(X A) such that 

r (~ 'a.~ 1) is the operator <l>(x)-+ <l>(xa.) ifa. e M.(k)*, 
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r (_,~- i ~)is the operator <l>(x)-+ &(xy) if}' e Mn(k)*, 

r(~ ~)is the operator Cl>(x)-+ <l>(,x)x{ttr('xxp)) if peMn(k), 'p = p. 

Here cf> is the Fourier transform of ell defined by 

ci>{y) = f <l>(x)x(tr('xhy))ldxlA (ye X A), 
XA 

x is a character on A such that x(xy) brings A into duality with itself in such a way 
that the discrete subgroup k of A satisfies k = kl.. 

The Schwartz-Bruhat space S(X A) is mapped onto itself by the operators 
r(s) (s e Sp1). 

3. A decomposition of Sp. Supposes is an element of Sp", 

Put X,.y = Y and choose a subspace Z of X,. such that 
(a) X" is the direct sum of Y and Z, 

·(b) M..,(k)Z = Z. 
Then s can be written in the form 

where 'p = p e Mn(k), ). e Mn(k)* and the meaning of the last part of the fQrmula 
is the following. Y and Z can be identified with M ,,,,,,(k) and M ,,,,4(k) respectively 
with p + q = n. Choose some identifications. This gives a new identification of 
X,. = YES Z with M..,,n(k). Now 

means, if a, b, c, de M ,,(k), the element of X,. which corresponds in the new 
identification to the matrix 

a 0 b 0 

0 •• 0 0 

c 0 d 0 

0 0 0 1. 

p 1 is a symmetric matrix in M ,,(k). 
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In the above decomposition p, ,t and p 1 are unique (when Z and the identifica­
tion of Y with M p(k) have been chosen). From this one can derive a system of 
representatives for P,.\Sp,.. 

4. The Eisenstein-Siegel series. 
DEFINITION. E(<ll) = LP \S (r(s)<ll)(O). (It is easily seen that (r(p)<ll)(O) = <ll(O) 

ifpeP,..) k Pk 

THEOREM 1. E(<ll) converges absolutely for all <ll e S(X A) and uniformly on every 
compact subset of S(X A) provided we have m > 2n + 2. 

The proof can be given by using reduction theory for the symplectic group Sp. 
With the system of representatives for P,.\Sp,. from §3 and the description of 

r in §2 we find that 

E(CI>) = L Er(<ll), 

the summation is extended over all subspaces Y of X" satisfying M 111(k)Y = Y, 

Ex(<ll) = L f <ll(x)x(tr(1xhxp))ldxlA• 
'p=peMn(k) XA 

and Er(<ll) for Y ~ X is defined in an analogous way. Now we can apply the 
Poisson formula to the series which defines Ex(<ll). The summation is in fact a 
summation over I(X),. and the value in i of the Fourier transform of the function 

r -+ f <ll(x)x(tr('xhxr))ldxlA 
XA 

on /(X)A is I <lllO;IA if i E I(X),.. 
U(i)A 

Here U(i) is the variety {x e X: ix(x) = i, rank x = n} and 8 is a G-invariant 
gauge form on U(i) (U(i) is an orbit of G). (For this kind of application of the 
Poisson formula, see A. Weil, Acta Math. 113.) 

We see that Ex. and also E, is a tempered positive measure on S(XA). 
E has the following invariance properties. 
(a) From the definition of E(<ll) it is clear that E is invariant under Sp,., i.e., 

E(<ll)' is not changed when <ll is replaced by r(s)<ll, s e Sp11 • 

(b) E is invariant under GA• i.e., E(<ll) is not changed when <ll(x) is replaced 
by <ll(gx), g e GA· 

5. Uniqueness theorem. 

THEOREM 4 (A. Weil, Acta Math. 113).1 Suppose m > 2n + 2. Let v be a place of 
k such that U(O),, is not empty and G~ a subgroup of G,, acting transitively on U(i),, 

1 See the first paragraph of this paper for the complete reference. 
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for any i e J(X),.. Let E' be a tempered positive measure on X A• invariant under 
Sp" and under G~ and such that E' - E is a sum of measures carried by the sets 
U(i)A, i e J(X),.. Then E' = E. 

6. 1be Siegel formula. 
DEFINITION. 

J(cJ>) = tAIG. lx• <l>(ge) dv(g), 

where v is the Haar measure on GA normed in such way that v(G .JG") = I. Let 
I 1(CI>) (resp. l(CI>)) denote the analogous integral with G1 (resp. G) instead of G. 

PROPOSITION. /(Cl>) is absolutely convergent for all Cl> e 5(X A) if r = 0 and if 
m - r > n + 1 (r = index of Q = dimension of a maximal totally isotropic sub­
space). The same is true for I 1 and 1. 

The proof can be given with the use of reduction theory. 

THEOREM 5. Assume m > 2n + 2. Then I = E. 

This is Siegel's formula. It is also true for I 1 and 1. It follows easily from 
Theorem 4 by induction on n (starting with n = 0, in which case the formula is 
trivial). 

Restricting the measures I and E to U(i)A we get 

i I <l>(ge) dv(g) = J Cl>IOilA. (i e J(X),.). 
GA/Gk (eU(IJk U(iJA 

COROLLARY (HASSE PRINCIPLE). If U(i),. is empty, U(i)A. is empty. 

For, if U(i)A is not empty, the Tamagawa measure IOilA. #= 0. 

COROLLARY 2. The Tamagawa number of G (with respect to convergence factors 
A.) is equal to the Tamagawa number of the stabilizer in G of any point e e X,. of 
rank n. The same is true for G1 and G. 

To see this, taken= 1 and write U(i)A = G.JHA, U(i)" = G,JH" where His the 
stabilizer in G of a point e0 of U(i),.. Then 

f Cl>IOilA. = tA(G)tA(H)- 1 f. <l>(geo)dv(g)· 
U(iJA GA/Hk 

and 

From Corollary 2 one deduces that there is a number t such that the Tama­
gawa number of any special orthogonal group in at least 3 variables is equal to t. 
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Appendix 
In his paper in Acta Math. 113 Weil defined J(CI>) and E(CI>) for modules X,. 

over semisimple algebras with involution and he proved that I = E if E(CI>) is 
absolutely convergent. We give here a list of Weil's results in the case of a simple 
module X,. over a simple algebra c,.. G is then the group of elements c e C such 
that cc' = 1 (t = the involution in C). 

We have the following cases: 
(0) X,. = km, G is the symplectic group of an alternating form on X,., mis even. 
(1) X,. = Dm, D a quaternion division algebra over k, G is the group of a 

hermitian form (with respect to the usual involution in D) on X,.. 
(2) X,. = Dm, D a central division algebra over a quadratic extension K of k, 

D is supplied with an involution which induces on K the nontrivial k-auto­
morphism (involution of the second kind~ G is the group of a hermitian form on 
x,.. 

(3) X" = Dm, D a quaternion division algebra over k, G is the group of an 
antihermitian form (with respect to the usual involution on D) on X,.. 

(4) X" = km, G is the group of a quadratic form on X 1:. 

All these forms are of course supposed to be nondegenerate. The index of the 
form is r. In the Cases 2, 3, 4 we define G1 to be the group of elements in G with 
reduced norm 1. 

Result on 
Case G 1 semisimple J(CI>) conv. E(CI>) conv. E =I Tamagawa numbers 

0 m>O m>O m>O m>O T(G) = 1 (m > 0) 
1 m ~ 1 m~l m~2 m~2 T(G) = 1 (m ~ 1) 
2 {m~ 2 {m~3 m~3 m~3 t(G 1) = T (m ~ 1) 

m = 1,D not m=2,r=0 
comm. 

3 m~2 {m~3 m~4 m~4 T(G1) = T (m ~ 2) 
m=2,r=0 

4 m~3 r~5 m~S m~S T(G 1) = i(m ~ 3) 
m=4,r~ 1 
m= 3,r=O 

The Hasse principle is a consequence of the Siegel formula E = I, so it is 
proved for the same values of m as that formula. 

By using the classical isomorphisms in low dimensions (m = 1 in Case 2 (and 
[D :K] ~ 4), m = 2 in Case 3, m = 3 in Case 4) Weil proved in Ade/es and algebraic 
groups that the number 't' in Case 2 is 1 if [D: K] ~ 4 and that 't' = 2 in Cases 3 
and 4. 



The Volume of the Fundamental Domain for Some 

Arithmetical Subgroups of Chevalley Groups 
BY 

R. P. LANGLANDSl 

Let g a be a split semisimple Lie algebra of linear transformations of the 
finite dimensional vector space Va over Q. Let ~a be a split Cartan subalgebra 
of 9a and choose for each root oc of ~a a root vector X,,_ so that if [X,,_, X _,,_] = H,,_ 
then oc(H,,_) = 2 so that there is an automorphism lJ of 9a with lJ(XJ = -~ -m· 

Let L be the set of weights of ~a and if A. e L let 

Va(A.) = {v e ValHv = A.(H)v for all He ~a}; 

let H b • • • , HP be a basis over Z of 

{H!A.(H)e Zif Va(A.) -F O}. 

As usual, there is associated to 9a a connected algebraic group Ge of linear 
transformations of Ve= Va® aC. If His some lattice in V0 satisfying 

(i) M = L;.eL M ("\ V(A.), 
(ii) (X:,tn !)M !;;;;; M for all oc, 

then we let G z = {g e G clgM = M}. Let w be a left invariant form on G8 of 
highest degree which takes the value ± 1 on n:=i /\Hi /\ nm>O /\ X,,_ and let 
[dg] be the Haar measure associated to w. Our purpose now is to show that: 

If C( ·)is the Riemann zeta function, n:= 1 (t201 - 1 + 1) is the Poincare polynomial 
of Ge, and c is the order of the fundamental group of Ge then 

r [dg] = c .D C(ai>· 
JGz\Ga •-1 

The method to be used to find the volume of Gz\Ga is not directly applicable to 
[dg] so it is necessary to introduce another Haar measure on the group G8 . 

Let Ube the connected subgroup of Ge whose Lie algebra is spanned over R by 
{X,,_ - X _,,_, i(X,,_ + X _,,_), iH,,_loc a root} and let K = G8 n U. Choose an order on 
the roots and let N = N 8 be the set of real points on the connected algebraic 
subgroup of Ge with the Lie algebra L,,_> 0 CX,,_. Let A8 be the normalizer of 
~e in G8 . Let dn be the Haar measure on N defined by a form which takes the 
value ± 1 on Om> 0 /\ X ,,_ and let da be the Haar measure on A8 defined by a form 
which takes the value ± 1 on 0f= 1 /\Hi. Let dk be the Haar measure on K such 

1 Miller Fellow. 
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that the total volume of K is one. Let p = !L.>o°' and let ' 2p(a) be the character 
of Ac associated to 2p. Finally let dg be such that 

f. t/J(g) dg = I l'2p(a)l- 14'(nak) dn da dk. 
G. NXA.XK 

If N- is the set of real points on the group associated to Laco ex. define dn­
in the same way as we defined dn. It is easy to see that 

i t/J(g)[dg] = f. dn r da f. dn_ l,2p(a)1- 1t/J(nan-). 
G N JA. N-

Suppose q,(gk) = q,(g) for all g e Ga and all k e K. Then 

f, </>(g) dg = f dn dal'2p(a)l- 1t/JCna). 
G NXA• 

On the other hand, if n- = n(n-)a(n-)k(n-), 

f <f>(g)[dg] = {_ dn- {L da 1 dnl'2p(a)l- 1t/JCnan(n-)a(n-)k(n-))} 

= {Ida L dnl'2p(a)l- 1t/JCna)} {1_ l,2pa(n-)ldn-}. 

It follows from a formula of Gindikin and Karpelevich that the second factor 
equals 

x-tr(p(HJ/2) x-p1H.>12r(p(HJ/2) 

.Do rc<PCH,.) + t)/2) = .D0 x-(p(H.>+ 012r((p(HJ + t)/2) 

n· 1l-p(H.)/2r(p(H,.)/2) 
= __ ,._>_O _______ _ 

n x-IPIH.>+O/Zr((p(H.) + 1)/2)' 
•>0 

since when oc is simple p(H,,.) = 1 and 

n-trm = 1. 

The ·product in the numerator is taken over the positive roots which are not 
simple. By a well-known result the numbers, with multiplicities, in the set 

{p(HJ + lice > 0} 

are just the numbers p(H,.) with oc positive and not simple, together with the 
numbers ab · · · , a,, so if 



VOLUME OF THE FUNDAMENTAL DOMAIN 145 

we have to show that 

c n e(p( • .H11) + 1) f d 11>0 
Gz \GR g = -n-, ,-(p(-H-11)-) -

11>0 

By the way, it is well to keep in mind that p(H11) > 1 if !X is not simple. 
Let A be the connected component of A8 and let M be the points of finite 

order in A8 . Certainly A8 =AM. Moreover, by lwasawa, G = NAK. If g = nak 
and a = exp H, we set H = H(g). 

If tJ> is an infinitely differentiable function with compact support on N\G such 
that <J>(gk) = t/>{g) for all gin G and all kin K we can write ti> as a Fourier integral. 

t/>(g) = (2~)P Le.\= .lo exp(J.(H(g)) + p(H(g))Clt(J.)ldJ.I; 

;. is the symbol for an element of the dual of fJc; Cll(J.) is an entire complex-valued 
function of J.; and dJ. = dz 1 A··· A dzP with zi =).(Hi). As in the lectures on 
Eisenstein series we can introduce 

q, • (g) = l: tJ><1g). 
yEGznNM\Gz 

Our evaluation of the volume of Gz\G8 will be based on the simple relation 

The inner products are taken in L2(Gz\G8 ) with respect to dg and II is the 
orthogonal projection on the space of constant functions. Since 

(1, 1) = f dg 
Gz\G• 

it is enough to find an explicit formula for the other three terms. Now 

( "'-' 1) = f. t/>(g) dg 
GznNM\GR 

= µ{Gz n NM\NM) J..1e2p(a)l- 1<J>(a)da 

= Cll(p) 

since µ(Gz n NM\NM) = 1. To see the latter we have to observe that Ms;; Gz 
and that, as follows from results stated in Cartier's talk, µ{Gz n N\N) = 1. It is 
also clear that (1, 1/1-) = 'P(p). The nontrivial step is to evaluate 

(IIq), III/I\ 
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From the theory of Eisenstein series we know that 

(<f, 1//) = (2~)Pf L M(s, l)Cl>(l)'P(-sl)ldll. 
Re A= Ao HO 

n is the Weyl group, l 0 is any point such that l 0(H,.) > 1 for every simple root, 
and 

M(s, l) = n eO + sl(H,.)) = n e(l(H,.)) 
11>0 eo + l(H,.)) 11>o;s11<0 e(l + l(H,.)) 

In the lectures on Eisenstein series I introduced an unbounded self-adjoint 
operator A on the closed subspace of L2(Gz\G,,) generated by the functions 
<P with <P of the form indicated above. Comparing the definition of A with the 
formula for (</J A' 1) we see that 

(A</JA, 1) = (p, p)(<f, 1). 

Since the constant functions are in this space A 1 = (p, p) · 1. As a consequence, 
if E(x), - oo < x < oo, is the spectral resolution of A the constant functions are 
in the range of E((p, p)) - E((p, p) - 0) = E. We show that this range consists 
precisely of the constant functions and compute (Eq,A, y/) = (Il</JA, Ill//). 

Suppose a > (p, p) > b and a - b is small. According to a well-known formula 

!{(E(a)<f' 1//) + (E(a - O)<PA, v/)} - t{(E(b)</JA, 1//) + (E(b - O)<f' 1//)} 

is equal to 

(a) lim ~ i (R(µ, A)tf> A' 1/1 A) dµ 
cHO 2m C(a, "· c, •> 

if C(a, b, c, b) is the following contour. 

b + ib 

b - ib 

Recall that, if Reµ > (l0, l 01 

a+ it5 

a - it5 

(R( A)"' A ,/,A) - ~ 1 J. 1 - -µ, .,, , .,, - L. (2 ;\" _ (l l) M(s, X)Cl>(l)'JI( - sl) dl. 
sen 7tl1 Re.\=Aoµ ' 
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If w = (wi. · · ·, wp) belongs to CP let A.(w) be such that A.(H,.,) = W;, if «i. · · ·, a:P 
are the simple roots. Set 

</Jp(w, s) = M(s, A.(w))Cl>(A.(w))'P( -sA.w)), 

Qp(w) = (A.(w), A.(w)) 

then (a) is equal to 

! L Jim~ f dµ{~PJ 1 </Jp(w, s) dw1 • • • dwP} 
C sen ,uo 2m C(a.b,c,d) (2m) Rew=-w0 µ - Qp(w) 

provided each of these limits exist.2 The coordinates of w0 must all be greater 
than one. We shall consider the limits individually. 

Let wt = (w1, · • ·, wq) and define </Jq(wt; s) inductively for 0 ~ q ~ p by 

</Jq(w 1, • · ·, wq; s) = Residue </Jq+ 1(wi. · · ·, wq+ 1 ; s). 
Wq+ I= 1 

It is easily seen that </J,(wt; s) has no singularities in the region defined by the 
inequalities Re wi > 1, 1 ~ i ~ q; that </Jq(wt; s) goes to zero very fast when the 
imaginary part of wt goes to infinity and its real part remains in a compact 
subset of this region; and that there is a positive number s so that the only 
singularities of </Jq(wt; s) in 

{(wto · · ·, wq>l IRe wi - ll < s, 1 ~ i ~ q} 

lie on the hyperplanes wi = 1 and are at most simple poles. </J0(s) is of course a 
constant. Set Qq(wt) = QP(wto · · ·, w,, 1, · · ·, 1). 

Let us show by induction that the given limit equals 

(b) lim-1 f dµ{-1-f 1 4> (wt· s) dw1 • • • dw} 
.uo 2xi C(a,b,c,d) (2xi)q Rew' =w3 µ - Qq{wt) " ' " 

if w?, = (w0 ,1 , · • • , w0 ,q) with w0 ,i > 1, 1 ~ i ~ q. Of course, the above expression 
is independent of the choice of such a point w?,. Take w?i = (1 + u, · · · , 1 + u, 
1 + v), with u and v positive but small and wi- 1 = (1 + u, · · · , 1 + u). If 
A1, ···,AP are such that AJH,.i) =~ii• then (A1o Ai)~ 0. As a consequence, if u 
is much smaller than v, then 

Qq(l + u, · · · , 1 + u, I - v) < (p, p). 

Choose (b) to be larger than the number on the left. Also 

Re Q11(wq) = Q.,(Re wq) - QJim wt>···, Im w4 , 0, · · ·, 0). 

Thus there is a constant N so that if either Re wi = 1 + u, 1 ~ i ~ q - 1 and 
Rew., = 1 - v or Re wi = 1 + u, 1 ~ i ~ p and !Rew., - II ~ v and !Im w.,I > N, 

2 The inner integral is defined for Reµ > Qp(wo). However, as can be seen from the discussion 
to follow, the function ofµ it defines can be analytically continued to a region containing C(a, b, c, cS). 
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then 
Re Q,,(w") < b - 1/N 

In (b) we may perform the integrations in any order. Integrate first with respect 

1-v+iN 
~---

l+v+iN 

.1 

l+v-iN ._ __ _ 
1-v-iN 

The contour C 

to w,. If C is the indicated contour, the result is the sum of (b) with q replaced 
by q - 1 and 

lim-1-f. dw1 · · · 
uo (2ni)' Rew•~• =wx- • 

· · · dw.- 1 f dw11t;q(w", s{ l~i f . µ _ ~Jw") dµ} 
C C(a,l>,<,I) 

which is obviously zero. 
Taking q = 0 in (b) we get 

Jim t;o(~) [ 1 dµ = tPo(s) . 
• uo 2m Jc,.,,, .• ,11 µ - (p, p) 

It is clear that t;0(s) is zero unless s sends every positive root to a negative root 
but that for the unique element of the Weyl group which does this 

<Po(s) = fl~>o e(p(H.))4>(p)'ii{pj 
CTa>o e(p(H.) + 1) 

since· sp = - p. This is the result required. 
Finally, I remark that although the method just described for computing the 

volume of r\G has obvious limitations, it can be applied to other groups. In 
particular it works for Chevalley groups over a numberfield. 



Galois Cohomology of Linear Algebraic Groups 
BY 

T. A. SPRINGER 

This is the substance of three lectures; the purpose of which was to give a 
brief introduction to the notions and results of Galois cohomology of linear 
algebraic groups. 

I. Principal homogeneous spaces of algebraic groups. 
1.1. Let G be a linear algebraic group defined over a field k. Let P be a principal 

homogeneous space of G. This means that Pis an algebraic variety along with a 
morphism f: G x P-+ P, defined over k, which defines a transformation group 
action of G on P which is simply transitive-that is, the mapping 

(f, pr2): G x P-+ P x P 

sending (g, p) into (gp, p) is an isomorphism. Thus if we take P = G and let f be 
the product mapping, G = P is a principal homogeneous space of G. If A is a 
ring containing k and PA -+ 0, then GA acts simply transitively on PA. 

Two principal homogeneous spaces P, P' of G are isomorphic over k if P 
and P' are isomorphic as algebraic varieties under a mapping defined over k 
which is compatible with the action of G. If P has a k-rational point, then G and 
P are k-isomorphic principal homogeneous spaces of G. 

The set of k-isomorphism classes of principal homogeneous spaces of G is 
denoted by H 1(k, G). Similarly if k is perfect and K is a Galois extension of k, 
the set of k-isomorphism classes of principal homogeneous spaces P of G which 
have a K-rational point is denoted by H 1(K/k, G). We have H 1(k, G) = H 1(kJk, G) 
where k1 is the separable closure of k. The element of H 1(K/k, G) which contains 
the trivial principal homogeneous space G of G is denoted by 0. 

The notation H 1(K/k, G) is motivated by considering the action of the Galois 
group r = Gal(K/k) on Gg and Pg. Fors e Gg, x e Pg we let •g be the image of g 
in GK under s and •x be the image in PK of x under s. Then "(gx) = •g •x, since f 
is defined over k. Thus fixing x in Pg and denoting by g. the unique element of GK 
such that •x = g.x for s in r, we have g.,x = "'x = "('x) = •g, •x = "g,g_x. So the 
mapping s >-+ g. from into Gt satisfies 

(1) g., = •g,g. (s, t Er).' 

If one replaces x by another pointy in P11 , then y = hx for some h in Gt and the 
function g' = (g~) which we obtain is related to g = (g1 ) according to the formula 

(2) 

149 
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Also, if we give r the Krull topology and GK the discrete topology, then g is a 
continuous function. 

Denote by Z 1(K/k, G) the set of continuous functions (g,) verifying (1). More­
over (2) defines an equivalence relation R on Z 1(K/k, G). If G is abelian, Z 1(K/k, G) 
is just the group of continuous 1-cocycles of r in GK and R is the equivalence 
relation defined by the subgroup B1(K/k, G) of coboundaries. From what we 
have seen above, it follows that there exists a mapping Cl> from H 1(K/k, G) into 
Z 1(K/k, G)/R. We have the following result 

PROPOSITION l. l . Cl> is bijective. 

For the proof see (6, Chapter III, l.3i 
1.2. Examples. For details we refer to (6, Chapter III, §1). 
(1) H 1(K/k, GL") = 0 if K is a Galois extension of k. For n = 1 this is Hilbert's 

"theorem 90". 
(2) Let k be a perfect field, V a vector space over k, x a tensor of type (p, q) 

over V. If y is another such tensor, y is isomorphic to x over V if some auto· 
morphism of V induces a mapping sending x into y. y is called a K/k-form of x 
if x ® 1 and y ® 1 are isomorphic in VK = V ®" K. Let G be the stabilizer of x 
in GL(V). Then G is defined over k, since k is perfect. And H 1(K/k, G) may be 
identified with the isomorphism classes of K/k-forms of x. A number of important 
facts are special cases of this (see Examples 3, 4, S, 6 in this section). 

(3) Suppose that characteristic k is different from 2. Let x be a tensor over V 
belonging to a quadratic form Q on V (notation as in (2)). Let G be the orthogonal 
group on V with respect to Q. Then H 1(K/k, G) may be identified with the set of 
equivalence classes of quadq1tic forms on V which become equivalent io Q upon 
extension to VK. And H 1(k, G) may be identified with the set of equivalence 
classes of quadratic forms on V which have the same rank as Q. More explicitly, 
if Se Mn(k) is a symmetric matrix defining Q and if S' e Mn(k) is a symmetric 
matrix having the same rank as that of S, the corresponding principal homo· 
geneous space of G is such that for any ring A containing k we have 

PA.= {XeGL"(A)IS' = 1XSX}. 

(4)H 1(k, Sp") = 0 and H 1(K/k, Spn) = 0 (where Spn denotes the symplectic 
group in n variables). This is seen by applying (2) and the fact that if two skew 
symmetric bilinear forms on V are equivalent upon extension to VK, then they are 
equivalent. 

(5) An algebra structure on V is determined by a tensor over V. The auto· 
morphism group of the algebra Mn of n x n matrices is PGL". Thus 
H 1(K/k, PGLn) may be identified with the set of isomorphism classes of central 
simple algebras over k which upon extension of the base field to K become iso­
morphic to Mn(K). 

(6) Let g be a Lie algebra over the perfect field k, let G = Aut(g) be the group of 
automorphisms of g. G is an algebraic group which is defined over k. Then 
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H 1(k, Aut g) may be identified with the isomorphism classes of k-forms of g (a 
k-form of g is a Lie algebra over k which becomes isomorphic to g upon exten­
sion to Ii). Similar results hold for the classification of forms of algebraic groups. 

2. Noncommutative cohomology. 
21. Definition of H 0 and H 1• Let r be a topological group operating con­

tinuously on a group A as a group of automorphisms, A being endowed with the 
discrete topology. We now define Hi(r, A) for i = 0, 1. 

Firstly, H0(r, A) = Ar, the set of r-invariant elements of A. This definition 
makes sense even if A is only a set on wHich r operates, however then H 0(r, A) 
can be empty. H 0(r, A) is a group if A is a group. Next we define Z 1(r, A) (the set 
of cocycles of r in A) to be the set of continuous functions z = (z,) of r in A such 
that z., = •z,z. for all s in r ("a denotes the image of a E A under s E r). A acts on 
Z 1(r, A), an element a EA sending the cocycle z into z', where z~ = •az.a- 1• 

Denoting by R the ensuing equivalence relation, we define H 1(r, A) = Z 1(r, ~)/R. 
The element of H 1(r, A) containing the cocycle which maps each element of r 

into the identity element of A is denoted by 0. So H 1(r, A) is a set with a privileged 
point, however there is, if A is nonabelian, no canonical group structure on this 
set. 

If B is another r-group, a r-homomorphism f: A~ B induces mappings 
f~ from Hi(r, A) into Hi(r, B)(i = 0, 1). f~ is a homomorphism and f ! maps 0 
into 0. 

2.2. Example. Let G be an algebraic group defined over the field k. Let K be a 
Galois extension of k, put r = Gal(K/k). Then according to Proposition 1.1 
there is a bijection of H 1(r, GK) onto H1(K/k, Gi 

For K = k,, the separable closure of k, one obtains a bijection of H 1{r, GK) 
onto H 1(k, G). 

23. Twisting. Now let X bear-set on which A operates as a transformation 
group, in such a fashion that •(ax)= •a •x for sin r, a in A, x in X where ax denotes 
the image of x under a. If z is in Z 1(r, A), we can get a new action of r on X by 
twisting with z. This action is defined as follows: set .x = z; 1{"x) for sin r, x in X. 
Then ,,x = 1(,x) for s, t in r and x in X since: 

Thus using z, Xis made into a new r-set X,. 
2.4. Examples of twisting. (1) Let A play the role of X and Aut A that of A in 

the above discussion, where A is a r-group. 
Let r operate on Aut A as follows: for s in r and IX in Aut A, define •oc by 

requiring that •oc(a) = •(oc("- 1a)). It is clear that •(oca) = •oc •a for sin r, a in A and oc 
in Aut A (where oca = oc(a) for a in A and oc in Aut A). 

If z' is a cocycle in Z 1(r. Aut A), a new r-group A •. is obtained by twisting with 
z'. If z is a cocycle in Z 1(r, A), z and the homomorphism Int: A~ Aut A deter­
mine a cocycle z' = Into z of Z 1(r, Aut A). It is convenient to define A. = A, .. 
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Thus if A is a r-group and z is an element of Z 1(r, A), z determines a new r­
group A •. We look at instances of this in the next examples. 

(2) Suppose that we are in the situation of Example 2.2 Let B be the group of 
algebraic automorphisms of G, which are defined over K. r acts continuously on 
B, B being endowed with the discrete topology. If z e Z 1(r, B), we can form, in the 
manner explained above, the twisted group (GK) •. Then the following holds: 
there exists an algebraic group G., defined over k, which is isomorphic over K 
to G, the isomorphism being such that it identifies the J"-groups (G.)K and (G1c). 
(a proof of this is contained in [6, Chapter III, §1 D. 

(3) Let k be a field of characteristic =F 2, K a quadratic Galois extension of k 
with Galois group r = Gal(K/k). Choose a: in k such that K = k(.ja:). Let s be 
the nontrivial element of r. Let A = SL,.(K). A has an outer automorphism 
a:x--. 'x- 1• And •a= a ("<T(x) = "(<1("- 1x)) = "(1("- 1x)- 1 = 'x- 1 = a(x)). Define 
z: r - Aut A by setting Z1 = id,t, z. = <1. Then since •a= (f and a2 = 1, z is in 
Z 1(K/k, Aut A). We now calculate A~: since .x = z.- 1 •x = a- 1(5x) = 1x•- 1 for 
x in A, we have A~ = SU.(K/k). The algebraic group (SL.). is isomorphic over k 
to the special unitary group, defined by the quadratic extension K/k. 

(4) Let K, k, a:, r, s be as in Example 2 of this section. Let S = diag(a:i. · · ·, a: 2.) 

in M2,.(k). Let v = diag(l, · · ·, l, -1) in M2,.(k). Let G = o+(S). Let a: G--. G be 
defined by setting a(x) = vxv for x in G. Define z as before by setting z(l) = 1, 
z(s) = a (as before, z is in Z 1(r, G)). It is easily checked that (A.f = o+(S1)1:. where 
S1 = diag(a:1,-··,a:2,.-i.a:a2,J·G. is k-isomorphic to o+(S 1). 

(5) Let k be a perfect field, r = Gal(IC/k), A = SL,.(ICi Let z be in Z 1(f, PGL,,(IC)~ 
Since PGL.(IC) c: Aut A, z determines a f-group A. (see Example 1 of this section). 
Now H 1(f, PGL.(IC)) may b~ identified with the set of k-isomorphism classes of 
central simple algebras D over k of rank n2 (see §1.2, Example (5)). z determines 
some central simple algebra D over k of rank n2• Let 

Gfi = {x e D ®1: IClreduced norm of x = l}. 

Then A.;;;;;; Gfi. The algebraic group (SL,,). is isomorphic over k to SL1(D) (the 
group of elements of D with reduced norm 1). 

2.5. Let A be a f-group, z and element of Z 1(r, A). z determines a new f-group 
A. (see Example 1, §2.4). We define a mapping -r. : H 1(r, A.) --. H 1(f, A) as fol­
lows·: for x in Z 1(r, A.), set (-r.x). = z.x. (sin f). It can be verified that -r. induces 
a mapping -r. : H 1(r, A2)--. H 1(f, A) which is a bijection and maps 0 into the 
element ( of H 1(r, A) which contains z. 

In order to consider the applications of this procedure, suppose that B is a 
f-group and/: A--. B is a f-homomorphism. f induces a mapping/! from 
H 1(f, A) into H 1(r, B), and it is desirable to determine the fibres of/!. If one has 
information about the fibre of/! containing 0 (e.g. by applying the following 
theorems on exact sequences), then one can obtain information about the 
fibre containing ( e H 1(r, A) by applying -r. for some z in (. More precisely, the 
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following diagram is commutative (t = f!(z)}: 

H1(r, A.)--+ Hl1(r, B,) 

l·· .. 
H 1(r, A)--+ H 1(r, B). 

2.6. Exact sequences. Let B be a r-group, let A be a subgroup of B, which is 
invariant under r. Let/be the injection A-+ B. f determines mappings/~ (i = 0, 1). 
Also the canonical projection g: B -+ A\B induces a mapping g~ of H 0(r, B) 
into H 0(r, A\B). 

Finally there is a mapping {J: H 0(r, A\B) -+ H 1(r, A), which is defined as 
follows. If x e H 0(r, A\B), then x is the coset mod A of an element be B which 
satisfies 'b = a,b, where (a,) e Z 1(r, A). Then fJ(x) is the image in H1(r, A) of the 
cocycle a. 

PROPOSITION 21. 

(1) O-H0(r, A).-£LH0(r, B)...!L.+H0(r, A\B)--L+ H 1(r, A)...!LH 1(r, B) is 
exact. 

(2) {J induces a bijection from the set of orbits of Br in (A\B)r onto the kernel off!. 
(3) C is in the image off! <=> H0(r, (A\B).) =F 0, where z is in C. 

Observe that exactness makes sense in this context! 
Now suppose that 

0 --+ A ......£.+ B ___..!._,. C --+ 0 

is an exact sequence of r-groups (/and g are r-homomorphisms), so /(A) is 
normal in B. This determines a sequence: 

O --+ H 0(r, A) ~ H 0(r, B)-2t. H 0(r, C) 
(3} 

PROPOSITION 2.2. 
(1) (3) is exact; 
(2) g! is proper (respectively injective) if H 1(r, A.) is finite (respectively 0) for 

each z in Z 1(r, A); 
(3) H 1(r, B) = 0 if H 1(r, C) = 0 and H 1(r, A) = 0. 

If /(A) is central in B, one can extend'c3) to an exact sequence in which H 2(r, A) 
occurs. For the proofs of these results (which are easy) we refer to [6, Chapter I, 
§5] or [l, §1]. 

3. Some results. We mention here a number of recent results about the Galois 
cohomology of linear algebraic groups, over special ground fields. 
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3.1. Fields of dimension ~ 1. We say that the fi~ld k has dimension ~ 1, if the 
following holds: k has no finite dimensional division algebra extensions. In other 
words, the Brauer group of any finite extension of k is 0. 

The following cohomological characterization explains the name. Let k be a 
field, let k. denote its separable closure. Put r = Gal(k./k). Then k is a field of 
dimension ;:;:; 1 if and only if H 2(r, A) = 0 for any finite abelian group A on which 
r operates continuously. Examples of fields of dimension ~ 1 : 

(a) finite fields (Wedderburn), 
(b) the maximal unramified extension of a p-adic field (Lang [4D, 
(c) a function field of dimension 1 whose field of constants is algebraically 

closed. For further details see [6, Chapter II, §3). 
We now have the following theorem. 

THEOREM 3.1. Let k be a perfect field of dimension ;:;:; 1, let G be a connected 
linear algebraic group defined over k. Then H 1(k, G) = 0. 

This theorem is proved by Steinberg in [7, Theorem 1.9). In the proof some 
rather delicate results about semisimple groups are used. We shall say something 
more about this proof in §4. 

The special case of Theorem 3.1 dealing with finite fields was proved by Lang 
in [S], in this case the proof is much easier. The result is then even true for arbi­
trary connected algebraic groups (nonnecessarily Iineari 

3.2. Local fields. Here one has the following general result. 

THEOREM 3.2. Let k be a local field of characteristic 0, let G be a linear (not 
necessarily connected) algebraic group which is defined over k. Then H 1(k, G) is 
finite. · 

This result is due to Borel-Serre [1, §6). We shall sketch the proof in §4. 
In the next result, the notion of simple connectedness appears. This is defined 

as follows : Let G be a connected linear algebraic group defined over a field k, 
which we assume for simplicity to have characteristic 0. Then G is simply con­
nected if any surjective homomorphism/: G1 -+ G of a connected linear algebraic 
group G1 onto G, which is defined over T< and has finite kernel, is an isomorphism. 

We can now state 

T~EOREM 3.3. Let k be a local field of characteristic 0, let G be a connected, 
linear, semi-simple, simply connected algebraic group, which is defined over k. 
Then H 1(k, G) = 0. 

This theorem is due to Kneser [2). His proof is by checking the result for the 
simple types, and is quite complicated. Another, more conceptual approach to 
this result was found by Bruhat and Tits. We refer to Tits' report [8] in these 
notes for more details. 

Theorem 3.3 can be used to obtain the complete classification of the semi­
simple groups over local fields of characteristic 0. 
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3.3. Number fields. Let k be an algebraic number field, v a valuation on k, k0 

the completion of k at v. Let G be an algebraic group defined over k. Then there 
is a natural mapping of H 1(k, G) into H 1(k0 , G). Thus we obtain a mapping 

(4) </J: H 1(k, G)-+ 0 H1(k0 , G). 
u 

With these notations we have 

THEOREM 3.4. Let G be a linear algebraic group defined over the algebraic 
number field k. Then </J is a proper mapping (i.e. the fibres of </J are finite). 

This is also a result of [l, §7]. It is a global counterpart of Theorem 3.2. The 
global counterpart of Theorem 3.3 can only be stated as a conjecture. 

CoNJECTURE 3.5 (HASSE PRINCIPLE FOR SEMISIMPLE SIMPLY CONNECTED GROUPS). 

Let G be a connected, linear, semisimple, simply connected algebraic group, which is 
defined over the algebraic number field k. Then the mapping </J is injective. 

Because of Theorem 3.3 we may in this case replace the product on the right 
side of (4) by the corresponding product taken over the real valuations of k only. 

The present status of this conjecture is discussed in more detail in Kneser's 
report [3]. 

4. About proofs. 
4.1. In this section we want to show on some examples how the machinery 

of noncummutative cohomology is used to prove results in Galois cohomology. 
We denote by k a perfect field with algebraic closure l<, let I' = Gal(l</k). If G is a 
linear algebraic group defined over k, we know that H 1(k, G) may be identified 
with H 1(r, G;c) as defined in §2. One can then apply the noncommutative coho­
mology to the study of H 1(k, G). 

As an example of the use of Proposition 2.2 we prove the following result. 

PROPOSITION 4.1. Let G be a connected unipotent linear algebraic group which 
is defined over the perfect field k. Then H 1(k, G) = 0. 

In this case G has a composition series 

G =Go :::i G1 :::i • • • :::i G" :::i Gn+i = {e}, 

where the Gi are normal subgroups, defined over k, such that GJG;+ 1 is k­
isomorphic to the additive group Ga. 

From Proposition 2.2 we now get an exact sequence 

H 1(k, G1) -+ H 1(k, G) -+ H 1(k, Ga). 

Now it is well known from Galois theory that H 1(k, Ga)= 0. Then induction 
on n shows that H 1(k, G) = 0. 

4.2 We next mention an example concerning quadratic forms. 
Let k be a field of characteristic different from 2. Let SO(n) be the rotation 

group of a nondegenerate quadratic form Q in n variables. The corresponding 
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spin group Spin (n) is defined over k, and is simply connected (for n ~ 3). There 
is a double covering 1 -+ µ2 -+ Spin (n) -+ SO(n) -+ 1, where µ2 = { 1, -1 }. 
Since H 0(k, Spin (n)) = Spin (n),,, H 0(k, SO(n)) = SO(n),, and H 1(k, µ2) = k*/(k*)2 

we obtain the exact sequence 

Spin (n),,--+ SO(n),,--+ k*/(k*)2 __£,,. H 1(k, Spin (n))--+ H 1(k, SO(n)) 

..£._. H2(k, µ1)· 

Here H2(k, µ 2) may be identified with the subgroup Br(k)i of elements of order 2 
in the Brauer group, c5° is the spinor-norm mapping and c5 1 is connected with the 
Hasse-invariants of quadratic forms. This sequence provides the following 
criteria: 

H 1(k, Spin (n)) = 0 if and only if c5 1 is injective and c5° is surjective. 
It can be shown that this is the case if k has the following property : every 

quadratic form in 5 variables over k represents 0 nontrivially. Examples of 
fields with this property: p-adic fields, totally imaginary algebraic number fields. 
In this manner, one can prove Theorem 3.3 for G = Spin (n). For more details see 
[6, Chapter III, 3.2). · 

4.3. Proof of Theorem 3.2. The proof consists of several steps: 
(i) Let G be finite and set r = Gal(1'/k). Then some normal subgroup l: of finite 

index in r keeps G, pointwise fixed. A (continuous) cocycle z in Z 1(r, GI) induces 
a homomorphism from l: into G,. Using the fact that k has only finitely many 
extensions of a given degree, one obtains a normal subgroup 1:0 of r of finite 
index, such that every homomorphism of l: into G, is trivial on 1:0 • It follows 
that one can identify H 1(r, G,) and H 1(l:0, GI). The latter set is finite (since r/1:0 

and G, are finitei 
(ii) Let G = T be a torus (defined over k). Let k be a finite Galois extension of k 

over which T splits. Let n = [K: kl Let n also denote the nth power mapping 
from Tonto T. We have an exact sequence 

0--+F~T~T--+O (with F finite~ 

Thus the following sequence is exact: 

Thus to show that H 1(k, T) is finite, it suffices to show that i• is surjective. But 
we can identify H1(k, T) and H1(K/k, T) since H 1(K, T) = 0. In H 1(K/k, T) 
the order of each element divides n, hence i* is surjective. 

(iii) Let G be connected and solvable (and defined over k). Then G = T · G. 
(semidirect) with T, G. defined over k (Tis a maximal torus, G. the unipotent 
part of Gi From the exact sequence 1 -+ G. -+ G -+ T-+ 1 we get the exact 
sequence 
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But H 1(k, Gu) = 0, so that ex is injective (the fibre containing 0 consists of the 
single point 0 and by twisting, every nonempty fibre consists of a single point). 
And H 1(k, T) is finite. Thus H 1(k, G) is finite. 

(iv) Let G0 be the connected component of 1 in G. Then H 1(k, G0) is finite if 
and only if H 1(k, G) is finite (one directiOn is trivial, and the other direction is 
easily proved by applying Proposition 2.2 to 1 -+ G0 -+ G-+ G/G0 -+ 1, invoking 
(i) and using a twisting procedure as in (iii)). 

(v) Let G be any algebraic linear group (defined over k). To show that H 1(k, G) 
is finite, we may assume without loss of generality that G is connected. Let T 
be a maximal torus of G which is defined over k. Let N be the normalizer of T 
(thus N is defined over k). Since N0 is solvable, H1(k, N) is finite. Thus it suffices 
to show that the mapping i•: H 1(k, N)-+ H 1(k, G) induced by i: N-+ G is sur­
jective. But for this, it suffices to show that for z in Ce H 1(k, G), H 0(k, (N\G)z) is 
nonempty (see Proposition 21, (3)). But (N\G)z in the variety of maximal tori of 

- Gz, and since Gz is defined over k, (N\G)z has a k-rational point (namely_ any 
maximal torus defined over k) and H 0(k, (N\G)z) is nonempty. 

4.4. About the proof of Theorem 3.1. The following result is proved in [7, Theorem 
1.7): 

PROPOSITION 4.2 Let k be a perfect field, let G be a connected semisimple linear 
algebraic group which is de.fined over k and quasi-split over k (i.e. has a Borel sub­
g~oup which is de.fined over k). Then any semisimple conjugacy class of G which is 
de.fined over k contains an element of G,.. 

From this one obtains the following result (Theorem 1.8 of [7D. 

PROPOSITION 4.3. Under the same assumptions, there exists for every Ce H 1(k, G) 
a maximal torus T of G, de.fined over k, such that Ce lm(H1(k, T)-+ H 1(k, G)). 

We indicate how Proposition 4.2. implies Proposition 4.3. Take Ce H 1(k, G) 
and let z be a corresponding cocycle. We wish to construct T from z. The twisted 
group Gz is defined over k and contains therefore a maximal torus T' which is 
defined over k. Since (T')1r. is Zariski-dense in T', we can find a regular element 
x e TA,. Then x e G,, and for s er = Gal(IC/k) we have 

•x = z. xz,- 1• 

This means that the conjugacy class of x in G is defined over k. By Proposition 
4.2, there is an element y of G" in this conjugacy class. The centralizer T of y in G 
is a maximal torus of G, which is defined over k, and it follows that z is cohomolo­
gous with a cocycle which takes its values in 1{. 

From Proposition 4.3 one obtains that, in order to prove Theorem 3.1 for a 
semisimple group which is quasi-split over k, it suffices to prove Theorem 3.1 
for the case that G is a torus. In that case one can use an argument like that of 
4.3, (ii). The case of a general G now follows without too much difficulty. 
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Haae Principle for H1 of Simply Connected Groups 
BY 

MARTIN KNESER 

Let G be a simply connected algebraic group defined over the number field k. 

CoNJECTURE. The canonical mapping 

H 1(k, G) -+ 0 H 1(ku, G) 
ueoo 

is injective. 

The finite places can be omitted from the product because in that case 

H 1(ku, G) = 0. 

It is not hard to show that the map is also surjective. 
The proof of the conjecture is easily reduced to the absolutely almost simple 

case. This has been done in all cases except Ea, and we shall sketch some of these 
proofs. In (4) Veisfeiler announced the result that a group which is quasi-split 
locally everywhere is quasi-split globally. This would imply the Hasse principle 
for the case Ea too, but the proofs for this result have not appeared as yet. 

Two consequences of the Hasse principle would be: 
(1) If k is purely imaginary, then H 1(k, G) = 0. 
(2) All anisotropic simple groups are of type An if k is purely imaginary. 
Consider first the case of inner forms of type An. Then G consists of the elements 

of reduced norm 1 in a central simple algebra A, and so we have an exact sequence 

1-G-A*-1!..+ Gm~ 1. 

This gives rise to the commutative diagram 

Af-1L+k•-H1(k,G)-H 1(k,A*) = 0 

l 1 - 1 1 
A* -1!..+ k* - H 1(k G) --+ 0 iu V V' 

with exact rows. Now suppose C in H 1(k, G) goes onto 0 in H 1(ku, G) for all v, 
and let a e k* be a pre-image of(. Then the image of a in k: is a norm at each v, 
and hence a is a global norm by the norm theorem for simple algebras (see e.g. [ID. 
It follows that C = 0 as required. 

Next consider exterior forms of type An. In this case 

G = {xeAlxx1 = l,Nx = 1} 

159 
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where A is a central simple algebra over a quadratic extension K of k, with an 
involution I of the second kind. 

Consider the map x....,. (xx', Nx) of A•. The image S is not a group, but is a 
homogeneous space under A• : 

S = {(y,z)eA• x A•ly' = y,zecenter, Ny= zz'}. 
Now 

1 -+ G-+ A• -+ S-+ 1 

is exact and we get the commutative diagram 

A: -+ St -+ H 1(k, G) -+ 1 

l I 11 l 
A:u -+Stu -+ H (k.,, G)-+ 1 

with exact rows. If { in H 1(k, G) goes onto 0 in all H 1(k.,, G), and s e S11 is a pre­
image, then s is in the image of A:u -+ S11u for all v. The fact that s is in the image 
of A: -+ S,. is a consequence of the following two lemmas. 

LEMMA 1. If y = y1 e A:, y = x,,x!(x., e At) for all v, then for some x in A:, 
y = xx1• 

This was first proved by Landherr (3]; a simpler proof using strong approxima­
tion for inner type A. groups is due to Springer and the author. 

LEMMA 2. If z e K, zz1 = 1, and if z = N x., with x.,x! = 1 (x., e A:J for all v, 
then z = N x for some x in A: with xx' = 1. 

The groups of types B., c. and D., (except the trialitarian D4) can be handled 
using the isomorphisms with groups of type A. in low dimensions, and also the 
known versions of the Hasse principle for quadratic forms, hermitian forms, etc. 
The rest of this lecture will be devoted to a sketch of the proof for the exceptional 
groups D4 , E6 , E 7 based on a forthcoming paper (2] of Harder. Parts of the proof 
are also valid for Ea. The proofs for F4 and G2 are comparatively easy and will 
not be discussed here. 

The proof is by induction on the dimension of the group; we shall use con­
sequence (2) of the Hasse principle in the induction procedure. First we state a 
few lemmas without proof. 

LEMMA 3. Let k be perfect and G be semisimple, connected, with a maximal 
torus T, all defined over k. Then if the p-primary component H 1(k, n,, is nonzero, 
we must have p e P( G) where P( G) is the set of primes in the following table. 

Type ofG A. B., c.,D. D4, E6, E1, F4, G2 Ea 
primes in P( G) Pl(n + l)a 2 2,3 2, 3, 5 

with a = 2 for the outer type of A., otherwise a = 1, and D. does not include the 
trialitarian D 4• 
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In the next lemma cd,)< ~ 1 means that the p-primary component of the 
Brauer group of any finite extension of k is trivial. 

LEMMA 4. With k and G as in Lemma 3 and if cd,J< ~ 1 for all p e P(G), then 
H1(k, G) = 0 (in particular G is k-quasi-split). 

Under the stronger hypothesis of cdk ~ 1, this is due to Steinberg (see Theorem 
3.1 of Springer's lecture on Galois Cohomology, pp. 149-158); using Lemma 3, 
one can prove Lemma 4 in essentially the same way. 

LEMMA 5. If k is a number field and p is a prime, the field k(Jll generated over k 
by all p" roots of unity (n = 1, 2, · · · ) satisfies cd,J<<PI ~ 1. 

Now we return to the proof of the Hasse principle for the groups of type 
D4, E6, E7, (Ea~ G is again absolutely almost simple. Suppose that G is obtained 
from the quasi-split group G1 by means of an inner twist: G = ,.G1 with 
a e H 1(k, Ad G1~ Given b in H 1(k, G) which splits locally at each place, we must 
show that it splits globally, i.e. b = 0. 

Let ~: H 1(k, Ad G1)--+ H 2(k, C 1) be the connecting map of the cohomology 
sequence of the exact sequence 

1 --+ C1 --+ G1 --+Ad G1 --+ 1. 

The rest of the proof consists in taking a series of extensions 

k = k0 c k1 c k 2 c .. · c k. 

such that each extension is cyclic of degree 2 or 3, and such that a and b split 
over k •. Then one works down from k. to k 0, one step at a time, showing at each 
stage that b still splits, thus finally achieving b = 0 over k. 

The first extension k1/k0 is a purely imaginary one of degree 2, chosen so that 
~a e H2(k, C 1) splits, if possible (namely in all cases but E6~ 

The next extension k2/k 1 is the quadratic extension contained in the minimal 
splitting field of G1, if it exists--0therwise k2 = k1• 

The third extension k3/k2 is of degree 3 and splits G1 completely in case D4 

and splits ~a in case E6 ; in all other cases k3 = k2• 

The remaining extensions kJki-i (i ~ 4) are extensions by 2•th and 3•th roots 
of unity and are chosen (by Lemmas 4 and 5) to split a and b (so in particular 
G is split over k.). It is at this point that the proof breaks down _for Ea, and so it 
is omitted from further consideration. 

Now we begin the descent back to k = k0 , showing that b still splits at each 
stage. The procedure is to use induction on the dimension of the group, and the 
following lemma for the extensions kJk1_ I> i ~ 2. 

LEMMA 6. ut G be simply connected of type D4 or E., let l be a purely imaginary 
field, and let m be a cyclic quadratic or cubic extension of l. Then H 1(m/l, G = 0 
if at least one of the following holds) 

(i) G splits over m. 
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(ii) G is quasi-split over m, of type D4 , and [m: I]= 2. 
(iii) G is isotropic over m, of type E6 , and [m: I] = 2. 

The proof is a lengthy case by case consideration. As a typical case we sketch 
the proof for E6, [m: I]= 3, and G split over m. Let be H 1(m/l, G). Let P be a 
maximal subgroup defined over m, corresponding to the circled root in the 
diagram 

T G> 

Since dim P = 62, dim E6 = 78, we have 

(*) dim n pa~ 30 
aer 

where r is the Galois group of m/l. It follows that G is isotropic over I. For if 
not, n pa is reductive and its semisimple part is a subgroup of a group of type D5, 

which yields a contradiction to (*). 
By consequence (2) of the Hasse principle, the anisotropic kernel of G must 

consist of groups of type An. There are therefore two possibilities for G: it is 
either split over I or has Dynkin-Tits diagram 

So there exists a parabolic subgroup Q defined over I corresponding to the 
circled root 

Let Q' be a similar parabolic subgroup of bG. Then we can change the twisting 
isomorphism G --. bG so that Q is mapped onto Q'. Then b is replaced by a 
cocycle of N(Q) = Q and so is in H 1(l, Q). This latter cohomology set is .a 
homomorphic image of H 1(1, Q*) where Q* is the semisimple part of Q. Since 
Q* is simply connected, H 1(l, Q*) is zero by induction, and sob = 0 as required. 

The remaining steps in the proof are concerned with descending from k1 to k0• 

Part 7. One next finds a "nice" maximal k-torus contained in both G and bG. 
More precisely there is maximal k-torus Tin G and a twisting isomorphism 
f: G--. bG such that (f- 1 0 1)1T = idT, which satisfies additional properties; for 
example in the case of E7 and E8 , Tis anisotropic over k and splits over k 1• One 
consequence is that b = i*(c) for some c in H 1(k, T), where i is the inclusion map 
of Tin G. 
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Part 8. Find c' e H 1(k, T) which splits in H 1(k, G) and such that the local 
components c., and c~ of c and c' are equal for all infinite places "· Then twisting 
by means of c' reduces the proof to the special case c., = 0 for all v e oo. 

Part 9. To conclude the proof we must show such a c splits in H 1(k, G). This 
is done by imbedding T in smaller subgroups, for instance in case E7 (resp. E8) 

in groups of type A2 x A5 (resp. A8). 
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Nonabelian H 2 in Galois Cohomology 
BY 

T. A. SPRINGER 

It is the purpose of the present paper to give a brief account of some results 
in the Galois cohomology of algebraic groups which involve the nonabelian H 2• 

Such results presuppose, of course, a definition of H2• This is a problem in 
itself, recent solutions of which have been given by Dedecker [2] for group 
cohomology and by Giraud [3] in a much more general situation. 

Section 1 of the present paper contains an independent exposition of the 
definition and basic properties of a nonabelian H2 in group cohomology. This 
definition seems to be ~ssentially equivalent to that of Dedecker and Giraud. 
Section 1 also contains the definition of a relative H 1, which is useful in Galois 
cohomology. We develop to some extent the machinery of exact sequences for 
the relative H 1 and H 2 • 

The main result of the paper is Theorem 3.4, which states that, to a certain 
extent, the nonabelian H2 in Galois cohomology can be reduced to that of finite 
nilpotent groups. A consequence is the theorem of Grothendieck asserting that 
the nonabelian Galois 2-cohomology is trivial over perfect fields of dimension ~ 1. 

Section 4 gives some finit~ness theorems for the relative H 1 over local fields 
and number fields. They are rather direct consequences of the corresponding 
results of Borel-Serre [1] for the ordinary H 1• 

The main results of this paper were obtained in 1963, after the author had heard 
about Grothendieck's theorem, mentioned above. 

I. Relative H 1 and H2 in group cobomology. 
1.1. Notations. We follow here the notations of [1]. In particular, g denotes a 

topological group and a g-set is a discrete topological space on which g operates 
continuously on the left. 

In discussing the properties of the relative H 1 and H 2 we shall sometimes 
encounter here relations (i.e. "many-valued mappings") between cohomology 
sets, which reduce to mappings in ordinary cohomology. As in [31 we denote a 
relation r between two sets A and B which is not a mapping by 

A---.!.......o B. 

If A and/or B have privileged subsets, there is an obvious way of defining an exact 
sequence of relations. These will occur here, however in our examples all relations 
but at most one will be mappings. 

164 
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l.2. Homogeneous spaces. Let A be a g-group. A right homogeneous space of A 
is a nonempty g-set H on which A acts transitively on the right, the action being 
compatible with g. It is clear how to define the notion of isomorphism of two 
homogeneous spaces. 

Let H be a homogeneous space, let· x e H. The elements b e A such that 
x · b = x form a subgroup B of A, the isotropy group of x. Since A acts transitively 
on H, the isotropy subgroups of any two points of H are conjugate in A. Now 
let B be any subgroup of A. We define the relative 1-cohomology set of A with 
respect to B as the set of isomorphism classes of homogeneous spaces of A 
which have B as the isotropy subgroup of one of its points. We denote this set 
by H 1(g, A, B). 

If B is reduced to the identity, H 1(g, A, B) coincides with H 1(g, A). If B is a 
g-invariant subgroup of A, there is a privileged element 0 in H 1(g, A, B~ namely 
the element defined by the g-set B\A. Also notice that there is a canonical bi­
jection of H 1(g, A, B) onto H 1(g, A, aBa- 1). 

In order for H 1(g, A, B) to be nonempty, B has to satisfy certain conditions, 
which we will make explicit now. Let H be a homogeneous space of A; let x e A 
have the isotropy group B. There exists by the transitivity of A elements a. e A 
such that •x = x · a1 • It is easily seen (since the isotropy subgroup of x in g is an 
open subgroup) that we may take a1 such, thats>-+ a. is a continuous function of g 
into A. 

We have for beB 

moreover 

whence 

(1) 

(2) 

x· a,= •x = "(xb) = x· a1
1b; 

x·a., = "'x = "(x·a,) = x·a.'aJs,teg); 

"B = a1-
1Ba., 

a. •a,a.~ 1 e B. 

Denote by Z 1(g, A, B) the set of continuous functions a = (a,) of g into A satisfying 
(1) and (2). 

Let N be the normalizer of B in A. We call two elements a, a' of Z 1(g, A, B) 
cohomologous if there exists n e N such that 

(3) 

It is readily seen that (3) defines an equivalence relation R on Z 1(g, A, B). 

1.3. PROPOSITION. There is a bijection t: H 1(g, A, B)-+ Z 1(g, A, B)/R. 

Let H be a homogeneous space of A, suppose that x e H has isotropy group B. 
We have associated with x a cocycle a in Z 1(g, A, B). a. is determined by x up to 
the left multiplication by an element of B. On the other hand if we start instead 
of x with a point ye H whose isotropy subgroup is also B, then we have y = x · n 
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with n e N. Then if a' is defined by a~ = n- •a, 'n we have •y = y ·a~. From this we 
infer that the class of a mod R is uniquely determined by H. This gives our map e. 
The injectivity of e follows readily. To prove surjectivity, take a e Z 1(g, A, B). 
Define H = B\A and make this into a g-set by defining '(Ba) = B · a, •a. The 
cocycle relations (1) and (2) imply that H becomes indeed a g-set. It is easy to 
check that H is mapped by e onto the class of a. 

1.4. CoROLLAR Y. If B is a g-invariant normal subgroup of A, then e defines a 
bijective map of H 1(g, A, B) onto H 1(g, A/B). 

This follows from the cocycle description of H 1(g, A, B), since now Z 1(g, A, B)/R 
is readily seen to be the same thing as H 1(g, A/B). 

1.5. Change of subgroup. Let A be a g-group, let B and C be two subgroups of 
A. We say that the homogeneous space He H 1(g, A, C) dominates the homo­
geneous space Ke H 1(g, A, B) if there exists a mapping!: H __,. K of right homo­
geneous spaces of A, compatible with g. 

It is easily seen that if this is the case, C must be conjugate in A to a subgroup 
of B. So we may assume, without loss of generality, that C c: B. This we shall do 
from now on. 

If we describe K by a cocycle a in Z 1(g, A, B) then K is dominated by an 
He H 1(g, A, C) if and only if a is cohomologous to a cocycle a' such that 

(4) 

Domination gives a relation P!(B, C) between H 1(g, A, C) and H 1(g, A, B). If B 
and C are g-invariant normal subgroups of A we may identify, according to 
Corollary 1.4, H 1(g, A, B) and H 1(g, A, C) with H 1(g, A/B) and H 1(g, A/C), 
respectively. It may be shown that one may identify P!(B, C) with the mapping of 
H 1(g, A/C) into H 1(g, A/B), associated with the canonical homomorphism of A/C 
onto A/B. 

A special case is that C is reduced to the identity. In that case we write P!(B) 
instead of P!(B, C). 

The relation P!(B, C) enjoys "functorial" properties, we mention only that 
P!(B, B) is the identity mapping of B and that p if D c: C c: B we have P!(B, D) 
= p~(B, C) 0 P!(C, D). 

1.6. PROPOSITION. Let a = (a,) e Z 1(g, A). Let A0 be the group obtained by 
twisting A with a. 

(i) If be Z 1(g, A0 , B), then (b,a,) e Z 1(g, A, B) and one obtains a bijection 

t0 : Z 1(g, A0 , B) __,. Z 1(g, A, B), 

which defines a bijection 

'ta: H'(g, Aa, B) ...... H 1(g, A, B). 
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(ii) If C c: B, then the diagram 

H 1(g A C)P!(B,C> H 1(g A B) 

· .. (' . .:1 a• 

H 1(g, A, C)P!<B.C> H 1(g, A, B) 

is commutative. 

(i) is proved like Proposition 1.5 of [1] and (ii) is a direct check. 
1.7. Let A be a g-group, let B be a subgroup of A. We want to describe the 

fibers of the relation P!(B) between H 1(g, A) and H 1(g, A, B). We write now P! 
instead of P!(B). 

If p e H 1(g, A, B) is related to an element IX of H 1(g, A), then p can be represented 
by a cocycle a e Z 1(g, A, B) which lies in Z 1(g, A), represents IX and is such that 

'B = a,- 1Ba_. 

Hence if we twist A with a, B is invariant for the twisted action of g on the set A. 
We write Ba for the g-group obtained in this manner. Also, we may twist N with a, 
we denote the resulting g-group by Na. 

First assume oc = 0, so B is g-invariant. Now P!(O) consists of those elements of 
H 1(g, A, B) which can be represented by cocycles (b,) e Z 1(g, A, B) of the form 
b, = a- 1(1a) with a e A. From (1) we find that a, e N. It follows that there exists 
a surjective map 

p: Ker(H1(g, N) -+ H 1(g, A)) -+ P!(O). 

Moreover one verifies that two elements of H 1(g, N) lie in the same fiber of p 
if and only if they have the same image in H 1(g, N/B) (under the mapping associa­
ted with the canonical projection of N onto N /B). 

From the preceding results one obtains by twisting, using Proposition 1.6, the 
following result : 

1.8. PROPOSITION. Let IX e H 1(g,A), suppose p1(1X) ¢. 0, let a be a cocycle rep­
resenting IX. There is a surjective map 

Pa: Ker(H1(g, Na)-+ H 1(g, Aa))-+ P!(1X). 

Two elements of H 1(g, Na) lie in the same fiber of Pa if and only if they have the 
same image in H 1(g, NJBa). 

1.9. With the same notation, take now p e H 1(g, A, B). We want to give a 
description of(p!)- 1(/3). Assume first that p e P!(O). Let b be a cocycle representing 
p. 

We then have 

B = "B = b1-
1Bb1 • 

Hence b, e N. Moreover we may assume that b is in Z 1(g, N). We denote by A,, 
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(resp. Bb) the g-groups obtained by twisting A with the canonical image of b in 
V(g, A) (resp. obtained by twisting B with b; this makes sense since N acts on B 
via inner automorphisms in A). 

The ex e H 1(g, A) which are related to fJ are those elements which can be rep­
resented by a cocycle of the form 

where c. e B. It follows that (c8) e Z 1(g, Bb), (a,) e Z 1(g, Ab). One then finds the 
following description: 

1.10. PROPOSITION. Let p E H 1(g, A, B), suppose p E P!(O); let b be a cocycle 
representing p which lies in Z 1(g, N). There is a bijective map p of CP!)- 1(/J) onto 
lm(H 1(g, Bb)-+ H 1(g, Ab)). 

An arbitrary fiber can be found from this result by twisting A suitably, using 
Proposition 1.6. 

1.11. PROPOSITION. Let B be a g-invariant subgroup of the g-group A, denote by i 
the injection map B-+ A. Then the sequence 

H 1(g, B)---1!.... H 1(g, A)...!!.., H 1(g, A, B) 

is exact. 

(Notice that H 1(g, A, B) has now an element 0, so exactness makes sense.) 
We leave the proof of this fact to the reader. The fibers of P! have been des­

cribed in Propositions 1.8 and 1.10. i! is the induced map, defined in [1]. Its fibers 
are described in [ 1 ], § 1.12. . 

1.12. Kernels. Let A be a group (not necessarily a g-group). We denote by 
Aut(A) (resp. lnt(A)) the group of automorphisms (resp. inner automorphisms) of 
A. We put E(A) = Aut(A)/lnt(A). Let n be the projection Aut(A) -+ E(A). 

A g-kernel in A is a continuous homomorphism of g into E(A), it being under­
stood that E(A) has the discrete topology. The g-kernel "is called trivial if there 
exists a continuous homomorphism t/J: g -+ Aut(A) such that " = n o t/J, in other 
words if" is induced by a g-group structure on A (in this case the one determined 
by t/J). A particular case is the kernel 0, which corresponds to the case that t/J is the 
trivial mapping (sending g into the identity element of Aut(A)). It is clear that if A 
is abelian, any g-kernel in A is trivial. 

Let g and g' be two topological groups, let A: g' -+ g be a continuous homo­
morphism. Let " and "' be a g-kernel in A resp. a g'-kernel in A'. A homo­
morphism µ: A -+ A' is called a homomorphism of " into K 1

, compatible with A 
if the following holds : there exist continuous functions 

ex: g -+ Aut(A) (ex': g' -+ Aut(A')) 

such that 
(i) " = n o ex (resp. "' = n o ex'), 

(ii) µ(ex(A(s'))a) = ex'(s')µ(a) if a e A, s' e g'. 
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1.13. Group extensions. Let A be a discrete group. A triple (E, i, p) consisting 
of a topological group E together with continuous homomorphisms i: A -+ E, 
p: E -+ g, is called an extension of g by A if 

i . p 
0---+ A---+ E--+ g ---+ 0 

is an exact sequence of topological groups (hence i is an isomorphism of A onto 
a closed subgroup of E and p is an open mapping). A homomorphism of an ex­
tension (E, i, p) of g by A into the extension (E', i', p') of g by A' is a pair of con­
tinuous homomorphisms µ:A -+ A', v: E -+ E', such that the following diagram 
commutes: 

O-A__!._.E.....!!.....+g--+O r lv lid ,, ,,. 
0---+ A'---+ E' .........._ g ---+ 0. 

An isomorphism of the extension (E, i, p) onto the extension (E', i', p'), both of 
g by A, is a homomorphism as defined above, with µ == id. lsomorphy of exten­
sions is an equivalence relation. 

The extension (E, i, p) of g by A is called a split extension if there exists a con­
tinuous homomorphism q: g -+ E such that p o q == id. 

We assume in the sequel always that the group extensions (E, i, p) satisfy the 
following condition : 

(CS) There exists a continuous section <1: g -+ E. 
(This condition is automatically verified if g is discrete or profinite.) 
One can then, as is well known, describe the extension by means of a factor 

system. We shall return to this in §1.14. 
First we want to observe that an extension of g by A defines a g-kemel JC in A. 

As is also well known one defines K(s) to be the image in E(A) of the automor­
phism of A, detennined by the automorphism 

x 1-+ <l(s)- 1 x<l(s) 

of E, where a is a continuous section. 
We call this kernel" the g-kernel in A associated with the given extension. 
A kernel which is associated with some extension is called extendible. (In 

order for " to be extendible it is necessary and sufficient that a certain element of 
H 3(g, C) vanishes, where C is the center of A.) 

Examples of extendible kernels are the trivial ones (which are associated with 
the split extensions), in particular the zero kernel. 

1.14. Definition of H 2• Let A be a group, let JC be a g-kemel in A. We define as 
follows the cohomology set H 2(g, A, JC) of g in A with respect to the kernel 
" : H 2(g, A, K) is the set of isomorphy classes of extensions of g by A, which satisfy 
(CS) and whose associated kernel is JC. 
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Notice that H 2(g, A, IC} may be empty, viz. if K is not extendible. If IC is trivial 
H 2(g, A, IC) has a privileged element 0, namely the class of the split extension of 
g by A. 

If A is abelian it is well known that our H 2(g, A, K) is the same thing as the 
usual H 2(g, A), where g acts on A via K (which is now a homomorphism of g into 
Aut(A); hence makes A into a g-group). 

We come now to the cocycle description of H 2(g, A, K). Let Z 2(g, A, K) be the 
set of pairs (f, g) of continuous mappings 

f : g x A --. A, g: g x g --. A 

(denoted by (s, a)>-+ f.(a), (s, t)>-+ g •. 1), such that 

(i) for s e g, a>-+ f.(a) is an automorphism of A, whose 
class mod lnt(A) is K(s); 

(5) (ii) f.(fr(a)) = g1, 1 J.,(a)g1~11 ; 

(iii) f,(g.,,)g,,., = g,,.g,.,,. 

Define an equivalence ·relation R. on Z 2(g, A, K) as follows: (f, g) is equivalent 
to (f', g') if there exists a continuous function h: g -:+ A, such that 

(i) /~(a) = h.f.(a)h.- 1, 

(ii) g~ .• = h.f.(h,)g.,,h; 1. 
(6) 

1.15. PROPOSITION. There exists a bijective mapping of H 2(g, A, K) onto 
Z 2(g,A, K)/R. 

This is a familiar result from ~he theory of group extensions, so we omit the proof. 
Henceforth we identify H 2(g, A, -,c) and Z 2(g, A, -,c)/R. 
1.16. Let IC be a g-kernel in A. Let C be the center of A. Then K determines a 

g-kernel in C, which is a trivial one (since the inner automorphisms of A act 
trivially on C). We denote this kernel in C also by"· H 2(g, C, IC) is then an ordinary 
cohomology group. 

1.17. PROPOSITION. H 2(g, A, K1 if nonempty, is a principal homogeneous space 
over H 2(g, C, IC). 

In other words, H 2(g, C, K) acts on H 2(g, A, IC) in a simply transitive way. 
Take two cocycles (f, g) and (/', g') in Z 2(g, A, K). We may assume, replacing 

if necessary the second one by an equivalent cocycle, that f = f'. Then g' = gh, 
where h is a cocycle of g in the commutative g-group C. One verifies that the 
element of H 2(g, C, IC) defined by h depends only on the cohomology classes of 
(f, g) and (/', g'). Conversely, if (f, g) is given and if h is a 2-cocycle of g in the 
abelian group C, then(/', g') with f = f', g' = gh is in Z2(g, A, K). This defines 
an action of H 2(g, C, K) on H 2(g, A, K), which is simply transitive. 

REMARK. If K is trivial, then there exists a privileged element 0 in H 2(g, A, K), 

via which we can make a canonical identification of the set H 2(g, A, K) with the 
set H 2(g, C, K). 
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1.18. Relation defined by homomorphism of kernels. Let IC, K.' be a g-kemel in A 
resp. a g'-kemel in A', let A.: g'--. g be a continuous homomorphism, letµ: A-.A' 
be a homomorphism of K into K', compatible with A.. 

We then have a relation (A.,µ)! between H 2(g, A, K) and H 2(g', A', K'). Using 
cocycles, this relation can be defined as follows. e e H 2(g, A, K) is related to 
e· e H 2(g', A', K') if e and e· can~ represented by cocycles (/, g1 (/', g'1 satisfying 

(7) 

In some particular cases the relation (A., µ)! is a mapping of H 2(g, A, K) into 
H 2(g', A', K'1 namely if 

(i) A' is abelian, or 
(ii) µ is surjective. 
This is easily verified. 
We mention a particular case. Let g' = g, let A. be the identity mapping. Let 

t/> be an automorphism of A. Then t/> defines an automorphism of E(A1 . also 
denoted by </J. "' = t/> o" o </>- 1 is a g-kemel in A and one verifies that </J. is a 
homomorphism of " into "'· compatible with the identity mapping of g. We put 
(id, </J >! = </J; ; this is a mapping. 

1.19. PROPOSITION. If </J is an inner automorphism, then K' = " and ti>! is the 
identity mapping of H 2(g, A, K). 

That"' = "is clear. In (7), one has now A..= id, µ(a) = bab- 1, with be A. Then 
it follows from (5), that (6) holds with h. = bf.(b)- 1• 

Let us mention too that. the relations (A., µ)! have the functorial properties 
which are to be expected, we leave it to the reader to make them explicit. 

1.20. The connecting map. Let A be a g-group. let B be a subgroup of A. Let 
a e Z 1(g, A, B). Define for s, t e g, be B 

(8) 
f.(b) =a. •ba.- 1, 

• -1 g1,, = a1 a,a., . 

It follows from (1) and (2) that b,...... f.(b) is an automorphism of B, which defines 
a g-kernel A.., in B. Moreover· (f, g) e Z 2(g, B, A..,). If we replace a = (aJ by the 
equivalent cocycle (a1b,), with b1 e B, then A.., does not change and (f, g) is replaced 
by an equivalent cocycle. If we replace a by a' with a~ = n- 1a1 •n (where n is in the 
normalizer N of B) then, denoting by </>,, the automorphism b,...... nbn- 1 of B, " 
is replaced by "' = </J,, o" a </J; 1 and (/, g) is replaced by a cocycle (/', g') whose 
class is the image under(</>,,)! of the cohomology class of(/,g). Let ell be the set of 
g-kernels in B of the form A..,. 

Then N acts on lJ.,~ H 2(g, B, A.) and it follows from what precedes that there 
is a mapping 15 1 of H 1(g, A, B) into the set of orbits of N. Put 

H 2(g, B rel A) = ( lJ H 2(g, B, A.))/N. 
Ae• 

Hence we have defined a connecting map 15 1 of H 1(g, A, B) into H 2(g, B rel A). 
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Let N 2(g, B rel A) be the set of orbits of N in LI.1.~ H 2(g, B, A.) whose elements 
correspond to split extensions of g by B. We call this the set of neutral elements of 
H2(g, B rel A). (It can be empty.) 

1.21. We keep the notations of §1.20. It follows from (8) that the map of 
g x A into A, which sends (s, g) into a1 •ga; 1 induces a g-group structure on 
N/B. We denote this g-group by (N/B)0 • Let Z denote the centralizer of Bin A. 
Then ZB/B is a normal subgroup of N/B, which is g-invariant. We denote by 
(ZB/B)0 resp. (N /ZB)0 the groups ZB/B resp. N /ZB with the inherited g-structures. 

N acts on the set Cl> of g-kernels in B, defined in §1.20. For <P e Cl>/N put 

H2(g,BrelA). = (uH2(9,B,A.))/N; 
Ae• 

this is a subset of H 2(g, B rel A). With these notations we have 

1.22. PROPOSITION. (i) There is a bijection of Cl>/ N onto H 1(g, (N /ZB)0 ); 

(ii) There is a bijection of (~ 1 )- 1(H2(g, B rel A)•) onto the subset 

~0(H0(g, (N/ZB)0 ) of H 1(g, (ZB/B)0 ). (~0 denotes the connecting map defined in 
[l], §1.11.) . 

To prove (i~ observe that an arbitary a' e Z'(g, A, B) has the form (a~) = (n1a.), 
with n, e N. Moreover, since a~ •a;(a~)- 1 must be in B, it follows that we must 
have 

moreover (n,a,) and (n~a.) determine the same g-kernel in B if and only if 
n~(n,)- 1 e Z. It follows that there is a bijection of Cl> onto Z 1(g, (N/ZB)J and one 
verifies that under this bijection the orbits of N in Cl> correspond to the coho­
mology dasses. This establishes (i). (ii) is proved in a similar way. 

One can also give a description of the fibers of ~ 1 , but we do not need this 
for our applications to Galois cohomology. 

1.23. With the notations of §1.20, let i be the injection map B -+ A. Let IC 

be the trivial g-kernel in A, defined by the action of g on A. For each kernel 
A.a in B, i is a homomorphism of A.a into IC (compatible with the identity map of g). 
Hence we obtain a relation between H 2(g, B, A.a) and H 2(g, A, K~ which in the 
present situation is easily seen to be a mapping. From §1.20 it follows, that this 
mapping defines a mapping · 

i!: H 2(g, B rel A) -+ H 2(g, A, K). 

1.24. Fibel's of i!. Let (f, g) be a cocycle in a suitable Z 2(g, B, A.) whose canonical 
image in H 2(g, B rel A) is a:. Then there exists a continuous function a of g 
into A such that 

f.(b) = a, "ba,- 1 (be B), 

("a,)- 1 a,- 1 g1 , 1a., centralizes B. 
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We make Z into a g-group by defining 

,,z = a. •za.- 1 ; 

denote this g-group by Z 0 • Z ri B is a central subgroup of Z; we denote by 
(Z ri B)0 this group with the inherited g-structure. 

One then has the following r~sult 

1.25. PROPOSITION. There is a bijection of the fiber of a. under i! onto the subset 
cS 1(H1(g, (Z/Z ri B)0 ) of H 2(g, (Z ri B)J. 

We omit the proof, which does not present any difficulty. 
1.26. Exact sequence for a subgroup. Let A be a g-group, let B be a subgroup 

of A. We denote by i the injection homomorphism of B into A. We use the 
previous notations. 

We now have the following result: 

1.27. PROPOSITION. The sequence 

is exact. 

Notice that H 2(g, B rel A) has a privil~ged subset N 2(g, B rel A) and that 
H 2(g, A, K) has an element 0, hence exactness makes sense. 

If a. e H 1(g, A, B) and cS 1(a.) e N 2(g, B rel A), then a. can be represented by a 
cocycle a e Z 1(g, A, B) which is actually in Z 1(g, A) and conversely, whence exact­
ness in H 1(g, A, B). 

If a. e H 2(g, B rel A) and i!(a.) = 0, then a. can be represented by a cocycle (/, g) 
in some Z 2(g, B, A.~ such that 

fJ.b) = h. •bh,- 1, 

where h is a continuous function on g with values in A. It follows that a. is in 
the image of cS1• Conversely, if a. is in the image of cS1, then a. can be represented 
by a cocycle (/, g) of this form, which implies that i!(a.) = 0. 

The fibers of p1, cS 1 and i! have been described in §§1.8, 1.10, 1.22 and 1.25, 
respectively. 

1.28. PROPOSITION. Let B be a g-invariant subgroup of A. Then the sequence 

is exact. 

As observed in §1.2, H 1(g, A, B) has now an element 0, so exactness makes 
sense. Proposition 1.28 follows from Propositions 1.11 and 1.27. 

Now let B be a normal g-invariant subgroup. Denote by p the canonical pro­
jection of A onto A/B. Denote by" the trivial kernels on A and A/B, defined by 
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the g-group structure. According to §1.18 we have now a mapping of H 2(g, A, ic) 
into H 2(g, A/B, ic), namely (id, p)!. We write P! for this mapping. Then we have 

1.29. PROPOSITION. The sequence 

~I j2 p2 

H 1(g, A/B)---+ H 2(g, B rel A)---!....+ H 2(g, A, ic)-!...+ H 2(g, A/B, ic) 

is exact. 

The proof is left to the reader. Observe that this sequence can be built in into 
a longer exact sequence, involving the H 1's and H 0 's (see [1, §1.17]). 

1.30. Relation between H 2's of subgroups and quotients. Let A be a group; 
let B be a subgroup of A. We denote by i the injection mapping. Let " and A. 
be g-kemels in A and B, respectively. Assume that i is a homomorphism of A 
into B, compatible with the identity homomorphism of g (in the sense of §1.12). 
In the present case this means, that there exists a continuous function a: g -+ 

Aut(A), such that a(s)(B) = B for all s e g and such that the canonical image of 
a(s) in E(A) (resp. the canonical image of the restriction of a(s) to B in E(B)) is 
ic(s) (resp. A.(s)). Then there exists, according to §1.18, a relation (id, i)! between 
H 2(g, B, A.) and H 2(g, A, ic). We write i! for this relation. With these notations, 
we have the following result: 

1.31. PROPOSITION. Assume that A. is a trivial kernel. Then if an element a of 
H 2(g, A, ic) is in i!(O), " is also a trivial kernel and a. = 0. 

The proof of this is immediate, using the description of i! by means of cocycles, 
given in §1.18. 

Now assume that B is a ·normal subgroup of A. Let " be a g-kemel in A, 
let ic' be a g-kernel in A/B, such that the canonical projection p: A -+ A/B is a 
homomorphism of" into ic', compatible with the identity homomorphism of g. 
Observe that if Bis a characteristic subgroup of A, such a g-kernel always exists. 

We denote by P! the induced mapping of H 2(g, A, ic) into H 2(g, A/B, ic'). (It is 
a mapping because pis surjective; see §1.18.) 

1.32. PROPOSITION. Let ic' be a trivial kernel. Assume that a. e H2(g, A, ic), 
P!(ic) = 0. Then there exists a g-kernel A. in B, such that i is a homomorphism of A. 
into "• compatible with the identity, together with an element Pe H 2(g, B, A.) such 
that a. e i!(P). 

This also follows without difficulty from the description of P! in terms of 
cocycles. 

1.33. Action of inner automorphisms. Let A be a group, let " be a g-kernel in A, 
which is extendible. Fix an element (f, g) in Z 2(g, A, ic). Then any element of 
Z 2(g, A, ic) is cohomologous to a cocycle of the form (f, g'). Define mappings 

A.,: g-+ g, µ1 :A-+A 

by 
µ,(a) = f,(a). 
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Then µ, is a homomorphism of A into A, compatible with A., in the sense of §1.12. 
Since µ, is surjective, we have now by §1.18 an induced mapping (A.,,µ,)! of 
H 2(g, A, K) into itself. By Proposition 1.19, this mapping does not depend on the 
choice of the particular cocycle (/, g). In fact, we even have the following: 

1.34. PROPOSITION. (A.,, µ,)! is the identity mapping of H 2(g, A, K) for all t E '. 

It follows from the definition of (A.,,µ,)!, given in §1.18 that it is the map 
induced by the mapping of Z 2(g, A, K) into itself, which sends the cocycle (/, g') 
into(/', g"), where 

Now (5) implies that we have 

with 
h , (g' )-1 r = gt,t - lrt r,t • 

Hence, in order to establish Proposition 1.34, it suffices to prove that we have 

g;,. = h,f,(h.)g~ .• (h,.)- 1, 

for r, s e g. This is a relation involving only f and g', hence we may as well drop 
the accents and prove the corresponding relation for our fixed cocycle (/, g). 

What we have to prove then is 

f,(g,-1,,,,-1.,)g,,,-1.,g;;,~ = g,,,-1,,g,~,1f,(g,,,-1.,g.~,1 )g,, •. 

The product of the first two terms in the left side equals by (5) 

The factor g,,,-1,, now occurs on both sides and can be cancelled. We then 
have to prove 

-1 f,(g -1) g,,,g,,,, - 1.,g,.,, = , 1,1- 1.,g.,, g,,.. 

Again, we can replace here the product of the first two terms in the left side by 

f ,(g,,,- ,.,)g,, •. 

The resulting formula is an immediate consequence of (5). 

2. Relative H 1 and H2 in nonabelian Galois cohomology. If k is a field, we 
denote by k. (resp. f) a separable (resp. algebraic) closure of k. If K/k is a Galois 
extension, we denote by g(K/k) its Galois group (with the Krull topology). 

2.1. Homogeneous spaces. Let A be an algebraic group which is defined over 
the field k. An algebraic variety X, defined over k, is called a right homogeneous 
space of A over k if A operates on X on the right, the operation being defined 
over k, such that the induced action of the group A(IC) of IC-rational points of A 
on X(IC), the set of IC-rational points of X, is transitive. 
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It is clear what is meant by a k-isomorphism of two right homogeneous 
spaces of A over k. 

If B is a subgroup of A, which is also defined over k, then the quotient variety 
B\A is obviously a right homogeneous space of A over k. 

Now let K/k be a separable extension. Let B be a subgroup of A which is 
defined over K. We denote by H 1(K/k, A, B) the set of k-isomorphism classes of 
right homogeneous spaces of A over k, which are K-isomorphic to B\A ®,. K. 

Suppose that K = k •. Then if X is a right homogeneous space of A over k, 
the g(k,/k)-set X(k,) is a right homogeneous space of the group A(K) in the sense 
of §1.2. This gives a mapping 

r. : H 1(k,/k, A, B)-+ H 1(g(k,/k), A(k,), B(k,)). 

2.2. PROPOSITION. f. is bijective. 

To prove this use the cocycle description of H 1(g(k,/k), A(k,), B(k,)), given in 
Proposition 1.3. The surjectivity of e follows then by descent of the base field. 
We refer to Proposition 4.9 of [1], where a similar question is dealt with. The 
injectivity is readily verified (using cocycles). 

Now let B be a subgroup of A which is also defined over k. We denote by 
H 1(k, A, B) the set of k-isomorphism classes of homogeneous spaces of A over k, 
which are isomorphic to B\A over some separable extension of k. We then have 

2.3. PROPOSITION. There is a bijection of H 1(k,/k, A, B) onto H 1(k, A, B). 

This follows from the fact that a homogeneous space \\'.hich is isomorphic to 
B\A over some separable extension of k, is isomorphic to B\A over k1 • 

2.4. Kernels. Let A be an algebraic variety which is defined over the field K. 
Lets be an automorphism of K. An s-semiautomorphism of Xis an automorphism 
a of the Z-schema X, which satisfies the following condition: let f be the struc­
tural morphism X -+ Spec(K1 let P. denote the automorphism of Spec(K) 
induced by s, then f 0 a = P. 0 f. 

It is clear what is meant by an s-semiautomorphism of an algebraic group A 
which is defined over K. If the identity component A0 of A is also defined over k, 
then an s-semiauto~orphism of A induces one of A0 • 

Let A be an algebraic group defined over K. We will assume in the rest of §2, 
that in this situation A(K) is dense in A for the Zariski topology. Suppose that 
K is· a Galois extension of k, let g = g(K/k). 

A K/k-kernel Kin A is a g-kernel in G(K) in the sense of Proposition 1.10, with 
the following additional property: for s e g, K(s) is the canonical image in E(G(K)) 
of an s-semiautomorphism of the algebraic group A. The density assumption on 
A(K) implies that the s-semiautomorphism is unique. 

If A' is an algebraic group defined over k, then we have on A =A' ®1: K a 
trivial kernel, defined by the action of g on A(K). Conversely, to a trivial K/k­
kernel in A there corresponds an A', as follows from well-known results about 
descent (see e.g. [I, §2.12)). 
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2.5. Definition of H 2• Let A be an algebraic group defined over K; let K/k 
be a Galois extension; let " be a K/k-kernel in A. We then define H 2(K/k, A, K) = 
H 2(g(K/k), A(K), K). 

Next let A be defined over k, let " denote the trivial k./k-kernel in A defined 
by the action of g(k./k) on A(k.). Let k~ 'denote another separable closure of k, 
let K' denote the corresponding kernel. Let f be an isomorphism of k1 onto k;, 
let A.1 be the isomorphism of g' = g(k~/k) onto g = g(k./k) defined by f. The 
homomorphism µ1 : A(k.)-+ A(k~) defined by f is a homomorphism of" into 'K, 
compatible with A.1 . Since µ1 is surjective we have now, by §1.18, an induced 
mapping (A.1, µ1);. 

2.6. PROPOSITION. (A.1, µ1)! is a bijection which is independent of/. 

If f' is a second isomorphism of k. onto k;, we have ). ,. = A., o A.1, µ,. = µ 1 o µ.,, 
where t e g, A.,(s) = t- 1st, µ,(a) = a. The assertion now follows from Proposi­
tion 1.34. 

It follows from Proposition 2.6, that we may identify H 2(g, A(k.), K) ·and 
H2(g', A(k~). K'); hence we may denote them by H 2(k, A). 

Let A be defined over k. Let K/k be a Galois extension with group g. 
Let B be a subgroup of A which is defined over K. We then put H 2(K/k, B rel A) 

= H 2(g, B(_K) rel A(K)~ N 2(K/k, B rel A) = N 2(g, B(K) rel A(K)). 

3. Reduction theorem for 112 in Galois cObomology. In this section, we shall 
encounter several instances of the following situation : A is a discrete group; 
B is a subgroup of A; g a topological group. We have a g-kernel " in A and a 
g-kernel A. in B, such that the injection i: B -+ A is a homomorphism of A. into "• 
compatible with the identity homomorphism of g. In this situation we shall say 
that ). is compatible with "· This terminology will be used, in particular, for K/k 
kernels in algebraic groups, as defined in §2.4. We denote by i! the relation 
between H 2(g, B, A.) and H 2(g, A, K), defined in §1.30. 

The main result to be proved in this section is Theorem 3.4. First we derive 
a number of auxiliary results. 

3.1. PROPOSITION. Let A be ·a finite group; let g be a topological group; let " 
be a g-kernel in A. Then for any ex e H 2(g, A, K) there exists ·a nilpotent subgroup 
B of A and a g-kernel A. in B, compatible with "• such that ex e i!(H2(g, B, A.)). 

The assertion is trivially true if A itself is nilpotent. If A is not nilpotent, then 
it is well known that there is a Sylow-subgroup S of A, which is not a normal 
subgroup of A. Let A' be the normalizer of S, then A' = A. Take a cocycle 
(/, g)e Z 2(g, A, K) representing ex. Using the conjugacy theorem for Sylow-sub­
groups, we see that there is a continuous function h: g -+ A such that f.(S) = 
h.- 1sh. for all s e g. Replacing(/, g) by the equivalent cocycle (f', g1 given by (6~ 
we find that g~.r normalizes S, hence lies in A'. 

Denoting by "' the g-kernel in A' such that K'(s) is the element of E(A') con­
taining the automorphism a ...... f~(a) of A' and denoting by j the injection A'-+ A, 
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we see that K' is compatible with " and that a E i!(H2(9, A', K')). We now apply 
induction on the order of A to obtain the result. 

3.2. LEMMA. Let k be a perfect field; let A be a connected abelian algebraic 
group which is defined over k. Let 9 be a pro.finite group; let K be a 9-kernel in 
A(/C). Then for any a E H 2(9, A(K), K) there exists a finite subgroup B of A and a 
9-kernel A. in B(k), such that a E i!(H2(9, B(K), A.)). 

Since A is abelian, a 9-kernel " in A(/C) is simply an action of 9 on A(/(). Writing 
H 2(9, A(/C)) for H 2(9, A(/C), K), what we must prove is that there is a finite 9-
invariant subgroup B(/C) of A(/C) such that a is in the canonical image of H2(9, B(IC)) 
in H 2(9, A(f)). Let T be the torsion subgroup of A(/(), then our assertion will 
follow if we prove that the canonical homomorphism H 2(g, T) -+ H 2(9, A(IC}} is 
surjective (see [4], p. 1-9, Corollary 2), which will follow if we prove that 
H 2(9, A(f)/T) = 0. However it follows from the structure theory of abelian 
algebraic groups that A(/C)/Tis an abelian group in which the nth power homo­
morphism is an isomorphism for all integers n and it is immediate that the 
cohomology of a profinite group in such a group is trivial in dimensions ~ 1 
(loc. cit., p. 1-10, Corollary 3). 

The assertion about A(/C)/Tfollows from structure theory. In fact, by a theorem 
of Chevalley, A is an extension of an abelian variety by a connected linear group 
(both defined over I<}. Moreover, the second group is a direct product of a torus 
and a connected unipotent group (both defined over /(). It then suffices to prove 
the assertion about A(/C)/T if A is either an abelian variety or a torus or a con­
nected unipotent group. In the first two cases the required property follows from 
the fact that then any nth power homomorphism is surjective in A(IC). The same 
is true in the third case if the characteristic of k is 0; otherwise A(IC} is a torsion 
group in this case, so that then A(IC) = T. 

3.3. LEMMA. Let k be a perfect field, let A be a solvable algebraic group which 
is defined over k. Let " be a 1'/k-kernel in A. For every a E H2(k/k, A, K} there 
exists a finite subgroup B of A and a 1'/k-kernel A. in B, compatible with K, such that 
(XE i!(H2(k/k, B, A.)). 

On account of the definition of H 2 this will follow if we prove the following: 
Let 9 = 9(1'/k), suppose that 

0--+ A(/()~ E ~9--+ 0 

is an extension of 9 by A(k) in the sense of §1.13, which satisfies the condition 
(CS). Then there exists a closed subgroup 91 of E with the following properties: 
(a) p(91) = 9, (b) h- 1(9 1 11 h(A(k)) is a finite subgroup of A(/(), (c) E = 91 • h(A(IC)). 

Let A 1 be the last nontrivial subgroup in the commutator series of A. By 
induction on the length of the commutator series we may assume our assertion 
to be true for A/ A 1. From this we infer the existence of a closed subgroup E 1 of E, 
possessing the properties (a) and (c) of 91 and such that we have, instead of (b), 
only: h- 1(£1 11 h(A(1')) is an extension of a finite group by A1(k). Denote by A0 
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the identity component of A 1• This is a connected abelian algebraic group, 
which is a subgroup of A1• Now put g' = E1/h(A0(f)). This is an extension of g 
by a finite group, hence g' is a profinite group and we have an extension 

(9) o- A0(fi.)--!L. E 1 -L...+ g' -o, 
which verifies the condition (CS). Hence there corresponds to this extension an 
element a.' e H2(g', A0(1i.), K'), where "' is a suitable kernel. Applying Lemma 3.2 
to this element a.', we see that there exists a closed subgroup g1 of E1 which has 
the properties (a), (b), (c) relative to the extension (9). It follows that g., considered 
now as a closed subgroup of E, has the required properties (a), (b), (c). 

3.4. THEOREM. Let k be a perfect field, let A be an algebraic group which is 
defined over Ii.. Let " be a li./k-kernel in A. Then for every ace H2(1i./k, A, JC) there 
exists a finite nilpotent subgroup B of A, defined over k and a li./k-kernel A. in B, 
compatible with "• such that a. e i!(H2(1i./k, B, A.)). 

Let A0 be the identity component of A. There exists a IC/k-kemel JC' in the 
finite algebraic group A/ A0 such that the canonical projection p: A -+ A/ A0 

induces a homomorphism of" into K', compatible with the identity homomor­
phism of g = g(IC/k), as follows from what was observed in §2.4. We then have a 
mapping P! of H2(1C/k, A, K) into H2(1i./k, A/~o. JC1. Applying Proposition 3.1, we 
find easily that we may assume, replacing A by a subgroup with the same identity 
component, that A/Ao is nilpotent (hence solvable). 

Let L be the greatest connected linear subgroup of A0 • Then the theorem of 
Chevalley mentioned in the proof of Lemma 3.2, states that L is a normal 
subgroup of A0 and that A0/L is an abelian variety. Clearly, Lis invariant under 
an s-semiautomorphism of A (s denoting an automorphism of Ii.). Now let M be 
a Borel subgroup of L. Using the fact that two Borel subgroups of Lare con­
jugate, the same argument as used in the proof of Proposition 3.1 shows that 
there is a IC/k-kernel "' in the normalizer N of M in A, such that, j denoting the 
injection N-+ A, we have a. e j2(H2(1C/k, N, 1e')). But A/L is solvable, being an 
extension of the finite nilpotent group A/Ao by an abelian variety. Hence N is 
also solvable. Application of Lemma 3.2 and Proposition 3.1 finishes the proof 
of Theorem 3.4. 

From Theorem 3.4 we obtain the following result, due to Grothendieck. 

3.5. THEOREM. Let k be a perfect field of dimension ~ 1. Let A be an algebraic 
group which is defined over Ii.. Then any li./k-kernel " in A is trivial and 

H2(1i./k, A, 1e) = 0. 

From Theorem 3.4 and Proposition 1.31 it follows that we need only to prove 
this if A is a finite nilpotent group. Suppose that this is the case and let B be the 
commutator subgroup of A. Using Proposition 1.32 and induction on the length 
of the commutator series of A, we see that it suffices to prove the assertion for A 
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finite abelian, in which case it is a direct consequence of the definition of fields 
of dimension ~ 1 (see [4]). 

3.6. COROLLARY. Let k be a perfect.field of dimension~ 1; let A be an algebraic 
group which is defined over TC; let B be a subgroup of A which is defined over TC. 
Then H2(TC/k, B rel A) = N 2(TC/k, B rel A). 

This is a consequence of Theorem 3.5. 
3.7. Applications to homogeneous spaces. Let k be a perfect field; let A be an 

algebraic group which is defined over k. If X and Y are two right homogeneous 
spaces of A over k then we say that Y dominates X if there exists a morphism 
Y-+ X, defined over k, which is compatible with the action of A in X and Y. 
Then the homogeneous space Y(TC) of the g(TC/k)-group A(TC) dominates the 
homogeneous space X(TC) in the sense of §1.5. 

If X is a homogeneous space of A over k and if x e X(TC), then there exists an 
algebraic subgroup B of A, which is defined over TC, such that B(K) is the isotropy 
group in A(TC) of x, in the sense of §1.2. B is unique. It is called the isotropy 
group of x in A. 

3.8. THEOREM. Let k be a perfect field, let A b.e an algebraic group which is 
defined over k. Let X be a right homogeneous space of A over k. Then X is dominated 
by a right homogeneous space of A over k whose isotropy groups are.finite nilpotent. 

Xis given by an element ex of H 1(TC/k, A, B), where Bis a suitable subgroup of A 
which is defined over TC. Taking a cocycle in Z 1(g(TC/k), A(TC), B(TC)) representing ex 
we find, in the manner described in the beginning of §1.20, a TC/k-kernel A. in B 
and a cocycle in Z 2(g(TC/k), B(TC), A.); hence an element p of H2(TC/k, B, A.). Applying 
Theorem 3.4 to this element we obtain a finite nilpotent subgroup C of Band a 
TC/k-kernel µ in C, compatible with A. such that, i denoting the injection C -+ B, 
we have p e i!(H2(TC/k, C, µ)). It is now easily seen that X is dominated by a 
homogeneous space of A over k, which has an isotropy subgroup C. 

3.9. THEOREM. Let k be a perfect field of dimension ~ 1. Let A be an algebraic 
group which is defined over k. Let X be a right homogeneous space of A over k. 
Then X is dominated by a principal homogeneous space of A over k. 

This is a known result (see [41 p. III-16, Theorem 3). It can be derived now as 
follows. X is given by an element of a suitable H 1(TC/k, A, B). 

According to Proposition 1.27 we have an exact sequence 

But now we have, by Corollary 3.6, that H2(TC/k, B rel A) = N 2(TC/k, B rel A); hence 
the exactness shows that the relation p~ is surjective, which implies the assertion 
of Theorem 3.9. 

REMARK. Theorem 3.8 can also be proved by diagram chasing, the proof 
indicated above is somewhat simpler, however. 
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3.10. If, in the situation of Theorem 3.9, A is moreover linear and connected, 
then it is known that every principal homogeneous space of A over k bas a 
k-rational point, hence by Theorem 3.9 any homogeneous space of A over k has 
a k-rational point (see [5], Theorem 1.9). Another consequence of the triviality 
of H 1 for connected linear A is the following result. 

3.11. PROPOSITION. Let k be a perfect field of dimension~ 1, let A be an alge­
braic group which is defined over k. Let X be a right homogeneous space of A over k, 
whose isotropy groups are connected linear subgroups of A. Then X is dominated 
by a principal homogeneous space of A over k, and two such principal homogeneous 
spaces are isomorphic. 

The existence statement is Theorem 3.9. The uniqueness is implied by Pro­
position 1.10. In fact, according to Proposition 1.10, the elements of H 1(k, A) 
such that the corresponding principal homogeneous spaces dominate X, are in 
a one-to-one correspondence with lm(H1(k, C)-+ H 1(k, A)), where C and Dare 
certain twisted forms of B and A, which are defined over k. C being connected 
linear, we have H 1(k, C) = 0, which implies the assertion. 

4. Finiteness theorems for local fields ud namher fields. 

4.1. THFDREM. Let k be a locally compact field of characteristic 0. Let A be a 
linear algebraic group which is defined over 'k; let B be a subgroup of A which is 
defined over IC. Then H 1(1C/k, A, B) is finite. 

Consider the connecting map 

~ 1 : H 1(1C/k, A, B) -+ H 2(1C/k, B rel A), 

defined in §1.20. According to §1.21 we have 

where t/> runs through a set I: (denoted 4>/N in §1.21). By Proposition 1.22 there 
exists algebraic groups C, D•, E•, defined over k, such that 

(i) there is a bijection of I: onto H 1(k, C); 
(ii) E• is a normal k-subgroup of D•, C = D•/E• and there is a bijection of 

(~ 1)- 1(H2(1C/k, B rel A)•) onto the subset ~0(H0(k, C)) of H 1(k, E•>· 
4.1 then follows by invoking the theorem of Borel-Serre which states that 

H 1(k, A) is finite for any linear algebraic group A which is defined over k [l, 
Theorem 6.1 ]. 

4.2. Now let k be an algebraic number field. For any place v of k let k., denote 
the corresponding completion. Denote by IC,, an algebraic closure of k,, con­
taining IC. 
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Suppose that A is an algebraic group defined over k and that B is an algebraic 
subgroup of A which is defined over I<. We then have a canonical mapping 

w: H1(1i/k, A, B)--. n H1(1< 11/k11 , A, B). 
11 

4.3. THEOREM. If A is a linear algebraic group defined over k then w is a proper 
mapping (i.e. its fibers are finite). 

We use the same notations as in the proof of Theorem 4.1. One has then the 
following facts : 

(i) The canonical mapping 

Ht(k, C) __. n H1(k,,, C) 

" 
is proper [1, Theorem 7.1). 

(ii) There is a bijection of tS0(H0(k, C)) onto the set of orbits of D•(k) in C(k) 
[1, §1.121 

(iii) Let x e C(k); let X be the set of elements x' of C(k) such that for each place 
v there exists d,, e D•(k~) transforming x in x', then X consists of finitely many 
orbits of D•(k) [1, §7.12). 

Using the same method as in the proof of Theorem 4.1, §4.2 is easily derived 
from these facts. 

4.4. Let S be a finite set of places of k. With the notations of §4.3, the canonical 
mapping 

H 1(1i./k, A, B)--. n H 1(1<,,/k,,, A, B) 
11;s 

is proper. 
This follows from Theorems 4.1 and 4.3. 
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Inseparable Galois Cohomology 
BY 

PIERRE CARTIER 

The following report is a brief and elementary account of a generalized Galois 
cohomology for generalized algebraic groups which takes into account the in­
separability as well. We assume a ground field k of characteristic p -::;: 0, because 
our theory reduces entirely to the classical one in the characteristic zero case. 
Much more general results have been obtained by M. Artin and A. Grothendieck 
(see UD. 

I. Definition of an algebraic group. Our algebraic groups are the same as the 
affine group schemes of finite type considered by A. Grothendieck and his school. 
We use the functorial point of view to define them. Namely, let U" be the cate­
gory of commutative k-algebras. An algebraic group G is a covariant functor 
from u" to the category of groups which is "representable" in the following sense: 
there exists a pair (A 0 , g0), where A 0 is some finitely generated algebra in U" and 
g0 an element of the group G(A0) such that, for any object A of U" and any g in 
G(A), there exists a unique homomorphism a from A 0 into A such that G(a) maps 
g0 into g. We simplify the notation by writing T • g instead of G(T) · g when g is 
in G(A) and T is an algebra homomorphism from A to B. 

EXAMPLES. (a) Let V,. be any finite-dimensional vector space over k, and· VA 
denote the additive group V,. ® ,.A for any object A of U,.. The functor Vis called 
the vector group associated to V,.. 

(b) If E" is any finite-dimensional k-algebra, commutative or not, we define 
E; as the multiplicative group of the k-algebra EA= E,. ® ~- This defines the 
multiplicative group E" of the ''algebra-variety" E. 

(c) Let n be an integer. For any object A in U,., let GLn(A) denote the group 
of invertible n by n matrices with coefficients in A. Besides the algebraic group 
GL. thus defined, one can define in the same way the symplectic group, or the 
orthogonal group of a quadratic form with coefficients in k. 

(d) The algebraic group µn associates to any A the multiplicative group 
consisting of the elements a in A with a" = 1. 

The algebraic group G is called commutative if the groups G(A) are commuta­
tive. It can be shown that the commutative algebraic groups form an abelian 
category. 

2. Definition of the cohomology groups. Let K be a finite-dimensional com­
mutative algebra over k. For any A in U,., let us define X A as the set of algebra 
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homomorphisms from K to A. Moreover, let there be given a commutative 
algebraic group G. By definition, an n-cochain c is a collection of functions 

(1) cA :XA x ··· x XA-+ GA (n + 1 factors XA) 

where A runs over the objects of U1c, subjected to the condition 

(2) 

for any algebra homomorphism a: A -+ B. The coboundary fJc of the n-cochain c 
is the (n + 1 )-cochain defined by 

C3> (fJc>iao •... , an+ 1> = L c-1>iai · cA<ao. · · ·• a;-1. a;+ 1· · • ·• O'n+.1>· 
O;!!!i;!!!n+ 1 

As usual, we have fJ{Jc = 0 for any n-cochain c. We can therefore define 
cohomology groups in the standard fashion; they will be denoted Hn(K/k, G). 
This definition includes as particular cases the ordinary Galois cohomology in 
case K/k is a finite Galois extension and G an "ordinary" algebraic group, and 
also the Amitsur cohoinology when K/k is a finite algebraic extension and G 
is 'the' multiplicative group G,,. = GL1• 

The cohomology groups Hn(K/k, G) depend functorially on G and also on the 
pair (K, k) in the sense that any commutative diagram 

K--!L.+ K' 
u u 
k ---!.--+ k' 

gives rise to a homomorphism a.n from Hn(K/k, G) to Hn(K'/k', G) independent 
of tf>. 

We can define the absolute cohomology groups Hn(k, G) in two equivalent 
ways. The first is to replace K by the algebraic closure Ii, of k in the previous 
definitions (the fact that K is finite-dimensional over k played no role); the second 
consists in taking the direct limit of the groups Hn(K/k, G) when K runs over the 
finite algebraic subextensions of Ii.. 

The group G(k) consists of the "rational points" of G and will also be denoted 
r(G). The functor r maps the category of commutative algebraic groups into 
the category of abelian groups; the derived functors Rnr of r are therefore 
defined. It turns out [2] that R"r(G) is nothing else than Hn(k, G), which fact 
entails among other properties the existence of an exact sequence of cohomology 
associated to any short exact sequence of algebraic groups. 

3. Some particular cases (K finite algebraic extension of k). Two important 
results are the following : 

(a) For any vector space J1k over k and any n ~ 1, one has H"(K/k, V) = 0. 
(b) For any commutative algebra E1c, one has H 1(K/k, Ex)= 0 (generalization 

of Hilbert's Theorem 90). The assumption of commutativity of E can be dropped 
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provided one defines the first cohomology group H 1(K/k, G) for a noncommuta­
tive algebraic group Gas well, which causes no difficulty. Once this is done, one 
can prove for instance 

(4) 

(c) One has H 1(K/k, Gm) = 0 and H 2(K/k, Gm) is the relative Brauer group of 
the field extension K/k (that is the group of similarity classes of normal k-algebras 
split by K). 

Going to the limit over K, we get as a corollary: 
(d) One has H 1(k, Gm) = 0 and H 2(k, Gm) is the Brauer group of k. 
Finally using the exact sequence 

defining µ.n (with v A(x) = xn for every A) and the associated exact sequence of 
cohomology, we get the following information: 

(e) The group H 1(k, µ.n) is isomorphic to k '"'/(k x )n and H 2(k, µ.J is the subgroup 
of the Brauer group of k defined by the condition a" = 1. 

4. Comparison with standard cobomology. Let us denote by 1' any algebraic 
closure of k, and by k. the maximal separable subextension of 1'; the letter g 
denotes the group of k-automorphisms of 1'. If G is any commutative algebraic 
group, the Galois group g acts on G(k.) ·and G(l<) and corresponding coho­
mology groups Hn(g, G(k.)) and Hn(g, G(l<)) are defined after Tate [4]. Moreover, 
there are canonical homomorphisms 

Hn(g, G(k.)) ~ Hn(k, G) ~ Hn(g, G(l<)). 

Using recent results by Shatz [3], one can prove that ac'G and P'G are iso­
morphisms in each of the following cases (except possibly P'b for n ~ 2) 

(a) k is perfect. 
(b) G is smooth, that is the algebra A 0 ®k 1' has no nilpotent element where A 0 

is as in the definition of G (§ 1). 
(c) The integer n is distinct from 1 and 2. 

Moreover, for every n, the kernels and cokernels of ac'G and PG are p-torsion 
groups and the different cohomology groups involved have no p-torsion for 
n > 2. Finally, ach is injective and p~ is surjective. 

5. Infinitesimal groups. The algebraic group G is called infinitesimal in 
case G(K) is 0 for every field K ; it suffices to assume G(l<) = 0. These groups 
enter as the kernels of the purely inseparable isogenies, and any information 
about their cohomology enables us via the exact sequence of cohomology to 
compare the cohomologies of any two purely inseparably isogeneous groups. 

The basic result is again due to Shatz [3] and states that Hn(k, G) is 0 for 
n =F l, 2 and isomorphic to Hn- 1(g, H 1(k,, G)) where the Galois group g acts in 
the natural way on H 1(k., G). 
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Strong Approximation 
BY 

MAR TIN KNESER 

Notation. k is an algebraic number field. S will generally be a finite set of 
places of k, and oo is the (finite) set of all infinite places of k. G is a linear algebraic 
group defined over k, GA is the adele group, Gs( c GA) the S-component n.es G ... 
of GA, and Gt(c GA) the k-rational points of G. If oo c S, the S-integral adeles 
are A(S) = As x 0.11s o. and o(S) = A(S) r. k are the S-integers of k. 

The problem of (strong) approximation is as follows: under what conditions 
on G and Sis GsGt dense in GA? This is equivalent to Gkr. UGs being nonempty 
for every non-empty open set U of GA. A down-to-earth equivalent formulation 
in the case S = oo is the following: Given S' disjoint from S and av in Gk. and 
integers t. for each v in S', find x in Gk to satisfy 

x = a. mod~·. (v e S'), 

x E G0 • (v ¢ S US'). 

EXAMPLE 1. G = G0 (additive group of the field). Then the strong approxima­
tion theorem for (G, oo) is simply the Chinese Remainder Theorem. 

EXAMPLE 2. G = group of elements of reduced norm 1 in a central simple 
algebra (but not a definite quaternion algebra). Then Eichler [1] showed that 
(G, oo) has strong approximation. 

EXAMPLE 3. If G is the special orthogonal group of an indefinite quadratic 
form in more than two variables, GsGk is not dense in GA, but its closure contains 
all adeles whose components have spinor norm 1 (see [2] and [4]). 

Most of the other classical groups are treated in [5]. 
Necessary conditions for strong approximation ( G =F { 1}) : 
(1) Gs not compact. 
(2) G simply connected. 

The proof of (1) is easy: if Gs is compact, then GsGk is closed since Gk is discrete; 
thus if (G, S) had strong approximation, we would have GsGk = GA· For a proof 
of (2), as well as for details of the following discussion up to the Main Theorem, 
see [5]. 

From now on we assume that G is simply connected. It follows immediately 
that the radical N of G is unipotent. Now (G, S) has strong approximation if and 
only if (G/N, S) has. Thus we may assume that G is semisimple. Write it as a 
product over k of almost simple factors, and look at each factor separately. Each 
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of these factors may be obtained from some absolutely almost simple group H 
defined over a finite extension l/k, by reduction of scalars (see §6 of Tamagawa's 
lecture on Adeles, pp. 113-121. Since (R111cH, S) has strong approximation if and 
only if (H, T) has (with T the set of all places of l whose restrictions to k are in S), 
we are reduced to the case of an absolutely simple group. 

The following theorem holds modulo the Hasse principle (Theorem IV of 
Springer's lecture) for all k-forms of G. Thus with the present state of affairs, it 
holds for all groups except possibly those of type £ 8 • A sketch of its proof appears 
later in these notes. 

MAIN THEOREM. If G is simply connected, absolutely almost simple, and if Gs 
is not compact, then (G, S) has strong approximation. 

Putting things together, we see that for an arbitrary linear algebraic group, 
(G, S) has strong approximation if and only if its radial N is unipotent, G/N is 
simply connected, and .each of the almost simple constituents H of G/N has a 
noncom pact S-component H s· 

To show the significance of strong approximation, we discuss one particular 
type of application. 

Class numbers. Let G be, as before, defined over k, and suppose that G c: GL(V). 
Fix a basis for V and use it to define G0 ,, GA<ooJt etc. Suppose that Mis the lattice 
(in V,.) spanned by this basis. If v is finite, M v is the o.-lattice spanned by M in V,. •. 

If g = (g.) e GA• define gM to be the lattice uniquely determined by 

(gM). = g.M. (all v fl oo ). 

The orbit of M under G .. (resp. G1c) is called the G-genus (resp. G-class) of M. 
The number of classes in a genus is the class number. 

EXAMPLE 3 (continued). The genus, class and class number determined by the 
special orthogonal group coincide with the usual proper genus, proper class and 
proper class number. (The integral quadratic form in question is that induced on 
M by the form on V,..) The ordinary genus, class and class number of an integral 
quadratic form arise from the full orthogonal group in the same manner. 

EXAMPLE 4. V,. is a simple algebra, M a maximal order of Vic, and G is the 
multiplicative group V* (acting by left multiplication). The G-genus of M consists 
of right ideals. In fact it is exactly all right ideals of M since each ideal of Mu is 
principal. Clearly the G-classes consist of equivalent right ideals (e.g. the class of 
M itself consists of all principal right ideals). Thus the class number of M is 
simply the (right) ideal class number. 

We now show how the Main Theorem can be used to calculate class numbers. 
The isotropy group in GA of the lattice M is obviously G A<oo>· Thus the o­

lattices in the genus of Mare in 1-1 correspondence with the left cosets xGA<oo» 
and the G-classes of Mare 1-1 correspondence with the double cosets G1cxGA<oo>· 
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Suppose for a moment that G is almost simple, simply connected, and that 
G00 is not compact. Then, Cl[···] denoting closure, 

G,.GA(oo) = G,.G00 GA(oo) 

= Cl[G,.G00 )GA<oo> 

=GA. 

(since G00 c: GA(oo» 

(since G A<oo> is open) 

Hence the class number is 1 in this case. 
In Examples 3 and 4 this procedure cannot be applied directly since in 3 G 

is not simply connected, and in 4 G is reductive but not semisimple. In such cases 
however, the theorem can still often be applied to yield a simple formula for the 
class number. 

Namely suppose that G is connected and reductive. Then the derived group 
G' is semisimple and so has a universal covering group F/k: 

</J: F-+ G' (isogeny /k). 

Assume also that (F, oo) has strong approximation. Then 

G,.xGA(oo) = G,.G00 xGA(oo) = Cl[G,.G 00 )xGA(oo)· 

Also 

CJ[G,.G00 ] => Cl[t/>(F,.F 00)) 

= Cl[</J(FA)) 

(see [SJ). 

Therefore Cl[G,.G00 ]xGA(oo) = x Cl[G,.G 00 ]GAloo> and so we have the desired 
formula 

class number= [GA: G,.GA<oo>J. 

EXAMPLE 4 (and 2) (continued). Assume V to be central and totally indefinite 
(i.e., l'lu is a matrix algebra over ku for all v e oo ). Let N : v: -+ k* be the reduced 
norm. Its kernel, the elements of reduced norm 1, is also the commutator sub­
group G'. Since it is simply connected and almost simple, the above analysis 
shows that G,.GA<oo> contains (GA)', the adeles of reduced norm 1. Thus taking 
reduced norms we get 

It is known that, for each v, every element of k: is a reduced norm from G,. •• so 
that N(G A) = I,. (ideles). Similarly N(G,.) = k* and N(G A<oo» = J,.<oo>· Thus 
(see [l]) 

class number = [J,.: k*J,.100 >] 

= ideal class number of k. 
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A similar procedure can be applied in Example 3. One then applies the spinor 
norm to [GA: G1cGA<ao>1 to express it is an idele index, which turns out to be a 
power of 2. For details see [4]. 

We now give a sketch of the proof of the Main Theorem. As stated before, 
the proof depends on the validity of the Hasse principle for all k-forms of G 
(cf. the lectures on Galois cohomology, pp. 149-158, and Hasse principle, 
pp. 159-163). 

It clearly suffices to prove the theorem for S consisting of one place, say w. 
Then G1cw is not compact. 

The proof consists of mapping G into an object in which the strong approxima­
tion theorem is known to hold (namely an affine space) and then "lifting" the 
approximation back to G. 

The affine space E in question has dimension I = rank G, and if G splits over 
k, the map p: G--. Eis 

p(g) = <x1(g), · · ·• x,(g)) 

where XI>···, Xi are the fundamental characters of G (see [7]). p is then defined 
over k. In the general case let G0 be the split k-form of G and let I: G0 --. G be 
an isomorphism over Ii.. Define p0 : G0 --. E as above. If the cocycle 

z, = 1- 1 o 'I e Z 1 (k, Aut G0 ) 

is inner, i.e., if each z, is an inner automorphism of G0, then we can choose p 
to make 

commutative, i.e., p = p0 °1- 1• Then 

•p = Po 'f- 1 = Poz; 11- 1 • 

But p0z; 1 = p0 since the characters take the same values on conjugate elements, 
and so •p = p as required. 

A slightly more complicated argument (using the fact that an outer auto­
morphism of G0 merely permutes the fundamental characters and that 

H 1(k, GL(E)) = 0) 

shows in general that there is a li.-isomorphism g of E such that the map p defined 
by the commutativity of the diagram 

G0 ...!!L+ E 

fl 19 
G --!..... E 

is rational over k. p will also denote the induced maps GA--. EA, Gs--. Es, etc. 
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We begin the proof proper by pointing out that (E, S) has strong approxima­
tion: 

(1) Cl[E1r. + EsJ = E ..... 

The rest of the proof consists of refining and lifting (1) to Gin several steps. 
First we show that in (1), E1r. can be replaced by its subset whose S components 

can be lifted to Gs: 

(2) 

with 1ts the projection E,.-+ Es. 
It suffices to show that 

[E1r. ("'\ 1ts 1(pGs)J ("'\ [Es + UJ -::!- "' 

for any nonempty open set U in E ..... For some compact set C, EA= E1r. + C. 
Multiplying by A. e k* we get E .... = E1c + A.C and so (A.C - x)n E1r. -::!- q, for all 
x e EA and all A. e k*. Thus (2) will be proved if we can choose A. and x so tliat 

A.C - x c 1ts 1(pGs) ("'\ (Es + U). 

We may suppose that C = IlC., with C., = E0 v for almost all v, by enlarging 
it if necessary. Similarly by shrinking U we may assume that U =a+ nu., 
where each U 11 is a neighborhood of 0 and U 11 = E0 v for almost all v. The co­
ordinates of each C., are bounded and so we can choose A. in k* such that A.C., c U 11 

for all v j S. Therefore A.C + a c Es + U. Now if we keep A. fixed and vary a by 
elements of Es, this last inclusion still holds. Doing this, we can achieve 

A.C + a c ni 1(pGs) 

by applying the following lemma (where S = {w}) and therefore prove (2). 

LEMMA. There exists x.., e E1r.w such that C.., - x.., c pGtw· 

The proof runs as follows. Since G1r.w is not compact, it contains a split torus, 
and so there exists a nontrivial homomorphism q,: G,.-+ G defined over k..,. 
If Vis any nonempty open set in G1r.wv• it can be shown that p(c/J(t)V) contains a 
translate of C.., if ltl.., is sufficiently large. 

The next step is to show that those adeles in G .... which are in fibers of points of 
E1r. are dense in G .... modulo Gs, i.e., that 

(3) Cl[p ,4 1(E1)GsJ = GA 

where p A has been used instead of p to emphasize the fact that it is the fibers in GA• 
not G1r., which are under consideration. The following lemma is needed. 

LEMMA. Let R be the set of regular elements of G (namely those elements whose 
centralizer has minimum dimension1 and let i: R-+ G be the inclusion map. Then 
the map 

is open. 
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To prove it one has to show that the map is open in each local component (see 
Steinberg (7)) and then that (po i)Go. = E •• for almost all v. 

Back to the proof of (3 ). Let U be an open set in GA. Since R is Zariski dense in 
G and G is nonsingular, i- 1(U) is open and nonempty, and so p(U) contains a 
nonempty open set V of EA. By (2) we can find x e U such that p(x) = e + e' 
where e e E1o: ('\ ni 1(pGs) and e' e Es. So for each v in S, there exists g,, in G,.. such 
that p(gv) = e,,. Let y in GA be defined by 

y,, = g,,, v e S, 

= x,,, v¢S. 

Then x = yz for some z e Gs and p(y) = e. This proves (3). 
Now we refine (3) by replacing E,. by pG": 

(4) Cl[p.4 1(pG1c)Gs] =GA, 

i.e., the adelic fibers of pG" are dense mod Gs. The proof is rather complex; it 
uses Galois cohomology, in particular the Hasse principle for H 1(k, G). An indica­
tion of it will be given iri the final section of these notes. 

Now any fiber of p A which contains a rational element g e G,. also contains all 
of its conjugates under GA. We refine (4) by replacing these fibers by these con­
jugacy classes: 

(5) 

The proof of (5) again uses Galois cohomology and will not be given in these 
notes. 

It is easy to see that Cl[ Gj,Gs]GA c Cl[ G,. GA Gs]· The next refinement is 

(6) Cl[G1cGs]GA = GA. 

By reduction theory GA = G,.DGs where D is compact (the proof is similar to that 
in §7 of [3] where the case S = oo is treated). It follows immediately from (5) that 

GA= Cl(G,. 0 G5 ] = Cl[(G11Gsf]. 

Since Cl[G1o:Gs] is closed and Dis compact, an elementary argument shows that 
Cl[ G1o:Gs]0 is closed and so contains the closure of (G,.Gsf which is GA. 

At this point we digress for a moment to show that the Weak Approximation 
Theorem 

(*) Cl[ 7tr( G1c)] = Gr 

can be deduced from the results proved thus far; here G satisfies the conditions of 
the Main Theorem, T ('\ S = </J, and 7tr is the projection GA-+ Gr. 

We first show that Cl['Ttr(G")] is of finite index in Gr; this is done by showing 
that it is open and has a compact set of representatives. The latter fact follows 
from applying xr to GA = G1o:DGs (D as abovei To show that it is open we need 
only show that it contains an open set of Gr. By [6] there is a rational map 
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V-+ G defined over k of an affine space V generically onto G. We choose x in V. 
at which the map is nondegenerate; then some neighborhood of x in 

Yr = Cl[nr(V.)J 

goes onto an open set in Gr. 
Now applying 1tr to (6) shows that Cl[nr(G1:)]GT = Gr. and so (*)follows by 

applying the following elementary result: 
If H is a group and H 0 is a subgroup of finite index such that Hg = H, then 

Ho=H. 
We are now ready to prove the Main Theorem: 

(7) 

Since every element of GA is a limit of elements almost all of those of whose local 
components are 1, it suffices to show that Gr c Cl[G1:Gs] for an arbitrary finite 
set T disjoint from S. Suppose ge Gr. By (6) we can write g = x1 with .x in 
Cl[G1:Gs] and yin GA. The components of x outside of Tare necessarily 1. By 
(*)we can find a sequence Y1o y2, • • ·, y,,, ···of elements in G1r. such that lim., y1 = y., 
for each v in T. Then clearly g is the limit of the sequence x7', x!2, · · ·, x1", • • • in 
the topology of GA, and so the Main Theorem is proved. 

PROOF OF INTERMEDIATE STEP. We now return to the sketch of the proof that the 
condition 

(3) 

implies 

(4) 
Let U be any nonempty open set of GA. Then our task is to show that 

P:i 1(pG.)f'\ UGs 

is nonempty, i.e., find x in UGs such that p(x) e p(G1r.). 
For the background of the following discussion concerning the map p and the 

properties of regular elements,. the reader is referred to [7]. 
Since the regular semisimple elements of 0 form a Zariski-open dense subset 

of G, we may replace U by a smaller set such that for some particular v f S, n.,U 
contains only regular semisimple elements. It follows then that all elements 
of Gin the fibers of points in p(UG5)f'\ E1r. are regular and semisimple. 

Let G1 beak-form of G which is quasi-split (i.e., has a Borel subgroup /k) and 
which is obtained from G by an inner twist. Thus we have a commutative diagram 

where 1-1 o 1 is an inner automorphism of G 1 for each s in the Galois group r 
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of K./k. We havef- 1 o 'f e (; 1 (adjoint group of G1). The important thing about G1 

is that the map p: G 1,1r. --+ E1r. is surjective. 
By the choice of U and the fact that the above diagram is commutative, any 

aeE1r.n p(UGs) lifts to a regular point x1 eG1,1r.:p1(x1) =a. If it happens that a 
also lifts to G1r.. say p(x) = a, then p(f(x1)) = p(x) and so x and f(x 1) are con­
jugate in G (over K.). Thus changing f by an inner automorphism of G, we may 
suppose thatf(xi) = x. Since x and x1 are rational over k, we getf- 1 0 'f(x1) = Xt> 

i.e., f- 1 0 'f is in the stabilizer Z(x 1) of X1 in G1 for all s in r. Conversely if a is 
lifted to x 1 and we can find an isomorphism f: G 1 --+ G such that f- 1 o 'f is in 
Z(x 1) then x = f(x 1) is in G1c and p(x) = a. 

Therefore it suffices to do the following: 
Given a regular semisimple element X1 in Gu and e in H 1(k, G1) (which we 

shall later require to satisfy some further conditions), show that 

e E Im(H 1(k, Z(x1))--+ H 1(k, G1)). 

Before we proceed, let us show the "invariance" of these considerations, 
namely: 

Let G2 also be a k-form of G obtained by an inner twist, and suppose that x2 

is a regular semisimple element of G2,1c such that p2(x2) = a. Let g: G1 --+ G2 
be a twisting isomorphism such that g(x1) = x2 and 

G1 

'l ~E 
G24, 

is commutative. Since g- 1 o sg is an inner automorphism of G1 and is the identity 
on x" it must be an inner automorphism by an element of Z(x1). But Z(x1) is 
abelian and so g- 1 o sg is the identity on it, whence the restriction of g to Z(x1) 
is defined over k (and maps Z(x1) isomorphically onto Z(x2)). 

For any torus T we put Y(T) = Hom(G111 , T), the I-parameter subgroups of T. 
If T /k is a maximal torus of G, the Galois group r acts on Y(T) as a subgroup of 
the extended Weyl group of G. 

DEFINITION. If the canonical image of r in Aut(Y(T)) contains the Weyl group 
of G (relative to T), then T is called highly twisted. An element a of E1: is called 
highly twisted if Z(x1) is highly twisted (where x 1 is a regular semisimple elem~t 
of Gu such that p(x 1) = a). As we have seen above, this depends only on a, not on 
X1. 

LEMMA. If Vis a nonempty open set of EA, there exists a nonempty open set 
V' c V such that every element a in E1r. n (V' + Es) is highly twisted. 

The proof of this lemma is quite technical and is not given here. 
As we have seen earlier, pU contains an open subset V of EA. Choose V' c V 

with the property in the lemma, and replace U by the open set Un p- 1v'. 
Thus we may suppose that p(x) e E1c is highly twisted if x e UGs. With these 
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restrictions on x, we can show that p(x) lifts to G1c, which will finish the proof 
of (4). 

As before we let xi be a regular semisimple element of Gi.1c such that 

Pi(Xi) =: p(x), 
and e e Hi(k, Gi) is the cohomology class of cocycles which twist Gi into G. 
We must show that 'e Im(Hi(k, Z(xi))-+ Hi(k, Gi»· 

Let Ti = Z(x i) and let Ci be the center of G i · If G' is any of the groups involved, 
we let HY(G') stand for either HV(k, G') or HV(kp, G') for some place it will be 
made clear in the context whether the global case or a local case is under con­
sideration. 

Now we have the commutative diagram 

1 -+Ci -+ Ti -+ Ti -+ 1 

··I 1 1 . 
1 -+ Ci -+ Gi -+ Gi -+ 1 

in which the rows are exact. This gives rise to the commutative diagram 

Hi(Ci)-+ Hi(Ti)-+ Hi(ti)-+ H 2(Ci)-+ H 2(Ti) r· 1 l . Jw 
Hi(Ci)-+ Hi(Gi)-+ Hi(Gi)-+ H 2(Ci) 

in which the rows are again exact; the diagram applies to either the global case 
or any local case. 

The following lemma is proved using the Tate-Nakayama theorem of class 
field theory. 

LEMMA. If Ti is a highly twisted maximal torus of the simply connected group G 1t 

the Hasse principle holds/or H 2(k, T1): the map 

H 2(k, T1) -+ fl H 2(kp, T1) 
allP 

is injecti~. 

We shall apply this lemma to show that we may assume that 'goes onto 0 
under the map H 1(k, G1)-+ H 2(k, C1). 

Now p(x) can be lifted to Gp for all v (namely to x.,) and so e is a local image 
of elements of Hi(t1). These elements all have the same image as' in H2(C 1), and 
since they go to 0 in H 2(T1), the global image of e in H2(Ci) must also by the 
above lemma. Therefore there is C in H 1(T1) globally which bas the same image as 
e in H 2(C1). Let G2 = ,G1 be the twisted group; suppose: g:Gi-+ G2 is the iso­
morphism corresponding to {. Since g!Ti is defined over k, it is clear that gT1 is 
defined over k. Moreover under the canonical bijection H 1(k, T1)-+ H 1(k, ,ti) 
the class of C goes onto 0. Thus we may, upon replacing G1 by ,G1, assume hence­
forth that e goes onto 0 under the map H 1(k, G1)-+ H 2(k, C1). 
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Let 'I be a global pre-image of e in H 1(G 1). Choose pre-images of e at each 
place v in H 1(T1); since they also go onto 0 in H 2(C1) they in tum have pre­
images in H 1(T1), and by the following lemma of Serre, these latter pre-images 
at the infinite places are the localizations of a global one, say -re H 1(T1). 

LEMMA. For any torus T defined over k, the map 

H 1(k, T) -+ fl H 1(k,,, T) 
ueao 

is surjective. The same is true for any finite commutative group instead of T. 

Now the infinite components of the images of-rand 'I in H 1(G1) are identical, 
and so at each v e oo, the components of 'I and the image of -r in H 1(G1) differ by 
an element of H 1(C1). By the above lemma we may change -r by an element of 
H 1(k, C1) so that these latter components at oo are identical (and so we assume 
it is already true for -r). 

By Hasse's principle applied to H 1(G 1), the image oh in H 1(k, G1) is equal to,,, 
and so the required prc;-image of e in H 1(k, T1) is the image of T in that coho­
mology set. 
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Ill. AUTOMORPHIC FUNCTIONS 
AND 

DECOMPOSITION OF L 2(G/0 



Introduction to Automorpbic Forms 
BY 

ARMAND BOREL 

The classical notion of automorphic form in one complex variable is well 
known. Let r be a Fuchsian group: the function f, holomorphic in the upper 
half plane H, is called an automorphic form of weight 2k (k an integer) if for every 
yer 

/(z) = J1(z'f · /(')' · z), 

where 

J 7(z) = (cz + d)- 2, ad-bc=l; 

(and if it satisfies certain regularity conditipns at the cusps of r, when H/r is 
not compacti This notion was generalized in two directions: on the one hand 
to holomorphic functions of several complex variables (Poincare, Hilbert­
Blumenthal, Siegel, etc.), on the other hand to nonholomorphic functions, for 
instance Eisenstein series of the form I:ic.d>= 1 lcz + di-• wheres is not necessarily 
an integer (Maass, Selberg, etc.~ Our first aim here is to define a notion of auto­
morphic form on a semisimple Lie group, which encompasses the two types 
just mentioned, introduced by Barish-Chandra [6l 

I. Definidoo of automorpbic forms. Let G be a real semisimple Lie group. 
To simplify matters, we assume that it is of finite index in the set of real points 
of a semisimple algebraic R-group. The universal enveloping algebra U(g) of the 
Lie algebra g (with complex coefficients) can be identified with the algebra D(G) 
of right invariant differential operators on G: to ye g is associated a differential 
operator such that 

Yf(g) = dd /(exp t Y · g)I ; 
t 1=0 

this linear map of g into D(G) extends to an isomorphism of U(g) onto D(Gi 
On G0 , the center Z(g) of U(g) corresponds then to the left and right invariant 
differential operators and is isomorphic with a polynomial ring in I letters, 
where I is the rank of G. 

A vector valued function f: G -+ V is called Z(g)-finite if Z(g) · f is a finite­
dimensional vector space, or equivalently, if f is annihilated by an ideal I of Z(g) 
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200 ARMAND BOREL 

of finite codimension. The most important case is when I has codimension one, 
i.e. when f is an eigenfunction of every operator in Z(g). 

DEFINITION. Let r be a discrete subgroup of G, Ka maximal compact subgroup 
of G, p a representation of K in GL(V), where Vis a finite-dimensional complex 
vector space. The smooth vector valued function f: G ~ V is called an auto­
morphic form for r if 

(1) f(k · g · y) = p(k) · f(g), f is left equivariant for K and right invariant for r. 
(2) f is Z(g)-finite. 
(3) f satisfies a certain growth condition, to be specified later. 
If I is an ideal of finite codimension in Z(g) which annihilates f, then f is called 

an automorphic form of type (p, I). 

2. Remark on the smoothness conditions. The above definition makes sense for 
distributions. However, the Z(g)-finiteness and the K-equivariance imply that f 
is a real analytic function: 

PROOF: Let g = f + l) be a Cartan decomposition of g. Choosing ortho­
normal basis X; of l) and Yi off allows one to construct the Casimir operator 
C = L Xf - L YJ, whi°ch belongs to Z(g). The universal algebra U(f) is a sub­
algebra of U(g). For DE U(f), Df = dp(D)f, due to the K-equivariance of/. Since p 
is a finite-dimensional representation, the function/ is annihilated by an ideal of 
U(f) of finite codimension. Moreover, f being Z(g)-finite, the vector space 
Z(g) · U(f)J = W is finite dimensional. The operator w = C + 2L YJ = IXf 
+ L YJ is elliptic and belongs to Z(g) · U(f). Hence it keeps W invariant. Since 
W is finite dimensional, there exists a polynomial P such that P(w)f = 0. The 
operator P(w) is an analytic elliptic operator, hence f is analytic. 

3. Geometric interpretation of condition (I). G is a principal bundle with basis 
the Riemannian symmetric space X = K\G and structural group K. Consider 
the associated bundle G x K V corresponding to the representation p of K in 
GL(V): it is the quotient of G x Vby the equivalence relation (g, v) ~ (k · g, p(k)· v), 
and is a bundle with basis X and typical fibre V. Denote by [G, VJ,. the set of 
maps f from G to V that are K-equivariant: f(kg) = p(k) · f(gi The group G 
acts by right translations on [G, VJ,.. The mapf defines then a maps: G ~ G x V, 
such that s(g) = (g, f(g)), compatible with the equivalence relation defined by K. 
Going over to the quotient, s defines a cross section a: X ~ G x le V. This map 
is an isomorphism of [G, V],. onto the vector space S[G x le V] of sections of 
G x 1c V. The group G operates on S[G x" V] by right translations, and this 
isomorphism is compatible with the action of G. Condition (1) says then that f 
defines a r-invariant cross-section of G x " V. 

4. Automorphy factors and condition (1). We shall start with a space X in a 
certain category (e.g. complex analytic, real analytic, C00 manifold· · · ), a group 
r of morphisms of X, and a group H acting on a space V. The group r will 
operate on the right on X, but not necessarily as a properly discontinuous 
transformation group. Denote by [X, H] the set of morphisms of X into H 
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(i.e., holomorphic, real analytic, C00 maps· · · i The group r acts on [X, HJ 
through (i' · 4')(x) == 4'(x • i'i 

DEFINITIONS. (i). An automorphy factor of r is a 1-cocycle µ of F with value 
in [X, H], i.e., a map µ: X x r -+ H such that 

(1) µ(x, i' . y') == µ(x, y). µ(xy, y'), (x e x; y, y' e n 
(iii An automorphic form of type µ is a morphism f: X -+ V satisfying 

(2) /(x) == µ(x~ y). f(x · y), (x ex, i' en 

The automorphy factor µ allows one to define an action of r on X x V by: 

(3) (x, v) · y == (x • y, µ(x, y) · vi 

Due to the cocycle condition, r is indeed a transformation group on X x V. 
If r operates freely on X as a properly discontinuous transformation group, 
(X x V)/r is a fibre bundle with fibre Vand basis X/r. The automorphic forms 
are the cross sections of this bundle, lifted to X via the natural projection. · 

Assume now that X == K\G as above. To express the condition (2) above, and 
connect the automorphic forms with geometric objects on X ;r, we need only 
to have an automorphy factor on r. However, in order to relate such an auto­
morphic form to a function on G satisfying condition (1) of §1, we assume the 
automorphy factor to be defined on G. 

Let 0 be the fixed point of K in X. Then for k, k' e K 

µ(O, kk') == µ(O, k) · µ(O, k'i 

Thus p: k ....... µ(O, k) == p(k), is a homomorphism of K into H. Let ex: G -+ H be 
the map defined by cx(g) == µ(O, gi Due to the cocycle condition, ex is left equi­
variant for the representation p of K :exe[G, Hl.11:· Hence, it defines a cross-section 
of P = G x .11: H. The space P is obtained by identifying in G x H the pairs (g, h) 
and (k · g, p(k) · h) (k e Ki The space P is a principal bundle with basis X == K\G 
and fibre H. The cross-section ex makes it p0ssible to identify G x 11: H with 
X x H. Assuming V to be a vector space, E == P x .11: Vis the vector bundle over 
X associated to P: E == P x 8 .V. The identification of P with Xx H, by means 
of ex, allows one to identify E with X x V and every section of E with a map 
from X to V: 

[G, VJ.:~ [X, VJ 
If g == 0 · g == K · g denotes the image of the left K-coset of g in X, the inverse 
identification is given by f ...... F, where F(g) == cx(g) • fCBi This map is obviously 
a G-homomorphism, where the action of G is defined on [G, VJ.: by right trans­
lations, and on [X, VJ by §4 (3i The functions that appear in condition (1) of the 
definition of automorphic forms are then identified with the functions from X 
to V which satisfy (iii 

Conversely a cross-section <r of the principal bundle P = G x 11: H defines, in 
the usual way, a left K-equivariant map ex: G-+ H, and an automorphy factor 
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µ: X x G -+ H, given by µ.(g, g') = oc(g)- 1, oc(g · g') = oc(k · g)- 1 • oc(k · g · g') where 
g, g' e G, k e K and g = 0 · g e X. It is again possible to identify [G, V]IC with 
[X, V], by means ofµ. 

5. Example. Let X be a bounded symmetric domain, X = /(\G. If g and fare 
the Lie algebras of G and K respectively, 9c and fc their complexifications, then 
as vector space 9c = fc ED Pc = fc ED lJ + ED lJ - , where lJ + and lJ - are commutative 
subalgebras of 9c contained in Pc· Putting p± = exp(lJ ±), then G c: p- · Kc· p+, 
and the map of p- x Kc x p+ into Ge given by (x, y, z),........ x · y · z is biholo­
morphic onto a Zariski-open subset of Ge. Let g = g _g~ + be the decomposition 
of g e G with respect to p-, Kc, p+. A theorem of Harish-Chandra asserts that 
the map G -+ p +, which sends g onto log g +, identifies X = K\G with a bounded 
domain D of lJ +. The subspace p- ·Kc· G is open in Ge. Hence 

p-\p- KcG ~ Kc x IC G, 

is a complex analytic principal bundle over X = K\G with Kc as fibre. This 
fibre space has a natural cross-section v defined by p+, to which corresponds an 
automorphy factor JL If x e De lJ + and g e G, then. 

exp x · g = (exp x · g)_ ·(exp x · g)0 ·(exp x · g)+. 

and 
µ(x, g) = (exp x · g)0 e Kc. 

This is the "canonical automorphy factor" on X, considered in [9l To recover 
completely the situation of ·§§1, 4, one gives a representation p: Kc-+ GL(Vi 
Then µP(x,g) = p((exp x · g)0). (To get the Jacobian determinant of the bounded 
realization as an automorphy factor, take p: Kc-+ GL 1 defined by p(k) 
= det · Ady+k- 1.) 

It is not necessary to take p+ as cross section for the bundle Kc x IC G. Let 
P' be conjugate top+, such that G c: p- ·Kc· P'. Every element ge G can again 
be decomposed as g = g- · g(,g'+· Then µ'(x, g) = (exp x · g)~ is again an auto­
morphy factor. There exist a number of canonical choices of P', defined by the 
so-called partial Cayley transforms, that give rise to unbounded realizations of 
X (see [l]). 

EXAMPLE. G = Sp(n, R), K = U(n), Kc = GL(n, C). 
If 

and K\G is realized as the Siegel upper half plane, then the corresponding 
canonical automorphy factor is 

µ(Z,g) =CZ+ D. 
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6. Connection between holomorpby and condition (2). Let /: X-+ V be a 
holomorphic automorphic form defined on X, with automorphy factor µP; then 
the corresponding automorphic form Fon G is Z(g)-finite, where F(g) = µ(0,g) · /(k) 
This was pointed out in [11, Exp. lOJ C?ne way to see it is to prove first that, 

(4) Y·F(g) = µp(O,g)(Y · /)(i) 

where, due to the definition of the complex structure of X, Y is the derivative 
with respect to the conjugate of some coordinate-variable in X (see [2, §5]). 
The function/ is holomorphic if and only if YJ = 0(Ye1)-) by (4); this is equiva­
lent to Y· F = 0 (Yel)-i The fact that Fis then Z(g)-finite depends now on 
some properties of Z(gi As a vector space 9c = I)+ E9 fc E9 I) - . Hence as a 
vector space U(g) = U(I) +) ® U(f) ® U(I) -) : every x e U(g) can accordingly be 
written as x = LPt · k1 • p1-. One shows then that if x e Z(g), the only terms 
occurring in this sum are such that p: and Pl are simultaneously zero or different 
from zero. Hence there exists a linear map v: Z(g) -+ U(fc) such that 

z - v(z)e U(Sc) ·I)-, for z e Z(gi 

Since F is annihilated by 1)-, z · F = v(z)F. The equivariance of F with respect to 
K insures that F is annihilated by an ideal in U(f) of finite codimension. The 
same will then be true in Z(gi 

7. Growth condition. Let W be a finite-dimensional complex vector space 
and u a locally faithful representation of G in GL(W). Put on W a structure of 
Hilbert space invariant by u(Ki Let llKll = tr(g• · gi 

Then 
(g, he G), 

and 
Ilk. g. k'll = llKll (k,k' e K,ge Gi 

If A is the connected component of a maximal R-split torus, then G = K · A+ · K 
(where A+ is a positive Weyl chamber, for some ordering of the R-roots), and 
the second relation shows that what matters is the behavior of the seminorm 
on A: for ex e A, ltall < c ·ah, where c is a constant and A is some weight of A+, 
dominating the weights of u (A = Le.A,. with c. ~ 0, A,. being fundamental 
weightsi As an example, let u be the adjoint representation, g = f + I) a Cartan 
decomposition of the Lie algebra of G, and s the corresponding Cartan involution. 
Then we may put 

(S) llKll = Tr(Ad s(g)- 1 · Ad gi 

If I I is a norm in the vector space V, and f: G -+ V, the growth condition imposed 
on/is: 

3c > 0 and meZ, m ~ 0, 
such that 
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This growth condition really does not depend on the chosen representation CJ, 

since it is easy to see, due to the behavior of the seminorm on A, that if t is 
another locally faithful representation of G, there exists a positive integer n, 
C1 > 0 such that 

(g e G). 

8. Construction of automorphic forms. Let X = K\G, and µ:X x G - GL(V) 
be an automorphy factor. For <P :X - V, consider the series 

(6) L µ(x, y) · </J(x · y). 
yer 

If it converges, it will be equal to an automorphic form under suitable assumptions 
for <P (for instance, holomorphy if X is a bounded domain, and µ is itself holo­
morphici One can work analogously on G instead of X. Starting from/: G - V, 
assumed to be Z(g)-finite and K-equivariant, then the series Lr /(g · y), if properly 
convergent, will represent an automorphic form It may happen that f is already 
invariant under some Sttbgroup r DO of r. If r DO is infinite, the summation Will of 
course be taken over r;r DO" The analogous situation for (6) is when <Pis invariant 
under r DO• and µ(x, y) = 1 (x Ex, y Er DOi Two standard examples are the Poincare 
series and the Eisenstein series. The former are obtained by imposing on f 
conditions strong enough so that LrP{gy) converges for any discrete group r. 
For the Eisenstein series, r DO is in general infinite, and conditions are imposed 
on r and q,. We now describe natural generalizations of these notions in the 
present context. 

9. Poincare series. A vector valued function f on G is said to be K-finite on 
the left (resp. right) if the set of right (resp. left) translates off under elements 
of K is a finite-dimensional vector space. 

9.1. THEOREM. Let V be a.finite-dimensional vector space, andf a function from 
G to V. Assume: 

(a) /e L 1(G) ® V, 
(b) f is Z(g)-jinite, 
(c) f is K:finite on the left (respectively on the righti Then the series 

Pix>= L f(g · Y) 
yer 

converges absolutely and uniformly on compact sets (respectively, and moreover 
Lr l/(g · y)I is bounded on G). 

Proof of the first assertion (Godement [11, Exp. 10]): 

f, IJ(g>I dg = f, L l!<x · Y>I dg < oo. 
G G/r r 

Lr l/(g) · y)j converges in L1(G/r), and so converges almost everywhere and 
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also converges in the distribution sense. Now, by assumptions (b) and (c), f is 
annihilated by an elliptic operator (see (2)~ By a general principle (essentially an 
application of the closed graph theorem) the series converges then in the C00-

topology; in particular, it converges uniformly on compact sets of G. 
To prove the uniform boundedness we use the following lemma of Harish­

Chandra [7, Theorem 1]: 

9.2 LEMMA. Let/: G..,.. V be Z(g)-finite and K-finite on the right (resp. on the 
left) and U be a neighborhood of e in G. Then there exists an ex e C:°(U) invariant 
by inner automorphisms of K such that f == f •ex (resp. f == ex • /~ 

(C:° refers to C00-functions with compact support, and •to convolution. Thus 

f • cx(g) == I /(g · u- 1 )cx(u) du). 

Proof of uniform boundedness when f is K-finite on the right: 

f(g· }') == Lf(g· }'· u- 1)cx(u)du == L f(g· v- 1)ac(v· y)dv, 

. l/(g· 7)1 ~ M L.
1 
l~(gv- 1 )1 dv, 

if U is small enough U · 'Y n U · y' == tf> when 'Y :I: y'. So 

~ l/(g· 7)1 ~ M~ I.
1 
l/(gv- 1)1 dv 

~ Mt l/(v)I dv == M~f llLi-

REMARK. The above proof for the uniform -boundedness is due to Harish­
Chandra. A slight variation of it also yields the first assertion. That LI (x · y) is 
uniformly bounded (when f is K-finite on the right, and verifies (a), (b)) was 
proved in the holomorphic case first by Godement [11, Exp. 10l His argument 
may be extended to the general case. 

IO. Example of the clalllical Poinclri --. Let X == JC\G be a bounded 
symmetric domain. Take as automorphy factor J(x, g) the determinant of the 
Jacobian. If/is a polynomial in CN :::> X, then 

P(x) == L J(x, 1Y · /(xy), ,.r 
converges absolutely and uniformly on compact sets for I ~ 2, and 

.P{g) == J(o, gy . P(g) 
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is uniformly bounded. More strongly: 

L JJ(o, gy)J'I! (o · gy)J < c < oo 
r 

where o denotes the coset K in X. 
PROOF. In the identification of X with a bounded domain l) + = CN the coset o 

is mapped into the origin. Hence K is linear and the polynomial/is K-finite on 
the right. The function F(g) = J(o, g)' · f (g) is Z(g)-finite (cf. §6i To apply the 
previous theorem, it is enough to show that F belongs to L1(G) ® V for I ~ 2. 
X being a bounded domain, f is bounded on X. So 

L JF(g)J dg ~ C · L JJ(o, g)J1 dg. 

It is easily seen that 

JJ(o, kgk')J = JJ(o, g)J (k, k' E K ; g E G); 

hence JJ(o, g)J may be viewed as a K-invariant function on X. Therefore, 

f JJ(o, g)J' dg ~ C' · L JJ(o, x)j' dw, 

where dw is an invariant measure on X. But dw = c · jJ(o, x)J- 2 dx (c > 0), where 
dx is the usual Lebesgue measure on R2". Consequently, we are reduced to 
showing that J(o, x) is bounded on X. Since X = o · A · K, it is enough to check 
this on o · A, which is easy (see for instance (2, §1 ]). 

If •: K __. G L(V) and µ,(x,. g) is the automorphy factor of §5, then there exists 
an 10 such that 

L J(x, y)1µ.(x, y) · f(x · y) 
yer 

converges for l ~ 10 (see (2, §5] for more details). 

11. Eisenstein series. Let G be a connected semisimple algebraic group defined 
over k c R, P a standard (not necessarily minimal) parabolic k subgroup of G, 
for a maximal k-split torus S. If P0 is a minimal parabolic k-subgroup between 
Sand P, let 9 be the subset "A of simple roots of <l>(G, S), for the ordering defined 
by P0 , such that P = "P6 (see (3, §6.5). Then 

P0 = Z(S0)· U0 , 

P = Z(S6)· U0 = Z(S6)· U, 

where U = Ru(P) and S6 = (naeB Ker oc)0 • Put (}' = ,.A - (} and x = det Adu, 
where u is the Lie algebra of U : for p e Pa p11 = det AduP. The character x is 
then a positive linear combination of the fundamental highest k-weights A11. of 
G: X = L11.ee·e11.A11., (e11. > 0), where the ~ verify (Am, p) = d11.{J11.fJ (oc, p e "A, d > 0). 
Let s = (s11.)11.eB' be a set of complex numbers. Put A, = L11.e11· s11.A11. and pf\• = IIlpA•J'•: 
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If A = Si, G11 = K · P11 = K · M 11 ·A· U. If g = kmau is the corresponding de­
composition of ge G, then k· m, a and u are uniquely determined; we let a(g) 
denote the A-component of g e G. 

11.1. LEMMA (GODEMENT). Let r be a ·discrete subgroup of G• and r 00 a sub-
group of r n (M · U)11• Assume that 

(1) a(y)"- ~ d > 0 for all ')'Er and at: E (}', 
(2) (M · U),,Jr 00 has finite-invariant measure, 
(3) Rs11 > e11 , for all at: e 8'. 

Then E(g,s) = Lyertr ... a(g ·y)-A• converges uniformly on any compact set ofG. 

(Note that, M · U being contained in the kernel of every k-character of P, 
a(g · yf• = a(gf• for l' er 00 and M · U is unimodular.) 

SKETCH OF THE PROOF. We may assume the s11 to be real Let C be a compact 
subset of G. Then there exist d, d' > 0 such that 

(geG,ce C). 

This implies readily that the uniform convergence on compact sets is equivalent 
to the convergence at one point, say e. Furthermore, if C is a neighborhood of e, 
the convergence at e is equivalent to the convergence of the series 

L J. a(c · 1r~· dg. 
y c 

Take C small enough so that C · c- 1 n r = {e}. Then the series is majorized by 

I = f. a(g)-Ao dg. 
C·r/r.., 

Let 

A(t) = {a e AlaA- ~ t , (at: e (}')}. 

By assumption r c:: K · M · A(t') · U, for some t' > 0, whence the existence of 
t > 0 such that C · r c:: K · M · A(t) · U. 

We have K · M: A(t) · U = K: A(t)· M · U. By assumption there exists w c:: M · U, 
of finite measure, such that M · U = w · r 00• From this we deduce without 
diflicul~y that 

(cS > o~ 

By standard facts about Haar measures, the last integral is, up to a constant, 
equal to 

f dk f dv J a-A.+z da = d r a-A.+z da, 
x. w ACr> tcr> 

where x = L e11 • A11 = det Ad,. (see beginning of this section), and dk, dv, da, are 



208 ARMAND BOREL 

Haar measures on K, M · U and A respectively. The last integral is a product, 
(over ex e 9') of integrals of the form 

[ exp[(-s., + eJ · t) dt, 

hence converges, since we assume s., > e.,. 

11.2. THEOREM. Let f:Ga-+ V, where V is a finite-dimensional vector space. 
Keeping the same notations as above, suppose that 

(i) the assumptions (1), (2) and (3) of the lemma are satisfied, 
(ii) f(g · }') = f (g) for }'Er"'" 

(iii) lf(g · p)lp"· is bounded if g stays in a compact set of G and p e Pa. 
Then the series E 1(g) = Lrir.., f(g · y) converges absolutely and uniformly on any 

compact set of G. 

PROOF. We have G = K · Pa, hence 

Hence 

f(g)"- a(g)"• = f(k · p) · a(k · p)"• 

= f(k. p). a(p)A. = f (k. p). p"•, 

lf(g) · a(g)"·I = lf(k · P)lp"· ~ c. 

lf(g)I ~ C!a(g)i-"•, 

L lf(g · 1)1 ~ C · L la(g)I-"·. 
rtr.., rtr.., 

The lemma ensures that the last series converges. This proves the theorem. The 
series E 1 will be called an Eisenstein series. 

12. Special cases of Eisenstein series. 

12.l. THEOREM. We keep the notation of the previous section and assume 
moreover that k = Q, that r is an arithmetic group, and r.., a subgroup of finite 
index in r n P. Then the assumptions of(l) and (2) of the lemma in §11.l are fulfilled. 

PROOF. (1) (M · U). has no nontrivial character defined over Q, and r co is an 
arithmetic subgroup of (M · U) •. So (M · U),,/r co has finite volume by reduction 
theory [4, Theorem 9.1). 

(2) Let p., be an irreducible representation of G, which is strongly rational over 
Q, having A., (a: e 9') as highest weight [3, §7]. If e., is a corresponding weight 
vector in the representation space F., of p., one. has p(p)(eJ = pl\a · e., (p e P) 
because a: e 9'. There exists a lattice L., in Fllfl invariant under r. We may assume 
that e., e L., - {O}. So p.,(r) · e., e L - {O}. There exists a d > 0 such that 
lp.,(y) · e.,I > d for every 11 er. Write y = k · m · a(y)u. Since Mand U lie in P and 
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have no Q-character, one has 

This proves condition (2) of the lemma. . 
If/: G•-+ V verifies the identity f(g · p) = /(g)p-A., then f satisfies the hypo­

theses (iii) and (ii) of the convergence theorem ((ii) because r CID lies in the kernel 
of all Q-characters of P). One gets with such functions a straightforward general­
ization of the classical Eisenstein series. 

If moreover f is p-equivariant on the left with respect to K, then it follows from 
standard facts about the universal enveloping algebra U(g) that E 1 is Z(g)-finite. 
Moreover, the growth condition can also be checked using reduction theory. 
Thus we get automorphic forms in the sense of §1. 

A typical function satisfying /(g · p) = f (g) · p-"- (p e P) is given by /(g) 
= lp.(g) · e.I. These functions are also connected with minimum properties on 
Siegel-domains. 

EXAMPi.m 1. Let G = Sfl(.n, C), and P be the maximal parabolic group, con­
sisting of the matrices 

in the standard notation. Then, as function/(g), we may take det(C· i + oi 
2. Let G = SL., K = SO(n), = SL(n, Z). The fundamental representation of G 

are the exterior powers of the identity representation of G. For an ordering of 
the roots associated to the group of upper triangular matrices, the highest weight 
of the ith exterior power is e1 /\ • • • /\ e,, where (e1) is the canonical basis of 
If' (1 ~ i ~ n - 1i The corresponding function is then 

_,,(g) = Ilg· e1 /\ "· /\ g · e1ll· 
Let P1 be the stability group of the flag 

Then for Rs 1 sufficiently big, (1 ~ j ~ 1), 

~ _,l(g. ')')-"' ... _,,(g. ')')-••, 
yer{f'nP1 

is an Eisenstein series. Such series have been considered by Selberg [lOJ 
3. We return to the situation of the theorem in §12.1. Let p: K-+ GL(V) be 

a finite-dimensional representation of K. Let _,: G -+ V be a continuous function 
which is p-equivariant, with respect to K, is right invariant with respect to A · U •• 
and is a cusp form on M • for r CID n M (for the notion of cusp form, see [5]). 
We may define a function/: G -+ V by f(k · m ·a· u) = ~k · m) · a"-. Since a cusp 
form is bounded, it is easily seen that f satisfies the condition of the theorem. 
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The corresponding Eisenstein series is then 

E1 = L f(g·y) = L ~·y)·a(g·y)-"•. 
yerJr., yer/r., 

Such series occur in the work of Selberg, and of Langlands [8). 
4. Finally, we note that the PoincarC-Eisenstein series which are used in [1; 2) 

to study the compactification of x;r, when Xis a bounded symmetric domain 
are special cases of the series considered in §11.2 In this case, Mis the almost 
direct product of two normal Q-subgroups Mi. M 2 and, roughly speaking, the 
function f, restricted to MR. is the product of a constant function on MR. by a 
Poincare series (hence a cusp form) on M 2 ... 
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The Decomposition of L 2( G /r) for r = SL(2, Z) 
BY 

R. GODEMENT 

G = SL(2,R); r = SL(2,Z); 

U: subgroup u=(~ ~); 
H: subgroup h = (~ ~t)' t :;t: O; 

M: subgroup m= ( cos(} 
-sin 0 

sin 0) 
cos(} . 

The Iwasawa decomposition is here 

G=MHU, M riH = {±1}. 

The Haar measure of G is given by 

(1) { </J(g) dg = ff f M x H x u </J(mhu)p(h) dm dh du =ff f t/J(muh) dm dh du 

where 

p(h) = t2 if h = ( ~ l~t). 
Bruhat's decomposition is given by 

G =HU u UwHU where ·w = (~ - ~)· 

2. The Laplace transform of a modular function. The principal series of ir­
reducible unitary representations of G is obtained by letting G operate through 
the operators cf1(g).-. cf1(x- 1g) on the Hilbert space Jt'(s) of functions 4' on G 
such that 

(2) cf>(ghu) = cf>(g)p(hr i, ll<Pll2 = J lt/>(m)j2 dm. 
M 

The representation is unitary if Re(s) = t and then irreducible, except for s = !. 
211 
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Consider now a "modular function," i.e., a function (Jl(g) such that <l>(gy) = Cl>(g) 
for all }'er i then u - ell(gu) is invariant under 

r"" = r'"' u, integral matrices(~ ;). 

and one thus can consider 

ell0(g) = f cJl(gu) du 
U/r.,, 

(3) 

i.e., the "constant" term in the Fourier expansion 

(3') 

Define the formal Laplace transform of ell as 

(4) ci>{g, S) = t ell0(gh)/J(h)1 -s dh; 

up to convergence this is an element ci>(s) of Jt'(s) and the map ell-. ci>(s) com­
mutes with the operations of G (left translations). 

As to convergence the simplest case is as follows: 

(5) ci>(g, s) exists for Re(s) > 1 if ell is bounded and with compact carrier mod r. 
Firstly Cl>0 (g) is bounded; secondly C1>0(gh) vanishes for !ti small because for every 
c > 0 the part {ltl < c} of His mapped properly into G/r; hence it remains to 
show that 

f /J(h)1 -• dh,..., f +co~: 
ltl~< c 

converges for Re(s) > 1. 
The same result more generally holds if Cl> is bounded and "rapidly decreasing" 

at infinity in G/f, i.e., if for every N 

Cl>(mhu) = O(ltr) as ltl -+ o 
uniformly in m and u. 

3. Incomplete theta series. Let ~(G/U) be the space of C"" functions on G 
which are invariant under U and have a compact carrier mod U; since 

G/U ~ R2 - {O} 

this is also the space of C"" functions in the real plane, vanishing around 0 and oo. 
If</> e ~(G/U) we define 

(6) e.(g> = L <J>(gy) = L <J>(gy(e1)1 = L <J>(g(e)] 
rir.,, r1r.,, ~eZ2 ;~prime 
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where e1 is the first basis vector in R2 [so that gr-+ g(e 1) induces the identification 
G/U ~ R2 - {O} ]. Of course 69 e ~(G/n i.e., is C"' with compact carrier mod r. 

We have 

where 

(J~(g) = f du L <J>(guy) = L f </>(guy) du, 
u1r"' rtr"' r ,.1rtr"' u1r ,.<1> 

r .,,,(y) = r.., n yr ..,y- 1 = r.., ify e ±r.., 
= {e}ify,±r..,. 

Hence, and assuming </>( - g) = <J>(g~ we get 

!lJ~(g) = </>(g) + L f </>(guy) du 
M u 

where L<Y> is extended to the nontrivial double cosets ±r ..,yr.., (with y and -y 
identified). 

But then y E UwHU i.e., 

y = u;wh1u;, 
from which it follows at once that 

f6~(g) = </>(g) + L f </>(guwh7) du 
(y) u 

= </>(g) + L f </>(guh; 1w)du, 
(y) u 

f6~(g) = </>(g) + L P(h1)- 1 I </J(gh; 1uw) du. 
(y) u 

(7) 

Observe that 

11e.11 2 = J 1e.<g>l2 dg = f dg I e.cg)</J(gy) 
G/r G/r rtr,. 

= J dg I e9(gy)</J(gy) = f. 69(g)<J><g> dg 
G/r rtr,. G/r,. 

= f. dg f. (J•(gu)</J(gu) du = J </>(g) dg J (J•(gu) du 
G/U u1r"' G/U Utr .. 

so that 

116.ll 2 = L,u 6~(g)</J(g) dg = J f (J~(mh)<P(mh)fJC.h) dm dh 

= J f [6~(mh)P(h)1 -•]<1J(mh)P(h)' dm dh; 
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defining 

L.(g. 2s) = L c/J(gh)fJ(hr dh (8) 

[this is an integral function of s if q, e .@(G/U)] and applying Plancherel's formula 
on a line Re(s) = <1 > I, we get 

(9) 

4. Eisenstein series. From (8) it follows that 

L•(ghu, 2s) = L•(g, 2s)(J(h)-• 

i.e., the function g~ L•(g, 2s) belongs to Jt"(l - s). On the other hand the Fourier 
inversion formula shows that 

c/J(g) = ~ f L•(g, 2s) ds 
Rc(s)=o 

(note that SH L•(g, 2s) is rapidly decreasing in every vertical strip1 so that 

o.(g) = L ~'.i(gy) = !.f E.(g, s)ds 
rtr., 1t Rc(s)=o 

(10) 

where 

(11) 

is a so-called Eisenstein series. These computations are at first purely formal; 
but the series (11) converges for ile(s) > 1 and (10) is justified in this range of values 
of s. 

To see the convergence of (11) we may assume that g = e (replace q, by a 
left-translate of c/J) and write 

c/J(g) = t F(gu) du 

for some continuous function F(g) with compact carrier on G. Then 

E•(e, s) = L ff F(yhu)(J(hr dh du = L ff F(yuh){J(h)•- 1 dh du 
rtr., H x u rtr., H " u 

= [ {J(h) 1 -•dh [ duLF(yu- 1h- 1); 

Jn lu1r., r 

considering <l>(x) = Lr F(yx- 1) which is bounded with compact carrier mod r 
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one gets 

E•(e, s) = f fJ(h)1-• dh i Cl>(hu) du = d>(e, s) 
H U/r.., 

and the convergence for Re(s) > 1 follows from (5). 
As for the fact that 

I ds L LJ.gy, 2s) = L r L.(gy, 2s) ds, 
Re(s)=o> 1 rir"' rir"' JRe(s)=o> 1 

it is easily justified by using uniform majorations for L•(g, 2s) on the line Re(s) = a. 

5. Analytic continuation of Eisenstein series. Let</> e ~(G/U) and consider</> as 
a function on R2 , so that </>(g) = </>[g(e1)]. Then 

(12) L•(g, 2s) = f </>[g(e 1)t]t2"d*t where d*t = dt/t, 

(we consider R2 as a right vector space) and thus 

E•(g, s) = f t2"d*t L </>[gy(e1)t] = f t25d*t L </>[g(e)t]. 
r/r.., (eZ2;(prime 

But every nonzero e E Z2 can be written in one and only one way as e = "" 
where n is a positive integer and 11 is a primitive vector; hence 

(13) 

If we now consider the Fourier transform 

(14) cf,(x) = f </>(y)e- 21ri(w(x), v) dy 
R2 

of </>, and if we assume 

(15) cb(O) = 0 i.e., f <J>(g) dg = 0 

G/U 

i.e., (}•orthogonal to 1 in L2(G/r), then Poisson's formula leads to 

L </>[g( e>t] = t - 2 L ~[g( e>i- l] since </>(O) = ~(O) = 0; 
(EZ2; (¢0 (eZ>; (¢0 

defining 

E•(g, s) = C(2s)E.(g, s) = f e.(g, t)t2" d*t 
1¢0 



216 R. GODEMENT 

where 0 111(g, t) = L~,.. 0 </>[g(c;)t], one gets 

E111(g, s) = f 0 111(g, t)t2 ' d*t + f 0 111(g, t)t2' d*t 
j l•I ii; 1 j 1•1 :i 1 

= r e.(g. t)t2' d*t + f ®J,.g. t)t211 -·1 tl*t; 
J1111:;1 l•lii:l 

hence, by the usual methods, the following result: under (15) the function 
C(2s)E111(g, s) is an integral fanction of s and does not change under 

(s, </>}t-+ (1 - s, <f,). 

It would have been more symmetrical to start with a function 

</> e 9'(G/U) such that </>(O) = <f,(O) = 0 

where 9'(G/U) means the set of rapidly decreasing functions on R2 ; the Fourier 
transform is a bijection of 9'(G/U) onto 9'(G/U) but not of course of ~(G/U) 
onto !'J(G/U)! 

On the other hand, deleting the assumption that J61u </>(g) dg = 0 would lead 
to a pole at s = 1. 

The classical series 
y-1: 

L lcz + dl21- 21:(cz + d)21: 

would be obtained by taking for instance 

</>(g) =(a+ ic)21:e-•«a2 +c2l if g = (: !). 
6. Analytic continuation of Laplace transforms. Let</> e !'J(G/U) so that 

o.(g, s) = f (J~(gh)/J(.h) 1 -s dh 

exists for Re(s) > 1. By Equation (7) we have 

!6.Cg, s) = f </>(gh)P(h)1 -s dh + ~ P(hy)- 1 ff</>(ghh; 1uw)p(h)1-• dh du 

= L111(g, 2 - 2s) + L /J(hy)-•ff <J>(ghuw)P(h)1 -• dh du 
(y) 

= L111(g, 2 - 2s) + ll(s) ff </>(guwh)P(h)' dh du 
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i.e., 

(16) !8.,,(g, s) = L.,,(g, 2 - 2s) + ll(s) f L.,,(guw, 2s) du 

where 

(17) ll(s) = L fJ(h1)-• = L ~- where y = (a, b,); 
(y) (y) Cy c1 d1 

since there are <f>(n) (Euler's function) classes M = r aoYr"" such that c, = n we get 

(18) q( ) = ~ <f>(n) = C(2s - 1) 
s 'T n2' C(2s) · 

On the other hand let us compute for Re(s) > 1 

E~(g, s) = f du L L.,,(guy, 2s); 
u1r"' rir"' 

the computations that led to (7) lead here to 

i.e., to 

!Ei(g, s) = L.,,(g, 2s) + L f L.,,(guwh1, 2s) du 
(y) 

= L.,,(g, 2s) + L fJ(h 1)-•f L•(guw, 2s)du 
(y) 

(19) !Ei(g, s) = L.,,(g, 2s) + ll(s) { LJ.guw, 2s) du, Re(s) > 1. 

Since we have seen that C(2s)E.,,(g, s) is an entire • function invariant under 
(</J, s)1-+ ($, 1 - s) the same is true for C(2s)Ei(g, s), and we necessarily have 

(20) C(2s)ll(s) f L.,,(guw, 2s) du = C(2 - 2s)L.(g, 2 - 2s) 

i.e., 

f C(2 - 2s) 
(21) L.,,(guw, 2s) du = C(2s _ l) L•(g, 2 - 2s), Re(s) > 1. 

Comparing with (16) we get 

(22) 1 A C(2 - 2s) 
!IJ.(g, s) = L.,,(g, 2 - 2s) + C(2s) L.(g, 2 - 2s). 

* provided JG,ucf>(g) dg = O. which we shall assume henceforth. 
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The function 

L•(g, 2s) = f Cf,(gh)P(h'f dh = 2 f:.., (f,[g(e1)t]t2' d"'t 

is meromorphic since (/, is C"' and rapidly decreasing at infinity; since (/,(0) = 0, 
the only poles [consider s;.., = J~ + s:.., and integrate J~ by parts several times 
so as to enlarge the domain of convergence] are at most s = -!. -1, -f, · · · 
and are simple; while L•(g, 2 - 2s) is an entire function due to th~ fact that c/J(x) 
vanishes in a neighborhood of 0 in R 2• It follows from (22) that (J•(g, s) is mero­
morphic in the whole plane, and since the poles of L•(g, 2 - 2s) in (22) are killed by 
the trivial zeros of {(2 - 2s) its poles are at most the zeros of ((2s), so that o.(g. s) 
is holomorphic in Re(s) ~ !. not to mention Re(s) ~ ! · · · . 

Furthermore, since L•(g, 2 - 2s) and L•(g, 2 - 2s) are rapidly decreasing 
any vertical strip, and since 

I c(~s) I = O(log' ltl) in Re(s) ~ ! if s = a + it, 

it is clear that o.(g. s) is rapidly decreasing at infinity in every vertical strip 
! ~ Re(s) ~a< +oo. 

The Laplace transform O•(g, s) satisfies a functional equation. Consider 

(23) 1 o.(guw, 1 - s) du; 

since the function F(g) = o.(g, 1 - s) satisfies 

F(ghu) = F(g)p(h)-• 

we have F(g) X llg(e1)ll- 2" (euclidean norm in R2) outside a neighborhood of 
0 in R2, and thus (for given g and variable u) 

o.(guw, 1 - s) >< llguw(e1>11- 2• x llu(e2>11- 2• >< (1 + u2)-•, 
so that (23) converges for Re(s) > !. 

Now it follows from (22) and (21) that 

! f O•(guw, 1 - s) du = f L•(guw, 2s) du + C(2(~s~s) f L~(guw, 2s) du 

C(2 - 2s) 
= C(2s _ l) · L•(g, 2 - 2s) 

C(2s) C(2 - 2s) 
+ ((2 - 2s) · C(2s - 1) · L•(g, 2 - 2s) 

C(2s) {"2 - 2s) } 
= C(2s _ l) C(2s) 4(g, 2 - 2s) + L•(g, 2 - 2s) , 
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and we eventually get 

q(s} f. Oq,(guw, I - s} du = Oq,(g, s), Re(s) > t. 
u ' 

(24) 

7. The scalar product of two theta series. We now come back to formula 
(9), namely 

llOq,11 2 = cf dm 1e<•J=a O.Cm, s)Lq,(m, 2s) ds where c = l/x2• 

It is valid provided <T > 1, but since the integrand is holomorphic and rapidly 
decreasing in the strip t ~ Re(s) ~ <T one can replace it by 

llOq,11 2 = cfdmf Oq,(m,s)Lq,(m,2 - 2s)ds 
Re(s)=t 

(observe that s = 1 - s on the critical line!). We shall now prove that we have 
also 

(25) 110"'11 2 =cf dm f !8.<m.s>l2ds; 
JM JRe(s) i 

lm(s)>u 

since the function g~ Oq,(g, s) belongs to the representation space Je"(s) of G 
("principal series" of §2; it is unitary on the critical line) we can write (25) as 

(26) ll<I>ll 2 = c r ll<i>(s)ll2 ds 
J~e(s) -!: 

lm(s)>o 

(<I> = o"" <1> .l 1) 

where ll<i><s>ll is the norm of the element <i>(s) of the Hilbert space Jf'(s), cf. page 1. 
One can view (26) as follows: the unitary representation of G on the subspace of 
L 2(G/r) spannetl by the functions Oq,, </> e D(G/U~ orthogonal to 1, is the continuous 
direct sum with respect to the Lebesgile measure of the irreducible representations 
of the principal series. 

Let us now prove (25). We shall first compute the scalar product 

f Oq,(g)Eq,.(g, s) dg = J dg L Oq,(gy)Lq,.(gy, 2s) 
G/r G/r rtr"' 

= f Oq,(g)Lq,·(g, 2s) dg = f O~(g)L41.(g, 2s) dg 
G/f 00 G/U 

= ff O~(mh)L41.(m, 2s)f:l<.h)-"/J(h) dm dh, 
MxH 
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whence 

f O•(g)E •. (g, s) dg = f O•(m, s)L •. (m, 2s) dm 
JG/r JM 

for Re(s) > l at first, and for Re(s) ~ ! by analytic continuation. But we have 

C(2 - 2s)E •. (g, 1 - s) = C(2s)E •• (g, s) 

so that the expression 

C(2s) I o.(g>E •. (g, s) dg = r o.(m, s)C(2s)L •. (m, 2s) dm 
G/r JM 

is (on the critical line) invariant under s _. 1 - s = s, <P' _. ~·; hence 

f O•(m, s)L •. (m, 2S)dm = f O•(m, s)~~~:~ L •. (m, 2s) dm 

from which it follows that (take now <P' = </J) 

110.11 2 

= cf f O•(m, s)L.(m, 2s) dm ds 

ff. . II . ['~2s) ~ = c o.(m, s)L.(m, 2s) dm ds + c o.(m, s) Y(r) L.(m, 2s) dm ds 
Re(s)=f Re(s)=+ 'o S 
lm(s)> O lm(s)> 0 

JI . JI . C(2s) _ = c O•(m, s)L.(m, 2s) dm ds + c O•(m, s) C(2s) L•(m, 2s) dm ds 
Re(s) =+ Re(s) =+ 
lm(s)>O lm(s)>O 

JI A { C(2s) } 
= c Re(s)= o.(m, s) L.(m, 2S) + C(2s) L.(m, 2s) dm ds 

1m<s1>3 

= cfI a.cm. sw.<m. s> dm ds 
Re(s) =t 
lm(s)>O 

as follows from (22), page 8, and the fact that s = 1 - s on the critical line. We 
thus get (25). 

8. Inversion formula. Let <I>= (}• be a theta series in L2(G/r); formula (26) 
enables us to compute its norm in L2(G/r) in terms of its "components" <b{s) 
in the various Hilbert spaces Jf'(s) of the principal series; this is an analogue of 
Plancherel's formula in the classical theory of Fourier integrals. We shall now 
prove that there is an analogue of Fourier's inversion formula, i.e., a formula 
expressing <l>(g) in terms of its Laplace transform <beg, s) on the critical line 
Re(s) = !. · 
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Since 

d>{ghu, 1 - s) = d>{g, 1 - s)/3(h)-• 

it is clear that the ratio d>{g, 1 - s)/L.,(g, 2s) is invariant under HU; since G/HU 
is compact we see that, for a given s, 

d>{g, 1 - s) ~ Lq,(g, 2s); 

hence the Eisenstein series 

(27) 
E.(g, s) = L d>{gy, 1 - s) 

r1r"' 

converges for Re(s) > 1 (multiply by ((2 - 2s) to kill the poles on the right hand 
side!); (22) shows that 

1 ((2s) 
2E.(g, s) = E.,(g, s) + ((2 _ 25)E.C,g, s) 

if <I> = o.,, <Pe ~(G/U). But 

((2s)E,ji(g, s) = ((2 - 2s)EJ,(g, 1 - s) = ((2 - 2s)E.,(g, 1 - s) 

and thus 

(28) fEJg, s) = Eq,(g, s) + Eq,(g, 1 - s) 

if <I> = (}"' . But we have seen, cf. (10), that 

Oq,(g) = ~ f Eq,(g, s) ds if u ::::,. 1; 
Re(s)=cr 

since ((2s)E.,(g, s) is an entire function and decreases rapidly in every vertical 
strip (use the Laplace integral representation of §5), the function Eq,(g, s) is holo­
morphic and rapidly decreasing at infinity in t ;:ii Re(s) ;:ii u. Hence we can shift 
the integration, so that 

Oq,(g) = ~ f E.,(g, s) ds = ; f E.,(g, s) ds 
Re(s) = t Re(s) = t 

= 2~ I [E.,(g, s) + Eq,(g, 1 - s)] ds 
Re(s)=t 

and we eventually get the analogue of Fourier inversion formula, namely 

(29) <l>(g) = 4~ f E.(g, s) ds. 
Re(s)=t 

[We assume <I> = o., for some <Pe [!)(G/U), and <I> .11.] 
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9. The space of cusp forms. Take any Cl> e L2(G/r) and any"' e !?l(G/U); then 

(Cl>, (}rp) = f Cl>(g)Ol/l(g) dg = i Cl>(g)"'(g) dg = f Cl>O(g)"'(g) dg 
G/r G/r., G/V 

as can be shown by using again the methods of §3 and §7. From this it follows 
that the subspace L~(G/r) of L2(G/r) orthogonal to the theta series o •. <Pe !?l(G/U), 
is the set of cusp{orms i.e., of Cl> e L2(G/r) such that 

(30) ct>0(g) = f Cl>(gu) du = 0 almost everywhere, 
V/r"' 

[To see that this integral makes sense for any square integrable function Cl>(g) 
observe that for any c > 0 the set M H(c)U ;r co• where H(c) is the set of he H 
such that ltl < c, covers a finite number of times only a part of G/r; hence for 
any Cl> e L2(G/r) the integral 

f lct>(g)l 2 dg = f dm i /J(h) dh J 1Cl>(mhu}i2 du 
MH(c)V/r.., M H(c) v1r.., 

is convergent; making use of Parseval-Bessel's formula for U ;r co it follows that 
ui-.Cl>(gu) is in L2(U/r co) c L1(U/r co) for almost all g and that 

r dm f lcI>0(mh)l2fJ(h) dh ~ f. dmf. fJ<.h) dh L le!>n(mh)l2 

JM ff(c) M H(c) 

Hence we even have 

= r l<l>(g>12 dg. 
JMH(c)Vtr.., 

ff ICl>0(mh)l2fJ(h) dm dh < + oo 
M><H(c) 

for any c > 0 and any Cl>e L2(G/r).] 

[cf. Equation (3')] 

10. Discreteness of the spectrum in LMG/r). The following lemma is easily 
proved : Let x -+ U" be a unitary representation of a locally compact group G 
on a Hilbert space ft'; suppose the convolution operator 

UF = t UxF(x) dx 

is compact for every continuous function F which vanishes outside a compact 
neighborhood of e; then the decomposition of the given representation into 
irreducible ones is discrete with finite multiplicities (i.e., ft' is a Hilbert direct 
sum of countably many minimal closed-invariant subspaces and the number 
of irreducible components which are equivalent to a given one is finite). 

Returning to G = SL(2, Rt r = SL(2, Z), we shall prove that the above lemma 
applies to the representation of G on ft' = L2(G/r). 
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Here (and denoting by F a generic continuous function with compact support 
on G and by <I> a generic element of .Jf') we have 

U F<l>(g) = L U x<l>(g) · F(x) dx = t F(x)<l>(x- 1g) dx = F•<l>(g), 

a convolution product; but since <l>(gy) = <l>(g) we also get 

U F<l>(g) = f F(gx- 1 )cl'(x) dx = f. dx L F(gyx- 1:>cl'(xy- 1 ). 

G G/r.., r.., 

= f KF(g, x)<l>(x) dx 
G/r.., 

where 

(31) 

But since Cl> e L~(G/r) implies U FCI> e L~(G/r) i.e., 

0 = f. U F<l>(gu) du = f du f. Krtgu, x:>cl'(x) dx, 
Utr"' U/r"' G/r"' 

we also have 

U F<l>(g) = Ltr"' Cl>(x) dx{Kh, x) - t,r"' Krtgu, x) du} 

= f <l>(x) dx {:E F(g'lx- 1) - i du L F(gu'1x- 1)l 
G/r.., r"' u1r.., r"' 'f 

= I <l>(x) dx {:E F(g,,x- 1) - r F(grix- 1) dul. 
G/r.., r.., Ju J 

It will be shown in the next set of notes that the integral Ju F(gux - 1) du is the 
"principal" part of the kernel KF(g, x), and that by substracting it. from Krtg, x) 
one gets for U F<l>(g) a function which decreases rapidly at infinity in the fun­
damental region of r; the compactness of UF in L 2(G/r) will follow at once 
from this result. 

11. References. No precise reference can be given because, as far as SL(2) is 
concerned, nobody thus far has ever published anything like a proof of a state­
ment. Deep results valid for fuchsian groups have been announced long ago by 
A. Selberg at the Colloquium on the theory of zeta (unctions (Bombay, 1956), 
to be found in the Journal of the Indian Mathematical Society, volume XX; a 
first idea of the proofs, as well as extensions to more general groups (e.g. groups of 
rank one over Q), are to be found in Selberg's talk at the International Congress 
of Mathematicians, Stockholm, 1962; see also Gel'fand's paper in the Proceedings 
of the same Congress. In 1964, Gel'fand, Graev and Pjateckii-Sapiro published 
a note (Doklady, volume 157) on the spectral decomposition of L 2(G,./G,J where 
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G is the SL(2) group over an algebraic number field ; nearly complete proofs 
were supplied in December 1964 at the Seminaire Bourbaki by the present 
author, who is thus entitled to consider himself as a striking exception to the 
first statement above! The method and results explained in the present paper 
have been the subject of a course of lectures delivered in Paris in 1964-1965; 
detailed lecture notes will be available within a short time. 

The purely arithmetical method used here or in the author's Bourbaki talk 
has not been, so far, extended to general arithmetically defined discrete subgroups 
of semisimple Lie groups; Langlands' methods are of a quite different nature and 
do not rest upon the arithmetic properties of the discrete subgroups. To prove 
Langlands' results by arithmetical methods would probably be a quite interesting 
problem, and might lead to more precise results than Langlands' method does, 
and/or to a better understanding of the general situation. 

Observe finally that when Langlands' paper will appear, it will be a second and 
more striking exception to our opening statement, since it will contain complete 
statements and detailed proofs for the most general case. 
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1. Laplace transforms. Let G be a connected reductive linear algebraic group 
defined over k =--: Q, and let r be an arithmetic subgroup of G. We have a unitary 
representation of G11 on the Hilbert space L 2(G,JD (left translations) and one 
of the main problems of the theory of automorphic function is to decompose 
this representation into a (possibly continuous) direct sum of irreducible ones. 

If we denote by 

T" : Cl>(g) >---+ Cl>( x - 1 g) 

the operator corresponding to a generic x e G11 , the first thing to do is to construct 
the operator 

~ = f T"F(x) dx 
Ga 

for every Fe Jf"(G), i.e., every continuous function with compact carrier on G. 
It is given by 

TFCl>(x) = J T,Cl>(x)F(y) dy = J F(y)Cl>(y- 1 x) dy 
Ga Ga 

= f F(xy- 1)Cl>{y) dy 
Ga 

from which we get at once 

TFCl>(x) = f K~x, y)Cl>(y) dy 
Ga/r 

with a kernel 

K~x, y) = L F(xyy- 1) 
yer 

which is continuous on (G,JD x (G,JD. If G,Jr is compact, i.e., if G is anisotropic, 
the operators TF will thus be compact, from which it follows (see the end of the 
SL(2) notes) that the representation T of G11 on L 2(G,JD has in this case a 
discrete decomposition into irreducible ones, with finite multiplicities, a fairly 
nice and simple situation, with unfortunately few results available to this day .... 

So we have a strong motivation for looking at the other cases. We then have 
in G nontrivial parabolic subgroups, and we can use them to define a kind of 
Laplace transform as in the SL(2) case. More specifically take in G a unipotent 
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subgroup U and assume it is the unipotent radical of some parabolic group, 
necessarily the normalizer P of U in G. For every function <I> e L 2(G,Jr), the 
function ui-+ <l>(gu) is invariant under 

Ur=Uanr, 

a discrete subgroup of U a with compact factor space, so that we can construct 

<1>g(g) = f <l>(gu) du; 
U,,JUr 

of course the function p 1-+ <l>~p~ p e Pa, is right invariant under U aPr, where 

Pr= Panr, 

so that we can consider it as a function on 

P,JU a ~ (P/U)a = Ha 

invariant under the image Hr of r in H = P/U, which is an arithmetic subgroup 
of H (observe that H is reductive, algebraic, and defined over Q). Now denote by 
A. any continuous homomorphism Hai-+ C* with the property that A.= 1 on Hr 
(these A. are closely related to the rational characters of H, of course); then the 
Laplace transform of <I> (corresponding to U) will be the function 

&~.A.) = f <1>g(gp)A.(p)-1 dp 
Pa/PrU a"' Ha/Hr 

where p 1-+ p is the canonical mapping from Pa onto Ha. 
It is to be expected that conversely the function <I> can be reconstructed in some 

canonical way from its various Laplace transforms <i>u, but this is hopeless if 
<f>u = 0 for all U, i.e., if we have 

f <l>(gu) du = 0 
Ua/Ur 

as soon as U is the unipotent radical of some parabolic subgroup. Such functions 
are called cusp-forms (the "constant term" of their "Fourier expansion" along 
each U a vanishes) and they form in L 2( G,Jr) a closed invariant subspace LM G,Jr). 
Since our attempt to construct the "continuous" part of the spectrum failed on 
L~(G,Jn there is no other choice left than proving the following result: 

The representation of Ga on L~(G,Jr) decomposes into a discrete sum of irreduc­
ible representations occurring with finite multiplicities. 

In other words, on L~(G,Jr) everything looks as if G were anisotropic .... 
In the remainder of this lecture we shall give a proof of the above result, 

closely following Langlands' paper but for the use of Poisson's summation 
formula. The method will of course consist in proving that on L~(G,Jr) the 
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convolution operators 

TF<l>(x) = F •<l>(x) = i F(xy- 1 )<1>(y)dy 
G• 

are compact [we shall prove it only for Fe ~(Ga) i.e., ca:i with compact carrier]. 

2. Notations. We shall denote by P a fixed minimal parabolic subgroup of 
G, by U its unipotent radical, by S a maximal split torus in P and by Z its cen­
tralizer, so that P = ZU (semidirect product over Q); of course Z ~ P/U, and 
S n r = Sr is finite. A root a of G with respect to S will be called positive if the 
subspace g(a) of the Lie algebra of G is contained in the Lie algebra of U; the 
corresponding simple positive roots will be denoted by a 1, • • • , a, (r = dim S). 
The connected component of Sa will be denoted by s;, and s;(t) will denote 
the subset of s; defined by the relations 

a,{s) < t (1 ~ i ~ r), 
for a strictly positive t. 

We shall choose in Z = Z(S) a closed subgroup M (defined over Q) such that 
Z = SM, with Sn M finite. We then have 

Za = SaMa 

and Mis anisotropic, so that Ma/Mr is compact. We shall also choose in Ga a 
maximal compact subgroup K such that Sa is stable under the involution of Ga 
with respect to K; we then have 

Ga= Ks;MaUa; 

the corresponding decomposition of an x e Ga will be written as 

x = k,.s,.m,.u,.; 

s", u,. and the product k"m,. are uniquely determined by x. 
We shall denote by1 

6 = KSi(t)nMnu 

a fixed Siegel's domain in Ga and b~· ~ 1, · • ·, e. elements of G0 such that 

• 
G. = u 6eir. 

i=I 

Finally, the Lie algebra of U will be denoted by n; the map 

exp: n-+ U 

is an isomorphism of algebraic varieties defined over Q, and induces an isomor­
phism of analytic varieties na -+ U a; it transforms the (additive) Haar measure 

1 We shall denote by OM or Ov or OG, etc ... , fixed compact subsets or Mor u. or G., etc .... 
However the meaning of such a "fixed" compact set will be allowed to change a finite number or 
times in the course of the proof. 
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of n11 in that of U 11 • Though Ur is not necessarily the image under exp of some 
discrete subgroup of n11 , it is known that there is in n11 a lattice a c n0 such that 
exp( a) is a subgroup of finite index of Ur· If V c U is the unipotent radical of a 
parabolic subgroup containilig P, it is clear that 

V(- = V n exp(a) = exp(o n a), 

where D is the Lie algebra of V, is a subgroup of finite index of Vr. 

3. Majoration of the kernel. Let Cl> e L 2(G,Jr); since Cl> is invariant under (at 
least) 

U(- = exp(a), 

we get at once, for every Fe ~( G 11), 

(1) TFCl>(x) = f K~x, y)Cl>(y) dy 
G•/Ur 

where 

(2) K~x,y) = L F(x11y- 1) = L F[xexp(v)y- 1]. 
rreUr vea 

To get an asymptotic evaluation of KF(x, y) for x e S, we shall use Poisson's 
summation formula on n11 : for given x, ye G11 it is clear that 

(3) 

is C00 with compact carrier on n11, whence 

(4) K~x. y) = L f F[x exp(n)y- 1 )e2 •d.l<111 dn 
.le'il n• 

where the summation extends to the set ~ of all linear forms A.: n11 >-+ R which 
take integral values on a. 

Consider now the integration domain G,JU(- in (1); since U,JU'r is compact 
we see that in the decomposition y = k,s,m,u, of y we have u, e Ou, a fixed 
compact set in U 11 • Furthermore, since F has a compact carrier, we see that 

F(x11y- 1) =F 0 => x,,y- l E nG; 

if x E s we have x E KOMs.Jlu = nGsx and thus 

F(X'IY- 1) =F 0 => Sx'IY- 1 E '2G 

-1 -1 -1 -lk-1 n 
=> s"11u, s" · s"m' s, 1 e HG 

-1 -1 -1 -1 n 
=> s"11u, s" · m, · s"s' e HG, 

and since the decomposition 

p = u,m,s, 
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of a p e Pa is topological we conclude among other things that 

(5) F(x17y- 1) =I- 0 => m, E nAI and s, E '1ss .... 

For x e $ we thus see that 

(6) 

so that we need only evaluate (4) in this range, and even for ye K'1M'1ss...Ov­
since we integrate modulo U[ .. 

Then we get 

f F[x · exp(n) · y- 1 ]e2•dA(nl dn = f F[c.o.., · s.., exp(n)s; 1 • s11y- 1 ]e2•iAl11> dn 
na "• 

where c.o.., = xs; 1 e nG; furthermore c.o..,,, = s11y- 1 also remains in some fixed 
compact nG as we have seen above. 

Thus 

f F[x. exp(n). y- I Je2•iA(nl dn 
n11 

= f F[c.o11 • exp(Ad(s..,)n) · c.o11.J,Je2•iA(nJ dn 

"" 
= P(s11)-

1 f F[c.o.., · exp(n) · c.o11•1]exp[2niA(Ad(s..,)- 1n)] dn, 

"• 
and if we define 

(7) F ,,,,{).) = f F[c.o,, · exp(n) · c.o11,1]e2"u111> dn 
n11 

for any real linear form ). on n., we eventually get 

(8) f F[x · exp(n) · y- 1 ]e2"iAl•l dn = P(s,,r 11'11,,,(Ad(ss)A.] 
n11 

where we still denote by Ad(s,,) the contragredient of the adjoint representation of 
Sa on"•· and where 

(9) P(s) = detn Ad(s) = n cx(s~ 
11>0 

each root occurring as many times as its multiplicity. 
Now since the functions 

n >---+ F[c.o.., · exp(n) · C.011,,.] 

obviously remain in a fixed compact subset of !'}(na~ their Fourier transforms 
F x,}' are uniformly rapidly decreasing at infinity; if we choose any norm II A. II on 
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the dual space of na we thus have for every integer N a majoration 

(10) 

valid for all nonzero A. and all x, y under consideration. From this we get 

If F[x · exp(n) · y- 1 ]e2"u<n> dnl -< p(s,.)- 1 jJAd(s,.)A.jJ-N 

"• 
and if we denote by A.11 the restriction of A. to the subspace of na corresponding to 
a positive root a we eventually obtain 

(11) f F[xexp(n)y- 1]e2 "iA<n>dn -< llA.ll-N/J(s,.)- 1 ·sup a(s,.t 
"• A.¢0 

for every integer N and A. e n:. 

4. Majoration of TF~x) in S. We now make use of the fact that <I> is a cusp­
form to get a majoration of T~(x) for x e S. 

Choose a simple root °'i and let V be the subgroup of U spanned by the roots 

such that ni > 0; hence V is the unipotent radical of a (maximal) parabolic 
subgroup containing P. 

In the Fourier integral 

(12) f F[x · exp(n) · y- 1 )e2"iA(nl dn 

"• 
assume A. vanishes on the Lie algebra Da of Va; then (12), as a function on y, 
is right invariant under Va, because if ve Va we have (by the Campbell-Hausdorff 
formula) 

exp(n)v- 1 = exp[n - v(n)] 

with v(n)e Da; taking n - v(n) as a new integration variable in (12), which replaces 
dn by dn, one gets at once the invariance of (12) under Va. 

But since <I> is a cusp-form, we have 

hence also 

f <l>(gv) dv = 0 
Yn/Yr 

f <l>(gv) dv = 0 
Yir/Yr 
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since v;.. = VR n exp(n) c Vr, and if we write formula (1) as 

(13) TF<l>(x) = f dy r KF(x, yv)<l>(yv) dv 
G a/V aUr JV a/Vr 

we see that we can remove from the series 

(4) KF(x, y) = L J. F[x · exp(n) · y- 1 )e2 "iA(nJ dn 
Ae'll na 

those terms for which A. = 0 on DR. 

But if A. is not identically 0 on DR then there is a root a: = n;a:; + · · · + n,a:, 
for which 

ni > O; 

inequality (11) and the fact that the a:1{s,,) remain bounded for x e 6 yield for 
such a A. a majoration 

IL. F[xexp(n)y-1]e2"iA(nldnl-< llA.ll-Nfl(s.,.)-1a:~s.,.)-N 

and since LAe~i llA.11-N converges for large N it follows that 

(14) KF(x, y) = O[a:;(s,,r//l(s.,.)] + · .. 
where the dots do not contribute lo the calculation of T,4», and are invariant 
under VR; furthermore it is clear from (5) that (12) vanishes unless 

ye KQMQ5s,,U R• 

so that the kernel obtained from (14) by removing the dots still vanishes outside 
KQMQ5s,,u •. 

We thus get from (13) 

TFl!l(x) -< fl(s,r 1a:;(s"r J. lll(y) dy = fl(s")- 1 a:~s.,.)N f <l>(y) dy, 
KnMnss"u a/Ur Kniwnss..Ou 

whence, by Cauchy-Schwarz inequality, 

-< /l(s")- 11X;(s")Nv(KQMQssx!lul1 {f lt1>(y}l2 dy}\ 
KOiwOss,.nv 

but 
KQM!lssxnu c KQMS;(t')Qu = 6', 

a fixed Siegel's domain, and thus 
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on the other hand 

v(KnMnssJlu) = v(KnMnssJlus; 1) ~ v(s .. nus; 1) ~ PCs .. ), 
and we eventually get 

a.i(s .. )N II II 
Tpel>(x) -< p!(s .. ) ell 2 

for x e 6. Since this is true for any i = 1, · · · , r we actually have 

(15) Tpel>(x) -< ~~~: JJellJJ 2 in 6 

where 

(16) 11(s) = inf[a.1(s), · · ·, a.,(s)]. 

Note that PCs)'= n a.~s)" with positive rh so that 

PCs)~ 11<sY 

for a suitable r. From this and (15) we finally get 

(15') 

for all x e 6 and ell e L~(Gw'r). 

5. End of the proof. To conclude the proof of the fact that Tp is compact on 
L~(Ga/r) it remains to prove that the set 8 = {TpellJelleL~(Ga/r), JJellJJ 2 ~ 1} 
is precompact in L 2(Ga/r). 

First of all Gair is finitely covered by U6ei with finitely many e1, • • ·, e,., 
so that we need estimates not only for Tpel>(x) but also for TpCl>(xeJ for x e 6; this 
amounts to replacing Cl>(x) and r by Cl>(xei) and eirei- l• so that we get from (15') 
a majoration 

(15") 

Now if X denotes any right invariant differential operator on G,,_ (of arbitrary 
order) we have 

X(Tpell) = X(F •ell) = (X F) •ell 

= Txpell; 

applying (15") to XF we conclude that the functions of 8 are uniformly bounded 
together with all their derivatives on Gair, and this obviously shows that 8 is 
pre-compact, which concludes the proof. 

6. A majoration of cusp-forms. Assume a given ell e L~(Ga/r) is an auto­
morphic form in Harish-Chandra's sense, i.e., 

(1) ell is annihilated by an ideal offinite codimension in the center of the envelop­
ing algebra of m. 
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(2) Cl> transforms under g -+ kg according to some finite dimensional rep­
resentation of K. 

(If the ideal and the representation are given, those Cl> remain in a finite dimen­
sional subspace because (a) there are finitely many irreducible unitary rep­
resentations of GR in which the given ideal and representation occur, (b) these 
irreducible representations of GR occur in L5(G,Jr) with finite multiplicities, 
(c) each finite dimensional representation of K occurs finitely many times in 
such an irreducible representation.) Then it is easy to show there is an Fe ~(G) 
such that TFCI> = Cl>. 

We thus obtain for every automorphic form in L5(G,JO a majoration 
cI>(x~;) -< 17(sxrllel>ll 2 in S for every positive integer N. 

7. Cusp-forms on adele groups. Denote by A the ring of adeles of Q and 
consider L 2( GA/Ga). If U is the uni potent radical of a parabolic subgroup P of G, 
then U JU a is compact, so that one can define 

cI>g(g) = r Cl>(gu) du 
Ju,,.1u0 

for every function Cl> invariant under Ga; of course functions cI>g corresponding to 
conjugate V's are essentially the same, so there are essentially as many Cllg (for 
given Cl>) as there are classes of parabolic subgroups. 

The space L5(GJGa) defined by the requirement that 

«Ilg = 0 for all U 

is a closed subspace of L2(GJGa), invariant under left translations by elements of 
GA· We have then the same result as "at infinity," namely: for every continuous 
function F with compact support on GA• the convolution operator 

TF«ll(x) = f F(xy- 1)Cl>(y) dy 
G• 

is compact on L5(G JGQ), so that the representation of GA on L5(G JG0) decom­
poses into a discrete sum of irreducihle ones with finite multiplicities. 

One could either deduce this result from the theorem "at infinity" or prove it 
directly (and then deduce from it the theorem "at infinity") by following the 
same method ; one should then take 

F(x) = fl F p(xp) 

where F 00 e .@(GR), where, for a finite p, the function FP is locally constant with 
compact carrier, and where F P is for almost all p the characteristic function of 
the group of integral points of GP. One can then use Poisson's formula in the 
form 

L F(x17y- 1) = L f F[x exp(n)y- 1 )A.(n) dn 
~EUa .I. nA 
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where A(n) is the (Pontrjagin) character of the additive group of nA attached to a 
rational linear form A on n, etc ..... This would even be simpler in some respect 
than the computations at infinity. 
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Eisenstein Series 
BY 

R. P. LANGLANDS* 

I. Preliminaries. In these lectures I want to discuss, with some indications of 
proofs, some of the elementary facts in the theory of Eisenstein series. Although 
the discussion can be carried out in more generality it is most convenient, in the 
context of this institute, to take for discrete group an arithmetically defined sub­
group r of the group G of real points of a reductive group Ge defined over Q 
whose connected component Gi has no rational character. It is also necessary to 
suppose that the centralizer of a maximal Q split torus of G~ meets every com­
ponent of Ge. The reduction theory of Borel applies, with trivial modifications, 
to G; it will be convenient to assume that r has a fundamental set with only one 
cusp. Fix a minimal parabolic subgroup P~ defined over Q and a maximal Q 
split torus Ai of Pi so that the standard parabolic Q-subgroups are defined. 
A (standard) cuspidal (percuspidal) subgroup P is the normalizer in G of a 
(standard) parabolic (minimal parabolic) Q-subgroup Pe of G~. To each standard 
cuspidal subgroup P is associated a subspace ~e of the Lie algebra ~ of A~; 
this subspace will be called the split component of P. By definition the rank of 
Pis equal to its dimension. G, the set of real points on Ge, will also be called the 
split component of P. P is a product AMN where A is the analytic subgroup of G 
with the Lie algebra G, N is the set of real points in the unipotent radical of 
Pc, and M satisfies the same conditions as G. We identify M with N\MN. 
r 11 P s;;; MN and 0 = r 11 N\r 11 MN is an arithmetically defined subgroup of 
M. Assume that for each standard cuspidal subgroup P it also has a fundamental 
domain with only one cusp. 

Suppose P and P' are two standard cuspidal subgroups with the split com­
ponents G and G' respectively. If there is an element of Q, the Weyl group (over Q) 
of Gi, taking Ge to Ge we shall say that P and P' are associate; let Q(a, G') be 
the set of distinct linear transformations from Ge to Ge obtained by restricting 
such an element of Q to ~e· The relation of being associate is an equivalence 
relation. The normalizer of ~(~') in G leaves M(M') invariant and consequently 
acts on the centre Z(Z') of the universal enveloping algebra of the Lie algebra 
of M(M') and on the set X(X') of homomorphisms of Z(Z') into C. The orbits in 
X(X') under this action are finite. If P and P' are associate, Z and Z' are isomorphic 
and there is a natural one-to-one correspondence between orbits in X and X'. 
Every element of Z defines an unbounded operator on L~(0\M). the space of 

• Miller Fellow. 
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cusp forms on 0\M. If ~ e .I let 

VW = {<Pe L5(0\M)IX <P = e(X)cP for all Xe Z} 

and if E is an orbit in l let 
V(E) = L V(~). 

~ea 

V(E) is a closed subspace of L~(0\M) invariant under Mand 

L~(0\M) = L EB V(E). 
s 

If E' is the orbit in l' corresponding to E the space V(E') may be defined in a 
similar fashion. V = V(E) and V' = V(E') are said to be associate. We shall call 
such a V a simple admissible subspace. The symbol W will denote the space of 
functions on a fixed maximal compact subgroup K of G spanned by the matrix 
elements of some irreducible representation of K. 

2. Partial decomposition or L2(r\G). If Vis a simple admissible subspace of 
L~(0\M) let G(V, W) be the set of all continuous functions Cl> on NA(r n P)\G 
such that Cl>( mg) belongs to V for all g and Cl>(gk- 1) belongs to W for all g. 8( V, W) 
is a finite dimensional Hilbert space with the inner product 

(Cl>, 'I') = f Cl>(mk)'P(mk) dm dk. 

8\Al><K 

Let !')(V, W) be the space of all continuous functions on N(r n P)\G such that 
t/J(mg) belongs to V and tf>(gk- 1) belongs to W for each g and such that the pro­
jection of the support of q, on NM\G is compact. 

LEMMA 1. If"' e !')(V, W) then 

"'A(g) = L t/J(yg) 
belongs to L 2(r\ G). rnP\r 

The proof of this lemma requires the result in §6 of Godement's lecture on 
cusp forms. 

Suppose {P} is the set of all standard cuspidal subgroups associate to a given 
one and {V} = {V(P)IPe {P}} is a collection of associate simple admissible 
subspaces. Let L({P}, {V}, W) be the closed subspace of L2(r\G) spanned by the 
functions t/>AO with q, in !')(V(P), {V}, W) for some Pin {P}. 

LEMMA 2. L2{r\G) is the orthogonal direct sum of the spaces L({P}, {V}, W) and 
for a.fixed {P} and {V}, Lw EB L({P}, W) is invariant under G. 

This lemma is a fairly easy consequence of Lemma 3 which will be stated in a 
few minutes. To some extent it reduces the problem of decomposing L2(r\G) to 
that of decomposing each of the spaces L({P}, {V}, W). 

3. Eisenstein series. If P belongs to { P} let oc be the split component of P. 
Let A be the generic symbol for a linear function on Oc· We can write any q, 
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in ~(V, W) as a Fourier integral 

(1) t/>(g) = (2~)q t.A=Ao exp(A(H(g)) + p(H(g))<ll(A, g)!dAI. 

Here <I>(·), which I call the Fourier transform of cf>, is an entire function on 
the dual of ac with values in B(V, W) and <l>(A, g) is the value of <ll(A) at g. The 
dimension of ac is q; pis one-half the sum of the positive roots; and a(g) = expH(g) 
if g = na(g)mk, n e N, a(g) e A, me M, k e K. If (A0 , a) > (p, a) for every positive 
root a then 

A 1 J 
</> (g) = (2n:)q ReA=Ao r~r exp(A(H(yg)) + p(H(yg)))<l>(A, yg)!dAI. 

To study the map cf> -+ t/>A we shall, for an arbitrary <I> in l(V, W~ study the series 

L exp(A(H(yg)) + p(H(yg)))<l>(yg). 
rnP\r 

This series is of interest for all functions <I> on NA(r n P'/\G such that, for each g, 
<l>(mg) is an automorphic form, in the sense of Harish-Chandra, on 0\M which is 
square integrable on 0\M and <l>(gk- 1) belongs to some space W. It is called an 
Eisenstein series. Denote its sum by E(g, <I>, A). For each g and <I> this function 
is defined and holomorphic in the domain {A!Re(A, a) > (p, a) for all a > O}. 
One of the basic facts in the theory of Eisenstein series is that it can be continued 
to all of the dual space of 0c as a meromorphic function. This has first to be 
done when <I> belongs to one of the spaces l(V, W) and for the moment we con­
centrate on that. 

LEMMA 3. If P' is another standard cuspidal subgroup of rank g then 

(a) f E(ng, <I>, A) dn = 0 
rnN'\N' 

if P and P' are not associate. However, if P and P' are associate 

(b) I rnN'\N' E(ng, <I>, A) dn = seo~.a'l exp(sA(H'(g)) + p(H'(g)))(M(s, A)Cl>)(g) 

where M(s, A) is a linear transformation from l(V, W) to l(V', W) analytic as a 
function of A in {A!Re(A, a) > (p, a) for a > O}. V' is associate to V. 

In order to gain some understanding of this lemma we consider the case that P 
is the standard cuspidal subgroup, P' = P, and <I> is a constant function. The 
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sum on the right of (b) is then a sum over the Weyl group. The left side equals 

[ L exp(A(H(yng)) + p(H(yng)))C!>(yng) dn 
• rnN\N l"nP\L 

L µ(r n N n y- 1 Py\N n y- 1 Py) f exp(A(H(yng)) 
rnP\l"/rnN Nny· •Py\N 

+ p(H(yng)))C!>(yng) dn. 

We consider the integrals in this sum individually. Using the Bruhat decomposi­
tion to write y as pnwu (see pp. 63-70), we see-that the integral equals 

exp(A(H(p)) + p(H(p)) {I exp(A(H(nwng)) + p(H(nwng)) dn}<l>(g). 
Nnnj"JPnw\N 

The expressio,n in brackets equals 

exp(A(Ad nw(H(g))) + p(H(g))) f exp(A(H(nwn) + p(H(nwn))) dn 
Nnnif)Pnw\N 

and we are done. Observe that if, as we suppose, the measure of r n N\N is one 
then M(l, A) = I. 

4. Some functional analysis. Combining Lemma 3 with the Fourier inversion 
forr.iula we obtain a formula which is basic for everything to follow. 

COROLLARY. Suppose P and P' are associate standard cuspidal subgroups, V 
and V' are associate admissible subspaces, t/J belongs to ~(V, W), and Y, belongs to 
~(V', W). If the Haar measure on G is suitably chosen, then 

(2) f, t/J A (g)y/ (g) dg = (2~)' f. L . (M(s, A)<l>(A), 'I'( -sA))ldAI. 
T\G ReA~Ao r&n(a,a) 

Of course A0 must be such that (A0, ix) > (p, ix) if ix is a positive root of \ll. Simple 
approximation arguments now show that if t/J(g) can be represented in the form (1) 
with a function <I>(·), with values in ef(V, W), which is defined and analytic in a 
tube over a ball of radius R with R > (p, p)t and behaves well at infinity then 
t/J A ( • ) is defined and square integrable and the formula (2) is valid. In particular 
<I>(·) could be taken to lie in Jf'(l(V, W)) the space of all functions analytic in 
some such tube which go to zero at infinity faster than the inverse of any poly­
nomial. 

Let P1, ···,pr be the elements of {P}, let Vi = V(Pi) and set 

r 

Jf' = L EB Jf'(I( vi, W)). 
i= 1 
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Let ell(·)= (ell 1( • )), • • ·, ell~· 1, where ell1( ·) is a function in Jf"(8(V', W)), be the 
symbol for a generic element of Jf". It is clear that we can define a linear map 
ell(.)-+ t/>A(.) of Jf" into L({P}, {V}, W). 

Suppose that, for 1 ~ i ~ r,f.{ · ) is a complex valued function defined, bounded, 
and analytic in the tube Tk over some ball of radius R > (p, p)t with center 
zero in the dual of a~ and f;(sA) = f;(A) ifs e n(ai, al). 

Set fell(·) = (/1( • )Cll 1( ·), • • • ,f,( ·)ell,.(·)). 

The following lemma is quite useful. 

LEMMA 4. If 

.max SUP, lf.{A)I = k 
l~i~rAeTk 

then there is a bounded operator A.(f) on L({P}, {V}, W) of norm at most k so that 
if 'I'( · ) = fell( · ) then t/I A = A.(f)t/> A. 

Suppose ell(·) = (ell1( ·),···,ell,(·)) and 'I'(·) = ('I' 1( ·),···,'I',(·)) are two 
arbitrary elements in Jf". Then (t/>A, 1//) is equal to 

.± .± (21 w. f L (M(s, N)Cll;(N), 'I' 1( - sAi))ldA;I. 
1= 11= 1 7t1 ReA'=Ai, seQ(a',ai) 

Denote this expression by (ell(· ), 'I'(· )). It is easily verified that 

(f Cll(. ), 'I'(. )) = (ell(. ),f*'I'(. )) 

if/*(·) = (ff(·),··· ,f~( · )) andfT( ·)is defined by JT(A) =/;<-A). Consequently 
(f*f ell( · ), ell( · )) ~ 0. If I > k there is a function g( · ) satisfying the same conditions 
as f( · ) so that 12 - JT(A)f.{A) = gT(A)g~A), 1 ~ i ~ r. Consequently 

l2(ell(. ), ell(.)) - (fell(. ),Jell(.)) = (gell(.), gell(.)) ~ 0. 

The lemma is an easy consequence of this inequality. In particular take 

f.{A) = (µ - (A, A))- 1 

with µ > (p, p). Then A.(f) is self-adjoint with a dense range; consequently the 
operator A = µ - A.(f)- 1 is a self-adjoint operator, usually unbounded, on 
L({P}, {V}, W). If 'l';(A) =(A, A)ell;(A), 1 ~ i ~ r, then Atf = 1//. The resolvent 
R(z, A) = (z - A)- 1 is an analytic function of z off the infinite interval ( - oo, (p, p)]. 

5. A theorem. 
THEOREM. For each i and each j and each s in Cl(a', ai) the function M(s, A) is 

meromorphic on the dual of a~. For each i and each ell in e(Vi, W) the function 
E( ·,ell, A) with values in the space of continuous junctions on r\G is meromorphic 
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on the dual of a~. If s e O(ai, ai), t e n(ai, a1c) and Cl> e J'(Vi, W) the functional 
equations 

are satisfied. 

M(ts, A) = M(t, sA)M(s, A), 

E(g, M(s, A)CI>, sA) = E(g, Cl>, A) 

The first, and most difficult, step in the proof of this theorem is to show that it 
is true when dim ai = 1 for one, and hence al~ i. Most of the important ideas in 
this case have been described by Selberg in his talk at the International Congress. 

6. In which the number of variables is one. If dim ai = 1 then r is 1 or 2. 
If z is a complex number let A'(z) be such that (ai, A'(z)) = z(ai, ai)t if a; is the 
unique simple root of ai. Let ti= 8(V 1, W) or 8(V 1, W) E0 l'(V2, W) according 
as r is 1 or 2. If r = 1, there is ans in O(a1,a1) different from the identity; let 
M(z) = M(s, A1(z)). If r = 2 and s is in n(a 1, a2) then sA1(z) = -A 2(z). In this 
case let 

M( ) = ( 0 M(s- 1, A2(z))\ 
z M(s, A1(z)) 0 }" 

In both cases M(z) is a linear transformation of I. If Cl> = (Cl>1) or (Cl>1, Cl>2 ) belongs 
to 8 let 

E(g, Cl>, z) = L E(g, Cl>;, A'(z)). 
i 

The theorem may be restated as: 

THEOREM. (i) E( · , Cl>, z) and M(z) are meromorphic in the complex plane, 
(ii) M(z)M(-z) =I, 
(iii) E(g, M(z)CI>, - z) = E(g, Cl>, z). 

If (i) and (ii) are true and P is any maximal standard cuspidal subgroup then 

f, E(ng, M(z)CI>, - z) - E(ng, Cl>, z) dn = 0. 
rnN\N 

It follows from this that the integrand is a cusp form. Since on the other hand it 
is by construction orthogonal to the cusp forms it must vanish identically. Thus 
(iii) is also true. 

The space ff may be regarded as a space of functions, each of which is defined 
on some strip of the form jRe zl < (p, p)t + e, e > 0, by setting 

Cl>(z) = L E0 Cl>1(Ai(Z)). 
i 

Cl>(·) takes values in ti. If c is close to but greater than (p, p}! 

l Jc+ioo -
(<f ,I/I A)= f--= (Cl>(z), 'I'( -z)) + (M(z)Cl>(z), 'P(z)) dz. 

1tl c-i«> 
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If c 1 > Rd. > c then (R()..2, A)</> A, tJ/) is the sum of 

(3) ;;. { («])().), 'P( -1)) + (M().)CI>().~ 'P(l))} 

and 

1 J'' +ico 1 (4) -2 . ;. 2 2 { (()(z), 'P( - z)) + (M(z)cf>(z)'P(z))} dz. 
1tl . -z 

c1-100 

If ()(z) = exp z2 cJ> and 'P(z) = exp z2 'P with Cl> and 'P in I then (4) is an entire 
function of ). and (3) is equal to 

(exp 2).2/2).){(cJ>, 'P) + (M().)CI>, 'P)}. 

Consequently M().) is analytic wherever (R(). 2, A)t$, If,) is. In particular it is analytic 
for Re ). > 0, ;. ¢ (0, (p, p)t). 

Now we want to show that E( ·,Cl>, z) is analytic in this region also. If /(g) is a 
continuous function on G with compact support such thatf(kgk- 1) = f(g) for all 
k in K there is an entire function n(f, z) with values in the space of linear trans­
formations of 8 so that the convolution of E(g, Cl>, z) and f(g) is E(g, n(f, z)CI>, z). 
As a consequence it is enough to show that if t/l(g) is any continuous function on 
J\G with compact support then 

f E(g, Cl>, z)t;,{g) dg 
r\G 

is analytic in this region. In doing this we are free to modify E(g, Cl>, z) outside of 
the support oft/I. If Cl> = L; Ea Cl>; then 

E(g, Cl>, z) = L L F(yg, Cl>;, N(z)) 
i rnP;\r 

with 

According to a principal stated by Borel in his lectures on reduction there is a 
number x so that, for 1 ~ i ~ r, tht: inverse image in G of the support of t/I is 
contained in {glcx;(Hi(g)) < x(cxi, cxi)t}. Let F"(g, Cl>;, z) equal F(g, Cl>" N(z)) if 
cxi(Hi(g)) < x(cxi, cxi)t and let it equal - F(g, Cl>;(z~ -N(z)) otherwise. Here cJ>;(z) is 
defined by 

M(z)CI> = L Ea Cl>;(z). 
i 

Set 

E"(g, Cl>, z) = L L F"(yg, Cl>;, z). 
i rnP'\r 

The functions E(g, Cl>, z) and E"(g, Cl>, z) are equal on the support oft/I. 
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It is easy to compute the Fourier transform of F"(g, <I>;, z). The argument of §4 
allows us to show that E"(g, <I>, z) is in L2(r\G) and that the inner product 
(E"( · , <I>, A.), E"( · , <I>, A.)) is equal to 

(A. + ii)- 1 {exp x(A. + ii)(<I>, 'I') - exp( -x(A. + ii))(M(A.)<I>, M(µ)'P)} 

+ (A. - µ)- 1 {exp x(A. - ii)(<I>, M(µ)'P) - exp x(ii - A.)(M(A.)<I>, 'I')}. 

Call this expression w(A., ii; <I>, 'I'). Suppose E"(g, <I>, A.) is defined at A. = A.0 and 
that w(A., ii; <I>, <I>) is analytic in A. and ji for IA. - A.0 1 < R, Iii - lol < R. Since 

I :;nE"(., <I>, A.o)l
2 

= a;;µnw(A.o. Ao; <I>, <I>) 

we easily show that 

~ (A. - A.or !:.._ E"( . <1> A. ) 
t.... ' !11ft ' • 0 n=O n. UA 

converges for IA. - A.0 1 < R so that E"( · , <I>, A.) is an analytic function of A. in this 
region with values in L 2(r\G). It is easy to convince oneself that if M(A.) is a mero­
morphic function of A. satisfying M(A.)M( -A.) = I then w(A., µ; <I>, 'I') is a mero­
morphic function of A. and ji whose only singularities are on the lines A. = A.0 or 
ji = l 0 where A.0 is a singularity of M(A.). In verifying this use the relation 
M*(A.) = M(l). Because of this remark our only responsibility is to show that 
M(A.) is meromorphic in the entire complex plane and satisfies the stated func­
tional equation. However the functions E"(g, <I>, z) will still be used in an auxiliary 
role. 

If ). = u + i1: then w(A., A; <I>, 'I') which equals 

(1/2u) {exp 2xu(<I>, 'I') - exp( - 2xu)(M(A.)<I>, M(A.)'P)} 

+ (1/2i1:){ exp 2ixt(<I>, M(A.)'I') - exp( - 2ixt)(M(A.)<I>, 'P)} 

is a positive semidefinite form in <I> and 'I'. As a consequence 

llM(A.)11 ~ max{J2 exp 2xu, ~j exp 2xu}. 

We conclude first of all that if U is a set of the form a ~ t ~ b, 0 < u ~ c, with 
ab > 0, then l\M(A.)11 is bounded uniformly for A. in U. This allows us to estimate 
E(g, <I>, A.) for A. in U and then, utilizing the close relation between E(g, <I>, A.) and 
E"(g, <I>, A.1 to show that llE"(., cl>, A.)11 is uniformly bounded for A. in U. Un­
fortunately the analysis required for these two steps is rather elaborate and can­
not be reproduced here. It may be found in §5 of my mimeographed notes on 
Eisenstein Series. To continue we observe that this implies, by the very definition 
of c.o(A., A, cl>, t), that, for each cl> and 'I', ro(A., A:; cl>, 'I') is bounded in U. This can 
only be so if 

lim M*(u + it)M(u + it) = M(u - it)M(u + it) = I 
alO 
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and 
Jim M- 1(u - i'r) - M(u + ir) = 0 
n>O 

uniformly fort E [a, b]. Roughly speaking this means that M(ir) = M- 1( -ir) for r 
real. In any case, by an appropriate variant of the Schwarz reflection principle 
we can show that if we set M(A.) = M- 1(-A.) for Re A.< 0, A.~[-(p,p)f,O] then 
M(A.) can be extended across the imaginary axis to be meromorphic everywhere 
but in the interval [ -(p, p)t, (p, p)f]. 

Finally it must be shown that M(A.) is also meromorphic in the interval 
[ -(p, p)f, (p, p)f]. Since the proof of this is also based on §5 of my notes I shall not 
present it here. 

7. In which the number of variables is usuaUy two. In the proof of the func­
tional equations for Eisenstein series in one variable there are two main points: 
to show that the function M(z) is meromorphic and satisfies the stated functional 
equation and to construct the functions E"(g, <I>, z) and find the expression 
w(A., µ;<I>, 'I') for the inner product of two such functions. In the general case the 
first step is to show that the functions M(s, A) are meromorphic everywhere and 
satisfy the equations of the theorem. After this one can proceed in two ways. 
Either one can find the analogues of the function E"(g, <I>, z) and the expression 
w(A., µ; <I>, 'I') as we shall do now or one can proceed in a more direct fashion 
to analytically continue the functions E(g, <I>, A) as is done at the end of §6 of the 
mimeographed notes referred to before. Since in proceeding the first way I work 
from rather rough notes you may prefer the second upon which a little more 
reliance can be placed. I present the first because it introduces a number of ideas 
and formulas likely to be of use in the attempt to obtain in the general case a 
trace formula in the sense of Selberg. 

The first step is based on familiar ideas. It will probably be easier to understand 
if we discuss it in a very simple case. Let G = SL(3, R), let r = SL(3, Z) and let 
{P} consist of one group, the group P of upper triangular matrices in G. In the 
diagram oc 1 and oc2 are the simple roots of a, oc 3 = p = !(<X1 + oc 2 + <X 3) is the other 

\ 

... ... I 
', I ... ______ _ 

: <X3 = p 

' \ 

II 



244 R. P. LANGLANDS 

positive root, and I is the region (A, oc1) > (p, oc1), i = 1, 2. The union of I and II is 
the convex hull of I and its reflection in the line (oc" A) = 0. The region III plays 
the same role as II with the line (oc 1, A) = 0 replaced by (oc 2, A) = 0. Let A be the 
tube over I, B the tube over the union of I and II, and C the tube over the union 
of I and III. The functions M(s, A) are at first defined only in A. 

Let s,, i = l, 2, be the reflection corresponding to the root oc1• For reasons 
to be discussed later M(s;. A) depends only on the projection of A on the 
orthogonal complement of the line (A, oc1) = 0 and is a meromorphic function of 
A. Suppose we could show that, for all s, M(s, A) is meromorphic in B and satisfies 
there the relation 

(5) 

Suppose we could also show the analogous facts for s2• Then, for example, 

in A. Since the right side is meromorphic in the entire two-dimensional complex 
plane so is the left. An easy induction can be used to show that M(s, A) is mero­
morphic everywhere for each s and that the functional equations are satisfied. 

How then do we continue M(s, A) over B and prove (5). Suppose that for any 
<I> in 8(V, W) we could analytically continue E( ·, <I>, A) over all of B (except 
perhaps for some poles) and show that 

(6) E( ·, M(sb A)<I>, s1A) = E( ·,<I>, A) 

in this region. If N is the group of upper triangular unipotent matrices and Q is 
the Weyl group of G 

f E(ng, <I>, A) dn = L exp(sA(H(g)) + p(H(g)))(M{s, A)<l>)(g) 
rnN\N sen 

and 

f E(ng, M(s" A)<I>, s1A) dn 
JrnN\N 

= L exp(ss1A(H(g)) + p(H(g)))(M(s, s1A)M(sh A)<l>)(g). 
sen 

The left-hand sides of these equations are meromorphic and equal in B; as a 
consequence the functions M(s, A) are all meromorphic in the same region and the 
equations (5) are satisfied. 

As a further simplification we shall in proving (6) assume that l(V, W) is the 
space of constant functions. a is the set of diagonal matrices D(x 1, x2 , x3) of 
trace zero. Suppose oc1 is the linear function x 1 - x2 • Let *P be the group of all 
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matrices in G of the form 

(::: ::: :::). 
0 0 X33 

*Nisthegroupofallsuchmatriceswithx12 = x21 = Oandx 11 = x22 =x33 =1. 
*M is the group of all such matrices with x 13 = x 23 = 0 and x33 = ± 1 and 
•e = r n • N\r n • P is an arithmetic subgroup of • M. Moreover 

tP = *N\P n *N*M 

is a percuspidal subgroup of *M. We can choose tV and tW bearing the same 
relation to tP as V and W bear to P so that llf(tV, tW) is also the space of constant 
functions. There is a natural map <I>-+ t<I> of C(V, W) onto C(tV, tW). a is the 
direct sum of *a = { D(x, x, -2x)} and ta = { D(x, -x, O)} and ta may be 
regarded as the split component of tP. The restriction ts 1 of s1 to ta belongs to 
the Weyl group of ta. Corresponding to ts1 there is a function M(ts1, tA) on the 
dual of tac with values in the space of linear transformations of C(tV, tW). 
Because the dimension of a is one we know that M(ts1, tA) is meromorphic 
everywhere in the dual space of tac. The dual space of ac is of course isomorphic 
to the sum of the dual spaces of *ac and tac. Thus we may decompose a general 
A as a sum •A + t A. A careful study of the computations following the state­
ment of Lemma 3 reveals that if <I> corresponds to t<I> then M(s 1 , A)CI> corresponds 
to M(tsh tA)t<I>. This is the fact with which we started. 

By definition 

E(g, <I>, A) = L exp(A(H(yg)) + p(H(yg)))<l>(yg) 
rnP\r 

= L { L exp(A(H('5yg)) + p(H('5yg)))<l>('5yg)}. 
rn•P\r rnP\rn•P 

Consider the inner sum with the argument yg replaced by g and let g = namk, 
nE*N, m = m(g)E*M, aE*A, and kin K. It equals 

exp(*A(*H(g)) + p(*H(g))) { L exp(tA(tH(Om)) + p(tH(Om)))t<l>(Om)l 
0 9ntP\0 9 J 

= exp(*A(*H(g)) + p(*H(g)))E(m, t<I>, tA). 

Consequently 

E(g, <I>, A) = L exp(* A(* H(yg)) + p(* H(yg)))E(m(yg), t<I>, tA). 
rn•P1r 

It can be shown that the series on the right converges at any point of Bat which 
it is defined and that it represents a meromorphic function in B. The relation 
(6) is an immediate consequence of the known relation 

E(m, M(ts 1, tA)t<I>, tsIA) = E(m, t<t>, tA). 



246 R. P. LANGLANDS 

8. A combinatorial lemma. Before defining the functions E"(g, <I>, A) we had 
best discuss a simple combinatorial lemma. V will be a Euclidean space; V' 
will be its dual; {A. i, · · · , A.P} will be a basis of V' such that (A.i, ;J) ~ 0 if i # j; 
and {µi, · · ·, JtP} will be a basis of V' dual to {A.1, · · ·, A.P}. Suppose pis an ordered 
partition of {1, · · ·, p} into r = r(p) nonempty subsets Fu, 1 ~ u ~ r. Ifie Fu let 
µ~ be the projection of µi on the orthogonal complement of the space spanned 
by {µiii e F.,, v < u} and let ~. 1 ~ i ~ p, be such that (A.~, µt) = ~ii· A point 
A in V' will be called singular if, for some i and some p, (A,µ~) = 0 or (A,~) = 0 
and a point H in V will be called singular if A.~(H) = 0 for some i and some p. 
Suppose A in V' is not singular. Define the function </>~ on V by the condition 
that <J>:(H) = 0 unless A.~(H)(µ~, A) < 0 for all i ·when </>~(H) = 1. Define the 
function 1/1: by the condition that i/l:(H) = 0 unless A.~(H) > 0 for i in Fi and 
A.~(H)(µ~, A) < 0 for i not in Fi when i/l:(H) = 1. Let a; be the number of elements 
in Fu; let b: be the number of i such that(µ~, A)< 0, and let c~ be the number 
of i in llu= 2Fu such that(µ~, A)< 0. Set 

r r 

rx: = b: + L (a; + 1) , P: = 1 + c~ + L (a; + 1). 
u= i u= 2 

LEMMA 5. If His not singular then 

L <-1>'"~<1>:<H) = L < - 011~1/!:<H) 
p p 

if (A.i, A) < 0 for some i and 

L-(-1)11~</>~(H) = 1 + L (- lf~i/l:(H) 
p p 

if (A.i, A) > 0 for all i. 

It is a pleasant exercise to prove this lemma. 

9. L2(I\G) as the bed of Procrustes. Suppose a= aio and <I> e C(Vi0 , W) (the 
notation is that of §4). Suppose A in the dual of ac is such that for all i and alls 
in !l(a, ai) the point Re(sA) is not singular in the sense of the previous paragraph. 
Take V to be ai and A. i, · · · , A_P to be the simple roots of ai. Suppose also that 
Re(A, IX)> (p, rx) if rx is a positive root ofm:. Choose a point H0 in the split com­
ponent of the standard percuspidal subgroup such that 1X(H 0 ) is very large for 
every positive root and let H~ be its projection on a;. For each i let F'f(g, <I>, A) 
be the function 

L L (- l)~·i•A'</>!e<•Al(Hi(g) - H~) exp(sA(Hi(g)) + p(Hi(g)))((M(s, A)<l>)(g)). 
seA(a,a•) p 

Since the functions i/l!e(sAl(Hi(g) - H~) are zero on 
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the lemma shows that F~(g, <1>, A) is zero almost everywhere on this set unless 
i = i0 and that 

Fi~(g, <1>, A) - exp(A(Hi0(g)) - p(H;0(g)))<l>(g) 

is zero almost everywhere on this set. Set 

r 

E"(g, <I>, A) = L L Fi'(yg, <1>, A). 
i= 1 rnP' \r 

It is a consequence of the above remarks and the minimum principle stated by 
Borel in his lectures on reduction theory that if U is any compact set in r\G 
the point H 0 may be so chosen that 

E"(g, <1>, A) = E(g, <1>, A) 

almost everywhere on U. 
It is an easy matter to compute the Fourier transform of the functions 

F;'(g, <1>, A). The arguments of §4 may be used to show that E"(g, <I>, A) is square 
integrable. The relation (2) may be used to evaluate 

(E"(g, <1>, A), E"(g, 'I', M)) 

if 'I' lies in 8(Vi0, W) and M in the dual of~(: = ~~ satisfies the same conditions 
as A. If ocP = I:= 1 (a; + 1) the result is 

± L L L ( -1) .. • exp(tA + sM)(H{» (M(t, A)«I>, M(s, M)'I'). 
i= i sen<a.a'> ren(a',ai> p (I (µ:, tA + sM) 

m=l 

The notation is poor because the linear functions µ: depend, of course, on j. Since 
it can be shown that the functional equations for the functions M(t, A) imply 
that this expression is an analytic function of A and M wherever all the functions 
M(t, A) and M*(s, M) are we can proceed as in the rank one case to complete 
the proof of the theorem. 

10. More Eisenstein series. Once one knows that the functions E(g, <1>, A) and 
M(s, A) are meromorphic everywher~ one can try to use the formula 

(</>~,I/I~)= (2~)9 teA=Ao L (M(s, A)«l>(A), 'l'(-sA))ldAI 

to analyze the space L({P}, {V}, W). In order to get some idea of what actually 
happens let us look at a particular case. We shall study the case that G = SL(3, R), 
r = SL(3, Z), Pis the percuspidal subgroup introduced in §7, and Vand W, and 
hence C(V, W) are the space of constant functions. As a preliminary let us look 
at the same situation with SL(3, R) replaced by SL(2, R) and with the other 
objects of our attention modified accordingly. Godement has already done this 
in his first lecture. However, he was not concerned with the discrete spectrum in 
L({P}, {V}, W) and we shall be. 
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To remind you of the notation : 

Take dn = dx, da = la.I- 1 da., dk = dfJ/2n, and take dg to be such that 

f c/J(g) dg = J dn f da I dkla.1- 2c/J(nak). 
G N Aa 1' 

Then the inner product of <PA and I/I A is equal to 

1 f - e(z) -
2ni <l>(z)'I'( - z) + eo + z) <l>(z)'l'(z) dz 

Rez=zo 

(a) (zo > 1). 

Here <l>(z) = <l>(A(z)) where A(z) is the linear function such that A(H J = z if 

H,. = (1 0). 
0 -1 

In the present situation <I>(· ) is a scalar valued function so inner products are 
replaced by products and if s is the nontrivial element of the Weyl group 
M(s, A(z)) is a scalar valued function equal to e(z)/e(l + z) if 

e(z) = 7t-z/2 r(z/2)C(z). 

Using the residue theorem we see that the expression (a) is the sum of two terms 

(b) 
1 [ - - e(z) - -

2ni J Rcz=O <l>(z)'J'(-z) + e(z + 1) <l>(z)'J'(z) dz 

and 

(c) 
1 -

e<2> <I>(t)'l'(l). 

The estimates of §6 justify this application of the residue theorem. We imme­
diately see that L({P}, { V}, W) is the direct sum of two subspaces L;({P}. {V}, W), 
i = 0, 1. L0({P}, { V}, W) is the space of constant functions and the inner product 
of the projection of <PA and I/I A on this space is given by (c). The inner product of 
the projection of <PA and I/IA on L 1({ P}, { V}, W) is given by (b) which equals 

1 J"' 1 {""'<. > e<-iy) "" . >} 1 lIJ<· > e(-iy) \II< . >}d 
; _"' 2 .., 'Y + e<1 _ iy) 'A"\ -1y . 2 T 'Y + eo _ iy) T - 'Y y. 

As a consequence L 1({P}, {V}, W) is isometric to the space of all functions Y, 
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square integrable on the imaginary axis with respect to the measure dyf'n, which 
satisfy 

V'( . ) e{iy) V'(" ) 
• -1y = eo + iy) • 'Y . 

The term (c) comes from the pole of e(z)/e(l + z) at z = 1. As it happens E(g, <I>, z) 
also has a pole at z = 1 ; to see what the residue is we observe that 

(a) f R:s E(ng, <I>, z) dn = R:s I E(ng, <I>, z) dn. 
rnN\N z-l 2'-l rnN\N 

This of course is equal to 

~:~{exp((A(z) + p)(H(g))) + e(le~ z) exp((-A(z) + p)(H(g)))}<I> = e;2) <I> 

if <l>(g) = <I>. Thus 
1 

~;~ E(g, <I>, z) - e(2) <I> 

is a cusp form. Since it is also orthogonal to all cusp forms it must be 7.ero. 
The analogue of the expression (a) when G = SL(3, R) is 

(d) (2~)2 teA=Ao .~ M(s, A)<l>(A)'P(-sA)ldAI 

with 

M(s A) - n e(A(H.)) 
' - 11>o;s11<0 e(l + A(H,.)) 

(for notation, see my lecture on the volume of fundamental domains). 
I 

\ I I 

a1' / ' ,,.,Ao 
\ I I ,,,. 

\ I // 

" ', I '1 Y2 
'51 'I YI/// 

- - - - - - - " - - .,- - - - - - - -A(H,.) = 1 
I ' ,,,..,,,.. /Cl3 = p 

I Yl',. I 
I ,,,,."' 1h I 

I ,e ' I 
' ---- ---f..------ -- - ---
1 \ 

I \ 

' ' \ 
a2 ' A(H ) = 1 

' 11.1 

The only singularities of the functions M(s, A) which meet the tube over the 
positive Weyl chamber are simple poles on the lines A(H,..) = 1, i = 1, 2, 3. If 
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Cl>(A) vanishes on these three lines then (d) is equal to 

(e) (2~)2 f L M(s, A)Cl>(A)'P( - si\)jdAI. 
ReA=O sell 

Call the closed subspace generated by the functions </J A corresponding to Cl>( · ) 
of this sort L2({P}, {V}, W). As before, L 2({P}, {V}, W) is isometric to the space 
of square integrable functions on the (real) plane, Re A = 0, which satisfy certain 
functional equations. Under this isometry convolution by K-invariant functions 
on G becomes multiplication by scalar-valued functions. The inner product of 
the projection of any </J A and 1// on Li({P}, {V}, W) is given by (e). 

The difference between (d) and (e) is nothing -but the inner product of the 
projection of <PA and I/I A on the orthogonal complement of L2( { P}, { V}, W). If 
si is the complex line A(H m,) = 1, 1 ~ i ~ 3, then by the residue theorem the 
difference will be a sum of three integrals taken respectively over the real lines 
Re A = }'; in si. To describe the exact form of the integrals we need a little 
notation. Let fl(s;, s) be the set of distinct affine transformations from s; to -si 
obtained by restricting those elements of n which take si to -si to s;. The 
difference we spoke of can be written as 

(f) 
itl jtl seQ(~.•Jl 2~ Le A= Y• M(s, A)Cl>(A)ifi( - sA}ldAI. 

Here M(s, A} is a certain scalar valued function on s;. In a moment I shall 
give the explicit form of these functions. First we observe that n(s1, s 2 ) contains 
exactly one erement p, the restriction to s 1 of the reflection in A(Hm,) = 0, that 
n(51, 52) contains exactly one element u, the restriction to 51 of the reflection in 
A(Hm3) = 0, and that n{51, 5 3) contains exactly one element t, the restriction to 
s 1 of the rotation through an angle of 2x/3. From these three elements we can 
obtain for each i and j the unique element of Il(5;~s1i For example, the unique 
element of Il(s3, s 2) is <T{J'C- 1• Observe that, for example, 'Cp takes 5 1 to 5 3• If A is 
in 5 1 and A(H03) + f = z the number in the second row and third column of the 
following table is M(upt- 1, ip/\.i The other entries are interpreted accordingly. 

p (J 't 

1 1 "-z- t> 1 ect - z) 
p 

e-(2) e(2) e<-z + j) e(2) eei - z) 

1 e<z - !> 1 c;1 e(f + z) 
(1 

e(2) e<z + i> e(2)-e(i + z) e<2> 

1 c;(z + f) 1 e<-z + f) 1 e(f - z) c;(f_ + z) 
• e(2J ecz_ + i> e(2) e(-z + J) ec2J eH - z> et! + z} 

The matrix defined by this table is of rank one. 
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The integral (f) is the sum of 

(g) itl J, seo~.•;l ;7t t. A=d, M(s, A)Cl>(A)'P( -si\)ldAI 

and 

(h) 
1 -

e(2)e(3) Cl>(p)'l'(p). 

The points '5; are shown on the diagram. Correspondingly the orthogonal comple­
ment of L 2({P}, {V}, W) in L({P}, {V}, W) is the direct sum of L 1({P}, {V}, W) 
and L0({P}, {V}, W) and the inner product of the projections of qi' and I/IA on 
these two spaces are given respectively by (g) and (h). L0({P}, {V}, W) is just the 
space of constant functions. There is an isometry of Li({P}, {V}, W) with a 
subspace of the direct sum of the spaces of square-integrable functions on 
Re Ai = bi and Re Ai = '52 which is such that convolution by K-invariant 
functions corresponds to multiplication by scalar valued functions. 

The functions E(g, Cl>, A) also have poles on the lines S;. To compute the residue 
of E(g, Cl>, A) on the line Si we combine our earlier result for SL(2, R) with the 
formula of §7. The result is 

e:2)rn~1r exp(* A(* H(yg)) + p(* H(yg)))CI> = e(l2) E'(g, Cl>, *A); 

the sum of an Eisenstein series belonging to the cuspidal subgroup * P. The 
Eisenstein series on the left is, unlike those we have dealt with up to now, not an 
Eisenstein series associated to a cusp form. An automatic consequence of the 
above is that the function defined by the sum on the left is everywhere mero­
morphic. 

Denote the residue of E(g, Cl>, A) on s; by E;(g, Cl>, A). Then 

LnN\N E;(ng, Cl>, A) dn = iti seot. ... ,Jexp(sA(H(g)) + p(H(g)))(M(s, A)Cl>)(g). 

Since the matrix introduced above ii. of rank one this implies that 

e(-z - !) 
E 2(g, Cl>, upA) = e( 3) Ei(g, Cl>, A), 

-z +I 

eH- z) 
E3(g. Cl>, tpA) = e(! _ z) E i (g, Cl>, Ai 

In the general case one can show that L({P}, {V}, W) is a direct sum 

g 

L EB L;({P}, {V}, W) 
i=O 

with g equal to the rank of the elements of {P}. In the course of doing this one 
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sees that all Eisenstein series define functions which are everywhere mero­
morphic and satisfy functional equations of the expected type. The spectrum of 
L1({P}, {V}, W) is again continuous of dimension i. Beyond this, however, the 
situation is very foggy. 



Dimension of Spaces of Automorphic Forms 1 

BY 

R. P. LANGLANDS 2 

I will first formulate a problem in the theory of group representations and 
show how to solve it; then I will discuss the relation of this problem to the 
theory of automorphic forms. Since there is no point in striving for maximum 
generality I start with a connected semisimple group G with finite center. An 
irreducible unitary representation 7t of G on the Hilbert space H is said to be 
square-integrable if for one, and hence, as one can show, every pair u and v of 
nonzero vectors in H the function (7t(g)u, v) is square-integrable on G. It is said 
to be integrable if for one such pair (7t(g)u, v) is integrable. 

Suppose r is a discrete subgroup of G and r\ G is compact. As was shown by 
Godement in an earlier lecture the representation 7t of the previous paragraph 
occurs a finite number of times, say N(7t}, in the regular representation on L2(r\G). 
The problem is first to find a closed formula for N(7t). The method which I will 
now describe of obtaining such a formula is valid only when 7t is actually inte­
grable. 

Square integrable representations are similar in some respects to representa­
tions of compact groups; in particular they satisfy a form of the Schur orthogon­
ality relations. There is a constant d,. called the formal degree of 7t so that if 
u', v', u, and v belong to H then 

{ (7t(g)u', v')(7t(g)u, v) dg = d; 1(u', u)(v, v'). 

If u and v are such that (7t(g)u, v) is integrable and 7t' is a unitary representation 
of G on H' which does not contain 7t, then 

L (7t'(g)u', v')(7t(g)u, v) dg = 0 

for all u', v' in H. 
Let Li> 1 ~ i ~ N(7t}, be a family of mutually orthogonal invariant subspaces 

of L 2(r\ G) which are such that the action of G on each of them is equivalent to n. 
Suppose that 7t does not occur in the orthogonal complement of 

N(K) 

L (f) L;. 
i= 1 

1 Based on notes of the original lecture taken by J. Shalika. 
2 Miller fellow. 

253 
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If 7t is integrable there is a unit vector v in H so that (7t(g)v, v) is integrable. 
Let vi be a unit vector in Li corresponding to v under some equivalence between 
H and Li. The orthogonality relations imply that the operator (f) -+ (f)' with 

(f)'(g) = d,. L (f)(gh)(1t(h)v. v) dh 

= J. (f)(h) {L ecg- 1yh>} dh, 
r1G r 

if e(g) = d,.(1t(g)v, v), is an orthogonal projection on the space spanned by v1 , • • ·, 

vN<,.>· For our purposes it may be assumed that- v transforms according to a 
finite-dimensional representation of some maximal compact subgroup of G. 
Then the argument used by Borel in a previous lecture shows that 

converges absolutely uniformly on compact subsets of G x G. Hence vi.· · · , vN<"> 
may be supposed continuous. As a consequence 

N(1C) 

I vi{g>Vi<h> = I e<g- 1yh). 
i= I r 

Set h = g and integrate over r\ G to obtain 

N(7t) = f I e<g- lyg) dg. 
r\G r 

The sum in the integrand may be rearranged at will. If l: is a set of representatives 
for the conjugacy classes in r the integral on the right equals 

[ I I e<g- 1<>- 1y<>g> dg = I [ e<g- 1yg) dg 
Jr \G r•:E .ier y\r ye:E Jr y\G 

= I µWr\Gr> f e<g- 1yg)dg, 
ye:E Gy\G 

if rY and Gy are the centralizers of y in r and G respectively. The equality of 
N(7t) and the final expression is of course a special case of a formula of Selberg 
and has been known for some time. 

The problem of evaluating µ{ry\Gy), the volume of ry\Gy, has been discussed 
in the lectures on Tamagawa numbers so we shall not worry about it now. 
Since r\G is compact every element of r is semisimple; thus our problem is to 
express the integral 

f e<g- 11g) dg 
Gy\G 

in elementary terms when y is a semisimple element of G. 
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If n is a square-integrable representation of G on H, v is a vector in H which 
transforms according to a finite-dimensional representation of some maximal 
compact subgroup of G, and 

e(g) = d,.(n(g)v, v), 

then a recent theorem of Harish-Chandra states that 

(a) f, e(g- 1yg)dg 
Gy\G 

exists for y semisimple and vanishes unless y is elliptic, that is, belongs to some 
compact subgroup of G. Since r. contains only a finite number of elliptic elements 
the sum in the expression for N(n) is finite. We still require a closed expression 
for the integrals appearing in it. 

Let K be a maximal compact subgroup of G. Since G has a square integrable 
representation there is a Cartan subgroup T of G contained in K. It is enough to 
compute the integrable (a) for y in T. There is a limit formula of Harish-Chandra 
which allows one to compute its value at the singular elements once its values 
at the regular elements are known. Thus we need only evaluate it when y is 
regular. It should be remarked that in this limit formula there is a constant 
which depends on the choice of Haar measure on G1 • The exact relation of this 
constant to the choice of Haar measure bas never been determined ; until it is, 
our problem cannot be regarded as completely solved. 

If y is regular and the measure on G1 is so normalized that the volume of G1 

is one, then 

J e(g-lyg)dg = xh-1> 
Gy\G 

if x,, is the character of n. An explicit expression for the right-band side bas 
recently been obtained. 

Let h be the Lie algebra of T; choose an order on the roots of ~c; and let A 
be a linear function on ~c so that A + p, p = t Lm>o oc, extends to a character 
of T and so that (A + p, oc) "# 0 for all roots oc. Assume, for simplicity, that p 
also extends to a character of T. To each such A there is associated a square­
integrable representation n,. and if H e ~ 

sgn q exp(q(A + p))(H) 
X,,A(expH) = (-tre(A) a~W n {(exp(oc(H)/2)- exp(-oc(H)/2))}" 

11>0 

Herem= !dim G/K, e(A) = sgn(H.>o (A+ p, oc)), and Wis the Weyl group of K. 
Every square-integrable representation is equivalent to n,. for some A. However 
the values of A for which n,. is integrable are not yet known. For some special 
cases see [l] and [2]. 

The geometrical meaning of the numbers N(n,.) is not yet completely clear. I 
would like to close this lecture with some suggestions as to what it might be. 
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Since the evidence at present is rather meagre, they are only tentative. If Sc is the 
complexification of the Lie algebra of s. the elements of Sc may be regarded as 
left-invariant complex vector fields on G, G/T may be turned into a complex 
manifold in such a way that the space of antiholomorphic tangent vectors at 
g = gT is the image of nc if nc is the subalgebra of Sc generated by root vectors 
belonging to negative roots. Let V* be the bundle of antiholomorphic cotangent 
vectors and introduce a G-invariant metric in V* and hence in NV*. Let B be 
the line bundle over G/T associated to the character e(exp H) = exp(A(ll)) of T. 
If r is a discrete subgroup of G let Cq(A, r) be the space of r-invariant cross­
sections of B ®I\ qy• which are square integrable over r\G/T. There is a unique 
closed operator a from Cq(A, r) to c9 + 1 of A, r whose domain contains the 
infinitely differentiable cross-sections of compact support on which a is to have its 
usual meaning and whose adjoint is defined on the infinitely differentiable cross­
sections of cq+ 1(A, r) with compact support. 

Set C"(A, { 1}) = C"(A). I expect, although I do not know how to prove it, 
that when A + p is nonsingular the range of o is closed for every q. If this is so 
then the cohomology groups Hq(A) will be Hilbert spaces on which G acts. Is it 
true that they vanish for all but one value oi q, say q = q11.. and that the rep­
resentation xA of G on HqA(A) is equivalent to 7t11.? The following theorem is a 
clue to the value of qi\.' 

THEOREM (P. GRIFFITHS). Let a 1 be the number ofnoncompact positive roots for 
which (A + p, a) > 0 and let a2 be the number of compact positive roots for which 
(A + p, a) < 0. There is a constant c so that if l(A + p, a)I > c for every simple 
root, r\G is compact, and r acts freely on G/T, then Hq(A, r) = 0 unless q = a1 + a2. 

It is, I think, worthy of remark that if one assumes that Hq(A) = {O} for 
q =I= q11. = a1 + a2, then a formal application of the Woods Hole fixed point 
formula shows that if y is a regular element of T, then the value at y of the charac­
ter of xA is x,,A(y). By the way, it is known that H 0(A) = 0 unless q11. = 0 and that 
if qi\ = 0 the representation of G on H0(A) is in fact n/\. 

Finally one will want to show that when 7t/\ is integrable and r\G is compact 
the number N(x/\) is equal to the dimension of HqA(A, r). This can be done when 
qi\= O; in this case H 0(r, A) is a space of automorphic forms. 

It should be possible, although I have not done so, to test these suggestions 
for groups whose unitary representations are well understood, in particular, for 
SL(2, R) and the De Sitter group. To do this one might make use of an idea basic 
to Kostant's proof of the (generalized) Borel-Weil theorem for compact groups. 
Suppose u is a unitary representation of G on a Hilbert space V. Let Cq(V) be the 
space of all linear maps from l\9ni to V. C11(V) is a Hilbert space. The usual 
coboundary operator from C11(V) to 0+ 1(V) can be defined on those elements of 
C"(V) which take values in the Garding subspace of V. The closure d of this 
operator is the adjoint of the restriction of its formal adjoint to those elements 
of cq+ 1(V) which take values in the Garding subspace. T of course acts on/\ qnc. 
If f e C"(V) define tf = f' by f'(X) = tf(t- 1 X), Xe Nnc. Then: is a natural 
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identification of C4(A) with the set of.fin C4(L2(G)) such that t.f = exp(-A(H)).f 
if t = exp H belongs to T and of C4(A, r) with the set off in Cq(L 2(r\G)) such that 
tf = exp( -A(H))f Moreover the following diagrams are commutative. 

C9(A) ---L+ C"+ 1(A) C"(A, f) ---L+ C"+ 1(A, f) 

r r r r 
C4(L 2(G)) ____!_.,. cq+ 1(L 2(G)) C"(L 2(r\G)) ____!_.,. C"+ 1(L2(r\G)). 

The point is that dis easier to study than o because to study d we can decom­
pose V into irreducible representations and study the action of d on each part. 
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Spherical Functions and Ramanujan Conjecture1 

BY 

ICHIRO SATAKE 

The following exposition has nothing to do with the proof of the conjecture, 
but might indicate a possible generalization of it to the higher dimensional case. 

I . Zonal spherical functions. 
Let G be a locally compact unimodular group and Ka compact subgroup of 

G. Let L = L(G, K) be the associative algebra (with the convolution product) 
consisting of all complex-valued continuous functions on G with compact support 
satisfying 

c/>(kgk') = </>(g) 

for all k, k' in Kand gin G. We make the basic assumption that Lis commutative. 
DEFINITION. w is called a zonal spherical function on G relative to K, if 
(1.1) w is a complex-valued continuous function on G satisfying ro(l) = 1, 
{1.2) w is K bi-invariant, i.e., w(kgk') = w(g), 
(1.3) for all </> e L, one has </> * w = A.,pw. i.e., w is an eigenfunction for all 

(invariant) integral operators defined by </> in L. (In this case we automatically 
have </> * w = w * </>.) 

Clearly the map of L into C defined by </> 1-+ A,p is a ring homomorphism. We 
write A.,p = ciJ(,<f>) = JG cJ>(g)w(g- 1) dg. The function w is uniquely determined by w. 

REMARK. Condition (3) above may be replaced by the .. functional equation": 

(1.3)' { w(g 1kg2) dk = w(g 1)w(g2) 

for all g1, g2 e G; or in the case where G is a connected Lie group by: 
(1.3)" Let X = G/K with its natural C00 structure, then w, considered as a 

function on X, should be an eigenfunction for all G-invariant differential opera­
tors on X. 

EXAMPLES. Any (quasi-)character x: G -+ C* such that xlK = 1. In particular 
the constant 1 is a {positive-definite) zonal spherical function. 

Let n = '2(G, K) denote the set of all zonal spherical functions (relative to K) 
and n+ be the subset of all "positive-definite" zonal spherical functions. 

1 The same talk was once given at the University of Tokyo in the Spring of 1961. 
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(In general, a continuous function w on G is called positive-definite, if for all 
functions <P of compact support on G 

LL w(g1 1g2)</J(g1)</J(g2)dg1 dg2 ~ 0.) 

One sees easily that w is positive-definite implies 
(1.4) w(g- 1) = w(g), i.e., w is self-adjoint, 
(1.5) jw(g)j ~ w(l) = 1. 

For positive-definite zonal functions, we have (4). 

LEMMA. If (J) E o.+' <PEL, then 
(1.6) <P is self-adjoint implies W(</J) ER, 
(1.7) <P is real and nonnegative implies IWC<P>I ~ l(</J). 

The basic assumption that L is commutative assures us of the following 

THEOREM ((2)). The set of positive-definite zonal functions w (eO.+) are in a 
one-to-one correspondence with equivalence-classes of irreducible unitary repre­
sentations of G of class one. 

An (irreducible unitary) representation (.i), U) of G is called "of class one" if 
UIK contains the trivial representation of K. It is well known (2) that the condi­
tion that L(G, K) is commutative, is equivalent to saying that for any irreducible 
unitary representation (.i), U) the dimension of the subspace of all K-invariant 
vectors in .i) is ~ 1. For an irreducible unitary representation (.i), U) of class one, 
the corresponding zonal spherical function w is obtained by 

w(g) = (x0 , U11 x 0 ), 

x 0 being a K-invariant unit vector in .i). 

2. The case of PL(2). Let G = PL(2) = GL(2)/center, 

GP = PL(2, Qp}, 

K -{0(2)/{±1} 
P - GL(2, ZP)/center 

for p = oo, 
for p < oo. 

We have the Iwasawa and elementary divisor decompositions: 

Gp= KPA,,Np = K~PKP, 

where AP and NP are the respective images in PL(2, QP) of 
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Definitions of representations of GP of the principal series. Let cc: A p _. C"' be a 
(quasi-) character of AP, and f)11 be the space of all complex-valued functions on G 
such that c/>(gan) = cc(a)c/>(g) for all a e AP, n e NP' g e GP and that 

11"'11 2 = L'"'(k}j2dk < 00. 

Then f)11 is a Hilbert-space (with the norm II II>. and if we put T:1(c/>)(g) = c/>(g1 1g) 
for <Pe f)11 we obtain a representation of GP in the bounded operators on f)11• 

This representation is of class one if and only if ccl(Ap n KP) = 1, in which case 
cc has the form : 

(2.1) le 1·-t cc(a) = e: p 

with s e C (which is determined mod(27ti/log p) for p < oo ). And in this case, the 
function 1/111 defined by 1/1 .. (kan) = cc(a) is a KP-invariant unit vector in f)11, and the 
corresponding zonal spherical function is given by 

(2.2) w.(g) = (I/I .. , T;l/!11) = t l/lr1.(g- 1k) dk. 

Further the representation (f)11, T:> is unitary if and only ifs is purely imaginary. 

THEOREM ([l], [4]). L(G", K") is commutative, and we have QP = Q(Gp, KP)= 
{ w.} with the relations 

w. = w.. if and only if 

{
s' = ±s (mod 1~;~) for p < oo, 

s' = ± s for p = oo. 

Further, n; is described by the following diagrams: 

····••t---+---t•••••• ······-------······ -t 0 -t 0 t 

p < 00 p = 00 

(The solid lines correspond to those s for which w, is positive-definite.) 
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The representations corresponding to the vertical axis are called representations 
of the "principal series" (of class one) and those corresponding to the hori­
zontal axis "supplementary series." The points s = ±!correspond to the identical 
character 1, and for p < oo the points s = ±! + (ni/log p) correspond to the 
character defined by x(g) = (- l)•p(de• 11>. We can obtain a necessary condition for 
w. to belong to n; by the following considerations: For p < oo, let T P be the 
characteristic function of the double coset 

KP(~ ~)KP' 
Then (2.2) gives 

(2.3) 

and by the lemma one sees that &'J.(TP) is real and l&'J1(tp)I ~ l(t-P) = 1 + p. It 
follows that s belongs to the solid-lined portion of the above figure. 

For p = oo, if li denotes the Laplacian on the upper-half plane J'f = G00/K00, 

we have 
llco. = (s2 - -!)co., 

where s2 - -! should be real and nonpositive, whence the same conclusion. 

3. Spectrum of a discrete subgroup. Again let G be a locally compact unimodular 
group, and r be a discrete subgroup such that 

v(r\G) < oo. 

DEFINITION. A C-valued function! on G is called r-automorphic right spherical 
function if 

(3.1) 

(3.2) 

(3.3) 

.f (ygk) = f (g) for y E r, g E G, k E K, 

f * <P = A.~f for all <P e L, 

[ II (g>l2 dg < oo. 
Jr\G 

Here the homomorphism </> ~ ).~ is given by a unique positive-definite zonal 
function co [S]; we shall then say f belongs to co. Let IDlr(co) be the set of all 
r-automorphic right spherical functions belonging to co (en+) and put 

Spec(r) = {co En+ ; IDlr(w) =I- {O} }. 

Spec(r) is always discrete in the weak topology of n+. 

4. Formulation of the Ramanujan--Peterson conjecture. 
Let G = PL(2), GA = n~ GP the corresponding adele group, and K = nP KP. 

Then one has L(GA, K) = lnjlims®pesL(Gp, KP) and so O(GA> K) = n n(GP, KP) 
(see [S]). L(GA, K) is therefore commutative. P 
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Now Ga is a discrete subgroup of GA such that v(G0\GA) < oo. For we Spec(G0), 
we have at each p a local wP e o.;, and hence a corresponding sP e C. Then the 
"fake Ramanujan conjecture" says that for all p < oo, sP is purely imaginary. 

To obtain a formulation of the "actual Ramanujan conjecture", we must 
modify the above discussion by introducing representations of K 00 • 

Since 

- sin 8) . (± 1 
cos (J 0 

we have, for every even integer v, a character x. of" K 00 defined by 

Let V:,> = LM(G 00, K 00 ) be the algebra of all continuous functions </J of compact 
support on G 00 satisfying 

</J(kgk') = </J(g)x.(k)x.(k') 

for k, k' e K 00 , g e G 00 • Then L<:} is again commutative. We define O.<;} (the set of all 
spherical functions of type x.) by replacing L 00 by L<:} in the Definition given in 
§1. In our case, the condition (1.3) is equivalent to the condition that w is an 
eigen-function for the Casimir operator ~ of G 00 : 

~w = A.w, 

and thus we can again parametrize we O.<;} by s e C determined by A. = (s2 /2) - l. 
we o.<;]+ (positive-definite spherical functions of type x.) are in a one-to-one 
correspondence with equivalence-classes of irreducible unitary representations 
({), U) of G00 such that UIK 00 contains the representation x •. o.~>+ is described 
by the following diagram (with the identification of s and - s): 

- principal series 

•••• x ................ ~ •••••• x •••••••• x ••• 

-! -t 1 3 
l" 

su~plementary 
sen es 

v - 1 

2 

where the isolated points correspond to the "discrete series" of (square-integrable) 
representations of G00 ([l]). 

Cusp Forms. Let r = GL(2, Z)/{ ± 1} c G00 , and let S, be the space of all 
cusp forms of weight v ( v > 0); i.e., f e S, if and only if 

(4.1) f is a holomorphic function on the upper-half plane Jt' = G 00/K00 , 
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(4.2) f(y 0 z) = f(z')j(y, z)- •12 for y Er, z E Jt', where 

. det (g) 
J(g, z) = (cz + d)2 

(4.3) f vanishes at the "cusps" of r. 
Put F(g) = f(g(i))j(g, i)•12, then 

(4.1)' F(ygk) = F(g)x_.(k) for ally Er, g E G, k EK, 
(4.2)' CCF = (v(v - l)/8)F, where CC is the Casimir operator of G00 , 

(4.3)' JqG IFl2 < 00. 
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The condition (4.2)' is equivalent (under the condition (4.1)') to the condition that 
F * </J = A."'F for all </J E V;}, and so we may express the above properties of F 
by saying that F belongs to IDlr(X- .. w±(v- ot2), the space of all r-automorphic 
right spherical functions of type X-. belonging to w±(v-lJ/2. By the correspon­
dence f +-+ F, we have the isomorphism: 

We may also consider F as a function on GA. More precisely: GA has class 
number 1, i.e., GA = GQ(Ko x Goo) where Ko = np< 00 KP. Writing g EGA in the 
form g = e(ko x goo) with e E GQ, ko E Ko. goo E Goo, put 

Then (4.l)' assures that Fis well defined and that 

(4.2)' that Fis an eigenfunction of L<;,> belonging to w±(v- ll/2, and 
(4.3)' that FE L 2(GQ\G A). 
These conditions uniquely determine the space @. of P's. 
Now let LM(GA, K) = Tip<oo L(GP, KP) x LM(G00 , K 00 ). 

Since F(gk0 ) = F(g) for g E GA, k.:: E K 0 , the (commutative) algebra 

p<oo 

operates on @. by convolution from the right. Further, by the approximation 
theorem, L(G0 , K0 ) is isomorphic to the "Hecke ring" (over C) .':31(Ga, Gz) of Ga 
with respect to Gz, the correspondence being given by associating to each double 
coset GzeGz with e E Ga the characteristic function of the double coset Koe Ko. 
As is well known, 6. is a module over af(GQ, Gz) and one sees that the spaces 
6. and @. a!e isomorphic as modules over Bt(Ga, Gz) ;;; L(G0 , K 0 ) (i.e., if 
6, 3 f +-+ FE ~. and <Po is the characteristic function of K 0eK0 , then 
fl<GzeGz) +--+ F * </J0 .) 
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Thus the decomposition of IDlrbt- .. w±(v- od = 6. into eigenspaces under the 
action of L M( GA, K) : 

9.Jlr(X_,,, w±(v-1)/2) = L $ IDlGa(l x X-v• w~> x (.()±(v-1)/2) 
j 

runs parallel to the decomposition of is. with respect to the action of the usual 
Hecke operators. 

If FerolGg(l xx- .. wW1 x w±(v-o/2) with wW1 = (···,w,p,···), then 

F ••, = w,p(r,)F 

= pt(p'P + p-•p)f 

Since, under the isomorphism L(G0 , K0 ) ~ 9t(G0, Gz), r, corresponds to p1 -M2>r,, 
the corresponding f e is. is an eigenfunction of all T,: T,f = a,f By Hecke's 
theory,/ is then of the form: 

where one has 

! <z) = c L a"e2 .. in• 
n>O 

a, = p<•l2>-1w.p(r,) = p<•- ll/2(p•p + p-•p). 

(Thus the spaces IDIG0 (1 x x- .. w~> x w±<•- o/2) are one-dimensional.) 
The Raman\ljan-Peterson conjecture precisely states that for all p one has 

la,I ~ 2p<v- t>t2 , which becomes lp•p + p-•pl ~ 2, ors, is purely imaginary, i.e., w~> 
corresponds to the principle series at each p. 

One may also demonstrate that the action of the L0(G0, K0 ) on 

IDlr(X- .. w±<,,-1112) 

(where µ = 2, 4, · · ·, v) is isomorphic to the action of the usual Hecke operators 
on IS" and 6,,; further if s is a point corresponding to the principal or supple­
mentary series (Diagram 2), then the action of L0(G0, K0 ) on IDlrCx- .. w,) is 
isomorphic to the action of the Hecke operators on the automorphic wave­
forms of Maass. Thus one can also make the analogous conjecture for the 
Fourier coefficients of these forms. 
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Algebraic Curves Mod p and Arithmetic Groups 
BY 

Y ASUTAKA IHARA 

As is well known, a discrete subgroup of SL(2, R)/ ± 1 whose quotient space has 
finite volume determines not only Riemann surface, but also the tower of (all) 
finite coverings of the latter satisfying certain conditions of ramifications. For 
example, the modular group determines coverings of the Riemann sphere with 
three ramifications, and hence can be regarded as a dense subgroup of the Galois 
group of the maximum Galois extension of C(x) under ramification conditions. 

If we try to consider analogous problems for algebraic curves over a finite 
field Fq, it seems necessary to take into account not only conditions of (tame) 
ramifications of prime divisors, but also the conditions that a given finite number 
of prime divisors should be decomposed completely. For example, it seems to me 
that the natural analogue of the former example is the following pair : 

(*) The rational j-curve over FP, with three ramifications plus conditions of 
decompositions at all such primes (j) that elliptic curves with moduli j have no points 
of order p. (Such j are called supersingular, and are contained in FP2.) 

(*) The group 

r = SL(2, z<Pl)/ ± 1 

where z<P> denotes the ring of all rational numbers whose denominators are 
powers of p. r is a discrete subgroup of 

G = {SL(2, R) x SL(2, Qp)}/± 1. 

Thus our problem is to consider r = SL(2, z<Pl)/ ± 1 as a dense subgroup of 
the Galois group of certain infinite Galois extension K over k = Fp2(j), j a 
variable over FP1(j), K/k satisfying the above ramification and decomposition 
conditions. Then, the Frobenius substitution of prime divisor of k in K/k deter­
mines a conjugacy class of r which vanishes if and only if the prime divisor is 
supersingular. This connects the set of all nonsupersingular prime divisors of k 
and the set of all primitive and elliptic (cf. §1.l) conjugacy classes of r in a one-to­
one manner. This holds also for finite subextension k' of k in K and .. correspond­
ing subgroup" r of r, which implies the coincidence of congruence '-function of 
k' with '-function of "Selberg's type" for discrete subgroup r' of G-surely they 
are not precisely equal because of supersingular primes. 

These considerations lead us to the study of ,_functions of arbitrary discrete 
subgroups of our 

G = {SL(2, R) x SL(2, QP)}/ ± 1 

265 
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whose quotient spaces have finite volumes. Our interest lies in calculating the 
number which, in our previous special case of r (or r'), was the number of super­
singular primes (i.e. the difference between two C-functions). By using this result, 
we can prove that all supersingular primes are actually decomposed completely 
in the field K constructed in §1. 

Proofs are omitted, and will be published elsewhere. 

BRIEF OUTLINES OF EACH SECTION 

1.1. To set up a one-to-one correspondence between ~(r) and ~(k) - S(k); 
where r = SL(2, Z1P1)/ ± 1, ~(r): set of all ellipti<; and primitive (cf. §1.1) con­
jugacy classes of r, k = FPJ..j), ~(k) the set of all prime divisors of k, S(k) the 
(finite) set of all supersingular primes of k, as well as (oo)-prime. 

This depends wholly on Deuring's complex multiplication theory (cf. [I], 
[2], [3]). 

1.2. To construct a certain infinite Galois extension K of k which arises from 
division of the elliptic curve with (variable) modulus j. The Galois group and 
ramifications for K/k has been determined by lgusa [7]. (It can be obtained also 
by our method, i.e. by consideration of decomposition of prime divisors, 
Tchebotareff's density theorem, (-functions in §2, etc.) The connection between 
the decomposition law for prime divisors of k in K and conjugacy classes of r 
(Theorem, property III) is also a consequence of "precise" complex multiplica­
tion theory. By this we obtain a one-to-one correspondence between ~(r') of 
congruence subgroups r of r and ~(k') - S(k') of some finite extension k' of k 
in K. 

Then Theorem, property III, which states that all supersingular primes of k 
are decomposed completely in K, is a consequence of §2; namely by calculating 
(-functions of r defined analogous to that of k', we can show that the number of 
primes of k' which lie on supersingular primes of k is proportional to the volume 
of G/r', i.e. to the group index [r': r], which implies that all supersingular primes 
are decomposed completely in k. 

1.3. "Monodromy problems" are two conjectures that arise from these 
considerations. 

(A) Whether K/k is characterized as the maximum extension of k under given 
ramification and complete decomposition of supersingular primes, or not. 

(B) Whether any subgroup of r = SL(2, z<P>)/ ± 1 with finite index contains 
some congruence subgroup, or not. 

2.1. By Eichler-Shimura [4], [12], and Kuga's result [8], we shall show that a 
necessary condition for conjecture (B) is satisfied (weaker stability property for 
r, which is true for more general discrete subgroup of 

G = {SL(2, R) x SL(2, Qp)}/ ± 1 

and not true for discrete subgroups of G = SL(2, Qp)/ ± 1; seep. 151). 
2.2. Numerical example for Monodromy problems (A), (B). 
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2.3. Definition, and computation of (-functions of r' by using spectral decom­
position of L2 (G/r'). This can also be done by using Lefschetz' fixed-point 
theorem (and without spectral decompositions, only outlines). 

l . Frobenius' conjugacy classes. 
1.1. We consider the field of algebraic numbers as subfield of complex number 

field. Choose any prime factor f.J of p in the former field and identify the residue 
class field modulo f.J with algebraic closure FP of finite field F p· We assume in 
§1 that p is different from 2 or 3. 

Let now r = SL(2, z<Pl)/ ± 1 be as in the introduction. (Z<P> is the ring of all 
rational numbers whose denominators are p powers.) Any element y of r will be 
called primitive if it has infinite order and if, together with some finite group, 
it generates its centralizor in r. We denote by \_JJ(r) the set of all primitive and 
elliptic (i.e., its eigenvalues are imaginary) conjugacy classes of r, where y and y- 1 

are identified. Such y always generate imaginary quadratic fields at which p is 
decomposed. So, we denote by deg(y) the positive p-adic order of y or y- 1. 

Let r c SL(2, R)/ ± 1 (projection) operate on the upper half plane, let {y} be 
in \_JJ(r), and let r1 be the (unique) fix point of y in the upper half plane. Then 
j(r1), where j is 123 times the ordinary elliptic modular function, is an algebraic 
integer, and its residue class mod f.J is merely replaced by its conjugates over Fp• 
when we choose other representatives of {y} (congruence relation). Applying 
Deuring's complex multiplication theory, (cf. [11 [2], [3]) it is easy to check that 
this maps \_JJ(r) injectively into the set \_JJ(k) of all prime divisors of the rational 
function field k = Fp1(j), and that the image is \_JJ(k) minus finite number of 
primes of degree one; namely ( oo) and all supersingular ones. 

If { y} in \_JJ(r) correspond to (j) in \_JJ(k ), their degrees coincide, and the z<Pl 
-order Q(y) n M(2, zlP1) of Q(y) is the scalar extension by z<Pl of the endo­
morphism ring of elliptic curve with modulus j. Two elements of \_JJ(r) (resp. \_JJ(k)) 
will be called equivalent and denoted by - when they have the same orders in 
the above sense. We remark that if we take other choices of the prime factor f.J of 
p, the above correspondence between ~(r) and \_JJ(k) varies, but it does not change 
as a correspondence between \.P(r)/ - and ~(k)/ - . 

1.2. Let Ei:y2 = 4x 3 - y2x - Y3: 

Yi. Y3 Ek, J = 123ji~(ji~ - 27ji~)- 1 

be an elliptic curve with modulus J, and let K be the field generated over k by x 
coordinates of all points on Ei of finite orders coprime with p. K depends only 
on J and does not depend on the special choice of y2, y3 in k. K is an infinite 
Galois extension of k, and the Galois group g(K/k) was determined by lgusa (cf. 
lgusa [7]). 

g(K/k) ~ {g E n GL(2, Z,); det g E n 2l; ±I 
, .. p f 

where z, denotes the ring of l-adic integers, and n denotes the closure in 
n zr of the infinite cyclic group generated by p. 

'""P 
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g(K/k) ~ {,I)P SL(2, Z1)}/± I x {±a · 1; a err}/± I. 

The first direct factor corresponds to the subfield Fp(J) of K. Let K be the sub­
field of K corresponding to the second direct factor. Then, K is the infinite Galois 
extension of k without constant field extension such that K = K · F P. 

THEOREM. Any subextension k'/k of K/k has the following properties: 
(I) (j) = ( oo) is tamely ramified, (j) = (123) resp. (0): ramified, but ramification 

degree divides 2 resp. 3. All other primes are unramified (Jgusa). 
(II) Supersingular j are decomposed completely in K/k (except possibly when 

j = 123 or O; in these cases, the inertia groups coincides with the decomposition 
groups). 

{Ill) Let u be the natural injection: 

u:r --+{n SL(2, Z1) /±1} ~ g(K/k). 
1¢p 

For any {y} in ~(r~ the conjugacy class of g(K/k) determined by u{y} is the 
Frobenius substitution of the corresponding prime divisor of k. 1 

The last statement implies that if k' is any finite Galois extension of k contained 
in K, and g' the corresponding subgroup of g = g(K/k), and r the intersection 
of r with g' (where r is considered as dense subgroup of g by the injection of u~ 
the law of decomposition of ~(k) in k'/k is described by the order of the corres­
ponding {y} in ~(r) with respect to r'. It is clear that we also have almost 
one-to-one correspondence between ~(k') and ~(r'~ and that proposition (II) 
can be proved if we can count the number of primes in ~(k') which does not 
correspond to any conjugacy class in ~(r') (cf. §2). 

1.3. Monodromy problems. (A). ls K the maximal Galois extension of k satisfying 
(I) and (II) of the previous proposition? (B). Is g the completion of r with respect 
to all subgroups of r with finite indices? I.e., does any subgroup of r with finite 
index contain congruence subgroups? 

These two problems seem to be deeply connected with each other, and some 
reasons suggest that it might not be too reckless to conjecture that they are true, 
although the corresponding problem for characteristic zero is definitely wrong. 
One weak reason will be shown in §§2.1, 2.2. 

2. Discrete subgroups or G = {SL(2, R) x SL(2, k,,)}/ ± I. 
2.1. Let k, be a p-adic field, p + 2, let N" = q, and let G be as above. Let r be 

any discrete subgroup of G with compact quotient space, and whose projection 
on each factor is injective and dense. Let r 0 be the intersection of r with 
SL(2, R) x SL(2, O,), where o, is the ring of p-adic integers. Since r can be 
considered as subgroup of SL(2, R)/ ± 1 (by the projection), it operates on the two 
dimensional real vector space, hence also on the space V,. of all symmetric tensors 
of degree n; n = 0, 2, 4, ... over that vector space. 

1 For some special choice of~ which depends on ~-
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Let H 1(r, V,,) be the first cohomology group. Then, we have 

PROPOSITION. H 1(r, V,,) = {O}. In particular, the case n = 0 implies that the 
abelianized group r;[r, r] of r is finite, and n = 2 implies that the "infinitesimal 
deformation" of r in SL(2, R)-part is trivial. 

The proof of the proposition is simple. 
First, the restriction map: H 1(r, V,,)--+ H 1(r0 , V,,) is injective. This follows 

from the fact that r 0 is maximal subgroup of r(n = 0), and that for any y in 
r, V,, is also irreducible representation space of r 0 n }'- 1 r 0 y. (Density theorem 
for Fuchsian groups by Borel.) 

Now, the Hecke ring R(r0 , r), which is canonically isomorphic with R(SL(2,0p), 
SL(2, kp)), operates on H 1{r 0 , V,,) as: 

d d 

R(r0,r)3r0yr0 = Ir0y;:a(n)--+ Ia(}';O"}'.;j;~Y' 
i= l i= l 

where }';(T = n'yali> with a' er 0 . Obviously, the restriction to H 1(r, V,,) of this 
operation coincides with the "degree representation" of R(r 0, r), hence it is 
sufficient to show that 

det(r o}'ro - d) # 0 

holds on H 1{r 0, V,,) for at least one double coset r 0yr 0 • 

On the other hand, H 1(r 0, V,,) can be identified with the space of cusp forms 
of weight n + 2 with respect to the Fuchsian group r 0 , the latter being considered 
as real vector space (cf. [4], [12)) and by this identification, the above statement is 
equivalent with the weakest estimation of the eigenvalues of r 0yr 0 in the space 
of cusp forms, which is just the (generalization of) Kuga's result (cf. (8)). 

If r' is a subgroup with finite index of our previous SL(2, z<11')/ ± 1, G/r' is no 
longer compact, but together with the knowledge of parabolic elements of such 
r', we can see easily that the abelianized groups of such r' are also finite. This is 
a necessary condition for the validity of "Monodromy problem" (B). 

2.2. The following remark seems ;;omewhat noteworthy. When r corresponds 
to some subfield k' of K in §1, what more precise arguments show is just the fact 
that the group index (r': [r', r']) does not exceed the degree of the field extension 
[k": k'1 where k" is (one of the) maximal abelian extension of k', without constant 
field extension, satisfying only the ramification conditions (1). For example, if we 
take r' as congruence subgroup modulo 2, the analogue of so-called A.-group, the 
previous argument shows that (r' : [r', r']) does not exceed (p2 - 1)2 ; on the other 
hand, if the conjecture (A) (resp. (B)) is true, the degree of maximal abelian exten­
sion over k' satisfying (I) and (II) resp. group index (r': [rT']) must be 3·26 • It is 
satisfied by number of beginning p's. 

2.3. (-functions. Let us go back to the situations stated at the beginning of §2. 
For such r the definition of ~(r}--set of all elliptic, primitive conjugate classes 
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of r- ·and of degrees stated in §1 also make sense. We assume moreover that 

if ( ~ : ) is in r, then ( ~c db) is also. 

Define 

Zr(u) = 0 (1 - ud•11r1. 
P•lil(rJ 

It is analogous in the idea to Selberg's, and in the form to congruence C functions. 
For evaluating such Zr(u~ we learned from Sel~rg that the decomposition of 
L2(G/r) plays an essential role. Moreover, Gelfand and Graev established 
the theory of unitary representations of SL(2, kP~ and also we can make use of 
the fact that each irreducible unitary representation of our G decomposes into the 
tensor product of that of each factor. (The last statement is a special case of more 
general theorem, which I learned from R. Godement.) 

By using these, we can evaluate our Zr(u). Namely; 

II 

(1 - ur n (1 - oc,u)(l - p,u) 
Zr(u) == i= 1 , oc1/J1 = q2 (1 ~ i ~ g). 

1 - q2u 

where g is the genus of the Fuchsian group r 0 defined previously, and m is the 
multiplicity of the tensor product p ® u in L2(G/r) where pis the first member of 
the discrete series for SL(2, R) and u, the so-called "special representation" of 
SL(2, kp) (cf. [6]). Note that the special representation is not class one with 
respect to SL(2, Op). If we put oc,, fJ1 = q1 ±s, (1 ~ i ~ g~ q1 ±s, are the parameters 
of the continuous series for SL(2, k,) that are class one, and whose tensor product 
with p is contained in L 2(G/r). 

It shows that Zr(u) is different (in form) from congruence C functions by the 
factor (1 - ut+ 1• This seems to suggest that if it is possible to construct an 
algebraic curve k over F 112 out of r, by reduction mod p of the upper half plane 
divided by r O• SO that the fix points by elements Of r reduce to algebraic points, 
~(k) must have m + 1 more elements of degree one than ~(r}-decomposition 
primes? 

Exact value of mis simple when r has no element of finite order. In that case, 

m = (q - l)(g - 1) - 1. 

This shows that m + 1 is proportional to the volume of G/f'. If r is a congruence 
subgroup of SL(2, z<11>)/ ± 1, G/f' is no longer compact, but by the exact knowledge 
of parabolic elements we can show that m + 1 is proportional to the volume of 
G/f', in this case too. This, together with the remark at the beginning of this note, 
proves Theorem, property II of §1. 
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Discrete Subgroups of PL(2, k p) 

BY 

YASUTAK.A IBARA 

Here, we shall deal with torsion-free discrete subgroups r of G = PL(2, k 11) 

with compact quotient spaces (k,, = p-adic fieldsi· 
We begin with the structure theorem for such r, which states that they are 

isomorphic to free groups with a finite number of generators. 1 Then, by making 
use of special free generators of r, we shall compute (algebraically) {-functions 
of r, which are defined as analogues of Selberg's {-functions, in p-adic cases. 
This, in particular, gives a relation between the number of generators of r and 
the multiplicity of certain irreducible representation of Gin L2(G/r). 

Finally, we shall show by example that there exists such r that 
(i) it is commensurable with an arithmetically defined group, and that 
(ii) L2(G/r) contains supplementary series. 
For proofs of theorems in this note, see [6] which is to appear. 

Notations and conventions 
K: either p-adic number field or field of power series over finite constant field. 
(f) : the ring of integers of K. 
K* (resp. l!J*): multiplicative group of inversible elements of K (resp. (f)). 
p : the maximal ideal of (f). 
q =Np: number of elements of the residue field l!J/p. 
G: PL(2, K) = GL(2, K)/K*. 
U: PL(2, (0) = GL(2, 0/0* c G. 
For any a, b, c, · · ·, e K, (a, b, c, · · ·) will denote the (f)-ideal generated by 

a,b,c, ·· ·. 
For any finite set S, ISi will denote its cardinal number. 
The summation symbol !. over some subsets of a set implies disjoint union. 

I . The structure of r. Here, we shall state a structure theorem for r. As for 
the proof, and for the method for construction of all such r, see [6]. 

THEOREM I. Let r be a torsion-free discrete subgroup of G = PL(2, K) with 
compact quotient space. Then r is isomorphic to thefree group with (q - l)h/2 + 1 
generators, where h = IU\G/rl, U = PL(2, l!J), and q = Np. 

We shall state the theorem in a more general form, and for that purpose, we 
need some definitions. By (G', U'; n:0 , n: 1, n:2, • • ·, n:,)-type, we mean any triple of 

1 This implies, in particular, that any arithmetically ilefined r contains a subgroup with finite 
index which does not contain any congruence subgroups (cf. §3). 

272 
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abstract group G', its subgroup U' and a finite subset {n0, 7ti. · · ·, nq} of G' 
satisfying the following conditions. 

(1) G'1 = L,~=o U'n; is a disjoint union, and G'1_, = G~. 
(2) G' has the disjoint union decomposition: 

00 

G'= LG; 

where G0 = U' and 
l=O 

G1' = ~ U'n· · · ·n· 
"""' ., •1 

(l ~ 1), 

the (disjoint) union being taken over all (i1, • ·., i1) such that nin+ ,ni"' U' for all 
n (1 ~ n ~ l - 1). 

From (1), it follows that for each suffix i (0 ~ i ~ q), there exists one and only 
one suffix j = j(i)(O ~ j ~ q) such that nini e U', hence G; consists of q1- 1(q + 1) 
left U' cosets. It is also easy to check that G;U' = G; = G;- • for all l ~ 0. Now 
let n, (l ~ 0) be the set of all elements of the form ni, · · · ni, with nin+ ,ni"' U' 
for all n (1 ~ n ~ l - 1), and put n = r.;:o n,. Thus n, (resp. Il) is a complete 
set of representatives of U'\G; (resp. U'\G'). 

We shall introduce a lexicographic ordering in Il as follows: 
(l)xen,, yen,., l<l'=>x<y. 
(2) X, y E Il,, X = 7ti1 ···7tii• y = 7tir • · · 1tii, i1 = jl, · · ·, im-1 = jrn-1• irn < j,,, 

for some m ~ 0 => x < y. 
Now, we can state: 

THEOREM I'. The notations being as above, let r be a torsion1ree subgroup of G' 
such that 

(1) r'n x- 1 U'x = {l}for any xeG'. 
(2) IU'\G'/r'I < 00. 

Then, r' is isomorphic to the free group with (q - l)h/2 + 1 generators, where 
h = IU'\G'/r'j. More precisely, let xi> Xz, •.. x. En be determined by 

G' = I:U'xir',xi = Min(y;yeU'xr' rill) 

and 1 = x, < ... < xh, and put sij = Xj- 1G'1Xj (\ r (1 ~ i,j ~ h). Sil= 11 u Ti 1 

with 11 n T;- 1 = </J. Then for each j > 1, there exists a unique suffix i = i(j) < j 
such that sij 3 1. 

Now, S;i (1 ~ i < j ~ h, i =F i(j)), Sili>i - {1} (2 ~ j ~ h). and T;(l ~ i ~ h) will 
be a set of free generators of r. 

REMARK. It is easy to check that Sij 1 = Sii• L,~= 1 IS;il = q + 1 for each 
j(l ~ j ~ h). 

Theorem I'=> Theorem I. Take G' = G, U' = U, r' = r, and let G1 (I ~ 0) 
be the totality of elements of G which are represented modulo K* by matrices 

(: ~) 
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such that a, b, c, de(!), (a, b, c, d) = (!), and (ad - be)(!) = p 1• Let 7t0 , 7t 1, · · ·, n:4 be 
any representative of U\G 1• Then, (G, U;n:0 ,7t1,···,7t4 and r in Theorem I) 
satisfies the assumptions of Theorem I', and GI = G1 for l = 0, 1, 2, · · ·. The 
proof of Theorem I' will be given in [6] and hence will be omitted here. 

2. (-Functions attached to r. Let r be again a torsion-free discrete subgroup 
of G = PL(2, K) with compact quotient space. Then, for any element y =I: 1 of r, 
the centralizer in r of y is a free cyclic group (r is torsion-free). We shall call y, or 
conjugacy class {y} in r containing y, "primitive" ify generates its centralizer in r. 
Let A.1 , A.~ be the eigenvalues of a representative modulo K* of y =I: 1 in r. Then 
A.7 , A.~ e K. Put deg{ y} = lord p(A.1A.~ - 1 )I. where ord f.J denotes the normalized 
additive valuation of K. 

Let ~(r) be the set of all primitive (non-identical) conjugacy classes of r, and 
define 

Zr(u)= n (l-ude1M)-1, 
Me'J(r) 

This again2 is an analogue, in idea, of Selberg's (-functions and, in form, of 
congruence (-functions. With Theorem I' in hand, it is not difficult to compute 
this algebraically. The result is as follows. Put G = L~= 1 Uxir, where 

h = IU\G/r!, 
x 1, • · ·, xh being any representatives of IU\G/rj. Put 

A = ((ai)), aii = lxi- 1G1xi n rl (1 ~ i,j ~ h). 

Then L~=t aii = q + 1 for any i(l ~ i ~ h); hence we can put A~ (q + 1) Ea A0 

with h .!. 1 x h - 1 matrix A0 , where ~ implies conjugacy of matrices. 
Then we have: 

THEOREM II. The notation being as above, we have 
(1) Zr(u) = {(1 - u)(l - qu)(l - u2y- i det(l - A0u + qu2)}- 1 

where g = (q - l)h/2 + 1. 

Now we shall briefly mention the connections with spectral decompositions 
of L2(G/r). Let 

.1: G 3 x -+ det x e K* / K* 2 

be the homomorphism given by determinant of GL(2, K). For the sake of sim­
plicity, let us consider such r (with the condition of Theorem I) that L\(r) = 
n:K* 2/K* 2 with some prime element 7t of K. Put G1 = PSL(2,K) c G,r1 = G1 nr 
so that [r:r1] = 2, and consider the connection between Zr2(u) and the spectral 
decomposition of L 2(G 1/r1). 

It is easy to see that Zr1(u) = Zr(u)Zr( - u), hence we have 

(1 '): Zri(u) = { (1 - v'f'(l - q2v) :v: (1 - wfv)(l - wr2v)}-
1

• 

2 Cf. pp. 268-270, §2. 
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where Zr(u) is as in (1), v = u2, g 1 = (q - l)h + 1, and 

h- l 

det(l - A 0u + qu2) = CT (1 - wiu)(l - wTu), wiwT = q (1 ~ i ~ h - 1). 
i= 1 

By taking log of both sides of (1) and by comparing corresponding coefficients 
of v, (1') is equivalent with 

h-l 

(1"): ! L deg{y} = q2n + L (wf" + wr2n) +Ki 
{y}e,p(fl) i= 1 
deg(yJlln 

for any n = 1, 2, 3, · · ·. 
First, it is well known in spherical function theory (and also easy to see) that 

if we put wi = qt+s,, wt =qt-•; (1 ~ i ~ h - 1), then the characters 7t; of K* 
defined by 

ni: K* 3 x -+ lxl!;'' (1 ~ i ~ h - 1, lxl,. = q-ord .,.x) 

are precisely those characters of K* that parametrize class-one irreducible 
unitary representations of G1 contained in L 2(G 1/r 1) (denoted by T,., in (5)). 

Secondly, (1") can also be obtained by trace-formulae for spectral decomposi­
tion of L 2(G 1 ;r1), where instead of g 1, the multiplicity in L 2(G 1 / r 1) of the "special 
representation" (cf. (5)) appears. Thus we have 

g 1 =the multiplicity of special representation ofG 1 in L 2(G1/r1). 

(This is, of course, an analogue of the fact that the genus of Fuchsian group 
H c SL(2, R) is equal to the multiplicity in L 2(SL(2, R)/ H) of the first member of 
discrete series of SL(2, R).) 

Finally, a well known remark: 
(R): L2(G 1/r 1) does not contain supplementary series -All si (1 ~ i ~ h - 1) 

are purely imaginary - lcx;I ~ 2qt (1 ~ i ~ h - 1) - left hand side of (1") = 
q2n + O(qn) as n--+ oo, cxi (1 ~ i ~ h - 1) being the set of eigenvalues of A0 • 

(They are real because 'A = A = A.) 
In §4, we give an example which -;hows that it is not always the case. 

3. Arithmetic rand congruence C-functions. Arithmetic examples of r (which 
are more or less known) will be provided by the totally definite quarternion 
algebra D over the totally real algebraic number field k. 

Let p be a prime ideal of k unramified at D ; i.e. 

Put K = kP, and let r be the unit group, modulo center, of any (!,l<P>-order of D, 
where £9<f'> is the ring of integers of k except at p (i.e. the ring of all elements of k 
which are integral except at Pi Then by the above isomorphism, r can be 
regarded as a discrete subgroup of G = PL(2, K) with compact quotient space. 
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In any case by taking suitable suborders, the corresponding subgroup of r will be 
torsion-free. 

In particular, if k = Q (the rational number field) and D has a prime dis­
criminant l '# p = p, and if we take maximal z<t11-order of D, then due to M. 
Eichler, [4], the main part of our Zr(u), namely 

(2) det(l - A0u + qu2), 

is equal to the congruence C-function of an algebraic curve over Z/pZ. More 
precisely, by his Zahlentheorie der Quaternionenalgebren, the left-hand side of 
(1 ") can be expressed by class numbers of those Z-orders of imaginary quadratic 
fields c D, that contain elements of norm p". By this, and by precise complex 
multiplication theory of elliptic curves (Deuring), it can be shown that (2) is equal 
to the numerator of congruence C-function of the complete nonsingular model 
of the elliptic transformation equation of degree l over Z/pZ. 

Thus, in particular, (R) is true in this case (Riemann hypothesis for congruence 
C-functions by A. Weil). 

Finally a simple remark: Let r be an arithmetically defined group in the 
above sense. We can take a suitable congruence subgroup r 0 which is torsion­
free. Thus r o is a free group; hence r o/[r O• r o] is infinite, [r O• r o] being the 
commutator subgroup. Let r 1 be a subgroup of r 0 with index n and containing 
[r 0 , r ol By the structure of local unit groups, it follows that r 1 does not contain 
any congruence subgroup Of r O• hence Of r, if n is sufficiently large. 

4. Other examples, failure of (R). We begin with a simple remark on con­
struction of all torsion-free r with h = 1 (among those are arithmetic ones in 
the sense of previous section), and then show that they (always) contain sub­
groups with finite indices for which (R) fails. 

PROPOSITION. Let G1 (not G1 = PSL(2, K)) be as in §1, and assume that ffJ + 2, 
hence IU\G11 = q + 1 is even. Put 

Let <1 be any substitution on the set of indices {O, 1, 2, · · ·, q} such that u2 = 1 
and u(i) '# i for all i (1 ;;;:; i ;;;:; q). Choose any element x;from Ux; n x;;; 1 U for each 
i (0 ;;;:; i ;;;:; q) in such a way that x.,1 = x1- 1 for all i (0 ;;;:; i ;;;:; qi Put 

Then Y generates a torsion-free discrete subgroup r of G = PL(2, K) such that 
G = ur (which is afree group over Y1 and conversely, all such r can be constructed 
in this manner. 
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1t.;;1u -1u 1tq 
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PROOF. G, U, x0 , • • ·, x,. satisfies the properties of (G, U, x0 , • • ·, x9)-type. 
[cf. §1]. 

Now let r be such; hence a free group over 

d = (q + 1)/2, 

where Y1> · · ·, y4 , are as in the proposition; so, 

G1 n r =Yu y- 1• 

For any element y of r, and for any suffix i (1 ~ i ~ d), let aly) be the sum of 
exponents of Yi in the expression of wordy by y 1, • • ·,y4 • For any nonempty 
subset I of 1, 2, · · ·, d, let r 1 be the subgroup of r defined by 

r, = {yerl~a;(Y) = O(mod2)}. 

Thus, [r: r,] = 2. 
It is easy to see that if I =I: {l, 2, · · ·, d}, then .1.(r,) = n:K* 2/K* 2 for prime 

element 11: = Yi U rt I) of K (condition in §2), and we have 

G = ur, + Uyjr, 

by any j rt I. So, the matrix A = ((aii)) defined in §2 will be 
' 

A= ( lr,n Gil lr,yin G11 ) = ( 2r 
ly; 1r 1 n G11 ly; 1r,yin G1I q + 1 - 2r 

where III= d - r,(1 ~ r ~ d = (q + 1)/2). 

q+l-2r) 
2r 

Since the eigenvalues of A are q + 1 and 4r - q - 1, by the remark at the end 
of §2, (R) is true for rJ = r,n G1 (G 1 = PSL(2, K)) if and only if 

(R') l4r - q - ti ~ 2qt. 

Thus (R') cannot be true for r = 1, q > 6. 
Finally, let D be the definite quaternion algebra over Q with discriminant 13. 

Let p be any prime = 13 and let r be the unit group modulo centre of (unique) 
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maximal z<1»-order of D, where z<P> is the ring of rational integers except at p. 
Since the class number of D is one, we have h = l, and since D does not contain 
Q(J( -1)), Q(J- 3)), r is torsion-free. Thus, if p > 6, the above argument shows 
that r 1 = r n G1 has a subgroup with index 2 for which (R) fails. 
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On Compactifications of Orbit Spaces of Arithmetic 

Discontinuous Groups Acting on Bounded 

Symmetric Domains 
BY 

WALTER L. BAILY, JR. 

l. Examples. In order to explain the nature of the methods and results of the 
work of Borel and myself, I wish first to give some examples of cases which may 
serve as motivation for our efforts. 

A. Let G be the group SL(2, R) and r, the group SL(2, Z) = Gz. As is well 
known, G operates on the upper half plane H = {z = x + iyly > O} by linear 
fractional transformations: z -+ (az + b)/(cz + d), and it is easy to see that r is a 
discontinuous transformation group operating on H. Hence, r\H is a locally 
compact Hausdorff, which in fact carries the complex structure of a Riemann 
surface. It is well known and easy to prove that this Riemann surface Vis just the 
complex plane. V may be enlarged to a compact Riemann surface by forming 
its one-point compactification and introducing a suitable uniformizing para­
meter in a neighborhood of the new point oo. For our purposes it will be better 
to construct this new Riemann surface V* in the following way: we form the 
union H* of H, Q (the set of rational points on the real axis), and the point oo ; 
we supply H* with the topology in which a base of the neighborhoods of oo are 
the strips NJ. = oo u {z = x + iyly > A.} for A. > 0, in which a base of neighbor­
hoods of any a/c E Q are the images of the sets NJ. under some 

( : ~) E SL(2, Z), 

and in which a base of neighborhoods of any z EH is a base of neighborhoods 
in the usual topology of H. Then r operates on H*, and V* = r\H* is a compact 
Hausdorff space. Let p : H* -+ V* be the natural map. Of course, Q u oo is a 
single orbit oo of r in H*. V* is made into a Riemann surface on which V is an 
open submanifold by taking as uniformizing parameter r on N 1 = p(N 1) the 
function which coincides with the function induced by e2"iz on N 1 - oo and such 
that r(oo) = 0. 

B. Let G = Sp(n, R), r = Sp(n, Z). Put Hn = {Zl'Z = Z, Z = X + iY, Ypositive 
definite}. G operates on Hn by : If 

(~ ~) EG, 

281 
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A, B, C, D being n x 11 real matrices, one defines 

( ~ ~)z =(AZ+ B)(CZ + D)- 1• 

Then r operates discontinuously on Hn and V,, = r\Hn is a complex analytic 
space (with singularitiesi According to [20], the points of V,, are in natural one­
to-one correspondence with the isomorphism classes of normally polarized 
Abelian varieties. (Normally polarized means in the notation of [20] that e is the 
n x n identity matrix.) Satake [18] has constructed a compacti.fication v: of V,, 
by supplying the set-theoretic union v: = V,, u v,,_ 1 u · · · u V0 (where V0 is a 
point) with a certain topology. The elemental idea in this construction is essen­
tially the same as that in the construction of v• in A (above), but of course the 
details are much more complicated and depend on nontrivial aspects of the 
Minkowski reduction theory ['l It has been proved [2] that v: is, with a certain 
ringed structure, a normal complex analytic space, and in [2] it has also been 
proved that this compact, normal analytic space has a realization as a normal 
projective algebraic variety. It was proved in [10] that a projective imbedding of 
v: as a normal variety may be obtained by means of automorphic forms. By 
combining these results with some facts from the theory of theta-functions, 
it was possible [3] to show that v: has a projective model defined over the rational 
number field Q such that if xis a point of this model lying on (the part correspond­
ing to) V,,, then Q(x) is the field of moduli of the isomorphism class of normally 
polarized Abelian varieties corresponding to x. More generally, by construction 
of compactifications of the orbit spaces in Hn of the groups re (in the notation of 
[20]), one may obtain similar results about the fields of moduli of Abelian 
varieties with polarizations which may not be normal. 

C. Let k be a totally real number field and let o be its ring of integers. Denote 
by u1,···,um the distinct isomorphisms of k into R(m = [k:Q]). We let 
G = Sp(n, R) x · · · x Sp(n, R) (m factors), r = Sp(n, o), and define an iso­
morphism </J of r into G by </J(g) = (ga 1 , • • • , gam). Put r = </J(r'). Then r operates 
discontinuously on Hr;:, and r is called the Hilbert-Siegel modular group. With 
respect to a suitable system of coordinates, G modulo its center becomes a 
Q-simple, Q-algebraic group, and r is then just Gz (Q-simple means "having no 
proper normal subgroups defined over Q"). r\H':.' = V...m has a meaning for the 
theory of moduli of Abelian varieties similar to that of V,,, except that now, in 
addition to a polarization, one must also consider an endomorphism ring con­
taining, via some natural injection, some order in k. 

D. Let k = Q(J-d) be an imaginary quadratic number field, let G' be the 
group of all 2n x 2n complex matrices M such that 'MHM = H, where 

H = (-~ :). 

and let r' be the group G~, where o is the ring of integers in k. To each Me G', 
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we assign the matrix 

( 

M+M 

c/Jd(M) = t 1 -

.J(-d) (M - M) 

.j( -d)(M - ~)) -

E M4n(R). 

M+M 

Then G = c/JiG') is a real algebraic subgroup of the symplectic group of 

G is defined over Q, and r = c/Jd(r') is easily seen to be commensurable with Gz. 
The group G' is usually known as the Hermitian modular group; it operates by: 

(~ ~)(Z) =(AZ+ B)(CZ + D)- 1 

on the symmetric space of complex n x n matrices Z such that ;- 1(Z - 1Z) > 0, 
and has been investigated under the name of the "Hermitian modular group" 
by, among others, Hel Braun [9) and Klingen [lll The trivial calculations above 
show that this pair, consisting of a symmetric space and an arithmetrically 
defined discontinuous group acting on it, (together with those discussed in A, 
B, and C) is a special case of what we are about to discuss. 

2. The general problem. In this section we let our transformation groups act 
on the right, as opposed to the convention in §1 where, for the sake of com­
patibility with classical notation, we let them act on the left. 

Let G be a semisimple, connected, linear algebraic Q-group. In this section we 
denote by GR the group of real points of G and let X = K\G~ be a symmetric 
space such that G~ is isogeneous tc the maximal, connected group of isometries 
of X; unless G~ is of noncompact type, we do not necessarily assume K to be 
maximal compact in G~. We now assume X to be Hermitian symmetric. Let r 
be a subgroup of G~ commensurable with Gz. (More generally, we may take r 
to be any subgroup of the maximal group of complex analytic automorphisms 
of X commensurable with Gz.) Our general problem consists in showing that 
V = X ;r may be realized, by a canonical procedure, as a Zariski-open subset of a 
projective, normal algebraic variety V*. We begin by legitimating some simplify­
ing assumptions. First, we may assume G to be centerless, because if Z is the center 
of G, then G is Q-isogeneous to G/Z = G', and the image of r in G' will, by results 
of [8], be commensurable with Gz. If G is centerless, then G is the direct product 
of its absolutely simple factors, and the latter are all defined over some Galois 
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extension k of Q. Grouping together those absolutely simple factors which are 
conjugate (over Q), we may write G as the direct product of Q-simple factors: 

Of course, Ga= G1a · ··· · Gma and Gz. is commensurable with G1z · ... · Gmz; 
moreover, X is then the product of X 1, • • ·, Xm, where X; is a Hermitian sym­
metric space associated to G?a· Hence, we may also assume G to be Q-simple. 
Assuming this, there exists a totally real number field k such that if G< 0 , · · ·, G<m> 
are the absolutely simple factors of G and if u1, • • ·, O'm are the distinct isomor­
phisms of k into R, taken in suitable order, then the smallest field of definition 
for G1il is ka•, and Ga = Girl>· .. · · Gi;'>. There are three cases to consider: (1) 
All simple factors GW are compact. (2) All simple factors GW are noncompact. 
(3) Some simple factors GW are compact and some are noncompact. In case (1), 
X is a (nonsingular) projective variety and r is finite, so X ;r is also a (normal) 
projective variety, and we are done. In case (3), it follows from results of Borel and 
Harish-Chandra [8) or of Mostow-Tamagawa [14] that X/f is compact. It then 
follows easily from a criterion, proved in [1], which is a generalization of Kodaira's 
result [12] on .Kahler varieties of restricted type, that X/r is again a projective 
variety. In case (2), the same results of the above-mentioned authors imply 
that X ;r is compact, and therefore a projective algebraic variety, if G is Q­
anisotropic. Hence, we shall assume in the future that G is centerless, Q-simple, 
of Q-rank ~ 1, and hence that all Gir are noncompact. 

Making the assumptions indicated above, we now outline the main steps of 
proving the desired result. 

(1) Compactification V* of V = x;r as a topological space. This requires the 
discussion of three subtopics: 

(a) the natural compactification of X viewed as a bounded domain; 
(b) the characterization of "rational boundary components" to play the role 

of Q u {<X)} in §1,A; 
(c) fundamental sets and reduction theory, from which we get the topology 

on v•. 
(2) Introduction of a ringed structure on V*. 
(3) Proof that the ringed structure in (2) makes V* into a normal analytic 

space. This requires a proof of the existence of sufficiently many functions in 
our ringed structure, and the latter depends on the convergence and other 
properties of Poincare-Eisenstein series, including properties of the so-called 
cI>-operator (i.e., behaviour of Poincare-Eisenstein series at oo ). 

(4) Proof that V* is a projective variety. This again requires information on 
the properties of Poincare-Eisenstein series. 

So to begin with, we need to study the natural compactification of X taken as a 
bounded domain in some CM, as well as properties of the unbounded realizations 
of X as Siegel domains of the third kind in the sense of Pyateckii-Shapiro. 
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3. Natural compactification and Cayley transforms of a bounded symmetric 
domain. It is now our purpose to examine the "natural" compactification of a 
Hermitian symmetric space X of noncompact type, by which we mean the com­
pactification of X obtained by realizing it as a bounded domain in some CM and 
taking its closure there. At the same time, for later applications to Poincare­
Eisenstein series, we need to consider the unbounded realizations of X, attached 
to the different boundary components of X. 

We may write X = K\G, where G is a connected, reductive Lie group with 
compact center having a faithful linear representation. Thus, G is the identity 
component, in the usual topology, of the group of real points of a connected, 
reductive, algebraic group Ge defined over R, which· has no nontrivial rational 
character defined over R, and K is a maximal compact subgroup of G. Let f be the 
Lie algebra of K and let p be the orthogonal complement of f in the Lie algebra 
g of G with respect to the Killing form g = f + p is a Cartan decomposition of 
g. I) is to be a Cartan subalgebra off, and hence also of g because of our assump­
tion on X, and <I> = c<I> will denote the root system of ~ with respect to 1>c. 
We may choose root vectors E,.., µ e <I>, and elements H,.. of 1>c such that 

[E,.., E_,,J = H,.. 
and 

v(H,..) = 2(v, µ)(µ, µ)- 1 (µ, v e <I>), 

( , ) being the restriction of the Killing form to 1>c· Ifµ e <I>, µis called compact 
if it vanishes on the center off, and is called noncompact otherwise. We may 
assume that complex conjugation of gc with respect to g permutes E,.. and E _,.. 
forµ noncompact. Fix a linear ordering on <I>, and let 7t+ (resp. 7t-) denote the set 
of positive (resp. negative) noncompact roots with respect to this ordering. Let 
p ± = L,..e,,± CE,... Then Pc = p + + p- (direct sum) and 

~=fc+P+ +p-, 

where p + and p- are Abelian subalgebras of ~ normalized by le. Moreover, 
the elements X,.. = (E,.. + E_,,), Y,, = i(E,.. - E_ 11){µe7t+) form a basis of p over 
R. 

Two roots µ, v e <I> are called str~!lgly orthogonal ifµ ± v are not roots. We 
select according to Barish-Chandra a maximal set {µ., · · ·, µ,} of mutually 
strongly orthogonal elements of 7t+, and write H;, E;, E_;, X;, and Y; in place of 
H ,..; , E,..,, E _ ,,; , X ,..; , and Y,..;, respectively. 

Let p± = exp p±. It is well known, as has been mentioned in (6), that the 
mapping </J:P- x Kc x p+-+ Ge maps the triple product biholomorphically 
onto a Zariski-open subset (!) of Ge containing G. Since exp: p + -+ p+ is a biholo­
morphic isomorphism, we may form its inverse, denoted by log. Then C will 
denote the map of (!) onto p + defined as the composition of the three maps <P- 1, 

projection onto p+, and log. Barish-Chandra has proved that C(G) is a bounded 
domain D in p + such that C induces an equivariant biholomorphic homeomor­
phism of X = K\G onto D. jj is called the "natural" compactification of X. 



286 W. L. BAILY, JR. 

We now wish to describe some results of Koranyi and Wolf (13] on the un­
bounded realizations of X. These results (obtained in slightly different notation 
and with conventions differing slightly from the present ones, e.g., action on the 
left instead of on the right, etc.) generalize results of Pyateckii-Shapiro on the 
classical domains [1Sl For simplicity, we assume G henceforth to be irreducible. 

For each b, 0 ~ b ;a! t, we define 

n:i 
Cb= n exp- lj, 

l~J~ll 4 
c0 = identity of G. 

The elements cb of Ge are called "partial Cayley transformations" and are analo­
gous to the usual Cayley transformation carrying the unit disc onto the upper 
half H 1, of the complex plane. 

Direct calculation shows: 

Ad c,,(Y,.) = Y,., 

Ad c,,(Ht) = Xt, 

Ad c,,(Ht) = Ht. 

1 ;a; k ;a; t, 

Ad c,,(Xt) = -Ht, 1 ;a! k ~ b, 

Ad c,,(Xt) = Xk, b < k ~ t. 

Moreover, as is substantially less obvious, G · c,, c: (!). Let S,, = C(G · cb). Direct 
calculation shows that ob = -(E1 + · · · + E,,) = C(c,,) es,,, and in fact 
o,, e oD = 15 - D. The domains s,, are the unbounded realizations we want, 
and the sets o,, · G (G acts continuously on I)) are precisely the distinct orbits of 
G in .ll To describe the situation more adequately, we need some further defini­
tions. 

Let a be the (Abelian) subalgebra of p spanned by X 1, • • ·, X,. a is a maximal 
subalgebra of g contained in p and is diagonalizable (over R) in the adjoint 
representation. Let a'I> be the set of roots of g with respect to a. g is the direct 
sum of the centralizer z(a) of a and of the root spaces 

911 = {xegj[a,x] = oc(a)x}, OC E a'f>. 

Let Yi.·· ·, y, be the coordinates in a with respect to the basis X 1, • · ·, X,. Then, 
since g is simple, a'I> is either [S] 

C, = {(±Y; ± yj)/2, 1 ~ i,j ~ t} - {O} 

or 

BC,= C, u {yJ2, 1 ~ i ~ t}. 

In both cases, we choose as ordering on a'I> the lexicographic ordering defined 
by the basis { X ;} 1 s; s,. Then the set .A of simple roots in a'I> consists of 
oc; = (Y; - Yi+ 1)/2, 1 -~ -i < t, and oc, = y, (resp. oc, = fy,) if a'I> is of type 
C, (resp. BC,i The numbering of the simple- R-roots thus defined is called the 
canonical numbering. 



ON COMPACTIFICATIONS OF ORBIT SPACES 287 

We let Rel>+ (resp. Rel>-) denote the set of positive (resp. negative) roots in Rel>. 
Let n = L .. e,.111+ g,., A= exp a, N =exp n. Then A· N is a maximal connected 

triangulizable subgroup of G. The centralizer Z(A) of A is equal to the product 
A · M, where M = Z(A) 11 K, the normalizer P = Z(A) · N of N is a minimal 
parabolic R-subgroup of G, and any minimal parabolic R-subgroup of G is con­
jugate to P. Any maximal proper parabolic R-subgroup of G is conjugate to 
exactly one of the form Pb= Z(Ab). N, where Ab = exp(R(X 1 + · · · + Xb)) and 
Z(Ab) is the centralizer (in G) of Ab. Let Pb be the Lie algebra of Pb. 
R(X 1 + · · · + X b) = ab can also be described as the one-dimensional subalgebra 
of a annihilated by all simple R-roots except ab. If a is any subset of RI'.\, denote 
by [a] the set of R-roots in its linear (R-) span. Then ·the Lie algebra Pb of Pb is 
the sum of 

1b = L <s .. + cs ... s- .. 1>· 
GIE(IXb+ 11 ··•,a:t) 

·~ = L <s .. + cs ... s-.. 1> 
a:e[a:1o···,ab- 11 

Ub= L g ... 
11eRlll~ -[111,···,110-1J-[110+1.-·-.11t) 

of ab, and of an ideal mb of m, the Lie algebra of M. The algebra 3b = If, + mb + 
u,; + ab is an ideal of Pb; let U b = exp ub and let Zb be the inverse image in P,, of 
the centralizer of the identity component in Pb;zg, where zg is the connected 
closed subgroup of G with (the semisimple) Lie algebra 3b· Then Zb is a normal 
subgroup of Pb, Pb = Zb ·Lb, and Lb 11 Zb is finite. 

We have 

the space X b = Kb\Lb is Hermitian symmetric, and Db = C(Lb) c Pt is the 
realization of Xb as a bounded domain. Fb = ob + C(Lb) is just the orbit of ob 
under Lb, is contained in oD = D - D, and is a set of imprimitivity of G in ll 
The transforms of the F b's by the dements of G are the boundary components 
of I>. D itself is a (an improper) boundary component with b = 0. If g is not 
simple, then the boundary components of D are the products of the boundary 
components of the individual factors. 

If Fis a boundary component of I>, we define 

N(F) = {g E GjFg = F}, 

Z(F) = {g E N(F)jxg = x for all x E F}, 

and 

G(F) = Z(F)\N(F). 



288 W. L. BAILY, JR. 

One may prove that N(Fb) = P,,, Z(F,,) = z,,, and 

G(Fb) = (L,, n Z,,)\L,,, 0 ~ b ~ t. 
Now we proceed to the description of the unbounded realizations S,,. We 

have P,,e = N(F,,)e. a "standard" parabolic R-subgroup of Ge, and N(F,,) 
= Z(A,,) · U,,R = L,, · z,,, where A,, is the one-dimensional subgroup of aA on 
which all roots but ex,, vanish, Z(A,,) is its centralizer in G~ = G, and U,, is the 
unipotent radical of P11e. We may write Z(A,,) = L,, ·Li,· M,, ·A,,, where M,, is a 
compact normal subgroup of Z(A,,); then Li, · Mg · A,, · U ,,. is the identity com­
ponent of z,,. Let V be the orbit of -io,, e p+ under Li,· M,, ·A,,, let W,, be the 
center of U,,, and put E,, = W,,a\U,, •. Since U,, is two-stage metabelian, E,, may 
be identified with a vector space, over R which is, in fact, even-dimensional. 
W,, is Abelian, connected, and contained in p+, and therefore will be identified 
with its Lie algebra It can be proved that V c W,, (q. v. [13)). Let iN 2 be the 
smallest real subspace of W,, containing V. Then W,, = N 2 + iN 2 and V is a 
linear homogeneous convex open cone in iN 2• When speaking of real and 
imaginary parts of elements in W,,, it will be with reference to the real form N 2 

of W,,. Then E,, (which is even-dimensional over R) may be supplied with the 
structure of a complex vector space in a natural way depending on t e D,, such 
that the following is true: There exists for each t e D,, c pt a quasi-Hermitian 
R-bilinear mapping L,: E,, x E,,--+ W,, (depending in a real analytic manner on t) 
such that S,, = {(z,u,t)e W,, x E,, x D1111mz - ReL,(u,u)e V}. (A quasi-Hermi­
tian mapping in the sense of Pyateckii-Shapiro is one which is the sum of a 
Hermitian mapping and of a symmetric one.) Moreover, L, is nondegenerate 
for each t e D,, in the sense that L,(u, v) = 0 for all v e E,,, fixed u implies u = 0. 
One needs these facts in the discussion of Fourier-Jacobi series. We need, more­
over, the following facts about the operation of P,, on s,,: If n e U ,,., n acts by a 
unipotent linear transformation on E,, + W,, and leaves pt pointwise fixed. Each 
element of A,, · L/, · M,, acts by linear transformations with constant Jacobian 
determinant, leaving D,, pointwise fixed. And if g e L,,, then the Jacobian deter­
minant of the action of g on D,, is a positive rational power(~ 1) of the Jacobian 
determinant of its action on s,,. 

In closing this section, we point out the following useful fact, (the inspiration 
for which is due essentially to Pyateckii-Shapiro [16)): Let c,, be the connected 
centralizer of w;,. in P,,. Then its Lie algebra «:,,is equal to I,,+ u,, + (<t,,n3(a)n ti 
In particular, C,,/L,, · u,, is compact. 

4. The topological compactification of X/r. We carry over the assumptions of 
§2. We shall also assume that Ge is absolutely simple. This is not essential for 
our proofs, but is intended to avoid obscuring the main points with technical 
details. All our results are indeed valid without this assumption and the fact 
mentioned at the end of §3 is useful in making the step to the more general case. 
Moreover, many things also become simpler if we assume that the Q-rank of 
Ge is the same as its R-rank. While we shall not explicitly assume this to be the 
case, we shall usually state without proof those propositions which enable us to 
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deal with the case rkRGc > rk0 Gc in the same general manner as with the simpler 
case rkRGc = rk0 Gc. 

We choose once for all a maximal Q-trivial torus S in Ge, let 0 M be the 
Q-anisotropic part of Z(S), and let 0 N be the connected, unipotent subgroup of 
Ge with Lie algebra equal to the sum of those Q-root spaces corresponding to 
the positive Q-roots with respect to some linear ordering on the vector space 
containing the Q-roots. Put aA = S~. We have the following: 

PROPOSITION. There exist a maximal Q-torus T of Ge and a maximal R-trivial 
torus RT of Ge (RT is not necessarily defined over Q) such that S c RT c T. 

We omit the proof. 
Let 41>, R4l>, and 041> be the sets of roots of G with respect to T, RT, and S, respec­

tively, and we suppose these are supplied with compatible orderings; e.g., if 
r: X*(R T) -+ X*(S) is the restriction from the rational character group of RT to 
that of S, and if a e R4l>, then a > 0, r(a) =F 0 imply r(a) > O; similarly for the 
compatibility of the orderings on the roots of the other pairs of tori. Let A, RA, 
and ~ be the corresponding sets of positive simple roots. We have 0A = r(RA) 
-{O}. Let RA= {ai. ···,a,} with the canonical numbering described in §3. If 
fJ e 0A, let m(/J) be the greatest index i such that r(a;) = {J. We number the elements 
fJ i. · · · , fJ. of 0A in such a way that i < j if and only if m(/J1) < m(/Jii We have the 

PROPOSITION. (a) ~ is of type BC. if either R4l> is of type BC, or R4l> is of type C, 
and r(a,) = 0, and is of type c. otherwise. The numbering of fJ1, • • ·, fJ. described 
above is the canonical one. 

(b) Each Pe 0 A is the restriction of exactly one a e RA. 

The roots a e RA such that r(a) =F 0 are called "critical''. 

COROLLARY. The proper maximal parabolic Q-subgroups of Ge are also proper 
maximal among parabolic R-subgroups. 

This is true, roughly speaking, because both 0 A and 11A are chains (i.e., have 
no branching), and for each {J e ~ there is just one a e 11A with r(a) = {J. There­
fore, if P is a proper, maximal, "standard" parabolic Q-subgroup of Ge, and if 
fJ e 0 A is the unique simple Q-root ·:;b.ich is not a Q-root of the quotient of P by 
its unipotent radical, then P is also the proper, maximal, "standard" parabolic 
R-subgroup such that the a e 11A with r(a) = fJ is not a root of the quotient of P 
by its unipotent radical. 

Let D be "the" realization of X as a bounded symmetric domain. If F is any 
boundary component of 15, then N(F)c is maximal, proper R-parabolic. 

DEFINITION. A boundary component F of jj is called rational if N(F)c is defined 
over Q. 

We note that in [4] a definition of broader apparent applicability is taken, 
which in our case is equivalent to the above. 

Let S, 11 T, and T be as above and let Fb be a standard boundary component, 
so that PbC = N(Fb)c is a maximal proper standard parabolic R-subgroup of Ge. 



290 W. L. BAILY, JR. 

One sees from the description of the standard parabolic groups that Pb is defined 
over Q if and only ifat:b is critical, and in that case, Lb, Zb, and Ub are also defined 
over Q. Then, in that case, the mapping N(F,,)c --. Z(F,,)c\N(F,,)c is defined over 
Q, and so if r is an arithmetic subgroup of G, then (Z(Fb)n r)\(N(Fb)n r) is a 
discrete transformation group of Fb (it is, in fact, an arithmetic subgroup of 
G(Fb) = Z(F,,)\N(Fb)i 

Let ,,, w resp. be relatively compact, open neighborhoods of the identity in 
aM 8 , aN a resp., and let t > 0 be given. Define 

0 A, = {aeaAIP(a) < e',Peaa}, 

and put S,,.,,w = K · oAr · '1 · w (where, of course, we take the Lie algebras of 
aA and K orthogonal to each otheri Denote by Cl,,.,,w the natural image of 
S,,.,,co in X and let sl,,.,,w be the closure of Cl,,.,,w in the natural compactification 
of X as a bounded domain D. 0 1,.,,w is called a "Siegel set" in X. One verifies 
readily that: (a) if F is a boundary component of [j meeting fi,,.,,w, then F is 
rational; (b) if F is rational, then there exists g e G0 such that fi,,,,,co n Fg is 
nonempty; and (c) if F n fi,,.,,w is nonempty, then F n fi,,.,,co = fi(F),,,,., 01• is a 
Siegel set on F, where,,, and w' can be made as large as desired by taking '1 and w 
sufficiently large. 

Now let r be a subgroup of G~ commensurable with Gz. Let D* be the union 
of D and all rational boundary components of [j_ It is not difficult to verify that 
the hypotheses of Theorem 1' of [19] are satisfied. Thus, D* may be supplied 
with a topology ff such that ff induces the usual topology on sl,,.,,w, every 
element of G0 is a continuous transformation in ff, and D* /f' supplied with the 
quotient topology ff0 is a compact Hausdorff space. Let 11:: D* --. D* /r, u b: p + 
--. vt (with kernel q,, equal to the sum of the root spaces in p + not contained 
in pt), and Pb: P,, --. L,, be the natural quotient mappings, where b is chosen 
such that F,,( c D*) is a rational boundary component Let x,, e sl,,,,,w n F,,, 
xb = o,, · g,, with g,,e L,,, and let {4'11} be a basis of connected relatively compact 
neighborhoods of g,,. For any a and A. > 0, define (here a e 0A): 

S 1,,,,w(4'11 ,A.) = {g = kamneS1 ,,,,01 jp,,(amn)e l,.,p,,(a) < e-A}, 

and denote by Cl,,.,,01(4'11 , A.) the image of this in X. By using such "truncated 
Siegel sets", we may prove the existence of a basis of neighborhoods % 11,i of 
n(x,,) in V* = D*/r such that each of the sets % 11,i n (D/r) is connected. We 
define V = D/r. 

5. The ringed structure. If Fis a rational boundary component, let 

r(F) = (Z(F) n r)\(N(F) n r). 

If Fb is a standard rational boundary component, of course Lb n r is isogenous 
to r(Fbi We may write D*/r = UFF/r(F), where F runs over a complete set of 
r-inequivalent rational boundary components, including D itself. Each of the 
spaces F /r(F) = VF carries a natural complex structure. If (!) is an open subset 
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of D* ;r = V*, and if f is a continuous complex-valued function on (!}, we say f 
is an 21-function on (!} if f I VF n (!} is analytic for each rational F. Our purpose is 
to prove that V* supplied with the ringed structure of 21-functions is a normal 
complex analytic space. 

6. Poincare-Eisenstein series. Again, let Fb = F be a "standard" rational 
boundary component and denote by r a subgroup of G = G~ commensurable 
with Gz. Put P = PbC and let X 0 : P -+ C* be the rational character defined by 
X 0 (p) = det(Adup), where u is the Lie algebra of U = Ub. We take X 0 to be the 
fundamental highest weight of P. For any positive real number s, let A(p, s) 
= IX0(p)i-• and let/be a continuous function,/: G-+ C such that 

f(gp) = f(g)A(p, s), g e G, p e P n G. 

Then (Godement) 

E f(g) = L f(gy) (ge G) 

converges absolutely uniformly on compact subsets of G if s > 1. 
We now apply a slight modification of this criterion to certain series on 

Sb = C(G · cb), notation being as in §3. As remarked in [61 it is in fact sufficient 
to replace the hypothesis of Godement's convergence theorem by: 

(a) m(g) = suppePnG lf(gp)llX 0(p)I" is finite for each g e G and is bounded on 
compact sets, and 

(b) f(gy) = f(g) for all }'Er n P. 
Following previous notation, we let ab: p + -+ vt be the projection with kernel 

qb. Then ab(Sb) =Db c vt. Let </> be any polynomial function on Db, let ro 
= r n Zb, and define 

E(x) = E</>,1,r(x) = L </>(ab(x · y))Jb(x, y)1, 
yertro 

for x e Sb, where l is a suitable positive even integer and J,, is the functional deter­
minant in Sb (of the transformation y at x e Sb). To see that this is well defined, we 
note that for}' Er 0 we have </>(ab(x. y)) = </>(ab(x)), because r 0 acts trivially on F,,; 
and J b(x, y)' = 1 for x e Sb and ye r 0, if l is divisible by n ! for a sufficiently large 
positive integer n, because J b(x, y) t?.kes only finitely many values for ye r 0, as 
one may easily see. Such series as these are called Poincare-Eisenstein series 
(P.-E. series for short). Because of the facts indicated at the end of §3 and by our 
preceding discussion, we have for p e P n G : 

IJ b(x, P)I = lib(a,,(x), P)l9blX o(p)l-nb, 

where jb is the functional determinant of a transformation of Db, and qb and nb 
are positive rational numbers, qb > l; thus lqb > 2. We now assume that In,,> 1. 
We may write 

(1) E(x) = L ( L <f>(a,,(x · yA.))J ,,(x, yA.)1\, 
yer/r., Aer ..,11·0 } 

where r 00 = r n P. We define for g E G: 
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and 

(2) &'(g) = 1: lr(gl)I, 

and for x e Sb put 

(3) 

The relationship between &' and &'* is that if x = ob · g, then 

&'*(x) = IJ b(ob, g)-'j&'(g). 

Then the series of the absolute values of the terms in (1) is equal to 

(4) IJb(o,,,gl- 11 1: &'(gy). 
yEr/r.., 

We define 

(5) E'(g) = L &'(gy). 

It is obviously sufficient to prove the convergence of the series in (5). To do this, 
it is enough to verify the conditions (a) and (b) above with f = &' and s = lnb. 
Condition (b) is clearly satisfied by virtue of the definition (2). We now check (a). 
We use a(g) to denote J,,(ob,g)1, ge G. If pe z,,, a(gp) = a(g)IX0(p)I-' (s =In,,), 
while if veL,,,X0(v- 1pv) = X0(p), because P,, operates trivially on its own 
character group by inner automorphisms. Therefore &'(gp) = &'(g)jX0(p)j-'. Since 
P,, = Lb· Zb> and IX 0(v)I = 1 for v e L,,, it suffices to prove, finally, that &'(gv) 
remains bounded for v e L,,, g in a compact subset C of G. For each g e C, we 
choose an element m, e L,, such that u,,(ob · g) = o0 • m,(o0 e D,,, being the origin 
of coordinates). Of course, m, is determined up to an element of the compact 
group K n Lb> and so m, remains in a compact set as g runs over C. Then for 
). er 01,, let 1 be the image of A. in Z,,\N(F) = G(F), and if v e L,,, let v be its image 
in G(F). We have 

J ,,(o,,, g · v · ).) = J ,,(o,,, g)j,,(O, m,)-•b j,,(O, m, · v · 1)•b, 

as follows from the "cocycle relation" for functional determinants, so that 

&'(g · v) = J b(ob, g)'j,,(O, m,)- 1•b9(.m,iJJ, 

where~ is a Poincare series on F "lifted" to the group G(F), and hence, by [6], 
is bounded on G(F). Hence, &'(gv) is bounded forge C, v e L,,, as we wanted to 
show. Thus the series in (5) converges (absolutely and) uniformly on compact sets. 

In what follows, c1, c2, ···will denote suitable constants and will be so under­
stood without further explanation. Our purpoi;e here is to obtain a normal 
majorant for the series of absolute values of the terms in E(x) in some Siegel set 
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contained in a neighborhood of some x0 e Fb. The details for dealing with 
translates of such a Siegel set by elements of Ga, and for dealing with the auto­
morphic form corresponding to E in other unbounded realizations are close to 
what is given in our discussion here. 

Let E0 denote the series whose terms are the absolute values of the terms of 
the series for E. For s e G we have 

(6) E0 (o,, · s) = a(s)- 1 L &'(sy). 
yertr"' 

We take an irreducible left linear, rational representation p defined over Q, of G, 
with highest weight X0 (we may as well assume s =.In,, to be an integer), such 
that P is the full subgroup of G leaving the line spanned by a highest weight 
vector e 1 invariant, and put c'(g) = II p(g)e 1 11- 1, where II II is some Euclidean 
norm with respect to which p(S) consists of self-adjoint transformations (S is the 
maximal Q-trivial torus). Then the eigenspaces of p(S) corresponding to distinct 
Q-weights of p are mutually orthogonal. If p e P, we have clearly 

(7) c'(gp)IX o(P)I• = c'(g), c'(g) > 0, geG, 

and so &'(g) < c 1 • c'(g) for all g e G by a well-known argument (using the fact 
that G = KP). Hence, E0 is majorized by the series 

(8) c 1a(s)- 1 L c'(sy). 
yertr"' 

We now want to estimate the behaviour of (8) for s in some Siegel set 6 1,.,,w· 

For s e 6 1,,,,..,, s = kamn = kmn'a, with a e aA" me 11, n E w, k e K. By an argu­
ment in [7] awa- 1 is relatively compact in aNa if w is; of course, n'eawa- 1. 

If g e G, we have p(g)e 1 = K 1e1 + L f/J, wheref/J is in the eigenspace correspond­
ing to the Q-weight µ,and letting X = X 0, we have 

llp(a)p(g)e1 II = llK1X(a)e1 + L µ(a)f/Jll· 
/J 

Also, since kmn' runs over a relatively compact set C1, we have 

c2 1ixll ~ llp(e)xll ~ c3 llxll 

for all e e C 1 and x in the representation space of p. Hence, as a simple calculation 
shows, 

(9) 

for s = kamn e 6 1,,,,w· Moreover, 

/J 
where each µ is of the form 

xpr;:• ... pr;·, 
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Combining the above, we have for s e $ 1,.,,.,: 

(11) la(s)- 1&'(s·g)I ~ c6 JJK 1e1 + L(X- 1 ·µ)(a)f,.11- 1 ~ C1c'(ag)JX(a)I, 

" 
for g e Gfl. Choose a0 e fl.Ar such that JP;(a0 )1 = e' for all P; e flA. Then for this 
value a0 of a, c'(ay)- 1!X(a)J- 1 attains a minimum for ae $ 1,.,,.,. Forge Gfl, put 
c(g) = c'(a0g)JX(a0 )J. It follows from the Godement criterion that L em c(gy) 
converges, and from the things we have just said that c8 Lyertr c(y) is Jn aosolute 
majorant for the series E0 in the image n in s,, of any F,,-adapted truncated 
Seigel domain 6. 

Now, to investigate the limit of E as we approach F = F,, from within n, 
we need to estimate the terms c'(ay)IX(a)j as p,,(a) tends to zero. We can easily 
prove, in fact, that lim11b(al .... 0 c'(ay)IX(a)j = 0 if ')I e Ga - N(F). Let ')I e Ga- We may 
write y = nwhn' with n,n'eaNa, weN(S)a, he Sa (Bruhat decomposition). We 
have 

c'(ay)- 1 = llp(anwhn')e1 11 = llp(ana- 1awh)(e1)11 

= i1p(ana- 1wh)(e1)1!1X(w- 1aw)j. 

Moreover, X(w- 1aw) = w(X) (ai One sees that w(X) = XPi' · · · P':•, where all 
m; ~ 0, and m,, < 0 precisely if y ¢ N(F)a. Hence, 

(12) IX(a)lc'(ay) = 1ip(ana- 1wh)(e1)1!- 1P1(a)-m' · · · /J,(a)-m•. 

As awa- 1 is relatively compact, the term II 11- 1 remains bounded as a runs over 
aA,. Therefore, all factors on the right are bounded, and p,,(a) appears with the 
positive exponent -m,,, whence our assertion: JX(a)Jc'(ay)-. 0 as p,,(a)-. 0 if 
y ¢N(F)a. 

It now follows rather easily that the limit of Eon F = F,, exists and is a Poin­
care series of weight lq,, with respect to a certain discontinuous group on D,,. 
And for suitably divisible weights, we get all such Poincare series as limits of 
such P.-E. series E. Of course to prove this one must also deal with translates 
of E and of 6 by elements of Ga, but the general ideas are the same. More gener­
ally, one may also show that E has a well-defined limit on every rational boundary 
component F' (in the topology .r), and if c'brE denotes this limit, then one may 
prove: 

(a) if dim F' < dim F, 

(b) if dim F' = dim F 
then c'brE = 0. 

c'brE = 0. 

and F' ¢ F· r, 

Using these facts, one may prove the local separation of points of V* by \ll­
functions. Then an easy prolongation theorem shows that V*, supplied with the 
ringed structure indicated previously, is a normal analytic space. This prolonga­
tion theorem may be proved using the theorem on removable singularities of 
analytic sets of Remmert and Stein [17), using ideas on prolongations due to 
myself [l], and using subsequent ideas ofH. Cartan [10; Exp. 11) on prolongations 
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which succeeded in removing a superfluous weakening hypothesis from my 
earlier theorem. However, the theorem used here is not a direct application of the 
theorems originally proved by myself and Cartan, but needs some changes because 
of complications stemming from the fact that the set V* - V is not necessarily 
locally irreducible, so that the induction on dimension must be modified. More­
over, the properties of P.-E. series just indicated make it possible to show without 
great difficulty that V* may be imbedded as a normal variety in some projec­
tive space by means of automorphic forms. Results similar to those formulated 
here were announced in [16] with sketches of some proofs. 
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Fourier-Jacobi Series 
BY 

WALTER L. BAILY, JR. 

It is our purpose here to discuss the so-called Fourier-Jacobi series which are 
introduced and dealt with by Pyateckii-Shapiro in his book The geometry of the 
classical domains and the theory of automorphic functions. This book will be 
referred to as PS [5]. 

My discussion is mainly an exposition of some of the ideas related to Fourier­
Jacobi series developed in PS, in such language, we hope, as to make clear their 
relationship to some ideas in [1). Of course, as regards the exceptional domains, 
we must rely on some of the general results of Koranyi and Wolf [4] on partial 
Cayley transforms and Siegel domains of the third kind. However, the latter 
authors do not concern themselves with Fourier-Jacobi series, and once the 
main facts on Siegel domains are assumed, the principal ideas are still those 
of PS. 

The main point of original motivation for these developments is to show how 
some results of Koecher [3] on Siegel modular forms can be extended to the 
general case of automorphic forms with respect to a fairly broad class of arith­
metic discontinuous groups. Specifically, let Ge be a centerless, connected, linear 
algebraic group defined over Q which is Q-simple, such that G~ has no compact 
simple factors, and such that X = K\G~ is Hermitian symmetric (K is a maximal 
compact group in G~) and therefore equivalent to a bounded symmetric domain 
D. Suppose dim G > 3 and suppose F is a proper rational boundary component 
of D. Let f be a holomorphic automorphic form of some even weight on D with 
respect to some arithmetic subgroup r of G~. Then in a certain natural sense, 
f has an extension to F. It is not our purpose here to discuss the precise manner 
in which, in the topology ffo (see [I]), f becomes a cross-section of some coherent 
sheaf and such questions are left to the taste of the reader. 

1. Cylindrical sets. As before, we choose in Ge a maximal Q-trivial torus S, 
a maximal R-trivial torus aT. and a maximal Q-torus T with Sc: aT c: T, and 
denote by 0 <1>, .<I>, and <I> the respective root systems. Choosing compatible 
orderings on these, we let 0 A = {/J1, · · ·, /J5}, aA = {oci. · · ·, oc,}, and A be the 
respective sets of simple roots. (As before, it is not necessary to assume Ge to be 
absolutely simple, and if we appeal to such an assumption in what follows, it is 
only to simplify the discussion, and not for any intrinsic reason.) Let b be fixed, 
1 ~ b ~ s, and let Fb be the standard rational boundary component defined in 
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previous lectures. Then1 N(Fb)c = Pb = R · U, where U is the unipotent radical 
of Pb and R is a reductive complement which may be taken as A· B ·Sb, where 
Sb is the one-dimensional, central, Q-trivial torus in R, A and B are defined over 
Q, Aa contains all the simple factors in Ra acting nontrivially on Fb, while 
(B · S)a c Zb and (B · S · U)a\Zb is compact. 

We recall some facts from [l, §3] and from PS about Sb = C(G · cb) (which are 
true even if Ge is not irreducible). Let W be the center of U, E = Wa\U R• and 
identify the Abelian, connected, simply-connected Lie groups W and E with 
their Lie algebras once and for all. V is a convex cone contained in N 2 and W = 

N 2 + iN 2, E and W are supplied with certain complex structures, that of E 
depending on t, for each t E Db, and a certain quasi-(V-)Hermitian mapping 
L,:E x E-+ W. Then 

(1) Sb= {(z,u,t)E W x Ex DbltEDb, lmz - ReL,(u,u)E V}. 

A cylindrical set S(Q, r) in Sb is defined in Sb by PS as follows: Let Q be a compact 
subset of Db, let r E V, and define 

(2) S(Q, r) = {(z, u, t) E Sblt E Q, Im z - Re L,(u, u) - r EV}. 

By pp. 28-29 of PS, the function Im z - Re L,(u, u) is invariant under UR· Hence, 
S(Q, r) · U a = S(Q, r). We supply N 2 with a partial ordering by: x 1 > x2 if 
x 1 - x2 E V. The cylindrical sets are used in PS in defining a topology for D*/r. 
This topology is at least as coarse as the topology !To (q.v. [1]), as indicated by 
the Lemma given shortly below. First, we must "invert" our usual truncated 
Siegel sets. With t, 1'/, w, E, A. given as in the discussion of the latter, let 6~11,,,,(E, A.) 
be the set defined by all the same inequalities as those defining 6 1,.,,,,,(E, A.) 
except that in giving the restrictions prescribed by t and A. on the simple roots 
we precisely reverse the signs of all exponents of e as well as all signs of inequality 
(so czAi = {aEczAIP(a) > e-', PEczll}, and we want Pb(a) > e'\A.-+ +oo). 
Then we have: 

LEMMA. Lett ER, w c czN R• 1'/ c czMa be given with wand 1'/ both relatively open 
and relatively compact. Let Q and r be given as above. Then there exist E and A. 
such that S~,,,,,,(E, ),) c S(Q, r). 

We omit most of the proof except to remark that it is significantly simplified 
by the observation that Im z - Re L,(u, u) is invariant under U a and hence we 
may take u = 0 and therefore L,(u, u) = 0 throughout our argument. The rest of 
the details are left to the thoughtful reader. 

2. The skew-symmetric form Q. We identify Wand E with their Lie algebras. 
Then (see PS) the group extension U a of E by Wa is defined by the multiplication 
rule 
(3) (e, w) x (e', w') = (e + e', w + w' + Q(e, e')), 

1 P. was P•.c: in (Il 
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where Q·is a nondegenerate skew-symmetric bilinear mapping of E x E into W. 
The nondegeneracy of Q follows from that of L, (for every t) mentioned in [1]. 
r is a subgroup of G~ commensurable with Gz. Since U and W, and hence E, 
are all defined over Q, it follows that Ur= U f"'I r, Wr = W f"'I r, and Er= 
Wr\Ur are respectively lattices in U 8 , in W8 , and in E. Then Q has the further 
evident property (because Ur is a group) that 2Q(Er x Er) c Wr. 

3. Automorphic forms. Let f be a holomorphic, automorphic form of weight 
2k on Sb with respect tor. For ye U F• f(xy) = f(x), x es,,, because J,,(x, y)2k = 1. 
In particular this is true for ye Wr. We denote the lattice Wr by A, A c N 2• 

Then f has a Fourier expansion: 

(4) /(x) = f(z, u, t) = L i/lp(u, t)e((p, z)), 
pe/\' 

where ( ) is some Euclidean inner product on W mapping N 2 x N 2 into N 2, A' 
is the dual lattice of A with respect to ( ), and s( ) = e2"i< 1• Since f(xy) = /(x) 
for ye Ur, x es,,, one may prove, using the uniqueness of the Fourier coefficients 
I/IP in (4), that for (e, w) e Ur we have 

(5) I/I p(u + e(t), t) = s( - (p, w + 2iL,(u, e(t)) + iL,(e(t), e(t))) )I/I p(u, t) 

(where, in the ·coordinates of Sb, (e, w) is represented by the transformation: 

t-+ t, 

(6) u-+ u + e(t), 

z -+ z + w + 2iL,(u, e(t)) + iL,(e(t), e(t)), 

and e(t) is the complex vector representing e in the complex structure on E 
associated to t). For fixed t, the equations (5) for all (e, w) e Ur imply that I/I p(u, t) 
is a 6-function of u with period lattice {e(t)} depending on t. If p = 0, we have 
i/10(u + e(t), t) = i/10(u, t), hence by Liouville's theorem i/10 is independent of u. 
For other values of p, the existence of 6-functions I/Ip;!!: 0 satisfying (5) depends 
exactly on the Riemann conditions. As is shown on pp. 138--140 of PS, one part 
of the Riemann conditions is expressed by the condition 2Q(Er x Er) c Wr, 
which was mentioned at the end of §2, and the other part by the requirement 
that a certain Hermitian matrix be nonnegative semidefinite, which is finally 
reduced in terms of p to the requirement 

(7) (p, J.l2'(u, u)) ~ 0 

for all u e E, where Ll2> is the Hermitian part of L,. It follows from the non­
degeneracy of L, that the real, positive convex hull of the vectors Ll21(u, u) is 
just V, and hence (7) becomes the requirement that p e JI', where V' is the dual 
cone of V, of which the closure is defined by 

V' = {yeN2l(y,v) ~ O,ve V}. 
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Hence, we may write, if dim E > 0, 
f(z, u, t) = L I/I p(u, t)e( (p, z)). 

pe/\'n ii" 

If dim E = 0, i.e., if U is Abelian, it is easy to see that for a proper rational 
boundary component Fb we must have dim Fb = 0, i.e., b = s and F. is a point. 
In this case, all I/IP are constant, and we may write 

f(z) = L Cpe((p, z)), 
pe/\' 

where all C,, are constants. We fix a point y0 e V. Then we must have that 
LCPe((p, iy0 + x)) = g(x) converges uniformly for x_ in any compact set. Inte­
grating lg(x)i2 over a period parallelepiped of A', we get 

(8) L ICPl2e-4"(P.Yo) < + 00. 

Suppose Po rt V', and denote by M 0 the set all p = p0 y'p, y6 e B11 n r, where y'p 
is the adjoint of y6 with respect to (, ). For y6 e B11 n r,J(zy6) = f(z), and so 
CPYp = cp. Therefore, ICl 2L eMoexp(-4n(p,yo)) < +oo, where c is the com­
mon value of all CP10 . Since" dim G > 3, dim V > 1, and so dim B11 > 0. More­
over B is defined over Q, has no rational characters defined over Q, and so 
8 11/(r n B11) has finite volume. But B11 is not compact, and in fact one can, e.g. 
by a case-by-case examination of homogeneous cones, find a one-parameter group 
P(T), 'Ce R, in B11 such that for suitable fixed y0 e V we have 

Jim (Po• YoP(T)) = - oo. 
't-+oo 

By the density properties [2] of r n B11 in B11 , we can for any pre-assigned small 
neighborhood N of the identity in B11 , find sequences 'Ci. 'C 2 , · • • --+ + oo in R, (an} 
and { bn} in N, such that anPCTn)bn = Jn er n B11 • If we take N small enough, we 
can obtain, finally, that limn-+"' (p0 , YoYn) --+ - oo, which contradicts the con­
vergence of (8), unless C = 0. 

Hence, in all cases we have, if dim G > 3, 

(9) f(z, u, t) = ~ I/I p(u, t)e((p, z)). 
pe/\'n v· 

Now PS shows (Lemma 2, p. 119 of PS) that such a function has an absolute 
majorant on any part S(Q, r, K0 ) of a cylindrical set S(Q, r) where lul is less than 
some constant K 0 . Let f* be the sum of all the terms in (9) with p =!: 0. Then 
f*(xy) = f*(x) for ')' e Ur, lf*I is bounded in S(Q, r, K 0 ), and hence on all 
of S(Q, r) by translation by elements of Ur. if we choose K 0 so large that the set 
{iul < K 0 } contains a period parallelogram of the lattice of vectors e(t), (e, w)e Ur, 
for all t e Q (Q being relatively compact). Moreover, we can make lf*I arbitrarily 
small in S(Q, r, K 0 ) by choosing r large in the partial ordering on N 2 mentioned 
previously. Hence f--+ 1/1 0 as r /'Xi in this partial ordering. i.e., lim"-reF.f(x) = 
l/J 0(t). (One still needs to check the effect of translating Siegel domains by some 
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elements of N(Fb)Q, but this is not serious, because then we are still discussing the 
limit of an automorphic form with respect to some other arithmetic discon­
tinuous group.) Therefore, the limit off on Fb is 1/10, i.e., in the notation of the Cl> 
operator (1), Cl>pf = 1/10 , which is an automorphic form with respect to some 
arithmetic discontinuous group on Fb. This is true for any rational boundary 
component (the "standard" boundary components are such only by the choice 
of S, and any rational boundary component is "standard" with respect to a 
suitable S and suitable ordering on 0CI>). Thus every modular form is an "integral 
modular form" if dim G > 3. 
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On the Desingularization of Satake Compactifications 
BY 

JUN-ICHI IGUSA 

I . The problem of desingularization. Let X denote a subdomain in a complex 
vector space which is complex-analytically isomorphic to a bounded symmetric 
domain. It is known that there exists a semisimple, linear algebraic group G' 
defined over Q such that the identity component of the Lie group of complex­
analytic automorphisms of X is isomorphic to the quotient group of the identity 
component G of Git by a finite central subgroup. Denote by re the set of all 
subgroups r of G which are commensurable with the group Gz. If we denote by 
Gz{l) the principal congruence group of level l, it is a member of re for l = 1, 2, · · ·. 

Now, after Baily and Borel [1], we know how to construct the so-called Satake 
compactification .9"(r) of the quotient variety X/r for every r in re. In the first 
place, .9"(r) has the structure of a normal projective variety in which X/r is 
Zariski-open. Furthermore, if r is contained in r', there exists a morphism 
.9"(r) -+ .9"(r'), which is a covering (in the sense that it is proper and the fiber 
over each point of .9"(r') is a nonempty finite set). If r' is contained in r", the 
composite morphism .9"(r) -+ .9"(r') -+ .9"(r") is the same as the morphism 
.9"(r) -+ .9"(r"). A point of a normal analytic space is called almost nonsingular 
if it possesses a neighborhood which admits a nonsingular covering. If all points 
are almost nonsingular, the space is called almost nonsingular. While every 
point of x;r is almost nonsingular, we shall see that, in general, all points of 
bd .9"(r) = .9"(r) - X ;r are not almost nonsingular. This is a serious matter if 
one wants to investigate geometry on.9"(r). 

The problem of desingularization is to find another compactification of X/r 
which has less complicated singularities. More precisely, one seeks for every r 
in re a normal projective variety .@(!"")which contains X/r as a Zariski-open set 
and such that .@ satisfies the following conditions : 

(0) .@ has the functorial properties similar to those of .9"; 
(1) For every r in re, there exists a morphism .@(r)-+ .9"(r) which is an iso­

morphism over x;r and which commutes with the covering morphisms in­
duced by inclusions; 

(2) There exists an 10 such that .@(Gz(l)) is nonsingular for l ~ 10 , 

(2') For every r in re, there exists a subgroup r' of r in re such that .@(r') is 
nonsingular, 

(2") .@(r) is almost nonsingular for every r. 
The condition (2) in general implies the condition (2') and (2') implies the condition 
(2"). Since we are still at an experimental stage, it is premature to make any 
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general conjecture. However, it is probable that a good solution exists at least 
in the case when G = Sp(g, R). 

REMARK 1. If ~(r 0) is known for some r 0 in ~. then ~ is uniquely deter­
mined by the conditions (0) and (1). In fact, ~(r) will be obtained from ~(r 0 ) 

by the processes of taking a derived normal model and of taking a quotient 
variety by a finite group. 

REMARK 2. It is almost certain that we can not make ~(r) nonsingular for 
every small r. In fact, according to Abhyankar, an algebraic function field and 
its finite algebraic extension do not in general possess nonsingular projective 
models such that one is a covering of the other. This shows also that our de­
singularization problem, even in the above loosely defined form, is not solved by 
the desingularization theorem of Hironaka. 

2. Partial desingularization. Let fF denote an irreducible component of 
bd 9'(r) with points belonging to all other irreducible components removed. 
Let F denote a boundary component of X in the sense of Pyatetski-Shapiro which 
projects to :'F. Put 

N(F) = normalizer of F, Z(F) = centralizer of F, 

U(F) = identity component of the unipotent radical of N(F) or of Z(F), 

cent U(F) = center of U(F). 

We know that cent U(F) is isomorphic to a vector space over R and that the 
quotient group U(F)/cent U(F) is isomorphic to an even dimensional vector 
space over R. The following theorems can be proved : 

THEOREM 1. The Satake compactification 9'(r) is not almost non-singular at 
any point of the closure of fF provided that (1) r operates without.fixed points on X 
and (2) dim U(F) ~ 2 and dim(U(F)/comt U(F)) ~ 1, in which comt U(F) denotes 
the commutator group of U(F). 

THEOREM 2. Suppose that dim cent U(F) = 1, i.e., suppose that F is a maximal 
boundary component of X. Then 9'(r) can be desingularized along fF to an almost 
nonsingular analytic space which is projective over the subset X/r u fF of 9'(0 
Moreover, if a point t0 of F is not a fixed point of N(F)r/Z(F)r., the fiber over the 
projection to .fF of t0 is a generalized Kummer variety. 

One may call them "singularity theorem" and "partial desingularization 
theorem" respectively. The singularity theorem can be stated more generally, 
and it will cover all known results obtained in special cases. On the other hand, 
the fiber in the partial desingularization theorem can be described as follows. 
For every t in F, there exists an isomorphism q,, over R of U(F)/cent U(F) to a 
complex vector space. The map </J, carries U(F)r/cent U(F)r to a lattice, and this 
gives rise to a complex torus d, which turns out to be a polarized abelian variety. 
The quotient group Z(F)r/U(F)r operates ond, as a group of automorphisms, 
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and the corresponding quotient variety is the generalized Kummer variety. We 
refer to (4) for further details. 

3. The Siegel case G = Sp(g, R). In the case when G = Sp(g, R) and 
Gz = Sp(g, Z), we shall use the familiar notations r 9(l), 6 9 instead of Gz(l), X. 
We shall exclude the trivial case g = l. Then the singularity theorem implies that 
9'(r9{l)) is not almost nonsingular at every point of bd 9'(r,(l)) except for the 
case when (g, l) = (2, 1), (2, 2). We note that the singular locus of 9'(r,(l)) was 
determined also by Christian [2]. On the other hand, the structure of 9'(r,(l)) 
is completely known in those two cases, and it is almost nonsingular [3]. A good 
desingularization functor !!iJ was obtained in the case g = 2 in the following way. 
First of all, bd 9'(r 2(1)) = !F u !F 0 is a projective line over C, simply P 1(C), 
where !F is an affine line over C and ~ is a single point. The partial desingu­
larization of 9'(r 2 (1)) along ffe is a monoidal transformation along ffe except at 
the two points corresponding to fixed points of the elliptic modular group. These 
are the singular points of 9'(r 2(1 )) carried by !F u !F 0 . We tentatively defined 
!!iJ(r 2(1)) by extending the partial desingularization as a monoidal transformation 
along !Fu ffe 0 in the neighborhood of !F 0 • We then extended !!iJ to all r in re 
by Remark 1, and were able to show that !!iJ satisfies the conditions (0), (1) and 
(2) for 10 = 2. It was then discovered that the morphism !!iJ(r 2(1)) -+ 9'(r 2(/)) is 
a monoidal transformation along the singular locus of 9'(r 2(1)) for l ~ 2. 

Encouraged by this situation, we have investigated the monoidal transformation 
..K(r,(l))-+ 9'(r,(l)) for A. ~ 3 along the singular locus bd Y'(r11(/)) of Y'(r9(/)). 

We note that this is the blowing up of Y'(r11(A.)) with respect to the coherent 
sheaf of ideals defined by all cusp forms. The main theorem we have obtained in 
this way can be stated in the following way: 

THEOREM 3. Decompose gas g = g0 + g1• Then the point w of ..K(r11(l)) which 
corresponds to a sequence in ell with a typical term 

r=(L :) 
such that t, z converge to t0 , z0 , say, while Im(w)-+ oo under the restriction that 

111 

Im(w);i (i -::/= j), - L lm(w);i 
j= I 

bounded above, is simple. Furthermore, local coordinates at t 0 , z0 and 

e((l/l)(-w;i)) (1 ~ i < j ~ gi) 

elc1m .f w;) (1 ~ i ~ gi) 
~ i= 1 ~ 

form a set of analytic local coordinates o/ ..K(r11(l)) at w. 
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COROLLARY. The projection to 9'(r,,(l)) of the singular locus of ,,l{(r,(l)) is 
precisely the union of the images in 9'(r11(1)) of the rational boundary components 
of S, whose genus g0 is smaller than g - 3. 

In particular, ,,l{(r,(l)) is nonsingular not only for g = 2 but also for g = 3. 
In this case, we can show that the functor ~ defined by ~(r 3(1)) = ,,l{(r 3(1)) for 
any l ~ 3 is independent of A., and it satisfies the conditions (0), (1) and (2) for 
10 = 3. Therefore, the problem of desingularization is solved for g ~ 3. 

REMARK 3. The morphism ~(r) .... 9'(r) is not, in general, a monoidal trans­
formation. In fact, for r contained in r, we do not have a natural covering mor­
phism ,,l{(r') .... ,,l{(r), not even a morphism (if ,,l{(r'), ,,l{(r) denote monoidal 
transforms of 9'(r'), 9'(r)~ Also ~(r) is almost nonsingular but, in general, it has 
singularity (cf. Remark 2~ 

About the fibers of ,,l{(r,(l)) -+ 9'(r,(l)), we have the following theorem: 

THEOREM 4. The fiber of ,,l{(r,,(l))-+ 9'(r,,(l)) over the image point of t0 in S,0 

is an abelian variety complex-analytically isomorphic to the complex torus 

T,o(to) = c•o/(tol,,J(lZ)2110 

for g0 = g - 1, and an extension of the abelian variety (complex-analytically 
isomorphic to) T,0(t0)2 for g0 = g - 2 by a reducible rational variety composed of 

m13 n c1 - p-2> 
Pll 

projective lines P 1 (C) meeting three at each one of the 

<1)13 n (1 - P- 2> 
Pll 

points just like three coordinate axes in C3• Moreover, the combinatorial schema 
of the reducible variety is like edges of a tetrahedron for l = 3, a cube for l = 4, 
a dodecahedron for l = 5 and of a polyhedral decomposition of the Riemann surface 
associated with the elliptic modular function field of level l in 

<!)12 n c1 - p-2) 
Pll 

l-gons for l ~ 3. 

In the case when g0 = g - 3, we can show that the fiber is an extension of the 
abelian variety T,,0(t0 )3 by a reducible rational variety which is a union of 

h\>'8 n <1 _ p-2>o _ p-3> 
pll 

copies of the monoidal transform of P 1(C)3 along 

(0, 0, oo) u (0, oo, 0) u (oo, 0, 0) u (oo, oo, oo~ 

Complete proofs of Theorems 3, 4 are contained in [Sl The foil owing references 
do not include those which will become necessary in proving the results stated in 
this note. 
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Classical Theory of 8-Functions 
BY 

WALTER L. BAILY, JR. 

1. Introduction and elementary properties. One of the most direct means of 
introducing 0-functions is to consider the problem of constructing a projective 
imbedding of an Abelian variety A = C"/L, where Lis some lattice. Of course, L 
has 2n, R-independent generators w" · · ·, w2" e C", and these may be taken as 
the columns of an n x 2n complex matrix Cl. In order for A actually to be an 
Abelian variety, Cl must satisfy the Riemann conditions; namely, there must exist 
a nonsingular, skew-symmetric matrix J with rational entries such that OJ'Cl = 0 
and i- 1fiJ'O > 0 (i.e., is a positive definite Hermitian matrix). The set of all 
such matrices J (called principal matrices) is an open cone over the rational 
numbers, and the choice of a polarization for A amounts to the choice of a 
(rational) ray in this cone, or (equivalently) to the choice of a distinguished class 
of projective imbeddings for A. If such a J exists, then by an appropriate choice 
of coordinates in C" and an appropriate choice of basis w 1, · • ·, w2n for L, we may 
assume Cl and J to take the forms 

(1) J = ( 0 e). 
-e 0 

where e is a diagonal (n x n)-matrix with diagonal entries e1, ···,en such that 
e;le;+" and where Z is a symmetric n x n complex matrix with positive definite 
imaginary part, i.e., Z e Hn. 

If Cl and J are as above, then it is possible to construct holomorphic functions 
in C" which are actually automorphic forms of the lattice L with respect to certain 
exponential factors of automorphy, and which are called 0-functions. If the factor 
of automorphy is suitably chosen, then a basis of the corresponding (finite­
dimensional) module of 0-functions may be used as the homogeneous coordinates 
for a projective imbedding of A. In order to simplify things, and without great 
loss of generality as regards the 0-functions themselves, we shall assume that 
e is the n x n identity matrix E. Assuming this and taking Cl and J in the standard 
form (1) given above, let m be a positive integer and let g, he R". Then by a 0-
function of the mth order and characteristic (g, h), we mean an entire function 0 
in C" which satisfies 

(2) 0(( + ZA.1 + A.2) = e (-~('A.1ZA.1 + 21.l.1{) + 'gA.2 - 'hA.1) 0({) 

for all A. 1, A. 2 e Z", where e( ) = e2"i( >. 
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If we expand () in an appropriate Fourier series, it is seen that the relation (2) 
implies a recursion relation on the Fourier coefficients from which it follows 
easily that the number of C-linearly independent 6-functions of the mth order 
and fixed characteristic is exactly m". 

If we are interested in fiber systems of Abelian varieties, we must consider the 
0-functions as functions of Z, as well as of (. In this case, it is useful to normalize 
the 0-functions of mth order as entire functions on Hn x C" which, in addition to 
(2), also satisfy the heat equation: 

026 4nim 06 
(3) -- - --- -- 1 ~ j, l ~ n, acjac, - 2 - ~jl oz/ 
where Z = (ziiki= 1, . ... n· We now introduce the following "standard" 6-functions 
of the first order of characteristic (g, h): 

(4) O[g, h]((, Z) = L e{tZ[A.1 + g] + '(A.1 + g)(C + h)), 
J.,ezn 

where Z[a] = 'aZa for any n x l matrix a. It is easy to verify that the function 
defined in (4) satisfies (2) (with m = 1) and (3). More generally, if mis any positive 
integer, then a particular basis of the module 0(m; g, h) of 6-functions of mth 
order and characteristic (g, h) is given by the functions: 

(5) fg + µ J 6L-;;;-' h (m(, mZ), 

where µ runs over a complete system of incongruent integral n-vectors modulo 
m. If m ~ 3, and if 6 ,., µ = 1, · · · , m" is a basis of 0(m; g, h), then the functions 
6,. may be taken as the coordinates of a biregular injection of A into the complex 
projective space cpm"- 1• This is a well-known result of Lefschetz [7] which we 
refer to as the Lefschetz imbedding theorem. In particular, the functions 6 have 
no common zeros as functions of C for each fixed Z; therefore, we see that the 
functions 6[µ/m, O](O, Z) have no common zeros on Hn. In fact, if cne is only 
interested in this latter property, it is enough to take m ~ 2, as has been remarked 
in [4, p. 233]. 

2. Transformation theory. Using the standardized notation of §1, withe = E, 
etc., we now wish to consider the action of Sp(n, Z) on the 6-functions. If 

1' = ( ~ ~ )e Sp(n, Z), z E Hn, and 'E en, 

we define 

(6) y((, Z) = ('(CZ + D)- 1(, (AZ + B)(CZ + D)- 1). 

Then we have the 6-transformation formula: 

(7) O[g, h]((, Z) = c · e-u6[g', h'](y(C, Z)), 
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where U = 7ti'"CZ + D)- 1C(, c = (det(CZ + D))- 112X(y)(!l/J 1(g, h)), X(y) being 
a root of unity of bounded order, l/J,(g, h) being an integral quadratic function of g 
and h such that 1/11(0, 0) = 0, and where 

g' = !c5(1DC) + Dg - Ch and h' = !c5(1BA) - Bg +Ah, 

c5(.M) denoting for any n x n matrix M the n-vector made up of the diagonal 
elements of M. For the proof of this, see [S] and [6]; see also [2, §2) for some of 
the details in notation more compatible with that used here. In what follows, 
d0 will denote a fixed positive integer such that X(y)"0 = 1 for all ye Sp(n, Z) 
and such that for some even m0 with the property that 6[µ/m 0 , 0) (0, Z) have no 
common zeros, d0 is divisible by [r(l): r(Bm~)], where r(l) denotes the group 
of all ye Sp(n, Z) such that y = E2n (mod /). Put r = r(l) = Sp(n, Z). 

3. 6-functions and modular forms. Let d be an integer >0 such that d0 ld. In 
the following discussion, we assume g and h to have rational components, and 
for our more immediate purposes we shall assume g and h to have bounded 
denominators dividing a fixed positive even integer t (which may vary according 
to the context). We also assume m0 lt. 

By a modular form of even weight 2k with respect to r, we mean a holo­
morphic function f on H n such that for all y e r and all Z e H", we have 

(8) f(yZ) = det(CZ + D)2~(Z), y = ( ~ : ) . 

It follows from (7) that if P is a homogeneous polynomial of degree d in the func­
tions 8[g, h )(0, Z)(tg, the Z"), then P is a modular form of weight !d with respect 
to r(8t2i lience, the homogeneous polynomials of suitable high degree in the 
"Thetanullwerthe" 8[g, h](O, Z) are modular forms with respect to some con­
gruence subgroup of r. 

On the other hand, it follows from the Lefschetz imbedding theorem and from 
consideration of points of sufficiently high finite order [2] that if Z 1, Z 2 e H., 
then there exist, for some sufficiently large t, polynomials P and P' as above such 
that P(Z1):P'(Z1)""' P(Z2):P'(Z2i (One may also prove, using the Lefschetz 
imbedding theorem, and the heat equation, that if t = 6, then the differentials 
of the functions 6[g, h](O, Z) span the dual of the tangent space to every point 
of Hn.) Let d be as above and let R, denote the graded ring of polynomials spanned 
by the monomials of degrees divisible by d in the functions 8[g, h](O, Z), where 
the grading is that in which the homogeneous polynomials of degree d are counted 
as the ring elements of degree 1. Let R,,1 be the subring of those elements of R, 
satisfying (8) with k = !d for ye r(l). Clearly R,,1 => R,, 1 for all I. By our choice of 
d and from elementary properties of the polynomial invariants of a finite group 
of linear transformations (which are an immediate consequence of the fact that 
the elementary symmetric functions or the elementary power sums of functions 
without common zeros have again the same property), it follows that the elements 
of degree one of R,, 1 have no common zeros. Let 60, • • • , 8m be a basis of the 
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elements of degree one of Rd,l• and let (J be the mapping [3] with these co­
ordinates of (HJr)* = V* into CPm. By the argument of [1, pp. 353-354 ], we see 
that (J is nondegenerate everywhere, i.e., o- 1(x) is at most finite for any point x 
of CPm. Therefore, as one sees by an easy argument from algebraic geometry, 
the ring of modular forms of weights divisible by d/2 with respect to r(l) is integral 
over Rd.I and, for sufficiently large t, is contained in the quotient field of Rd,I· 

For more details on such matters (except for the parenthetical remark about 
t = 6), please see [2], especially pp. 380--383, where one considers, more generally, 
0-functions associated to a lattice in k2 P, where k is a totally real number field. 
Facts similar to these and in certain nontrivial respects more precise, were also 
proved independently and utilized by lgusa in his investigation of the structure 
of the ring of Thetanullwerthe [4]. 

4. Algebraic dependences among 9-functions. Let 017 ···,Om" be the basis (5) 
of the module of mth order 0-functions of characteristic (0, 0). Choose the num­
bering of this basis such that for some fixed Z the ratios Oi/On+ 1, ···,(Jn/On+ 1 are 
analytically and hence algebraically independent as functions of (. Let () be any 
other O,,. For any positive integer l, the number of monomials of degree l in 
01, ... '(Jn+ 1• ()is 

(l+n+l)= 1 zn+l+··· 
n + 1 (n + 1)! ' 

while for fixed Z, the number of linearly independent monomials of degree l is 
<cl", where c is a fixed constant depending only on m and n. Choose l such that 

l" (l+n+l) c < 1 . n+ 

By construction there is no Z e Hn such that On+ 1((, Z) = 0 (as a function of(). 
By consideration of an appropriate functional determinant, it is easy to see that 
the set of Z for which Oi/On+ 1,- ·.,(Jn/On+ 1 are analytically independent (as 
functions of() contains an open subset (9 of H". Let Z 0 be a point of (9 such that 
the number N 0 = N(Z0) of linearly independent monomials of degree l in 
01' ···,On+ 1, ()(as functions of(, Z 0 being fixed) is maximum in f!i. Let m1, • • ·, mN0 

be linearly independent monomials of degree l, and let mN0 + 1 be any other mono­
mial of degree l. Then there exist constants C 1, · · · , C No+ 1 not all zero such that 
L=~~ 1 C12m12((; Z 0 ) = 0 for all (. Of course, CNo+ 1 =!= 0, and we may assume 
CNo+ 1 = l. L~" C,.m12((, Z 0 ) ~ 0 as a function of C for any nonzero choice of C12 , 

so there exist ( 1, • · · , (No such that the N 0-vectors (m1 ((;, Z 0 ), • · • , mN0((;, Z 0 )), 

i = 1, · · ·, N 0 , are linearly independent. Put (; = Z 0a; + b;, a;. b; e R". We have 

det(m;(Z0 ai + bi, Z 0 )) =!= 0, 

so there exists a neighborhood U c l!' of Z 0 such that 

c/>(Z) = det(m;(Zai + bi, Z)) =!= 0 
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for Z e U. For each Z e U, there exist C,.(Z). ex = l, · · ·, N 0 + l, not all zero such 
that 

No+ 1 

L C,.(Z)m,.(C, Z) = 0 for all(. 
1 

Since <f>(Z) #= 0 on U, we must have CNo+ 1(Z) #= 0 for Z e U and for any such 
nontrivial solution C1, • • ·, CNo+ 1• Hence we may assume for all Z e U that 
CNo+ 1(Z) = 1. Then, by Kramer's rule, C,.(Z) = </J,.(Z)/</>(Z), ex= 1, · · ·, N0, where 
</>,.(Z) is a polynomial in m,.(Zai + bi, Z). Thus, the functions <f>mCZ), ex = 1, · · ·, N 0 , 

and <f>No+ 1 = <f>(Z) are analytic in all of Hn and L,. C11(Z)m11((, Z), being identically 
zero on u x en, is =O on Hn x en. Therefore 9,, ... ,()n+I•(} satisfy a non­
trivial algebraic equation of which the coefficients are analytic in all of Hn. Let 
Ib,.(Z)m..((, Z) = 0 be a shortest such equation. We assume 8d0 ll. Then for a 
sufficiently divisible t (i.e., k !It for large enough k), the monomials m,.(C, Z) all 
transform by the same factor according to (7) if ye r(ti By the hypothesis that 
the equation is a shortest one, it follows that the ratios b,.(Z)/b,.·(Z) are invariant 
under r(t). To avoid a special case which must (apparently) be treated differently 
using the classical theory of elliptic functions, we assume n > 1. Then by various 
results on compactifications [3] it follows that the ratios b,.(Z)/b,.·(Z) belong to 
the field of quotients of integral modular forms. 

Now it is known that if 1/10 , ···,I/In are integral modular forms of a suitable high 
weight, then the mapping 'l':x-+ (1/10(x):· .. :l/tn(x)) is an injection of the Satake 
compactification Vn(t)* of r(t)\Hn = V,,(t) (supplied with the natural ringed 
structure that makes it a normal compact complex analytic space) into eP". 
(See [3].) Let N = m" - 1. Define E>: H" x en -+ epN by 

and define Cl>:Hn x C"-+ epM x epN by Cl>= 'I' x 0. Let 7t be the projection 
of epM x epN onto its first factor. Let P be the smallest algebraic subvariety 
of epM x epN containing Cl>(Hn x e"). By the result we have just proved on 
algebraic dependence, dim P ;;;::; n + n(n + 1)/2. Also, 

dim P;;;;: dim Cl>(Hn x e") = dim(Hn x e") = n + n(n; l) 

(because Cl> is locally a biholomorphic injectioni Hence, dim P = dim(Hn x C"), 
and, as is now easy to see, n:- 1(V,,(t)* - V,,(t)) ("'\ P = P - Cl>(Hn x e•), Cl>(Hn x e") 
is a Zariski-open subset of P, and for x e V,,(t), n:- 1(x) ("'\ P is the Abelian variety 
with period matrix (EZ), Z belonging to the orbit x of r(t). The fiber system of 
Abelian varieties just constructed was used in [1] in proving certain facts about the 
moduli of Abelian varieties. 
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5. Cusp forms and 0-functions. As a closing remark we note the following: 
If the monomial 

d 

m = 0 O(gj, hj](O, Z) 
i=l 

is a modular form with respect to r(t), and if some gi has the property that all its 
components gii• j = 1, · · ·, n, are ~ 0 (mod Z), then m tends to zero at all the 
standard rational boundary components. It is left as an exercise to determine 
just which such monomials are cusp forms, and which tend to zero on all boundary 
components of given rank. 

REFERENCES 

I. W. L. Baily, Jr., On the theory of 8-functions, the moduli of Abelian varieties, and the moduli of 
curves, Ann. of Math. 75 (1962), 342-381. 

2. --, On the moduli of Abelian varieties with multiplications, J. Math. Soc. Japan (4) IS (1963), 
367-386. 

3. --, On compactifications of orbit spaces of arithmetic discontinuous groups acting on bounded 
symmetric domains, Proc. Sympos. Pure Math., vol. 9, Amer. Math. Soc., Providence, R.I., 1966; 
pp. 281-295. 

4. J. lgusa, On the graded ring of theta-constants, Amer. J. Math., 86 (1964), 219-246. 
S. A. Krazer, Lehrbuch der Thetafunctionen, 8. G. Teubner, Leipzig, 1903. 
6. A. Krazer and F. Prym, Neue Grundlagen einer Theorie der Allgemeiner Thetafunctionen, 8. G. 

Teubner, Leipzig, 1903. 
7. S. Lefschetz, On certain numerical invariants of algebraic varieties with application to Abelian 

varieties, Trans. Amer. Math. Soc., 22 (1921), 327-482. 



Moduli of Abelian Varieties and Number Theory 
BY 

GORO SHIMURA 

There are many arithmetically defined discontinuous groups r operating on a 
bounded symmetric domain S such that s;r parametrizes a family of abelian 
varieties. For such a rand S, one can naturally consider a fibre variety of which 
the base space is s;r and the fibres are the abelian varieties of the family. The 
cohomological or analytical aspects of the theory will be discussed in the lectures 
of Kuga and Satake (cf. also the articles by Baily and Mumford). Therefore my 
talk will be confined to the algebro-geometric and number-theoretical aspects. 
I shall consider a family I: n = {~zlz e S} of abelian varieties ~z with a prescribed 
type n of structures. Here n describes the type of polarization, endomorphism­
ring and points of finite order on an abelian variety. My main purpose is to 
provide a brief account of principal results concerning the following three 
problems. 

(i) The existence of a "nice moduli-variety" and a "nice fibre variety" for the 
family I:0 , defined over a well-defined algebraic number field k0 . 

(ii) The description of kn as a class-field. 
(iii) The Hasse zeta-function of the fibre variety in a special case (collaboration 

with Kuga). 
All the results will be stated without proofs. For the detailed proofs of (i), (ii) 

and (iii), see [12], [11] and [4], respectively. I devote (partly by the chairman's 
request) the first three sections to an exposition of basic notions and some 
elementary results on abelian varieties (mostly over C), Riemann forms, and the 
maximal families of abelian varieties. 

1. Abelian varieties (cf. [5], [16], [17]). A projective variety A defined over a 
field k of characteristic p ~ 0 is an abelian variety if there exist morphisms (of 
algebraic varieties)/: A x A -+A and g: A -+A which define a group structure 
on A by f (x, y) = x + y, g(x) = - x. Additive notation is used since any such 
group structure on a projective variety can be shown to be commutative. The 
neutral element is accordingly denoted by 0. If f and g are defined over k, then 
we say that the abelian variety A is defined over k. This is so if and only if the 
neutral element is rational over k. 

Let A and B be two abelian varieties defined over k. By a homomorphism of A 
into B, or an endomorphism when A = B, we shall always understand a morphism 
A. of A into B, satisfying A.(x + y) = A.(x) + A.(y); if A. is birational, we call it an 
isomorphism, or an automorphism when A = B. Suppose that A and B have the 
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same dimension. Then a homomorphism A. of A into B is surjective if and only 
if the kernel of A. is finite. Such a A. is called an isogeny of A to B. If there exists an 
isogeny of A to B, A and B are said to be isogenous. 

We denote by Hom( A, B) the module of all homomorphisms of A into B, and 
put End(A) = Hom(A, A), Endo( A) = End(A) ® zQ. Then Hom(A, B) is a finitely 
generated free Z-module, and End0(A) with a natural structure of ring is a 
semisimple algebra over Q of finite rank. Moreover it can be shown that End0(A) 
has a positive involution. Here by an involution of an algebra L over Q, we mean 
a Q-linear map p: L -+ L such that (xy)" = yPxP and (xP)P = x; p is said to be 
positive if TrL1a(xxP) > 0 for every x e L, =I= 0, where TrL/fl denotes the reduced 
trace from L to Q. We shall discuss in §4 an explicit way of obtaining a positive 
involution of Endo(A) in the case of characteristic 0. 

An abelian variety A is said to be simple if A and {O} are the only abelian 
subvarieties of A. Every abelian variety is isogenous to a product of simple 
abelian varieties. An abelian variety A is simple if and only if Endo( A) is a division 
algebra. 

We shall now consider the case where the universal domain is C. Every abelian 
variety defined over a subfield of C, viewed as a complex manifold, is isomorphic 
to a complex torus. But the converse is not necessarily true. To describe the 
condition, let C"/D be a complex torus, with a lattice D in C" (i.e., a discrete 
subgroup of C" of rank 2n). An R-valued R-bilinear form E(x, y) on C" is called a 
Riemann form on C"/D if it satisfies the following three conditions. 

(1.1) The value E(x, y) is an integer for every (x, y) e D x D. 
(1.2) E(x, y) = -E(y, x). 
(1.3) The R-bilinear form E(x, -J< - l)y) in (x, y) is symmetric and positive de.finite. 
Then one knows that a complex torus has a structure of abelian variety if and 

only if there exists a Riemann form on it. 
Let A be an abelian variety of dimension n defined over a subfield of C, and '1 

an isomorphism of A to a complex torus C"/D. The pair (C"/D, '1) is called an 
analytic coordinate system of A. Take a basis {gh · · ·, g2n} of D over Z and 
define real coordinate functions X;: C" -+ R by u = r:= 1 X;(u)g; for u E C". Then, 
given a Riemann form Eon C"/D, there exists a divisor X of A such that 

L E(g;, gi) dx; /\ dxi 
i<j 

represents the cohomology class of tf(X). (A divisor of an algebraic variety V is 
an element of the free Z-module formally generated by all the subvarieties of V 
of codimension one.) In this case we say that X determines E (with respect tori). 
If two divisors X and X' on A determine Riemann forms E and E' respectively, 
then X is algebraically equivalent to X' if and only if E = E'. (If the reader does 
not know what algebraic equivalence means, he can adopt this as a definition 
of algebraic equivalence.) 

Let A and A' be two abelian varieties with analytic coordinate-systems 
(C"/D, ri) and (Cm/D', ri') respectively. For every homomorphism ).: A -+A' there 
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exists a C-linear mapping A: C"-+ cm such that A(D) c D' with the relation 
1( A. = Aq, and conversely every such linear mapping A: C" -+ cm corresponds to 
a homomorphism of A into A'. Assume especially A = A', (C"/D, q) = (Cm/D', q'). 
Then the mapping A.i-+ A is uniquely extended to a representation <I>: Enda(A)-+ 
End(C"), which is called the analytic representation of End0(A). Further we 
observe that Q · D is a vector space of dimension 2n over Q, and A gives an 
endomorphism of Q · D. Therefore, with respect to a basis of Q · D over Q, we 
get a representation 'I' of Endfl(A) by matrices of size 2n with entries in Q. We 
call 'I' the rational representation of End0(A). Since a basis of Q · D over Q is a 
basis of C" over R, it can be easily shown that 'I' is equivalent to the direct sum 
of the analytic representation <I> and its complex conjugate ci>. 

2. Polarized abelian varieties. Let A be an abelian variety defined over a 
subfield of C with an analytic coordinate system (C"/D, q). A polarization of A is 
a set f(f of divisors of A satisfying the following three conditions. 

(2.1) Every X in f(f determines a Riemann form on C"/D. 
(2.2) If X and X' are in f(f, then there exist positive integers m and m' such that 

mX is algebraically equivalent to (i.e. homologous to) m'X'. 
(2.3) f(f is a maximal set of divisors satisfying (2.1, 2.2). (If the universal domain 

is not necessarily of characteristic 0, one can define polarization by replacing (2.1) 
with (2.1') f(f contains an ample divisor.) Now a polarized abelian variety is a pair 
(A, f(f) formed by an abelian variety A and a polarization ({j of A. One can find a 
divisor Yin ({j such that every divisor in f{J is algebraically equivalent to a multiple 
hY with a positive integer h. We call Ya basic divisor in 'I. 

An isomorphism (resp. isogeny) A. of A to A' is called an isomorphism (resp. 
isogeny) of (A, f{J) to (A', ({j') if A.- 1(X') e ({j for every X' e 'I'. If a Riemann form E 
on a complex torus C"/D is given, then C"/D and E determine a polarized abelian 
variety 9 up to isomorphism. Let E' be a Riemann form on another complex 
torus C"/D' of the same dimension, and let 9' be a polarized abelian variety 
determined by C"/D' and E'. Then an element A of End(C") gives an isogeny of 
9 to 9' if and only if A(D) c D' and E'(Ax, Ay) = c · E(x, y) with a positive 
rational number c. Now we recall a classical 

LEMMA 1 (FROBENIUS). Let B be an invertible alternating matrix of size 2n with 
entries in Z. Then there exists an element U of GL2.(Z) such that 

[o -e] 
'UBU = e O , ·{'·.J 

where the e; are positive integers satisfying e; + 1 = 0 mod(e1). 

A and (C"/D, q) being as above, let X be a divisor in a polarization fl of A, 
and let E be the Riemann form determined by X. In view of (1.1) and (1.2), E can 
be represented by an alternating matrix B with entries in Z, with respect to a basis 
of D over Z. Applying Lemma 1 to B, we get n integers ei. · · ·, e., which may be 
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called the elementary divisors of X. Then X is a basic divisor in 'C if and only if 
e1 = 1. Thus we are led to the following definition. Let e be as in Lemma 1 with 
positive integers ei. · · ·, en such that e1 = 1, ei+ 1 = 0 mod(e;), and 

Define an alternating form B(x, y) on R2n by B(x, y) = 1xBy, regarding the 
elements of R2 n as column vectors. A polarized abe!ian variety (A, 'C) is said to 
be of type (e) if there exist a lattice D in en and a commutative diagram 

0----+ z2n--+ R2n----+ R2n;z2n----+ 0 

! I! ~ ! 
0--+D --+Cn A---oO 

(2.4) 

satisfying the following three conditions : 
(2.5) e gives a holomorphic isomorphism of C"/D to A. 
(2.6) f is an R-linear isomorphism, and f(Z2") = D. 
(2.7) re has a basic divisor X which determines a Riemann form E(x, y) on C"/D 

such that E(f(x),f(y)) = B(x, y) ((x. y) E R2n x R2 "). 

From the above discussion we see that every polarized abelian variety is of 
type (e) for some unique (e). 

3. Maximal families of abelian varieties. Let (A, 'C) be a polarized abelian 
variety of type (e). Let { d1, • · ·, d2n} be the standard basis of z2n over Z. Regard 
the elements of en as column vectors. Let f be as in the diagram (2.4). Define an 
n x 2n matrix w by w = (f(d1) · · · f(d 2n)), and write w = (u v) with square 
matrices u and v of size n. Put z = ev- 1u. By a simple calculation we can verify 
that 'z = z and lm(z) > 0 (positive definite). We put 

Sn = {z E Mn(C)j1z = z, lm(z) > O}, 

and call Sn the Siegel space of degree n. If we define an element g of End(C") by 
g(x) = ev- 1 x for x EC", and take g a g- 1, g a f, g(D), E(g- 1(x), g- 1(y))} in place 
of {e,J, D, E}, then we have a diagr~:n similar to (2.4), and (g of(d1)· • • g 0 f(d2n)) 
= (z e). In other words, if (A, 'C) is of type (e), then we can choose the diagram 
(2.4) so that (f (d 1) · · · f (d2n)) = (z e) with a point z of Sn. 

Conversely, for any z E Sn, define fz: R2n-+ en by fz(a) = f(a, z) = (e z)a for 
a E R2n and let Dz = fz<z2n), Ez(x, y) = B(f; 1(x), f; 1(y)). Then Ez is a Riemann 
form on C"/D., so that we get an abelian variety Az isomorphic to C"/Dz. Let 
'Cz be the polarization of A2 determined by Ez, and let &z = (An 'Cz). Thus we 
obtain a family I:e = {&zJz E Sn} of polarized abelian varieties of type (e). The 
above discussion shows that every polarized abelian variety of type (e) is iso­
morphic to a member of I:e. In this sense I:e may be called a maximal family 
of polarized abelian varieties. (For the moment we do not consider any specific 
projective embeddings of Az .) 
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To determine the isomorphism classes of~ •• let 

P. = [~ ~]. 
r~ ={Te GL2n(Z)l'TBT= B}, r., = {P; 1 • 'TP.,!Te r~}. 

Then re is a discrete subgroup of Sp(n, R) commensurable with Sp(n, Z). If 
e = 1", we have r. = r~ = Sp(n, Z). For an element T of r~. let 

P; 1 • 'T- 1P. = [: :J 
with a, b, c, de MnCR). and define the action of Ton Sn by T(z) = (az + b)(cz + d)- 1 

for z e Sn. Now two members 9z and 9w of I.,, with z and win S"' are isomorphic 
if and only if there exists an element T of r~ such that T(z) = w. Hence SJr~ is in 
one-to-one correspondence with all the isomorphism classes of polarized abelian 
varieties of type (e). 

4. Families of abellan varieties with a prescribed type of polarization and endo­
morphisms. If A is an abelian variety defined over a subfield of C, every polariza­
tion ~ of A determines a positive involution p of Enda(A) as follows. Take a 
complex torus C"/D isomorphic to A. Then~ determines a Riemann form Eon 
C"/D up to rational factors. If </J(A.) denotes the element of End(C") corresponding 
to an element A. of End0(A), then, for every A. e End0(A), there exists an element A.P 
of End0(A) such that 

E(</J(A.)x, y) = E(x, </J(A.P)y) ((x, y) e C" x C"). 

It can be easily shown that p is a positive involution of Enda(A). Therefore, 
writing !t' for End0(A), we see that any polarized abelian variety (A, ~) determines 
a triple (!t', q,, p) formed by a semisimple algebra !i' over Q, a representation q, 
of !t' by complex matrices, and a positive involution p of !t'. 

This observation motivates the following problem. Let L be a semisimple 
algebra over Q with a positive involution p, and Cl> a representation of L by 
complex matrices. Determine all families of polarized abelian varieties (A,~ 
such that: (i) Enda(A) contains L, (ii) ~ gives the involution p on L, and (iii) Cl> is 
equivalent to the restriction (to L) of the analytic representation of Enda(A). Since 
L or End0(A) may have many automorphisms and we shall deal with many 
distinct A's, it is convenient to take L outside End0(A). and specify an isomorphism 
of L into End0(A). To be more precise, we say that a triple 9 = (A,~. lJ) is a 
polarized abelian variety of type { L, Cl>, p }, or more briefly, 9 belongs to { L, Cl>, p }, 
if the following three conditions are satisfied : 

(4.1) A is an abelian variety defined over a subfield of C. 
(4.2) 0 is an isomorphism of L into Enda(A); if I/I is the analytic representation 

of Enda( A). then I/I o lJ is equivalent to Cl>. 
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(4.3) <(J is a polarization of A; and the involution of Endcz(A) determined by f{j 

coincides on lJ(L) with the involution lJ(a) ......+ lJ(aP). 
In the following treatment, we always assume 
(4.4) <I> maps the identity element of L to the identity matrix, 
(4.5) L is a division algebra, 

though a more general case is worth while considering. If n is the degree of <I>, 
(4.4) implies dim(A) = n. 

The representation <I> cannot be arbitrary in order to ensure the existence of a 
polarized abelian variety of type {L, <I>, p}. In fact, if (A, f{j, lJ) belongs to {L, <I>, p}, 
then the rational representation of Endcz(A) induces a rational representation of 
L of degree 2n, equivalent to the sum of <I> and ci>, where n = dim(A). Therefore 
<I> + ci> must contain all the absolutely irreducible representations of L with the 
same multiplicity. In view of (4.5), [L: Q] must divide 2n. 

Now we shall determine the polarized abelian varieties of type {L, <I>, p}. Let 
(A, <(J, lJ) belong to {L, <I>, p}. Take a complex torus C"/D isomorphic to A. By the 
action of <l>(L), Q · D can be considered as an L-module, whose rank is obviously 
2n/[L: Q]. Let us take and fix a (left) L-module V of rank m, where m = 2n/[L: Q]. 
Then there is an L-isomorphismf: V-+ Q · D. Put IDl = f- 1(D). Then IDl is a free 
Z-module of rank 2n in V.. Let X be a divisor in f{j, and E the Riemann form on 
C"/D determined by X. Put B(x, y) = E(f(x1 f(y)) for (x, y) e V x V. Then 
B: V x V-+ Q is a Q-bilinear form satisfying 

(4.6) B(x, y) = - B(y, x1 B(ax, y) = B(x, aPy) (x,ye V;aeL). 

If X is a basic divisor of f(J, we have B(IDl, IDl) = Z. 

LEMMA 2. Let L be a division algebra over Q with an involution p, V a left 
L-module, and B: V x V-+ Q a Q-bilinear form satisfying (4.6). Then there exists 
a Q-bilinear map T: V x V-+ L such that 

(4.7) B(x, y) = TrL1a(T(x, y)), 

(4.8) T(x, y)P = - T(y, x), T(ax, by) = a· T(x, y) · bP (x,ye V;a,beL) 

A Q-bilinear map T: V x V-+ L is called an L-valued p-antihermitian form on 
V if it satisfies (4.8). We apply this lemma to the above Q-bilinear form B and 
obtain an L-valued p-antihermitian form T on V such that 

TrL1a(T(x, y)) = E(f(x),f(y)). 

Thus from (A, f(J, lJ), we obtain an L-isomorphism f of V to Q · D, a lattice IDl in V, 
and a p-antihermitian form Ton V. As D is a lattice in C",f can be extended to an 
R-linear isomorphism of VR = V ® aR to C". Then f maps VRf D isomorphically 
to A (through the isomorphism of C"/D to A), and V/D corresponds to the set 
of all points of finite order on A. Therefore, if we take points t 1, • • ·, t, on A of 
finite order, there exist points X; e V such thatf(x;) mod D represents x1• 
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This observation leads us to the following formulation. We call a collection 
of objects Q = (L, ell, p; V, T, IDl; xi. · · · , x,) a PEL-type if the objects are as 
follows: 

L: a division algebra over Q. 
p: a positive involution of L. 
ell: a representation of L into Mn(C) such that ell + ci> is equivalent to a 

rational representation. 
V: a left L-module of rank m, where m = 2n/[L: Q]. 
T: a nondegenerate L-valued p-antihermitian form on V. 

9Jl: a free Z-submodule of V of rank 2n. 
xi: elements of V. 

The consideration of the points ti and the x1 is motivated by the need of treating 
congruence subgroups of discontinuous groups. We say that !J. = (A,~. 9; t" · · ·, t1 ) 

is a PEL-structure if 
A: an abelian variety defined over a subfield of C. 
~: a polarization of A. 
9: an isomorphism of L into Endg(A). 
t1: points of finite order on A. 

Now we say that !J. is of type n if there exists a commutative diagram 

(4.9) 
o-rol- v.-v.;un-o 

! 1! ! 
0--+ D --+C"--1-A-O 

CVa = V®aR) 

such that the following conditions (4.10-4.14) are satisfied. 

(4.10) e gives a holomorphic isomorphism of C"/D to A. 
(4.11) f is an R-linear isomorphism, and f(rol) = D. 
(4.12) f(a.x) = ell( ex)/ (x), and tl>(ex) defines 9(ex) for every ex e L. 
(4.13) ~ contains a basic divisor X which determines a Riemann form E on 

C"/D such that E(f(x),f(y)) = TrL1g(T(x, y))for (x, y)e V x V. 
(4.14) t, = eucxj))for every i. 

Since TrL10(T(x, y)) corresponds to a basic divisor, we have to assume 

(4.15) 

(If this is not satisfied, we can replace T by a suitable rational multiple of it 
satisfying this condition.) 

Let !J. = (A,~. 9,; t 1, • • ·, t.) and !J.' = (A',~·. 9'; t'1, • • ·, t~) be two PEL-struc­
tures. An isomorphism A.:(A, fC)-+ (A',~') is called an isomorphism of fl, to fl.' 
if W(ex) = O'(ex)A. for every ex e L and A.(t1) = ti for every i. 

We say that Q is equivalent to another PEL-type Q' = (L', Cl>', p'; V', T', rol'; 
x'1, · · ·, x~.) if L = L', p = p', V = V', s = s', Cl> and Cl>' are equivalent as representa­
tions of L, and there exists an L-linear automorphism µ of V such that T'(xµ, yµ) 
= T(x, y), 9Rµ = rol', xiµ = x; mod rol' for every i. Let !J. be of type n. Then !2 is 
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of type O' ifand only ifO is equivalent to O'. A PEL-type n is said to be admissible 
if there exists at least one PEL-structure of type 0. 

THEOREM 3. For every admissible PEL-structure n = (L, <I>, p; V, T, 9Jl; xi.· · · , x.), 
there exists a bounded symmetric domain s and an analytic map/: v. x s-+ en 
holomorphic in the variable z ES with the following properties: 

(1) If we put fz<x) = f(x, z) for x Ev. and z ES, then for every z ES, f. is an 
R-linear isomorphism of v. to en. Further put Dz = .fz(9R), AZ = en;D., Ez(U, v) 
= TrL1a(T(f; 1(u), f; 1(v)))((u, v) EC x en), ti(z) =/.(xi) mod D., O.(a) = <l>(a) 
(a EL). Then Ez defines a polarization ~z on A,, and 

fl.z = (A.,~ •• Oz; t 1(z), · · ·, t.(z)) 

is a PEL-structure of type 0. 
(2) Every PEL-structure of type 0 is isomorphic to fl.. for some z ES. 

Thus we obtain a maximal family I:n = {fl.zlz ES} of PEL-structures of type n. 
Let G be an algebraic group defined over Q such that Ga can be identified with 
the group of all L-linear automorphisms a of V satisfying T(xa., ya) = T(x, y). 
Then the bounded symmetric domain S in the above theorem can be obtained as 
the quotient of GR by a maximal compact subgroup. Let 

r = {a E G0 l9Ra = 9Jl, xia = xi mod 9Jl (i = 1, · · ·, s)}. 

Then r is commensurable with Gz and acts naturally on S. 

THEOREM 4. Two members fl.. and flw of :En are isomorphic if and only if z = y(w) 
for some y E r. 

In other words r\S is in one-to-one correspondence with all the isomorphism­
classes of PEL-structures of type 0. 

5. Classification of L, <I>, p, S, and the admissibility of n. Let F be the set of 
elements x in the center of L such that xP = x. Then it can be shown that F is a 
totally real algebraic number field. Let g denote the degree of F over Q. According 
to Albert, all the division algebras L with positive involution are classified into 
the following four types : 

(Type I) L = F. 
(Type II) L is a totally indefinite quaternion algebra over F, i.e., L has F as its 

center, and L ® 0R = M 2 (R) x · · · x M 2(R) (g copies). 
(Type III) L is a totally definite quaternion algebra over F, i.e., L has F as its 

center, and L ® 0 R = K x · · · x K (g copies), where K means the division ring 
of real quaternions. 

(Type IV) The center K of L is a totally imaginary quadratic extension of F. 
If L = F, p should be the identity mapping. If L is of (Type III), the standard 

quaternion conjugate is the only positive involution of L. If L is of (Type II, IV) 
and L is not commutative, L has infinitely many positive involutions. As for 
(Type IV), p must induce the nontrivial automorphism of K over F. 
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Now the direct sum of cl> and ci> is equivalent to a rational representation if and 
only if cl> satisfies the following condition : 

(5.1) (Type I, II, III) cl> is a multiple of a reduced representation of Lover Q. 
(Type IV) Let ti.···, t, beg isomorphisms of K into C, such that ti.···, t 9 , 

Pt1, ···,pt, form the set of all isomorphisms of K into C, and let [L:K] = q2. 
Let qr. resp. qs. be the multiplicity oft. resp. pt. in the restriction of cl> to K. 
Then r. + s. = mq for v = 1, · · · , g, where m = 2n/[L: Q] (cf. definition of PEL­
type). 

The PEL-type Cl is admissible if L is of (Type I, II, Ill) and the conditions 
(4.15) and (5.1) are satisfied. When Lis of (Type IV), Cl is admissible if and only 
if the following condition is satisfied besides (4.15) and (5.1). 

(5.2) Let <P. be a homomorphism of M m(L) into M m,,C.C) such that <J>.(a) = a•·tmq 
for aeK and 

Then, for each v, the complex hermitian matrix v'C- l)t/>.(T0)- 1 has r. positive 
eigenvalues and s. negative eigenvalues, where T0 is an element of M m(L) which 
represents T with respect to a basis of V over L. 

The bounded symmetric domain S can be described as follows according to 
the type of L. 

(Type I) 

(Type II) 

(Type III) 

(Type IV) 

S = Sm12 x · · · x Sm12 , 

S =Sm X •• • X Sm, 

s = s;,, x ... x s;,,, 
s = s ... ,. x ... x s ....... 

Here the number of copies is g in each case; S, is the Siegel space of degree r 
(see §3); s;,, is the space all complex alternating matrices z of size m such that 
1 - 'zz is positive hermitian; s •.• is the space of all complex matrices z with r 
rows and s columns such that 1 - 'zz is positive hermitian. If either r = 0 or 
s = 0, we understand by S,,. a space consisting of only one point. Therefore, if 
:I:~= 1 r .s. = 0, S consists of only one point, so that l:g has only one member. For 
(Type III) with m = 1, we have also a family with the only member. In all these 
families with single member, the abelian variety in question has sufficiently many 
complex multiplications. 

6. The moduli-variety for the family 1:0 • Let V be a variety in a projective 
space pN, defined by a system of equations Fi(X 0, • • ·, X N) = 0 (i e /). Let a be 
an automorphism of C. Then we denote by V" the variety defined by Ff(X 0, · · · , 

XN) = 0 (i e /), where Fr is the polynomial whose coefficients are transforms of 
coefficients of Fi under a. Let L and !J. =(A, rt, 8; t1o • • ·, t1) be as before. Then 
we can define !J." = (A", rt", 8"; ~. · · ·, t:) as follows: 'II" is the polarization of 
A" containing a divisor X" for a divisor X in 'II; 8"(a) = 8(a)" for a e L. 
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THEOREM 5. For every PEL-structure !}, = (A, ~. 9; t 1' · · · , t ,), there exists a 
unique subfield k0 ofC with the following property: a and t" being two automorphisms 
of C, !l," is isomorphic to !l,' if and only if a = t" on k0 • 

We call k0 the field of moduli of !l,. For example, let L = !l,, t 1 = · · · = t. = 0, 
and E = C/(Z + Zi") with Im(t") > 0, so that E is an elliptic curve. Then the 
field of moduli of (E, ~. 9; 0, · · · , 0), with obvious ~ and 9, is QU(t")) for the value 
j(t") of the classical modular function j. 

We say that a PEL-type n is abnormal if (i) dim(S) = 1, (ii) r\S is not compact, 
and (iii) L #= Q. n is said to be normal if at least one of these conditions is not 
satisfied. 

THEOREM 6. Let n be an admissible and normal PEL-type. For every automor­
phism a of C, there exists a PEL-type '1" which is determined, up to equivalence, 
by the following property: if !l, is of type n, then ~ is of type 0". (Cl" depends only 
on n and a, and is independent of ..2.) 

THEOREM 7. For every admissible and normal PEL-type n, there exists a unique 
algebraic number field k0 of finite degree with the following properties: 

(1) An automorphism a of C is the identity mapping on k0 if and only if Cl" is 
equivalent ton. (This property characterizes k0 .) 

(2) If -2 is of type n, then k0 is contained in the field of moduli of ..2. 
(3) Let Cl = (L, <I>, p; V, T, rol; Xi.···, x.), and let K• be the field generated 

over Q by tr <I> (oc) for all oc in the center of L. Then K• c k0 . 

Now by a result of Baily and Borel (cf. [1] and Baily's talk1 one can embed r\S 
onto a Zariski open subset of a projective variety. (r\S may or may not be com­
pact.) Our first main theorem asserts that there exists a nice model for r\S. 

MAIN THEOREM I. For every admissible and normal PEL-type n, there exists 
a couple (V, v) and I/I with the following properties: 

(1) V is a Zariski open subset of a projective variety. 
(2) V is defined over k0 . 

(3) vis an "assignment" which assigns a point v(-2) of V to every PEL-structure 
-2 of type n; and !l, is isomorphic to -2' if and only if v(-2) = v(-2'). 

(4) The coordinates of v(-2) generate over kn the field of moduli of ..2. 
(5) I/I is a holomorphic mapping of S into a projective space which induces a bi­

regular morphism of r\S onto V, and such that l/l(z) = v(-2z) for every z e S, where 
..2z is a member of the family I:n defined in Theorem 3. 

(6) Let -2 and !l,' be of type n, and p a C-valued place of a field of definition for 
-2 such that p(x) = x for x e kn and the reduction of -2 modulo p is -2'. Then 
p(v(!l,)) = v(!l,'). 

We call (V, v) a moduli-variety for PEL-structures of type n, understanding 
that v(-2) is the "modulus" of ..2. (V, v) is uniquely determined, up to biregular 
isomorphisms over kn. by the above properties. Let us set V = V(O). 
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THEOREM 8. Let n be an admissible and normal PEL-type, and u an automor­
phism of C. Then k(O") = k(O)", and V(Cl") is biregularly isomorphic to V(O)" 
over k(O)". 

In general, one can make the following conjecture. Let S be a bounded sym­
metric domain, r an arithmetic discontinuous group operating on S, and u an 
automorphism of C. Then (i) r\S has a projective embedding V defined over an 
algebraic number field; (ii) the transform of V under u is biregularly isomorphic 
to r'\S with another arithmetic discontinuous group r'. 

The above results show that this conjecture is true in the case of r and S 
obtained from an admissible and normal PEL-type. 

7. The number field kn as a class-field. 

PROPOSITION 9. Let K• be the.field defined in (3) of Theorem 7. Then (i) K• = Q 
if Cl> is equivalent to cf>; (ii) K• is a totally imaginary quadratic extension of a 
totally real algebraic number field if Cl> is not equivalent to cf>. 

Therefore K• = Q if L is of (Type I, II, III), and both cases K• = Q and 
K. ::/: Q may occur if L is of (Type IV). 

MAIN THEOREM II. The field kn is an abelian extension of K• in the following 
cases: 

(1) Lis of (Type I) or of(Type II); 
(2) L is of (Type IV) and commutative. 

One can make the following general conjecture : If n is admissible and normal, 
then kn is an abelian extension of K• except for the case where dim(S) = 0 and 
L is of (Type III). 

THEOREM 10. Leto be an order in L defined by o = {a e LlaIDl c IDl}. 
( 1) Suppose that L is of (Type I or II), o is a maximal order in L, and N- 1IDl = 

fill + L:= 1 ox; with a positive integer N. (The last equality means that the X; 

generate the points of order N. If x 1 = · · · = x1 = 0, N = 1.) Then kn = Q(e2•d/N). 

(2) Suppose that L is of (Type I) (hence L = F) and x 1 = · · · = x1 = 0. Let c 
be the smallest positive integer such that c- 1 o contains the maximal order in F. 
Let H be the set of all rational integersµ, prime to c, which occur as the multiplier 
of an F-linear similitude oc of T, i.e., T(xoc, yoc) = µT(x, Y1 such that filloc c IDl. 
Then kn is the subfield of Q(O, consisting of all the elements of Q<O invariant under 
the automorphisms C -+ C" for all µ e H, where C = e21rifc. 

If L is of (Type IV) and dim(S) = 0, the description of kn as a class-field over 
K• is exactly the theory of complex multiplication [15). One can get a similar 
result also in the case dim(S) > 0. To explain this, we have to introduce the 
notion of class and genus of lattices. Let F denote, for a while, an arbitrary 
algebraic number field of finite degree, and K a quadratic extension of F. Let 
V be a vector space over K of dimension m, and T a nondegenerate K-valued 
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antihermitian form on V. We denote by G the unitary group of T. Let Op resp. oK 
be the ring of integers in F resp. K. Let rol be an OK-lattice in V. For every prime 
ideal p in F, let F P denote the completion of F with respect to p, and KP = 
K ®p F P' V, = V @p F P. Then Yi, is a KP-module, and T is uniquely extended 
to a KP-valued antihermitian form on V,. So we can define the unitary group 
GP on Yi,. By a class of OK-lattices in V with respect to G, we understand a 
maximal set of OK-lattices in V whose members are transformed to each other by 
elements of G. By a genus of OK-lattices in V with respect to G, we understand a 
maximal set A of OK-lattices with the following properties: If rol and 9l are 
members of A, then, for every prime ideal p in F, there exists an element <Xp of 
GP such that rolp<Xp = 9lP. A genus A consists of a finite number of classes. Let J 
denote the group of ideals a in K such that NK1p(a) =Op, and J0 the group of 
principal ideals aoK such that NK1p(a) = 1. Then the number of classes in A 
equals 2e<A> · [J: J 0 ], where e(A) is a nonnegative integer depending on A. If T 
is indefinite and dimK V is even, there exists a genus A such that e(A) = 0. Let A 
be such a genus and rol an OK-lattice in A. Then the map A 3 91 i-+ [rol/9l] gives 
a one-to-one correspondence between the classes in A and J/J0 . Here [rol/91) 
means a fractional ideal in K generated over oK by det(a) for all K-linear automor­
phisms a of V such that rola c 9l. We call such a genus nice. (For details, see 
[10).) 

Let us come back to a PEL-type, and assume that F is totally real, and K is 
totally imaginary. We take L to be K. 

MAIN THEOREM III. Let Q = (K, ~. p; v, T, rol; 0, ...• 0) be an admissible 
PEL-type. Suppose that Tis indefinite, Ke =I- Q, dim1Y is even, and the genus of 
rol is nice. Let a be an ideal in K., and let G be an automorphism of C such that G 

coincides with the Frobenius automorphism ((kn/Ke)/a) on kn. Then we have 

ga = (K,~,p; V, T,9l;O,···,O) 

with a lattice 9l belonging to the same genus as rol, and 

" [rol/9l] = n (aa'/a"'•)V; mod(Jo), 
i 1 

where { G 1, · · ·, Gh, 111, · • ·, 11,.} is the set of all isomorphisms of Ke into C, and 
vh · · · , v11 are certain integers determined only by K and ~-

Since the class of 9l (and hence oa) can be completely determined by 
[rol/91) mod(J 0 ), this theorem affords an "explicit reciprocity-law" for the 
abelian extension knfK •. One can prove an analogous and somewhat complicated 
relation for odd m, and also in a more general case with nonzero x 1, • • ·, x •. 

8. Fibre systems of abelian varieties. We say that {V, W, h,J} is a fibre system 
of abelian varieties defined over a field k, if the following conditions are satisfied : 

(8.1) V and W are nonsingular varieties defined over k. 
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(8.2) his a morphism of W into V,f is a morphism of V into W, both defined 
over k, such that h 0 f is the identity mapping of V. 

(8.3) If Z c: W x V is the graph of h, then for every u e V, Z and W x u 
intersect properly on W x V, and Z · (W x u) = A. x u with an abelian variety 
A. whose neutral element is f (u). 

MAIN THEOREM IV. Let 0 = (L, <l>, p; v, T, roi; x 1' ... ' x.) be an admissible and 
normal PEL-type, and let o = {a e Llarol c: rol}. Suppose that r has no element 
of finite order other than the identity element. Then there exists a system 

iJ = {V, W, h,f, Y, E>(a)(a e o),f1, • • • ,f.} 

with the following properties. 
(1) {V, W,h,f} is a.fibre system ofabelian varieties defined over kn. 
(2) With a suitably defined v, (V, v) is a moduli-variety for PEL-structures of 

type 0 (cf. Main Theorem I). 
(3) Y is a divisor on W, rational over kn. such that Y · A. defines a polarization 

'Ii,. on A,. for every u e V. 
(4) For every a e o, E>(a) is a morphism of W to W defined over kn such that the 

restriction of E>(a) to A. is an endomorphism of A. for every u e V; denote it by 
O.(a). 

(5) The f;.: V-+ W (i = l, · · · , s) are sections which are morphisms, defined 
over kn. 

(6) For each u e V, !},,. = (A,., 'Ii,., o. ;/1(u), · · · ,f.(u)) is a PEL-structure of type 0. 
(7) Let :En= {!J, .. lz e S} and I/I: S-+ V be as in Main Theorem I. Then !J,~lz> is 

isomorphic to !},= . 

9. Families of abelian varieties characterized by a certain nonholomorphic 
structure. Let F be as before a totally real algebraic number field of degree g, 
and Ba quaternion algebra over F. Leth be the number of archimedean primes 
of F for which B is unramified. Then 

B ®a R = M 2(R) x · · · x M 2(R) x K x · · · x K, 

taking the M 2(R), h times, and the K, g - h times, (where K is the division ring 
of real quaternions). Let m be a positive integer and let G be an algebraic group 
defined over Q, which can be identified with the group 

{Xe GL,.(B)l'X' · X = 1,.} 

where ' denotes the main involution of B (t is not a positive involution unless 
h = 0). Then the quotient S of Ga by a maximal compact subgroup is the product 
of h copies of the Siegel space of degree m. Let r = Gz. Now this group r does 
not occur in our theory of PEL-structure, except when m = 1 or g = h. (If 
g = h, G is exactly the group attached to a PEL-type with an algebra L = B, 
which is of (Type II). If m = 1, r is commensurable with the group obtained from 
an algebra of (Type IV).) However, we can still construct a family :E' of abelian 
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varieties parametrized by r\S, which is actually a subfamily of I:0 of (Type IV). 
The members of I:' can be characterized by the possession of a certain non­
holomorphic endomorphism, or a certain rational 2-cohomology class, which is 
not of (1, 1)-type. It should be mentioned that there are infinitely many distinct 
such families attached to the same Sand r. We can also find a projective variety, 
isomorphic to r\S, defined over an algebraic number field of finite degree. This 
field is again of abelian nature. The same type of discussion can be also made 
for the unitary group of an L-antihermitian form over B. A full detail of all these 
results will be given in [14). 

10. Hecke operators. Let L be an indefinite division.quaternion algebra over Q, 
which is, by definition, a division algebra over Q such that L ®gR = M 2(R). 
Let o be a maximal order in L. (It should be noted that if o1 and o2 are two 
maximal orders in L, there exists an element a of L such that ao1a- 1 = o2 and 
det(a) > 0.) Regarding L as a subring of M 2(R), let 

r,, = {'l' E oldet(')I) = 1, ')I := 1 mod bo} 

for every positive integer b. We denote by H the complex upper half plane 
{zeC!Im(z) > O}, and by GLi(R) the group of elements in M 2(R) with positive 
determinant. For 

we put 

Further for 

a=[: :JeGLi(R) 

and z e H, we put a(z) = (az + b)/(cz + d) andj(a, z) = cz + d. Then r,,, regarded 
as a discrete subgroup of SL2(R), gives a properly discontinuous group of trans­
formations on H with compact quotient r,,\H. Moreover, r,,\H is a special case 
of r\S considered in §§4-8. In fact, for every z e H, define a lattice D2 in C2 by 

elements of o being considered as real 2 x 2 matrices. Then the complex torus 
C2/Dz has a structure of abelian variety. Let AZ = C2/Dz. For a suitable v EL 
such that v2 is a negative integer, we can define a Riemann form Eon C2/Dz by 

(x, y e M 2(R)). 
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Let f{/1 be the polarization of A, determined by E. For every ex e L, the linear 
transformation of C2 given by the matrix ex defines an element of Endcz(A.), 
which we denote by 81 (a.). Let t. be the point on A. corresponding to 

Put fl.1 = (A., f{/1 , 9.; t.). In this way we get a family I: = {fl..lz e H}, which is a 
speciai case of I:0 considered in §4. Two members fl.1 and fl.w are isomorphic if 
and only if z = y(w) for some y e r,, (cf. Theorem 4). 

From now on we always assume that b > 2. Then r,, has no elements of 
finite order other than the identity. Applying our Main Theorem IV to the present 
case, we get a fibre variety W--+ V, of which the base Vis biregularly isomorphic 
to r,,\H, and each fibre is isomorphic to A:. We can take the field of rationality 
to be Q{C) with C = e2•il". For every nonnegative integer m, one can construct, 
over Qm, a fibre system of abelian varieties Wm --+ V, whose fibre standing on 
u e Vis the product of m copies of Au, where Au is a fibre of Won u. The purpose 
of the remaining part of this lecture is to determine the zeta-function of Wm in 
the sense of Hasse-Weil. 

First we have to introduce the Hecke ring in L. Let 

L\,, = {ex e ol det(ex) > 0, (det(ex1 b) = 1 }. 

Then, for every ex e L\11 , one has r,,exr,, = U;r,,oe; for a finite number of elements ex;. 
Let R(r,,, .!\,,) denote the free Z-module consisting of all the formal finite sums 
'L .. c .. r,,ex .. r,, with c.1. e Z, ex;. e .!\,,. The module R(r,,, .!\,,) is called the Hecke ring 
associated with r,, and L\11 , when a law of multiplication is defined as follows: 
If r,,exr,, = uirbexi and r,,pr,, = ujrbpj are disjoint unions, then 

cr,,exr,,>- cr,,pr,,> = Iµ~. r,,er,,, 

where the summation is taken over all the distinct double cosetsr,,er,, c r,,exr,,pr,,, 
and µ~ = the number of (i,j) such that r,,ex;/Ji = r,,e. (It can be shown that this 
number µ~ depends only on r,,er,,, r,,a.r,,, r,,pr,,; it does not depend on the 
choice of representatives.) This law of multiplication is associative. In the special 
case b = 1, one can show that R(r1, L\ 1) is commutative. 

For a positive integer k, let St(r,,) denote the set of all holomorphic functions 
f on H such that f(y(z))j(y, z)-t = f(z) for every ye r,,. An element of St(rh) is 
called a holomorphic automorphic form of weight k with respect to r,,. If ex e .!\,,, 
we can define the action (r,,exr,,)t of r,,cxr,, on St(r,,) in the following way. Let 
r ,,ocr,, = U' = 1 r ,,cxi be a disjoint union. For every f e Sk(r ,,), we put 

d 

Jl(r,,cxr,,),. = det(a)t- 1 L f(cxi(z))j(cx;, z)-r.. 
i= 1 

Then r,,cxr,,--+ (r,,cxr,,)k defines a representation of the ring R(r,,, .!\,,) in the 
complex vector space S,.(r,,). The linear transformations (r,,cxr,,)t may be called 
the Hecke operators. 
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For our purpose we need also another type of Hecke operators. Let G,, denote 
the group of invertible elements of o/bo, and pa representation of G,, in a complex 
vector space U of finite dimension. Let S1c,p(r 1) denote the set of all holomorphic 
mapsf: H-+ U such that f(y(z))j(y, z)-1c = p(y)f(z) for every ye r 1. For r 1ar 1 = 
LJ,'= 1r 1a; with a e A,,, and for f e S1c,p<r 1), we define 

,, 
!l<r1ar1)1c,p = det(a)1c- 1 L p(a;- 1)f(a;(z))j(a;. z)-1c. 

i= 1 

LEMMA 11. Let p be a regular representation of ·Gb, x(a) = tr p(a), and let 
r 1 = U~= 1 rb}';, N = [r 1: r,,]. Then, fore E Ab, 

N 

trl<r1er1)1c,pJ = N- 1 L xKYi)·tr[(rbyi 1r,,),,·<r,,er,,),,J. 
i= 1 

Now we define a Dirichlet series D(s; k, b, p) by 

where the summation is taken over all the distinct double cosets r 1ar1 with a 
in A,,. Then D(s; k, b, p) can be expressed as an Euler product: 

D(s; k, b, p) = 0 (1 - (r 1a,r 1)1:,pP-s]- 1 

pJdo,p~/J 

x 0 (1 - <r1a,r1)1:,pP-• + <r1Pr1)1c,pP1- 2"r 1, 
p.j'/Jdo 

where d0 is the discriminant of L, and a, is an element of o such that det(a:,) = p. 
Moreover, D(s; k, b, p) can be continued holomorphically to the whole s-plane, 
and satisfies a functional equation [71 (8). 

11. Algebraic correspondences on Wm and their congruence reladons. First we 
observe that the fibre variety Wm, as a real analytic manifold, can be constructed 
as follows (cf. Kuga's lecture). Let Lii denote the product of m copies of L8 = M 2(R). 
The product GLl(R) x Lii forms a group with respect to the law of multiplication 

(a:, u)(/J, v) = (a:/J, v/J' + u) (a:, Pe GLl(R); u, v e Lii). 

We let GLt(R) x Lii act on H x Lii by 

(a, x)(z, y) = (a:(z), ya:' + x) (a: e GLl(R); x, ye Lii, z e H). 

(Recall that a: -+ rx.' is the main involution of M i(R). We regard Lii as a left and 
right L.-module.) Let om denote the product of m copies of o. Then r,, x om is a 
discrete subgroup of GLt(R) x Lii, and Wm can be obtained as the quotient: 
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Wm= (r,, x om)\(H x Lii). We may write: W0 = V = r,,\H. Then we have natur­
ally a commutative diagram: 

H x Lii~Wm 
! ! 
H ~V 

For an element ex of&,,, put ex* = (ex, 0) (e GLi(R) x Lii~ and 

X m = { tPm(s) x tPm(ex*s)!s EH X Lii} (m ~ 0). 

It can be proved that Xm is an algebraic subvariety of Wm defined over Q(C). 
Furthermore Xm is determined only by r,,exr,,, and independent of the choice of 
the representative ex. We write therefore Xm = Xm(r,,a.r,,). If m = 0, we have 

V x V:::i X 0(r,,exr,,) = {t/>0(z) x t/>0(ex(z))lzeH}. 

Still ex being an element of 4,,, let u be an automorphism of Q(C) such that 
C" = Cde1<11>. Then one can find a biregular morphism Y111(ex): W111 -+ w:, with the 
following properties: 

(11.1) 

w. Y,,,(11) W" 
Ill Ill 

! ! is commutative. 
V Yo(11} V 

(11.2) Y111(ex) depends only on the class of ex mod bo. 
(11.3) If P is another element of .&,,, then Ym(Pa.) = Y111(P)" 0 Ym(ex), where u is 

as above. 
(11.4) Ifexerb then Y111(cc) = X111(r,,ccr,,). 
Let p be a prime number, and p a prime ideal in Q({) dividing p. We shall 

denote by p(X) or X the reduction modulo p of an algebro-geometric object X. 
Now, for almost all p, we have a "nice reduction" p(W...)-+ p(V~ which forms a 
fibre system of abelian varieties defined over the residue field modulo p. 

LEMMA 12. Let p be a prime number which does not divide b, and cc an element 
of o such that det(cc) = p. Then there exists an element {J of r 1 such that cc2 = pl> 
modbo. 

THEOREM 13. Let p, cc and {J be as in Lemma 12, and let p be a prime ideal in 
Q(C) dividing p. Then, for almost all p, we have 

X111(r,,exr,,) = 1 :V111(a.') a TI+ TI* o :V111(1X), 

p. Jt ... cr ,,par,,) = ['f ... (a.') o TI] o [TI* o :V111(cc)l 

where TI is the Frobenius correspondence on W111 x WI:,, i.e., the locus of v x v" 
with v e W111 , and TI* is the locus of v" x p · v on WI:, x W111 with v e W..,. (Here 
p · v = v + · · · + v (p times) on the fibre abelian variety containing v.) 

12. Calculation of the zeta-function of W..,. Let /(X) denote the intersection 
number of an algebraic correspondence X with the diagonal. 
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LEMMA. 14. (Kuga [3]~ Let d(rbocrb) denote the number of right cosets in rbocr,,. 
Define integers a(m, i, v) by 

a(O, 0, 0) = 1, 

a(m, i, v) = ( 2m ) { 2m ) _ ( 2m ) ( 2m ) 
(i + v)/2 \(i - v)/2 (i + v)/2 + 1 (i - v)/2 - 1 

if i = v mod(21 

= 0 if i ~ v mod(21 

where the expressions in parentheses mean the binomial coefficient. Then, for every 
m~o. 

2111 

r 1J(X..,(r,,ocrb)) = L a(m,2j,O)det(oc)id(r,,ocrb) 
j=O 

4111 i 

+ L L (-tr 1a(m, i, v) det(oc)11 -v112 Re[tr(r,,ocr,,)]. 
i=O v=O 

The method of proof of this "trace-formula" will be indicated in Kuga's talk. 
To make our later calculation smooth, we introduce the following notation. 

Let x, y, u be indeterminates. Define polynomials FJ.x, y) (with coefficients in Z) by 

d co 
--d log(l - xu + yu2) = L Fn(x, y)u"- 1• 

U n=l 

If x = z + w and y = zw, then Fn(x, y) = z" + w". If X and Y are commuting 
matrices, then 

d co 

dulog[det(l - Xu+ Yu2)- 1 ] = n~i tr[F,,(X, Y)]u"- 1• 

From Theorem 13 we obtain easily 

LEMMA 15. Fn(Xm(r,,ocrb), pXm(rbp~rb)) = ('f..,(oc') 0 nr + (fl* 0 f..,(oc)r. 

LEMMA 16. Let fl~"1 be the locus of v x v'" on JV x JVP" with v E ~ and n:111l 

the locus of v'" x (p" · v) on JVP" x JV with v e W. Let p be an element of o such 
that det(/I) = p". Then 

I(' Y..,(/I) 0 fl~"1) = I(n:1n1 o f (p)). 

Now the zeta-function Zp(u) of p(Wm) over the residue field modulo p is 
defined by 

d co 
- log Zp(u) = L J(IlV"l)u"- 1 ; 
du n=l 

N(p) =pf. 

If q is another prime ideal in Q(C) dividing p, then it is easily seen that Zq = ZP. 
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Let x. N and {y1} be as in Lemma 11, and let t/J(b) = [G11 : ri1r,,]. Then 

(Z) ~ log [n Zp(u')] = t/J(b) f /(Illf">)u<n- 1>1. uf- 1 
du PIP n• 1 

00 

= N- 1 L un- 1 I' X(O')l(''Pm(a') 0 TI~">). 
n=l o 

Here we write Ym(O') = Ym(oc) if oc mod bo represents O', and L~ is the summation 
taken 'over all O' e G,, such that det(oc) = p". We see easily 

oo N 

(Z) = N- 1 L un- 1 L x(oc'"11)l(' i"Joc'•yj) 0 n~n)) 
n= 1 j= 1 

with an element oc of o such that det(oc) = p. Similarly 
oo N 

(Z) = N- 1 L u"- 1 L x(yjoc")I(' 'Pm(yjoc") 0 n~·>) 
n= 1 j= 1 

oo N 

= N- 1 L un- l L x(yjoc")I(n:<n> 0 'Pm(yjoc")) (Lemma 16). 
n= 1 j= 1 

By (11.3) we have n:<n> o i"'"(yjoc") = 'f .. (y1) o n:<n> o 'Pm(oc"1 hence 

dd log [n Zp(uf)l = (2N)- 1 f u"- 1 f x(oc'"y1)I('i"m(y1) 0 Un), 
U lllP 'J n=l j=l 

where Un= 'fm(oc'") 0 n~•> + n:<n> 0 f'"(oc"). By Lemma 15 and the property (11.41 
we have Un= Fn(X .. (r,,ocr,,), pX .. (r .Pcff11)). Applying Lemma 14 to this cor­
respondence, we find 

:u log[!;! Z,(uf~ = j~O a(m, 2j, O)Pj + ;~o vtO ( - tr 1a(m, i, v)Q;v 

with 
oo N 

pj = N- 1 L un- l L x(oc'"yj)p"1F,,(d(r,,ocr,,1 p. d(r,,pc5r,,)), 
n= 1 j= 1 

oo N 

Q,y = N-1 L un-1 L x(oc'"yj)pn(i-v)/2 
n= 1 j= 1 

By Lemma 11, we get 

n Zp(ul) = Ii [ n (1 - N(p)iuf)(l - N(p)i+ tuf)1-a<m,2J,o> 
lllP j=O lllP J 

4m i . n n det[l - (rt ocr 1lv+ 2,pPu-vit2u 
i=O v=O 

+ (r pr ) pi-v+ lu2J(- J)ia(m,i,v) 
1 1 v+2,p · 
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Now we define the global zeta function Z(s; Wm, Q(()) by 

Z(s; Wm, Q(()) = n Z"(N(p)-"), 

" 

331 

the product being taken over all prime ideals pin Q(() with nice reduction of Wm. 
The above calculation proves 

MAIN THEOREM V. Let Z(s; Q(()) denote the Dedekind. zeta function of Q((). 
Then, up to a.finite number ofp-factors, Z(s; Wm, Q(()) is equal to the product 

m 

n [Z(s - j; Q(())Z(s - j - 1; Q(()f<m.2j,o> 
j=O 

4m i 

x n n det[D(s - (i - v)/2; b, v + 2, p)]<- 1>•+ 'a<m,i,•>. 
i=O v=O 

Here p is the regular representation of G,,. 

COROLLARY. Let O! be an element of o such that det(O!) = p. If Weil's conjecture 
on Z"(u) is true, then, for every representation I/I of G,, and for every integer k > 2, 
the absolute value of the characteristic roots of (r 1O!r1)t,l/I and (r ,,O!r ,,)A: does not 
exceed 2p<A:- 1112, except for a finite number of exceptional p's. 

Since Weil's conjecture is true for curves, the absolute value of the charac­
teristic roots of (r 1ocr 1h,111 and (r,,O!r,,)i do not exceed 2 ·pf for almost all p. 

THEOREM 17. Suppose that b is prime to the discriminant of L. Then Wm has a 
model defined over Q, and the zeta-function Z"(u) of Wm mod(p) over the prime 
field is given by 

2m 
Zp(u) = n [(1 _ piu)(l _ pi+ 1u)ra<m.2j,Ol 

j=O 

4m i 

x n n det[l -(r,,ocr,,).+2P<i-•lt2" + (r,,pi5r,,),+2Pi-v+1u2]1-11•a<m,i,•I. 
i=O v=O -

In view of the results of Eichler [2] and Shimizu [6], we know that there are 
some linear relations between the Dirichlet series D(s; b, k, p) and Hecke's 
Dirichlet series attached to cusp forms with respect to congruence subgroups of 
SL2(Z). Therefore, from the above corollary, one can derive an estimate for the 
Fourier coefficients of certain cusp forms, assuming Weil's conjecture to be true. 
For example, let co 

f(z) = [A(z)A(2z)A(3z)A(6z)]f = L ane2"inz, 
n= 1 

where A(z) = q · n~= 1 (1 - qn)24, q = e2"i•. Then f(z) is a modular form of 
weight k = 4 and of level 6. One can show that L:= 1 ann-• is among our 
D(s; k, b, p) for the quaternion algebra of discriminant 6, with k = 4, b = 1, 
p = identity representation. Hence, Weil's conjecture together with the above 
result implies laPI < 2pt for almost all p. 
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By a simple observation about the fixed points of X0(rb,rb~ together with the 
trace-formula of Eichler and Selberg, we can obtain the following "asymptotic 
estimate" for the eigenvalues. Let p be a prime number not dividing b and the 
discriminant of L, and let oc be an element of o such that det(oc) = p. Let r = 
dim Sk(rb) and let Ji. 1, ···,Ji., be the eigenvalues of (r,,ocr,,)1:· Suppose that k ~ 3 and 
b > 2. Then 

r 

r- 1 L IJi.112 ~ (1 + p)p1:- 2[1 + A1:(1 + (p + l)/(g-1))]. 
i= 1 

Here g is the genus of r,,\H, and A1: is a positive constant which depends only on 
k; A1: = 1 if k is odd, and A1: ~ 1/3 if k is even. Let us now take a sequence of 
positive integers b1, b2, • • • which tends to infinity such that all the bv are prime 
top, and consider a sequence of groups rb,• r,,2, ···.Let v,(bv) denote 

r 

r- 1 I IJi.11 2 

1=1 

defined for r,,vocr,,v. Then. for a fixed p, we have 

limsupv,(b.,) ~ (4/3)·(1 + p)p1:- 2 

V"'!Xl 

~ 2(1 + p)pt- 2 

if k is even, 

if k is odd. 

This is neither stronger nor weaker than the conjecture IJi.11 ~ 2p11:- iJ1 2• 
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Hecke's Polynomial as a Generalized 

Congruence Artin L-function 
(A Supplement to Shimura'• Lecture) 

BY 

MICHIO KUGA 

1. L-funcdons. Let R be an algebraic function field of 1 variable over a finite 
field " ( = F4); and let R' be an unramified Galois extension of R, of which the 
Galois group is denoted by 6'J = Gal(R'/R). Let P be a (topological) field; and 
let R: 6'J-+ GL(N, P) be a (continuous) representation of (fi by N x N matrices 
whose entries are in P. 

For a prime divisor p of Rover K, take an extension ~of pin R'. The Frobenius­
automorphism of~ of R'/R is denoted by a". Then, the polynomial 

det[l - R(a")u] 

is independent of the choice of the extension ~ of p, and it depends only on the 
prime divisor p of R. This polynomial will be denoted by 

1/1 ,,(.u). 
Consider the formal power series 

l/J,(uf•)- 1 = det[l - R(a")uf•i- 1 

= 1 + a1u1• + a2u21' + · · ·, 
e P[[u]] ( = the ring of formal power series over P~ 

where/., denotes the degree of p over ": 

N(p) = qi'. 

And consider the product 

taken over all the prime divisors of R/K. One can see easily that the product is 
convergent in P[[u]]. The formal power series Il., 1/1.,(uf•)- 1 is denoted by 

L(R'/R, R, u) (= L(R, u)), 

and is called an L-function. 

333 
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LEMMA I. If the representation R is reducible and 

R- i ( R "') 
0 R2 ' 

then 

(1) L(R, u) = L(R 1o u)L(R2, u). 

Suppose for a moment that 5\'/5\ is a finite extension. Denote by <P1o </> 2, ···,<Ph 
the system of all irreducible ordinary representations of (f; over C which are 
realizable in some algebraic number field K. For a fixed prime l, denote by 
<1>1, · • • , <I>,,. the system of all irreducible modular representations of (f; in a 
universal domain n, of characteristic l. 

Take and fix a prime divisor I of l in K. For a formal power series 

f(u) = L amrl" E K[[u]] 

whose coefficients are 1-adic integer, we put 

/(u) = J'(u) = L ii~um E n,[[u]], 

where ii~ = the residue class of am modulo I. 
Now we have the following assertion : 

LEMMA 2. (BRAUER-NESBITT). ,,. 
(2) f.'(</>;. u) = n L(<l>i, u)di; 

j=1 

where 

D= 

is the decomposition matrix. 

Taking an integral matrix A = (a1;i) such that AD = 1,,. we have 

(3) L(<l>i, u) = n f. '(</>1;, u)"kJ. 
t 

The existence of such an A is due to Brauer-Nesbitt, [l], [2]. 

2. Hecke po!ynomials as £-functions. Consider the polynomial 

det[l - (r,,apr,,),.u + p(r,,p<Sr,,)1;u2 ], 

which was discussed in the last part of Shimura's lecture [3]. (All notations are 
the same as there.) This polynomial is denoted by H,.(p, u) and will be called 
Heck's polynomial. We shall writer instead of r,,. 
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In his lecture, Shimura introduced a family of abelian varieties Wm - V. Here 
we are going to study the case m = 1. W1 4 V is a family whose fibres are 
2-dimensional abelian varieties with rings of endomorphisms isomorphic to an 
order .0 in an indefinite quaternion algebra Cf> over Q. Shimura constructed a 
model of WI> which is defined over Q(e2• 11"), and which we identify with W1. 

For almost all prime ideals p of Q(e2"i'"), (i) the reductions p(W1), p(V), p(n), 
p(h), are nonsingular, and (ii) p(n), p(h), are everywhere defi.ned, and (iii) p(n)- 1(x), 
which we shall denote by Ax, carries the canonical structure of an abelian 
variety, whose zero is Ox = p(h)(x), for all x e p(V). 

The varieties p(W1), p(V), and the maps p(n), p(h), are all defined over re = F,, = 
the finite field with q = N(p) elements. · 

Take a generic point x of p(V) over "· Put R = K(x), which is isomorphic to 
the field of rational functions of p(V), defined over "· 

Take a prime number I, prime to p. The field generated over R = K(x), by 
all of the coordinates of all /Yth division points of Ax (v = 1, 2, · · ·) is denoted 
by RI = R(Ax, /""). It is a Galois extension of R. Moreover for a given I, there 
exists a set U(l) of almost all prime ideals in Q(e2•1'"), such that if U(l) 3 p, 
R(Ax, I'°) is unramified over R. The Galois group of R(Ax, l"")/R, which is 
denoted by (fi = <fi(Ax, /""), is in a well-known way, represented by a group of 
4 x 4, 1-adic matrices: (1-adic representation): 

<fi(Ax, /"") 3u1-+ M(u) e GL(4, Z 1). 

Moreover, we can see that this representation M is reducible into the sum of 
two copies of a representation µ : 

(fi 3u1-+ µ(u) e GL(2, Z 1), 

M -(~ :). 

Denote by M v the symmetric tensor representation of GL(2, Q1) of the degree 
v; and consider the representation Mv aµ: <fi - GL(v + 1, Q,i 

PROPOSITION 1. If U(l) 3 p, then 

(4) 
n,Y 

where, a(2m, n, v) are numbers defined on Page 343. 

If U(l) 3 p, PIP, p = 1 (mod b), then, the variety p(Wm) is defined over " = F P 

( = the prime field), and the zeta-function of p(Wm) is given by 

n Hy+ 2<v. p<n - Y)/2u)<- 1)•a(2m, n, Y) 

(5) Z(p(Wm), u) = n CCvl _ p"'2u)(l _ p<n+ 2>12u)]"<2m,n, 01 

n 

(cf. Shimura's paper [3] in this volume [2]). 
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Comparing the right sides of (4), (5) for m = 0, 1, 2, · · ·. we have finally 

THEOREM l. If U(l) 3 p, PIP. p = l(b), then 

(v > 0), 

(6) 
H 2(p, u) 

=-----
(1 - u)(l - pu) 

(v = 0). 

3. Applications. Assume p e U(l), p = l(b) from now on. Reducing (modulo /) 
both sides of the equation in the last corollary; we have 

H~+ 2(p, u) = L((M, o µt, u). 

Because (M, o µ)- is a homorphism of <D into a finite group, the kernel <D,(l) of 
(M, o µ)- is of finite index in <D. Denote by R,(l) the fixed field of <D,(l). 

Denote by <Pi.···, <Ph• or <I>i. · · ·, <l>h., the system of ordinary, or modular, 
representations of <D/<D,(l) respectively. Then using the Brauer-Nesbitt lemma, 
we have 

H,.+2(P, u) = n L(R,(l)/R, <l>i, u'f1 = n l'(R,(l)/R, </J;. u)'\ 
j i 

where ci is the multiplicity of <l>i in (M, o µf, and b1 = }: aiJbi. So 
j 

PROPOSITION 2. 

(7) H,+ 2(p, u) = n L(R,(l)/R, </J;. u)b' (modulo I). 
i 

Now assume, furthermore, that p = 1(/). 
The group r(l) = r bl is a normal subgroup of r = r b; and hence the Riemann 

surface V(l) = r(l)\X is a normal covering of V = r\X; where 

x = {T = x + iy e c1. y > o}. 

V(l) has a good model defined over Q(e2•d/b1). (See [3].) Reducing V(l) modulo 
a prime ideal~ in Q(e2" 11b1), we have an algebraic curve ~V(l)) defined over 
K = F P. And we can see that the field R,(l) is identified with a subfield of the 
function field of ~(V(l))/K. 

Hence, in our case of p = l(bl), the L-functions L(R1(V)/R, q,1, u) divide the 
numerator of the Zetafunction Z(~(V(l)), u) of ~(V(l))/K. The latter has, as A. Weil 
indicated, the following interpretation : 

Denote by J(l) the Jacobian variety of V(l), defined over Q(e2"1'b'). And let 
K1 .. = Q(e2" 11b')(J(l), l<XJ) be the algebraic number field generated over Q(e2iri/b1), 

by all of the coordinates for all the l'th division points of J(l), v = 1, 2, · · · . 
K, .. is a normal and infinite extension of Q(e2"''.,'>. whose Galois group will be 
denoted by G = G(K1). G is represented by an l-adic representation M1 : G ...... 
GL(2g, Z1) with respect to an l-adic coordinate of J(l). Then A. Weil indicated 
that: the numerator of Z(~(V(l)), u) = det[l - M 1(S,)u], where S, is the Frobenius 
automorphism of a prime divisor P of" in K, ... 
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Combining all of these, we have: 

PROPOSITION 3. If p = l(bl), then 

Hw+ 2(p, u) = A(u)/B(u) (mod I) 

where A, B are two polynomials such that 

A1(u)ldet1[1 - M,(Sr)ul 

lJ'(u)ldet'[l - M,{Sr)u]. 
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Denote by K1 the smallest Galois extension of Q which contains Q(e2"i'"'~ 
and the Ith division points of J(l). If a prime p such that p = l{bl) is completely 
decomposed in K,, then M1(Sp) = 1 mod I, 

A"'(u) = (l _ u)•ome power, 

iJ'(u) = (1 - u)some power, 

and, hence, 

(8) Hw+2(P, u) = (1 - u)2dimYv+2(1). 

Conversely we can see that (8) is true for all v = 0, 1, 2, 3, · · · , if and only if (8) 
is true for v = 0, 1, 2, · · · , I - 1, if and only if pis decomposed in K1 into a product 
of primes whose degrees are powers of I. Here, we used the fact that all the 
irreducible modular representations in the universal domain of characteristic I 
of the group SL(2, Z/IZ) are the representations in the spaces of symmetric 
tensors of degrees v; v = 0, 1, 2, ···,I - 1. 
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Fiber Varieties Over a Symmetric Space Whose 

Fibers Are Abelian Varieties 

BY 

MICHIO KUGA 

G. Shimura has realized the importance of the theory of families of abelian 
varieties with various structures and made a deep study of such families, employ­
ing his beautiful number theories of algebraic groups [7], [8]. 

The purpose of this talk is to give a method of analytic construction of the 
total space "II/" of such a family, parametrized, in a certain way, by a compact 
symmetric space "//" = r\X (X: a symmetric space, r a discontinuous group) 
and to study the cohomology of the constructed total space "IY, verifying its 
Hodge property. 

1. Let G be a connected, noncompact, semisimple real Lie group with finite 
center, K a maximal compact subgroup of G, and r a discrete subgroup of G 
for which the quotient space r\G is compact Then the homogeneous space 
X = G/K is a symmetric space on which r operates properly discontinuously. 
If, in addition, r has no element of finite order > 1, then r operates without 
fixed points on X, and the quotient space f\X = 1' is a compact manifold. 

Let p be a representation of G in GL(N, R), and denote the representation 
space RN by V. 

FIRST ASSUMPTION. p(r) s;; GL(N, Z). 
If one denotes by L the lattice in V corresponding to ZN in RN, then the first 

assumption may be expressed as follows: For each y in r the automorphism 
p(y) of V carries Lonto itself. As a result, one obtains from p(y) an automorphism 
p(y) of the torus T = V /L. Since r operates on X and T, r operates component­
wise on the product manifold X x T; this operation is properly discontinuous 
and without fixed points. Consequently, the quotient space r\(X x T) = 11' is a 
compact manifold. Let p: X -+ 1' and p: X x T-+ 1Y be quotient maps, and let 
if: X x T-+ X be the projection of X x T on X. Then there is a unique map 
n: 11' -+ 1' such that 1t 0 p = p o if. One sees that 1Y is the fiber bundle cover 1' 

(i) whose structure group is r and whose fiber is T, 
(ii) which is associated with the covering p: X -+ 1' and 
(iii) such that the operation of the structure group r on the fiber Tis defined 

by the representation p. 

338 
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2. Complex structure on "Ill". 
DEFINITION. A pair 0 = (B, S) of real N-by-N matrices is said to be a symplectic 

pair if: 

(i) 'B = -B, 
(ii) 'S = S, S positive-definite, 

(iii) BS- 1B = -S. 

From (iii) Bis nonsingular, and, therefore, N is even. Let G0 = Sp(B) be the set of 
N-by-N real matrices m such that 'mBm = B, and let K 0 = G0 n O(S), where 
O(S) is the set of all real N-by-N matrices m such that 'mSm = S. K 0 is a maximal 
compact subgroup of G0 , and the symmetric space X 0 = G0/K0 is isomorphic 
to the Siegel upper half plane of genus N /2. X 0 possessef. two G0 -invariant com­
plex structures. Fix the complex structure on X 0 as that associated with the one­
parameter group j 0(t) = exp(tB- 1S) in K0 • 

SECOND ASSUMPTION. There is a nonsingular integral skew-symmetric matrix B 
such that p(G) ~ Sp(B). 

With this one can prove the following proposition : 

PROPOSITION. There is a real symmetric positive-definite matrix S such that: 
(i) (B, S) is a symplectic pair, 

(ii) p(K) ~ O(S), 
(iii) 'dp(Z)S - Sd p(Z) = 0 for each Z in the orthogonal complement (with 

respect to the Killing form in the Lie algebra of G) of the Lie algebra of K. 

Choose a fixed symplectic pair 0 = (B, S) which satisfies all of the above con­
ditions. As above, let G0 = Sp(B), K 0 = G0 n O(S), and X 0 = G0/K 0 • For each g 
in G define J(g) in GL(N, R) by J(g) = p(g)B- 1Sp(g)- 1• Then J has the following 
properties : 

(a) For each kin K, J(gk) = J(g). Consequently, J(g) = J(x) is well defined for x 
in X. 

(b) For each x in X, J(x)2 = -1. 
(c) For each x in X and each y in r, J(yx) = p(y)J(x)p(y)- 1• 

(d) For each x in X, the matrix A~x) = BJ(x) is symmetric positive-definite. 
For each x in X, the matrix J(x) defines the structure of a complex vector space 

on the real vector space RN = V. This induces the structure of a complex mani­
fold on the torus T, and it is well known that T with the complex structure J(x) is 
a polarized abelian variety with polarization B. In view of (c), the isomorphism 
class of this polarized abelian variety depends only on the class of x mod r, and, 
consequently, "Ill" is a fiber system of abelian varieties over "Y. 

THIRD ASSUMPTION.xis a symmetric domain. 
In this case "Y = f\X is a compact complex manifold which is known to be 

isomorphic to a projective algebraic variety. From what has been said above, the 
representation p of G sends G into G0 and K into K 0 • Hence, p induces a mapping 
-r: X -+ X 0 • One can raise the question of whether -r is holomorphic and this will 
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be discussed by Satake [5], (6]. This question is tied up with the existence of a 
"good" complex structure on "Ir as follows: 

DEFINITION. A complex structure ,,f on "Ir is called good if 
(i) the map 7t: "Ir -+ "// is holomorphic, 

(ii) the restruction of ,,f to the fiber over each point of "// gives the complex 
structure of the abelian variety already identified with that fiber, 

(iii) the universal covering manifold X x V of "Ir, fortified with the complex 
structure induced by/, is a holomorphic complex vector bundle over X. 

THEOREM 1. "Ir possesses good complex structures if and only if the map 
t: X -+ X 0 is holomorphic, and, in this case, there is only one good complex struc­
ture on "Ir. Moreover, if tis holomorphic, then (1) "Ir is isomorphic to a projective 
algebraic variety, and (2) "Ir is a minimal model in the sense that an arbitrary 
rational map of any variety d/J in "Ir is always regular at each simple point of "It. 

A proof of (1) of this Theorem 1, i.e. of that "Ir is a Hodge variety, will be 
sketched in later sections. 

Consequently, there arises the following important problem, which Satake 
[5], [6] will discuss: 

Find all representations p: G -+ Sp(N /2) such that (i) t is holomorphic and 
(ii) p(r) ~ GL(N, Z). 

3. Cobomology of "Ir. In this section only the first of the three assumptions is 
needed. Let Q0 = p(x0 ) be a point of "// ; if N is a small neighborhood of x0 , 

then p defines an isomorphism N x T ~ 7t - 1(p(N)). One obtains, thus, for each 
Q in p(N) an isomorphism i/laoa of the fiber Ta0 over Q0 with the fiber Ta over Q, 
which is independent of the neighborhood N and the point x0 • Moreover, 
i/la0a2 = i/la1a2 ° i/la0a1 whenever the points Q0, Q1, Q2 are near each other. These 
"shifts" can be continued along any path in "//, and, in particular, along any 
loop based at Q0 • In this way the fundamental group x1("//, Q0 ) operates on the 
fiber Tao• and a representation I/I of x1("//, Q0) in the group of automorphisms 
of Ta0 is given. If the point x 0 such that p(x0 ) = Q0 is fixed, then there are canon­
ical isomorphisms between x1(1"'; Q0 ) and r, on the one hand, and Ta0 and T, 
on the other. Through these isomorphisms the representation i/J of 7t 1("//, Q0 ) 

may be seen to correspond to the representation p of r. 
It is known that H 1(T) = Vand that H,(T) = NV= rth exterior power of V. 

The operation of r on H 1(T) is given by p, and the operation of r on H,(T) is 
given by Np. The space H'(T) is the dual space (A'V)• of H,C.T), and the cor­
responding operation of r is by (A'p)•. 

To obtain the cohomology groups of "Ir, one considers the spectral sequence 
{Er1} of x: "Ir-."// for which E~ ~ HP("//, H"(T)) and H'("IY) ~ Lp+q=r {E~}. 
It can be proved, in this case, that Ef: = £~9, and moreover, one has 

HP(f; H9(T)) ~ HP(X, r, (Np)*) ~ H"(r, (Np)•) 
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(for notations, see Murakami's lecture). Hence, 

H'("lr) g;; L HP(X, r, (Np)•) g;; L HP(r, (Aqp)•). 
p+q=r p+q=r 

Harmonic forms in "Ir. Let ds~ denote a fixed Riemannian metric in X. A 
Riemannian metric in "Ir may be introduced as follows : Choose a real symmetric 
positive-definite matrix S such that (i) p(K) !;;;; O(S) and (ii) 'dp(Z)S - S dp(Z) = 0 
for each Z in the orthogonal complement of the Lie algebra of K. For each g 
in G define A(g) = 1p(g)- 1Sp(g)- 1• Then (i) A(gk) = A(g) for gin G, kin K, so 
that A(x) = A(g) well-defines A(x) for x in X; and (ii) A(x) is symmetric positive­
definite. The metric ds2 = ds~ + 'duA(x) du in X x T, ·where the column vector u 
denotes a coordinate in T, induces a Riemannian metric in "Ir. In the following, 
the symbol ft' will be used for various spaces of harmonic differential forms. 
In the first place, one has a subspace ft'P(X, r(A'p)•) of harmonic forms in 

AP(X, r, (A'p)•) = {roe AP(X) ® A'(V)•lw o y = (A'p(y))•ro for all ye r} 

c AP(X) ® N(V)•, 

(see Murakami's lecture note for the notations AP), and by "Hodge's Theorem'', 
the inclusion of ft'P in AP induces an isomorphism 

ft'P(X, r, (Np)•)~ HP(X, r, (A'p)•). 

Let :/t''("lr) denote the space of harmonic r-forms on "Ir. 

PROPOSITION. The space :/t''("lr) admits a direct sum decomposition 

ft''( "Ir) = L ft'IPolll( "Ir) 
p+q=r 

in which fe1Polll(1f'") is isomorphic to ft'P(X, r, (A'p)•). 

It is the purpose of this paragraph to describe the said isomorphism explicitly. 
DEFINITION OF fe1Polll(1r). An arbitrary differential r-form on X x T can be 

written in the form 

L L fi.i.il(x, u) dxi' A · · · A dxip A duii A · • · A duiv, 
p+q=r (i,j) 

so that one has : 

A'(X x T) = L Alp,ql(X x T) (direct sum), 
p+q=r 

where A1P·q1(X x T) be the space of (p + q)-forms of the form: 

L fi.i.il(x, u) dxi' A · · · A dxip A duh A . · · A duiv, 
(i,j) 

p terms taken over the dx, q terms taken over the du. 
Let pip.qi denote the projection A'-+ Alp.qi. The operations of r on the differen­

tial forms (induced by the operations of r in X x T) commute with each pip.qi 
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so that A'(if"") admits a direct sum decomposition 

A'(if'") = L Alp,ql(if'"). 
p+q=r 

Since the "Laplacian" in if" can be shown to commute with pip.qi, one has 

K'( if") = L Jt'fp,ql( if"), 
p+q=r 

where 
Kip.qi( if") = Jr"'( if") n A Ip.qi( if"). 

DEFINITION OF THE ISOMORPHISM. The isomorphism 

Jf"lp,ql(if"")-+ Jf"P(X, r, (Aqp)•) 

will be exhibited as a map 

{
Alp,ql(X x AT)-+ AP(X) ® (AqV)• = Hom(N(V), AP(X)), 

(J) ..._.co. 

Let co be an element of Alp,ql(X x T), and let z be a q-cycle in Twhich represents 
a homology class z in Hq(T) = NV. Define W(z) in AP(X) for 

by 

co = L J(i,jJ(x, u) dxii /\ · · · /\ dxi" /\ duii /\ · · . /\ dui9 

(i,j) 

W(z) = L dxi' /\ · · · /\ dxi" f. f(;,jJ(x, u) duii /\ · · · /\ dui•. 
(i,j) z 

4. An example. Let G = SL(2, R), K = S0(2), X = upper half of the complex 
plane. Let ft' be an indefinite division quaternion algebra over Q, which is, by 
definition, a division algebra over Q such that ft' ®a R = M 2(R). Let (!) be a 
maximal order in ft'. Regarding ft' as a subring of M 2(R), let r = r" be the set of 
all e in (!) such that (i) e(!) = (!), (ii) det e = 1, (iii) e = 1 mod b(!), where b is some 
integer larger than 2. Let Vm = M 2(Rr, Lm = (!)m, and define Pm: G -+ GL(Vm) 
by 

for each a in G, where mis any positive integer. From Tm = Vm/Lm, one forms 
X x Tm and if" m = r\(X x Tm) as described in § 1. In this case the space Jr"'( if" m) 
of harmonic forms can be made completely explicit in terms of automorphic 
forms in X associated with r. 

It is well known that the only irreducible representations of SL(2, R) are the 
symmetric tensor representations. Let M v denote the symmetric tensor representa­
tion of degree v. The representation Pm• and also the representation Aqpm, can 
be decomposed by means of the M v. In fact, one has 

Npm - L a(2m, q, v)Mv 

" 
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where 

~~ q,v) = (q ; )(q ~ ·)-(q ; : + ~ (q ; : -} 
= 0, 

Consequently, 

.Tt'"(X, r, (A 11p.,.)*) ~ L a(2m, q, v).Tt'"(X, r, M v~ 
v 

and Shimura [9) has shown : 

.Te0(M o) ~ C, 

.Te0(Mv) ~ {O} for v > 0, 

.Tf' 1(Mv) ~ l'v+ 2 E9 iiv+ 2 for all v, 

.Tt'2(M 0) ~ Cwa. 

.Tf'2(Mv) ~ {O} for V > 0, 
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q = v(2~ 

q - v(2). 

where l'v+ 2 denotes the space of cusp forms of weight v + 2 belonging to r, 
iiv+ 2 denotes the complex conjugate space of l'v+ 2, and w0 = y- 2(dt: A dt). 

Combining these, we have 

.Tf'"(1f"111) ~ a(2m, p, O)C 
p-1 

(1) E0 L ac2m. P - 1, vHl'v+ 2 E0 iiv+ 2> 
v 

EB a(2m, p - 2, O)Cw0 • 

For the sake of simplicity, we shall identify the two sides of (1). 
Now consider the "Hecke-operator" rcxr(= r,,cxr,, in Shimura's lecture), 

which is an algebraic correspondence of the variety 1'"111•• The Lefschetz number 
I(rcxn of the correspondence is givci.'l by the Lefschetz fixed point formula: 

reran = L ( -1)" tr((rcxnl.Te"(tr.,.)). 
p=O 

Here (rcxrl.Te"(1f"111)) is the linear endomorphism of .Tt'"(1f"111) induced by the 
correspondence rcxr. (For precise definitions see [2], [4].) And, moreover, we 
can see that (rcxrl.Te"(1f"111)) sends each subspace of .Tt'"(1f"111) appearing in the 
decomposition (1) into itself; and this operation coincides with 

(i) the scalar multiplication c>-+ (det cx)"'2 d(cx)c on the subspace a(2m, p, O)C, 
where d(cx) denotes the number of left cosets in rcxr, 

(ii) the scalar multiplication c >-+ (det cx)1"- 2" 2 d(cx)c on the subspace 

a(2m, p - 2, O)Cw0 , 
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(iii) the Hecke operator: (det(a:))111 - 1 - ' 1' 2(for). + 2 (c.£ Shimura 's lecture) on 
the subspace identified with Y.+ 2• 

So combining these we have finally the formula 

4m 

/(for) = 2 L ( - l)ba(2m, b, 0) det(oc)"12 d(a:) 
b"O 

4m b 

- 2 L L (- l)ba(2m, b, v)(det(a:))lb-•112 Re[tr(ra:r).+ 2]. 
b=O v=O 

REMARK. The notation of Hecke operator ra:r is also defined in the case of 
higher dimensional quotients f\X of symmetric spaces, and an analogous 
formula for J(ra:r) is calculated in terms of the operation of ra:r on the space 
of vector valued harmonic forms [2]. 

5. Further structure of (co-) homology groups. By our construction of the fiber 
bundle n: 111·-+ "!', each fiber has the structure of an abelian group (torus) 
canonically. Denote by Ii the section X -+ X x T defined by Ii : x >-+ (x, 0); and 
let h be the uniquely determined section h : "I' -+ "If'" satisfying h op = p o Ii. h is 
the section of zeros: h(Q) = the zero of Ta. Furthermore, consider the auto­
morphism 0 of X x T defined by 0: (x, u) >-+ (x, - u). Let 0 be the uniquely deter­
mined automorphism of "If'" which satisfies p 0 n = 0 0 p and 1t 0 0 = 1t. 0 is called 
the upside-down operator. Since 02 = identity map, 0 induces linear automor­
phisms 0* (resp. o. on the group H*(W) (resp. H.(W)~ Put 

Then, 

(2) 

(3) 

H*("lf'")+ = {z e H*("lf'")IO*(z) = z}, 

H*("lf'")- = {z e H*(1f'"llO*(z) = -z}, 

H.("lf'")+ = {zeH.("lf'")IO.(z) = z}, 

H.("lf'")- = {zeH.("lf'")IO.(z) = -z}. 

H*("lf'") = H*("lf'")+ + H*("lf'")­

H .("If'")= H.(·'lfY + H.("lf'")-

(direct sum1 

(direct sum). 

In (2) and (3), H*("lf'")± is the annihilator of H.("lf'")+, and so H*("lf'")+ and 
H.(111y are dual to each other and H*("lf'")- and H.C"lfr are dual to each other 
(namely, (2) and (3) are dual decompositions). 

Because 0 preserves the Riemannian metric ds2, O* induces an endomorphism 
of Jf''(11'"). And defining Jf'"("lf'")+, Jf'"("lf'")- similarly, we have 

'*'"("If'")+ = I Jf'(a,bl("lf'") ~ I H 0(X, r, N(V)*), 
a+b=p,bs0(2) a+b=p,bs0(2) 

.Jf'"("lf'")- = I Jf'fa,b]( "If'") ~ L H°(X, r, N(V)*) . 
o+b=p,bs 1(2) a+b=p,bs 1(2) 
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Jf'2(1Y)+ = Jf'(2,0)(1Y) + Jf'(0,21(1Y) 

~ H 2(X, r, trivial) Ef> H 0(X, r, A 2(V)•) 

~ H2(.Y) Ef> [A2(V)•]r 

~ H2(.Y) Ef> [H2(Tao>r•w.ao1 

where Q0 is any point of "Y. 
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Take a point x0 e X such that p(x0 ) = Qo. and consider the injectionj : T-+ 1Y, 
defined by j(u) = p(x0, u). Obviously j(n = Tao. 

PROPOSITION. H2(1Y)+ = h.(H2("Y)) + i.(H2(T)) (direct sum) and this is the 
dual decomposition o/(4~ 

In the case where 1Y has a good complex structure J with respect to a 
symplectic pair 0 = (B, S), the Riemann metric ds2 = ds~ + duA(x) du (where 
A(x) = 1p(g)- 1 Sp(g)- 1) is Kahler with respect to that J, and the fundamental 
2-form n is shown to be n = n0 + 'du A B du, where n0 is the fundamental 
2-form of ds~. Moreover, the 2-forms n0 and 'du A B du on X x T can be con­
sidered also to be 2-forms on 1Y; and 

'du AB du E Jf'(O,ll(1Y). 

From these data we can conclude that ds2 is a Hodge metric of 1Y if we take 
as ds~ a Hodge metric of "Y; and this gives a proof that 1Y is algebraic. 

In fact, for any 2-cycle 

we have 

f n = i n0 + 'du A B du 
Z Z1+Zz+Z3 

= f n0 + f 'duABdu. 
Zz Z3 

Employing the Hodge properties of -r and of abelian varieties (the latter is 
nothing else than the integrality of B), we see that Jzn e Q. This shows that ds2 

is a Hodge metric of 1Y. 

6. Several comments. (1) Let n: 1Y-+ "Y be an algebraic family of polarized 
abelian varieties defined by G/K = X, r, p,B, Sas in §1. And let k be a field of 
definition for 1Y, "Y, n. Take a generic point Q0 of -r over k, and consider the 
fiber Ta0 at Q0. Taking a point x0 in X, such that p(x0) = Q0, we can identify: 

Ta0 = x 0 x T = T, 
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In the homology group H 2,(Tao• R) of the abelian variety Ta0 ; consider the 
subspace a,(Tao• R) generated by the algebraic r-cycles of Ta0 (cf. Borel-Haefliger 
[1 ]). 

On the other hand, as is described in §3, ni(-1', Q0) = r operates on H 2,(Tao• R) 
= H2 ,(T, R) = A2'(V). Consider the subgroup H 2,(Tao• R)'"1W.ao> = A2'(Vf of 
r-invariant elements in H 2,(Tao• R) = A2'(V). 

THEOREM. H 2,(Tao• R)'"•W.aol :::> a,(Ta0 ) for a generic point Q0, of"//" over k. 

For a sketch of this theorem, see [3]. 
REMARK 1. By a theorem of Borel, A 2'(Vf = A2'(V)G; so this is determined 

by the theory of tensor invariants of Lie groups. 
REMARK 2. H 2,(Tao• R)'"•W.ao> = a,(Ta0) implies the coincidence of numerical 

equivalence and homological equivalence of cycles of codimension r in the 
abelian variety Tao· 

REMARK 3. In many cases the equality H 2,(Ta, R)'"•W.aol = a,(Ta0 ) holds. For 
example, it holds if G is a product of Sp(n;, R). There are some examples for 
which H 2,(Tao• R)'"•W.aol '# a,(Ta0). 

(2) Shimura [9] defined an abelian variety A(11c(r)) attached to the space of 
automorphic forms 'Jl1c(r) of dimension -k. This is interpreted as a factor of the 
higher Jacobian variety Jl•l(lYm), where the variety 1Ym is defined in §3: 

r-1 

Jl•l(lY J (iso';ny) L a(2m, r - 1, v)A('Jlv+ 2) 
v~o 

for odd r. 
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Families of Abelian Varieties 
BY 

DAVID MUMFORD 

In previous lectures, Kuga, Shimura, and Satake have considered various 
families of abelian varieties parametrized by the quotients of bounded symmetric 
domains by arithmetic subgroups. In particular, Shimura characterized certain 
of these families by means of the structure of the ring of endomorphisms-the 
"PEL-types." My purpose here is to show that an even larger class of Kuga's 
families can be characterized by intrinsic properties of the abelian varieties 
occurring in them. The properties in question involve the Kiihlerian geometry 
of the abelian varieties, but, assuming a famous conjecture of Hodge, they are 
equivalent to purely "algebro-geometric" properties of the abelian varieties. The 
results of this lecture are partly joint work with J. Tate. 

1. The Hodge group of a complex torus. To give a complex torus A of dimen-
sion g is the same thing as giving 

(i) a 2g-dimensional rational vector space V; 
(ii) a complex structure on V11 = V ® aR-; 

(iii) a lattice L c V. 
Here V = H 1(A, Q), L = H 1(A, Z), and the complex structure on V11 is induced 
by the natural isomorphism between V11 and the universal covering space of A. 
If we are only interested in the type of A up to isogenies, we can omit L. The 
datum (ii) is equivalent to either of the following objects: 

(ii') an endomorphism J: V11 -+ V11 such that J2 = - I, 
(ii") a homomorphism of algebraic groups, 

</J: T-+ GL(V) 

defined over R where T is the compact 1-dimensional torus over R, i.e., 

Ta = { z e CI lzl = 1} ; 

and such that q,, as a representation of Gm, has weights + 1 and -1, each with 
multiplicity g. 

Starting with a complex structure on V11 , we get data (ii') and (ii") as follows: 

J = multiplication by i. 
</J(ei8) = the element of GL(V)11 given by multiplying in the complex structure 

on V11 by ei8• 

esp: J = </J(i~ 
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DEFINITION. The Hodge group of A, written Hg(A), is the smallest algebraic 
subgroup of GL(V) defined over Q and containing </J(T). 

Since Tis connected, it follows immediately that Hg(A) is a connected algebraic 
group. A few more definitions: 

DEFINITION. Let A be a complex torus, and let 

Hk(A, C) ~ L ff Po4(A) 
p+4=k 

be the Kahler decomposition of the cohomology of A. Then the Hodge ring of A 
is 

dim A 

H~(A) = H"'(A, Q> n }: HP.P(A). 
p=O 

Hodge's conjecture asserts that H~(A) is the subring of H"'(A, Q) given by 
the Q-linear combinations of the fundamental classes of algebraic subvarieties 
of A. 

Note that: if the complex torus A equals V,JL, then there is a canonical iso­
morphism: 

Hi(A x .. · x A, Q) ~ A;(V"' 9 .. ·EB V"'). 

Therefore, there is a natural representation of Hg(A) on H"'(Ak, Q), defined over Q. 

PROPOSITION 1. For all k, the Hodge ring of A" is the ring invariants of Hg(A) 
in H"'(A, Q). 

Using this Proposition, it is easy to give examples of abelian varieties A such 
that their Hodge ring is not generated by elements of degree 2 [cf. §3 for the 
existence of abelian varieties with various Hodge groups]. 

2. The structure of the Hodge group of an abelian variety. The result is the 
following: 

THEOREM. If A is an abelian variety, then 
(i) Hg(A) is a connected reductive group, 
(ii) </J( -1) is the center of G, and centralizer [</J(i)] = centralizer [</J(T)]: call 

this group Z, 
(iii) Z~ is a maximal compact subgroup of Hg~ and Hg~Z~ is a bounded sym­

metric domain. 

COROLLARY (OF (i)). Hg(A) is the largest subgroup of GL(V) which leaves in­
variant the Hodge rings of A" for all k. Hence the Hodge group Hg(A) as a sub­
group of GL(V) and the collection of Hodge rings H~(A") as subrings of 

A"'[V* EB··· EB V*) 

are "equivalent" invariants of the abelian variety A: i.e., each can be computed from 
the other by linear algebra. 
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DEFINITION. The Hodge type of an abelian variety A of dimension g consists 
in the set of "equivalent" diagrams 

T--L+ Hg(A) c GL(2g) 

obtained by identifying GL[H1(A, Q)) with GL(2g) rationally over Q; where two 
diagrams 

T-.;-+H2 c GL(2g), 

are considered equivalent if there are elements ex e GL(2g)0, (J e (H 1)• such that 

H 2 = cxH1cx- 1, 

4'2(A.) = cxfJt/J1(A.)p-1cx-1. 

One should notice that once the Q-rational subgroup H c GL(2g) is given, 
there are only a finite number of Hodge types (H, t/J) extending H. This follows 
easily from the conjugacy of maximal compact tori in H via points of H •• and 
from the restriction on the weights of t/J(T) in this representation. 

DEFINITION. Let (H, t/J) and (H', t/J') be two Hodge types. Then (H, t/J) is a refine­
ment of (H', c/J') if these types are represented by diagrams 

where H c H' and 4'' = q,. 

T....±...+ H c GL(2g), 

T....£..... H' c GL(2g), 

3. The families. Now suppose that a Hodge type (H, </J) is given. We will see 
that the set of all abelian varieties of this Hodge type, plus the limits which have 
finer Hodge types will be a family over a bounded symmetric domain, such that 
the action of certain arithmetic groups on the domain lifts to an action on the 
family. 

DEFINITION. A Hermitian symmetric pair(~. J) is a real connected Lie group~ 
with compact center, and an element J e CD, its Lie algebra, such that 

(i) ad J has three eigenspaces in me: Re (the complexification of a real sub­
space R), P+. and p_ with eigenvalues 0, +2i, -2i, 

(ii) R is the Lie algebra of a maximal compact subgroup .Yt" in ~-
DEFINITION. Let(~. J) be a Hermitian symmetric pair. A faithful representation 

p : ~ -+ GL(2g)• 

is of abelian type if 
(i) p(~) is contained in Sp(2g)• and is an algebraic subgroup defined over Q, 



350 DAVID MUMFORD 

(ii) dp(J) is conjugate under Sp(2g)8 to 

( 0 I,,) 
-I 0 ' ,, 

which is the "complex structure" in Sp(2g)8 . 

(ii) is equivalent to asserting that 

(B, - B dp(J)) 

form a "symplectic pair" in Kuga's sense, where 

B = ( 0 I,,). 
-I 0 ' ,, 

also, (ii) is condition (H 2) of Satake. 
(iii) J is not contained in the Lie algebra of any normal subgroup f§0 c f§ such 

that p(f§0) is defined over Q. 
An immediate consequence of this definition is that if we exponentiate J in f§ 

we obtain a homomorphism : 

</J:T-+f§ where 

In fact, (p(f§), po </J) is a Hodge type, and every Hodge type arises from an abelian 
representation of a symmetric pair. 

Now suppose f§, J and p are given. Let <P: T-+ f§ denote the above homo­
morphism. Let K be the compact subgroup off§ which centralizes </J(T), and let 
K' be the compact subgroup of Sp(2g)8 which centralizes p(</J(T)~ Then p induces 
a holomorphic map of symmetric domains 

f§/K---!-. Sp(2g),JK'. 

Via t, the standard family of abelian varieties on Siegel's upper !-plane induces 
a family over f§/K: call it 

l(f§, J, p) 

1· 
f§/K. 

Since p is defined over Q, p maps all small enough arithmetic subgroups r of f§ 
into Sp(2g)z, and hence the action of such r on f§/K lifts to an action on the family 
l'.(f§, J, p). 

PROPOSITION 2. The abelian variety n- 1(x) in the family l(f§, J, p) is isogenous to 
A = R29/Z29, with complex structure defined by p(g</J(i)g- 1 ) where g E f§ represents 
XE f§/K. 

CoROLLARY. An abelian variety A is isogenous to one in the family X(f§, J, p) if 
and only if A has Hodge type equal to or finer than (p(f§), p 0 </J). 
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PROPOSITION 3. The families X(~. J, p) include all the families associated by 
Kuga to symplectic representations p: G -+ Sp(2g) of semi-simple groups G defined 
over Q, in the case when GR has no compact factors. 

4. The conjecture. The most intriguing possibility suggested by this theory is 
is an arithmetic conjecture. Serre [Colloque de Clermont-Ferrand, Groupes de 
Lie 1-adiques attaches aux courbes elliptiques] has defined 1-adic Lie algebras 
acting on H 1(A, Q1), for any abelian variety A, which are essentially the Lie 
algebras of the Galois group of the extension obtained by adjoining all points 
of order l• to some smallest field of definition of A. Call these 6»1• Let Lg(A) be the 
Lie algebra of Hg(A). It is a sub-Lie-algebra of Sl[H ;(A, QH Then one may ask 
whether: 

<», n Sl[H 1(A, Q,)] = Lg(A) ®a Q,. 

If dim A = 1, and A is defined over Q, Serre has verified this. For A of CM-type, 
this result is apparently proven in Shimura-Tamiyama, Complex multiplication of 
abelian varieties. 



Symplectic Representations of Algebraic Groups1 

BY 

ICHIRO SATAKE 

l. Kuga's problem. The purpose of this lecture is to answer the problem posed 
by Kuga in his lecture (see (11 [la]). This problem may be formulated as follows: 
Let G be a connected semisimple algebraic group defined over Q of hermitian 
type. Then the homogeneous space q; = G,J:K of G• by a maximal compact 
subgroup :K of G• is a symmetric domain. Let Va be a finite-dimensional vector 
space over Q, let V = Va® C, and let A be a nondegenerate skew-symmetric 
bilinear form on V whose matrix with respect to any basis of Va is rational. 
Then the group G' = Sp(V, A) of all linear automorphisms of V which leave A 
invariant is defined over Q, and we consider (rational) representations p of G in 
G' which are defined over Q. Let %' be a maximal compact subgroup of Ga 
which contains p(:K). The representation p is said to satisfy the condition (H 1) 

if the induced map of q; into the "Siegel space" q;' = G',J:K' is holomorphic. 
Let g = f + p be the Cartan decomposition of the Lie algebra g of G •. Since 

G is of hermitian type, there is an element H 0 in the center of f such that the 
restriction of adH 0 to p is a complex structure on p. H 0 determines the group 
:K as well as the invariant complex structure on q;_ For the group G' = Sp(V, A) 
we have similarly g', f', p', H0. In this case it is easy to see that H0 = ±!I 
where I is a complex structure on v. such that bilinear form A(x, I y) (x, ye v.) is 
symmetric and positive-definite. From now on we shall assume that the complex 
structure on q;' is that given by H0 = fl. Let dp: g-+ g' denote the differential 
homomorphism of p. The condition (H 1) may be formulated as follows: 

dp([H0, X]) = [H0, dp(X)] for all X in g. 

A slightly stronger condition (H21 namely dp(H 0) = H0, occurs in our solution. 
The problem is to determine all possible V, A, p, and H0 = fl for given G, H 0 , 

subject to the condition (H1~ To attack this problem it is convenient to generalize 
the situation. 

2. A more general situation. Let G be an algebraic group over an arbitrary field 
k0 of characteristic zero ( c C), and let f§ denote the Galois group of the algebraic 
closure 1(0 of k0 over k0 • Let (V, A) be as above except that Q is replaced by k0 , 

and let p be a representation, defined over k0 , of G in Sp(V, At which we assume 
to be completely reducible. This assumption is satisfied in the situation of §1. 

1This report is a summary of my paper (3). 
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DEFINITION. The representation pis called k0 -primary if it is equivalent (over 1<0 ) 

to a representation of the form 
d 

m L p'/. with tie~, 
i= 1 

where m is a positive integer, p 1 is an absolutely irreducible representation of G, 
defined over 1<0 , and pl' (i = 1, 2, · · · , d) are mutually nonequivalent conjugates 
of p 1• 

It may be seen that p is k0 -primary if and only if p is equivalent (over k0 ) to 
a representation of the form n'p'1 where p'1 is k0 -irreducible. Let p denote a k0 -

primary representation of G, and let p 1 denot~ any absolutely irreducible rep­
resentation of G which is contained in p. 

DEFINITION. The k0 -primary representation p is said to be of type (a1 (b1 or 
(c) according to the following conditions on p 1 : 

(a) 'Pi 1 ,.., P1· 
(b) 'p1 1 ,..,, p 1 but,.., Pi0 for some a0 ':F 1 in~­
(c) otherwise. 

It is obvious that the conditions (a), (b), and (c) do not depend on the choice of p 1• 

THEOREM 1. Any (completely reducible) representation p, defined over k0 , of G 
in Sp(V, A) is uniquely represented as the direct sum of maximal k0 -primary sub­
representations. Thus, 

v = v<l) Ee v<2> Ee ... , 

where v<i> is a maximal k0 -primary subrepresentation-space. If v<I) is the space 
for a k0 -primary representation of type (a) or (b), then the restriction of the alterna­
ting form A to v<il is nondegenerate, and v<iJ is an orthogonal summand of V with 
respect to A. If v<il is a subspace of type (c1 then the restriction of A to v<0 is zero, 
and there is a unique index i' such that the restriction of A to v<il E0 v<n is non­
degenerate; moreover, v<0 Ee y<n is an orthogonal summand of V. 

We note that in the situation of §1, R-primary representations of type (c) do 
not occur. For simplicity in what follows we shall only discuss representations of 
type {a). The other case, type (b), can be given a similar treatment. 

Data for the construction of a k0 -primary representation of type (a) consist of 
a 9-tuple (K, 5\, '· V1, V2 , e, F 1, F 2 , P1) where: 

(i) K is a finite extension field of k0 of degree d. 
(ii) 5l is a central division algebra of rank r 2 over K. 

(iii) 'is an involution "of the first kind" on R, i.e.,' is K-Iinear. 
(iv) V1 is a right 5\-vector space of dimension n. 
(v) V2 is a left 5\-vector space of dimension n'. 

(vi) e = ± 1, ( + 1)-hermitian means hermitian, (-1)-hermitian means skew­
hermitian, all relative to '· 

(vii) F 1 is an e-hermitian form on V1. 

(viii) F 2 is a ( - e)-hermitian form on V2• 

{ix) P1 is a representation of G in the subgroup U(Vi. F 1) of GL(Vi/5l) which 
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is "absolutely irreducible" in the sense that the representation p 1 - 91 o P 1 of G 
is absolutely irreducible, where 61 denotes the unique absolutely irreducible 
representation of the central simple algebra End(Vi/ft) :::> GL(Vi/ft). 

One constructs a k0-primary representation p of G as follows: Let V1' be the 
K-vector space VK = Jl1 ®.R Jil, and define the k0-representation·-space V1co 
by the relation V..0 = V1', or in the authorized notation, V = RK11co(V'), V' = 
VK ® K C. Let A' - tr .R(F 1 ® 'F 2) where tr .R is the reduced trace of ft, and define 
A = trl<//co(A'). The representation pis then defined by p = RK/lco(P, ®.Rn 

THEOREM 2. Every k0-primary representation p of G of type (a) is equivalent 
(over k0) to a representation given by some 9-tuple (K, S\, · · · , P 1) which is uniquely 
determined by p in the obvious sense. 

INDICATION OF PROOF. If pis a k0-primary representation of type (a), then pis 
equivalent to a representation of the form m L~. 1 p~'. Let fl 1 be the subgroup of 
all f1 in fl such that Pi is equivalent to Pb and let K be the subfield of 1'0 which 
corresponds to fl 1• The e:ii..tension degree of K over k0 is d. For each f1 in fl 1, 

we have an isomorphism 4'.,: V1 --. Vi of the representation-spaces of p 1 .and Pi; 
also, for each Tin fl1, we have the isomorphism 4'!: Vl--. VT'· By Schur's lemma 
these isomorphisms are uniquely determined up to a scalar factor from 1'0-
Hence, the relation 4'; o </J, = A..,,,q,.,. holds for some A..,,, in 1'0 , and the A..,,, form a 
2-cocycle of fl 1 in 1'~. We let R be the central division algebra over K associated 
with the cohomology class of (A..,,,) by means of the isomorphism of H 2(fl 1, 1'3) 
with the Brauer group of the field K. The dimension of R over K is a square, say 
r2 • The integer r divides the integer m and the dimension of V1, and the integers n 
and n' are given by dim V1 = rn and m - rn'. Then the representation p 1 of G in 
GL(V1) can be factored through GL(V1/R) as p 1 = 91 ° P1• Finally, since pis of 
type (a), p 1 has a bilinear invariant which is symmetric or alternating, whence 
follows that R is equipped with an involution ' of the first kind and that P 1 has 
an £-hermitian invariant F 1 relative to &. (When p is of type (b),' is an involution 
of the second kind) 

3. The original problem. G is a connected semisimple algebraic group defined 
over Q of hermitian type. Without loss of generality we may restrict ourselves to 
Q-primary representations p, and, for simplicity, we assume that p is of type (a). 
We assume also that pis nontrivial. Then by Theorem 2 we may assume that p 
comes from some 9-tuple (K, R, · · ·, P1). In this case P1 is a representation of G 
in SU(V1, Fi)= G~, and we put G~ = SU(V2, F2). 

THEOREM 3. The notation being as above, p satisfies the condition (H 1) if and 
only if 

(i) RK1a(G;) is of hermitian type for i = 1, 2. 
(ii) RK10(P 1) satisfies the condition (H 2). 

In this case K is a totally real algebraic number field, and R (with involution 
of the first kind) is at most a quaternion algebra over K. One of the groups 
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RK1Q(G;), RK1Q(G2) is of type II (or type D) and the other is of type Ill (or type C); 
and, for each i (1 ~ i ~ d), one of (G;'•)R, (G2;)R is noncompact and the other is 
compact. One has 

Ho= Ho1 ® 1 + 1 ® Ho2 
where Ho1 = d(RK1QP 1)(H0) and H 02 is arbitrary. 

REMARK 1. If GR has no compact factor, then RK1Q(G2)R is compact, and 
consequently H0 is uniquely determined by H 0 . , 

REMARK 2. Under the additional condition stated in §4, it is sufficient that P 1 

satisfies the condition (H 2 ) instead of (ii) above, provided G has no factor of 
type 0 4 • 

One has similar results when p is Q-primary of type (b). In this case, K is a 
totally imaginary quadratic extension of a totally real field K 0 and S\ is a central 
division algebra over K with involution of the second kind. Both groups RK1Q(G'1 ), 

RK1Q(G2) are of type I (or type A). 
One can see that the essential part of our problem is thus reduced to the deter­

mination of P 1. This determines K, S\, Vi. F 1 uniquely, and one can then select 
V2 arbitrarily and F 2 almost arbitrarily up to a certain condition on the distribu­
tion of signs. 

4. List of solutions. In the first place, by lifting representations to the universal 
covering group of G if necessary, we may assume that G is decomposed into the 
direct product G = G1 x G2 x · · · where G1, G2, · • · are absolutely simple. 
Let p = m L p;• be a nontrivial Q-primary representation of G satisfying the 
condition (H1). Then one has p1 = (p 11 ° p1) ® (p 12 ° p2) ® · · · where P; is 
the projection of G on the i-th factor G; and Pli is an absolutely irreducible rep­
resentation of G;. We assume that p 12, p 13, · · • are trivial. This assumption is 
satisfied when GR has no compact factor ([2]). Let k be the finite extension of Q 
whose Galois group consists of those a in '§ for which G~ = G1• Then G1 is 
defined over k, and p is essentially a Q-primary representation of the Q-simple 
group Rk1Q(G 1). So we may assume that G = Rk1Q(G 1). Since G" is of hermitian 
type, k is a totally real field contained in K. Except for type I, S\, f will denote 
quaternion algebras taken with the canonical involutioQ. 

TABLE OF SoLUTIONS 

Type of G G, Pu= 81 ° Pu G'1 

I. SU(V1/S\, F1), e = 1 RK/Kopll = id G'1 = G1 
(K0 = k) 

II. (n ~ 5) SU(Vif S\, F1), e = - I P 11 =id G'1 = G1 

III. 1 Sp(Vi. A 1), A 1: alt. P 11 = id G'1 = Gi 
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TABLE OF SOLUTIONS-continued 2 

Type of G G, P11 = 61°P11 G'1 

III. 2 SU(Vi/R, F1), e = 1 P 11 = id G'1 = G1 

I' Sign. of Fi' = (pi, qi), p 11 = skew-sym-
Pi or qi= 0 or 1 metric tensor repn. 

IV. 1 SO( W. S), S: symmetric p 11 = spin repn. the type depends 
Pi or q1 = 0 or 2 on dim W (mod 8) 

IV. 2 SU(W/f,H), p 11 = spin repn. on dim W (mod 4) 
f: totally indefinite, 
H : skew-hermitian, 
Pi or qi = 0 or 2 

II-IV. 2 SU(W/f,H), p 11 = 1 spin repn. type III 
(dim W= 4) H = skew-hermitian 

There are no other solutions. By way of illustration, we cite more complete 
results for the case (IV. 1). Let l = dim W. Then Gi is of type I for l = 2 or 6 
(mod 8), type II for l = 0, 1, or 7 (mod 8), and type Ill for l = 3, 4, or S (mod 8). 
If l is odd, then K = k, and there is only one spin representation. If l is even, then 
K = k((( - 1 )1' 2 det(S))ii and there are two spin representations, which are con­
jugate when [K: k] = 2; the number of solutions is therefore 2/[K: k]. The group 
of the "mixed type" (11-IV.2) can have a solution only when dim W = 4. 

REMARK 1. The families of abelian varieties constructed by Kuga's method in 
the cases I, II, III. 1, and III. 2 are the same families constructed by Shimura in 
his lecture ([41 [51 [Sa]), provided G• has no compact factors. There they are 
called as type IV, Ill, I, II, respectively. 

REMARK 2. There can, of course, be many solutions of the problem which 
do not satisfy the above condition p1 =Pu oP1. To illustrate the situation, let 
us give a simplest example of such a solution. Let G1 = SU(V11/R, F 11) and 
G2 = SU(R\Vi2, Fu) be groups of type II and III, respectively, over the same 
quaternion algebra R with center k. Put G = R,.1o(G1) x R,,10(G2) and let 
P1 = (Pu 0 p1) ® (P12 ° P2) where PH = 91 ° Pli, Pli = id. Then one has 
GJ. = Sp(Vi,A1) where V1 Yu ®R V12, A1 = trR(F11 ®'F12), and one can con­
struct a solution by taking as G2 any group of the form SO(V2, S2) where S2 is a 

2 For more explicit descriptions of the solutions, see [2], [J]. 
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totally definite symmetric bilinear form on V2 with a certain distribution of signs. 
In the most general case, it is proved that any solution can be composed from 
absolutely irreducible representations of Q-simple factors of G satisfying the 
condition (H2) through a definite rule; the determination of each one of such 
representations (without the above assumption) would, however, become much 
more complicated. The above example is the one obtained in this manner from 
the second and the fourth solutions in the above table. 
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The Modular Groups of Hilbert and Siegel 1 

BY 

WILLIAM F. HAMMOND 

I. Introduction. In his lecture [5] Kuga has discussed algebraic families of 
polarized abelian varieties which are fibered over automorphic varieties. Kuga's 
families correspond, roughly, to certain analytic mappings of automorphic 
varieties (the base varieties) into the Siegel modular variety. It is our intention 
here to discuss the case of Hilbert's modular variety. On the one hand, in order to 
produce results, we shall introduce data which are more restrictive than Kuga's 
data2 for the construction of a fiber variety. On the other hand, this is not exactly 
a special case since Kuga assumes that the base variety is compact and non­
singular. One hopes that the fiber systems constructed from our data will turn 
out to be algebraic, but I do not know whether this is true. After the discussion 
of our data, which are called modular imbeddings, the structure of two "quad­
ratic" Hilbert modular varieties is determined as a consequence of the existence 
of modular imbeddings. 

2. Modular imbeddings. Let k be a totally real algebraic number field of 
degree n, and let .0 denote the ring of integers in k. Let X be the n-fold product 
(5 1f of the upper half plane 5 1, and let G be the n-fold product group Sp(l, Rf. 
An imbedding of kin If' by means of then distinct is~morphisms (over Q) of k 
in R induces a group isomorphism of Sp(l, k) with a subgroup A of G. Let r 
denote the image in A of Sp(l, .oi r is a discrete subgroup of G which is called the 
Hilbert modular group of the field k. Proofs of the results stated below may be 
found in [3]. 

DEFINITION. A modular imbedding for k is a pair (</>, Cl>) consisting of a holo­
morphic map q,: X --+ 5n and a representation Cl>: G --+ Sp(n, R) which satisfy: 

(a) There is an element Nin Sp(n, R) such that t/>(t) = Nt/>0(t) and 

Cl>(m) = NCl>0(m)N- 1 

for• in X and min G, where (t/>0, Cl>0) is the pair of "diagonal" imbeddings. 
(b) Cl>(r) s;;; Sp(n, Z). 
(c) If f is a Siegel modular form of weight w, then ft/> is a Hilbert modular form 

of weight w. (The definition of modular form is recalled in §3.) 

1 The author held an ONR Postdoctoral Research Associateship at Brandeis University during 
the Summer Institute. 

2 The reader's attention is directed to Satake's work [7], [8] on the classification of symplectic 
representations occurring in Kuga's data 
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DEFINITION. (</J, <I>) and (</J', <I>') are equivalent if there is an element M in 
Sp(n, Z) such that </l = M<P and <I>' = M<l>M- 1. 

One can show that necessarily 

N = (~ :). 

so that <Pis affine-linear. If (</J, <I>) is replaced by an equivalent modular imbedding, 
one may obtain </J(O) = 0, i.e., it may be assumed that <P is homogeneous-linear. 

EXAMPLE. Suppose that k is the real quadratic field of discriminant D, and 
suppose that D = u2 + v2 for some integers u, v with v even. There is a unique 
representation <P of k by symmetric rational matrices of degree 2 such that 

</J(~D) = (u v)· 
v -u 

This <Pis normal in the sense that elements of 0 are represented by integral mat­
rices. Moreover, <P has a unique C-linear extension to C2 when we imagine k as a 
subset of R2 . Define <I> by 

<f>(IX p) = (</J(IX) </J(/J))· 
y fJ <PM <P< fJ) 

THEOREM. Let k be the real quadratic field of discriminant D. Modular im­
beddings exist for k if and only if D is the sum of two squares. Every modular im­
bedding for k is equivalent to the modular imbedding associated above to some 
representation of D as the sum of two squares. 

COROLLARY. Suppose that Dis the sum of two squares, and let t be the number of 
primes dividing D. Then the number of classes of modular imbeddings for k is 
21-1. 

In the general case, one has the following results: 

THEOREM (IGUSA). The totally real algebraic number field k admits modular im­
beddings if and only if the narrow ideal class of the different of k is a square. The 
number of classes of modular imbeddings is the product of the number of usual ideal 
classes whose squares are the narrow class of the d!fferent with the index of the 
subgroup of squares of units in the group of totally positive units. 

REMARK 1. The existence criterion just given is sufficient for the existence of 

<I>: Sp(g, .0) -+ Sp(gn, Z). 

REMARK 2. If (</J, <I>) is a modular imbedding fork, then <l>(r) = <ll(G)n Sp(n, Z). 
Since <I> is faithful, no extension of r in G admits modular imbeddings. On the 
other hand, one knows [6) that r need not be a maximal discrete subgroup of G. 

3. Modular forms. One reason for the study of modular imbeddings is that 
they enable one to construct Hilbert modular forms from Siegel modular forms. 
These are holomorphic functions in Sn (Siegel's case) or (6 1)n (Hilbert's case) 
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which satisfy a functional equation under the operations of the corresponding 
modular group as follows: 

f(Mt) = det(ct + d)wf(t), 

f(mt} = Norm(yt + c5)wf(t), 

: )e Sp(n, Z); 

~ )e Sp(l, 0). 

In each case the modular forms constitute a ring graded by the nonm;igative 
integral weight w. 

In particular, in the quadratic case (n = 2) the structure of the graded ring of 
Siegel modular forms has been determined by Igusa [4], and one might hope to 
produce similar results in the case of Hilbert modular forms for a quadratic 
field by means of modular imbeddings. 

In the genus two Siegel case, a crucial role is played by the cusp form (J of 
weight five inasmuch as it is [cf. 2) the defining equation for the "diagonal 
surface." The Hilbert modular form (J* = (Jo 4' (where (,P, Cl>) is some fixed 
modular imbedding for a quadratic field) defines a "bunch of curves" on the 
Hilbert modular variety. This bunch of curves is irreducible if and only if the 
discriminant D is 5. In the case D = 8, (J* has two irreducible components, and 
it is possible to factor (J* in such a way as to separate these components. The 
following structure theorems are obtained [11 [3]: 

THEOREM (GUNDLACH~ The graded ring of symmetric Hilbert modular forms of 
even weight for the quadratic field of discriminant 5 is a polynomial ring in three 
variables, generated by two modular forms of weights two and six and by the cusp 
form of weight ten. 

THEOREM. The graded ring of symmetric Hilbert modular forms of even weight 
for the quadratic field of discriminant 8 is a polynomial ring in three variables 
generated by two modular forms of weights two and six and by the cusp form of 
weight four. 
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Quantum Mechanical Commutation 

Relations and Theta Functions 
BY 

PIERRE CARTIER 

Introduction. A certain nilpotent Lie group plays an important role in the study 
by H. Weyl [13) of the foundations of quantum mechanics. The same group 
appeared once more in some recent number-theoretic investigations by A. Weil 
[12), whose explicit purpose was to throw the theta-functions away from those 
parts of analytic number theory where they have played a predominant role in 
the hands of Hecke and Siegel (among others), or better to replace them by 
appropriate group-theoretic constructions. 

We would like to reverse the whole process and to show how most of the 
classical properties of theta functions fit into the general group-theoretic frame­
work. The main point is that, whereas the above quoted group has essentially 
one equivalence class of irreducible unitary representations, there are a manifold 
of concrete realizations of them. More precisely, they can be represented in many 
different ways as induced representations, and a generalization of Frobenius' 
reciprocity law, already apparent in some recent work by I. Gelfand and 
I. Piateskii-Shapiro [SJ, enables us to compare the different representations. One 
ought to give better foundations to the results of the two last named authors, 
and we plan to do it at some later occasion. 

The first part of the present work is a brief exposition of the Heisenberg com­
mutation relations, and the Schrodinger's and Fock's realizations of them. We 
describe also H. Weyl's procedure to convene these commutation relations into 
the realm of group theory. Our second part is devoted ·to the detailed study of 
the Weyl's group and its irreducib:., representations and sketch the application 
to the theory of theta-functions. It ought to be a pleasant task to recast the whole 
theory of theta-functions in this framework, but what we have done is just a 
modest beginning. 

The author extends his warmest thanks to N. Katz who wrote a preliminary 
version of these notes during the Boulder Conference, and to D. Mumford whose 
ideas about theta-functions greatly helped him to frame his own results. His debt 
towards A. Weil is of a more subtle kind, but nonetheless real. 

I. Commutation relations 

1. Schrodinger representation. According to the general postulates of quantum 
mechanics, to every physical system S there is associated a certain complex 
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Hilbert space ff. Every vector of norm one in :ff defines a possible state of S, and 
two vectors a and b define the same state if and only if there exists a constant w 
of modulus one with b = w ·a. Moreover, every physical quantity whose measure­
ment depends upon the observation of S is represented by a certain self-adjoint 
operator in Jt', in most cases unbounded. 

For instance consider the case where S is a mechanical system with a finite 
number n of degrees of freedom. Choose n position coordinates q1, • • ·, qn and 
the corresponding momenta p1, • • ·, Pn· We assume that any combination of 
values of the q,. corresponds to some physical state. In that case, the elements 
of Jt = Jr,, are pairs of functions f(q 1, • • ·, qn) and ](p1, • • ·, Pn), both assumed to 
be square-integrable and related to each other by the Fourier transformation 
formulas 

(1) f(q1o" ·, qn) = h-"12 r .. f J(p1o .. ·, Pn) · e(p1q1 + ·~. + Pnqn) dp 1 .. • dpn, 

• • ( pq +· .. +pq) 
(1') j(p1,"',Pn)=h-n/lj,,·j/(q1,"'•qn)'e- 11 h ""dq1· .. dqn. 

Here h is Planck's constant and e(t) is an abbreviation for e2"i'. Of course, each 
of the functions /(q1, · · ·, qn) and /(ph · · ·, Pn) determines the other and the rela­
tions (1) and (1') are equivalent, but there is some advantage puttingfand]on 
the same footing. The scalar product in Jt' is computed according to the equiv­
alent formulas 

(2) (fig)= r .. 5 f(qh ... 'qn). g(qh ... ' qn) dql ... dqn, 

(2') (/lg) = r .. f J(p1, ... • Pn) · R(p1, .. ·, Pn) dp1 .. · dPn· 

The operational meaning is the following. Assume that S is in a state corre­
sponding to the pair (/, /). In an experiment aimed at the determination of the 
position of S, the most we can do is to assert the existence of a probability 
distribution in the space of the variables qh · · ·, q" with probability density 
l/(q1o · · ·, qn)l 2• Similarly, we have a probability distribution in the momentum 
space with density l/<P1o · · ·, Pn)l2• These assumptions are compatible with the 
convention associating self-adjoint operators q,. to q,. and p,. to p,. in the following 
way: 1 

(3) 

(3') 

(q,.J)(qh' '' • qn) = q,. '/(qi,'''• qn), 

(PJ)(pl, · '' • Pn) = Pt' J(ph'' '• Pn). 

1 The domain of 9t consists of square-integrable functions/ for which the integral 

is finite. Similarly for Pt. 
r .. s qfl/(q., ...• q.)12 dql ... dq. 
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Generally speaking, the commutator of two operators A and B in £' is defined 
by [A, B] = A· B - B · A. 2 With the previous definitions, we have now the 
famous Heisenberg commutations relations: 

(4) 

where bik is 0 if j #- k and the identity operator I in case j = k. 

2. Fock representation. Another example of a physical system is an assembly 
of so-called bosons each of which is capable of n different states e1, ···,en. For 
instance, one can consider the photons present in a· beam of monochromatic 
light travelling in a well-defined direction; here there are two states e1 and e2 

corresponding to two independent states of polarization. For the purpose of 
clarity, we shall in the subsequent discussion call e1, ···,en the polarization states 
of the bosons. 

In this case, the Hilbert space .% has an orthonormal basis {u(c., ···,en)} 
where (c., ···,en) runs over all possible combinations of positive integers.3 In a 
state of the assembly (to be contrasted with the polarization states of the individ­
ual bosons) described by a vector 

(5) 

one can ascribe the probability lf(c1, · · ·, cn)l2 to any combination of c1 bosons 
in polarization state e1, ···,en bosons in polarization state en. This is a bona.fide 
probability distribution because 

(6) 

The meaning of u(c1 , ···,en) is therefore that of a pure state in which we can 
observe ck bosons in polarization state ek for k = 1, · · · , n, and a general state 
is a mixing of such pure states. 

The occupation operators N 1, · · • , N n are defined by4 , 

(7) 

2 Let A and B be two operators in .Tf with respective domains !'JA. and !'J8 . The operators A ± B 
are defined on the domain !'J A n f!J8 by (A ± B) · a = A · a ± B · a and the operator A · B is defined 
by (A· 8) ·a = A· (8 ·a) on the domain consisting of those a in 9)8 for which 8 ·a lies in ~A· We 
write A c 8 in case Cf ,'Jl8 and A ·a = 8 ·a for every a in !}_.. 

3We consider 0 a positive number! 

4 The domain of N. consists of the vectors of the form (5) for which L, ... ,. cflf(ci. · · ·, c.)12 is 
finite. Similarly, the common domain of a• and a: is defined by the restriction 

L c.lf(ci. · · ·, c.)1 2 < + oo. 
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in accordance with the previous discussion. But an important role is played by 
the creation operators a" · · · , an defined by 

(8) 

and their adjoints, the annihilation operators af, ···,a: given by 

(9) 

With these definitions, we have the following commutation relations: 

(10) 

The role of the creation and annihilation operators is clarified by the following 
remarks. The vector n = u(O, · · · , 0) with no bosons present in either polariza­
tion state is understandably called the vacuum. It is characterized up to a multi­
plicative constant by the following relations: 

(11) at . n = ... = a: . n = 0. 

Moreover we have 

(12) u(cio ···,en) = a~' ···a~"· O/(c1 ! · · · c., !)t. 

The operators a"···, a., form a commuting family and by (12) the vectors 
P(a" ···,a.,)· n where P runs over the polynoms in n variables with complex 
coefficients form a dense subspace in ft". Note also the relations 

(13) 

(14) 

where Pl. is the k-th partial derivative of P. 

3. Harmonic oscillator. We shall now relate the two previous constructions. 
For that purpose choose two real numbers A.,µ. such that hA.µ. = n, and define 
in the space Jr,, of the Schrodinger representation operators 11 1, • • ·, 1111 by 

(15) a1c = A. • 91c - iµ.- P1c 

fork = 1, · · ·, n. From (4), one deduces (10) by an easy computation. By reference 
to (11), one looks now for solutions of the equations 

(16) 11t . f = ... = 11: . f = 0 
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which are easily transformed into the differential system 

(17) ( a:k + 21.2qk). f(q1, ... 'qn) = 0 (k = 1, · · ·, n). 

A normalized solution of this system is given by 

(18) 

If we define the functions u(c1, ···,en) by (12), the relation (8) and (9) are satisfied 
and also (7) if we define Nk to be equal to a"· a:. Moreover, we have 

(19) 

where the normalized Hermite functions H.(q) are defined as follows: 

(20) H ( ) ( -1)' 1 ,,., ( d )'( _ 2_.,,.2) 

• q = 2•i•-1xt(c!)te dq e . 

From the properties of orthonormal polynomials, one deduces that the functions 
u(c1, ···,en) form an orthonormal basis in the space of square-integrable functions 
of n real variables qi.···, qn. Otherwise stated, the Schrodinger and Fock repre­
sentations are equivalent. 

The physical meaning of this equivalence is depicted by the theory of the 
harmonic oscillator. According to Newton's mechanics, a particle of mass m 
bound to a straight line with coordinate q subjected to a force - K · q oscillates 
sinusoidally with frequency v = (1/2x)(K/m)t; the momentum p is m · v where 
v is the speed and the total energy is 

(21) 
p2 K. qi 

E=2m +-2-. 

According to the general quantum-mechanical recipes, we must consider the 
operator E in Jf'1 obtained by replacing q by q and p by p in (21). Here the 
functions H 0 , • • ·, H., · · · form an orthonormal basis in Jf'1 and provided we 
choose A. according to 

(22) A. = ( ~ r(Km)* 

we have E = hv(a · a* + !), that is 

(23) E·H, = (c + i)·hv·H, for c = 0, 1, 2, · · ·. 

This justifies Planck's initial assumption and can be expressed by saying that a 
quantum-mechanical harmonic oscillator is equivalent to an assembly of bosons 
each having one polarization state and energy hv. 5 

5 That the vacuum is given the energy hv/2 is meaningless in view of the fact that energy differences 
only have a definite physical meaning. 
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4. Weyl commutation relations. We shall now transform the Heisenberg com­
mutation relations in a form given first by H. Wey! [13]. Consider for that purpose 
two self-adjoint operators A and B in some Hilbert space .1'f and the one para­
meter groups of unitary operators they generate according to Stone's theorem 

(24) 

Assume now that there exists a real constant c such that6 

(25) [A, B] c ic ·I. 

If we allow power series expansion of operator exponentials (which is fully 
justified if A is bounded but not otherwise) and use a well-known formula by Lie 

(26) 
CX) 1 

eX · Y · e-x = L -;[X, [X, · · · [X, Y] · · · ]], n factors X 
n=O n. 

we get at once 

(27) U(s)·B· U(s)- 1 = B - sc·I. 

Going to the exponentials in both sides of (27) and multiplying to the right U(s), 
we obtain 

(28) U(s) · V(t) = e-i••1V(t) · U(s). 

The steps going from (25) to (28) are fully reversible and the Heisenberg-like 
commutation relation (25) is formally equivalent to the Weyl-like commutation 
relation (28). 

The previous "proof" is open to some criticism and much pain has been 
devoted to fulfill the gaps. While the equivalence of (27) and (28) makes no 
difficulty, it appears hard to justify the use of Lie's formula (26) for unbounded 
A. Rellich [10] and Dixmier [3] have proved the equivalence of (25) and (28) 
under the assumption that there exists a dense subspace V of .1'f contained in the 
domains of A and B, stable under both A and B, such that the restriction of 
A 2 + B2 to V be essentially self-adjoint. A general criterion, due to E. Nelson [8] 
and valid for general Lie groups, fully contains the equivalence of (25) and (28) 
under Rellich-Dixmier assumptions. Another method, used by the author [2] 
and generalized to the case of unbounded operators in Banach spaces by Kato [ 6], 
rests on the use of Laplace transform and the resolvant formula 

(29) f~ e-ps. U(s)ds = (p·I - i·A)- 1 (p real > 0). 

6 According to our conventions, this relation means that [A, BJ multiply by ic any vector in its 
domain. 
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An easy and rigorous argument shows the equivalence of (27) with the relation 

(30) (p ·I - i · A)- 1 · B c B · (p ·I - i · A)- 1 - c · (p ·I - i · A)- 2 • 

Right multiplication by (p · I - i · A) gives the fully equivalent relation 

(31) (p·J - i·A)- 1 ·B·(p·J - i·A) c B -c·(p·I - i·A)- 1 

from which one gets easily the following criterion : The relation (28) holds if and 
only if (25) holds and the domain of B · (p · I - i · A) is contained in the domain of 
A· B for every p > 0. It has been shown by Kato [6] that the last condition needs 
only to hold for one value of p. 

We give now the Weyl form of the Heisenberg commutation relations (4). 
Using the fact that two self-adjoint operators commute if and only if their 
associated one-parameter groups commute, and replacing the relations [p,., q,.] 
c (h/2ni) ·I by their Weyl analogue, we obtain 

(32) W(t, s, u) · W(t', s', u') = W(t + t' + s' · u, s + s', u + u'). 

Here we used the definition 

(t) (s1q1) (Snfn) (U1P1) (UnPn) W(t,s,u) =eh ·eh ···eh ·e -h- ···eh 

for t real and two real n-vectors s = (s1, · · ·, s") and u = (u1, · · ·, un); moreover 
s · u is the scalar product s1u1 + · · · + snun. 

5. Uniqueness of the representation of commutation relations. The problem of 
uniqueness of the representation for the Heisenberg commutation relations can 
be formulated as follows: 

Let be given in some Hilbert space JI'' a family of self-adjoint operators q'1 , · · · , 

q~, P'1, · · ·, p~ such that 

(33) 

Assume that these operators share with the operators in. Schrodinger representa­
tion the irreducibility property, viz. no closed subspace of JI'' distinct from 0 and ft" 
itself reduces simultaneously the operators qj and pj. Does there exist an isometry 
U of JI'' onto JI' such that 

(34) U·qj·U- 1 =qi, U·pj·U- 1 =pi (j=l,···,n)? 

As appropriate counter-examples show, the answer may be negative.7 The 
known proofs that uniqueness holds indeed under suitable auxiliary assumptions 

7 For instance, let Jf"'be the space of square-integrable functions on the closed interval [O, l) and 
let q' be the bounded operator defined by (q'· f)(x) = x · /(x) for 0 ~ x ~ 1. Let w be a complex 
number of modulus one and define p'as the differential operator (h/2nf)(d/dx) with domain the set 
of absolutely continuous functions f with square-integrable derivative satisfying the boundary con-
dition f(l) = w · /(0). ' 
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proceed by reduction to the uniqueness problem for Weyl commutation relations. 
To formulate this problem, we first remark that in the Schrodinger representation 
we have 

(35) (
t + s. q) 

~t, s, u) · /(q) = e h · f(q + u) 

with vector notations, and this in turn implies (32). Moreover, the group law 

(36) (t,s,u)·(t',s',u') = (t + t' + s'·u,s + s',u + u') 

makes a real Lie group G out of the real (2n + 1)-space. 
J. von Neumann [9] and M. Stone [11) have simultaneously proved the 

following uniqueness theorem : 

Any two irreducible unitary representations of the group G, mapping (t, 0, 0) onto 
the operator e(t/h) ·I are unitarily equivalent. 

This result solves completely the uniqueness problem for Weyl commutation 
relations. 

II. A certain group and its representations 

6. Description of the group G. We begin by giving a more invariant descrip­
tion of the Weyl's group. We consider a real finite-dimensional vector space V 
equipped with a nondegenerate alternating bilinear form B on V x V. The as­
sumptions imply that the dimension of V is an even number 2n. 

The group G is the set of pairs (t, v) where t is a real number and v a vector 
in V, together with the multiplication law 

(37) (t, v) · (t', v') = (t + t' + fB(v, v'), v + v'). 

The one-parameter subgroups in G are given by8 

(38) g,,,,(A.) = (A.t, A.· v) (A. in R). 

It follows for instance that the unit element in G is e = (0, 0) and the inverse of 
(t, v) is ( - t, - v). The Lie algebra of G shall be denoted by g; according to (38) 
the vector space g is the direct product R x V. We imbed Vin g by identifying v 
with (0, v) for any v in V, and we denote by 3 the one-dimensional subspace of g 
generated by z = (1, O); therefore g is the direct sum of 3 and V. Moreover, 
according to general recipes, we get the bracket in g by antisymmetrizing the 
bilinear terms in the group law (37), that is [(t, v), (t', v')] = (B(v, v'), 0), or with 
the previous conventions 

(39) [z, v] = 0, [v, v'] = B(v, v') · z 

for v, v' in V. Since B is assumed to be nondegenerate, 3 is the center of g. 

8 We use standard notations: R is the field of real numbers and C that of complex numbers. 
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According to (38), the exponential mapping from g to G is the identity map of 
· the set R x V. For the sake of clarity, we distinguish between a pair (t, v) con­

sidered as an element of g or as an element of G. The element (0, v) of G is nothing 
else than ev and (t, 0) denoted L1 or L(t) is e1·•; more generally, the pair (t, v) as ele­
ment of G is L1 • ev. It is immediate that the group Z image of the homomorphism 
L of R into G is both the center and the commutator subgroup of G. By definition 
of the group law, we get 

(40) 

for v, v' in V. Finally we have an exact sequence 

(41) 

where K is given by K(t, v) = v. 
The characters9 of Z are given by the formula 

(42) x;.(L,) = e(A.t) 

where A. runs over R. The infinitesimal character9 associated to XA is the linear 
form on the Lie algebra 3 of Z given by 

(43) x~(z) = 2niA.. 

For the purpose of explicit computations, we may introduce a symplectic 
basis for V with respect to B, let say {P1, • • ·, P.,, Q1, • • ·, Q.,}. We then get a 
basis {z,P1>···,P11 ,Q1,···,Q11 } of g with the property that the only nonzero 
brackets among basic elements are 

(44) (j = 1, · · ·, n). 

Such a basis of g shall be called a normal basis. 

7. Infinitesimal representations. We consider any (unitary) representation (n, Jt") 
of G. That is, Jt" is a Hilbert space with scalar product (alb) linear with respect to 
b and norm llall = (aja)i, and n is a homomorphism pf G into the group of 
unitary operators in Jt" satisfying the following continuity condition: 
(R) For any pair a, bin Jfe, the function <l>a,b defined on G by </>,,,b(g) = (aln(g)- b) 

is continuous. 
We let Jt"00 denote the vector subspace in Jt" consisting of those a's for which 

<l>a,b is a function of class C00 whatever be b in Jt"; the elements in Jt" 00 are called 
C 00-vectors. Among the C00 -vectors are the vectors 

(45) L <J>(g)[n(g) ·a] dg 

9 A character of a Lie group G is a continuous complex-valued function x on G such that lx(g)I = I 
and x(gg') = x(g) · x(g') for g, g' in G. The associated infinitesimal character is the linear form x' on 
the Lie algebra g of G characterized by x(exp X) = exp x'(X). • 
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where a is any vector in :Yf and </> is a C""-function on G with compact support, 
and the integral is with respect to some Haar measure on G. It has been shown 
by Garding [4) that such vectors form a dense set in Jt; and therefore .J't'00 is 
dense in .Jf'. 

For any X in g, there is a (generally unbounded) operator i(X) on ff defined by 

(46) i(X) ·a = lim ! · [n:(e'·\) ·a - a] 
1-0 t 

with domain the set of all a's for which the limit exists (strong or weak, it is the 
same). It can be shown that .K<X;; is the intersection of the domains of all finite 
products i(X 1) · • · i(Xm) where m > 0andX1, · • ·, Xm run independently over g. 

Let us choose for the moment any basis { X 1, • • ·, X ,} of g (where p = 2n + 1). 
We define on ff<X:; an increasing sequence of Hilbert norms Nm by 

(47) Nm(a)2 = L lli(X 1)111 • • • i(X,)'"P · all 2 

l11l;:!m 

with the standard abbreviations a = (a 1, ···,a,) and lal = a 1 + · · · + a,. The 
norms depend obviously on the chosen basis of g, but the "topology they define 
on ff"" does not; that makes ff00 a complete metrimble vector space (an (F)­
space). We define ff_ 00 as the set of all continuous antilinear10 forms on ff00 and 
we identify :Yf with a subspace of ff_ 00 by associating to a vector a the antilinear 
form b,........ (bla) on ff"" (note that ff00 is dense in ff). 

It can be shown that the representation of G in ff extends in a natural way to 
a representation 11: of G in the (nontopological) vector space ff_"". Moreover 
there is a linear representation 11:' of the Lie algebra g in the vector space ff_ 00 

with the following property : for any X in g, the domain of i(X) is the set of 
vectors a in ff c ff_"" for which n:'(X) ·a is in Jt; and we have n:'(X) ·a= i(X) ·a 
for such an a. The following relations hold : 

(48) n:'((Ad g) · X) = n:(g) · n:'(X) · n:(g)- 1, 

(49) (aln:'(X) · b) = -(n:'(X) ·alb) 

for a, b in Jt'00 , for X in g and g in G; we denoted by Ad g the automorphism of g 
associated to the inner automorphism g',........ gg'g- 1 of G. It can be shown that ff00 

is stable under the operators n:(g) and n:'(X). 
The previous properties are valid for any representation of any Lie group. 

They will be considered in detail in the forthcoming paper alluded to in the 
introduction. 10 bis 

8. Induced representations. We recall the classical definition of such repre­
sentations as given for instance in [l) and [7] under more general circumstances. 

10 A complex valued function Fon a complex vector space is called an antilinear form in case the 
following relations hold F(v + 11') = F(v) + F(v') and F(c • v) = c · F(v) where c is the complex number 
conjugate to c. 

10 bh Added in proof. L. Schwartz informs me that he defined the spaces Jt'.., and JtP _.., and stated 
their main properties in his report at the "Second Colloquium on Functional Analysis" held at Liege 
(Belgium) in May 1966 (see Proceedings, pp. 153-163i 
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Let x be a character of some closed subgroup H of G. We let Xx denote the 
Hilbert space consisting of all functions f on G satisfying the following conditions: 

(a) f is Borel-measurable on G; 
(b) f (hg) = x(h) · f (g) for g in G and h in H; 
(c) the integral fMlf(g)l 2 dg is.finite. 

The norm on Xx is given by I 
(50) llfll 2 = lf(g)l 2 dg. 

M 

A few words of explanation are in order. First of all M = lf\G is the space of 
cosets Hg in G. Since G is nilpotent, there exist biinvariant Haar measures dg 
on G and dh on H, and a measure m on M invariant under the right translations 
by the elements of G. We abuse the notations by denoting the integral fM<f> dm 
as f McP(g) dg in case cP and q, are related by c/J(g) = ef,(Hg). The integral in (50) 
makes sense because lx(h)I = 1 implies that lfl 2 is constant on every coset Hg 
by virtue of (b). 

To every g in G, there is associated a unitary operator nx(g) on ~ by 

(51) (nx(g) · f)(g') = f(g'g) 

(right translation). The pair (nx, Xx) is a representation of G, called the repre­
sentation induced by the character x of H. 11 

It can be shown that (Xx)oo is the set of all C 00-functions f on G satisfying 
condition (b) above such that L · f be square-integrable modulo H for every 
left-invariant differential operator L on G. Accordingly, (Xx)- 00 can be identified 
with the set of distributions which can be represented as finite sums L,.L,. · f,. 
where the f,.'s are in Xx and L,. is a left-invariant differential operator for every oc. 
The representation n' of g in (Xx)- 00 is given via the action of the left-invariant 
vector fields on G. The evaluation map 

q, >-+ c/J(e) 

considered as a functional on (~)00 is an element ux of (Xx)- 00 called the canonical 
one. It can be identified with the distribution on G given by ux(cP) = f8 c/J(h)x(h) dh 
for every test-function q, on G. It satisfies the following equation 

(52) n(h) · u = x(h) · u (h in H) 

which amounts for connected H to be equivalent to the equation 
(53) n'(Y) · u = x'(Y) · u 

for every Yin the Lie algebra of H. 

1 1 This construction can be expressed in the framework of fibre bundles as follows. On the trivial 
bundle G x C over G with fiber C, the group H operates to the left by h(g, c) = (hg, x(h) · c) and G 
operates to the right by (g, c) · g' = (gg', c). The space E of the ff-orbits in G x C is therefore a line 
bundle over M = lf\G, on which G operatei; to the right. Moreover, there is a function q on E taking 
the value lcl2 on the H-orbit of any point (g, ci The space Jff, can therefore be identified with the 
space of square-integrable sections s of E over M (square-integrable means s is measurable and 
fMq(s) · dm < oo). The action of G on the sections is given via the actions of G on Mand E. 
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A weak form of Frobenius' reciprocity law reads as follows: 
The induced representation (n1 , .Tt'1) is irreducible 12 in case the only solutions of 

the equation (52) are the constant multiples of the canonical element ui. 

9. Classification of the representations of G. Let (n, ft') be any irreducible re­
presentation of G. For any element C in the center Z of G, the operator n(C) on ft' 
commutes with every operator n(g) and is therefore by the irreducibility assump­
tion a scalar multiple of the identity. We know the characters of Z (cf. formula (42), 
page 369) and may conclude that there exists a unique real number A. with 

(54) (C in Z). 

According to von Neumann [9] and Stone [11] we have the following classifica­
tion: 

(a) For every A. ::;: 0, there exists, up to unitary equivalence, exactly one ir­
reducible representation (n, Jt") satisfying (54). 

(b) The case A. = 0 corresponds to the representations which are trivial on the 
center Z of G. They are the one-dimensional representations given by the char­
acters m,, of G : 

(55) m,,(t, v) = e(B(v, u)) 

(u is a fixed element of V). 
Let us choose a normal basis {z, Pi,···, Pn, Qi,···, Q.} of g. The relation (54) 

is equivalent to the following infinitesimal one : 

(56) n'(z) = 2:n:iA. · I (:n: = 3.1415 ···on the right-hand side!) 

(on ft' 00 or .Te_ 00 at will). The operators Pi = :n:'(Pi) and qi = :n:'(Qi) satisfy on ft'_ 00 

the Heisenberg commutation relations 

(57) 

10. The Schrodinger representation of G. Let Ebe any n-dimensional subspace 
of V with the property that B is identically zero on E x E. From (40) it follows 
that the image E of E into G under the exponential mapping from g to G is a 
commutative subgroup of G. The invariant subgroup HE = Z · E of G is the direct 
product of Z and E and there exists therefore a unique character m .i. of HE 
inducing X;. on Z and the identity on E. Explicitly, one has 

(58) (teR, weE). 

12 The representation (n, Jf') is called irreducible in case there exists no closed vector subspace or I, 
except 0 and K itsetr, invariant under every operator n(g~ A useful criterion asserts that this is the 
case ir and only ir any bounded operator in K commuting with every n(g) is a scalar multiple or the 
identity operator. 
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For any A. #= 0, we denote by~ .i. = (a A• .Tf .a., E) the representation of G induced by 
the character m;. of HE. 

To further analyse this representation, let us introduce some n-dimensional 
subspace E' of V, such that B induces 0 on E' x E' and that V be the direct sum 
of E' and E. Such a subspace E' is known to exist and to be nonunique in case 
n ~ 1. The restriction of B to E' x E put these two vector spaces into duality. 
Moreover, any element of G can be uniquely written in t~e following form 

(59) (t e R, w e E, w' e E'). 

By definition, .Tf;.,E consists of the functions f on G which are square-integrable 
modulo HE and satisfy the relation 

(60) f (i. · ev · g) = e(A.s) · f(g) (s e R, v e E, g e G). 

It is immediate to define a Hilbert space isomorphism f +:t <P from .Tt.a.,E to 
L 2(E') by means of the equivalent formulas 13 

(61) f(g) = e(A.t) · </J(w'), 

where g is given by (59). By means of this isomorphism, the action of G is shifted 
to L 2(E') and is given by the following relation : 

(62) (a;.(g) · </J)(v') = e(A.t) · e(A.B(v', w)) · </J(v' + w'). 

Now let {Q 1, · · ·, Qn} be any basis of E. Since B puts E' and E into duality we 
can define a basis {P1, · • ·, Pn} and a coordinate system {x1, • • ·, xn} for E' by 
means of the formulas 

(63) 

(64) 

According to (59), any element of G is of the form 

where tis real ands= (s 1, • • ·, sn),:.; = (u1, • • ·, un) are real n-vectors. The group 
law is given by 

(65) w(t, s, u) · w(t', s', u') = w(t + t' + s' · u, s + s', u + u') 

and the operator W'(t, s, u) = a;.(w(t, s, u)) on L2(E') is given by 

(66) W(t, s, u) · </J(x) = e(A.t) · e(A.s · x) · <P(x + u). 

We are back to the Schrodinger representation with parameter A. = 1/h (see 
(35) and (36)). 

1 3 The notation L 2(£') means the space of square-integrable functions on E'. 
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The infinitesimal operators Pk and 'lk acting on L 2(E') are the differential 
operators 

(67) 

More precisely, the general theory of induced representations (see page 371) 
shows that the C"'-vectors in the representation ~4 are the C"'-functions on E' 
which are mapped into square-integrable functions by any finite product of the 
operators (67). These functions form the Schwartz' space Y'(E') whose dual is 
the space Y''(E') of "tempered distributions" on E'. The action of g on the space 
Y''(E') = (Jt"4,d-oo is still given by (67). 

The irreducibility of Schrodinger representation is a familiar result, but it is 
instructive to derive it from our general irreducibility criterion (see page 372) and 
the following elementary lemma in distribution theory. 

LEMMA 1. Any distribution Ton the real n-space E' satisfying the conditions 

(68) (k = l, .. ·, n) 

is a constant multiple of the Dirac distribution {J defined by fJ(</>) = </>(O) for any 
test-function </>. 

Using the classification of the irreducible representations of G given on page 372 
and using the preceding result, we obtain easily the following result. 

THEOREM 1. Let { m, Ji"'} be any irreducible representation of G, nontrivial on 
the center Z of G, and let E be any n-dimensional subspace of Von which B induces 
the zero form. The set of solutions of the equation 

(69) m'(X) · v = 0 for every X in E 

is a one-dimensional subspace of Jf"_ 00 • 

11. Some discrete subgroups. Let L be a lattice14 in V such that B take integral 
values on L x L; the complementary lattice L' is the set of all vectors v in V such 
that B(v, A.) be an integer for every A. in L; it obviously contains L. The set of 
elements of the form ,, · e4 with t real and A. in L is an invariant subgroup r L of G ; 
the subgroup r L' is defined in a similar way. Let us consider also the discrete 
subgroup /1 of the center Z of G consisting of the elements 'm with m an integer. 
The group r £' is nothing else than the set of all g's for which the commutator 
gyg- 1y- 1 lies in /1 for every y in r L· 

We denote by E the group of all characters of r L taking the value 1 on all of 11; 
we have S = Um Sm (disjoint union) where Em is the set of characters of r L 

extending the character Xm of Z (m runs over the set of integers). The general 
form of the elements in Sm is given as folJows 

(70) 

14 That is, a discrete subgroup of V generating it as a vector space, or equivalently, the set of 
vectors with integral coordinates in a suitable basis of V. 
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where F is any real-valued function on L, defined modulo 2, satisfying the con­
gruence: 

(71) F(A. + µ) = F(A.) + F(µ) + m · B(A., µ) (mod2). 

More simply, the characters in E0 are given by 

(72) 

where v0 is a fixed element of V, defined modulo L' by thi's relation. 
Let m be nonzero and let 'I' m,F and 'I' m,F' be two elements of Em. We can write 

'I' m,F' = 'I' · 'I' m,F with some 'I' in E0 • Using formula (72), we get after easy 
manipulations 

(73) 

where we can take for g the element g0 = exp(m- 1 · v0 ) of G; the elements g 
qualifying for (73) form the whole COSet go · rm- 'L'. 

A more explicit description of the situation can be given as follows. According 
to elementary divisor theory, there exists a normal basis {z, P1, · · ·, Pn, Q1, · • ·, Qn} 
of g and integers e1, ···,en such that the elements of L (resp. L') are the vectors 

(74) 

whose coordinates are solutions of the congruences 

(75) 

(resp. 

(75') ti= 0(mod1) 

for j = 1, · · · , n, 

for j = l, · · · , n). 

As a corollary, we get that the index [L': L] is the square of the integer e = e1 ···en. 
A special instance of a solution of the functional Equation (71) is given as 

follows 

(76) 

The general solution is given by 

(77) F(A.) = F0(A.) + a 1s1 + · · · + ansn + e1 1b1t 1 + · · · + e;; 1bntn (mod 2) 

where a 1, ···,an, b 1, • • ·, bn are real numbers defined modulo 1. Let us remark 
that for m even, we might as well take F0 = 0 as a particular solution of the con­
gruence (71 ). 

A particularly important special case is provided by the so-called "principal 
lattices," that is the lattices L equal to their complementary L'. For such an L, 
the commutator group of r L is equal to L\, and E is therefore the set of all char­
acters of r L; moreover any two characters belonging to the same Em (with m '::/: 0) 
are conjugate to each other by some element of G well-defined modulo rm- •L· 

Finally in case of a principal lattice, the "elementary divisors" e1, ···,en are all 
equal to 1. 



376 PIERRE CARTIER 

Assume L to be principal. The Equation (71) is then satisfied for at least one 
integral-valued F; in case m is even, it suffices to take F = 0. Assuming therefore 
m to be odd, denote by I:the vector space L/2L over the field with two elements 
By reduction modulo 2, the form B defines a symmetric bilinear form B on 
l x l and the integral-valued solutions of (71) correspond via reduction modulo 
2 to the quadratic forms F on C. whose associated bilinear form is B. These 
quadratic forms fall into two equivalence classes according to the value of their 
"Arf invariant." Using again a normal basis {z, P1, • • ·, P., Q" · · ·, Q.} for which 
L is the set of vectors with integral coordinates in V, we get the following reduced 
forms for the F falling in either one of the two classes: 

(78) F'(A.) = t 1s1 + .. · + t_s., 

(79) 

12. The lattice representations. We proceed now to describe a class of repre­
sentations of G which have so far played no role in quantum mechanics. 

We fix a lattice L such that B takes integral values on L x L, an integer m::;: 0 
and a function F solution of (71). The representation of G induced by the char­
acter 'I' m,F of r L shall be denoted ~L.m,F· Using the correspondence f +::t </> 
expressed by the equivalent relations 

(80) 

we shift the action of G to the space ff L,rn,F of functions </> on V subjected to the 
following restrictions: 

(a) The function </> is Borel-measurable on V. 
(b) The integral Jrl</>(v)l2 dv is finite for every fundamental domain P of L acting 

by translation on V (for instance a suitable parallelotope). 
(c) Functional equation: 

(81) <J>(v + A.)= eOF(A.) + IB(v, A.)) · </>(v) 

for v in V and A. in L. 
The action of G in ff L,rn,F is given as follows 

(82) (U0 .<J>)(v) = </>(v + v') · e(IB(v, v')) 

where U 0 • = xm(e0 ') is the operator corresponding to the element e°' of G. In what 
follows, we consider only the case where m = l, the general case going easily 
over to that case by replacing B by m · B throughout. We shall omit the index 1 
in the notations '1' 1.F, ffL,l.F• ~L.I,F and x 1• 

We give now an analysis of irreducibility for the representation ~L,F; we shall 
eventually prove that the irreducibility is at hand if and only if L is a principal 
lattice. To every A.' in L', we can associate an operator AA' commuting to x(G) 
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and given via left translation 

(83) (AA' /)(g) = f(eA' · g) 

or equivalently (see formula (80)) by 

(84) (AA.tp)(v) = e(!B(J.', v))<J>(v + A') 

for any function <P in Jt'L.F· Using (40), we get 

(85) 

while (81) takes the form 

(86) (J. in L). 

LEMMA 2. Let S be any set of representatives for the cosets of L' modulo L. 
The operators As for s in S form a basis of the algebra of all operators in fl'L,F 

commuting to 7t( G). 

The proof runs as follows. First of all, the infinitesimal representation is given by 

(87) (7t'(X) · </>)(v) = Ox<J>(v) + 7ti · B(v, X) · <J>(v) (X in V) 

where Ox is the Lie derivative15 associated to the constant vector field on V with 
value x. More precisely, (Jt'L,F)oo is the set of C00-solutions of the functional 
Equations (81) such that 7t'(X 1) • · · 7t'(X ,) · <P be square integrable modulo L for 
every sequence of elements Xi.···,X, in V, and (Jt'L,F)- 00 is the set of distribu­
tions on V which can be expressed as finite sums of derivatives 7t'(X 1) • • • 7t'(X ,) · <P 
of functions <P belonging to fl'L,F. These distributions satisfy the functional 
Equation (81) in a symbolic sense. The canonical element (see page 371) expresses 
the distribution u given on any test function q, by16 

(88) u(</>) = L e(!F(J.)) · </>(J.). 
AeL 

The action of AA' on the distributions belonging to (Jt'L,F>- 00 be expressed by 
the same formula which works foi functions, at least when suitably interpreted 
in a symbolic way. This entails the following formula 

(89) (AJ..u)(<J>) = L e(tF(J.)) · e(tB(X, J.)) · <J>(J. - X) 
J.eL 

15 Defined by 
1 

Oxf(v) = lim-[/(v + tX) - /(v)]. 
r-o I 

16 In this case F = 0, this distribution deserves to be called Poisson distribution because or its 
significance for the Poisson summation formula. 
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According to the general theory of representations, any operator A. in JfL,P 

commuting to n(G) has a natural extension to (JfL,l')- 00 which commutes with 
the action of G on (JfL,,.)- 00 • If t == A.· u, we have therefore 

(90) n(eA) • t == e(!F().)) · t 

for every ). in L. Moreover, A.· u is 0 if and only if A. is 0. It remains therefore to 
prove that any distribution in (JfL,,.)_ 00 solution of (90) is a linear combination 
of the distributions A. · u, which is tantamount proving the following lemma. 

LEMMA 3. Any distribution t on V satisfying the symbolic equations 

(91) 

(92) 

t(v + ).) == e(!F().)) · e(!B(v, ).)) · t(v), 

e{!B(v, ).)) · t(v + ).) == e(!F().)) · t(v) 

for every ;. in L, is of the form t == L.eS T(- s) · A.u with suitable constants T(- s). 

We can replace the system of equations (91) and (92) by the equivalent system 
consisting of (91) and 
(92') t(v) == e(B(v, ).)) · t(v). 

Since L' is by definition the set of common zeros of the functions e(B(v, ).)) - 1 
for ;. in L, an easy transversality argument shows that any solution of (92') is 
given by17 

(93) t(v) == L T().1 · c5(v - ).') 
A'eL' 

with a suitable complex-valued function Ton L'. This being so, Equation (91) 
amounts to the relation (for ;. in L and ).' in L') 

(94) T().' + ).) == e(}F().)). ( - l)B(A',A). 7{).') 

and implies therefore 

t = L T(-s) L e(}F().))-(- tf<•.AI • c5(v - ;. + s) 
aeS AeL 

that is 
t = L T(-s) · A 1u. 

•eS 

We can now state the main result of this section. 

THEOREM 2. Let L be any lattice in V such that B takes integral values on L x L, 
and let F be any solution of the Equation (71) with m = 1. Let L' be the lattice 
complementary to L and put [L' : L] = e2.18 Finally, let (m, Jf) be any irreducible 
representation of G such that m{t,) = e(t) · I for every real t. 

17 By definition, the Dirac distribution o(v - a) takes the value t/J(.a) OD any test-function ,;. For 
instance, (88) can be written u(v) = ~1.,. eCiF(.t)) · O(v - .l) and similarly for (89). 

18 The index [L': L] is equal to the determinant or the matrix {B(v,, vJ)} where {v1, • • ·, v2.} is any 
basis of V for which L is the set of vectors with integral coordinates. 
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(a) The induced representation f!)L,F is isomorphic to the direct sum of e copies 
of (m,Jt'). 

(b) The set of solutions of the equations 

(95) (A. in L) 

is an e-dimensional subspace of Jf'_ 00 • 

Since the algebra of operators in Jt'L,F commuting to n(G) is finite-dimensional 
(its dimension being in fact equal to e2), the representation f!)L,F splits into a direct 
sum of finitely many irreducible components f!)1, ···,fl),. Since n(t,) = e(t) ·I, the 
classification of the representations of G shows these ·representations are indeed 
equivalent to (m, Jt'). The commuting algebra is therefore isomorphic to the 
algebra of all p x p matrices and a dimension argument gives p = e. This proves 
(a). As to (b), it suffices to use (a) and to remark that the set of solutions of Equa­
tion (90) is an e2-dimensional subspace of (Jt'L,F)- 00 by Lemma 3. 

13. Fock representation. In order to define invariantly the Fock representa­
tion, we need a real number A. -::;. 0 and an operator J in V with the properties: 

(96) 

(97) 

(98) 

J 2v = -v, 

B(Jv, Jv') = B(v, v'), 

B(v,Jv) ~ 0, 

for any pair v, v' of elements of V. We have also to consider the complexification 
V., of V, that is a complex vector space containing V such that every one of its 
elements can be written uniquely as x = v + iv' with v and v' in V. The conjugate 
x of the vector xis by definition v - iv'. The bilinear form Bon V x V extends 
to a complex bilinear form B. on V., x V.,. The complex extension J. of J to V., 
has a square equal to minus the identity operator; it has therefore the eigenvalues 
i and - i with respective eigenspact..., some subspace W of V., and its conjugate W 
(set of all vectors x for x in W). Using (97), one sees that B. induces the zero form 
on both Wand W 

If we replace in the definition of G the real pairs (t, v) by complex ones (that is 
t is a complex number and v is in V.,) and still use the rule (37) to compute the 
product, we define a Lie group G., containing Gas a closed subgroup, and with 
Lie algebra the complexification g. of g. Moreover the set of pairs (t, x) with t 
complex and x in Wis a closed subgroup P of G. such that G n P = Z and 
G · P = G •. We define a continuous homomorphism bA from P to the multiplica­
tive group of nonzero complex numbers by 

(99) b A(t, X) = e(A.t). 
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With all these conventions in mind, we can define the Fock representation as 
a kind of holomorphic induced representation. 19 Indeed, it acts on a Hilbert space 
consisting of all functions f on G. subjected to the following restrictions: 

(a) f is holomorphic; 
(b) one has /(pg) = (;i(p) · /(g) for pin P and g in G.; 
(c) the integral Jz1G l/(g)l2 dg is finite. 20 

The scalar product is given by the integral 

(100) (/If') = f f(g) · f'(g) dg 
Z\G 

and the group G acts by the right translations defined by 

(101) (R,,f)(g) = /(gh). 

In the applications, it is more convenient to shift everything to Vas follows. 
We denote by Yi the complex vector space having Vas underlying real space in 
which J is the scalar multiplication by i. On Yi. there is a unique hermitian form 
H having Bas imaginary part; explicitly, one has: 

(102) H(v, v') = B(v, Jv') + i · B(v, v') 

and, according to (98), one has H(v, v) ~ 0 for any v. 
The correspondence f +:t q, devised by the formula 

(103) </J(v) = edH(u,u)/2. /(e") 

maps isomorphically the space of the Fock representation onto the Hilbert 
space ~1 whose elements are the C00-functions q, on V satisfying the properties 

(104) 01x</> = i ·Ox</> (for every X in V), 

(105) L e-dH<"·"11</>(v)l2 dv < oo. 

The equation (104) is nothing else than the set of Cauchy-Riemann equations in 
an invariant guise and expresses that q, is holomorphic on J'}. As to the scalar 
product, it is given by 
(106) (</JI</>') = L e-dH(u,u>q,(v)</J'(v) dv 

and the operator associated to,,· e" is mi{t, · e") = e(A.t) · U., where U., is expressed 
as follows 

(107) (U .,</>)(v') = e-KA[H(11,11)/2+H(11,11'll. </J(v + v'). 

19 I thank heartfully J. Dixmier for having pointed out to me the importance of this notion and its 
bearing to our problems. 

20 By condition (b) for p = 11 we get that 1/12 is constant on every coset Zg, giving a meaning to 
the previous integral. 
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The infinitesimal representation m'., associated to mJ is given by 

(108) 

where Hx is the linear function vi-. H(X, v) on V. We have to make the usual 
proviso, that is (j"j)00 is the set of all holomorphic functions <P on Vi such that 
m'.,(X i) · · · m'.,(X p) • <P is in fF J whatever X 1 , • • ·, X P is in V, and (!F J)- 00 consists 
of the finite sums of functions of the form m'.,(X 1) • • • m'.,(X p) • <P with X 1, • • • , X P 

in V and <Pin j"j. Taking into account the Cauchy-Riemann equations (104) and 
the obvious relation HJx = -iHx. we can transform (108) as follows21 

(109) 

(110) 

m'.,(Y) · <P = Ox<P. 

m'.,( Y) · <P = - n).H x · <P 

where Y is the unique element in W such that X = Y + Y, that is 

(111) Y = !{X - i · J X). 

The main result concerning the Fock representation can be stated as follows. 

THEOREM 3. Let J be any operator in V satisfying the relations (96) to (98) and 
). -::!- 0 be real. Let W be the subspace of the complexification V. of V associated to 
the eigenvalue i of the complex extension J. of J to V.,. 

(a) The Fock representation (mJ> j"j) is irreducible. 
(b) If (m, ~) is any irreducible representation of G which is nontrivial on the 

center Z of G, the vectors in ~-oo annihilated by m'(W)..form a one-dimensional 
subspace of ~00 • 

We first prove (b) in case of the Fock representation. According to the descrip­
tion of (j"j)_ 00 and formula (109), an element of (j>j)_ 00 annihilated by m'.,(W) is 
a holomorphic function <P on Vi such that Ox<P = 0 for every X in V, that is a 
constant. 

For every real t, one has mi{t,) = e().t) ·I. We may assume m(t,) = e().t) ·I in 
view of the arbitrariness of)., According to von Neumann results [9], the Fock 
representation is therefore isomorphic to the direct sum of a certain number m 
(finite or not) of copies of (m, ~). Accordingly, the subspace T of ( fF 1)_ 00 anni­
hilated by m'.,(W) contains the (algebraic) direct sum of m copies of the space S 
in ~-oo annihilated by m'(W). Since Tis one-dimensional, we get m = 1 and 
dim S = 1. This proves assertions (a) and (b) in Theorem 3. 

We conclude by some explicit formulas. Since H is a positive nondegenerate 
hermitian form on V, we can choose a (complex) basis {P1, • • ·, P.} for Vi such 
that H(Pk, P1) = t5k1 and set Qi = J ·Pi. It is easy to see that 

21 We have extended in the obvious way 111} to a representation of the complex Lie algebra g •. 
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is a normal basis of g. Moreover, if we denote by z1, • • ·, z,. the complex-linear 
functions on Vi defined by z1c(P1) = t51c1, the monomials 

(112) 
" (11:).)llJ/2 

Mil= l"'2n -( '>''2zj1 
j=l rtj. 

form an orthonormal basis of '1.22 According to (109) and (110), the infinitesimal 
operator m}(Pi - iQi) is twice the derivation with respect to the complex variable 
zi and m}(Pi + iQ1) is multiplication by -211:A.zi. 

14. Definition of theta functions. The whole machinery of Riemann forms can 
now be set up. To summarize, let be given: 

- a real vector space V of finite dimension 2n; 
-a nondegenerate alternating bilinear form Bon V x V; 
- an operator J on V satisfying to the relations (96) to (98); 
-a lattice Lin V such that B takes integral values on L x L; 
- a real-valued function F on V such that 

(113) F(A. + µ) = F(l) + F(µ) + B(A., µ) (mod2) 

for any pair A., µ of elements of L. 
By means of these data, a Fock representation (m,, '1) (with A. = 1) is defined 

whose irreducibility follows from Theorem 3. By Theorem 2, the solutions of the 
equation 

(114) (for every A. in L) 

form an e-dimensional subspace 0 of ('1)- 00• Made explicit, the previous equa­
tion reads as follows 

(115) t(v) = t(v + A.)· exp - n[!H(l, l) + H(A., v) + i · F().)] 

and is nothing else than the well-known functional equation defining the theta 
functions. We get Frobenius' theorem that the dimension of the space of solutions 
of (115) is given as the square root of the discriminant of B with respect to L. 

A few questions to conclude: The group G is nothing but a special instance of 
a real nilpotent algebraic group. How can one extend to the general case the 
three methods given here to generate irreducible representations of such a group? 
What kind of functions on such a group play the role of theta functions? 

22 Following Bergman's well-known procedure, we ought to introduce the kernel 

K(v, v') = ~ M.(v)· M.(v') . 
given here by K(v, v') = eKAHI•.•'>. Its intrinsic meaning is as follows. For every v in V, the runction 
v· ..... K(v, v') is an element K, or" and we have (K,1/) = /(v) ror every function/in"· 
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DEFORMATIONS 



Cohomologies of Vector-valued Forms on Compact, 

Locally Symmetric Riemann Manifolds 
BY 

SHINGO MURAKAMI 

This is a report on the cohomology groups of the title. After giving their 
precise definitions in §1, we shall give a survey of examples and applications in 
various topics, which were actually the motivations for the study of these coho­
mology groups. In §3 we shall outline some general theorems on these cohomo­
logy groups obtained jointly by Y. Matsushima and the speaker [19), [20l We 
note that a clear survey of the same subjects is given by A. Borel [4] and we 
follow it in parts of §2. 

I. Definitions. Let X be a symmetric Riemann space of negative curvature. 
We may put X = G/K where G is a connected semisimple Lie group with a 
faithful representation and K is a maximal compact subgroup of G. Indeed, the 
identity component J(X)0 of the group of all isometries of X is a connected 
semisimple Lie group whose center reduces to (e) and which acts transitively 
on X, and the isotropy subgroup of J(X)0 at a point of Xis a maximal compact 
subgroup; therefore, we may take, for example, this group J(X)0 for G in X = G/ K. 
Let r be a discrete subgroup of G. We always assume that the quotient r\G is 
compact. The group r acts on X as a properly discontinuous group and the 
quotient M = r\X is compact. In this report, we suppose always that r acts 
freely on X, i.e. that any element of r different from the identity acts on X 
without fixed point, so that Mis a compact, locally symmetric Riemann manifold. 
This assumption, which is equivalent to that r has no nontrivial element of 
finite order, is merely conventional In fact, the following definitions and all 
theorems (such as found in §3) about the cohomology groups are valid without 
this assumption. The general case can be treated by depending on the results of 
Baily [2] or by using a lemma of Selberg [23); according to this lemma, a discrete 
subgroup r of G with compact quotient r\G has a normal subgroup r 1 of finite 
index which has no nontrivial element of finite order. We note also that r is 
finitely generated [25). 

Let now F be a finite-dimensional real or complex vector space and let j be a 
GL(F)-valued automorphic factor on G x X, i.e. a C00-mapping of G x X into 
GL(F) such that 

j(st, x) = j(s, tx)j(t, x) 

for alls, t E G and x EX. We denote by A'(r, X,j) the vector space of all F-valued 
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c:xi-forms 1] of degree r on x such that 

(1.1) 

for all ye r and x e X, where 11 o L1 denotes the form which results by transform­
ing 11 by the transformation L1 of X defined by y. Under the assumption that r 
acts freely on X, the space A'(r, X,j) can be interpreted as follows. Let Ei be the 
quotient of X x F by the equivalence relation (x, u) - (yx,j(y, x)u)(y er, u e F); 
Ei is the vector bundle over the manifold M = r\X associated to the bundle 
X -+ M of group r by the factor j. The space A'{r, X,j) is canonically identified 
with the space cf all C""-forms of degree r with values in the sections of Ei. 

The cohomology groups in which we are interested are now defined in the 
following two cases. 

(1) Suppose that j is a representation p of G in F, namely, j(s, x) = p(s) for all 
s e G and x e X. In this case the exterior differentiation d defines a coboundary 
operator in the graded module A(r, X, p) = L,A'(r, X, p). The cohomology 
groups then derived will be called, for simplicity, d-cohomology groups (of vector 
valued forms) and will be denoted by H'(r, X, pi 

(2) Suppose that X is a symmetric bounded domain in CN, that F is a complex 
vector space and that j(s, x) is holomorphic in x e X for each s e G. In this case, 
the space A'{r, X,J) decomposes into the direct sum Lp+q =r Ap,q(r, X,J) where 
Ap,q(r, X,j) is the subspace consisting of forms of type (p, q). The part d" of 
type (0, 1) of the operator d defines a coboundary operator of type (0, 1) in the 
bigraded module A(r, X,j) = Lp,q AP·9(r, X,j). The cohomology groups then 
defined are called d"-cohomology groups (of vector valued forms) and will be 
denoted by H::.4(r, X,j). 

In practice, we shall suppose in the second case that the automorphic factor j 
is a so-called canonical automorphic factor J, defined by a representation -r of K 
in F. This notion generalizes the automorphic factor -r(cx + d) on the Siegel's 
upper half plane, in which case G = Sp(n, R), K = U(n) and -r is extended to a 
holomorphic representation of the complexified group Kc = GL(n, ci We refer 
to Matsushima and Murakumi [19), Ise [11) and Borel [33) for the exact definition 
of canonical automorphic factors (cf. Gunning [9], Langlands [31Ji 

The d- and d" -cohomology groups can be interpreted as follows. In the case 
j = p, Jet flP(r, F) be the cohomology group of the group r with coefficients in 
the r-module F. On the other hand, since the vector bundle EP is locally constant, 
we can define the sheaf ~(Ep) of germs of locally constant sections of EP over 
M. Then there holds 

(1.2) 

The first isomorphism follows from the facts that X -+ M is a covering and that X 
is homeomorphic to a euclidean space. The second one, which may be called "de 
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Rham isomorphism," follows from the following resolution of the sheaf C(f(Ep): 

<e(Ep) ~d0(r, x, p) ~d1(r, x, p) ~ .. ·, 

where s(P(r, X, p) denotes the sheaf of germs of p-forms on M with values in the 
sections of E". As for the d"-cohomology, we note that Ei is a holomorphic vector 
bundle over the complex manifold M. Let QP(Ei) be the sheaf of germs of holo­
morphic p-forms on M with values in the sections of Ei. Then we have a "Dol­
beault isomorphism": 

(1.3) 

2. Applications of the cohomology groups. 
2.1. Local triviality of deformations ofr in G. Let us first define the deformation 

space R of a discrete group H in a Lie group P following Weil [25]; R is the space 
of all homomorphisms of H into P endowed with the compact-open topology. 
When H is finitely generated, R is homeomorphic to a closed subspace of the 
product of a certain finite number of copies of P. We say that deformations of 
the subgroup r(H) (r ER) in P are locally trivial if {Int(s) 0 r; s E P} forms a 
neighborhood of r in R. Now, take a point re Rand denote by p the Lie algebra 
of P. Regarding p as an H-module through the representation ad 0 r of Hin p, 
Weil [27] has proved that if H 1(H, p) = (0) then deformations of r(H) in P are 
locally trivial. Applying this result to the case P = G, H = r and r is the injection 
of r into G, it follows from (1.2) that deformations of r in G are locally trivial, 
if H 1(r, X, ad) = (0). Weil's argument in [26] shows that this is the case if G has 
finite center and if all simple components of G are noncompact and of dimension 
> 3 (cf. [19]). Actually, Weil [26] proves moreover that deformations of r in G 
are locally trivial if G decomposes into a product of noncompact simple Lie 
groups of finite center and if the projection of r in any simple factor of dimension 
3 is not discrete. 

REMARK. The Weil's theorem was first given by Selberg [23] for the case 
G = SL(n, R). On the other hand, the group H 1(r, X, ad) is isomorphic, via (1.2), 
to the first cohomology group of M with coefficients in the sheaf of germs of 
Killing vector fields [19]. Therefor1:, H 1(r, X, ad) = (0) means in a sense the 
rigidity of the compact locally symmetric Riemannian structure of M, and this 
fact was first recognized by Calabi (cf. [5]) for the case that X is a space of 
constant negative curvature of dimension > 2. We note also that the vanishing 
of H 1(r, X, ad) is discussed in detail by Raghunathan [22] as a special case of a 
more general result (see §3, Corollary to Theorem ti 

2.2. Local triviality of deformations of the complex structure of M. We consider 
the case that X is a symmetric bounded domain in CN. By a famous theorem 
due to Frohlicher and Nijenhuis [10] and Kodaira and Spencer [15], deformations 
of the complex structure of the compact complex manifold M are locally trivial 
if the first cohomology group H 1(M, 0°(0)) = (0), where 0 is the holomorphic 
tangent bundle of M. Now, Calabi and Vesentini [6] establish a vanishing 
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theorem for the cohomology groups H 11(M, n°(0)), and in particular they show 
that H 1(M, n°(0)) = (0) if all of irreducible components of X are of complex 
dimension > 1. 

The cohomology groups HP(M, n°(0)) can be treated also in the framework 
of the d"-cohomology of vector valued forms. In fact, let g be the Lie algebra of 
the Lie group G acting on X and let f be the subalgebra of g corresponding to 
the subgroup K. Then the complex structure of X defines a vector space decom­
position of the complexification gc of g: 

(2.1) 

where n+ (resp. n-) consists of those elements of gc which project to complex 
tangent vectors of type (1, 0) (resp. (0, 1)) at the point 7t(e) by the projection 
7t: G-+ X = G/K. We know that n± are abelian subalgebras of gc stable under 
the adjoint action of K in gc. Therefore, we can define representations ad+ and 
ad_ of K in the complex vector spaces n + and n - respectively. Then we see that 
0 is just the vector bundle over M associated to the canonical automorphic 
factor lad+ on X x G [11), [19). By (1.3) it follows 

H 11(M, '2°(0)) = H~.:11(r, X, lad.>· 

In this form the theorem of Calabi and Vesentini follows from a more general 
vanishing theorem for d"-cohomology groups (see §3, Corollary to Theorem 6). 

REMARK. The local triviality of deformations of the complex structure on 
M = r\X is recently proved in a more general case by Andreotti and Vesentini 
[11 where r\X is no longer compact but where r verifies certain conditions 
satisfied by arithmetic subgroups of G and the deformations are supposed "rigid 
at infinity." 

2.3. Betti numbers of the manifold M. The usual real cohomology groups 
HP(M, R) of the manifold M are isomorphic, through the de Rham's isomor­
phisms, with the d-cohomology groups HP(r, x. n 1 denoting the !-dimensional 
trivial representation of G. The general method to approaching d-cohomology 
groups may therefore be applied to the study of Betti numbers of M. Along this 
line, Matsushima [16) showed at first that the first Betti number of M vanishes 
if X is a bounded domain all of whose irreducible factors are not isomorphic 
to the unit open hall in CN; this implies in particular that the index of r over 
the commutator subgroup [r, r] is finite in this case. Matsushima [17] establishes 
moreover a general condition, which appeared in [16) for the case p = 1, in 
order that the cohomology group HP(r, X, 1) be isomorphic to the relative Lie 
algebra cohomology group HP(g, f) or, what amounts to the same, to the coho­
mology group HP(Xu, R) of the so-called compact form Xu of X. This condition 
is formulated in terms of positivity of a certain quadratic form H p(g) associated 
to the Lie algebra g of G, and the values of p for which H p(g) > 0 are determined 
by Matsushima [16), [17] in the case that Xis an irreducible bounded symmetric 
domain and by Kaneyuki and Nagano [121 [13) for the remaining cases. 
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Matsushima [18] has recently obtained the following interesting formula which 
expresses the pth Betti number bp(M) of Min terms of the unitary representation 
of G in the Hilbert space L2(f\G) and which corresponds to the well-known 
Cartan and Hodge's theorem for the case G compact and r = (e): 

bp(M) = r~o N(r, T)t~1 M(TK,-rf)). 

Here ~o denotes the set of all nonequivalent irreducible unitary representations 
T of G whose defining Casimir operator is trivial; N(r, T) is the multiplicity of T 
in the unitary representation of Gin the Hilbert space L2(r\G); -rr (i = 1, · · ·, s,) 
are the irreducible components of the representation ad' of K into the space 
Nmc, namely ad'= -rf + · · · + -rf (cf. (3.2)); M(TK, -rf) is the multiplicity of -rr p 

in the restriction TK of T to K. The formula implies in particular that if X is 
3- (resp. 4-) dimensional hyperbolic space and if G is the proper Lorentz group 
(resp. de Sitter group) the first Betti number of Mis equal to the multiplicity of 
an irreducible unitary representation of G. 

2.4. Automorphic forms. We suppose that Xis a bounded symmetric domain 
in CN. The d"-closed forms belonging to A0 •0(r, X,JJ are just the holomorphic 
functions f on X such that 

f(yx) = j(y, x)f(x) 

for all y E r and x EX, and they are by definition the automorphic forms on X 
with respect to r and j. Thus the d"-cohomology group H~.:0(r, X,JJ is nothing 
but the space of all automorphic forms on X with respect to r and j. 

Suppose now that the factor j is the canonical automorphic factor J, defined 
by a representation T of K. The canonical line bundle of M is defined by the 
canonical automorphic factor Ja, where a is the representation of K given by 
a(t) = det(ad_ (t)) fort EK (cf. (2.1)). Then we get 

H;:0(r, X, J,) ~ H~.:0(r, X, Ja®r>· 

On the other hand, as we shall see in §3, if T is irreducible and is contained in an 
irreducible representation p of G in such a way that the lowest weight of T 

coincides with that of p restricted tu K, we have a canonical isomorphism 

H;: 0(r, X, J,) ~ HN· 0(r, X, pi 

Thus we get 

HN· 0(r, X, p) ~ "space of all automorphic forms on X with respect tor 
and the automorphic factor J a®•·" 

This generalizes a theorem of Eichler [8] and Shimura [24l 
2.5. Determination of cohomology groups. The d- and d"-cohomology groups 

are determined by Matsushima and Shimura [21] in the following case. Put 
X = H 1 x H2 x · · · x HN and G = G1 x G2 x · · · x GN x K 0 where Hi is the 
upper half plane, Gi = SL(2, R) acting canonically on Hi (i = 1, 2, · · ·, N) and 



392 SHINGO MURAKAMI 

K0 is a compact connected Lie group acting trivially on X. Then X is a homo­
geneous space of G. Let r be a discrete subgroup of G with the following pro­
perties. (1) The projection of G onto G0 = G1 x G2 x · · · x GN maps r bijec­
tively on a discrete subgroup r 0 of G0 with compact quotient r 0\G0 . (2) The 
projection of r 0 into any partial factor of G0, different from G0 itself, is not 
discrete in the partial factor. (3) r 0/(r 0 n Z) has no- element of finite order 
different from the identity, where Z is the center of G0 • Matsushima and Shimura 
determine completely the d-cohomology groups H'(r, X, p) for all irreducible 
representations p of G and also obtain some vanishing theorems for the groups 
H~.:'l(r, X, J,). See [21) for the details. 

3. Theorems on the cohomology groups. We retain the notations in § 1. We 
assume throughout this section that F is a complex vector space, although all 
statements about d-cohomology in §3.l hold also for real F. We confine our 
attention to the cases where the automorphic factor j is an irreducible representa­
tion p of G or a canonical automorphic factor J, defined by an irreducible 
representation • of K. 

We refer [19) and [20) for the details of this section. 
3.1. Harmonic theory. We consider the following diagram and we get 

G 

/~ 
LEMMA 1. The vector bundle Ei is difjerentiably 

equivalent to the bundle associated to the principal 
bundle r\G over M with group K by the representa­
tion T of K in F; here T is defined by •(t) = j(t, x0) 

tt EK), x 0 being the point n(e) EX. 

X = G/K r\G 
~ ,.,,< 
M= r\X/K 

Note that if j = J, we have J,(t, x0) = •(t) for all t E K. 
Since r is discrete, each left invariant vector field on G is projectable onto 

r\G, and so the Lie algebra g can be identified with a Lie algebra of vector fields 
on r\G. The manifold r\G is then parallelizable by means of a basis of g. Now 
by Lemma 1 the space A'(r, X,J) can be canonically identified with the space of all 
F-valued r-forms rt on r\G such that 

(O(X) + •(X))rt = 0, 
(3.1) 

i(X)rt = 0, 

for any XE f, where O(X) and i(X) denote the operators of Lie derivation and 
the interior product by X respectively. Let m be the orthogonal complement of 
f in g with respect to the Killing form <P of g. There holds 

(3.2) g = m + f, [f.m] cm, [m, m] cf. 

This implies in particular that m defines a connection in the principal fibre 
bundle r\G of group K. We shall denote by D the covariant differentiation with 
respect to this connection ; D is an operator of degree 1 in the graded module 

A(r, x,j) = L A'(r, X,ii 
r 
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Suppose j be the factor J,. We can then prove that m defines a connection of 
type (1, 0) in the holomorphic principal bundle of EJ,· It follows that the co­
boundary operator d" on A(r, X, J,) coincides just with the (0, 1)-part D" of the 
operator D. 

We consider next the case j = p. Let ty be the space of all F-valued C 00-func­
tions on r\G; ~ has the g-module structure m defined by m(X)f = Xf + p(X)f 
for XE g and f E (j. Since r\G is parallelizable by g an F-valued r-form on r\G 
can be regarded as an r-cochain on g with values in the g-module ty. Since 
T(X) = p(X) for XE f in Lemma 1, (3.1) shows that A'(r, X, p) may be considered 
as the relative cochain group C'(g, f; (j) of g modulo f. We can prove moreover 
that the operator d in A(r, X, p) coincides with the coboundary operator in the 
relative cochain group C(g, f; (j). We put dP = d - D, so that d = D + dP. 

Let j be again subject only to our starting assumption. The manifold M has 
a Reimann metric induced from a G-invariant Riemann metric on X. On the other 
hand, there exists a hermitian inner product h in F invariant under T(t) for all 
t EK. If j = p, we may assume moreover that h is so chosen that p(X) for XE m 
is a hermitian operator with respect to h. By virtue of Lemma 1, h defines canoni­
cally a hermitian metric in the fibres of Ei. Once these are introduced, we may 
apply harmonic theory as developed by Kodaira and Baily [2] in studying the 
cohomology groups in question; we define a hermitian product ( , ) among 
forms of A(r, X,j) and the adjoint operators l>, D*, l>P and a" of d, D, dP and 
d" respectively, the first three operators (resp. the last one) being defined for the 
case j = p (resp. j = J,). We define "laplacian operators" as follows: 

A= do+ l>d, 

and 

D" = d"iJ" + a"d". 

Call a form 'I in A(r, X,j) harmonic if A,, = 0 or if D"'I = 0. The fundamental 
theorem of harmonic theory states that H'(r, X, p) and H~:.4(r, X, J,) are canoni­
cally isomorphic to the spaces of harmonic forms. 

By explicit calculation of the lapl~::ians A, A0 , and AP, we get 

THEOREM 1. A = A0 + AP and therefore a form 'I belonging to A(r, X, p) is 
harmonic if and only if A0 11 = Ap'/ = 0. 

CoROLLARY. Hp(r, X, p) = (0) (p ~ 1) if the following quadratic form on 
Hom(m, F) is positive definite. 

Here {X 1,· · ·, XN} is a basis ofm such that </>(X;, Xi)= l>ii· <P being the Killing 
form ofg. 
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Indeed Corollary follows from Theorem 1, since (Ap'f• 'I) is expressed as the 
integral of L;,···ip- Qp('li,···jp_.(x)) on r\G,'fi,···ip- 1(x) being the Hom(m,F)­
valued function on t\G, defined for each x e r\G by 

'Ii, ···ip- 1(x)(Y) = 'l(Y. xii,···, xjp_ ,) 

for Yem. 
REMARK. This corollary may be considered as a cohomological interpretation 

of Weil's arguments in [26l Besides, Raghunathan [22] shows that Q1(u, v) is 
positive definite for almost all (g, p). 

There exists also the following expression of A in terms of the Casimir operator 
of C of g, which was pointed out by Kuga. 

(3.3) A= -C + p(q 

More precisely, this means that if 'I e A'(r, X, p) 

(A'f)(Yi. · · ·, Y,) = -C('f(Y1, • • ·, Y,)) + p(C)('f(Y1, • · ·, Y,)) 

for Yi. · · · , Y, e g, where C is considered as a differential operator of second order 
on r\G, and p(C) is the Casimir operator in F associated to the representation p. 
Note that p(C) is a scalar operator, since pis absolutely irreducible. 

3.2. Decomposition of the d-cohomology groups. From now on, we suppose 
always that X is a symmetric bounded domain in CN. Consider the case j = p. 
The parts d' and d" of types (1, 0) and (0, 1) of d define coboundary operators in 
A'(r, X, p). Moreover, let D', d~ (resp. D", d;) be the parts of type (1, O)(resp. (0, 1)) 
of the operators D and dP respectively. (Note that d" =F D" in this case, although 
EP is a holomorphic vector bundle.) Then d' = D' + d~ and d" = D" + d;. We 
can form the laplacians A', A", A0, Al), A~, a; from these operators d', d", D', D", 
d~. d; and their adjoint operators. Then we get 

LEMMA 2 A = A' + a" = a0 + al) + a~ + A;, and therefore a form 'f is 
harmonic if and only if aJ,,, = al),, = a~,, = a;,, = 0. 

We see by this lemma that A preserves type of forms in A'(r, X, p). Thus we get 

THEOREM 2. The group H'(r, X, p) decomposes to the direct sum: 

H'(r, x, p) = L HM(r, x, p), 
p+q=r 

where HM(r, X, p) is the subgroup of H'(r, X, p) consisting of all d-cohomology 
classes representable by a d-closed form of type (p, q). 

Let now 

(3.4) gc =le+ n+ + n-

be the decomposition (2.1) of gc. We know that I contains a Cartan subalgebra 
~ of g. Let :E be the root system of gc with respect to the Cartan subalgebra ~c 
and for each ex e :E let Xm be an eigenvector. It is known that there is a subset 'I' 
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of I: such that n+(resp.n-) is spanned by {X11 ;ae'P} (resp.{X_ 11 ;ae'P}). 
Moreover, one can introduce a linear ordering in the set of weights of gc such 
that any root a e 'P is positive and that a root fJ belongs to 'P whenever fJ > a 
for some a e 'I'. We can choose X11 , X _11 for all ae 'I' so that </>(.X"' X -.J = 1 and 
that X _11 = X,., - denoting the conjugation of gc with respect tog. 

LEMMA 3. Let Y1, • · • , Y,. be a basis off such that </>CY.,, Yi,) = - {Jab (a, b = 1, · · ·, r). 
The representation ad+(resp. ad_) of K on n+(resp. n-) induces representations 
ad~ (resp. ad~) offc on N n+ (resp. f\P n-). Then 

r 4 

L ad~(Y.,)2 = - L ad~([X.,, X _.,)) = - ~id on/\ n+, 
a= I 11e'I' 

± ad~(Y,.)2 = L ad~([X.,, X _.,D = - ~id on An-. 
a=l 11e'I' 

This lemma plays an important role in calculating laplacian operators. In 
fact, it implies in particular the following relation: 

!!i." - tJ.' = !:i." - !:i." D p D p• 

(This formula is given in [20) for forms of type (0, q) but holds also for forms of 
any type.) It follows from this formula and Lemma 2: 

LEMMA 4. A form 11 is harmonic if and only if either 

!:i.~11 = !:i.;11 = 0 or A;,,, = !:i.~11 = 0. 

3.3. Relations between d- and d"-cohomology groups. We extend the representa­
tion p of g onto gc, and consider Fas a gc-module. 

LEMMA 5. The irreducible gc·module F is decomposed, as fC-module, into the 
direct sum of re-submodules: 

(3.5) F = S1 + ·· · + S,,, 

with the following properties. 
(1) Su and Sv (u =I- v) are mutually orthogonal with respect to the hermitian inner 

product h. 
(2) p(X)S, c S,_ 1 for all Xe n + and p(Y)S, c S,+ 1 for all Yen- (t = 1, .. ·, m) 

where S0 =Sm+ 1 = (0). 
(3) S 1 (resp. Sm) coincides with the subspace of F consisting of all u e F such that_ 

p(X)u = 0 for all Xe n+(resp. Xe n-). 
(4) S1(resp. S,,,) is an irreducible le-submodule whose highest (resp. lowest) weight 

coincides with the corresponding one of p. 

We remark that if p is the adjoint representation of a simple Lie algebra g 
the decomposition of this lemma is just given by (3.4i 

Let F = S1 + · · · + S,,, be the decomposition (3.5), and let P, be the projection 
of F onto S, (t = 1, · · · , mi Then for a form 11 e A'(r, X, p) we can define P,11, 11 
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being considered as an F-valued form on r\G. Let A'·'(r, X, p) (resp. Ar·'(r, X, p)) 
be the subspace of A'(r, X, p) consisting of all forms of type (p, q)(resp. of type 
(p, q) and such that P,11 = 11i Then A'·'(r, X, p) = L~= t Af·'(r, X, p) (direct sum). 
Moreover, it follows from Lemma 2 and (3.3) that L1 maps Af·q(r, X, p) into itself. 
Thus we get: 

H'·q(r, x, p) = L Hf·q(r, x, p), 
I 

where Hf·q(r, X, p) is the subspace of H"'(r, X, p) consisting of all d-cohomology 
classes representable by ad-closed form belonging to Af·q(r, X, p). 

Let p, be the representation of K into S, induced by p, and consider the groups 
H:l.q(r, X, J pr) (t = 1, · · ·, m). Working always on r\G, we may identify 
Af•4(r, X, p) with A,,.(r, X, JP') in view of (3.1). Because d" = D" on 
A'·'(r, X,Jpt), we see that L10 on Af•4(r, X,p) corresponds to D" on A,,.(r, X,Jpt) 
under this identification. Thus, by Lemma 2, if '1 e Af·4(r, X, p) is a-harmonic, 
'1 is D"-harmonic as element of A"4(r, X, J pt>· Therefore, there is a canonical 
injection 

Hf•11(r, X, p)-+ H:l.•(r, x, J pt). 

Now take the case p = 0 or q = 0. By means of concrete expressions of a;, 
we can show the following results. If '1 is of type (p, 0) (resp. (0, q)), then 
a;Y/ = 0 (resp. L1~'1 = 0) is equivalent to stating that Y/ belongs to A=: 0(r, X, p) 
(resp. to A~· 4(r, X, p)); moreover, a~= a~ on AN· 0(r, X, pi Thus the above 
argument, combined with Lemma 4, implies: 

THEOREM 4. Notations being as above, we have canonical injections 

H'·0(r, x, p)-+ H::,0cr, x, J pm) 

and 

H0 ·•cr. x, p) - H~qcr. x, J pt>· 

Moreover, these are subjective for p = N and q = 0, · · ·, N (N = dime X). 

3.4. Vanishing theorems. We obtain the following vanishing theorems. 

THEOREM 5. Let A (resp. A') be the highest (resp. lowest) weight of p, and let 
qp(resp. pp) be the number of roots cc e 'I' such that (A, cc) > 0 (resp. (A', cc) < 0), 
where ( , ) denotes the usual inner product among weights defined by the Killing 
form of gc. Then 

H0 ·q(r, x, p) = (0) 

H'· 0cr, x, p) = (O) 

for 

for 

q = 0, l, ... 'qp - 1, 

p = 0, l,···,pp - 1. 

CoROLLARY 1. Suppose that (A,'}';) > 0 for i = 1, · · ·, s, where "It•···, "Is are 
the simple roots belonging to 'I'. Then H0 •4(r, X, p) = (O)for q < N = dimcX. 
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COROLLARY 2. Let gc be simple and let y1 be the (unique) simple root of gc 
belonging to 'I'. Then H0 ·q(r, X,ad) = (0) for q < 1/(y1, ')1 1) - 1. 

THEOREM 6. The notation being as in Theorems 4 and 5, H~:.q(r, X, JP.) = (0) 
for q = 0, 1, · · ·, qP - 1. If (A,}';) > 0 for i = l, · · ·, s, then H~.:q(r, X, JP•) = (0) 
for all q < N. 

COROLLARY (CALABI AND VESENTINI [6] AND BOKEL [3]}. Suppose that gc be 
simple. Then Hq{f\X, 0°(0)) = (0) for q < 1/(y1, y1 ) - 1. 

THEOREM 7. Suppose gc be simple. Let A be the highest weight of the representation 
t off extended to re. We denote by a the representation of K given by 

a{t) = det(ad_(t)) (te K), 

by y1 the simple root belonging to 'I' and by Po the highest root of gc. Then 
(1) if (A,y 1 ) > 0, then m,:q(r, X, J,) = (O)for q < N. 
(2) ifr > -2(A, y1), tgen H'J.:q(r, X, Ja-• ® t) = (O)for q < N. 
(3) if (A, Po) < -f, then H'J.:q(r, X, J,) = (O)for q > 0. 

THEOREM 8. Let A be the highest weight of p. If (A, cc) > 0 for all positive root cc 
of gc, we have 

HP·q(r, x, p) = (0) 

for all p, q such that p + q =I= N. 

Among these theorems, Theorems 5 and 8 are most important, and the other 
statements follow from Theorems 4 and 5. They are obtained by estimating 
minimal eigenvalues of certain laplacian operators. In more detail, at each point 
x e r\G, taking the value '1x of 11. we get a mapping of AP·q(r, X, p) into the tensor 
product F ® AP n - ® A q n +. There exist degree-preserving operators L' and 
L" in F ®An- ®An+ such that (L\~11)" = L''lx and (L\;11)" = L"'lx· Now, the 
operators L' and L" are just the trivial extensions on F ®An- ®An+ of the 
operators L\ + in F ®An- and L\ in F ®An+, which appeared in the work of 
Kostant [14). If '1 is harmonic, we have l.:f/x = I.:''lx = 0 by Lemma 2 The 
proofs reduce then to know when ii+ and A - are positive definite, and this is 
carried out using Kostant [14) (and Cartier [7]). We note that Theorem 5 can also 
be derived by an argument of Raghunathan's [22). 

Theorem 8, combined with formulas of Hirzebruch [28], [29), implies the follow­
ing 

THEOREM 9. Under the same assumptions as in Theorem 8, suppose that X be 
irreducible. Then, W(r, X, p) = (O)for r =I= N, and 

TI (A+Ci,cc) 
dimcHN{r,X,p) = n-Nll>O E(Xu)u(r\X). 

TI <c;. cc> 
11>0;11j'I' 
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Here, '5 is the one half of the sum of all positive roots, E(X u) is the Euler characteristic 
of the compact form Xu of X, and o(r\X) is the total volume of r\X measured by 
the volume element of r\X associated to the Bergmann metric on X. 

Supplements. At this Summer Institute, the speaker has the opportunity to 
look at the Kuga's lecture note [30) as well as the Mountjoy's posthumous 
work [32l Both of these give interesting applications of the d-cohomology groups; 
in particular, Mountjoy constructs generalized jacobian varieties attached to 
d-cohomology groups. 
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On Deformations of Lattices In Lie Groups1 

BY 

HOWARD GARLAND 

Throughout this discussion G will denote a connected Lie group and O> will 
denote the Lie algebra of G. We make the convention that the Lie algebra of a 
Lie group is the tangent space of the group at the identity. 

DEFINITION 1. A subgroup r c G is called a lattice, in case r is discrete and 
G/r is compact. 

r will always denote a lattice. If v e G and g e G, then g · v will denote Ad g(v). 
Let H 1(r, ©) denote the first Eilenberg-MacLane group of r with respect to 
adjoint action; let z 1cr, ©) and B1(r, 0>) denote the corresponding (inhomo­
geneous) cocycles and coboundaries, respectively; then 

H 1(r, ©) = z1(r, ©)/B1(r, ©), 

where Z 1(r, ©) is the set of all maps 

f: r- 0>, 

such that 

(1) l'1• l'2 Er, 

and B1(r, ©) is the set of all fin Z 1(r, ©) such that for some v e O> 

(2) f M = v - 1 · v, 1 e r. 
Let fJt be the space of all homomorphisms of r into G and topologize fJt by 

pointwise convergence. Let ': r -+ G denote the inclusion map, so of course 
, e fJt. In a certain sense Z1(r, 0>) is the tangent space to fJt at'· Thus let r, be a 
curve in fJt, such that r0 = t; (here t varies over an open interval containing 0). 
We assume that r, is CCX) in the sense that r,(y) is a CCX) curve in G for all y in r. 
Let r'()') denote the tangent vector to this curve at t = 0 (i.e. at )'~ We can then 
define a map 

by 

(3) 

f: r-+ © 

)IE r; 

1 This research was partially supported by the National Science Foundation under contracts 
NSF-GP-1662 and NSF-024154. 
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i.e., f(y) is the right translate of r'(y) by y- 1• It is easy to verify that the f defined 
by (3) satisfies (1). 

DEFINITION 2. Let r, be a C 00 curve in 91 such that r 0 = i. If we define f: r -+ 6> 
by (3), then f e Z 1(r, 6>) and we call f the tangent to r, (at L). 

It is important to point out that in general not every element in Z 1(r, 6>) is 
tangent to a curve of deformations. Later on, we will discuss this matter further. 

Now let 911 c: 91 be the subspace of all re 91 such that r is one-one and r(r) 
is a lattice in G. Let 910 c: 911 be the connected component of 911, containing '· 
It is known that 910 is arcwise connected and thus the following definition is 
natural: 

DEFINITION 3. 910 is called the space of deformations of r (in G). 
The problem in which we are interested here is to describe 910 • To start with, 

A. Weil has shown (see [SJ) that 910 is an open subset of 91; thus locally we do 
not have to distinguish between these two spaces. Hence, keeping our earlier 
qualification in mind, we may think of Z 1(r, 6>) as a .. tangent space" to 910 

at'· 
We proceed to describe what is known about 910 in some special cases. 
(i) If G is a semisimple group with no compact or three dimensional factors, 

A. Weil has shown that 910 is homeomorphic to G/Z, where Z is the centralizer 
of r in G. From this result and from known results on Fuchsian groups, Weil 
obtained a description of 910 even when G admits three dimensional factors. The 
essential point in the proof is to show that H 1(r, 6>) = 0 when G has no compact 
or three dimensional factors (see (6) and (7)). 

(ii) If G is compact then r is finite so that H 1(r, 6>) = 0. It then follows from 
(7) that 910 is homeomorphic to G/Z. 

(iii) When G is solvable and simply connected, H. C. Wang has obtained a 
complete description of 910 • We shall give a more detailed account of this result 
later on, but for the moment let it suffice to say that 910 in this case is homeo­
morphic to a Lie group (see (4)). 

At this point one might conclude that we are well on our way to obtaining a 
general description of 910 ; the obvious strategy is to try and glue the results 
in (i), (ii), and (iii) together, using the Levi decomposition. In fact, Wang did 
this for (i) and (iii) (see (4)). Howt;~er, trouble develops when one tries to mix 
compact stuff in. For example, 910 admits a differentiable structure in each of 
the above cases; moreover, this differentiable structure is in each case admissible, 
in the sense that if r, is a smooth curve in 910 with respect to this structure, then 
r,(y) is a smooth curve in G,for each ye r. However, in general 910 does not have 
such a differentiable structure. On the other hand, we have 

THEOREM 1. If every element in Z 1(r, 6>) is tangent to a curve in 910 , then in a 
neighborhood of L, 910 has an admissible differentiable structure. 

P. A. Griffiths gave the first proof of this result. One can also obtain a proof 
by using the ideas in (7). We remark that the converse of this theorem is not true. 
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Theorem 1, our previous remarks, and the known results in (i) and (ii) lead one 
to believe that cohomology theory is the natural tool for obtaining a general 
description of !Jt0 • To begin carrying out this idea I have rederived Wang's 
result in the solvable case, using cohomology theory; more specifically we have 

THEOREM 2. When G is solvable and simply connected, every element in Z 1(r, <D) 
is tangent to a smooth curve r" in rA0 • 

Then from Theorem 1 and from the explicit construction of the curves r, 
obtained in the proof of Theorem 2, one obtains the exact description of rA0 

given by Wang. Before giving this description we must introduce some notation. 
Thus let G denote a solvable, simply connected Lie group and let 91 c: <D 

denote the maximal nilpotent ideal; also, let N c: G denote the analytic subgroup 
corresponding to 91. G. D. Mostow has proved the following (see [2]): r n N = r N 

is a lattice in N and r N is a closed subgroup of G with identity component N 
(it is not difficult to see that, r being a lattice, these two assertions are equivalent). 
A result of G. Hochschild (see [1]) implies that Aut(r N), the group of continuous 
automorphisms of rN, is a Lie group. We let A denote the identity component 
of Aut(rN). 

THEOREM 3. Let q,: A-+ rJt0 denote the restriction map. Then <P is a homeomor­
phism and the differentiable structure on A is admissible. Moreover, rJt0 c: .<it is 
open. 

Theorem 3 follows from Theorem 2 and from the explicit construction of 
the curves r, in the proof of Theorem 2. In particular, Theorem 2 implies that 
an appropriate C00 map is of maximal rank, and we then use the implicit function 
theorem to obtain the fact that rJt0 is an open subset of !Jt. 

We now tum our attention to the proof of Theorem 2. The following result 
shows that Z 1(r, <D) is small enough so that one can construct a curve r, in rJt, 
tangent to any given f E Z 1(r, ©). 

THEOREM 4. f(r) c: 91for allfeZ1(r,<D). 

One can derive Theorem 4 from 

(4) for allfe Z 1(r, <D). 

Let H 1{r N• 91) (respectively, H 1{r N• <D)) denote the first Eilenberg-MacLane 
group of r N with respect to adjoint action in 91 (respectively, in mi Let Z 1(r N• 91) 
(respectively, Z 1(r N• <D)) denote the corresponding (inhomogeneous) cocycles; 
then (4) is equivalent to the sequence 

(S) H 1(r N• 91) _ ... H 1(r N• <D) - o, 
induced by the injection 91 -+ <D, being exact. 

Let H 1(9l, 91) (respectively, H 1(91, <D)) denote the first Lie algebra cohomology 
group of 91 with respect to adjoint action in 91 (respectively, in <D). Let Z1(91, 91) 
(respectively, Z 1(9l, 65)) denote the corresponding cocycles. A result of van Est 
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(see [3]) implies that the sequence (5) is exact if and only if the sequence 

(6) H 1(91, 91) -+ H 1(91, <D) -+ 0, 

induced by the injection 91 -+ <D, is exact. In turn, (6) is exact if and only if 

(7) /(91) c 91, for all/ E Z1(91, <i). 

For general solvable Lie algebras, (7) is not true. However, if G admits a 
lattice, then (7) is true. To be more precise we have to introduce the notion of a 
strongly unimodular, solvable Lie algebra. From now on (i will denote a solvable 
Lie algebra over a field F of characteristic zero. Let 

91 1 = 91, 91' = [911- 1, 91), l > t. 

Let Vi = 911/911+ 1 and let 01 denote the representation of <» induced in Vi by 
adjoint action. 

DEFINITION 4. The solvable Lie algebra, <D, is said to be strongly unimodular 
in case t~ace (01(r)) = 0 for all re (i and l > 0. 

If G is solvable and if it contains a lattice, then the Lie algebra of G can be 
shown to be strongly unimodular. Thus to prove Theorem 2 it suffices to prove 

LEMMA 1. If <D is strongly unimodular, then (7) holds. 

One can show that it suffices to prove Lemma 1 when F is algebraically closed; 
so we make this assumption. Moreover, we make the simplifying assumption 
that 91 is abelian so that we have the representation 

61 : <D -+ End 91, 

with 91 = kernel 01• Hence 01(<D) is an abelian Lie algebra of endomorphisms of 
91. Since Fis algebraically closed, we therefore have a weight space decomposition, 

(8) (direct sum), 

where A is a set of linear functionals on <D, and each J.}. has a basis 

such that 

(9) 01 (x)e~ = A.(x)e~ + L aie{, 
j>i 

where x e <»and the ai are elements in F depending on x. 
Since 91 is abelian, Z 1(91, <D) is the set of all linear maps/: 91-+ <» such that 

(10) [f(n), m) + [n,f(m)] = 0, n,me91. 

Since f is linear, it suffices in order to prove (7), to prove 

(11) for all f e Z 1(91, <i), µ e A, j = 1, · · ·, p(µ), we have f(ej) e 91. 
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To prove (11) it suffices to prove that the 81(f(s'j)} are nilpotent; then from 
(8) and (9) it follows that in order to prove (11) it suffices to prove 

(12) for all f e Z 1(91, 61), A.,µ e A, j = 1, · · · , p(µ), we have A.(f (ef,)) = 0. 

From (10) we have 

[f(s~), s~] + M ,f(e{.)] = 0. 

From (9) we have that the first summand on the left is contained in V,. and that 
the second summand equals 

-A.(f (ef,))s~ - L a1c~ e V).. 
/c>I 

Thus, ifµ ~ A. we obtain that this last expression is zero, since (8) is a direct sum. 
Since the ~ are linearly independent we thus have that A.(f (ef,)) = 0, unless A. = µ. 
But from (9) and our unimodularity assumption we have 

0 = trace 81 (f (ef,)) = p(µ)µ(f (ef,)); 

so µ(J(e{.)) = 0, since F has characteristic 0. This proves (12i 
The proof of Lemma 1 when 9l is not abelian does not seem to reduce to the 

case when 9l is abelian. Roughly speaking, one develops a theory of weights 
for cocycles in Z 1(9l, 61) and then proves that when 61 is strongly unimodular, 
this theory collapses; that is, one proves that (12) holds. 
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On Deformations of Discrete Groups in the 

Noncompact Case1 

BY 

HOW ARD GARLAND 

l. Introduction. Throughout this talk we make the following assumptions and 
notational conventions: 

(*) G is a semisimple, connected Lie group with no compact or three dimensional 
factors. r c: G is a finitely generated, discrete subgroup such that G/r has finite 
invariant volume. 

Let 9l be the space of all one-one homomorphisms 

r: r-+ G 

such that r(r) is a discrete subgroup of G and G/r(r) has finite invariant volume. 
We topologize 9l by pointwise convergence. Let ~ be a positive real number and 
let I = ( - ~. ~) denote the open interval of radius ~ about zero; let t vary over I 
and let r, be a C00 curve in (JI (i.e. r,(y) is a C00 curve in G for all y in r) such that 
r0 = t, the inclusion map. 

CoNJECTURE (SELBER.G). There is a C00 curve c, in G such that for ally in r, 
tin J, we have r,(y) = c,yc,- 1• 

Let <D denote the Lie algebra of G and let <D = R + ~ be a Cartan decomposi­
tion of <D; let K c: G be the analytic subgroup corresponding to R and assume G 
is chosen so that K is compact (this being an assumption of convenience); then 
K\G is a Riemannian symmetric space and in certain cases, a Hermitian sym­
metric space. For the moment, assume we are in the latter case and.that r has no 
elements of finite order; then K\G/r has a complex structure induced from that 
on K\G and speaking loosely, r, may 0e thought ofas giving a deformation ofthis 
complex structure (there is a point of difficulty here which we will discuss later). 
The thrust of the argument in [3) is to show that if this deformation of the com­
plex structure satisfies a certain boundary condition at oo, then it is trivial. 
It then follows that the deformation r, of r is itself trivial in the sense of the above 
conjecture. 

To free ourselves from the restriction that K\G be Hermitian symmetric we 
will reformulate the proof in [3] ; rather than consider deformations of the com­
plex structure on K\G fr we will consider deformations of the Riemannian 
structure. More exactly, one considers deformations of the Riemannian structure 

1 This research was partially supported by the U.S. Army Research Office, Durham. 
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on J0.,G/r coming from a deformation r, of r, and satisfying a boundary con­
dition at oo analogous to that considered in [3) in the complex case. 

Our approach has certain advantages and disadvantages. First we obtain 
results for the non-Hermitian case, and even in the Hermitian case we do not have 
to make the assumption in [3] that J0.,G/r is strongly pseudoconcave. The 
disadvantage is that our boundary condition, rigidity at oo in the Riemannian 
sense, is stronger than the corresponding boundary condition in the complex 
sense. Thus our result does not imply the result in [3). Nevertheless, there is 
reason to believe (reason based on some conjectures) that our cohomological 
results will allow us to relax these boundary conditions.2 

S. Murakami has observed that the methods described here probably have 
some application in the complex case. The approach taken in this talk is based 
extensively on the material in [6). 

2. Preliminaries. Rather than work directly with the Riemannian structure 
on K\G we follow A. Weil (see [6]) and work with a parallelism structure on G. 
Thus let 6>, the Lie algebra of G, be identified with the right invariant vector 
fields on G; let X 1, • • ·, X" be a basis of (fj so that X 1, • • ·, X, span ~ and 
X,+ 1, · · ·, X" span Sl We let Greek indices A.,µ, v, range from 1 ton, Greek indices 
°'• {J, y, range from r + 1 to n, and Latin indices i, j, k, range from 1 to r. We 
choose a basis ru 1, • • ·, ru" of right invariant one-forms so that 

(ruA,X,.) = <5!, A.,µ= 1, ·· ·,n. 

We define structural constants c;. by 

(1) dwA = -!C!,ru" I\ ru•, A.,µ, v = 1, · · ·, n, 

where c;. = - C!,. and d is the exterior differentiation operator. 
DEFINITION 1. An n-dimensional C00 manifold U together with n C00 everywhere 

independent one-forms ru1, • • ·, ru" satisfying (1), is called a G-manifold; we will 
say that U has G-structure given by ru1, • • ·, ru•. 

DEFINITION 2. If U 1 and U 2 are G-manifolds and if </>: U 1 -+ U 2 is a C 00 map, 
then </> is called a G-map in case 

A.= 1, · · ·, n, 

where </>* is the map of forms induced by </J. 
We note in passing that ru1, · • ·, ru" (respectively, X 1, • · ·, Xn) induce vector 

fields (respectively, forms) on G/r which we again denote by X 1, · · ·, Xn (res­
pectively, ro1, • • ·, ru"). 

3. Deformations of G-structures. Let M be a simply connected C00 manifold 
and let t -+ r, be a C 00 map from M to !JI; we choose a base point o e M and 
assume r 0 = t. We define an action of r on G x M by 

(2) (g, t)y = (gr,(y), t), t EM, ')IE r, g E G. 

2 See footnote 3, at the bottom of page 408. 
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We then set m = G x M/r and let n:: G x M-+ m denote the projection. We 
would like to conclude that m is a C 00 manifold and that n: is a covering map. 
This is not immediately clear from our assumption Ca proof in the compact case 
was given in [SJ), and thus we assume r, is admissible in the sense that m is a C00 

manifold and n: is a covering map. 
Since the coordinate projection pr2 : G x M-+ M commutes with the action 

of r in C2), we have an induced C 00 map m: m -+ M of maximal rank, such that 
the diagram 

G x M 
__ P_•_z __ M 

is commutative. Now m- 1Ct) may be identified with G/r, where r,Cr) = r,. On 
each G/r, we have an induced G-structure from G, so that we may think of 
(m, M, m, n:, o) as a deformation of the G-structure on G/r given by the parallelism 
wl' ... ' (JJn. 

DEFINITION 3. A deformation of the G-structure on G/r given by w1, • · ·, w" 
is the data (m, M, m, n:, o) given above. 

DEFINITION 4. Let A c: G/r be an open subset; then the deformation cm, M, 
m, n:, o) is C" A-trivial in case we have a C" map 

</J:AxM-+m 

such that the diagram 

A X M __ _...P_.•z..___ M 

is commutative, for each t EM <P: A x t -+ m- 1(t) is a G-map, and </Jl(A x o~ 
the restriction of <P to A x o, is the inclusion map. 

If we can find such a <P after replacing M by an open neighborhood of o, we 
say the deformation is locally C" A-trivial. If we can take A = G/r and k = oo, 
we say the deformation is trivial. If the deformation is c1r. A-trivial for every 
relatively compact A c: G/r, we say the deformation is c1r. pseudo-trivial. 

DEFINITION 5. We will say that cm, M, m, n:, o) is rigid at 00 in case we can 
find a compact set C c: G/r and a C00 diffeomorphism 

</J: (G/r - C) x M-+ m, 
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onto an open subset of m, such that the diagram 

(G/r - C) x M-!..+ m 

\I 
M 

is commutative; ml(!J - Image <P ~ the restriction of fD to m - Image q,, is proper; 
q,: (G/r - C) x t ..... m- 1(t) is a G-map, and <P restricted to (G/r - C) x o is 
the inclusion map. 

We remark that one can introduce the notions of locally trivial, locally rigid 
at oo, etc., in the usual manner of deformation theory. 

THEOREM. Let G be a semisimple, connected Lie group with no compact or three­
dimensional factors. Let r c G be a finitely generated, discrete subgroup such 
that Gfr has finite invariant volume. If thr deformation (!J, M, m, x, o) is rigid 
at oo, it is trivial. 3 

In the remainder of this paper, we will sketch the proof of this theorem. Since 
our object is to prove that certain deformations are trivial, one can prove that 
it suffices to assume M is an open interval I = ( - 6, 6~ If one can prove local 
triviality in this case, then one can prove rigidity whenever M is simply con­
nected. Hence from now on we assume that M is such an interval and whenever 
necessary we will shrink 6. We now assume that r 0 = '; that is, we take 0 for 
our distinguished point o. We will need 

PROPOSITION 1. If (!J, M, m, x, 0) is C" pseudotrivial then it is trivial. 

PROOF. We can find an open, relatively compact subset Ac Gfr such that A', 
the inverse image of A under the projection P: G -+ Gjr, is connected. L Green­
berg has shown that one can find such an A, provided r is finitely generated. 
Since we are assuming the deformation is C" pseudo-trivial we have a homotopy 
of maps, 

</J, : A -+ !J, t e M, 

where </J,(A) c m- 1(t), and q,,: A ..... m- 1(t) is a G-map. By the homotopy lifting 
theorem, we have a homotopy of G-maps 

q,;: A'-+ G 

which covers q,, and such that <Po is the inclusion map. Since A' is connected 
q,; must coincide with a right translation by an element a, in G. One can then 
easily see that 

r,(y) = a,- 1ya,, yer,teM. 

3 We have recently strengthened this result, as follows: We need no longer assume r is finitely 
generated, and we can relax the boundary condition, rigidity at oo, to the condition that with respect 
to an invariant measure on G/r,, the f'! are square integrable (the f'! are defined after (8), below). 
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With some further argument one can show that the a,'s can be chosen so that 
t -+ a, is a C00 map. It then follows that (!J, M, m, x, 0) is trivial. Q.E.D. 

The vector fields X A on G are right invariant and hence induce vector fields 
(again denoted by X A) on !J. Similarly the roA on G induce forms (again denoted 
by roA) on m. Assume we could construct a C" vector field Yon !J such that 

(3) m.(Y) = o/ot, 

(where m* is the map on vector fields induced by m, and where iJ/ot is the vector 
field on the interval M corresponding to the parameter t1 and such that on 
each fiber Y is a C00 vector field with all derivatives along the fibers being ct on 
!J, and finally such that 

(4) [XA, Y) = 0, A. = l, ••·,PL 

Then from (3), (4), and the theory of ordinary differential equations we have that 
whenever A c G/f" is a relatively compact set we can find tA such that 0 < tA < ~. 
and a one-parameter family of maps 

</J,: A-+ !J, 
such that 

</J,(A) c G/r,, 

</J, is a G-map, and </J, is jointly ct+ 1 in t and the A-variables. Thus we obtain 
CH 1 pseudo-triviality of the deformation (!J, M, m, n, 0) (where we shrink ~ if 
necessary). Hence from Proposition 1 we obtain triviality. 
· Thus the proof of the theorem is reduced to finding a continuous vector field 
Y on !J such that Y is C 00 along the fibers, such that all the derivatives of Y along 
the fibers are continuous on !J, and such that Y satisfies (3) and (4). 

From the assumption that the deformation is rigid at ao one can prove the 
following: 

(Shrinking ~ if necessary), we can find an open subset U c !J such 
that mill is proper, and we can find a C00 vector field Yon !J such that 

(S) Y satisfies (3) and such that Y satisfies (4) on !J - D. Integrating by K 
we can assume Y is K-invariant (G acts to the left in !J). 

4. Cohomology. Let Y be any C 00 vector field on !J satisfying (3) and define 
the C00 functions f ~ on !J by 

(6) [XA, Y) = ~j~X,.; 
II 

this makes sense since m.([X A• YD = 0. 
From now on we will use the Eisenstein summation convention. From the 

Jacobi identity we have 

(7) (X,.f'). - XAf:) = C}.pf: + C:Af; - f~C:p· 

On the other hand let Y' be a second C00 vector field on !J satisfying (3). Then 
Y' - Yis a vertical vector field (m.(Y' - Y) = 0), and thus can be expressed as 
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a linear combination Of the X A: that is, We have 

Y' = Y + </>''Xµ, 

where the </>'' are ca:i functions on m. 
A direct computation yields 

f'f = f~ + {X A<f>P) + <J>Pqp, 

where the f'f are defined as in (6), but using Y' instead or Y. From now on we 
assume that Y is K-invariant so we have 

(8) [Xm, Y] = 0, oc = r + 1, · · ·, n. 

Hence the f ! are all zero. Moreover, for each t e M let f'f denote the restriction 
orf~ to m- 1{t); then let 

0, = f'fXµ@ WA. 

One can show that O(X 2)'21 , the Lie derivative of n, with respect to X m• is zero. 
Thus using S. Murakami's notation in [4], one may identify n, with an element 
of A 1{r,, X, ad) {one should note, however, that we have interchanged left and 
right; that is, for us K acts on the left and r on the right, while in [4] it is the 
other way aroundi From now on we will make free use or the material and 
notation introduced in [4]. Thus letting d denote the coboundary operator on 
the complex 

A(r,, X, ad)= L Aq{r,, X, ad) {direct sum), 

we have that equation (7) just expresses the fact that for each t e M 

(9) dQ, = 0. 

Using a suitable metric on <» and a suitable complete Riemannian metric on G 
one can introduce a positive definite inner product { , ) on A. = A.{r,, X, ad), 
the set of all forms in A{r,, X, ad) with compact support. On A(r,, X, ad) one 
can now introduce a coboundary operator o and then the Laplacian A = do + od. 
These operators have decompositions 

d = D +dad• 

o = D• +bad• 

A= Ao+ Aad• 

where A0 = DD• + D.D, Aad = d.doad + oaddad· Restricted to A., d and o are 
adjoints of each other and likewise D and dad are adjoints of D. and Oad• respec­
tively. Now if A e A. 

where by our above remarks 

{AaA, A) = (DA, DA) + (D.A, D.A) ~ 0, 
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so we obtain an inequality 
(AA, A) ~ (AuA, A). 

For Ae Ac, let llAll 2 =(A, A). Then (M, A)= lldAll 2 + llc5All 2, and using the 
computation in [6], one can find a constant b > 0 such that for all A in A1(r,, 
X,ad) 

(A.dA, A) ~ bllAll 2• 

Combining this with the previous inequalities, we obtain the inequality 

(10) A e A:(r,, X, ad), 

where b does not depend on A. 
Now given any locally constant vector bundle E on a c«> manifold N with 

Riemannian metric ds2 , we can define co homology on N with coefficients in the 
sheaf of germs of locally constant sections of E. Then we can resolve by differential 
forms with values in the sections of E, and by means of a metric on the fibers 
of E, introduce harmonic analysis. Let d and c5 denote the corresponding boun­
dary and coboundary operators, respectively. 

DEFINITION 6. We say E is W11-elliptic with respect to ds2, if we can find a 
metric on E and b > 0 such that whenever A is a C«> q-form on N with values in 
the sections of E, and with compact support, we have the inequality 

Thus by (10), we have W1-ellipticity in our situation (strictly speaking, we are 
working with the locally constant vector bundle on K>..,G/r, built out of Killing 
vector fields on that space). 

When (ds)2 is complete, then we have in analogy with the theory of holomorphic 
vector bundles (see [2] and [3Ji 

LEMMA 1. If E is W 11-elliptic with respect to the complete metric ds2, if A is a 
square integrable, c«> q-form with values in the sections of E, and if dA = 0, then 
we can.find a C00 (q - 1)-form <I> with values in the sections of E, such that d<I> = A. 
Moreover, <I> may be chosen in a ca~onical manner, once given the metric on the 
fibers of E. 

Now choosing Y as in (5) we may assume n, has compact support for all t in M. 
By Lemma 1 we have a canonical <I>, in A0(r,, X, ad) such that d<I>, = n, (in our 
case <I>, is unique by Borel's density theorem). Moreover, in analogy with the 
results in [3] we have 

LEMMA 2. <I>,, together with all its derivatives in the direction of the .fibers, is 
jointly continuous in t and in the fiber variables on m. 

For fixed t, <I>, is a vector field on G/r,. Thus, letting t vary, Lemma 2 implies 
that <I>, is a continuous, vertical vector field on me m.(<I>,) = 0) which is C00 along 
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the fibers. The fact that for each fixed t in M 

dell, - n,, 
implies that the vector field Y - cD, on tJ satisfies (3) and (4i Thus, using our 
previous observation, we see that Lemmas 1 and 2 imply the theorem. 
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On the Conjugacy of Subgroups of Semisimple Groups 
BY 

G. D. MOSTOW* 

1. We sketch here a proof of a theorem which may be regarded as an inter­
mediate result on the problem of rigidity of subgroups of semisimple groups. 

Let G be a connected semisimple real Lie group having no compact normal 
subgroup of positive dimension. Let p be a faithful representation of G such 
that p(_K) consists of unitary matrices, K being a maximal compact subgroup of G. 
Then the map 

g-+ p(gyp(_g) 

defines a map of the symmetric space X = G/K into the real linear space S of 
hermitian matrices, and accordingly one gets an embedding of X into the real 
projective space P associated with S. The topological closure X of X in P is the 
Satake p-compactification of G/K. 

THEOREM. Let rand r' be closed subgroups ofG with G/r and G/r' having finite 
invariant measure. Let 8 : r -+ r be an isomorphism and ti> : X -+ X be a diffeo­
morphism such that 

t/>(yx) = B(y)t/>(x) for all ')' E r, X EX. 

Then 8 is the restriction to r of an automorphism of G. 

Our proof of the above theorem rests heavily on some facts about restricted 
root systems whose proofs entail case-by case checking of diagrams, which 
regrettably I have not been able to avoid. I take this opportunity to express my 
appreciation to N. Iwahori and T. Tamagawa with whom I have had helpful 
conversations. 

2. Let G' be a semisimple algeb1 e&ic linear group defined over the field R of 
real numbers, let T* be a maximal R-split torus in G' and let T be a maximal 
torus defined over R and containing T*. Let ti> denote the set of roots on T and 
ti>* the set of restricted roots on T*. Let A* denote a fundamental system in ti>* 
and let A denote a fundamental system in ti> which restricts to A*. Let ti>+ and 4>'! 
denote the positive roots in ti> and ti>* with respect to A and A* respectively. Let 
ti>+ denote the roots in ti> which restrict to elements in 4>'!. 

For any Lie group F we denote by F0 the topologically connected component 
of the identity in F, and by F the Lie algebra of F. Z( ) denotes the centralizer of 
( ). 

•Supported in part by NSF GP4288. 
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Write G = (G8)0, H = (T8 ) 0, and A = (TJ)0 • We have Z(T*) = L · T* where 
L is R-anisotropic; that is L 8 is compact. Set M = L n G. Write g[x] = gxg- 1 

for g, xe G. 
Given any semisimple automorphism x of a complex linear space, one can 

write x uniquely in the form x = xM · xA where xA and xM are commuting semi­
simple elements whose eigenvalues are positive real and of modulus one res­
pectively. We call xA the modulus of x. Any algebraic group containing x contains 
XM and XA. 

A semisimple element x E G is called R-regular if and only if 

dim Z(xA) n G ~dim Z(yA) n G 

for ally e G. One sees readily that a semisimple element is R-regular if and only 
if it is conjugate to an element in MA 1 where A 1 denotes the subset of elements in 
A such that et(x) > 1 for all ix e A*. 

THEOREM 1. Let x be a semisimple R-regular element of G. Then for any y E G, 
x"y is a semisimple R-regular element for all large n. 

COROLLARY 1. Let r be a closed subgrgup such that G/r has finite invariant 
measure. Then G[r] n His Zariski-dense in H. 

COROLLARY 2. Let s be a proper Zariski-closed subset of H. Given }'Er, there 
is an element y1 e G[H - SJ such that yyj E G[H - S] for all positive n. 

3. The central algebraic fact underlying our main theorem is the following 

THEOREM 2. Let t be an automorphism of T which stabilizes T* and <1>+. Then t 
stabilizes <I>. 

What must be shown is that t stabilizes <I> - (±<I>+); that is, the roots occurring 
in Z(T*). Our proof consists of deducing from the fact that Z(T*) has a special 
structure that t preserves the Killing form of G. 

In greater detail, we can reduce Theorem 2 to the case that G' is simple after 
showing 

(1) Any automorphism of a connected R-restricted diagram A* can be lifted 
to an automorphism of A ; 

(2) Given two R-simple groups G 1 and G2, let t: T1 -+ T2 be an isomorphism 
sending T! to T! and <1>: to <1>;. Then G 1 and G2 are isomorphic and t can be 
induced by an isomorphism of G1 to G2 • 

For the case that G' is a simple group, one proves: 
(3) Let W" denote the stabilizer of T* in the Weyl group of T, and let L denote 

the commutator subgroup of the connected component of the identity in Z(T*). 
Then t n L is a direct sum of at most two irreducible subspaces of WA. If 
t n L = Ti + t 2 is the decomposition of t n L into WA irreducible subspaces, 
then L = L1 + L2 with L; n t = 'fi, and L1 simple and isomorphic to no ideal 
of L2 • 
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My proof for each of these facts involves diagram checking. 
Let B and B0 denote the Killing forms of G and Z(T*) respectively. Set 

B' = L oc2 (oc e <1>+). Then B = 2B' + B0 • We have 

(direct). 

These summands are orthogonal with respect to both B0 and B', hence with res­
pect to B'. Moreover, B' is proportional to Bon each of the above three sum­
mands. Since t preserves B', it must therefore preserve B. 

The Weyl reflections generated by the roots in <1>+ generate the Weyl group W 
and hence t stabilizes W. Since any reflection in W is the reflection of a root in <I>, 
it follows that t stabilizes <I>. 

4. The Satake p-compactification may be described as follows. Let ti: denote 
the subset of ti* consisting of all oc e ti* satisfying: 

If p = p1 + · · · + p" is the decomposition of p into irreducible components 
and µi is the highest restricted weight of pi, then µi - oc is a restricted weight of pi 
for some i. 

Set EP =ti* - ti:, the complement of ti: in ti*. Then 

x-+ p(x)'p(x) 

defines a faithful embedding of X if and only if EP contains no connected com­
ponent of A*. The Killing form induces an inner product on <I>* and we can 
describe EP as the set of elements in ti* which are orthogonal to the highest 
restricted weights µ 1, ••• , µ". 

Any subset E0 of A* containing no connected component of A* has the form 
EP for some p defining a faithful embedding of X. Such a subset E0 is called 
faithful. 

Let E0 be a faithful subset of A*. A subset E of A* is called E0 -reduced if E0 

contains no connected components of E; if p is irreducible, this is equivalent to 
the condition that E u {µp} is connected where µP is the highest restricted weight 
of p. (This is what Satake calls p-open in [2] and Moore called E0-connected in 
[l].) For any E0 -reduced set E, we pu~ 

E+ =Eu all components in E0 not connected to E. For any subset E c A*, 
let N(E) denote the unipotent subgroup whose Lie algebra is L a. (oc > 0, 
oc ¢ {E}) the linear span of E being denoted by {E}. Let P(E) denote the normalizer 
of N(E) in G, and let G(E) denote the analytic subgroup whose Lie algebra is the 
commutator subalgebra of L. a. (oc E {E}). Let R(E) denote the radical of P(E)0• 

Then P(E) contains Z(A) and P(E) = G(E) · R(E) · Z where Z is the finite group 
T* n M. Let K(E) denote a maximal compact subgroup of G(E). Set 

X(E) = G(E)/K(E). 

The boundary X - X of the Satake compactification is a finite union of G-orbits 
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each of the form G X PIE+JX(E~ where the sets E range over all the £ 0-reduced 
subsets. The topology on X is such that the subset X(E) has in its closure the 
subsets X(E1) with £ 1 c E. The subgroup P(E+) is the stabilizer of X(E) and the 
stabilizer of a point in the orbit G XP<E+ 1X(E) is conjugate to 

S(E) = K(E)(Z(G(E) n P(E+)) · R(E+). 

P(E+)/S(E) can be identified with G(E)/K(E). 
The lowest dimensional orbit is denoted by X 0 and may be identified with 

G/P(E0 ). Set P0 = P(E0 ). 

The points in X 0 can be characterized as follows: 

LEMMA. A point p of X is in X 0 if and only if there is a g e G which is contractive 
at P that is, there is a neighborhood U of p in X such that 

lim g"(U) = p. 
n-ao 

For any element g e G, we denote by g* the point gK in X. If g is an R-regular 
semisimple element, then 

(a) (g")* approaches a limit p9 in X 0, 

(b) g is contractive at p9 , 

(c) g has exactly m/m0 fixed points in X 0 

where m amd m0 denote the orders of the R-restricted Weyl groups of G and P0 

respectively. The point p11 is the unique coset xP0 such that g e xP0 x- • and g is 
contractive on X 0 at P,. Conversely, property (c) implies that g is a semisimple 
R-regular element. This results from the following 

LEMMA. Let G be a connected algebraic linear group defined over the field k. 
Let m and m0 denote the orders of the k-restricted Weyl groups of G and P res­
pectively. Let x be an element in Gi. which lies in only a.finite number of conjugates 
of P defined over k. Then x lies in at most m/m0 conjugates defined over k. Assume 
moreover that P contains no normal subgroup of G containing a k-split torus of 
positive dimension. Then x is contained in exactly m/m0 conjugates of P defined 
over k if and only if x is semisimple and the center of Z(x) contains a maximal 
k-split torus of G. If Ad x is unipotent and x lies in only a finite number of con­
jugates over P over k, then x lies in only one. If P is a minimal parabolic subgroup 
over k, then x lies in only one conjugate of P over k if and only if Ad x is unipotent. 

The above lemma generalizes the result of Steinberg on regular elements as 
defined in [4]. 

5. Let q,: X -+ X be a homeomorphism (not yet assumed to be a diffeomor­
phism) equivariant with respect to the isomorphism 6: r-+ r'. 

Let y be an R-regular semisimple element in r. Then y is contractive at 
Py = limn- 00 (y")*. Hence O(y) is contractive at t/>(py). Consequently Py and t/>(py) 
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are in X 0 by the lemma above. Now rp7 is topologically dense in X 0 by virtue 
of the following 

LEMMA. Let G be a semisimple analytic group and r a subgroup such that G/f' 
has.finite invariant measure. Then rP is topologically dense in G for any parabolic 
subgroup P of G. 

Inasmuch as <J>(rp7) = 6(r)<J>(p7) we see that </>(X 0) = X 0. 
We now add the hypothesis that <I> is differentiable on X 0• 

LEMMA. There is an automorphism t of Hand a Zariski-dense subset 

H,cHnMA1 

such that hand t(h) operate equivalently on X 0 for any heH,. 

PROOF. Let p0 = limn-+ao (a")•, where aeA1• Let V denote the tangent space 
to X 0 at p0 ; V may be identified with G//>0 • For any element he H, let Ii denote 
canonical image of h in GL(V). Let C be a Cartan subgroup of GL(V) which 
contains H. 

For any ye r, write y' = O(y). For any one-to-one maps e and ,,, we write 
e[11] for ,,,,- 1, and for any g E G, we shall denote by the same letter the canonical 
action of g on X 0 • 

Given any R-regular semisimple ye r, one can find elements g and g' in G such 
that g[y] e H and g'[y'] e H. From <J>(yp) = y' <J>(P) we see that <J>y = y' <I> or 

Hence 
y' = <J>y<J> - 1 = <l>b). 

g'(y'] = g'[<J>(y]] = g'[<J>[g- lg[y ]]] 

= (g'<J>g- l)[g[y]]. 

Let u., denote the differential at p0 of g'<J>g- 1. Then 

Consequently, there is a t 7 in the Weyl group W of C such that 

g'[y') = t.,(g[y]). 

For any t e W, let H, denote the subset of H n MA 1 n G[r] on which the map 
g[y] -+ t1 has the constant value t. From Corollary I of §2 it follows that 
H n MA 1 n G[r] is Zariski dense in H. Since Wis finite, H, is Zariski dense in 
H for some t. For such a t, t(H,) c H implies t(H) = H. From this the lemma 
follows, when we denote by t the automorphism of H induced by t. 
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Let S 1 denote the union of the H,, t e W, such that H, is not Zari ski dense in H. 
Let S denote the union of the Zariski-closure of S 1 and the set of non R-regular 
elements in H. Then Sis a proper Zariski-closed subset of H. 

Now any he H keeps fixed the finite set of points WAp0, where WA is the 
normalizer of A. Any t with H 1 dense in H stabilizes A and permutes the roots 
<J>Eo occuring in the nilradical of P(E0) as well as the roots U w<l>E0 (we WA). The 
latter is the set of all roots having nonconstant restrictions on T*; indeed t 
permutes <1>+. By Theorem 2, t stabilizes <I>. Hence 

Tr Ad h = Tr Ad t(h) for all h e H. 

It follows that 

Tr Ady = Tr Ad O(y) for all ye G[H - SJ n r. 

No generality is lost in identifying y with Ady, that is, replacing G by its adjoint 
group. Given any / er, we can find a y1 e G[H - SJ such that 'l''l'i e G[H - S) for 
all positive n, by Corollary 2 of §2. Hence 

Tr 'l"l'7 = Tr O('l"l'i) = Tr O(y)O(y1)", n > 0. 

Since ')1 1 is invertible, we may write 1 = c1y1 + c2yf + · · · + c11,')1 1 = .f(y1). Then 
Tr 'l' = Tr y/(y1) = Tr O(y)/(O(y 1)) = Tr O(y), since /(O(y 1)) = 1. Reasoning as 
does Selberg in [3], 

for any constants c1 • It follows that y-. O(y) extends to a linear mapping of the 
associative enveloping algebra e(r) : e(r)-. e(O(r)), that is, an automorphism of the 
semisimple associative algebra e(Gi This automorphism sends r to O(r) and 
hence the Zariski closure of r to that of O(r); that is, the automorphism keeps G 
stable. 

6. A few concluding remarks are in order. The proof we presented above does 
not use the full hypothesis that <P is a diffeomorphism. We use only that <P is a 
homeomorphism on X u X 0 and a diffeomorphism on X 0• I conjecture and in 
some cases can prove that if <P is a homeomorphism of X equivariant with 
respect to 6, then <P can be extended to be continuous on X u X 0• If 61 0 ~ t ~ 1 
is a deformation of r, and if q,,, 0 ~ t ~ 1, is a deformation of X, each <Pr being 
equivariant with respect to 61 , then the unique extension of <Pr to X u X 0 should 
presumably be differentiable if G has no compact factors or factors of rank 1. 
In that sense the problem of rigidity is reduced to showing 

(1) the existence of the deformation q,, of X, 
(2) the differentiability of the extension of <Pr to X 0 • 
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schemes, aemiaimple group, 99 
Schrtidinger representation, 361 
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