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PREFACE TO THE THIRD EDITION

NO extensive changes have been made in this edition. The most

important are in §§ 80-82, which I have rewritten in accord-

ance with suggestions made by Mr S. Pollard.

The earlier editions contained no satisfactory account of the

genesis of the circular functions. I have made some attempt to

meet this objection in § 158 and Appendix III. Appendix IV is also

an addition.

It is curious to note how the character of the criticisms I have

had to meet has changed. I was too meticulous and pedantic for

my pupils of fifteen years ago: I am altogether too popular for the

Trinity scholar of to-day. I need hardly say that I find such

criticisms very gratifying, as the best evidence that the book has

to some extent fulfilled the purpose with which it was written.

G. H. H.

August 1921

EXTRACT FROM THE PREFACE TO
THE SECOND EDITION

THE principal changes made in this edition are as follows.

I have inserted in Chapter I a sketch of Dedekind's theory

of real numbers, and a proof of Weierstrass's theorem concerning

points of condensation; in Chapter IV an account of 'limits of

indetermination ' and the 'general principle of convergence'; in

Chapter V a proof of the ' Heine-Borel Theorem ', Heine's theorem

concerning uniform continuity, and the fundamental theorem

concerning implicit functions ; in Chapter VI some additional

matter concerning the integration of algebraical functions ; and

in Chapter VII a section on differentials. I have also rewritten

in a more general form the sections which deal with the defini-

tion of the definite integral. In order to find space for these

insertions I have deleted a good deal of the analytical geometry

and formal trigonometry contained in Chapters II and III of

the first edition. These changes have naturally involved a

large number of minor alterations.

G. H. H.

October 1914



EXTEACT FROM THE PREFACE TO THE
FIRST EDITION

THIS book has been designed primarily for the use of first

year students at the Universities whose abilities reach or

approach something like what is usually described as ' scholarship

standard'. I hope that it may be useful to other classes of

readers, but it is this class whose wants I have considered first.

It is in any case a book for mathematicians : I have nowhere

made any attempt to meet the needs of students of engineering

or indeed any class of students whose interests are not primarily

mathematical.

I regard the book as being really elementary. There are

plenty of hard examples (mainly at the ends of the chapters) : to

these I have added, wherever space permitted, an outline of the

solution. But I have done my best to avoid the inclusion of

anything that involves really difficult ideas. For instance, I make

no use of the ' principle of convergence ' : uniform convergence,

double series, infinite products, are never alluded to : and I prove

no general theorems whatever concerning the inversion of limit-

operations—I never even define ~L- and tt^-. In the last twor oxoy oyox

chapters I have occasion once or twice to integrate a power-series,

but I have confined myself to the very simplest cases and given

a special discussion in each instance. Anyone who has read this

book will be in a position to read with profit Dr Bromwich's

Infinite Series, where a full and adequate discussion of all these

points will be found.

September 1908
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CHAPTER I

REAL VARIABLES

1. Rational numbers. A fraction r =p/q, where p and q
are positive or negative integers, is called a rational number. We
can suppose (i) that p and q have no common factor, as if they

have a common factor we can divide each of them by it, and

(ii) that q is positive, since

pl(r ?) = (-p)/q> (-p)K- q)=p/q-

To the rational numbers thus denned we may add the ' rational

number ' obtained by taking p = 0.

We assume that the reader is familiar with the ordinary

arithmetical rules for the manipulation of rational numbers. The
examples which follow demand no knowledge beyond this.

Examples I. 1. If r and s are rational numbers, then r + s, r - s, rs, and

rjs are rational numbers, unless in the last case s=0 (when rjs is of course

meaningless).

2. If X, m, and n are positive rational numbers, and m > n, then

X(m2 — ?i
2
), 2X«m, and X(m2+ ;i

2
) are positive rational numbers. Hence show

how to determine any number of right-angled triangles the lengths of all of

whose sides are rational.

3. Any terminated decimal represents a rational number whose denomi-

nator contains no factors other than 2 or 5. Conversely, any such rational

number can be expressed, and in one way only, as a terminated decimal.

[The general theory of decimals will be considered in Ch. IV.]

4. The positive rational numbers may be arranged in the form of a simple

scries as follows

:

l i l J 2 14 3 2 1
1) 1> 2 5 D 2» 3' 1) 2> 3 5 it""

Show that p/q is the [^ (p + q - 1) (p+ q - 2) + q]th term of the series.

[In this series every rational number is repeated indefinitely. Thus 1

occurs as {, f , %

,

.... We can of course avoid this by omitting every number

H. 1



2 REAL VARIABLES [i

which has already occurred in a simpler form, but then the problem of deter-

mining the precise position of pjq becomes more complicated.]

2. The representation of rational numbers by points

on a line. It is convenient, in many branches of mathematical

analysis, to make a good deal of use of geometrical illustrations.

The use of geometrical illustrations in this way does not, of

course, imply that analysis has any sort of dependence upon

geometry : they are illustrations and nothing more, and are em-

ployed merely for the sake of clearness of exposition. This being

so, it is not necessary that we should attempt any logical analysis

of the ordinary notions of elementary geometry; we may be content

to suppose, however far it may be from the truth, that we know

what they mean.

Assuming, then, that we know what is meant by a straight

line, a segment of a line, and the length of a segment, let us take

a straight line A, produced indefinitely in both directions, and a

segment A
(>
A

1 of any length. We call A the origin, or the point

0, and J.! the point 1, and we regard these points as representing

the numbers and 1.

In order to obtain a point which shall represent a positive

rational number r=p/q, we choose the point A r such that

A A rjA A
1
= r,

A A r being a stretch of the line extending in the same direction

along the line as A A U a direction which we shall suppose to be

from left to right when, as in Fig. 1, the line is drawn horizontally

across the paper. In order to obtain a point to represent a

1 j 1 1 !

A- s A_i A A x
A,

Fig. 1.

negative rational number r = — s, it is natural to regard length as

a magnitude capable of sign, positive if the length is measured in

one direction (that of ^o^), and negative if measured in the

other, so that AB = — BA ; and to take as the point representing

r the point A_s such that

A A_S
= — A_S A = — A A 8 ,
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We thus obtain a point A r on the line corresponding to every

rational value of r, positive or negative, and such that

A A r = r . AqAx)

and if, as is natural, we take A A
t as our unit of length, and write

A A
1
= 1, then we have

A A r = r.

We shall call the points A r the rational points of the line.

3. Irrational numbers. If the reader will mark off on the

line all the points corresponding to the rational numbers whose

denominators are 1, 2, 3, ... in succession, he will readily convince

himself that he can cover the line with rational points as closely

as he likes. We can state this more precisely as follows : if we

take any segment BG on A, we can find as many rational points as

we please on BG.

Suppose, for example, that BG falls within the segment A X
A,.

It is evident that if we choose a positive integer k so that

k.BC>l (1),*

and divide A 1
A 2 into k equal parts, then at least one of the points

of division (say P) must fall inside BG, without coinciding with

either B or C. For if this were not so, BG would be entirely

included in one of the k parts into which A XA 2 has been divided,

which contradicts the supposition (1). But P obviously corre-

sponds to a rational number whose denominator is k. Thus at

least one rational point P lies between B and G. But then we

can find another such point Q between B and P, another between

B and Q, and so on indefinitely ; i.e., as we asserted above, we can

find as many as we please. We may express this by saying that

BG includes infinitely many rational points.

The meaning of such phrases as 'infinitely many' or '•an infinity of, in

such sentences as ' BG includes infinitely many rational points ' or ' there are

an infinity of rational points on BG' or 'there are an infinity of positive

integers', will be considered more closely in Ch. IV. The assertion 'there are

an infinity of positive integers ' means ' given any positive integer n, however

large, we can find more than n positive integers'. This is plainly true

* The assumption that this is possible is equivalent to the assumption of what

is known as the Axiom of Archimedes.

1—2
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whatever n may be, e.g. for n= 100,000 or 100,000,000. The assertion means

exactly the same as ' we can find as many positive integers as we please '.

The reader will easily convince himself of the truth of the following

assertion, which is substantially equivalent to what was proved in the second

paragraph of this section : given any rational number r, and any positive

integer n, we can find another rational number lying on either side of r and

differing from r by less than 1/n. It is merely to express this differently to

say that we can find a rational number lying on either side of r and differing

from r by as little as we please. Again, given any two rational numbers
}• and s, we can interpolate between them a chain of rational numbers in

which any two consecutive terms differ by as little as we please, that is to

say by less than 1/n, where n is any positive integer assigned beforehand.

From these considerations the reader might be tempted to

infer that an adequate view of the nature of the line could be

obtained by imagining it to be formed simply by the rational

points which lie on it. And it is certainly the case that if we

imagine the line to be made up solely of the rational points,

and all other points (if there are any such) to be eliminated,

the figure which remained would possess most of the properties

which common sense attributes to the straight line, and would,

to put the matter roughly, look and behave very much like

a line.

A little further consideration, however, shows that this view

would involve us in serious difficulties.

Let us look at the matter for a moment with the eye of

common sense, and consider some of the properties which we may

reasonably expect a straight line to possess if it is to satisfy the

idea which we have formed of it in elementary geometry.

The straight line must be composed of points, and any segment

of it by all the points which lie between its end points. With

any such segment must be associated a certain entity called its

length, which must be a quantity capable of numerical measure-

ment in terms of any standard or unit length, and these lengths

must be capable of combination with one another, according to

the ordinary rules of algebra, by means of addition or multipli-

cation. Again, it must be possible to construct a line whose

length is the sum or product of any two given lengths. If the

length PQ, along a given line, is a, and the length QR, along

the same straight line, is b, the length PR must be a + b.
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Moreover, if the lengths OP, OQ, along one straight line, are

1 and a, and the length OR along another straight line is b,

and if we determine the length OS by Euclid's construction (Euc.

VI. 12) for a fourth proportional to the lines OP, OQ, OR, this

length must be ab, the algebraical fourth proportional to 1, a, b.

And it is hardly necessary to remark that the sums and products

thus defined must obey the ordinary ' laws of algebra
'

; viz.

a + b = b + a, a + (b 4- c)==(a+b) + c,

ab = ba, a (be) = (ab) c, a(b + c) = ab + ac.

The lengths of our lines must also obey a number of obvious

laws concerning inequalities as well as equalities : thus if

A, B, C are three points lying along A from left to right, we must

have AB< AC, and so on. Moreover it must be possible, on our

fundamental line A, to find a point P such that A P is equal to

any segment whatever taken along A or along any other straight

line. All these properties of a line, and more, are involved in the

presuppositions of our elementary geometry.

Now it is very easy to see that the idea of a straight line as

composed of a series of points, each corresponding to a rational

number, cannot possibly satisfy all these requirements. There are

various elementary geometrical constructions, for example, which

purport to construct a length x such that x2 = 2. For instance, we

Fig. 2.

may construct an isosceles right-angled triangle ABC such that

AB = AC=1. Then if BC= x, x~ = 2. Or we may determine

the length x by means of Euclid's construction (Euc. vi. 13) for

a mean proportional to 1 and 2, as indicated in the figure. Our

requirements therefore involve the existence of a length measured

by a number x, and a point P on A such that

A QP = x, x2 = 2.
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But it is easy to see that there is no rational number such that

its square is 2. In fact we may go further and say that there

is no rational number whose square is m/n, where mjn is any

positive fraction in its lowest terms, unless m and n are both

perfect squares.

For suppose, if possible, that

p"jq- = m/n.

p having no factor in common with q, and m no factor m common
with n. Then np2 = mq2

. Every factor of q
2 must divide np2

, and

as p and q have no common factor, every factor of q
2 must divide

n. Hence n=\q2
, where A. is an integer. But this involves

m = Xp2
: and as m and n have no common factor, A must be unity.

Thus m =p2
, n = q

2
, as was to be proved. In particular it follows,

by taking n— 1, that an integer cannot be the square of a rational

number, unless that rational number is itself integral.

It appears then that our requirements involve the existence of

a number x and a point P, not one of the rational points already

constructed, such that A P = cc, x2 = 2; and (as the reader will

remember from elementary algebra) we write x = *J2.

The following alternative proof that no rational number can have its

square equal to 2 is interesting.

Suppose, if possible, that p/q is a positive fraction, in its lowest terms,

such that (p/q)
2= 2 or p2= 2q2

. It is easy to see that this involves

(2q—p)2= 2(p-q) 2
; and so (Zq-p)/(p — q) is another fraction having the

same property. But clearly q<p<2q, and so p — q<q. Hence there is

another fraction equal to pjq and having a smaller denominator, which

contradicts the assumption that p/q is in its lowest terms.

Examples II. 1. Show that no rational number can have its cube equal!

to 2.

2. Prove generally that a rational fraction p/q in its lowest terms cannot

be the cube of a rational number unless p and q are both perfect cubes.

3. A more general proposition, which is due to Gauss and includes those

which precede as particular cases, is the following: an algebraical equation

xn+p1
xn~ 1 + p2xn

- 2+ ...+pn=Q,

with integral coefficients^ cannot have a rational but non-integral root.

[For suppose that the equation has a root a/b, where a and 6 are integers
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without a common factor, and b is positive. Writing a/6 for x, and multiply-
ing by b11

' 1
, we obtain

an
--j~=p

1
an - 1 +p2 an

- 2 b+ ...+pn b
n ~\

a fraction in its lowest terms equal to an integer, which is absurd. Thus b= 1

and the root is a. It is evident that a must be a divisor ofpn .\

4. Show that if^>rt=l and neither of

1 +^1+^2+^3+ ." , *-pi+Ps-p3+:>

is zero, then the equation cannot have a rational root.

5. Find the rational roots (if any) of

xa _ 4^3 _ 8x2+ 1 3 v + -i () _ 0.

[The roots can only be integral, and so +1, +2, +5, +10 are the only

possibilities : whether these are roots can be determined by trial. It is clear

that we can in this way determine the rational roots of any such equation.]

4. Irrational numbers (continued). The result of our

geometrical representation of the rational numbers is therefore to

suggest the desirability of enlarging our conception of ' number

'

by the introduction of further numbers of a new kind.

The same conclusion might have been reached without the use

of geometrical language. One of the central problems of algebra

is that of the solution of equations, such as

x~ = 1, x'
2 = 2.

The first equation has the two rational roots 1 and — 1. But,

if our conception of number is to be limited to the rational

numbers, we can only say that the second equation has no roots

;

and the same is the case with such equations as x3 = 2, x4 = 7.

These facts are plainly sufficient to make some generalisation of

our idea of number desirable, if it should prove to be possible.

Let us consider more closely the equation x1 — 2.

We have already seen that there is no rational number x which

satisfies this equation. The square of any rational number is

either less than or greater than 2. We can therefore divide the

rational numbers into two classes, one containing the numbers

whose squares are less than 2, and the other those whose squares

are greater than 2. We shall confine our attention to the positive

rational numbers, and we shall call these two classes the class L, or

the lower class, or the left-hand class, and the class R, or the upper
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class, or the right-hand class. It is obvious that every member of

R is greater than all the members of L. Moreover it is easy to

convince ourselves that we can find a member of the class L whose

square, though less than 2, differs from 2 by as little as we please,

and a member of R whose square, though greater than 2, also

differs from 2 by as little as we please. In fact, if we carry out

the ordinary arithmetical process for the extraction of the square

root of 2, we obtain a series of rational numbers, viz.

1, 14, 141. 1414, 14142,...

whose squares

1, 1-96, 1-9881, 1-999396, 1-99996164,...

are all less than 2, but approach nearer and nearer to it ; and by

taking a sufficient number of the figures given by the process we

can obtain as close an approximation as we want. And if we

increase the last figure, in each of the approximations given above,

by unity, we obtain a series of rational numbers

2, 1-5, 1-42, 1-415, 1-4143,...

whose squares

4, 2-25, 2-0164, 2-002225, 2-00024449,...

are all greater than 2 but approximate to 2 as closely as we please.

The reasoning which precedes, although it will probably convince the

reader, is hardly of the precise character required by modern mathematics.

We can supply a formal proof as follows. In the first place, we can find

a member of L and a member of R, differing by as little as we please. For

we saw in § 3 that, given any two rational numbers a and b, we can construct

a chain of rational numbers, of which a and b are the first and last, and in

which any two consecutive numbers differ by as little as we please. Let us

then take a member x of L and a member y of B, and interpolate between

them a chain of rational numbers of which oo is the first and y the last, and

in which any two consecutive numbers differ by less than 8, 8 being any

positive rational number as small as we please, such as -01 or -0001 or -000001.

In this chain there must be a last which belongs to L and a first which belongs

to R, and these two numbers differ by less than 8.

"We can now prove that an x can be found in L and a y in R such that

2 — x* and y
2 -2 are as small as we please, say less than 8. Substituting %8

for 8 in the argument which precedes, we see that we can choose x and y so

that y — x< J 8 ; and we may plainly suppose that both x and y are less

than 2. Thus

y + x<4, y
2 -x-= (y -x)(y+x) <i{y -x)<8 ;
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and since x"-<1 and ?/
2>2 it follows a fortiori that 2-x2 and y-

less than 8.

2 arc each

It follows also that there can be no largest member of L or

smallest member of R. For if x is any member of L, then x~ < 2.

Suppose that x2 = 2 — 8. Then we can find a member x
t

of L
such that Xj

2 differs from 2 by less than 8, and so oc? > x- or x
x
> x.

Thus there are larger members of L than x; and as x is any

member of L, it follows that no member of L can be larger than

all the rest. Hence L has no largest member, and similarly R has

no smallest.

5. Irrational numbers (continued). We have thus divided

the positive rational numbers into two classes, L and R, such that

(i) every member of R is greater than every member of L, (ii) we

can find a member of L and a member of R whose difference is as

small as we please, (iii) L has no greatest and R no least member.

Our common-sense notion of the attributes of a straight line, the

requirements of our elementary geometry and our elementary

algebra, alike demand the existence of a number x greater than all

the member's of L and less than all the members of R, and of

a corresponding point P on A such that P divides the points which

correspond to members of L from those which correspond to members

ofR.

L LL
-i r-H-

R R

Fist. 3.

Let us suppose for a moment that there is such a number x,

and that it may be operated upon in accordance with the laws of

algebra, so that, for example, x2 has a definite meaning. Then a?

cannot be either less than or greater than 2. For suppose, for

example, that x2 is less than 2. Then it follows from what pre-

cedes that we can find a positive rational number £ such that £
2 lies
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between x2 and 2. That is to say, we can find a member of L
greater than x; and this contradicts the supposition that a? divides

the members of L from those of R. Thus x" cannot be less than

2, and similarly it cannot be greater than 2. We are therefore

driven to the conclusion that x2 = 2, and that x is the number

which in algebra we denote by t/2. And of course this number

\J2 is not rational, for no rational number has its square equal to

2. It is the simplest example of what is called an irrational

number.

But the preceding argument may be applied to equations

other than x2 = 2, almost word for word ; for example to x'
2 = N,

where N is any integer which is not a perfect square, or to

x3 = S, x3 =7, #4 = 23,

or, as we shall see later on, to x3 = Sx + 8. We are thus led to

believe in the existence of irrational numbers x and points P on

A such that x satisfies equations such as these, even when these

lengths cannot (as *J2 can) be constructed by means of elementary

geometrical methods.

The reader will no doubt remember that in treatises on elementary algebra

the root of such an equation as afl=n is denoted by v/n or n1 ^, and that a

meaning is attached to such symbols as

by means of the equations

n p «i=(n 1 li)p
,

»»"«»-J»/«=b1.

And he will remember how, in virtue of these definitions, the 'laws of indices'

such as

nr x n*= wr +
', (nr

)
3= n™

are extended so as to cover the case in which r and s are any rational numbers

whatever.

The reader may now follow one or other of two alternative

courses. He may, if he pleases, be content to assume that

'irrational numbers' such as *J2, \/3, ... exist and are amenable to

the algebraical laws with which he is familiar*. If he does this

he will be able to avoid the more abstract discussions of the next

few sections, and may pass on at once to §§ 13 et seq.

If, on the other hand, he is not disposed to adopt so naive an

* This is the point of view which was adopted in the first edition of this book.
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attitude, he will be well advised to pay careful attention to the

sections which follow, in which these questions receive fuller

consideration *.

Examples III. 1. Find the difference between 2 and the squares of the

decimals given in § 4 as approximations to N/2.

2. Find the differences between 2 and the squares of

3. Show that if mjn is a good approximation to s]% then (m+ 2n)l(m + n)

is a better one, and that the errors in the two cases are in opposite directions.

Apply this result to continue the series of approximations in the last

example.

4. If x and y are approximations to ,/2, by defect and by excess respec-

tively, and 2 — x2< S,
y" — 2

<

8, then y-x< 8.

5. The equation x2= 4 is satisfied by x=2. Examine how far the argu-

ment of the pi-eceding sections applies to this equation (writing 4 for 2

throughout). [If we define the classes L, R as before, they do not include all

rational numbers. The rational number 2 is an exception, since 22 is neither

less than or greater than 4.]

6. Irrational numbers (continued). In Jjijwe discussed

a special mode of division of the positive rational numbers x into

two classes, such that x2 < 2 for the members of one class and

x2 > 2 for those of the others. Such a mode of division is called a

section of the numbers in question. It is plain that we could

equally well construct a section in which the numbers of the twro

classes were characterised by the inequalities x3 < 2 and a? > 2, or

x*<7 and x* > 7. Let us now attempt to state the principles

of the construction of such ' sections ' of the positive rational

numbers in quite general terms.

Suppose that P and Q stand for two properties which are

mutually exclusive and one of which must be possessed by every

positive rational number. Further, suppose that every such

number which possesses P is less than any such number which

possesses Q. Thus P might be the property ' x2 < 2
' and Q the

property ' x2 > 2/ Then we call the numbers which possess P the

lower or left-hand class L and those which possess Q the upper or

* In these sections I have borrowed freely from Appendix I of Bromwich's

Infinite Series.
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right-hand class R. In general both classes will exist ; but it may-

happen in special cases that one is non-existent and that every

number belongs to the other. This would obviously happen, for

example, if P (or Q) were the property of being rational, or of

being jjositive. For the present, however, we shall confine

ourselves to cases in which both classes do exist ; and then it

follows, as in § 4, that we can find a member of L and a member
of R whose difference is as small as we please.

In the particular case which we considered in § 4, L had no

greatest member and R no least. This question of the existence

of greatest or least members of the classes is of the utmost im-

portance. We observe first that it is impossible in any case that

L should have a greatest member and R a least. For if I were

the greatest member of L, and r the least of R, so that I < f, then

\ (I + r) would be a positive rational number lying between I and

r, and so could belong neither to L nor to R ; and this contradicts

our assumption that every such number belongs to one class or to

the other. This being so, there are but three possibilities, which

are mutually exclusive. Either (i) L has a greatest member I, or

(ii) R has a least member r, or (iii) L has no greatest member and

R no least.

The section of § 4 gives an example of the last possibility. An example

of the first is obtained by taking P to be ' x2 < 1
' and Q to be ' x2> 1

'

;

here l—\. If P is
( x2 < 1

' and Q is
l x2 > 1,' we have an example of the

second possibility, with r=l. It should be observed that we do not obtain

a section at all by taking P to be ' x2 < 1
' and Q to be ' x2> 1

'
; for the special

number 1 escapes classification (cf. Ex. in. 5).

7. Irrational numbers (continued). In the first two cases

we say that the section corresponds to a positive rational number

a, which is I in the one case and r in the other. Conversely, it is

clear that to any such number a corresponds a section which

we shall denote by a*. For we might take P and Q to be the

properties expressed by

x ^ a, x > a

respectively, or by x < a and x ^ a. In the first case a would be

the greatest member of L, and in the second case the least member

* It will be convenient to denote a section, corresponding to a rational number
denoted by an English letter, by the corresponding Greek letter.
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of R. There are in fact just two sections corresponding to any

positive rational number. In order to avoid ambiguity we select

one of them ; let us select that in which the number itself belongs

to the upper class. In other words, let us agree that we will consider

only sections in which the lower class L has no greatest number.

There being this correspondence between the positive rational

numbers and the sections denned by means of them, it would be

perfectly legitimate, for mathematical purposes, to replace the

numbers by the sections, and to regard the symbols which occur

in our formulae as standing for the sections instead of for the

numbers. Thus, for example, a > a' would mean the same as

a > a, if a and a are the sections which correspond to a and a.

But when we have in this way substituted sections of rational

numbers for the rational numbers themselves, we are almost forced

to a generalisation of our number system. For there are sections

(such as that of § 4) which do not correspond to any rational

number. The aggregate of sections is a larger aggregate than that

of the positive rational numbers ; it includes sections corresponding

to all these numbers, and more besides. It is this fact which we
make the basis of our generalisation of the idea of number. We
accordingly frame the following definitions, which will however be

modified in the next section, and must therefore be regarded as

temporary and provisional.

A section of the positive rational numbers, in which both classes

exist and the lower class has no greatest member, is called a

positive real number.

A positive real number which does not correspond to a positive

rational number is called a positive irrational number.

8. Real numbers. We have confined ourselves so far to

certain sections of the positive rational numbers, which we have

agreed provisionally to call 'positive real numbers.' Before we

frame our final definitions, we must alter our point of view a

little. We shall consider sections, or divisions into two classes,

not merely of the positive rational numbers, but of all rational

numbers, including zero. We may then repeat all that we have

said about sections of the positive rational numbers in §§ 6, 7,

merely omitting the word positive occasionally.
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Definitions. A section of the rational numbers, in which both

classes exist and the lower class has no greatest member, is called

a real number, or simply a number.

A real number ivhich does not correspond to a rational number

is called an irrational number.

If the real number does correspond to a rational number, we

shall use the term ' rational ' as applying to the real number also.

The term 'rational number' will, as a result of our definitions, be

ambiguous; it may mean the rational number of § 1, or the corresponding

real number. If we say that h > i-, we may be asserting either of two different

propositions, one a proposition of elementary arithmetic, the other a proposition

concerning sections of the rational numbers. Ambiguities of this kind are

common in mathematics, and are perfectly harmless, since the relations

between different propositions are exactly the same whichever interpretation

is attached to the propositions themselves. From ?>>A and -jj>j we can

infer 5 > j ; the inference is in no way affected by any doubt as to whether

\, \, and j are arithmetical fractions or real numbers. Sometimes, of course,

the context in which {e.g.) '

\
' occurs is sufficient to fix its interpretation.

When we say (see § 9) that ^<\Z(sX we niust mean by '£' the real number \.

The reader should observe, moreover, that no particular logical importance

is to be attached to the precise form of definition of a ' real number ' that we
have adopted. We defined a ' real number ' as being a section, i.e. a pair of

classes. We might equally well have defined it as being the lower, or the

upper, class ; indeed it would be easy to define an infinity of classes of

entities each of which would possess the properties of the class of real

numbers. What is essential in mathematics is that its symbols should be

capable of some interpretation
;

generally they are capable of many, and

then, so far as mathematics is concerned, it does not matter which we adopt.

Mr Beitrand Kussell has said that 'mathematics is the science in which

we do not know what we are talking about, and do not care whether what

we say about it is true', a remark which is expressed in the form of a

paradox but which in reality embodies a number of important truths. It

would take too long to analyse the meaning of Mr Russell's epigram in detail,

but one at any rate of its implications is this, that the symbols of mathe-

matics are capable of varying interpretations, and that we are in general at

liberty to adopt whichever we prefer.

There are now three cases to distinguish. It may happen that

all negative rational numbers belong to the lower class and zero

and all positive rational numbers to the upper. We describe

this section as the real number zero. Or again it may happen

that the lower class includes some positive numbers. Such a section
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we describe as a positive real number. Finally it may happen

that some negative numbers belong to the upper class. Such

a section we describe as a negative real number*.

The difference between our present definition of a positive real number a

and that of § 7 amounts to the addition to the lower class of zero and all the

negative rational numbers. An example of a negative real number is given

by taking the property P of § 6 to be .r+ l<0 and Q to be .r+1^0.
This section plainly corresponds io the negative rational number - 1. If we
took P to be x3<—2 and Q to be a^> - 2, we should obtain a negative real

number which is not rational.

9. Relations of magnitude between real numbers. It

is plain that, now that we have extended our conception of

number, we are bound to make corresponding extensions of our

conceptions of equality, inequality, addition, multiplication, and so

on. We have to show that these ideas can be applied to the new
numbers, and that, when this extension of them is made, all the

ordinary laws of algebra retain their validity, so that we can

operate with real numbers in general in exactly the same way

as with the rational numbers of § 1. To do all this systematically

would occupy a considerable space, and we shall be content to

indicate summarily how a more systematic discussion would

proceed.

We denote a real number by a Greek letter such as a, /3, y, . .
.

;

the rational numbers of its lower and upper classes by the corre-

sponding English letters a, A; b, B; c, C; .... The classes them-
• selves we denote by (a), (A), .....

If a and ft are two real numbers, there are three possibilities :

(i) every a is a 6 and every A&B\ in this case (a) is identical

with (b) and (A) with (B);

* There are also sections in which every number belongs to the lower or to

the upper class. The reader may be tempted to ask why we do not regard these

sections also as defining numbers, which we might call the real numbers positive

and negative infinity.

There is no logical objection to such a procedure, but it proves to be incon-

venient in practice. The most natural definitions of addition and multiplication do

not work in a satisfactory way. Moreover, for a beginner, the chief difficulty in the

elements of analysis is that of learning to attach precise senses to phrases containing

the word ' infinity '; and experience seems to show that he is likely to be confused by

any addition to their number.
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(ii) every a is a b, but not all A's are B's ; in this case (a) is

a proper part of (&)*, and (B) a proper part of (A)
;

(iii) every A is a B, but not all a's are b's.

These three cases may be indicated graphically as in Fig. 4.

In case (i) we write a = 6, in case (ii) a < 6, and in case

(iii) a> 8. It is clear that, when

a and 8 are both rational, these ? (i)

definitions agree with the ideas of

equality and inequality between + '

("J

rational numbers which we began

by taking for granted; and that i
+ (iii)

any positive number is greater Fig. 4.

than any negative number.

It will be convenient to define at this stage the negative — a

ot a positive number a. If (a), (A) are the classes which consti-

tute a, we can define another section of the rational numbers by

putting all numbers — A in the lower class and all numbers — a

in the upper. The real number thus defined, which is clearly

negative, we denote by — a. Similarly we can define — a when a

is negative or zero ; if a is negative, — a is positive. It is plain

also that — (— 0) = a. Of the two numbers a and — a one is always

positive (unless o = 0). The one which is positive we denote by

I

a
I

and call the modulus of or.

Examples IV. 1. Prove that =- 0.

2. Prove that /3 = a, /3<a, or /3>a according as a=/3, a>/3, or a</3.

3. If a= j3 and /3= y, then a = y.

4. If a ^ ft /3<y, or a</3, /3 ^ y, then a<y.

5. Prove that — /3= —a -/3<-a, or — j3> —a, according as a = /3, a</3,

or a>/3.

6. Prove that a>0 if a is positive, and a<0 if a is negative.

7. Prove that a ^ |
o

|

.

8. Prove that 1< <J2<^3< 2.

9. Prove that, if a and £ are two different real numbers, we can always

find an infinity of rational numbers lying between a and /3.

[All these results are immediate consequences of our definitions.]

* I.e. is included in but not identical with (&).
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10. Algebraical operations with real numbers. We now
proceed to define the meaning of the elementary algebraical opera-

tions such as addition, as applied to real numbers in general.

(i) Addition. In order to define the sum of two numbers
a and ft, we consider the following two classes : (i) the class (c)

formed by all sums c = a + b, (ii) the class (G) formed by all sums
G = A + B. Plainly c < G in all cases.

Again, there cannot be more than one rational number which

does not belong either to (c) or to (0). For suppose there were

two, say r and s, and let s be the greater. Then both r and s

must be greater than every c and less than every G; and so G — c

cannot be less than s — r. But

C-c = (A-a) + (B-b)]

and we can choose a, b, A, B so that both A — a and B—b
are as small as we like ; and this plainly contradicts our

hypothesis.

If every rational number belongs to (c) or to (0), the classes (c),

(G) form a section of the rational numbers, that is to say, a number

7. If there is one which does not, we add it to (G). We have

now a section or real number 7, which must clearly be rational,

since it corresponds to the least member of (G). In any case

we call 7 the sum of a and ft, and write

7 = a + ft.

If both a and /3 are rational, they are the least members of the upper

classes (A) and (B). In this case it is clear that a+0 is the least member
of (C% so that our definition agrees with our previous ideas of addition.

(ii) Subtraction. We define a — ft by the equation

«-/3 = «+(-/3).

The idea of subtraction accordingly presents no fresh difficulties.

Examples V. 1. Prove that a + ( - a) = 0.

2. Prove that a+0=0+ a= a.

3. Prove that a+ /3= /3+ a. [This follows at once from the fact that the

classes (a+b) and (& + a), or (A+B) and (B+A), are the same, since, e.g.,

a-\-b= b+ a when a and b are rational.]

4. Prove that a+ + y )= (a+ /3)+ y.

n. 2
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5. Prove that a - a= 0.

6. Prove that a- /3= - (/3- a).

7. From the definition of subtraction, and Exs. 4, 1, and 2 above, it

follows that

(a-/3)+0= {a + (-/3)]+/3= a+ {(-/3)+ /3} = a + O= a.

We might therefore define the difference a-j3 = y by the equation y+/3= a.

8. Prove that a-0-y) = a-|3+ y.

9. Give a definition of subtraction which does not depend upon a previous

definition of addition. [To define y=a— /3, form the classes (c), (C) for which

c= a — B, C=A-b. It is easy to show that this definition is equivalent to

that which we adopted in the text.]

10. Prove that

||a|-|/9||Sja±|8|S|a|+|0|.

11. Algebraical operations with real numbers {con-

tinued), (iii) Multiplication. When we come to multiplication,

it is most convenient to confine ourselves to 'positive numbers

(among which we may include 0) in the first instance, and to go

back for a moment to the sections of positive rational numbers

only which we considered in §§ 4—7. We may then follow practi-

cally the same road as in the case of addition, taking (c) to be (ab)

and (C) to be (AB). The argument is the same, except when we

are proving that all rational numbers with at most one exception

must belong to (c) or (G). This depends, as in the case of addi-

tion, on showing that we can choose a, A, b, and B so that C— c is

as small as we please. Here we use the identity

C-c = AB-ab = (A -a) B +a(B- b).

Finally we include negative numbers within the scope of our

definition by agreeing that, if a and /3 are positive, then

(-a)/3 = -aft a(-/3) = -«& (-a)(-0) = a0.

(iv) Division. In order to define division, we begin by de-

fining the reciprocal 1/a of a number a (other than zero). Con-

fining ourselves in the first instance to positive numbers and

sections of positive rational numbers, we define the reciprocal of a

positive number a by means of the lower class (1/A) and the upper

class (1/a). We then define the reciprocal of a negative number
— a by the equation l/(— a) = — (1/a). Finally we define a//3 by

the equation

«//3 = ax(l//3).
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We are then in a position to apply to all real numbers, rational

or irrational, the whole of the ideas and methods of elementary
algebra. Naturally we do not propose to carry out this task in

detail. It will be more profitable and more interesting to turn
our attention to some special, but particularly important, classes

of irrational numbers.

Examples VI. Prove the theorems expressed by the followin°-

formulae :

1. ax0=0xa= 0. 2. axl = lxa= a. 3. ax(l/a) = l.

4. a/3= /3a. o. a (/3y)= (a/3) y. 6. a (j8+ y) = a/3 + ay.

7. (a + (S)y= ay+ j3y. 8. | a/3 |
=

|
a

|
|/3 |.

12. The number ^/2. Let us now return for a moment to

the particular irrational number which we discussed in §§ 4—5.

We there constructed a section by means of the inequalities

x2 < 2, x2 > 2. This was a section of the positive rational numbers
only ; but we replace it (as was explained in § 8) by a section of

all the rational numbers. We denote the section or number thus

denned by the symbol *J2.

The classes by means of which the product of V2 by itself is

defined are (i) (aa), where a and a' are positive rational numbers

whose squares are less than 2, (ii) {AA'), where A and A' are

positive rational numbers whose squares are greater than 2. These

classes exhaust all positive rational numbers save one, which can

only be 2 itself. Thus

(V2)
2 =V2\/2 = 2.

Again
(- V2)

2 = (- V2) (- V2) = V2 V2 = (V2)
2 = 2.

Thus the equation x-=2 has the two roots \]2 and — \]2. Similarly

we could discuss the equations x* = 3, x3 = 7, ... and the corre-

sponding irrational numbers \/3, — V3, ^7,....

13. Quadratic surds. A number of the form + \/a, where

a is a positive rational number which is not the square of another

rational number, is called a pure quadratic surd. A number of

the form a ± \/b, where a is rational, and *fb is a pure quadratic

surd, is sometimes called a mixed quadratic surd.

2—2
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The two numbers a±Jb are the roots of the quadratic equation

.<v
2 -2cLv+ a2 -b= 0.

Conversely, the equation x2+ 2px+ q=0, where p and q are rational, and

p
2 -q>0, has as its roots the two quadratic surds -p±^(p2 — q)-

The only kind of irrational numbers whose existence was

suggested by the geometrical considerations of § 3 are these

quadratic surds, pure and mixed, and the more complicated

irrationals which may be expressed in a form involving the

repeated extraction of square roots, such as

V2 + V(2 + V2) + V{2 + \/(2 + \/2)}.

It is easy to construct geometrically a line whose length is

equal to any number of this form, as the reader will easily see for

himself. That irrational numbers of these kinds only can be con-

structed by Euclidean methods (i.e. by geometrical constructions

with ruler and compasses) is a point the proof of which must

be deferred for the present* This property of quadratic surds

makes them especially interesting.

Examples VII. 1. Give geometrical constructions for

V2 s/(2 + V2), V(2+V(2+ V2)}.

2. The quadratic equation ax2+ 2bx+c— has two real roots + if

b2 -ac>0. Suppose a, b c rational. Nothing is lost by taking all three

to be integers, for we can multiply the equation by the least common

multiple of their denominators.

The reader will remember that the roots are {-b± s/(b
2 -ac)}/a. It is

easy to construct these lengths geometrically, first constructing sf(b'
2 -ac).

A much more elegant, though less straightforward, construction is the

following.

* See Ch. II, Misc. Exs. 22.

t I.e. there are two values of X for which ax2 + 2bx + c= 0. If b2 -ac<0 there

are no such values of x. The reader will remember that in books on elementary

algebra the equation is said to have two ' complex ' roots. The meaning to be

attached to this statement will be explained in Ch. III.

When b2= ac the equation has only one root. For the sake of uniformity

it is generally said in this case to have ' two equal ' roots, but this is a mere

convention.



13, 14] REAL- VARIABLES 21

Draw a circle of unit radius, a diameter PQ, and the tangents at the ends

of the diameters.

Fig. 5-

Take PP'= -2a/b and QQ' = —c/2b, having regard to sign*. Join P'Q',

cutting the circle in M and N. Draw PM and PX, cutting QQ' in X and Y.

Then QX and QY are the roots of the equation with their proper signs t.

The proof is simple and we leave it as an exercise to the reader.

Another, perhaps even simpler, construction is the following. Take a line

AB of unit length. Draw BC= -2b/a perpendicular to AB, and CD=c/a
peipendicular to BC and in the same direction as BA. On AD as diameter

describe a circle cutting BC in X and Y. Then BX and BY are the roots.

3. If ac is positive PP' and QQ' will be drawn in the same direction.

Verify that P'Q' will not meet the circle if b'
1 <ac, while if b2= ac it will be

a tangent. Verify also that if b2= ac the circle in the second construction

will touch BC.

4. Prove that

>J(pq) = s/pxJq, Kf(p
2
q) =p \fq-

14. Some theorems concerning quadratic surds. Two
pure quadratic surds are said to be similar if they can be ex-

pressed as rational multiples of the same surd, and otherwise to be

dissimilar. Thus

V8=2V2, V¥=fV2,

and so *JS, y^ are similar surds. On the other hand, if M and N
are integers which have no common factor, and neither of which

is a perfect square, *JM and \fN are dissimilar surds. For suppose,

if possible,

q V u s V u

where all the letters denote integers.

* The figure is drawn to suit the case in which b and c have the same and a

the opposite sign. The reader should draw figures for other cases.

f I have taken this construction from Klein's Lecons sur certaines questions dc

geometrie elementaire (French translation by J. Griess, Paris, 1896).
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Then *JMN is evidently rational, and therefore (Ex. II. 3)

integral. Thus MN = P2
, where P is an integer. Let a, b, c, ...

be the prime factors of P, so that

MN=a2a b^c-y ...,

where a, ft, y, ... are positive integers. Then MN is divisible by

a?a, and therefore either (1) M is divisible by a2a
, or (2) N is

divisible by a2a
, or (3) M and N are both divisible by a. The last

case may be ruled out, since M and N have no common factor.

This argument may be applied to each of the factors a2a
, 623 , c2y , . .

.

,

so that M must be divisible by some of these factors and N by

the remainder. Thus

M = P 2
, N=P£,

where Pa

2 denotes the product of some of the factors a2a
, b

2fi
, c2V , ...

and P2
2 the product of the rest. Hence M and N are both perfect

squares, which is contrary to our hypothesis.

Theorem. If A, B, G, D are rational and

A+*/B=C + s/D,

then either (i) A = C, B = D or (ii) B and D are loth squares of

rational numbers.

For B — D is rational, and so is

>JB-jD = G-A.

If B is not equal to D (in which case it is obvious that A is also

equal to C), it follows that

VP + *JD = (B - D)/WB - VP)

is also rational. Hence *JB and *JD are rational.

Corollary. If A + */B = C + */D, then A-*/B = C-^D
(unless \JB and \JD are both rational).

Examples VIII. 1. Trove ab initio that J2 and */3 are not similar

surds.

2. Prove that *Ja and J(lja), where a is rational, are similar surds

(unless both are rational).

3. If a and b are rational, then Ja +Jb cannot be rational unless sfa and

*Jb are rational. The same is true of Ja — *]b, unless a = b.
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4. If JA+JB^JC+JD,
then either (a) ^ = Cand B=D, or (b) A=D and B= C, or (c) JA, JB, <JC,

*JD are all rational or all similar surds. [Square the given equation and

apply the theorem above.]

5. Neither (a+ s/b)
3 nor (a - *fb)

3 can be rational unless >Jb is rational.

6. Prove that if x=p + y/q, where p and q are rational, then xm, where

m is any integer, can be expressed in the form P+ QJq, where P and Q
are rational. For example,

(P + Jq?=p2+ q+ 2p Jq, (p+ V?)
3=p3+ Spq+ (3p*+ q) Jq.

Deduce that any polynomial in x with rational coefficients (i.e. any expression

of the form
a tfl+a

1xn
-

1+ ...+an ,

where a , ... an are rational numbers) can be expressed in the forni P+ QJq.

7. If a + sjb, where b is not a perfect square, is the root of an algebraical

equation with rational coefficients, then a — ^Jb is another root of the same

equation.

8. Express lj(p+ Kfq) in the form prescribed in Ex. 6. [Multiply

numerator and denominator by p - sfq.]

9. Deduce from Exs. 6 and 8 that any expression of the form G (x)/H (x),

where G(x) and H(x) are polynomials in x with rational coefficients, can be

expressed in the form P+ Q-Jq, where P and Q are rational.

10. If p, q, and p
2 -q are positive, we can express s/(p+\fq) in the form

•J®+ <Jyi where

»-i {p+s/(p2
-q)}, y=h{p-s?(p2

-<i)}'

1 1

.

Determine the conditions that it may be possible to express J(p + Jq),

where p and q are rational, in the form slx+ \ly, where x and y are rational.

12. If a2 - b is positive, the necessary and sufficient conditions that

sj{a-h slb) + yl{a-s]b)

should be rational are that cp-b and \ {a+ s/(a2 - b)} should both be squares

of rational numbers.

15. The continuum. The aggregate of all real numbers,

rational and irrational, is called the arithmetical continuum.

It is convenient to suppose that the straight line A of § 2

is composed of points corresponding to all the numbers of the

arithmetical continuum, and of no others*. The points of the

* This supposition is merely a hypothesis adopted (i) because it suffices for the

purposes of our geometry and (ii) because it provides us with convenient geometrical

illustrations of analytical processes. As we use geometrical lauguage only for

purposes of illustration, it is not part of our business to study the foundations

of geometry.
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line, the aggregate of which may be said to constitute the linear

continuum, then supply us with a convenient image of the

arithmetical continuum.

We have considered in some detail the chief properties of a

few classes of real numbers, such, for example, as rational numbers

or quadratic surds. We add a few further examples to show how
very special these particular classes of numbers are, and how, to

put it roughly, they comprise only a minute fraction of the infinite

variety of numbers which constitute the continuum.

(i) Let us consider a more complicated surd expression such as

s= v/(4+ v/15) + 4/(4- v/15).

Our argument for supposing that the expression for z has a meaning might be

as follows. We first show, as in §12, that there is a number ?/= v/15 such that

y
2= 15, and we can then, as in § 10, define the numbers 4+ ^/15, 4 — v/15.

Now consider the equation in z
x ,

0!
3=4 + v/15.

The right-hand side of this equation is not rational : but exactly the same

reasoning which leads us to suppose that there is a real number x such that

x3= 2 (or any other rational number) also leads us to the conclusion that there

is a number zx such that 21
3=4+ v/15. We thus define z1

= £/(4+*J15), and

similarly we can define 22=^(4—^15) ; and then, as in § 10, we define z=z
x
+z2 .

Now it is easy to verify that

z3=3z + 8.

And we might have given a direct proof of the existence of a unique number
z such that z3=3z+8. It is easy to see that there cannot be two such

numbers. For if z
l
3 = 3zl + 8 and z2

3= 3z2+ 8, we find on subtracting and

dividing by Z\-z2 that z
l

2+z
l
z2+z2

2=3. But if z
x
and z2 are positive z

l

3 >8,
z2

3>8 and therefore z
x
>2, z2 >2, z1

2+z
1
z2+ z2

2 > 12, and so the equation

just found is impossible. And it is easy to see that neither zx nor z2 can

be negative. For if zx
is negative and equal to —

f, f is positive and

£
3 -3f+8= 0, or 3-£ 2= 8/(. Hence 3-£ 2 >0, and so f<2. But then

8/£>4, and so 8/f cannot be equal to 3- f
2
, which is less than 3.

Hence there is at most one z such that z3= 3z+ 8. And it cannot be

rational. For any rational root of this equation must be integral and a

factor of 8 (Ex. n. 3), and it is easy to verify that no one of 1, 2, 4, 8 is a root.

Thus z3= 3z+ 8 has at most one root and that root, if it exists, is positive

and not rational. We can now divide the positive rational numbers x into

two classes L, R according as x3 < 3x+ 8 or x3> 3x + 8. It is easy to see that

if ^3 >3o;+ 8 and y is any number greater than x, then also y
3 > 3_y + 8. For

suppose if possible y
3 ^3y+ 8. Then since #3 >3.r+8 we obtain on sub-

tracting y
3 - x3 < 3 (y - x), or y

1 + xy+ x2 < 3, which is impossible; for y is
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positive and x>2 (since x3 >8). Similarly we can show that if x3 < 3x+ 8

and y< x then also y
3 < 3y+ 8.

Finally, it is evident that the classes L and R both exist ; and they form

a section of the positive rational numbers or positive real number z which

satisfies the equation z3= 3z + 8. The reader who knows how to solve cubic

equations by Cardan's method will be able to obtain the explicit expression of

z directly from the equation.

(ii) The direct argument applied above to the equation

a? = 3x + 8 could be applied (though the application would be

a little more difficult) to the equation

x5 = x + 16.

and would lead us to the conclusion that a unique positive real

number exists which satisfies this equation. In this case, how-

ever, it is not possible to obtain a simple explicit expression

for x composed of any combination of surds. It can in fact

be proved (though the proof is difficult) that it is generally

impossible to .find such an expression for the root of an equation

of higher degree than 4. Thus, besides irrational numbers which

can be expressed as pure or mixed quadratic or other surds, or

combinations of such surds, there are others which are roots of

algebraical equations but cannot be so expressed. It is only in

very special cases that such expressions can be found.

(iii) But even when we have added to our list of irrational

numbers roots of equations (such as x5 = x+ 16) which cannot be

explicitly expressed as surds, we have not exhausted the different

kinds of irrational numbers contained in the continuum. Let us

draw a circle whose diameter is equal to A A 1} i.e. to unity. It is

natural to suppose * that the circumference of such a circle has a

length capable of numerical measurement. This length is usually

denoted by ir. And it has been shownf (though the proof is un-

fortunately long and difficult) that this number ir is not the

root of any algebraical equation with integral coefficients, such,

for example, as

7T
2 = n, 7T

3 = 71, 7T
5 = 7T + ??,

* A proof will be found in Ch. VII.

t See Hobson's Trigonometry (3rd edition), pp. 305 et seq., or the same writer's

Squaring the Circle (Cambridge, 1913).
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where n is an integer. In this way it is possible to define a

number which is not rational nor yet belongs to any of the classes

of irrational numbers which we have so far considered. And this

number it is no isolated or exceptional case. Any number of other

examples can be constructed. In fact it is only special classes of

irrational numbers which are roots of equations of this kind, just

as it is only a still smaller class which can be expressed by means

of surds.

16. The continuous real variable. The 'real numbers'

may be regarded from two points of view. We may think of

them as an aggregate, the 'arithmetical continuum' defined in

the preceding section, or individually. And when we think of

them individually, we may think either of a particular specified

number (such as 1, — £, \/2, or rr) or we may think of any number,

an unspecified number, the number x. This last is our point of

view when we make such assertions as 'x is a number', 'x is the

measure of a length', 'x may be rational or irrational', The x

which occurs in propositions such as these is called the continuous

real variable : and the individual numbers are called the values of

the variable.

A 'variable', however, need not necessarily be continuous.

Instead of considering the aggregate of all real numbers, we

might consider some partial aggregate contained in the former

aggregate, such as the aggregate of rational numbers, or the

aggregate of positive integers. Let us take the last case. Then

in statements about any positive integer, or an unspecified positive

integer, such as 'n is either odd or even', n is called the variable,

a positive integral variable, and the individual positive integers

are its valuer.

Naturally '
x' and c n' are only examples of variables, the

variable whose ' field of variation ' is formed by all the real

numbers, and that whose field is formed by the positive integers.

These are the most important examples, but we have often to

consider other cases. In the theory of decimals, for instance, we
may denote by x any figure in the expression of any number as a

decimal. Then a; is a variable, but a variable which has only ten

different values, viz. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The reader should



15-17] REAL VARIABLES 27

think of other examples of variables with different fields of varia-

tion. He will find interesting examples in ordinary life : policeman

x, the driver of cab x, the year x, the #th day of the week. The
values of these variables are naturally not numbers.

17. Sections of the real numbers. In §§ 4—7 we con-

sidered ' sections ' of the rational numbers, i.e. modes of division of

the rational numbers (or of the positive rational numbers only)

into two classes L and R possessing the following characteristic

properties:

(i) that every number of the type considered belongs to one

and only one of the two classes

;

(ii) that both classes exist

;

(iii) that any member of L is less than any member of R.

It is plainly possible to apply the same idea to the aggregate

of all real numbers, and the process is, as the reader will find in

later chapters, of very great importance.

Let us then suppose* that P and Q are two properties which

are mutually exclusive, and one of which is possessed by every

real number. Further let us suppose that any number which

possesses P is less than any which possesses Q. We call the

numbers which possess P the lower or left-hand class L, and

those which possess Q the upper or right-hand class R.

Thus P might be x ^ N/2 and Q he x> J2. It is important to observe

that a pair of properties which suffice to define a section of the rational

numbers may not suffice to define one of the real numbers. This is so, for

example, with the pair ' x < v/2 ' and * x > J2 ' or (if we confine ourselves

to positive numbers) with ' x2 < 2
' and ' x2 > 2

'. Every rational number

possesses one or other of the properties, but not every real number, since in

either case >J2 escapes classification.

There are now two possibilities f. Either L has a greatest

member I, or R has a least member r, Both of these events

* The discussion which follows is in many ways similar to that of § 6. We
have not attempted to avoid a certain amount of repetition. The idea of a 'section,'

first brought into prominence in Dedekind's famous pamphlet Stetigkeii and

irrationale Zahlen, is one which can, and indeed must, be grasped by every reader

of this book, even if he be one of those who prefer to omit the discussion of the

notion of an irrational number contained in §§ 6—12.

+ There were three in § 6.
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cannot occur. For if L had a greatest member I, and R a least

member r, the number \{l+ r) would be greater than all members

of L and less than all members of R, and so could not belong to

either class. On the other hand one event must occur*.

For let Xj and Rx denote the classes formed from L and R by

taking only the rational members of L and R. Then the classes

Zj and R
x
form a section of the rational numbers. There are now

two cases to distinguish.

It may happen that Lx has a greatest member a. In this case

a must be also the greatest member of L. For if not, we could find

a greater, say /3. There are rational numbers lying between a and

/3, and these, being less than j3, belong to L, and therefore to Lx \

and this is plainly a contradiction. Hence a is the greatest

member of L.

On the other hand it may happen that L x
has no greatest

member. In this case the section of the rational numbers formed

by Li and Rx
is a real number a. This number a must belong-

to L or to R. If it belongs to L we can shew, precisely as before,

that it is the greatest member of L, and similarly, if it belongs

to R, it is the least member of R.

Thus in any case either L has a greatest member or R a

least. Any section of the real numbers therefore 'corresponds' to

a real number in the sense in which a section of the rational

numbers sometimes, but not always, corresponds to a rational

number. This conclusion is of very great importance; for it shows

that the consideration of sections of all the real numbers does not

lead to any further genei-alisation of our idea of number. Starting

from the rational numbers, we found that the idea of a section of

the rational numbers led us to a new conception of a number, that

of a real number, more general than that of a rational number;

and it might have been expected that the idea of a section of the

real numbers would have led us to a conception more general still.

The discussion which precedes shows that this is not the c,ase, and

that the aggregate of real numbers, or the continuum, has a kind

of completeness which the aggregate of the rational numbers

lacked, a completeness which is expressed in technical language

by saying that the continuum is closed.

* This was not the case in § 6.
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The result which we have just proved may be stated as follows:

Dedekind's Theorem. If the real numbers are divided into

tivo classes L and R in such a way that

(i) every number belongs to one or other of the two classes,

(ii) each class contains at least one number,

(iii) any member of L is less than any member of R,

then there is a number a, which has the property that all the numbers

less than it belong to L and all the numbers greater than it to R.

The number a itself may belong to either class.

In applications we have often to consider sections not of all numbers but

of all those contained in an interval (8, y), that is to say of all numbers

x such that j3 g x £L y. A ' section ' of such numbers is of course a division of

them into two classes possessing the properties (i), (ii), and (iii). Such

a section may be converted into a section of all numbers by adding to L all

numbers less than /3 and to R all numbers greater than y. It is clear that

the conclusion stated in Dedekind's Theorem still holds if we substitute ' the

real numbers of the interval (3, y)
' for ' the real numbers ', and that the

number a in this case satisfies the inequalities 05agy.

18. Points of accumulation. A system of real numbers, or

of the points on a straight line corresponding to them, defined in

any way whatever, is called an aggregate or set of numbers or

points. The set might consist, for example, of all the positive

integers, or of all the rational points.

It is most convenient here to use the language 0l> geometry*.

Suppose then that we are given a set of points, which we will

denote by S. Take any point £, which may or may not belong to 8.

Then there are two possibilities. Either (i) it is possible to choose

a positive number & so that the interval (£— S, £+ 8) does not con-

tain any point of S, other than £ itself f, or (ii) this is not possible.

Suppose, for example, that S consists of the points corresponding to all

the positive integers. If £ is itself a positive integer, we can take 8 to be any

number less than 1, and (i) will be true; or, if £ is halfway between two

positive integers, we can take § to be any number less than ^. On the other

hand, if £ consists of all the rational points, then, whatever the value of £,

(ii) is true ; for any interval whatever contains an infinity of rational points.

* The reader will hardly require to be reminded that this course is adopted

solely for reasons of linguistic convenience.

t This clause is of course unnecessary if £ does not itself belong to S.
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Let us suppose that (ii) is true. Then any interval (f — 8, f + 8),

however small its length, contains at least one point £x
which

belongs to S and does not coincide with f ; and this whether f
itself be a member of 8 or not. In this case we shall say that £ is

a point of accumulation of S. It is easy to see that the interval

(£ — $> £+£) must contain, not merely one, but infinitely many
points of 8. For, when we have determined £ls we can take an

interval (£ — B1} £+ Sj) surrounding £ but not reaching as far as £x .

But this interval also must contain a point, say £2 , which is a

member of S and does not coincide with £. Obviously we may
repeat this argument, with £2 in the place of £ ; and so on

indefinitely. In this way we can determine as many points

51 > 52) ?3) •••

as we please, all belonging to S, and all lying inside the interval

(f -$.£ + *)

A point of accumulation of $ may or may not be itself a point

of S. The examples which follow illustrate the various possibilities.

Examples IX. 1. If S consists of the points corresponding to the

positive integers, or all the integers, there are no points of accumulation.

2. If S consists of all the rational points, every point of the line is a

point of accumulation.

3. If S consists of the points 1, \, ^-, ..., there is one point of accumula-

tion, viz. the origin.

4. If S consists of all the positive rational points, the points of accumula-

tion are the origin and all positive points of the line.

19. Weierstrass's Theorem. The general theory of sets

of points is of the utmost interest and importance in the higher

branches of analysis ; but it is for the most part too difficult to be

included in a book such as this. There is however one funda-

mental theorem which is easily deduced from Dedekind's Theorem

and which we shall require later.

Theorem. If a set 8 contains infinitely many points, and is

entirely situated in an interval (a, /3), then at least one point of the

interval is a point of accumulation of 8.

We divide the points of the line A into two classes in the

following manner. The point P belongs to L if there are an
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infinity of points of S to the right of P, and to R in the contrary

case. Then it is evident that conditions (i) and (iii) of Dedekind's

Theorem are satisfied; and since a belongs to L and /3 to R,

condition (ii) is satisfied also.

Hence there is a point £ such that, however small be 8, £ — 8

belongs to L and £ + 8 to R, so that the interval (£ — 8, £ + S)

contains an infinity of points of S. Hence £ is a point of accumu-

lation of S.

This point may of course coincide with a or /3, as for instance when a= 0,

/3= 1, and £ consists of the points 1, §, J, .... In this case is the sole

point of accumulation.

MISCELLANEOUS EXAMPLES ON CHAPTER I.

1. What are the conditions that ax+ by+ cz= 0, (1) for all values of

x, y, z; (2) for all values of x, y, z subject to ax+fty+ yz=0; (3) for all

values of x, y, z subject to both ax+j3y+ yz= and Ax+By + Cz= 01

2. Any positive rational number can be expressed in one and only one

way in the form

,

a2 a3 Civ

1.3 71 1.2.3 '
*'• 1.8.3...*'

where aj, « 2) ..., #& are integers, and

OgOu 0<a2 <2, 0^ a3 <3, ...0<«t </-.

3. Any positive rational number can be expressed in one and one way
only as a simple continued fraction

a I

l l l

1 a2 + a3 + ... +a„'

where al5 a2 , ... are positive integers, of which the first only may be zero.

[Accounts of the theory of such continued fractions will be found in text-

books of algebra. For further information as to modes of representation of

rational and irrational numbers, see Hobson, Theory of Functions of a Real

Variable, pp. 45—49.]

4. Find the rational roots (if any) of 9x% - 6.v2+ 15^ - 10= 0.

5. A line AB is divided at C in aurea sectione (Euc. n. 11)

—

i.e. so that

AB . AC=BC2
. Show that the ratio ACjAB is irrational.

[A direct geometrical proof will be found in Bromwich's Infinite Series,

% 143, p. 363.]

6. A is irrational. In what circumstances can — -

7 , where a, b, c, d
cA + d

are rational, be rational ?
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7. Some elementary inequalities. In what follows au a 2 , ... de-

note positive numbers (including zero) and p, q, ... positive integers. Since

af — a2
p and ax

i - a2
q have the same sign, we have (af - a2

p
) («i* - a 2

q
) =0> or

«
1
P + 9+ a

2
P + 9>a

1
Pa

2
«+ a

1
«a

2
»'

(1),

an inequality which may also be written in the form

2~

aiP
+ g + r + ... + CT2P + g + r+-. ^ /aiP+ g2

T

2 ' =1 2~

&(*%*) (*%*) w.

By repeated application of this formula we obtain

and in particular S ( —^— j (4).

"When p = q=l in (1), or p= 2 in (4), the inequalities are merely different

forms of the inequality a
1
2+« 2

2 S2a
1
a2 , which expresses the fact that the

arithmetic mean of two positive numbers is not less than their geometric

mean.

8. Generalisations for n numbers. If we write down the hn(n-l)
inequalities of the type (1) which can be formed with n numbers alt a 2 ,..., a n >

and add the results, we obtain the inequality

%2aP + «>2aP2a« (5),

or (2aP + i)ln>{(2aP)fn} {(^aq)/n} (6).

Hence we can deduce an obvious extension of (3) which the reader may

formulate for himself, and in particular the inequality

(2a*>)/» >{(2a)/»}P (7).

9. The general form of the theorem concerning the arithmetic and
geometric means. An inequality of a slightly different character is

that which asserts that the arithmetic mean of alt a2 , ..., an is not less

than their geometric mean. Suppose that a r and a„ are the greatest and

least of the u's (if there are several greatest or least a's we may choose any

of them indifferently), and let G be their geometric mean. We may suppose

> 0, as the truth of the proposition is obvious when G= 0. If now we replace

ar and as by
ar

' = G, ctg = aratjG}

we do not alter the value of the geometric mean ; and, since

ar
' + at

' -

a

r -as=(ar -G) (as
- G)/G<0,

we certainly do not increase the arithmetic mean.

It is clear that we may repeat this argument until we have replaced each

of a
x

, a2 , ..., an by G; at most n repetitions will be necessary. As the final

value of the arithmetic mean is G, the initial value cannot have been less.
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10. Schwarz's inequality. Suppose that a
ly a2 , ..., an and 6n b2 , ..., 6„

are any two sets of numbers positive or negative. It is easy to verify the

identity

{2arbrf= 2ar
2 2as

2- 2 {a,.bs - asbr)
2
,

where r and s assume the values 1, 2, ..., n. It follows that

(2a rbry<2a r
2 2br

2
,

an inequality usually known as Schwarz's (though due originally to Cauchy).

11. If a1} a2 , ..., an are all positive, and sn= a
l + a2+ ... + an , then

(l+a
1
)(l+a3)...(l+an)^l + *J4

+jL+...+?iL.
z ! n !

{Math. Trip. 1909.)

12. If ffj, a2 , ..., «„ and 61} 62 , •••5 K are two sets of positive numbers,

arranged in descending order of magnitude, then

{(ti+a2+ .., + an){b l + b2+ ...+bn)£:n{a 1b1 +a2b2+ ... + anbn),

13. If a, b, c,...k and A, B, C, ... K are two sets of numbers, and all of

the first set are positive, then

aA+bB+...+kK
a + b+ ... + k

lies between the algebraically least and greatest of A, B, ..., K.

14. If sjp, s/q are dissimilar surds, and a+ b s?p+ c Jq+d s/{pq)=0,
where a, b, c, d are rational, then a= 0, 6= 0, c= 0, d=0.

[Express *Jp in the form M+N\fq, whereM and N are rational, and apply

the theorem of § 14.]

15. Show that if a J2 + b v/3 + c J5= 0, where a, b, c are rational numbers,

then a= 0, 6=0, e=0.

16. Any polynomial in *Jp and Jq, with rational coefficients (i.e. any

sum of a finite number of terms of the form A {sjp)
m

{\fq)
n
, where m and n

are integers, and A rational), can be expressed in the form

a+ b sip+ c sjq+ d s!pq,

where a, 6, c, d are rational.

17. Express -= -~-—j-y-, where a, 6, etc. are rational, in the form
a+ e y/p \-j slq

A..+BJp+CJq+D Jpg,

where A, B, C, D are rational.

[Evidently

a + b sfp+ c*Jq _ (a+ b Kfp+ c slq) (d+e Jp-fs/q) a+ff sjp + y Jq + 8 Jpq
d+ e sfp +fs/q

~
{d+e sjpf-f2

q e + {sfp

where a, /3, etc. are rational numbers which can easily be found. The required

u. 3
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reduction may now be easily completed by multiplication of numerator and

denominator by e— £>Jp. For example, prove that

1 111
-5 + W2-7V6.]\ + s'2 + JZ

18. If a, b, x, y are rational numbers such that

(ay - bx)2+ 4(a-x)(b-y)= 0,

then either (i) x= a, y= b or (ii) 1 — ab and 1 — xy are squares of rational

numbers. (Math. Trip. 1903.)

19. If all the values of x and y given by

ax2 + 2hxy+ by2= 1 , a'x2+ 2h'xy + b'y2= 1

(where a, h, b, a', h', V are rational) are rational, then

(h_ Kf -(a - a') (b - b'), (ab' - a'bf + 4 (ah' - a'h) (bh!- b'h)

are both squares of rational numbers. (Math. Trip. 1899.)

20. Show that $2 and ^3 are cubic functions of ^2 + ^/3, with rational

coefficients, and that $2 — ^6 + 3 is the ratio of two linear functions of

^2 + ^3. (Math. Trip. 1905.)

21. The expression

sj{a+ 2mJ(a -m2
)} +J{a - 2mJ(a - on2)}

is equal to 2m if 2m2 >a>

m

2
, and to 2 J(a-

m

2
) if a > 2m2

.

22. Show that any polynomial in 4^2, with rational coefficients, can be

expressed in the form
a+ b*/2 + c*/<l,

where a, b, e are rational.

More generally, if p is any rational number, any polynomial in typ with

rational coefficients can be expressed in the form

a + a l a+ a2 a
2+ ... +am -iam-1 ,

where a , au ... are rational and a= ^/p. For any such polynomial is of the

form
b + b1 a + b2 a

2
-\- ... +bk a

k
,

where the £'s are rational. If £<m — 1, this is already of the form required. If

h>m— 1, let ar be any power of « higher than the (w — l)th. Then r= Xm + s,

where X is an integer and O^sg.m- 1 ; and a'=aKm+s=pK
a. Hence we can

get rid of all powers of a higher than the (m — l)th.

23. Express ($2 -If and (^2-l)/(#2+l) in the form a+b 1/2 + 0^4,

where a, b, c are rational. [Multiply numerator and denominator of the

second expression by $4- $2 + 1.]

24. If a + 64/2 + c^/4= 0,

where a, b, c are rational, then a=0, 6= 0, c=0.
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[Let y=%2. Then f=2 and

cy2+ by+ a = 0.

Hence 2cy2 + 2by+ays=0 or

ay2 + 2ey+ 2b= 0.

Multiplying these two quadratic equations by a and c and subtracting,

we obtain (ab-2c2
)
y+a2 -2bc= 0, or y= -(a2 -2bc)/(ab- 2c2

), a rational

number, which is impossible. The only alternative is that ab-2c2 =0,

a2 - 26c = 0.

Hence aft= 2c2
, ai=4b2c2. If neither a nor b is zero, we can divide the

second equation by the first, which gives a3=2b3
: and this is impossible,

since $2 cannot be equal to the rational number ajb. Hence ab= 0, e= 0,

and it follows from the original equation that a, 6, and c are all zero.

As a corollary, if a+ b^/2 + c^=d+e^2+f^/4, then a= d,b= e, c=f.

It may be proved, more generally, that if

l/wi
• i

{m-Vilm na + »lP +...+Om-lP =0,

p not being a perfect with power, then a =a1 =... = am _ 1= 0; but the proof is

less simple.]

25. If A + Z/B=C+VD, then either A = C, B=D, or B and D are both

cubes of rational numbers.

26. If %A +$B+ %C=0, then either one of A, B, C is zero, and the other

two equal and opposite, or $A
y
£/B, $C are rational multiples of the same

surd SfX.

27. Find rational numbers a, j8 such that

4/(7 + 5 x/2) = a+/3 v/2.

28. If (a-b 3)b>0, then

3 /f ,968 + a /{a-W\\
, »/( 9&3+^ /A*- &3

\1

is rational. [Each of the numbers under a cube root is of the form

Hx/(' 3b ))

where a and /3 are rational.]

29. If a= Z/p, any polynomial in a is the root of an equation of degree n,

with rational coefficients.

[We can express the polynomial (x say) in the form

x= li +m 1a+ ...+ria
{n~ 1}

,

where lu mu ... are rational, as in Ex. 22.
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xl= l2+ m2a+ ...+r2 a
(n~l

\

[I

xn=ln +mn a+ ...+rn a
{n~ 1)

.

Hence L
xx+L2x- + . . . + LHx

n= A,

where A is the determinant

^ m1 ... 9\

?2 m2 ... r2

ln inn ...

and Zi, Z2 , ... the minors of llt U, ....]

30. Apply this process to x=p+*/q, and deduce the theorem of § 14.

31. Show that y= a + bp +cp213
satisfies the equation

y
z - 3ay2+ 7>y (a2 — bcp) — a3 — b3p — c3/?

2+ 3abcp= 0.

32. Algebraical numbers. We have seen that some irrational numbers

(such as s/2) are roots of equations of the type

a xn+ a
1xn

- 1 + ... + an=0,

where a , au ..., an are integers. Such irrational numbers are called alge-

braical numbers : all other irrational numbers, such as ir (§ 15), are called

transcendental numbers. Show that if x is an algebraical number, then so are

kx, where & is any rational number, and x
m 'n

, where m and n are any integers.

33. If x and y are algebraical numbers, then so are x+v,x-y, xy and x/y.

[We have equations a^x™+ a^™~
l+ . . . + am= 0,

&
flr + 61

y»-i + ...+6B=0,

where the a's and b's are integers. Write x+y=z, y=z — x in the second,

and eliminate x. We thus get an equation of similar form

c zP+ c1
zi'- 1 + ...+cp= 0,

satisfied by z. Similarly for the other cases.]

34. If a xn+ a
1
xn - 1 + ...+a

ll
= O,

where a , ax , ..., an are any algebraical numbers, then x is an algebraical

number. [We have n+ 1 equations of the type

a0,r ar
r+ al,r a r

r + •••+«;, = (r= 0, 1, ..., n),

in which the coefficients a0j r , alt r , ... are integers Eliminate a . a
x , ..., an

between these and the original equation for x.]

35. Apply this process to the equation x2 — 2.^^/2+^3=0.

[The result is Xs - 16a;6+ 58a-4- 48a;2+ 9= 0.]
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36. Find equations, with rational coefficients, satisfied by

l + v/2 + v/3, ^|^|, W3+V2RVV3-V2}, W+j/S.

37. If x3=x+ 1, then x3n=a
ll
x+ bH+ c,Jx, where

38. If #° +^5 - 2a;4- x3 + x2+ 1 = and y = x* - x2 4-x - 1 , then y satisfies

a quadratic equation with rational coefficients. {Math. Trip. 1903.)

[It will be found that f+y + 1=0.]



CHAPTER II

FUNCTIONS OF REAL VARIABLES

20. The idea of a function. Suppose that x and y are

two continuous real variables, which we may suppose to be repre-

sented geometrically by distances A P = x, B Q = y measured

from fixed points A , B along two straight lines A, M. And
let us suppose that the positions of the points P and Q are not

independent, but connected by a relation which we can imagine

to be expressed as a relation between x and y: so that, when
P and x are known, Q and y are also known. We might,

for example, suppose that y = x, or y — 2x, or \x, or x2 + 1. In

all of these cases the value of x determines that of y. Or

again, we might suppose that the relation between x and y is

given, not by means of an explicit formula for y in terms of x,

but by means of a geometrical construction which enables us to

determine Q when P is known.

In these circumstances y is said to be a function of x. This

notion of functional dependence of one variable upon another is

perhaps the most important in the whole range of higher mathe-

matics. In order to enable the reader to be certain that he

understands it clearly, we shall, in this chapter, illustrate it by

means of a large number of examples.

But before we proceed to do this, we must point out that

the simple examples of functions mentioned above possess three

characteristics which are by no means involved in the general

idea of a function, viz.:

(1) y is determined for every value of x;

(2) to each value of x for which y is given corresponds one

and only one value of y;

(3) the relation between x and y is expressed by means of

an analytical formula, from which the value of y corresponding to

a given value of x can be calculated by direct substitution of the

latter.
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It is indeed the case that these particular characteristics are
possessed by many of the most important functions. But the con-
sideration of the following examples will make it clear that they
are by no means essential to a function. All that is essential is

that there should be some relation between x and y such that to

some values of x at any rate correspond values of y.

Examples X. 1. Let y=x or 2x or lx or x^+ l Nothing further need
be said at present about cases such as these.

2. Let y= whatever be the value of x. Then y is a function of x, for we
can give x any value, and the corresponding value of y (viz. 0) is known. In
this case the functional relation makes the same value of y correspond to all

values of x. The same would be true were y equal to 1 or - \ or J2 instead

of 0. Such a function of x is called a constant.

3. Let y
2= x. Then if x is positive this equation defines two values of y

corresponding to each value of x, viz. ±Jx. U x=0, y=0. Hence to the

particular value of x corresponds one and only one value of y. But if x is

negative there is no value of y which satisfies the equation. That is to say,

the function y is not defined for negative values of x. This function therefore

possesses the characteristic (3), but neither (1) nor (2).

4. Consider a volume of gas maintained at a constant temperature and

contained in a cylinder closed by a sliding piston*.

Let A be the area of the cross section of the piston and W its weight.

The gas, held in a state of compression by the piston, exerts a certain pressure

p per unit of area on the piston, which balances the weight W, so that

W=APo

Let vQ be the volume of the gas when the system is thus in equilibrium.

If additional weight is placed upon the piston the latter is forced downwards.

The volume (v) of the gas diminishes ; the pressure (p) which it exerts

upon unit area of the piston increases. Boyle's experimental law asserts that

the product of p and v is very nearly constant, a correspondence which, if

exact, would be represented by an equation of the type

pv=a (i),

where a is a number which can be determined approximately by experiment.

Boyle's law, however, only gives a reasonable approximation to the facts

provided the gas is not compressed too much. When v is decreased and p
increased beyond a certain point, the relation between them is no longer

expressed with tolerable exactness by the equation (i). It is known that a

* I borrow this instructive example from Prof. H. S. Carslaw's Introduction to

the Calculus.
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much better approximation to the true relation can then be found by means

of what is known as ' van der Waals' law
:

, expressed by the equation

(P+S)(«-0H7 (ii),

where a, /3, y are numbers which can also be determined approximately by

experiment.

Of course the two equations, even taken together, do not give anything

like a complete account of the relation between p and v. This relation is no

doubt in reality much more complicated, and its form changes, as v varies,

from a form nearly equivalent to (i) to a form nearly equivalent to (ii). But,

from a mathematical point of view, there is nothing to prevent us from con-

templating an ideal state of things in which, for all values of v not less than

a certain value V, (i) would be exactly true, and (ii) exactly true for all

values of v less than V. And then we might regard the two equations as

together defining p as a function of v. It is an example of a function which

for some values of v is defined by one formula and for other values of v is

defined by another.

This function possesses the characteristic (2) . to any value of v only one

value of p corresponds : but it does not possess (1). For p is not defined as

a function of v for negative values of v ; a ' negative volume ' means

nothing, and so negative values of v do not present themselves for considera-

tion at all.

5. Suppose that a perfectly elastic ball is dropped (without rotation)

from a height \gr l on to a fixed horizontal plane, and rebounds continually.

The ordinary formulae of elementary dynamics, with which the reader is

probably familiar, show that h =\gp if O^f^r, h=\g {2r-tf if tS^3t, and

generally

h = hg{2nT -t)'i

if {2n- l)r£t^(2»+l)r, h being the depth of the ball, at time t, below its

original position. Obviously h is a function of t which is only defined for

positive values of t.

6. Suppose that y is defined as being the largest prime factor of x. This

is an instance of a definition which only applies to a particular class of values

of x, viz. integral values. ' The largest prime factor of -^ or of v/2 or of n

'

means nothing, and so our defining relation fails to define for such values of x
as these. Thus this function does not possess the characteristic (1). It does

possess (2), but not (3), as there is no simple formula which expresses y in

terms of x,

7. Let y be defined as the denominator of x when x is expressed in its

lowest terms. This is an example of a function which is defined if and only

if x is rational. Thus y= 7 if x= — 11/7 : but y is not defined for x=*J2, 'the

denominator of s/2 ' being a meaningless form of words.
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8. Let y be defined as the height in inches of policeman Cx, in the

Metropolitan Police, at 5.30 p.m. on 8 Aug. 1907. Then y is defined for a

certain number of integral values of x, viz. 1, 2, ..., N, where N is the total

number of policemen in division C at that particular moment of time.

21. The graphical representation of functions. Sup-

pose that the variable y is a function of the variable x. It will

generally be open to us also to regard # as a function of y, in virtue

of the functional relation between x and y. But for the present we

shall look at this relation from the first point of view. We shall

then call x the independent variable and y the dependent variable;

and, when the particular form of the functional relation is not

specified, we shall express it by writing

V =/0)
(or F (x),

<f>
(x), ty (x), . .

.
, as the case may be).

The nature of particular functions may, in very many cases, be

illustrated and made easily intelligible as follows. Draw two lines

OX, Y at right angles to one another AY
and produced indefinitely in both direc-

tions. We can represent values of x

and y by distances measured from

along the lines OX, OY respectively,

regard being paid, of course, to sign,

and the positive directions of measure-

ment being those indicated by arrows

in Fig. 6.

Let a be any value of x for which

y is defined and has (let us suppose)

the single value b. Take OA = a,

OB = b, and complete the rectangle

OAPB. Imagine the point P marked on the diagram. This

marking of the point P may be regarded as showing that the

value of y for x = a is b.

If to the value a oi x correspond several values of y (say

b, V, b"), we have, instead of the single point P, a number of

points P, P', P".

We shall call P the point (a, b); a and b the coordinates of P
referred to the axes OX, OY ; a the abscissa, b the ordinate of P;

OX and OY the axis of x and the axis of y, or together the

B'



42 FUNCTIONS OF REAL VARIABLES [ll

axes of coordinates, and the origin of coordinates, or simply

the origin.

Let us now suppose that for all values a of x for which y is

defined, the value b (or values b, b', b", ...) of y, and the corre-

sponding point P (or points P, P', P", ...), have been determined.

We call the aggregate of all these points the graph of the

function y.

To take a very simple example, suppose that y is defined as

a function of x by the equation

Ax + By + G = (1),

where A, B, C are any fixed numbers*. Then y is a function of #

which possesses all the characteristics (1), (2), (3) of § 20. It is

easy to show that the graph of y is a straight line. The reader is

in all probability familiar with one or other of the various proofs

of this proposition which are given in text-books of Analytical

Geometry.

We shall sometimes use another mode of expression. We
shall say that when x and y vary in such a way that equation (1)

is always true, the locus of the point (x, y) is a straight line, and

we shall call (1) the equation of the locus, and say that the equation

represents the locus. This use of the terms 'locus', 'equation of

the locus' is quite general, and may be applied whenever the

relation between x and y is capable of being represented by an

analytical formula.

The equation Ax + By + G = is the general equation of the first

degree, for Ax + By + C is the most general polynomial in x and y
which does not involve any terms of degree higher than the first

in x and y. Hence the general equation of the first degree repre-

sents a straight line. It is equally easy to prove the converse

proposition that the equation of any straight line is of the first

degree.

We may mention a few further examples of interesting geo-

metrical loci defined by equations. An equation of the form

{x-af + {y-(3y = p\

* If B= 0, y does not occur in the equation. We must then regard y as a

function of x defined for one value only of x, viz. x= - C\A, and then having all

values.
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or x- + y
2 + 2Gx + 2Fy +O = 0,

where G2 + F2 — G > 0, represents a circle. The equation

Ax2 + 2Hxy + By2 + 2Gx + 2Fy + C =

(the general equation of the second degree) represents, assuming

that the coefficients satisfy certain inequalities, a conic section,

i.e. an ellipse, parabola, or hyperbola. For further discussion of

these loci we must refer to books on Analytical Geometry.

22. Polar coordinates. In what precedes we have determined

the position of P by the lengths of its coordinates 0M=x, MP = y.

If 0P = r and MOP = 6, being an

angle between and 2tt (measured in

the positive direction), it is evident that

x = r cos 0, y = r sin 0,

r = V(#
2 + y

2
), cos : sin : 1 : : x : y : r,

and that the position of P is equally well

determined by a knowledge of r and 0.

We call r and the polar coordinates Fig- 7 -

of P. The former, it should be observed, is essentially positive*.

If P moves on a locus there will be some relation between r

and 0, say r=f(0) or = F'(r). This we call the polar equation

of the locus. The polar equation may be deduced from the (x, y)

equation (or vice versa) by means of the formulae above.

Thus the polar equation of a straight line is of the form

rcos(0 — 0L)=p,

where p and a are constants. The equation r — 2a cos represents

a circle passing through the origin ; and the general equation of

a circle is of the form

r2 + c
2 - 2rc cos (0 - o) = A 2

,

where A, c, and a are constants.

* Polar coordinates are sometimes denned so that r may be positive or negative.

In this case two pairs of coordinates

—

e.g. (1,0) and (-1, it)—correspond to the

same point. The distinction between the two systems may be illustrated by means

of the equation llr= l-ecosd, where Z>0, e>l. According to our definitions r

must be positive and therefore cos0<l/e: the equation represents one branch only

of a hyperbola, the other having the equation - //r= l - e cos 6. With the system

of coordinates which admits negative values of r, the equation represents the whole

hyperbola.
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23. Further examples of functions and their graphical

representation. The examples which follow will give the

reader a better notion of the infinite variety of possible types of

functions.

A. Polynomials. A 'polynomial in a; is a function of the

form

a xm + a^™-1 + . . . + am ,

where aQ , a1} ..., am are constants. The simplest polynomials are

the simple powers y=x, x2
, a3

, ..., xm,
The graph of the function

xm is of two distinct types, according as m is even or odd.

First let m = 2. Then three points on the graph are (0, 0),

(1, 1), (— 1, 1). Any number of additional points on the graph

may be found by assigning other special values to x: thus the

values

x = \, 2, 3,-1 -2, 3

give y = i 4, 9, 4, 9.

y = x*

(0,0)

Fig. 8.

If the reader will plot off a fair number of points on the graph, he

will be led to conjecture that the

form of the graph is something

like that shown in Fig. 8. If

he draws a curve through the

special points which he has proved

to lie on the graph and then tests

its accuracy by giving x new
values, and calculating the cor-

responding values of y, he will

find that they lie as near to the curve as it is reasonable to expect,

when the inevitable inaccuracies of drawing are considered. The

curve is of course a parabola.

There is, however, one fundamental question which we cannot

answer adequately at present. The reader has no doubt some
notion as to what is meant by a continuous curve, a curve without

breaks or jumps ; such a curve, in fact, as is roughly represented

in Fig. 8. The question is whether the graph of the function

y = x2
is in fact such a curve. This cannot be proved by merely
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constructing any number of isolated points on the curve, although
I the more such points we construct the more probable it will

appear.

This question cannot be discussed properly until Ch. V. In
that chapter we shall consider in detail what our common sense

idea of continuity really means, and how we can prove that such

graphs as the one now considered, and others which we shall

consider later on in this chapter, are really continuous curves.

For the present the reader may be content to draw his curves as

common sense dictates.

It is easy to see that the curve y= x1 is everywhere convex to the axis of x.

Let P , Px (Fig. 8) be the points (xQ , x 2
),

{xu xf). Then the coordinates of

a point on the chord P P1 are x=\x +fixu y= Xx 2+ fiXj 2
, where X and n are

positive numbers whose sum is 1. And

y - x-= (X+ fi) (\Xq
2+ fiXj

2
) -(\x + pXxf= X/i (xx -

x

)
2 > 0,

so that the chord lies entirely above the curve.

The curve y = x* is similar to y — a? in general appearance, but

flatter near 0, and steeper beyond the points A, A' (Fig. 9),

and y = xm, where m is even and greater than 4, is still more so.

As m gets larger and larger the flatness and steepness grow

more and more pronounced, until the curve is practically indis-

tinguishable from the thick line in the figure.

Fig. 9. Fig. 10.

The reader should next consider the curves given by y=xm
,

when m is odd. The fundamental difference between the two

cases is that whereas when m is even (— x)m = xm, so that the

curve is symmetrical about OY, when m is odd (— x)m = — xm, so
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that y is negative -when x is negative. Fig. 10 shows the curves

y — x, y — x3
, and the form to which y = xm approximates for

larger odd values of m

It is now easy to see how (theoretically at any rate) the graph

of any polynomial may be constructed. In the first place, from

the graph of y — xm we can at once derive that of Cxm, where C is

a constant, by multiplying the ordinate of every point of the

curve by C. And if we know the graphs of f(x) and F(x), we

can find that of f(x) + F(x) by taking the ordinate of every point

to be the sum of the ordinates of the corresponding points on the

two original curves.

The drawing of graphs of polynomials is however so much

facilitated by the use of more advanced methods, which will be

explained later on, that we shall not pursue the subject further

here.

Examples XI. 1. Trace the curves y= 7x\ y—-3x5
, y= x10

.

[The reader should draw the curves carefully, and all three should be

drawn in one figure*. He will then realise how rapidly the higher powers

of x increase, as x gets larger and larger, and will see that, in such a

polynomial as

xw+ 3x5+ 7xi

(or even .r
10 + 30.v5+ 700.t4 ), it is the Jirst term which is of really preponderant

importance when x is fairly large. Thus even when x=4, x10> 1,000,000,

while 30.Z5 < 35,000 and 700a-4< 180,000; while if a= 10 the preponderance

of the first term is still more marked.]

2. Compare the relative magnitudes of a;
12

, 1,000,000a'
6

, l,000,000,000,000.v

when x=l, 10, 100, etc.

[The reader should make up a number of examples of this type for himself.

This idea of the relative rate of growth of different functions of x is one with

which we shall often be concerned in the following chapters.]

3. Draw the graph of ax2+ 2bx + c

[Here y — {{ac- b2)ja) =a {x+ (b/a)}2. If we take new axes parallel to the

old and passing through the point x= — b/a, y= (ac — b2)/a, the new equation

isy' = ax' 2
. The curve is a parabola.]

4. Trace the curves y=

x

z - 3x+ 1 , y=x2 (x — 1 ), y=x (x - 1 )
2
.

* It will be found convenient to take the scale of measurement along the axis

of y a good deal smaller than that along the axis of x, in order to prevent the

figure becoming of an awkward size.
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24. B. Rational Functions. The class of functions which

ranks next to that of polynomials in simplicity and importance

is that of rational functions. A rational function is the quotient

of one polynomial by another : thus if P (x), Q (x) are polynomials,

we may denote the general rational function by

In the particular case when Q (x) reduces to unity or any other

constant {i.e. does not involve x), R (x) reduces to a polynomial

:

thus the class of rational functions includes that of polynomials

as a sub-class. The following points concerning the definition

should be noticed.

(1) "We usually suppose that P{x) and Q (x) have no common factor x+ a
or x v + ax 13

' 1 + bx p ~ 2+ ... + k, all such factors being removed by division.

(2) It should however be observed that this removal of common factors

does as a rule change the function. Consider for example the function x/x,

which is a rational function. On removing the common factor x we obtain

1/1 = 1. But the original function is not always equal to 1 : it is equal to 1

only so long as #4=0. If #= it takes the form 0/0, which is meaningless.

Thus the function x/x is equal to 1 if x 4=0 and is undefined when x= 0. It

therefore differs from the function 1, which is always equal to 1.

(3) Such a function as

\x+l + x-l)/ \x
+
x-2J

may be reduced, by the ordinary rules of algebra, to the form

x*(x-2)

(x-l)2 (x+l)'

which is a rational function of the standard form. But here again it must be

noticed that the reduction is not always legitimate. In order to calculate the

value of a function for a given value of x we must substitute the value for as

in the function in the form in which it is given. In the case of this function

the values x= -1, 1, 0, 2 all lead to a meaningless expression, and so the

function is not defined for these values. The same is true of the reduced

form, so far as the values — 1 and 1 are concerned. But x= and x= 2 give

the value 0. Thus once more the two functions are not the same.

(4) But, as appeal's from the particular example considered under (3),

there will generally be a certain number of values of x for which the function

is not defined even when it has been reduced to a rational function of the

standard form. These are the values of x (if any) for which the de-

nominator vanishes. Thus (x2 - 7)/(#
2- 3# + 2) is not defined when x=l

or 2.
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(5) Generally we agree, in dealing with expressions such as those con-

sidered in (2) and (3), to disregard the exceptional values of x for which such

processes of simplification as were used there are illegitimate, and to reduce

our function to the standard form of rational function. The reader will

easily verify that (on this understanding) the sum, product, or quotient of

two rational functions may themselves be reduced to rational functions of

the standard type. And generally a rational function of a rational function

is itself a rational function: i.e. if in z=P (y)lQ(y), where P and Q are

polynomials, we substitute y—Px
{x)jQ

l
(x), we obtain on simplification an

equation of the form z=P2 (x)/Q2 {x).

(6) It is in no way presupposed in the definition of a rational function

that the constants which occur as coefficients should be rational numbers.

The word rational has reference solely to the way in which the variable x
appears in the function. Thus

x2+ x+ >/3

x$2-ir
is a rational function

The use of the word rational arises as follows. The rational function

P
(
X)IQ (

x) may De generated from x by a finite number of operations upon

x, including only multiplication of x by itself or a constant, addition of terms

thus obtained, and division of one function, obtained by such multiplications

and additions, by another. In so far as the variable x is concerned, this pro-

cedure is very much like that by which all rational numbers can be obtained

from unity, a procedure exemplified in the equation

5 = 1 + 1 + 1 + 1 + 1

3 1+1+1
'

Again, any function which can be deduced from x by the elementary

operations mentioned above, using at each stage of the process functions

which have already been obtained from x in the same way, can be reduced to

the standard type of rational function. The most general kind of function

which can be obtained in this way is sufficiently illustrated by the example

x

x*+ l
+ '

ltr-.3V2)/(
17+W'

"*"

&r+ l '/

which can obviously be reduced to the standard type of rational function.

25. The drawing of graphs of rational functions, even more

than that of polynomials, is immensely facilitated by the use of

methods depending upon the differential calculus. We shall

therefore content ourselves at present with a very few examples.

Examples XII. 1 . Draw the graphs ofy= l/x,y= l/x2
, y = l/xz

,
....

[The figures show the graphs of the first two curves. It should be

observed that, since 1/0, I/O2
, ... are meaningless expressions, these functions

are not defined for A'= 0.]
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2. Trace y=x+(ljx\ ar-(l/#), ^+ (l/x2
), o,-

2 -(l/.^) and a.v+(b/x)
taking various values, positive and negative, for a and b.

3. Trace
_x±l /a?+l\2 ^+1

(.v-1)2 ' a^-l"

4. Trace y=l/(a?-a)(a?-6), lj(x-a)(x-b) (#-c), where a<6<c.

5. Sketch the general form assumed by the curves v=llxm as »i

becomes larger and larger, considering separately the cases in which m is

odd or even.

(-1,-1)
y = llx

y = ]/x2

Fig. 11. Fig. 12.

26. C. Explicit Algebraical Functions. The next im-

portant class of functions is that of explicit algebraical functions.

These are functions which can be generated from a; by a finite

number of operations such as those used in generating rational

functions, together with a finite number of operations of root

extraction. Thus

vci + ao+vxi-*-)'

fx2 + x + \/3\!

*/x + \J(x + \/x),

fx" + x+^/S\i

\X~$"2-7T )X$2-TT

are explicit algebraical functions, and so is xm/n (i.e. tyx™), where m
and n are any integers.

It should be noticed that there is an ambiguity of notation

involved in such an equation as y = \/x. We have, up to the

present, regarded (e.g.) V2 as denoting the positive square root

of 2, and it would be natural to denote by \Jx, where x is any

n. 4
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positive number, the positive square root of x, in which case

y = sjx would be a one-valued function of x. It is however

often more convenient to regard \jx as standing for the two-valued

function whose two values are the positive and negative square

roots of x.

The reader will observe that, when this course is adopted, the

function \fx differs fundamentally from rational functions in two

respects. In the first place a rational function is always defined

for all values of x with a certain number of isolated exceptions.

But six is undefined for a whole range of values of x (i.e. . all

negative values). Secondly the function, when x has a value

for which it is defined, has generally two values of opposite signs.

The function tyx, on the other hand, is one-valued and defined

for all values of x.

Examples XIII. 1. »J{(x-a)(b-x)}, where a<b, is defined only for

«£,i' <6. If a<x<b it has two values : if x= a or b only one, viz. 0.

2, Consider similarly

J{(x - a) (x - b) (x- c)} (a< b< c),

«/{*(*"-<£)}, y{(x-a)*(b-x)} (a<b),

J(1+*W(1-*) .,
f)

7(i+*)+n/(i-*)' w +« a] '

3, Trace the curves y
2 =x, y*= x, y2=xi

.

4, Draw the graphs of the functions y= >J(a2 — x-), y=b<JQ — (a?
9/a2)}.

27. D. Implicit Algebraical Functions. It is easy to

verify that if

^ = V(l+s)-.y(l-tt)
V

VCl + aO + vXl-ff)'

/l + 3/\
6 _ (1 +xf

then

or if y = \/x + \/(x + \fx),

then if - (4/ + 4y + 1 ) x = 0.

Each of these equations may be expressed in the form

tf
m + R1y

m-1 + ...+Bm=0 (1),

where Ru R2 , ..., Rm are rational functions of x: and the reader

will easily verify that, if y is any one of the functions considered

in the last set of examples, y satisfies an equation of this form.
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It is naturally suggested that the same is true of any explicit

algebraic function. And this is in fact true, and indeed not

difficult to prove, though we shall not delay to write out a formal

proof here. An example should make clear to the reader the lin.cs

on which such a proof would proceed. Let

_ x + \/x + \J{x + *Jx] + y/(l + Od)

J ~ x - sjx + V{« + V*} - ^(1 + *')
'

Then we have the equations

x + u + v + w
y = ,X — U + V — w

u* = x, v- = X + U, Wz = 1 + X,

and we have only to eliminate u, v, w between these equations in

order to obtain an equation of the form desired.

We are therefore led to give the following definition : afunction

y=f(x) will be said to be an algebraical function of x if it is the

root of an equation such as (1), i.e. the root of an equation of the

mth degree in y, ivhose coefficients are rational functions of x. There

is plainly no loss of generality in supposing the first coefficient to

be unity.

This class of functions includes all the explicit algebraical

functions considered in § 26. But it also includes other functions

which cannot be expressed as explicit algebraical functions. For

it is known that in general such an equation as (1) cannot be

solved explicitly for y in terms of x, when m is greater than 4,

though such a solution is always possible if m = 1, 2, 3, or 4 and

in special cases for higher values of m.

The definition of an algebraical function should be compared

with that of an algebraical number given in the last chapter

(Misc. Exs. 32).

Examples XIV. 1. If m= l, y is a rational function.

2. If m= 2, the equation is y~ +R xy+ -ff2 =0, s0 that

This function is defined for all values of x for which /?
x
2 24i?2 . It has two

values if R^>ARo, and one if fil
2= 4R2 .

If m=3 or 4, we can use the methods explained in treatises on Algebra for

the solution of cubic and biquadratic equations. But as a rule the process is

complicated and the results inconvenient in form, and we can generally study

the properties of the function better by means of the original equation.

4—2
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3. Consider the functions denned by the equations

y
2 -2y-x2=0, y

2 -2y+ x2= 0, #*- 2y2 + x2=0,

in each case obtaining y as an explicit function of x, and stating for what

values of x it is defined.

4. Find algebraical equations, with coefficients rational in x, satisfied by

each of the functions

n/*+ V(1/*), Vx+ V(llx), *J(x + s/x), *J{x+ »J(x+ s/x)}.

5. Consider the equation y
i=x2

.

[Here y
2= ± ff. If # is positive, y=*Jx: if negative, y=V (- a?). Thus the

function has two values for all values of x save #=0.]

6. An algebraical function of an algebraical function of x is itself an

algebraical function of x.

[For we have

. y
m +i?i(z)ym

- 1 +-+fim (z)=o,

where zn+S
l
(x) zn

~ l + ... +Sn (x) =0.

Eliminating z we find an equation of the form

yP + T1
(x) yr>-i+ ...+ Tp (x) =0.

Here all the capital letters denote rational functions.]

7. An example should perhaps be given of an algebraical function which

cannot be expressed in an explicit algebraical form. Such an example is the

function y defined by the equation

y
3 -y — x=0-

But the proof that we cannot find an explicit algebraical expression for y in

terms of x is difficult, and cannot be attempted here.

28. Transcendental functions. All functions of x which

are not rational or even algebraical are called transcendental

functions. This class of functions, being denned in so purely-

negative a manner, naturally includes an infinite variety of whole

kinds of functions of varying degrees of simplicity and importance.

Among these we can at present distinguish two kinds which are

particularly interesting.

E. The direct and inverse trigonometrical or circular

functions. These are the sine and cosine functions of elementary

trigonometry, and their inverses, and the functions derived from

them. We may assume provisionally that the reader is familiar

with their most important properties *.

* The definitions of the circular functions given in elementary trigonometry pre-

suppose that any sector of a circle has associated with it a definite number called its

area. How this assumption is justified will appear in Ch. VII.
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Examples XV. 1. Draw the graphs of cos x, sin x, and a cos x + b sin >•.

[Since acosx+ bsinx=@co$(x-a), where $= sJ(a
2 ->r b2), and a is an angle

whose cosine and sine are a/^/(a2+ b2
) and b/»J(a2+ b2), the graphs of these

three functions are similar in character.]

2. Draw the graphs of cos2 x, sin2 ^, a cos2 x+ b sin2 x.

3. Suppose the graphs of f(x) and F(x) drawn. Then the graph of

/ (x) cos2 x+F (x) sin2 x

is a wavy curve which oscillates between the curves y=f{x), y= F(x). Draw
the graph when f(x)= x, F(x)=x2

.

4. Show that the graph of cospx+ cosqx lies between those of

2 cos \(p - q) x and — 2 cos |(p+ q) x, touching each in turn. Sketch the

graph when (p-q)l(p + q) is small. (Math. Trip. 1908.)

5. Draw the graphs of x+ sin x, (l/#) + sin#, #sin#, (sinx)/x.

6. Draw the graph of sin (Ifx).

[If y =sin (1/x), then y= when .r= 1/mn-, where «& is any integer. Similarly

?/= l when a*=1/(2»i+|)7t and y=— 1 when a?=l/(2»i— ^) w. The curve is

entirely comprised between the lines y= —1 and y=l (Fig. 13). It oscillates

up and down, the rapidity of the oscillations becoming greater and greater as

x approaches 0. For x=0 the function is undefined. When x is large y is

small *. The negative half of the curve is similar in character to the positive

half.]

7. Draw the graph of x sin (1/x).

[This curve is comprised between the lines y= - x and y=x just as the

last curve is comprised between the lines y= —1 and y=l (Fig. 14).]

Fig. 13. Fig. 14.

* See Chs. IV and V for explanations as to the precise meaning of this phrase.
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8. Draw the graphs of #2 sin (l/#), (l/o?) sin (ljx), sin2 (l/#), {.r sin (l/.r)} 2
,

a cos2 (I/a) + 6 sin2 (l/#), sin x+ sin (l/x), Bin x sin (l/#).

9. Draw the graphs of cos a2
, sin a;

2
, a cos a2+ b sin a2

.

10. Draw the graphs of arc cos x and arc sin x.

[If y=. arc cos a, a= cosy. This enables us to draw the gi'aph of x, con-

sidered as a function of y, and the same curve shows y as a function of x.

It is clear that y is only defined for -l£.r£l, and is infinitely many-

valued for these values of x. As the reader no doubt remembers, there is,

when - k,f<l, a value of y between and -it, say a, and the other values

of y are given by the formula 2mv ± a, where n is any integer, positive or

negative.]

1 1

.

Draw the graphs of

tan x, cot x, sec x, cosec x, tan2 x, cot2 x, sec2 x, cosec2 x.

12. Draw the graphs of arc tan x, arc cot x, arc sec x, arc cosec x. Give

fornmlae (as in Ex. 10) expressing all the values of each of these functions

in terms of any particular value.

13. Draw the graphs of tan (l/.r), cot(l/.v), sec(l/.v), cosec (1 jx)

14. Show that cos a and sin.r are not rational functions of x.

[A function is said to be periodic, with period a, if f(x)=f(x+ a) for all

values of x for which f(x) is defined. Thus cos a and sin x have the period

27T.. It is easy to see that no periodic function can be a rational function,

unless it is a constant. For suppose that

f(x) = P(x)/Q(x),

where P and Q are polynomials, and that/(.r) =/(.r+ a), each of these equations

holding for all values of x. Let /(0) = /•. Then the equation P (x) — kQ (x) =
is satisfied by an infinite number of values of x, viz. x=0, a, 2a, etc., and
therefore for all values of x. Thus f(x)= k for all values of x, i.e. f(x) is a

constant.]

15. Show, more generally, that no function with a period can be an

algebraical function of x.

[Let the equation which defines the algebraical function be

y™+Ritf»-i + ...+Rm=0 (1)

where R\, ... are rational functions of x. This may be put in the form

p ri+Piri ' 1+-+pm=o,
where P , P t , ... are polynomials in x. Arguing as above, we see that
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for all values of x. Hence y= k satisfies the equation (1) for all values of x
and one set of values of our algebraical function reduces to a constant.

Now divide (1) by y - k and repeat the argument. Our final conclusion is

that our algebraical function has, for any value of x, the same set of values

k, k', ... ; i.e. it is composed of a certain number of constants.]

16. The inverse sine and inverse cosine are not rational or algebraical

functions. [This follows from the fact that, for any value of x between - 1

and + 1, arc sin# and arc cos a; have infinitely many values.]

29. F. Other classes of transcendental functions. Next

in importance to the trigonometrical functions come the expo-

nential and logarithmic functions, which will be discussed in

Chs. IX and X. But these functions are beyond our range at

present. And most of the other classes of transcendental func-

tions whose properties have been studied, such as the elliptic

functions, Bessel's and Legendre's functions, Gamma-functions,

and so forth, lie altogether beyond the scope of this book.

There are however some elementary types of functions which,

though of much less importance theoretically than the rational,

algebraical, or trigonometrical functions, are particularly instruc-

tive as illustrations of the possible varieties of the functional

relation.

Examples XVI. 1. Let y=\x\ where [x] denotes the greatest integer

not greater than x. The graph is shown in Fig. 15 a. The left-hand end

points of the thick lines, but not the right-hand ones, belong to the graph.

2. y=x-[x], (Fig. 15 6.)

Fig. 15 a. Fig. 156.
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3. y=V{*-[*]}. (^g. 15 c.) 4 y= [x] + J{x-[x]}. (Fig. 15o?.)

5. y=(ff-[>])2
, [*]+ (*-[*])".

Fig. 15 c. Fig. 15 d.

7. Let y be defined as the largest prime factor of x (cf. Exs. x. 6).

Then y is defined only for integral values of x. If

a?=l, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ...

,

then y = \, 2, 3, 2, 5, 3, 7, 2, 3, 5,11, 3,13,....

The graph consists of a number of isolated points.

8. Let y be the denominator of x (Exs. x. 7). In this case y is defined

only for rational values of x. We can mark off as many points on the graph

as we please, but the result is not in any ordinary sense of the word a curve,

and there are no points corresponding to any irrational values of x.

Draw the straight line joining the points (N- 1, JV), (iV, JV), where N is a

positive integer. Show that the number of points of the locus which lie on

this line is equal to the number of positive integers less than and prime to N.

9. Let # = when x is an integer, y=x when x is not an integer. The

graph is derived from the straight line y= x by taking out the points

...(-1, -1), (0,0), (1,1), (2,2),...

and adding the points (— 1, 0), (0, 0), (1, 0), ... on the axis of x.

The reader may possibly regard this as an unreasonable function. Why,

he may ask, if y is equal to x for all values of x save integral values, should it

not be equal to x for integral values too 1 The answer is simply, why should

itl The function y does in point of fact answer to the definition of a

function : there is a relation between x and y such that when x is known y is

known. We are perfectly at liberty to take this relation to be what we please,

however arbitrary and apparently futile. This function y is, of course, a quite

different function from that one which is always equal to x, whatever value,

integral or otherwise, x may have.
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10. Let y= 1 when x is rational, but y= when x is irrational. The graph
consists of two series of points arranged upon the lines y= \ and y—-0. To
the eye it is not distinguishable from two continuous straight lines, but in

reality an infinite number of points are missing from each line.

11. Let y=x when x is irrational and y= s'{{\ +p2)/(l+q2
)} when x is a

rational fraction pjq.

Fig. 16.

The irrational values of x contribute to the graph a curve in reality dis-

continuous, but apparently not to be distinguished from the straight line y=x.

Now consider the rational values of x. First let x be positive. Then

s/{(l+p
2)/(l+q2

)} cannot be equal to pjq unless p= q, i.e. x=l. Thus all

the points which correspond to rational values of x lie off the line, except

the one point (1, 1). Again, if p<q, v^{(l+p2)/(l+?2
)} >plq 5 if P > ?>

V/{(1 4-jo2)/(l + q
2
)} <plq. Thus the points lie above the line y=x if <x < 1,

below if x > 1. Ifp and q are large, v/{(l +p2)/(l + q
2
)} is nearly equal to pjq.

Near any value of x we can find any number of rational fractions with large

numerators and denominators. Hence the graph contains a large number of

points which crowd round the line y=x. Its general appearance (for positive

values of x) is that of a line surrounded by a swarm of isolated points which

gets denser and denser as the points approach the line.

The part of the graph which corresponds to negative values of x consists

of the rest of the discontinuous line together with the reflections of all these

isolated points in the axis of y. Thus to the left of the axis of y the swarm

of points is not round y= x but round y= — x, which is not itself part of the

graph. See Fig. 16.
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30. Graphical solution of equations containing a single

unknown number. Many equations can be expressed in the

form

/(*) = *(*) (1),

where f(x) and </> (%) are functions whose graphs are easy to draw.

And if the curves

y-f(®)> y = 4>(x)

intersect in a point P whose abscissa is £, then £ is a root of the

equation (1).

Examples XVII. 1. The quadratic equation ax2+ 2bx + c=0. This

may be solved graphically in a variety of ways. For instance we may draw

the graphs of

y= ax+ 2b, y= - cjx,

whose intersections, if any, give the roots. Or we may tako

y= x2
,
y=-(2bx + c)ja.

But the most elementary method is probably to draw the circle

a(x2+y2
) + 2bx+ c=0,

whose centre is ( — b/a, 0) and radius {J(b2 — ac)}/a. The abscissae of its

intersections with the axis of x are the roots of the equation,

2. Solve by any of these methods

x2 + 2x-3=0, x2-7x+4 = 0, 3#2+ 2a' - 2 = 0.

3. The equation xm+ ax+ b= 0. This may be solved by constructing

the curves y= xm
,
y=- ax—b. Verify the following table for the number of

roots of
xm+ ax+ b= 0:

b positive, two or none,[b positive, two o
(a) m even < ,

x

v ' [b negative, two

'

, , (a positive, one,
(b) in odd \ ,. .

{ a negative, tareree or one.

Construct numerical examples to illustrate all possible cases.

4. Show that the equation tan^=a^+ 6has always an infinite number
of roots.

5. Determine the number of roots of

sin# = .r, sin#= J#, sinx= |x, Bin $=j^x

,

6. Show that if a is small and positive (e.g. a = '01), the equation

x — a= \i7 sin2 x

has three roots. Consider also the case in which a is small and negative.

Explain how the number of roots varies as a varies.
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31. Functions of two variables and their graphical
representation. In § 20 we considered two variables connected

by a relation. We may similarly consider three variables (x, y,

and z) connected by a relation such that when the values of x and

y are both given, the value or values of z are known. In this case

we call z a function of the two variables x and y; x and y the

independent variables, z the dependent variable ; and we express

this dependence of z upon x and y by writing

The remarks of § 20 may all be applied, mutatis mutandis, to this

more complicated case.

The method of representing such functions of two variables

graphically is exactly the same in principle as in the case of

functions of a single variable. We must take three axes, OX, Y,

OZ in space of three dimensions, each axis being perpendicular

to the other two. The point (a, b, c) is the point whose distances

from the planes YOZ, ZOX, XOY, measured parallel to OX, OY,

OZ, are a, b, and c. Regard must of course be paid to sign,

lengths measured in the directions OX, OY, OZ being regarded

as positive. The definitions of coordinates, axes, origin are the

same as before.

Now let z =f(x, y).

As x and y vary, the point (x, y, z) will move in space. The

aggregate of all the positions it assumes is called the locus of the

point (x, y, z) or the graph of the function z =f(x, y). When the

relation between x, y, and z which defines z can be expressed in an

analytical formula, this formula is called the equation of the locus.

It is easy to show, for example, that the equation

Ax + By+Cz+D =

(the general equation of the first degree) represents a plane, and

that the equation of any plane is of this form. The equation

(x- ay- + (y-{3y+(z-ryy = P\

or x2 +y2 + z2 + 2Fx+2Gy + 2Hz + C=0,

where F2 + G2 + H2 — C > 0, represents a sphere ; and so on. For

proofs of these propositions we must again refer to text-books of

Analytical Geometry.
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32. Curves in a plane. We have hitherto used the notation

y-/(«) (!)

to express functional dependence of y upon x. It is evident that

this notation is most appropriate in the case in which y is ex-

pressed explicitly in terms of x by means of a formula, as when

for example

y — x-, sin x, a cos2 x + b sin2
x.

We have however very often to deal with functional relations

which it is impossible or inconvenient to express in this form.

If, for example, y
5 — y — x = or x5 + y

5 — ay = 0, it is known

to be impossible to express y explicitly as an algebraical function

of x. If

X- + y* + 2Gx + 2Fy +C = 0,

y can indeed be so expressed, viz. by the formula

y = - F+ V(^2 - «2 - 2Gx - C);

but the functional dependence of y upon x is better and more

simply expressed by the original equation.

It will be observed that in these two cases the functional

relation is fully expressed by equating a function of the two

variables x and y to zero, i.e. by means of an equation

ffry)=o (2).

We shall adopt this equation as the standard method of

expressing the functional relation. It includes the equation (1)

as a special case, since y—f(x) is a special form of a function of x

and y. We can then speak of the locus of the point (x, y) subject

tof(x, y) = 0, the graph of the function y defined by f(x, y) = 0,

the curve or locus f(x, y) — 0, and the equation of this curve or

locus.

There is another method of representing curves which is often

useful. Suppose that x and y are both functions of a third

variable t, which is to be regarded as essentially auxiliary and

devoid of any particular geometrical significance. We may write

x=f(t), y = F{t) (3).

If a particular value is assigned to t, the corresponding values of

x and of y are known. Each pair of such values defines a point
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(x, y). If Ave construct all the points which correspond in this

way to different values of t, we obtain the graph of the locus

defined by the equations (3). Suppose for example

x = a cos t, y = a sin t.

Let t vary from to 2ir. Then it is easy to see that the point

(x, y) describes the circle whose centre is the origin and whose
radius is a. If t varies beyond these limits, (x, y) describes the

circle over and over again. We can in this case at once obtain

a direct relation between x and y by squaring and adding: we
find that x2 + y

2 = a2
, t being now eliminated.

Examples XVIII. 1. The points of intersection of the two curves whose
equations are f(x, y)=0, <£ (x, y) = 0, where / and cf> are polynomials, can be

determined if these equations can be solved as a pair of simultaneous equations

in x and y. The solution generally consists of a finite number of pairs of

values of x and y. The two equations therefore generally represent a finite

number of isolated points.

2. Trace the curves (x+y)2=l, xy— l, x2—y2=l.

3. The curve f(x,y) + 'K<p(x,y)= represents a curve passing through

the points of intersection of/=0 and <£ = 0.

4. What loci are represented by

(a) x=at+b, y= ct+cl, (j8) xla= 2t/(l + t
2
\ yla=(l-t2)/(l + t

2
),

when t varies through all real values ?

33. Loci in space. In space of three dimensions there are

two fundamentally different kinds of loci, of which the simplest

examples are the plane and the straight line.

A particle which moves along a straight line has only one

degree of freedom. Its direction of motion is fixed ; its position

can be completely fixed by one measurement of position, e.g. by

its distance from a fixed point on the line. If we take the line as

our fundamental line A of Chap. I, the position of any of its points

is determined by a single coordinate x. A particle which moves

in a plane, on the other hand, has two degrees of freedom; its

position can only be fixed by the determination of two coordinates.

A locus represented by a single equation

z =/0, y)

plainly belongs to the second of these two classes of loci, and is

called a surface. It may or may not (in the obvious simple cases
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it will) satisfy our common-sense notion of what a surface

should be.

The considerations of § 31 may evidently be generalised so

as to give definitions of a function j (x, y, z) of three variables (or

of functions of any number of variables). And as in § 32 we

agreed to adopt f(x, y) = as the standard form of the equation

of a plane curve, so now we shall agree to adopt

f(x,y,z) =

as the standard form of equation of a surface.

The locus represented by two equations of the form z =f(x, y)

or fix, y, z) = belongs to the first class of loci, and is called

a curve. Thus a straight line may be represented by two equations

of the type Ax + By+Cz + D = 0. A circle in space may be

regarded as the intersection of a sphere and a plane ; it may

therefore be represented by two equations of the forms

(x - a)2 + (y - /3)
2 + (z- yf = p", Ax + By+Cz + D = 0.

Examples XIX. 1. What is represented by three equations of the type

f(x,y,z) = 0l

2. Three linear equations in general represent a single point. "What are

the exceptional cases ?

3. What are the equations of a plane curve /(.r, y)=0 in the plane XOY,
when regarded as a curve in space 1 [/(#, y)=0, 2= 0.]

4. Cylinders. What is the meaning of a single equation f(x,y) = 0,

considered as a locus in space of three dimensions ?

[All points on the surface satisfy/ (x, y) = 0, whatever be the value of z. The
curve /(#, y)=0, 2=0 is the curve in which the locus cuts the plane XOY.
The locus is the surface formed by drawing lines parallel to OZ through all

points of this curve. Such a surface is called a cylinder.]

5 Graphical representation of a surface on a plane. Contour Maps.
It might seem to be impossible to represent a surface adequately by a

drawing on a plane ; and so indeed it is : but a very fair notion of the

nature of the surface may often be obtained as follows. Let the equation of

the surface be z=f(x, y).

If we give z a particular value a, we have an equation f(x, y)= a, which
we may regard as determining a plane curve on the paper. We trace this

curve and mark it (a). Actually the curve (a) is the projection on the plane
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XOY of the section of the surface by the plane z— a. We do this for all

values of a (practically, of course, for a selection of values of a). We obtain

some such figure as is shown in Fig. 17. It will at once suggest a contoured

Ordnance Survey map : and in fact this is the principle on which such maps
are constructed. The contour line 1000 is the projection, on the plane of the

sea level, of the section of the surface of the land by the plane parallel to the

plane of the sea level and 1000 ft. above it*.

3000

6. Draw a series of contour lines to illustrate the form of the surface

2z=3.vy.

7. Right circular cones. Take the origin of coordinates at the

vertex of the cone and the axis of z along the axis of the cone ; and let a be

the semi-vertical angle of the cone. The equation of the cone (which must

be regarded as extending both ways from its vertex) is .r
2+ ?/

2 -

c

2 tan2 a= 0.

8. Surfaces of revolution in general. The cone of Ex. 7 cuts ZOX in

two lines whose equations may be combined in the equation x2= z2 tan2 a.

That is to say, the equation of the surface generated by the revolution of

the curve y= 0, #2=22 tan2 a round the axis of z is derived from the second of

these equations by changing x2 into x2+y2
. Show generally that the equation

of the surface generated by the revolution of the curve y= 0, x=f(z), round

the axis of z, is

9. Cones in general. A surface formed by straight lines passing

through a fixed point is called a cone: the point is called the vertex. A
particular case is given by the right circular cone of Ex. 7. Show that the

equation of a cone whose vertex is is of the form f(z/x, z/y) = 0, and that any

equation of this form represents a cone. [If (x, y, z) lies on the cone, so must

(X.r, Ay, \z), for any value of X.]

We assume that the effects of the earth's curvature may be neglected.
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10. Ruled surfaces.

composed of straight lines.

Cylinders and cones are special cases of surfaces

Such surfaces are called ruled surfaces.

The two equations

x=az+ b, y= cz+d (1)

represent the intersection of two planes, i.e. a straight line. Now suppose

that a, b, c, d instead of being fixed are functions of an auxiliary variable t.

For any particular value of t the equations (1) give a line. As t varies,

this line moves and generates a surface, whose equation may be found by

eliminating t between the two equations (1). For instance, in Ex. 7 the

equations of the line which generates the cone are

x=z tan a cos t, y= z tan a sin t,

where t is the angle between the plane XOZ and a plane through the line and

the axis of z.

Another simple example of a ruled surface may be constructed as follows.

Take two sections of a right circular cylinder perpendicular to the axis and

at a distance I apart (Fig. 18 a). We can imagine the surface of the cylinder

to be made up of a number of thin parallel rigid rods of length I, such as PQ,

the ends of the rods being fastened to two circular rods of radius a.

Now let us take a third circular rod of the same radius and place it

round the surface of the cylinder at a distance h from one of the first two

rods (see Fig. 18 a, where Pq— li). Unfasten the end Q of the rod PQ and

turn PQ about P until Q can be fastened to the third circular rod in the

position Q'. The angle qOQ'= a in the figure is evidently given by

P - h2= qQ'2= (2a sin \af.

Let all the other rods of which the cylinder was composed be treated in the

same way. We obtain a ruled surface whose form is indicated in Fig. 18 b.

It is entirely built up of straight lines; but the surface is curved everywhere,

and is in general shape not unlike certain forms of table-napkin rings (Fig. 18c).

fZ ^



FUNCTIONS OF REAL VARIABLES 65

MISCELLANEOUS EXAMPLES ON CHAPTEI1 IL

1

.

Show that if y=/ {x) = {ax+ b)/{cx - a) then x=f {y).

2. If f{x)=f{ — x) for all values of x,f{x) is called an even function.

Iff(x) = —/( — #), it is called an odd function. Show that any function of x,

denned for all values of x, is the sum of an even and an odd function of x.

[Use the identity /(*)= \ tf(«)+/(-*)} +*{/(*) -/(-*)}•]

3. Draw the graphs of the functions

3 sin x+ 4 cos x, sin f -t= sin a; ) . {Math. Trip. 1 896.)

4. Draw the graphs of the functions

sin x {a cos2 x+b sin2 *'), -—— (« cos2 #+ 6 sin2 #), (

—

'

"a; \ x

5. Draw the graphs of the functions # [l/.r], [.f]/^.

6. Draw the graphs of the functions

(i) arc cos {2x2 — 1)-2 arc cos x,

(ii) arc tan arc tan a — arc tan x,
I -ax

where the symbols arc cos a, arc tan a denote, for any value of a, the least

positive (or zero) angle, whose cosine or tangent is a.

7. Verify the following method of constructing the graph of /{<£ (x)} by

means of the line y = x and the graphs of / {x) and (x) : take OA = x along

OX, draw AB parallel to OF to meet y= (j> (x) in B, BC parallel to OX to

meet y—x in C, CD parallel to OY to meet y=f{x) in Z), and DP parallel to

OX to meet AB in P; then P is a point on the graph required.

8. Show that the roots of x3+px+ q= are the abscissae of the points of

intersection (other than the origin) of the parabola y=x2 and the circle

x2+y2+ {p~ \)y+ qx=0.

9. The roots of xi+ nx3+px2+ qx+ r= are the abscissae of the points of

intersection of the parabola x2=y— hix and the circle

x2+y2+ {l?i
2 -jtpn+ %n+ q)x + {p-l - \n2)y-s

!-r=0.

10. Discuss the graphical solution of the equation

xm+ax2 -\-bx+c=

by means of the curves y= xm, y= — ax2— bx— c. Draw up a table of the

various possible numbers of roots.

11. Solve the equation sec #+ cosec = 2 x/2; and show that the equation

sec + cosec 6= o has two roots between and 2tt if c2<8 and four if c2>8.
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12. Show that the equation

2x= (1n+ \)TT (1-cos^),

where n is a positive integer, has 2?i+ 3 roots and no more, indicating

their localities roughly. {Math. Trip. 1896.)

13. Show that the equation §.«sin^ = l has four roots between -it

and 7r.

14. Discuss the number and values of the roots of the equations

(1) cot.^+.r-|7T= 0, (2) ^2+ sin2 .r=l, (3) t^nx=2x/(l-\-x°-),

(4) sin.r-A,+ ^'3=0, (5) (1-cos.r) tana-.r+sino7=0.

15. The polynomial of the second degree which assumes, when x=a, b, c

the values a, 0, y is

(x-b)(x-c) (x-c)(x-a) (x - a) (x — b )

a
(a-b)(a-c)

+P (b-c)(b-a) +y (c-a)(c-b)'

Give a similar formula for the polynomial of the (?i-l)th degree which

assumes, when x=a
x
,a^ ... an , the values a1? a2 , ... an .

16. Find a polynomial in x of the second degree which for the values

0, 1, 2 of x takes the values 1/c, l/(c+ l), l/(c+ 2); and show that when

x= c+ 2 its value is l/(c+ l). (Math. Trip. 1911.)

17. Show that if,.r is a rational function of y, and y is a rational function

of x, then Axy +Bx+ Cy + D=0.

18. If y is an algebraical function of x, then x is an algebraical function

of y-

19. Verify that the equation

.t*
2

COS i nX= 1 - •

•+<-»
-s/C-r)

is approximately true for all values of x between and 1. [Take „r=0, J, J,

i> |> f > 1> and use tables. For which of these values is the formula exact
1

?]

20. What is the form of the graph of the functions

* = !>] + l>]> z=x+y-[x]-[y]l

21. What is the form of the graph of the functions z=smx + smy,
z= sin x sin y, z= sin xy, z= sin {x1+y2

) ?

22. Geometrical constructions for irrational numbers. In Chapter I

we indicated one or two simple geometrical constructions for a length equal to

N/2, starting from a given unit length. We also showed how to construct

the roots of any quadratic equation axi+ 2bx+ c= Q, it being supposed that

we can construct lines whose lengths are equal to any of the ratios of the

coefficients a, b, c, as is certainly the case if a, b, c are rational. All these con-

structions were what may be called Euclidean constructions ; they depended
on the ruler and compasses only.
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It is fairly obvious that we can construct by these methods the length

measured by any irrational number which is defined by any combination of

square roots, however complicated. Thus

7/ // 17 +3V11 N //17-3V11M
V1VV17-3V1V VV17 + 3V1VJ

is a case in point. This expression contains a fourth root, but this is of

course the square root of a square root. We should begin by constructing

x/11, e.g. as the mean between 1 and 11 : then 17 + 3^11 and 17-3>/ll, and

so on. Or these two mixed surds might be constructed directly as the roots of

A-2_ 34^+190= 0.

Conversely, only irrationals of this kind can be constructed by Euclidean

methods. Starting from a unit length we can construct any rational length.

And hence we can construct the line Ax+By + C=0, provided that the ratios

of A, B, C are rational, and the circle

(
.r _ a) 2+ (y

_
/3)

2= p
2

(or x2 +y2+ 2gx + 2fy+c= 0), provided that a, /3, p are rational, a condition

which implies that g, f, c are rational.

Now in any Euclidean construction each new point introduced into the

figure is determined as the intersection of two lines or circles, or a line and

a circle. But if the coefficients are rational, such a pair of equations as

Ax+ By+ C=0, x2+y2+ 2gx+ 2fy+c=

give, on solution, values of x and y of the form m+ n^p, where m, n, p are

rational : for if we substitute for x in terms of y in the second equation we

obtain a quadratic in y with rational coefficients. Hence the coordinates of

all points obtained by means of lines and circles with rational coefficients

are expressible by rational numbers and quadratic surds. And so the same

is true of the distance sj {{xi — x2 )
2
-\-{yi-y-2)

2
} between any two points so

obtained.

"With the irrational distances thus constructed we may proceed to construct

a number of lines and circles whose coefficients may now themselves involve

quadratic surds. It is evident, however, that all the lengths which we can

construct by the use of such lines and circles are still expressible by square

roots only, though our surd expressions may now be of a more complicated

form. And this remains true however often our constructions are repeated.

Hence Euclidean methods will construct any surd expression involving square

roots only, and no others.

One of the famous problems of antiquity was that of the duplication of

the cube, that is to say of the construction by Euclidean methods of a

length measured by $2. It can be shown that $2 cannot be expressed by

means of any finite combination of rational numbers and square roots, and so

that the problem is an impossible one. See Hobson, Squaring the Circle,

pp. 47 et seq. ; the first stage of the proof, viz. the proof that S]2 cannot be a

root of a quadratic equation ax2+ 2bx+ c= with rational coefficients, was

given in Ch. I (Misc. Exs. 24).

5—2
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23. Approximate quadrature of the circle. Let be the centre of

a circle of radius R. On the tangent at A take AP= 11R &m\AQ =
'

i?L R,

in the same direction. On AO take AN=OP and draw JVM parallel to

OQ and cutting AP in M. Show that

/U//tf= if v/146,

and that to take AM as being equal to the circumference of the circle would

lead to a value of tt correct to five places of decimals. If R is the earth's

radius, the error in supposingAMto be its circumference is less than 11 yards.

24. Show that the only lengths which can be constructed with the ruler

only, starting from a given unit length, are rational lengths.

25. Constructions for Z]2. is the vertex and S the focus of the

parabola y
2= 4x, and P is one of its points of intersection with the parabola

x2 =2y. Show that OP meets the latus rectum of the first parabola in a point

Q such that SQ=$2.

26. Take a circle of unit diameter, a diameter OA and the tangent at A.

Draw a chord OBC cutting the circle at B and the tangent at C. On this

line take OM=BC. Taking as origin and OA as axis of x, show that the

locus of M is the curve
(x2+y2

) x—y2=

(the Oissoid of Diodes). Sketch the curve. Take along the axis of y a length

0D= 2. Let AD cut the curve in P and OP cut the tangent to the circle

at A in Q. Show that A Q=%2.



CHAPTER III

COMPLEX NUMBERS

34. Displacements along a line and in a plane. The
* real number ' x, with which we have been concerned in the two

preceding chapters, may be regarded from many different points

of view. It may be regarded as a pure number, destitute of

geometrical significance, or a geometrical significance may be

attached to it in at least three different ways. It may be re-

garded as the measure of a length, viz. the length A P along the

line A of Chap. I. It may be regarded as the mark of a point,

viz. the point P whose distance from A is x. Or it may be

regarded as the measure of a displacement or change of position

on the line A. It is on this last point of view that we shall now
concentrate our attention.

Imagine a small particle placed at P on the line A and then

displaced to Q. We shall call the displacement or change of

position which is needed to transfer the particle from P to Q the

displacement PQ. To specify a displacement completely three

things are needed, its magnitude, its sense forwards or backwards

along the line, and what may be called its point of application,

i.e. the original position P of the particle. But, when we are

thinking merely of the change of position produced by the dis-

placement, it is natural to disregard the point of application and

to consider all displacements as equivalent whose lengths and

senses are the same. Then the displacement is completely speci-

fied by the length PQ = x, the sense of the displacement being

fixed by the sign of x. We may therefore, without ambiguity,

speak of the displacement [#]*, and we may write PQ = [x\.

* It is hardly necessary to caution the reader against confusing this use of the

symbol [x] and that of Chap. II (Exs. xvi. and Misc. Exs.).
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We use the square bracket to distinguish the displacement [x]

from the length or number x*. If the coordinate of P is a, that

of Q will be a + cc; the displacement [x] therefore transfers a

particle from the point a to the point a + x.

We come now to consider displacements in a plane. We may-

define the displacement PQ as before. But now more data are

required in order to specify it completely. We require to know

:

(i) the magnitude of the displacement, i.e. the length of the

straight line PQ
;

(ii) the direction of the displacement, which is

determined by the angle which PQ makes with some fixed line in

the plane; (iii) the sense of the displacement; and (iv) its point

of application. Of these requirements we may disregard the

fourth, if we consider two displacements as equivalent if they are

the same in magnitude, direction, and sense. In other words, if

PQ and RS are equal and parallel, and the sense of motion from

P to Q is the same as that of

motion from R to S, we regard

the displacements PQ and RS as

equivalent, and write

PQ=M
Now let us take any pair of

coordinate axes in the plane (such "
Fi 19

as OX, 0Y in Fig. 19). Draw a

line OA equal and parallel to PQ, the sense of motion from

to A being the same as that from P to Q. Then PQ and OA
are equivalent displacements. Let x and y be the coordinates

of A. Then it is evident that OA is completely specified

if x and y are given. We call OA the displacement [x, y] and

write

0A = PQ = RS=[x,y].

* Strictly speaking we ought, by some similar difference of notation, to dis-

tinguish the actual length x from the number x which measures it. The reader

will perhaps be inclined to consider such distinctions futile and pedantic. But
increasing experience of mathematics will reveal to him the great importance of

distinguishing clearly between things which, however intimately connected, are not

the same. If cricket were a mathematical science, it would be very important to

distinguish between the motion of the batsman between the wickets, the run which
he scores, and the mark which is put down in the score-book.
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35. Equivalence of displacements. Multiplication of
displacements by numbers. If f and rj are the coordinates

of P, and (' and 77' those of Q, it is evident that

sb= g— £ y = V - 77.

The displacement from (£, 77) to (£', 77') is therefore

[£'-£ */ — «?]

It is clear that two displacements \x, y\ \x', y"\ are equivalent

if, and only if, x = x',y = y. Thus [x, y] = [x, y'] if and only if

x = x', y = y'
(1).

The reverse displacement QP would be [£ - f ', 77 — 77'], and it

is natural to agree that

QP= -PQ,

these equations being really definitions of the meaning of the

symbols — [£' — £ 77' — 77], — PQ. Having thus agreed that

- I>> y] = [- ^ - yl

it is natural to agree further that

a[x, y] = [ax, ay] (2),

where a is any real number, positive or negative. Thus (Fig. 19)

if OB = -\OA then

dB = -lOA = -i[x,y-\ = [-\x,-\y\

The equations (1) and (2) define the first two important ideas

connected with displacements, viz. equivalence of displacements,

and multiplication of displacements by numbers.

36. Addition of displacements. We have not yet given

any definition which enables us to attach any meaning to the

expressions

PQ + P7

®, [x,y] + W,y'l

Common sense at once suggests that we should define the sum

of two displacements as the displacement which is the result

of the successive application of the two given displacements. In
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other words, it suggests that if QQ X
be drawn equal and parallel

to P'Q', so that the result of successive displacements PQ, P'Q' on

a particle at P is to transfer it first to Q and then to Ql} then we

should define the sum of PQ and P'Q' as being PQ^ If then we
draw OA equal and parallel to PQ, and OB equal and parallel to

PQ', and complete the parallelogram OAGB, we have

PQ +PQ '

= PQl = OA + OB=OC.

.P'

Fig. 20.

Let us consider the consequences of adopting this definition.

If the coordinates of B are x
,
y', then those of the middle point of

AB are ^ (x + x), ^(y+y'), and those of C are x+x', y+y'. Hence

[x,y] + [x',y'] = [x + x',y + y'] (3),

which may be regarded as the symbolic definition of addition of

displacements. We observe that

[ob, y'] + [x, y] = [x + x,y' + y]

= \x + of, y + y.] = [x, y] + [x
,
y']

In other words, addition of displacements obeys the commutative

laiv expressed in ordinary algebra by the equation a + b = b + a.

This law expresses the obvious geometrical fact that if we move
from P first through a distance PQ2 equal and parallel to P'Q',

and then through a distance equal and parallel to PQ, we shall

arrive at the same point Q1
as before.
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In particular

[*,y]=[«,0] + [0,y] (4).

Here [x, 0] denotes a displacement through a distance x in

a direction parallel to OX. It is in fact what we previously

denoted by [a], when we were considering only displacements

along a line. We call [x, 0] and [0, y] the components of [x, y],

and [x, y] their resultant.

When we have once defined addition of two displacements,

there is no further difficulty in the way of •defining addition of

any number. Thus, by definition,

[x, y] + [x\ y'] + [x", y"] = ([>, y] + [x', y'}) + [x", f]

= [x + x',y + y'] + [x", y"] =[x + x' + x", y + y' + y"].

We define subtraction of displacements by the equation

[x, y] - [>', y'] = [x, y] + (- [>', y'}) (5),

which is the same thing as [x, y] + [— x', — y'] or as [x — x',y — y'\

In particular

[x, y]-[x,y] = [0, 0].

The displacement [0, 0] leaves the particle where it was; it is

the zero displacement, and we agree to write [0, 0J = 0.

Examples XX. 1. Prove that

(i) a [px, &y]

=

/3 [ax, ay]= [o/3.r, a/3y],

(ii) (0 y] + [>', y]) + [>", y"] = O, y ]+ flV, y']+ [x", y"]),

(iii) [x, y] + [x
1

,
y'] = [x', y'] + [x, y],

(iv) (a + 0) [,v, y]= a [x, y] +/3 [x, y],

( v) « {fa y] + W, y']\ = a [v, y] + a [.>/, /].

[We have already proved (iii). The remaining equations follow with equal

ease from the definitions. The reader should in each case consider the

geometrical significance of the equation, as we did above in the case of (hi).]

2. Ifl/is the middle point of PQ, then 0ll=\(JTP+0Q). More generally,

if M divides PQ in the ratio p : X, then

3. If G is the centre of mass of equal particles at Pu P2 , ..., Pn , then

OG =
(OPi+ OP2 +

.

. . + 0Pn)/n.
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4. If P, Q, R are collinear points in the plane, then it is possible to find

real numbers a, /3, y, not all zero, and such that

a.OP+^.OQ+y.OR=0;

and conversely. [This is really only another way of stating Ex. 2.]

5. If A~B and A~C are two displacements not in the same straight line,

and

a . AB+ p. AC=y . AB + 8 . AC,

then a= y and = 8.

[Take ABl
= a. AB, AC1

= (B . AC. Complete the parallelogram AB^P^.

Then AP
1
= a . AB+ . AC. It is evident that AP

X
can only be expressed

in this form in one way, whence the theorem follows.]

6. ABCD is a parallelogram. Through Q, a point inside the paral-

lelogram, RQS and TQU are drawn

parallel to the sides. Show that

RU, TS intersect on AC.

[Let the ratios AT: AB,AR:AD
be denoted by a, 0. Then

AT=a.AB, ~AR=p.AD,

A~U=a.AB+ AD, AS=TB+ p.~AD.

Let RU meet AC in P. Then,

since R, U, P are collinear, Fig- 21.

AP=^-AR+-^AU,
A+fi. A+/Z

where //./A is the ratio in which P divides RU. That is to say

AP= a/i. AB+^±*AD.

But since P lies on AC, AP is a numerical multiple of AC ; say

I7>=£ . AC= k . A~B+k . AD.

Hence (Ex. 5) ap= 0\ + /x= (A + /a) k, from which we deduce

a+0-1

The symmetry of this result shows that a similar argument would also give

n0AP = AC,
a+0-1

if P' is the point where TS meets AC. Hence P and P' are the same point.]

7. ABCD is a parallelogram, and M the middle point of AB. Show that

D.M trisects and is trisected by A C*.

* The two preceding examples are taken from Willard Gibbs' Vector Analysis.
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37. Multiplication of displacements. So far we have

made no attempt to attach any meaning whatever to the notion

of the product of two displacements. The only kind of multipli-

cation which we have considered is that in which a displacement

is multiplied by a number. The expression

[x, y] x [x'
} 2/']

so far means nothing, and we are at liberty to define it to mean
anything we like. It is, however, fairly clear that if any definition

of such a product is to be of any use, the product of two displace-

ments must itself be a displacement.

We might, for example, define it as being equal to

+ x, y + y']
;

in other words, we might agree that the product of two displace-

ments was to be always equal to their sum. But there would be

two serious objections to such a definition. In the first place our

definition would be futile. We should only be introducing a new

method of expressing something which we can perfectly well

express without it. In the second place our definition would be

inconvenient and misleading for the following reasons. If a is

a real number, we have already defined a [x, y] as [ax, ay]. Now,

as we saw in § 34, the real number a may itself from one point of

view be regarded as a displacement, viz. the displacement [a]

along the axis OX, or, in our later notation, the displacement

[a, 0]. It is therefore, if not absolutely necessary, at any rate

most desirable, that our definition should be such that

[a, 0] [x, y] = [ax, ay],

and the suggested definition does not give this result.

A more reasonable definition might appear to be

[x, y] [x, y'] = [xx, yy'].

But this would give

[a, 0] [x, y] = [ax, 0]

;

and so this definition also would be open to the second objection.

In fact, it is by no means obvious what is the best meaning

to attach to the product [x, y~\ [x, y']. All that is clear is (1) that,

if our definition is to be of any use, this product must itself be
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a displacement whose coordinates depend on x and y, or in other

words that we must have

[x, y] [x, y'] = [X, Y],

where X and Y are functions of x, y, x, and y '; (2) that the

definition must be such as to agree with the equation

[x, 0] [>', y'] = \xx, xy']
;

and (3) that the definition must obey the ordinary commutative,

distributive, and associative laws of multiplication, so that

[x, y] [x\ y'] = [>', y'] [x, y],

([x, y] +K y']) [x", y"] = [x, y] [x'\ y"] + [x\ y] [x", f\
[x, y] ([x, y'] + [x", y"]) = [x, y] [x, y'] + [x, y] \x"

,
y"\

and [x, y] {[x
, y'] [x", y"]) = ([x, y] [x', y']) [x", y"].

38. The right definition to take is suggested as follows. We
know that, if OAB, OCD are two similar triangles, the angles

corresponding in the order in which they are written, then

OB/OA = OD/OC,

or OB . OG = OA . OD. This suggests that we should try to define

multiplication and division of displacements in such a way that

OBIOA = OB/W, W.W=OA.OB.
Now let

OB = [x,yl OG = [x',y'], OD = [X, Y],
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and suppose that A is the point (1, 0), so that OA = [1, 0]. Then

OA.OD = [l,0][X, F] = [Z, F],

and so [x, y] \x', y'] = [X, F].

The product OB . OG is therefore to be defined as OB, D being

obtained by constructing on OG a triangle similar to OAB. In

order to free this definition from ambiguity, it should be observed

that on OG we can describe two such triangles, OGD and OGD',

We choose that for which the angle GOD is equal to A OB in sign

as well as in magnitude. We say that the two triangles are then

similar in the same sense.

If the polar coordinates of B and G are (p, 6) and (cr,
<f>),

so

that

x = p cos 0, y = p sin 0, x' = a cos <p, y' = a sin cf>,

then the polar coordinates of B are evidently pa and 0+cf>. Hence

X = pa cos (0 + <f))
= xx — yy

',

Y= pa sin (0 + </>) = xy' + yx.

The required definition is therefore

\^ [x, y] [x, y'] = [ocx' - yy', xy' + yx'] (6).

We observe (1) that if y = 0, then X = xx, Y= xy', as we

desired
; (2) that the right-hand side is not altered if we inter-

change x and x, and y and y', so that

[x, y] [x, y] = [x, y] [x, y]

;

and (3) that

{[x, y] + [x'
} y']} \x", y"] = j> + x',y + y] [x", y"]

= [(x + x') x" ~(y + y') y", (x + x) y" + (y + y') x"]

=W ~ yy", ^j" + yx"] + OV' - y'y", x'y" + y'x"]

= [x,y]W,y"] + [x',y'][x",y"l

Similarly we can verify that all the equations at the end of § 37

are satisfied. Thus the definition (6) fulfils all the requirements

which we made of it in § 37.

Example. Show directly from the geometrical definition given above

that multiplication of displacements obeys the commutative and distributive

laws. [Take the commutative law for example. The product OB . OC is OD

(Fig. 22), COD being similar to A OD. To construct the product ~0C . OD we
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should have to construct on OB a triangle BOD
{
similar to AOC'; and so what

we want to prove is that D and D
x
coincide, or that BOD is similar to AOC.

This is an easy piece of elementary geometry.]

39. Complex numbers. Just as to a displacement [x] along

OX correspond a point (x) and a real number x, so to a displace-

ment [x, y] in the plane correspond a point (x, y) and a pair

of real numbers x, y.

We shall find it convenient to denote this pair of real numbers

x, y by the symbol
x + yi.

The reason for the choice of this notation will appear later.

For the present the reader must regard x + yi as simply another

way of writing [x, y\. The expression x + yi is called a complex

number.

We proceed next to define equivalence, addition, and multiplica-

tion of complex numbers. To every complex number corresponds

a displacement. Two complex numbers are equivalent if the

corresponding displacements are equivalent. The sum or product

of two complex numbers is the complex number which corresponds

to the sum or product of the two corresponding displacements.

Thus
as + yi = x + yi (1 ),

if and only if x = x', y = y'',

(x+yi) + (x+y'i) = (x + x') + (y + y')i (2);

(x + yi) (x + yi) = xx — yy' + (xy
r + yx) i (3).

In particular we have, as special cases of (2) and (3),

x + yi = (x + Oi) + (0 + yi),

(x + Oi) {x + y'i) = xx + xy'i;

and these equations suggest that there will be no danger of

confusion if, when dealing with complex numbers, we write x for

x + Oi and yi for + yi, as we shall henceforth.

Positive integral powers and polynomials of complex numbers

are then defined as in ordinary algebra. Thus, by putting x = x,

y — y in (3), we obtain

(x + yi)2 = (x + yi) (x + yi) = x2 —y2 + 2xyi.
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The reader will easily verify for himself that addition and

multiplication of complex numbers obey the laws of algebra

expressed by the equations

m + yi + (x + y'i) = (x' + y'i) + (x + yi),

{(x + yi) + (x + y'i)} + (x" + y'i) = (x + yi) + {(x + y'i) + (x" + y"i)},

O + yi) (x' + y'i) = {x + y'i) (x + yi),

(x+yi) {(x'+y'i)+ (x" + y"i)) = (x + yi) (x' + y'i) + (x + yi) (x" + y"i),

{(oe+yi)+(tf+y'i)} (*"+y"*)=(; + 2/0 O" + y"*) + 0' + y'i) O" + y'%

(x + yi) \(x' + y'i) {x" + y"i)) = {{x + yi) (x' + y'i)} (x" + y"i),

the proofs of these equations being practically the same as those

of the corresponding equations for the corresponding displace-

ments.

Subtraction and division of complex numbers are defined as

in ordinary algebra. Thus we may define (x + yi) — (x' + y'i) as

(x + yi) + {- (x + y'i)} = x + yi + (- x - y'i) = (x- x) + (y - y') i
;

or again, as the number f + rji such that

(x' + y'i) + (£ + rji) = x + yi,

which leads to the same result. And (x + yi)l(x'ĵ j[i) is defined

as being the complex number £ + rji such that

(as' + y'i) (f + rji) = x + yi,

or x'l; — y'rj + (x'rj + y'%) i = x + yi,

or x'g — y'rj = x, x'rj + y'i; = y (4).

Solving these equations for £ and rj, we obtain

xx' + yy' _ yx' — xy

x'
2 + y'2 '

x'2 + y'2

This solution fails if x and y are both zero, i.e. if x' + y'i = 0.

Thus subtraction is always possible; division is always possible

unless the divisor is zero.



80 COMPLEX NUMBERS [III

Examples. (1) From a geometrical point of view, the problem of the

division of the displacement OB by OC is that of finding D so that the triangles

COB, AOD are similar, and this is

evidently possible (and the solution

unique) unless C coincides with 0, or

OC=0.

(2) The numbers %+yi, x-yi are

said to be conjugate. Verify that

(x+yi) (x - yi) =x2+y2
,

so that the product of two conjugate

numbers is real, and that

x+yi _ (x+ yi) (x' — y'i)

x' +y'i ~ {x' +y'i) (x' - y'i)

_ xx' +yy' + (x'y - xy') i~
x'2Ty''2 ''

~~

'

Fig. 23.

40. One most important property of real numbers is that

known as the factor theorem, which asserts that the product of two

numbers cannot be zero unless one of the two is itself zero. To

prove that this is also true of complex numbers we put x = 0,

y = in the equations (4) of the preceding section. Then

x'% — y'n = 0, xt) + y'% = 0.

These equations give £ = 0, 77 = 0, i.e.

% + vi = 0,

unless x' = and y = 0, or x' + y'i = 0. Thus x + yi cannot vanish

unless either x + y'i or £ + rji vanishes.

41. The equation i
2 = — 1. We agreed to sinnilify our

notation by writing x instead of x + Oi and yi instead of + yi.

The particular complex number \i we shall denote simply by i.

It is the number which corresponds to a unit displacement along

OY. Also

# =a = (o

+

ii) (o + 10 = (o . - 1 . 1) + (o . 1 + 1 . o) % = - 1.

Similarly (— if = — 1. Thus the complex numbers i and — i

satisfy the equation x2 = — 1.

The reader will now easily satisfy himself that the upshot of

the rules for addition and multiplication of complex numbers is

this, that we operate ruith complex numbers in exactly the same
way as with real numbers, treating the symbol i as itself a number,
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but replacing the product ii = i
2 by — 1 whenever it occurs. Thus,

for example,

(x + yi) (x' + y'i) = aeaf + xy'i + yx'i + yy'i2

= (««' - yy) + (xy' + yd) i

42. The geometrical interpretation of multiplication

by %. Since

(x + yi) i = — y + xi,

it follows that if x 4- yi corresponds to OP, and OQ is drawn equal

to OP and so that POQ is a positive right angle, then (x + yi) i

corresponds to OQ. In other words, multiplication of a complex

number by i turns the corresponding displacement through a right

angle.

We might have developed the whole theory of complex

numbers from this point of view. Starting with the ideas of

x as representing a displacement along OX, and of i as a symbol

of operation equivalent to turning x through a right angle, we
should have been led to regard yi as a displacement of magnitude

y along OY. It would then have been natural to define x + yi as

m §§ 37 and 40, and (x + yi) i would have represented the dis-

placement obtained by turning x + yi through a right angle,

i.e. —y + xi. Finally, we should naturally have defined (x + yi) x

as xx' + yx'i, (x + yi) y'i as — yy' + xy'i, and (x + yi) (x' + y'i) as the

sum of these displacements, i.e. as

xx' - yy' + (xy' + yx) i.

43. The equations z2 + 1 = 0, az* + 2bz + c = 0. There is no

real number z such that z2 + 1 = ; this is expressed by saying

that the equation has no real roots. But, as we have just seen,

the two complex numbers i and — i satisfy this equation. We
express this by saying that the equation has the two complex roots

i and — i. Since i satisfies z2 = — 1, it is sometimes written in the

form «/(— 1).

Complex numbers are sometimes called imaginary*. The

expression is by no means a happily chosen one, but it is firmly

* The phrase 'real number' was introduced as au antithesis to 'imaginary

number '.

H. G
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established and has to be accepted. It cannot, however, be too

strongly impressed upon the reader that an 'imaginary number'

is no more ' imaginary ', in any ordinary sense of the word, than a

' real ' number ; and that it is not a number at all, in the sense in

which the 'real' numbers are numbers, but, as should be clear from

the preceding discussion, a pair ofnumbers (x
} y), united symbolically,

for purposes of technical convenience, in the form x + yi,_ Such

a pair of numbers is no less 'real' than any ordinary number

such as {, or than the paper on which this is printed, or than

the Solar System. Thus

i = + li

stands for the pair of numbers (0, 1), and may be represented

geometrically by a point or by the displacement [0, 1]. And
when we say that i is a root of the equation z2 + 1 = 0, what we

mean is simply that we have defined a method of combining such

pairs of numbers (or displacements) which we call ' multiplica-

tion', and which, when we so combine (0, 1) with itself, gives the

result (- 1, 0).

Now let us consider the more general equation

az" + 2bz + c = Q,

where a, b, c are real numbers. If b2 > ac, the ordinary method of

solution gives two real roots

{- b ± V(6
9 - ac)}fa.

If b2 < ac, the equation has no real roots. It may be written in

the form
{z + (b/a)} 2 = -(ac-b2

)la^,

an equation which is evidently satisfied if we substitute for

z + (b/a) either of the complex numbers ±% *J(ac — b2)/a*. We
express this by saying that the equation has the two complex roots

{- b ± i s/(ac - b2)}/a,

If we agree as a matter of convention to say that when b2 = ac

(in which case the equation is satisfied by one value of x only,

viz. — b/a), the equation has two equal roots, we can say that

a quadratic equation with real coefficients has two roots in all

cases, either two distinct real roots, or two equal real roots, or two

distinct complex roots.

* We shall sometimes write x + iy instead of x + yi for convenience in printing.
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The question is naturally suggested whether a quadratic

equation may not, when complex roots are once admitted, have

more than two roots. It is easy to see that this is not possible.

Its impossibility may in fact be proved by precisely the same

chain of reasoning as is used in elementary algebra to prove that

an equation of the ?ith degree cannot have more than n real

roots. Let us denote the complex number x + yi by the single

letter z, a convention which we may express by writing

z = x + yi. Let / (z) denote any polynomial in z, with real or

complex coefficients. Then we prove in succession

:

(1) that the remainder, when f(z) is divided by z — a, a being

any real or complex number, is /(a)

;

(2) that if a is a root of the equation f(z) = 0, then f{z) is

divisible by z — a

;

(3) that if f(z) is of the ?ith degree, and f(z) = has the

n roots a1} a2 , ..., an , then

f{z) = A (z - rtj) (z - o 2) . . . (z - an),

where A is a constant, real or complex, in fact the coefficient

of zn in f(z). From the last result, and the theorem of § 40,

it follows that f(z) cannot have more than n roots.

We conclude that a quadratic equation with real coefficients has

exactly two roots. We shall see later on that a similar theorem is

true for an equation of any degree and with either real or complex

coefficients : an equation of the nth degree has exactly n roots.

The only point in the proof which presents any difficulty is the

first, viz. the proof that any equation must have at least one

root. This we must postpone for the present*. We may, however,

at once call attention to one very interesting result of this theorem.

In the theory of number we start from the positive integers and

from the ideas of addition and multiplication and the converse

operations of subtraction and division. We find that these

operations are not always possible unless we admit new kinds of

numbers. We can only attach a meaning to 3 — 7 if we admit

negative numbers, or to f if we admit rational fractions. When
we extend our list of arithmetical operations so as to include root

extraction and the solution of equations, we find that some of

* See Appendix I.

6-2
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them, such as that of the extraction of the square root of a number

which (like 2) is not a perfect square, are not possible unless we

widen our conception of a number, and admit the irrational

numbers of Chap. I.

Others, such as the extraction of the square root of — 1, are

not possible unless we go still further, and admit the complex

numbers of this chapter. And it would not be unnatural to

suppose that, when we come to consider equations of higher

degree, some might prove to be insoluble even by the aid of

complex numbers, and that thus we might be led to the con-

siderations of higher and higher types of, so to say, hyper-complex

numbers. The fact that the roots of any algebraical equation

whatever are ordinary complex numbers shows that this is not the

case. The application of any of the ordinary algebraical operations

to complex numbers will yield only complex numbers. In technical

language ' the field of the complex numbers is closed for algebraical

operations '.

Before we pass on to other matters, let us add that all

theorems of elementary algebra which are proved merely by

the application of the rules of addition and multiplication are

true whether the numbers which occur in them are real or com-

plex, since the rules referred to apply to complex as well as

real numbers. For example, we know that, if a and j3 are the

roots of

az2 + 2bz + c = 0,

then a + /3 = - (26/a), a£ = (c/a).

Similarly, if a, /3, 7 are the roots of

az 3 + Sbz2 + 3cz + d = 0,

then

a + /3 + 7 = - (36/a), £7 + 7a + a/3 = (3c/a), aj3y = -(d/a).

All such theorems as these are true whether a, b, ... a, fi, ... are

real or complex.

44. Argand's diagram. Let P (Fig. 24) be the point (x, y\
r the length OP, and 6 the angle XOP, so that

x = r cos 6, y = r sin 6, r = *J(x
2 + y

2
), cos 6 : sin 6 : 1 : : x : y : r.
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We denote the complex number x + yi by z, as in § 43, and
we call z the complex variable.

We call P the point z, or

the jpoint corresponding to z\

z the argument of P, x the

real part, y the imaginary

part, r the modulus, and

6 the amplitude of z ; and we

write

x = B.{z), y=I(z),

6 = am z.r= \z Fig. 24.

When y = we say that 2 is ?'m£, when x = that 2 is purely

imaginary. Two numbers # + yt, # — yi which differ only in

the signs of their imaginary parts, we call conjugate. It will be

observed that the sum 2x of two conjugate numbers and their

product #2 + 2/
2 are both real, that they have the same modulus

V(#
2 + y

2
) and that their product is equal to the square of the

modulus of either. The roots of a quadratic with real coefficients,

for example, are conjugate, when not real.

It must be observed that 6 or am z is a many-valued function of

x and y, having an infinity of values, which are angles differing by

multiples of 2tt*. A line originally lying along OX will, if turned

through any of these angles, come to lie along OP. We shall

describe that one of these angles which lies between — it and

it as the principal value of the amplitude of z. This de-

finition is unambiguous except when one of the values is it,

in which case — it is also a value. In this case we must make
some special provision as to which value is to be regarded as

the principal value. In general, when we speak of the amplitude

of z we shall, unless the contrary is stated, mean the principal

value of the amplitude.

Fig. 24 is usually known as Argand's diagram.

* It is evident that
|
z

|
is identical with the polar coordinate r of P, and that

the other polar coordinate is one value of am z. This value is not necessarily

the principal value, as defined below, for the polar coordinate of § 22 lies between

and 2tt, and the principal value between - w and ir.
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45. De Moivre's Theorem. The following statements

follow immediately from the definitions of addition and multi-

plication.

(1) The real (or imaginary) part of the sum of two conyplex

numbers is equal to the sum of their real (or imaginary) parts.

(2) The modulus of the product of two complex numbers is

equal to the product of their moduli.

(3) The amplitude of the product of two complex numbers is

either equal to the sum of their amplitudes, or differs from it by 2ir.

It should be observed that it is not always true that the principal value of

am (zz
1

) is the sum of the principal values of am z and am z'. For example, if

z=z'= — l+i, then the principal values of the amplitudes of z and z' are each

fn-. But zz'= — 2i, and the principal value of am (zz') is —\n and not fn-.

The two last theorems may be expressed in the equation

r (cos + i sin 0) x p (cos cp + i sin cp)

= rp {cos (0 + cp) + i sin (6 + <f>)},

which may be proved at once by multiplying out and using the

ordinary trigonometrical formulae for cos (0 + cp) and sin (0 + cp).

More generally

i\ (cos dx + i sin
t ) x r2 (cos 2 + i sin 0.2) x ... x rn (cos n + i sin 6n)

= nr2 . . . rn {cos (d1 + 2 + . . . + 6n ) + i sin (01 + 2 +...+ n )}.

A particularly interesting case is that in which

n = r2 = . . . = rn = 1, 1
= 2 =... = n =

We then obtain the equation

(cos + i sin 0)
n = cos n0 + i sin n0,

where n is any positive integer: a result known as De Moivre's

Theorem*.

Again, if z = r (cos + i sin 0)

then \\z = (cos - i sin 0)/r.

Thus the modulus of the reciprocal of z is the reciprocal of the

modulus of z, and the amplitude of the reciprocal is the negative of

the amplitude of z. We can now state the theorems for quotients

which correspond to (2) and (3).

* It will sometimes be convenient, for the sake of brevity, to denote cos d + i sin d

by Cis0: in this notation, suggested by Profs. Harkness and Morley, De Moivre's

theorem is expressed by the equation (Cis 0)"= Cisn0.
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(4) The modulus of the quotient of two complex numbers is

equal to the quotient of their moduli.

(5) The amplitude of the quotient of two complex numbers
either is equal to the difference of their amplitudes, or differs from

it by 27r.

Again (cos 9 + i sin 6)~ n = (cos 6 — i sin 6)
n

- {cos (- 0) + i sin (- 6))
n

= cos (— nO) + i sin (— nd).

Hence Be Moivres Theorem holds for all integral values of n,

positive or negative.

To the theorems (1)—(5) we may add the following theorem,

which is also of very great importance.

(6) The modulus of the sum of any number of complex

numbers is not greater than the sum of their moduli.

Let OP, OP', ... be the displacements corresponding to the

various complex numbers. Draw PQ equal and parallel to OP',

QR equal and parallel to OP", and so on. Finally we reach a

point U, such that

0U=OP + 0P' + 0P 7,

+ ....

The length OU is the modulus of the sum of the complex

numbers, whereas the sum of their moduli is the total length

of the broken line OPQR...U, which is not less than OU.

A purely arithmetical proof of this theorem is outlined in

Exs. xxi. 1.
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46. We add some theorems concerning rational functions of

complex numbers. A rational function of the complex variable z

is defined exactly as is a rational function of a real variable x,

viz. as the quotient of two polynomials in z.

Theorem 1. Any rational function R (z) can be reduced to

the form X + Yi, where X and Y are rational functions of x and

y with real coefficients.

In the first place it is evident that any polynomial P (x + yi)

can be reduced, in virtue of the definitions of addition and multi-

plication, to the form A + Bi, where A and B are polynomials

in x and y with real coefficients. Similarly Q (x + yi) can be

reduced to the form G + Di. Hence

R (x + yi) = P(x + yi)/Q (x + yi)

can be expressed in the form

(A + Bi)J(G + Di) = (A + Bi) (G - Di)/(C + Di) (G - Di)

AG + BD BG-AD .

~ 6' 2 + X>2
+ C 2 + £2 *'

which proves the theorem.

Theorem 2. If R(x + yi) =X+ Yi, R denoting a rational

function as before, but with real coefficients, then R(x—yi)=X—Yi.

In the first place this is easily verified for a power (x + yi)n

by actual expansion. It follows by addition that the theorem is

true for any polynomial with real coefficients. Hence, in the

notation used above,

A_-Bi_AG + BD BG-AD .

M(x
y
%)—(}-M~ C 2 + i)2 " C 2 + Z>2 *'

the reduction being the same as before except that the sign of i

is changed throughout. It is evident that results similar to those

of Theorems 1 and 2 hold for functions of any number of complex

variables.

Theorem 3. The roots of an equation

a zn +a 1
zn
~1 + ...+an = 0,

whose coefficients are real, may, in so far as they are not themselves

real, be arranged in conjugate pairs.



46] COMPLEX NUMBERS 89

For it follows from Theorem 2 that if x + yi is a root then so is

x — yi. A particular case of this theorem is the result (§ 43) that

the roots of a quadratic equation with real coefficients are either

real or conjugate.

This theorem is sometimes stated as follows : in an equation

with real coefficients complex roots occur in conjugate pairs. It

should be compared Avith the result of Exs. vm. 7, which may be

stated as follows : in an equation with rational coefficients irrational

roots occur in conjugate pairs*.

Examples XXI. 1. Prove theorem (6) of § 45 directly from the

definitions and without the aid of geometrical considerations.

[First, to prove that
|
z+ z'

\ £ |
z

\ + \
z'

|
is to prove that

(x+ x'f+ (y +yj- <y(.r
2 + */

2
) + J(af*+/2

)}
2
.

The theorem is then easily extended to the general case.]

2. The one and only case in which

\z\ + \z'\+... = \z+ z'+...\,

is that in which the numbers z, z', ... have all the same amplitude. Prove

this both geometrically and analytically.

3. The modulus of the sum of any number of complex numbers is not

less than the sum of their real (or imaginary) parts.

4. If the sum and product of two complex numbers are both real, then

the two numbers must either be real or conjugate.

5. If a + bj2 + (c+d Aj2)i=A +B s/2 + (C+D s/2)i,

where a, b, c, d, A, B, C, D are real rational numbers, then

a=A, b= B, c=C, d=D.

6. Express the following numbers in the form A + Bi, where A and B are

real numbers

:

euw (£)• £*) && «-»
where X and p are real numbers.

7. Express the following functions of z=x+yi in the form X + Yi, where

Xand Fare real functions of x and y: z2, z3 , zn, \}z
} a-f (l/«), (a+ /32)/(y+8?),

where a, /3, y, 8 are real numbers.

8. Find the moduli of the numbers and functions in the two preceding

examples.

* The numbers a+ ^Jb, a - sjb, where a, b are rational, are sometimes said to be

' conjugate '.
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9. The two lines joining the points z= a, z= b and z= c, z=d will be

perpendicular if

am (£r!) ,* ±** i

i.e. if (a — b)l(c-d) is purely imaginary. What is the condition that the lines

should be parallel ?

10. The three angular points of a triangle are given by z= a, z=&, z= y,

where a, /3, y are complex numbers. Establish the following propositions

:

(i) the centre of gravity is given by z= \ (a+ fi+ y) ;

(ii) the circum-centre is given by \z—a\ = \z-f&\ = \z- y\ ;

(iii) the three perpendiculars from the angular points on the opposite

sides meet in a point given by

(iv) there is a point P inside the triangle such that

CBP=ACP=BAP= a>,

and cot &> = cot A + cot B+ cot G.

[To prove (iii) we observe that if A, B, G are the vertices, and P any
point z, then the condition that AP should be perpendicular to BG is (Ex. 9)

that (z — a)/(/3 - y) should be purely imaginary, or that

R(s-a)R(/3-y)+I(«-a)I(0-y)=O.

This equation, and the two similar equations obtained by permuting a, /3, y
cyclically, are satisfied by the same value of z, as appears from the fact that

the sum of the three left-hand sides is zero.

To prove (iv), take BG parallel to the positive direction of the axis of x.

Then*
y-P=a, a-y=-bC\s(-G), 0-a= -cCisZ?.

We have to determine z and w from the equations

(3-a)(fto-ao) ^ (z-ff)(yo-0o) ^ (z-y)(ao-yo) = Cia2tj
(2 -a )(/3-a) (so-/3 )(y-i8) (*0"yo)(a-y)

where z , a
, /3 , y denote the conjugates of z, a, /3, y.

Adding the numerators and denominators of the three equal fractions,

and using the equation

i cot co= (1 + Cis 2co)/(l - Cis 2w),

we find that

icot(0= 03-y)(/3o-yo) + (y-q)(yo-«o) + (a-/3)(qo -/3o\

/3y - A>y+ y«o - yo«+ a£o - ao0

From this it is easily deduced that the value of cot co is (a2+62+ c2)/4A,

where A is the area of the triangle ; and this is equivalent to the result given.

* We suppose that as we go round the triangle in the direction ABC we leave

it on our left.
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To determine z, we multiply the numerators and denominators of the

equal fractions by (y -/3 )/(/3-a), (a -y )/(y-P), (/3 - a )/(a - y), and add

to form a new fraction. It will be found that

aaCis^4-6j3Cis5+ cvCisC ,
z= '

.

aCis A + b Oisi>'+ cCis C

11. The two triangles whose vertices are the points a, b, c and x, y, z

respectively will he similar if

1 1 1 =0

a b c

x y z

[The condition required is that ABIAC=XY/XZ (large letters denoting

the points whose arguments are the corresponding small letters), or

(b-a)l(c-a)=-(y -x)l{z-x), which is the same as the condition given.]

12. Deduce from the last example that if the points x, y, z are collinear

then we can find real numbers a, /3, y such that ct-f /3+y= and ax+(3y+yz=0,
and conversely (cf. Exs. XX. 4). [Use the fact that in this case the triangle

formed by x, y, z is similar to a certain line-triangle on the axis OX, and

apply the result of the last example.]

13. The general linear equation with complex coefficients. The
equation az + j3— has the one solution z= - (/3/a), unless a= 0. If we put

a= a+Ai, (3= b-\-Bi, z=x+yi,

and equate real and imaginary parts, we obtain two equations to determine

the two real numbers x and y. The equation will have a real root if y= 0,

which gives ax+ b= 0, Ax+B= 0, and the condition that these equations

should be consistent is aB — bA = 0.

14. The general quadratic equation with complex coefficients. This

equation is

(a + Ai)z*+2(b+ Bi)z+(c+ Ci) = 0.

Unless a and A are both zero we can divide through by a + iA. Hence

we may consider

z2+ 2(b+ Bi)z+ (c + Ci) = (1)

as the standard form of our equation. Putting z=x+yi and equating real

and imaginary parts, we obtain a pair of simultaneous equations for x and y,

viz.

xi -y2+ 2(bx-By) + c= 2xy+ 2 (by+Bx) + C= 0.

If we put

x+ b= £, y + B=rj, b2-B2 -c= h, 2bB-C=Jc,

these equations become £
2 — r]

2 =k, 2^rj=k.
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Squaring and adding we obtain

We must choose the signs so that £77 has the sign of k : i.e. if k is positive

we must take like signs, if k is negative unlike signs.

Conditions for equal roots. The two roots can only be equal if both the

square roots above vanish, i.e. if A=0, £=0, or if c= b2 -B 2
, C=2bB. These

conditions are equivalent to the single condition c + Ci=(b+ Bi)2
, which

obviously expresses the fact that the left-hand side of (1) is a perfect square.

Condition for a real root. If x2 + 2 (b+ Bi) x+ (c+ Ci)=0, where x is

real, then x2+ 2bx-\-c=0, 2Bx-\-C=0. Eliminating x we find that the

required condition is

C 2 -4bBC+lcB2= Q.

Condition for a purely imaginary root. This is easily found to be

C 2 -4bBC-4b2c= 0.

Conditions for a pair of conjugate complex roots. Since the sum and the

product of two conjugate complex numbers are both real, b+ Bi and c+ Ci

must both be real, i.e. B= 0, C=0. Thus the equation (1) can have a pair of

conjugate complex roots only if its coefficients are real. The reader should

verify this conclusion by means of the explicit expressions of the roots.

Moreover, if 62 Sc, the roots will be real even in this case. Hence for a pair

of conjugate roots we must have B=0, C=0, b2<c.

15. The Cubic equation. Consider the cubic equation

z3+ ZHz+ G=0,

where G and H are complex numbers, it being given that the equation has

(a) a real root, (6) a purely imaginary root, (c) a pair of conjugate roots If

H='K+fxi, C= p + a-i, we arrive at the following conclusions.

(a) Conditions for a real root. If p. is not zero, then the i*eal root is - <r/3p,

and o-
3+ 27X/xV — 27p3p= 0. On the other hand, if p= then we must also

have o-= 0, so that the coefficients of the equation are real. In this case there

may be three real roots.

(b) Conditionsfor a purely imaginary root. If p is not zero then the purely

imaginary root is (p/3p) i, and p
3 -27Ap2

p — 27p3cr=0. If p= then alsop = 0,

and the root is yi, where y is given by the equation y
3 — 3Xy - o-= 0, which has

real coefficients. In this case there may be three purely imaginary roots.

(c) Conditions for a pair of conjugate complex roots. Let these be x+yi
and x—yi. Then since the sum of the three roots is zero the third root

must be — 2x. From the relations between the coefficients and the roots of

an equation we deduce
y* _ Zx2= 3ff, 2x (x2+y2

) = G.

Hence G and H must both be real.

In each case we can either find a root (in which case the equation can

be reduced to a quadratic by dividing by a known factor) or we can reduce

the solution of the equation to the solution of a cubic equation with real

coefficients.
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16. The cubic equation xz+ ahv
2+ a2x+ a 3= 0, where a

1
=A

1 + A /?', . .
.
, has

a pair of conjugate complex roots. Prove that the remaining root is

— Ai'a3jA 3
', unless A 3

'= 0. Examine the case in which A 3
'= 0.

1 7. Prove that if z3 + ZHz + G=0 has two complex roots then the equation

8a3+6aH-G=0
has one real root which is the real part a of the complex roots of the

original equation ; and show that a has the same sign as G.

18. An equation of any order with complex coefficients will in general

have no real roots nor pairs of conjugate complex roots. How many con-

ditions must be satisfied by the coefficients in order that the equation should

have (a) a real root, (6) a pair of conjugate roots ?

19. Coaxal circles. In Fig. 26, let a, b, z be the arguments of A, B, P
z-b

Then — = APB,
z-a

if the principal value of the amplitude is chosen. If the two circles shown

in the figure are equal, and z', zu z{ are the arguments of P\ Pu P±
y

and A PB — 6, it is easy to see that

z'-b
am ; =TT-i

z —a
h-b

and
z{- b

am —, = - it +

1

z{ - a

The locus defined by the equation

am = 6,z-a

where & is constant, is the arc APB. By
writing it — 6, -0, — n + 6 for $, we obtain

the other three arcs shown.

The system of equations obtained by

supposing that 6 is a parameter, varying

from — it to +7r, represents the system of

circles which can be drawn through the

points A, B. . It should however be ob-

served that each circle has to be divided

into two parts to which correspond different

values of 8.

20. Now let us consider the equation

\z-a\~
where \ is a constant.

Let A' be the point in which the tangent to the circle ABP at P meets

AB. Then the triangles KPA, EBP are similar, and so

AP/PB=PK\BK=KA/KP= X.

Fig. 26.

•(1),
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Hence KAjKB = \\ and therefore K is a fixed point for all positions of P
which satisfy the equation (1). Also KP2=KA.KB, and so is constant.

Hence the locus of P is a circle -whose centre is K.

The system of equations obtained by varying X represents a system of

circles, and every circle of this system cuts at right angles every circle of the

system of Ex. 19.

The system of Ex. 19 is called a system of coaxal circles of the common

point kind. The system of Ex. 20 is called a system of coaxal circles of the

limiting point kind, A and B being the limiting points of the system. If X

is very large or very small then the circle is a very small circle containing A

or B in its interior.

21. Bilinear Transformations. Consider the equation

z=Z+a (1),

where z=x+yi and Z=X+Yi are two complex variables which we may

suppose to be represented in two planes xoy, XOY. To every value of z

corresponds one of Z, and conversely. If a= a+@i then

x=X+a, y=Y+p,

and to the point (x, y) corresponds the point (X, Y). If (x, y) describes a

curve of any kind in its plane, (X, Y) describes a curve in its plane. Thus

to any figure in one plane corresponds a figure in the other. A passage of

this kind from a figure in the plane xoy to a figure in the plane XOY by

means of a relation such as (1) between z and Z is called a transformation.

In this particular case the relation between corresponding figures is very

easily defined. The (X, Y) figure is the same in size, shape, and orientation

as the (x, y) figure, but is shifted a distance a to the left, and a distance /3

downwards. Such a transformation is called a translation.

Now consider the equation

*=pZ (2),

where p is real. This gives x— pX,y=pY. The two figures are similar and

similarly situated about their respective origins, but the scale of the (x, y)

figure is p times that of the (X, Y) figure. Such a transformation is called

a magnification.

Finally consider the equation

s= (cos cp + ^sin (p) Z (3).

It is clear that
|
z

|
=

|
Z

|
and that one value of am z is am Z+ <p, and that the

two figures differ only in that the (x, y) figure is the (X, Y) figure turned

about the origin through an angle <p in the positive direction. Such a trans-

formation is called a rotation.

The general linear transformation

z= aZ-vb (4)
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is a combination of the three transformations (1), (2), (3). For, if
|
a\=p and

am a — <p, we can replace (4) by the three equations

z= z' + b, z'=pZ', Z' = (cos (p + i sin <p) Z.

Thus the general linear transformation is equivalent to the combination of a
translation, a magnification, and a rotation.

Next let us consider the transformation

2=1/^ (5).

If \Z\ = R and amZ=0, then \z\ = l/R and am z= -9, and to pass from

the (a?, y) figure to the (X, Y) figure we invert the former with respect to o,

with unit radius of inversion, and then construct the image of the new figure

in the axis ox {i.e. the symmetrical figure on the other side of ox).

Finally consider the transformation

aZ+b
z=WVd (

6)-

This is equivalent to the combination of the transformations

z= {ajc) + (bc-ad)(z'lc), z'=l/Z\ Z'= cZ+d,

i.e. to a certain combination of transformations of the types already con-

sidered.

The transformation (6) is called the general bilinear transformation.

Solving for Z we obtain

7^}dz — b

cz — a'

The general bilinear transformation is the most general type of trans-

formation for which one and only one value of z corresponds to each value of

Z, and conversely.

22. The general bilinear transformation transforms circles into circles.

This may be proved in a variety of ways. We may assume the well-known

theorem in pure geometry, that inversion transforms circles into circles

(which may of course in particular cases be straight lines). Or we may
use the results of Exs. 19 and 20. If, e.g., the (x, y) circle is

\(m- *)/(*-p)\=\

and we substitute for z in terms of Z, we obtain

\(Z-<r')/(Z-p')\ = X,

a — pc, , b — ad , b — pd •.

where o- = , p= —
, X =

a—o-c a — pc

23. Consider the transformations z= \\Z, z=(l+Z)/(l-Z), and draw

the (X, Y) curves which correspond to (1) circles whose centre is the origin,

(2) straight lines through the origin.
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24. The condition that the transformation z= (aZ+b)j(cZ+d) should

make the circle x2+y2= l correspond to a straight line in the (X, Y) plane

is \a\= \c\.

25. Cross ratios. The cross ratio [z\Zi, z$Z\) is defined to be

(g1
-g

3)(z2 -g4)

fa -24) 02-%)'

If the four points zu 22 , 23 , zi are on the same line, this definition agrees

with that adopted in elementary geometry. There are 24 cross ratios which

can be formed from z
x , z2 , z

3 , z± by permuting the suffixes. These consist of

six groups of four equal cross ratios. If one ratio is X, then the six distinct

cross ratios are X, 1 - X, 1/X, 1/(1 -X), (X- 1)/X, X/(X- 1). The four points are

said to be harmonic or harmonically related if any one of these is equal to

— 1, In this case the six ratios are — 1, 2, — 1, J, 2, \.

If any cross ratio is real then all are real and the four points lie on a

circle. For in this case

am (;i-%)(^r^)
(zi-Zi){z2 -z3)

must have one of the three values — n, 0, -rr, so that am {{z
1
— s3)/(«i

- 24)} and

a,m{(z2 - z3)/(z2 - zi)} must either be equal or differ by ir (cf. Ex. 19).

If (2^2) z3Zi)= - 1, we have the two equations

Z-i — Zo Zn — Z3 Z\ — Zo\ \Zn — Zo\
am -1—-= ±7r + am-—-; -—- = —- .

zl ~ Zi zi~ z
\ I

zl — z
4 I I

z2 ~ -4 I

The four points A X , A 2 , A 3 , A 4 lie on a circle, A
x and A 2 being separated

by A 3
and A v Also A X

A
3
\A

XA i=A 2A 3jA 2 A i . Let be the middle point of

A 3 Ai. The equation

(
zi-z3)(^- zi)^ 1
(Zl-Zi)(z2 -Z3)

may be put in the form

(h + 22) (*3+ Z
i) = 2 (

zl z2+h zl\

or, what is the same thing,

{h -i(h+ 24)} {22- i (23+ 24)} = {i(z3 - ?
4)}

2
.

But this is equivalent to OA x . OA 2=~OA 3
2=OA i

2
. Hence OA x and 0A 2

make equal angles with A 3A t , and OA
1 .OA 2= OA 3

2=OA i
2

. It will be ob-

served that the relation between the pairs A lf A 2 and A 3 , A 4 is symmetrical.

Hence, if C is the middle point of A XA 2 , 0'A 3 and 0'A i are equally inclined

to A X
A 2 , and 0'A 3 . 0'A i=0'A 1

2= 0'A 2
*.

26. If the points A lt A 2 are given by az2+ 2bz+ c= 0, and the points

A 3 , Ai by a'z2+ 2b'z+c'= 0, and is the middle point of A 3 A 4 , and
ac' + a'c - 2bb' = 0, then O.^, 0A 2 are equally inclined to A 3A 4 and

OJi . 0J 2 = OA 3
2 = ai 4

2
. (Jfatf. Trip. 1901.)
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27. AB, CD are two intersecting lines in Argand's diagram, and P,

Q their middle points. Prove that, if A B bisects the angle CPD and
PA 2=PBi=PC.PD, then CD bisects the angle AQB and QC 2=QD2 = QA . QB.

{Math. Trip. 1909.)

28. The condition that four points should lie on a circle. A
sufficient condition is that one (and therefore all) of the cross ratios

should be real (Ex. 25) ; this condition is also necessary. Another form
of the condition is that it should be possible to choose real numbers
a, |8, y such that

1 1 1 =0.

a /3 y

Z\Zi+ Z2 Zz Z2 3i+ Z3zl Z^+Z^

[To prove this we observe that the transformation Z= 1/(2 — z4) is equivalent

to an inversion with respect to the point 24 , coupled with a certain reflexion

(Ex. 21). If z
t , z2 , z3 lie on a circle through 2

4 , the corresponding points

^ = 1/(24-24), Z2= l/(z2 — zt), Z3= l/(23 — 24) lie on a straight line. Hence

(Ex. 12) we can find real numbers a, /3', y such that a'+ /3'+ y' = and

a'l(zl -zi)+fi'l(z2 — z
l) + y'j(z3 -zi)= 0, and it is easy to prove that this is

equivalent to the given condition.]

29. Prove the following analogue of De Moivre's Theorem for real

numbers: if (pi, (p2 , $3, -•• is a series of positive acute angles such that

tan <pm + j= tan <pm sec
<fi j

4- sec
<f)m tan

<f> t ,

then tan <£m + n =tan <£„, sec 0,, + sec (pm tan c/>,
v ,

sec m + n=sec (pm sec <£„+ tan 4>m tan 0„,

and tan
(f>m+ seo <pm=(tan (/>!+ sec <pi)

m
.

[Use the method of mathematical induction.]

30. The transformation z=Zn. In this case r=Rm, and 6 and me
differ by a multiple of 2n\ If Z describes a circle round the origin then z

describes a circle round the origin m times.

The whole (a?, y) plane corresponds to any one of m sectors in the (A', Y)

plane, each of angle 2jr/»i. To each point in the (a?, y) plane correspond

m points in the (X, Y) plane.

31. Complex functions of a real variable. If fit), <f>
(t) are two real

functions of a real variable t defined for a certain range of values of t,

we call

z=f(t) + i<f>(t) (1)

a complex function of t. We can represent it graphically by drawing the

curve

*=/(*), Jf=0 (0 i

h. 7
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the equation of the curve may be obtained by eliminating t between these

equations. If z is a polynomial in t, or rational function of t, with complex

coefficients, we can express it in the form (1) and so determine the curve

represented by the function.

(i) Let z= a + (b-a)t,

where a and b are complex numbers. If a= a+ a'i, & = /3 + j3'i, then

A?=a+(/3-aK y= a' + (P'~a')t.

The curve is the straight line joining the points z= a and z=b. The seg-

ment between the points corresponds to the range of values of t from

to 1. Find the values of t which correspond to the two produced segments

of the line.

where p is positive, then the curve is the circle of centre c and radius p. As

t varies through all real values z describes the circle once.

(iii) In general the equation z= (a+ bt)l(c+dt) represents a circle.

This can be proved by calculating x and y and eliminating : but this process

is rather cumbrous. A simpler method is obtained by using the result of

Ex. 22. Let z=(a+bZ)/(c+ dZ), Z—t. As t varies Z describes a straight

line, viz. the axis of X. Hence z describes a circle.

(iv) The equation z=a+ 2bt+ ct
2

represents a parabola generally, a straight line if b/c is real.

(v) The equation z= (a+ 2bt + ct2)/(a+ 2fit+ yt2), where a, /3, y are real,

represents a conic section.

[Eliminate t from

Z=(A+2Bt+Cti)/(a + 2pt+ yf-), y= (A'+ 2B't+ C't 2)/(a + 2j3t+yf-),

where A+A'i=a, B + B'i=b, C+C'i=c]

47. Roots of complex numbers. We have not, up to the

present, attributed any meaning to symbols such as ya, amln,

when a is a complex number, and m and n integers. It is,

however, natural to adopt the definitions which are given in

elementary algebra for real values of a. Thus we define v'a or

aVn , where n is a positive integer, as a number z which satisfies

the equation z11 = a ; and amln, where m is an integer, as (a1"1)"1
.

These definitions do not prejudge the question as to whether

there are or are not more than one (or any) roots of the equation.

48. Solution of the equation zn = a. Let

a = p (cos
<f>
+i sin tp),

where p is positive and </> is an angle such that — ir <
(f>
g tt. If
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we put z = r (cos 6 + i sin 6), the equation takes the form

rn (cos lid + i sin nO) = p (cos cp + i sin cp)
;

so that rn = p, cos nO = cos cp, sin nd = sine/) (1).

The only possible value of r is typ, the ordinary arithmetical

?ith root of p ; and in order that the last two equations should be

satisfied it is necessary and sufficient that nO = <p + 2kir, where k

is an integer, or

= (tj> + 2hir)\n.

If k=pn + q, where p and q are integers, and 0^q<n, the

value of 6 is 2p7r + (cp 4- 2qir)/ii, and in this the value of p is a

matter of indifference. Hence the equation

zn = a = p (cos cp + i sin 0)

Aas ?i roofe ancZ ?i only, given by z = r (cos + i sin 0), where

r = typ, = (<p + 2qTr)/n, (q= 0, 1, 2, ... n-1).

That these ?i roots are in reality all distinct is easily seen

by plotting them on Argand's diagram. The particular root

"HJp {cos (<p/ri) + i sin (cpjn))

is called the principal value of %/a.

The case in which a=l, p = l,
<f>
= is of particular interest.

The n roots of the equation xn = 1 are

cos (2q7r/n) + i sin (2q7r/n), (q = 0, 1, . . . n — 1).

These numbers are called the nth roots of unity; the principal

value is unity itself. If we write oon for cos (2Tr/n) + i sin (2-irjn),

we see that the nth. roots of unity are

1, con , col, ••• ^'T
1

-

Examples XXII. 1. The two square roots of 1 are 1, - 1 ; the three

cube roots are 1, £( — l+i^/3), ^( — l—i^/3); the four fourth roots are 1,

i, — 1, — i; and the five fifth roots are

1, i[ ^5-1+^(10+ 2^/5}], ^[-^5- 1 + ^/(10-2^/5}],

i[_
s/5-l- iv/(10-2V5}],

i[ J5-l-iJ{l0 + 2 s/5}].

2. Prove that l + con +G)^+... + o>"~ =0.

3. Prove that (x+yco
s + zo>l)(x+ya>l+za>

3
)=x2+y2 -\-z

2—yz — zx-xy.

4. The wth roots of a are the products of the ?ith roots of unity by the

principal value of Hja.

7—2
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5. It follows from Exs. xxi. 14 that the roots of

are ± v'[fc W(a*+&)+a}]±i lM W(«2 +/32
) - a}J

like or unlike signs being chosen according as j3 is positive or negative. Show
that this result agrees with the result of § 48.

6. Show that (x2m- a2m)/(a;
2 - a2

) is equal to

#- — 2a# cos — + cr
) ( ^J - zturcos \-w ) ... a-- 2«.r cos —Ya~ )

.

\ m J \ in J \ m J

[The factors of x2m - a2m ai'e

(x-a), (x-aa2m), (x-aJ
2J, ... (x-aa>^~

1

).

The factor x - aa>™m is x+ a. The factors (a? - aog,,,), (a; - «w^" s

) taken together

give a factor #2 — 2ax cos (sir/in) + a2
.]

7. Kesolve A,2", + 1-a2" l + 1
, #2m+ a2m, and xim + 1 + a2m + 1 into factors in a

similar way.

8. Show that x2n - 2xnan cos 8 + a2n is equal to

Lp- 8 „\ / „ _ + 2tt
,

2.ra cos -+ cr ) ar - 2.ra cos h a'

+ 2(w-lW
2\xa cos —Yar

n
...(x*-2xc

[Use the formula

x2n - 2xnan cos 8 + a2n= {a,*
1 - an (cos 8+ 1 sin 5)} {#» - an (cos - j sin 8)},

and split up each of the last two expressions into n factors.]

9. Find all the roots of the equation xG - 2x3+ 2 = 0. (Math. Trip. 1910.)

10. The problem of finding the accurate value of a>n in a numerical form

involving square roots only, as in the formula co
3
= f (- l + z'^/3), is the

algebraical equivalent of the geometrical problem of inscribing a regular

polygon of n sides in a circle of unit radius by Euclidean methods, i.e. by ruler

and compasses. For this construction will be possible if and only if we can

construct lengths measured by cos (2ir/ri) and sin (2ir/n) ; and this is possible

(Ch. II, Misc. Exs. 22) if and only if these numbers are expressible in a form

involving square roots only.

Euclid gives constructions for n= o, 4, 5, 6, 8, 10, 12, and 15. It is

evident that the construction is possible for any value of n which can be

found from these by multiplication by any power of 2. There are other

special values of n for which such constructions are possible, the most inter-

esting being n = \7.
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49. The general form of De Moivre's Theorem. It

follows from the results of the last section that if q is a positive

integer then one of the values of (cos + i sin 6)1,q is

cos (0/q) + i sin (0/q).

Raising each of these expressions to the power p (where p is any

integer positive or negative), we obtain the theorem that one of

the values of (cos + i sin 0)pIv is cos (p0/q) + i sin (p0/q), or that if

a is any rational number then one of the values of (cos + i sin 0)
a

is

cos a0 + % sin a.0.

This is a generalised form of De Moivre's Theorem (§ 45).

MISCELLANEOUS EXAMPLES ON CHAPTER III.

1. The condition that a triangle {xyz) should be equilateral is that

x2+y2 +z2 — yz— zx — xy= 0.

[Let XYZ be the triangle. The displacement ZX is YZ turned through

an angle fn- in the positive or negative direction. Since Cis §7r= <o
3 ,

Cis(-§7r)= l/<»
3
=a>

3 , we have x-z= (z-y) w
3

or x-z= (z—y) <a\. Hence

x+ya>
3+zodl=0 or x+yul+ za.^0. The result follows from Exs. xxn. 3.]

2. If X YZ, X' Y'Z are two triangles, and

YZ. Y'Z'=ZX . Z'X' = XY. XT,
then both triangles are equilateral. [From the equations

(y - 2) (/- z') = (z-x) (z' -x') = (x- y) (x' - y') = k%

say, we deduce 2 l/(/ - z) = 0, or 2x"2 - 2y'z'=0. Now apply the result of the

last example.]

3. Similar triangles BOX, CAY, ABZ are described on the sides of a

triangle ABC. Show that the centres of gravity of ABC, XYZ are coincident.

[We have (x-c)/(b— c) = (y-a)/(c-a) = (z-b)/(a— b) = \, say. Express

i| (x+y+z) in terms of a, b, <?.]

4. If X, Y, Z are points on the sides of the triangle ABC, such that

BX/XC= CYIYA = AZ\ZB= r,

and if ABC, XYZ are similar, then either r=l or both triangles are

equilateral.

5. If A , B, C, D are four points in a plane, then

AD.BC^BD.CA + CD.AB.
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[Let 2
X , z2 , Z3, 24 be the complex numbers corresponding to A, B, C, D.

Then we have identically

(Xi - #4) (a?2 - Xz) + (*2 - #4) 0*3 - #l)+ (#3 ~ #4) (#1 - #2) = 0-

Henco

I
(#1 ~ #4) (#2 ~ #s) !

=
I
(#2 - #4) (#3 ~ X\) + (#3 - %i) (#1 - #2)

I

<
I

(d?2- *«) (#3 - #l) I+ 1
(#3- #4) (#1 - ^2) I-]

6. Deduce Ptolemy's Theorem concerning cyclic quadrilaterals from the

fact that the cross ratios of four concyclic points are real. [Use the same

identity as in the last example.]

7. If 22+ 2'2= 1, then the points 2, z' are ends of conjugate diameters of an

ellipse whose foci are the points 1, - 1. [If CP, CD are conjugate semi-

diameters of an ellipse and S, H its foci, then CD is parallel to the external

bisector of the angle SPH, and SP . HP= CD2
.]

8. Prove that \a + b\ 2+\a-b\ 2=2{\a\ 2+ \b\ 2
}. [This is the analytical

equivalent of the geometrical theorem that, if M is the middle point of PQ,
then OP2+ OQ2=20M2+2MP 2

.]

9. Deduce from Ex. 8 that

\a + <J{a
2 -b2

)\ + \a->J(a2 -b 2
)\ = \a+ b\ + \a-b\.

[If a+V(«2 -
1'
2
) = zu a ~ <sA>

2 - b2
) = z2 , we have

\h\
2
+\^\ 2^\z

l + z2
\

2 +h\z1 -z2
\

2=2\a\ 2+ 2\a2 -b 2
\,

and so (\zi\ + \z2 \)

2=2{\a\ 2+\a2 -b2
\
+ \b\ 2

} = \a + b\ 2+ \a-b\ 2+ 2\a2 -b2
\.

Another way of stating the result is : if z
x and 2, are the roots of

az2+2pz+ y= 0, then

|*1M*2
|
= (l/|«|){(|-/3Way|) + (|-/Way|)}.]

10. Show that the* necessary and sufficient conditions that both the roots
of the equation z2+ az+ b=0 should be of unit modulus are

|a| = 2, I 6 |
= 1, am 6= 2 am a.

[The amplitudes have not necessarily their principal values.]

11. If %i+4a
1
x3+ Qa2.v

2+ 4a3x+ai=0 is an equation with real coefficients

and has two real and two complex roots, concyclic in the Argand diagram, then

«3
2+ «i

2
«4+ «23 - «2«4 - 2a

1a2«3= 0.

12. The four roots of a^+ 4aix3 + (>a 2x2+ 4a3.v+ a4= will be harmonic-
ally related if

a a3
2+ afai+ a2

3 - a a2a4
- 2axa2az

= 0.

[Express ^23,14^31,24^12,34, where ^23.14= (21-22) (23-24)+(%-%) («2-«4)
and 2j, z2 , 23, 24 are the roots of the equation, in terms of the coefficients.]
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13. Imaginary points and straight lines. Let ax+by + c = be

an equation with complex coefficients (which of course may be real in special

cases).

If we give x any particular real or complex value, we can find the corre-

sponding value of y. The aggregate of pairs of real or complex values of x
and y which satisfy the equation is called an imaginary straight line ; the

pairs of values are called imaginary points, and are said to lie on the line.

The values of x and y are called the coordinates of the point (x, y). When
x and y are real, the point is called a real point : when a, b, c are all real (or

can be made all real by division by a common factor), the line is called a real

line. The points x=a+j3i, y= y+ 8i and x=a— fti, y=y— Si are said to be

conjugate ; and so are the lines

(A + A'i) x+ (B+ B'i)y + G+ C'i=0, (A - A'i) x+(B - B'i)y+ C- C'i=0.

Verify the following assertions :—every real line contains infinitely many
pairs of conjugate imaginary points ; an imaginary line in general contains

one and only one real point ; an imaginary line cannot contain a pair of

conjugate imaginary points :—and find the conditions (a) that the line

joining two given imaginary points should be real, and (b) that the point

of intersection of two imaginary lines should be real.

14. Prove the identities

(x+y + z)(x+y<0
3 +za>l) (x+ya>;+ zo>

3
) =

X

s+y3 + z3 - 3xyz,

(x+y+z) (x+y<o
5
+zco

4

5)
(x+y<o\+ za>

3

5)
(x+ya>\+ za>l) (x+ycol+z^)

=x5+y5+ z6 — bxhjz+ 5xy2z2.

15. Solve the equations

x3 -3ax+(a3+ l) = 0, ^5-5a^+5a2
.c + (a5 + l) = 0.

1 6. If/ (x) = « + a x
x+ .

.

. + akxk, then

{/(•*') +f(<°x) + •••+/ (*>" ~
l
*))l*= «o+<vn +v*+

• • • +<vAw
,

<o being any root of xn= l (except x=l), and \n the greatest multiple of n

contained in h. Find a similar formula for a +a + „•*"+ «„ +2>4'*
;2 'l + ••••

1 7. If (1 +x)n=p +Pix +p,x2 +...,

n being a positive integer, then

Po ~ Pz+P\-• = 23" cos frnr, pi -p3 +Po - ••• =2 2M sin \nir.

18. Sum the series

X X2 X3 xnl3

2!%-2! + 5! «-5! +
8! n-8\ +

"' + n-ll'

n being a multiple of 3. (Math. Trip. 1899.)

19. It t is a complex number such that |£| = 1, then the point

x=(at+ b)j(t — c) describes a circle as t varies, unless |c| = l, when it

describes a straight line.
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20. If t varies as in the last example then the point x=^{at+ (b/t)} in

general describes an ellipse whose foci are given by x2—ab, and whose axes

are
|
a

| + 1 b
|
and

|
a \

-
\
b |. But if

|
a

|

=
|
b

|
then x describes the finite straight

line joining the points -J(ab), y/(ab).

21. Prove that if t is real and z=t2 - l+J(t^ — t
2
), then, when t

2<l, z is

represented by a point which lies on the circle x2+y2+x=0. Assuming that,

when t
2>l, sj(ft-t2

) denotes the positive square root of fi-t2
, discuss the

motion of the point which represents z, as t diminishes from a large positive

value to a large negative value. {Math. Trip. 1912.)

22. The coefficients of the transformation z=(aZ+b)/(cZ+d) are subject

to the condition ad— bc= l. Show that, if c4=0, there are two fixed points

a, /3, i.e. points unaltered by the transformation, except when (a+ d) 2=4, when

there is only one fixed point a ; and that in these two cases the transforma-

tion may be expressed in the forms

z — a „ Z— a 1 1 „

Show further that, if c=0, there will be one fixed point a unless a= d,

and that in these two cases the transformation may be expressed in the

forms
Z-a=K{Z-a), z=Z+K.

Finally, if a, b, c, d are further restricted to positive integral values (in-

cluding zero), show that the only transformations with less than two fixed

points are of the forms (l/a)= (l/Z) + A', z =Z+K. (Math. Trip. 1911.)

23. Prove that the relation z= (l+Zi)/(Z+i) transforms the part of the

axis of x between the points z=\ and z= — 1 into a semicircle passing

through the points Z= 1 and Z= — 1. Find all the figures that can be obtained

from the originally selected part of the axis of x by successive applications of

the transformation. (Math. Trip. 1912.)

24. If z= 2Z+Z2 then the circle \Z\ = \ corresponds to a cardioid in the

plane of z.

25. Discuss the transformation z=^{Z+(l/Z)}, showing in particular

that to the circles X 2+ Y2= a2 correspond the confocal ellipses

-»+ „
V „„= !•

SH)F fiC-Dr
26. If (2+ l)2= 4/Zthen the unit circle in the 2-plane corresponds to the

parabola Acos2 |e= l in the ^-plane, and the inside of the circle to the

outside of the parabola.

27. Show that, by means of the transformation z= {(Z— ci)l(Z+ci)} 2
,

the upper half of the 2-plane may be made to correspond to the interior of

a certain semicircle in the Z-plane.
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28. If z=Z2 -l, then as z describes the circle |*|= k, the two corre-

sponding positions of Z each describe the Cassinian oval pip2=K where

Pi, p 2 are the distances of Z from the points -1, 1. Trace the ovals for

different values of k.

29. Consider the relation az2+ 2hzZ+ bZ2+ 2gz + 2/Z+ c= 0. Show that
there are two values of Z for which the corresponding values of z are equal,

and vice versa. We call these the branch points in the Z and 2-planes re-

spectively. Show that, if z describes an ellipse whose foci are the branch
points, then so does Z.

[We can, without loss of generality, take the given relation in the form

z2+ 2zZcos(o +Z2=l :

the reader should satisfy himself that this is the case. The branch points in

either plane are cosec a> and — cosec co. An ellipse of the form specified is

given by

|
z -f cosec a>

| + 1 z — cosec a>\ = C,

where C is a constant. This is equivalent (Ex. 9) to

I

z+ */(z2 ~ cosec2 w)
| + 1

z - s](z
2 — cosec2 a)

\

= C.

Express this in terms of Z.]

30 If z=aZm +bZn
, where m, n are positive integers and a, b real, then

as Z describes the unit circle, z describes a hypo- or epi-cycloid.

31. Show that the transformation

Jp+di)Z +b
cZq - (a - di)

'

where a, b, c, d are real and a2 + d2+ bc > 0, and Z denotes the conjugate of

Z, is equivalent to an inversion with respect to the circle

c (x2+y2
)
- 2ax - 2dy - b = 0.

What is the geometrical interpretation of the transformation when

a2 + d2+ bc<0l.

32. The transformation

i-g_ n-z^

1+Z~\l+Z;

where c is rational and < c < 1, transforms the circle
|
z

\

= 1 into the boundary

of a circular lune of angle njc.



CHAPTER IV

LIMITS OF FUNCTIONS OF A POSITIVE INTEGRAL VARIABLE

50. Functions of a positive integral variable. In

Chapter II we discussed the notion of a function of a real

variable x, and illustrated the discussion by a large number of

examples of such functions. And the reader will remember that

there was one important particular with regard to which the

functions which we took as illustrations differed very widely.

Some were defined for all values of x, some for rational values

only, some for integral values only, and so on.

Consider, for example, the following functions : (i) .r, (ii) njx, (iii) the

denominator of x, (iv) the square root of the product of the numerator and

the denominator of x, (v) the largest prime factor of x, (vi) the product of

*Jx and the largest prime factor of x, (vii) the #th prime number, (viii) the

height measured in inches of convict x in Dartmoor prison.

Then the aggregates of values of x for which these functions are defined

or, as we may say, the fields of definition of the functions, consist of (i) all

values of x, (ii) all positive values of x, (iii) all rational values of x, (iv) all

positive rational values of x, (v) all integral values of at, (vi), (vii) all positive

integral values of x, (viii) a certain number of positive integral values of x,

viz., 1, 2, ..., N, where N is the total number of convicts at Dartmoor at a

given moment of time*.

Now let us consider a function, such as (vii) above, which is

defined for all positive integral values of x and no others. This

* In the last case N depends on the time, and convict x, where x has a definite

value, is a different individual at different moments of time. Thus if we take

different moments of time into consideration we have a simple example of a

function y =F (x, t) of two variables, defined for a certain range of values of t, viz.

from the time of the establishment of Dartmoor prison to the time of its abandon-

ment, and for a certain number of positive integral values of x, this number
varying with t.
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function may be regarded from two slightly different points of

view. We may consider it, as has so far been our custom, as a

function of the real variable x defined for some only of the values

of w, viz. positive integral values, and say that for all other values

of x the definition fails. Or we may leave values of x other

than positive integral values entirely out of account, and regard

our function as a function of the positive integral variable n,

whose values are the positive integers

1,2,3,4,....
In this case we may write

and regard y now as a function of n defined for all values of n.

It is obvious that any function of x defined for all values of x

gives rise to a function of n defined for all values of n. Thus from

the function y = x2 we deduce the function y = rC- by merely

omitting from consideration all values of x other than positive

integers, and the corresponding values of y. On the other hand

from any function of n we can deduce any number of functions

of x by merely assigning values to y, corresponding to values of x

other than positive integral values, in any way we please.

51. Interpolation. The problem of determining a function of x which

shall assume, for all positive integral values of x, values agreeing with those

of a given function of n, is of extreme importance in higher mathematics.

It is called the problem of functional interpolation.

Were the problem however merely that of finding some function of x to

fulfil the condition stated, it would of course present no difficulty whatever.

We could, as explained above, simply fill in the missing values as we pleased :

we might indeed simply regard the given values of the function of n as all

the values of the function of x and say that the definition of the latter

function failed for all other values of x. But such purely theoretical solutions

are obviously not what is usually wanted. What is usually wanted is some

formula involving x (of as simple a kind as possible) which assumes the given

values for #=1, 2, ....

In some cases, especially when the function of n is itself defined by a

formula, there is an obvious solution. If for example y= <fi («), where cf> {n)

is a function of n, such as n2 or cos mr, which would have a meaning even

were n not a positive integer, we naturally take our function of x to be

y= (f)(x). But even in this very simple case it is easy to write down other

almost equally obvious solutions of the problem. For example

y= cf) (x) + sin xn

assumes the value (p (n) for x= n, since sin ?in- = 0.
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In other cases (/> (n) may be defined by a formula, such as ( — l)n, which

ceases to define for some values of x (as here in the case of fractional values

of x with even denominators, or irrational values). But it may be possible

to transform the formula in such a way that it does define for all values of

x. In this case, for example,

(— l)
n= COS«7T,

if n is an integer, and the problem of interpolation is solved by the function

In other cases <p(x) may be defined for some values of x other than

positive integers, but not for all. Thus from y= nn we are led to y=xx
.

This expression has a meaning for some only of the remaining values of x.

If for simplicity we confine ourselves to positive values of x, then xx has

a meaning for all rational values of .r, in virtue of the definitions of

fractional powers adopted in elementary algebra. But when x is irrational

xx has (so far as we are in a position to say at the present moment) no

meaning at all. Thus in this case the problem of interpolation at once

leads us to consider the question of extending our definitions in such a

way that xx shall have a meaning even when x is irrational. We shall see

later on how the desired extension may be effected.

Again, consider the case in which

y= 1 . 2 . . . n= n !

.

In this case there is no obvious formula in x which reduces to n ! for x=n,
as x\ means nothing for values of x other than the positive integers. This

is a case in which attempts to solve the problem of interpolation have led to

important advances in mathematics. For mathematicians have succeeded

in discovering a function (the Gamma-function) which possesses the desired

property and many other interesting and important properties besides.

52. Finite and infinite classes. Before we proceed further

it is necessary to make a few remarks about certain ideas of an

abstract and logical nature which are of constant occurrence in

Pure Mathematics.

In the first place, the reader is probably familiar with the

notion of a class. It is unnecessary to discuss here any logical

difficulties which may be involved in the notion of a 'class':

roughly speaking we may say that a class is the aggregate or

collection of all the entities or objects which possess a certain

property, simple or complex. Thus we have the class of British

subjects, or members of Parliament, or positive integers, or real

numbers.
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Moreover, the reader has probably an idea of what is meant
by a finite or infinite class. Thus the class of British subjects

is a finite class: the aggregate of all British subjects, past,

present, and future, has a finite number n, though of course we
cannot tell at present the actual value of n. The class of present

British subjects, on the other hand, has a number n which could

be ascertained by counting, were the methods of the census

effective enough.

On the other hand the class of positive integers is not finite

but infinite. This may be expressed more precisely as follows.

If n is any positive integer, such as 1000, 1,000,000 or any number
we like to think of, then there are more than n positive integers.

Thus, if the number we think of is 1,000,000, there are obviously

at least 1,000,001 positive integers. Similarly the class of rational

numbers, or of real numbers, is infinite. It is convenient to

express this by saying that there are an infinite number of

positive integers, or rational numbers, or real numbers. But the

reader must be careful always to remember that by saying this

we mean simply that the class in question has not a finite number
of members such as 1000 or 1,000,000.

53. Properties possessed by a function of n for large

values of n. We may now return to the ' functions of n ' which we
were discussing in §§ 50—51. They have many points of difference

from the functions of x which we discussed in Chap. II. But there

is one fundamental characteristic which the two classes of func-

tions have in common : the values of the variable for which they

are defined form an infinite class. It is this fact which forms the

basis of all the considerations which follow and which, as we shall

see in the next chapter, apply, mutatis mutandis, to functions of x

as well.

Suppose that $(n) is any function of n, and that P is any

property which <£ (n) may or may not ha,ve, such as that of being

a positive integer or of being greater than 1. Consider, for each

of the values n—1, 2, 3, ..., whether <f>(n) has the property P or

not. Then there are three possibilities:

—

(a)
<f>

(n) may have the property P for all values of n, or for

all values of n except a finite number N of such values :
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(b)
<f)

(n) may have the property for no values of n, or only for

a finite number N of such values

:

(c) neither (a) nor (b) may be true.

If (6) is true, the values of n for which $ (n) has the property

form a finite class. If (a) is true, the values of n for which $ (n)

has not the property form a finite class. In the third case neither

class is finite. Let us consider some particular cases.

(1) Let (n) = n, and let P be the property of being a positive integer.

Then (ft) has the property P for all values of ft.

If on the other hand P denotes the property of being a positive integer

greater than or equal to 1000, then
<f>

(ft) has the property for all values of n

except a finite number of values of n, viz. 1, 2, 3, ..., 999. In either of

these cases (a) is true.

(2) If cj)(n)= n, and P is the property of being less than 1000, then (6) is

true.

(3) If
(f)

(ft) = n, and P is the property of being odd, then (c) is true. For

<f)
(n) is odd if n is odd and even if n is even, and both the odd and the even

values of ft form an infinite class.

Example. Consider, in each of the following cases, whether (a), (b), or

(c) is true

:

(i) <p (n) = n, P being the property of being a perfect square,

(ii) 4>(n)
=Pny where pn denotes the nth prime number, P being the

property of being odd,

(iii)
<f)
(n)=p u , P being the property of being even,

(iv) $ (n)=pa , P being the property cf> (n)>n,

(v) <£ (n) = 1 - (- l)n (I In), P being the property <£ («)<1

,

(vi) <f>(n) = l-(- l)n (Jin), P being the property (n)<2,

( vii) (n) = 1000 {1 + ( - l)»}/n, P being the property <j>(n)< 1,

(viii)
(f> («) = 1/ft, P being the property <£ («)<

-

001,

(ix) $ (») = ( - l)n/n, P being the property
| (p (ft)

|
< -001,

(x) 4>(n)= 10000In, or (-l)»10000/ft, P being either of the properties

4>(n)< -001 or
|

(ft)
|

< -001,

(xi)
(f>

(n) = (n- l)/(ft+ 1), P being the property 1-0 (?«)< -0001.

54. Let us now suppose that
<f>

(n) and P are such that the

assertion (a) is true, i.e. that
<f>

(?i) has the property P, if not for

all values of n, at any rate for all values of n except a finite

number N of such values. We may denote these exceptional

values by
nu n.2 , ..., nN .
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There is of course no reason why these JV values should be the

first N values 1, 2, ..., N, though, as the preceding examples

show, this is frequently the case in practice. But whether this

is so or not we know that
<f>

(n) has the property P if n > nN .

Thus the ??th prime is odd if n > 2, n = 2 being the only exception

to the statement; and l/n< '001 if n > 1000, the first 1000 values

of n being the exceptions ; and

1000 {1 + (- l)»}/n < 1

if ra > 2000, the exceptional values being 2, 4, 6, ..., 2000. That

is to say, in each of these cases the property is possessed for all

values of n from a definite value onwards.

We shall frequently express this by saying that <£ (?z) has the

property for large, or very large, or all sufficiently large values of n.

Thus when we say that <£ (n) has the property P (which will as a

rule be a property expressed by some relation of inequality) for

large values of n, what we mean is that we can determine some

definite number, n say, such that cf> (n) has the property for all

values of n greater than or equal to n . This number n , in the

examples considered above, may be taken to be any number
greater than nN , the greatest of the exceptional numbers: it is

most natural to take it to be nN +l.

Thus we may say that 'all large primes are odd', or that '1/n is

less than "001 for large values of n '. And the reader must make
himself familiar with the use of the word large in statements of

this kind. Large is in fact a word which, standing by itself, has

no more absolute meaning in mathematics than in the language

of common life. It is a truism that in common life a number
which is large in one connection is small in another ; 6 goals is a

large score in a football match, but 6 runs is not a large score in a

cricket match; and 400 runs is a large score, but £400 is not

a large income : and so of course in mathematics large generally

means large enough, and what is large enough for one purpose

may not be large enough for another.

We know now what is meant by the assertion '
<£ (n) has the

property P for large values of n '. It is with assertions of this

kind that we shall be concerned throughout this chapter.



112 LIMITS OF FUNCTIONS OF A [iV

55. The phrase 'n tends to infinity'. There is a some-

what different way of looking at the matter which it is natural to

adopt. Suppose that n assumes successively the values 1, 2, 3, ....

The word 'successively' naturally suggests succession in time, and

we may suppose n, if we like, to assume these values at successive

moments of time (e.g. at the beginnings of successive seconds).

Then as the seconds pass n gets larger and larger and there is

no limit to the extent of its increase. However large a number

we may think of (e.g. 2147483647), a time will come when n has

become larger than this number.

It is convenient to have a short phrase to express this unending

growth of 11, and we shall say that n tends to infinity, or n **»oo
,

this last symbol being usually employed as an abbreviation for

'infinity'. The phrase 'tends to' like the word 'successively'

naturally suggests the idea of change in time, and it is convenient

to think of the variation of n as accomplished in time in the

manner described above. This however is a mere matter of con-

venience. The variable n is a purely logical entity which has in

itself nothing to do with time.

The reader cannot too strongly impress upon himself that

when we say that n ' tends to oo ' we mean simply that n is

supposed to assume a series of values which increase continually

and without limit, There is no number ' infinity': such an

equation as

n= oo

is as it stands absolutely meaningless : n cannot be equal to oo

,

because " equal to oo ' means nothing. So far in fact the symbol

oo means nothing at all except in the one phrase ' tends to co
',

the meaning of which we have explained above. Later on we
shall learn how to attach a meaning to other phrases involving

the symbol oo , but the reader will always have to bear in mind

(1) that oo by itself means nothing, although phrases con-

taining it sometimes mean something,

(2) that in every case in which a phrase containing the

symbol oo means something it will do so simply because we have

previously attached a meaning to this particular phrase by means

of a special definition.
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Now it is clear that if <£ (n) has the property P for large values

of n, and if n ' tends to oo ', in the sense which we have just

explained, then n will ultimately assume values large enough to

ensure that <f>(n) has the property P. And so another way of

putting the question ' what properties has <£ (n) for sufficiently

large values of n ?
' is ' how does

<f>
(n) behave as n tends to oo ?

'

56. The behaviour of a function of n as n tends to

infinity. We shall now proceed, in the light of the remarks

made in the preceding sections, to consider the meaning of some
kinds of statements which are perpetually occurring in higher

mathematics. Let us consider, for example, the two following

statements : (a) 1/n is small for large values of n, (b) 1 — (1/n) is

nearly equal to 1 for large values of n. Obvious as they may
seem, there is a good deal in them which will repay the reader's

attention. Let us take (a) first, as being slightly the simpler.

We have already considered the statement ' 1/n is less than "01

for large values of n\ This, we saw, means that the inequality

1/n < '01 is true for all values of n greater than some definite

value, in fact greater than 100. Similarly it is true that ' 1/n is

less than '0001 for large values of n' : in fact 1/n < "0001 if

n > 10000. And instead of '01 or -0001 we might take -000001 or

•00000001, or indeed any positive number we like.

It is obviously convenient to have some way of expressing the

fact that any such statement as ' 1/n is less than "01 for large

values of n' is true, when we substitute for "01 any smaller

number, such as "0001 or "000001 or any other number we care

to choose. And clearly we can do this by saying that ' however

small 8 may be (provided of course it is positive), then l/n<8 for

sufficiently large values of n '. That this is true is obvious. For

l/n< S if n> 1/8, so that our 'sufficiently large' values of n need

only all be greater than 1/8. The assertion is however a complex

one, in that it really stands for the whole class of assertions which

we obtain by giving to 8 special values such as '01. And of course

the smaller 8 is, and the larger 1/8, the larger must be the least of

the ' sufficiently large ' values of n : values which are sufficiently

large when 8 has one value are inadequate when it has a smaller.

The last statement italicised is what is really meant by the

statement (a), that 1/n is small when n is large. Similarly

h.
'

8
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(b) really means "if <\>{n)= ! — {!/n), then the statement l

l — <f>(n)<8

for sufficiently large values of n' is true whatever positive value

{such as '01 or "0001) we attribute to 8 ". That the statement (b)

is true is obvious from the fact that 1 — <}>(n)= 1/n.

There is another way in which it is common to state the facts

expressed by the assertions (a) and (6). This is suggested at once

by § 55. Instead of saying ' 1/n is small for large values of n ' we

say ' 1/n tends to as n tends to oo \ Similarly we say that

' 1 — (1/n) tends to 1 as n tends to oo '
: and these statements are

to be regarded as precisely equivalent to (a) and (b). Thus the

statements
' 1/n is small when n is large

',

' 1/n tends to as n tends to oo ',

are equivalent to one another and to the more formal statement

'if 8 is any positive number, however small, then 1/n < 8

for sufficiently large values of n
',

or to the still more formal statement

' if 8 is any positive number, however small, then we can

find a number n such that 1/n < 8 for all values of n greater

than or equal to n \

The number n which occurs in the last statement is of course

a function of 8. We shall sometimes emphasize this fact by

writing n in the form n (8).

The reader should imagine himself confronted by an opponent who

questions the truth of the statement. He would name a series of numbers

growing smaller and smaller. He might begin with -001. The reader would

reply that l/?i<'001 as soon as %>1000. The opponent would be bound to

admit this, but would try again with some smaller number, such as •0000001

.

The reader would reply that l/n< -0000001 as soon as n> 10000000: and so

on. In this simple case it is evident that the reader would always have the

better of the argument.

We shall now introduce yet another way of expressing this

property of the function 1/n. We shall say that ' the limit of 1/n

as n tends to oo is ', a statement which we may express symboli-

cally in the form

lim - = 0,
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or simply lim (1/n) = 0. We shall also sometimes write

as n -* oo ', which may be read ' 1/n tends to as n tends to oo '
; or

simply ' 1/n -* '. In the same way we shall write

lim fl--) = l, limfl-.-W
n^oc \ nj \ nj

or 1 - (1/n) -^ 1.

57. Now let us consider a different example : let
<f>

(n) = n2
.

Then ' n2 is large when n is large '. This statement is equivalent

to the more formal statements

' if A is any positive number, however large, then n2 > A
for sufficiently large values of n \

* we can find a number n (A) such that n2 > A for all values

of n greater than or equal to n (A) '.

And it is natural in this case to say that ' n2 tends to oo as n

tends to oo ', or ' n2 tends to oo with n ', and to write

n- -»- oo

.

Finally consider the function <£(n) = — n2
. In this case <f>(ri)

is large, but negative, when n is large, and we naturally say that

' — n2 tends to — oo as n tends to oo ' and write

— n2 -* — oo .

And the use of the symbol — oo in this sense suggests that it

will sometimes be convenient to write n2 -* + oo for n 2 -* oo and

generally to use + oo instead of oo , in order to secure greater

uniformity of notation.

But we must once more repeat that in all these statements

the symbols oo , + oo ,
— oo mean nothing whatever by themselves,

and only acquire a meaning when they occur in certain special

connections in virtue of the explanations which we have just

given.

8—2
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58. Definition of a limit. After the discussion which

precedes the reader should be in a position to appreciate the

general notion of a limit. Roughly we may say that
(f>

(n) tends

to a limit I as n tends to co if (n) is nearly equal to I when n is

large. But although the meaning of this statement should be

clear enough after the preceding explanations, it is not, as it

stands, precise enough to serve as a strict mathematical definition.

It is, in fact, equivalent to a whole class of statements of the

type 'for sufficiently large values of n, <f>(n) differsfrom I by less

than 8
'. This statement has to be true for 8 = *01 or "0001 or any

positive number ; and for any such value of 8 it has to be true for

any value of n after a certain definite value n (8), though the

smaller 8 is the larger, as a rule, will be this value n (8).

We accordingly frame the following formal definition

:

Definition I. The function cf> (n) is said to tend to the limit

I as n tends to oo , if, however small be the positive number 8,

(n) differsfrom I by less than 8 for sufficiently large values of n;

that is to say if, however small be the positive number 8, ive can

determine a number n (8) corresponding to 8, such that <f>(n) differs

from I by less than 8 for all values ofn greater than or equal to n (8).

It is usual to denote the difference between </>(«) and I, taken'

positively, by
|
</> (n) — I |. It is equal to

<f>
(n) — I or to I —

<f>
(n),

whichever is positive, and agrees with the definition of the

modulus of </> (n) — I, as given in Chap. Ill, though at present

we are only considering real values, positive or negative.

With this notation the definition may be stated more shortly

as follows: 'if, given any positive number, 8, however small, we

can find n (8) so that
| <£ (n) — 1

|

< 8 when n~ n (8), then we say

that
<f>

(n) tends to the limit I as n tends to oo , and write

lim </> (n) = I '.

Sometimes we may omit the l n-*-ao ' ; and sometimes it is convenient, for

brevity, to write
<fi

(n)-*-l.

The reader will find it instructive to work out, in a few simple cases, the

explicit expression of n as a function of 8. Thus if
(f>

(x) = ljn then £=0, and

the condition reduces to \jn<8 for n>n , which is satisfied if % =1 + [1/5J*.

There is one and only one case in which the same 7i will do for all values of 8.

* Here and henceforward we shall use [x] in the sense of Chap. II, i.e. as the

greatest integer not greater than x.
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If, from a certain value N of n onwards, $ (n) is constant, say equal to C, then

it is evident that
(f>

(n) — C=0 for n giV, so that the inequality
| <£ (n) — C

\
<8

is satisfied for n'Z.N and all positive values of 8. And if
| <f>(n) — l\ <8 for

n^N and all positive values of 8, then it is evident that $ (n)=l when n >X,
so that (p (n) is constant for all such values of n.

59. The definition of a limit may be illustrated geometrically

as follows. The graph of
<f>

(n) consists of a number of points

corresponding to the values n= l, 2, 3, ....

Draw the line y — I, and the parallel lines y = 1 — 8, y = 1 + 8

at distance 8 from it. Then

lim
(f)

(n) = I,

Fig. 27

if, when once these lines have been drawn, no matter how close

they may be together, we can always draw a line x = n a , as in the

figure, in such a way that the point of the graph on this line, and

all points to the right of it, lie between them. We shall find

this geometrical way of looking at our definition particularly

useful when we come to deal with functions defined for all values

of a real variable and not merely for positive integral values.

60. So much for functions of n which tend to a limit as n

tends to oo . We must now frame corresponding definitions for

functions which, like the functions if- or — n-, tend to positive or

negative infinity. The reader should by now find no difficulty in

appreciating the point of

Definition II. The function <f>(n) is said to tend to +cc

{positive infinity) ivith n, if, when any number A, however large,

is assigned, we can determine n (A) so that
<f>

(n) > A ivhen n = n (A);
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that is to say if, however large A may be, </> (n) > A for sufficiently

large values of n.

Another, less precise, form of statement is ' if we can make

<£ (n) as large as we please by sufficiently increasing n '. This is

open to the objection that it obscures a fundamental point, viz.

that $ (n) must be greater than A for all values of n such that

n = n (A), and not merely for some such values. But there is no

harm in using this form of expression if we are clear what it

means.

When $ (n) tends to + oo we write

<£ (n) -* + oo .

We may leave it to the reader to frame the corresponding

definition for functions which tend to negative infinity.

61. Some points concerning the definitions. The reader

should be careful to observe the following points.

(1) We may obviously alter the values of <f)(n) for any

finite number of values of n, in any way we please, without in

the least affecting the behaviour of <£ (n) as n tends to oo . For

example 1/n tends to as n tends to oo . We may deduce any

number of new functions from 1/n by altering a finite number of

its values. For instance we may consider the function
<f>

(n) which

is equal to 3 for n = \, 2, 7, 11, 101, 107, 109, 237 and equal to

1/n for all other values of n. For this function, just as for the

original function 1/n, lim </> (n) = 0. Similarly, for the function

cf> (n) which is equal to 3 if ft = 1, 2, 7, 11, 101, 107, 109, 237, and

to n2 otherwise, it is true that
<f>

(ft) -* + oo .

(2) On the other hand we cannot as a rule alter an infinite

number of the values of </> (n) without affecting fundamentally its

behaviour as n tends to oo . If for example we altered the function

1/n by changing its value to 1 whenever n is a multiple of 100,

it would no longer be true that lim <£ (n) = 0. So long as a finite

number of values only were affected we could always choose the

number n of the definition so as to be greater than the greatest

of the values of n for which <£ (ft) was altered. In the examples

above, for instance, we could always take n > 237, and indeed we
should be compelled to do so as soon as our imaginary opponent
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of § 56 had assigned a value of 8 as small as 3 (in the first

example) or a value of A as great as 3 (in the second). But
now however large n may be there will be greater values of n for

which
<f)

(n) has been altered.

(3) In applying the test of Definition I it is of course

absolutely essential that we should have
|
<p(n) — 1

1
< 8 not merely

when n =n but when n ^ n0> i.e. for n and for all larger values

of n. It is obvious, for example, that, if
<f>

(n) is the function last

considered, then given 8 we can choose n so that
| (f>(n)

|
< 8 when

n = n : we have only to choose a sufficiently large value of n
which is not a multiple of 100. But, when n is thus chosen, it

is not true that
| <f>

(n)
\

< 8 when n^n : all the multiples of 100

which are greater than n are exceptions to this statement.

(4) If (f>(n) is always greater than I, we can replace

| $ (n) -l\ by $(n) — l. Thus the test whether 1/n tends to the

limit as n tends to oo is simply whether 1/n < 8 when n ^ n .

If however </> («) = (— \)
njn, then I is again 0, but <£ (n) — I is some-

times positive and sometimes negative. In such a case we must
state the condition in the form

| <f>
(n) — 1

1
< 8, for example, in

this particular case, in the form
| <j> (n)

|

< 8.

(5) The limit I may itself be one of the actual values of

(f>(n). Thus if </>(w) = for all values of n, it is obvious that

lim </> (n) = 0. Again, if we had, in (2) and (3) above, altered

the value of the function, when n is a multiple of 100, to

instead of to 1, we should have obtained a function $ (n) which

is equal to when n is a multiple of 100 and to 1/n otherwise.

The limit of this function as n tends to cc is still obviously zero.

This limit is itself the value of the function for an infinite number

of values of n, viz. all multiples of 100.

On the other hand the limit itself need not {and in general will

not) be the value of the function for any value of n. This is

sufficiently obvious in the case of
<f>

(n) = 1/n. The limit is zero

;

but the function is never equal to zero for any value of n.

The reader cannot impress these facts too strongly on his

mind. A limit is not a value of the function : it is something

quite distinct from these values, though it is defined by its relations
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to them and may possibly be equal to some of them. For the

functions

<f>(n) = 0, 1,

the limit is equal to all the values of </> (n) : for

0(n)-l/n> i-lTIn, 1 + (1/n), l + {(-l)"/ra)

it is not equal to any value of
<f>

(n) : for

<£ (n) = (sin hi7r)/n, 1 + {(sin £w7t)/m}

(whose limits as n tends to oo are easily seen to be and 1, since

sin \mr is never numerically greater than 1) the limit is equal to

the value which cf> (n) assumes for all even values of n, but the

values assumed for odd values of n are all different from the limit

and from one another.

(6) A function may be alwaj'S numerically very large when

n is very large without tending either to + oo or to — oo . A
sufficient illustration of this is given by <£ (n) = (— l)n n. A function

can only tend to + go or to — oo if, after a certain value of n,

it maintains a constant sign.

Examples XXIII. Consider the behaviour of the following functions

of x as n tends to oo :

1.
<f)
(n)=nk

, where k is a positive or negative integer or rational fraction.

If k is positive, then nk tends to + oo with n. If k is negative, then lim nk =0.

If £= 0, then nk=l for all values of n. Hence lim»*=l.

The reader will find it instructive, even in so simple a case as this, to

write down a formal proof that the conditions of our definitions are satisfied.

Take for instance the case of k>0. Let A be any assigned number, however

large. We wish to choose 7i so that »fc>A when n2:n . We have in fact only

to take for n any number greater than ^/A. If e.g. k= 4, then ni> 10900 when

W>11, %4>100000000 when »>101, and so on.

2. <f)(n)=p„, where £>,t is the nth. prime number. If there were only

a finite number of primes then cj) (n) would be defined only for a finite number

of values of n. There are however, as was first shown by Euclid, infinitely

many primes. Euclid's proof is as follows. If there are only a finite

n-umber of primes, let them be 1, 2, 3, 5, 7, 11, ... N. Consider the number

1 + (1.2. 3. 5. 7. 11 ... JY). This number is evidently not divisible by
any of 2, 3, 5, ... JV, since the remainder when it is divided by any of

these numbers is 1. It is therefore not divisible by any prime save 1, and

is therefore itself prime, which is contrary to our hypothesis.

It is moreover obvious that <p {n)>n for all values of n (save n = \, 2, 3).

Hence <\> (n) -*• + oo

.
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3. Let (ft) be the number of primes less than?*. Here again (n)-*+ oo

.

4. (n) = [an], where a is any positive number. Here

0(«)=O (0<M<l/a), 0(%)= ] (l/o<n<2/o),

and so on ; and («)-»- + oo .

5. If (n) = 1000000/ft, then lim (n) = : and if ^ (n) = ft/1000000, then

^(»)-»4oo. These conclusions are in no way affected by the fact that at first

(ft) is much larger than yjr (ft), being in fact larger until n = 1000000.

6. (ft) = l/{ft - ( - 1)»}, ft - ( - 1)«, ft {1 - ( - 1)"}. The first function tends

to 0, the second to + °o
, the third does not tend either to a limit or to -f oo .

7. (ft) = (sin ndn)jn, where 6 is any real number. Here [0(n)|<l/?i,

since
|
sin ndn

[
^ 1, and lim (ft) = 0.

8. (ft) = (sin ndn)jsln, (a cos2 nd+ b sin2 nd)/n, where a and b are any real

numbers.

9. 0(ft)=sinft#7r. If 6 is integral then 0(«) = O for all values of ft, and

therefore lim (ft) =0.

Next let 6 be rational, e.g. 8=p/q, where p and q are positive integers.

Let n= aq+ b where a is the quotient and b the remainder when n is divided

by q. Then sin (npnjq) = ( - l)ap sin (bpnlq). Suppose, for example, p even
;

then, as n increases from to q— 1, (ft) takes the values

0, sin (pirfq), sin (2pir/q), ... sin {(q-1) pn/q}.

When n increases from q to 2q-l these values are repeated ; and so also

as n goes from 2q to 3^-1, 3q to 4q — 1, and so on. Thus the values of (ft)

form a perpetual cyclic repetition of a finite series of different values. It is

evident that when this is the case (ft) cannot tend to a limit, nor to + co

,

nor to — oo , as ft tends to infinity.

The case in which 6 is irrational is a little more difficult. It is discussed

in the next set of examples.

62. Oscillating Functions. Definition. When
(f>

(n) does

not tend to a limit, nor to + oo , nor to — oo , as n tends to oo , ive

say that <j>(n) oscillates as n tends to cc .

A function <f)(n) certainly oscillates if its values form, as

in the case considered in the last example above, a continual

repetition of a cycle of values. But of course it may oscillate

without possessing this peculiarity. Oscillation is defined in a

purely negative manner : a function oscillates when it does not do

certain othei things.



122 LIMITS OF FUNCTIONS OF A [IV

The simplest example of an oscillatory function is given by

which is equal to + 1 when n is even and to — 1 when n is odd.

In this case the values recur cyclically. But consider

4>00 = (-i)n +(iM
the values of which are

-1 + 1, l + (l/2), -l+(l/3)
5

l + (l/4), -l + (l/5), ....

When n is large every value is nearly equal to +1 or — 1, and

obviously cf> (n) does not tend to a limit or to + oo or to — oo , and

therefore it oscillates : but the values do not recur. It is to be

observed that in this case every value of
<f>

(n) is numerically less

than or equal to 3/2. Similarly

cf) (n) = (-iynoo + (1000/n)

oscillates. When n is large, every value is nearly equal to 100

or to —100. The numerically greatest value is 900 (for n = l).

But now consider <£(?i) = (— l)n n, the values of which are — 1, 2,

— 3, 4, —5, .... This function oscillates, for it does not tend to a

limit, nor to + oo , nor to — oo . And in this case we cannot assign

any limit beyond Avhich the numerical value of the terms does

not rise. The distinction between these two examples suggests a

further definition.

Definition. If <f>
(n) oscillates as n tends to co , then </> (n) will

be said to oscillate finitely or infinitely according as it is or is not

possible to assign a number K such that all the values of <f>
(n) are

numerically less than K, i.e.
|
</> (n) \

< K for all values of n.

These definitions, as well as those of §§ 58 and GO, are further

illustrated in the following examples.

Examples XXIV. Consider the behaviour as n tends to oo of the

following functions

:

1. (-1)*, 5+3(-l)» (1000000/?*)+ (-1)", 1000000 (-l)»+ (l/»).

2. (-l)n n, 1000000+ (-l)B ».

3. 1000000-%, ( -1)» (1000000 -n)-

4. n{l + (- 1)"}. In this case the values of (n) are

0, 4, 0, 8, 0, 12, 0, 16, ....

The odd terras are all zero and the even terms tend to + oo :
<fr

(n)

oscillates infinitely.
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5. n2 + ( — l) ll 2n. The second term oscillates infinitely, but the first is

very much larger than the second when n is large. In fact $ (n) >n2 - 2n and
n2 -2n= (n-l) 2 - 1 is greater than any assigned value A if n>l + J(A + l).

Thus cf) (»)-*+ oo. It should be observed that in this case <£(2£+l) is

always less than (2k), so that the function progresses to infinity by a con-

tinual series of steps forwards and backwards. It does not however 'oscillate'

according to our definition of the term.

6. n2 {l + (-l)»}, (-l)nn2+ n, n3 + (-l)n n2
.

7. sin ndn. We have already seen (Exs. xxm. 9) that <p(n) oscillates

finitely when d is rational, unless d is an integer, when $ (n) = 0, (?i)-»-0.

The case in which d is irrational is a little more difficult. But it is not

difficult to see that <f)(n) still oscillates finitely. We can without loss of

generality suppose O<0<1. In the first place |</>(w)|<l. Hence (\>(n)

must oscillate finitely or tend to a limit. We shall consider whether the

second alternative is really possible. Let us suppose that

lim sin ndn= l.

Then, however small 8 may be, we can choose n so that sin ndn lies between

1-8 and 1+8 for all values of n greater than or equal to ?i . Hence

sin (n+l) dn- sin ndn is numerically less than 28 for all such values of n,

and so
|
sin^n- cos (n+ \) dn \<8.

Hence cos (n+%) dn = cosndn cos hdn — sin ndn sin|07r

must be numerically less than 8/ 1
sin h dn |. Similarly

cos (n -h)6n = cos ndn cos \6n + sin ndn sin \ 6tt

must be numerically less than 8j \
sin ^ 6n

\

; and so each of cos ndn cos 1 6n,

sin n6n sin ^ 6n must be numerically less than 8j |
sin ^ On |. That is to say,

cos ndn cos 1 6n is very small if n is large, and this can only be the case

if cos n6n is very small. Similarly sin ndn must be very small, so that I

must be zero. But it is impossible that cos ndn and sin ndn can both be

very small, as the sum of their squares is unity. Thus the hypothesis that

sin ndn tends to a limit I is impossible, and therefore sin ndn oscillates

as n tends to oo

.

The reader should consider with particular care the argument
' cos ndn cos \ dn is very small, and this can only be the case if cos ndn

is very small'. Why, he may ask, should it not be the other factor cos^#7r

which is 'very small'? The answer is to be found, of course, in the meaning

of the phrase ' very small ' as used in this connection. When we say ' $ (n)

is very small' for large values of n, we mean that we can choose n so that

<f)
(«.) is numerically smaller than any assigned number, if n is sufficiently

large. Such an assertion is palpably absurd when made of a fixed number

such as cos | dn, which is not zero.

Prove similarly that cos ndn oscillates finitely, unless d is an even integer.

8. sin ndn+ (I In), sinra&r+l, siandn+ n, (-l)n sinndn.

9. a cos ndn + b sin ndn, sin2 ndn, a cos2 ndn + b sin2 ndn.
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10. a + hi + ( - l)n (c + dn) +e cos ndn +/sin ndir.

11. n sin ndir. If n is integral, then # (w)=°> $ ('0
-*"

- If # is rational

but not integral, or irrational, then cf> (n) oscillates infinitely.

12. n (a cos2 n6W + b sin 2 ndir). In this case (f>(n) tends to +cc if a and

6 are both positive, but to - oo if both are negative. Consider the special

cases in which a= 0, b>0, or a>0, 6=0, or a=0, b= 0. If a and 6 have

opposite signs cj> (n) generally oscillates infinitely. Consider any excep-

tional cases.

13. sin (nWn). If 6 is integral, then (»)-*0. Otherwise (n) oscillates

finitely, as may be shown by arguments similar to though more complex

than those used in Exs. xxm. 9 and xxiv. 7*.

14. s\x\(n\6ir). If 6 has a rational value pjq, then n\ 6 is certainly

integral for all values of n greater than or equal to q. Hence (n) -»-0. The

case in which 6 is irrational cannot be dealt with without the aid of considera-

tions of a much more difficult character.

15. cos (n ! dn), a cos2 (n ! 6n)-\-b sin2 (« ! 6n), where 6 is rational.

16. an-[bn\ (-l)n (an-[bn]). 17. [sjn\ (-l)"[vH >Jn-[shi].

18. The smallest prune factor of n. When n is a prime, (n) = n. When
n is even,

(f>
(n) = 2. Thus (?&) oscillates infinitely.

19. The largest prime factor of n.

20. The number of days in the year n a.d.

Examples XXV. 1. If </> (»i) -* + °° and >fr (»)><£(«) for all values of

n, then ^ (n) -*- + oo .

2. If («)-*- 0, and
| ^ (?i)

| ^
]

(«) |
for all values of n, then yj/ («)-* 0.

3. If lim
|

(?i)
|

= 0, then lim <£ (n) = 0.

4. If ^ («) tends to a limit or oscillates finitely, and
| \^ (n) \^\<j> (n)

|
when

n£n0) then yj/(n) tends to a limit or oscillates finitely.

5. If
(f>

(n) tends to +00 , or to — 00 , or oscillates infinitely, and

|*(n)|>|*(»)|

when «Sn , then ^ (n) tends to + 00 or to -00 or oscillates infinitely.

6. 'If 4>(n) oscillates and, however great be n , we can find values of n

greater than n for which >// (n) >
<fi (71), and values of n greater than n for

which
-ty

(n) < (n), then ^(«) oscillates'. Is this true? If not give an

example to the contrary.

7. If cf> {n)-*-l as n-*-co , then also <£ (»+£>) -»/, £> being any fixed integer.

[This follows at once from the definition. Similarly we see that if («) tends

to +oo or —00 or oscillates so also does <£(n +£>).]

8. The same conclusions hold (except in the case of oscillation) ifp varies

with n but is always numerically less than a fixed positive integer N ; or if p
varies with n in any way, so long as it is always positive.

* See Bromwich's Infinite Series, p. 485.
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9. Determine the least value of n for which it is true that

(a) «2+ 2;j>999999 (n>n ), (b) n2+2n> 1000000 (»>»„).

10. Determine the least value of n for which it is true that

(a) «+ (-l)'l>1000 («>%), (b) ?i + (-l)»>1000000 («>>i ).

11. Determine the least value of ?i for which it is true that

(a) ?i
2+2>i>A (n>n

), (6) ra+(-l)»>A (»>w ),

A being any positive number.

[(«) n =[y/(A+ l)]: (6) « =1+[A] or 2+ [a], according as [a] is odd or

even, i.e. rc =l + [A] + i {l + (-lp}.]

12. Determine the least value of n such that

(a) «/(^2+ l)<-0001, (b) (l/%) + {(-l)»/%2}< -ooooi,

when «S;i . [Let us take the latter case. In the first place

(l/n)+{(-l)»M^(«+l)/«2

and it is easy to see that the least value of n , such that (n+l)/n2< -000001

when n >«.
, is 1000002. But the inequality given is satisfied by n= 1000001,

and this is the value of n required.]

63. Some general theorems with regard to limits.

A. The behaviour of the sum of two functions whose
behaviour is known.

Theorem I. If (f>(n) and yfr(n) tend to limits a, b, then

<f>
(n) + y\r (n) tends to the limit a + b.

This is almost obvious*. The argument which the reader will

* There is a certain ambiguity in this phrase which the reader will do well to

notice. When one says ' such and such a theorem is almost obvious ' one may
mean one or other of two things. One may mean ' it is difficult to doubt the truth

of the theorem', ' the theorem is such as common-sense instinctively accepts', as

it accepts, for example, the truth of the propositions '2 + 2 = 4' or 'the base-angles

of an isosceles triangle are equal'. That a theorem is 'obvious' in this sense does

not prove that it is true, since the most confident of the intuitive judgments of

common sense are often found to be mistaken; and even if the theorem is true,

the fact that it is also ' obvious ' is no reason for not proving it, if a proof can be

found. The object of mathematics is to prove that certain premises imply certain

conclusions; and the fact that the conclusions may be as 'obvious' as the premises

never detracts from the necessity, and often not even from the interest of the proof.

But sometimes (as for example here) we mean by ' this is almost obvious '

something quite different from this. We mean ' a moment's reflection should not

only convince the reader of the truth of what is stated, but should also suggest to

him the general Hues of a rigorous proof. And often, when a statement is

' obvious ' in this sense, one may well omit the proof, not because the proof is in

any sense unnecessary, but because it is a waste of time and space to state in detail

what the reader can easily supply for himself.
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at once form in his mind is roughly this :
' when n is large, <£ (w) is

nearly equal to a and yjr (n) to b, and therefore their sum is nearly

equal to a + b '. It is well to state the argument quite formally,

however.

Let 8 be any assigned positive number (e.g. "001, 0000001, ...).

We require to show that a number n can be found such that

\<f>(n) + ^(n)-a-b\<8 (1),

when )i ^ « , Now by a proposition proved in Chap. Ill (more

generally indeed than we need here) the modulus of the sum of

two numbers is less than or equal to the sum of their moduli.

Thus

I <t> (V) + yjr (n) -a-b\^\<f> (n) -a\ + \yfr (n) -b\.

It follows that the desired condition will certainly be satisfied if

n can be so chosen that

\(f)(n)-a\ + \ylr(n)-b\ < 8 (2),

when n = n . But this is certainly the case. For since lim <f>(n) = a

we can, by the definition of a limit, find n
x so that

j <£ (n) — a\ <8'

when n = nu and this however small 8' may be. Nothing prevents

our taking 8' = %8, so that
| <f>

(n) — a
j

< £S when n S n
x . Similarly

we can find n2 so that
| yfr (n) — b\ < ^8 when n~n2 . Now take ??

to be the greater of the two numbers nu n 2 . Then
|

(n) — a\<^8
and \yfr(n) — b\ <^8 when n =n , and therefore (2) is satisfied and

the theorem is proved.

The argument may be concisely stated thus: since lim<f)(n) = a and

lim ^r(n)= b, we can choose n^, n 2 so that

\4>(n)-a\<%8 (n>»h), |^(»0-&|<i* (n>n2);

and then, if n is not less than either iii or n 2 ,

I <t> (
n)+^ («) - a - b

\ <\ $ (n) - a\ + \(f>
(n) - b \<8

;

and therefore lim {$ (n)+ y\r(n)) = a+ b.

64. Results subsidiary to Theorem I. The reader should

have no difficulty in verifying the following subsidiary results.

1. If <f>(n) tends to a limit, but yfr (n) tends to + <x> or to — oo

or oscillates finitely or infinitely, then <j> (n) + ^ (n) behaves like

-f O).

2. If <j> (n) -^ + oo
, and ty (>i) -^ + oo or oscillates finitely,

then
<f>

(n) + ty (n) -^ + oo .
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In this statement we may obviously change + oo into — oo

throughout.

3. If <f>
(n) -* <x> and ^p (?i) -*» — oo , then </> (n) + yfr (n) may

tend either to a limit or to + oo or to — oo or may oscillate either

finitely or infinitely.

These five possibilities are illustrated in order by (i) (f)(n) = 7i, ^(n) = —11,

(ii) <j>(n)= n2
, y^(7i)=-7i, (iii) (n)=n, ^(n)=-n2

,
(iv) tj)(n)=n+ (- 1)»

^ (n)= -
71, (v)

(f) (11) =n?+ (— l)n», >//• (?i)= - »8
. The reader should construct

additional examples of each case.

4. If </> (n) -*> + 00 and i|r (?i) oscillates infinitely, then

<£ (n) + -»/r (n) way tena* to + 00 or oscillate infinitely, but cannot

tend to a limit, or to — 00 , or oscillate finitely.

For yjr(n) = {$ (71) + yp- (»)} - <£ (»i) ; and, if $ («) + >//• («) behaved in any of the

three last ways, it would follow, from the previous results, that \^ (n) -*- — 00

,

which is not the ease. As examples of the two cases which are possible,

consider (i) cf>(7i)= 7i
2
, i//-(n) = (-l)"», (ii) (f>(n) = n, ^ (»)= (- \)

nn\ Here
again the signs of + oo and — 00 may be permuted throughout.

5. If <f>
(n) and ty (n) both oscillate finitely, then

<f)
(n) + yjr (n)

must tend to a limit or oscillate finitely.

As examples take

(i) 0(tO=(-1)», *(?0=(-l)»+1
,

(ii)*(n)=^(»)-(-l)».

6. If <f>
(n) oscillates finitely, and yjr (n) infinitely, then

<f>
(n) + yfr (11) oscillates infinitely.

For
<f>

(n) is in absolute value always less than a certain constant, say K.

On the other hand -\|/- (n), since it oscillates infinitely, must assume values

numerically greater than any assignable number (e.g. 10A, 100A', ...). Hence

<p (n) + >//• (n) must assume values numerically greater than any assignable

number (e.g. 9A, 99A", ...). Hence <£(?£) + ^(n) must either tend to +00 or

- oo or oscillate infinitely. But if it tended to + oo then

would also tend to +cc , in virtue of the preceding results. Thus
(f>

(7i)+ yjs (n)

cannot tend to +00, nor, for similar reasons, to —00: hence it oscillates

infinitely.

7. If both <j> (n) and yjr (n) oscillate infinitely, then </> (n) + i/r (n)

may tend to a limit, or to 4- 00 , or to — 00 , or oscillate either finitely

or infinitely.

Suppose, for instance, that
<fi

(u)= ( — l)n 7i, while -^(n) is in turn each of

the functions (-l)» + 1
?j, {l + (-l)» + 1

} n, - {l + (- l)n}n, (- l)" + 1
(?i+ l),

( — l)n 7i. We thus obtain examples of all five possibilities.
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The results 1—7 cover all the cases which are really distinct.

Before passing on to consider the product of two functions, we

may point out that the result of Theorem I may be immediately

extended to the sum of three or more functions which tend to

limits as n -* oo .

65. B. The behaviour of the product of two functions

whose behaviour is known. We can now prove a similar

set of theorems concerning the product of two functions. The

principal result is the following.

Theorem II. If lim (/> (n) = a and Km y}r (n) = b, then

Km cj> (n) yjr (n) = ab.

Let <£ (n) = a + fa (n), yjr (n) = b + ijr
1 (n),

so that lim fa (n) = and lim y\r
l
(n) = 0. Then

(f>(n)yfr (n) = ab + a^ (n) + bfa (n) + fa (n) -v^! («).

Hence the numerical value of the difference
<f>

(n) yjr (n) — ab is

certainly not greater than the sum of the numerical values of

a^x (n), bfa (ri), fa (n)^ (n). From this it follows that

lim
{ cf> (n) yjr (?i) — ab] = 0,

which proves the theorem.

The following is a strictly formal proof. We have

| (f)
(n) \}s (n) -ab

\
<

| aty x
(n)

\
+ \bfa(n)\ +

\ fa (?i)
1 1 fa (n) |.

Assuming that neither a nor b is zero, we may choose n so that

\fa(n)\<l8l\b\, \fa(n)\<iSI\a\,

when n £n . Then

|(/,(n)^(W)-a6l<iS +p + {i8 2/(|a||&|)},

which is certainly less than 8 if 8 <£ |
a

1

1 6 1. That is to say we can choose

h so that
| <b (n) ty (n) — ab

\
< 8 when » > n , and so the theorem follows. The

reader should supply a proof for the case in which at least one of a and b is

zero.

We need hardly point out that this theorem, like Theorem I,

may be immediately extended to the product of any number of

functions of n. There is also a series of subsidiary theorems

concerning products analogous to those stated in § 64 for sums.

We must distinguish now six different ways in which
<f>

(n) may
behave as n tends to co . It may (1) tend to a limit other than
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zero, (2) tend to zero, (3a) tend to + oo
, (36) tend to - co

,

(4) oscillate finitely, (5) oscillate infinitely. It is not necessary, as

a rule, to take account separately of (3a) and (36), as the results

for one case may be deduced from those for the other by a change
of sign.

To state these subsidiary theorems at length would occupy more space

than we can afford. We select the two which follow as examples, leaving the

verification of them to the reader. He will find it an instructive exercise to

formulate some of the remaining theorems himself.

(i) If <fi
(n) -»- + oo and \^ (n) oscillates finitely, then cp (n) ^ (??) must tend

to +oo or to -co or oscillate infinitely.

Examples of these three possibilities may be obtained by taking $ (») to

be n and ^ (n) to be one of the three functions 2 + ( - 1)", — 2 — ( - 1)» ( - l)n.

(ii) If <fr
(n) and yjr (n) oscillate finitely, then <£ (n) \|/- (n) must tend to a

limit {which may be zero) or oscillate finitely.

For examples, take (a) <\>(n) = y\r (»)=(- 1)", (b) cf> (»)= l+(-l)n
,

\^(h) = 1 -(-1)", and (c)
(f>

(n)= cos %nn, \|/- (?i) = sin Jhtt.

A particular case of Theorem II -which is important is that

in which yfr (n) is constant. The theorem then asserts simply

that lim kef) (n) = ka if lim
<f)

(n) = a. To this we may join the

subsidiary theorem that if <f>(n)-^ + cc then k(f) (n) -** + go or

k
<f>

(n) -^- — oc , according as k is positive or negative, unless k = 0,

when of course k<f) (n) = for all values of n and lim kcf> (n) = 0.

And if
(f>

(n) oscillates finitely or infinitely, then so does k<j> (n),

unless k = 0.

66. C. The behaviour of the difference or quotient of

two functions whose behaviour is known. There is, of

course, a similar set of theorems for the difference of two given

functions, which are obvious corollaries from what precedes. In

order to deal with the quotient

we begin with the following theorem.

Theorem III. If lim </> (n) = a, and a is not zero, then

1 1
lim rpr = -

.

9 (n) a

Let
(f>

(n) = a + ^ (n),

u. 9
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so that lira fa (n) = 0. Then

1 1

<f>
(n) a

fain)

a
1

1 a + fa (n)

and it is plain, since lim fa (n) = 0, that we can choose n so that

this is smaller than any assigned number 8 when n = n .

From Theorems II and III we can at once deduce the principal

theorem for quotients, viz.

Theorem IV. If lim <j> (n) = a and lim yjr (n) = b, and b is not

zero, then

lim iM a
i/r (n) b

The reader will again find it instructive to formulate, prove,

and illustrate by examples some of the ' subsidiary theorems

'

corresponding to Theorems III and IV.

67. Theorem V. IfR{j> (n), -»/r (n), % (n), ...} is any rational

function of $>(n), yjr (?i), %(n), ... , i.e. any function of the form

P{cf>(n), ir(n), X (n), ...J/Qft(n), ^(n), X (n), ...},

where P and Q denote 'polynomials in <j>(n), ty(n), %(n), ...: and if

lim $ (n) = a, lim \|r (n) = b, lim % (n) = c, ...

,

and Q(a, b, c, ...)=f ;

then lim R
{<f>

(n), ty (n), % (n), ...} = R (a, b, c, . ..).

For P is a sum of a finite number of terms of the type

where A is a constant and p, q, ... positive integers. This term,

by Theorem II (or rather by its obvious extension to the product

of any number of functions) tends to the limit Aapbq ..., and so P
tends to the limit P (a, b. c, ...), by the similar extension of

Theorem I. Similarly Q tends to Q (a, b, c, ...); and the result

then follows from Theorem IV.

68. The preceding general theorem may be applied to the

following very important particular problem : luhat is the behaviour

of the most general rational function of n, viz.

o/ _ a nv + a^iP-1 + . • • + ap* {n)
~b n«+b1

n«-i + ...+b
q

'

as n tends to oo * ?

* We naturally suppose that neither a nor b is zero.
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In order to apply the theorem we transform S (n) by writing
it in the form

The function in curly brackets is of the form R{4>(n)}, where

</> (w) = 1/n, and therefore tends, as n tends to oo
, to the limit

R(0)=*aQ /b . Now rc*-«-^0 if p < q ; n*-4=l and n*"-?— 1 if

p = gr
j and nP-Q-*- + go if p > 5. Hence, by Theorem II,

lim 8 (n) = (p <q),

lim £ (n) = Oo/6 (i>
= q),

S (n) -* + go (p> q, a /b positive),

S (n) -* — 00 (p> q, aQ/b negative).

Examples XXVI. 1. What is the behaviour of the functions

'?i-l\ 2
?i

2+ l . ,. H2+l
0£)'. (-nS)- =£• 1-*

as ?i -s- co

2. Which (if any) of the functions

l/(cos2 ^mr +n sin2 \nir), \j{n (cos2 \nn+n sin2
1 wtt)}

,

(h cos2 hnu + sin2 ^?itt)/{?i (cos2 %nir+n sm2 ^mr)}

tend to a limit as n -*- 00 ?

3. Denoting by aS
1

(n) the general rational function of n considered above,

show that in all cases

,im%ti> um *{.+,(WU
aS (n) o (»)

69. Functions of n which increase steadily with n. A
special but particularly important class of functions of n is formed

by those whose variation as n tends to 00 is always in the same

direction, that is to say those which always increase (or always

decrease) as n increases. Since —
<f>

(n) always increases if <£ (n)

always decreases, it is not necessary to consider the two kinds of

functions separately ; for theorems proved for one kind can at

once be extended to the other.

Definition. Thefunction
<f>

(n) will be said to increase steadily

with n if (j> (n + 1) = (f>
(n) for all values of n.

9—2
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It is to be observed that we do not exclude the case in which

$ (n) has the same value for several values of n ; all we exclude is

possible decrease. Thus the function

<f>(n) = 2n+(-iy\

whose values for n = 0, 1, 2, 3, 4, . . . are

1, 1,5,5,9, 9,...

is said to increase steadily with n, Our definition would indeed

include even functions which remain constant from some value of n

onwards; thus $(w)= l steadily increases according to our definition.

However, as these functions are extremely special ones, and as

there can be no doubt as to their behaviour as n tends to 00 , this

apparent incongruity in the definition is not a serious defect.

There is one exceedingly important theorem concerning

functions of this class.

Theorem, If </> (?i) steadily increases with n, then either

(i) </>(n) tends to a limit as n tends to 00, or (ii) <£ (n) -* + go .

That is to say, while there are in general five alternatives as to

the behaviour of a function, there are two only for this special

kind of function.

This theorem is a simple corollary of Dedekind's Theorem

(§ 17). We divide the real numbers £ into two classes L and R,

putting f in L or R according as <£ (n) = £ for some value of n

(and so of course for all greater values), or <j> (n) < £ for all

values of n.

The class L certainly exists ; the class R may or may not.

If it does not, then, given any number A, however large,
<f>

(n) > A
for all sufficiently large values of n, and so

(n) -* + go .

If on the other hand R exists, the classes L and R form a

section of the real numbers in the sense of § 17. Let a be the

number corresponding to the section, and let 8 be any positive

number. Then <j> (n) < a + 8 for all values of n, and so, since 8 is

arbitrary, </> (71) £ a. On the other hand $ (n) > a — 8 for some
value of n, and so for all sufficiently large values. Thus

a— 8<<j> (71) < a
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for all sufficiently large values of n; i.e.

It should be observed that in general <£ (n) < a for all values of n ; for if

(j> (n) is equal to a for any value of n it must be equal to a for all greater

values of n. Thus <£ (n) can never be equal to a except in the case in which
the values of

(f>
(n) are ultimately all the same. If this is so, a is the largest

member of L ; otherwise L has no largest member.

Cor. 1. If(f> (n) increases steadily with n, then it will tend to a

limit or to + cc according as it is or is not possible to find a number

K such that (j> (n) < Kfor all values of n.

We shall find this corollary exceedingly useful later on.

Cor. 2. If <£ (?i) increases steadily with n, and $ (n) < K for

all values ofn, then
<f>

(n) tends to a limit and this limit is less than

or equal to K.

It should be noticed that the limit may be equal to K: if e.g.

(f>
(n) = 3 — (1/w), then every value of

(f>
(n) is less than 3, but the

limit is equal to 3.

Cor. 3. If $ (n) increases steadily luith n, and tends to a limit,

then

4> (
n) = lim

<f>
(n)

for all values ofn.

The reader should write out for himself the corresponding

theorems and corollaries for the case in which </> (n) decreases as n

increases.

70. The great importance of these theorems lies in the fact

' that they give us (what we have so far been without) a means of

deciding, in a great many cases, whether a given function of n

does or does not tend to a limit as n-^cc , without requiring us to

be able to guess or otherwise infer beforehand what the limit is. If

we know what the limit, if there is one, must be, we can use the

test

| (f> O) -l\<8 (n^ n )

:

as for example in the case of
<f>

(n) = 1/n, where it is obvious that

the limit can only be zero. But suppose we have to determine

whether

*w-(1+ i
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tends to a limit. In this case it is not obvious what the limit, if

there is one, will be : and it is evident that the test above, which

involves I, cannot be used, at any rate directly, to decide whether

I exists or not.

Of course the test can sometimes be used indirectly, to prove by means of

a reductio ad absurdum that I cannot exist. If e.g. $ (»)=(- l)'v
, it is clear

that I would have to be equal to 1 and also equal to - 1, which is obviously

impossible.

71. Alternative proof of Weierstrass's Theorem of § 19. The results

of § 69 enable us to give an alternative proof of the important theorem

pi-oved in § 19.

If we divide PQ into two equal parts, one at least of them must contain

infinitely many points of S. We select the one which does, or, if both do, we

select the left-hand half ; and we denote the selected half by Pt Qx (Fig. 28).

If PiQi is the left-hand half, Px is the same point as P.

p
3 Q 3

Pi I T Qi

Q 2 Q

p
4 Q4

Fig. 28.

Similarly, if we divide P
t Q t

into two halves, one at least of them must

contain infinitely many points of S. "We select the half P
2 Q2

which does so,

or, if both do so, we select the left-hand half. Proceeding in this way we can

define a sequence of intervals

PQi PiQii P2Q21 PzQzi •••>

each of which is a half of its predecessor, and each of which contains infinitely

many points of S.

The points P, Pu P 2 , ... progress steadily from left to right, and so Pn

tends to a limiting position T. Similarly Qn tends to a limiting position T'.

But TT' is plainly less than Pn QH , whatever the value of n; and Pn Qn , being

equal to PQ/2n
, tends to zero. Hence T' coincides with T, and Pn and Qn

both tend to T.

Then T is a point of accumulation of S. For suppose that £ is its

coordinate, and consider any interval of the type (£-8, £+8). If n
is sufficiently large, Pn Qn will lie entirely inside this interval*. Hence
(£-£> £+8) contains infinitely many points of S.

72. The limit of x11 as n tends to 00 . Let us apply the

results of § 69 to the particularly important case in which

</> (n) = xn. If x = 1 then
<f>

(n) = 1, lim </> (n) = 1, and if x = G then

<f>(n) = 0, lim (f>(n)=0, so that these special cases need not detain us.

* This will certainly be the case as soon as PQj2n < 8.
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First, suppose x positive. Then, since
<f>

(n + 1) = x<$> (n), </> (n)

increases with n if x > 1, decreases as n increases if x < 1.

If x>l, then xn must tend either to a limit (which must
obviously be greater than 1) or to + oo . Suppose it tends to a

limit I. Then lim <£ (n + 1) = lim cf> (71) = I, by Exs. xxv. 7 ; but

lim
<f>

(n + 1) = lim x<j> (n) = x lim
<f>

(n) = xl,

and therefore l — xl: and as x and I are both greater than 1, this

is impossible. Hence

xn -*+ CO (x > 1 ).

Example. The reader may give an alternative proof, showing by the

binomial theorem that xn>l + n8 if 8 is positive and x= 1 + 8, and so that

xn -»- + oo

.

On the other hand xn is a decreasing function if x < 1, and

must therefore tend to a limit or to — 00 . Since xn is positive

the second alternative may be ignored. Thus lim xn = I, say, and

as above I = xl, so that I must be zero. Hence

lima?" = (0<«<1).

Example. Prove as in the preceding example that (l/x)n tends to +00 if

0< 1r<l, and deduce that x11 tends to 0.

We have finally to consider the case in which x is negative.

If — 1 < x < and x = — y, so that < y < 1, then it follows from

what precedes that lim y
n = and therefore lim x11 = 0. If x = — 1

it is obvious that xn oscillates, taking the values — 1, 1 alterna-

tively. Finally if x < — 1, and x = — y, so that y > 1, then y
n tends

to + 00 , and therefore xn takes values, both positive and negative,

numerically greater than any assigned number. Hence xn oscillates

infinitely. To sum up

:

<£ (n) = xn -*» + 00 0>1),
lim (n) = 1 (x = 1),

lim<£(¥) = (—1<x<1),

<f)
(n) oscillates finitely (x = — l),

<f>
(n) oscillates infinitely (x < — 1).

Examples XXVII*. 1. If (n) is positive and (f>(n+ l)>K(f)(n), where

A">1, for all values of n, then («)-*- 4- 30 .

* These examples are particularly important and several of them will be made

use of later in the text. They should therefore be studied very carefully.
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[For <f>(n)>K<t>(n-l)>K*<j>(n-2) ... >A»-i0(l),

from which the conclusion follows at once, as A"n -»-oo.]

2. The same result is true if the conditions above stated are satisfied

only when n > n .

3. If 4>{n) is positive and <f)(n + l)<K(f>(ri), where 0<A"<1, then

lim
(f>

(n)= 0. This result also is true if the conditions are satisfied only when

n Sn .

4. If |<£(« + l)|<A~|0(n)| when n^.n , and 0<A"<1, then lim <£(«) = 0.

5. If 0(w) is positive and lim {<p(n+ l)}/{(f>(n)}= l>l, then 0(?i)-»-+oo.

[For we can determine n so that {<£ (n + 1)} I {(f)
(n)}>K>l when n^n^ : wc

may, e.g., take A' half-way between 1 and I. Now apply Ex. 1.]

6. If lim {0 (w+ l)}/{0 (w)} = ?, where I is numerically less than unity,

then Yim(f)(n) — 0. [This follows from Ex. 4 as Ex. 5 follows from Ex. 1.]

7. Determine the behaviour, as ?i-»-co, of (f>(n)=nrxn, where r is any

positive integer.

[Ifx=0 then (f)(n)=0 for all values of n, and («)-»• 0. In all other cases

(f)(n+ l) _ fn + V
(f)

(n) \ n

First suppose x positive. Then 0(?i)-*+ °° if x>\ (Ex. 5) and (f>(n)-*-0 if

x<l (Ex. G). If x—1, then (»)=M.r-»-+ oo . Next suppose x negative.

Then
| (f>(n) \=nr

\
x |" tends to +oo if |#||£l and to if |.r|<l. Hence

(f>
(n) oscillates infinitely if xS,- 1 and (»)-»0 if - l<.v<0.]

8. Discuss n~ rxn in the same way. [The results are the same, except

that (f>(n)-*-0 when x= l or — 1.]

9. Draw up a table to show how nkxn behaves as ?i-*-oo, for all real

values of x, and all positive and negative integral values of k.

[The reader will observe that the value of k is immaterial except in the

special cases when x= l or — 1. Since \\m {(n+l)/n}k=l, whether k be

positive or negative, the limit of the ratio (f>(n + l)/(f)(n) depends only on

x, and the behaviour of (») is in general dominated by the factor x'\ The

factor nk only asserts itself when x is numerically equal to 1.]

10. Prove that if x is positive then ?]x-*-\ as n^*- so . [Suppose, e.g., x>\.

Then at, -Jx, ^'x, ... is a decreasing sequence, and ^/.r>l for all values of n.

Thus Hjx-*-l, where 1^.1. But if l>\ we can find values of n, as large as

we please, for which f/x>l or x>ln
; and, since £"-*- + oo as ?i-*oo, this

is impossible.]

11. Z/n-*\. [For B +
V(« + l)<\/» if (»+ l)B <flB + 1 or {1+(1/«)}

W<«,
which is certainly satisfied if «23 (see § 73 for a proof). Thus yfn decreases

as n increases from 3 onwards, and, as it is always greater than unity, it tends

to a limit which is greater than or equal to unity. But if tfn-*-l, where l>l,

then n>ln, which is certainly untrue for sufficiently large values of n,

since ?"/«-*+ oo with n (Exs. 7, 8).]
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12. Z/(n !)-*-+ co . [However large A may be, n ! >An if n is large enough.

For if un= An/n ! then un + i/un=AJ(n+l), which tends to zero as » -»<», so

that un does the same (Ex. 6).]

13. Show that if —1<^7<1 then

m (m — 1) ... (m —n+1)
n !

tends to zero as n -* co

.

[If m is a positive integer, «n=0 for n > m. Otherwise

unless x=0.]

73. The limit of (I +-J . A more difficult problem which

can be solved by the help of § 69 arises when <f>(n) = {1 4- l/w]n .

It follows from the binomial theorem* that

, IV1
., 1 n(n-l)l n(n-l)...(n-n + l) 11+- =l+n.-+ \ a

' - + ... +
nj n 1 . 2 n2 1.2... n n 1

The (p + l)th term in this expression, viz.

1 ^i_lVi_?V..A_£=i
1 . 2 ...£> \ nj \ n;

is positive and an increasing function of n, and the number

of terms also increases with n. Hence ( 1 + - ) increases with n,

and so tends to a limit or to + oo , as n -* x

.

But

1 + - <l + l + =—a + ^ ^ o +••• +
nj 1.2 1.2.3 1.2.3...»

Thus ( 1 + - ) cannot tend to + oo , and so

lim
( 1 + - ) = e,

where e is a number such that 2 < e ^ 3.

* The binomial theorem for a positive integral exponent, which is what is used

here, is a theorem of elementary algebra. The other cases of the theorem belong

to the theory of infinite series, and will be considered later.
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74. Some algebraical lemmas. It will be convenient to prove at

this stage a number of elementary inequalities which will be useful to us

later on.

(i) It is evident that if a>l and ;• is a positive integer then

rar>ar -'l + ar --+... + l.

Multiplying both sides of this inequality by o— 1, we obtain

rar (a-l)>ar -l ;

and adding r (ar - 1) to each side, and dividing by r (?'+l), we obtain

~7+r>— <
a>] ) (1) -

Similarly we can prove that

L-B—< l—E (0</3<l) (2).

It follows that if r and s are positive integers, and r>s, then

ar_l a._l 1-gr
1-ffl~^ > ^~> ~F~ < ~7~ (u} -

Hei-e 0</3<l<a. In particular, when 5=1, we have

a r -l>r(a-l), l-^<r(l-$) (4).

(ii) The inequalities (3) and (4) have been proved on the supposition

that r and s are positive integers. But it is easy to see that they hold under

the more general hypothesis that r and s are any positive rational numbers.

Let us consider, for example, the first of the inequalities (3). Let r=a/b,

s=c/d, where a, b, c, d are positive integers; so that ad>bc. If we put

a=yhd
, the inequality takes the form

(y'"l -l)lad>(y !«-l)lbc;

and this we have proved already. The same argument applies to the re-

maining inequalities ; and it can evidently be proved in a similar manner that

n8 -l<s(a-l), l-j3«>*(l-j8) (5),

if s is a positive rational number less than 1.

(iii) In what follows it is to be understood that all the letters denote

positive numbers, that r and s are rational, and that a and r are greater

than 1, /3 and s less than 1. Writing 1//3 for a, and 1/a for /3, in (4), we
obtain

a'-Kra'-^a-l), 1 -^rp- 1
(1 -/9) (6).

Similarly, from (5), we deduce

a»-l>sa*- l (a-l), 1 - ^S/S8 " 1 (1 -/3) (7).

Combining (4) and (6), we see that

rar
- 1 (fl-l)>dr-l>r(a-l) (8).
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Writing xjy for a, we obtain

rxr
~ a

(.v -y)>xr-yr>ryr ~ 1 (x - y) (9)

if x>y>0. And the same argument, applied to (5) and (7), leads to

sx*- 1 {x-y)<xs -y»<sy i
~ 1 (x-y) (10).

Examples XXVIII 1. Verify (9) for r-=2, 3, and (10) for s=|, A.

2. Show that (9) and (10) are also true if y>x>0.

3. Show that (9) also holds for r<0. [See Chrystal's Algebra, vol. ii,

pp. 43—45.]

4. If $(ri)-~l, where l>0, as n-*>oo, then cf)
k-*lk, k being any rational

number.

[We may suppose that k > 0, in virtue of Theorem III of § 66 ; and that

%l<(f>< 21, as is certainly the case from a certain value of n onwards. If

k> 1

£0* ~
1
((f)-l)>cf)

k - l
k >Hk ~ l

(<f>
-

1)

or H*" 1 (l-<f))>lk -(j)k >k(f)
k -i(l-(j)),

according as $>l or <f)<l. It follows that the ratio of
\<f>

k— l
k

\
and \<j> — 1\

lies between k {\l)k
~ l and k (2l)k

- 1
. The proof is similar when <k <1. The

result is still true when £=0, if k > 0.]

5. Extend the results of Exs. xxvu. 7, 8, 9 to the case in which r or k

are any rational numbers.

75. The limit of n (#x -1). If in the first inequality (3) of § 74 we
put r= l/(n — 1), 8= 1 /n, we see that

(»-l)(n-#a-l)>»(#a-l)

when a>l. Thus if <£ (n) = n (tya — l) then («) decreases steadily as ?i in-

creases. Also (j> (n) is always positive. Hence cf> (n) tends to a limit I as

n-*-aa , and l= 0.

Again if, in the first inequality (7) of § 74, we put s= 1 ju, we obtain

7i(Va-l)>ya(l-l)>l~.

Thus I > 1 - ( 1 /a)> 0. Hence, if a> 1 , we have

lim n(Z/a-l)=f(a),
M-*oo

where /(a)>0.

Next suppose /3<l,andlet/3= l/a; thenn (%/$-!) = -n(^a-l)/^/a. Now
M(v^a-l)-*-/(a), and (Exs. xxvu. 10)

Hence, if /3 = l/a<l, we have

w«//9-l)— /(a).

Finally, if #=1, then n (Z/x-l) = for all values of n.
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Thus we arrive at the result : the limit

\\m.n{Zjx— 1)

defines a function of xfor all positive values of x. This function f (x) possesses

the properties

f(l/x)=-f(x), /(1)=0,

and is positive or negative according as x>\ or x<\. Later on we shall he

able to identify this function with the Napierian logarithm of x

Example. Prove that/(xy)=f{x) +f{y). [Use the equations

f(xy) = \im n ($xy - l) = lim {n (#*-l) ^+71(^ — 1)}.]

76. Infinite Series. Suppose that u (») is any function of

n denned for all values of n, If we add up the values of u (v)

for v = l, 2, ... n, we obtain another function of n, viz.

s (n) = u (1) + u (2) + ... + u (n),

also denned for all values of n. It is generally most convenient

to alter our notation slightly and write this equation in the form

sn = u
1 + u2 + ...+u n ,

n

or, more shortly, sn— 2 w„.
v = l

If now we suppose that sn tends to a limit s when n tends

to oo , we have
n

lim 2 M» = s.

n-*-oo j/ = l

This equation is usually written in one of the forms'

00

2 «„ = s, it! + u2 + u 3 + . . . = s,

the dots denoting the indefinite continuance of the series of m's.

The meaning of the above equations, expressed roughly, is

that by adding more and more of the m's together we get nearer

and nearer to the limit s. More precisely, if any small positive

number 8 is chosen, we can choose n (8) so that the sum of the first

n (S) terms, or any of greater number of terms, lies between s — S

and s + 8; or in symbols

s — B<sn <s + 8,

if n = n (8). In these circumstances we shall call the series •

Mi + u2 + ...

a convergent infinite series, and we shall call s the sum of the

series, or the sum of all the terms of the series.
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Thus to say that the series Wj + u2+ ... converges and has the

sum s, or converges to the sum s or simply converges to s, is merely

another way of stating that the sum sn = Wj + u 2 + ... + un of the

first n terms tends to the limit s as n -» oo , and the consideration

of such infinite series introduces no new ideas beyond those with

which the early part of this chapter should already have made
the reader familiar. In fact the sum sn is merely a function cf> (n),

such as we have been considering, expressed in a particular form.

Any function <p (n) may be expressed in this form, by writing

4> (») = (1) + {</> (2) -0 (1)} + ... + {0 (n) -<j> (n- 1)} ;

and it is sometimes convenient to say that <f>(n) converges (instead

of ' tends ') to the limit I, say, as n -*- oo .

If sn -* + oo or sn -* — oo , we shall say that the series u1 + u2 + ...

is divergent or diverges to + oo , or — oo , as the case may be.

These phrases too may be applied to any function </> (n) : thus if

(«) -* + oo we may say that </> (n) diverges to + go . If sn does

not tend to a limit or to + oo or to — oo , then it oscillates finitely or

infinitely : in this case Ave say that the series Wj +u2 + ... oscillates

finitely or infinitely*.

77. General theorems concerning infinite series. When
we are dealing with infinite series we shall constantly have

occasion to use the following general theorems.

(1) If u 1 + ti,, + ... is convergent, and has the sum s, then

a + u 1 -f- u 2 + ... is convergent and has the sum a + s. Similarly

a + b + c + . . . + k + ^l
1 + u 2 + . . . is convergent and has the sum

a+ b + c + ... + k+ s.

(2) If MJ + W2+... is convergent and has the sum s, then

w»i+i + u-fit+a + • • • is convergent and has the sum

(3) If any series considered in (1) or (2) diverges or oscillates,

then so do the others.

(4) If Mj + Ma +... is convergent and has the sum s, then

leu,! + ku2 + ... is convergent and has the sum Jcs.

* The reader should be warned that the words ' divergent ' and * oscillatory

'

are used differently by different writers. The use of the words here agrees with

that of Bromwich's Infinite Series. In Hobson's Theory of Functions of a Real

Variable a series is said to oscillate only if it oscillates finitely, series which

oscillate infinitely being classed as ' divergent'. Many foreign writers use 'divergent

'

as meaning merely ' not convergent '.
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(5) If the first series considered in (4) diverges or oscillates,

then so does the second, unless k = 0.

(6) If Wj + u2 + ... and vx + v2 + ... are both convergent, then

the series (z<j + fli) + (u2 + v2) + • . . is convergent and its sum is the

sum of the first two series.

All these theorems are almost obvious and may be proved at

once from the definitions or by applying the results of §§ 63—66 to

the sum sn = u^ + u2 + ... + un . Those which follow are of a some-

what different character.

(7) If ux + u2 + . . . is convergent, then lim un = 0.

For un = sn — 5n_!, and sn and sn_x
have the same limit s.

Hence lim un = s — s = 0.

The reader may be tempted to think that the converse of the theorem is

true and that if lim un=0 then the series 2un must be convergent. That this

is not the case is easily seen from an example. Let the series be

1 +*+*+*+••
so that un =\jn. The sum of the first four terms is

i+l+|+i>i+Hj =1+Hi
The sum of the next four terms is |+J+ ^+|>f = |; the sum of the next

eight terms is greater than fy= | , and so on. The sum of the first

4+ 4 + 8 + 16-f ...+2" = 2n + 1

terms is greater than

2+J+|+J+...+|=i(B+3)1

and this increases beyond all limit with n : hence the series diverges to + co

.

(8) If u
x
+u 2 + u 3 + ... is convergent, then so is any series

formed by grouping the terms in brackets in any way to form new

single terms, and the sums of the two series are the same.

The reader will be able to supply the proof of this theorem. Here again

the converse is not true. Thus 1-1 + 1-1 + .. . oscillates, while

(1-1)+(1-1)+...
or + + + ... converges to 0.

(9) If every term un is positive (or zero), then the series ~Xun

must either converge or diverge to + oo . If it converges, its sum
must be positive (unless all the terms are zero, when of course its

sum is zero).

For sn is an increasing function of n, according to the definition

of § 69, and we can apply the results of that section to sn .
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(10) If every term un is 'positive (or zero), then the necessary

and sufficient condition that the series Xun shoidd be convergent is

that it should be possible to find a number K such that the sum of
any number of terms is less than K; and, ifK can be so found, then

the sum of the series is not greater than K.

This also follows at once from § 69. It is perhaps hardly

necessary to point out that the theorem is not true if the condition

that every un is positive is not fulfilled. For example

1-1+1-1+ ...

obviously oscillates, sn being alternately equal to 1 and to 0.

(11) If «! + u.2 + . . ., v
l + v2 + . . . are two series of positive (or

zero) terms, and the second series is convergent, and if un ^ Kvn ,

where K is a constant, for all values of n, then the first series is also

convergent, and its sum is less than or equal to that of the second.

For if vx + vz+ . . . = t then v1 -\-v2 + ...+vn £t for all values of

n, and so 2i
1 + u.z + . . . + un ^ Kt ; which proves the theorem.

Conversely, if %un is divergent, and vn = Ku n , then %vn is

divergent.

78. The infinite geometrical series. We shall now con-

sider the ' geometrical ' series, whose general term is un = rn~\ In

this case

sn = 1 + r + r2 + . . . + rn
~ l = (1 - rn)/(l - r),

except in the special case in which r — 1, when

sn = 1 + 1 + ... +l=n.

In the last case sn -* + oo . In the general case sn will tend to a

limit if and only if rn does so. Referring to the results of § 72

we see that the series 1 + r + r2 + . . . is convergent and has the sum

1/(1 — r) if and only if — 1 < r < 1.

If r = 1, then sn = n, and so sn -^ + oo ; i.e. the series diverges to

+ oo. If r = — 1, then sn = 1 or sn = according as n is odd or

even: i.e. sn oscillates finitely. If r < — 1, then sn oscillates infinitely.

Thus, to sum up, ilte series 1 + r + r2 + . . . diverges to+ccifr^l,
converges to 1/(1 — r) if — 1 < r < 1, oscillates finitely if r = — 1,

and oscillates infinitely if r< — 1.

Examples XXIX. 1. Recurring decimals. The commonest example

of an infinite geometric series is given by an ordinary recurring decimal.
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Consider, for example, the decimal '21713 This stands, according to the

ordinary rules of arithmetic, for

2 1 7 J_ _3_ J^ 3_ 217 13 //, 1\ 2687

i/C
1-^)-

10
T

108 103 104 105 ^ 106 ^107 ' ' 1000 ' 105
/ V lO2

/ 12375'

The reader should consider where and how any of the general theorems of

§ 77 have been used in this reduction.

2. Show that in general

Cl\ <X2 . . . &m (X\... (ln — Of j Ct
2 • • • Ctrl

•a1 a„...am a1 a2 ...au=
yy\..y 0...0

'

the denominator containing % 9's and m O's.

3. Show that a pure recurring decimal is always equal to a proper

fraction whose denominator does not contain 2 or 5 as a factor.

4. A decimal with m non-recurring and n recurring decimal figures is

equal to a proper fraction whose denominator is divisible by 2m or 5m but by

no higher power of either.

5. The converses of Exs. 3, 4 are also true. Let r—p/g, and suppose first

that g is prime to 10. If we divide all powers of 10 by g we can obtain at most

g different remainders. It is therefore possible to find two numbers n
1
and

n2 , where n2 >n1 , such that 10
n

' and 10
,i2

give the same remainder. Hence

10"' - 10"2= 10"2 (10" 1- "2 - 1) is divisible by g, and so 10n- 1, where w,=n1-%>

is divisible by g. Hence r may be expressed in the form Pj(lOn— 1), or in the

form
P_ J^_
10"

+
lO2™

+ ""'

i.e. as a pure recurring decimal with n figures. If on the other hand g = 2 a 5^ Q,

where Q is prime to 10, and m is the greater of a and /3, then 10m r has a de-

nominator prime to 10, and is therefore expressible as the sum of an integer

and a pure recurring decimal. But this is not true of lO'V, for any value of

fjL less than m ; hence the decimal for r has exactly m non-recurring figures.

6. To the results of Exs. 2—5 we must add that of Ex. i. 3. Finally, if

we observe that

10^102 ^103
^""

'

we see that every terminating decimal can also be expressed as a mixed

recurring decimal whose recurring part is composed entirely of 9's. For

example, -217 = "2169. Thus every proper fraction can be expressed as a

recurring decimal, and conversely.

7. Decimals in general. The expression of irrational numbers as

non-recurring decimals. Any decimal, whether recurring or not, corresponds

to a definite number between and 1. For the decimal •a1 a-2 a2 ai ... stands

for the series

«i_ , <H_ , «s ,

l6
i
"l0

2i
"l03

*
1"• , • ,
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Since all the digits ar are positive, the sum sn of the first n terms of this

series increases with n, and it is certainly not greater than -9 or 1. Hence
sn tends to a limit between and 1.

Moreover no two decimals can correspond to the same number (except in

the special case noticed in Ex. 6). For suppose that a 1 a.2 a 3 ..., -b^b.jb^... are

two decimals which agree as far as the figures ar _i, b r _ 1 , while a r >br .

Then a r >br+ l>br br + ib r + 2 ... (unless 6 r + 1 , 6r+2 , ... are all 9's), and so

a
1
a2 ...a ra r + 1 ... > -bib2 ... b r bri. x ...

.

It follows that the expression of a rational fraction as a recurring decimal

(Exs. 2—6) is unique. It also follows that every decimal which does not

recur represents some irrational number between and 1. Conversely, any

such number can be expressed as such a decimal. For it must lie in one of

the intervals

0, 1/10; 1/10, 2/10; ... ; 9/10, 1.

If it lies between r/10 and (r+ 1)/10, then the first figure is r. By subdividing

this interval into 10 parts we can determine the second figure; and so on.

But (Exs. 3, 4) the decimal cannot recur. Thus, for example, the decimal

1-414..., obtained by the ordinary process for the extraction of J2, cannot

recur.

8. The decimals -1010010001000010... and -2020020002000020..., in

which the number of zeros between two l's or 2's increases by one at each

stage, represent irrational numbers.

9. The decimal -11101010001010..., in which the nth figure is 1 if n is

prime, and zero otherwise, represents an irrational number. [Since the

number of primes is infinite the decimal does not terminate. Nor can it

recur : for if it did we could determine m and p so that m, m +p, m + 2p,

m+ 3p, ... are all prime numbers ; and this is absurd, since the series includes

m + mp.]*

Examples XXX. 1. The series rm+rm+1+ ... is convergent if -1 <r< 1,

and its sum is 1/(1 -r)-l -r- ... -r"'- 1
(§ 77, (2)).

2. The series rm+ rm + 1 + ... is convergent if - 1< r < 1, and its sum is

r'
n/(l - r) (§ 77, (4)). Verify that the results of Exs. 1 and 2 are in agreement.

3. Prove that the series l + 2r+2;-2 + ... is convergent, and that its sum
is (l-H-)/(l-r), (a) by writing it in the form - l + 2(l+r+ ?-2+ ...), (/3) by

writing it in the form 1 +2 (r + r2+ ...), (y) by adding the two series

l+r+ r2+ ..., r+r2+ .... In each case mention which of the theorems of

§ 77 are used in your proof.

* All the results of Exs. xxix may be extended, with suitable modifications, to

decimals in any scale of notation. For a fuller discussion see Bromwich, Infinite

Series, Appendix I.

H. 10
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4. Prove that the 'arithmetic' series

a + (a+ b) + (a + 2b)+...

is always divergent, unless both a and b are zero. Show that, if b is not

zero, the series diverges to +00 or to — 00 according to the sign of &, while if

6 = it diverges to +00 or — 00 according to the sign of a.

5. What is the sum of the series

(l-r)+ (r-r")+ (f
a-r8)+„*

when the series is convergent ? [The series converges only if -l<r:gl. Its

sum is 1, except when ?•= ], when its sum is 0.]

r2 ,.2

6. Sum the series r2 +
9 + ,.

,
...„ + .... [The series is always con-

1+H (l + r-y L

vergent. Its sum is 1 +r2
, except when r=0, when its sum is 0.]

7. If we assume that 1 + r+r2+ . .. is convergent then we can prove that its

sum is 1/(1 — r) by means of § 77, (1) and (4). For if l+r+ r2+ ... =s then

s= l+r (l + r2+ ...) = l+rs.

v v
8. Sum the series r+ — h —-—r;,+ ...l+r (l+r) 2

when it is convergent. [The series is convergent if — l<l/(l+r)<l, i.e. if

r< - 2 or if r>0, and its sum is 1 +r. It is also convergent when r=0, when

its sum is 0.]

9. Answer the same question for the series

l+r ' (l+r)2 '"' l-r + (l-r)«»'-i— + fnr^2--> J,+ TZ_T. + n—^+-.

i-r+7-Hrr^ l-r\l-r)

10. Consider the convergence of the series

(l+r) + (r2 + ?-?
) + ..., (l+r+r*)+(r3+f*+r6

) + ...,

l-2r+r2+ r3 -2r4 +?-5 + ..., (1 -2r+ r2
) + (r3 -2ri + r5 ) + ...

,

and find their sums when they are convergent.

11. If 0^«, (
<1 then the series a +°V+ «2 ?

*2+ ••• is convergent for

0£r<l, and its sum is not greater than 1/(1 -r).

12. If in addition the series ao + ai + a 2+ ... is convergent, then the series

a + a1r+a2 r
2+ ... is convergent for O^r^l, and its sum is not greater than

the lesser of a + «i + a2+ ... and 1/(1— r).

13. The series 1+
I
+
T~2

+
1 2 3

+ '"

is convergent. [For 1/(1 . 2...?i) < 1/2"" 1
.]
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14. The series

1+
T72 + 1.2.3.4+ -'

I
+ r70 + 1.2.3.4."5 + -

are convergent.

15. The general harmonic series

a a+6 a+26 -
"'

where a and b are positive, diverges to + oo

.

[For «„=l/(a+n6)>l/{«(a + 6)}. Now compare with 1 +£+£+....]

16. Show that the series

is convergent if and only if un tends to a limit as «->•<».

17. If Ui + u2+ ii3 + ... is divergent then so is any series formed by
grouping the terms in brackets in any way to form new single terms.

18. Any series, formed by taking a selection of the terms of a convergent

series of positive terms, is itself convergent.

79. The representation of functions of a continuous

real variable by means of limits. In the preceding sections

we have frequently been concerned with limits such as

lim
<f>n (x),

and series such as

ax (x) + u2 (%) + ... = lim {ih (x) + u2 (x) + ... + w„ (so)},

in which the function of n whose limit we are seeking involves,

besides n, another variable x. In such cases the limit is of course

a function of x. Thus in § 75 we encountered the function

fix) = lim n (\/x — 1):

and the sum of the geometrical series 1 + x + x- + . . . is a function

of x, viz. the function which is equal to 1/(1 — x) if — 1 < x < 1 and

is undefined for all other values of x.

Many of the apparently ' arbitrary ' or ' unnatural ' functions

considered in Ch. II are capable of a simple representation of this

kind, as will appear from the following examples.

10—2
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Examples XXXI. 1. <])n (x)=x. Here n does not appear at all in the

expression of $„ (x), and $ (#)=lim $n (x)=x for all values of x.

2.
(f>n (x) = xjn. Here

<f>
(x)= lim $n (a?) = for all values of x.

3. $n (x)=nx. If x>0, <pn (x)-^+ <x> ; if ,r<0,
(f>n (x)-*--cc : only when

.(, = has
(f)n (x) a limit (viz. 0) as »-*-oo. Thus <£(a) = when #=0 and is

not defined for any other value of x.

4. cf)n (x) = lj?ix, nx/{nx+ l).

5. <pn (x) = xn . Here #(.r) = 0, (-K.r<l) ; cj>(x)= l, (x=l); and $ (#)

is not defined for any other value of x.

6. <j)n (z) = xn (l-x). Here <£(**) differs from the <j>(x) of Ex. 5 in that

it has the value when x—1.

7. 4>n (#) = #"/*&• Here
<fi

(x) differs from the
(f> (#) of Ex. 6 in that it has

the value when x= — 1 as well as when x=l.

8.
<f)n (x) = «•/(*+ 1 ). [0 (a?) = 0, ( -Kx<l) ;

<f>
(a?)= £, (a?= 1) ; $ (x) = 1

,

(x< — 1 or a?>l) ; and $(.£) is not defined when x= — 1.]

9. 0, (#)=*"/(*»- 1), 1/(^+1), 1/(^-1), l/(^n+ x- n
), lj(x"-x-»).

10.
ft (#)= (#"-].)/(#»+1), (H.r»-l)/(?u-n+ l), (#»-»)/(#»+»). [In the

first case $ (#)= 1 when |#|>1, $ (#)= - 1 when \x\ <1, <j)(x)=0 when .r=l

and (#) is not defined when a= — 1. The second and third functions differ

from the first in that they are defined both when x=l and when x— —1 : the

second has the value 1 and the third the value - 1 for both these values of x.~]

11. Construct an example in which cj)(x)= l, (|#|>1); <£(o;)=-l,

(|#|<1); and 0(.^) = O, (#=1 and x= — 1).

12. <j)n {x) = x {(x2n- l)l(x2n+ 1)}
2
, nj(xn + x- n+ n).

13. n (x) = {*"/(*) + g (*)}/(*" + 1). [Here (x) =/ (x), (| x \
> 1)

;

<$>(x)=g(x), (|#|<1); <p (
x) — %{/(%)+9

(

x)}> (*=1) > and $(#) is undefined

when x= — 1.]

14. n (A-) = (2/7r) arc tan (?«?). [0(a?)= l, (#>0); 0(.r) = O, (a?=0);

(f)(x)= — 1, (a'<0). This function is important in the Theory of Numbers,

and is usually denoted by s^?i x.~\

15. n (#) = sin nxn. [(f>(x) = Q when # is an integer; and (f>(x) is

otherwise undefined (Ex. xxiv. 7).]

16. If $„ (#) = sin («! ,T7r) then cf)(x) = for all rational values of x (Ex.

xxiv. 14). [The consideration of irrational values presents greater difficulties.]

17. 4>n (x)= (cos2 xn)n. [(f)(x) = except when x is integral, when

0(.r) = l.]

18. If i\
r > 1752 then the number of days in the year iV a.d. is

lim {365 + (cos2
J^tt)" - (cos2

TfoiV»r)» + (cos2
jfoxVir)"}.
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80. The bounds of a bounded aggregate. Let S be any system or

aggregate of real numbers s. If there is a number K such that s< K for

every s of S, we say that S is bounded above. If there is a number k such that

s > h for every s, we say that S is bounded below. If S is both bounded above

and bounded below, we say simply that S is bounded.

Suppose first that S is bounded above (but not necessarily below). There

will be an infinity of numbers which possess the property possessed by A'
;

any number greater than A, for example, possesses it. We shall prove that

among these numbers there is a least*, which we shall call M. This number J/

is not exceeded by any member of S, but every number less than M is exceeded

by at least one member of >S.

We divide the real numbers | into two classes L and R, putting £ into L or

R according as it is or is not exceeded by members of S. Then every £ belongs

to one and one only of the classes L and R. Each class exists ; for any

number less than any member of S belongs to L, while K belongs to R.

Finally, any member of L is less than some member of S, and therefore less

than any member of R. Thus the three conditions of Dedekind's Theorem

(§ 17) are satisfied, and there is a number M dividing the classes.

The number M is the number whose existence we had to prove. In the

first place, M cannot be exceeded by any member of S. For if there were such

a member s of S, we could write s= M+rj, where rj is positive. The number
M-\-\rj -would then belong to L, because it is less than s, and to R, because it is

greater than M ; and this is impossible. On the other hand, any number less

than M belongs to Z, and is therefore exceeded by at least one member of S.

Thus 31 has all the properties required.

This number M we call the upper bound of »S", and we may enunciate the

following theorem. Any aggregate S which is bounded above has an upper

bound M. No member of S exceeds M; but any number less than M is exceeded

by at least one member of S.

In exactly the same way we can prove the corresponding theorem for an

aggregate bounded below (but not necessarily above). Any aggregate S which

is bounded below has a lower bound m. No member of S is less than m; but

there is at least one member of S \ohich is less than any number greater than m.

It will be observed that, when S is bounded above, M< A', and when S is

bounded below, m > k. When S is bounded, k i m g M < K.

81. The bounds of a bounded function. Suppose that (n) is a func-

tion of the positive integral variable n. The aggregate of all the values (n)

defines a set S, to which we may apply all the arguments of § 80. If S is

bounded above, or bounded below, or bounded, we say that $ (n) is bounded

* An infinite aggregate of numbers does not necessarily possess a least member.

The set consisting of the numbers

11 1

*' >' f
for example, has no least member.
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above, or bounded below, or bounded. If $ (») is bounded above, that is to

say if there is a number K such that <£ (n) < K for all values of n, then there

is a number M such that

(i)
<f>

(n) 5|Mfor all values of n
;

(ii) if 8 is any positive member then § (n) > M— 8 for at least one value of n.

This number M we call the upper bound of $ (n). Similarly, if
(f>

(n) is

bounded below, that is to say if there is a number k such that (f>(n) ^k for all

values of n, then there is a number m such that

(i) <p (n) ^ m for all values of n ;

(ii) if 8 is any positive number then $ (n) < m + 8 for at least one value of n.

This number m we call the lower bound of cf> («).

If K exists, M^K ; if k exists, m zik; and if both k and K exist then

k<m<M<K.

82. The limits of indetermination of a bounded function. Suppose

that <p (n) is a bounded function, and M and m its upper and lower bounds.

Let us take any real number £, and consider now the relations of inequality

which may hold between £ and the values assumed by <£ (») for large values

of n. There are three mutually exclusive possibilities :

(1) $ ^ (f)
(n) for all sufficiently large values of n

;

(2) $ ^4> (n) for all sufficiently large values of n
;

(3) £ < <$> (n) for an infinity of values of n, and also £> (n) for an

infinity of values of a.

In case (1) we shall say that £ is a superior number, in case (2) that it is

an inferior number, and in case (3) that it is an intermediate number. It is

plain that no superior number can be less than m, and no inferior number

greater than M.

Let us consider the aggregate of all superior numbers. It is bounded

below, since none of its members are less than rn, and has therefore a lower

bound, which we shall denote by A. Similarly the aggregate of inferior

numbers has an upper bound, which we denote by X.

We call A and X respectively the upper and lower limits of indetermination

of <f>
(n) as n tends to infinity ; and write

A= lim $ («), X= lim
<f>

(n).

These numbers have the following properties :

(1) «<)igAiI;

(2) A and X are the upper and lower bounds of the aggregate of intermediate

numbers, if any such exist
;

(3) if 8 is any positive number, then
<f>

(n) < A + S for all sufficiently large

values of n, and cf)(n)> A — 8 for an infinity of values of n
;

(4) similarly
<f>

(n) > X - 8 for all sufficiently large values of n, and

(f>(n)<\+ 8 for an infinity of values of n\
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(5) the necessary and sufficient condition that <£ (n) should tend to a limit

is that A = X, and in this case the limit is I, the common value of X and A.

Of these properties, (1) is an immediate consequence of the definitions
;

and we can prove (2) as follows. If A=X= ?, there can be at most one inter-

mediate number, viz. I, and there is nothing to prove. Suppose then that

A > X. Any intermediate number £ is less than any superior and greater than

any inferior number, so that X ^ £ < A. But if X < £ < A then £ must be
intermediate, since it is plainly neither superior nor inferior. Hence there are

intermediate numbers as near as we please to either X or A.

To prove (3) we observe that \+ 8 is superior and A- 8 intermediate or

inferior. The result is then an immediate consequence of the definitions ; and

the proof of (4) is substantially the same.

Finally (5) may be proved as follows. If A= \= l, then

l-8«t>(n)<l+b

for every positive value of 8 and all sufficiently large values of n, so that

(n) ->- 1. Conversely, if <£ (n) -* I, then the inequalities above written hold

for all sufficiently large values of n. Hence 1-8 is inferior and 1+ 8 superior,

so that

\>l-8, \^l+ 8,

and therefore A — X ^ 28. As A — X 21 0, this can only be true if A= X.

Examples XXXII. 1. Neither A nor X is affected by any alteration in

any finite number of values of
<fi

(n).

2. If
<fi

(n) — a for all values of n, then m= X = A =M= a.

3. If
<f)

(n) = l/n, then m=X=A=0 and M=l.

4. If (j> iii)= ( - 1
)
n

, then m = X = - 1 and A=M= 1

.

5. If <£(?*) = (- l)
nM then m=-l, X= A= 0, Jf=|.

6. If 0(?O = (- 1)"{1 + (l/n)}, then m= -2, X=-l, A=l, if=f.

7. Let </> (n) = sin n6ir, where 6> 0. If 6 is an integer then m = X= A = M= 0.

If 6 is rational but not integral a variety of cases arise. Suppose, e.g., that

B=plq, p and q being positive, odd, and prime to one another, and q>\.
Then $(?i) assumes the cyclical sequence of values

smipn/q), sin {2pwjq), , sin{(2g-- l)pn/q}, sin (2qpirjq\

It is easily verified that the numerically greatest and least values of <p (n) are

cos(7r/2^) and —cos{irj2q), so that

m=\= -cos(7r/2<7), A=J/=cos(7r/2g-).

The reader may discuss similarly the cases which arise when p and q are

not both odd.

The case in which 6 is irrational is more difficult : it may be shown that

in this case m=\= - 1 and A= M=l. It may also be shown that the values

of </> (n) are scattered all over the interval ( - 1, 1 ) in such a way that, if £ is
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any number of the interval, then there is a sequence Wj, n2 , such that

The results are very similar when
<f)

(n) is the fractional part of nO.

83. The general principle of convergence for a bounded function.

The results of the preceding sections enable us to formulate a very important

necessary and sufficient condition that a bounded function cf> (n) should tend

to a limit, a condition usually referred to as the general principle of convergence

to a limit.

Theorem 1. The necessary and sufficient condition that a bounded function

cf) (n) should tend to a limit is that, when any positive number 8 is given, it should

be possible to find a number n (8) such that

l0(«»)-*(»h)l<8

for all values of% and n2 such that n2> n\ ^ n (8).

In the first place, the condition is necessary. For if ${n)-*-l then we

can find n so that
l-±8<(p(n)<l + ho-

when n > n , and so

|0(»2)-0("l)l<S (1)

when n
x
> n and n2 = no-

In the second place, the condition is sufficient. In order to prove this we

have only to show that it involves X = A. But if X<A then there are, however

small 8 may be, infinitely many values of n such that 4>(?i)<\+ 8 and

infinitely many such that cf>(n)> A-8 ; and therefore we can find values of

ni and n 2 , each greater than any assigned number « , and such that

0(w2)-0(%1)>A-X-28,

which is greater than i(A-X) if 8 is small enough. This plainly contradicts

the inequality (1). Hence X= A, and so
(f>

(n) tends to a limit.

84. Unbounded functions. So far we have restricted ourselves to

bounded functions ; but the ' general principle of convergence ' is the same

for unbounded as for bounded functions, and the words 'a bounded functio7i'

may be omitted from the enunciation of Theorem 1.

In the first place, if <p (n) tends to a limit I then it is certainly bounded ; for

all but a finite number of its values are less than 1 + 8 and greater than 1-8.

In the second place, if the condition of Theorem 1 is satisfied, we have

|0O 2)-<M'"i)|<s

whenever /!, >k and « 2 ="o- Let us choose some particular value n
x
greater

than n . Then
(«!) - 8 < (j) (n2) < (%) + 8

when n 2 2in . Hence
(f>

(n) is bounded ; and so the second part of the proof of

the last section applies also.

* A number of simple proofs of this result are given by Hardy and Littlewood,

" Some Problems of Diophantine Approximation", Acta Mathematica, vol. xxxvii.
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The theoretical importance of the ' general principle of convergence ' can
hardly be overestimated. Like the theorems of § 69, it gives us a means of

deciding whether a function <f>(7i) tends to a limit or not, without requiring

us to be able to tell beforehand what the limit, if it exists, must be ; and
it has not the limitations inevitable in theorems of such a special character

as those of § 69. But in elementary work it is generally possible to dispense

with it, and to obtain all we want from these special theorems. And it will

be found that, in spite of the importance of the principle, practically no

applications are made of it in the chapters which follow.* We will only

remark that, if we suppose that

4> i
n) = s

)l
= u

l
+ u

2 + ... + un ,

we obtain at once a necessary and sufficient condition for the convergence of

an infinite series, viz :

Theorem 2. The necessary and sufficient condition for the convergence

of the series m
1 -H<2+ --- & that, given any positive number 8, it should be

possible to find n so that

for all values of n x and n 2 such that ?i2>n
1
>7i .

85. Limits of complex functions and series of complex
terms. In this chapter we have, up to the present, concerned

ourselves only with real functions of n and series all of whose

terms are real. There is however no difficulty in extending our

ideas and definitions to the case in which the functions or the

terms of the series are complex.

Suppose that <p(ri) is complex and equal to

p (n) + i<r (n),

where p (n), cr (n) are real functions of n. Then if p (n) and a (n)

converge respectively to limits r and s as n -»- go , ive shall say that

<j> (n) converges to the limit I = r + is, and write

lim $ (n) = I.

Similarly, when nn is complex and equal to vn + nvn , we shall say

that the series

Ml + «2 +U 3 + ...

is convergent and has the sum I = r + is, if the series

v1 + v, + v3 + ..., wJ + iu, + ws + ...

are convergent and have the sums r, s respectively.

* A few proofs given in Ch. VIII can be simplified by the use of the principle.
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To say that u
t + ?/ 2 + u3 + ... is convergent and has the sum

I is of course the same as to say that the sum

Sn = U1 + Ui + ... +lln = (v
1
+V2 + ...+Vn) + i(lV1+W2 + ... + Wn)

converges to the limit I as n -*- go .

In the case of real functions and series we also gave definitions

of divergence and oscillation, finite or infinite. But in the case

of complex functions and series, where we have to. consider the

behaviour both of p (n) and of <r (n), there are so many possibilities

that this is hardly worth while. When it is necessary to make

further distinctions of this kind, we shall make them by stating

the way in which the real or imaginary parts behave when taken

separately.

86. The reader will find no difficulty in proving such

theorems as the following, which are obvious extensions of

theorems already proved for real functions and series.

(1) If lim <p (n) = I then lim <£ (n + p) = £ for any fixed value

of p.

(2) If wa + u2 + . . . is convergent and has the sum I, then

a -f b + c + . . . + k + Uj + v 2 + . . . is convergent and has the sum

a + b + c+ ... + k + 1, and up+l + up+2 + ... is convergent and has

the sum I — 1^ — ti 2
— ... — up .

(3) If lim (n) = I and lim yjr (n) = m, then

lim
{(f>

(n) + ty (n)} =1 + m.

(4) If lim (p (n) = I, then lim k<f> (n) = hi.

(5) If lim <p (11) = I and lim \jr (n)=m, then lim <p(n)yjs(n)=lm.

(6) If w1 + wa+ ... converges to the sum I, and v1 + v2 +... to

the sum m, then (u x + v^ + (u2+

v

2) + . . . converges to the sum l+ m.

(7) If Wj + m2 + . .. converges to the sum I then ki^ + ku 2 + ...

converges to the sum kl.

(8) If Wj + u2+ u3 + ... is convergent then lim u n = 0.

(9) If «
2 + Ms + us + ... is convergent, then so is any series

formed by grouping the terms in brackets, and the sums of the two

series are the same.



85, 86] POSITIVE INTEGRAL VARIABLE 155

As an example, let us prove theorem (5). Let

0(»)=p(»)+*V(»)j M»)=p' (»)+&/(»), l= r+ is, m=r'+ is'.

Then p(ri)-*-r, a(n)-**s, p'(n)-^r', o-' (»)-*-*'.

But (p (n) \js (n) = pp - (to-'+ i (pa'+ p'v),

and pp' - cro-' -*- r/ - ss', p<r' + p'<r -*- rs' + r's
;

so that <p (n) \|/- (n) ->- rr' — ss'+ i (rs'+ r's),

i.e. <p (n) yjr (n) -*- (r

+

is) (?•'+ is') = Im.

The following theorems are of a somewhat different character.

(10) In order that
<f>

(n) = p (n) + i<r (n) should converge to

zero as n -*- co , it is necessary and sufficient that

\4> 00

1

=s/Up (*)}'+{* OOP]

should converge to zero.

If p(n) and <r(n) both converge to zero then it is plain that sf(p
2+ cr'

i
)

does so. The converse follows from the fact that the numerical value of p or

cr cannot be greater than ,/(p
2+ a-

2
).

(11) More generally, in order that <p(n) should converge to a

limit I, it is necessary and sufficient that

l*00-»l
should converge to zero.

For (p (n) — I converges to zero, and we can apply (10).

(12) Theorems 1 and 2 of §§ 83—84 are still true when

<p (n) and un are complex.

We have to show that the necessary and sufficient condition that cp(n)

should tend to I is that

I <P (%)-<?(%) I <8 (l)

when n2 > n
x
^.nQ .

If <p (n)-*-l then p (%)-*»» and a (n)->-s, and so we can find numbers n ' and

n " depending on 8 and such that

I PW - p Oi) I
< i 8, I

<rW - o- (»i) ]
< i 5,

the first inequality holding when «2> n i = n o'j and the second when n2> ?i
x ^

«

".

Hence

I <P (»2)~ <P (»l) I ^ I P (%)~P («l) I
+ I

* ("2) - O- («l) |<8

when w 2 >^i = «o> where n is the greater of n ' and « ". Thus the condition

(1) is necessary. To prove that it is sufficient we have only to observe that

I p (n 2)
- p (n

x ) I

^
I
<p (n 2 )

- cp (%) |
< 3

when n 2 >n 1
^n . Thus p (n) tends to a limit r, and in the same way it may

be shown that a (n) tends to a limit s.
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87. The limit of zn as n -* oc , z being any complex
number. Let us consider the important case in which <£ (n) = z11

.

This problem has already been discussed for real values of z in

§72.

If zn— I then zn+l -* I, by (1) of § 86. But, by (4) of § 86,

zn+i = zzn _^ 2l
}

and therefore I = zl, which is only possible if (a) I = or (b) z == 1.

If z = 1 then lim2n = 1. Apart from this special case the limit,

if it exists, can only be zero.

Now if z = r (cos 6 + i sin 6), where r is positive, then

zn = r11 (cos nd + i sin n6),

so that
|
zn

|

= rn . Thus
|

zn
\
tends to zero if and only if r < 1

;

and it follows from (10) of § 86 that

lim z11 =

if and only if r < 1. In no other case does zn converge to a limit,

except when z = 1 and zn -* 1.

88. The geometric series 1 + z + z- + .

.

. when z is

complex. Since

sn =l+z + z*-+... + zn-* = (l-zn)/(l-z),

unless z = 1, when the value of s }l
is ??, it follows that the series

1 + z + z2 + ... is convergent if and only if r =
|
z

\

< 1. And its

sum when convergent is 1/(1 — z).

Thus if z = r (cos 9 + i sin 9) = ?* Cis 9, and r < 1, we have

l+* + *2 +... = l/(l-rCis0),

or 1 + r Cis 9 + r" Cis 29 + ... = 1/(1 - r Cis 9)

= (1 — r cos + ir sin 6)1(1 — 2?- cos 6 + r2
).

Separating the real and imaginary parts, we obtain

1 + r cos 9 + r2 cos 29 + . . . = (1 — r cos 6)1(1 - 2r cos 6 + r2
),

r sin + r2 sin 20 + . . . = r sin 9/(1 - 2r cos + r2
),

provided r<l. If we change 6 into + 7r, we see that these

results hold also for negative values of r numerically less than 1.

Thus they hold when — 1 < r < 1.
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Examples XXXIII. 1. Prove directly that cf> (n) = rn cos n8 converges

to when r< 1 and to 1 when r= 1 and 6 is a multiple of 2w. Prove further

that if r— \ and 6 is not a multiple of 2n, then <p(n) oscillates finitely; if

r>\ and 6 is a multiple of 2ir, then
<f>

(n)-*-+ <x>; and if r>l and 6 is not a

multiple of 2n, then <£ (n) oscillates infinitely.

2. Establish a similar series of results for $ (m) = ?•" sin nd.

3. Prove that zm+

z

m + 1+ ... = zmj(l - z),

2»*+ 22'» + i + 2sm + 2+ ... =zm (l+z)/(l-z),

if and only if
j
z

|
< 1. "Which of the theorems of § 86 do you use ?

4. Prove that if - 1 < r< 1 then

l + 2rcos0+ 2r2 cos20+...=(l-r2)/(l-2rcos0 + ?-2
).

5. The series I + t^- + (V^Y +•••

converges to the sum 1 / ( 1 - =—-

J
= 1 + z if

1 2/(1 + z)
|
< 1. Show that this

condition is equivalent to the condition that z has a real part greater than —\.

MISCELLANEOUS EXAMPLES ON CHAPTER IV.

1. The function $(«) takes the values 1, 0, 0, 0, 1, 0, 0, 0, 1, ... when
n= 0, 1, 2, .... Express (f>(n) in terms of n by a formula which does not

involve trigonometrical functions. [4>(n) = ^{l + ( — l)"+ i'
l+ (-z)"}.]

2. If <£ (n) steadily increases, and \|/- (a) steadily decreases, as n tends to

00, and if \|/- (n) >
<f) («) for all values of n, then both <j>(n) and \^(n) tend to

limits, and lim0(?i)^lim\^(n). [This is an intermediate corollary from

§69.]

3. Prove that, if

*«-(l+^, +{n)=(l-?)~
n

,

then (f)(n + l)>cf) (n) and ^ (/i+ 1)<^ (to). [The first result has already been

proved in § 73.]

4. Prove also that ^ (to) >
(f)

(to) for all values of to : and deduce (by means

of the preceding examples) that both <£ (to) and \js (to) tend to limits as to

tends to oo .
*

5. The arithmetic mean of the products of all distinct pairs of positive

integers whose sum is to is denoted by Sn . Show that lim (SJn2
) = 1/6.

(Math. Trip. 1903.)

* A proof that lim {\p (n) - <p (ft)}=0, and that therefore each function tends to

the limit e, will be found in Chrystal's Algebra, vol. ii, p. 78. We shall however

prove this in Ch. IX by a different method.
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6. Prove that if Xi = ^{x + (Ajx)}, x2 ~\{xl -\-{Ajx\)} 1
and so on, x and

A being positive, then lim#n=,vM'

[Prove first that —-

—

rT = I
—-

—

r. ) .]
1 xn+JA \x+,JAJ

7. If <£ (») is a positive integer for all values of n, and tends to oo with n,

then x tends to if 0<x<\ and to +oo if x>l. Discuss the behaviour

of x , as w-*-oo , for other values of x.

8.* If an increases or decreases steadily as n increases, then the same is

true of (a x + «2+ • • • + an)ln-

9. If xn + i
= s!(k+xn), and h and x

x
are positive, then the sequence x\, x.

2 ,

x3 , ... is an increasing or decreasing sequence according as xx is less than or

greater than a, the positive root of the equation x2— x + k; and in either case

xn-»-a as n->~<x>

.

10. If snn+ i=kj(l+x^), ar»d & and X\ are positive, then the sequences

#!, x3 , x$, ... and #
2 > xa x§i ••• are one au increasing and the other a decreasing

sequence, and each sequence tends to the limit a, the positive root of the

equation a?+x= k.

11. The function f(x) is increasing and continuous (see Ch. V) for all

values of x, and a sequence xlt x2 , x3 , ... is denned by the equation

xn + i=f(xn ). Discuss on general graphical grounds the question as to

whether xn tends to a root of the equation x-f(x). Consider in particular

the case in which this equation has only one root, distinguishing the cases in

which the curve y=f(%) crosses the line y= x from above to below and from

below to above.

12. If Xy , x2 are positive and xn + j = \ (xn+xn _ i), then the sequences xx , x3 ,

.r5 , ... and x2 , x\, x6 , ... are one a decreasing and the other an increasing

sequence, and they have the common limit J (xy + 2x2).

13. Draw a graph of the function y defined by the equation

y= lim
x*-» Sm^rrx+x^

^Math THp 19Q1
}

14. The function y= lim t~=—

.

w-*w l+nsm2 Trx

is equal to except when x is an integer, and then equal to 1. The function

lim
^(x) + ncj)(x)sm2 nx

n-*~«> 1+71 sin2 nx

is equal to
<f>

(x) unless x is au integer, and then equal to \|/- (x).

15. Show that the graph of the function

.. xn (b(x) + x- n \lf(x)
y= hm —J

-^-z
!-i—

* Exs. 8—12 are taken from Broniwich's Infinite Series.
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is composed of parts of the graphs of cf>(x) and \^(x), together with (as a rule)

two isolated points. Is y defined when (a) x=l, (b) x= -
1, (c) x— ]

16. Prove that the function y which is equal to when x is rational, and
to 1 when x is irrational, may be represented in the form

y= lim sgn{sia 2 (m\ irx)},

where sgn x— lim (2/rr) arc tan (nx)
t

as in Ex. xxxi. 14. [If x is rational then sin2 (m ! nx), and therefore

sgn {sin2 (m ! nx)}, is equal to zero from a certain value of m onwards : if

x is irrational then sin2 (m ! nx) is always positive, and so sgn {sin2 (m ! irx)}

is always equal to 1.]

Prove that y may also be represented in the form

1 — lim [lim {cos (m ! 7i\i)} 2
"].

17. Sum the series

i *(i/+ l)' iv{»+ l)...{v+k)'
[Since

I = 1/ ! 1
)

, ,
» 1 = 1 f 1 1

}We aVC
i V {v+ l)...(v+k) k\l.2...& (n + l)(n + 2)...{n+k))

and so 2 —
;

rr

—

; r, = , /f ,, . 1

18. If
|

2 |<|aL then -A. = -^fi + £ + f! + ..V3-a a \ a a- /

andif |s|>|a|, then — = - (l + - +-, + ... ).
1

' ' ' z — a z \ z zl j

19. Expansion of (Az+ B)/(az2+ 2bz + c) in powers of z. Let a, 8
be the roots of az2 + 2bz+ c=0, so that az2+ 2bz+ c= a(z- a){z~8). We
shall suppose that A, B, a, b, c are all real, and a and 8 unequal. It is then

easy to verify that

Az+B 1 /Aa +B _ A8 +B\

az2+ 2bz+c~ a(a-8)\ z-a z~8J'
There are two cases, according as b2> ac or b2 < ac.

(1) If b2 >ac then the roots a, 8 are real and distinct. If \z\ is less than

either \a\ or \8\ we can expand l/(z — a) and lftz—8) in ascending powers of s

(Ex. 18). If U |
is greater than either

|
a

|
or

|
/3 1 we must expand in descending

powers of z; while if \z\ lies between \a\ and \8\ one fraction must be ex-

panded in ascending and one in descending powers of z. The reader should

write down the actual results. If \z\ is equal to \a\ or \8\ then no such

expansion is. possible.
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(2) If b2<ac then the roots are conjugate complex numbers (Ch. Ill

$5 43), and we can write

a= p Cis<p, )3=p Cis (~4>),

where p
2= a/3= c/a, p cos cp= £ (a+ /3)= - 6/a, so that cos = - s](b2lac),

sin = ^/(1 - (b2Jac)}.

If \z\<p then each fraction may be expanded in ascending powers of z.

The coefficient of zn will be found to be

Ap sin n<p + 2? sin {(n + I)<p}

apn + ] sin <p

If |«|>p we obtain a similar expansion in descending powers, while if |s|= p
no such expansion is possible.

20. Show that if
|

z\< 1 then

1 + 22 + 32"+. .. + (« + l)s»+... = l/(l-2)2
.

J 2n ?l2
n

[The sum to n terms is r, .„ - = .1
L

(1 — z)- 1 — z
J

21. Expand Lj{z-a)2 in powers of 2, ascending or descending according

as \z\<
|

a
|

or
|

z\ >\a\.

22. Show that if b2=ac and
|
az |< |

b
|
then

Jz + 2? _°g n
az2 + 2bz + c /nZ>

where p ll
= {(-a)n/bn + 2

}
{{n + l)aB-?ibA}; and find the corresponding ex-

pansion, in descending powers of z, which holds when |«2]>|6|.

23. Verify the result of Ex. 19 in the case of the fraction 1/(1 +z2
). [We

have l/(l+sa
)= S8n sin {h(n + I)n} = l-z2 +zi - ....]

24. Prove that if U|<1 then

2 oo

2zn sin {g(n+ l) tt}.
1 + 2 + 22 V3

25. Expand (l+*)/(l +22
), (1 +22)/(l + 2^) and (1 + z+ z2)/(l + zi ) in ascend-

ing powers of 2. For what values of 2 do your results hold ?

26. If a/(a+ bz+ cz2)= 1 +fiz+p2z
2+ . . . then

i . 2 . 2 2 ,

«+C2 a 2

a - as a2- (6
2 - 2ac) z + c2 z2

'

{Math. Trip. 1900.)

27. If lim sn= Z then

lim
«i+*+-.+^

}i-»-00
"

[Let sn=£-K„. Then we have to prove that (ti+ t2 + ... + tn)/n tends to

zero if tn does so.
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We divide the numbers t1} t2 , ... tn into two sets tu t2 , ..., tp and tp+1 ,

tp + 2, ••; tn- Here we suppose that p is a function of n which tends to oo

as »-*-co
, but more slowly than n, so that p-*-cc and p/n-*-0 ; e.g. we might

suppose p to be the integral part of Jn.

Let f be any positive number. However small 8 may be, we can choose
n so that ?p + 1 ,

tp + 2 ,...,tn are all numerically less than ^8 when n>n , and so

\(tp+i+tp+2+... +tn)/n\<$8(n-p)ln<$8.

But, if A is the greatest of the moduli of all the numbers tlt t
2 , ..., we

have

\(t
l + t

2+ ... + tp)/n\<pA/n,

and this also will be less than |S when n>n , if n is large enough, since

pjn-*-0 as «-»-oo . Thus

l(^+?2 +...+0/H|<|(^+^+... + g/»| + |(^ +1 +... + ^)/?i |<§

when ?^tto > which proves the theorem.

The reader, if he desires to become expert in dealing with questions about
limits, should study the argument above with great care. It is very often

necessary, in proving the limit of some given expression to be zero, to split it

into two parts which have to be proved to have the limit zero in slightly

different ways. When this is the case the proof is never very easy.

The point of the proof is this : we have to prove that (t
1 + t

2+ ... + tn)jn is

small when n is large, the t's being small when their suffixes are large. We
split up the terms in the bracket into two groups. The terms in the first

group are not all small, but their number is small compared with n. The
number in the second group is not small compared with n, but the terms are

all small, and their number at any rate less than n, so that their sum is small

compared with n. Hence each of the parts into which (t1+t2 +... + tn)ln

has been divided is small when n is large.]

28. If 4>(,n)- 4>{n- l)-*-l as n-s-co, then $ (n)ln-*-l.

[If
<f)

(n) = s
t+ S2+ ...+sn then <p (n) — $ (n— l) = sn , and the theorem re-

duces to that proved in the last example.]

29. If s
lt
= i {1 - ( - 1)"}, so that sn is equal to 1 or according as n is odd

or even, then {s
1 + s2 + ...+sn)l7i-^^ as ?i-*-ao .

[This example proves that the converse of Ex. 27 is not true : for su

oscillates as n-*-oo .]

30. If cn , sn denote the sums of the first n terms of the series

i + cos#+ cos2<9+..., sin 6 + sin 20+...,

then

lim (c!

+

cz+ . .. + cn)jn= 0, lim (st+

s

2+ . . . + sn)jn = \ cot \6.

11



CHAPTER V

LIMITS OF FUNCTIONS OF A CONTINUOUS VARIABLE.

CONTINUOUS AND DISCONTINUOUS FUNCTIONS

89. Limits as x tends to oo . We shall now return to

functions of a continuous real variable. We "shall confine our-

selves entirely to one-valued functions*, and we shall denote such

a function by
<f>

(x). We suppose x to assume successively all

values corresponding to points on our fundamental straight line

A, starting from some definite point on the line and progressing

always to the right. In these circumstances we say that x

tends to infinity, or to oo , and write x -> oo . The only difference

between the ' tending of n to oo ' discussed in the last chapter, and

this ' tending of x to oo ', is that x assumes all values as it tends

to oo , i.e. that the point P which corresponds to x coincides in

turn with every point of A to the right of its initial position,

whereas n tended to oo by a series of jumps. We can express this

distinction by saying that x tends continuously to oo .

As we explained at the beginning of the last chapter, there is

a very close correspondence between functions of x and functions

of n. Every function of n may be regarded as a selection from

the values of a function of x. In the last chapter Ave discussed

the peculiarities which may characterise the behaviour of a

function c£ (n) as n tends to oo . Now we are concerned with the

same problem for a function </> (x) ; and the definitions and

theorems to which we are led are practically repetitions of those

of the last chapter. Thus corresponding to Def. 1 of § 58 we

have

:

* Thus Klx stands in this chapter for the one-valued function + K!x and not (as

in § 26) for the two-valued function whose values are + s!x and - s!x.
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Definition 1. The function <f>(x) is said to tend to the limit I

as x tends to oo if, when any positive number 8, however small, is

assigned, a number x (8) can be chosen such that, for all values of
x equal to or greater than x (8), (x) differs from I by less than 8,

i.e. if

\<j>(x)-l\<S

when x = x (S).

When this is the case we may write

Km
<f>

(x) = I,

x-* oo

or, when there is no risk of ambiguity, simply Km $ (x) = I, or

<b (x) -> 1. Similarly we have :

Definition 2. The function <^(x) is said to tend to oo with

i x if when any number A, however large, is assigned, we can choose

a number #' (A) such that

<f>
(x) > A

wlien x = x (A).

We then write

<f)
(x) -^ oo .

Similarly we define <£ (x) -* — cc *. Finally we have

:

Definition 3. If the conditions of neither of the two preceding

definitions are satisfied, then <£ (x) is said to oscillate as x tends

l

to oo . If | (f>
(x)

I

is less than some constant K when x = x f, then

<b(x) is said to oscillate finitely, and otherwise infinitely.

The reader will remember that in the last chapter we con-

sidered very carefully various less formal ways of expressing the

facts represented by the formulae (f)(n)~^l, <j>(n) -»» oo . Similar

modes of expression may of course be used in the present case.

Thus we may say that <£ (x) is small or nearly equal to I or large

when x is large, using the words ' small ',
' nearly ',

' large ' in

a sense similar to that in which they were used in Ch. IV.

* We shall sometimes find it convenient to write +00, x -* + 00 , <j> (x) -*- + 00

instead of 00 , x -*- 00 , <p (x) -* oo

.

t In the corresponding definition of § 62, we postulated that
| <j> (n)

\

<K for all

values of n, and not merely when n > ?i . But then the two hypotheses would have

beeu equivalent ; for if
|

cp (n)
|
< K when 11 2: 7i , then

| <p (n)
\
< K' for all values

of n, where K' is the greatest of 0(1), 0(2), ... , (p(n -l) and K. Here the

matter is not quite so simple, as there are infinitely many values of x less than x .

11—2
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Examples XXXIV. 1. Consider the behaviour of the following functions

as .1

'

-co : 1/x, l + {l/:c), x\ x\ [x], x-[x], [x]+ J{x-[x]}.

The first four functions correspond exactly to functions of n fully dis-

cussed in Ch. IV. The graphs of the last three were constructed in Ch. II

(Exs. xvi. 1, 2, 4), and the reader will see at once that [#]-» <x>, x- [x] oscillates

finitely, and [x] + J{x - [x]} -*- co

.

One simple remark may be inserted here. The function cj)(x)= x-[x]
oscillates between and 1, as is obvious from the form of its graph. It is

equal to zero whenever x is an integer, so that the function cf>(n) derived

from it is always zero and so tends to the limit zero. The same is true if

(f) {%)
= sin xn,

(f>
(n) = sin mr =0.

It is evident that <fr{x)-*-l or $(.v)-»-ao or <t>{x)-*- — cc involves the corre-

sponding property for (n), but that the converse is by no means always

true.

2. Consider in the same way the functions

:

(sin xn)lx, ^sin.r7r, {x sin xir) 2
, tan.^n-, a cos2 xn + b sin2 xn,

illustrating your remarks by means of the graphs of the functions.

3. Give a geometrical explanation of Def. 1, analogous to the geometrical

explanation of Ch. IV, § 59.

4. If (x) -> I, and I is not zero, then <£ (x) cos xtv and (x) sin xn oscillate

finitely. If (f>(x)-*-<x> or
(f>

(x) ->- — co
, then they oscillate infinitely. The

graph of either function is a wavy curve oscillating between the curves

y=<p{x) andy=-<£(.r).

5. Discuss the behaviour, as x->~cc , of the function

y—f (
x

)
cos2 xtc +f (

x
)
sm2 xir

t

where f{x) and F{x) are some pair of simple functions {e.g. x and x2
). [The

graph of y is a curve oscillating between the curves y=f{%), y= F{x).]

90. Limits as x tends to — co . The reader will have no

difficulty in framing for himself definitions of the meaning of the

assertions ' x tends to — co ', or ' x -* — co ' and

lim
<f)

(x) =1, <j) (%) -* co
, (#)-*- — co .

a:-* — oo

In fact, if x = — y and
<f>

(x) =
<f>
(— y) = yjr (y), then y tends

to co as x tends to — co , and the question of the behaviour of

</> (x) as x tends to — oo is the same as that of the behaviour of

\}r (y) as y tends to co .
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91. Theorems corresponding to those of Ch. IV, §§ 63—67.
The theorems concerning the sums, products, and quotients of functions

proved in Ch. IV are all true (with obvious verbal alterations which the

reader will have no difficulty in supplying) for functions of the continuous

variable x. Not only the enunciations but the proofs remain substantially

the same.

92. Steadily increasing or decreasing functions. The definition

which corresponds to that of § 69 is as follows : the function <£ (x) will

be said to increase steadily with x if <f)(x2)5:<fi (.i\) ivhenever x2 >x1 . In

many cases, of course, this condition is only satisfied from a definite value

of x onwards, i.e. when xi>xl >x . The theorem which follows in that section

requires no alteration but that of n into x : and the proof is the same, except

for obvious verbal changes.

If </>(a'2)>0(#i), tne possibility of equality being excluded, whenever

x-2>xu then <f)(x) will be said to be steadily increasing in the stricter sense.

"We shall find that the distinction is often important (cf. §§ 108—109).

The reader should consider whether or no the following functions

increase steadily with x (or at any rate increase steadily from a certain

value of x onwards): x~-x, x-\-sinx, #+2sin#, .r
2+ 2sina-, [x], [#]+ sina;,

[a?]+V{#~ [#]} AH these functions tend to oo as x-*- co .

93. Limits as x tends to 0. Let <£ (x) be such a function

of x that lim
<f>

(x) = /, and let y = 1/x. Then

*(«)-*(l/y)-*(y),

say. As x tends to co
, y tends to the limit 0, and ^ (y) tends to

the limit I.

Let us now dismiss x and consider ty (y) simply as a function

of y. We are for the moment concerned only with those values

of y which correspond to large positive values of x, that is to say

with small positive values of y. And ty (y) has the property that

by making y sufficiently small we can make yfr (y) differ by as

little as we please from I. To put the matter more precisely,

the statement expressed by lim ${x) = l means that, when any

positive number 8, however small, is assigned, we can choose

ccQ so that \<f>(cc) — l\< 8 for all values of x greater than or equal

to xQ . But this is the same thing as saying that we can choose

y = l/#„ so that
|

yjr (y) — 1
1
< 8 for all positive values of y less than

or equal to y .

We are thus led to the following definitions

:
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A. If, when any positive number 8, however small, is assigned,

we can choose y (8) so that

\${y)-l\<8

when < y ^ y (8), then we say that
<f> (y) tends to the limit I as y

tends to by positive values, and we write

lim
<f> (y) = I.

B. If, when any number A, however large, is assigned, we can

choose y (A) so that

<f> (y) > A

ivhen <y ^y (A), then we say that
<f> (y) tends to co as y tends

to by positive values, and we write

$ (y) -*- oo .

We define in a similar way the meaning of '

<f> (y) tends to

the limit I as y tends to by negative values ', or ' lim ty(y) = l

when y ->— '. We have in fact only to alter < y £ y (8) to

— y (8) ^ y < in definition A. There is of course a corresponding

analogue of definition B, and similar definitions in which

as y -* + or y -*- — 0.

If lim (j>(y) = l and lim §(y) = l, we write simply

lim <£ (3/) = I.

y-*-o

This case is so important that it is worth while to give a formal

definition.

If, when any positive number 8, however small, is assigned, we

can choose y (8) so that, for all values of y different from zero but

numerically less than or equal to y (8), </> (y) differs from I by less

than 8, then we say that
<f> (y) tends to the limit I as y tends to 0,

and write

lim <£ (y) = I

So also, if
(f) (y)

-* co as y -* + and also as y -* — 0, we say

that <£ (?/) -* oo as y -*• 0. We define in a similar manner the

statement that $ (y) -* — co as y -* 0.
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Finally, if <£ (?/) does not tend to a limit, or to oo , or to

— cc , as y •-» + 0, we say that
<f> (y) oscillates as y -*» + 0, finitely

or infinitely as the case may be; and we define oscillation as

y -* — in a similar manner.

The preceding definitions have been stated in terms of a

variable denoted by y : what letter is used is of course immaterial,

and we may suppose x written instead of y throughout them.

94. Limits as x tends to a. Suppose that $(y)-*-l as

y -* 0, and write

y = x-a, $ (y) = $ (x - a) = f (x).

If y -*- then x -*• a and
-fr

(x) -*• I, and we are naturally led to

write

lim \fr (x) = I,

or simply lim yfr (x) = I or yp- (x) -* I, and to say that yjr (x) tends to

the limit I as x tends to a. The meaning of this equation may
be formally and directly defined as follows : if, given 8, we can

always determine e(8) so that

\4>(x)-l\<8

when <
|

x — a
\
^ e (8), then

lim
(f>

(x) = I.

By restricting ourselves to values of x greater than a, i.e. by

replacing <
|

x — a
\

^ e (8) by a < x ^ a + e (8), we define '
cf> (x)

tends to I when x approaches a from the right', which we may

write as

lim
<f>

(x) — I.

In the same way we can define the meaning of

lim <j) (x) = I.

x-*-a-0

Thus lim 4>(x) = 1 is equivalent to the two assertions

lim
<f)

(x) = I, lim (x) = I.

x^-a+ .T-»-a-0

We can give similar definitions referring to the cases in which

cf)(x)^x> or </>(#)-*— ao as x-^a through values greater or less

than a ; but it is probably unnecessary to dwell further on these

definitions, since they are exactly similar to those stated above in
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the special case when a = 0, and we can always discuss the

behaviour of <£(#) as x~^a by putting x — a = y and supposing

that 2/^-0.

95. Steadily increasing or decreasing functions. If there is a number

c such that (x') 2g$ (x") whenever a-e<x'<x"<a+ e, then <f>(x) will be

said to increase steadily in the neighbourhood of x=a.

Suppose first that x<a, and put y=lj(a-x). Then y-z-ao as x-*-a— 0,

and (x) = \//- (y) is a steadily increasing function of ?/, never greater than $ (a).

It follows from § 92 that (x) tends to a limit not greater than <£ (a). We
shall write

lim <fi(x)= (}>(a+0).

We can define <j> (a - 0) in a similar manner ; and it is clear that

(a-0) <(f) (a)^0 (a + 0).

It is obvious that similar considerations may be applied to decreasing

functions.

If (f>(x')<<fi(x"), the possibility of equality being excluded, whenever

a — e<x'<x"<a+ e, then (f)(x) will be said to be steadily increasing in the

stricter sense.

96. Limits of indetermination and the principle of convergence.

All of the argument of §§ 80—84 may be applied to functions of a con-

tinuous variable x which tends to a limit a. In particular, if
(f>

(x) is

bounded in an interval including a (i.e. if we can find e, H, and K so that

H<<f) (x)<K when a — e<^'^a + e)*, then we can define X and A, the lower and

upper limits of indetermination of <£ (x) as x->-a, and prove that the necessary

and sufficient condition that (x)-*-l as x-*-a is that X= A= l. We can also

establish the analogue of the principle of convergence, i.e. prove that the

necessary and sufficient condition that <£ (x) shoidd tend to a limit as x-*-a is

that, when 8 is given, we can choose e (8) so that |0(#2) -(M-'ri)|<S when

0<\x2 -a\ < |#i-a|<e (S).

Examples XXXV. 1. If

as x ->- a, then <£ (x) + \//- (#) -a~ £+ /', $ (x) ^ (x) -» W, and (.r)/^ (a?) -* 11
1',

unless in the last case l'= 0.

[We saw in § 91 that the theorems of Ch. IV, §§ 63 et seq. hold also for

functions of x when x ->- oc or#-*--oo. By putting x=\jy we may extend

them to functions of y, when y-*-0, and by putting y= z — a to functions of z,

when z-*-a.

* For some further discussion of the notion of a function bounded in an interval

see § 102.
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The reader should however try to prove them directly from the formal

definition given above. Thus, in order to obtain a strict direct proof of the

first result he need only take the proof of Theorem I of § 63 and write

throughout x for n, a for oo and 0<|#-a|<e for n>n
Q .]

2. If m is a positive integer then #m-»-0 as x-*-0.

3. If m is a negative integer then xm -*- + <x> as x-*-+ 0, while a?"-*-— oo or

xm -*-+ <& &sx-*--0, according as m is odd or even. If »j= theu xm=l
and xm -*-l.

4. lim (a+ bx+ ex2+ . . . + kxm)= a.

5. lim \(a + bx+ ... +kxm)J(a+ 0x+ ... +KX^)\ = a!a, unless a= 0. If a=0

and «#=0, (34=0, then the function tends to +oo or - oo , as x-*-+ 0, according

as a and /3 have like or unlike signs; the case is reversed if a--»--0. The
case in which both a and a vanish is considered in Ex. xxxvi. 5. Discuss the

cases which arise when a=t=0 and more than one of the first coefficients in the

denominator vanish.

6. lim xm = am, if m is any positive or negative integer, except when a= Q
x-*-a

and in is negative. [If m>0, put x=y-\-a and apply Ex. 4. When to<0,
the result follows from Ex. 1 above. It follows at once that lim P (x) =P (a),

if P {x) is any polynomial.]

7. lim R (x)= R (a), if R denotes any rational function and a is not one
x->-a

of the roots of its denominator.

8. Show that lim xm=am for all rational values of m, except when a=0
x-s-a

and m is negative. [This follows at once, when a is positive, from the in-

equalities (9) or (10) of § 74. For \xm—am \<H\x-a], where H is the greater

of the absolute values of mxm ~ 1 and mam ~ 1 (cf. Ex. xxvin. 4). If a is negative

we write x= -y and a= - b. Then

lim xm= lim ( - 1
)
mfn= ( - 1 )'n bm= am .]

97. The reader will probably fail to see at first that any proof

of such results as those of Exs. 4, 5, 6, 7, 8 above is necessary.

He may ask ' why not simply put x = 0, or x = a ? Of course

we then get a, a/a, am , P (a), R (a) ' It is very important that he

should see exactly where he is wrong. We shall therefore consider

this point carefully before passing on to any further examples.

The statement lim cf) (x) = I

is a statement about the values of (f>(x) when x has any value
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distinct from but differing by little from zero *. It is not a statement

about the value of <f>
(x) when x = 0. When we make the state-

ment we assert that, when x is nearly equal to zero, <f>(x) is nearly-

equal to I. We assert nothing whatever about what happens

when x is actually equal to 0. So far as we know, $ (x) may

not be defined at all for x = ; or it may have some value

other than I. For example, consider the function defined for all

values of x by the equation c/> (x) = 0. It is obvious that

lim</><» = (1).

Now consider the function i/r (x) which differs from
<f>

(x) only in

that -v/r (x) = 1 when x = 0. Then

\imyjr(x) = (2),

for, when x is nearly equal to zero, i|r (x) is not only nearly but

exactly equal to zero. But ty (0) = 1. The graph of this function

consists of the axis of x, with the point x = left out, and one

isolated point, viz. the point (0, 1). The equation (2) expresses

the fact that if we move along the graph towards the axis of y,

from either side, then the ordinate of the curve, being always equal

to zero, tends to the limit zero. This fact is in no way affected

by the position of the isolated point (0, 1).

The reader may object to this example on the score of

artificiality : but it is easy to write down simple formulae repre-

senting functions which behave precisely like this near x = 0.

One is

^(x) = [l-x2

l

where [1 — x-"] denotes as usual the greatest integer not greater

than 1 — x2
. For if x = then ty (x) = [1] = 1 ; while if < x < 1,

or — 1 < x < 0, then < 1 — x2 < 1 and so yjr (x) = [1 — x2
] = 0.

Or again, let us consider the function

y = x/x

already discussed in Ch. II, § 24, (2). This function is equal

to 1 for all values of x save x = 0. It is not equal to 1 when
x = : it is in fact not defined at all for x = 0. For when we say

* Thus in Def. A of § 93 we make a statement about values of y such that

0<y£.y , the first of these inequalities being inserted expressly in order to

exclude the value y = 0.
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that <fr(x) is defined for x = we mean (as we explained in Ch. II,

I.e.) that we can calculate its value for x = by putting x =
in the actual expression of $ (cc). In this case we cannot. When
we put x = in <f>(x) we obtain 0/0, which is a meaningless

expression. The reader may object 'divide numerator and de-

nominator by x '. But he must admit that when x = this is

impossible. Thus y = xjx is a function which differs from y = 1

solely in that it is not defined for x = 0. None the less

lim {xjx) = 1,

for xjx is equal to 1 so long as x differs from zero, however small

the difference may be.

Similarly
<f)

(x) = {(x + l)2 — l}/x = x + 2 so long as x is not

equal to zero, but is undefined when x = 0. None the less

lim (j) (x) = 2.

On the other hand there is of course nothing to prevent the

limit of
<f>

(x) as x tends to zero from being equal to
<f> (0), the value

of cj) (x) for x = 0. Thus if <j)(x)=x then
<f>

(0) = and lim
<f>

(x) = 0.

This is in fact, from a practical point of view, i.e. from the point

of view of what most frequently occurs in applications, the

ordinary case.

Examples XXXVI. 1 . lim (x2 - a?)/(x-a)= 2a.

2. lim {xm-am)[(x— a) = mam ~ 1
, if m is any integer (zero included).

3. Show that the result of Ex. 2 remains true for all rational values

of m, provided a is positive. [This follows at once from the inequalities

(9) and (10) of § 74.]

4. lim (x7 - 2.v5+ l)l(x3 -3x2 +2) = l. [Observe that x-l is a factor of
ZH.-1

both numerator and denominator.]

5. Discuss the behaviour of

<j)(x) = (a xm+ a1xm + 1 + ... +akxm
+ *)/(b xn+ biXn + 1 + ... +bl

x7t+l)

as x tends to by positive or negative values.

[If m> n, lim (a?)= 0. If m= n, lim $ (x)= or /6 . If m< n and n - m is

exer\,(j)(x)-*- + cc or (.r) -*- - oo according as a /b >0 or a /b <0. Ifm<?iand

n - m is odd, (x) -^ + » as x->-+ and
(f>

(x)^ - co as a;-*- - 0, or $ (x)^ - co

as :i'-9-+ and <£(#)-*+ » as a?-*-- 0, according as ff /6 >° or «<A< -]
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6. Orders of smallness. When x is small x2 is very much smaller,

x3 much smaller still, and so on : in other words

lira (.vVx) = 0, lim(A-3/*'
2
) = 0, ....

Another way of stating the matter is to say that, when x tends to 0,

x2
, x3

, ... all also tend to 0, but x2 tends to more rapidly than x, x3 than

x2
, and so on. It is convenient to have some scale by which to measure

the rapidity with which a function, whose limit, as x tends to 0, is 0,

diminishes with x, and it is natural to take the simple functions x, x2
, x3

, ...

as the measures of our scale.

We say, therefore, that <p(x) is of the first order of smallness if (f>(x)/x

tends to a limit other than as x tends to 0. Thus 2x+3x2+xr is of the

first order of smallness, since lim (2x+ 3x2 + x7)/x= 2.

Similarly we define the second, third, fourth, ... orders of smallness. It

must not be imagined that this scale of orders of smallness is in any way

complete. If it were complete, then every function
<fr

(x) which tends to zero

with x would be of either the first or second or some higher order of smallness.

This is obviously not the case. For example <^{x)= x71
'

tends to zero more

rapidly than x and less rapidly than x2
.

The reader may not unnaturally think that our scale might be made

complete by including in it fractional orders of smallness. Thus we might

say that x7/& was of the £th order of smallness. We shall however see later

on that such a scale of orders would still be altogether incomplete. And
as a matter of fact the integral orders of smallness defined above are so

much more important in applications than any others that it is hardly

necessary to attempt to make our definitions more precise.

Orders of greatness. Similar definitions are at once suggested to

meet the case in which <p (x) is large (positively or negatively) when x is

small. We shall say that
<fi

(x) is of the £th order of greatness when x is small

if (p (x)jx~
k=xk

(f)(x) tends to a limit different from as x tends to 0.

These definitions have reference to the case in which x-*-0. There are of

course corresponding definitions relating to the cases in which x-*~ go or x -* a.

Thus if xk cj)(x) tends to a limit other than zero, as o,-^-oo , then we say that

<j)(x) is of the kth order of smallness when x is large: while if (x-a) k <j>(x)

tends to a limit other than zero, as x-*-a, then we say that
(f>

(x) is of the £th

order of greatness when x is nearly equal to a.

*7. lim N/(l+.r) = hniv'(l-..i;) = b [Put l+x=y or \-x=y, and use

Ex. xxxv. 8.]

8. lim{N/(l+.r)- v/(l —x)}jx=\. [Multiply numerator and denominator

hy^(l+x) + s/(l-x).]

* In the examples which follow it is to be assumed that limits as x-*0 are

required, unless (as in Exs. 19, 22) the contrary is explicitly stated.
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9. Consider the behaviour of {N/(l +xm) - v/(l - xm)}/xn as #-*-<), m and n
being positive integers.

10. lina
{v/(l +.V+A'

2
) - l}lx=$.

nm
v/(l-*

2W(l-*)

12. Draw a graph of the function

r- {j^t +^i+^j +^}/{^r + irj

+

j^t + ,4j} •

Has it a limit as x-*-01 [Here y=l except for x=l, i, A, J, when y is

not defined, and y-*~l as ,r-*-0.]

13. lim
S-^=l.
x

[It may be deduced from the definitions of the trigonometrical ratios* that

if x is positive and less than \rt then

sin#<#<tan#

sin x ,
or cos.r< <1

x

ot 0<1 -<l-cos#= 2sin2
i.r.

x

But2sin2 ^<2(ia') 2<^'2 Hence lim (l -— ")=(), and lim — =1.
x-*-+o\ x J z-*~+0 x

As —- is an even function, the result follows.]
x J

t
. .. 1-cosa' . ,_ ,. sino» T ,,. , .» _.

14. lim —— =\. 15. lim—— =a. Is this true it a = 2

16. lim = 1. [Put.r= siny.]

. . tan ax . . arc tan ax
17. hm = a, lim =a.

x x

.. cosec x - cot x
, ,« t l + cos7r.r ,

18. lim = \. 19. lim—— ., — =*.
x x-*-\ t*n nX

* The proofs of the inequalities which are used here depend on certain pro-

perties of the area of a sector of a circle which are usually taken as geometrically

intuitive ; for example, that the area of the sector is greater than that of the

triangle inscribed in the sector. The justification of these assumptions must be

postponed to Ch. VII.
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20. How do the functions sin(l/x), (l/.r)sin (l/x), xsin(llx) behave

as x-*-0? [The first oscillates finitely, the second infinitely, the third

tends to the limit 0. None is defined when #= 0. See Exs. xv. 6, 7, 8.]

21. Does the function

y=
(
Bin

f)/(
Si1^

tend to a limit as x tends to ? [No. The function is equal to 1 except when

sin(l/#) = 0; i.e. when#=l/jr, 1 /2tt, ...,-1/tt, -1/2it, .... For these values the

formula for y assumes the meaningless form 0/0, and y is therefore not defined

for an infinity of values of x near x— 0.]

22. Prove that if m is any integer then [#]-»-«i and x — [x]-a-0 as

x-*-m +0, and [#]-»-

m

-I, x- [#]-*- 1 as x-*-m - 0.

98. Continuous functions of a real variable. The

reader has no doubt some idea as to what is meant by a continuous

curve. Thus he would call the curve C in Fig. 29 continuous,

the curve C generally continuous but discontinuous for x = g and

x = £ .

Y
C

Fig. 29.

Either of these curves may be regarded as the graph of a

function </> (x). It is natural to call a function continuous if its

graph is a continuous curve, and otherwise discontinuous. Let us

take this as a provisional definition and try to distinguish more

precisely some of the properties which are involved in it.

In the first place it is evident that the property oi the

function y = <f)(x) of which C is the graph may be analysed into

some property possessed by the curve at each of its points.

To be able to define continuity for all values of x we must first

define continuity for any particular value of x. Let us there-

fore fix on some particular value of x, say the value x = £
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corresponding to the point P of the graph. What are the

characteristic properties of <£ (x) associated with this value of x ?

In the first place $ (x) is defined for x = f. This is obviously

essential. If <p (£) were not defined there would be a point

missing from the curve.

Secondly <j> (x) is defined for all vahies of x near x = £; i.e. we
can find an interval, including x = f in its interior, for all points

of which
<f>

(x) is denned.

Thirdly if x approaches the value % from either side then
<f>

(x)

approaches the limit </> (£)•

The properties thus defined are far from exhausting those

which are possessed by the curve as pictured by the eye of

common sense. This picture of a curve is a generalisation from

particular curves such as straight lines and circles. But they are

the simplest and most fundamental properties : and the graph of

any function which has these properties would, so far as drawing

it is practically possible, satisfy our geometrical feeling of what a

continuous curve should be. We therefore select these properties

as embodying the mathematical notion of continuity. We are thus

led to the following

Definition. The function
<f>

(x) is said to be continuous for

.

x=g if it tends to a limit as x tends to £ from either side, and

each of these limits is equal to <£ (£).

We can now define continuity throughout an interval. The

function
<f>

(x) is said to be continuous throughout a certain

interval of values of x if it is continuous for all values of x in that

interval. It is said to be continuous everywhere if it is continuous

for every value of x. Thus [x] is continuous in the interval

(e, 1 — e), where e is any positive number less than ^; and 1 and x

are continuous everywhere-

If we recur to the definitions of a limit we see that our

definition is equivalent to '

<f>(x) is continuous for x= £ if, given 8,

we can choose e (8) so that
|
</> (x) — <£ (£) |

< 8 if ^
|

x — f |

^ e (8)'.

We have often to consider functions defined only in an interval

(a, b). In this case it is convenient to make a slight and obvious

/
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change in our definition of continuity in so far as it concerns the

particular points a and b. We shall then say that $ (x) is con-

tinuous for x = a if </> (a + 0) exists and is equal to $ (a), and for

x = b if (/> (b — 0) exists and is equal to
(f>

(b).

99. The definition of continuity given in the last section may

be illustrated geometrically as follows. Draw the two horizontal

lines y = <j> (f) - 8 and y = (f) + 8. Then
|

(a?) -
<f> (f) |

< S ex-

presses the fact that the point on the curve corresponding to x lies

f+f

Fig. 30.

between these two lines. Similarly
|
x — £ |

^ e expresses the fact

that x lies in the interval (£— e, £+e). Thus our definition asserts

that if we draw two such horizontal lines, no matter how close

together, we can always cut off a vertical strip of the plane by

two vertical lines in such a way that all that part of the curve

which is contained in the strip lies between the two horizontal

lines. This is evidently true of the curve G (Fig. 29), whatever

value £ may have.

We shall now discuss the continuity of some special types of

functions. Some of the results which follow were (as we pointed

out at the time) tacitly assumed in Ch. II.

Examples XXXVII. 1. The sum or product of two functions continuous

at a point is continuous at that point. The quotient is also continuous

unless the denominator vanishes at the point. [This follows at once from

Ex. xxxv. 1.]

2. Any polynomial is continuous for all values of x. Any rational

fraction is continuous except for values of x for which the denominator

vanishes. [This follows from Exs. xxxv. 6, 7.]
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3. v/.r is continuous for all positive values of x (Ex. xxxv. 8). It is not

defined when x < 0, but is continuous for x= in virtue of the remark made at

the end of § 98- The same is true of x'"'n, where m and n are any positive

integers of which n is even.

4. The function xm'
n

, where n is odd, is continuous for all values of x.

5. l/.r is not continuous for .r= 0. It has no value for x= 0, nor does it

tend to a limit as x-*-0- In fact \jx-*- +oo or I/a?-*- — oo according as x-*-Q

by positive or negative values.

6. Discuss the continuity of x~ m>'1
, where m and n are positive integers,

for x=0.

7. The standard rational function R(x) = P (x)jQ(x) is discontinuous for

x=a, where a is any root of Q (x) = 0. Thus (x2+ l)j(x2 -Sx+ 2) is discon-

tinuous for x=l. It will be noticed that in the case of rational functions a

discontinuity is always associated with (a) a failure of the definition for a

particular value of x and (b) a tending of the function to + oo or — x as x

approaches this value from either side. Such a particular kind of point of

discontinuity is usually described as an infinity of the function. An 'infinity'

is the kind of discontinuity of most common occurrence in ordinary work.

8. Discuss the continuity of

v' {(x -a)(b-x% # {(x - a) (b - x)}, v'{(.r - «)/(& - .r)}, #{(* - a)/(6 - .r)}

9. sin x and cos x are continuous for all values of x.

[We have sin (x+ h) — sin x=2 sin \h cos (x+\h).

which is numerically less than the numerical value of A.J

10. For what values of x are tana;, cot x, sec x, and cosec v continuous

or discontinuous ?

11. Iff (y) is continuous for ?/= »?, and (x) is a continuous function of

x which is equal to rj when $=£, then /{<£ (.r)} is continuous for #=£.

12. If
(f)

(x) is continuous for any particular value of x, then any poly-

nomial in (p (x), such as a
{<f>

(x)\m+ ..., is so too.

13. Discuss the continuity of

l/(acos2 .r-r-&sin2 .r), ^/C2, + cosx), x '(l -f sin.r), l/s/(l + sin.r).

14. sin (l/.r), .r sin (l/x), and a?
2 sin (l/.r) are continuous except for x= 0.

15. The function which is equal to x sin (l/x) except when x= 0, and to

zero when x= 0, is continuous for all values of x.

16. [r] and x — [x\ are discontinuous for all integral values of x.

17. For what (if any) values of x are the following functions discon-

tinuous : [x*\ Wx], <J(x -[*]), [x] + J(x-[x]), [2x], [#]+[-#]?

II. 12
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18. Classification of discontinuities. Some of the preceding examples

suggest a classification of different types of discontinuity.

(1) Suppose that (x) tends to a limit as x->-a either by values less

than or by values greater than a. Denote these limits, as in § 95, by (a - 0)

and (a+ 0) respectively. Then, for continuity, it is necessary and sufficient

that (x) should be denned forx= a, and that (a - 0)= (a) - (a +0). Dis-

continuity may arise in a variety of ways.

(a) 0(a-O) may be equal to (a+0), but 0(a) may not be denned, or

may differ from (a- 0) and 0(a+O). Thus if (#) = #sin (l/x) and a= 0,

(0 - 0) = (0 + 0) =0, but (x) is not defined for x = 0. Or if (x)= [1 - x2
]

anda = 0, (0-0) = $ (0 + 0) = 0, but 0(0) = 1.

(/3) (a - 0) and (a + 0) may be unequal. In this case (a) may be

equal to one or to neither, or be undefined. The first case is illustrated

by (#)= [>], for which (0 - 0)= - 1, (0+0)=$ (0) = ; the second by

(a?)= [*•] - [ - x], for which (0- 0) = -
1 , $ (0+ 0) = 1 , $ (0) = ; and the third

by 0(.r) = [.»;] + x sin (l/.f), for which $ (0-0)= - 1, (0 + 0) = 0, and $ (0) is

undefined.

In any of these cases we say that (x) has a simple discontinuity at

x= a. And to these cases we may add those in which (f>(x) is defined only

on one side of x— a, and (a -0) or $ (a+ 0), as the case may be, exists, but

(x) is either not defined when x= a or has when x=a a value different from

0(a-O) or cj){a+ 0).

It is plain from § 95 that a function which increases or decreases steadily

in the neighbourhood of x= a can have at most a simple discontinuity for x=a.

(2) It may be the case that only one (or neither) of (a - 0) and (a + 0)

exists, but that, supposing for example (a+ 0) not to exist, (#)-»- + oo or

(x)-*~- oo as x-^a + 0, so that (x) tends to a limit or to +oo or to - qo as

x approaches a from either side. Such is the case, for instance, if (x) = l/x or

(x) = Ijx2, and a = 0. In such cases we say (cf. Ex. 7) that x=a is an infinity

of (x). And again we may add to these cases those in which (.r)-»- +oo

or (p (x)-*- — cc&sx-*-a from one side, but (x) is not defined at all on the

other side of x— a.

(3) Any point of discontinuity which is not a point of simple discon-

tinuity nor an infinity is called a point of oscillatory discontinuity. Such

is the point x= for the functions sin (l/x), (ljx) sin (l/#).

19. What is the nature of the discontinuities at x= of the functions

(smx)lx, [x] + [-x], cosec x, <J(l/x), f/(llx), cosec(l/.r), sin (1 Jx)/sin (l/x) ?

20. The function which is equal to 1 when x is rational and to when
x is irrational (Ch. II, Ex. xvi. 10) is discontinuous for all values of x. So too

is any function which is defined only for rational or for irrational values of x.
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21. The function which is equal to x when x is irrational and to

\/{( 1 +P2

)/( 1 + ?
2
)} wnen x is a rational fraction p/q (Ch. II, Ex. xvi. 11) is

discontinuous for all negative and for positive rational values of .v, but
continuous for positive irrational values.

22. For what points are the functions considered in Ch. IV, Exs. xxxi
discontinuous, and what is the nature of their discontinuities ? [Consider,

e.g., the function y= lini xn (Ex. 5). Here y is only defined when -l<.r<l :

it is equal to when -\<x<\ and to 1 when x=\. The points x=l and
x= — 1 are points of simple discontinuity.]

100. The fundamental property of a continuous function.

It may perhaps be thought that the analysis of the idea of a con-

tinuous curve given in § 98 is not the simplest or most natural

possible. Another method of analysing our idea of continuity is the

following. Let A and B be two points on the graph of (x) whose

coordinates are x , <f>(x ) and x1} <}>(%i) respectively. Draw any

straight line X which passes between A and B. Then common
sense certainly declares that if the graph of </> (x) is continuous it

must cut X.

If we consider this property as an intrinsic geometrical

property of continuous curves it is clear that there is no real

loss of generality in supposing X to be parallel to the axis of x.

In this case the ordinates of A and B cannot be equal : let us

suppose, for defmiteness, that
<f) (^2 ) > <p (x ). And let X be the

line y = ?/, where $ (x ) < r/ <<f> (x,). Then to say that the graph

of <f)(x) must cut X is the same thing as to say that there is a

value of x between x and a^ for which <£ (x) = rj.

We conclude then that a continuous function
<f>

(x) must

possess the following property : if

4>{oc ) = ya , <f)(x1 ) = !/ 1 ,

and y() <ri< y1 ,then there is a value of x between x and xxfor which

cf) (#) = rj. In other words as x varies from x to x1} y must assume

at least once every value between y and y x .

We shall now prove that if </> (x) is a continuous function of x in

the sense denned in § 98 then it does in fact possess this property.

There is a certain range of values of x, to the right of x , for which

<b(.r)< v . For (p{xu)<r/, and so <£ (x) is certainly less than ?; if

12—2
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<f>
(x) —

<f>
(x ) is numerically less than 77 — <£ (x ). But since <£ (x)

is continuous for x = x , this condition is certainly satisfied if x is

near enough to x . Similarly there is a certain range of values,

to the left of x1} for which cf> (x) > 77.

Let us divide the values of x between x and xx into two classes

L, R as follows

:

(1) in the class L we put all values f of x such that
<f>

(x) < 77

when x = £ and for all values of x between x and £

;

(2) in the class R we put all the other values of x, i.e. all

numbers f such that either </> (£) = 7; or there is a value of x between

x and £ for which
<f>

(as) = 77.

Then it is evident that these two classes satisfy all the

conditions imposed upon the classes L, R of § 17, and so constitute

a section of the real numbers. Let f be the number corresponding

to the section.

First suppose <£ (£ ) > 77, so that £ belongs to the upper class

:

and let
(f> (£ ) = V + k, say. Then <£ (£') < 77 and so

for all values of £' less than £ , which contradicts the condition of

continuity for x = £ .

Next suppose <£ (£„) = r/ — k < rj. Then, if £' is any number

greater than £„, either <£(£') = 77 or we can find a number £"

between £ and £' such that <£(£") = 77. In either case we can

find a number as near to £ as we please and such that the corre-

sponding values of
(f>

(x) differ by more than Jc. And this again

contradicts the hypothesis that
<f>

(x) is continuous for x = £ .

Hence
<f> (£ ) = 77, and the theorem is established. It should

be observed that we have proved more than is asserted explicitly

in the theorem ; we have proved in fact that | is the least value

of x for which cf> (x) = tj. It is not obvious, or indeed generally

true, that there is a least among the values of x for which a

function assumes a given value, though this is true for continuous

functions.

It is easy to see that the converse of the theorem just proved is not

true. Thus such a function as the function $ (.r) whose graph is represented
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by Fig. 31 obviously assumes at least once every value between (.v ) and

0(-yi) : ye^ $ (
x) *s discontinuous. Indeed it is not even true that (x) must

be continuous when it assumes each value once and once only. Thus let (x)

be denned as follows from .r=0 to x= l. If ,x-= let (x)=0; if < x < 1

let cf)(x) = l-x; and if x=l let <f>(x) = l. The graph of the function is

shown in Fig. 32; it includes the points 0, C but not the points A, D. It

is clear that, as x varies from to 1, (x) assumes once and once only every

value between (0) = and 0(1) = 1 ; but 0(.r) is discontinuous for x= and

x=l.

Fig. 31.

As a matter of fact, however, the curves which usually occur in elementary

mathematics are composed of a finite number of pieces along which y always

varies in the same direction. It is easy to show that if ?/= (x) always varies

in the same direction, i.e. steadily increases or decreases, as x varies from

.r
tl
to Xi, then the two notions of continuity are really equivalent, i.e. that if

(x) takes every value between (x ) and fa) then it must be a continuous

function in the sense of § 98 For let £ be any value of x between x and
xv As.r-»-£ through values less than £, 0(#) tends to the limit 0(£ — 0)

(§ 95). Similarly as x-^^ through values greater than £, (x) tends to the

limit 0(|+O). The function will be continuous for *'=£ if and only if

<M£-o)=0(£)=0(|+o)

But if either of these equations is untrue, say the first, then it is evident that

<f>(x) never assumes any value which lies between (£— 0) and (£), which

is contrary to our assumption. Thus (x) must be continuous. The net

result of this and the last section is consequently to show that our common-
sense notion of what we mean by continuity is substantially accurate, and

capable of precise statement in mathematical terms.

101. In this and the following paragraphs we shall state and

prove some general theorems concerning continuous functions.
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Theorem 1. Suppose that <f>(x) is continuous for x=%, and

that <£(£) is positive. Then we can determine a positive number e

such that <£ (£) is positive throughout the interval (£ — e, £ + e).

For, taking 8 = \$ (£) in the fundamental inequality of p. 175,

we can choose e so that

|*(«)--*(0I<**(0

throughout (£ — e, £ + e), and then

*(*)s*(0-i£(*)-*<0i>to(e)>o,

so that <£ {x) is positive. There is plainly a corresponding theorem

referring to negative values of <£ (x).

Theorem 2. If(f> ix) ^s continuous for x = f, and </> (a;) vanishes

for values of x as near to £ as we please, or assumes, for values of

x as near to £ as we please, both positive and negative values, then

*({)-

a

This is an obvious corollary of Theorem 1. If (/>(£) is not zero,

it must be positive or negative ; and if it were, for example, positive,

it would be positive for all values of x sufficiently near to £, which

contradicts the hypotheses of the theorem.

102. The range of values of a continuous function. Let

us consider a function
(f>

(x) about which we shall only assume at

present that it is defined for every value of x in an interval (a, b).

The values assumed by <£ (x) for values of x in (a, b) form an

aggregate S to which we can apply the arguments of § 80, as we
applied them in § 81 to the aggregate of values of a function of n.

If there is a number K such that <j> (x) % K, for all values of x in

question, we say that cf> (x) is bounded above. In this case cf) (x)

possesses an upper bound M : no value of <£ (x) exceeds M, but any

number less than M is exceeded by at least one value of </> (an).

Similarly we define 'bounded below', 'lower bound', 'bounded', as

applied to functions of a continuous variable x.

Theorem 1. If <£ (x) is continuous throughout (a, b), then it is

bounded in (a, b).
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We can certainly determine an interval (a, £), extending to

the right from a, in which
(f>

(x) is bounded. For since (/> (as) is

continuous for x = a, we can, given any positive number 8 however
small, determine an interval (a, £) throughout which <£ (x) lies

between <f>(a)—8 and <£ (a) + 8; and obviously </> (x) is bounded in

:his interval.

Now divide the points £ of the interval (a, b) into two classes

L, R, putting £ in L if </> (£) is bounded in (a, £), and in R if this

is not the case. It follows from what precedes that L certainly

exists: what we propose to prove is that R does not. Suppose

that R does exist, and let ft be the number corresponding to the

section whose lower and upper classes are L and R. Since <$> (x)

is continuous for x = ft, we can, however small 8 may be, determine

an interval (ft — rj, ft + rj)* throughout which

<f>(ft)-8<c}>(x)< (f>(ft) + 8.

Thus $ (x) is bounded in (ft — n, ft + y). Now ft
— n belongs to L.

Therefore <f)(x) is bounded in (a, ft
— ri): and therefore it is

bounded in the whole interval (a, ft + ?;). But ft + 77 belongs to R
and so <£ (x) is not bounded in (a, ft + rj). This contradiction

shows that R does not exist. And so
<f>

(x) is bounded in the

whole interval (a, b).

Theorem 2. If <fi
(x) is continuous throughout (a, b), and M

and m are its upper and lower bounds, then <£ (x) assumes the values

M and m at least once each in the interval.

For, given any positive number 8, we can find a value of x for

which M - <£> O) < 8 or 1/{M - </> (x)} > 1/8. Hence 1/[M - (x)}

is not bounded, and therefore, by Theorem 1, is not continuous.

But M—cf)(x) is a continuous function, and so l/[M—<f>(x)} is

continuous at any point at which its denominator does not vanish

(Ex. xxxvil. 1). There must therefore be one point at which

the denominator vanishes: at this point tf>(x) = M. Similarly it

may be shown that there is a point at which (x) = in.

The proof just given is somewhat subtle and indirect, and it

may be well, in view of the great importance of the theorem,

to indicate alternative lines of proof. It will however be con-

venient to postpone these for a moment f.

* If j3= b we must replace this interval by (8-ij, /3), and /3 + i? by /3, throughout

the argument which follows,

f See § 101.
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Examples XXXVIII. 1. If 0(a?)= l/# except when .r = 0, and <p(x) =
when x— 0, then <f>(x) has neither an upper nor a lower bound in any

interval which includes x= in its interior, as e.g. the interval (
—

1, +1).

2. If cf>(x) = l/x2 except when x= 0, and <p(x)= when x=0, then <fi(x)

has the lower bound 0, but no upper bound, in the interval (— 1, +1).

3. Let <£(#) = sin (1/x) except when x= 0, and cf>(x) = when x—0. Then

(f>
(x) is discontinuous for x — 0. In any interval ( - 8, + 8) the lower bound is

— 1 and the upper bound 4-1, and each of these values is assumed by $ (x) an

infinity of times.

4. Let <p (x) = x - [x]. This function is discontinuous for all integral

values of x. In the interval (0, 1) its lower bound is and its upper bound 1.

It is equal to when a?=0 or x=\, but it is never equal to 1. Thus <j>(x)

never assumes a value equal to its upper bound.

5. Let <p(x) = when x is irrational, and $ (•v) = q when x is a rational

fraction pjq. Then <£ (x) has the lower bound 0, but no upper bound, in any

interval (a, b). But if <£ (x) = ( — l)p q when x=pjq, then
<f>

(x) has neither an

upper nor a lower bound in any interval.

103. The oscillation of a function in an interval. Let

(f) (%) be any function bounded throughout (a, b), and M and m
its upper and lower bounds. We shall now use the notation

M (a, b), m(a, b) for M, m, in order to exhibit explicitly the de-

pendence of M and in on a and b, and we shall write

0(a, b) = M (a, b) - m {a, b).

This number (a, b), the difference between the upper and

lower bounds of
<f>

(a) in (a, b), we shall call the oscillation of </> (x)

in (a, b). The simplest of the properties of the functions M (a, b),

m (a, b), (a, b) are as follows.

(1) If a ^ c £ b then M (a, b) is equal to the greater ofM (a, c)

and M(c, b), and m (a, b) to the lesser ofm (a, c) and m (c, b).

(2) M (a, b) is an increasing, in (a, b) a decreasing, and (a, b)

an increasing function of b.

(3) 0(a,b)^0(a,c) + 0(c,b).

The first two theorems are almost immediate consequences of

our definitions. Let yu, be the greater ofM (a, c) and M (c, b), and
let B be any positive number. Then </> (x) ^ /u, throughout (a, c)

and (c, b), and therefore throughout (a, b) ; and <p (w) > /x - 8

somewhere in (a, c) or in (c, 6), and therefore somewhere in (a, b).
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Hence M (a, b) = /x. The proposition concerning m may be proved
similarly. Thus (1) is proved, and (2) is an obvious corollary.

Suppose now that Mx is the greater and M2 the less of if (a, c)

and M (c, b), and that my is the less and m, the greater of m (a, c)

and m (c, b). Then, since c belongs to both intervals, </> (c) is not

greater than M2 nor less than m,. Hence M2 ^ m2 , whether these

numbers correspond to the same one of the intervals (a, c) and

(c, b) or not, and

0(a,b) = My - wi, ^ M
x + M2

- w, - m2 .

But (a, c) + (c, b) =M
x + M, - mx

- m,

;

and (3) follows.

104. Alternative proofs of Theorem 2 of § 102. The most straight-

forward proof of Theorem 2 of § 102 is as follows. Let £ be any number of

the interval (a, b). The function J/ (a, £) increases steadily with £ and never

exceeds M. We can therefore construct a section of the numbers £ by

putting £ in L or in R according as M (a, £) <M or M(a, £)= M. Let (i be

the number corresponding to the section. If a<8 <b, we have

M(a,8-r,)<M, M (a, 8 + 1,)
= J/

for all positive values of 77, and so

#(/3-i7, I3 + t,) = M,

by (1) of § 103. Hence $ (.r) assumes, for values of x as near as we please to

8, values as near as we please to M, and so, since $ (x) is continuous,
(f) (8)

must be equal to M.

If 8= a then J/ (a, a +17)= J/. And if /3 = 6 then M (a, 6-17) < J/, and

so Jf (6 — 77, b) = M. In either case the argument may be completed as

before.

The theorem may also be proved by the method of repeated bisection

used in § 71. If M is the upper bound of cf> (x) in an interval PQ, and PQ
is divided into two equal parts, then it is possible to find a half Py Qy in which

the upper bound of $ (x) is also M. Proceeding as in § 71, we construct a

sequence of intervals PQ, PyQy, P2Q2, • •• in each of which the upper bound

of (x) is M. These intervals, as in § 71, converge to a point T, and it is

easily proved that the value of
<fi

(x) at this point is M.

105. Sets of intervals on a line. The Heine-Borel

Theorem. We shall now proceed to prove some theorems con-

cerning the oscillation of a function which are of a somewhat

abstract character but of very great importance, particularly, as

we shall see later, in the theory of integration. These theorems

depend upon a general theorem concerning intervals on a line.
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Suppose that we are given a set of intervals in a straight

line, that is to say an aggregate each of whose members is an

interval (a, ft). We make no restriction as to the nature of

these intervals ; they may be finite or infinite in number ; they

may or may not overlap*; and any number of them may be

included in others-

It is worth while in passing to give a few examples of sets of intervals to

which we shall have occasion to return later.

(i) If the interval (0, 1) is divided into n equal parts then the n intervals

thus formed define a finite set of non-overlapping intervals which just cover

up the line.

(ii) We take every point £ of the interval (0, 1), and associate with £ the

interval (£ — e, £+ e), where e is a positive number less than 1, except that

with we associate (0, e) and with 1 we associate (1 — e, 1), and in general we
reject any part of any interval which projects outside the interval (0, 1). We
thus define an infinite set of intervals, and it is obvious that many of them

overlap with one another.

(iii) We take the rational points pjq of the interval (0, 1), and associate

\M\th. plq the interval

(P_ e P + l
\q if q q-

where e is positive and less than 1. We regard as 0/1 and 1 as 1/1 : in

these two cases we reject the part of the interval which lies outside (0, 1). We
obtain thus an infinite set of intervals, which plainly overlap with one another,

since there are an infinity of rational points, other than p/q, in the interval

associated with pjq.

The Heine-Borel Theorem. Suppose that we are given an

interval (a, b), and a set of intervals I each of whose members is

included in (a, b). Suppose further that I possesses the following

properties

:

(i) every point of (a, b), other than a and b, lies inside~\ at

least one interval of I ;

(ii) a is the left-hand end point, and b the right-hand end

point, of at least one interval of I.

Then it is possible to choose a finite number of intervalsfrom
the set I which form a set of intervals possessing the properties (i)

and (ii).

* The word overlap is used in its obvious sense : two intervals overlap if they

have points in common which are not end points of either. Thus (0, f) aud (|, 1)

overlap. A pair of intervals such as (0, ^) and (£, 1) may be said to abut.

t That is to say ' in and not at an end of.
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We know that a is the left-hand end point of at least one
interval of /, say (a, a^. We know also that a

t
lies inside at least

one interval of /, say (a/, a 2 ). Similarly a2 lies inside an interval

(a.2, a3) of /. It is plain that this argument may be repeated in-

definitely, unless after a finite number of steps an coincides with b.

If an does coincide with b after a finite number of steps then

there is nothing further to prove, for we have obtained a finite set

of intervals, selected from the intervals of /, and possessing the

properties required. If an never coincides with b, then the points

a1} « 2 , a3 , ... must (since each lies to the right of its predecessor)

tend to a limiting position, but this limiting position may, so far

as we can tell, lie anywhere in (a, b).

Let us suppose now that the process just indicated, starting

from a, is performed in all possible ways, so that we obtain all

possible sequences of the type a1} a 2 , a3 , .... Then we can prove

that there must be at least one suck sequence which arrives at b

after a finite number of steps.

S «s 4' S n 4" \b

Fig. 33.

There are two possibilities with regard to any point £ between

a and b. Either (i) £ lies to the left of some point an of some

sequence or (ii) it does not. We divide the points £ into two

classes L and R according as to whether (i) or (ii) is true. The

class L certainly exists, since all points of the interval (a, o
2 )

belong to L. We shall now prove that R does not exist, so that

every point f belongs to L.

If R exists then L lies entirely to the left of R, and the classes

L, R form a section of the real numbers between a and b, to

which corresponds a number | . The point £ lies inside an interval

of /, say (£', f"), and £' belongs to L, and so lies to the left of

some term a n of some sequence. But then we can take (£', £")

as the interval (an', an+1 ) associated with an in our construction

of the sequence a 1} a 2 , a 3 , ...; and all points to the left of £"

lie to the left of a n+1 . There are therefore points of L to the

right of £ , and this contradicts the definition of R. It is

therefore impossible that R should exist.
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Thus every point £ belongs to L. Now b is the right-hand

end point of an interval of i", say (61; b), and bx belongs to L.

Hence there is a member an of a sequence a1} a.2> az , ... such that

an > bi . But then we may take the interval (an
'

t an+i) corre-

sponding to an to be (b1} b), and so Ave obtain a sequence in which

the term after the nth coincides with b, and therefore a finite set

of intervals having the properties required. Thus the theorem is

proved.

It is instructive to consider the examples of p. 186 in the light of this

theorem.

(i) Here the conditions of the theorem are not satisfied the points

1/?!, 2/h, 3/n, ... do not lie inside any interval of I

(ii) Here the conditions of the theorem are satisfied. The set of

intervals

(0, 20, (e,3«), (2f, 4C ), ..., (1-2*, 1),

associated with the points e, 2e, 3e, ..., 1 - e, possesses the properties re-

quired.

(iii) In this case we can prove, by using the theorem, that there are,

if « is small enough, points of (0, 1) which do not lie in any interval of I.

If every point of (0, 1) lay inside an interval of / (with the obvious

reservation as to the end points), then we could find a finite number of intervals

of / possessing the same property and having therefore a total length greater

than 1. Now there are two intervals, of total length 2e, for which g
, = l, and

q-\ intervals, of total length 2e(q—l)/q?
', associated with any other value

of q. The sum of any finite number of intervals of / can therefore not be

greater than 2e times that of the series

, 1 2 3
1+23 + 33 + 43+ .».

which will be shown to be convergent in Ch. VIII. Hence it follows that, if

e is small enough, the supposition that every point of (0, 1) lies inside an

interval of / leads to a contradiction.

The reader may be tempted to think that this proof is needlessly

elaborate, and that the existence of points of the interval, not in any interval

of /, follows at once from the fact that the sum of all these intervals is less

than 1. But the theorem to which he would be appealing is (when the set of

intervals is infinite) far from obvious, and can only be proved rigorously by

some such use of the Heine-Borel Theorem as is made in the text.

106. We shall now apply the Heine-Borel Theorem to the

proof of two important theorems concerning the oscillation of a

continuous function.
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Theorem I. If <j> (as) is continuous throughout the interval

(a, b), then we can divide (a, b) into a finite number of sub-intervals

(a, #,), (#!, :c2 ), ... (ccn , b), in each of which the oscillation of <j>(x) is

less than an assigned positive number 8.

Let £ be any number between a and b. Since <£ (#) is con-

tinuous for x = £, we can determine an interval (f — e, £ + e) such

that the oscillation of <£ (#) in this interval is less than 8. It is

indeed obvious that there are an infinity of such intervals corre-

sponding to every £ and every 8, for if the condition is satisfied for

any particular value of e, then it is satisfied a fortiori for any smaller

value. What values of e are admissible will naturally depend upon

£; we have at present no reason for supposing that a value of e

admissible for one value of £ will be admissible for another. We
shall call the intervals thus associated with £ the 8-intervals of %.

If
f-
= a then we can determine an interval (a, a + e). and so an

infinity of such intervals, having the same property. These we
call the 8-intervals of a, and we can define in a similar manner the

S-intervals of b.

Consider now the set I of intervals formed by taking all the

S-intervals of all points of (a, b). It is plain that this set satisfies

the conditions of the Heine-Borel Theorem ; every point interior

to the interval is interior to at least one interval of /, and a and b

are end points of at least one such interval. We can therefore

determine a set /' which is formed by a finite number of intervals

of /, and which possesses the same property as / itself.

The intervals which compose the set /' will in general overlap

as in Fig. 34. But their end

points obviously divide up - =Z^ZI

—

^ZZ.
(a, b) into a finite set of in-

a b

tervals I" each of which is

included in an interval of /', and in each of which the oscillation

of
(f>

(x) is less than 8. Thus Theorem I is proved.

Theorem II. Given any positive number 8, we can find a

number rj such that, if the interval (a, b) is divided in any manner

into sub-intervals of length less than v, then the oscillation of <j>(x)

in each of them will be less than 8.
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Take 8 V < £8, and construct, as in Theorem I, a finite set of sub-

intervals j in each of which the oscillation of
<f>

(x) is less than 8
X .

Let 77 be the length of the least of these sub-intervals j. If

now we divide (a, b) into parts each of length less than 77, then any

such part must lie entirely within at most two successive sub-

intervals j. Hence, in virtue of (3) of § 103, the oscillation of
<f>

(x),

in one of the parts of length less than 77, cannot exceed twice the

greatest oscillation of </> (x) in a sub-interval j, and is therefore

less than 281} and therefore than 8.

This theorem is of fundamental importance in the theory of

definite integrals (Ch. VII). It is impossible, without the use of

this or some similar theorem, to prove that a function continuous

throughout an interval necessarily possesses an integral over that

interval.

107. Continuous functions of several variables. The

notions of continuity and discontinuity may be extended to

functions of several independent variables (Ch. II, §§ 31 et seg.).

Their application to such functions, however, raises questions

much more complicated and difficult than those which we have

considered in this chapter. It would be impossible for us to

discuss these questions in any detail here ; but we shall, in the

sequel, require to know what is meant by a continuous function of

two variables, and we accordingly give the following definition.

It is a straightforward generalisation of the last form of the de-

finition of § 98.

The function (j>(x, y) of the two variables x and y in said to be

continuous for x= £, y = 77 if given any positive number 8, how-

ever small, we can choose e (8) so that

\(f>(x,y)-(f) (|, 77) j
< 8

when ^
|
x — f |

^ e (8) and g
|

y — 77 1 s e (8); that is to say if we

can draw a square, ivhose sides are parallel to the axes of coordinates

and of length 2e (8), whose centre is the point (£, 77), and which is such

that the value of c}> (x, y) at any point inside it or on its boundary

differs from <$> (£, 77) by less than 8*

This definition of course presupposes that
(f>

(x, y) is defined at

all points of the square in question, and in particular at the point

* The reader should draw a figure to illustrate the definition.



106-108] CONTINUOUS AND DISCONTINUOUS FUNCTIONS 191

(£ 77). Another method of stating the definition is this :
<f>

(x, y) is

continuous for x=£, y=v if <f>(x,y) ^</>(£, n) ivhen x+\, y^v
in any manner. This statement is apparently simpler; but it

contains phrases the precise meaning of which has not yet been
explained and can only be explained by the help of inequalities

like those which occur in our original statement.

It is easy to prove that the sums, the products, and in general

the quotients of continuous functions of two variables are them-
selves continuous. A polynomial in two variables is continuous for

all values of the variables ; and the ordinary functions of x and y
which occur in every-day analysis are generally continuous, i.e.

are continuous except for pairs of values of x and y connected by
special relations.

The reader should observe carefully that to assert the continuity of

<f>
(x, y) with respect to the two variables x and y is to assert much more

than its continuity with respect to each variable considered separately. It is

plain that if <£ (x, y) is continuous with respect to x and y then it is certainly

continuous with respect to x (or y) when any fixed value is assigned to y

(or .r). But the converse is by no means true. Suppose, for example, that

(b (x, y) = .,

when neither x nor y is zero, and (p (x, y)=0 when either x or y is zero. Then

if y has any fixed value, zero or not,
<f>

(x, y) is a continuous function of x,

and in particular continuous for x= 0; for its value when x=0 is zero, and it

tends to the limit zero as x-*-0. In the same way it may be shown that

(p (x, y) is a continuous function of y. But q> (x, y) is not a continuous function

of x and y for aj=0, y = 0. Its value when x=0, y = is zero ; but if x and

y tend to zero along the straight line y = ax, then

(*i y) = T-r-t »
lim 4> to y) = rrn; •

J. + it- 1 + a"

which may have any value between — 1 and 1.

108. Implicit functions. We have already, in Ch. II, met with

the idea of an implicit function. Thus, if x and y are connected by the

relation

y
r'-xy-y-x= (1),

then y is an 'implicit function' of x.

But it is far from obvious that such an equation as this does really define

a function y of x, or several such functions. In Ch. II we were content to

take this for granted. We are now in a position to consider whether the

assumption we made then was justified.
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We shall find the following terminology useful. Suppose that it is possible

to surround a point («, b), as in § 107, with a square throughout which

a certain condition is satisfied. We shall call such a square a neighbourhood

of (a, 6), and say that the condition in question is satisfied in the neighbour-

hood of {a, b), or near (a, b), meaning by this simply that it is possible to find

some square throughout which the condition is satisfied. It is obvious that

similar language may be used when we are dealing with a single variable, the

square being replaced by an interval on a line.

Theorem. If (i) f(x, y) is a continuous function of x and y in the

neighbourhood of (a, b),

(ii) f{a,b)=0,

(iii) fix, y) is, for all values of x in the neighbourhood of a, a steadily

increasing function of y, in the stricter sense of % 95,

then (1) there is a unique function y= cf> (x) which, when substituted in the

equation f(x, y)=0, satisfies it identically for all values of x in the neighbour-

hood of a,

(2) <p (x) is continuous for all values of x in the neighbourhood of a.

In the figure the square represents a ' neighbourhood ' of (a, b) through-

out which the conditions (i) and (iii) are

satisfied, and P the point (a, b). If we

take Q and R as in the figure, it follows from

(iii) that/(#, y) is positive at Q and negative

at R. This being so, and f(x, y) being con-

tinuous at Q and at R, we can draw lines Qf/

and RR! parallel to OX, so that R'Q' is parallel

to OY and f(x, y) is positive at all points of

QQ' and negative at all points of RR'. In par-

ticular f(x, y) is positive at Q' and negative at

R', and therefore, in virtue of (iii) and § 100,

vanishes once and only once at a point P' on

/<"(/. The same construction gives us a unique point at which f(x,y) =
on each ordinate between RQ and R'Q'. It is obvious, moreover, that the

same construction can be carried out to the left of RQ. The aggregate of

points such as P' gives us the graph of the required function y= (f>(x).

It remains to prove that <£ (x) is continuous. This is most simply effected

by using the idea of the 'limits of indetermination ' of
(f>

(x) as x-^a
(J)

96).

Suppose that x-*-a, and let X and A be the limits of indetermination of $ (x)

as x-*-a. It is evident that the points (a, X) and (a, A) lie on QR. Moreover,

we can find a sequence of values of x such that
(f>

(.>•)-»- X when x-*-a through

the values of the sequence; and since / {x,
<f>

(x)\ =0, and f(x,y) is a con-

tinuous function of x and y, we have

/(«,X) = 0.

Hence X = 7>; and similarly A=6. Thus cf> (x) tends to the limit b as x-*-a,

and so $>(x) is continuous for x=a. It is evident that we can show in

Q
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exactly the same way that <j> (x) is continuous for any value of x in the

neighbourhood of a.

It is clear that the truth of the theorem would not be affected if we were

to change 'increasing' to 'decreasing 5

in condition (iii).

As an example, let us consider the equation (1), taking a = 0, 6=0. It is

evident that the conditions (i) and (ii) are satisfied. Moreover

/(^y)-/(^y')=(y-y)(3/4 +3/¥+^y2+yy3+y4 -x-i)
has, when x, y, and y' are sufficiently small, the sign opposite to that of

y-y'. Hence condition (iii) (with 'decreasing' for 'increasing') is satisfied.

It follows that there is one and only one continuous function y which
satisfies the equation (1) identically and vanishes with x.

The same conclusion would follow if the equation were

y
2 -xy-y-x= 0.

The function in question is in this case

y= h {1 +x- s/(l + 6x+x2
)},

where the square root is positive. The second root, in which the sign of the

square root is changed, does not satisfy the condition of vanishing with x.

There is one point in the proof which the reader should be careful to ob-

serve. We supposed that the hypotheses of the theorem were satisfied 'in

the neighbourhood of (a, b)\ that is to say throughout a certain square

^-f = ^ = ^+ f] ^-(gj/<?)+ e. The conclusion holds 'in the neighbourhood

of a:= a', that is to say throughout a certain interval £ — et < x < £+ e x . There

is nothing to show that the el of the conclusion is the e of the hypotheses, and

indeed this is generally untrue.

109. Inverse Functions. Suppose in particular that/(#, y) is of the

form F(y) - x. We then obtain the following theorem.

If F(y) is afunction of y, continuous and steadily increasing {or decreasing),

in the stricter sense of § 95, in the neighbourhood of y= b, and F(b) = a, then

there is a unique continuous function y= <P (x) which is equal to b when x= a

and satisfies the equation F(y) = x identically in the neighbourhood of x=a.

The function thus defined is called the inverse function of F{y).

Suppose for example that y
3= x, a= 0, b= 0. Then all the conditions of

the theorem are satisfied. The inverse function is x=f/y.

If we had supposed that y
2= x then the conditions of the theorem would

not have been satisfied, for y
2 is not a steadily increasing function of y in any

interval which includes y = 0: it decreases when y is negative and increases

when y is positive. And in this case the conclusion of the theorem does not

hold, for y
2=x defines two functions of x, viz. y=*Jx and y= -Jx, both of

which vanish when x—0, and each of which is defined only for positive values

of x, so that the equation has sometimes two solutions and sometimes none.

The reader should consider the more general equations

yin=x, y
2n + 1= x,

H. 13
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in the same way. Another interesting example is given by the equation

y
h —y - .x'=0,

already considered in Ex. xiv. 7.

Similarly the equation siny= x

has just one solution which vanishes with x, viz. the value of arc sin a? which

vanishes with x. There are of course an infinity of solutions, given by the

other values of arc sin x (cf. Ex. xv. 10), which do not satisfy this condition.

So far we have considered only what happens in the neighbourhood of a

particular value of x. Let us suppose now that F(y) is positive and steadily

increasing (or decreasing) throughout an interval (a, b). Given any point £

of (a, b), we can determine an interval i including £, and a unique and con-

tinuous inverse function 0,- (x) defined throughout i.

From the set I of intervals i we can, in virtue of the Heine-Borel Theorem,

pick out a finite sub-set covering up the whole interval (a, b) ; and it is plain

that the finite set of functions <£; (x), corresponding to the sub-set of intervals i

thus selected, define together a unique inverse function
(f>

(x) continuous

throughout (a, b).

We thus obtain the theorem : if x= F(y), where F(y) is continuous and

increases steadily and strictly from A to B as x increases from a to 6, then there

is a unique inverse function y= (j) (x) which is continuous and increases steadily

and strictly from a to b as x increases from A to B.

It is worth while to show how this theorem can be obtained directly with-

out the help of the more difficult theorem of § 108. Suppose that A <£<B,
and consider the class of values of y such that (i) a <y < b and (ii) F(y) 5£ £.

This class has an upper bound rj, and plainly F(rj)2k£. If F(rj) were less

than £, we could find a value of y such that y > r) and F(y) < £, and rj would

not be the upper bound of the class considered. Hence F(j)) = g. The
equation F{y) = £ has therefore a unique solution y= T) = <p(£), say; and

plainly rj increases steadily and continuously with £, which proves the theorem.

MISCELLANEOUS EXAMPLES ON CHAPTER V.

1. Show that, if neither a nor b is zero, then

axn + bxn ~ x+ . . . +k=axn (1 + fx),

where ex is of the first order of smallness when x is large.

2. If P (x) = ax11+ bxn ~ 1 + . . . + fc, and a is not zero, then as x increases

P(x) has ultimately the sign of a; and so has P (x+ \)-P(x), where X is

any constant.

3. Show that in general

(axn + bxn
~ 1 + ...+k)/{Axn + Bxn ~ l + ... + K)=a + ((3/x) (I + ex),

where a= a/A, ji= {bA -aB)/A 2
, and ex is of the first order of smallness when

v is large. Indicate any exceptional cases.
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4. Express (ax2+bx+ c)/(Ax2+ Bx+C)
in the form a + (fi/s) + (y/x2

) (1 + ex),

where ex is of the first order of smallness when x is large.

5. Show that lim s?x {sl(x+ a) - »Jx} = ^a.

[Use the formula ^(x+ a) — K/x= al{S/'(x+ a) + s,fx}.]

6. Show that J(x+a) = sfx+ ^ (a/s/x) (1 + ex), where ex is of the first order

of smallness when x is large.

7. Find values of a and j3 such that J(ax- + 2bx+c) - ax - ft has the limit

zero as x-*-cc ; and prove that liuxx{^/(ax2 + 2bx + c) — ax— /3} = (ac - 62)/2a.

8. Evaluate lim .t'{ s/[lr2 + N^(.f
4 + l)]-.r x/2}.

9. Prove that (sec x — tan x) -»- as x -»-\ «-.

10. Prove that $ (x) = 1 - cos (1 - cos x) is of the fourth order of smallness

when x is small ; and find the limit of (j> (x)^ as x-*~Q.

11. Prove that
<f>
(x)—x sin (sin x) - sin2 x is of the sixth order of smallness

when x is small ; and find the limit of $ ^jx6 as x-*~Q.

12. From a point P on a radius OA of a circle, produced beyond the circle,

a tangent PT is drawn to the circle, touching it in T, and TN is drawn per-

pendicular to OA. Show that NAjAP-*~l as P moves up to A.

13. Tangents are drawn to a circular arc at its middle point and its

extremities ; A is the area of the triangle formed by the chord of the arc and
the two tangents at the extremities, and A' the area of that formed by the

three tangents. Show that A/A'-*-4 as the length of the arc tends to zero.

14. For what values of a does {a+ sin (l/x)}/x tend to (1) oc
, (2) - oc

,

as x-*-01 [To qo if a>\, to -00 if «<-l: the function oscillates if

-1 <«<1.]

15. If <p(x) = l/q when x=plq, and <j)(x) = when x is irrational, then

(f)
(x) is continuous for all irrational and discontinuous for all rational values

of x.

16. Show that the function whose graph is drawn in Fig. 32 may be repre-

sented by either of the formulae

1 - x+ [x~\- [1 - x], 1 - x - lim (cos2n + 1 irx).

71-*- 00

17. Show that the function </>(#) which is equal to when #=0, to \ — x

when 0<x<^, toi when x=^, to f — x when ^<x<\, and to 1 when

,r = l, assumes every value between and 1 once and once only as x increases

from to 1, but is discontinuous for x=0, #=£, and x=l. Show also that

the function may be represented by the formula

^- x+ i[2x]-h[l-±r].

13—2
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18. Let <f>(x) = x when x is rational and cf> (x) = 1 - x when x is irrational.

Show that
<f)

(x) assumes every value between and 1 once and once only as x

increases from to 1, but is discontinuous for every value of x except %=\.

19. As x increases from — \rt to \ir, ?/= sin x is continuous and steadily

increases, in the stricter sense, from - 1 to 1. Deduce the existence of a

function #=arc sinj/ which is a continuous and steadily increasing function

of y from y= - 1 to y= \.

20. Show that the numerically least value of arc tan y is continuous for

all values of y and increases steadily from —\n to \n as y varies through all

real values.

21. Discuss, on the lines of §§ 108—109, the solution of the equations

y
2 -y-x=0, y*-y*-x*=0, tf-y*+x*=0

in the neighbourhood of x=0, y= 0.

22. If ax2+ 2bxy + cy2 + 2dx+ 2ey=0 and A= 2bde-ae2 -cd2
, then one

value of y is given by y= ax+ fix
2 + (y+ cx ) a'3

j where

a=-d/e, = A/2e3
, y = (cd- be) A/2e5

,

and ex is of the first order of smallness when x is small.

[If y-ax= rj then

— 2ex] = ax2+ 2bx{r)-\- ax) + C (rj + ax)2= Ax2+ 2Bxrj + Crj2
,

say. It is evident that rj is of the second order of smallness, xrj of the third,

and r]
2 of the fourth ; and - 2erj =Ax2 — (AB/e) x3

, the error being of the fourth

order.]

23. If x=ay+ by 2+ cy3 then one value of y is given by

y= ax+ fix
2+ (y + ex) x3

,

where a=l/a, /3= —b/a3
,
y=(2b2 -ac)/ab

, and ex is of the first order of small-

ness when x is small.

24. If x= ay+ byn, where n is an integer greater than unity, then one

value of y is given by y= ax+ fix
11+ (y+ ex) x2n ~ l

, where a=l/a, /9*= — 6/an + 1

,

y= nb2/a2,l + 1
, and ex is of the (n— l)th order of smallness when x is small.

25. Show that the least positive root of the equation xy= sinx is a con-

tinuous function of y throughout the interval (0, 1), and decreases steadily

from 7r to as y increases from to 1. [The function is the inverse of

(sin x)jx : apply § 109.]

26. The least positive root of xy — tan x is a continuous function of y
throughout the interval (1, cc ), and increases steadily from to |?r as y
increases from 1 towards oo

.



CHAPTER VI

DERIVATIVES AND INTEGRALS

110. Derivatives or Differential Coefficients. Let us return

to the consideration of the properties which we naturally associate

with the notion of a curve. The first and most obvious property

is, as we saw in the last chapter, that which gives a curve its

appearance of connectedness, and which we embodied in our defini-

tion of a continuous function.

The ordinary curves which occur in elementary geometry, such

as straight lines, circles and conic sections, have of course many
other properties of a general character. The simplest and most

noteworthy of these is perhaps that they have a definite direction

at every point, or what is the same thing, that at every point of

the curve we can draw a tangent to it. The reader will probably

remember that in elementary geometry the tangent to a curve at

P is defined to be ' the limiting position of the chord PQ, when Q
moves up towards coincidence with P '. Let us consider what is

implied in the assumption of the existence of such a limiting-

position.

In the figure (Fig. 36) P is a fixed point on the curve, and Q
a variable point; PM, QN are parallel to 0Y and PR to OX.

We denote the coordinates of P by x, y and those of Q by

% + h, y + k: h will be positive or negative according as N lies to

the right or left of M.

We have assumed that there is a tangent to the curve at P,

or that there is a definite ' limiting position ' of the chord PQ.

Suppose that PT, the tangent at P, makes an angle yjr with OX.

Then to say that PT is the limiting position of PQ is equivalent

to saying that the limit of the angle QPR is yp; when Q approaches
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P along the curve from either side. We have now to distinguish

two cases, a general case and an exceptional one.

N M
Fig. 36.

The general case is that in which yjr is not equal to |tt, so that

PT is not parallel to OY. In this case RPQ tends to the limit

yjr, and
RQ/PR = tan RPQ

tends to the limit tan yfr. Now

RQ/PR = (NQ - MP)jMN = {$ (x + h) - <£ (x)}fh

;

.. <\> (x + h) -
<f) O) , , ,_.

and so lim -^ ^

—

7- \ / _ tan ^ ^^
a ^- 'i

The reader should be careful to note that in all these equa-

tions all lengths are regarded as affected with the proper sign,

so that (e.g.) RQ is negative in the figure when Q lies to the left

of P ; and that the convergence to the limit is unaffected by the

sign of h.

Thus the assumption that the curve which is the graph of

$ (x) has a tangent at P, which is not perpendicular to the axis of

x, implies that cj> (x) has, for the particular value of x corresponding

to P, the property that
[(f)

(x + h) — <£ (x))jh tends to a limit when

h tends to zero.

This of course implies that both of

{<(> (x+ h)-4> {x))lh, {0 (.r- h) - (tf)}/( - h)

tend to limits when h-*-d by positive values only, and that the two limits

are equal. If these limits exist but are not equal, then the curve y= <$> (x)

has an angle at the particular point considered, as in Fig. 37.

Now let us suppose that the curve has (like the circle or

ellipse) a tangent at every point of its length, or at any rate every
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portion of its length which corresponds to a certain range of

variation of x. Further let us suppose this tangent never per-

pendicular to the axis of x : in the case of a circle this would of

course restrict us to considering an arc less than a semicircle.

Then an equation such as (1) holds for all values of x which fall

inside this range. To each such value of x corresponds a value of

tan -v/r : tan ty is a function of x, which is defined for all values of

x in the range of values under consideration, and which may be

calculated or derived from the original function (f>(x). We shall

call this function the derivative or derived function of <£ (x), and

we shall denote it by

<f>'(x).

Another name for the derived function of $ (x) is the differ-

ential coefficient of <£ (x) ; and the operation of calculating

<£' (x) from cf> (x) is generally known as differentiation. This

terminology is firmly established for historical reasons : see

§ 115.

Before we proceed to consider the special case mentioned

above, in which yjr — \tt, we shall illustrate our definition by some

general remarks and particular illustrations.

111. Some general remarks. (1) The existence of a derived

function
<f>'

(x) for all values of x in the interval a ^ x £b implies

that <j6 (x) is continuous at every point of this interval. For it is

evident that {<£ (x + h) —
<f>

(x)}/h cannot tend to a limit unless

lim </> (x + h) = <$>(x), and it is this which is the property denoted

by continuity.

(2) It is natural to ask whether the converse is true, i.e.

whether every continuous curve has a

definite tangent at every point, and

every function a differential coefficient

for every value of x for which it is

continuous.* The answer is obviously

No : it is sufficient to consider the

curve formed by two straight lines pig 37#

meeting to form an angle (Fig. 37).

* We leave out of account the exceptional case (which we have still to examine)

in which the curve is supposed to have a tangent perpendicular to OX: apart from

this possibility the two forms of the question stated above are ecpivalent.
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The reader will see at once that in this case {<£ (x + li) — <$> (x)}/h

has the limit tan/3 when h^>-0 by positive values and the limit

tan a when h-*~0 by negative values.

This is of course a case in which a curve might reasonably be said to have

two directions at a point. But the following example, although a little more

difficult, shows conclusively that there are cases in which a continuous curve

cannot be said to have either one direction or several directions at one of its

points. Draw the graph (Fig. 14, p. 53) of the function a?sin(l/#). The

function is not denned for x=0, and so is discontinuous for x=0. On
the other hand the function defined by the equations

<£(#)=a?sin(l/#) U'4=0), 0(.r) = O (x=0)

is continuous for x=0 (Exs. xxxvu. 14, 15), and the graph of this function

is a continuous curve.

But <f)(%)
has no derivative for x= 0. For $' (0) would be, by definition,

lim {(p (h) -
<f>

(0)}/A or lim sin (l//t) ; and no such limit exists.

It has even been shown that a function of x may be continuous and yet

have no derivative for any value of x, but the proof of this is much more

difficult. The reader who is interested in the question may be referred to

Bromwich's Infinite Series, pp. 490-1, or Hobson's Theory of Functions

of a Real Variable, pp. 620-5.

(3) The notion of a derivative or differential coefficient was

suggested to us by geometrical considerations. But there is

nothing geometrical in the notion itself. The derivative </>' (x) of

a function (j> (x) may be defined, without any reference to any kind

of geometrical representation of (/> (x), by the equation

^ (w)silim^±E^M.
th

and <£ (x) has or has not a derivative, for any particular value of x,

according as this limit does or does not exist. The geometry of

curves is merely one of many departments of mathematics in which

the idea of a derivative finds an application.

Another important application is in dynamics. Suppose that a particle is

moving in a straight line in such a way that at time t its distance from a fixed

point on the line is s= (t). Then the 'velocity of the particle at time t' is

by definition the limit of

<t>(t+ h)-(f)(t)

h

as h-*~0. The notion of ' velocity ' is in fact merely a special case of that of

the derivative of a function.
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Examples XXXIX. 1. If <£ (a>) is a constant then $' (a?)=0. Interpret

this result geometrically.

2. If <f)(x)=ax+b then <f)'(x) = a. Prove this (i) from the formal de-

finition and (ii) by geometrical considerations.

3. If $ (x)=xm, where m is a positive integer, then <£' (x)=mxm~\

[For <£' (.i-) = lim (*+ hT- xm

= lim lm.vm - 1 +
171

^
m ~

\vm - 2 h+ ... + hm -
1\ .

The reader should observe that this method cannot be applied to apto,

where pjq is a rational fraction, as we have no means of expressing {x + ICfii

as a finite series of powers of h. We shall show later on (§ 118) that the result

of this example holds for all rational values of m. Meanwhile the reader

will find it instructive to determine
<f>'

(x) when m has some special fractional

value {e.g. £), by means of some special device.]

4. If
(f>

(x) = sin x, then <£' (x) = cos x ; and if <j> (x) = cos x, then

<j)' (x) = - sin x.

[For example, if (o?) = sin x, we have

{0 (x+h) -
(f>

(x)}/h= {2 sin \h cos (x+ lh)}/h,

the limit of which, when A-»-0, is cos x, since lim cos (#+M) = cos x (the cosine

being a continuous function) and lim {(sin |A)/M} = 1 (Ex. xxxvi. 13).]

5. Equations of the tangent and normal to a curve y=(f>(x). The
tangent to the curve at the point (.r

, y ) is the line through (.r
, y ) which

makes with OX an angle ^, where tan ^ = $' (x ). Its equation is therefore

y-#o=(#-#o)0'(#o)

;

and the equation of the normal (the perpendicular to the tangent at the

point of contact) is

We have assumed that the tangent is not parallel to the axis of y. In

this special case it is obvious that the tangent and normal are x=x and

y=y respectively.

6. Write down the equations of the tangent and normal at any point of

the parabola x2= 4ay. Show that if x = 2a/m, y = a/m2
, then the tangent

at (xQ , y ) is x=my+ (a/m).

112. We have seen that if </> (x) is not continuous for a value

of x then it cannot possibly have a derivative for that value of x.

Thus such functions as lfx or sin (l/x), which are not denaed for

x = 0, and so necessarily discontinuous for x = 0, cannot have

derivatives for x = 0. Or again the function [x], which is discon-

tinuous for every integral value of x, has no derivative for any

such value of x.
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Example. Since [.r] is constant between every two integral values of x,

its derivative, whenever it exists, has the value zero. Thus the deriva-

tive of fa?], which we may represent by [x]', is a function equal to zero for

all values of x save integral values and undefined for integral values. It

is interesting to note that the function 1 - has exactly the same

properties.

We saw also in Ex. xxxvil. 7 that the types of discontinuity

which occur most commonly, when we are dealing with the very

simplest and most obvious kinds of functions, such as polynomials

or rational or trigonometrical functions, are associated with a

relation of the type

</> (x) -» + oo

or <j> (x) -*- — oo . In all these cases, as in such cases as those con-

sidered above, there is no derivative for certain special values of x.

Q

Q. Q

R R

,Q Q

(*)

^R

(&)

Fig. 38.

In fact, as was pointed out in § 111, (1), all discontinuities of<f)(x) are

also discontinuities of cf)' (x). But the converse is not true, as we
may easily see if we return to the geometrical point of view of § 110

and consider the special case, hitherto left aside, in which the graph

of
<f)

(x) has a tangent parallel to OY. This case may be subdivided

into a number of cases, of which the most typical are shown in

Fig. 3<8. In cases (c) and (d) the function is two valued on one side

of P and not denned on the other. In such cases we may consider

the two sets of values of $ (x), which occur on one side of P or the

other, as defining distinct functions <$>i{x) and <$>2 (x), the upper

part of the curve corresponding to fa (x).
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The reader will easily convince himself that in (a)

{$ (x + h)-cf> (x)}/h—+ cc
,

as h-*-0, and in (6)

{<f>(x + h) — <j)(x)}(h-*-—cG
;

while in (c)

{fa (x + h) - fa (x)}/h-^+ co
, {<f>2

(x + h) - fa (x)}/h -— cd ,

and in (d)

{(f),
(x + h) - fa (x)}/h-*— oo

, {<f>2
(x + h) - fa (x)}/k-*~+ oo

,

though of course in (c) only positive and in (d) only negative

values of h can be considered, a fact which by itself would preclude

the existence of a derivative.

We can obtain examples of these four cases by considering the

functions defined by the equations

(a) y
3 = x, (b) y*=-x, (c) y" = x, (d) y" = -x,

the special value of x under consideration being x = 0.

113. Some general rules for differentiation. Through-

out the theorems which follow we assume that the functions

f{x) and F(x) have derivatives /'(#) and F'{x) for the values of

x considered.

(1) If cf> (x) =f(x) + F (x), then (x) has a derivative

fa(x)=f(x) + F'(x).

(2) If (f>
(x) = kf (x), where h is a constant, then <£ (x) has a

derivative

fa(x) = lcf(x).

We leave it as an exercise to the reader to deduce these results

from the general theorems stated in Ex. xxxv. 1.

(3) If <f>
(x) =f(x) F(x), then cf> (x) has a derivative

4,\x)=f(x)F\x)+f(x)F(x).

For fW -lim/(«
+ *) J'<« +̂ -/W J'<*)

.to
|/(, + ;,)

*(«+» -*(«>
+ > (

./»+*)-/W[
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(4) If (x) = >--t , then <f>
(x) has a derivative

J\x)

In this theorem we of course suppose that f(x) is not equal to

zero for the particular value of x under consideration. Then

* (*>- 1,m
A !/(. + *)/(«) J

-
{/(5)}«-

(5) If (ji(x)= ^rr-{ , then <$> (x) has a derivative
Jf (x)

.,, , f(x)F(x)-f(x)F'(x)
(P W_ "

{F(x)\*

This follows at once from (3) and (4).

(6) If 4>(x) = F {/(&")}> then 4> (x) h(ts a derivative

<j>'(x)=F'{f(x)}f'(x).

For let /0)=?/, f(x + h)=y + k.

Then k-*0 as h-*-0, and kjh-^f(x). And

= F'(y)f(x).

This theorem includes (2) and (4) as special cases, as we see on

taking F(x) = kx or F(x) = ljx. Another interesting special case

is that in which f(x) = ax + b : the theorem then shows that the

derivative of F (ax + b) is aF' (ax + b).

Our last theorem requires a few words of preliminary explana-

tion. Suppose that x = yjr (y), where yjr (y) is continuous and

steadily increasing (or decreasing), in the stricter sense of § 95, in

a certain interval of values of y. Then we may write y = </> (x),

where
<f>

is the ' inverse ' function (§ 109) of ifr.

(7) If y = cf>(x), ivhere (j> is the inverse fmiction of yjr, so that

x = yfr (y), and
-ty (y) has a derivative i/r' (y) which is not equal to

zero, then <£ (x) has a derivative

d,'(a-) = _J_.
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For if <£ (as + hi) = y + k, then k -* as /t-*»0, and

#w = Hm »(« + *)-»(«) = lim
(y+k)- y =_1_

A^o (x + h)-x k+ ^r (y + k) - f (y) ^ (y)

The last function may now be expressed in terms of x by means
of the relation y = </> (x), so that <$>{x) is the reciprocal of yjr'{<j> (x)}.

This theorem enables us to differentiate any function if we know
the derivative of the inverse function.

114. Derivatives of complex functions. So far we have

supposed that y = <f>
(x) is a purely real function of x. If y is a

complex function
<f>

(x) + i-^r (x), then we define the derivative of y
as being

<f>'
(x) + iyfr' (x). The reader will have no difficulty in

seeing that Theorems (1)—(5) above retain their validity when

cf>(x) is complex. Theorems (6) and (7) have also analogues for

complex functions, but these depend upon the general notion of

a ' function of a complex variable ', a notion which we have en-

countered at present only in a few particular cases.

115. The notation of the differential calculus. We have

already explained that what we call a derivative is often called a

differential coefficient. Not only a different name but a different

notation is often used ; the derivative of the function y = cf) (x)

is often denoted by one or other of the expressions

«* &
Of these the last is the most usual and convenient : the reader

must however be careful to remember that dyjdx does not mean
' a certain number dy divided by another number dx

'

: it means
' the result of a certain operation Dx or d/dx applied to y = <£ (x)

',

the operation being that of forming the quotient
{(f>

(x + h) —
<f>

(x)}/h

and making /i-*0.

Of course a notation at first sight so peculiar would not have been

adopted without some reason, and the reason was as follows. The denomi-

nator h of the fraction
{<fi

(x+ h) - (p (x)}/h is the difference of the values x+ h,

x of the independent variable x ; similarly the numerator is the difference of

the corresponding values <p(x + h), (x) of the dependent variable y. These

differences may be called the increments of x and y respectively, and denoted

by hx and by. Then the fraction is 8y/8x, and it is for many purj^oses

convenient to denote the limit of the fraction, which is the same thing as
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cf)' (x), by dy/dx. But this notation must for the present be regarded as

purely symbolical. The dy and dx which occur in it cannot be separated,

and standing by themselves they would mean nothing : in particular dy and

dx do not mean lim Sy and lim 8x, these limits being simply equal to zero.

The reader will have to become familiar with this notation, but so long as it

puzzles him he will be wise to avoid it by writing the differential coefficient in

the form Dxy, or using the notation
(f>

(x), (f>'(x), as we have done in the

preceding sections of this chapter.

In Ch. VII, however, we shall show how it is possible to define the symbols

dx and dy in such a way that they have an independent meaning and that

the derivative dy/dx is actually their quotient.

The theorems of § 113 may of course at once be translated into

this notation. They may be stated as follows

:

(i) ify = y,+y„ then £-§£+{£;

(2) ify= ley,, then ^=*^i

,«v t dv dy., dy,
(3) »/y = y,y„ then £ =y,± + y>±i

(5) ify^then %-{»%-&)/*
(6) if y is a function of x, and z a function of y, then

dz _dz dy

dx dy dx '

m £-»/©
Examples XL. 1. If y =3/12/23/3 then

dy dy
x

dy2 ,
dy,

dx=^3 dx
+^dx +^di

and if 3/ =3/13/2 --^n then

dy » dyr

In particular, if-?/ = 2", then d,y/dx=nzn ~ 1 (dz/dx) : and if y=xn
, then

dyjdx=nxn ~ l
, as was proved otherwise in Ex. xxxix. 3.
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y dx yx
dx y2 dx yn dx

'

In particular, if y= zn , then - -~ = - —
.1

'
3 '

y dx z dx

116. Standard forms. We shall now investigate more
systematically the forms of the derivatives of a few of the
simplest types of functions.

A. Polynomials. If (x) = a xn + ai xn
~

l + . . . + an , then

<f>'
(x) = nctoX11-1 + (n - 1) a.x71-2 + ...+ a n^.

It is sometimes more convenient to use for the standard form of a

polynomial of degree n in x what is known as the binomial form,
viz.

ciox
11 +

(Jj
alaP~1+ (fj a,xn->+ ... + an .

In this case

The binomial form of <f>(x) is often written symbolically as

(o , Qii, ..., an^x, i.)
j

and then (f>'(x) = n(a , a 1} ..., «„_!"$#, l)n_1.

We shall see later that
<f>

(x) can always be expressed as the

product of n factors in the form

<£ (a?) =a (x- a
x ) (x - a2) . .. (a? - orn ),

where the a's are real or complex numbers. Then

</>' (a;) = a 2 (a? - or2) (x - as) . . . (x - an ),

the notation implying that we form all possible products of n — 1

factors, and add them all together. This form of the result holds

even if several of the numbers a are equal ; but of course then

some of the terms on the right-hand side are repeated. The

reader will easily verify that if

<£ (x) = a (x - cO'"' (x - ar3)
m

' ...(x- a t)
m

",

then 0' (»= aoXtih (x - a,)**"1

(x ~ a*)"h ...(*- «,)'""•
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Examples XLI. 1. Show that if (x) is a polynomial then
<f>'

(x) is

the coefficient of h in the expansion of $ (x+ h) in powers of h.

2. If (x) is divisible by (x — a) 2
, then <£' (a?) is divisible by x — a : and

generally, if cp (x) is divisible by (x — a)m, then <j>' (x) is divisible by (x — a)m~K

3. Conversely, if (x) and 0' (#) are both divisible by x — a, then $ (#) is

divisible by (%- a)2 ; and if (a-) is divisible by x - a and cf>' (x) by (#- a)m ~ 1

>

then (a-) is divisible by (x - a)"1
.

4. Show how to determine as completely as possible the multiple roots

of P(x)= 0, where P (x) is a polynomial, with their degrees of multiplicity,

by means of the elementary algebraical operations.

[If H
x
is the highest common factor of P and P', H2 the highest common

factor of Hx and P", H3 that of H2 and P"', and so on, then the roots of

ff1H3/E2
2=0 are the double roots of P=0, the roots of H2 IIi/H3

2= the treble

roots, and so on. But it may not be possible to complete the solution of

HiHslHf^Q, H2HiIH3
2= 0, .... Thus if P(x) = (x-l)3 (x*-x-7)2 then

HiR3/

H

2
2= x6 — x -7 and If

2
FIijII3

2=x—l ; and we cannot solve the first

equation.]

5. Find all the roots, with their degrees of multiplicity, of

xi+ 3x3 - 3x2 - 1 Ix - 6 = 0, afi+ 2a5 - 8x* - 14x*+ 1 lx2+ 28j? + 1 2 = 0.

6. If ax2+ 2bx+c has a double root, i.e. is of the form a(x-a) 2
, then

2 (ax+ b) must be divisible by x - a, so that n= - fe/a. This value of # must
satisfy ax2+ 2bx+ c= 0. Verify that the condition thus arrived at is

ac — b2—0.

7. The equation ll(x- a) + lj(x-b) + \/(x-c) = can have a pair of

equal roots only if a= b= c. (Math. Trip. 1905.)

8. Show that ax3 + Sbx2+ 3cx+d=0

has a double root if £2 +4#3=0, where II=ac-b2
, O= a2d - Sabc + 2b\

[Put ax+b=y, when the equation reduces to y
3+ 3ffy + G=Q. This

must have a root in common with y
2 + II=0.~\

9. The reader may verify that if a, /3, y, 8 are the roots of

ax*+ Abx3+ Qcx2+ 4dx+

e

= 0,

then the equation whose roots are

iW(°-i3)(y-8)-(y~a)(/3-8)},

and two similar expressions formed by permuting a, $, y cyclically, is

453-^-^=0,

where g2
= ae - Abd+ 3c2

, g3
= ace+ 2bcd - ad2 - eb2 - c3 .

It is clear that if two of a, /3, y, 8 are equal then two of the roots of this cubic

will be equal. Using the result of Ex. 8 we deduce that g2
3 -27g3

2=0.
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10. Rolle's Theorem for polynomials. If <f>
(x) is any polynomial,

then between any pair of roots of(f>(x)=0 lies a root o/ <£'(#)= 0.

A general proof of this theorem, applying not only to polynomials but to

other classes of functions, will be given later. The following is an algebraical

proof valid for polynomials only. We suppose that a, /3 are two successive

roots, repeated respectively m and n times, so that

(x)= (x - a)m (x - /3)» 8 (x),

where 6 (x) is a polynomial which has the same sign, say the positive sign, for

a?gx?gft. Then

<t>'
(x)= (x - a)m (x - /3)

n & (x) + {m (x - a)m - > (x - j3)»

+

n (x - a)m (x- /3)»
"

»} 6 (x)

= (x - a^-^x-py-^ix- a)(x-p)ff\x) + {7n(x-p) + n(x-a)}d(x)]

= (x-a)m - 1 (x-^t)n
- 1 F (x),

say. Now F(a)= vi(a-&) 6 (a) and F (/3) = n (/3 - a) 0(/3), which have opposite

signs. Hence F(x), and so <p' (x), vanishes for some value of x between

a and /3

117. B. Rational Functions. If

where P and Q are polynomials, it follows at once from § 113, (5) that

_ P'(x)Q(x)-P(x)Q'{x)

and this formula enables us to write down the derivative of any-

rational function. The form in which we obtain it, however, may or

may not be the simplest possible. It will be the simplest possible if

Q (x) and Q' (x) have no common factor, i.e. if Q (x) has no repeated

factor. But if Q(x) has a repeated factor then the expression

which we obtain for R' (x) will be capable of further reduction.

It is very often convenient, in differentiating a rational

function, to employ the method of partial fractions. We shall

suppose that Q(x), as in § 116, is expressed in the form

a (x - aO'" 1 (x - a2)
m

* ...(x- <xv)
m v.

Then it is proved in treatises on Algebra* that R(x) can be

expressed in the form

nl \ ,
-^1,1 . -"-1,2 . . -"] , TO,

(x) + -

—

'

f-
-. — + ... 4- ,

—~—
x — a x (x — aj' {x — a

x
)"h

x — a2 (x — a2)- (x — a2
)'" 2

* See, e.g., Chrystal's Algebra, vol. i, pp. 151 et seq.

n. H
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where II (x) is a polynomial; i.e. as the sum of a polynomial and

the sum of a number of terms of the type

A

where a is a root of Q (x) = 0. We know already how to find the

derivative of the polynomial: and it follows at once from Theorem (4)

of § 113, or, if a is complex, from its extension indicated in § 114,

that the derivative of the rational function last written is

pA (x - ay-1 _ pA
'

~Xx^ajw~ ~ («-a)*+1
*

We are now able to write down the derivative of the general

rational function R (x), in the form

TT' ( \ — '* "-"1,2 Ao-i ^A 2>2 _W
(a; -a,)2 (a-^)3 '" (x-a2f (x-a2V ""

Incidentally we have proved that the derivative of xm is ma;1' 1
-

1

,

for all integral values of m positive or negative.

The method explained in this section is particularly useful

when we have to differentiate a rational function several times

(see Exs. XLV).

Examples XLII. 1. Prove that

d ( x \ —x1 d f\—xl
\

dx
( x \ 1-m? d

(
l-x^\ 4x

2. Prove that

d ( ax2+ 2bx+ c \ (ax + 6) (Bx+ 0)- (bx+c)(Ax+B)
\x \Ax*+\2Bx+ CJ (A a?+ 2Bx+ Vf

3. If Q has a factor (x-a)m, then the denominator of R' (when R' is

reduced to its lowest terms) is divisible by (x— a)"' +1 but by no higher power
of x— a.

4. In no case can the denominator of R' have a simple factor x-a.
Hence no rational function (such as 1/x) whose denominator contains any
simple factor can be the derivative of another rational function.

118. C. Algebraical Functions. The results of the pre-

ceding sections, together with Theorem (6) of § 113, enable us to

obtain the derivative of any explicit algebraical function whatsoever.

The most important such function is xm , where m is a rational

number. We have seen already (§ 117) that the derivative of this
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function is mas"*
-1 when m is an integer positive or negative ; and

we shall now prove that this result is true for all rational values
of m. Suppose that y = xm = xi)l(i, where p and q are integers and

q positive ; and let z = xx,i, so that x = zi and y = zp . Then

2-sy©.-*"- mx'
2

This result may also be deduced as a corollary from Ex. xxxvi.

3. For, if (x) = xm , we have

.. Pn -Xm
= hm ^-tt = ma;"

1-1
.

?—a; ?— *

It is clear that the more general formula

j- (ax + b)m = ma (ax + b)m~1

holds also for all rational values of m.

The differentiation of implicit algebraical functions involves

certain theoretical difficulties to which we shall return in Ch. VII.

But there is no practical difficulty in the actual calculation of the

derivative of such a function : the method to be adopted will be

illustrated sufficiently by an example. Suppose that y is given by

the equation

Xs + y
?j — Saxy = 0.

Differentiating with respect to x we find

x' + y"-
d£- a

{«
+xd
£t°

, dy x1 — ay
and so -r- = — „ .

ax y2 — ax

•Examples XLIII 1. Find the derivatives of

2. Prove that

d_ ( :v_
}

dxp(a2+ fyj (a?+ .x'
2
)

3 '2 ' dx [J{a* - *
2
)j {a- - a?

2
)
3 a

"

3. Find the differential coefficient of?/ when

(i) ax'2 + 2hxy+ by- + %gx+ %fy + c

=

0, (ii) a'
5+

#

5 - 5a.<%2= 0.

14—2
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119. D. Transcendental Functions. We have already

proved (Ex. xxxix. 4) that

Dx sin x = cos x, Dx cos x = — sin x.

By means of Theorems (4) and (5) of § 113, the reader will

easily verify that

Dx tan x = sec2 x, Dx cot x — — cosec2 x,

Dx sec x = tan x sec x, Dx cosec x = — cot x cosec x.

And by means of Theorem (7) we can determine the derivatives

of the ordinary inverse trigonometrical functions. The reader

should verify the following formulae

:

Dx arc sin x = ± 1/V(1 — oc"), Dx arc cos x = + 1/V(1 - &)>

Dx arc tana; = 1/(1 + a;
2
), Dx arc cot x = — 1/(1 + x-),

Dx arc sec a; = ± l/{x^/(x2 — 1)}, D^ arc cosec a; = + l/{x\/(xi — 1)}.

In the case of the inverse sine and cosecant the ambiguous sign

is the same as that of cos (arc sin a;), in the case of the inverse

cosine and secant the same as that of sin (arc cos a;).

The more general formulae

Dx arc sin (xja) = ± l/\/(a2 — x2
), Dx arc tan (x/a) = a/(x2 + a2

),

which are also easily derived from Theorem (7) of § 113, are also

of considerable importance. In the first of them the ambiguous

sign is the same as that of a cos {arc sin (x/a)}, since

a V{1 - (a;
2/a2

)} = ± V(a2 -O
according as a is positive or negative.

Finally, by means of Theorem (6) of § 113, we are enabled to

differentiate composite functions involving symbols both of alge-

braical and trigonometrical functionality, and so to write down

the derivative of any such function as occurs in the following

examples.

Examples XLIV.* 1. Find the derivatives of

cosm #, sin"1
*, cos*™, sin a;"*, cos (sin*), sin(cos.r),

It n n
. 19 • 9 \

COS * Sin *
x/(a

2 cos-* *+ b2
si n2

*), -r— —
,

v (
a cos x+ b sm x)

x arc sin *

+

,J(1 — x2
), (1 + *) arc tan *Jx — stx.

* In these examples m is a rational number and a, b, ... , a, /3, ... hr-ve such

values that the functions which involve them are real.
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2. Verify by differentiation that arc sin x+ arc cos x is constant for all

values of x between and 1, and arc tan u;+arc cot x for all positive values

of x.

3. Find the derivatives of

arc sin N/( 1 - x2
), arc sin {2x %/( 1 - #2

)}, arc tan ( )

.

How do you explain the simplicity of the results 1

4. Differentiate

1 , ax+b 1 . ax+b
arc tan -T. j^r , —;-

s arc sin
sj(ac - b2)

" — J(ac _ b2
)

' V( - «) V(&
2 - ™)

'

5. Show that each of the functions

has the derivative
V{(«-*)(*-/3)}'

6 Prove that

3S r°
C°S v(^)| = V (cos 6 cos 3d)

*

(J/aM. Trip. 1904.)

7 Show that

1_ _d_r /(Q (ax2+c)
}

J{G{Ac-aa)}dx[_
&rCGm

\J \c(Ax2 +C)j (Ax2 +C)J(ax2 +c)

8. Each of the functions

1 (a
arc cos —r-

1 1 -77-5

—

ttn arc tan \ x / ( T ) tan kv[
+ bcosx/' sl(a

2 -b2
) \\ \a + bj 2

Js!{a
2 -b2

)

has the derivative l/(a + bcosx).

9. If X= a + b cos x+c sin a?, and

1 aX-a2+ b2+ c2

V-
v

'

(a2_ fe
2_ c2)

arc cos
JTVC^ + c3 )

'

then dy/dx=l/X.

10. Prove that the derivative of F[/{0(a?)}]is^/ {$<>)}]/' (00*0} <$>'{x),

and extend the result to still more complicated cases.

11. If u and v are functions of x, then

Dx arc tan (%/») = {vDx u — uDxv)j(u
2
-f v

2
).

12. The derivative of y= (tan x+ sec x)m is my sec x.

13. The derivative of y= cos &+ 1 sin # is ly.

14. Differentiate x cos a?, (sin#)/.r. Show that the values of # for which

the tangents to the curves y=x cos x, y=(sin #)/# are parallel to the axis of x
are roots of cot#=.r, tan#=.r respectively.
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15. It is easy to see (cf. Ex. xvn. 5) that the equation sin x—ax, where a

is positive, has no real roots except #=0 if a > 1, and if a< 1 a finite number of

roots which increases as a diminishes. Prove that the values of a for which

the number of roots changes are the values of cos £, where £ is a positive root

of the equation tan £= £. [The values required are the values of a for which

y= ax touches y=sin #.]

16. If <£(.z)=#2 sin(l/#) when j; + 0, and </> (0)=0, then

<f>'
(x) = 2x sin (1 \x) - cos (1/x)

when #=#0, and <j>'(0)-0. And <£' (x) is discontinuous for x= (cf. § 111,

(2))-

17. Find the equations of the tangent and normal at the point (x
, y )

of the circle x2 +y'*=a2
.

[Here y= /J{a2-x2
), dyjdx= —x/sf(a

2 -x2
), and the tangent is

y-y*= (-p - #o) {- -^o/\/(«
2 - V)}>

which maybe reduced to the form xx +yy = a2
. The normal is xy -yx =0,

which of course passes through the origin.]

18. Find the equations of the tangent and normal at any point of the

ellipse (x/a)2 + (ylb)
2=l and the hyperbola (xja)2- (y/6)

2 = 1.

19. The equations of the tangent and normal to the curve x= <f>(t)T

y= \jf (t), at the point whose parameter is t, are

^'to°
=
7(if '

{x "

*

(0} *' (0

+

[y
~ * (0} *' w

=

°-

120. Repeated differentiation. We may form a new function

</>"(#) from <£'(#) just as we formed <// (#) from <j> (x). This

function is called the second derivative or second differential

coefficient of </> (#). The second derivative of y = <j) (x) may also

be written in any of the forms

^ . / d y d2u

In exactly the same way we may define the nth derivative or

nth differential coefficient of y = cf> (x), which may be written in any

of the forms

r<-i D*"* (s)V g-
But it is only in a few cases that it is easy to write down a

general formula for the nth differential coefficient of a given

function. Some of these cases will be found in the examples

which follow.
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Examples XLV. 1. If 4>(x)=xm then

(j)(
n

) (x) s=m (»i - 1) ...(m—n

+

1) xm - ".

This result enables us to write down the nth derivative of any polynomial.

2. If $ (x) = (ax+b)m then

<£(>•) (a?) =m (m - 1 ) . . . (m - n+ 1 ) an (ax+ b)m ~ ".

In these two examples m may have any rational value. If m is a positive

integer, and n>m, then <£(
n

) (x) = 0.

3. The formula

(AY A
=( 1Y P(P+V-(P+n-VA

\dx) (x-a)P K
' (x-a)P + n

enables us to write down the nth derivative of any rational function expressed

in the standard form as a sum of partial fractions.

4. Prove that the nth derivative of 1/(1 —x2
) is

£(» !){(1 -#)-»-i +(-l)»(l +#)-»- J}.

5. Leibniz' Theorem. If y is a product uv, and we can form the

first n derivatives of u and v, then we can form the nth derivative of y by

means of Leibni£ Theorem, which gives the rule

(uv)n= unv + (J)
un _ , v1

+ rM v2 + ... +
[

)un _ rvr+ ...+uvn ,

where suffixes indicate differentiations, so that un , for example, denotes the

?ith derivative of u. To prove the theorem we observe that

(uv)i=ulv+uv1 ,

(itv)
2
=z u2v + 2u

l
v1+ uv2,

and so on. It is obvious that by repeating this process we arrive at a

formula of the type

Let us assume that an ,.=
( ) for r=l, 2, ... n — 1, and show that if this

is so then a,
i + i, ,•=

( )
f°r r— lj 2, ... n. It will then follow by the

principle of mathematical induction that a iu r = ( ) for all values of n and r

in question.

When we form («v)n + 1 by differentiating (uv)n it is clear that the coefficient

of un + l _ rvr is

«».,+«>, ,- 1=Q +
(r
! 1
)=('^

1

).

This establishes the theorem.
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G. The nth derivative of xm f{x) is

_J!Ll_^-»/(*)+.» r-4^fi>-* +1 /(*)
(m-n) !

J K (m-n + 1) !

+ ~1.2 (m-»+2)!* 7 W+""

the series being continued for n + 1 terms or until it terminates.

7. Prove that ZV cos a-= cos (a'+^wjt), ZV sin o?=sin (.r+ inrr)

8. If #= A cos ma-+B sin m# then ZVy

+

m2y

=

0. And if

y=A cos wi#+ B sin »i.a?+

P

n (x),

where PM (#) is a polynomial of degree », then Dx
n + 3 y +m2Dx

n + 1 y = 0.

9. If x2Dx
2y+xDxy+y= then

.z
2
Z)s

n + 2y+ (2;i + l):rZV + 1y+ (>j
2+ l)Z)/y=0.

[Differentiate ?i times by Leibnitz' Theorem.]

10. If Un denotes the «th derivative of
(
Lx +M )/(x2 - ~2Bx + C), then

[First obtain the equation when n= ; then differentiate n times by

Leibnitz' Theorem.]

11. The nth derivatives of aj{a2+x2
) and xj(a2+x2

). Since

1/1 1 \ x 1/1 1

a2+ x2 1i\x — cti x + ai)'' a2+ x2 "Z\x — ai x + ai

we have

/ a \ (-l)»»l
f

1 1 1

* V + a?V 2t \(a?-at)" + 1 (#+ ai)n + ,j'

and a similar formula for Dx
" {x/(a2+ x2

)}. If p= J(x 2+ a2
), and # is the

numerically smallest angle whot>e cosine and sine are x/p and a/p, then

x+ ai=p Cis and x - ai=p Cis ( - 0), and so

ZV {a/(a2+ x2
)} = {( - l)»w !/2i} p""" 1 [Cis {(»+ 1)0}- Cis {- (n+ Y) 6}]

= (-l)"n! (x2+ a2)-in + 1 )'2 sin {(» + l) arc tan (a/a?)}.

Similarly

ZV W(«2+ -r

2

)} = ( - 1 )"n ! (x2+ a2
)
~ (« + iV2 cos {(»+ 1 ) arc tan (a/a?)}.

12. Prove that

Z»x" {(cos a?)/a?}= {Pw cos (x+ \ mr) + Qn sin (x + ^nn)} jxn + \

Dx
n {(sin a?)/a?} = {Pn sin (a?+ ^ mr ) - Qn cos (x+ \ mr)}/xn + 1

,

where Pn and Qn are polynomials in x of degree n and ?i - 1 respectively.

13. Establish the formulae

^£_i /7^\ ****- <% /(dyY <Px__(<Py dy_ fd
2
y\] I (dyV>

dy~ l\dx)' dy2 ~ dx2
/ \dx) ' oy»~ \dV> tfa; \&)j/\di) m



z
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zero throughout the whole interval (a, b). In this case
<f>'

(x) is

also equal to zero throughout the interval. If on the other hand

cf> (x) is not always equal to zero, then there must be values of

x for which <£ (x) is positive or negative. Let us suppose, for

example, that
<f>

(as) is sometimes positive. Then, by Theorem 2 of

§ 102, there is a value £ of x, not equal to a or b, and such that (/> (£)

is at least as great as the value of
<f>

(x) at any other point in

the interval. And
<f>' (£) must be equal to zero. For if it were

positive then <f>(x) would, by Theorem A, be greater than
<f) (£) for

values of x greater than £ but sufficiently near to f, so that there

would certainly be values of
<f>

(x) greater than
(f) (f). Similarly we

can show that
<f>' (£) cannot be negative.

Cor. 1. If <£ (a) — <fr(b) = k, then there must be a value of x

between a and b such that
<f>

(x) = 0.

We have only to put
<f>

(x) — k =
-ty

(x) and apply Theorem B
to ty (x).

Cor. 2. If §' (x) > for all values of x in a certain interval,

then
<f>

(x) is an increasing function of x, in the stricter sense o/§ 95,

throughout that interval.

Let #! and x2 be two values of x in the interval in question,

and x
x < x2 . We have to show that

<f>
(x^) < (#.,). In the first

place </> (a-j) cannot be equal to
(f>

(x2) ; for, if this were so, there

would, by Theorem B, be a value of x between x
1
and x2 for which

<£' (x) = 0. Nor can
<f)
(x^ be greater than

<f>
(x2). For, since 0' (x^

is positive,
<f>

(x) is, by Theorem A, greater than
<f>

(a^) when x is

greater than x
x
and sufficiently near to xx . It follows that there is

a value x3 of x between x
1
and x2 such that

<f)
(x3) = $ (x^) ; and so,

by Theorem B, that there is a value of as between xx and x3 for

which
<f>'

(x) = 0.

Cor. 3. The conclusion of Cor. 2 still holds if the interval

(a, b) considered includes a finite number of exceptional values of x

for which
<f>'

(x) does not exist, or is not positive, provided <£ (x) is

continuous even for these exceptional values of x.

It is plainly sufficient to consider the case in which there is

one exceptional value of x only, and that corresponding to an end

of the interval, say to a. If a < x
1 < x2 < b, we can choose a + e

so that a + e < aslt and <£' (x) > throughout (a + e, b), so that

<f> (#i) < <f>
(x2), by Cor. 2. All that remains is to prove that
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<f>(a)< <f>
(xj). Now

<f>
(xj) decreases steadily, and in the stricter

sense, as x
x
decreases towards a, and so

<f>
(a) =

<f>
(a + 0) = Km <£ (xx ) < <£ (<i\).

rt+0

Cor. 4. If (}>' (x) > throughout the interval (a, b), and cf> (a) ^ 0,

then
<f>

(x) is positive throughout the interval (a, b).

The reader should compare the second of these corollaries very carefully

with Theorem A. If, as in Theorem A, we assume only that <f>'(x) is positive

at a single point x= x , then we can prove that <j> (xi)<(f>(x2 ) when X\ and x2

are sufficiently near to x and x1<x <x2 . For 0(.r1)<<^)(^o) and (p(x2)xp(x ),

by Theorem A. But this does not prove that there is any interval including

x throughout which $ (x) is a steadily increasing function, for the assumption

that X\ and x2 lie on opposite sides of x is essential to our conclusion. AVe

shall return to this point, and illustrate it by an actual example, in a moment

(§ 124).

122. Maxima and Minima. We shall say that the value </>(£)

assumed by
<f>

(x) when x = £ is a maximum if </> (£) is greater than

any other value assumed by
<f>

(x) in the immediate neighbourhood

of x = £, i.e. if we can find an interval (£ — e, £ + e) of values of

x such that </> (£) > <f>
(x) when £ — e < x < £ and when £ < x < l~+e:

and we define a minimum in a similar manner. Thus in the figure

the points A correspond to maxima, the points B to minima of

Bo

Fig. 39.

the function whose graph is there shown. It is to be observed that

the fact that A 3 corresponds to a maximum and B
x
to a minimum

is in no way inconsistent with the fact that the value of the

function is greater at B
l
than at A 3 .

Theorem C. A necessary condition for a maximum or

minimum value of <f)(x) at x=i; is that <£'(£) = 0.*

* A function which is continuous but has no derivative may have maxima and

minima. We are of course assuming the existence of the deiivative.
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This follows at once from Theorem A. That the condition is not

sufficient is evident from a glance at the point G in the figure.

Thus if y = x3 then 4>'(x) = 3x2
, which vanishes when x = 0. But

x = does not give either a maximum or a minimum of xz
, as is

obvious from the form of the graph of x3 (Fig. 10, p. 45).

But there will certainly be a maximum at x = g if $'(£) = 0,

<f>'
(x) > for all values of x less than but near to f, and <$>' (x) <

for all values of x greater than but near to f : and if the signs

of these two inequalities are reversed there will certainly be a

minimum. For then we can (by Cor. 3 of § 121) determine an

interval (£ — e, £) throughout which
<f>

(x) increases with x, and an

interval (£, £ + e) throughout which it decreases as x increases:

and obviously this ensures that </> (£) shall be a maximum.

This result may also be stated thus. If the sign of
<f>

(x)

changes at x = £ from positive to negative, then x = f gives

a maximum of </> (x) : and if the sign of <£' (x) changes in the

opposite sense, then x = £ gives a minimum.

123. There is another way of stating the conditions for a

maximum or minimum which is often useful. Let us assume

that
(f>

(x) has a second derivative
<f>"

(x) : this of course does not

follow from the existence of </>' (x), any more than the existence of

</>' (x) follows from that' of </> (x). But in such cases as we are

likely to meet with at present the condition is generally satisfied.

Theorem D. If </>'(£)=0 and <J>"(!) + 0, then <f>(x) has a

maximum or minimum at x=£, a maximum if <£"(f)<0, a

minimum if <£" (£) > 0.

Suppose, e.g., that
<f>" (£) < 0. Then, by Theorem A,

<tf
(x) is

negative when x is less than £ but sufficiently near to £, and

positive when x is greater than £ but sufficiently near to |. Thus

x = £ gives a maximum.

124. In what has preceded (apart from the last paragraph) we have

assumed simply that (f>(x) has a derivative for all values of x in the interval

under consideration. If this condition is not fulfilled the theorems cease to

be true. Thus Theorem B fails in the case of the function

y= \-J{x%
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where the square root is to be taken positive. The graph of this function is

shown in Fig. 40. Here <£(-l) = <Ml) = 0: but #' (a?), as is evident from the
figure, is equal to 1 if x is negative and to - 1 if x is positive, and never
vanishes. There is no derivative for x=0, and no tangent to the graph
at P. And in this case x=0 obviously gives a maximum of <£(#), but

<f>' (0), as it does not exist, cannot be

equal to zero, so that the test for a

maximum fails.

The bare existence of the derivative

(j>' (x), however, is all that we have as-

sumed. And there is one assumption

in particular that we have not made,

and that is that 0' (x) itself is a con-

tinuous function. This raises a rather -1 O
subtle but still a very interesting point. pj„ ^

Can a function
<f>

(x) have a derivative

for all values of x which is not itself continuous ? In other words can a

curve have a tangent at every point, and yet the direction of the tangent

not vary continuously ? The reader, if he considers what the question means
and tries to answer it in the light of common sense, will probably incline

to the answer No. It is, however, not difficult to see that this answer is

wrong.

Consider the function $ (x) defined, when x 4= 0, by the equation

<f)(x)=x2 sm(\/x)

;

and suppose that 0(0) =0. Then (f){x) is continuous for all values of x.

If #4=0 then
<£' (x) = 2x sin (1/x) — cos (l/x) ;

while
<f> (0)= lira 7^—; = 0.

7t-*o ll

Thus
(f>'

(x) exists for all values of x. But cf>' (x) is discontinuous for x=0;
for 2#sin (l/x) tends to as x-*-Q, and cos (l/x) oscillates between the limits

of indetermination —1 and 1, so that <£' (x) oscillates between the same

limits.

What is practically the same example enables us also to illustrate the

point referred to at the end of § 121. Let

<j) (x) =x2 sin (l/.r) +ax,

where < a< 1 , when x 4= 0, and (0) = 0. Then 0' (0) = a > 0. Thus the

conditions of Theorem A of § 121 are satisfied. But if x 4=0 then

$' (x) = 2x sin (l/x) — cos (l/#) + a,

which oscillates between the limits of indetermination a — 1 and a + las x-^0.

As a-l<0, we can find values of x, as near to as we like, for which

<))'(x)<0; and it is therefore impossible to find any interval, including x=0,

throughout which (a?) is a steadily increasing function of x.
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It i.s, however, impossible that <f)'(x) should have what was called in

Ch. V (Ex. xxxvu. 18) a 'simple' discontinuity; e.g. that (])'(x)-*-a when

,r^- + 0, (f)'(.v)-*-b when %-*--0, and $'(0) = c, unless a= b = c, in which case

4>'(x) is continuous for x= 0. For a proof see § 125, Ex. xlvii. 3.

Examples XLVI. 1. Verify Theorem B when (x) = (x- a)m (x- b)n or

(f)
(x) = (x-a)m (x-b)n(x- c)p, where m, n, p are positive integers and a<b<c.

[The first function vanishes for so=a and x= 6. And

<j)'(x) = (x- a)
m ~ l (x- b)"- 1 {{m + n) x-mb-na)

vanishes for x=(mb + na)l(m + n), which lies between a and b. In the

second case we have to verify that the quadratic equation

(m + n +p) xn
- - {m (6 + c) + n (c+ a) +p (a+ b)} x + mbc + nca +pab=

has roots between a and b and between b and c]

2. Show that the polynomials

2x-3+ 3.r2 - 12a; + 7, 3.r4 + 8a-3 - 6#2 - 24r+ 19

are positive when x>l.

3. Show that x - sin # is an increasing function throughout any interval

of values of x, and that tan.r-.r increases as x increases from -\ir to \tt.

For what values of a is ax—amx a steadily increasing or decreasing function

of xl

4. Show that tana?— on also increases from x= \ir to x=Sir, from a?= In-

to ,r = ^7r, and so on, and deduce that there is one and only one root of the

equation t;u\x—x in each of these intervals (cf. Ex. xvn. 4).

5. Deduce from Ex. 3 that sin# — x<0 if x>0, from this that

cos x- 1 + 2 x- >0, and from this that &mx-x+ ^x3 >0. And, generally,

prove that if

v- r2m
CW= cos*-l+'

2!
-...-(-l)><'—

,

X.2m + 1

^2m + 1
= sin.r-^+ --...-(-ir

(2

—
1):

,

and .r>0, then C2m and #2m+i are positive or negative according as m is odd

or even.

6. If f(x) and /" (x) are continuous and have the same sign at every

point of an interval (a, b), then this ii terval can include at most one root of

either of the equations /(.r)=0,/' (.r) = 0.

7. The functions ??, v and their derivatives ?t', v' are continuous

throughout a certain interval of values of x, and uv' — u'v never vanishes

at any point of the interval. Show that between any two roots of «=0
lies one of v= 0, and conversely. Verify the theorem when u= cosx, i>=sin:r.

[If v does not vanish between two roots of u= 0, say a and /3, then the

function ujv is continuous throughout the interval (a, /3) and vanishes at its

extremities. Hence (ujv)'= (u'v — uv')lv2 must vanish between a and /3, which

contradicts our hypothesis.]
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8. Determine the maxima and minima (if any) of (cc— l) 2 (.r + 2), a?-Z%
2.c3 -3.£2 -36.r+10, 4^-18a;2+ 27.>,'-7, 3xi -4xs+l, afi- 15u; :i + 3. In each
case sketch the form of the graph of the function.

[Consider the last function, for example. Here <£' (x) = bx2 (x2 - 9), which
vanishes for x= -3, x=0, and x= Z. It is easy to see that x= -3 gives a

maximum and x=3 a minimum, while x= gives neither, as <f>'(x) is negative

on both sides of #=0.]

9. Discuss the maxima and minima of the function (x - a)m (x - b)n, where

m and n are any positive integers, considering the different cases which occur

according as m and n are odd or even. Sketch the graph of the function.

10. Discuss similarly the function (x - a) (x - b) 2 (x - c) s, distinguishing

the different forms of the graph which correspond to different hypotheses as

to the relative magnitudes of a, b, c.

11. Show that (ax+ b)/(cx+ d) has no maxima or minima, whatever

values a, b, c, d may have. Draw a graph of the function.

12. Discuss the maxima and minima of the function

y= (ax2+ 2bx+ c)/(Ax2+ 2Bx + c),

when the denominator has complex roots.

[We may suppose a and A positive. The derivative vanishes if

(ax+ b)(Bx + C)-(Ax+ B)(bx+ c) = (1).

This equation must have real roots. For if not the derivative would always

have the same sign, and this is impossible, since y is continuous for all values

of x, and y->-a/A as x->- + qo or x-*~— oo . It is easy to verify that the curve

cuts the line y= a/A in one and only one point, and that it lies above this

line for large positive values of x, and below it for large negative values, or

vice versa, according as bja> BjA or b/a<BjA. Thus the algebraically

greater root of (1) gives a maximum if bja>BjA, a minimum in the contrary

case.]

13. The maximum and minimum values themselves are the values of A

for which ax2+ 2bx + c-\(Ax2+2Bx+ C) is a perfect square. [This is the

condition that y= \ should touch the curve.]

14. In general the maxima and minima of R(x)= P(x)jQ(x) are among

the values of X obtained by expressing the condition that P(x) — \Q(x)=
should have a pair of equal roots.

15. If Ax2 ~[-2Bx+ C=0 has real roots then it is convenient to proceed as

follows. We have

y - (a/A ) = (Xv+n)/{A(Ax2+ 2nx + C)},

where \=bA— aB, p=cA—aC. Writing further £ for X.r + /x and r) for

(A/X2)(Ay-a), we obtain an equation of the form

9=l/{(|-i>)(|-?)}.
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This transformation from (x, y) to (£, rj) amounts only to a shifting of the

origin, keeping the axes parallel to themselves, a change of scale along each

axis, and (if X <0) a reversal in direction of the axis of abscissae; and so a

minimum of y, considered as a function of x, corresponds to a minimum of 7

considered as a function of |, and vice versa, and similarly for a maximum.

The derivative of r\ with respect to £ vanishes if

(£-p)(|-?)-K£-p)-£(£-?)=o,

or if £
2 =pq. Thus there are two roots of the derivative if p and q have the

same sign, none if they have opposite signs. In the latter case the form of

the graph of r\ is as shown in Fig. 41 a.

Fig. 41a. Fig. 41c.

Y
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17. Show that

_ x2+ 2x+e

can assume any real value if <c < 1, and draw a graph of the function in

this case. (Math. Trip. 1910.)

18. Determine the function of the form (ax2+ 2bx + c),(Ax2+2Bx+ C)

which has turning values (i.e. maxima or minima) 2 and 3 when x=\ and
tt= - 1 respectively, and has the value 2-5 when x= 0. (Math. Trip. 1908.)

19. The maximum and minimum of (x + a)(x+ b)j(x-a) (x-b), where a
and b are positive, are

Wa+Jby /Ja-Jby

20. The maximum value of (x - l)2/(# + 1)3 is -^.

21. Discuss the maxima and minima of

x (x - \)\(x2+ 3x+ 3), **/(* - 1 ) (x - 3)3,

(x-Yf- (3x2- 2x-31)l(x + o) 2 (3x2 - Ux- 1).

(Math. Trip. 1898.)

[If the last function be denoted by P(x)/Q(x), it will be found that

P'Q-PQ' = -2 (x- 7) (x -3)(x-l)(x + l) (x+ 2) (x + 5).]

22. Find the maxima and minima of a cos x+ b sin x. Verify the result

by expressing the function in the form A cos (x— a).

23. Find the maxima and minima of

a2 cos2 x+ b2 sin2 x, A cos2 x+ 2H cos x sin x+B si n2 x.

24. Show that sin (x+ a)/sin (a-+ b) has no maxima or minima. Draw

a graph of the function.

25. Show that the function

sin 2# .„ .

sin (a+ a) sin (#+6)

has an infinity of minima equal to and of maxima equal to

- 4 sin a sin 6/sin2 (a - b). (Math. Trip. 1909.)

26. The least value of a2 sec2 x+ b2 cosec2 x is (a+ b)2 .

27. Show that tan 3x cot 2a; cannot lie between ^ and f.

28. Show that, if the sum of the lengths of the hypothenuse and another

side of a right-angled triangle is given, then the area of the triangle is a

maximum when the angle between those sides is 60°. (Math. Trip. 1909.)

29. A line is drawn through a fixed point (a, b) to meet the axes OX, OY
in P and Q. Show that the minimum values of PQ, OP+OQ, and OP. OQ

are respectively (a2/3+ b2/3f12
, (*Ja + Jb)\ and Aab.

H. 15
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30. A tangent to an ellipse meets the axes in P and Q. Show that the

least value of PQ is equal to the sum of the semiaxes of the ellipse.

31. Find the lengths and directions of the axes of the conic

ax2+ 2hxy+ by2= 1

.

[The length r of the semidiameter which makes an angle 6 with the axis

of x is given by
\\r2 = a cos2 6+ 2A cos 6 sin 6 + b sin2

6.

The condition for a maximum or minimum value of r is tan2#= 2/t/(« — b).

Eliminating 6 between these two equations we find

{a-(l/!*)}{&-(l/^}=A«]

32. The greatest value of xmy
n

, where x and v are positive and

x+y= k, is

mmnn lm + n/(m + n)m + n
.

.

33. The greatest value of ax+ by, where x and y are positive and

x2+xy+yi= 3K 2
, is

2k VO2 -ab + b2
).

[If ax-Vby is a maximum then a + b(dy/dx) = 0. The relation between x

and y gives (2x+y) + (x+2y) (dy!dx) = Q. Equate the two values of dy/dx.]

34. If 6 and are acute angles connected by the relation asecd + bsec<j>= c,

where a, b, c are positive, then a cos 6 + b cos ^ is a minimum when 6=
(f>.

125. The Mean Value Theorem. We can proceed now to

the proof of another general theorem of extreme importance, a

theorem commonly known as ' The Mean Value Theorem or ' The

Theorem of the Mean'.

Theorem. If <f>
(x) has a derivative for all values of x in the

interval (a, b), then there is a

value i; of x between a and b,

such that

m
<p(a)

*(&)-* («*)-(& -a)*' (ft

Before we give a strict proof

of this theorem, which is perhaps

the most important theorem in

the Differential Calculus, it will

be well to point out its obvious

geometrical meaning. This is

simply (see Fig. 43) that if the

curve APB has a tangent at all points of its length then there

Fig. 43.
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must be a point, such as P, where the tangent is parallel to All.

For </>'(£) is the tangent of the angle which the tangent at P
makes with OX, and

{<f>
(b) - </> («)}/(& - a) the tangent of the angle

which AB makes with OX.

It is easy to give a strict analytical proof. Consider the

function

*(&)-*(*)-|^ {*(&)-* (a)},

which vanishes when x = a and x = b. It follows from Theorem B
of § 121 that there is a value £ for which its derivative vanishes.

But this derivative is

jz^r -f(#);
0(ft)-0(Q)

a

which proves the theorem. It should be observed that it has not

been assumed in this proof that
<f>'

(x) is continuous.

It is often convenient to express the Mean Value Theorem in

the form

<j>(b) = cf> (a) + (b-a) 4>' {a + d(b- a)},

where is a number lying between and 1. Of course a+ 6(b—a)

is merely another way of writing 'some number £ between a and b\

If we put b = a + h we obtain

</> (a + li) = <j> (a) + h(f>' (a + 6h),

which is the form in which the theorem is most often quoted.

Examples XLVII. 1. Show that

.0 (6)-0(#)-|^& (&)-*(«)}

is the difference between the ordinates of a point on the curve and the

corresponding point on the chord.

2. Verify the theorem when cf> (,v) = x2 and when <£ (x) = x3
.

[In the latter case we have to prove that (6
3 — a3)/(b— a) = 3£2

, where

a<£<b; i.e. that if J (b2+ ab+ a2
) = £

2 then £ lies between a and b.]

3. Establish the theorem stated at the end of § 1 24 by means of the Mean

Value Theorem.

[Since <f>'(0)
= c, we can find a small positive value of .r such that

{(f>(x)-(f>(0)}/x is nearly equal to c; and therefore, by the theorem, a small

positive value of £ such that $ (£) is nearly equal to c, which is inconsistent

with lim (f>'(x) = a, unless a= c. Similarly 6= c]

15—2
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4. Use the Mean Value Theorem to prove Theorem (6) of § 113, assuming

that the derivatives which occur are continuous.

[The derivative of F{f(x)} is by definition

F{f(x + h)}-F{f(x)}nm
h

'

But, by the Mean Value Theorem, f(x+h)=f(x) + hf'(g), where £ is a number

lying between x and x+ h. And

F{f(.v)+hf'(g)}=F{f(x)}+hf (£)*" (£),

where £j is a number lying between/(o;) and f(x) + hf (£). Hence the deriva-

tive of F{f(x)) is

lim/' (|) F' «,)=/' (x)F'{f(x)},

since £-»-# and £i-*~f(x) as A-»-0.]

126. The Mean Value Theorem furnishes us with a proof of a

result which is of great importance in what follows : if <f>'
(x) = 0,

throughout a certain interval of values of x, then </> (x) is constant

throughout that interval.

For, if a and b are any two values of x in the interval, then

</> (b) - (/> (a) = (b - a) <£' {a + d (b - a)} = 0.

An immediate corollary is that if
<f>'

(x) = y\r' (x), throughout a

certain interval, then the functions cf> (x) and -^ (x) differ through-

out that interval by a constant.

127. Integration. We have in this chapter seen how we can

find the derivative of a given function
(f>

(x) in a variety of cases,

including all those of the commonest occurrence. It is natural to

consider the converse question, that of determining a function

whose derivative is a given function.

Suppose that yfr (x) is the given function. Then we wish to

determine a function such that
<f>'

(x) = \jr (x). A little reflection

shows us that this question may really be analysed into three

parts.

(1) In the first place we want to know whether such a

function as
<f>

(x) actually exists. This question must be carefully

distinguished from the question as to whether (supposing that*

there is such a function) we can find any simple formula to

express it.

(2) We want to know whether it is possible that more than

one such function should exist, i.e. we want to know whether our
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problem is one which admits of a unique solution or not ; and
if not, we want to know whether there is any simple relation

between the different solutions which will enable us to express all

of them in terms of any particular one.

(3) If there is a solution, we want to know how to find an
actual expression for it.

It will throw light on the nature of these three distinct ques-

tions if we compare them with the three corresponding questions

which arise with regard to the differentiation of functions.

(1) A function
<f>

(x) may have a derivative for all values of x,

like xm, where m is a positive integer, or sin x. It may generally,

but not always have one, like \/x or tan# or sec a;. Or again

it may never have one : for example, the function considered in

Ex. xxxvii. 20, which is nowhere continuous, has obviously no

derivative for any value of x. Of course during this chapter we
have confined ourselves to functions which are continuous except for

some special values of x. The example of the function ZJx, how-

ever, shows that a continuous function may not have a derivative

for some special value of x, in this case x = 0. Whether there

are continuous functions which never have derivatives, or con-

tinuous curves which never have tangents, is a further question

which is at present beyond us. Common-sense says No : but, as

we have already stated in § 111, this is one of the cases in which

higher mathematics has proved common-sense to be mistaken.

But at any rate it is clear enough that the question ' has (j> (x)

a derivative <£' (x) ?
' is one which has to be answered differently

in different circumstances. And we may expect that the converse

question ' is there a function
<f>

(x) of which y{r (x) is the deriva-

tive ?
' will have different answers too. We have already seen

.that there are cases in which the answer is No : thus if yfr (x) is

the function which is equal to a, b, or c according as x is less than,

equal to, or greater than 0, then the answer is No (Ex. xlvii. 3),

unless a = b = c.

This is a case in which the given function is discontinuous.

In what follows, however, we shall always suppose yjr(x) continuous.

And then the answer is Yes : if ^r{x) is continuous then there is

always a function
<f>

(x) such that
<f>'

(x) = yjr (x). The proof of this

will be given in Ch. VII.
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(2) The second question presents no difficulties. In the case

of differentiation we have a direct definition of the derivative

which makes it clear from the beginning that there cannot

possibly be more than one. In the case of the converse problem

the answer is almost equally simple. It is that if
<f>

(x) is one

solution of the problem then
<f>

(x) + G is another, for any value of

the constant C, and that all possible solutions are comprised in

the form
<f>

(x) + C. This follows at once from § 126.

(3) The practical problem of actually finding <£' (x) is a fairly

simple one in the case of any function defined by some finite com-

bination of the ordinary functional symbols. The converse problem

is much more difficult. The nature of the difficulties will appear

more clearly later on.

Definitions. If \jr (x) is the derivative of <£ (x), then we call

(f>
(x) an integral or integral function of -^ (./'). The operation

offorming yjr (x)from </> (x) ive call integration.

We shall use the notation

<f)(x)= I yjr (x) dx.

It is hardly necessary to point out that \...dx like djdx must, at

present at any rate, be regarded purely as a symbol of operation

:

the I and the dx no more mean anything when taken by them-

selves than do the d and dx of the other operative symbol djdx.

128. The practical problem of integration. The results

of the earlier part of this chapter enable us to write down at once

the integrals of some of the commonest functions. Thus

r xm+1 [ . f .

I xmdx = , I cos xdx = sin x, I sin xdx = — cos x. . .(1).

These formulae must be understood as meaning that the

function on the right-hand side is one integral of that under

the sign of integration. The most general integral is of course

obtained by adding to the former a constant C, known as the

arbitrary constant of integration.
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There is however one case of exception to the first formula, that

in which m= — 1. In this case the formula becomes meaningless,

as is only to be expected, since we have seen already (Ex. xlii. 4)
that l/x cannot be the derivative of any polynomial or rational

fraction.

That there really is a function F(x) such that Dx F(x) = 1/sc

will be proved in the next chapter. For the present we shall be
content to assume its existence. This function F(x) is certainly

not a polynomial or rational function ; and it can be proved that

it is not an algebraical function. It can indeed be proved that

F(x) is an essentially new function, independent of any of the

classes of functions which we have considered yet, that is to sav

incapable of expression by means of any finite combination of the

functional symbols corresponding to them. The proof of this is

unfortunately too detailed and tedious to be inserted in this book;

but some further discussion of the subject will be found in Ch. IX,

where the properties of F(x) are investigated systematically.

Suppose first that x is positive. Then we shall write

'dx

i
= lo^# (2),

x ° w '

and Ave shall call the function on the right-hand side of this

equation the logarithmic function : it is defined so far only for

positive values of x.

Next suppose x negative. Then — x is positive, and so log (—x)

is defined by what precedes. Also

dx ° — x x'

so that, when x is negative,

/^ = log(-*) (3).

The formulae (2) and (3) may be united in the formulae

'dxj— = \og(±x) = \og\x\ (4),
J 00

where the ambiguous sign is to be chosen so that ± x is positive

these formulae hold for all real values of x other than x = 0.
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The most fundamental of the properties of log x which will be proved in

Ch. IX are expressed by the equations

log 1 = 0, log (1/x) = - log x, log xy = log re+ log y,

of which the second is an obvious deduction from the first and third. It is

not really necessary, for the purposes of this chapter, to assume the truth of

any of these formulae ; but they sometimes enable us to write our formulae

in a more compact form than would otherwise be possible.

It follows from the last of the formulae that log.r2 is equal to 21og.^ if

x> and to 2 log ( - x) if x < 0, and in either case to 2 log
|
x

\
. Either of the

formulae (4) is therefore equivalent to the formula

I

/'_L = i log x2
(5).

The five formulae (1)—(3) are the five most fundamental

standard forms of the Integral Calculus. To them should be

added two more, viz.

I = arc tan x, \ -jyz -. = + arc sin x* (6).

129. Polynomials. All the general theorems of § 113 may of

course also be stated as theorems in integration. Thus we have,

to begin with, the formulae

!{f(x) + F(x)} dx= ff(x)dx + JF{x)dx (1),

!kf(x)dx = kjf(x)dx (2).

Here it is assumed, of course, that the arbitrary constants are

adjusted properly. Thus the formula (1) asserts that the sum of

any integral of f(x) and any integral of F (x) is an integral of

f{x) + F(x).

These theorems enable us to write down at once the integral

of any function of the form £ A „/„(#), the sum of a finite number
of constant multiples of functions whose integrals are known. In

particular we can write down the integral of any polynomial:

thus

/
x 7 a a"+1 a,x11

(fl(/t''
1 + ttiX

71-1 + ... + an) dx — — -—- H + . . . + anx.n + l n

* See § 119 for the rule for determining the ambiguous sign.
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130. Rational Functions. After integrating polynomials

it is natural to turn our attention next to rational functions.

Let us suppose R (x) to be any rational function expressed in the

standard form of § 117, viz. as the sum of a polynomial II (x) and

a number of terms of the form A/(x — ol)p.

We can at once write down the integrals of the polynomial

and of all the other terms except those for which p = 1, since

/i

A , A 1
ax = —

(x - a)P p - 1 {x - a)^1
'

whether a be real or complex (§ 117).

The terms for which p = 1 present rather more difficulty.

It follows immediately from Theorem (6) of § 113 that

\F'{f{x)}f'{x)alx = F{f(x)} (3).

In particular, if we take f(x) = ax + b, where a and b are real,

and write <p (x) for F (x) and i/r (x) for F' (x), so that </> (x) is an

integral of yfr (x), we obtain

/
fr(ax + b) dx = -<f) (ax + b) (4).

Thus, for example,

dx 1,, 7—v = - log \ax-\- b
ax + b a

and in particular, if a is real,

dx

/,

/ a
= \og\x-a\.

We can therefore write down the integrals of all the terms in

i? (as) for which p = 1 and a. is real. There remain the terms for

which p = 1 and a is complex.

In order to deal with these we shall introduce a restrictive

hypothesis, viz. that all the coefficients in R (x) are real. Then if

a = ry + 8i is a root of Q (x) = 0, of multiplicity m, so is its con-

jugate a = y — Bi; and if a partial fraction Ap/(x—a)p occurs in

the expression of R (x), so does Ap/(x
— a)P, where Ap is conjugate

to Ap . This follows from the nature of the algebraical processes

by means of which the partial fractions can be found, and which

are explained at length in treatises on Algebra*.

* See, for example, Ckrystal's Algebra, vol. i, pp. 151-9.
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Thus, if a term (A. + fii)/(x — y — Si) occurs in the expression

of R (x) in partial fractions, so will a term (A — fii)/(x — y + Si)
;

and the sum of these two terms is

(x-y)2 +B2

This fraction is in reality the most general fraction of the form

Ax + B
ax2 + 2bx + c

'

where b2 < ac. The reader will easily verify the equivalence of

the two forms, the formulae which express A, /a, y, 8 in terms of

A, B, a, b, c being

A = A/2a, (x = - D/(2ch/A), y = -bja, S = \/A/a,

where A = ac — b2
, and D= aB—bA.

If in (3) we suppose j^ {f{x)\ to be log \f(x) |, we obtain

|^^ = log|/(.r)i (5);

and if we further suppose that/(#) = (x — X)2 + /a
2
, we obtain

And, in virtue of the equations (6) of § 128 and (4) above, we

have

f ,
~ 2^ ,

^ 2S arc tan (^±) .

These two formulae enable us to integrate the sum of the two

terms which we have been considering in the expression of R (x)
;

and we are thus enabled to write down the integral of any real

rational function, if all the factors of its denominator can be deter-

mined. The integral of any such function is composed of the sum

of a polynomial, a number of rational functions of the type

A 1

p - 1 (x - ay-1 '

a number of logarithmic functions, and a number of inverse tangents.

It only remains to add that if a. is complex then the rational

function just written always occurs in conjunction with another in

which A and a are replaced by the complex numbers conjugate to

them,and that the sum of the two functions is a real rational function.
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Examples XLVIII. 1. Prove that

[_^±B_ _A . D \ ax +b- s!{-A)\

(where X=ax2+2bx + c) if A<0, and

{, i
X
Z
B
+ ^ 9

-log|2-| + -4-arcten ("+*)
J ax*+2bx+c 2a °

'
' ajA \ Ja J

if A > 0, A and D having the same meanings as on p. 234.

2. In the particular case in which ac= b2 the integral is

D A
,

-\— log ax+ b \.a (ax+ b) a

3. Show that if the roots of Q(x)=0 are all real and distinct, and P(x)
is of lower degree than Q (,r), then

Il(x)dx=^^\og\x-a\,

the summation applying to all the roots a of Q (x) = 0.

[The form of the fraction corresponding to a may be deduced from the

facts that

Q(x) rut \ / \ »/ \
P(a

)

I

as #-»-a.]

4. If all the roots of Q (x) are real and a is a double root, the other roots

being simple roots, and P (x) is of lower degree than Q (x), then the integral

is Aj(x-a) + A' \og\ x- a
|
+ 2 B log

| x-fi |, where

2PW 2{3P'(a)Q"(a)-P(a)Q"'(a)} P(/3)

"«"(«)' ' 3{§"(«)}2 ' ^~e(/3)'

and the summation applies to all roots 13 of Q (x) = other than a.

dx
5. Calculate [

L)(^2 +l)} 2
'

[The expression in partial fractions is

1 _1 i 2-t t 2 + i

4(^-l) 2 ~ 2~(>-l) " 8(a?-i)*
+ 8(*-i)

+
8 (# +i)*

+
8 (#+i)

'

and the integral is

1

4(^-1) 4(^+1)
- \ log

|
x — 1 1 + 1 log (.t-+ 1)+ j arc tan x.]

6. Integrate

x

{x-a)(x-b)(x-cY {x-af(x-by (x-a) 2 (x-b) 2 ' (x-a)3 '

x x2 x2 — a2 x2 — a 2

(x 2+ a2
)
(x2 + b2

)
' (x2+ a2

)
(x2+ b)

2 ' x2 {x2+ a 2
)

' x {x2 + a-)2 *



h

236 DERIVATIVES AND INTEGRALS [VI

7. Prove the formulae

:

l+#* 4V2\ B
\1-*V2+*"/ \l-«*/J

131. Note on the practical integration of rational functions.

The analysis of § 130 gives us a general method by which we can find the

integral of any real rational function R (a?), provided ice can solve the equation

Q{x) = 0. In simple cases (as in Ex. 5 above) the application of the method

is fairly simple. In more complicated cases the labour involved is some-

times prohibitive, and other devices have to be used. It is not part of the

purpose of this book to go into practical problems of integration in detail.

The reader who desires fuller information may be referred to Goursat's Cows
d?Analyse, second ed., vol. i, pp. 246 et seq., Bertrand's Calcid Integral, and

Dr Bromwich's tract Elementary Integrals (Bowes and Bowes, 1911).

If the equation Q(.v)=0 cannot be solved algebraically, then the method of

partial fractions naturally fails and recourse must be had to other methods'*.

132. Algebraical Functions. We naturally pass on next to

the question of the integration of algebraical functions. We have

to consider the problem of integrating y, where y is an algebraical

function of x. It is however convenient to consider an apparently

more general integral, viz.

/
R (x, y) dx,

where R (x, y) is any rational function of x and y. The greater

generality of this form is only apparent, since (Ex. XIV. 6) the

function R (x, y) is itself an algebraical function of x. The choice

of this form is in fact dictated simply by motives of convenience

:

such a function as

px + q + \f(ax2 + 2bx + c)

px + q — \/(ax2 + 2bx + c)

is far more conveniently regarded as a rational function of x and

the simple algebraical function *J(ax2 + 2bx + c), than directly as

itself an algebraical function of x.

* See the author's tract "The integration of functions of a single variable"

{Cambridge Tracts in Mathematics, No. 2, second edition, 1915). This does not

often happen in practice.
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133. Integration by substitution and rationalisation.

It follows from equation (3) of § 130 that if I ty (a?) das = <£(#) then

* {/(*)}/ (t)dt = <}>{f(t)} (1)./

This equation supplies us with a method for determining the

integral of yjr (x) in a large number of cases in which the form of

the integral is not directly obvious. It may be stated as a rule as

follows: put x=f(t), where f (t) is any function of a new variable

t which it may be convenient to choose ; multiply by f it), and

determine (if possible) the integral of -v/r {f(t)}f (t); express the

result in terms of x. It will often be found that the function of t

to which we are led by the application of this rule is one whose

integral can easily be calculated. This is always so, for example,

if it is a rational function, and it is very often possible to choose

the relation between x and t so that this shall be the case. Thus

the integral of R (\Jx), where R denotes a rational function, is

reduced by the substitution x=t2 to the integral of 2tR(t2

),

i.e. to the integral of a rational function of t. This method of

integration is called integration by rationalisation, and is of

extremely wide application.

Its application to the problem immediately under consideration

is obvious. If we can find a valuable t such that x and y are both

rational functions oft, say x = R^t), y = R2 (t), then

f
R(x, y) dx = JR {R^t), R2 (t)} Ri(t)dt,

and the latter integral, being that of a rational function of t, can be

calculated by the methods o/§ 130.

It would carry us beyond our present range to enter upon any

general discussion as to when it is and when it is not possible to

find an auxiliary variable t connected with x and y in the manner

indicated above. We shall consider only a few simple and inter-

esting special cases.

134. Integrals connected with conies. Let us suppose

that x and y are connected by an equation of the form

ax2 + 2hxy + by2 + 2gx + 2fy + c = 0;

in other words that the graph of y, considered as a function of x
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is a conic. Suppose that (£, rj) is any point on the conic, and

let x — £ = X, y — t] = Y. If the relation between x and y is

expressed in terms of X and Y, it assumes the form

aX2 + 2hXY + bY2 + 2GX + 2FY = 0,

where F=hi; + br}+f, G = ag + hrj + g. In this equation put

Y = tX. It will then be found that X and Y can both be

expressed as rational functions of t, and therefore x and y can

be so expressed, the actual formulae being

2 (G + Ft) _ 2t(G + Ft)
x ~s- a +2ht + bt2 '

y V
a + 2ht + bt*'

Hence the process of rationalisation described in the last section

can be carried out.

The reader should verify that

hx + by+f=-%(a+2ht + to) ~ ,

S0 that
J hxTbf+f ~ " J a+2ht + to

'

When h- > ab it is in some ways advantageous to proceed as

follows The conic is a hyperbola whose asymptotes are parallel

to the lines

ax2 + 2hxy + by2 = 0,

or b(y- fix) (y - fi'x) = 0,

say If we put y — fxx = t, we obtain

?rriB + 2/V + c

and it is clear that x and y can be calculated from these equations

as rational functions of t. We shall illustrate this process by an

application to an important special case.

135. The integral / -77

—

o . nt—;—c« Suppose in particular that
J J(ax1 + 2bx + c)

rr r

y
2= ax2+ 2bx + c, where a>0. It will be found that, if we put y+x s/a= t,

we obtain

dx _ (t
i + c)Ja + 2bt _ (t* + c) Ja+ 2 bt

dt~ (tja+ b? ' y~ ~tja + b "'

and so

fdx f dt 1 . , b
\

J J
=
JT7a^b

=
7a lOS

r*
/a+9J+ ;ra\

^
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If in particular a= l, 6= 0, c=a2
, or a=l, b= 0, c= -a2

, we obtain

equations whose truth may be verified immediately by differentiation. With
these formulae should be associated the third formula

v/(a
2-^

)

= arCSin( -y/a)
<
3 )'

which corresponds to a case of the general integral of this section in which
a< 0. In (3) it is supposed that a > ; if a< then the integral is arc sin (.v/

1
a

j)

(cf. § 119). In practice we should evaluate the general integral by reducing it

(as in the next section) to one or other of these standard forms.

The formula (3) appears very different from the formulae (2) : the reader

will hardly be in a position to appreciate the connection between them until

he has read Ch. X.

/*

X«£ -f- Lt

136. The integral ——-

—

-£ dx. This integral can
J *J(ax- + Ibx+c) °

be integrated in all cases by means of the results of the preceding

sections. It is most convenient to proceed as follows. Since

Xx + fj,
= (X/a) (ax + b) + /x - (Xb/a),

dx = *J(ax- + 2bx + c),

I V(a#2 + 2bx + c)

we have

t (Xx + fx)dx X
, , oi , \ . ( ^\ f dx

—rr £r "v
= - *J(ax- + Zbx + C) + [ a -,-, —^ r .

) ^(ax* + 2bx +c) a
Y v ;

V aJJ s/(ax-+ 2bx+c)

In the last integral a may be positive or negative. If a is

positive we put x *Ja + (b/\Ja) = t, when we obtain

dtif.
Ja J iy/a J i\/(t

% + k)
'

where k = (ac — b2)/a. If a is negative we write A for — a and

put x\JA —(b/\/A) = t, when we obtain

1 f dt

*J{-a)} sj{-K-Vy

It thus appears that in any case the calculation of the integral

may be made to depend on that of the integral considered in

§ 135, and that this integral may be reduced to one or other

of the three forms

f dt f dt f dt

J vV3 + a2)
' 1 V(«

s ~ a2)
' J v^2 - 1

2)

'
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137. The integral l(\x+ tJ.)*J(ax
2+ 2bx+ c)dx. In exactly the same

way we find

f(Xx

+

h ) <J(ax
2 + %>x+ c)dx= (£\ (ax2+ 2bx+ c)3'

2

+ ( '—) J(<**
2+2bx+ c) dx ;

and the last integral may be reduced to one or other of the three forms

fj(P+ a*)dt, U(f-a*)dt, fj(a
2 -P)dt.

In order to obtain these integrals it is convenient to introduce at this point

another general theorem in integration.

138. Integration by parts. The theorem of integration by

parts is merely another way of stating the rule for the differentia-

tion of a product proved in § 113. It follows at once from

Theorem (3) of § 113 that

jf (0) F(x) dx =f(x) F (x) - ff(x) F' (0) dx.

It may happen that the function which we wish to integrate is

expressible in the form f'(x)F (x), and that f (x) F' (x) can be

integrated. Suppose, for example, that $ (x) = xty (x), where yfr (x)

is the second derivative of a known function x (x)- Then

J
<j> (x) dx=

J
xX" (0) dx = xX ' (0) -jx 0) dx = xX ' (0) - % (0).

We can illustrate the working of this method of integration by applying

it to the integrals of the last section. Taking

/ (x) = ax +b, F (a?)=J(ax2+ 2bx+c)=y,
we obtain

a h/dx=(a.v+ b)y-
J

— '- dx=(ax+ b)y - a
J
ydx+(ac-b 2

) /—

,

,, , [ , (ax+ b)y
,
ac-b2 [dx

so that J^=L__il + __J_.
and we have seen already (§ 135) how to determine the last integral

Examples XLIX. 1 Prove that if a>0 then

J
slix*+ a2

) dx=\x sjix1 + a2
) +|

a

2 log {x+ v/(.r
2 + n2)}

,

J
v/(.f

2 - a2) dx=hx s!(x
2 - a2) - \ a

2 log
|
x+ sl(x

2 - a2
) |

,

I s/(a
2— x2

) dx=\x *J(a2 - x2
) + 1 a2 arc sin (xja).
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2. Calculate the integrals / ~--
2

*_
/ v/(a2 _ xt} jx by moans of the

substitution x=asm6, and verify that the results agree with those obtained
in § 135 and Ex. 1.

3. Calculate / x (x+ a)
m dx, where m is any rational number, in three

ways, viz. (i) by integration by parts, (ii) by the substitution (x+a)m= t, and
(iii) by writing (x+a)-a for x ; and verify that the results agree.

4. Prove, by means of the substitutions ax+ b=l/t and x=l/u, that (in

the notation of §§ 130 and 138)

[dx _ ax + b fxdx _ b.r

}f~ Ay ' J'y
1" '~t

+ G

Ay

f dx
5. Calculate I -j- — ^-, where b>a, in three ways, viz. (i) by

J \! ((X a) (U X))

the methods of the preceding sections, (ii) by the substitution (b - x)/(x — a)— t
2
,

and (iii) by the substitution x=a cos2 d + b sin2 d ; and verify that the results

agree.

6. Integrate s/{(x -a)(b- x)} and s/{(b - x)/(x - a)} .

7. Show, by means of the substitution 2x+ a+ b = \ (a — b) {t
2+ (l/t) 2

},

or by multiplying numerator and denominator by J{x+ a) - *J(x + b), that if

a> b then

L+ g)t/(^r K/(3 " 6)
('
+
s?):

-

f dx
8. Find a substitution which will reduce I , cjs—-, c^s to the

J (x+ a)6ii+ (x— a) 312

integral of a rational function. (Math. Trip. 1899.)

9. Show that JR{x, %/(ax+ b)}dx is reduced, by the substitution

ax+ b=yn
, to the integral of a rational function.

10. Prove that

ff"
{x)F(x)dx=f (x) F(x)-f(x) F1

. (x) + ff(x) F"(x) dx

and generally

f/(») (x) F(x)dx=f(n ~ " (x) F{x) - /(» - 2
> (x) F' (x)+ ..:+ (- 1

)"

f
f(x)FW (x) dx.

11. The integral I (1 +x)p xP dx, where p and q are rational, can be found

in three cases, viz. (i) if p is an integer, (ii) if q is an integer, and (iii) if

p + q is an integer. [In case (i) put x=us
, where s is the denominator of q ;

in case (ii) put 1 +x=ts
, where s is the denominator of p ; and in case (iii) put

1 +x=xt8
, where s is the denominator of p.]

n. 16
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12. The integral / xm (axn+ b)"dx can be reduced to the preceding

integral by the substitution axn =bt. [In practice it is often most con-

venient to calculate a particular integral of this kind by a 'formula of

reduction' (cf. Misc. Ex. 39).]

13. The integral I R {x, ^(ax+ b), sj(cx+ d)} dx can be reduced to that of

a rational function by the substitution

4x= - (5/o) {t+mr - (die) {t- (l/o}
2
.

14. Reduce I R (x, y) dx, where y
2 (x — y) = x2

, to the integral of a rational

function. [Putting y=tx we obtain x=l/{t2 (l — t)}, y= l/{t(l -t)}.]

15. Reduce the integral in the same way when (a) y(x— y)
2 =x,

(b) (x2+y2
)
2=a2 (x2 -y2

). [In case (a) put x — y= t: in case (6) put

x2+y2=t(x- y),when we obtain x=a2
t (t

2+ a2
)/(*

4 + a4
), y= a2

t (t
2 - a2

)/(*
4+ a4

). ]

f dx
16. If y (x-y)2=x then I

—— = J log {(x — y)
2— 1}.

J x—3y

17. If {x2+y2
)

2=2c2 (x2 -y2
) then \—*L—~ = - -

9 log (^±2*) .a ' *
J y(x

i +y2+ c2) c2 °\x-yj

139. The general integral I .ft (a?, y) dx, where y
2=ax2+ 2bx+c.

The most general integral, of the type considered in § 134, and associated with

the special conic y
2=ax2 + 2bx +c, is

/
R(x,*JX)dx (1),

where X=y2—ax2+ 2bx+ c. We suppose that R is a real function.

The subject of integration is of the form P/Q, where P and Q are poly-

nomials in x and *JX. It may therefore be reduced to the form

A +BJX_ {A + BJX){C-DJX) _ 1Pl „ /yC+DJX C2 -D2X -& + !< va,

where A, B, ... are rational functions of x. The only new problem which

arises is that of the integration of a function of the form F JX, or, what is

the same thing, G/JX, where G is a rational function of x. And the integral

G
I x dx (2)

can always be evaluated by splitting up G into partial fractions. When we
do this, integrals of three different types may arise.

(i) In the first place there may be integrals of the type

/
-p* dx (3),
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where m is a positive integer. The cases in which m=Oorm=l have been
disposed of in § 136. In order to calculate the integrals corresponding to

larger values of m we observe that

where a, /3, y are constants whose values may be easily calculated. It is clear

that, when we integrate this equation, we obtain a relation between three

successive integrals of the type (3). As we know the values of the integral

for m = and m= 1, we can calculate in turn its values for all other values of m.

(ii) In the second place there may be integrals of the type

dx

(x-p)m ,JX ^ )'

where p is real. If we make the substitution x— p= \jt then this integral is

reduced to an integral in t of the type (3).

/

(iii) Finally, there may be integrals corresponding to complex roots of the

denominator of G. We shall confine ourselves to the simplest case, that in

which all such roots are simple roots. In this case (cf. § 130) a pair of con-

jugate complex roots of G gives rise to an integral of the type

Lx+M
Si

dx (5).
(Ax2+ 2Bx+ C) V (ax2+ 2bx+ c

In order to evaluate this integral we put

_ftt+V
X~t+\ '

where p and v are so chosen that

apv+ b(jj.+v)+c=0, A^v + B(fj.+ v) + C=0;

so that fi and v are the roots of the equation

(aB-bA)£2 -(cA-a(7)$ + (bC-cB) = 0.

This equation has certainly real roots, for it is the same equation as

equation (1) of Ex. xlvi. 12 ; and it is therefore certainly possible to find

real values of /x and v fulfilling our requirements.

It will be found, on carrying out the substitution, that the integral (5)

assumes the form

tdt „ /" dt_

(at 2+® J(yt*+8y J (at2 +(3) J(yt2 + 8)

The second of these integrals is rationalised by the substitution

t

*k\wt-°

which srives

/

J(yt' + 8)
w

'

dt f die

(at2 + 0) J(yt2+ 8) J + (ad - /Sy) u2

16-
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Finally, if we put t=l/u in the first of the integrals (6), it is transformed into

an integral of the second type, and may therefore be calculated in the manner

just explained, viz. by putting uU(y+8u2
) = u, i.e. l//J(yt2 + 8)= v.*

Examples L. 1. Evaluate

f dx f dx f dx

JxJ(a?+2x+ 3y ]{x~-ijj(x*+ l)' ](x + l)<J(l + 2x~^~xT)-

2. Prove that

f dx _ 2 //x-g\

J (x-P)<s/{(z-P)(x-Q)} ~ 2 ~P V \x-p)
'

3. If ag2+ ch2= - v< then

( *L_ _ = -JL arc tan rVM^2+ c)H
_

J (Jix+g) ,J(ax2+ c) Jv [_ ch-agx J

f dv
4. Show that I

;
; , where ?/

2= a.v2 + 2bx + c, may be expressed in one
J(x-x )y

or other of the forms

axx + b(x+x )+c+ y ?/ 1 (axx + b(x + xn) + c
- arc tan 'log

#o oc-ooq z
(

yzQ

according as ax 2 + 2bxo+ c is positive and equal to y - or negative and equal

to — z 2
.

5. Show by means of the substitution y= Sf
f(ax2+ 2bx+c)/(x-p) that

f dx _ f dy

J (*

-

P) V(«*
2+ 2bx+ c)~~ J J(\y

2 - fi)
'

where \= ap2 + 2bp + c, /j.= ac-b2
. [This method of reduction is elegant but

less straightforward than that explained in § 139.]

6. Show that the integral

dx

I' xj(3x2+ 2x+l)

is rationalised by the substitution x=(l+y2)/(3-y2
). (Math. Trip. 1911.)

7. Calculate

(x+ l)dx

I(x2+ 4)J(.e
2 + 9)'

* The method of integration explained here fails if ajA = bjB; but then the

integral may be reduced by the substitution ax + b — t. For further information

concerning the integration of algebraical functions see Stolz, Grundziige der

Differential-und-integralrechnung, vol. i, pp. 331 et seq.; Bromwicb, Elementary

Integrals (Bowes and Bowes, 1911). An alternative method of reduction has been

given by Sir G. GreenhiJl: see his A Chapter in the Integral Calculus, pp. 12 et

seq , and the author's tract quoted on p. 236.
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8. Calculate

i

dx
(5x2+ Ux + 8) st(5a? + 2% - 7)

*

[Apply the method of § 139. The equation satisfied by M and v is

£
2 + 3£+ 2= 0, so that /x=-2, i/=-l, and the appropriate substitution is

x= -(2t+l)/(t+ l). This reduces the integral to

_ f dt r tdt

J (4*3 + 1-) N/(9*
2 - 4) J (4f~ + l)7(9^-~4)

*

The first of these integrals may be rationalised by putting */V(9*
2 -4) = m and

the second by putting l/v/(9<
2 - 4) = v.]

9. Calculate

f (*+l)«fc f (x-\)dx

J (2a,-
2-2x+ 1) N/(3o;

2-2*+ 1).' J (2a,-
2 - Or + 5) sl(7x* - 22.r +19)*

(JfeA. Trip. 1911.)

10. Show that the integral I ^ (.r, y) dx, where y
2= ax1+ 2bx+ c, is ration-

alised by the substitution t= (x-p)j(y+ q), where (p, j) is any point on the

conic y
2 =a.r2+ 26.r+c. [The integral is of course also rationalised by the

substitution t= {x—p)l(y — q) : cf. § 134.]

140. Transcendental Functions. Owing to the immense
variety of the different classes of transcendental functions, the

theory of their integration is a good deal less systematic than

that of the integration of rational or algebraical functions. We
shall consider in order a few classes of transcendental functions

whose integrals can always be found.

141. Polynomials in cosines and sines of multiples of x.

We can always integrate any function which is the sum of a

finite number of terms such as

A cosm ax sinm ax cos1l bx smn'bx...,

where m, m, n, n, ... are positive integers and a, b, ... any real

numbers whatever. For such a term can be expressed as the

sum of a finite number of terms of the types

a cos {(pa + qb + ...) x\, /3sin {(pa + qb + ...)x]

and the integrals of these terms can be written down at once.
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Examples LI. 1. Integrate sin3 x cos2 2x. In this case we use the

formulae

sin3 x= \ (3 sin x- sin 3x), cos2 2x= |(1 + cos 4a?).

Multiplying these two expressions and replacing sin x cos 4x, for example,

by \ (sin bx— sin 3d;), we obtain

Jg
I (7 sin a; - 5 sin 3a?+ 3 sin bx — sin 7a?) dx

= - /g- cos x+ -fg cos 3a; — £% c°s 5a; +i^2 cos 7x.

The integral may of course be obtained in different forms by different

methods. For example

I sin3 x cos2 2xdx— I (4 cos4 x - 4 cos2 x+ 1) (1 — cos2 a?) sin xdx,

which reduces, on making the substitution cosx=t, to

/ (4l6 -8ti + 5t2 -l)dt=
f-
cos7 x - f cos5 a;+ § cos3 a; - cos x.

It may he verified that this expression and that obtained above differ only by

a constant.

2. Integrate by any method cos ax cos bx, sin ax sin bx, cos ax sin fea?,

cos2
.?;, sin3

.*;, cos4 a?, cos x cos 2x cos 3a?, cos3 2a? sin 2 3.r, cos6 a; sin7
a;. [In cases of

this kind it is sometimes convenient to use a formula of reduction (Misc.

Ex. 39).]

142. The integrals I x11 cos x dx,
J
xn sin x dx and associated

integrals. The method of integration by parts enables us to

generalise the preceding results. For

I xn cos x dx = x 11 sin x — n I a;
71-1 sin x dx,

I xn sin x dx = — xn cos x + n I a;'
1-1 cos a? <fo,

and clearly the integrals can be calculated completely by a

repetition of this process whenever n is a positive integer. It

follows that we can always calculate I xn cos ax dx and I x11 sin axdx

if n is a positive integer; and so, by a process similar to that of

the preceding paragraph, we can calculate

/
P (x, cos ax, sin ax, cos bx, sin bx, . . .) dx,

where P is any polynomial.
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Examples LII. 1. Integrate a;sin#, a? coax, ^cos2
^, x2 sin2 x sin2 2x,

X sin 2 x cos4 x, x3 sin3 \x.

2. Find polynomials P and Q such that

/ {(3.r- 1) cosx+(l - 2x) sin x) dx= P cos x+Q sin x.

3. Prove that I ^,l cos .zofo;=Pw cos x+ Qn sin x, where

P,
i
= n.i-»- 1 -?i(«-l)(»-2)^»-3+..., &«*»-ri(n-l) «»-«+....

143. Rational Functions of cos x and sin a*. The integral

of any rational function of cos x and sin x may be calculated by
the substitution tan \x = t. For

1 - 1
2

. It dx 2cos#=- -. sina;= ,
—- =

,l+t2 ' l+t2 ' dt l + t*'

so that the substitution reduces the integral to that of a rational

function of t.

Examples LIII. 1. Prove that

I sec xdx

=

log
|
sec x

+

tan x\,
J
cosec x dx= log

|
tan hx |.

[Another form of the first integral is log
|
tan {\^+\x)\'t a third form is

h log
|

(1 + sin x)j( 1 - sin x)
| .]

2. I tan xdx= -log
|
cos x

|,
/ cot

.

vdx= log
|

sin x\, /sec2 xdx=t&n x,

J
cosec2

a'dx= — cot #, / tan # sec .rdx

=

sec a?, I cot x cosec # efcc= — cosec . v.

[These integrals are included in the general form, but there is no need to

Tise a substitution, as the results follow at once from § 119 and equation (5)

of § 130.]

3. Show that the integral of l/(a+ bcosx), where a + b is positive, may

be expressed in one or other of the forms

J(b+ a) + tJ(b-a)
tan f\/(^)}' ^2W) l0g

J{b+ a)-t s!{b-a)

where <= tan^.r, according as a2 >b2 or a2 < b2 . If a2= ft
2 then the integral

reduces to a constant multiple of that of sec2 ix or cosec2
J.r, and its value

may at once be written down. Deduce the forms of the integral when a+ b

is negative.

4. Show that if y is defined in terms of x by means of the equation

{a+ b cos x) (a-b cos y) = a2 — b2
,

where a is positive and a?>b2
, then as x varies from to n one value of y

also varies from to n. Show also that

sj{a2 - b2) sin y sin x dx BJny
sino.'=

a-bcosy ' a + bcosx dy a—bcosy'
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and deduce that if < x < n then

I
dx 1 (a cos x+ b

arc cos
a + b cos x V (

a ~ " )
\a + b cos .r/

Show that this result agrees with that of Ex. 3.

5. Show how to integrate 1 j(a + b cos x+ c sin x). [E xpress b cos x+ c sin #

in the form *J(b
2 + c2) cos (x — a).]

6. Integrate (a+ 6 cos x+ c sin x)/(a+j3 cos # + 7 sin .r)

[Determine X, ju, i> so that

a + 6 cos #+ c sin x= X +/x (a +/3 cos #+ 7 sin a;) + v ( — /3 sin x+y cos #).

Then the integral is

11 -in/" <^-r -1

u^+ i' log a 4-/3 cos .r4 7 sin # +\ I
—

:
— .1r ° ' '

'
'

J a4 /3 cos a? + 7 sin X J

7. Integrate l/(acos2
a7+ 26cos^sin.r + c sin 2

.^). [The subject of inte-

gration may be expressed in the form l/(A+Bco$2x+ Csm2x), where

A=\(a+c\ B=\(a— c), C=b : but the integral may be calculated more

simply by putting tnnx=t, when we obtain

f sec2 xdx _ f dt ,

J a+ 2bt&nx+ cta,ri*x
~
J a + 2bt+ ct2

'*

144. Integrals involving arc sin x, arc tan x, and log x. The

integrals of the inverse sine and tangent and of the logarithm can

easily be calculated by integration by parts. Thus

f C ocdx
I arc sin xdx — x arc sin x — I 77^ -. = x arc sin x + J(I — x2

).

J J^(l-x-)

f f xdx
I arc tan xdx = x arc tan x — I

—
n
= x arc tan x — \ log (1 + x2

),
J J -I 4" X"

I log xdx = x log x — I dx = x (log x — 1).

It is easy to see that if we can find the integral of y —f{x)
then we can always find that of x = <j> (y), where

<f>
is the function

inverse to/ For on making the substitution y =f(x) we obtain

Jcf>(y)dy=j xf (x) dx = xf{x) - jf(x) dx.

The reader should evaluate the integrals of arc sin y and arc tan y
in this way.

Integrals of the form

I P (x, arc sin x) dx, I P (x, log x) dx,
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where P is a polynomial, can always be calculated. Take the

first form, for example. We have to calculate a number of integrals

of the type I xm (arc sin x)n dx. Making the substitution as = sin y,

we obtain y
n sinm y cos ydy, which can be found by the method of

§ 142. In the case of the second form we have to calculate a number

of integrals of the type I x'n (log x)n dx. Integrating by parts we

obtain

I xm (log x)n dx =
afm+1

(loS x)
n
_ _JL_

j x
m

(log x
y-i dx>

and it is evident that by repeating this process often enough we

shall always arrive finally at the complete value of the integral.

145. Areas of plane curves. One of the most important

applications of the processes of integration which have been

explained in the preceding sections is to the calculation of areas

of plane curves. Suppose that P^PP' (Fig. 44) is the graph of

a continuous curve y = </> (x) which lies wholly above the axis of x,

P being the point (x, y) and P' the point (x + h, y + k), and h being

either positive or negative (positive in the figure).

P'

N, N N'

Fig. 44.

The reader is of course familiar with the idea of an 'area', and

in particular with that of an area such as ONPP . This idea we

shall at present take for granted. It is indeed one which needs

and has received the most careful mathematical analysis : later on

we shall return to it and explain precisely what is meant by
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ascribing an ' area' to such a region of space as ONPP . For the

present we shall simply assume that any such region has associated

with it a definite positive number (0NPP ) which we call its

area, and that these areas possess the obvious properties indicated

by common sense, e.g. that

{PRP') + (NN'RP) = (NN'P'P), (N,NPP, ) < (ONPP ),

and so on.

Taking all this for granted it is obvious that the area 0NPP
is a function of x ; we denote it by <& (x). Also O (x) is a

continuous function. For

®(x + h)-<P (x) = (NN'P'P)

= (NN'RP) + (PRP') = h<f> (x) + (PRP').

As the figure is drawn, the area PRP' is less than hk. This is

not however necessarily true in general, because it is not neces-

sarily the case (see for example Fig. 44 a) that the arc PP'
should rise or fall steadily from P to P'. But the area PRP'
is always less than \h\\ (h), where \ (h) is the greatest distance of

any point of the arc PP' from PR. Moreover, since <£ (x) is a

continuous function, \(h)-^-0\s h-^~0. Thus we have

3> (X + h)-& (X) = h
{(f)

(X) + fi (h)},

where \fi (h)\ < X (h) and X (h) -*0 as h -*0. From this it follows

at once that <3> (x) is continuous. Moreover

<J> (x) = hm— ' — = hm {cf>(x) + fi (h)} = <£ (x).

Thus the ordinate of the curve is the derivative of the area, and the

area is the integral of the ordinate.

We are thus able to formulate a rule for determining the

area ONPP . Calculate <&(x),the integral of<f>(x). This involves

an arbitrary constant, which we suppose so chosen that <I> (0) = 0.

Then the area required is <t> (x).

If it were the area N
1NPP1

which was wanted, we should of course deter-

mine the constant so that * (#,) = 0, where x
x

is the abscissa of Px . If the

curve lay below the axis of x, * (x) would be negative, and the area would be

the .absolute value of * (x).
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146. Lengths of plane curves. The notion of the length

of a curve, other than a straight line, is in reality a more difficult

one even than that of an area. In fact the assumption that P P
(Fig. 44) has a definite length, which we may denote by S(x),

does not suffice for our purposes, as did the corresponding as-

sumption about areas. We cannot even prove that 8 (x) is con-

tinuous, i.e. that lim {S (P') - S (P)} = 0. This looks obvious

enough in the larger figure, but less so in such a case as is shown

in the smaller figure. Indeed it is not possible to proceed further,

with any degree of rigour, without a careful analysis of precisely

what is meant by the length of a curve.

It is however easy to see what the formula must be. Let

us suppose that the curve has a tangent whose direction varies

continuously, so that <$>' (x) is continuous. Then the assumption

that the curve has a length leads to the equation

{S(x+h)-S(x)}/h = {PP'}lh = (PP'lh) x ({PP'}/PP'),

where {PP'\ is the arc whose chord is PF". Now

PP' = V(PP* + RF*) = h ^/(l + 1)

,

and & = (/>(# + /i) — </> {x) = h<f)' (£),

where £ lies between x and x + h. Hence

lim (PP'jh) = lim V{1 + [</>' (£)?} = V{ 1 +W (*)?}.

If also we assume that

lim{PP'}/PP' = l,

we obtain the result

S' (x) = lim {S (x + h)-S (x)}/h = V{1 +W O)]
2

}

and so S(.v) = j^{l + [(f>'(x)J}dx.

Examples LIV. 1. Calculate the area of the segment exit off from the

parabola y= x~\A.a by the ordinate #=|, and the length of the arc which

bounds it.

2. Answer the same questions for the curve ay2=z3
, showing that the

length of the arc is

3. Calculate the areas and lengths of the circles xi +y-= a1
, x~+y2=2ax

by means of the formulae of §§ 145—146.
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4. Show that the area of the ellipse (#
2/a2) 4- (j/

2
/6

2
)= 1 is nab.

5. Find the area bounded by the curve y=sinx and the segment of the

axis of x from x=0 to x= <

2nr. [Here * (x) = - cos x, and the difference

between the values of - cos x for x=0 and #=27r is zero. The explanation of

this is of course that between x=tt and ^=27r the curve lies below the axis

of x, and so the corresponding part of the area is counted negative in applying

the method. The area from x=0 to x=ir is -costt+cos0=2; and the

whole area required, when every part is counted positive, is twice this,

i.e. is 4.]

6. Suppose that the coordinates of any point on a curve are expressed

as functions of a parameter t by equations of the type x=cj)(t), y=^r{t),

<j) and \\r being functions of t with continuous derivatives. Prove that

if x steadily increases as t varies from t to t it then the area of the region

bounded by the corresponding portion of the curve, the axis of x, and the two

ordinates corresponding to t and ti, is, apart from sign, A (t{) —A (t ), where

A(t) = j^{t)<t>'{t)dt=jy
d
£t

dt.

7. Suppose that C is a closed curve formed of a single loop and not

met by any parallel to either axis in more than two points. And suppose

that the coordinates of any point P on the curve can be expressed as in Ex. 6

in terms of t, and that, as t varies from t to tx -, P moves in the same

direction round the curve and returns after a single circuit to its original

position. Show that the area of the loop is equal to the difference of the

initial and final values of any one of the integrals

this difference being of course taken positively.

8. Apply the result of Ex. 7 to determine the areas of the curves

given by

... x 1— t
2 y 2t .... „ , . „

9. Find the area of the loop of the curve x3+y3=3axy. [Putting

y= tx we obtain x=Satj(l +t3
), y= 3at2/(l+t3

). As t varies from towards

oo the loop is described once. Also

. [( dx dy\ . f 9 dfy\. . f 9a?t* ,
t

3« 2

which tends to as t^~x> . Thus the area of the loop is ::a 2
.]

10. Find the area of the loop of the curve x5+yf
'= 5ax2

y
2

.

11. Prove that the area of a loop of the curve x=asu\2t, y= asint is

fa2
. {Math. Trip. 1908.)
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12.- The arc of the ellipse given by a>=acost, g= h>imt, between the

points t= ti and t= t2 , is F(t2)
— F(ti), where

F(t)= a fj(l-e2 ski 2 t)dt,

e being the eccentricity. [This integral cannot however be evaluated in

terms of such functions as are at present at our disposal.]

13. Polar coordinates. Show that the area bounded by the curve

r=f(8), where f(8) is a one-valued function of 8, and the radii 8= 8
X , 8— 82 , is

F{82)-F(8l\ where F(8)= ±lr2 d8. And the length of the corresponding

arc of the curve is <!> (82) - $ (8t ), where

^A/WITH-
Hence determine (i) the area and perimeter of the circle r=2ask\8;

(ii) the area between the parabola r=^lsec2 ^8 and its latus rectum, and the

length of the corresponding arc of the parabola
;

(iii) the area of the liniacon

r= a + bcos8, distinguishing the cases in which a>b, a=b, and a<b
;

and (iv) the areas of the ellipses l/7-2=acos2 + 2Acos0sin0 + &sin2 # and

f d8
llr=\ + ecosd. [In the last case we are led to the integral I- —

,

,

' L ° J(l+ecos0)2

which may be calculated (cf. Ex. liii. 4) by the help of the substitution

(l+ecos<9)(l-ecos$)= l-e2
.]

14. Trace the curve 2#=(a/r) + (?•/«)> and show that the area bounded

by the radius vector 8= /3, and the two branches which touch at the point

r= a, 8=1, is % a2
(£

2 - 1
)

3 '2
. {Math. Trip. 1900.)

15. A curve is given by an equation p= f(r), r being the radius vector

and p the perpendicular from the origin on to the tangent. Show that the

calculation of the area of the region bounded by an arc of the curve and two

radii vectores depends upon thai/ of the integral ^ I
—~—

P2
)

MISCELLANEOUS EXAMPLES ON CHAPTER VI.

1. A function f{x) is defined as being equal to 1 -\-x when .r^O, to x when

0<#<1, to 2 — x when \S.x?L% and to 3x— x2 when x>2. Discuss the

continuity of f{x) and the existence and continuity of f'(x) for x=0, x=l,
and x= 2. (Math. Trip. 1908.)

2. Denoting a, ax+ b, ax2+ 2bx+ c, ... by u , u
: , u 2 , ..., show that

u 2 u3
— <Su

()
u

1
U2 + 2u

l
3 and u ;<4

— 4w: u3 + 3«2
2 are independent of x.
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3. If a , a u ..., a2n are constants and Ur=(au , au ..., ar\x, l)r,
then

V U*~2nU1 U*- l+
2n
f*-V U2 U,„_ 2

-...+ Uin U

is independent of x. {Math. Trip. 1896.)

[Differentiate and use the relation Ur
'=rUr ^i.]

4. The first three derivatives of the function arc sin (ji sin x) - sn, where

H>1, are positive when 0£.x^Itt.

5. The constituents of a determinant are functions of x. Show that its

differential coefficient is the sum of the determinants formed by differentiating

the constituents of one row only, leaving the rest unaltered.

6. If fiffiffs,A are polynomials of degree not greater than 4, then

A A A A
A' fi A' A'

A" A" A" A"

A" A'" A'" A'"

is also a polynomial of degree not greater than 4. [Differentiate five times,

using the result of Ex. 5, and rejecting vanishing determinants.]

7. liy3+ 3yx+ 2x3= then x^il+x^y" -%xy' +y=0. (Math. Trip. 1903.)

8. Verify that the differential equation y= <f>{^(yi)} + 4>{:v
- yP

,

(j/\yh

where y x
is the derivative of y, and ^ is the function inverse to cj)', is

satisfied by y= (j> (c) +
<f>

(x - c) or by y= 2<f>(%x).

9. Verify that the differential equation y= {xj-^r {yx )} <f>
{\p- (y{)}, where the

notation is the same as that of Ex. 8, is satisfied by y= ccf)(xlc) or by y=fix,

where /3=0(a)/a and a is any root of the equation 4>(a)- a$'(a)= 0.

10. If ax+ by+c=0 then y^=0 (suffixes denoting differentiations with

respect to x). We may express this by saying that the general differential

equation of all straight lines is yo= 0. Find the general differential equations

of (i) all circles with their centres on the axis of x, (ii) all parabolas with

their axes along the axis of x, (iii) all parabolas with their axes parallel to

the axis of y, (iv) all circles, (v) all parabolas, (vi) all conies.

[The equations are (i) \+y*+yy2=0, (ii) y x

2+yy2=0, (iii) y3
= 0,

(iv) (l+#i2
)j/3=3#iy2

2
,

(v) 5?/3
2= 3y2y4, (vi) ^y2

2i/6-^5y2y3yi+ i0y.i
3= 0.

In each case we have only to write down the general equation of the curves

in question, and differentiate until we have enough equations to eliminate all

the arbitrary constants.]

11. Show that the general differential equations of all parabolas and of

all conies are respectively

£*2
(3/2-

2;3
)= 0, A;

3
(y2

- 2<'3
)= 0.
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[The equation of a conic may be put in the form

y=ax + b± sf(px
2+ 2qx+ r).

From this we deduce

y%~ ± (pr - q
2 )/(p.v2 + 2qx + r) 3'2

.

If the conic is a parabola then p= 0.]

._ _. ,. dy 1 d2y 1 d3y 1 diu
,

12. Denoting ^, - ^, - -Jf„ - -£, ... by t, a, b, c, ... and

dx 1 d2x 1 oRr 1 d*x

dy> 2! o^ ' 3! dy3 ' 4! %5' '" by T
'

a
' & * "' show that

Aac - 5&2= (4ay - 5/3
2)/r8, bt-a2=- (/3r - a2)/r6.

Establish similar formulae for the functions a2d-3abc — 2b3
,
(l+t2)b — 2a2

t

2ct - bob.

13. Prove that, if yk is the £th derivative of y=sin (n are sin x), then

(1 -x2
)yk + 2

- (2k+ 1) xyk + , + (?t
2 - k2

)yk =Q.

[Prove first when £=0, and differentiate k times by Leibniz' Theorem.]

14. Prove the formula

vDx» u=zy («v) -»zy -
» (mz>^) +

w(

f

~ 1} zy - - (nzy») -

where » is any positive integer. [Use the method of induction.]

15. A curve is given by

,r=a(2cosi+ cos2£), y= a (2 sin t~sh\2t).

Prove (i) that the equations of the tangent and normal, at the point P
whose parameter is t, are

xsin^t+ycos^t=asm^t, xcos^t-y sin|£=3aco,s :}t
;

(ii) that the tangent at P meets the curve in the points Q, R whose para-

meters are — \t and ir — \t; (iii) that QR= 4a; (iv) that the tangents at Q
and R are at right angles and intersect on the circle x2+y2= a2

; (v) that the

normals at P, Q, and R are concurrent and intersect on the circle x2+y2= 9a2
;

(vi) that the equation of the curve is

(x2 +3/
2+llax+ 9a2

)
2= 4a (2x + 3a)3

.

Sketch the form of the curve.

16. Show that the equations which define the curve of Ex. 15 may
be replaced by £/a= 2w + (l/«2

), rjja = (2/w) + u2
, where £=x+yi, rj=x-yi,

«=Cis t. Show that the tangent and normal, at the point defined by u, are

u2£ -ur\= a (u3 - 1), u2
£ + urj= 2a (u3+ 1 ),

and deduce the properties (ii)—(v) of Ex. 15.

17. Show that the condition that xi+4px3 -4qx-l=0 should have

equal roots may be expressed in the form (p+ q)
2l3 -(p-qfl3 =l:

(Math. Trip. 1898.)
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18. The roots of a cubic f(x) = are a, /3, y in ascending order of magni-

tude. Show that if (a, /3) and (/3, y) are each divided into six equal sub-intervals,

then a root of f'(x)= will fall in the fourth interval from /3 on each side.

What will be the nature of the cubic in the two cases when a root of/' (x) =
falls at a point of division? (Math. Trip. 1907.)

19. Investigate the maxima and minima of f(x), and the real roots of

f(x) = 0, f(x) being either of the functions

x — sin x— tan a (1 — cos x), x— sin x — (a — sin a) — tan \a (cos a - cos x),

and a an angle between and tt. Show that in the first case the condition for

a double root is that tan a — a should be a multiple of w.

20. Show that by choice of the ratio X : /j. we can make the roots of

\ (ax2+ bx+c) + /x (a'x2+ b'x+ c')=0 real and having a difference of any mag-

nitude, unless the roots of the two quadratics are all real and interlace ; and

that in the excepted case the roots are always real, but there is a lower limit

for the magnitude of their difference. (Math. Trip. 1895.)

[Consider the form of the graph of the function (ax2+ bx+c)J(a'x2 + b'x+ c'):

cf. Exs. xlvi. 12 et seq.]

t-. ,ii sin irx
21. Prove that n <—— <4

x(l — x)

when < x < 1, and draw the graph of the function.

22. Draw the graph of the function

1 l
7T COt TTX - .

X x-l

23. Sketch the general form of the graph of y, given that

* t«*+.-i)C.-iyc+iy (M^n^uoii
ax xi r '

24. A sheet of paper is folded over so that one corner just reaches the

opposite side. Show how the paper must be folded to make the length of the

crease a maximum.

25. The greatest acute angle at which the ellipse (x2ja2
) + (y

2
/^

2
) = 1 can

be cut by a concentric circle is arc tan {(a2— b-)j-2nb}. (Math. Trip. 1900.)

26. In a triangle the area A and the semi-perimeter s are fixed. Show that

any maximum or minimum of one of the sides is a root of the equation

s(x— s)x2+ 4A2= 0. Discuss the reality of the roots of this equation, and

whether they correspond to maxima or minima.

[The equations a + b + c= 2s, s(s- a)(s-b) (s— c)= A2 determine a and b

as functions of c. Differentiate with respect to c, and suppose that da/dc= 0.

It will be found that b= c, s-b= s-c= ^a, from which we deduce that

«(a-s)«2+ 4A2= 0.
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This equation has three real roots if s4 >27a2
, and one in the contrary

case. In an equilateral triangle (the triangle of minimum perimeter for a
given area) s4= 27A2

; thus it is impossible that s4 <27A2
. Hence the

equation in a has three real roots, and, since their sum is positive and their

product negative, two roots are positive and the third negative. Of the two

positive roots one corresponds to a maximum and one to a minimum.]

27. The area of the greatest equilateral triangle which can be drawn
with its sides passing through three given points A, B, C is

a2+ b2+ c2

a, 6, c being the sides and A the area of A BC. {Math. Trip. 1809.)

28. If A, A' are the areas of the two maximum isosceles triangles which

can be described with their vertices at the origin and their base angles on the

cardioid r=a (1 -f-cos 6), then 256AA'= 25a4
y/5. (Math. Trip. 1907.)

29. Find the limiting values which (x2 - 4y+ 8)/(y
2 - 6.r+ 3) approaches

as the point (x, y) on the curve x2y — 4r2 — 4xy+y2+ 16x — 2y— 7 = ap-

proaches the position (2, 3). (Math. Trip. 1903.)

[If we take (2, 3) as a new origin, the equation of the curve becomes

£
2
1 — £

2+q2= 0> and the function given becomes (£
2+ 4£- 4i;)/(jj2+ 6j7 -6£). If

we put Tj= tg, we obtain £= (1 — t
2
)jt, r) = l — t

2
. The curve has a loop branching

at the origin, which corresponds to the two values t= — 1 and t=l. Expressing

the given function in terms of t, and making t tend to • 1 or 1, we obtain the

limiting values -
f,

- §.]

30. If /(*)=- —. .

\
,

sin x — sin a (x — a) cos a

then — {lim f(x)}— lim /' (x) = f sec
3 a— T

S
o sec a.

da, x-*-a x-*-a

(Math. Trip. 1896.)

31. Show that if (a?)= l/(l +x2
) then 0<"> (x) = Qn (x)j(l+x

2
)
n + \ where

Qn (x) is a polynomial of degree n. Show also that

(i) Qn + i
= (l+x2)Qn'-2(n + l)xQn ,

(ii) Qn + 2 + ^(n + 2)xQ)l + 1 + (n+ 2) (n+l) (l+x2
) Qn= 0,

(iii) (l+x2)Qn"-2nxQn
' + ?i(n + l)Qn=0,

(iv) ^= (-l)»n!J(n+ l)^-
(?l + 1)

3

W
,

(?l ~ 1) ^- 2 +..j,

(v) all the roots of Qn= are real and separated by those of 0„_i = O.

32. If f(x), <fr
(x), >Jr (x) have derivatives when a ^ x £.b, then there is

a value of £ lying between a and b and such that

f(a) <j>(a) +(a) =0.

f(b) </>(&) +(b)

/'(£) *'(£) *'(£)

h. 17
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[Consider the function formed by replacing the constituents of the third

row hyf(x), (x), -<// (x). This theorem reduces to the Mean Value Theorem

(§ 125) when <f>(x) = x and ^(x)= l.]

33. Deduce from Ex. 32 the formula

f(b)-f(a) _/'(£)
0(6) -0(a) 0'(£)

34. If $' (x)-*-a as x-*-co, then (x)/x-*-a. If 0' (#)-*-<» then

(#)-*- cc . [Use the formula (a?) - (# ) =(af— #
)
0' (£), where ^ < ^ < -r-]

35. If {x)-*-a as #-»- oo , then 0' (x) cannot tend to any limit other than

zero.

36. If (.r)+ 0' (x)-*-a as ar-*-oo, then <f>(x)-*-a and 0' (x)-»-0.

[Let (f)(x) = a+ \^(x), so that \//- (:r) + ^
;

(#)-*-0. If ^r' (,r) is of constant

sign, say positive, for all sufficiently large values of x, then ^ (x) steadily

increases and must tend to a limit I or to oo . If -^ (x)-*~ oo then \// (a:) -»- — oo

,

which contradicts our hypothesis. If y\r(x)-*-l then yjs' (x)-»— I, and this

is impossible (Ex. 35) unless £=0. Similarly we may dispose of the case in

which \|/ (x) is ultimately negative. If \js (x) changes sign for values of x which

surpass all limit, then these are the maxima and minima of yfr (x). If x has

a large value corresponding to a maximum or minimum of y^(x), then

\}s (x) + yjf' (x) is small and i// (x)=0, so that \|/- (.r) is small. A fortiori are the

other values of xfr (x) small when x is large.

For generalisations of this theorem, and alternative lines of proof, see a

paper by the author entitled "Generalisations ofa limit theorem of Mr Mercer,"

in volume 43 of the Quarterly Journal of Mathematics. The simple proof

sketched above was suggested by Prof. E. W. Hobson.]

37. Show how * reauoe )r {*, Jg$. J(^fjdx u>

the integral of a rational function. [Put 7nx+n=\jt and use Ex. xlix. 13.1

38. Calculate the integrals

:

( dx f /(x-\\dx f xdx
](l+afir J\/\x+l)x> ] s/(l+x)->/(l + x)>

dx /"cos x sin xdx f

(2-sin^)(2+sin*-sin^)' J cos* .r+ sin* a; ' J
cosec *V(sec 2*) <&,

f dx fx+sinx . f f

M(l+sin*)(2+sin*)}' JT+^Tx
d^ j^'^^dx,

J
(arc sin •)><*«

[ j [% arc sin x
7 /"arc sin x , /"arc sin xjx.rcvnxdx, J^^^, ./—,-^, j-—§

dx
,

fare tan a? /"aretena? /"log(a2 +/3%2
) , Hog (a+0*)

,
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39. Formulae of reduction, (i) Show that

a/ iw i n ( dx x + ^p

«*»-*) j$r.

[Put x + ^p = t, q — \p
2— \: then we obtain

[ dt 1 [_dt__ _1 [ J?dt

j (««+x)» ~ x j (^+ x)»- 1 x J (*q-xy

X J (<
2+ X)»- 1

+
2X (n-1) J rf< U*

2+ X)»-
_1

J
''

and the result follows on integrating by parts.

A formula such as this is called a formula of reduction. It is most useful

f dx
when n is a positive integer. We can then express l-r-s r in terms1 ° r

J (x'+px + q)
n

f dx
of / 7-s —

;—r, and so evaluate the integral for every value of n in

turn.]

(ii) Show that if /,,, 7
=

j
xp (1 +x)q dx then

{p + l)lp>q=xr>^(\+xy-qlp + l>q _ x ,

and obtain a similar formula connecting lp>q with ip_i, a+ j.. Show also, by

means of the substitution x= —yj{\ +y), that

4«=(- l)p+1/^
p (l +y)-p - q - 2 dy.

(iii) Show that if X= a+ bx then

i xX~ 1 '3 dx= - 3 (3a - Zbx) AT^/lOfc2
,

I

/•a?X~
!/3 dtf= 3 (9a2 - 6afcr+ SbW) X 2''3/40&3

.

.>;A' - V4 cfo= - 4 (4a - 3&.r) A'3
'4/21&2

,

v2X-Wdx=4: (32a2 - 24a&z+21&V!

) A'
3/*/23] 63.

I

(iv) If 7m ,
„=

| (

' l

+J)W
then

2(»-l)4
Iitt=-a?B»- 1 (l+«2)-(n- 1)+(wi-l)/w _2, B_ 1 .

(v) If /„= I #n cos fix dx and Jn= I #" sin £.£ dx then

/3/n =a;
n sin/3^-?it7

(t _i, /3-/,t
= -#n cos/&i*+ ttin _i.

17—2
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(vi) If Z
ra
= I cos" .rote and Jn= \sinn xdx then

nln= sin x cosn
~ 1 x+{n-l) 4_ 2 , nJn= - cos x sin'

1-1 x+(n - 1) Jn -i-

(vii) If 4= \\&VLnxdx then (n- 1) (4 + /n _ 2) = tan"- 1
.r.

(viii) If Inh „= I cosm x sin" # c&p then

(?n+ 7i)I„hn= — cosm+1 #sinw-1 .£+ (?i- 1) /,„,,; _2

= cosTO
- 1 ^sinn + 1 A,+ (m-l) lm-%n>

[We have

(m+ 1 ) Im< n= — / sin™

~

x
j? t- (cosm + 1 x) dx

= -eosm+i xsinn ~ 1 x+ (n — \) lcosm+2 xsh\n
~'2 xdx

= _ cos"1 + » a- sin" - * ar

+

(to - 1) (/TO,„_ 2- 4, n),

which leads to the first reduction formula.]

(ix) Connect /„,,„=
J
sinm # sin nxdx with Jw_2,n- {Math. Trip. 1897.)

(x) If Im< n= I x™ cosecn x d.v then

(n-l)'(n- 2) /,„,«= (» -2)2 /min_ 2+ «i(m-l)/OT _2, n _2

— #"• - i cosecn ~ x # {wi sin x + (n— 2) x cos #}

.

(Math. Trip. 1 896.

)

(xi) If In =
J
(a + b cosx)~ udx then

(«-l)(a2-62)/n =-fesin.r(a + 6cos^)-("- ]
) + (2H,-3)a/n _ 1 -(n-2)/n_2 .

(xii) If In = l(acos2 x+2hcosxsmx+bsm'i x)~ ndx then

An (»+ l)(o6 - A2
) 4+2- 2n (2m + 1) (a+ o) In+l+4m?In= -~

,

(Math. Trip. 1898.)

(xiii) If Im< n = / xm (log x)n dx then (m + 1 ) /,„, „

=

xm +
» (log x)n - nJm< „ _ ,

.

40. If » is a positive integer then the value of / xm (log x)n dx is

xm + 1 Kl?g *)" _ ttGog^)"- 1 w(n-l) (log .*)"-»
_ (-!)" »

: \

\m+ l (m+ lf (m + 1)
3 '" +

(?h, + 1)" + 1

J

'

41. Show that the most general function (p(x), such that <p"+ a2
(p = for

all values of x, may be expressed in either of the forms A cos ax+B sin ax,

p cos(ax+e), where A, B, p, c are constants. [Multiplying by 2cf>' and

d2In
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integrating we obtain #'2+a2$2= a2&2, where b is a constant, from which we

deduce that ax= \ ..... .„, .]

./x/(6
2 -0-)

42. Determine the most general functions y and z such that y' + a>2 =
and z'-a>y= 0, where w is a constant and dashes denote differentiation with
respect to x.

43. The area of the curve given by

sin a sin . sinacosd)#=cos0+ 2—^rr, y= smd)-- ——
1 ,l-cos-asm-<£ J r

1 - cos2 a sm2
</>

'

where a is a positive acute angle, is Jtt (1 +sin a)2/sin a. (i/a^. Trip, 1904.)

44. The projection of a chord of a circle of radius a on a diameter is of

constant length 2a cos j3 ; show that the locus of the middle point of the chord

consists of two loops, and that the area of either is a2
(/3 — cos /3 sin /3).

{Math. Trip. 1903.)

45. Show that the length of a quadrant of the curve (x/a)i+ (yjb)s = l is

(a2 + ab+ b2
)l(a+ b). (Math. Trip. 1911.)

46. A point A is inside a circle of radius a, at a distance b from the

centre. Show that the locus of the foot of the perpendicular drawn from

J. to a tangent to the circle encloses an area 7r (a2 + |6 2
). (Math. Trip. 1909.)

47. Prove that if (a, b, c, f, g, h~$x, y, 1)
2= is the equation of a conic, then

A
dx . PT n

(Lv+ my + n)(hx + by+f) a PT

where PT, PT' are the perpendiculars from a point P of the conic on the

tangents at the ends of the chord Ix+my + n=0, and a, /3 are constants.

(Math. Trip. 1902.)

,. . ax2 + 2bx+ c 7

48. Show that t-t- „
—
a
-_—

- ~ „ dx
(Ax1 + 2Bx+ C)2

will be a rational function of x if and only if one or other of AC—B2 and

aC+cA - 2bB is zero.*

/ B<&*

49. Show that the necessary and sufficient condition that

m
{F(x)}2

where / and F are polynomials of which the latter has no repeated factor,

should be a rational function of x, is that f'F' -fF" should be divisible by F.

(Math. Trip. 1910.)

,. . fa cos .r+/3 sin .r + -y ,

50. Show that I
—

.,
K r^ dx

J (1 - e cos x)-

is a rational function of cos x and sin x if and only if ae +y=0 ; and determine

the integral when this condition is satisfied. (Math. Trip. 1910.)

* See the author's tract quoted on p. 236.



CHAPTER VII

ADDITIONAL THEOREMS IN THE DIFFERENTIAL AND
INTEGRAL CALCULUS

147. Higher Mean Value Theorems. In the preceding

chapter (§ 125) we proved that if f(x) has a derivative f'(x)

throughout the interval (a, b) then

/(&) -/(a) = (&-«)/' (a
where a<i;<b; or that, if f(x) has a derivative throughout

(a, a + h), then

f(a + h)-f(a) = hf'(a + ei
h) (1)3

where < 6X < 1. This we proved by considering the function

which vanishes when x = a and when x = b.

Let us now suppose that / (a?) has also a second derivative

f" (x) throughout (a, b), an assumption which of course involves

the continuity of the first derivative /' (x), and consider the

function

f(b) - f(x) - (b - x)f (x) -
(|^|J {fib) -f(a) -(b- a)f («)}.

This function also vanishes when x = a and when x = b; and its

derivative is

^pjg? {/(b) -/(«) " (fi
" «)/ («) " i (& - «)

2/" («».

and this must vanish (§ 121) for some value of a; between a and 6

(exclusive of a and 6). Hence there is a value £ of x, between



147] ADDITIONAL THEOREMS IN THE CALCULUS 203

a and b, and therefore capable of representation in the form
a + 62 (b - a), where < 62 < 1, for which

f(b) -/(a) + (b - a)f (a) + \ (6 - a)'/" (f).

If we put b = a + h we obtain the equation

f(a + h)=f(a)+ hf'(a) + $h*f'(a+ 2h) (2),

which is the standard form of what may be called the Mean Value
Theorem of the second order.

The analogy suggested by (1) and (2) at once leads us to

formulate the following theorem

:

Taylor's or the General Mean Value Theorem. If
f{x) is a function of x which has derivatives of the first n orders

throughout the interval (a, b), then

f(b)=f(a) + (b-a)f(a)+
(t^^f'(a) + ...

where a< %<b; and ifb = a + h then

f(a + h)=f(a) + hf'(a) + W"(a)+...

(n-l)l
where < 6n < 1.

The proof proceeds on precisely the same lines as were adopted

before in the special cases in which n = 1 and n = 2. We consider

the function

Fn(x)-(^jFn {a),

where Fn {x)=f(b) -f{x)~ (b-x)f (x)-^-^f"

{

x) - ...

This function vanishes for x = a and x = b; its derivative is

and there must be some value of x between a and b for which

the derivative vanishes. This leads at once to the desired result.
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In view of the great importance of this theorem we shall give

at the end of this chapter another proof, not essentially distinct

from that given above, but different in form and depending on

the method of integration by parts.

Examples LV. 1. Suppose that f{x) is a polynomial of degree r.

Then /(") (x) is identically zero when n > r, and the theorem leads to the

algebraical identity

f{a+h)=f{a)+hf (a) + ~ f" (a) + ...+£j /W (a).

2. By applying the theorem to f{x)= l/x, and supposing x and x + h

positive, obtain the result

1 1 A A2 (-I)'1
- 1 /*"-1 {-l)nhn

x+ h x x2 x3 '" xn {x+ 6nh)
n + 1

'

1 1 h IP ( _ i)n-i^«-i r-iyhn
[Since —-r

=
2 + ^3-—+- ~ZZ + ., ,

,x ,1 x+ h x or x6 x'1 xn (x+ h)

we can verify the result by showing that at* {x+ h) can be put in the form

{x + Hh)
n+1

, or that xn + 1 <xn {x+h) < (#+ A)n + 1
, as is evidently the case.]

3. Obtain the formula

• ,. n . , A2
. h 3

sin {x + h) = sm x+h cos x— — sin x— ^-j cos #+ ...

+ ( ~
1)n_1

(2^Tj~!
C°S 'r+ (

" 1)n£ Shl (*+M)>

the corresponding formula for cos {x+h), and similar formulae involving

powers of h extending up to A'~"
+ 1

.

4. Show that if m is a positive integer, and n a positive integer not

greater than m, then

{x+hy»=?x
m+ (™) xm- i h + ...+ (j"\xm - n+1hn

- l +(™){x+dji
)
m -»h».

Show also that, if the interval {x, x + h) does not include x=0, the formula

holds for all real values of m and all positive integral values of n ; and that,

even if x <0<x+ h or x+h<0 <x, the formula still holds if m-n is

positive.

5. The formula / {x+ h) =/ {x) + hf {x+ 8
x
h) is not true if / {x)= 1 \x and

x<0<x+h. [For f(x+k)-f{x)>0 and A/' {x+ d
1
h)= -/</(#+V) 2 < : it

is evident that the conditions for the truth of the Mean Value Theorem arc

not satisfied.]

6. If x=-a, A= 2a, f{x) = x113
, then the equation

f{x + h)=f{x) +hf{x + 8 l
h)

is satisfied by ^i=^.±iV\/3. [This example shows that the result of the

theorem may hold even if the conditions under which it was proved are

not satisfied.]
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7. Newton's method of approximation to the roots of equations. Let

£ be an approximation to a root of an algebraical equation/ (a?)= 0, the actual

root being £ + h. Then

=/(£ + h) =/(£) + hf (£) +\Wf (| 4- 62
k),

so that k--m-w£t§+W,

It follows that in general a better approximation than x= £ is

If the root is a simple root, so that /' (| + A) #= 0, we can, when A is small

enough, find a positive constant A' such that \f (x)
|
> K for all the values of

x which we are considering, and then, if h is regarded as of the first order of

smallness, /(£) is of the first order of smallness, and the error in taking

£— {/(£)//' (£)} as the root is of the second order.

8. Apply this process to the equation x2=Z, taking £= 3/2 as the first

approximation. [We find h— -1/12, £+ A= 17/12=l -

417..., which is quite a

good approximation, in spite of the roughness of the first. If now we repeat

the process, taking £=17/12, we obtain £ + A= 577/408 = L414215..., which

is correct to 5 places of decimals.

9. By considering in this way the equation .r
2 — l-y= 0, where y is

small, show that ^/(l +y)= 1 +\y - (j3/
2
/(2+y)} approximately, the error being

of the fourth order.

10. Show that the error in taking the root to be £ — (///') - \ iff"If
3

)-,

where £ is the argument of every function, is in general of the third order.

11. The equation &mx=ax, where a is small, has a root nearly equal to

7r. Show that (1 — a) ir is a better approximation, and (l-a + a2)ir a better

still. [The method of Exs. 7—10 does not depend on /(^) = being an

algebraical equation, so long as/' and/" are continuous.]

12. Show that the limit when A-»-0 of the number 6n which occurs in

the general Mean Value Theorem is l/(?t-+-l), provided that fn + 1)(x) is

continuous.

[Vorf(x+ h) is equal to each of

/(*)+ ...+ £/W (*+<U), f{x) + ...+ £/>) (*) + ^^/<»+»(*+0B+1/4),

where #„ + 1 as well as 6n lies between and 1. Hence

,, w , n „ w v /lf<-
n+1)(x + dn+ lh)

/(») (*+ 6nh) =/(») (x) + -I A_^+U

But if we apply the original Mean Value Theorem to the function /(") (x),

taking 6n h in place of A, we find

/w (x +

6

n h) =/w (x) +

e

nhf("
+ v(x+ eejt),
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where 6 also lies between and I. Hence

from which the result follows, since /(» + ] > (x + 6dnh) and /<•» + x
> (a? + 0„ + 1 A) tend

to the same limit /<n+1 )(ar) as /i -*().]

1 3. Prove that {f(x + 2A) - 2f(x + k) +f(x)}/h2+f" (x) as A-^0, provided

that/" (#) is continuous. [Use equation (2) of § 147.]

14. Show that, if the/(") (x) is continuous for a?=0, then

f(x) = a + a
1
x + a2 x'

i+ ... + (an + ex)xn
,

where ar= /(''> (0)/r ! and t^-^O as #-9-0.*

15. Show that if

a +a1x+a2x2+ ... + (an+ex)xn=b + b
1
x+ b2 x'

2+...+(bn+ rix)x
n

,

where ex and t]x tend to zero as.r-»-0, then a =6
, ai = &i, ..., an=bn . [Making

x-^0 we see that a =b . Now divide by x and afterwards make x-*-0.

We thus obtain a^—bi; and this process may be repeated as often as is

necessary. It follows that if f(x) = a + a
1
x+a2x2 +... + (an+ ex)xn, and the

first n derivatives oif(x) are continuous, then ar —f(
r)(0)/r !.]

148. Taylor's Series. Suppose that f{x) is a function all

of whose differential coefficients are continuous in an interval

{a — i], a + 7)) surrounding the point x = a. Then, if h is numeri-

cally less than 77, we have

f(a + h) =f{a) + hf (a) + . . . + —^y,/^ (a) + £/« (a + Bnh),

where < 6n < 1, for all values of n. Or, if

Sn = 2 -,/» (a), K = ^/<»>(a + en h).
V '. 71 :

we have f(a + h) — Sn = Rn .

Now let us suppose, in addition, that we can prove that

Rn -*~0 as n^co . Then

/(a + h) = lim $, =/(a) + hf (a) + ~-f" (a) + . . .

.

This expansion of f(a+h) is known as Taylor's Series.

When a = the formula reduces to

f(h)=f(0) + hf'(0)+£f'{Q) + ...,

* It is in fact sufficient to suppose that/(n ' (0) exists. See R. H. Fowler, "The
elementary differential geometry of plane curves " (Cambridge Tracts in Mathe-

matics, No. 20, p. 104).
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which is known as Maclaurin's Series. The function Rn is known
as Lagrange's form of the remainder.

The reader should be careful to guard himself against supposing that the

continuity of all the derivatives off(x) is a sufficient condition for the validity

of Taylor's series. A direct discussion of the behaviour of Rn is always
essential.

Examples LVI. 1. Let/(#)=siii x. Then all the derivatives of/(.e)

are continuous for all values of x. Also \f
n (x)

|
^ 1 for all values of x and n.

Hence in this case
|
Rn |

< hnjn !, which tends to zero as»->-Qo (Ex. xxvn. 12)

whatever value h may have. It follows that

.....
,

. li- . h? W .

sin (x+h)= sm x+h cos x - —-. am x - -- cos x+ -—, sin^+...,
2 ! 3

!

41

for all values of x and h. In particular

. . . h? ¥

for all values of h. Similarly we can prove that

cos (x+ a) = cos x — k sin x — — cos x+— sin x+ ..., cos A= 1 ——- -\ :-....
2* 1 3 . 2 ! 4

!

2. The Binomial Series. Let f(x)= (l+x)m, where m is any rational

number, positive or negative. Then /(") (x)=m (m — l)...(m — ?i4-l)(l+a-')m-n

and Maclaurin's Series takes the form

(i +xr= i +W x+M z*+...

When m is a positive integer the series terminates, and we obtain the

ordinary formula for the Binomial Theorem with a positive integral exponent.

In the general case

/?n=S /(n)(^)=
C0'

rn(i+^r)

and in order to show that Maclaurin's Series really represents (l+#)m for

any range of values of x when m is not a positive integer, we must show that

Rn -*-0 for every value of x in that range. This is so in fact if - 1 <.r<l,

and may be proved, when 0^.f<l, by means of the expression given above

for Rn , since (1 + 6nx)m
~ n < 1 if ?i> m, and ( ) xn-^0 a,sn-*~oo (Ex. xxvn. 13).

But a difficulty arises if -K.r<0, since \+6nx<\ and (l + 0„.r)"i-n> 1 if

n > m ; knowing only that < 6n < l,we cannot be assured that 1 +6 ri.c is not

quite small and (l +^)m_n quite large.

In fact, in order to prove the Binomial Theorem by means of Taylor's

Theorem, we need some different form for Rn , such as will be given later

(§ 162).
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149. Applications of Taylor's Theorem. A. Maxima
and minima. Taylor's Theorem may be applied to give greater

theoretical completeness to the tests of Ch. VI, §§ 122—123,

though the results are not of much practical importance. It

will be remembered that, assuming that <j> (x) has derivatives of

the first two orders, we stated the following as being sufficient

conditions for a maximum or minimum of </> (x) at x = ^:fora
maximum, 0'(£)= O, <£"(£)< 0; for a minimum, <f>'(%)

= 0, <£"(f)>0.

It is evident that these tests fail if cf>" (£) as well as </>'(£) is zero.

Let us suppose that the first n derivatives

<\>'{x), <f>"(x), .... 0«(«)

are continuous, and that all save the last vanish when x = f. Then,

for sufficiently small values of h,

In order that there should be a maximum or a minimum this

expression must be of constant sign for all sufficiently small

values of h, positive or negative. This evidently requires that n

should be even. And if n is even there will be a maximum or a

minimum according as <$>
{n)

(£) is negative or positive.

Thus we obtain the test : if there is to be a maximum or

minimum the first derivative which does not vanish must be an even

derivative, and there will be a maximum if it is negative, a minimum

if it is positive.

Examples LVII. 1. Verify the result when $ (x) = (x — a)m, m being a

positive integer, and £=a.

2. Test the function {x - a)m (x - b)n, where m and n are positive integers,

for maxima and minima at the points x=a, x=b. Draw graphs of the

different possible forms of the curve y= (x — a)m(x-b)n.

3. Test the functions sin^— x, $inx — x + '—, sin x — x-\—^ — —— , ...,
o o 120

cos x — 1, cos x — 1 +— , cos x - 1+ '--
—

'— , ... for maxima or minima at x= 0.

150. B. The calculation of certain limits. Suppose

that /(a?) and <j> (x) are two functions of x whose derivatives f (x)

and
<f>'

(x) are continuous for x = £ • and that /'(£) and <£ (£) are

both equal to zero. Then the function

^(x)=f{x)i<j>(x)
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is not denned when x = £. But of course it may well tend to a
limit as x-*-%.

Now f(x) =f(x) -/(£) = {x- £)/' (Xl),

where x1 lies between £ and x ; and similarly <£ (x) = (x — %) </>' (x^),

where x2 also lies between £ and x. Thus

yjr (x) =/' (a$W («?,).

We must now distinguish four cases.

(1) If neither/' (£) nor (£' (£) is zero, then

f{*JlH")'-+-fWifo
(2) If/'(£) = 0,f(£)4=0,then

(3) lf/(f) + 0,f (f)=O,then/(aO/0(a;) becomes numerically

very large as x-^-%: but whether f(x)/<p (x) tends to oo or — oo
,

or is sometimes large and positive and sometimes large and

negative, we cannot say, without further information as to the way
in which <// (x)-*~0 as x-^-t;.

(4) If/'(£) = 0, <f>'(i;)= 0, then we can as yet say nothing about

the behaviour of/(#)/</> (x) as x-*~0.

But in either of the last two cases it may happen that f(x}
and </> (x) have continuous second derivatives. And then

f{x) = f{x) -fit) -ix- g)/ (£) = i (* - f)
2/" «),

*(«)-*(*)-*(f)-(*-f)f (f) = M*-£)af (**),

where again a?
x
and a;3 lie between £ and a; ; so that

We can now distinguish a variety of cases similar to those

considered above. In particular, if neither second derivative

vanishes for x = £, we have

/<*)/*(*)-/'(*)/*" (0-

It is obvious that this argument can be repeated indefinitely,

and we obtain the following theorem: suppose that fix) and <j>ix)

and their derivatives, so far as may be wanted, are continuousfor

x = %. Suppose further that f {p) ix) and <£
(<?) (x) are the first

derivatives offix) and <f>ix) which do not vanish when x — g. Then

(i) ifp = q, /(«)/*<*Ww (©/*««);

(2) ifp>q, /(«)/* (»)*0;
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(3) if p<q, and q—p is even, either f(x)/<j> (x)-^+oc or

f(x)/(f> (x) -*-— oo , the sign being the same as that off{p)
(£)/<£

(9)
(£)',

(4) if p<q and q—p is odd, either f(x)j(f>(x)^+cc or

f(x)/<f>(x) -* — oo as #^£ + 0, the sign being the same as that of

f
ip)

(£)/<£
w (IX while if x-*-tj— the sign must be reversed.

This theorem is in fact an immediate corollary from the

equations

f(X) = fc=^/« (-0. <f> (*) = (f

Yr' <P> <«£

Examples LVIII. 1. Find the limit of

{x - (n+ 1) xu +
» + na;» + 2}/(l - a)2

,

as ,r-*-l. [Here the functions and their first derivatives vanish for x=l,

and/"(l)=»(n+l), <£"(1)=2.]

2. Find the limits as x-*-0 of

(tan x - x)/(x — sin x), (tan H.r - n tan .r)/(% sin x— sin ?«;).

3. Find the limit of x {>J(x
2+ a2

)
- x) as #-*-<» . [Put x=\jy!\

4. Prove that

hm (x— n) cosec^77r= -
, lim ^cosec#7r — .— -r— }-=.— -- '—

,

»-*.» 7T 0-»*£— n ^ (#-«)7rJ 6

n being any integer ; and evaluate the corresponding limits involving cot xtt.

5. Find the limits as x-*~0 of

1 / 1 x\ 1 / 1 x\-
3
^coscc^----j, -(^cot.r-- +

3J.

G. (sin x arc sin x— x2
)lx

6 -*-
^g, (tan .r arc tan a- - x'^/x6 -*- §, as a.'-*- 0.

151. C. The contact of plane curves. Two curves are

said to intersect (or cut) at a point if the point lies on each of them.

They are said to touch at the point if they have the same tangent

at the point.

Let us suppose now that f(x), (j> {x) are two functions which

possess derivatives of all orders continuous for x = i;, and let us

consider the curves y =f(x), y = <f> (x)- In general /"(^) and
(f> (f)

will not be equal. In this case the abscissa x = £ does not corre-

spond to a point of intersection of the curves. If however



150, 151] ADDITIONAL THEOREMS IN THE CALCULUS 271

/(£) = <£ (£)> the curves intersect in the point x=%, 2/=/(£)=<K£).
Let us suppose this to be the case. Then
in order that the curves should not only

cut but touch at this point it is obviously

necessary and sufficient that the first

derivativesf (x),
<f>'

(a?) should also have

the same value when x = £.

The contact of the curves in this

case may be regarded from a different

point of view. In the figure the two

curves are drawn touching at P, and QR
is equal to

<f> (f + h) -f(£ + h), or, since <£(£)=/(£), <£'(£)=/'<B to

where 6 lies between and 1. Hence

hm £? = £{*" (£)-/"(£)},

when h^O. In other words, when the curves touch at the point

whose abscissa is £, the difference of their ordinates at the point

whose abscissa is £ + h is at least of the second order of smallness

when h is small.

The reader will easily verify that lira (QR/h) =
<f)' (£) -/' (£) when the curves

cut and do not touch, so that QR is then of the first order of smallness only.

It is evident that the degree of smallness of QR may be taken

as a kind of measure of the closeness of the contact of the curves.

It is at once suggested that if the first n — 1 derivatives of /
and

<f>
have equal values when x = %, then QR will be of the

?ith order of smallness; and the reader will have no difficulty

in proving that this is so and that

lim^ = l^'«)(0-/w (f)}.

We are therefore led to frame the following definition

:

Contact of the nth order. // /(£) = <£ (£), /' (£) = <£' (£),

..., y(«)(^) = (
^
)
(n)(^

)
iut /"^(D^^f'+^d), then the curves

y =f(x), y = <f>
(x) will be said to have contact of the nth order

at the point whose abscissa is %.

The preceding discussion makes the notion of contact of the

nth order dependent on the choice of axes, and fails entirely
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when the tangent to the curves is parallel to the axis of y. We can

deal with this case by taking y as the independent and x as the

dependent variable. It is better, however, to consider x and y as

functions of a parameter t. An excellent account of the theory will

be found in Mr Fowler's tract referred to on p. 266, or in de la

Vallee Poussin's Cours d'Analyse, vol. ii, pp. 396 et seq.

Examples LIX. 1. Let <£ (x) = ax+b, so that y= <f>
(x) is a straight line.

The conditions for contact at the point for which x=£ are f(£)= ag+ b,

f (£)= a. If we determine a and b so as to satisfy these equations we find

a=f (£), &=/(£) - £/' (£), and the equation of the tangent to y=f(x) at the

point x=£ is

?=*/'(£)+{/<£-)-£/' (I)h

or y-f (0 = (x - ©/.' (|). Cf. Ex. xxxix. 5.

2. The fact that the line is to have simple contact with the curve

completely determines the line. In order that the tangent should have

contact of the second order with the curve we must have /" (£) = <f>" (£), i.e.

f" (£) = 0. A point at which the tangent to a curve has contact of the

second order is called a point of inflexion.

3. Find the points of inflexion on the graphs of the functions 3a,4 - 6.rs -f 1,.

2o-7(l+x2
), sin a?, a cos2

a;+6 sin2
a?, tana?, arc tan x.

4. Show that the conic ax2+ 2hxy + by2+ 2g.v+2fy+c=0 cannot have a

point of inflexion. [Here ax+ hy+g+ (hx+ by+f)y l
= and

a+ 2hy, + tyi
2+ {hx + by+f ) y.z= 0,

suffixes denoting differentiations. Thus at a point of inflexion

a + 2hy
1 + by{i= 0,

or a {hx+ by +/)2 - 2h (ax + hy +g) (hx+ by +/) + b (ax +hy+gf=Qy

or (ab - h2
)
{ax2+ 2hxy + by2+ 2gx+ 2fy} +af2 - 2fgh + bg2= 0.

But this is inconsistent with the equation of the conic unless

af2- 2fgh + bg2=c(ab- h2
)

or abc+ 2fgh-af'2 -bg2 -ch2=0
; and this is the condition that the conic

should degenerate into two straight lines.]

5. The curve y= (ax2 +2bx+ c)/(ax2+ 2@x+ y) has one or three points of

inflexion according as the roots of ax2 + 2j3x+ y= are real or complex.

[The equation of the curve can, by a change of origin (cf. Ex. XLVi. 15), be

reduced to the form

where p, q are real or conjugate. The condition for a point of inflexion will

be found to be £
3 — Spq^+pq (p-\-q} = 0, which has one or three real roots

according as {pq (p— q)\ is positive or negative, i.e. according as p and q are:

real or conjugate.]
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6. Discuss in particular the curves y= (l - x)/(l+x2
), y=(l — x2)/(l+x2),

y=(l + s*)/(l-a*).

7. Show that when the curve of Ex. 5 has three points of inflexion, they

lie on a straight line. [The equation £
3— 3pq$+pq ( p + q)= can be put in

the form (£—£>) (£-<?) (H+P + q) + (p — 90
2
£= O> so that the points of inflexion

lie on the line £+A (p-q) 2 r)+p+q=0 or A£- 4 (AC-

B

2)r
)
= 2B.]

8. Show that the curves y=xsinx, y= (smx)/x have each infinitely

many points of inflexion.

9. Contact of a circle with a curve. Curvature*. The general

equation of a circle, viz.

(x-a)2+ (y-b) 2=r2
(1),

contains three arbitrary constants. Let us attempt to determine them so

that the circle has contact of as high an order as possible with the curve

y=f(x) at the point (£, r,), where r, =/($). We write m , m for /' (£), f" (£).

Differentiating the equation of the circle twice we obtain

(* - a) +(y- 6)^1=0 (2),

i+yi 2+(y-^)y2=o (3).

If the circle touches the curve then the equations (1) and (2) are satisfied

when #=£ y=t), y1 =ij1 . This gives (|-a)/ij,= -(r
]
-b) = rlJ(l + r]l

2
). If

the contact is of the second order then the equation (3) must also be satisfied

when y2— f]2- Thus b=r] + {(\ +r)
1

2
)/r)2} ; and hence we find

The circle which has contact of the second order with the curve at the point

(£, tj) is called the circle of curvature, and its radius the radius of curvature.

The measure of curvature (or simply the curvature) is the reciprocal of the

radius : thus the measure of curvature is /" (£)/ {1 + [/' (£)]
2
}
3/2

, or

del x d£

10. Verify that the curvature of a circle is constant and equal to the

reciprocal of the radius ; and show that the circle is the only curve whose

curvature is constant.

>
11. Find the centre and radius of curvature at any point of the conies

y
2—Aax, (xla) 2+ (ylb)

2=l.

12. In an ellipse the radius of curvature at P is CD3jab, where CD is

the semi-diameter conjugate to CP.

* A much fuller discussion of the theory of curvature will be found in Mr Fowler's

tract referred to on p. 272.

H. 18
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13. Show that in general a conic can be drawn to have contact of the

fourth order with the curve y=/(#) at a given point P.

[Take the general equation of a conic, viz.

ax2+ %hxy+ by2+ 2gx+ %fy+ c

=

0,

and differentiate four times with respect to x. Using suffixes to denote

differentiation we obtain

ax+ fy+g + {hx+ by +/) y, = 0,

a + 2hy
l + by?+ {has+ by +/) y.2

= 0,

3 (A+ by
x ) y2+ {hx+ by +/) y3= 0,

4 (A + by{) y3 + Zbyi2 + (hx+by +/) y4= 0.

If the conic has contact of the fourth order, then these five equations must

be satisfied by writing £, 17, 171, 172* *7s> ^ for a?, y, yu y-2 , ys, yi- We have thus

just enough equations to determine the ratios a : b : c : f : g : h.~]

14. An infinity of conies can be drawn having contact of the third order

with the curve at P. Show that their centres all lie on a straight line.

[Take the tangent and normal as axes. Then the equation of the conic is

of the form 2y= ax2+ 2hxy+by2
, and when x is small one value of y may be

expressed (Ch. V, Misc. Ex. 22) in the form

y

=

\ax2+ {hah + ex) xs
,

where ex ->-0 with x. But this expression must be the same as

y-i/
w
(0)*»+{*/

w (0)+«,'}*»

where ex
'-*-0 with x, and so a=f" (0), h=f" (0)/3/" (0), in virtue of the result

of Ex. lv. 15. But the centre lies on the line ax + hy= 0.]

15. Determine a parabola which has contact of the third order with the

ellipse {x/a)'i+ {y/b)'i=l at the extremity of the major axis.

16. The locus of the centres of conies which have contact of the third

order with the ellipse (.r/a) 2+ (y/6)
2= l at the point (a cos a, b sin a) is the

diameter xj{a cos a) =yj{b sin a). [For the ellipse itself is one such conic]

152. Differentiation of functions of several variables.

So far we have been concerned exclusively with functions of a

single variable x, but there is nothing to prevent us applying the

notion of differentiation to functions of several variables x, y, ....

Suppose then that/(#, y) is a function of two* real variables

x and y, and that the limits

]im f(x + h>y)-f(x>y) lim
f(x>y + k)-f(x, y)

* The new points which arise when we consider functions of several variables

are illustrated sufficiently when there are two variables only. The generalisations

of our theorems for three or more variables are in general of an obvious character.
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exist for all values of x and y in question, that is to say that

f(x, y) possesses a derivative df/dx or Dxf(x,y) with respect to x

and a derivative df/dy or Dyf(x, y) with respect to y. It is usual

to call these derivatives the partial differential coefficients of/, and

to denote them by

y v
dx' dy

OT fxip,y), fy{os,y)

or simply fj,fy orfx , fy . The reader must not suppose, .however,

that these new notations imply any essential novelty of idea:

' partial differentiation ' with respect to x is exactly the same

process as ordinary differentiation, the only novelty lying in the

presence in / of a second variable y independent of x.

In what precedes we have supposed x and y to be two real

variables entirely independent of one another. If x and y were

connected by a relation the state of affairs would be very different.

In this case our definition offx would fail entirely, as we could

not change x into x + h without at the same time changing y.

But then f{oc,y) would not really be a function of two variables

at all. A function of two variables, as we defined it in Ch. II,

is essentially a function of two independent variables. If y depends

on x, y is a function of x, say y = <£ (x) ; and then

/<>> 2/) =./>> </><>)}

is really a function of the single variable x. Of course we may also

represent it as a function of the single variable y. Or, as is often

most convenient, we may regard x and y as functions of a third

variable t, and then f (x, y), which is of the form f{cj> (t), ijr(t)},

is a function of the single variable t.

ExamplesLX. 1. Provethatif x=rcos$, y=rsind, so that r=v/(.r2 +j/
2
),

#= arc tan (yjx), then

dr _ x dr _ y dd _ y dd _ x

dx \/(^'"+3/2)' dy v'(x2+#2)' dx x2 +y2 ' dy x^+y21

COG C2J v3C OU
-~= cos#, ^= sin#, ^= — rsind, ^~= rcosd.
dr dr dd dd

2. Account for the fact that ^-=|=l/(^j and 5-, 4=1 / (ia) • [When

we were considering a function y of one variable x it followed from the

definitions that dy/dx and dx/dy were reciprocals. This is no longer the

18—2



276 ADDITIONAL THEOREMS IN THE CALCULUS [VII

Fig. 46.

case when we are dealing with functions of two variables. Let P (Fig. 46)

\>e the point (x, y) or (r, 6). To find dr/dx we must increase x, say by an

increment MMx
= bx, while keeping y constant. This brings P to Px . If

along 0PX
we take OP' = OP, the increment of r is P'P1= Sr, say; and

dr/dx =lim(8r/dtf). If on the other hand we want to calculate 3a?/3r, a; and

y being now regarded as functions of r

and 0, we must increase r by Ar, say,

keeping constant. This brings P to

P2 , where PP2
= Ar: the corresponding

increment of x is JO/i= Ax, say ;
and

• dxjdr =lim. (Ax/Ar).

Now A.z=&r* : but Ar=¥8r. Indeed it is

easy to see from the figure that

lim (8r/8x) = lim (P'A /PPX)= cos 6,

but lim (Ar/Aa?)= lim (PP2 / ^A)= sec 6,

so that lim (Sr/Ar) = cos2 0.

"The fact is of course that dxjdr and

dr/dx are not formed upon the same hypothesis as to the variation of P.]

3. Prove that if z =f(ax+ by) then b (dz/dx)= a (dz/dy).

4. Find dX/dx, dX/dy, ... when X+Y—x, Y=xy. Express x, y as

functions of X, Y and find 3#/3X, 3^/3 7, ....

5. Find dX/dx, ... when X+7"+Z=a', Y+Z=xy, Z=xyz; express

x, y, z in terms of X, Y, Z and find dx/dX, ....

[There is of course no difficulty in extending the ideas of the last section

to functions of any number of variables. But the reader must be careful to

impress on his mind that the notion of the partial derivative of a function of

several variables is only determinate when all the independent variables are

specified. Thus if u=x+y+ z, x, y, and z being the independent variables,

then du/dx—1. But if we regard u as a function of the variables x, x+y — rj,

and x+y + z= {, so that u= (, then du/dx=0.~\

153. Differentiation of a function of two functions.

There is a theorem concerning the differentiation of a function

of one variable, known generally as the Theorem of the Total

Differential Coefficient, which is of very great importance and

depends on the notions explained in the preceding section re-

garding functions of two variables. This theorem gives us a rule

for differentiating

with respect to t.

* Of course the fact that Ax = 8x is due merely to the particular value of Ar
that we have chosen (viz. PP2). Any other choice would give us values of Ax, Ar
proportional to those used here.
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Let us suppose, in the first instance, that f(x, y) is a function

of the two variables x and y, and that fx', fy' are continuous

functions of both variables (§ 107) for all of their values which
come in question. And now let us suppose that the variation of

x and y is restricted in that (x, y) lies on a curve

x =
<f>

(t), y = yfr (t),

where cf> and ty are functions of t with continuous differential

coefficients
<f>'

(t), yjr' (t). Then/O, y) reduces to a function of the

single variable t, say F(t). The problem is to determine F' (t).

Suppose that, when t changes to t + r, x and y change to

x + £ and y + y. Then by definition

^T =
Si r [/

{<j3 (t + T)
'
* {t + T)] ~f tt (t)

> + OH

= lim ; I/O + ly + v) -/(*, y)}

= Yim [f(
x + ^y + v)-f(x>y + v) I ,

/(*» y + v) -/(*, y) 5

L £ T 7; T

But, by the Mean Value Theorem,

{/(« + & y + v) -/(*, y +vM -/.' (* + 0£ y + *),

{/(«. y + v) -/(*. y)}A? =// («, y + ^)>
where and 0' each lie between and 1. As t-*-0, £-^0 and

r)-*-0, and Z/T-*-<f)' (t), rj/T-^y{r'(t): also

/.' (* + 0$ y + *W.' fe y), /,' (^ y + 0^W* (* y).

Hence

J" (0 = A/{* (0, * (0} -/.' (* y) f (0 +/*' te y) t' (0,

where we are to put x = <£ (£), y = ty(t) after carrying out the

differentiations with respect to # and y. This result may also be

expressed in the form

df= dfdx
+
d/dy

dt dx dt dy dt

Examples LXI. 1. Suppose
<f>

(t) = (1 - f-)l(l + fi), ^ (t) = 2t/(l + 1% so

that the locus of (x, y) is the circle x2 +y2=l. Then

4>' (o = - 4*/(i +

*

2
)
2
, ^' W

=

2 (i -W +

'

2
)
2
>

i?» (o={-4*/(i+m/.'+{2 a -w+w»'.

where # and y are to he put equal to (1 - «
2)/(l + 1

2
) and 2t/(l + t

2
) after

carrying out the differentiations.
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We can easily verify this formula in particular cases. Suppose, e.g.,

that /(#, y) = x2 + y
1

. Then fx = 2x, /„' = 2y, and it is easily verified that

F' (t) = 2x
(f)'

(t) + 2i/^' (t)= 0, which is obviously correct, since F(t)= l.

2. Verify the theorem in the same way when (a) x—tm
,
y=l — t"\

f(x,y)= x+y; (b) %=acoat, y= asmt, f(x, y)= x2 +y2
.

3. One of the most important cases is that in which t is x itself. We
then obtain

Dxf{x, ^{x))=Dxf(x, y) + DJ(x, y) *'(#)•

where y is to be replaced by \fr (x) after differentiation.

It was this case which led to the introduction of the notation df/dx, df/dy.

For it would seem natural to use the notation df/dx for either of the functions

Dxf{x, ty (x)\ and Dxf(x, y), in one of which y is put equal to ^ (x) before

and in the other after differentiation. Suppose for example that y=\—x
and f(x, y)=x+y. Then Dxf(x, l-x)=Dx I = 0, but Bxf(x, y)=\.

The distinction between the two functions is adequately shown by

denoting the first by dfjdx and the second by df/dx, in which case the

theorem takes the form

df = df df dy
m

dx dx dy dx

'

though this notation is also open to objection, in that it is a little misleading

to denote the functions f{x, -v//- (x)} and f(x, y), whose forms as functions of x
are quite different from one another, by the same letter /in df/dx and df/dx.

4. If the result of eliminating t between x=4> (t), y= ^r(t) is f(x, y) = 0,

then

dfdx
+
dfdy= Q

dx dt dy dt

5. If x and y are functions of t, and r and 6 are the polar coordinates of

(x, y), then r'=(xx' +yy')/r, &= (xy' - yx')/r2, dashes denoting differentiations

with respect to t.

154. The Mean Value Theorem for functions of two
variables. Many of the results of the last chapter dejoended

upon the Mean Value Theorem, expressed by the equation

<£ (x + h)-cf> O) = /;/' O + 6h),

or as it may be written, if y = (p (%),

8y=f(x + 08x)8x.

Now suppose that z =f(x, y) is a function of the two inde-

pendent variables x and y, and that x and y receive increments

h, k or 8x, 8y respectively : and let us attempt to express the

corresponding increment of z, viz.

hz=f{x + h,y + k)-f{m,y),

in terms of h, k and the derivatives of z with respect to x and y.
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Let f(x + ht,y + kt) = F(t). Then

f(v + h,y + k)-f(x,y) = F(l)-F(0) = F'(e),

where < < 1. But, by § 153,

F'(t) = Dtf(x+ ht,y + M)

= hfx O + ht,y + kt) + hfy (x.+ ht,y + kt).

Hence finally

8z =f(x+ h, y+k) -f(x, y)=hfx'(x+ 0h, y+6k) + kf;(x + 0h,y+ 6k),

which is the formula desired. Since fx , fy' are supposed to be
continuous functions of x and y, we have

fx (x + eh, y + 6k) =fx' (x, y) + eh)k ,

fy' (x + 6h, y + ek) =// (as, y) + r}h)k ,

where e^h and r)hik tend to zero as h and k tend to zero. Hence
the theorem may be written in the form

8z = (fx
' + e)8x + (f; + v )8y (1),

where e and i) are small when 8x and 8y are small.

The result embodied in (1) may be expressed by saying that the

equation

8z =fx'8x +fy'8y
is approximately true ; i.e. that the difference between the two

sides of the equation is small in comparison with the larger of 8x

and By*. We must say 'the larger of 8x and 8y' because one of

them might be small in comparison with the other; we might

indeed have 8x — or 8y = 0.

It should be observed that if any equation of the form 8z=\8x+p8i/

is 'approximately true' in this sense, we must have X=fx', p=fy
'- For we

have
&? -/*'

&

v -fv'fy=*Sx+ rlty, 8z-\8x-p.8y= e 8x+ rj' 8y

where e, rj, c', rj' all tend to zero as 8x and 8y tend to zero ; and so

(X -U) 8x+ (ji-fv
f

) 8y= P 8x +p'fy

where p and p tend to zero. Hence, if £ is any assigned positive number, we

can choose o- so that

I
(\ -/«*) &*

+

0* -//) fy I
< C (

I

8*
I
+

1

8v I

)

for all values of 8x and 83/ numerically less than o\ Taking 8y=0 we obtain

1 (\-/J) 8x
I

< f I

&r
I

, or
I

X -/.'
|
< £, and, as f may be as small as we please,

this can only be the case if X = fx'. Similarly p—fy
'.

* Or with \8x\ + \8y\ or ,J{dx* + 8y
n
-).
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155. Differentials. In the applications of the Calculus,

especially in geometry, it is usually most convenient to work with

equations expressed not, like equation (1) of § 154, in terms of the

increments Bx, By, Bz of the functions x, y, z, but in terms of what

are called their differentials dx, dy, dz.

Let us return for a moment to a function y=f(x) of a single

variable x. Iff (x) is continuous then

By={f(x)+e}Bx (1),

where e-^0 as Bx-^0: in other words the equation

By=f'{x)Bx (2)

is 'approximately ' true. We have up to the present attributed

no meaning of any kind to the symbol dy standing by itself. We
now agree to define dy by the equation

dy=f'(x)Bx (3).

If we choose for y the particular function x, we obtain

dx = Bx (4),

so that dy=f'(x)dx (5).

If we divide both sides of (5) by dx we obtain

t-fto ^
where dyfdx denotes not, as heretofore, the differential coefficient

of y, but the quotient of the differentials dy, dx. The symbol

dy/dx thus acquires a double meaning ; but there is no incon-

venience in this, since (6) is true whichever meaning we choose.

The equation (5) has two apparent advantages over (2). It is exact and

not merely approximate, and its truth does not depend on any assumption as

to the continuity of/' (x). On the other hand it is precisely the fact that we

can, under certain conditions, pass from the exact equation (5) to the approxi-

mate equation (2), which gives the former its importance. The advantages of

the ' differential ' notation are in reality of a purely technical character. These

technical advantages are however so great, especially when we come to deal

with functions of several variables, that the use of the notation is almost

inevitable.

When /' (x) is continuous, we have

limfUl

when S.r-^0. This is sometimes expressed by saying that dy is the principal

part of by when bx is small, just as we might say that ax is the ' principal

part ' of ax + bx2 when x is small.
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We pass now to the corresponding definitions connected with

a function z of two independent variables x and y. We define the

differential dz by the equation

dz=fx'$a;+fy'8y (7).

Putting z = x and z = y in turn, we obtain

dx = Bx, dy = By (8),

so that dz =fx'dx +f,fdy (9),

which is the exact equation corresponding to the approximate

equation (1) of § 154. Here again it is to be observed that the

former is of importance only for reasons of practical convenience

in working and because the latter can in certain circumstances be

deduced from it.

One property of the equation (9) deserves special remark. "We saw in

§ 153 that if z=f(x, y), x and y being not independent but functions of a

single variable t, so that z is also a function of t alone, then

dz _ df dx df dy

dt dx dt dy dt
'

Multiplying this equation by dt and observing that

. dx . 7 dy . 7 dz .

dx
=di

dt
>

d
y=tt

dt
>

dz=
dt

dt>

we obtain dz=fx'dx+fy'dy,

which is the same in form as (9). Thus the formula which expresses dz in terms

of dx and dy is the same whether the variables x and y are independent or not.

This remark is of great importance in applications.

It should also be observed that if z is a function of the two independent

variables x and y, and

dz=\dx + fidy,

then \=fx, p—fy- This follows at once from the last paragraph of § 154.

It is obvious that the theorems and definitions of the last three sections

are capable of immediate extension to functions of any number of variables.

Examples LXII. 1. The area of an ellipse is given by A = trab, where

a, b are the semiaxes. Prove that

dA _ da db

and state the corresponding approximate equation connecting the increments

of the axes and the area.
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2. Express A, the area of a triangle ABC, as a function of (i) a, B, C,

(ii) A, b, c, and (iii) a, b, c, and establish the formulae

dA „ da cdB bdC dA , . ,
A

db do= 2 1 : =H : ~, = COtAdA + ^--\ ,

A a asmB asmC A be 7

dA=R (cos Ada+ cos Bdb+ cos Cdc),

where R is the radius of the circumcircle.

3. The sides of a triangle vary in such a way that the area remains

constant, so that a may be regarded as a function of b and c. Prove that

da cos B da _ cos C
db
~ cos A ' dc cos A

'

[This follows from the equations

da= ^rdb -»- =- dc, cos Ada + cos Bdb + cos Cdc=0.
db dc

4. If a, b, c vary so that R remains constant, then

da db dc

and so

cos A cos B cos C

da _ cos A da _ cos A
db

~~
cos B ' dc ct is C

[Use the formulae a=2i2sin.4j ..., and the facts that R and A +B + C &re

constant.]

5. If 2 is a function of u and v, which are functions of x and y, then

dz _ 9,3 du dz dv dz _ dz du dz dv

dx~dudx 3v3#' dy dudy dvdy'

[We have

7 dz 7 dz , 7 du 7 du 7 , 3d 7 3d 7

cfo

=

k- du+ x- dv, du= *—dx+ 7r- dy, dv=^r-dx+ K- dy.
ou ov ox dy ox oy

Substitute for du and dv in the first equation and compare the result with

the equation

7 dz , dz 7 nds=
dx

dx+
dy

d̂

6. Let z be a function of x and y, and let X, Y, Z be defined by the

equations

x=a
1X+bl

Y+c
1
Z, y= a2X+b2Y+c2 Z, z=a

3
X+b3 Y+c3 Z.

Then Z may be expressed as a function of Jf and Y. Express dZ/dX,

dZ/dY in terms of 82/3*, dzjdy. [Let these differential coefficients be denoted

by P, Q and p, q. Then dz - pdx - qdy— 0, or

(c
xp + c2q-

c

3) dZ+ (a
xp + a 2q- a3) dX+ {btf+ b^q- b3) dY= 0.
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Comparing this equation with dZ—PdX- QdY=Q we see that

P=- a
1 p + a 2q-a3 q_ 6lff + &2g -&3 -i

7.

tlien

Cip + c2q-c3
'

v
cip + c2q-c3

If (a
x x+ b

xy + Cj z) p + (a.
2
x + b2y + c2 z)q= a 3x+b3y+ c3 z,

(a^r+M'+CjZ) P+(a 2X+b2 Y+c2 Z) Q= a
3
X+b3 Y+c3 Z.

(Math. Trip. 1899.)

8. Differentiation of implicit functions. Suppose that/(#, y) and its

derivative fy
' (x, y) are continuous in the neighbourhood of the point (a, b),

and that

f(a,b)= 0, ft(a,b)*0.

Then we can find a neighbourhood of (or, b) throughout which fv
' (x, y) has

always the same sign. Let us suppose, for example, that fj (x, y) is positive

near (a, b). Then f(x, y) is, for any value of x sufficiently near to a, and for

values of y sufficiently near to b, an increasing function of y in the stricter

sense of § 95. It follows, by the theorem of § 108, that there is a unique

continuous function y which is equal to b when x= a and which satisfies the

equation /(.r, y)= for all values of x sufficiently near to a.

Let us now suppose that f(x,y) possesses a derivative fx' (x,y) which is

also continuous near (a, b). If f(x, y)=0, x=a+ h, y= b + k, we have

where and ~\ tend to zero with h and k. Thus

h fh' + r)~* /ft"fb'+



284 ADDITIONAL THEOREMS IN THE CALCULUS [VII

Making this assumption, we proved in § 145 that F' (x) =/(#),

and we showed how this result might be used in the calculation

of the areas of particular curves. But we have still to justify

the fundamental assumption that there is such a number as the

area F(x).

We know indeed what is meant by the area of a rectangle,

and that it is measured by the product of its sides. Also the

properties of triangles, parallelograms, and polygons proved by

Euclid enable us to attach a definite meaning to the areas of

such figures. But nothing which we know so far provides us with

a direct definition of the area of a figure bounded by curved lines.

We shall now show how to give a definition of F{x) which will

enable us to prove its existence.*

Let us suppose f{x) continuous throughout the interval (a, b),

and let us divide up the interval into a number of sub-intervals

by means of the points of division x , xu x2 , ..., xn , where

Oj -— OCq "V. #1 \ . . • ^ OC^i—i \ Ou)i — 0,

Further, let us denote by S„ the interval {xv , xv+1), and by mv the

lower bound (§ 102) of/(#) in 8„, and let us write

s = m S + m1
8

1 + ... +m ll Sn = 'Zm v 8v>
say.

It is evident that, ifM is the upper bound off(x) in (a, b), then

s^ M (b — a). The aggregate of values of s is therefore, in the

language of § 80, bounded above, and possesses an upper bound

which we will denote by j. No value of s exceeds j, but there are

values of s which exceed any number less thanj.

In the same way, ifMv is the upper bound off(x) in 8„, we can

define the sum
S=1M„K>

It is evident that, if m is the lower bound off{x) in (a, b), then

S ^ m (b — a). The aggregate of values of S is therefore bounded

below, and possesses a lower bound which we will denote by J.

No value of S is less than J, but there are values of S less than any

number greater than J.

* The argument which follows is modelled on that given in Goursat's Cours

d'Analyse (second edition), vol. i, pp. 171 et seq. ; but Goursat's treatment is much
more general.
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It will help to make clear the significance of the sums s and S if

we observe that, in the simple case

in which f(x) increases steadily

from x=a to x— b, m v is f(xv)

and Mv is f(xv + {). In this case s

is the total area of the rectangles

shaded in Fig. 48, and S is the

area bounded by a thick line. In

general s and S will still be areas,

composed of rectangles, respectively

included in and including the curvi-

linear region whose area we are

trying to define.

We shall now show that no

sum such as s can exceed any
Fig. 48.

sum such as S. Let s, S be the sums corresponding to one mode of

subdivision, and s', S' those corresponding to another. We have

to show that s ^ S' and s ^ S.

We can form a third mode of subdivision by taking as dividing

points all points which are such for either s, S or s, S'. Let s, S
be the sums corresponding to this third mode of subdivision.

Then it is easy to see that

s^s, s^s', S^S, S^S' (1).

For example, s differs from s in that at least one interval S„ which

occurs in s is divided into a number of smaller intervals

so that a term m„S„ of s is replaced in s by a sum

mvA £„,! + w„
]2

S„>2 + ... + m v

p

hvp ,

where m,A , m„>2 , ... are the lower bounds of f(x) in 8Vjl , S„>2 , ....

But evidently m„a =?/i„,m„j2 = m v , ..., so that the sum just written

is not less than mv 8„. Hence s.= s; and the otherinequalities (1)

can be established in the same way. But, since s ^ S, it follows

that

s^s^S^S',
which is what we wanted to prove.

It also follows that j ^ J. For we can find an s as near to j
as we please and an S as near to J as we please *, and so j >J
would involve the existence of an s and an S for which s > S.

The s and the S do not in general correspond to the same mode of subdivision.
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So far we have made no use of the fact that/(#) is continuous.

We shall now show that j = J, and that the sums s, S tend to the

limit J when the points of division xv are multiplied indefinitely

in such a way that all the intervals 8V tend to zero. More pre-

cisely, we shall show that, given any positive number e, it is possible

to find 8 so that

0^J-s<e, 0^S-J<e

whenever 8V < 8 for all values of v.

There is, by Theorem II of § 106, a number 8 such that

Mv
— m v < ej(b-a),

whenever every 8„ is less than 8. Hence

S-s =t(Mv -m„)8v <e.

But S-s = (S-J) + (J-j) + (j - s)
;

and all the three terms on the right-hand side are positive, and

therefore all less than e. As J — j is a constant, it must be zero.

Hence j = J and ^j — s< e, 0^S — J<e, as was to be proved.

We define the area of PpqQ as being the common limit of s and

S, that is to say J. It is easy to give a more general form to this

definition. Consider the sum

<T = $f,8 l/

where /„ denotes the value of f(x) at any point in 8V . Then <r

plainly lies between s and S, and so tends to the limit J when the

intervals 8 V tend to zero. We may therefore define the area as

the limit of o\

157. The definite integral. Let us now suppose that f{x)

is a continuous function, so that the region bounded by the curve

y =f(x), the ordinates x = a and x = b, and the axis of x, has a

definite area. We proved in Ch. VI, § 145, that if F(x) is an

' integral function ' oif(x), i.e. if

F'(x)=f(x), F(x)=\f(x)dx,

then the area in question is F(b) — F(a).

As it is not always practicable actually to determine the form

of F (x), it is convenient to have a formula which represents the

area PpqQ and contains no explicit reference to F (x). We shall

(PpqQ)=ff(*)dx.
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The expression on the right-hand side of this equation may
then be regarded as being defined in either of two ways. We
may regard it as simply an abbreviation for F(b) — F(a), where

F(x) is some integral function of f(x), whether an actual formula

expressing it is known or not ; or we may regard it as the value of

the area PpqQ, as directly defined in § 156.

rb

The number f{x)dx
J a

is called a definite integral; a and b are called its lower and
upper limits; f{%) is called the subject of integration or

integrand; and the interval (a, b) the range of integration.

The definite integral depends on a and b and the form of the

function f{x) only, and is not a function of x. On the other hand

the integral function

F(x) = ff(x)dx

is sometimes called the indefinite integral off(x).

The distinction between the definite and the indefinite integral is merely

fb
one of point of view. The definite integral / f(x)dx=F(b)-F(a) is a

function of b, and may be regarded as a particular integral function of f(b).

On the other hand the indefinite integral F(x) can always be expressed by

means of a definite integral, since

F(.v) =F(a)+f
X

f(t)dt.
J a

But when we are considering ' indefinite integrals ' or { integral functions

'

we are usually thinking of a relation between two functions, in virtue of which

one is the derivative of the other. And when we are considering a ' definite

integral ' we are not as a rule concerned with any possible variation of the

limits. Usually the limits are constants such as and 1 ; and

l

f(x)dx= F(l)-F(0)
i:

is not a function at all, but a mere number.

It should be observed that the integral / f(t)dt, having a differential

J a

coefficient f(x), is a fortiori a continuous function of a*.

Since 1/x is continuous for all positive values of x, the investigations of

the preceding paragraphs supply us with a proof of the actual existence of the

function logx, which we agreed to assume provisionally in § 128.
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Fig. 49.

158. Area of a sector of a circle. The circular functions.

The theory of the trigonometrical functions cos x, sin x, etc., as

usually presented in text-books of elementary trigonometry, rests

on an unproved assumption. An angle is the configuration formed

by two straight lines OA, OP; there is no particular difficulty in

translating this ' geometrical ' definition into purely analytical

terms. The assumption comes at the next stage, when it is assumed

that angles are capable of numerical measurement, that is to say

that there is a real number x associated

with the configuration, just as there is

a real number associated with the region

PpqQ of Fig. 47. This point once ad-

mitted, cos x and sin# may be defined

in the ordinary way, and there is no

further difficulty of principle in the

elaboration of the theory. The whole

difficulty lies in the question, what is the

x which occurs in cos x and sin x ? To answer this question, we

must define the measure of an angle, and we are now in a position

to do so. The most natural definition would be this: suppose that

AP is an arc of a circle whose centre is and whose radius is

unity, so that OA = OP = 1. Then x, the measure of the angle, is

the length of the arc A P. This is, in substance, the definition

adopted in the text-books, in the accounts which they give of the

theory of ' circular measure '. It has however, for our present pur-

pose, a fatal defect; for we have not proved that the arc of a curve,

even of a circle, possesses a length. The notion of the length of a

curve is capable of precise mathematical analysis just as much as

that of an area; but the analysis, although of the same general

character as that of the preceding sections, is decidedly more

difficult, and it is impossible that we should give any general

treatment of the subject here.

We must therefore found our definition on the notion not of

length but of area. We define the measure of the angle AOP as

twice the area of the sector AOP of the unit circle.

Suppose, in particular, that OA is y = and that OP is y = mx,

where m > 0. The area is a function of m, which we may denote

by
(f>

(m).. If we write //, for (1 +m2

)

-
-, P is the point (/x, m/u,), and
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we have

</> (m) = \m^ + V(l - «2
) dec.

Differentiating with respect to m, we find

1 Cm fa
* (M)=

2o+^)' * (")ta
*j.r+?-

Thus the analytical equivalent of our definition would be to define

arc tan m by the equation

[
m dt

arc tan m =
oi+r

and the whole theory of the circular functions could be worked out

from this starting point, just as the theory of the logarithm is

worked out from a similar definition in Ch. IX. See Appendix III.

Examples LXIII. Calculation of the definite from the indefinite

integral. 1. Show that

/,

6
7 bn * l - a" + 1

xndx= ,

t n+ 1

[i
1

and in particular that / xndx=
.

F
Jo »+l

f
b

. sin mb- sin ma f
b

.

2. / cos mxdx= . j si

J a m J a

3. / —

-

L-7,= arc tan b — arc tan a, \ -——s=i7r.

&
. sin m&- sin ma /" ft

. . cos ma- cos m&
sin mx ax= —

,

/:

[There is an apparent difficulty here owing to the fact that arc tan x is a

many valued function. The difficulty may be avoided by observing that, in

the equation
"* dt

„= arc tan x,
ol + «-

arc tan x must denote an angle lying between -\n and \n. For the integral

vanishes when x= and increases steadily and continuously as x increases.

Thus the same is true of arc tan x, which therefore tends to \n as x-*-x>.

In the same way we can show that arc tan a?-*-— Jw as x-*- — cc . Similarly,

in the equation

dt

i:
-^ = arc sin x,

ox/(l-6

where — 1<jk<1, arc sin x denotes an angle lying between -\ir and \n.

Thus, if a and b are both numerically less than unity, we have

'

b dx

/.
„. = arc sin b — arc sin a.l

a J(l-x2
)

f l dx _ 2tt f 1 dx it

J l-#+u;2- 373' j l+x+xT2 ~3
s/3

u, 19
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5 J
— - = -—.— if — 7r<a<7r, except when a= 0, when the

J l+2xcosa+ x2 2 sin a

value of the integral is ^, which is the limit of \a coseca as a^~0.

6. f J(\-x2)dx=liv, j^(a2-x2)dx=^ira2 (a>0).
Jo Jo

Jo a-
, if a > |

b
|

. [For the form of the indefinite
i+ b cos x s/(a2 - b2

)

integral see Exs. till. 3, 4. If
|
a |<| b

|
then the subject of integration has an

infinity between and ir. What is the value of the integral when a is

negative and - a>\ b
\ ?]

if a and b are positive. What is the
J a2 cos2 x+ b2 sin2 x 2ab '

value of the integral when a and b have opposite signs, or when both are

negative ?

9. Fourier's integrals. Prove that if m and n are positive integers then

I
cos rax sin ?j.i- dx

Jo

is always equal to zero, and

/"27T r2TT

I cos wi.r cos «A* dx, I sin m.r sin nx dx
Jo Jo

are equal to zero unless m= n, when each is equal to n.

10. Prove that I cos mx cos jza cfo; and I sin )m sin n# dx are each equal
Jo Jo

to zero except when m= n, when each is equal to £n- ; and that

/""
• t 2ra /"^

.

| cos ??i.r sin nx dx= -=
r,

,

cos m# sm nxdx= 0,
Jo ?i

2 -»i-' J

according as %—m is odd or even.

159. Calculation of the definite integral from its defini-

tion as the limit of a sum. In a few cases we can evaluate a

definite integral by direct calculation, starting from the definitions

of §§ 156 and 157. As a rule it is much simpler to use the

indefinite integral, but the reader will find it instructive to work

f 6

Examples LXIV, 1. Evaluate I xdx by dividing (a, b) into n equal
J a

rta by the points of division a=x , xu x2 , ..., xn =b, and calculating the

lit as ft-*- oo of

fo - a?o)/(tfo) + (*2- *i)/0*i) + ..; + (4?»-#»_1)/0f»_i).
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[This sum is

^[a+ (. +^) +
(
a+2^) + ... +

{
(l+()( . 1)^j]

= ^-['",+^f
<
1+2 -

,---+("- 1K]=( i'-«){«+(''-<»)^li
}.

which tends to the limit | (b2 -

a

2
) as»-*x. Verify the result by graphical

reasoning.]

2. Calculate / x2dx in the same way.
J a

3. Calculate / xdx, where 0<a< b, by dividing (a, 6) into % parts by
J a

the points of division a, ar, ar2
, ... a?-"

-1
, arn, where rn =b\a. Apply the same

method to the more general integral / xm dx.
J a,

4. Calculate / cos mx dx and / sin mx dx by the method of Ex. 1.

J a J a

»—1 1
5. Prove that n 2 —. „ -*-irr as n-*-cc .

[This follows from the fact that

n n n n~ 1 (I In)

n2 n2+ l 2 n2+ (n-l)2
r=0 l+(?-/?t)2

'

r\ dx
which tends to the limit I „ as n -*• oo , in virtue of the direct definition

Jo 1+ff-
of the integral.]

6. Prove that -*sV(»'-

r

2)-*-^. [The limit is /"V( I-*'2
)
dx."\

n" r=0 J

160. General properties of the definite integral. The

definite integral possesses the important properties expressed

by the following equations.*

(1) \

b

f(x)dx = -\
a

f{x)dx.
J a J b

This follows at once from the definition of the integral by means of the

integral function F(x), since F(b)- F(a)= -{F(a)-F(b)}. It should be

observed that in the direct definition it was presupposed that the upper

limit is greater than the lower ; thus this method of definition does

not apply to the integral
| f(x)dx when a<b. If we adopt this definition

Jb'
as fundamental we must extend it to such cases by regarding the equation (1)

as a definition of its right-hand side.

* All functions mentioned in these equations are of course continuous, as the

definite integral has been defined for continuous functions only.

19—2
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(2) \

a

f(x)dx=0.
• a

(3) jf(x)dx+j f(x)dx = f(x)dx.
J a J b -'a

(4) ( kf(x)dx = k( f{x)dx.

(5) I {/OO + <£ 0)} dx=\ f(x) dx+f<f> (x) dx.
Ja J a J a

The reader will find it an instructive exercise to write out formal proofs

of these properties, in each case giving a proof starting from (a) the definition

by means of the integral function and (3) the direct definition.

The following theorems are also important.

(6) Iff(x) ^ when a^x^b, then
j
f(x) dx ^ 0.

J a

We have only to observe that the sum s of § 156 cannot be negative. It

will be shown later (Misc. Ex. 41) that the value of the integral cannot be

zero unless f(x) is always equal to zero : this may also be deduced from the

second corollary of § 121.

(7) IfH ^ f{x) ^ K when a^x^b, then

H(b-a)^f f(x)dx^K(b-a).
J a

This follows at once if we apply (6) to/(.r) -if and K-f(x).

(8) [/(„) dx = (b-a)f(Z),
J a

where £ lies between a and b.

This follows from (7). For we can take H to be the least and K the
greatest value of f(x) in (a, b). Then the integral is equal to tj (b - a), where
»? lies between H and K. But, since fix) is continuous, there must be a
value of £ for which /(£)= >; (§ 100).

If F(x) is the integral function, we can write the result of (8) in the form

F(b)-F(a)= (b-a)F'(£),

so that (8) appears now to be only another way of stating the Mean Value
Theorem of § 125. We may call (8) the First Mean Value Theorem for
Integrals.
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(9) The Generalised Mean Value Theorem for inte-

grals. If <f>
(x) is positive, and H and K are defined as in (7), then

H ! $ (x) dx S i f{x) $ (x) dx^xf <£ (x) dx;
•la J a J a

and
J
f(x)(f)(x)dx=f(^) j <f>(x)dx,

J a J a

where f is defined as in (8).

This follows at once by applying Theorem (6) to the integrals

/
{f(x)-H}$(x)dx, f {K-f{x)}<\>{x)dx.

J a J a

The reader should formulate for himself the corresponding result which

holds when <£ (x) is always negative.

(10) The Fundamental Theorem of the Integral Cal-

culus . Th e function

F(x)=(
X

f(t)dt
J a

has a derivative equal to f{%).

This has been proved already in § 145, but it is convenient to

restate the result here as a formal theorem. It follows as a

corollary, as was pointed out in § 157, that F (x) is a continuous

function of x.

Examples LXV. 1. Show, by means of the direct definition of the

definite integral, and equations (1)—(5) above, that

(i) f

a

<f>(x
2)dx=2 [

a
(t>(x*)dx, f

a

x<j>(x2)dx=0;
J -a JO J -a

(ii) I (cos x) dx= I (j) (sin x) dx= ^ I
(f>

(sin x) dx
;

Jo Jo "Jo

(iii) I
(f>

(cos2 3
-

) dx=m | cf> (cos
2 x) dx,

Jo Jo

m being an integer. [The truth of these equations will appear geometrically

intuitive, if the graphs of the functions under the sign of integration are

sketched.]

f 7T si ji 73,/r

2. Prove that / — dx is equal to rr or to according as n is odd or
J o sin x

sn. [Use the formula (smnx)/(smx)= 2 cos{(«- 1) x} + 2 cos{(?i-3).r} + ...,

i last term being 1 or 2 cos x.~\

3. Prove that I sin nx cot xdx is equal to or Lo it according as n is odd
Jo

or even.
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4. If
(f>

(x) = a + a i
cos x + b\ s™ x + a2 cos 2# + . ,. + a„ cos nx + 6„ sin nx,

and £ is a positive integer not greater than n, then

f 2tt /" 2n- /" 2ff

I <f)(x) dx=2Tra , I coskx(f> (x) dx=nak , I sin«# {x)dx=irbk .

Jo Jo Jo

If k>n then the value of each of the last two integrals is zero. [Use

Ex. lxiii. 9.]

5. If (j) (x)=a + a x cos x+ a2 cos 2x+ ...+an cos nx, and h is a positive

integer not greater than n, then

/(f) (x) dx= 7ra , I cos Lv(f) (x) dx—\tvak .

o Jo

It k>n then the value of the last integral is zero. [Use Ex. lxiii. IO.j

6. Prove that if a and b are positive then | --5 5 ,„ . _ = —=-.

J er cos^x+ 6J sin* a; a©
[Use Ex. lxiii. 8 and Ex. 1 above.]

fb fb
7. If/(.r) ^<f>(x) when a < .r < 6, then / fdx ^ I <£efo.

J a J a
8. Prove that

/"*»
. , /"Jt /"It /"It

0<| smn + 1 xdx< sinn xdx, 0<l tan" + 2
.r c£r < I tan".rrf#.

Jo Jo Jo Jo

/1/2 dx—
^T < -524. [The first inequality follows

v ( 1 - # j

from the fact that ,/(l — x2n)<l, the second from the fact that

x/(i-^»)> v/(i-4]

0v/(4-.^2+ ^3
)

b

11. Prove that (3^+ 8)/16< 1/^/(4 -»*+*•)< 1/^/(4 -3a?) if 0<#<1,

and hence that A?<| —r. ~<#.

12. Prove that -573 <
\ Ul

f 'g
r-<-595. [Put x=l+u: then re-

place i + 3u2+ u3 by 2 + 4w2 and by 2 + 3m2
.]

13. If a and <p are positive acute angles then

[* dx

Jo V(l -sin2 a
0< /n „;^.^ 8 ^ <-

sin2
.^) >/(l — sin2 a sin2 0)*

If a=(f)=^7r, then the integral lies between -523 and •541.

1 f b
I f>

14. Prove that f(x)dx\ ^
/ |/(*) |

dx.
\ J a I /»

[If a is the sum considered at the end of § 156, and a the corresponding

sum formed from the function \f(x) \,
then

|
<r

|
^ cr' ]

15. If \f(x)
I

< M, then f f(x) (*) dx \
^ M P

| <f>
(us)

\
dx.

J a J a

* Exs. 9—la are taken from Prof. Gibson's Elementary Treatise on the Calculus.
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161. Integration by parts and by substitution. It

follows from § 138 that

\ "fix) # (x) dx =f(b) <f>
(b) -/(a) (a) - [

/' (x)
<f> (*) dx.

This formula is known as the formula for integration of a
definite integral by parts.

Again, we know (§ 133) that if F(i) is the integral function of

/(«), then

J;

Hence, if <£ (a) = c,
<f>

(b) = d, we have

[7(0 dt=F(d)-F(c) = F{<f> (b)} -F{<f> (a)} = [7(0 (*)} </>' («) *d;

which is the formula for the transformation of a definite integral

by substitution.

The formulae for integration by parts and for transformation

often enable us to evaluate a definite integral without the labour

of actually finding the integral function of the subject of integra-

tion, and sometimes even when the integral function cannot be

found. Some instances of this will be found in the following

examples. That the value of a definite integral may sometimes

be found without a knowledge of the integral function is only to

be expected, for the fact that we cannot determine the general

form of a function F(x) in no way precludes the possibility that

we may be able to determine the difference F(b) — F(a) between

two of its particular values. But as a rule this can only be

effected by the use of more advanced methods than are at

present at our disposal.

Examples LXVI. 1. Prove that

f

b

xf" (x) dx={bf (b) -f(b)} - {af (a) -/(a)}.

fb
2. More generally, / xm/(m + 1

) (x)dx=F(b) — F(a), where
J a

F(x) = xmf(m ) (x) - mxm ~ 1pn ~ l)x+m(m - 1)xm - 2
f(
m - 2)x-... + (-\)mm !/(.?).

3. Prove that

I arc sm.xdx=\TT — 1, / a?aarctana;cfo?=j7r— \.
Jo Jo
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4. Prove that if a and b are positive then

i'r xcosxs'mxdx n

l„ (a2 cos2 x + b'
A sin2 x)% \ab'1 (a + b)'

[Integrate by parts and use Ex. lxiii. 8.]

5. If Mx)=[
X
f(t)dt, f3 {x)= f

X

fi(t)dt,...,Mx)=(
x

fk-,{t)dt,
Jo Jo Jo

then /* (*)=
(1
~

iy] // (0 (* - *)*" 1 dt.

[Integrate repeatedly by parts.]

6. Prove by integration by parts that if um>n= I xm (l — x)n dx, where m
J o

and n are positive integers, then (m+n + l) ftm,n := ?lMm,n~i> and deduce that

m ! ft !

7. Prove that if un= \ ta,nn xdx then «„ + wm _ 2 = l/(ft - 1). Hence

evaluate the integral for all positive integral values of ft.

[Put tann #=tann-2 a?(sec2#— 1) and integrate by parts.]

8. Deduce from the last example that un lies between l/{2(n — 1)} and

l/{2(n+l)}.

9. Prove that if un= I sinn x dx then un= {(ft- l)/ft}«„_2- [Write
J o

sin™
-1 x sin x for sinn .r and integrate by parts.]

10. Deduce that un is equal to

2.4.6..(ft-l) , 1.3.5..(ft-l)

3.5. 7. .ft '
*" 2. 4. 6.. ft '

according as n is odd or even.

11. The Second Mean Value Theorem. If f(x) is a function of x
which has a differential coefficient of constant sign for all values of x from

x= a to x=b, then there is a number £ between a and b such that

f

b

/(#) (*') dx=f(a) f
*

(j?) dx+f{b) t
b

(a.-) efc.

Jo .'a J f

[Let f

X

(f)(t)dt= ^{x). Then

f
^
/(*) (*) dx= f f{x) *' (#) <&=/(&) $ (6) - [

b

f (x) * (a;) dx
J a J a J a

=/(&)*(&)-*(£) fV(*)«ki
J a

by the generalised Mean Value Theorem of § 160 : i.e.

1

b

f(x)cj>(x)dx=f(b)<l>(b) + {f(a)-f(b)}4>(£),

which is equivalent to the result given.]
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12. Bonnet's form of the Second Mean Value Theorem. If/' (x) is

of constant sign, and/(6) and /(a) -/(ft) have the same sign, then

I f(x)<$>(x)dx=f(a) I cji(x)dx,
J a J a

where X lies between a and b. [For f(b)$(b) + {f(a)-f(b)}4>(£)= pf(a),

where fi lies between <J> (£) and * (5), and so is the value of * (x) for a value

of x such as X. The important case is that in which 0?gf(b)^f(x)g^f(a).]

Prove similarly that iff(a) and/ (6) -/(a) have the same sign, then

J
V(a-) <£ (*) dW(&)

f
V (*) <**.

where X lies between a and 6. [Use the function ^ (£) = / <£ (x) dx. It

will be found that the integral can be expressed in the form

The important case is that in which 0^/(a)^/(.r)^/(6).]

13. Prove that
j

/ -dx\<-jr if A">A~>0. [Apply the first

I J X x A.

formula of Ex. 12, and note that the integral of sin x over any interval what-

ever is numerically less than 2.]

14. Establish the results of Ex. lxv. 1 by means of the rule for sub-

stitution. [In (i) divide the range of integration into the two parts ( - a, 0),

(0, a), and put x= —y in the first. In (ii) use the substitution x= \tt — y to

obtain the first equation : to obtain the second divide the range (0, n) into

two equal parts and use the substitution x= ^rr+y. In (iii) divide the range

into m equal parts and use the substitutions x=?r+y, x=2n+y, ....]

15. Prove that I F (x) dx= I F(a+ b- x) dx.
J a J a

16. Prove that I cosm xs\i\mxdx=2~m
j

cosm xdx.
Jo Jo

17. Prove that I x<p (siu.x)dx=^n I <ft (sin x)dx. [Put x=7r—y.]
Jo Jo

I

18. Prove that / — „- dx=\n'1.

Jo l+COS^

19. Show by means of the transformation x= a cos2 6+ b sin2 6 that

b

y/{(x— a)(b — x)} dx= \rt(b — df.

20. Show by means of the substitution (a+ b cos x) (a -b cos y) = a2— b2

that

r (a+ b cos x) -» dx= (a2-

6

2)"

<

n~»
J

(a- b cos y)
n~l dy,

when n is a positive integer and a>\b\, and evaluate the integral when

?i= l, 2, 3.
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21. If m and n are positive integers then

f

h

{x - a)
m (b - x)« dx={b- «)« + » + »

.

OT ^'
.

J a (m+»+ l)l

[Put #= a + (& - a) y, and use Ex. 6.]

162. Proof of Taylor's Theorem by Integration by
Parts. We shall now give the alternative form of the proof of

Taylor's Theorem to which we alluded in § 147.

Let/(#) be a function whose first n derivatives are continuous,

and let

Fn («) -/<&) -/(•) - (b - *)f («)-.»-
(

\~*i)i f
{n
71] (•>

and

Then *V («) - -
(-^^/(n) (4

so

^ (a) = Fn (b) - \

h

Fn (a) dx = -—!—! f\b- •)«/» (x) dx.
.'a \" *) -J a

If now we write a + h for b, and transform the integral by putting

cc = a + th, we obtain

f(a + h) =/(a) + hf (a) + ... +£L.
{

f*-V, (a) + Rn . . .(1),

where Rn = ,

h
\,j\l- t)

n
-*f™ (a + th) dt (2).

Now, if p is any positive integer not greater than n, we have,

by Theorem (9) of § 160,

I"

1

(1 - n-1/(n) (a + th) dt= [ (1 - t)
n~P(l - ty~ lfw (a + th) dt

Jo -o

= (i - ey-pp* (a + eh) (\i- ty-*dt,
Jo

where < 6 < 1. Hence

En =
p(n-l)l (3)"

If we take p = n we obtain Lagrange's form of JB„ (§ 148). If

on the other hand we take p = 1 we obtain Cauchy's form, viz.

B»"
5TTi)l (4) •

* The method used in § 147 can also be modified so as to obtain these

alternative forms of the remainder.
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163. Application of Cauchy's form to the Binomial Series. If

f(x)= (l+ x)m, where m is not a positive integer, then Cauchy's form of the

remainder is

_ m(m-I)...(m-n+l) (l-0)"- 1
;r
n

n~ 1.2...(n-l) (l + 8x)n
~m '

Now (1 — 0)1(1 + dx) is less than unity, so long as — \<x<l, whether

x is positive or negative; and (\ + 8x)m ~ 1 is less than a constant K for

all values of n, being in fact less than (14-|# |)"
1-1

if ?/i>l and than

(1 - |
x

| )
m_ x if m < 1 Hence

I r> i tt , I I
fin — lM I I\Rn \<A\m\^ n _ l

^\x"\ = Pn ,

say But pn-*-0 as n-^cc , by Ex. xxvu. 13, and so Rn -*-0. The truth of the

Binomial Theorem is thus established for all rational values of m and all

values of x between — 1 and 1. It will be remembered that the difficulty in

using Lagrange's form, in Ex. lvi. 2, arose in connection with negative

values of x.

164. Integrals of complex functions of a real variable.

So far we have always supposed that the subject of integration in

a definite integral is real. We define the integral of a complex

function f(x) = ^r (x) + ity (x) of the real variable x, between the

limits a and b, by the equations

rb rb rb rb

f{x)dx=-\ {</>(#) + ity (x)} dx = I (f)(x)dx + il yjr(x)dx;
J a J a J a J a

and it is evident that the properties of such integrals may be

deduced from those of the real integrals already considered.

There is one of these properties that we shall make use of

later on. It is expressed by the inequality

\

h

f(x)dx ^!
b

\f(x)\dx (1)*.
J a J a

This inequality may be deduced without difficulty from the

definitions of §§ 156 and 157. If Bv has the same meaning as in

§ 156,
<f> v

and yfr v are the values of
<f>
and ^ at a point of 8V , and

fv
=

(f) v
+ iyjr v , then we have

rb rb
'

rb

fdx = I (pdx + i I tydx = lim S <£„ 8 V + i lim S y\r v Sv

J a J a J a

= lim 2 ((/>„ + iyfrv) S„ = lim £/„§„,

and so I fdx =
|
lim 2/„o\,

|

= lim
|

2/„o\,
|

;

J a

* The corresponding inequality for a real integral was proved in Ex. lxv. 14.
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while I \f\dx =*\im t\fv \ K-
J a

The result now follows at once from the inequality

|2/.8,|rf|/,|a..

It is evident that the formulae (1) and (2) of § 162 remain

true whenf is a complex function
<f>
+ iy}r.

MISCELLANEOUS EXAMPLES ON CHAPTER VII.

1. Verify the terms given of the following Taylor's Series

:

(1) ta,nx= x+ ^x3+ ŝx
5+ ...,

(2) secz= l+|#2+ Wj.rt + ...,

(3) xcosecx=l+^x2+ 5^xi+ ...,

(4) xcotx=l — ^x2 — ^sxA —....

2. Show that if f(x) and its first n + 2 derivatives are continuous, and

f(
n + !) (0) =t= 0, and 6n is the value of 6 which occurs in Lagrange's form of the

remainder after n terms of Taylor's Series, then

_J_ n__ f /(» + 2
>(0)

}
n~ n+ 1

+
2 (»+ 1

)
2 (n+ 2) |/(n

+ J
) (0)

+ **} ^

where fx -a-0 as z-»-0. [Follow the method of Ex. lv. 12.]

3. Verify the last result when /O) = 1/(1+ x). [Here ( 1 + 8nx)n
+ 1 = 1 +.r.

]

4. Show that iff{x) has derivatives of the first three orders then

fib) =/(«) +|(6- a) {/' (a) +/' (6)} -& (6 - a)*/'"
(a),

where a < a < b. [Apply to the function

/ (*) -/(«) -*(*-«) {/' (a) +/" (*)}

^- aJ
[/W -/(«) -* (6 - «) {/' («) +/' (&)}]

arguments similar to those of §• 147.]

5. Show that under the same conditions

f(b) =/ (a) + (b - a)f ft (a + 6)} +^ (6 - a)*/'" (a).

6. Show that if/(#) has derivatives of the first five orders then

f(b)=f(a) + Ub-a)[f'(a)+f'(b) + 4f'{h(a + b)}]-^\u (b-aff^(a).

7. Show that under the same conditions

/(&)=/(«) + l(& "«){/(«) +/(&)} -A (b - af{f'\b) -/" (a)} + 7Js (6 - a)«/(5)(a)
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(i)

Establish the formulae

9 (a) g(b)

where /3 lies between a and 6, and

!./(«) /(&) /(c)

(ii)
|

#(a) #(&) gr(c)

|
A (a) A (b) A(c)

{b~a)
/(«) /'(/3)

= £(6-c)(c-a)(a-6)
/(«) /'(/3) /"(y)

.</(«) ^'(/3) <?"(y)

A (a) A' (/3) A"(>)

where /3 and y lie between the least and greatest of a, b, c. [To prove (ii)

consider the function

<{>(x)= #(«) 0( 6
) ^(*)

A (a) A (6) A(j?)

(a— a) (x — b)

(c-a) (c— b)

/(a) /(&) f(c)

9(<*) 9(b
) g(fi)

A (a) A (6) A (c)

which vanishes when x=a,x=b, and x=c. Its first derivative, by Theorem B
of § 121, must vanish for two distinct values of x lying between the least and

greatest of a, b, c; and its second derivative must therefore vanish for a value

y of x satisfying the same condition. We thus obtain the formula

/(«) fd>) /(«)

9(a ) 9(b) 9(c
)

h (a) A (6) A (c)

%(c-a)(c-rb)

/(«) f(P) f"(y)

gifl) g(b
) g"{y)

A (a) A (6) A"(y)

The reader will now complete the proof without difficulty.]

9. If F{x) is a function which has continuous derivatives of the first n

orders, of which the first n— 1 vanish when x= 0, and A ^ F(") (x) g B when
< # ^ A, then A {xn\n \)^F{x)^B (xnjn !) when 0^x< A.

Apply this result to

f(x)-f(0)-xf(0)-...-

and deduce Taylor's Theorem.
(n-1) i/^KO),

10. If Ah (f>(x) = (j)(x)-(j)(x+h), Ah
2
(f>(x) = Ah {Ah (f)(x)}, and so on, and

(a?) has derivatives of the first n orders, then

Ah
n
cf>(x)= 2(-i; 0(* + M)= (-A)»0<»)(&

where £ lies between x and x+ nh. Deduce that if 0(") (#) is continuous then

{Ah
n
<i>{x)}lh

n ^-{ — l)n <£(")(#) as A^»0. [This result has been stated already

when »= 2, in Ex. lv. 13.]

11. Deduce from Ex. 10 that 'Ah
nxm -a-m (to — 1) . . . (to - n+ 1) hn as

x -*- oo , m being any rational number and n any positive integer,

particular prove that

X *JX Wx-2 J(x+ I) + sJ(x + 2)}-: J.

In
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12. Suppose that y= 4>(x) is a function of x with continuous derivatives

of at least the first four orders, and that
<f> (0) = 0, cf>' (0) = 1, so that

y= <p (x) =x+ a2x2+ a3x3 + (a4+ ex) x*,

where ex ->0as x^-0. Establish the formula

x=f (y) =y- a2y
2 + (2a2

2 - a3) y
3 - (5a2

3 - 5tx2a3+a4+ fy) 2/
1
,

where f
tf

-*-0 &s y-*-0, for that value of x which vanishes with y; and prove

that

<t>(x)^(x)-x2

a
.

#* 2

as x -*- 0.

13. The coordinates (|, q) of the centre of curvature of the curve x=f(t),

y=F(t), at the point (x, y), are given by

- (-1 - *)/y- (? -y)/*' = -X
2 +y'2)Kxy - x"y')

\

and the radius of curvature of the curve is

(x'2 +y'Zfi2
l(x'y" -x"y'),

dashes denoting differentiations with respect to t.

14. The coordinates (£, »;) of the centre of curvature of the curve

27a?/2= 4a*3, at the point (x, y), are given by

3a(£+x) + 2x2 =0, T)=4y+ (day)lx. (Math. Trip. 1899.)

15. Prove that the circle of curvature at a point (x, y) will have contact

of the third order with the curve if (l+yi2
)y3= 3yiy2

2 at that point. Prove

also that the circle is the only curve which possesses this property at every

point ; and that the only points on a conic which possess the property

are the extremities of the axes. [Cf. Ch. VI, Misc. Ex. 10 (iv).]

16. The conic of closest contact with the curve y= ax2+ bx3+ cxA+ ...+ kxn
,

at the origin, is a3y— aix2+ a2bxy+(ac — b2)y
2

. Deduce that the conic of

closest contact at the point (£, rj) of the curve y=f(x) is

l8r,j>T=9.T,2*(x-$)*+Gto%(x-$) T+^^-Ak2
) T2

,

where T=(^-t])- Vl (x-$). (Math. Trip. 1907.)

17. Homogeneous functions.* If u= xnf(yjx, z/x, ...) then u is un-

altered, save for a factor X™, when x, y, z, ... are all increased
a
in the ratio X : 1.

In these circumstances u is called a homogeneous function of degree n in the

variables x, y, z, .... Prove that if u is homogeneous and of degree n then

du du du

ox J oy oz

This result is known as Euler's Theorem on homogeneous functions.

18. If u is homogeneous and of degree n then dujdx, du/dy, ... are

homogeneous and of degree n—1.

* In this and the following examples the reader is to assume the continuity of

all the derivatives which occur.
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19. Let f(x, y)= be an equation in x and y {e.g. xn+yn -x=0), and let

F{x, y, z)=0 be the form it assumes when made homogeneous by the intro-

duction of a third variable z in place of unity (e.g. xn+yn -xzn -
1 = 0). Show

that the equation of the tangent at the point (£, t)) of the curve f(x, y)= is

xFs +yFr, + zFi=0,

where F%, Fv , F$ denote the values ofFx , Fy , Fz when x=$,y= r,, z=(=\.

20. Dependent and independent functions. Jacobians or functional
determinants. Suppose that u and v are functions of x and y connected by
an identical relation

<t>(u, v)=0 (1).

Differentiating (1) with respect to x and y, we obtain

3<£ du d(f) dv 30 du d<f> dv

du dx dv dx~ ' du dy dv dy~ *"''

and, eliminating the derivatives of <£,

J= Vr
=uxvy -uyvx=0 (3),

where ux , uy , vx , vy are the derivatives of u and v with respect to x and y.

This condition is therefore necessary for the existence of a relation such

as (1). It can be proved that the condition is also sufficient ; for this we must
refer to Goursat's Cows d"'Analyse, vol. i, pp. 125 et seq.

Two functions n and v are said to be dependent or independent accoi'dino-

as they are or are not connected by such a relation as (1). It is usual to call

J" the Jacobian or functional determinant of u and v with respect to x and y,

and to write

J= d (u, v)

9 (x, y)
'

Similar results hold for functions of any number of variables. Thus three

functions u, v, w of three variables x, y, z are or are not connected by a
relation (u, v, w)= according as

ux u u «2

«/= vr. v„ V,.

d (u, v, id)

d (x, y, z)

does or does not vanish for all values of x, y, z.

21. Show that ax2+ 2hxy+ by2 and Ax2+2Hxy+ By2 are independent

unless ajA =h\R= b/B.

22. Show that ax2+by2 +cz2 + 2fyz+ 2gzx+2hxy can be expressed as a

product of two linear functions of x, y, and z if and only if

abc+ 2fgh - af2 - bg2 - ch2= 0.

[Write down the condition that px+qy+rz and p'x+q'y+ r'z should be
connected with the given function by a functional relation.]
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23. If u and v are functions of £ and tj, which are themselves functions

of x and y, then
8 («, *Q = 8 (m, *0 8 (& q)

9 to y) 8 (I. >?) 8 to y)

'

Extend the result to any number of variables.

24. Let/ (#) be a function of x whose derivative is \\x and which vanishes

when x= 1. Show that if u=f(x)+f(y), v= xy, then ux vy — u
y
vx=0, and hence

that u and « are connected by a functional relation. By putting y= l, show

that this relation must hef(x)+f(y) -f(xy). Prove in a similar manner that

if the derivative of f(x) is 1/(1 +x2
), and /(0)=0, then f(x) must satisfy the

equation

/W+/<f>-/(£*).

25. Prove that if f(x) =
J

—rj-—-^ then

26. Show that if a functional relation exists between

«-/(*)+/<*)+/(*), r=/(y)/(«)+/(*)/(*)+/(*)/(y), w=f(x)f(y)f(z),

then / must be a constant. [The condition for a functional relation will be

found to be

/' to/' (y)/' (^) {/(y) -/(»)) {/(») -/to} {/to -/(y)} = o.]

27. If /(y, 2), /(z, #)> and /(#, y) are connected by a functional relation

then /(a?, #) is independent of x. (Math. Trip. 1909.)

28. If u—0, v= 0, w= are the equations of three circles, rendered

homogeneous as in Ex. 19, then the equation

d (u, v, w)_n
8 to y, 2)

~

represents the circle which cuts them all orthogonally. (Math. Trip. 1900.)

29. If A, B, C are three functions of x such that

A A' A"

B B B"

G C C"

vanishes identically, then we can find constants A, p, v such that \A +fiB+ vC
vanishes identically ; and conversely. [The converse is almost obvious. To
prove the direct theorem let a=BC - B'C, .... Then a'= BC" — B"C, ...,

and it follows from the vanishing of the determinant that /3y' — /3'y= 0, ... ;

and so that the ratios a : j3 : y are constant. But aA +j3B + yC=0.]

30. Suppose that three variables x, y, z are connected by a relation in

virtue of which (i) z is a function of x and y, with derivatives zx zu , and (ii) x

is a function of y and z, with derivatives xy , x„ . Prove that

Xy=—ZyjZx ,
Xz
= LjZX .
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[We have dz= zx dx+

z

y
dy, dx= xy dy + xzdz

The result of substituting for dx in the first equation is

dz=(zxxy+zy)dy+zxxzdz,

which can be true only if zxxy+zy
= 0, zxxz =l.~]

31. Four variables x, y, z, u are connected by two relations in virtue of

which any two can be expressed as functions of the others. Show that

where yz
n denotes the derivative of y, when expressed as a function of z and u,

with respect to z. {Math. Trip. 1897.)

32. Find A , B, C, X so that the first four derivatives of

/(*) dt - x [Af(a) + Bf(a+ \x) + Cf(a + x)]

/:

vanish when x=0 ; and A, B, C, D, X, p so that the first six derivatives of

( f(f) dt-x[A/(a)+B/(a + \x) + Cf(a+ l
ix)+ J)/(a + x)]

J a

vanish when x=0.

33. If a> 0, ac — b2> 0, and xx > x , then

J a

<fo = !
arc tan (

(
^-r ) N/(ac-6

2
) \

«#2+ 26#+ e ^(ac — b2
)

\ax\Xo+ 6 (#x +# ) + cj
'

the inverse tangent lying between and tj-.*

I Sill n fr 7"

34. Evaluate the integral / =—-
n- . For what values of a is°

J _ x
1 — 2xcosa + x-

the integral a discontinuous function of a ? (Math. Trip. 1904.)

[The value of the integral is \n if 2nn < a< (2n + 1 ) tt, and -\n if

(2?i - 1) iv < a< 2iitt, n being any integer ; and if a is a multiple of 7r.]

35. If ax2+ 2bx+c>0 when x ^x^x^
, f (x) =^(ax2+ 2bx+ c), and

#=/»> yo=/(#o)> yi=/(*i)> ^=(*i-^o)/(3/i+yo)>

., pWx- 1 1 + X^a 2
then

J, 7
=^ los

r^Tv«' ^^) arctan ^V(-°)}.

according as a is positive or negative. In the latter case the inverse

tangent lies between and \ir. [It will be found that the substitution

X — Xn f ^ dt
t— — reduces the integral to the form 2 I

-
:, .1

y+Vo Jo l ~ at~

fa f]T
3. Prove that :=&. (Math. Trip. 1913.)

J o •t/ ~t~ \'\a ~ ^ )

If a> 1 then f
^"^

efce= it {a - V(«
2 - 1 )}

.

J -i a — x

36.

37.

* In connection with Exs. 33—35, 38, and 40 see a paper by Dr Bromwich

in vol. xxxv of the Messenger of Mathematics.

h. 20
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38. If>>l, 0<q<l, then

n dx 2cc

J o v'[{l + (P* ~ 1)4 {1 - (1 - ?
2
) *}] (i* + 2) si" »

'

where w is the positive acute angle whose cosine is (l+jogO/^ + gO-

39. If«>6>0,thenJ
o

-^-^^^{a-^-6%
(Jfa& 2Wp. 1904.)

40. Prove that if a > »/(6
2+c2

) then

r <** _ 2
arc tan K^

2 - 62 - c2
)

]

J a+ &cos0+ C sin0-^(a*-&2 -c2)
arCtan

t c J'

the inverse tangent lying between and it..

fb
41. If /(a?) is continuous and never negative, and I f(x)dx= 0, then

./ «

f(x) = for all values of # between a and &. [If/ (a;) were equal to a positive

number & when # = £, say, then we could, in virtue of the continuity of /(*•),

find an interval (£-8, £+ 8) throughout which /(a?)> \k ; and then the value

of the integral would be greater than 8L]

42. Schwarz's inequality for integrals. Prove that

(JW due) ^ ( <£
2 dx

f
\p dx.

[Use the definitions of §§ 156 and 157, and the inequality

(Ch. I, Misc. Ex. 10).]

43. If Pn(x) =
{
p_\)nn

[ (dx)

n

{(x - a)(P-*V n
>
then P«(4 fs a P()1y-

nomial of degree n, which possesses the property that

/:
Pn (x)6(x)dx=0

if 6(x) is any polynomial of degree less than n. [Integrate by parts m + 1

times, where m is the degree of 6 (x), and observe that 0(m + 1
)(.r) = O.]

44. Prove that I Pm {x) Pn (x)dx= if m 4= n, but that if m=« then the

value of the integral is (0 - a)j(2n + 1).

45. If Qn (a?) is a polynomial of degree n, which possesses the property

that I §« (a;) 6 (x) dx= if (x) is any polynomial of degree less than n, then

Qn {%) is a constant multiple of Pn (x).

[We can choose k so that (?n — «PM is of degree %- 1 : then

j Qn(Qn-*Pn)dx= 0, j^ Pn (Qn - KPn ) dx= 0,
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and so I (Qn - <Pn)
2 dx= 0.

Now apply Ex. 41.

J

46. Approximate Values of definite integrals. Show that the error

fb
in taking \{b — a) {0 (a) + (b)} as the value of the integral I {x) dx is less

than ^3/{b — a) 3
, where J/ is the maximum of |0"(.r)| in the interval (a, b);

and that the error in taking (o — a) {-| (a+ b)} is less than -^M (b — a)3. [Write

f (j£)= (x) in Exs. 4 and 5.] Show that the error in taking

1(6 -a) [0(a) + 0(6) + 40 {£(« + &)}]

as the value is less than ogy/^-a)5
, where 1/ is the maximum of 0(4)(:r).

[Use Ex. 6. This rule, which gives a very good approximation, is known as

Simpson's Rule. It amounts to taking one-third of the first approximation

given above and two-thirds of the second.]

Show that the approximation assigned by Simpson's Eule is the area

bounded by the lines x=a, x=b, y = Q, and a parabola with its axis parallel

to Y and passing through the three points on the curve 3/= (#) whose

abscissae are a, \ (a + b), b.

It should be observed that if (x) is any cubic polynomial then 0(4 ) (x) = 0,

and Simpson's Rule is exact. That is to say, given three points whose

abscissae are a, ^(a+ b), b, we can draw through them an infinity of curves

of the type y=a+ (3x+yx2+ 8x3
; and all such ci;rves give the same area. For

one curve 8= 0, and this curve is a parabola.

47. If (x) is a polynomial of the fifth degree, then

•l

Or) dx= J5 {50 (a) + 80 (h) + 50 (£)},

a and /3 being the roots of the equation x2 -x+^= 0. {Math. Trip. 1909.)

48. Apply Simpson's Rule to the calculation of ir from the formula
r i dx

j7r = I -
2

. [The result is '7833.... If we divide the integral into two,
J o

l +x"

from to | and ^ to 1, and apply Simpson's Rule to the two integrals

separately, we obtain -7853916.... The correct value is -7853981....]

49. Show that 8-9 <
f^(4:

+ x2)dx<9. {Math. Trip. 1903.)

50. Calculate the integrals

ifs' A'vcfer />"*><** fa™**
to two places of decimals. [In the last integral the subject of integration is

not defined when &'=0: but if we assign to it, when x= 0, the value 1, it

becomes continuous throughout the range of integration.]

20—2



CHAPTER VIII

THE CONVERGENCE OF INFINITE SERIES AND
INFINITE INTEGRALS

165. In Ch. IV we explained what was meant by saying

that an infinite series is convergent, divergent, or oscillatory, and

illustrated our definitions by a few simple examples, mainly

derived from the geometrical series

1 +x + w- + ...

and other series closely connected with it. In this chapter we
shall pursue the subject in a more systematic manner, and prove

a number of theorems which enable us to determine when the

simplest series which commonly occur in analysis are convergent.

We shall often use the notation

n
um + um+1 + ...+ un = X (v),

m
00

and write Xun , or simply 2t*„, for the infinite series w +Wi+«2 + *
o

166. Series of Positive Terms. The theory of the con-

vergence of series is comparatively simple when all the terms of

the series considered are positive f. We shall consider such series

* It is of course a matter of indifference whether we denote our series by

w
i + «2 + • • • (

as m Ch. IV) or by u + u
1 + ... (as here). Later in this chapter we

shall be concerned with series of the type a + a
1
x + a2 x

2 + ...: for these the latter

notation is clearly more convenient. We shall therefore adopt this as our standard

notation. But we shall not adhere to it systematically, and we shall suppose that «
x

is the first term whenever this course is more convenient. It is more convenient,

for example, when dealing with the series 1 + % + ^ + ... , to suppose that un =ljn
and that the series begins with w1( than to suppose that u„=l/(ra+l) and that the

series begins with u . This remark applies, e.g., to Ex. lxvii. 4.

t Here and in what follows ' positive ' is to be regarded as including zero.
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first, not only because they are the easiest to deal with, but also

because the discussion of the convergence of a series containing

negative or complex terms can often be made to depend upon
a similar discussion of a series of positive terms only.

When we are discussing the convergence or divergence of a

series we may disregard any finite number of terms. Thus, when
a series contains a finite number only of negative or complex terms,

we may omit them and apply the theorems which follow to the

remainder.

167 It will be well to recall the following fundamental

theorems established in § 77.

A. A series of positive terms must be convergent or diverge

to oo , and cannot oscillate.

B. The necessary and sufficient condition that %un should be

convergent is that there shoidd be a number K such that

k + u
x + ...+ u n < K

for all values of n.

C. The comparison theorem. If 2?/n is convergent, and

vn = Un for all values of n, then Xvn is convergent, and Svn ^ 2«M .

More generally, if vn ^Kun , where K is a constant, then %vn
is convergent and 2vn ^ K%un . And if Xu n is divergent, and

vn ^ Kun , then 2vn is divergent.*

Moreover, in inferring the convergence or divergence of %vn

by means of one of these tests, it is sufficient to know that the

test is satisfied for sufficiently large values of n, i.e. for all values

of n greater than a definite value n . But of course the con-

clusion that %vn^KXun does not necessarily hold in this case.

A particularly useful case of this theorem is

D. If ^un is convergent (divergent) and un/vn tends to a limit

other than zero as n -*- oo , then Xv„ is convergent (divergent).

168. First applications of these tests. The one important

fact which we know at present, as regards the convergence of any

* The last part of this theorem was not actually stated in § 77, but the reader

will have no difficulty in supplying the proof.
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special class of series, is that trn
is convergent if r < 1 and

divergent if rSL* It is therefore natural to try to apply

Theorem C, taking un = rn . We at once find

1. The series %vn is convergent if vn g Kr11

, where r < I, for all

sufficiently large values of n.

When K = 1, this condition may be written in the form vn
l!n ^ r,

Hence we obtain what is known as Cauchy's test for the con-

vergence of a series of positive terms ; viz.

2. The series Xvn is convergent if vn
Vn ^r, where r < 1, for

all sufficiently large values of n.

There is a corresponding test for divergence, viz.

2a. The series Xvn is divergent if vn
vn = 1 for an infinity of

values of n.

This hardly requires proof, for vn
1/n ^ 1 involves vn ^ 1. The

two theorems 2 and 2a are of very wide application, but for

some purposes it is more convenient to use a different test of

convergence, viz.

3. The series Xvn is convergent if vn+1fvn ^ r, where r < 1,/or

all sufficiently large values of n.

To prove this we observe that if vn+i/vn = r when n = n then

vn_, vn-2 vno r'
! «

and the result follows by comparison with the convergent series %rn .

This test is known as d'Alembert's test. We shall see later that

it is less general, theoretically, than Cauchy's, in that Cauchy's

test can be applied whenever d'Alembert's can, and sometimes

when the latter cannot. Moreover the test for divergence which

corresponds to d'Alembert's test for convergence is much less

general than the test given by Theorem 2a. It is true, as the

reader will easily prove for himself, that if vn+1/vn = r = 1 for all

values of n, or all sufficiently large values, then %vn is divergent.

But it is not true (see Ex. lxvii. 9) that this is so if only

vn+J/vn — r — 1 for an infinity q/ values of n, whereas in Theorem 2a

* We shall use r in this chapter to denote a number which is always positive

or zero.
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our test had only to be satisfied for such an infinity of values.

None the less d'Alembert's test is very useful in practice, because

when vn is a complicated function vn+Jvn is often much less

complicated and so easier to work with.

In the simplest cases which occur in analysis it often happens

that vn+1/vn or vn
Vn tends to a limit as n ->• oo .* When this limit

is less than 1, it is evident that the conditions of Theorems 2 or

3 above are satisfied. Thus

4. If v,i
ln or vn+]/yn tends to a limit less than unity as ?i->- oo

,

then the series 1vn is convergent.

It is almost obvious that if either function tend to a limit

greater than unity, then %vn is divergent. We leave the formal

proof of this as an exercise to the reader. But when vn
vn or

Vn+i/Vn tends to 1 these tests generally fail completely, and they

fail also when vn
1,n or vn+l/vn oscillates in such a way that, while

always less than 1, it assumes for an infinity of values of n values

approaching indefinitely near to 1. And the tests which involve

vn+1/vn fail even when that ratio oscillates so as to be sometimes

less than and sometimes greater than 1. When vn
Vn behaves in

this way Theorem 2a is sufficient to prove the divergence of the

series. But it is clear that there is a wide margin of cases in

which some more subtle tests will be needed.

Examples LXVII. 1. Apply Cauchy's and d'Alembert's tests (as

specialised in 4 above) to the series SjiV1
, where k is a positive rational

number.

[Here vn + 1
/

v

n= {('>i+ l)ln}
k
r-*-?', so that d'Alembert's test shows at once

that the series is convergent if r< 1 and divergent if /• > 1. The test fails if

r= 1 : but the series is then obviously divergent. Since limw1/re= l (Ex. xxvir.

11), Cauchy's test leads at once to the same conclusions.]

2. Consider the series 2(A7ik+Buk ~ 1 + ... +K)rn
. [We may supposed

positive. If the coefficient of rH is denoted by P(n), then P{n)jnk^-A and,

by D of § 167, the series behaves like 2?iV\]

3. Consider 2 ^L±^1±L^±A ,.» (J>0,a>0).
an 1 + fin

1 1 + ...+ k

[The series behaves like 2nJc- l rn. The case in which r=l, k<l requires

further consideration.]

* It will be proved in Ch. IX (Ex. lxxxvii. 36) that if vn+1 lvn -*-l then v^ln -* I.

That the converse is not true may be seen by supposing that vn=l when n is odd

and v,,-2 when ?i is even.
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4. We have seen (Ch. IV, Misc. Ex. 17) that the series

s
1

S I

w(»i+ l)' n{n + \)...(n+p)

are convergent. Show that Cauchy's and d'Alembert's tests both fail when

applied to them. [For lim unlln= lim (un + 1
\un) = 1.]

5. Show that the series 2?i -J>, where p is an integer not less than 2, is

convergent. [Since lim {n(n+l)...(n+p-l)}jnp=l, this follows from the

convergence of the series considered in Ex. 4. It has already been shown

in § 77, (7) that the series is divergent if p— 1, and it is obviously divergent if

6. Show that the series

An* + Bnk~ l + ... + K
an1 + fin

l
~ l + ... + <

is convergent if I > k+ 1 and divergent if l<k + 1.

7. If mn is a positive integer, and »nB+1>mn , then the series 2rm« is con-

vergent if r<l and divergent if r >1. For example the series l+r+?"4 +?'9 + ...

is convergent if r < 1 and divergent if ?-Sl.

8. Sum the series l + 2r+2>A+ ... to 24 places of decimals when r='l

and to 2 places when r= 4

9. [If »'="1, then the first 5 terms give the

sum 1-2002000020000002, and the error is

2r25+ 2r36 +mi <2r25+ 2?.36 + £r47 + ...= 2?-25/(l -

r

ll)<3/1025
.

If r='9, then the first 8 terms give the sum 5'458..., and the error is less

than 2r6i/(l -r«)< 003.]

9 If 0<a<6<l, then the series a+ b+ a2+ b2 -\-a3+ ... is convergent.

Show that Cauchy's test may be applied to this series, but that d'Alembert's

test fails. [For

% +ik=(W" +1-*». v2n + 2 lv2n + 1
= b («/&)>'

+ 2^0.]

10. The series 1+?-+^ +^ + ... and 1 + r+~
2
+ — + . . . are convergent

for all positive values of r.

11. If 2w„ is convergent then so are 2m„2 and 2w„/(l + un).

12. If 2w„2 is convergent then so is 2un jn. [For 2un/n^un
2+ (l/n2 ) and

2 (I/ft
2
) is convergent.]

13. Show that l+-
2 + p+...= - M +-

2
+ 1+

...J
and

1 1 1 11 1 _15 / 1 1
1 + 22

+
32
+ 52 + g2 + 72 + Q2 +" • • • — TR 1

1 + 02 + Q2 + " •



168-170] AND INFINITE INTEGRALS 313

[To prove the first result we note that

1+p + S+'«-(i+J) + (p+J)+».
, 11 i /, l l \-l+p + Bi+,« +p(l+p +p+ ...),

by Theorems (8) and (6) of § 77.]

14. Prove by a reductio ad absurdum that 2 (l/«) is divergent. [If the

series were convergent we should have, by the argument used in Ex. 13,

i+Hl+.«=a+i+*+.»)+*(i+i+i+-)»
or x + i + i+ ... = i + i+ i + ...

which is obviously absurd, since every term of the first series is less than the

corresponding term of the second.]

169. Before proceeding further in the investigation of tests

of convergence and divergence, Ave shall prove an important general

theorem concerning series of positive terms.

Dirichlet's Theorem.* The sum of a series of positive

terms is the same in whatever order the terms are taken.

This theorem asserts that if we have a convergent series of

positive terms, u + ux + u2 + . . . say, and form any other series

V + V1 + V, + .

.

.

out of the same terms, by taking them in any new order, then the

second series is convergent and has the same sum as the first.

Of course no terms must be omitted : every u must come some-

where among the v's, and vice versa.

The proof is extremely simple. Let s be the sum of the series

of its. Then the sum of any number of terms, selected from the

u's, is not greater than s. But every v is a u, and therefore the

sum of airy number of terms selected from the v's is not greater

than s. Hence Xvn is convergent, and its sum t is not greater

than s. But we can show in exactly the same way that sli.

Thus s = t.

170. Multiplication of Series of Positive Terms. An
immediate corollary from Dirichlet's Theorem is the following

theorem :ifu +u1 + u i + ...andv + v1 + v2 +... are two convergent

* This theorem seems to have first been stated explicitly by Dirichlet in 1837.

It was no doubt known to earlier writers, and in particular to Cauchy.
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series of positive terms, and s and t are their respective sums,

then the series

U V + («!«,, + MoWi) + (u2V + U1V1 + U Va)+ ...

is convergent and has the sum st.

Arrange all the possible products of pairs um vn in the form of

a doubly infinite array
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Examples LXVIII. 1 Verify that if r < 1 then

l + r2+ r+ ri+ r6+ r3+ ... = l+r + r3+r-+ r5 + ri + ... = l/(l-r).

2.* If either of the series n +Ux + ..., v + vi+... is divergent, then so is

the series «o i
'o + (

?'i l
'o+ "o vi) + (?i2vo + wi vi+Mo y2) + ---) except in the trivial

case in which every term of one series is zero.

3. If the series uQ + u
x
+ ..., v +»i+ ..., w$+Wx+.., converge to sums

r, s, t, then the series 2\k , where \k= ~2,um vnwp , the summation being extended

to all sets of values of m, n, p such that m+n+p=&
t

convei-ges to the

sum rst.

4. If 2«,t and 2v» converge to sums s and t, then the series 2%, where

wn= 2uiVm , the summation extending to all pairs I, m for which lm= n,

converges to the sum st.

171. Further tests for convergence and divergence.

The examples on pp. 311—313 suffice to show that there are

simple and interesting types of series of positive terms which

cannot be dealt with by the general tests of § 168. In fact, if

we consider the simplest type of series, in which un+1/un tends

to a limit as n -* oo , the tests q/§ 168 generally fail when this limit

is 1. Thus in Ex. lxvii. 5 these tests failed, and we had to fall

back upon a special device, which was in essence that of using

the series of Ex. lxvii. 4 as our comparison series, instead of

the geometric series.

The fact is that the geometric series, by comparison with which the tests

of § 168 were obtained, is not only convergent but very rapidly convergent,

far more rapidly than is necessary in order to ensure convergence. The tests

derived from comparison with it are therefore naturally very crude, and much
more delicate tests are often wanted.

We proved in Ex. xxvil. 7 that nft rn-»-0 as n-s-ao, provided r<\, what-

ever value k may have; and in Ex. lxvii. 1 we proved more than this,

viz. that the series 2nkrn is convergent. It follows that the sequence

r, r2,
7'3

, ..., r", ..., where r<l, diminishes more rapidly than the sequence

1-^2"*, 3 ~*,... •,»""*, .... This seems at first paradoxical if r is not much less

than unity, and k is large. Thus of the two sequences

2 4 8 .1 ] 1
3» 95 2T> ••• '

x
) 409(5' 53I441J •

whose general terms are (f)
n and w -12

, the second seems at first sight to

decrease far more rapidly. But this is far from being the case ; if only we

go far enough into the sequences we shall find the terms of the first sequence

very much the smaller. For example,

(2/3)
4= 16/81<l/5, (2/3)

12 <(l/5)3<(l/10) 2
, (2/3)

1000 <(l/10)166
,

while 1000- 12= 10"36;

* In Exs. 2

—

i the series considered are of course series of positive terms.
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so that the 1000th term of the first sequence is less than the 10130th part of

the corresponding term of the second sequence. Thus the series 2 (2/3)" is

far more rapidly convergent than the series 2?i~ 12
, and even this series is

very much more rapidly convergent than 2« -2.*

172. We shall proceed to establish two further tests for the

convergence or divergence of series of positive terms, Maclaurin's

(or Cauchy's) Integral Test and Cauchy's Condensation

Test, which, though very far from being completely general, are

sufficiently general for our needs in this chapter.

In applying either of these tests we make a further assumption

as to the nature of the function un , about which we have so far

assumed only that it is positive. We assume that un decreases

steadily with n: i.e. that un+1 g un for all values of n. or at any rate

all sufficiently large values.

This condition is satisfied in all the most important cases. From one

point of view it may be regarded as no restriction at all, so long as we are

dealing with series of positive terms : for in virtue of Dirichlet's theorem

above we may rearrange the terms without affecting the question of con-

vergence or divergence ; and there is nothing to prevent us rearranging the

terms in descending order of magnitude, and applying our tests to the series of

decreasing terms thus obtained.

But before we proceed to the statement of these two tests,

we shall state and prove a simple and important theorem, which

we shall call Abel's Theorem f. This is a one-sided theorem in

that it gives a sufficient test for divergence only and not for

convergence, but it is essentially of a more elementary character

than the two theorems mentioned above.

173. Abel's (or Pringsheim's) Theorem. If 2w„ is a convergent series of

positive and decreasing terms, then lim nnn= 0.

Suppose that nun does not tend to zero. Then it is possible to find a

positive number 8 such that nun ^.8 for an infinity of values of n. Let n
x
be

the first such value of n ; n2 the next such value of n which is more than

* Five terms suffice to give the sum of 2«-12 correctly to 7 places of decimals,

whereas some 10,000,000 are needed to give an equally good approximation to 2h~ 2
.

A large number of numerical results of this character will be found in Appendix III

(compiled by Mr J. Jackson) to the author's tract ' Orders of Infinity' (Cambridge

Math. Tracts, No. 12).

t This theorem was discovered by Abel but forgotten, and rediscovered by

Pringsheim.
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twice as large as «j ; ?? 3 the next such value of n which is more than twice

as large as n
2 ; and so on. Then we have a sequence of numbers nu n 2 , n3 , ...

such that n2 >2)i 1 ,
n3 >2?i2 , ... and so n 2

- ni >\n 2 , nz
- n

1
>^n3i ...

;

and also n^u^ g8, n2um riS, .... But, since un decreases as n increases,

we have

M +ul+ • • • + «n, - 1= 1h Un, ~ §,

«», + ... +«« 2 -l ^(?^2-«l)Wn
2
> i^2«n2 =iS,

«
)l2 + ... +«n3_i^(%-w2) w„3 >|»3 M„3

>^S,

and so on. Thus we can bracket the terms of the series 2 un so as to obtain

a new series whose terms are severally greater than those of the divergent

series

8+^8+^8 + ...;

and therefore 2un is divergent.

Examples LXIX. 1. Use Abel's theorem to show that 2 (1/n) and
2{l/(cm+ 6)} are divergent. [Here nuH -*-\ or nun^-l/a.]

2. Show that Abel's theorem is not true if we omit the condition that un
decreases as n increases. [The series

1 1111111 1
1 + 2^ + 32+4+ 52 + 62 + 72+82 + 9

+
iq2

+ "-'

in which v.,n= \\n or l/»2, according as n is or is not a perfect square, is

convergent, since it may be rearranged in the form1111111 / 1 1

22 + 32 + 52+^ + 72 +82 + Io,+-+(1 +4 + 9
+

'

and each of these series is convergent. But, since nuH=l whenever u is a

perfect square, it is clearly not true that nun -*-0.]

3. The converse of Abel's theorem is not true, i.e. it is not true that, if zin

decreases with 11 and lim nun= 0, then 1un is convergent.

[Take the series 2 (l/n) and multiply the first term by 1, the second by ^,

the next two by $, the next four by J, the next eight by £, and so on. On
grouping in brackets the terms of the new series thus formed we obtain

i+i-f+£(£+£)+£(£+*+*+£)+••;

and this series is divergent, since its terms are greater than those of

1 ±1 I4.1 ill 1 4.

which is divergent. But it is easy to see that the terms of the series

satisfy the condition that m<«-^0. In fact nun —\jv if 2" 2 <?t<2" \ and

v-z-oz as ?i-»-co.]
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174. Maclaurin's (or Cauchy's) Integral Test.* If wn

decreases steadily as n increases, we can write un = (f>
(n) and

suppose that
<f>

(n) is the value assumed, when x = n, by a con-

tinuous and steadily decreasing function $ (x) of the continuous

variable x. Then, if v is any positive integer, we have

<£0-l)^</><»^0)

when v — 1 ^ x £ v. Let

v„ =
(f>

(v - 1) - I c})(x)dx=l {</> (v - 1) - (/> 0)} dx,
J v—l J v-1

so that =S v v g $ (v - 1) - <£ (v).

Then 2v„ is a series of positive terms, and

vs + v3 + ... + vn sS <f>(l) - <£ (w) ^ <£ (1).

Hence 2i>„ is convergent, and so v2 + v3 + . . . + vn or

M-l r'*

2
(f>

(v) — </> (#) dx
i Ji

tends to a positive limit as 7i-*-<x>

.

Let us write <£ (£) = I $ (#) <&»,

so that 3? (f) is a continuous and steadily increasing function of £.

Then
Wj + u„ + . . . + «„_i - <£ O)

tends to a positive limit, not greater than <£ (1), as n -*- oo . Hence

2w„ is convergent or divergent according as <J> (n) tends to a limit

or to infinity as n-^oo , and therefore, since <E> (n) increases steadily,

according as <£> (£) tends to a limit or to infinity as £-»- oo . Hence

i/" (/> (a;) is a function of x which is positive and continuous for all

values of x greater than unity, and decreases steadily as x increases,

then the series

£(l) + 0(2) + ...

does or does not converge according as

<£(£)=[ <f>(x)dx

does or does not tend to a limit I as £-*-oo ; and, in the first case,

the sum of the series is not greater than
<fi (1) + 1.

* The test was discovered by Maclaurin and rediscovered by Cauchy, to whom
it is usually attributed.
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The sum must in fact be less than cp (l) + l. For it follows from (6) of

§ 160, and Ch. VII, Misc. Ex. 41, that v v <(f>(v-l)-<f>(v), unless
<f>

(x) = <j> (v)

throughout the interval (v - 1, v) ; and this cannot be true for all values of v.

Examples LXX. 1. Prove that

2. Prove that -i7r<2 -^—-^hn. (Math. Trip. 1909.)

3. Prove that if to > then

J_ _1 _1 TO + 1

TO 2 (to+ 1)
2 (to+ 2)

2
'"

TO

175. The series S« _s
. By far the most important applica-

tion of the Integral Test is to the series

1-8 + 2-* + 3-* + . . . + n-s + . . i;

where s is any rational number. We have seen already (§77 and

Exs. lxvii. 14, lxix. 1) that the series is divergent when s = 1.

If s ^ then it is obvious that the series is divergent. If

s > then un decreases as n increases, and we can apply the test.

Here
'idx f-s -l

*(*)=/'
l X

8 1-5 '

unless s=l. If 5 > 1 then £
1-s -^ as £-*- oo , and

say. And if 5 < 1 then £
1_s -»- oo as £ -^ x , and so <I> (£) -^ oc .

Thus the series %n~s is convergent if s>\, divergent if s ^ 1, and in

the first case its sum is less than s/(s — 1).

So far as divergence for s<l is concerned, this result might have

been derived at once from comparison with 2(l/«), which we already know
to be divergent.

It is however interesting to see how the Integral Test may be applied to

the series 2 (l/»), when the preceding analysis fails. In this case

' dx
•(0

and it is easy to see that <E> (£)-»- x> as £-*- o> . For if |>2" then

'°~"clv [*dx
.
[*dx

. .
[^ l

d_x

X*($)>/ — = — + —+...+
J i * 7 1

A" j 2 # y 2
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But by putting x= 2ru we obtain

f*+1 dx = f*du

J 2' X ~ J 1 U '

[ 2 du
and so <t> (£)>» I

—
5
which shows that *(£)-»- co as £ -*-oo

.

Examples LXXI. 1. Prove by an argument similar to that used above,

[idx
and without integration, that $ (£) = / -^-, where s< 1, tends to infinity with £.

2. The series 2w-2
, 2ft -3/2, 2?i _11/1° are convergent, and their sums are

not greater than 2, 3, 1-1 respectively. The series 2?i -1/2, 2n~w l
n are

divergent.

3. The series 2 na'/(«.'+ a), where a>0, is convergent or divergent accord-

ng as t>\+s or i < 1 +s. [Compare with 2 m.
8-

'.]

4. Discuss the convergence or divergence of the series

2 {axn*i + a2n
s2+ ,..+akn

Sk
)/(b

1
nt

^+ b2n
t2+ ...+bintl

)_

where all the letters denote positive numbers and the s's and fs are rational

and arranged in descending order of magnitude.

5. Prove that

^<
27l + 372 + 473 +

-<^ 7r + 1 )-

{Math. Trip. 1911.)

6. If cf> (n) -*-l>l then the series 2n ~ $ \
n
) is convergent. If (p (n) -»- 1< 1

then it is divergent.

176. Cauchy's Condensation Test. The second of the

two tests mentioned in §172 is as follows: ifun = <p(n) is a

decreasing function of n, then the series 20(«) is convergent or

divergent according as 22n
(2

n
) is convergent or divergent.

We can prove this by an argument which we have used

already (§ 77) in the special case of the series 2(l/n). In the

first place

0(3) + 0(4) =£20 (4),

0(5) + 0(6) +...+0(8)2; 40 (8),

(2
M + 1) + (2" + 2) + . . . + (2»+1 ) ^ 2n (2

n+1
).

If £2w0(2n) diverges then so do 22n+1
0(2n+1 ) and 2 2" (2

n+1
),

and then the inequalities just obtained show that 2<f)(n) diverges.
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On the other hand

0(2) + 0(3) ^20 (2), 0(4) + 0(5)+...+ 0(7) ^40 (4),

and so on. And from this set of inequalities it follows that

if 2 2n (2'
1

) converges then so does 2 (n). Thus the theorem is

established.

For our present purposes the field of application of this test is

practically the same as that of the Integral Test. It enables us

to discuss the series 2 n~s with equal ease. For 2 n~s will converge

or diverge according as 2 2" 2~ns converges or diverges, i.e. ac-

cording as s > 1 or s £ 1.

Examples LXXII. 1. Show that if a is any positive integer greater

than 1 then 2 0(?i) is convergent or divergent according as 2aw0(an) is

convergent or divergent. [Use the same arguments as above, taking groups

of a, a2
, a3

, ... terms.]

2. If 22 n
<p (2™) converges then it is obvious that lim 2"0 (2") = 0. Hence

deduce Abel's Theorem of § 173.

177. Infinite Integrals. The Integral Test of § 174 shows

that, if (x) is a positive and decreasing function of x, then the

series 2 (n) is convergent or divergent according as the integral

function <I> (#) does or does not tend to a limit as x -*- oo . Let

us suppose that it does tend to a limit, and that

lim [ <p(t)dt = l.

x-*-*> J 1

Then we shall say that the integral

(0 dt
/;

ts convergent, awe? has the value I; and we shall call the

integral an infinite integral.

So far we have supposed (t) positive and decreasing. But it

is natural to extend our definition to other cases. Nor is there

any special point in supposing the lower limit to be unity. We
are accordingly led to formulate the following definition

:

If<p (t) is a function oft continuous when t = a, and

lim I" <f>(t)dt =1,
x-^x> J a

n. 21
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then we shall say that the infinite integral

r ${t)dt a)
J a

is convergent and has the value I.

The ordinary integral between limits a and A, as denned in

Ch. VII, we shall sometimes call in contrast a finite integral.

On the other hand, when

\ cj>(t)dt
J a

•CO,

we shall say that the integral diverges to co , and we can give a

similar definition of divergence to — oo . Finally, when none of

these alternatives occur, we shall say that the integral oscillates,

finitely or infinitely, as x •* oo .

These definitions suggest the following remarks.

(i) If we write
j

4>{t)dt= $> (x),

J a

then the integral converges, diverges, or oscillates according as * (.r) tends to

a limit, tends to oo (or to - oo ), or oscillates, as #->- oo . If 4> (x) tends to a

limit, which we may denote by 3> (oo ), then the value of the integral is * (oo ).

More generally, if $ (x) is any integral function of
<f>

(x), then the value of the

integral is 4> (oo )
— $ (a).

(ii) In the special case in which <j> (t) is always positive it is clear

that *(#) is an increasing function of x. Hence the only alternatives are

convergence and divergence to oo

.

(hi) The integral (1) of course depends on a, but is quite independent of t,

and is in no way altered by the substitution of any other letter for t (cf.

§ 157).

(iv) Of course the reader will not be puzzled by the use of the term

infinite integral to denote something which has a definite value such as

2 or \ir. The distinction between an infinite integral and a finite integral

is similar to that between an infinite series and a finite series : no one supposes

that an infinite series is necessarily divergent.

(v) The integral I $ (t) dt was defined in §§ 156 and 157 as a simple
J a

limit, i.e. the limit of a certain finite sum. The infinite integral is therefore

the limit of a limit, or what is known as a repeated limit. The notion of the

infinite integral is in fact essentially more complex than that of the finite

integral, of which it is a development.
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(vi) The Integral Test of § 174 may now be stated in the form : if <fi
(x) is

positive and steadily decreases as x increases, then the infinite series 2$ (n) and the

infinite integral I <£ (x) dx converge or diverge together.

(vii) The reader will find no difficulty in formulating and proving theorems

for infinite integrals analogous to those stated in (1)—(6) of § 77. Thus the

result analogous to (2) is that if j cf> (x) dx is convergent, and b>a, then
J a

J (f>
(x) dx is convergent and

b
I <f>(x)dx= 4>(.v)dx+ cf)(x)dx.
J a J a J b

178. The case in which <£ (V) is positive. It is natural

to consider what are the general theorems, concerning the con-

vergence or divergence of the infinite integral (1) of § 177,

analogous to theorems A—D of § 167. That A is true of integrals

as well as of series we have already seen in § 177, (ii). Corre-

sponding to B we have the theorem that the necessary and sufficient

condition for the convergence of the integral (1) is that it should be

possible to find a constant K such that

t'

%

(f>(t)dt<K
J a

for all values of x greater than a.

Similarly, corresponding to C, we have the theorem : if

<f)
(x) dx is convergent, and y{r (x) g Kcf> (x) for all values of x

greater than a, then I y}r (x) dx is convergent and

yjr (x) dx ^ K
(f)

(x) dx.
J a

We leave it to the reader to formulate the corresponding test for

divergence.

We may observe that D'Alembert's test (§ 168), depending

as it does on the notion of successive terms, has no analogue for

integrals ; and that the analogue of Cauchy's test is not of much
importance, and in any case could only be formulated when we

have investigated in greater detail the theory of the function

21—2
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(f)
(#) = rx, as we shall do in Ch. IX. The most important special

tests are obtained by comparison with the integral

f'dx . AN

L * (a>0)-

whose convergence or divergence we have investigated in § 175,

and are as follows : if </> (x) < Kx~s
, where s >1, when x = a, then

I
(f)

(x) dx is convergent ; and if </> (x) > Kx~s
, where s ^1, when

• a

x = a, then the integral is divergent ; and in particular, if

lim Xs

(f>
(x) = I, where I > 0, then the integral is convergent or

divergent according as s > 1 or s g 1.

There is one fundamental property of a convergent infinite series in

regard to which the analogy between infinite series and infinite integrals

breaks down. If 2<p(n) is convergent then $(?i)->-0; but it is not always

true, even when <£ (x) is always positive, that if I
(f>

(x) dx is convergent

then 4>(x)-*-0.

Consider for example the function $ (x) whose graph is indicated by the

thick line in the figure. Here the height of the peaks corresponding to the

points x=l, 2, 3, ... is in each case unity, and the breadth of the peak corre-

Fig. 50.

sponding to x=n is 2/(?i + l)2. The area of the peak is l/(n+l)2
, and it is

evident that, for any value of £,

/;
cj>(x)dx<2

o(« + l) 2
'

so that / <[> (x) dx is convergent ; but it is not true that <£ (x) -=-0

J o

Examples LXXIII. 1. The integral

r axr+pxr - 1 + ...+\

J a Ax*+Bx*-i + ... + L
clV

>

where a and A are positive and a is greater than the greatest root of the
denominator, is convergent if s>r+ l and otherwise divergent.
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2. Which of the integrals

f

x dx I'

00 dx f
x dx_ f" xdx C

x
x2dx

f"
x2dx

J a «/•' J a X**' la C2 + X2 '

J a C^ + X2 ' ) a C2+X*' J a a +2^2+y^
are convergent ? In the first two integrals it is supposed that a > 0, and
in the last that a is greater than the greatest root (if any) of the de-

nominator.

3. The integrals

I cos xdx, / am xdx, I cos(ax+ (3)dx
J a J a J a

oscillate finitely as £-»- oo

.

4. The integrals

I A'cos^efo, I x2 sin xdx, I xn cos (ax+ ft) dx,
J a J a J a

where n is any positive integer, oscillate infinitely as £^-qo .

ra
5. Integrals to - co . If I $ (#) efo tends to a limits as £-*-- co , then we

say that I <£ (.r) cfe- is convergent and equal to I. Such integrals possess

properties in every respect analogous to those of the integrals discussed in the

preceding sections : the reader will find no difficulty in formulating them.

<5. Integrals from - co to + co . If the integrals

ra r<*

I <j> (x) dx, I (x) dx

are both convergent, and have the values k, I respectively, then we say that

f
°°

I
<f>

(x) dx

is convergent and has the value k+ 1.

7. Prove that

f ° dx _ [
°" dx _ 1

f °* dx

8. Prove generally that

t (f>(x*)dx=2 ( (j>(x2)dx,

provided that the integral I
<f>
(x2) dx is convergent.

9. Prove that if / xcf) (x2) dx is convergent then J xcf)(x2)dx= 0.

Jo ./-<*>
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10. Analogue of Abel's Theorem of § 173. If ${x) is positive and

steadily decreases, and I cp(x)dx is convergent, then x<j>(x)-a-0. Prove this

J a

(a) by means of Abel's Theorem and the Integral Test and (6) directly, by

arguments analogous to those of § 1 73.

11. If a= x <Xi<x^< ... and ,rn -9-ao, and un= I
<f>

(x) dx, then the

n

convergence of I $ (x) dx involves that of 2 un . If cf> (x) is always positive

J a

the converse statement is also true. [That the converse is not true in

general is shown by the example in which <f>(x) = coax, xn =mr.~\

179. Application to infinite integrals of the rules for

substitution and integration by parts. The rules for the

transformation of a definite integral which were discussed in

| 161 may be extended so as to apply to infinite integrals.

(1) Transformation by substitution. Suppose that

I™ 4>{x)dx (1)
J a

is convergent. Further suppose that, for any value of £ greater

than a, we have, as in § 161,

\* 4>(x)dx=\
T

4>{f(t))f{t)dt (2),
J a J b

where a=f(b), £=/(t). Finally suppose that the functional

relation x=f{t) is such that x^cc ast-^oo. Then, making t

and so £ tend to go in (2), we see that the integral

r4>{f(t))f(t)dt (3)
J b

is convergent and equal to the integral (1).

On the other hand it may happen that £-* go as t --*— oo

or as t-*- c. In the first case we obtain

l

X

(f>(x)dx= lim
\

T

^{f{t)}f'{t)dt
J a t-*--xJ b

= ~ lim
f

b

^{f(t)}f(t)dt = -f
b

${f{t)}f(t)dl
T-» —00 J T J —CD

In the second case we obtain

/
<f>(x)dx = \im W{fit)}f'(t)dt (4X

We shall return to this equation in § 181.
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There are of course corresponding results for the integrals

fa r<*>

J <f>
(x) dx, I

<fi
(x) dx,

J — CO J —00

which it is not worth while to set out in detail : the reader will

be able to formulate them for himself.

Examples LXXIV. 1. Show, by means of the substitution x=ta
,

that if s > 1 and a > then

f x~»dx=a
f

t
a(1 ~ $) - 1

dt;

and verify the result by calculating the value of each integral directly.

f°
2. If / (x) dx is convergent then it is equal to one or other of

J a

a 4>(at + P)dt, -a \ 4>(at+ p)dt,
J (a-j8)/a J -«

according as a is positive or negative.

3. If
(f>

(x) is a positive and steadily decreasing function of x, and a and

/3 are any positive numbers, then the convergence of the series 2 (n) implies

and is implied by that of the series 2$(an+ /3).

[It follows at once, on making . the substitution x=at-\-(3, that the

integrals

I d>(x)dx, I (f>(at+ @)dt
J a J («-0)/a

converge or diverge together. Now use the Integral Test.]

f °° rfr
4. Show that .- . , =U. [Put*=*2

.]

5. Show that | tt——r» dx = \ir.

Jo (>+%)

[Put x= t
2 aud integrate by parts.]

6. If <£ (x)->~k as .r-s-oo , and cf> (x)-*-fr as x^- - oo
, then

[ {0 (x - a) - (x - b)} dx= -(a-b) (h - h).

[For
I

* {<f>(x-a)-c}>(x-b)}dx= \
<$>{x-a)dx-

\
<f>(x-b)dx

J -i> J -t J -r

= 1

*~ a
<}>(t)dt-f

'

~ b

<t>(t)dt= f~
i
~ b

<i>(t)dt- y
r

'4>{t)dt.
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The first of these two integrals may be expressed in the form

r-t'-b
(a-b)k+ I pdt,

J -f'-a

where p->-0 as |'-^oo, and the modulus of the last integral is less than or

equal to
|
a - b

\
k, where k is the greatest value of p throughout the interval

(-tj'-a, -£'-&). Hence

<p{t)dt+(a-b)Jc.

•e-a

The second integral may be discussed similarly.]

(2) Integration by parts. The formula for integration by

parts (§ 161) is

*/(«) </>' (as) dx =/(£) (f) -/(a) tf>
(a) -

f
*/'

(*) * (•) dx -

z •> a

Suppose now that f-^-oo . Then if any two of the three terms

in the above equation which involve £ tend to limits, so does the

third, and we obtain the result

f "/(«) f («) cfe = Km /(f) £ (j) -/(a) <£ (a) - f
°°/

(«) </> (*) dx.

There are of course similar results for integrals to — oo , or from

— oo to oo .

Examples LXXV. 1. Show that
(1+0!}

dx=\
dx

{\+x)

—r.dx- ,dx= l.

'o (1+^) 4
'

3
Jo (l+#)3

3. If m and n are positive integers, and Im , n— j n , \m + w > then

Im,n— {mftm+n — l)}/m _ 1-n . Hence prove that Jm, n=m ! (»-2)!/(ra-Hi — 1)!.

4. Show similarly that if /m, B= I n+a^m'+n tnen

4i,n=W(TO+ 'l
- 1 )} /m -i,n, 2/m,n=»i!(»-2) !/(m + »-l)!.

Verify the result by applying the substitution x= t
2 to the result of Ex. 3.

180. Other types of infinite integrals. It was assumed,

in the definition of the ordinary or finite integral given in

Ch. VII, that (1) the range of integration is finite and (2) the

subject of integration is continuous.

It is possible, however, to extend the notion of the 'definite

integral ' so as to apply to many cases in which these conditions
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are not satisfied. The 'infinite' integrals which we have discussed

in the preceding sections, for example, differ from those of Ch. VII

in that the range of integration is infinite. We shall now suppose

that it is the second of the conditions (1), (2) that is not satisfied.

It is natural to try to frame definitions applicable to some such

cases at any rate. There is only one such case which we shall

consider here. We shall suppose that cj)(x) is continuous throughout

the range of integration (a, A) except for a finite number of values

of x, say a; = £1} f2 , ...,and that <f>(x) -^cc or <£ (a?)-*-— oo as x tends

to any of these exceptional values from either side.

It is evident that we need only consider the case in which

(a, A) contains one such point £. When there is more than one such

point we can divide up {a, A) into a finite number of sub-intervals

each of which contains only one ; and, if the value of the integral

over each of these sub-intervals has been defined, we can then

define the integral over the whole interval as being the sum of

the integrals over each sub-interval. Further, we can suppose

that the one point f in {a, A) comes at one or other of the

limits a, A. For, if it comes between a and A, we can then
[A

define I </> (x) dx as
J a

I (/> (x) dx + I cf> (x) dx,
J a J £

assuming each of these integrals to have been satisfactorily de-

fined. We shall suppose, then, that £ = a ; it is evident that the

definitions to which we are led will apply, with trifling changes, to

the case in which £= A.

Let us then suppose </> (x) to be continuous throughout (a, A)
except for x = a, while <f)(x)-*~oc as x^-a through values greater

than a. A typical example of such a function is given by

<f>
(x) = (x — a)~s

,

where s > ; or, in particular, if a = 0, by <£ (x) = x~s
. Let us

therefore consider how we can define

f

Ad4 ax
Jo &"

when s > 0.
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The integral
|

y*~- dy is convergent if s < 1 (§ 175) and means
J i/A

I'V

lim I y
s~ 2 dy. But if we make the substitution y = 1/x, we

obtain
rr, fA

r y
s~'~ dy = I x s dx.

Thus lim / x~s dx, or, what is the same thing,
«-»» J lln

lim I x s dx,

exists provided that s < 1 ; and it is natural to define the value of

the integral (1) as being equal to this limit. Similar considerations

f
A

lead us to define I (x — a)~s dx by the equation

\ (x — a )~s dx = lim I (x — a)~s dx.
Ja e-»»+oia+e

We are thus led to the following general definition : if the integral

e'A

I
<f>

(x) dx
J a+e

tends to a limit I as e^+ 0, we shall say that the integral

ca
I

(f>
(x) dx

• a

is convergent and has the value I.

Similarly, when <f>(x)^oc as x tends to the upper limit A, we
[
A

define <j>(x)dx as being

rA-e
lim /

<f)
(x) dx

:

(-*- + oJ a

and then, as we explained above, we can extend our definitions to

cover the case in which the interval (a, A) contains any finite

number of infinities of </> (x).

An integral in which the subject of integration tends to oo

or to — oo as x tends to some value or values included in the range

of integration will be called an infinite integral of the second kind :

the first kind of infinite integrals being the class discussed in

§§ 177 et seq. Nearly all the remarks (i)—(vii) made at the end of

§ 177 apply to infinite integrals of the second kind as well as to

those of the first.
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181. We may now write the equation (4) of § 179 in the form

r<t>{X)dx=\
c

<t>{f(t)}f(t)dt (i).

J a J b

The integral on the right-hand side is denned as the limit, as t-»-c, of the

corresponding integral over the range (6, r), i.e. as an infinite integral of the

second kind. And when $ {/(*)} /' (0 has an infinity at t= c the integral is

essentially an infinite integral. Suppose for example, that (x) = (l+x)~m
,

where Km<2, and a= 0, and that/(0 = */(l -*)• Then 6= 0, c=l, and (1)

becomes

("/i—^= (\l-()m - 2 dt (2);
Jo (l+ *')m V

and the integral on the right-hand side is an infinite integral of the second

kind.

On the other hand it may happen that </> {f(t)}f (t) is continuous for t=c.

In this case

j

C

b
<p{f(t)}f'(t)dt

is a finite integral, and

lim f
T

<f>{f(t)}f'(t)dt=[
C

<p{/(t)}f'(t)dt,
t-*-c J b J b

in virtue of the corollary to Theorem (10) of § 160. In this case the

substitution x=f{t) transforms an infinite into a finite integral. This case

arises if m 2. 2 in the example considered a moment ago.

Examples LXXVI. 1. If <j>(x) is continuous except for x=a, while

f
A

<j>(x)-*-cc &sx-*-a, then the necessary and sufficient condition that I (%) dx

should be convergent is that we can find a constant K such that

I
(f>

(x) dx < K
J a+c

for all values of e, however small (cf. § 178).

It is clear that we can choose a number A' between a and A, such that

<f>{x) is positive throughout (a, A'). If cf>(x) is positive throughout the

whole interval (a, A) then we can of course identify A' and A. Now

fA fA' fA
I <j> (x) dx = I

<f>
(x) dx + I cf) (x) dx.

J a-e J a-*e J A'

The first integral on the right-hand side of the above equation increases

as e decreases, and therefore tends to a limit or to oo ; and the truth of the

result stated becomes evident.

If the condition is not satisfied then I (jj(x)dx-*-cc . We shall then say
J a—e

that the integral I (x) dx diverges to oo . It is clear that, if (x) -*- x
J a

as x-*-a+0, then convergence and divergence to oo are the only alternatives

for the integral. We may discuss similarly the case in which (x) -*-- oo

.



332 THE CONVERGENCE OF INFINITE SERIES [VIII

2. Prove that

f
A

, s 7 U-a) 1 -*

Jj.v-a)sdx= K

l _
1

s

if 5 < 1, while the integral is divergent if s S 1.

3. If <f>(x)-»-ao as x->-a + Q and rp (x) < K (x— a)
~ s

, where s<l, then
A
cji(x)dx is convergent; and if cp(x)> K(x — a)~*, where s >l, then the

/.

integral is divergent. [This is merely a particular case of a general com-

parison theorem analogous to that stated in § 178.]

4. Are the integrals

l'
A dx f A dx

f
A dx

j a J{(x-a)(A-x)} '

J a (A-x)*/(x-a) '

J a (4-tf)^(4 -J?)

'

f A dx f A dx f A dx f A dx

jasj^-a'y JaV(A3-a?y Ja&^d* J a A*^
convergent or divergent ?

f
l dx f a+1 dr

5. The integrals / r>~ > J ajr~~~\ are convergent, and the value of
J -i \fx J a -iv (•*•'-«)

each is zero.

C IT ($£
6. The integral / —— - is convergent. [The subject of integration

J o v(sm x)

tends to qo as x tends to either limit.]

7. The integral / —. r- is convergent if and only if s< 1.

,—

—

r, dx is convergent if t < s + 1.

o (sin*)'

/ SI 11 1*

9. Show that I —ir^x, where h >0, is convergent ifp< 2. Show also

that, if <p < 2, the integrals

f*smx . f^"s\nx , f^sinx 7

I —r dx, I
- dx, I

—-— dx, ...

JO #P J* X" ' Jsrr -Vp

alternate in sign and steadily decrease in absolute value. [Transform the

integral whose limits are kn and (k+ \)w by the substitution x = kir+y.~\

——dx, where 0</?<2, attains its greatest value
o xV

when h=ir. (Math. Trip. 1911.)

11. The integral I (cos x) 1 (sin x)mdx is convergent if and only if l> - 1,

Jo
m> - 1.

f
°° x8~*dv

12. Such an integral as /
—:

, where s<l, does not fall directly

under any of our previous definitions. For the range of integration is infinite
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and the subject of integration tends to oo &sx^>-+ 0. It is natural to

define this integral as being equal to the sum

P xs ~ 1 dx f
x xs

~ 1 dx

Jo"l"+^T
+
J 1 1+x '

provided that these two integrals are both convergent.

The first integral is a convergent infinite integral of the second kind

if 0<s<l. The second is a convergent infinite integral of the first kind if

s <1. It should be noted that when s > 1 the first integral is an ordinary

finite integral ; but then the second is divergent. Thus the integral from to

oo is convergent if and only if < s < 1.

f
* Xs ' 1

13. Prove that I dx is convergent if and only if < 5 < t.

Jo l+x

/'
X£8 — l _ yA — 1

-—-— dx is convergent if and only if < s< 1,

0<t<\. [It should be noticed that the subject of integration is undefined

when x=\ ; but (xs~ 1 -xt ~ 1 )/(l -a?)-*- 1— s as x-^-l from either side; so that

the subject of integration becomes a continuous function of x if we assign to it

the value t — s when x— 1.

It often happens that the subject of integration has a discontinuity which

is due simply to a failure in its definition at a particular point in the range

of integration, and can be removed by attaching a particular value to it at

that point. In this case it is usual to suppose the definition of the subject

of integration completed in this way. Thus the integrals

f \* sin mx
7 f i* sin mx ,

I ax, I —. dx
Jo no Jo sin x

are ordinary finite integrals, if the subjects of integration are regarded as

having the value m when x=0.]

15. Substitution and integration by parts. The formulae for trans-

formation by substitution and integration by parts may of course be extended

to infinite integrals of the second as well as of the first kind. The reader

should formulate the general theorems for himself, on the lines of § 179.

16. Prove by integration by parts that if s > 0, t > 1, then

[
1

z»- 1 Q.-xjt- 1da;=— /"\b«(1 -*)*-»<**

/i rs-i,7 r r °° f-srff±_^: = »«
[Put*=l/<.]1+X Ji l+t ' J

18. IfO<s<lthen ^-—^—dx^i -1—^= f!

Jo 1+J? jo l + « Jo J

dt

l + t

19. Ifa+ 6>0then

, ,

'V
u j* - „ "",

, -,

.

(Math. Trip. 1909.)
6 (x+a)J(x-b) >J{a + b) r '

/;
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20. Show, by means of the substitution x=t/(l - t), that if I and m are

both positive then
x

doe= t
l-^{\-t)m - l dt.

Jo (l +^ + m jo
V

21. Show, by means of the substitution x=pt/(p+ \ -t), that if I, m, and

p are all positive then

dr IP— = j fl-i (l - i)™- 1 dt
ClJ-p)lprn

J Q

l
\
l l ' al -

xdx
^a){b-x)\

(i) by means of the substitution x= a+ (b — a) t
2
,
(ii) by means of the substitu-

tion {b—x)j{x— a)=t, and (iii) by means of the substitution x=a cos2
t+ b sin 2

1.

xl
~ x (\-x)m - 1

,

_ ,, ,
f b dx , f

b xdx . . .
x

22. Prove that I -/77 ryr r-, = *" ancl
I 7 u \7I vi

= t* \
a + b )->

J aSJ{{x-a){b-x)) J as/{(x-a)(b-x)}

23. If s>-l then

Jo JoV(l -a") Jo V(I-a-) Jo >/a?

24. Establish the formulae

P f(x)dx P"' ,, AS ,A

/^ra^)r 2
/.

i '

y(

;

cos2 " +65i"!S)^

/:/{\As?f>}
rf'l

'=4a /."/fton *> cos
* 8i"

*
*

25. Pi-ovq that

P dx /l j_\
Mi+*)(2+*M*(i -•*)}"* w» s'6/

[Put .?;=sin2
<9 and use Ex. lxiii. 8.J (vJ/a*/i TWp. 1912.)

182. Some care has occasionally to be exercised in applying the rule

for transformation by substitution. The following example affords a good

illustration of this.

Let J= /
' (a?-Gx+lS)dx.

We find by direct integration that J= 48. Now let us apply the substitution

?/= .r
2 -6.r+13,

which gives x=Z±.-J(y — £). Since y= 8 when x=l and #= 20 when x= 7, we
appear to be led to the result

The indefinite integral is

l(
y _ 4)3/2+4 (y- 4)1/2,

arid so we obtain the value ± i
%

1
, which is certainly wrong whichever sign we

choose.
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The explanation is to be found in a closer consideration of the relation

between x and y. The function #2 -6a'+13 has a minimum for .-£=3, when

y= ±. As x increases from 1 to 3, y decreases from 8 to 4, and dxjdy is

negative, so that

dx_ 1

dy~ 2 v/(y-4)-

As x increases from 3 to 7, y increases from 4 to 20, and the other sign must

be chosen. Thus

a formula which will be found to lead to the correct result.

Similarly, if we transform the integral I dx= n by the substitution

#= arc sin y, we must observe that dxjdy= \jj{\ — y
2
) or dxjdy= — 1/^(1 —y

2
)

according as ^ x < \n or in- < x g. w.

Example. Verify the results of transforming the integrals

/(ix2 — x+ t^ ) dx, I cos2 xdx
o Jo

by the substitutions 4x2 -x +^s =y, .r=arc sin y respectively.

183. Series of positive and negative terms. Our defini-

tions of the sum of an infinite series, and the value of an infinite

integral, whether of the first or the second kind, apply to series

of terms or integrals of functions whose values may be either

positive or negative. But the special tests for convergence or

divergence which we have established in this chapter, and the

examples by which we have illustrated them, have had reference

almost entirely to the case in which all these values are positive.

Of course the case in which they are all negative is not essentially

different, as it can be reduced to the former by changing un into

— un or
(f>

(x) into —
<f>

(x).

In the case of a series it has always been explicitly or tacitly

assumed that any conditions imposed upon un may be violated for

a finite number of terms : all that is necessary is that such a

condition {e.g. that all the terms are positive) should be satisfied

from some definite term onwards. Similarly in the case of an

infinite integral the conditions have been supposed to be satisfied

for all values of x greater than some definite value, or for all values

of x within some definite interval (a, a + 5) which includes the
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value a near which the subject of integration tends to infinity.

Thus our tests apply to such a series as

v n2 - 10

since rc
2 — 10 > when n = 4, and to such integrals as

r Sx-7 , rn-zx ,

since 3a; — 7 > when a; > §, and 1 — 2x > when < x < \.

But when the changes of sign of un persist throughout the series,

i.e. when the number of both positive and negative terms is in-

finite, as in the series 1— \ + % — £+...; or when </> (x) continually

changes sign as x -*- oo , as in the integral

f
°° sin x

i x"
dx,

or as x-*-a, where a is a point of discontinuity of <£ (x), as in

the integral

[
A

. f 1 \ dx
sin

;

J a \x — a/ x — a

then the problem of discussing convergence or divergence becomes

more difficult. For now we have to consider the possibility of

oscillation as well as of convergence or divergence.

We shall not, in this volume, have to consider the more

general problem for integrals. But we shall, in the ensuing

chapters, have to consider certain simple examples of series con-

taining an infinite number of both positive and negative terms.

184. Absolutely Convergent Series. Let us then consider

a series %un in which any term may be either positive or

negative. Let

|«n|=«n,

so that an = un if u n is positive and ctn = - un if un is negative.

Further, let vn = v n or vn = 0, according as un is positive or negative,

and wn = — vn or wn = 0, according as un is negative or positive

;

or, what is the same thing, let vn or wn be equal to an according

as u n is positive or negative, the other being in either case equal

to zero. Then it is evident that vn and wn are always positive, and
that

un = vn — wn) an = vn + wn .
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If, for example, our series is 1 -(l,'2) 2+ (l/3) 2 - ..., then «„ = (
- l)"" 1

/**
2

and a,t= l//i2, while vn= ljn2 or vn=0 according as n is odd or even and
wn= \jrfi or u',

h
= according as n is even or odd.

We can now distinguish two cases.

A. Suppose that the series 1an is convergent. This is the

case, for instance, in the example above, where 2an is

1 +(1/2)*+ (1/3)*+ ....

Then both %vn and %wn are convergent : for (Ex. xxx. 18) any

series selected from the terms of a convergent series of positive

terms is convergent. And hence, by theorem (6) of § 77, £wn or

% (vn — wn) is convergent and equal to £vn _ Sw».

We are thus led to formulate the following definition.

Definition. When San or S u n j
is convergent, the series Xu n

is said to be absolutely convergent.

And what we have proved above amounts to this : if "Eun is

absolutely convergent then it is convergent; so are the series formed

by its positive and negative terms taken separately ; and the sum of

the series is equal to the sum of the positive terms plus the sum

of the negative terms.

The reader should carefully guard himself against supposing that the

statement ' an absolutely convergent series is convergent ;

is a mere tautology.

When we say that 2 un is ' absolutely convergent ' we do not assert directly

that 2«„ is convergent: we assert the convergence of another series 2|zf„|,

and it is by no means evident a priori that this precludes oscillation on

the part of 2?< /( .

Examples LXXVII. 1. Employ the 'general principle of convergence'

(§ 84) to prove the theorem that an absolutely convergent series is con-

vergent. [Since 2
|
un |

is convergent, we can, when any positive number b is

assigned, choose n so that

K»1+ i|+K>i+2[ + ---+ l"»J<8

when n2 > «i = «o- -^ fortiori

| «», +1 +'«»i +2+".+Uni \<8,

and therefore 2?<n is convergent.]

2. If 2o,t is a convergent series of positive terms, and
|
bn |

g. Kan , then

2o„ is absolutely convergent.

3. If 2an is a convergent series of positive terms, then the series "2a n xn is

absolutely convergent when — 1<#<1.

h. 22
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4. If 2 a„ is a convergent series of positive terms, then the series 2 a,, cos n 0,

2"„sinH0 are absolutely convergent for all values of 6. [Examples are

afforded by the series 2r"cos«0, 2?"' sin n6 of § 88.]

5. Anv series selected from the terms of an absolutely convergent series

is absolutely convergent. [For the series of the moduli of its terms is a

selection from the series of the moduli of the terms of the original series.]

6. Prove that if 2
|
un |

is convergent then

|2u*| g2|w»|,

and that the only case to which the sign of equality can apply is that in

which every term has the same sign.

185. Extension of Dirichlet's Theorem to absolutely-

convergent series. Dirichlet's Theorem (§ 169) shows that the

terms of a series of positive terms may be rearranged in any way

without affecting its sum. It is now easy to see that any abso-

lutely convergent series has the same property. For let %un be

so rearranged as to become 2t<n', and let an', vn', wn
' be formed

from un' as an , vn , wn were formed from un . Then 2a,/ is con-

vergent, as it is a rearrangement of 2a», and so are 2vn', %wn',

which are rearrangements of 2vm , 2«>n . Also, by Dirichlet's

Theorem, %vn' = 2vn and %wn
' = 2wn , and so

186. Conditionally convergent series. B. We have

now to consider the second case indicated above, viz. that in

which the series of moduli 2a» diverges to oo

.

Definition. If %un is convergent, but 2 |
un \

divergent, the

original series is said to be conditionally convergent.

In the first place we note that, if %un is conditionally con-

vergent, then the series %vn , Xwn of § 184 must both diverge to oc .

For they obviously cannot both converge, as this would involve

the convergence of %(vn + wn) or 2an . And if one of them, say

%wn , is convergent, and 2vn divergent, then

N N N
Xu n = 2v„-2w„ (1),

and therefore tends to cc with N, which is contrary to the

hypothesis that tun is convergent.

Hence 2vn , 2wn are both divergent. It is clear from equa-

tion (1) above that the sum of a conditionally convergent series
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is the limit of the difference of two functions each of which tends

to co with n. It is obvious too that Xun no longer possesses the

property of convergent series of positive terms (Ex. xxx. 18), and

all absolutely convergent series (Ex. lxxvii. 5), that any selection

from the terms itself forms a convergent series. And it seems more

than likely that the property prescribed by Dirichlet's Theorem

will not be possessed by conditionally convergent series ; at any

rate the proof of § 185 fails completely, as it depended essentially

on the convergence of Xvn and %wn separately. We shall see in a

moment that this conjecture is well founded, and that the theorem

is not true for series such as we are now considering.

187. Tests of convergence for conditionally convergent

series. It is not to be expected that we should be able to find

tests for conditional convergence as simple and general as those

of §§ 167 et seq. It is naturally a much more difficult matter to

formulate tests of convergence for series whose convergence, as is

shown by equation (1) above, depends essentially on the cancelling

of the positive by the negative terms. In the first instance there

are no comparison tests for convergence of conditionally convergent

series.

For suppose we wish to infer the convergence of %vn from

that of Xun We have to compare

v +v
x + ... + vn , 110 + 1^ + ... + u n .

If every u and every v were positive, and every v less than the

corresponding u, we could at once infer that

v + vx + ... +vn < v + ...+ un ,

and so that 2,vn is convergent. If the us only were positive and

every v numerically less than the corresponding u, we could infer

that

\v
\ + \v

l \

+ ... + \vn \<u + ...+ un ,

and so that Svn is absolutely convergent. But in the general case,

when the u's and vs are both unrestricted as to sign, all that we

can infer is that

|
l'o| +\Vi

|
+ ... + \vn

\

<|« |+ ... +! Un \.

This would enable us to infer the absolute convergence of 2vn
from the absolute convergence of Xun ; but if Xun is only con-

ditionally convergent we can draw no inference at all.
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Example. We shall see shortly that the series 1 —\+\-\+ ... is con-

vergent. But the series £+£+£+£+... is divergent, although each of its

terms is numerically less than the corresponding term of the former series.

It is therefore only natural that such tests as we can obtain

should be of a much more special character than those given in

the early part of this chapter.

188. Alternating Series. The simplest and most common

conditionally convergent series are what is known as alternating

series, series whose terms are alternately positive and negative.

The convergence of the most important series of this type is

established by the following theorem.

If (f>
(n) is a positive function of n which tends steadily to

zero as n-^oo , then the series

*(0)-$(l)+*(2)-

is convergent, and its sum lies hetween
<f> (0) and <£ (0) — (f> (1).

Let us write fa, <£j, ... for (f)(0), <f) (1), ... ; and let

sn = fa-fa + fa- ••• +(- 1)
H

fai-

Then

S«n+i — S2„-i = fam — #2»+l = 0> sm ~ Sm-2 = — (fan-i ~ fan) = 0.

Hence s , s2 , s4 ,
..., s2n , ... is a decreasing sequence, and therefore

tends to a limit or to -co, and slf ss , s5 , ..., s2n+1 , ... is an in-

creasing sequence, and therefore tends to a limit or to oo . But

lim (sm+1 — sm) = lim (— l)2'l+1
fan+1 = 0, from which it follows that

both sequences must tend to limits, and that the two limits must

be the same. That is to say, the sequence s , slt ...,sn , ... tends to

a limit. Since s = fa, $i = fa — fa, it is clear that this limit lies

between fa and fa
— <£ x

.

Examples LXXVIII. 1. The series

111 1 1 1

2
+

3 4
+ '"' 1 ~72 + 73~V4"

K "'

s
(_l)» „ (-1)« „ (-1)» „ (-1)«

(7i+ a)' V(»+ «)' (Jn+Ja)' (Jn+ Ja)*'

where a>0, are conditionally convergent.

2. The series 2 (-1)™ (%+ «)~ s
, where a>0, is absolutely convergent if

s>l, conditionally convergent if 0<5^1, and oscillatory if s^0.
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3. The sum of the series of § 188 lies between sn and sH + 1
for all values

of n ; and the error committed by taking the sum of the first n terms instead

of the sum of the whole series is numerically not greater than the modulus of

the (?i+ l)th term.

4. Consider the series

(-1)"

N/rc+(-l)»'

which we suppose to begin with the term for which n= 2, to avoid any

difficulty as to the definitions of the first few terms. This series may be

written in the form

y r r (-i
)
n i-m

,
(-ot

LU/»+(-l)» s'«> J s.'n J

r(-i)n i i

say. The series 2 \jrn is convergent ; but 2 xn is divergent, as all its terms are

positive, and lim ?^H =1. Hence the original series is divergent, although it

is of the form 02 — $3+ 04
-

•••> where (p H -^0. This example shows that the

condition that
(f> a should tend steadily to zero is essential to the truth of the

theorem. The reader will easily verify that x/(2w+ l) — 1 <s/(2n) + l, so that

this condition is not satisfied.

5. If the conditions of § 188 are satisfied except that
<f>n tends steadily

to a positive limit I, then the series 2 ( — 1)" <j> n oscillates finitely.

6. Alteration of the sum of a conditionally convergent series by-

rearrangement of the terms. Let s be the sum of the scries 1— |+ ;^-j + ...,

and s2n the sum of its first 2n terms, so that lim s2ll =s.

Now consider the series

1+W+HW+ a)

in which two positive terms are followed by one negative term, and let t3n

denote the sum of the first 3n terms. Then

1 1 1 1 _1_

_1 1 1~ S2n+
2n+ l

+
2n + 3

+ '" + 4»-l

Now iim [-I
ri
-^ +

2;

-L^-... +4-LT
-l =0,

since the sum of the terms inside the bracket is clearly less than

ra/(2n+ l)(2»+2); and

,. / 1 1 1\ ... 1 n 1 , [
% dx

\2«+ 2 2m+ 4 An/ * n r=i\ + {rjn) Ji %

by §§ 156 and 158. Hence
..

,
[*dx

J i •*



342 THE CONVERGENCE OF INFINITE SERIES [VIII

and it follows that the sum of the series (1) is not s, but the right-hand side of

the last equation. Later on we shall give the actual values of the sums of the

two series : see § 213 and Ch. IX, Misc. Ex. 19.

It can indeed be proved that a conditionally convergent series can always

be so rearranged as to converge to any sum whatever, or to diverge to co or

to — oo . For a proof we may refer to Bromwich's Infinite Series, p. 68.

7. The series 1 +7o-72 + 75 + 77
-
74 + " diver§es to °° [Here

1 1 1 n
'3»-*2»

+
7(2^+ 1)

+
J(2n+Sy'"

+
N/(4/i -l)

>S2n+
V(4»-l)'

where s2)l= 1—#s+ •••—j^~ > which tends to a limit as n->- oo .]

189. Abel's and Dirichlet's Tests of Convergence. A more general

test, which includes the test of § 188 as a particular test case, is the following.

Dirichlet's Test. If (j>n satisfies the same conditions as in § 188, and 2an
is any series which converges or oscillates finitely, then the series

is convergent.

The reader will easily verify the identity

«O0O+ «101 + '--+ «7l ^> re= SO (0O-0l) + Sl(01-02) + ---+S„-l(0„- 1
-^

i) ) + S«^n-.

where sn=an+ ai + ...+aa . Now the series (</> — 0i) + (</>i
— <£2) + --- is con

vergent, since the sum to n terms is 0o -</>«. and lim<£„= 0; and all its

terms are positive. Also since 2an , if not actually convergent, at any rate

oscillates finitely, we can determine a constant K so that
|
sv |
< K for all

values of v. Hence the series

2s„(#„-#„ + i)

is absolutely convergent, and so

tends to a limit as n -»- oo . Also
<f>n , and therefore sH (pn , tends to zero

And therefore

tends to a limit, i.e. the series 2a„$„ is convergent.

Abel's Test. There is another test, due to Abel, which, though of less-

frequent application than Dirichlet's, is sometimes useful.

Suppose that
<f) n> as in Dirichlet's Test, is a positive and decreasing

function of n, but that its limit as n -»- oo is not necessarily zero. Thus we
postulate less about <£„, but to make up for this we postulate more about

2«n , viz. that it is convergent. Then we have the theorem: if (j>n is a positive

and decreasing function of n, and "2an is convergent, then 2«„0n is convergent.

For
<f)n has a limit as n -»- oo , say I : and lim ($„ - 1) = 0. Hence, by

Dirichlet's Test, 2an ((pn -l) is convergent; and as 2a„ is convergent it

follows that 2a n cj)n is convergent.
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This theorem may be stated as follows : a convergent series remains con-

vergent if we multiply its terms by any sequence of positive and decreasing

facto7's.

Examples LXXIX. 1. Dirichlet's and Abel's Tests may also be established

by means of the general principle of convergence (§ 84). Let us suppose,

for example, that the conditions of Abel's Test are satisfied. We have
identically

fflj» $»»+ «m + 1 </>m + 1 + • • • + an <Pn=Vm (<£ro ~ </>m + l) + V, m + 1 ($m + 1 ~ 4>m + Si)

+ ---+ sm,n-l(4>n-l-<l>n) + sm,n<t>n (1)>

where sm< v= am+ am + 1+ ...+av .

The left-hand side of (1) therefore lies between h(f)m and H<pm , where h and

H are the algebraically least and greatest of sm, m , snum + 1 , ..., sm<n . But,

given any positive number 8, we can choose »i so that
|
sm<v \<8 when m ^ m ,

and so

I «m</>m+ «»i + l#m + l + ...+«„
<f>n \<8(f)m ^ S$l

when n>»i>m . Thus the series 2an cf) n is convergent.

2. The series 2 cos ?i# and 2 sin nd oscillate finitely when 6 is not a

multiple of tt. For, if we denote the sums of the first n terms of the two

series by s„ and tn , and write z= Cis 0, so that
|
z |=1 and z 4= 1, we have

1-g"

1-2>»+ «*J =
1+ U"I

1

! <

and so
|
sn |

and
|
tn |

are also not greater than 2/\l-z\. That the series are

not actually convergent follows from the fact that their nth terms do not tend

to zero (Exs. xxiv. 7, 8).

The sine series converges to zero if 8 is a multiple of it. The cosine

series oscillates finitely if 6 is an odd multiple of n and diverges if 6 is an

even multiple of n.

It follows that if (f> n is a positive function of n which tends steadily to

zero as /£->• co
, then the series

2(f> n cosnd, 2(j>n smnd

are convergent^ except perhaps the first series when 6 is a multiple of 2n. In

this case the first series reduces to 2$,„ which may or may not be conver-

gent: the second series vanishes identically. If 2$„ is convergent then both

series are absolutely convergent (Ex. lxxvii. 4) for all values of 6, and the

whole interest of the result lies in its application to the case in which

2$ n is divergent. And in this case the series above written are con-

ditionally and not absolutely convergent, as will be proved in Ex. lxxix. 6.

If we put = tt in the cosine series we are led back to the result of § 188,

since cos nir = (
- l)n.

3. The series 2?i -s cosm#, 2«~ s sin?i0 are convergent if s>0, unless (in

the case of the first series) is a multiple of 2n and <s^l.
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4. The series of Ex. 3 are in general absolutely convergent if s>l,

conditionally convergent if 0<s < 1, and oscillatory if s < (finitely if s=0

and infinitely if s<0). Mention any exceptional cases

5. If 1a nn~ a is convergent or oscillates finitely, then 2a nn~ l is convergent

when t>s.

6. If 0« is a positive function of n which tends steadily to as n-°~- oo

,

and 2(f)n is divergent, then the series 2<£n cosnd, 2<£n sin?i# are not absolutely

convergent, except the sine-series when 6 is a multiple of it. [For suppose,

e.g., that 2(pn |
cos nd

|
is convergent. Since cos2 nd g |

cos nO
|

, it follows that

2<£„cos2 «0 or

|2<^), (
(l + cos2?i(9)

is convergent. But this is impossible, since 20„ is divergent and 2(f>n cos 2nd,

by Dirichlet's Test, convergent, unless 6 is a multiple of tt. And in this

case it is obvious that 2$»|cos??#| is divergent. The reader should write

out the corresponding argument for the sine-series, noting where it fails

when 6 is a multiple of it.]

190. Series of complex terms. So far we have confined

ourselves to series all of whose terms are real. We shall now

consider the series

XUn^ZiVn + nVn),

where vn and wn are real. The consideration of such series does

not, of course, introduce anything really novel. The series is

convergent if, and only if, the series

are separately convergent. There is however one class of such

series so important as to require special treatment. Accordingly

we give the following definition, which is an obvious extension of

that of §184.

Definition. The series 2wn, where un = vn + iivn , is said to be

absolutely convergent if the series %vn and %tvn are absolutely

convergent.

Theorem. The necessary and sufficient condition for the absolute

convergence of %an is the convergence of 2 |

un \
or 2 \f{v,? + «/n

a
).

For if 2?<n is absolutely convergent, then both of the series

2
|
vn |

, 2 |
wn |

are convergent, and so 2
{ |

vn \
+ |
wn

\

) is con-

vergent : but

|
un |

= s/(vn- 4- w^) ^
|
vn | + |

wn |

,
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and therefore 2
|
un \

is convergent. On the other hand

|
Vn

I
= VOn2 + wn% |

wn |
= V<>»

2 + <),

so that S | «» |

and 2
|
wM |

are convergent whenever 2 |
ww |

is con-

vergent.

It is obvious that an absolutely convergent series is convergent,

since its real and imaginary parts converge separately. And
Dirichlet's Theorem (§§ 169, 185) may be extended at once to

absolutely convergent complex series by applying it to the

separate series 2vM and 2ww .

The convergence of an absolutely convergent series may also be deduced

directly from the general principle of convergence (cf. Ex. lxxvii. 1). We leave

this as an exercise to the reader.

191. Power Series. One of the most important parts of

the theory of the ordinary functions which occur in elementary

analysis (such as the sine and cosine, and the logarithm and

exponential, which will be discussed in the next chapter) is that

which is concerned with their expansion in series of the form

"S,an0B
n

. Such a series is called a power series in x. We have

already come across some cases of expansion in series of this kind

in connection with Taylor's and Maclaurin's series (§ 148). There,

however, we were concerned only with a real variable x. We shall

now consider a few general properties of power series in z, where

z is a complex variable.

A. A 'power series Xanz
n may be convergent for all values of z,

for a certain region of values, or for no values except z = 0.

It is sufficient to give an example of each possibility.

1. The series 2 —r is converqent for all values of x. For if u lt
= —

; then

K+i|/KH»l/(»+i)--*o
as n -*- oo , whatever value z may have. Hence, by d'Alembert's Test, 2

|
un \

is

convergent for all values of s, and the original series is absolutely con-

vergent for all values of z. We shall see later on that a power series, when

convergent, is generally absolutely convergent.

2. The scries 2n!sn is not convergent for any value of z except 2=0.

For if un=n ! zn then
|
un + 1 1/| un |

= («+ 1) |
z

\

, which tends to oo with n, unless

2= 0. Hence (cf. Exs. xxvn. 1, 2, 5) the modulus of the ?ith term tends to oo

with n; and so the series cannot converge, except when 2= 0. It is obvious

that any power series converges when 2= 0.
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3. The series 2zn is always convergent when |s|<l, and never convergent

when
|
z

|

^ 1. This was proved in § 88. Thus we have an actual example of

each of the three possibilities.

192. B. If a power series 2 anz
n is convergent for a par-

ticular value of z, say z1
= i\ (cos 61 + i sin 0^, then it is absolutely

convergent for all values of z such that \z\ <i\.

For lim anzx

n = 0, since 2ams1
n is convergent, and therefore we

can certainly find a constant K such that
|
anzy

n
\ < K for all

values of n. But, if
|
z \
— r < r1} we have

/r\ n I r\ n

K*B
|H«»*i

B
l(-) < K {-)'

and the result follows at once by comparison with the convergent

geometrical series 2 (r/?'1 )
n

.

In other words, if the series converges at P then it converges

absolutely at all points nearer to the origin than P.

Example. Show that the result is true even if the series oscillates

finitely when z=zv [If sn=a +a1z1+ ... + anz1
n then we can find K so that

|
sn |
< K for all values of n. But

|
anzf

1

1

=
|
«„—

*

B_ 1 1 g |
s„_i |+ 1 «» | < 2K,

and the argument can be completed as before.]

193. The region of convergence of a power series.

The circle of convergence. Let z — r be any point on the

positive real axis. If the power series converges when z = r then

it converges absolutely at all points inside the circle
|
z

\
= r. In

particular it converges for all real values of z less than r.

Now let us divide the points r of the positive real axis into

two classes, the class at which the series converges and the class

at which it does not. The first class must contain at least the

one point z = 0. The second class, on the other hand, need not

exist, as the series may converge for all values of z. Suppose

however that it does exist, and that the first class of points

does include points besides z = 0. Then it is clear that every

point of the first class lies to the left of every point of the second

class. Hence there is a point, say the point z = R, which divides

the two classes, and may itself belong to either one or the other.

Then the series is absolutely convergent at all points inside the

circle \z\ = R.
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For let P be any such point. We can draw a circle, whose

centre is and whose radius is

less than R, so as to include P
inside it. Let this circle cut OA
in Q. Then the series is con-

vergent at Q, and therefore, by

Theorem B, absolutely conver- °

gent at P.

On the other hand the series

cannot converge at any point P' g '
81 "

outside the circle. For if it converged at P' it would converge

absolutely at all points nearer to than P ; and this is absurd,

as it does not converge at any point between A and Q' (Fig. 51).

So far we have excepted the cases in which the power series

(1) does not converge at any point on the positive real axis

except z = or (2) converges at all points on the positive real

axis. It is clear that in case (1) the power series converges

nowhere except when z = 0, and that in case (2) it is absolutely

convergent everywhere. Thus we obtain the following result: a

'power series either

(1) converges for z = and for no other value of z; or

(2) converges absolutely for all values of z ; or

(3) converges absolutely for all values of z ivithin a certain

circle of radius R, and does not converge for any value

of z outside this circle.

In case (3) the circle is called the circle of convergence

and its radius the radius of convergence of the power series.

It should be observed that this general result gives absolutely

no information about the behaviour of the series on the circle of

convergence. The examples which follow show that as a matter

of fact there are very diverse possibilities as to this.

Examples LXXX. 1. The series l + az+ a?z2 +... , where a > 0, has a

radius of convergence equal to \ja. It does not converge anywhere on its

circle of convei"gence, diverging when z— l/a and oscillating finitely at all other

points on the circle.

z z2 z3

2. The series r^-f^ + ^> + ... has its radius of convergence equal to 1

;

it converges absolutely at all points on its circle of convergence.
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3. More generally, if
|
an + 1 | /|

an |

-*» X, or
|
a H \

1,n -^ X, as n -*- cc
,
then the

series a + a 1
z+ a

2
z2+ ... has 1/X as its radius of convergence. In the first case

Iim
|
an+i zn+i |/j an zu |

= X| z
|

,

which is less or greater than unity according as \z\ is less or greater than

1/X, so that we can use D'Alenihert's Test (§ 168, 3). In the second case we

can use Cauchy's Test (§ 168, 2) similarly.

4. The logarithmic series. The series

is called (for reasons which will appear later) the 'logarithmic' series. It

follows from Ex. 3 that its radius of convergence is unity.

"When z is on the circle of convergence we may write 2= cos#+i sin#,

and the series assumes the form

cos 6 - J cos 2(9+ J cos 3(9 -...+{ (sin 6— h sin 2(9+ J sin 3(9 -...).

The real and imaginary parts are both convergent, though not absolutely

convergent, unless 6 is an odd multiple of it (Exs. lxxix. 3, 4). If 6 is an odd

multiple of it then z= — \, and the series assumes the form — 1 — £— J — ...,

and so diverges to — oo . Thus the logarithmic series converges at all points

of its circle of convergence except the point z= — 1.

5. The binomial series. Consider the series

m (m — 1) „ m (m — 1) (w? — 2) „l+ms+^
2!

;
22 + _i ^ V + ...

If m is a positive integer then the series terminates. In general

I

an + 1
I _ I

m — n
I

\a„\ " n+ 1
'

so that the radius of convergence is unity. We shall not discuss here the

question of its convergence on the circle, which is a little more difficult.*

194. Uniqueness of a power series. If Sa„f is a power series which

is convergent for some values of z at any rate besides 2=0, and f(z) is its

sum, then it is easy to see that/ (z) can be expressed in the form

O + a
x
Z+ Oo £2 + • • • + («n + ea) zn

,

where t2 -*-0 as
|
z |-»-0. For if /x is any number less than the radius of con-

vergence of the series, and |2|<ii, then \aH \fj.

n <K, where A' is a constant

(cf. § 192), and so

1/(2) -2a„2" ^!«„ + ilk, + 1
l
+K + 2 ||2

n + 2
l

+ ...

I o '

/I 2 l\
m + 1 / I 2 I I 2 i

2 \ A"
I

/x / \ it it
2 y ti"

(M - 1 2
1)

'

* See Bromwich, Infinite Series, pp. 225 et seq. ; Hobson, Plane Trigonometry

(3rd edition), pp. 268 et seq.
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where K is a number independent of z. It follows from Ex. lv. 15 that

if 2a,i z
n= 2b )l z

n for all values of z whose modulus is less than some
number /x, then an— bn for all values of n. This result is capable of considerable

generalisations into which we cannot enter now. It shows that the same

function f{z) cannot be represented by two different power series.

195. Multiplication of Series. We saw in § 170 that if

%un and 1vn are two convergent series of positive terms, then

2«n x Xvn = ~ivn , where

Wn = U Vn + IhVn^ + . . . + UnV .

We can now extend this result to all cases in which %un and 2v„

are absolutely convergent ; for our proof was merely a simple

application of Dirichlet's Theorem, which we have already ex-

tended to all absolutely convergent series.

Examples LXXXI. 1. If \z\ is less than the radius of convergence

of either of the series 2aa zH, "2bn z
n

, then the product of the two series is

2<v'\ vvhere cn=a bn+a1
b,l _ 1+ ... + an bQ .

2. If the radius of convergence of 2«„«" is E, and f(z) is the sum of

the series when
|

z
|
< E, and \z\ is less than either E or unity, then

f(z)/(l-z)= 2sn zn, where sn=a + a1 + ... + an .

3. Prove, by squaring the series for 1/(1 - z), that 1/(1 —z)2= 1 +2z+ 3z2+ ...

if|*|<l.

4. Prove similarly that 1/(1 -z)3=l+3z+6z2 +..., the general term

being |(n+ l)(w+ 2)s".

5. The Binomial Theorem for a negative integral exponent. If

|s|<l, and in is a positive integer, then

(l_ z)m
-*+«*+

1>2
+ - +

1.2.. .n
Z + -'

[Assume the truth of the theorem for all indices up to m. Then, by Ex. 2,

1/(1- z)
m + 1= 2 snz

n
, where

m(m + l) m(m + l)...(m + n-l) (m+ l)(m+ 2)...(m+n)
sn=l+m+ 1<2

+...+ ^g—

—

= ^— ,

as is easily proved by induction.]

6. Prove by multiplication of series that if

/6M-i+(7) .+£)*•-.-,

and
|
z

|
< 1, then/ (mi, z)f(m', z) =f(m+m', z). [This equation forms the basis of

Euler's proof of the Binomial Theorem. The coefficient of zn in the product

CO 'iJU-ij + un»-2j +-+u-iHij +C
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This is a polynomial in m and m! : but when m and m' are positive

integers this polynomial must reduce to
( ,

J
, in virtue of the Binomial

Theorem for a positive integral exponent, and if two such polynomials are

equal for all positive integral values of m and ml then they must be equal

identically.]

7. If f(z)=l + z+ ol+... then f(z)f(z')=f(z + z'). [For the series for

f(z) is absolutely convergent for all values of z : and it is easy to see that if

(z+ z')
n

nl' " n\«»-—i >
vn=—< .

then wn=—-y- .]

8. If C(,)=l-^ + ^-..., 0(,)=.-* + *-.„,

then 'C{z+z')= C{z)C(z')-S(z)S{z'), S(z+*)=S(z) CW+C^S &),

and {<7(,-)}
2+ {>S'(^)}'

2= l.

9. Failure of the Multiplication Theorem. That the theorem is not

always true when 2% and 2vn are not absolutely convergent may be seen by

considering the case in which
(-1)"

Then
n 1

Wn=(- 1)»j^———.
But V{(r+ 1)(m + 1 -r)]^|(?i+ 2), and so |ww |> (2n+2)/(»i+ 2), which tends

to 2 ; so that 2 wn is certainly not convergent.

MISCELLANEOUS EXAMPLES ON CHAPTER VIII.

1. Discuss the convergence of the series 2nk {J(n+ l) -2Khi+J(n-l)\

,

where k is real. {Math. Trip. 1890.)

2. Show that 2?i r Afc (n8
),

where At*„= «„— «„ +

1

, A2
('„= A (Am,,),

and so on, is convergent if and only if k">r+s+l, except when s is a positive

integer less than k, when every term of the series is zero.

[The result of Ch. VII, Misc. Ex. 11, shows that Ak (na
) is in general of

order ns ~ k
.]

3. Show that
00 n2+ 9?i + 5 _ 5

? (n+l) (2n+ 3) (2w+ 5) (» + 4)
~ 36'

(1/a?/;. 2W]p. 1912.)

[Resolve the general term into partial fractions.]
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4. Show that, if R(n) is any rational function of n, we can determine

a polynomial P (n) and a constant A such that 2{R (n)- P(n) — (A/n)} is

convergent. Consider in particular the cases in which R(n) is one of

the functions l/(an + b), (an2+ 2bii + c)/(an'2+ 2^?i + y).

5. Show that the series

1 1 1 1 1_
1+s 2 2 + z

+
3 3 + z

+ "'

is convergent provided only that s is not a negative integer.

6. Investigate the convergence or divergence of the series

2 sin-, 2 -sin-, 2(-l)n sin-, 2(1- cos-), 2 (- l) n n ( 1 -cos -
),n n n n \ nj' \ nj

where a is real.

7. Discuss the convergence of the series

2 3 nj n

where 6 and a are real. (Math. Trip. 1899.)

8. Prove that the series

l_I_l4-Ij.l4.1_I_l_l_ 1 _|_x 2 3~4~5
' 6 7 8 9 10 ' •»

in which successive terms of the same sign form groups of 1, 2, 3, 4, ... terms,

is convergent ; but that the corresponding series in which the groups contain

1, 2, 4, 8, ... terms oscillates finitely. (Math. Trip. 1908.)

9. If «i, u-i, M3 , ... is a decreasing sequence of positive numbers whose

limit is zero, then the series

Mi-i(Mi+M2)+HMl+M2+ M3)-"-l Ml-i(«l+«3)+i(Ml+ M3+ M5)-...

are convergent. [For if (mi+ m2+...+«„)/«=»„ then vly v2 , v3 , ... is also a

decreasing sequence whose limit is zero (Ch. IV, Misc. Exs. 8, 27). This

shows that the first series is convergent ; the second we leave to the reader.

In particular the series

i-*(i+i)+Mi+i+*)--> W(i+i)+*a+i+*)--
ai'e convergent.]

10. If Uo + Ui + ic2 -\-... is a divergent series of positive and decreasing

terms, then
(M0+ «2+ ---+«2!»)/Cwl+M3+ ."+ «&t + l)-9\L

11. Prove that if a>0 then lim 2 (p + 7i)~
1~a = 0.

12. Prove that lim a 2 «-1-a =l. [It follows from § 174 that

0<l-1
-a+ 2-1

-a
+... + («-ir1_a -

I orx~a
da:^l,

and it is easy to deduce that 2m
_1-

° lies between 1/a and (l/a) + l.]
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13. Find the sum of the series 2 un , where
i

xn_ x -n-l 1 /
l "n~(xn+ x- n)(xn +

^ + x- n - 1
) x-l\xn + x~ n xn + 1 +x~ n

for all real values of x for which the series is convergent. {Math. Trip. 1901.)

[If
|
x

|
is not equal to unity then the series has the sum #/{(#— 1) (a;

2 +l)}.

If x= l then «„= and the sum is 0. If x=-l then Mn=§(-l)n+1 and

the series oscillates finitely.]

14. Find the sums of the series

2 _2z2_ 4a4 s a2 z4

(in which all the indices are powers of 2), whenever they are convergent.

[The first series converges only if
|

z
|
< 1, its sum then being zj(\ — z) ; the

second series converges to zj{\ -z) if
|
z

\
< 1 and to 1/(1 —z) if

|
z

|
> 1.]

15. If |«ti|^1 for all values of n then the equation

Q=\+a
l
z+ a2 z

i+ ...

cannot have a root whose modulus is less than •£, and the only case in which

it can have a root whose modulus is equal to ^ is that in which a„= - Cis(n0),

when 2=i Cis ( - 6) is a root.

16. Recurring Series. A power series 2a Ks
n is said to be a recurring

series if its coefficients satisfy a relation of the type

a n +Pian-i+P2an-2+-~+Pk«n-k=Q (1),

where n^h and p x , p2 , ..., pu are independent of n. Any recurring series is

the expansion of a rational function of z. To prove this we observe in the

first place that the series is certainly convergent for values of z whose modulus

is sufficiently small. For let O be the greater of the two numbers

1) \lh\ + \P2\ +— + \pk\-

Then it follows from the equation (1) that \an \^Gan , where a„ is the

modulus of the numerically greatest of the preceding coefficients ; and from

this that
|
an \
< KGn

, where K is independent of n. Thus the recurring series

is certainly convergent for values of z whose modulus is less t"han l/(r.

But if we multiply the series f(z) = 2an zn by pt
z, p2 z

2
, ...pk^, and add

the results, we obtain a new series in which all the coefficients after the

(k- l)th vanish in virtue of the relation (1), so that

(l+p
1
z+p2z°~+ ...+pk z

k
)f(z) =P +P1

z+...+Pk _ 1 z
k -\

where P , Plt ..., Pk -i are constants. The polynomial 1 +piz+p2 z
z +...+pk z

k

is called the scale of relation of the series.

Conversely, it follows from the known results as to the expression of any

rational function as the sum of a polynomial and certain partial fractions of

the type Aj(z — a) p
, and from the Binomial Theorem for a negative integral
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exponent, that any rational function whose denominator is not divisible by z

can be expanded in a power series convergent for values of z Whose modulus is

sufficiently small, in fact if \z
|
< p, where p is the least of the moduli of the roots

of the denominator (cf. Ch. IV, Misc. Exs. 18 et seq.). And it is easy to see,

by reversing the argument above, that the series is a recurring series. Thus
the necessary and sufficient condition that a power series shoidd be a recurring

series is that it shoidd be the expansion of such a rational function of z.

17. Solution of Difference-Equations. A relation of the type of (1)

in Ex. 16 is called a linear difference-equation in a n with constant coefficients.

Such equations may be solved by a method which will be sufficiently ex-

plained by an example. Suppose that the equation is

an-«n-i-8a»-2+ 12aB_3=0.

Consider the recurring power series 2an z
n

. We find, as in Ex. 16, that its

sum is

ao+ (ai-a )z + (a2-ai-8a )z2
__ A x A 2 B

l-z-8^+ 1223 ~
1 - 2z

+
(1 - 2z)2 T+3z '

where A\
t
A 2 , and B are numbers easily expressible in terms of a , cq, and a2 .

Expanding each fraction separately we see that the coefficient of zn is

an=2«{A 1+ (n+l)A 2}+ (-S)»B.

The values of A
x , A 2 , B depend upon the first three coefficients a , au a2 ,

which may of course be chosen arbitrarily.

18. The solution of the difference-equation uH— 2 cosd un _ 1 + un _ 2= Q is

un —A cos?j#+ .Ssin nd, where A and B are arbitrary constants.

19. If un is a polynomial in n of degree I; then 2u n z
n

is a recurring

series whose scale of relation is (1 -z)k + 1
. (Math. Trip. 1904.)

20. Expand 9/{(z — 1) (s+ 2)
2
} in ascending powers of z.

(Math. Trip. 1913.)

21. Prove that if/(%) is the coefficient of zn in the expansion of 2/(1 + z+ z2
)

in powers of z, then

(1) /(»)+/(»-l)+/(n-2)=0, (2) /(m) = (a,3»-a,3
2'0/(co3-co32),

where a>3 is a complex cube root of unity. Deduce that f(n) is equal to

or 1 or - 1 according as n is of the form 3£ or 3£+ l or 3£+ 2, and verify

this by means of the identity zj(\ + z+ z2)=z (l-z)/(l -z3
).

22. A player tossing a coin is to score one point for every head he turns

up and two for every tail, and is to play on until his score reaches or passes

a total n. Show that his chance of making exactly the total n is J {2 -f- (
— I )»}.

(Math. Trip. 1898.)

[Ifpn is the probability thenpn=J (Pn-i+Pn-z) • also p =l, Pi= i-]

H. 23
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23. Prove that

1 1 1 /»\ J_ _ /n\ 1!

a+l + a+2 + " a+n \l/a+ l W («+ l) («+ 2) *

if n is a positive integer and a is not one of the numbers -1, -2, ..., — n.

[This follows from splitting up each term on the right-hand side into partial

fractions. When a > - 1, the result may be deduced very simply from the

equation
1 ™n f 1 (Jiy

^-d.V= (1 _,;)«{! _(l-^)«}^
1 —X Jo X

by expanding (1 - xn)/(l -x) and l-(l-.r)'1 in powers of x and integrating

each term separately. The result, being merely an algebraical identity, must

be true for all values of a save — 1, —2, ..., — n.]

24. Prove by multiplication of series that

oo
zn cc l_\\n-l zn cc / i l Jv 2n

2 —,2 {

'—r- =2 l+H + o+ -- + -)—, •

o n ! i ?i . n ! t \ 2 3 »/ »

l

[The coefficient of zn will be found to be

.M©-i© +S©-4
Now use Ex. 23, taking a= 0.]

25. If An-*-A and Bn^~B as n-s-oo , then

(^£n+ J 2JBn _ x + . . . + J^j)/^ .4 £.

[Let A n=A + en . Then the expression given is equal to

A
B1 + B2+ ... + Bn e1Bn+e2Bn _ 1+ . ..+€%Bl

n n

The first term tends to AB (Ch. IV, Misc. Ex. 27). The modulus of

the second is less than /3 { | e x \
+ |

e2 1
+ . . • + 1 *n

\

}/n, where ft is any number

greater than the greatest value of
|
Bv |

: and this expression tends to zero.]

26. Prove that if cn=a 1 bn+ a2 &„_i+ ...+«n ^i and

A n= a
1 + a2+ ...+an , Bn= b1 + b2+ ... + bn , Cn= c1 + c

2 + ...+c„,

then
Cn= a

1
BH+a 2Bn _ 1+ ... + anB1

= b1
A n+ b2A n _ 1+ ... + bnA 1

and C1 + C2+ ... + Cn=A lBn+ A 2Bn_ 1+ ... +A nB1 .

Hence prove that if the series 1an , 2bn are convergent and have the sums
A, B, so that A n-*-A, Bn -*-B, then

(C1 + C2 + ... + Cn)/n+AB.
Deduce that if 2c„ is convergent then its sum is AB. This result is known as

Abel's Theorem on the multiplication of Series. We have already seen

that we can multiply the series 2a„, s6n in this way if both series are

absolutely convergent : Abel's Theorem shows that we can do so even if

one or both are not absolutely convergent, provided only that the product series

is convergent.
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27. Prove that

l(i-i+l-...)'-4-l(i+i)+i(i+Hi)-.»i

[Use Ex. 9 to establish the convergence of the series.]

28. For what values of m and n is the integral / sin"' x (1 - cos x)n dx
. Jo

convergent ? [If m + 1 and m+ 2n+ l are positive.]

29. Prove that if a > 1 then

f 1 dx it

J _! (a-*) v'(I^)
=
^(a2 -l)

*

30. Establish the formulae

j" Fy{x*+ \)-x)dx= hj^ (l + j^F{y)dy.

In particular, prove that if w > 1 then

f
°°

, „
/* r = f

"
V(*2+ 1) - *}

n dx =-^ .

Jo {N/(^
2+ l)+^}n Jo

X ' v?~\

[In this and the succeeding examples it is of course supposed that the

arbitrary functions which occur are such that the integrals considered have a

meaning in accordance with the definitions of §§ 177 et seq.]

31. Show that if 2y= ax—(bfx), where a and b are positive, then y in-

creases steadily from — oo to oc as x increases from to oc . Hence show that

/."4 (- ¥
i)}

<b>-\r_jw+<*» I'+vT^h
2

f{J{y*+ ab))dy.
a J o

32. Show that if 2y= ax+ (b/x), where a and b are positive, then two

values of x correspond to any value of y greater than s/(ab). Denoting the

greater of these by x\ and the less by x
2 , show that, as y increases from

J(ab) towards oo, xx
increases from Jibja) towards oo, and a?2 decreases

from \/(b/a) to 0. Hence show that

f

°°

f(y) dxx
= - {^ f(y)[ -irv-^jx + 1\ dy,

J V(6/«)
a J y/(ab) W(f

'

ab
) J

and that

("/^(W^l^- I"* -/{^r dy = l (™fy{z>+ ab))dz.

Jo' V\ -WJ a]^ab)sl{y'
i -ab) ' a J

23—2



356 INFINITE SERIES AND INTEGRALS [VIII

33. Prove the formula

f
n

., , iv dx f
17','

, dx
I / (sec *x+ tan \ x) -rz-. r =

/ / (cosec x) -r—. .

,

34. If a and b are positive, then

f
°° dx it f

°° x2 dx

J (x2+ a2
)
(x2+ b 2

) 2ab (a+ b) '

J (x2 + a2
)
(x2+ b2

) 2 (a + 6)

'

Deduce that if a, /3, and y are positive, and /3
2 ^ ay, then

f
x dx ir f°° x2 dx it

J axi+ 2l3x*+ y
=

2 V(2y4) ' J a>+ 2/3.V
2+ y

=
2,J{2aA)

'

where A = /3+J{ay). Also deduce the last result from Ex. 31, by putting

f(y) = ll(c
2+y2

). The last two results remain true when /3
2 <ay, but their

proof is then not quite so simple.

35. Prove that if b is positive then

/"
°° x2dx n f

°°
.r
4
c/.r 7r

Jo (^
2 -a :!

)
2 + 62^2 26' J {(^

2 -a2
)
2 + 62

.^
2
}
2 463

'

36. Extend Schwarz's inequality (Ch. VII, Misc. Ex. 42) to infinite

integrals of the first and second kinds.

37. Prove that if <f>(x) is the function considered at the end of § 178

then

Jc>
W o^n+iy

38. Prove that

Establish similar results in which the limits of integration are and 1.

(Math. Trip. 1913.)



CHAPTER IX

THE LOGARITHMIC AND EXPONENTIAL FUNCTIONS
OF A REAL VARIABLE

196. The number of essentially different types of functions

with which we have been concerned in the foregoing chapters

is not very large. Among those which have occurred the most

important for ordinary purposes are polynomials, rational functions,

algebraical functions, explicit or implicit, and trigonometrical

functions, direct or inverse.

We are however far from having exhausted the list of functions

which are important in mathematics. The gradual expansion of

the range of mathematical knowledge has been accompanied by

the introduction into analysis of one new class of function after

another. These new functions have generally been introduced

because it appeared that some problem which was occupying the

attention of mathematicians was incapable of solution by means of

the functions already known. The process may fairly be compared

with that by which the irrational and complex numbers were first

introduced, when it was found that certain algebraical equations

could not be solved by means of the numbers already recognised.

One of the most fruitful sources of new functions has been the

problem of integration. Attempts have been made to integrate

some function fix) in terms of functions already known. These

attempts have failed ; and after a certain number of failures it

has begun to appear probable that the problem is insoluble.

Sometimes it has been proved that this is so ; but as a rule such

a strict proof has not been forthcoming until later on. Generally

it has happened that mathematicians have taken the impossibility

for granted as soon as they have become reasonably convinced

of it, and have introduced a new function F (x) defined by its
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possessing the required property, viz. that F' (x) =/(#). Starting

from this definition, they have investigated the properties of

F(x);and it has then appeared that F (x) has properties which

no finite combination of the functions previously known could

possibly have ; and thus the correctness of the assumption that

the original problem could not possibly be solved has been

established. One such case occurred in the preceding pages,

when in Ch. VI we defined the function log a; by means of the

equation

, fdx
log«-J-.

Let us consider what grounds we have for supposing log.r to be a really

new function. We have seen already (Ex. xlii. 4) that it cannot be a rational

function, since the derivative of a rational function is a rational function

whose denominator contains only repeated factors. The question whether it

can be an algebraical or trigonometrical function is more difficult. But it is

very easy to become convinced by a few experiments that differentiation will

never get rid of algebraical irrationalities. For example, the result of

differentiating v/(l +x) any number of times is always the product of ,J(l+x)

by a rational function, and so generally. The reader should test the

correctness of the statement by experimenting with a number of examples.

Similarly, if we differentiate a function which involves sin.*? or cos.r, one

or other of these functions persists in the result.

"We have, therefore, not indeed a strict proof that logx is anew function

—

that we do not profess to give*—but a reasonable presumption that it is.

We shall therefore treat it as such, and we shall find on examination that its

properties are quite unlike those of any function which we have as yet

encountered.

197. Definition of log x. We define log x, the logarithm of x,

by the equation

We must suppose that x is positive, since (Ex. lxxvi. 2) the

integral has no meaning if the range of integration includes

the point x = 0. We might have chosen a lower limit other

than 1 ; but 1 proves to be the most convenient. With this

definition log 1=0.

We shall now consider how log x behaves as x varies from

towards go . It follows at once from the definition that log # is a

* For such a proof see the author's tract quoted on p. 236.
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continuous function of x which increases steadily with x and has

a derivative

Dx log x = 1/x;

and it follows from § 175 that log x tends to oo as x ->- oo .

If a; is positive but less than 1, then logx is negative. For

i
[* dt

[
ldt

al0gX =
] 1 l = -]

x J < °-

Moreover, if we make the substitution t=l/u in the integral, we
obtain

. f'dt [V*du
, ,_..

Iog " =
i 1 T

= -j
1

— -log(V*)-

Thus log x tends steadily to — oo as x decreases from 1 to 0.

The general form of the graph of the logarithmic function is

shown in Fig. 52. Since the derivative of log x is ljx, the slope of

Y

Fig. 52.

the curve is very gentle when x is very large, and very steep

Avhen x is very small.

Examples LXXXII. 1. Prove from the definition that if u > then

ttl(l+u) < log (1+u) < u.

/u clf-— , and the subject of integration lies between 1 and
o 1 + '

2. Prove that log(l + 2t) lies between u — — and u— — when a is

/u tdt
.]

3. If < u < 1 then u < - log (1 - u) < «/(l - u).

4. Prove that

.. log„r .. log (1 + ,
lira —£-= lim -? v ;= l.

[Use Ex. 1.]



SCO THE LOGARITHMIC AND EXPONENTIAL FUNCTIONS [iX

198. The functional equation satisfied by logic. The

function \ogx satisfies the functional equation

/(*>/)= /(*) +f(y) (i).

For, making the substitution t = yu, we see that

_ f*» dt _ f
x du _ f x du _ Plvdu

Jl t Jljy u Ji u J i u

= log x - log (1/y) = log x + log y,

which proves the theorem.

Examples LXXXIII. 1. It can be shown that there is no solution of

the equation (1) which possesses a differential coefficient and is fundamentally

distinct from log x. For when we differentiate the functional equation, first

with respect to x and then with respect to y, we obtain the two equations

yf '
(xy) =/' (*)> xf (xy) =/' (y) ;

and so, eliminating /' (xy\ xf' i(x)=yf (y). But if this is true for every pair

of values of x and y, then we must have xf (x) = C, orf (x) = Cjx, where C
is a constant. Hence

/(.,;)= / ^dx+C' = C\0gX+C,

and it is easy to see that C"= 0. Thus there is no solution fundamentally

distinct from log.r, except the trivial solution f(x) = 0, obtained by taking

2. Show in the same way that there is no solution of the equation

/w+/w-/(;_
+
£)

which possesses a differential coefficient and is fundamentally distinct from

arc tan x.

199. The manner in which log x tends to infinity with x.

It will be remembered that in Ex. xxxvi. 6 we defined certain

different ways in which a function of x may tend to infinity with x,

distinguishing between functions which, when x is large, are of

the first, second, third, . . . orders of greatness. A function f (x)

was said to be of the A'th order of greatness whenf (x)/xk tends to

a limit different from zero as x tends to infinity.

It is easy to define a whole series of functions which tend to

infinity with x, but whose order of greatness is smaller than the first.

Thus >Jx, tyx, \/x, .

.

. are such functions. We may say generally

that xa
, where a is any positive rational number, is of the ath

order of greatness when x is large. We may suppose a as small
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as we please, e.g. less than "0000001. And it might be thought

that by giving a all possible values we should exhaust the

possible ' orders of infinity ' of f (x). At any rate it might be

supposed that if f (x) tends to infinity with x, however slowly, we

could always find a value of a. so small that xa would tend to

infinity more slowly still ; and, conversely, that if f(x) tends to

infinity with x, however rapidly, we could always find a value

of a so great that xa would tend to infinity more rapidly still.

Perhaps the most interesting feature of the function log x is its

behaviour as x tends to infinity. It shows that the presupposition

stated above, which seems so natural, is unfounded. -The logarithm

of x tends to infinity with x, but more slowly than any positive 'power

of x, integral or fractional. In other words loga?-*- oo but

log^
of-

for all positive values of a. This fact is sometimes expressed

loosely by saying that ' the order of infinity of log x is infinitely

small '; but the reader will hardly require at this stage to be warned

against such modes of expression.

200. Proof that (logx)/xa-+0 as a?-*-oo. Let yS be any

positive number. Then \Jt< l/t1^ when t > 1, and so

f
x dt f

x dt
l08W=

] 1 i
<

! 1 t^'

or log x < (a>
a — l)//3 < oP/ft,

when x > 1. Now if a is any positive number we can choose a

smaller positive value of (3. And then

< (log x)/xa < #3_a//3 (x > 1).

But, since a > /3, #'8-a//3^0 as x ^ oo , and therefore

(log®)/oc*-^0.

201. The behaviour of log x as x -»- + 0. Since

(log x)fx
a = -ya logy

if x = 1/y, it follows from the theorem proved above that

lim y
a log y = — lim (log x)/xa = 0.

Thus logx tends to — oo and log(l/x) = — logx to co as x tends

to zero by positive values, but log (l/x) tends to oo more slowly

than any positive power of 1/x, integral or fractional.
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202. Scales of inrrnity. The logarithmic scale. Let us coumdar

: - - - - ::.:.::: :.?

• - sses - that, if / (x) and d»(*] are any twe

functions contained in it, then/(x) and
<f> (*] both tend to x as x-»-x , while

-' - 6(x) tends to or to ao according - oeurs to the right or the

r in the ~:r:es. We can now ; this aeries by ib -ertion

of new terms to the right of all those already written i.^wn. We c-jin begin

with log*, which tends to infinity more .in any of the old terms.

Then N I g tends tc ddhr • -an log*, jTflog*] than N '(log.

so on. Thus we obtain a s

;-•••• - - -• %'--•?
< • r

••

; - -

formed of two aim] '"
inffa rxanged :ne after the other. But this

is not aH sides the function loglog*, the logarithm of log x. Since

(kjgx) x a -*-0, for all positive values of a, it follows on putting x=logy that

(loglogy togj -= log* • =— ().

Thus leg logy tends to x with y, but more slowly than any power or

Hence we may continue c :"jrm

, N . log , I _ J log
.

' . . N : > : N : T
-

: .

and it will by now be obTioos that by introducing the functions log log log *,

log log log log *, ... we can prolong the series to any : like. By

putti:. - = I ~e obtain a similar scale of infinity for functions of y which

tend: -rvalues.*

Examples LSX5IV. 1. E~:-r^n any two terms /(x . F % of the series

n. insert a new I ten Is to x more slowly than
•

: .
:: . F bet ^ N " we could insert

N . 14 - ve could insert log* -. A:. 1, generally,

: = s F ' ited.]

Find a 1 Ib 1 x more slowly than s
rx, but more

rapidly than *", where a is any rational number less than 11 [N

~ :;1 .:";:_.-
. r N ' . ".

"""..
--/-:- : > iny positive rational mnnber.]

3. Find a function wn to ao m re -1 " .;" than N .

'

.- mora

rapid. .. a *, where a is any rational number. [The fin

3, function. It will be gathered from these example -

{RCompZeteness is an inherent characteristic of the logarithmic scale of infinity.]

L How does the function

= logx^aogiog - - iog*)^aogiog*)^>

behave as * ten -i "If a±$ then the behaviour of

f = - i

tog
'":

- -
'
~r

* For fuller information as to ' scales of^infinity ' see the author

of Infr. 7 .nib. Math. 1 12.
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is i:r_;~i-oi -v :i^: .i ..'-'- li -.= z ':.--. zl-. -._• " -: :' ;'_- yy-:- '--i

the behaviour of/ x; is dominated by that of (logx * _y
, Trnkss a —3". wmm

ii -
--.•-. _

. - - T.. _- " -~ r. :

-= ~ ^ - r a= 5. a = z ^ z z. i - -~ '.

-J. z < : =: " :

;= r. i = : i < :
|

5. . s "'.'gj "•.•:*:•;
-

-
"

."
- ?-'-? ------- -.:•: riir-g v. :!•= riT-ii." ~.\z -_.::. :ir; --i;

kgkgx/(xlogxV, (kgx)/x, xlogkgxV(x*+ , -;

_ :_t : ^ r.

7. Arrange

.

• 1: g 1 : g 1 ~
. N I:-g I . % .r -iz. - I :-z 1 .r . 1 - :-:>= L:>g 1 /x

.
:.:-:.: ...y :•: -._- z-.y^rr— r.'z. — :_:-i. -±tJ :~i.i :•: ziz-: -.- -—

- - - - -

2>xloglogx=: Z>.logloglogx=l -rlogxlogk^

- - -

203. The number £

usually der - : f immense importance in higher

mathematics. I: is. like — :.r : :Le :n. _ .l_t: : . ;._-- -

. : :.:

We define e as the number whose logarithm

wor - dned bv the equs
-

Since logrj* is an ir. .
-

rass once through the value 1. Hence oar

lefinition does in fact deni edniie r

N ."""._ = - _" - _

- -=--_ _ ='-_ -_ =

whri- is : satire im z Hence

- - : = - i : =
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Again, if p and q are any positive integers, and ep/q denotes the

positive qth. root of ep , we have

p = log e? = log (<?2>/*)9 = q log e*/«,

so that \ogep,q = p/q. Thus, if 3/ has any positive rational value,

and ey denotes the positive ytih power of e, we have

\ogev = y (1),

and log e~y = — log ey = — y. Hence the equation (1) is true for

all rational values of y, positive or negative. In other words the

equations

y = \ogx, x=ey (2)

are consequences of one another so long as y is rational and ey

has its positive value. At present we have not given any definition

of a power such as ey in which the index is irrational, and the

function ey is defined for rational values of y only.

Example. Prove that 2 < e < 3. [In the first place it is evident that

'2
eft

/ t

<lj
1 I

and so 2 < e. Also

[
3 dt_f 2 dt [ 3 dt_( 1 du f

1 du P du

)i T~ J l 7
+

J, J~ Jo 2-uJo 2+u~ Jo ^-Ti

so that e < 3.]

5>1,

204. The exponential function. We now define the ex-

ponential function ey for all real values of y as the inverse of

the logarithmic function. In other words we write

x — ey

if y = log x.

We saw that, as x varies from towards 00 , y increases

steadily
}
in the stricter sense, from — 00 towards 00 . Thus to

one value of x corresponds one value of y, and conversely. Also y
is a continuous function of x, and it follows from § 109 that x is

likewise a continuous function of y.

It is easy to give a direct proof of the continuity of the exponential function.

For if x=ev and z+ £ = e
y+r

> then

x+Sdt,

t

Thus hi is greater than £/(#+ £) if £>0, and than |£|/# if £<0; and if rj is

very small £ must also be very small.
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Thus ey is a positive and continuous function of y which

increases steadily from towards oo as y increases from — oo

towards oo . Moreover ey is the positive yih. power of the number

e, in accordance with the elementary definitions, whenever y is

a rational number. In particular ey = 1 when y = 0. The general

form of the graph of ey is as shown in Fig. 53.

X

Fig. 53.

205. The principal properties of the exponential

function. (1) If x = ey , so that y = log x, then dy/dx = l/x

and

dx

dy
= x= ey.

Thus the derivative of the exponential function is equal to the

function itself More generally, if x = e
ay then dxjdy = aeay.

(2) The exponential function satisfies the functional equation

This follows, when y and z are rational, from the ordinary rules

of indices. If y or z, or both, are irrational then we can choose two

sequences 2/j, 2/2 , •••> y^ ••• and zlt z2 , ..-,zn , ... of rational numbers

such that lim yn = y, Km zn = z. Then, since the exponential

function is continuous, we have

ey x ez = lim eyn x lim e
zn = lim eyn

+zn = e
y+z

.

In particular ey x e~y = e° = 1, or e~y = l/ey.

We may also deduce the functional equation satisfied by ey

from that satisfied by \ogx. For if y1
= \ogx1 , y2 = \ogx.2 , so that

^ = ey > , %.2 = ey2, then y x + y2 = log x
1 + log x2

— log xxx2 and

ej/i+y> = glogx.x, _ XiXz — ey, x eyK
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Examples LXXXV. 1. If dx/dy= ax then x= Keay, where K is a

constant.

2. There is no solution of the equation f(y + z)=f(y)f(z) fundamentally

distinct from the exponential function. [We assume that/ (3/) has a differential

coefficient. Differentiating the equation with respect to y and z in turn, we

obtain

/'(y+*)=/'(y)/(»). /'(y+»)=/(y)/'0

and sof Q/)lf(y)=f (z)lf(z), and therefore each is constant. Thus if x=f{y)
then dxjdy = ax, where a is a constant, so that x= Keay (Ex. 1).]

3. Prove that (eay - 1 )/y -*- a as y ->- 0. [Applying the Mean Value

Theorem, we obtain eay - 1 = aye« 1
), where < 1 17 1 < \y | .]

206. (3) The function ey tends to infinity with y more rapidly

than any power of y, or

lim y
a
Jey = lim e~yy

a =

as y -> 00
, for all values of a however great.

We saw that (\ogx)/x^-»~0 as #-*-oo, for any positive value

of /3 however small. Writing a for 1//3, we see that (\ogx)a/x-*-0

for any value of a however large. The result follows on putting

x = ey . It is clear also that e"*y tends to co if 7 > 0, and to if

7 < 0, and in each case more rapidly than any power of y.

From this result it follows that we can construct a ' scale of infinity

'

similar to that constructed in § 202, but extending in the opposite direction ;

i.e. a scale of functions which tend to 00 more and more rapidly as a;-*- so.*

The scale is

/v» /y>l /yO pX pZX /)£" /)3j3 pG

where of course ex°, ..., e
eI

, ... denote e(*'), ..., e(
e*), ....

The reader should try to apply the remarks about the logarithmic scale,

made in § 202 and Exs. lxxxiv, to this 'exponential scale' also. The two scales

may of course (if the order of one is reversed) be combined into one scale

...loglog:r, ... log.?, ... x, ... ex, ... ee\ ....

207. The general power ax. The function ax has been

defined only for rational values of x, except in the particular case

* The exponential function was introduced by inverting the equation y = logx
into x = ey ; and we have accordingly, up to the present, used ?/ as the independent

and x as the dependent variable in discussing its properties. We shall now revert

to the more natural plan of taking x as the independent variable, except when it is

necessary to consider a pair of equations of the type y— log x, x = ey simultaneously,

or when there is some other special reason to the contrary.
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when a = e. We shall now consider the case in which a is any

positive number. Suppose that a; is a positive rational number

p/q. Then the positive value y of the power avlq is given by
yi = av \ from which it follows that

q\ogy=p log a, log y = (p/q) \oga = x log a,

and so y = e
xloga

.

We take this as our definition of ax when x is irrational. Thus

10 v/2 = e^2log10
. It is to be observed that ax, when x is irrational,

is defined only for positive values of a, and is itself essentially

positive; and that log ax = x log a. The most important properties

of the function ax are as follows.

(1) Whatever value a may have, ax x ay = ax+y and (ax)y = axy.

In other words the laws of indices hold for irrational no less than

for rational indices. For, in the first place,

cl
x x ay = e

xlosa x e
yl°Ba = e^

x+y> losa = ax+y

and in the second

(2) If a > 1 then ax = e
xloga = e

aX
, where a is positive. The

graph of ax is in this case similar to that of e
x

, and a^-^x

as x -* oo , more rapidly than any power of x.

If a < 1 then aa; = e
a;loga = e

-
^, where /3 is positive. The graph

of ax is then similar in shape to that of ex, but reversed as regards

right and left, and ax -^0 as x^-cc , more rapidly than any

power of 1/x.

(3) ax
is a continuous function of x, and

Dx a
x = Dxe

xloea = e
xlosa log a = ax log a.

(4) a* is also a continuous function of a, and

Da a
x = Da e

xlosa = e
xlosa (x/a) = xax'\

(5) (ax — l)/x ^-loga as x-^0. This of course is a mere

corollary from the fact that Dxa
x = ax log a, but the particular

form of the result is often useful ; it is of course equivalent to the

result (Ex. LXXXV. 3) that (e"* — l)/x ^aasa'-*0.

In the course of the preceding chapters a great many results involving

the function ax have been stated with the limitation that x is rational. The
definition and theorems given in this section enable us to remove this

restriction.
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208. The representation of e
x as a limit. In Ch. IV,

§73, we proved that {l+(l/n)\ n tends, as n-*-cc, to a limit

which we denoted provisionally by e. We shall now identify this

limit with the number e of the preceding sections. We can

however establish a more general result, viz. that expressed by

the equations

lim (l + -)
l

= \im(l--)~
a

= ex (1).

n+* \ n/ »*»\ »/

As the result is of very great importance, we shall indicate alter-

native lines of proof.

(1) Since

Ct
1

,- -v CO^a + aO-TTrt'
it follows that

log(l + xh)
lim °

, = x.

If we put h = \j%, we see chat

( x^
lim £ log ( 1 + -s = w

as f -^ oo or £ -^ — oo . Since the exponential function is con-

tinuous it follows that

(

&*
1 + ]

= eeiog{i+(*/f)}^.g»

as £ -^- go or %-*•— °o : i.e. that

lim(l + C)= lim (l + f\=& (2).

If we suppose that £ -*- oo or £-^>— oo through integral values

only, we obtain the result expressed by the equations (1).

(2) If n is any positive integer, however large, and x > 1, we have

f x dt f x dt f x dt

] l
fiT^)<]

1 7 < J 1
<I^(i/n)»

or i n(\-x~'l ln
) <\ogx <n{xl in -\) (3).

Writing y for log.r, so that y is positive and x= ev, wc obtain, after some

simple transformations,

H)"<*<nr «•
Now let

V , V 1
l+- = '?i, 1-- = -.

n n t] 2
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Then 0<?; 1 <^2, at any rate for sufficiently large values of n ; and, by

(9) of §74,

V2
n ~ 7l" < W«?

2
n ~ l

(t? 2 - 171) =fn2n/n>

which evidently tends to as n-*-<x> . The result now follows from the

inequalities (4). The more general result (2) may be proved in the same way,

if we replace ljn by a continuous variable h.

209. The representation of log* as a limit. We can also prove

(cf. § 75) that

lim n (1 —x~ i,n
)

=

lim n (x1!*— 1 ) = log x.

'

For n (#V» -l)-n(l-arW»)«» (xl >n- 1) (1 -x

-

V*),

which tends to zero as %-»-oo, since n(x1,
'n — l) tends to a limit (§ 75) and

a?-V» to 1 (Ex. xxvil. 10). The result now follows from the inequalities (3) of

§ 208.

Examples LXXXVI. 1. Prove, by taking y=l and n=6 in the in-

equalities (4) of § 208, that 2 . 5 < e < 2 . 9.

2. Prove that if t> 1 then {t
l in -t-Vn)l(t-t- 1

) <l}n, and so that if

x > 1 then

/•* dt [» dt \[
x
( _ ±\ dA_l( 1 '

J it
1 -M J ! t1

+ (»'»)
<
M J 1 V «/ * ~ » V +

*
_

Hence deduce the results of § 209.

3. If |B is a function of n such that n|n ->• I as w -*- qo , then (1 + £»)"-»- e\

[Writing n log (1 +£„) in the form

and using Ex. LXXXH. 4, we see that n log (1 + £„)-»-£.]

4. If «£„ -a- 00 , then (1 + |„)
n -»- 00 ; and if 1 + £n> and ngn -*--», then

(l + ln)"-0.

5. Deduce from (1) of § 208 the theorem that ey tends to infinity more

rapidly than any power of y.

210. Common logarithms. The reader is probably familiar

with the idea of a logarithm and its use in numerical calculation.

He will remember that in elementary algebra \oga x, the logarithm

of x to the base a, is defined by the equations

x = ay, y = \oga x.

This definition is of course applicable only when y is rational,

though this point is often passed over in silence.

h. 24



370 THE LOGARITHMIC AND EXPONENTIAL FUNCTIONS [iX

Our logarithms are therefore logarithms to the base e. For

numerical work logarithms to the base 10 are used. If

y — log x = logv x, z = log10 x,

then x = ev and also x = 10-' = e
z log,

°, so that

log10 # = (loge#)/(loge 10).

Thus it is easy to pass from one system to the other when once

loge 10 has been calculated.

It is no part of our purpose in this book to go into details

concerning the practical uses of logarithms. If the reader is

not familiar with them he should consult some text-book on

Elementary Algebra or Trigonometry.*

Examples LXXXVII. 1. Show that

Dx e°* cosbx=reax cos {bx+ 6), Dx e
(tx sm bx= reax sin (bx+6)

where r= v/(a
2+ 62

), eos 6= ajr, sin 6= bjr. Hence determine the nth. deri-

vatives of the functions ettX cosbx, eax &mbx, and show in particular that

Dx
n eux= a" eax.

2. Trace the curve y=e~ ax sin bx, whore a and b are positive. Show
that y has an infinity of maxima whose values form a geometrical progression

and which lie on the curve

y= —_—r^e-**. (Math. Trip. 1912.)3
sf{a

2 f b2
)

y f )

3. Integrals containing the exponential function. Prove that

/
7 ,

a cos bx+ b sin bx „„ f „„ . t , « sin bx — b cos bx „
e
ax cos bxdx= 5—r^ eax. \ e

ax sin bxdx= — —5

—

r„ ew.

a--\-b i
J a2 + b-

[Denoting the two integrals by 7, J, and integrating by parts, we obtain

al= eax cos bx + bJ, aJ= e
ax sin bx - bl.

Solve these equations for /and J.]

4. Prove that the successive areas bounded by the curve of Ex. 2 and the

positive half of the axis of x form a geometrical progression, and that their

sum is

b \+e-
aT-'b

a* + b*l-e- an/b
'

5. Prove that if a > then

I e~ ax cos bxdx=-^—r„, | e~ ax sin bxdx= —.—r^.
Jo «2+ ^'

2
Jo "' + b2

* See for example Chrystal's Algebra, vol. i, ch. xxi. The value of log
e
10 is

2 302... and that of its reciprocal -434... .
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6. Ifln=leaxxn dx then aln=eaxxn -nln _i. [Integrate by parts. It

follows that In can be calculated for all positive integral values of n.]

7. Prove that, if n is a positive integer, then

e~ xxndx= n\ e~f (ef- 1 -£- f-"-...-^-r

)

\ 2

!

n !//:
and / e~ xxndx= ?i !.

o/;

8. Show how to find the integral of any rational function of ex . [Put

x — logu, when ex =%(, dx/du= l/u, and the integral is transformed into that

of a rational function of u.]

9. Integrate

(cV

+

a2e ~ x
)
(cV+ b2e ~ x

)

'

distinguishing the cases in which a is and is not equal to b.

10. Prove that we can integrate any function of the form P(x, eax, ebx
, ...),

where P denotes a polynomial. [This follows from the fact that P can be

expressed as the sum of a number of terms of the type Axm e
kx

, where m is a

positive integer.]

11. Show how to integrate any function of the form

P (x, eax, ebx, ..., cos Ix, cos?nx, ..., sinlx, sinm#, ...).

12. Prove that I e-toR(x)dx, where A>0 and a is greater than the

greatest root of the denominator of R (x), is convergent. [This follows from

the fact that ekx tends to infinity more rapidly than any power of x.]

13. Prove that I e-^+wdx, where X > 0, is convergent for all values of

fx, and that the same is true of / e-^x2 +iJ.xxn dx, where n is any positive

integer.

14. Draw the graphs of e*
2
, e'*

2

, xex, xe~x, xe*
2

, xe~ x2
, and .rlog^, deter-

mining any maxima and minima of the functions and any points of inflexion

on their graphs.

15. Show that the equation eax=bx, where a and b are positive, has two

real roots, one, or none, according as b>ae, b= ae, or b < ae. [The tangent

to the curve y= eax at the point (£, ea %) is

y— e°£=ae<£(x— £;),

which passes through the origin if a|=l, so that the line y=aex touches the

curve at the point (Ija, e). The result now becomes obvious when we draw

the line y= bx. The reader should discuss the cases in which a or 6 or both

are negative.]

24—2
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16. Show that the equation ex= l+x has no real root except x=0, and

that ex=l+x+%x2 has three real roots.

1 7. Draw the graphs of the functions

log {x+ s/(x
2 + 1)}, log [yZ^) '

e
~aX cos2 hx

>

e-(W, e-(i/*)V(l/#), e~ cotx
,

e~ cot2x
.

18. Determine roughly the positions of the real roots of the equations

log{*+V(*l+l)}-
i
*j6

,
e
*-|r|=io5oO.

e*sin*=7, «*• sin tf=10000.

19. The hyperbolic functions. The hyperbolic functions cosh x,*

sinha?, ... are denned by the equations

cosh x= \ (ex+ e ~~ x
), sinh a;= ^ (e*— e ~ x

),

tanh a;= (sinh .r)/(cosh a;), coth x= (cosh a;)/(sinh a;),

sech x= l/(cosh x), cosech x= l/(sinh a;).

Draw the graphs of these functions.

20. Establish the formulae

cosh ( — x) = cosh x, sinh ( — x) = — sinh x, tanh ( — x)= — tanh x,

cosh2x— sinh2 a?=l, sech2
.r+ tanh2 x=l, coth2

a; — cosech2 a?=l,

cosh 2x= cosh2
a?+ sinh2

a,', sinh 2a;= 2 sinh a? cosh #,

cosh (x +y) = cosh x cosh 3/ + sinh x sinh ?/,

sinh (a;

+

y) = sinh # cosh y -f cosh a? sinh y.

21. Verify that these formulae may be deduced from the corresponding

formulae in cos x and sin x, by writing cosh x for cos x and i sinh x for sin a;.

[It follows that the same is true of all the formulae involving cos nx and

sin nx which are deduced from the corresponding elementary properties of

cos a; and sin a?. The reason of this analogy will appear in Ch. X.]

22. Express cosh x and sinh x in terms (a) of cosh 2x (b) of sinh 2x.

Discuss any ambiguities of sign that may occur. (Math. Trip. 1908.)

23. Prove that

2)3cosh#= sinh a?, Dx sinh x= cosh x, Dxt&nhx= sech2a;, Z)^cotha;= — cosech2 a\

Dx sech x= - sech x tanh x, Dx cosech x= — cosech x coth a;,

Z>^ log cosh x

=

tanh x, Dx log
|
sinh a?

|
= coth a?,

Dx arc tan e*= J sech a-', Z)^ log
|
tanh \ x \

= cosech x.

[All these formulae may of course be transformed into formulae in inte-

gration.]

* ' Hyperbolic cosine '
: for an explanation of this phrase see Hobson's Trigo-

nometry, ch. xvi.
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24. Prove that cosh x> 1 and — 1 < tanh x < 1.

25. Prove that if y=coskx then x=\og{y± s?(y
2 — 1)}, if v/= sinh.r then

«F=log[y-rV(«/2+ l)}, and if j/= tanh.r then x= ^\og {(l+y)/(l —y)}. Account

for the ambiguity of sign in the first case.

26. We shall denote the functions inverse to cosh x, sinh x, tanh x by

arg cosh x, arg sinh x, arg tanh x. Show that arg cosh x is defined only when

.r^l, and is in general two-valued, while arg sinh x is defined for all real

values of x, and arg tanh x when — 1<.v<1, and both of the two latter

functions are one-valued. Sketch the graphs of the functions.

27. Show that if -\ir <x <\n and y is positive, and cos x cosh y= \, then

y= log (sec x

+

tan x), Dxy— sec x, By x= sech y.

f dx . f dx
28. Prove that if a > then I

—

—

r—57 = arg sinh (xla), and I ,. '—5. is

J Jix'+ a*) J s/(x~-a~)

equal to arg cosh (x/a) or to — arg cosh ( — x/a), according as x> or x < 0.

'

f dx
29. Prove that if a>0 then I —^

2
is equal to — (1/a) arg tanh (.r/a) or

to — (1/a) arg coth (x/a), according as
|
x

|
is less than or greater than a. [The

results of Exs. 28 and 29 furnish us with an alternative method of writing

a good many of the formulae of Ch. VI.]

30. Prove that

l^Mr 2l0g{v'

(
"" a)W(l " A)} (a<b<x),

= - 2 log y(a

-

x) + sf(b
- x)} (x«z< b),

sj{(a — x)(b-x)}

/ -777 rrr r =2arctan . /('^
)

(a<x<b).
j J{{x-a)(b-x)} V \b-xj K

31. Prove that

I
^log(l + i^)«T^=|-|log-o<if

1

.r
2^= ^.

/o 70
(1/a^. ZWjt>. 1913.)

32. Solve the equation a cosh .r+ b sinh .r= c, where c> 0, showing that it

has no real roots if b2+ c2— a2 < 0, while if 62
-f c

2 —

a

2 >0 it has two, one, or

no real roots according as a+ 6 and a — b are both positive, of opposite signs,

or both negative. Discuss the case in which b2+ c1 — a2= 0.

33. Solve the simultaneous equations cosh x cosh y= a, sinh x sinh y= b.

34. xV* -^ 1 as x -*- 00 . [For a£/*=gP<**)/* and (log a?)/*- -*- 0. Cf.

Ex. xxvii. 11.] Show also that the function xllx has a maximum when
x= e, and draw the graph of the function for positive values of x.

35. xx -*~l as x+ + 0.
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36. If {f(n+l)}l{f(n)}-*-l, where l>0, as n-*-<x>, then #{/(n)} +1.

[For log/(ji+ l)-log/(»)-^l°g^ and so (l/«)log/(ra)-*-log* (Ch. IV, Misc.

Ex. 27).]

37. %(n !)/n -*- l/e as »-*-<».

[If/(n)=»"»»l then {/(n+l)}/{/(n)} = {l+ (l/n)}-»-*l/«. Now use

Ex. 36.]

38. #{(2w) ! j(n !)
2
}
-»• 4 as n -> oo

.

39. Discuss the approximate solution of the equation ex= xmom.

[It is easy to see by general graphical considerations that the equation

has two positive roots, one a little greater than 1 and one very large* and one

negative root a little greater than - 1. To determine roughly the size of the

large positive root we may proceed as follows. If e* =#1000000 t^eil

(\o<y lo°' x\
1 + ^.gg )

,

roughly, since 13 -82 and 263 are approximate values of log 106 and log log 106

respectively. It is easy to see from these equations that the ratios log x : 1382

and log log x : 2-63 do not differ greatly from unity, and that

a?=10G (13-82 +log log «) = 10° (13-82 + 2-63) = 16450000

gives a tolerable approximation to the root, the error involved being roughly

measured by 10° (log log #-2-63) or (10°loglogx-)/13-82 or (10e x 2-63)/13-82,

which is less than 200,000. The approximations are of course very rough,

but suffice to give us a good idea of the scale of magnitude of the root.]

40. Discuss similarly the equations e*= 1000000 .£
1000000

, e*
5= #1000000000.

211. Logarithmic tests of convergence for series and

integrals. We showed in Ch. VIII (§§ 175 et seq.) that

fff'j.if <a>0)

are convergent if s > 1 and divergent if s ^ 1. Thus 2(1/??) is

divergent, but 2 n~ x~a is convergent for all positive values of a.

We saw however in § 200 that with the aid of logarithms we

can construct functions which tend to zero, as n -* 00 , more

rapidly than 1/n, yet less rapidly than n-1_a , however small a may

be, provided of course that it is positive. For example l/(?ilog?i)

is such a function, and the question as to whether the series

n log n

* The phrase ' very large ' is of course not used here in the technical sense

explained in Ch. IV. It means ' a good deal larger than the roots of such equations

as usually occur in elementary mathematics '. The phrase ' a little greater than '

must he interpreted similarly.
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is convergent or divergent cannot be settled by comparison with

any series of the type S n~ s
.

The same is true of such series as

v _J y log log n
~ n (log n)- ' n \J(\og n)

'

It is a question of some interest to find tests which shall enable

us to decide whether series such as these are convergent or

divergent; and such tests are easily deduced from the Integral

Test of § 174.

For since

1 — s 1Dx (log x)l~s = —. r-, Bx log log x=—:

,v 6 ;
a: (log a?)

8 ' 8 6
a; log a;'

we have

f * d,
m (logf).--(logn)- [* d^ _ _

J a a; (log a;)
s 1 - * J a? log a; & & ^ & & »

if a > 1. The first integral tends to the limit — (\oga) l~s/(l—s)

as £ •-*• go , if s > 1, and to co if s < 1. The second integral tends

to so . Hence the series and integral

» i_ r dx__

no n(lognj
s '

J a x(logx)s '

where n Q and a are greater than unity, are convergent if s>l,

divergent if s S 1.

It follows, of course, that £<£(«) is convergent if <f>(n) is

positive and less than K'/'{n (log n)s

)
, where s > 1, for all values of n

greater than some definite value, and divergent if <£ (n) is positive

and greater than Kj{n log n) for all values of n greater than some

definite value. And there is a corresponding theorem for integrals

which we may leave to the reader.

Examples LXXXVIII. 1. The series

1 ^(log%)100
?i

2 -l 1

71 (log ft)
2 ' ^101/100 ' n2+ l?i(l0g?l)7/6

are convergent. [The convergence of the first series is a direct consequence

of the theorem of the preceding section. That of the second follows from

the fact that (log n)m is less than n^ for sufficiently large values of n, how-

ever small /3 may be, provided that it is positive. And so, taking /3= 1/200,

(log ft)
100 ji-ioi/ioo

js ]ess than n~'m/m for sufficiently large values of n. The

convergence of the third series follows from the comparison test at the end of

the last section.]
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2. The series

1 1 n log n
2
n (log nf~ '

2
,7100/101 (i g w)ioo

'

2
(nlognf + 1

are divergent.

3. The series

(logn)P (log7t)P(loglog?Qg (log log »)>

n1+ *
' n1+ * ' %(log?i) 1 + 8 '

where s>0, are convergent for all values of p and q ; similarly the series

1 1 1

n1 ~* (log n) p ' n 1 ~ s (log n)p (log log n)i ' w (log n) 1 ~ * (log log ?j)p

are divergent.

4. The question of the convergence or divergence of such series as

1 log log log n

n log n log log n '
11 log n ^/(log log ?i)

cannot be settled by the theorem of p. 375, since in each case the function

under the sign of summation tends to zero more rapidly than l/(?ilogn) yet

less rapidly than n~ l (log?i)
_1_a

, where a is any positive number however

small. For such series we need a still more delicate test. The reader should

be able, starting from the equations

1 — s

x (
Ogk X) -^

l

g -p log2 x ^ .log
fc_! X (lOgfc X)»

'

Dx logfc+ i X= —, 7 ; ;
,°K+l #logX-log2 A'...logi: _ 1 .zlogjl;

.'t'

where log2 #=loglog.r, log3 .v=logloglog x, ..., to prove the following

theorem : the series and integral

<»
1 r dx

n wlog»loga w...logt _ 1
?i (log

fc
n)° '

J a x log x log2 X . . . log* _ 1 X (logjt x)»

are convergent if s~>\ and divergent if sgl, n and a being any numbers

sufficiently great to ensure that log
fc

?i and log^A' are positive when n^.n
()

or x^a. These values of n and a increase very rapidly as k increases:

thus log#>0 requires x>l, log2 .?'>0 requires x>e, loglog#>0 requires

x > ee, and so on ; and it is easy to see that ee > 10, e<? > e 10 > 20,000,

gee<!
•-> e2o,ooo -> 10s000 .

The reader should observe the extreme rapidity with which the higher

exponential functions, such as &eX and ee , increase with x. The same

remark of course applies to such functions as daX and Cla
, where a has

any value greater than unity It has been computed that 999 has 369,693,100

figures, while lOlO™ has of course 10,000,000,000. Conversely, the rate of

increase of the higher logarithmic functions is extremely slow. Thus to make

log log log log x > 1 we have to suppose x a number with over 8000 figures.*

* See the footnote to p. 362.
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5. Prove that the integral / - jlog ( -U dx, where < a < 1, is con-

vergent if s < — 1, divergent if s > - 1. [Consider the behaviour of

i:i{ X)

as e-*-+0. This result also may be refined upon by the introduction of

higher logarithmic factors.]

6. Prove that / -< log ( - )
j- das has no meaning for any value of s.

[The last example shows that s < — 1 is a necessary condition for convergence

at the lower limit : but {log(l/.r)} 8 tends to co like (1— x) 3
, as a'-*-1-0, if s

is negative, and so the integral diverges at the upper limit when s < - 1.]

7. The necessary and sufficient conditions for the convergence of

/ x*- 1 -jlog ( -
)[ dx are a>0, s> -1.

Examples LXXXIX. 1. Euler's limit. Show that

*(w)=l + 2 + 3 + ...+^ri -log»

tends to a limit y as ?i-=>-ao, and that 0<y^l. [This follows at once from

§ 174. The value of y is in fact '577..., and y is usually called Euler's

constant.]

2 . If a and b are positive then

- +—rr+—T177+--- +-T7 Tw.
_ t log (a + «6

a a + b a+ 2b a+ (n-l)o b

tends to a limit as n-*-<x>

.

3. If < s < 1 then

:U9-US-U 4-fm.— ^-*_
l-S

(«,) = l + 2-«+3- 8 +... + (n-l)- s -

tends to a limit as n^- oo .

4. Show that the series

1 1 1

l
+
2(l+|)

+
3(l + i+ ^)

+ '"

is divergent. [Compare the general term of the series with l/(%logn).]

Show also that the series derived from 2 n~ 8
, in the same way that the above

series is derived from 2 (l/«), is convergent if s > 1 and otherwise divergent.

5. Prove generally that if "2un is a series of positive terms, and

Sn= Ui + U2+ ...+Un ,

then 2 («n/*n _i) is convergent or divergent according as 2un is convergent or
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divergent. [If 2wn is convergent then sn_i tends to a positive limit I, and so

2(wn/sn -i) is convergent. If 2un is divergent then sn _ 1
-^aD, and

mw/s„_i > log {1 + («»/*»-1)}= loS (s,Ai-i)

(Ex. lxxxii. 1) ; and it is evident that

log («j/*i) + log (s3/s2 ) + . . . + log (*B/*„_i)= log (sjsj)

tends to oo as n -»- co .]

6. Prove that the same result holds for the series 2 («n/s»)- [The proof

is the same in the case of convergence. If "2un is divergent, and un <sn _ 1

from a certain value of n onwards, then sn <2sn _ 1 , and the divergence of

2 (ujsn ) follows from that of 2 {ujsn _^). If on the other hand «„>s„_i for

an infinity of values of n, as might happen with a rapidly divergent series,

then un/sn ^ J for all these values of n.]

7. Sum the series 1 — -| +§-... . [We have

1+
^
+- +^=log(2 " + 1)+r+f"' 2

G +
i
+ - +^

l
)= 1°s(?i+ 1)+y+ f«'>

by Ex. 1, y denoting Euler's constant, and en , en
' being numbers which tend

to zero as n-*-<x> . Subtracting and making «-*•<» we see that the sum of the

given series is log 2. See also § 213.]

8. Prove that the series

2(-l)"(l + l + ... +
?T

l
T
-log,-0)

oscillates finitely except when C=y, when it converges.

212. Series connected with the exponential and log-

arithmic functions. Expansion of e
x by Taylor's Theorem.

Since all the derivatives of the exponential function are equal

to the function itself, we have

2! (n — 1)! nl

where 0< 6< 1. But xnjn ! -*-9 as n~>- oo , whatever be the value of x

(Ex. xxvii. 12); and e
ex < e

x
. Hence, making n tend to oo , we have

e* = i + tf + |: + ... + 2 + (i).

The series on the right-hand side of this equation is known as

the exponential series. In particular we have

.-1 + 1+1+... + I + (2);

and so

, , 1 1 V _ of- xn /ox
1 + 1 + - + .. . + - + ... =l+x + -+...+ - + (3),

2! nl I 2! nl
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a result known as the exponential theorem. Also

i • t \ (#loga)2
...

ax = ex]0- a = 1 + (w\og a) + v—
f^—

L + (4)

for all positive values of a.

The reader will observe that the exponential series has the property of

reproducing itself when every term is differentiated, and that no other series

of powers of x would possess this property : for some further remarks in this

connection see Appendix II.

The power series for ex is so important that it is worth while to investigate

it by au alternative method which does not depend upon Taylor's Theorem.

Let

En(x)=l+x+~ + ... + -,

and suppose that x > 0. Then

(1+-y_1+M^ + »ifcii(£y+ ... +^i>^f?y
\ iiJ \nj 1.2 \nj 1.2...M \nj

which is less than En (x). And, provided n>x, we have also, by the binomial

theorem for a negative integral exponent,

Thus

(
1+?)"<«,(*)<(i-£f.

But (§ 208) the first and last functions tend to the limit ex as n-a-oo, and

therefore En (x) must do the same. From this the equation (1) follows when

x is positive ; its truth when x is negative follows from the fact that the

exponential series, as was shown in Ex. lxxxi. 7, satisfies the functional

equation f{x)f{y) =f(x+y), so that / (*)/ ( - *) =/(0)= 1.

Examples XC. 1. Show that

cosh x= 1 + '— + '—
}

+ ..., sinh x=x+'^
{

+ '— + ....

2. If x is positive then the greatest term in the exponential series is the

([x] + l)-th, unless x is an integer, when the preceding term is equal to it.

3. Show that n !>(n/e) re
. [For nnjn ! is one term in the series for en.]

4. Prove that en= {nn\n !) (2 +Sx+ S2\ where

l + i/ (l+i>) (l+2i/j

and v= l/n; and deduce that « ! lies between 2 (?i/ti)
re and 2 (ii+ 1) (n/e)B.

5. Employ the exponential series to prove that ex tends to infinity more

rapidly than any power of x. [Use the inequality ex>xnjii !.]
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6. Show that e is not a rational number. [If e=pjq, where p and q are

integers, we must have

p
-

1 1 1 ,

q 2! 3

!

q\

or, multiplying up by q !

,

q '\q 2! qlj q + 1 ^ (q + l) (q+ 2)^

and this is absurd, since the left-hand side is integral, and the right-hand

side less than {l/(q+ l)}+ {l/(q+ l)} 2+ ... = llq.]

to £.11

7. Sum the series 2 Pr {%) — , where Pr (n) is a polynomial of degree r
o n •

in n. [We can express Pr (n) in the form

A + Ain+A 2
n(n-l)+ ... + A rn(n — \)...(n-r+ 1),

and
CO a*H CO /yiTl OO -v>H 00 /vVTl

2 Pr (n) '—. = A 2 — + A t 2 -

, -.,+ ...+iirS , n

= (A + A 1x+ A 2x2+ ...+A rxr)ex.]

8. Show that

oo ^3 oo *t4

2 — xn= (x + 3x'i+ x*)ex 2—.xn= (x + 7x'1 + 6x :i + xi)ex ',

and that if £„= l 3+ 2 3+ ...+n3 then

2 Sn ~ = k (4r + ltefi+ toiP+x*) e*.

! ?i ! *

In particular the last series is equal to zero when x— —2. {Math. Trip. 1904.)

9. Prove that 2 (njn !) = e, 2 (tf/n !)= 2e, 2 (w3/« !) = be, and that 2 (wfc/n !),

where k is any positive integer, is a positive integral multiple of e.

10. Prove that 2 ^"V/!= {(*
2 - 3*+ 3) ex+ A.r2 - 3}/**.

! (w+ 2)w! u y 2 "

[Multiply numerator and denominator by n+ 1, and proceed as in Ex. 7.]

11. Determine a, b, c so that {(x+ a)ex+ (bx+ c)}/x3 tends to a limit as

x-*-0, evaluate the limit, and draw the graph of the function ex+ — .

° r x+a

12. Draw the graphs of 1+x, \+x+^x2
, 1 + x+ \x2+ ^x3, and compare

them with that of ex.

13. Prove that e~ x — 1+x — '— + ... — (— l)n
'—

t
is positive or negative

Z I 71 !

according as n is odd or even. Deduce the exponential theorem.
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14. If

X =e?, A\ = ex -1, X2= ex -l-x, X3 = e*-l-x-(x2
j2\), ...,

then dXvjdx=Xv _ x
. Hence prove that if t > then

ft ft ft ft ,2

A
1 (0=l X^dx<te\ X3 (t)= I Xl

dx<\ xe*dx<ef xdx=—e l

,Jo Jo Jo Jo 2

!

t
v

and generally Xv (t)<— eK Deduce the exponential theorem.
v !

15. Show that the expansion in powers of p of the positive root of

x2+p=a2 begins with the terms

a { 1 - \p log a+ %p
2 log a (2 + log a)} . (Math. Trip. 1 909.

)

213. The logarithmic series. Another very important

expansion in powers of x is that for log(l + x). Since

los (1 +*>=/!if?
and 1/(1 + 1) = 1 — t 4- t

2 — . . . if £ is numerically less than unity, it is

natural to expect* that log (1 + x) will be equal, when — 1 < x < 1,

to the series obtained by integrating each term of the series

1 — t + t
2 — ... from £=0 to t= x, i.e. to the series x — \x2 + ^ a? —

And this is in fact the case. For

1/(1 + t) = 1 - t + t
2 - ... + (- \yn-Hm-i + I J

f+
and so, if x > — 1,

dt

' x
t
m dt

+ t'

We require to show that the limit of Rm> when m tends to oo

,

is zero. This is almost obvious when < x ^ 1 ; for then Rm is

positive and less than

xm+1
t
m dt =

fx rJf r2 Tm
\og(l + x)=j

t̂
= x-2 + .-- + (-l)m->- + (-l)mRm ,

fx pt

where i2m = / j-
J o -1

o w + 1
'

and therefore less than l/(m + 1). If on the other hand — 1<#<0,
we put t = — u and x = — £, so that

* See Appendix II for some further remarks on this subject.
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which shows that Rm has the sign of (— 1)"\ Also, since the

greatest value of 1/(1 — u) in the range of integration is 1/(1 -
£),

we have

< I Rm I < = s umdu = j--4m k <
1-fJo (ro + l)(l-£) (m+l)(l-f)'

and so i2m -* 0.

Hence log (1 + x) = x — %a? + ^a?— ...,

provided that — 1 <oc ^ 1. If a; lies outside these limits the series

is not convergent. If co = 1 we obtain

loga-i-j+i-...,

a result already proved otherwise (Ex. lxxxix. 7).

214. The series for the inverse tangent. It is easy to

prove in a similar manner that

f
x dt f

x

arc tan x = I
—— —

\
(1 - t- + t* — . . .) dt

J o L + t~ Jo
— rp __ 1 /y>3 _!_. 1 /y.5 _— iAj o tt/ T^ X • • • i

provided that -lS^gl. The only difference is that the proof is

a little simpler ; for, since arc tan x is an odd function of x, we need

only consider positive values of x. And the series is convergent

when x = — 1 as well as when x= 1. We leave the discussion to the

reader. The value of arc tan x which is represented by the series

is of course that which lies between — ^ir and \nr when — 1 g x ^ 1,

and which we saw in Ch. VII (Ex. lxiii. 3) to be the value

represented by the integral. If x= 1, we obtain the formula

J-7T— 1 —1-4-1 —
4 7T— X 3 -T 5

Examples XCI. 1. log(^-A=z+$x*+$x*+ ... if -1 <.r<l.

2. arg fcanh x= \ log h^jj=#+ i *"+ fr*
6+ . . . if - 1 <x< 1

3. Prove that if x is positive then

i»g (i+*>=if!.+i(r^)
2

+i(i^)
!+ ""

(i/aC/;. TWp. 1911.)

4. Obtain the series for log(l+#) and arc tan a; by means of Taylor's

theorem.

[A difficulty presents itself in the discussion of the remainder in the
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first series when x is negative, if Lagrange's form Rn = (
— l)n

~ 1 xn/{n (l + 8x)n
}

is used ; Cauchy's form, viz.

#„=(-i)*- 1 (i-0)B- 1*,7(i+^)n
s

should be used (cf. the corresponding discussion for the Binomial Series,

Ex. lvi. 2 and § 163).

In the case of the second series we have

Dx
n arc tan x = Dx

n ~ 1
{1 /( 1 + .r

2
)}

= ( - l)*-i(n-l) ! (x2 + l)-'"'2 sin {n arc tan(l/a?)}

(Ex. xlv. 11), and there is no difficulty about the remainder, which is obviously

not greater in absolute value than l/n.*]

5. If y>0 then

[Use the identity y= ( 1 + -

—

= ) /
(
1 — -—

-
J . This series may be used to

calculate log 2, a purpose for which the series \ — \ + \ — ..., owing to the

slowness of its convergence, is practically useless. Put y= 2 and find log 2

to 3 places of decimals.]

6. Find log 10 to 3 places of decimals from the formula

log 10= 3 log 2 + log (1+ 1).

7. Prove that

/a?+l\_
g

f 1 1 1 \
g
V oo ) ' Uf+ l

+
3(2a,' + l) 3 + 5(2^+l)5

+
"-J

if x> 0, and that

v
(x-l)2 (x+ 2)_ ( 2 1/ 2 \ 3 1/ 2 yg
(x + lf(x-2)~ \x^-3x + 3\x s -3x) + 5\x^-3x) + ""

if x>2. Given that log 2 = -6931471... and log 3= 1-0986123..., show, by

putting #= 10 in the second formula, that log 11 = 2-397895....

(Math. Trip. 1912.)

8. Show that if log 2, log 5, and log 11 are known, then the formula

logl3 = 3logll+log5-91og2

gives log 13 with an error practically equal to -00015. (Math. Trip. 1910.)

9. Show that

^log2= 7<x+ 56 + 3c, h\og3= lla + 8b+5c, £ log5= 16a+ 126+7c,

where a = argtanh (1/31), 6=arg tanh (1/49), c= arg tanh (1/161).

[These formulae enable us to find log 2, log 3, and log 5 rapidly and with

any degree of accuracy.]

* The formula for Dx
n arc tan x fails when x= 0, as arctan(l/;r) is then

undefined. It is easy to see (cf. Ex. xlv. 11) that arc tan (1/x) must then be

interpreted as meaning \tt.
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10. Show that

J7r=arctan (l/2) + arctan (1/3) = 4 arc tan (1/5) -arc tan (1/239),

and calculate it to 6 places of decimals.

11. Show that the expansion of (1 + x) 1 + x in powers of x begins with the

terms l+x+ x-+ 1 afl. (Math. Trip. 1910.)

12. Show that

'1+A = logio «

x J 24»
\ogwe-y/{x(x+l)} logic

v

-

approximately, for large values of x. Apply the formula, when #=10, to

obtain an approximate value of log10 e, and estimate the accuracy of the result.

(Math. Trip. 1910.)

13. Show that -^— log (-^—) = x+ (l+%)x2+ (l+%+ ±)x*+ ...,
1. — 00 \X A/J

if - 1< x< 1. [Use Ex. lxxxi. 2.]

14. Using the logarithmic series and the facts that log 10 2-3758= •3758099...

and log10 e= '4343..., show that an approximate solution of the equation

x=100 log10 # is 237-58121. (Math. Trip. 1910.)

15. Expand log cos x and log (sin #//£) in powers of x as far as x\ and

verify that, to this order,

log sin x= log x — ^g log cos x+ ff log cos \x.

(Math. Trip. 1908.)

f x dt
16. Show that —

—

T=ai-^sfi+\ofi- ... if -1 <a?^l. Deduce that
y o i + '

l-^+J-...= {»r+2log(>/2+ l)}/4V2. (J/a*A. TWp. 1896.)

[Proceed as in § 214 and use the result of Ex. xlviii. 7.J

17. Prove similarly that

i"Hl1r-.- =
J ol
1^={--21og(v/2 + l)}/4 N/2.

18. Prove generally that if a and b are positive integers then

1 1_ 1 _ n t
a - 1 dt

a a + b
+

a + 2b
"'~]

l + t
b '

and so that the sum of the series can be found. Calculate in this way the

sums of 1 -£+} — ... and |-£+|--...

215. The Binomial Series. We have already (§ 163)

investigated the Binomial Theorem
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assuming that - 1 < x < 1 and that in is rational. When m is

irrational we have

(1 + x)m = eml0« (1+*>

,

Dx (1 + x)m = {ml{I + x)} eml°s u+«9 = OT (1 + x)m-i
}

so that the rule for the differentiation of (1 + x)m remains the

same, and the proof of the theorem given in § 163 retains its

validity. We shall not discuss the question of the convergence

of the series when x = 1 or x = — 1.*

Examples XCII. 1. Prove that if - Kx< 1 then

x/(l+.tf2)
2' ' 2.4" -' v'(l-^

2
)

^2~ T 2.4"

2. Approximation to quadratic and other surds. Let SIM be a

quadratic surd whose numerical value is required. Let N2 be the square

nearest to M ; and let M= N 2+ x or M=N'2 — x, x being positive. Since x
cannot be greater than JY, x/N 2 is comparatively small and the surd

<JM=N */{l±(x/JV 2
)} can be expressed in a series

--H(£)-H(l-.)
a

±4
which is at any rate fairly rapidly convergent, and may be very rapidly so.

Thus

,e7^(
«4+3)=8

{
1+ i(|

4
)-^(iy+ ..j

Let us consider the error committed in taking 8fs (the value given by
the first two terms) as an approximate value. After the second term the

terms alternate in sign and decrease. Hence the error is one of excess, and
is less than 32/642

, which is less than '003.

3 If x is small compared with iV 2 then

the error being of the order xi/N 7
. Apply the process to x/9^7.

[Expanding by the binomial theorem, we have

the error being less than the numerical value of the next term, viz.

5A-4/128iV 7
. Also

Nx x / x \~ 1 x x2 x3

2(2A 2+ .r) 4N\ 2N 2
) AN 8JV 3 WN^

the error being less than xil%2N'1
. The result follows. The same method

may be applied to surds other than quadratic surds, e.g. to ^1031.]

* See Bromwich, Infinite Series, pp. 150 ct seq. ; Hobson, Plane Trigonometry

(3rd edition), p. 271.

h. 25
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4. IfM differs from AT3 by less than 1 per cent, of either then HJM differs

from \N+\ (MjN 2
) by less than ir/90000. {Math. Trip. 1882.)

5. If M=Ni +x, and x is small compared with A7
, then a good approxi-

mation for $M is

51 |I 27Afo

56
+
56 N3+WjM+bW)'

Show that when iV=10, x=l, this approximation is accurate to 16 places

of decimals. (Math. Trip. 1886.)

6. Show how to sum the series

2Pr (n)(
o

where Pr (n) is a polynomial of degree r in n.

[Express Pr {n) in the form A + A l
n+ A 2n(n-\) + ... as in Ex. xc. 7.]

00 /7)l\ °0 /7}}\

7. Sum the series 2n ( I xn, 2?i2
I ) xn and prove that

o W o W
2?i3 () xn={m3x3+m(Sm-l)x2 + mx}{l+x)m - 3

.

\n J

216. An alternative method of development of the theory of the

exponential and logarithmic functions. We shall now give an outline of

a method of investigation of the properties of ex and log a; entirely different

in logical order from that followed in the preceding pages. This method

starts from the exponential series 1+X+—+ We know that this series

is convergent for all values of x, and we may therefore define the function

exp x by the equation
x

ex])x= l+x+—+ (1).

We then prove, as in Ex. lxxxi. 7, that

exp#x exp y = exp (x+y) (2).

exp A— 1 h h 2
, ...

Again -£j = 1 + 2-, + 3-, + ... = !+/>(/<),

where p (h) is numerically less than

I

£A
|
+

]

U
|

2+
1
^ j

3+ ... =
1

|A |/(1 -
1

M |),

so that p (h) -^OasA->0. And so

exr>(x+h)-exy>x /expA-l\= exp.r I
—±— 1 -9-exp#

h r
V h

as h ->- 0, or
Dx exp x= exp x (3).

Incidentally we have proved that exp.r is a continuous function.

We have now a choice of procedure. Writing y= es.ipx and observim

that exp = 1, we have
dy fvdt
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and, if we define the logarithmic function as the function inverse to the

exponential function, we are brought back to the point of view adopted earlier

in this chapter.

But we may proceed differently. From (2) it follows that if n is a positive

integer then

(exp a?)
n=exp rue, (exp l)"=exp n.

If x is a positive rational fraction m/n, then

{exp (m/n)}n= exp m= (exp l)m
,

and so exp (m/n) is equal to the positive value of (exp 1
)
min

. This result may
be extended to negative rational values of x by means of the equation

exp x exp ( — x) = 1
;

and so we have
exp x= (exp l)x=

e

x
,

say, where e=exp 1 = 1 + 1 +— + -+...,

for all rational values of x. Finally we define ex, when x is irrational, as

being equal to exp#. The logarithm is then defined as the function inverse

to exp x or ex .

Example. Develop the theory of the binomial series

i+(J)«+(J) «•+...-/<«,-*

where - 1 <#<1, in a similar manner, starting from the equation

f {m, x)f(m', se)=f(m-*-m' x)

(Ex. LXXXI. 6).

MISCELLANEOUS EXAMPLES ON CHAPTER IX*.

1. Given that log10 e= "4343 and that 2 10 and Z'il are nearly equal to powers

of 10, calculate log10 2 and log103 to four places of decimals.

(Math. Trip. 1905.)

2. Determine which of (\e) • and (\/2)-'
r
is the greater. [Take logarithms

and observe that -^3/(^3+ £tt) < § JS < -6929 < log 2.
J

3. Show that log 10 w cannot be a rational number if n is any positive

integer not a power of 10. [If n is not divisible by 10, and \og10n—p/q, we

have I0p= nq
, which is impossible, since 10p ends with and nq does not.

If n= 10ai\
r
, where N is not divisible by 10, then log10N and therefore

\ogwn=a+ \ogwN
cannot be rational.]

* A considerable number of these examples are taken from Bromwich's Infinite Series.

25—2
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4. For what values of x are the functions log x, log log x, log log log.r, ...

(a) equal to (b) equal to 1 (c) not denned ? Consider also the same question

for the functions Ix, llx, lllx, ..., where lx=log \x\.

5. Show that

log *'-(?) loS (*+ 1)+ (g)
loS (*+2) - ...+(- 1)" log (*+*)

is negative and increases steadily towards as x increases from towards 00

.

[The derivative of the function is

0^ ' \r)x~+r~x(x+l)...(x+ n)'

as is easily seen by splitting up the right-hand side into partial fractions.

This expression is positive, and the function itself tends to zero as x -*- 00

,

since

log(a?+r)=loga?+ea.,

where „-~0, and 1 - (") + Q) - ... = 0.]

6. Prove that

-r -2— = 1 /—
T~ (logA'-l---...--

<ir/ X xn + 1 \ ° 2 w

(Math. Trip. 1909.)

7. Ifx> - 1 then .r
2> (1 +x) {log (1 +x)} 2

. (Math. Trip. 1906.)

[Put 1 +#=e*, and use the fact that sinh £> £ when £> 0.]

8. Show that {log (1 +x)}/x and #/{(l + x) log (1 +#)} both decrease steadily

as x increases from towards 00

.

9. Show that, as x increases from - 1 towards oo , the function

(l+x)~ 1/x assumes once and only once every value between and 1.

(Math. Trip. 1910.)

10. Show that -.— r >- - as x ->- 0.
log (l+x) x 2

11. Show that :

<
— decreases steadily from 1 to as x increases

log (l + x) x J

from —1 towards 00. [The function is undefined when x=0, but if we

attribute to it the value -| when x= it becomes continuous for x=0. Use
Ex. 7 to show that the derivative is negative.]

12. Show that the function (log £ — log x)j(£ — x), where £ is positive,

decreases steadily as x increases from to £, and find its limit as #-*-£.

13. Show that ex > Mx , where M and N are large positive numbers, f

x is greater than the greater of 2 log M and 16 iV 2
.

[It is easy to prove that log x<% sJx ; and so the inequality given is-

certainly satisfied if

x>\ogM+2N Jx,

and therefore certainly satisfied if ^x>\og M, %x> 2N ^/x."]
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14. If f(x) and cf>(.v) tend to infinity as x-*-ao, and /'(.£)/<£' (#)-*- oo

,

thenf(x)/(f)(x)^cc. [Use the result of Ch. VI, Misc. Ex. 33.] By taking

f(x) = xa, (f>(x) = logx, prove that (log x)jx
a -* for all positive values of a.

15. Ifp and q are positive integers then

(S)

11 1

pn+1 pn + 2 qn

as n -*- oo . [Cf. Ex. lxxviii. 6.]

16. Prove that if x is positive then n log {h (I +x1 '11
)} -*— h log x as

n ->- oo . [We have

7il0g{^(l+.r1/»)}= ?ll0g {l-A(l-A-l/»)} = i ?i (l-^/»)
l0g (1 " ^

where w=£ (1 - xv ' 1
). Now use § 209 and Ex. lxxxii. 4.]

17. Prove that if a and b are positive then

{£(aV»+&V~)}»-e^(a&).

[Take logarithms and use Ex. 16.]

18. Show that

l +
l
+

l
+ ... +^-

i
= ilogn + \og2 + ly + en ,

where y is Euler's constant (Ex. lxxxix. 1) and en ^- as n -*- x

.

19. Show that

the series being formed from the series 1 — \ + A- — . . . by taking alternately two

positive terms and then one negative. [The sum of the first 'in terms is

,11 1 1/. 1 1

3 5 An — 1 2 \ 2 n

= £log2H + log2+ £y+ fn -$(log»+ y + en'),

where e„ and en
' tend toOasm->co. (Cf. Ex. lxxviii. 6).]

20. Show that l-^-|+i-i-i + i-Jo-...=|log2.

21. Prove that

n i

tv(36.> 2 -l)
= ~ 3 + 3 23n + 1 — 2n - Sn

where SH=l+~ + ... + -, 2„=l+ =+ ,.. + = r. Hence prove that the sum

of the series when continued to infinity is

- 3+§ log 3 + 2 log 2. {Math. Trip. 1905.)

22. Show that

S -,\ , x=2log2-l, I
/f>

*
, = a (log 3-1).



390 THE LOGARITHMIC AND EXPONENTIAL FUNCTIONS [IX

23. Prove that the sums of the four series

co
1 oc (_l)n-l » l oo (_1>-1

2 \ J , , 2,- —
a—r, 2

,4b2 -1'
i 4w2 -l ' i(2»+l)a-l' 1 (2»+1)2-1

are \, \ir - |, j, \ log 2 -£ respectively.

24. Prove that « ! {ajn)n tends to or to oo according as a < e or a > e.

[If un= n\{ajn)n then Mn + 1/w„= a{l + (l/tt)} -n -»-a/e. It can be shown

that the function tends to oo when a= e: for a proof, which is rather beyond

the scope of the theorems of this chapter, see Bromwich's Infinite Series,

pp. 461 et seq.]

25. Find the limit as x-*- oo of

/a +a
1
x+ ... + a,.xr

\
Xo+KlX

V>o+ ^i x+ • • • + hrxr
/

distinguishing the different cases which may arise. {Math. Trip. 1886.)

26. Prove that

Slog(l+!) (*>0)

diverges to oo . [Compare with 2 (x/n).] Deduce that if x is positive then

(1 +x) (2+.r) ... (n+x)/n ! -* oo

as «-> oo . [The logarithm of the function is 2 log ( 1 + '- ).]

27. Prove that if x > - 1 then

1 1 1!
+

(x+1) 2 {x+l){x + 2)^ {x+l){x+ 2){x+Z)
2!

(x+1) {x+ 2) (x+ S) (ff+4) ^ '

{Math, Trip. 1908.)

[The difference between l/(.r+ l)2 and the sum of the first n terms of the

series is

1 n\ ,

{x+l) 2 {x+2){x+ 3) ,..{x+ n + l)
'J

28. No equation of the type

Aeax+ Befix
+... = 0,

where A, B, ... are polynomials and a, /3, ... different real numbers, can hold

for all values of x. [If a is the algebraically greatest of a, /3, . .
.

, then the term

Aeax outweighs all the rest as .r->- oo .]

29. Show that the sequence

a
1 = e, a2

= e , «3=ec
, ...

tends to infinity more rapidly than any member of the exponential scale.

[Let e
x {x)— ex, e<

!
{x) = eeiW, and so on. Then, if ek {x) is any member of the

exponential scale, an> ek {n) when n > k.~\
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30. Prove that

where a is to be put equal to ^ (x) and /3 to <£ (.r) after differentiation.

Establish a similar rule for the differentiation of (j;)Lir (
x)r J_

31. Prove that if Bx
n e~ x2= e-x2

(fxn (x) then (i) <£„(#) is a polynomial of

degree to, (ii) <£„ + i= -2.r$„+$„', and (iii) all the roots of 0„=O are real and

distinct, and separated by those of cj)n _ 1
= 0. [To prove (iii) assume the truth

of the result for to= 1, 2, ... k, and consider the signs of <£K ,

1
for the n values

of x for which 4>K
= and for large (positive or negative) values of x.]

32. The general solution of f(xy)=f(x)f(y), where / is a differentiable

function, is xa, where a is a constant : and that of

f{x+y)+f{x-y)=2f{x)f{y)

is cosh ax or cosaa', according as/"(0) is positive or negative. [In proving

the second result assume that / has derivatives of the first three orders.

Then

»/(*)+f if" (*)+ 'v) = 2/W [/ (°) +nf (°) +if if" (0) + */}]

,

where ey and *
y

' tend to zero with y. It follows that /(0) = 1, /'(0) = 0,

f"(x)=f"(0)f(x), so that a= v/{/"(0)} or a=J{-f"(0)}.]

33. How do the functions x s
'm (l/x

\ x
sin*im

, x
cos™^ behave as x+ + ?

34. Trace the curves #= tana; e
tan,,;

. y= sin ^ log tan £#.

35. The equation ex=ax+ b has one real root if a<0 or a=0, 6>0. If

a > then it has two real roots or none, according as a log a >b — a or

a log a < b — a.

36. Show by graphical considerations that the equation ex= ax2+ 2bx+c
has one, two, or three real roots if a > 0, none, one, or two if a <0; and show

how to distinguish between the different cases.

37. Trace the curve y= - log (
——

J
, showing that the point (0, \) is

a centre of symmetry, and that as x increases through all real values, y
steadily increases from to 1. Deduce that the equation

1. /e*-l\

-x

loA—) =a

has no real root unless 0<o<l, and then one, whose sign is the same as

that of a-i- [In the first place

is clearly an odd function of x. Also
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The function inside the large bracket tends to zero as x-*-0; and its

derivative is

x \ \sinh %x) J

'

which has the sign of x. Hence di//dx> for all values of x.~\

3S. Trace the curve i/ — e^x *J(x2 +2x), and show that the equation

e
Vx

s/(x
2 + 2x) = a

has no real roots if nis negative, one negative root if0<a<a= e
1y' v'2

»/(2 + 2 v/2),

and two positive roots and one negative if a > a.

39. Show that the equation fn (x) = l +x +— + ... + —-=0 has one real
2! n\

root if n is odd and none if n is even.

[Assume this proved for n= \, 2, ... 2k. Then /2ft + 1 (#) = has at least

one real root, since its degree is odd, and it cannot have more since, if it

had, fik + 1 (x) or/2i. (x) would have to vanish once at least. Hence /2jt + 1 (x) =
has just one root, and so fu + 2 {x) = cannot have more than two. If it has

two, say a and /3, then /'
2J. + 2 (x) or/at+i (x) must vanish once at least between

a and /3, say at y. And

/a + 2 (y)=U + 1 (y) + p^gji > °-

But f%c+2(x) is also positive when x is large (positively or negatively), and

a glance at a figure will show that these results are contradictory. Hence

/2t + 2 (.v)=0 has no real roots.]

40. Prove that if a and b are positive and nearly equal then

. a 1
, LN /l P

approximately, the error being about ${(a — b)/a}3
. [Use the logarithmic

series. This formula is interesting historically as having been employed by

Napier for the numerical calculation of logarithms.]

41. Prove by multiplication of series that if — 1 < x < 1 then

A{iog(i+.r)} 2 =iA'2 --Hi+*)^+J(i+Hi)^---.
|(arctan.r) 2= *.i'

2 -i(l + i)^+Kl + -J +^)^---

42. Prove that

(1 + axfx = e
a

{1 -^n2
.r + Jj (8+ 3a) a*x°- (1 + f*)},

where nx ->- with x.

/ x2 xn \
43. The first n+ 2 terms in the expansion of log f 1 + x+ '— + . . . -\

-J
in

powers of x are

X
n\ [n + 1 l!(» + 2)

+
2!(n+ 3)

XV J nl(2n+ l)j

(Math. Trip. 1899.)
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44. Show that the expansion of

in powers of x begins with the terms

1 -x+ T - 2
;

^—
. (Math. Trip. 1909.)

n + 1 s=i(»+s)(n+s+l)
v e

45. Show that if — 1 <x< 1 then

1
,

] - 4 02 2 ,

!- 4 -"
o9 , ,

x(x+ 3)

l v+Li 23^,Lli_7 * (*
J +ite+o)

3
i+

3.6
24 +

3.6.9
d ^ + - _

27(l-x) 10/3 "

[Use the method of Ex. xcn. 6. The results are more easily obtained by
differentiation; but the problem of the differentiation of an infinite series is

beyond our range.]

dx
46. Prove that P° ff = _2_W (f\

,

Jo (x+a)(x+ b) a-b °W
(.r+a^+^^V* f-

6 - 6 l0g
(!)}'

xaA- 1 f , /a\ , I

ixT^K^w^{a^w\al0S
{b)-

a+br

J (x+a) («*+&)
=
{a*+V)b \^a - b l0g

(!)/
'

/o (^4^^)
=^{^ 6 + al0g

(?)}'

provided that a and b are positive. Deduce, and verify independently, that

each of the functions

a — 1 — log a, aloga — a-fl, ina — log a, itr+aloga

is positive for all positive values of a.

47. Prove that if a, /3, y are all positive, and /3
2> ay, then

/•- dx = 1 ^+ s/(^_ ay)
^ _

J ax*+ 2!3x+ y J(ft* -ay) °°
\ J{ay) J'

while if a is positive and ay>j82 the value of the integral is

1—-T- arc tan J v ^
ay ~

'

that value of the inverse tangent being chosen which lies between and «•

Are there any other really different cases in which the integral is convergent?

48. Prove that if a> - 1 then

dur dx = r dt =2
J i (x+ a)s,f{x" — l) J coslW+a i v?+ 2au-tl '
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al isand deduce that the value of the integral is

2 — arc ta,

if — l<a<l, and

if a> 1. Discuss the case in which a= 1.

49. Transform the integral I . . .. „——
.

, where a>0, in the same
Jo (x+a) s!(x-+ l)

ways, showing that its value is

x7^TT)
log c^WCa2^!) = ^mT) ar§ tanh ~5+r

50. Prove that I arc tan xdx= \tt - \ log 2.

jo

51. If 0<a<l, 0</3<l, then

/'
rf.r 1 . 1 + J(a8)

. lv/{(l-2a^+ aa)(l-2/3^+32
)} ^(a/S)

& l-^(a/j)'

52. Prove that if a> b> then

J _ a, a cosh + & sinh ~
sJ{a

i - 62
)

53. Prove that

and deduce that if a>0 then

losr.r

Jo «2
dx.—— log a.

[Use the substitutions x=\jt and .»=£ra.]

54. Prove that I log ( 1 +— )
dx= na if a>0. [Integrate by parts.]



CHAPTER X

THE GENERAL THEORY OF THE LOGARITHMIC, EXPONENTIAL,
AND CIRCULAR FUNCTIONS

217. Functions of a complex variable. In Ch. Ill we
defined the complex variable

z — x + iy *,

and we considered a few simple properties of some classes of

expressions involving z, such as the polynomial P(z). It is

natural to describe such expressions as functions of z, and in

fact we did describe the quotient P (z)/Q (z), where P (z) and Q (z)

are polynomials, as a ' rational function '. We have however given

no general definition of what is meant by a function of z.

It might seem natural to define a function of z in the same

way as that in which we defined a function of the real variable

x, i.e. to say that Z is a function of z if any relation subsists

between z and Z in virtue of which a value or values of Z corre-

sponds to some or all values of z. But it will be found, on closer

examination, that this definition is not one from which any profit

can be derived. For if z is given, so are x and y, and conversely :

to assign a value of z is precisely the same thing as to assign a

pair of values of x and y. Thus a ' function of z ', according to

the definition suggested, is precisely the same thing as a complex

function

f (^ y) + *9 (k y),

of the two real variables x and y. For example

x — iy, xy, \z\ = ^(x2 + y
2
), am z = arc tan (y/x)

are 'functions of z\ The definition, although perfectly legitimate,

* In this chapter we shall generally find it convenient to write x + iy rather

than x + yi.
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is futile because it does not really define a new idea at all. It is

therefore more convenient to use the expression ' function of the

complex variable z ' in a more restricted sense, or in other words

to pick out, from the general class of complex functions of the

two real variables x and y, a special class to which the expression

shall be restricted. But if we were to attempt to explain how
this selection is made, and what are the characteristic properties

of the special class of functions selected, we should be led far

beyond the limits of this book. We shall therefore not attempt

to give any general definitions, but shall confine ourselves entirely

to special functions defined directly.

218. We have already defined polynomials in z (§ 39),

rational functions of z (§ 46), and roots of z (§ 47). There is

no difficulty in extending to the complex variable the definitions

of algebraical functions, explicit and implicit, which we gave

'(§§ 26—27) in the case of the real variable x. In all these cases

we shall call the complex number z, the argument (§ 44) of the

point z, the argument of the function f (z) under consideration.

The question which will occupy us in this chapter is that of defining

and determining the principal properties of the logarithmic, ex-

ponential, and trigonometrical or circular functions of z. These

functions are of course so far defined for real values of z only, the

logarithm indeed for positive values only.

We shall begin with the logarithmic function. It is natural

to attempt to define it by means of some extension of the definition

log «=
J j (x>0):

and in order to do this we shall find it necessary to consider

briefly some extensions of the notion of an integral.

219. Real and complex curvilinear integrals. Let AB
be an arc G of a curve defined by the equations

where <£ and yfr are functions of t with continuous differential

coefficients </>' and yfr' ; and suppose that, as t varies from t to t1}

the point (x, y) moves along the curve, in the same direction, from

A to B.
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Then we define che curvilinear integral

{g(x,y)dx + h(x,y)dy} (1),
c

where g and h are continuous functions of x and y, as being equi-

valent to the ordinary integral obtained by effecting the formal

substitutions x — <p (t), y = ^r (t), i.e. to

I
' {gifrWV +h(<f>) ir)y}dt.

We call C the path of integration.

Let us suppose now that

z = x + iy =
<f)

(t) + i-fy (t),

so that z describes the curve C in Argand's diagram as t varies.

Further let us suppose that

f{z) — u + iv

is a polynomial in z or rational function of z.

Then we define

L fi*)d* (2)
J V

as meaning

I (u + iv) (dx + idy),
J c

which is itself defined as meaning

L (udx— vdy) + i\ (vdx + u dy).
J c

220. The definition of_Log. £ Now let £= f + it; be any-

complex number. We define Log £, the general logarithm of £
by the equation

dzLog£=(
Jc z

where C is a curve which starts from 1 and ends at £ and does

not pass through the origin. Thus (Fig. 54) the paths (a), (b), (c)

are paths such as are contemplated in the definition. The value

of Log z is thus defined when the particular path of integration

has been chosen. But at present it is not clear how far the value

of Log z resulting from the definition depends upon what path is

chosen. Suppose for example that £ is real and positive, say
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equal to f. Then one possible path of integration is the straight

line from 1 to £, a path which we may suppose to be defined by

Y

Pig. 54.

the equations x = t, y = 0. In this case, and with this particular

choice of the path of integration, we have

Los: *-/:*

so that Log f is equal to log £, the logarithm of £ according to the

definition given in the last chapter. Thus one value at any rate

of Log £, when £ is real and positive, is log £. But in this case, as

in the general case, the path of integration can be chosen in an

infinite variety of different ways. There is nothing to show that

every value of Log £ is equal to log £; and in point of fact we

shall see that this is not the case. This is why we have adopted

the notation Log £, Log £ instead of log £", log f. Log £ is (possibly

at any rate) a many valued function, and log f is only one of its

values. And in the general case, so far as we can see at present,

three alternatives are equally possible, viz. that

(1) we may always get the same value of Log f, by whatever

path' we go from 1 to £

;

we may get a different value corresponding to every

different path
;

we may get a number of different values each of which

corresponds to a whole class of paths :

and the truth or falsehood of any one of these alternatives is in

no way implied by our definition.

(2)

(3)
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221. The values of Log £ Let us suppose that the polar

coordinates of the point z = £ are p and </>, so that

£= p (cos
<f>
+ i sin <£).

We suppose for the present that — ir <
<f>
< ir, while p may have

any positive value. Thus £ may have any value other than zero

or a real negative value.

The coordinates (*, y) of any point on the path C are functions

of t, and so also are its polar coordinates (r, 6). Also

w^f *-[ dx+idy
Jo z J c x + iy

=f-Mdx . dy

dt dt
~)dt,

t„ x + ly

in virtue of the definitions of § 219. But x = r cos 6,y — r sin 6, and

dx .dy

di
+ l

di

a dr . dd\ . ( . n d?
cos a -r — r sin 6 -j-

J
-f % f sin 6 Q d6

~dt

+rcos6
-dt

/ n ,
• • /ix fdr . dd=

(co* e+ism0Kdt
+ir

dt

so that

dt + i ~j,dt = [log r] + i [0],°g ?
~Je„ r eft

""
' "./«, c&

where [log r] denotes the difference between the values of log r at

the points corresponding to t = ^ and t = t , and [#] has a similar

meaning.

It is clear that

[log r] = log p - log 1 = log p ;

but the value of [6] requires a little more consideration. Let us

suppose first that the path of integration is the straight line from

1 to £ The initial value of 6 is the amplitude of 1, or rather

one of the amplitudes of 1, viz.

Ikir, where k is any integer. Let

us suppose that initially 6 = 2kir.

It is evident from the figure that

6 increases from 2kir to Ikir + <j>

as t moves along the line. Thus

[0]=(2Jbr+<£)-2fc7r=0,

and, when the path of integration

is a straight line, Log £ = log p + i<f).

Fig. 55.
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We shall call this particular value of Log£ the principal

value. When £ is real and positive, £= p and 9 = 0, so that the

principal value of Log £ is the ordinary logarithm log £. Hence it

will be convenient in general to denote the principal value of

Log ? by log £ Thus
}ogZ = \ogp + i<f>,

and the principal value is characterised by the fact that its

imaginary part lies between — it and it.

Next let us consider any path (such as those shown in Fig. 56)

such that the area or areas included

between the path and the straight

line from 1 to £ does not include

the origin. It is easy to see that

[0] is still equal to 9. Along the

curve shown in the figure by a

continuous line, for example, 0,

initially equal to 2&tt, first de-

creases to the value

2ICTT-X0P Fi8- 56 -

and then increases again, being equal to 2kir at Q, and finally

to Ikir + 9. The dotted curve shows a similar but slightly more

complicated case in which the straight line and the curve bound

two areas, neither of which includes the origin. Thus if the path

of integration is such that the closed curve formed by it and the

line frum 1 to £ does not include the origin, then

Log £= log £= logp + i(f>.

On the other hand it is easy

to construct paths of integration

such that [0] is not equal to </>.

Consider, for example, the curve

indicated by a continuous line in

Fig. 57. If is initially equal

to 2/b7r, it will have increased

by 2tt when we get to P and

by 4-7T when we get to Q; and its

final value will be 2&7r + 4nr + cp,

so that [0] = 47r + 9 and Fig. 57.

Log £ = log p + * (47T + 9).
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In this case the path of integration winds twice round the

origin in the positive sense. If we had taken a path winding

k times round the origin we should have found, in a precisely

similar way, that [0] = 2kir + </> and

Log £= log p + i (2k jt + (/>).

Here k is positive. By making the path wind round the origin

in the opposite direction (as shown in the dotted path in Fig. 57),

we obtain a similar series of values in which k is negative.

Since
| £ |

= p, and the different angles 2krr +
(f>

are the different

values of am f, we conclude that every value of log
| £ |

+ i am £ is

a value of Log£; and it is clear from the preceding discussion

that every value of Log £ must be of this form.

We may summarise our conclusions as follows : the general

value of Log £ is

log \£\+i am f = log p + i (2&jt +
<f>),

where k is any positive or negative integer. The value of k is

determined by the path of integration chosen. If this path is a

straight line then k = and

Log f = log f = log p + i<p.

In what precedes we have used £ to denote the argument of

the function Log £, and (£, 77) or (p, <£) to denote the coordinates of

£ ; and z, (%, y), (r, 6) to denote an arbitrary point on the path of

integration and its coordinates. There is however no reason now
why we should not revert to the natural notation in which z is used

as the argument of the function Log z, and we shall do this in

the following examples.

Examples XCTII. 1. We supposed above that — n<6<n, and so

excluded the case in which z is real and negative. In this case the straight

line from 1 to z passes through 0, and is therefore not admissible as a path of

integration. Both n and — n are values of am z, and 6 is equal to one or

other of them: also r=—z. The values of Logz are still the values of

log|s|+iam2, viz.

\og(-z) + (2k+ l)7n\

where h is an integer. The values log ( - z) + ni and log ( - z) - iri correspond

to paths from 1 to z lying respectively entirely above and entirely below the

real axis. Either of them may be taken as the principal value of Logz, as

convenience dictates. We shall choose the value log ( - z) + ni corresponding

to the first path.

h. 26
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2. The real and imaginary parts of any value of Logs are both continuous

functions of x and y, except for x— 0, y= 0.

3. The functional equation satisfied by Logs. The function Logs

satisfies the equation

Lbg«r
1*a=Log21 +Logai (1),

in the sense that every value of either side of this equation is one of the values

of the other side. This follows at once by putting

z
l
= ri (cos di + i sin 61), z2= r2 (cos 82+ * sin ^2))

and applying the formula of p. 401. It is however not true that

log«1z2=logz1+16g«2 (2)

in all circumstances. If, e.g.,

2
1
= 22= i (- 1 + 1\/3) = cos fjr+isin k,

then log2
1
= log22= |7ri, and \ogz

l+ \ogZ2= §ni, which is one of the values of

Log z
l
z2 , but not the principal value. In fact log 2

X
2
2
= — §ni.

An equation such as (1), in which every value of either side is a value

of the other, we shall call a complete equation, or an equation which is

completely true.

4. The equation Log2m=»iLog2, where m is an integer, is not completely

true : every value of the right-hand side is a value of the left-hand side, but

the converse is not true.

5. The equation Log (1/2)= -Logs is completely true. It is also true

that log (1/2)= —log 2, except when 2 is real and negative.

6. The equation

lo§
(JZb)

= loS (*- a) - log (« - b)

is true if 2 lies outside the region bounded by the line joining the points z= a,

z=b, and lines through these points parallel to OX and extending to infinity

in the negative direction.

iog (r!Wogfi-?Wog(i

7. The equation

'"[b-zJ—*\*--Z/

is true if 2 lies outside the triangle formed by the three points 0, a, b.

8. Draw the graph of the function I (Logs-) of the real variable x. [The

graph consists of the positive halves of the lines y= 2kir and the negative

halves of the lines y=(2k+l) n.]

9. The function /(.f) of the real variable x, denned by

«/ (*) =p»r

+

(q- p) I (log *),

is equal to p when x is positive and to q when a?-is negative.
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10. The function /(#) defined by

/(*) =prr+(q-p)l {log {x -l)}+(r-q)l (log x)

is equal to p when x>\, to q when 0<.r<l, and to r when x<0.

11. For what values of z is (i) log 2 (ii) any value of Logs (a) real or

(b) purely imaginary ?

12. If z= a;+ ly then Log Log z

=

log 7?+ i (9+ 2/fc'jr), where

i?2= (logr) 2+ (^+ 2y{;7r)
2

and is the least positive angle determined by the equations

cos 9 : sin : 1 : : log r:6 + 2kir : >/{(log rf + (d + 2£ir)*}.

Plot roughly the doubly infinite set of values of Log Log (l + i*v/3), indicating

which of them are values of log Log(l + i\/3) and which of Loglog(l + i v'3).

222. The exponential function. In Ch. IX we denned

a function ey of the real variable y as the inverse of the function

y = log x. It is naturally suggested that we should define a function

of the complex variable z which is the inverse of the function

Logs.

Definition. If any value of Log z is equal to £ we call z the

exponential of £ and lurite

z = exp £".

Thus 2 = exp £ if %=~Logz. It is certain that to any given

value of z correspond infinitely many different values of £". It

would not be unnatural to suppose that, conversely, to any given

value of £ correspond infinitely many values of z, or in other words

that exp £ is an infinitely many-valued function of £ This is

however not the case, as is proved by the following theorem.

Theorem. The exponential function exp £ is a one-valued

function of £

For suppose that

zx
= i\ (cos #i + i sin

X ), z2
= r2 (cos 0., + i sin 2)

are both values of exp £ Then

£= Log4 = Log4,

and so log i\ + i (0t + 2»i7r) = log r2 + i (02 + 2mr),

where m and n are integers. This involves

log 1\ = log ?',,
X + 2mrr = 2 + 2mr.

Thus 7", = r2 , and X and 2 differ by a multiple of 2tt. Hence

Z\
= Z2'

26—2
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Corollary. If £is real then exp £=ef
, the real exponential

function of £ defined in Ch. IX.

For if z = e^ then logz = £, i.e. one of the values of Log,? is f,

Hence z = exp £

223. The value of exp £ Let f = £ + ^ and

z = exp £ = r (cos + i sin 0).

Then £ + iw = Log £ = log r + t (0 + 2mir),

where m is an integer. Hence £ = log r, w = + 2mir, or

r = ef
, = 7] — 2/mt

;

and accordingly

exp (£ + 1^) = e^ (cos rj + i sin ?;).

If »7 = then exp £ = ef, as we have already inferred in § 222.

It is clear that both the real and the imaginary parts of exp (£ + irj)

are continuous functions of f and rj for all values of £ and ?;.

224. The functional equation satisfied by exp f, Let

gi= 11 + Hfc ,

§"
a = f2 + 1% . Then

exp £ x exp £2 = e& (cos ?; x + i sin 97,) x e& (cos 77, + i sin %)
= efi+f* {cos (77, + ?72) + 1 sin (% + ?? 2)}

= exp (£+£,).

The exponential function therefore satisfies the functional relation

/(S'i + Sb)=/(?i) /(&), an equation which we have proved already

(§ 205) to be true for real values of & and fa .

225. The general power ai It might seem natural, as

exp £=e* when £ is real, to adopt the same notation when £is

complex and to drop the notation exp £ altogether. We shall not

follow this course because we shall have to give a more general

definition of the meaning of the symbol e$\ we shall find then
that e$ represents a function with infinitely many values of which
exp £ is only one.

We have already defined the meaning of the symbol a f in a

considerable variety of cases. It is defined in elementary Algebra
in the case in which a is real and positive and f rational, or a real

and negative and £ a rational fraction whose denominator is odd.

According to the definitions there given a* has at most two values.
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In Ch. Ill we extended our definitions to cover the case in which
a is any real or complex number and f any rational number p/q

;

and in Ch. IX we gave a new definition, expressed by the equation

a( _ e <r log a>

which applies whenever £ is real and a real and positive.

Thus we have, in one way or another, attached a meaning to

such expressions as

3'/*, (-I) 1/3
,

(v/3+i0-1/2
, (3-S) 1^;

but we have as yet given no definitions which enable us to attach

any meaning to such expressions as

(l+iy\ 2\ (d + 2if+
si

.

We shall now give a general definition of a$ which applies to all

values of a and f, real or complex, with the one limitation that

a must not be equal to zero.

Definition. The function at is defined by the equation

a$ = exp (£Log a)

where Log a is any value of the logarithm of a.

We must first satisfy ourselves that this definition is consistent

with the previous definitions and includes them all as particular

cases.

(1) If a is positive and £ real, then one value of £"Loga, viz.

£ log a, is real: and exp (£log a) = e^
los a

, which agrees with the

definition adopted in Ch. IX. The definition of Ch. IX is, as

we saw then, consistent with the definition given in elementary

Algebra ; and so our new definition is so too.

(2) If a = e
T (cos yjr + i sin -i/r), then

Log a = t + i (yjr + 2nnr),

exp {(p/q) Log a] = e^T/? Cis {(p/q) (f + 2nnr)},

where m may have any integral value. It is easy to see that if m
assumes all possible integral values then this expression assumes q

and only q different values, which are precisely the values of aPlq

found in § 48. Hence our new definition is also consistent with

that of Ch. III.
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226. The general value of ai Let

£ = £ + ir], a = a (cos ijr + i sin yfr)

where — 7r<^ = 7r, so that, in the notation of § 225, a = e
T or

t = log <r.

Then

£Log a = (| + irj) {log a + i (i/r + 2m7r)} = Z + %M,

where

X = | log O- — 77 (l|r + 2OT7r), M =7} log O- + £ (\/r + 2 J717T)
J

and af= exp (f Log a) = eL (cos ilf + t sin M).

Thus the general value of a^ is

e
fioga-,(*+2mir)

[cos |^ \ g a. + j:ty + 2nnr)}

+ i sin {7? log <r+^(i|r + 2«wr)}].

In general a4
is an infinitely many-valued function. For

I ai I _ gf logo—T)(i/(+2»njr)

has a different value for every value of m, unless 77 = 0. If on the

other hand 77 = 0, then the moduli of all the different values of a*

are the same. But any two values differ unless their amplitudes

are the same or differ by a multiple of 2ir. This requires that

i;(yjr + Imir) and i;(\jr + 2mr), where m and n are different integers,

shall differ, if at all, by a multiple of 2ir. But if

then £ = k/(m — n) is rational. We conclude that a^ is infinitely

many-valued unless %is real and rational. On the other hand we
have already seen that, when £ is real and rational, a$ has but a

finite number of values.

The principal value of a^= exp ((Log a) is obtained by giving Log a its

principal value, i.e. by supposing m= in the general formula. Thus the

principal value of or is

g
f log o - „* ; cos ^ ]og o- +^) + j- sin (^ iog a + ^)} #

Two particular cases are of especial interest. If a is real and positive

and f real, then a-= a, ^= 0, £==f, »7
= 0, and the principal value of a> is

e^
loga

, which is the value denned in the last chapter. If
[
or

|

= 1 and ( is

real, then <r = l, £= £ »? = 0, and the principal value of (cos >//+ z sin ^)^ is

cos £\}a + i sin fy. This is a further generalisation of De Moivre's Theorem

(§§45,49).
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Examples XCIV. 1. Find all the values of i\ [By definition

i'= exp (i Log i).

But t = cos^n + ism%ir, hogi—(2k+ \)ni,

where k is any integei*. Hence

i*=exp{-(2£+|) n} =e -(2t+i),r
.

All the values of i l are therefore real and positive.]

2. Find all the values of (1 + i)\ i 1 +«, (1 + i)i + *.

3. The values of a% when plotted in the Argand diagram, are the vertices

of an equiangular polygon inscribed in an equiangular spiral whose angle is

independent of a. (Math. Trip. 1899.)

[If a^= r (cos 6 + i sin 6) we have

r^IogT-nW+am^ 3=r,log<r+£U,+2mv)>,

and all the points lie on the spiral i^a-^'^^e'^K]

4. The function e\ If we write e for a in the general formula, so that

log o-=l, ^= 0, we obtain

e <T= e
l-2»wni ;cog ^ + 2wi?r^ + gJn ^ + 2wi7r|)}.

The principal value of e> is e* (cos q-H'sin 77), which is equal to exp £ (§ 223).

In particular, if £ is real, so that r]= 0, we obtain

e* (cos 2mn£+i sin 2hi7t^)

as the general and &• as the principal value, e 4 denoting here the positive

value of the exponential defined in Ch. IX.

5. Show that Log e^=(l +2wnri) £+2ft7n', where m and n are any integers,

and that in general Log a? has a double infinity of values.

6. The equation l/a*= a~' is completely true (Ex. xcm. 3): it is also true

of the principal values.

7. The equation a^xb^=(aby is completely true but not always true of

the principal values.

8. The equation ct^x a^'= a^
+ *'

is not completely true, but is true of the

principal values. [Every value of the right-hand side is a value of the left-

hand side, but the general value of a^xa^ , viz.

exp {£ (log a+ 2mni) + f (log a+2mri)}

,

is not as a rule a value of a^
+

> unless m=n.]

9. What are the corresponding results as regards the equations

Log J= C Log a, (off= (a?)*= a® ?

10. For what values of £ is (a) any value (b) the principal value of eb

(i) real (ii) purely imaginary (iii) of unit modulus ?
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11. The necessary and sufficient conditions that all the values of at should

be real are that 2£ and {rj log
|
a

J
+£ am aj/rr, where am a denotes any value of

the amplitude, should both be integral. What are the corresponding con-

ditions that all the values should be of unit modulus ?

12. The general value oi\xi+x~ i
\,
where x>0, is

e
-(m-n)7r^

2 |cosh 2 (m + n) „-+ COS (2 logo;)}].

13. Explain the fallacy in the following argument : since e
2mwi=e2n*i=l,

where m and n are any integers, therefore, raising each side to the power i,

we obtain e
-*"l"=e-*m.

14. In what circumstances are any of the values of xx, where x is real,

themselves real ? [If x> then

xx= exp (x Log x) = exp (x log x) Cis 2vi7rx,

the first factor being real. The principal value, for which m=0, is always

real.

If x is a rational fraction p/(2q + l), or is irrational, then there is no other

real value. But if x is of the form pj2q, then there is one other real value,

viz. - exp (so log x\ given by m - q.

If#=-£<0then

^= exp{-£Log(-£)} = exp(-£log£)Cis{-(2m+ l)7r!}.

The only case in which any value is real is that in which £=pj(2q+ l), when

m=q gives the real value

exp(-£log£)Cis(-^)=(-l)^.

The cases of reality are illustrated by the examples

a>*-M, (*)*-±«A> (-t)"*-n (-*)"*--

w

15. Logarithms to any base. We may define £= Loga 2 in two different

ways. We may say (i) that £= Loga z if the principal value of a? is equal to z
;

or we may say (ii) that ( - Loga 2 if a»y value of o.» is equal to 2.

Thus if a=e then f=Log,,2, according to the first definition, if the

principal value of e> is equal to z, or if exp £=2; and so Loge 2 is identical

with Log z. But, according to the second definition, ^= Log
e 2 if

ef=exp(fLoge) = 2, £Loge= Log2,

or £=(Log z)/(Log e), any values of the logarithms being taken. Thus

f T ~, • log
I

^
I

+ (
am g+ 2?»ir)t

f= L0g6
2=

j-j^j-j ,

so that f is a doubly infinitely many-valued function of 2. And generally,

according to this definition, Loga 2= (Log2)/(Loga).

16. Loggl=2m»ri/(l+ 2»7ri), Loge (-l)= (2m+ l) iriftl + 2%ni)
1
where m

and n are any integers.
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227. The exponential values of the sine and cosine.

From the formula

exp (f + it)) = exp £ (cos 77 + i sin 77),

we can deduce a number of extremely important subsidiary

formulae. Taking £=0, we obtain exp (177) = cos 77 + i sin 77 ; and,

changing the sign of 77, exp (— irj) = cos rj — i sin 77. Hence

cos 77= ^ {exp (irj) + exp ( —ir))),

sin 77 = — ^ i {exp (177) — exp ( — {77)}.

We can of course deduce expressions for any of the trigonometrical

ratios of 77 in terms of exp (it]).

228. Definition of sin f and cos f for all values of f.

We saw in the last section that, when f is real,

cosf= \ {exp (if) + exp (- if)} (la),

sin £= - \i {exp (if) - exp (- if)} (16).

The left-hand sides of these equations are defined, by the ordinary

geometrical definitions adopted in elementary Trigonometry, only

for real values of f. The right-hand sides have, on the other

hand, been defined for all values of f, real or complex. We are

therefore naturally led to adopt the formulae (1) as the definitions

of cos f and sin f for all values of f. These definitions agree, in

virtue of the results of § 227, with the elementary definitions for

real values of f.

Having defined cos f and sin f, we define the other trigono-

metrical ratios by the equations

sin f cos f 1 «. 1 /s>xtanf = 7., cotf=-

—

y , secf = ^, cosec f= -r— ...(2).
cos f sin f cos f sin f

v

It is evident that cos f and sec f are even functions of f, and

sin f, tan f, cot f, and cosec f odd functions. Also, if exp (if) = t,

we have

cos f= h {t + (1/0}, sin f= -£ i {£ - (1/0},

cos2
f + sin2 f=i[{«+(l/0] 2 -^-(l/0j 2]=l (3).

We can moreover express the trigonometrical functions of

f+ f in terms of those of f and f by precisely the same formulae
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as those which hold in elementary trigonometry. For if exp (i%) = t,

exp (if) = t', we have

coS (?+ n=i(«' +^{K)(<'4) + K)( ('-F
= cos £cos f — sin £sin £' (4)

;

and similarly we can prove that

sin(£+0 = sm £ cos £' + cos£sin£' (5).

In particular

cos(£+ £7r) = -sin £ sin(^+^7r) = cos £ (6).

All the ordinary formulae of elementary Trigonometry are

algebraical corollaries of the equations (2)—(6) ; and so all such

relations hold also for the generalised trigonometrical functions

defined in this section.

229. The generalised hyperbolic functions. In Ex. lxxxvii. 19, we

denned cosh f and sinh £, for real values of £, by the equations

cosh C=i {exp C

+

exp (-£)}, sinh (=h {exp f- exp (-{)} (1).

We can now extend this definition to complex values of the variable;

i.e. we can agree that the equations (1) are to define cosh f and sinh£ for

all values of £ real or complex. The reader will easily verify the following

relations

:

cos i£= cosh £, sin i£= i sinh £, cosh i£= cos f, sinh i£— i sin £.

We have seen that any elementary trigonometrical formula, such as

the formula cos 2^"= cos2 £ — sin 2
f, remains true when £ is allowed to assume

complex values. It remains true therefore if we write cos i( for cos £, sin i£

for sin £ and cos 2^ for cos 2£; or, in other words, if we write cosh £ for cos (,

isinh £ for sin £, and cosh 2£ for cos 2£. Hence

cosh 2^= cosh 2 C+sinh2
£.

The same process of transformation may be applied to any trigonometrical

identity. It is of course this fact which explains the correspondence noted

in Ex. lxxxvii. 21 between the formulae for the hyperbolic and those for the

ordinary trigonometrical functions.

230. Formulae for cos(£+iij), sin(£+ty), etc. It follows from the

addition formulae that

cos (£+ *i?) = cos £ cos iff — sin £ sin it]= cos | cosh ip—i sin £ sinh rj,

sin (£ + irj) = sin | cos ir) + cos £ sin it] = sin £ cosh r/ + i cos £ sinh rj.

These formulae are true for all values of £ and rj. The interesting case

is that in which £ and 77 are real. They then give expressions for the real and

imaginary parts of the cosine and sine of a complex number.
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Examples XCV. 1. Determine the values of £ for which cos £ and sin £

are (i) real (ii) purely imaginary. [For example cos£ is real when 77=0 or

when £ is any multiple of 77-.]

2.
I

cos (£+ irf)
I

= s/(cos
2
£ + sinh2

77)= J{\ (cosh 2r) + cos 2|)},

I

sin (£+ irj)
I

= N/(sin
2 £ + sinh2

77) = J{$ (cosh 2rj - cos 2£)}.

[Use {e.g.) the equation | cos (%+irj)
|

= s/{cos (£+ ^77) cos (£ — 177)}.]

_ /* . \ sin 2^4- ^ sinh 2^ .. sin2|-i'sinh2n
3. ten(g+ t,)=

cosh2)7+co^g
>

cot(g+»,)=
co8h2|| _ co82r

[For example

tan (g+^)=
Sin(

/f
+^ C°3

/

(f-^ = si"2g+ sin2^
v " cos ($+ it)) cos (£-ir)) cos 2§ + cos 2i»;

which leads at once to the result given.]

cos £ cosh 77 + i sin £ sinh jj

sec (£+ ^77)

cosec (£+^7?) =

£ (cosh 2»j+ cos 2£) '

sin £ cosh 7; — i cos £ sinh 77

J (cosh 2r; — cos 2£)

5. If
I
cos (£+ {77) |

= 1 then sin2
£= sinh2

77, and if
|
sin (t- + ir))

|
= 1 then

cos2 £ = sinh2
17.

6. If |cos(f+ i!i)| = l, then

sin*{am cos (£+ £77)} = ± sin2 £ = ± sinh2
rj.

7. Prove that Log cos (£+ 17) — A-\- iB, where

J. = \ log {| (cosh 2r/ + cos 2£)}

and 5 is any angle such that

cos B sin Z? 1

cos £ cosh 77 sin £ sinh 77 s/{j (cosh 277 + cos 2£)}
*

Find a similar formula for Log sin (£+ 177).

8. Solution of the equation cos£=a, where a is real. Putting

£=£ + 177, and equating real and imaginary parts, we obtain

cos £ cosh 77 = a, sin £ sinh 77 = 0.

Hence either 77= or £ is a multiple of 71-. If (i) 77= then cos £= a, which is

impossible unless -l£a£l. This hypothesis leads to the solution

£=2£n-±arc cos a,

where arccosa lies between and \n. If (ii) £=mn then cosh t/= ( — l)m a, so

that either o^l and m is even, or a< — 1 and m is odd. If a= ±1 then 77= 0,

and we are led back to our first case. If
|
a

|
> 1 then cosh 77 = |

a
\
, and we

are led to the solutions

£= 2for±i*log{ a + V(n2 -l)} (a>l),

C=(2k + 1) ir±tlog{- a+ v/(a
2 -l)} (a<-l).

For example, the general solution of cos f= — f is (= (2k + 1) tt± Hog 3.
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9. Solve sin f= a, where a is real.

10. Solution of cos ^= a+ i'/3, where 04=0. We may suppose /3>0,

since the results when /3 <0 may be deduced by merely changing the sign of i.

In this case

cos £ cosh r) = a, sin £ sinhr;= -/3 (1),

and (a/cosh t])
2+ (/3/sinh 7)

2=1.

If we put cosh2
jj = x we find that

a;
2 -(l+a2 +/32j#4-a2=0

or a;= (^ i ± A 2)
2
, where

vl, =W{(« + l) 2 +/3 2
}, ^ 2=K/{(«-D2+32

}.

Suppose a > 0. Then A x> A 2 > and cosh ^ = J t ± 42 . Also

cos | = a/(cosh rj) = A 1 + A 2 ,

and since cosh rj > cos £ we must take

cosh r) =A 1
+A 2 ,

cos£= ^4
1
-^

2 '

The general solutions of these equations are

£= 2/br±arccos J/, v = ±log [Z + N/(Z
2 - 1)} (2),

where L= A
t
+A 2 , 3f=A 1 -A 2 , and arc cos M lies between and \n.

The values of r\ and £ thus found above include, however, the solutions of

the equations

cos | cosh r) = a, sin £ sinhr? = /3 (3),

as well as those of the equations (1), since we have only used the second of

the latter equations after squaring it. To distinguish the two sets of

solutions we observe that the sign of sin £ is the same as the ambiguous sign

in the first of the equations (2), and the sign of sinh r) is the same as the

ambiguous sign in the second. Since /3> 0, these two signs must be different.

Hence the general solution required is

f=2/(-7r±[arccosJ/-ilog{Z; + N/(Z
2 -l)}].

11. Work out the cases in which a <0 and a = in the same way.

12. If /3 = then L= h\a+ l\ +h\a-l\ and M=h\ a + l \-h\ a-l \.

Verify that the results thus obtained agree with those of Ex. 8.

13. Show that if a and /3 arc positive then the general solution of

sin £=a + i'/3 is

(=l-n + ( - l)* [arc sin M+ilog {L+J(L2 -
1)}],

where arc sin M lies between and ^n. Obtain the solution in the other

possible cases.

14. Solve tan (=a, where a is real. [All the roots are real.]
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15. Show that the general solution of tan f=a + z'/3, where fi=£0, is

> i L l/i ,i-i («
2+ (l+/3) 2

l

where 8 is the numerically least angle such that

cos 6 : sin 6 : 1 : : 1 - a 2 - /3
2

: 2a : V{(1 - a2 - /3
2
)
2+ 4a2

}.

16. If 2= £exp (jn-i), where £ is real, and c is also real, then the modulus
of cos 2nz - cos 2nc is

Vrjf {1 +cos 4ttc+ cos (2tt| V2) + cosh (2tt£ ^2)

- 4 cos 2n-c cos (»r^ v/2) cosh («£ >/2)}].

1 7. Prove that | exp exp (£+ iq)
|

= exp (exp £ cos r?),

E, {cos cos ({+ it))}= cos (cos £ cosh 77) cosh (sin £ sinh »?),

I {sin sin (£+ iij)} = cos (sin £ cosh 77) sinh (cos £ sinh ??).

18. Prove that |exp f |
tends to 00 if £ moves away towards infinity along

any straight line through the origin making an angle less than \tt with OXr

and to if ( moves away along a similar line making an angle greater than.

|tt with OX.

19. Prove that |cosf| and |sin£| tend to co if f moves away towards

infinity along any straight line through the origin other than either half of

the real axis.

20. Prove that tan f tends to — i or to i if f moves away to infinity

along the straight line of Ex. 19, to — i if the line lies above the real axis and

to i if it lies below.

231. The connection between the logarithmic and the inverse

trigonometrical functions. We found in Ch. VI that the integral of a

rational or algebraical function 4>(x, a, /3, ...), where a, /3, ... are constants,

often assumes different forms according to the values of a, /3, ... ; sometimes

it can be expressed by means of logarithms, and sometimes by means of

inverse trigonometrical functions. Thus, for example,

rlv 1 x . .—.— = —r- arc tan —- (1)
x*+ a sia s!a

if a> 0, but
doc 1 . \x—J( — a)\ , .

log
; „ , ,; , (2)

/.

/ 2+a 2 N/(-a)
6
|*+V(-«»)

if a < 0. These facts suggest the existence of some functional connection

between the logarithmic and the inverse circular functions. That there

is such a connection may also be inferred from the facts that we have ex-

pressed the circular functions of £ in terms of exp if, and that the logarithm

is the inverse of the exponential function.

Let us consider more particularly the equation

f doe 1 . (x — a\
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which holds when a is real and (x-a)/(x+ a) is positive. If we could write

ia instead of a in this equation, we should be led to the formula

arctan(-) = ilog(^-aW (3),
\aj 2i ° \X+laJ

where G is a constant, and the question is suggested whether, now that we

have defined the logarithm of a complex number, this equation will not be

found to be actually true.

Now (§ 221)
Log(#±i'a) = £log(.r2+ a2)±i(0+ 2£7r),

where k is an integer and <£ is the numerically least angle such that

cos = A'/v/(^'
2+ a2) and sin = a/N/(.^

2 + a2
). Thus

—. Log ( r ) = — 6 - ?TTt
2 J ° \x + iaj r '

where I is an integer, and this does in fact differ by a constant from any

value of arc tan (xja).

The standard formula connecting the logarithmic and inverse circular

functions is

arctan^=-.Log(
f±^j (4),

where x is real. It is most easily verified by putting #=tany, when the right-

hand side reduces to

1 T /cos?/+ isiny\ 1 T . _. . , ,—
. Log "———- ) = -—

. Log (exp 2iy) = v+ Ictt,

2i ° \cosy-ismyJ 2t
oV r "' *

where h is any integer, so that the equation (4) is ' completely ' true (Ex. xcin.

3). The reader should also verify the formulae

arccos.r= -^Log {x±i*J(l —#2
)}, arc sin #= — i' Log {£f+ ^/(l — x2

)}...(5),

where — \£.x£L\: each of these formulae also is 'completely' true.

Example. Solving the equation

cos «=#= |{y + (%)},

where y= exp (iu), with respect to ?/, we obtain y = x + i sJ(\ — x"1). Thus:

u= - i Logy= — i Log {x±i,J(l -.r2)},

which is equivalent to the first of the equations (5). Obtain the remaining

equations (4) and (5) by similar reasoning.

232. The power series for exp z*. We saw in § 212

that when z is real

exp z = 1 + z +o-,+ (1).

Moreover we saw in § 191 that the series on the right-hand side

* It will be convenient now to use z instead of £ as the argument of the

exponential function.
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remains convergent (indeed absolutely convergent) when z is com-

plex. It is naturally suggested that the equation (1) also remains

true, and we shall now prove that this is the case.

Let the sum of the series (1) be denoted by F(z). The series

being absolutely convergent, it follows by direct multiplication (as

in Ex. lxxxi. 7) that F (z) satisfies the functional equation

F(z)F{h) = F(z + h) (2).

Now let z = iy, where y is real, and F (z) = f(y). Then

f(y)f(k)=f(y+k);

and so
/(y + *)-/(y) = /(y)

f/(fc)-l

k J XJ '
\ k

^ . f(k)-l . f- ik (iky-
)

and so, if
|

k
\
< 1,

f(k)-l
k

1 1

2 !

+
3T

+...)|*|<(«-2)|*

Hence {f (k) - l\/k-*~i as&-*-0, and so

f
,

(y)
= lim f(y + V-f(y) = {f(lj) (3)

Now

f{y) = *») = 1 + (iy) + {^+... = (
f
i{y) + if (y),

where <f> (y) is an even and i/r (^/) an odd function of y, and so

\f(y)\ = */l{<!>(y)}*+{+(y)Y]

-VW(y) + *t^)H*(y)-»+(y)}]

and therefore

/ (y) — cos ^
r + * sm ^ >

where Y is a function of y such that — it < Y S 7r. Since/ (y) has

a differential coefficient, its real and imaginary parts cos Ya,nd sin Y
have differential coefficients, and are a fortiori continuous functions

of y. Hence Y is a continuous function of y. Suppose that Y
changes to Y + K when y changes to y + k. Then K tends to

zero with k, and

K _ fcos (Y+ K) - cos Y\ / (cos (Y+ K) - cos T
k { k ]/ (

K
Of the two quotients on the right-hand side the first tends to a
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limit when Jc-*~0, since cos Y has a differential coefficient with

respect to y, and the second tends to the limit — sin Y. Hence K/fc

tends to a limit, so that Y has a differential coefficient with respect

to y.

dY
Further /' (y) -= (- sin Y+i cos Y) -=- .

But we have seen already that

/' (y) = if(y) = - sin F+ i cos Y.

dY
Hence -j- = *> Y = y + G,

dy

where G is a constant, and

/ (y) = cos (y+C) + i sin (y + C).

But /(0) = 1 when y=0, so that C is a multiple of 2tt, and

y (y) = cos y + i sin y. Thus F (iy) = cos ?/ + i sin 3/ for all real

values of y. And, if x also is real, we have

F (x + iy) = F (x) F{iy) = exp x (cos y + i sin y) = exp (x + iy),

or exipz=l+z + ^]+ -••>

for all values of z.

233. The power series for cos z and sin z. From the

result of the last section and the equations (1) of § 228 it follows

at once that

z" zA
. z 3 z5

cosz = l - 2l
+

4!
-

"-' smz==2:
~'si

+ 5''~'"

for all values of z. These results were proved for real values of z

in Ex. lvi. 1.

Examples XCVI. 1. Calculate cos i and sin % to two places of decimals

by means of the power series for cos z and sin z.

2. Prove that
|
cos z

\
S. cosh

|
z

\
and

|
sin z

\ ^ sinh \z\.

3. Prove that if
|
z

|
< 1 then

|
cos z

|
< 2 and

|
sin z

\ < f j
z \.

4. Since sin %z—1 sin z cos z we have

\ )
3 ,

-r
5 , ^^ 3!

-r...^i
2
,-r...y.

Prove by multiplying the two series on the right-hand side (§ 195) and

equating coefficients (§ 194) that

(TK"3

+
>-+Gi::;H-

Verify the result by means of the binomial theorem. Derive similar identities

from the equations

cos2 z+ sin2 2=1, cos 22 = 2 cos2 z — 1 = 1-2 sin2
2.
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5. Show that exp {( 1 + 1) z}= 2 2- n exp (£ ?itu') —

.

6. Expand cos 2 cosh in powers of 2. [We have

cos z cosh s+i sin 2 sinh z— cos {(1 - 1') 2} = |- [exp {(l+i) 2}+ exp { - (1 + i) 2}]

=|22*»{l + (-l)»}eXp(4W)!J,

and similarly cos 2 cosh s— i sin 2 sinh 2= cos (1 + ?') z

=|l2^{l + (-l)»}exp(-i^)^.
»!

Hence cosscosh«=i2 2Jw {l + (-l)n}cosi7i7r ^=1- -7? + ^-;— 1"0 n ! 4 ! 8

!

J

7. Expand sin 2 sinh 2, cos 2 sinh 2, and sin 2 cosh z in powers of 2.

8. Expand sin2 2 and sin3 2 in powers of 2. [Use the formulae

sin22=i (1 -cos 2z), sin32=J (3 sin 2 -sin 32), ....

It is clear that the same method may be used to expand cos™ 2 and sinn 2,

where n is any integer.]

9. Sum the series

~ , cos 2 cos 2z cos 32 _, sin 2 sin 2z sin 32

[Here +iS=l+?&® + ?ffi£*>+ ...=«p {exp(is)}

= exp (cos 2) {cos (sin z) + i sin (sin 2)},

and similarly

C—JS= exp {exp ( - iz)} = exp (cos 2) (cos (sin 2) - » sin (sin 2)}.

Hence C=exp(cos2) cos (sin 2), S= exp (cos 2) sin (sin 2).]

„ a cos 2 a2 cos 22 a sin 2 a2 sin 22
10. Sum i + -Tr+_T]— +..., ___ + ___+....

_, , COS 22 COS 42 cos 2 COS 32
11. Sum 1-—r + -

4 ,
-..., — 3j-+-

and the corresponding series involving sines.

12. Show that

, cos Az
,
cos 82

, i f/ s i , • v

1 -\
——j—I—^y- + . . . =§ {cos (cos 2) cosh (sin 2) + cos (sin 2) cosh (cos 2)}.

13. Show that the expansions of cos (x+h) and sin (x+ h) in powers of h

(Ex. lvi. 1) are valid for all values of x and h, real or complex.

234. The logarithmic series. We found in § 213 that

\og(l+z) = z-±z2 + U3 -
(1)

when z is real and numerically less than unity. The series on the

right-hand side is convergent, indeed absolutely convergent, when

h. 27
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z has any complex value whose modulus is less than unity. It is

naturally suggested that the equation (1) remains true for such

complex values of z. That this is true may be proved by a

modification of the argument of § 213. We shall in fact prove

rather more than this, viz. that (1) is true for all values of z such

that
| « | = 1, with the exception of the value — 1.

It will be remembered that log (1 + z) is the principal value of

Log (1 4- z), and that

i /-i x f du
lo« (1+ *>-.U'

where C is the straight line joining the points 1 and 1 + z in the

plane of the complex variable u. We may suppose that z is not

real, as the formula (1) has been proved already for real values

of z.

If we put
z = r (cos 9 + i sin 6) = £r,

so that
|
r

|
g 1, and

u = 1 + ft

then u will describe G as t increases from to r. And

f
du_ FZdt

J c u Jo 1 + &

=
J
h- ft + ?F- ... + (- l)™" 1 £"*•« + 1+ w \dt

-p 2
+

3
",+( L) m +Km

= ,__+__...+(_!).-._ +Rm (2),

where
fr fni/Jt^ = (-l)-r+1

Jol+̂ (3).

It follows from (1) of § 164 that

fr Wflf

'*»' a/o|Wl
;

<4 >'

Now
1
1 + %t

|

or
|
u

|
is never less than or, the perpendicular from

on to the line C* Hence

1 fr rm+i n

Rm I
^ " t

mdt =
,

—- g ; —-
,

* Since z is not real, C cannot pass through when produced. The reader is

recommended to draw a figure to illustrate the argument.
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and so Rm -*• as m -* oo . It follows from (2) that

\og(l+z) = z-^z2 +^- (5).

We have of course shown in the course of our proof that the

series is convergent : this however has been proved already

(Ex. lxxx. 4). The series is in fact absolutely convergent when
z

|
< 1 and conditionally convergent when

|
z

\

= 1.

Changing z into — z we obtain

1°g(n^)=- lo8-( 1 -*)=* + ^2+^ 3 + («)

235. Now

log ( 1 + z) = log {(l+r cos 0) + ir sin 0}

= A log (1 + 2r cos + r2
) + i arc tan

(
-A .

\1 + rcostv

That value of the inverse tangent must be taken which lies

between — \ir and \tt. For, since 1 + z is the vector represented

by the line from — 1 to z> the principal value of am (1 4- 2) always

lies between these limits when z lies within the circle
|
z\ = L*

Since zm = rm (cos m0 + i sin md), we obtain, on equating the

real and imaginary parts in equation (5) of § 234,

I log (1 + 2r cos + r2
) = r cos - |r2 cos 26 + £r3 cos 30 - . . .,

(r sin \

^) = rsin — Ar2 sin20 + ir3 sin30 — ....
l + r cos 6/ * 6

These equations hold when ^ r ^ 1, and for all values of 0, except

that, when r = 1, must not be equal to an odd multiple of ir.

It is easy to see that they also hold when — 1 ^ r ^ 0, except that,

when r— — 1, must not be equal to an even multiple of ir.

A particularly interesting case is that in which r = 1. In

this case we have

log (1 + z) = log (1 + Cis 0) =\ log (2 + 2 cos0) + i arc tan (— -r)

= |log(4cos2 i0) + i;0,

if —ir<0<7r, and so

cos0-,|cos20 + icos30 -... = £ log (4 cos2

J0),

sin 0- | sin 20 + £ sin 30 - ... = |0.

* See the preceding footnote.

27—2
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The sums of the series, for other values of &, are easily found from

the consideration that they are periodic functions of 6 with the

period 2tt. Thus the sum of the cosine series is ^ log (4 cos2
\6) for

all values of 6 save odd multiples of ir (for which values the series

is divergent), while the sum of the sine series is ^ (6 — 2kir) if

(2k — 1) it < 6 < (2k + 1) 7r, and zero if 6 is an odd multiple of it.

The graph of the function represented by the sine series is shown

in Fig. 58. The function is discontinuous for 6 = (2k + 1) it.

Fig. 58.

If we write iz and - iz for z in (5), and subtract, we obtain

^i„g (L±|)- 2 - is»+}s5 -....

If z is real and numerically less than unity, we are led, by the results of

§ 231, to the formula
arc tan z=z— \zz + \£>- ...,

already proved in a different manner in § 214.

Examples XCVII. 1. Prove that, in any triangle in which a>b,

Jogc= loga— cos C- —,cos2(7-....
a 2a-

[Use the formula log c=-| log (a2+b2-2ab cos C).]

2. Prove that if - l<r<l and ~ln<0<\7r then

r sin 20 - \r2 sin 40 + Jr3 sin 60 - ...= f-arc tan |(~) tan
[

,

the inverse tangent lying between -\tv and |tt. Determine the sum of the
series for all other values of 0.

3. Prove, by considering the expansions of log (1 + 12) and log(l-;V) in
powers of z, that if - l<r< 1 then

rsm0+ %r2 cos20-§r3 sm30-±?-*cos40+... = hlog(l + 2rsm0+ r2),

r cos + ±

r

2 sin 20 - £

r

3 cos 30 - % r* sin 40 + ...= arc tan (
rC0* 6

) ,

\] — r sin 6

J

6 * O \l-2rsm0 + r2)'

r cos -
J?-

3 cos Z0 + . . . = * arc tan &52L^
\ 1-r-

the inverse tangents lying between - £tt and \n.



he*

l-\hz
I

'

235, 236] EXPONENTIAL, AND CIRCULAR FUNCTIONS 421

4. Prove that

cos cos - \ cos 20 cos2 + £ cos 38 cos3 - ... =$ log (1 + 3 cos2 0),

sin 6 sin # - ^ sin 2(9 sin 2 + J sin 30 sin3 - ... = arc cot (1 + cot + cot2 0),

the inverse cotangent lying between -^tt and ^7r ; and find similar ex-

pressions for the sums of the series

cos sin -| cos 20 sin2 +

.

.., sin cos 0-J sin 2(9 cos2 +

.

...

236. Some applications of the logarithmic series, The
exponential limit. Let z be any complex number, and h a real

number small enough to ensure that
|

hz
\
< 1. Then

log (1 + hz) = hz-\ (he? + i (hz)s

and so

log(l -f hz) ,

'

.-^—
h

; = z+<f>(h,z),

where

<p (h, z) = - \he* + Ihrz- - \h*z* + ...,

]
<j> (h, z)\<\ hz2 \(l + \hz\ + \

h?e*
1
+ ...) =

so that
<f>

(h, z)^~0 as h-^0. It follows that

,. log (1+ As)
hm 8 v

. —- = z (1).

If in particular we suppose h = 1/n, where n is a positive integer,

we obtain

lim n log ( 1 + -
]
-= z,

Jl->-30 \ 11/

Jsi i
1 +

w)
=
i^

exp
r

log
(
x +

w) j

exp ^ (2) "

This is a generalisation of the result proved in § 208 for real

values of z.

From (1) we can deduce some other results which we shall

require in the next section. If t and h are real, and h is sufficiently-

small, we have

log(l+te + fo)-log(l+fe) = 1
j

/ hz \

h h S
V 1 + tz)

which tends to the limit e/(l + tz) as h^O. Hence

sli«g(i^» = r^ (3>

and so
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We shall also require a formula for the differentiation of

(1 + tz)m , where m is any number real or complex, with respect

to t We observe first that, if <£ (t) = ^ (t) + i% (t) is a complex

function of t, whose real and imaginary parts $ (t) and x (t)

possess derivatives, then

d d

jt

(exp
<t>

) = jt

{(cos X + i sin x ) exp yjr]

= {(cos x + * sm %) ^' + (
— sm % + *' cos X) %'i exP ^

= (i// + i^') (cos % + * sin x) exP ^
=W + *'%') exP (^ + *%) = </>' exP 0.

so that the rule for differentiating exp </> is the same as when
<f>

is

real. This being so we have

^(1 + tzT = jt exp [m log (1 + tz)}

=
f^ t

~ exp {wi log (1 + tz)}

= mz(l +tz)m~1
(4).

Here both (1 + tz)m and (1 + tz)m
~ l have their principal values

237. The general form of the Binomial Theorem. We
have proved already (§ 215) that the sum of the series

is (1 + z)m = exp \m log (1 + z)}, for all real values of m and all real

values of z between — 1 and 1. If an is the coefficient of zn then

1,n+1

whether m is real or complex. Hence (Ex. lxxx. 3) the series

is always convergent if the modulus of z is less than unity, and we

shall now prove that its sum is still exp [m log (1 + z)}, i.e. the

principal value of (1 + z)m.

It follows from § 236 that if t is real then

~- (I + tz)m = mz(l+ tzfl-\
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z and m having any real or complex values and each side having

its principal value. Hence, if <j> (t) = (1 + tz)m, we have

<£<«> (t)=m(m-l)...(m-n + 1) zn (1 + tz)m~n.

This formula still holds if t = 0, so that

w ! \n /

Now, in virtue of the remark made at the end of § 164, we have

#(i)-#W+f(0)+«^ + ... +g^ +*.

where ij„ =—L—j\l - ()»-> £M
(«) <fc.

But if z = r (cos 6 + i sin 0) then

1
1 + tz

|

= V(l + 2£r cos + £V) ^ 1 - tr,

and therefore

|

ro(m-l)...(m-n + l)| fi (1-t)™ ,
|jKnl< " (n-l)l ' JoO^W^

\m(m- l)...(m-»+ l)| (l-fl) 71-1 ?-"

(n - 1) !

'

(1 - tfr)" '

where < < 1 ; so that (cf. § 163)

jm(m-l)...(m-rc + l)j
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Examples XCVIII. 1. Suppose to real. Then since

we obtain

log (1 + z) = £ log ( 1 + 2?- cos 6+ r2
) + i arc tan

\l +r cos

00 fiyi\ f / t sin $ \ 1
2 ( I 2n=cxp {hn log (1 + 2r cos #+r2

)} Cis -!m arc tan ( ) V

oW { \l + r cos 6J)

= (1 + 2r cos 6+ r2
)

im Cis (m arc tan f-I^^-\ I

,

v ;

1 \l+»-cos0/J'

all the inverse tangents lying between —\ir and \v. In particular, if we
suppose 0=571-, z= iV, and equate the real and imaginary parts, we obtain

1 _ f™\ r2+(^\ri -... = (l + r2f
m
cos (to arc tan r),

(?)
r " (I) ^ + (?)

''5 " •"
= (1 +r2)h

" 1
Sin (m ar° tan r) -

2. Verify the formulae of Ex. 1 when wi=l, 2, 3. [Of course when to is

a positive integer the series is finite.]

3. Prove that if £r< 1 then

, 1.3 , 1.3.5.7 .1— — r2+ »•* —
2.4 2.4.6.8

1 1.3.5, 1.3.5.7.0.
_ r )-3 J j.5 _
2 2.4.6 2.4.6.8.10

[Take m= — \ in the last two formulae of Ex. 1.]

4. Prove that if — \tt<6<^tt then

V I
2(l + r2

) /'

//V(l4-0-l|

V 1 2(l+r2
) /•

"I

cos m8= coiim B \ 1 -
( 9 j

tan2
<9 + f ) tan*5

sinm0 = cos"l 0-U
J
tan 5- ( j tan3

<9 + ...

for all real values of to. [These results follow at once from the equations

cos md+ i sin md= (cos 6+ i sin 0)
m= cos"1 6 (1 + * tan 0)"1

.]

5. We proved (Ex. lxxxi. 6), by direct multiplication of series, that

/(to, 2)= 2 I j s", where
|
z

|
<1, satisfies the functional equation

/(to, 2) /(to', z)=f(m + m', z).

Deduce, by an argument similar to that of § 216, and without assuming the

general result of p. 423, that if m is real and rational then

/ (
m, z) = exp {m log (1+ z)}

.

6. If z and /x are real, and — 1< z < 1, then

*n a»=cos {fx log (1+2)}+* sin {M log (1 +2)}.
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MISCELLANEOUS EXAMPLES .OX CHAPTER X.

1. Show that the real part of i
log (1_H)

is

e
(4&+l)nS/8

cos 1
1

(
4£+ 1 ) ^ log 2},

where k is any integer.

2. If a cos 8+b sin 8+c=0, where a, b, c are real and c2>a2+ 62, then

a L .-., |c| + v'(c
2 -«2 -62

)

where wi is any odd or any even integer, according as c is positive or negative,

and a is an angle whose cosine and sine are a/N/(a
2 + 62

) and bj^(a2+ b-).

3. Prove that if 8 is real and sin 6 sin <£ = 1 then

(f>
= (£ + ^) 7T + i log COt | (for + 8),

where k is any even or any odd integer, according as sin 8 is positive or

negative.

4. Show that if x is real then

-j- exp {(a+ ib) x) = (a+ 26) exp {(a + ib) x)

,

Deduce the results of Ex. lxxxvii. 3.

/-»
j

5. Show that if a>0 then / exp { - (a + 26) a;} dx

=

^ , and deduce the
Jo a+ ib'

results of Ex. lxxxvii. 5.

6. Show that if (x/a) 2+ (y/b)2= l is the equation of an ellipse, and/(#, y)

denotes the terms of highest degree in the equation of any other algebraic

curve, then the sum of the eccentric angles of the points of intersection of the

ellipse and the curve differs by a multiple of 2n from

-2 {log/ (a, ib) - logf (a, -ib)}.

[The eccentric angles are given by/(acosa, 6 sin a) -f-...=0 or by

/{*«(«+*)' -^(M "3} + - =0)

where u= expia ; and 2a is equal to one of the values of — i LogP, where P is

the product of the roots of this equation.]

7. Determine the number and approximate positions of the roots of the

equation tan z= az, where a is real.

[We know already (Ex. xvn. 4) that the equation has infinitely many real

roots. Now let z= x+ iy, and equate real and imaginary parts. AVe obtain

sin 2a;/(cos 2.r + cosh 2y) = ax, sinh 2y/(cos 2x + cosh 2y)= ay,

so that, unless x or y is zero, we have

(sin 2*)/2.f=(sinh 2y)/2y.
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This is impossible, the left-hand side being numerically less, and the right-

hand side numerically greater than unity. Thus x=0 or y= 0. If y= we
come back to the real roots of the equation. If x = then tanh y=ay. It is

easy to see that this equation has no real root other than zero if a ^ or

a 2.1, and two such roots if <a < 1. Thus there are two purely imaginary

roots if 0<a<l ; otherwise all the roots are real.]

8. The equation ta.nz=az+ b, where a and b are real and b is not equal

to zero, has no complex roots if a^.0. If a>0 then the real parts of all the

complex roots are numerically greater than
|
b/2a

|

.

9. The equation tanz=a/s, where a is real, has no complex roots, but

has two purely imaginary roots if a<0.

10. The equation tan z= a tanh cz, where a and c are real, has an infinity

of real and of purely imaginary roots, but no complex roots.

11. Show that if x is real then

e«*cos 6#=!^ \an - rl

j
an~ 2 b2 + LJ an ~ 4 64 - ...1

,

where there are ^(n+ l) or ^(n+ 2) terms inside the large brackets. Find

a similar series for eax sin bx.

12. If n
(f>

(z, n) -*- z as n-^-cc , then {l+(f> (z, n)}n -*- exp z.

13. If
<f>

(t) is a complex function of the real variable t, then

[Use the formulae

= ty+% lo§ = 5 loS (^
2+ X

2
) + »' arc tan (x/V)-1

14. Transformations. In Ch. Ill (Exs. xxi. 21 et seq., and Misc. Exs.

22 ct seq.) we considered some simple examples of the geometrical relations

between figures in the planes of two variables z, Z connected by a relation

z=f(Z). We shall now consider some cases in which the relation involves

logarithmic, exponential, or circular functions.

Suppose firstly that

z= exp (irZja), Z= {ajtt) Log z

where a is positive. To one value of Z corresponds one of z, but to one of z

infinitely many of Z. If x, y, r, 6 are the coordinates of z and X, V, li, Q
those of Z, we have the relations

x=enX/a cos (« Y\a\ y= e*
x/a

sin (n- V/a),

X= (ajn) log r, Y= (adfn) + 2ka,

where h is any integer. If we suppose that - n<6^n, and that Logs has its

principal value logs, then &=0, and Z is confined to a strip of its plane parallel

to the axis OX and extending to a distance a from it on each side, one point
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of this strip corresponding to one of the whole s-plane, and conversely. By
taking a value of Logs other than the principal value we obtain a similar

relation between the 2-plane and another strip of breadth 2a in the Z-plane.

To the lines in the Z-plane for which X and Y are constant correspond the

circles and radii vectores in the z-plane for which r and 6 are constant. To
one of the latter lines corresponds the whole of a parallel to OX, but to a

circle for which r is constant corresponds only a part, of length 2a, of a

parallel to OY. To make Z describe the whole of the latter line we must

make z move continually round and round the circle.

15. Show that to a straight line in the Z-plane corresponds an equi-

angular spiral in the 2-plane.

16. Discuss similarly the transformation z=c cosh (nZja), showing in

particular that the whole 2-plane corresponds to any one of an infinite

number of strips in the Z-plane, each parallel to the axis OX and of

breadth 2a. Show also that to the line X—Xq corresponds the ellipse

2

)j

+ ir :"1-'-\c cosh (7j-A' /a)J [c sinh {irX^a)

and that for different values of X these ellipses form a confocal system ; and

that the lines Y— Y correspond to the associated system of confocal hyper-

bolas. Trace the variation of z as Z describes the whole of a line X=X or

Y= Y How does Z vary as z describes the degenerate ellipse and hyperbola

formed by the segment between the foci of the confocal system and the

remaining segments of the axis of xl

17. Verify that the results of Ex. 16 are in agreement with those of Ex. 14

and those of Ch. Ill, Misc. Ex. 25. [The transformation z= ccoah{TrZja)

may be regarded as compounded from the transformations

e=cz
1 , 2i= K^2+ (l/22)}, z2= exY>(nZla).]

18. Discuss similarly the transformation z=cta,nh(nZja), showing that

to the lines X=X correspond the coaxal circles

{x-c coth (27rX /a)}2+y2= c2 cosech2 (2irXJa),

and to the lines Y= Y the orthogonal system of coaxal circles.

19. The Stereographic and Mercator's Projections. The points of a

unit sphere whose centre is the origin are projected from the south pole (whose

coordinates are 0, 0, — 1) on to the tangent plane at the north pole. The

coordinates of a point on the sphere are £, r/, £, and Cartesian axes OX, OY
are taken on the tangent plane, parallel to the axes of £ and tj. Show that

the coordinates of the projection of the point are

*=2£/(l+a y= 2,,/(l-r £),

and that x+ iy= 2 tan \ 6 Cis <j>, where <fr
is the longitude (measured from the

plane t]= 0) and 6 the north polar distance of the point on the sphere.
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This projection gives a map of the sphere on the tangent plane, generally-

known as the Stereographic Projection. If now we introduce a new complex

variable
Z=X+iY= —i\oghz= —i\og\{x+ iy)

so that X=<f>, Y= log cot 1 6, we obtain another map in the plane of Z,

usually called Mercator's Projection. In this map parallels of latitude and

longitude are represented by straight lines parallel to the axes of X and Y
respectively.

20. Discuss the transformation given by the equation

fZ-

*\Z-b,

showing that the straight lines for which x and y are constant correspond to

two orthogonal systems of coaxal circles in the iT-plane.

21. Discuss the transformation

(J(Z-a)+ J(Z-b)]
LOg

l 7(&~«) }•

showing that the straight lines for which x and y are constant correspond to

sets of confocal ellipses and hyperbolas whose foci are the points Z=a and

Z=b.

[AVehave J(Z-a) + J(Z-b) = s/(b-a)ex]i( x+iy),

s!(Z- a) — *J(Z- b) = sl(b - a) exp ( - x - iy)

;

and it will be found that

\Z-a\ + \Z-b\ = \b-a\ cosh 2x, \Z-a\-\Z-b\ = \b-a\cos 2y.\

22. The transformation z=Z\ If z—Z\ where the imaginary power

has its principal value, we have

exp (log r+ iff) =z= exp (i log Z) = exp (i log R - e),

so that log r= — 0, 6= log R+ 2kir, where k is an integer. As all values of k

give the same point z, we shall suppose that k= 0, so that

logr=-e, 6= \ogR (1).

The whole plane of Z is covered when R varies through all positive

values and 6 from - it to n : then r has the range exp (- rr) to exp n and 6

ranges through all real values. Thus the Z-plane corresponds to the ring

bounded by the circles »-=exp(-7r), r — expn-; but this ring is covered

infinitely often. If however 6 is allowed to vary only between - n and tt.

so that the ring is covered only once, then R can vary only from exp ( - it) to

exp 7r, so that the variation of Z is restricted to a ring similar in all respects

to that within which z varies. Each ring, moreover, must be regarded as

having a barrier along the negative real axis which z (or Z) must not cross, as

its amplitude must not transgress the limits — it and tt.



EXPONENTIAL, AND CIRCULAR FUNCTIONS 429

We thus obtain a correspondence between two rings, given by the pair of

equations
z= Z\ Z=z~\

where each power has its principal value. To circles whose centre is the

origin in one plane correspond straight lines through the origin in the other.

23. Trace the variation of z when Z, starting at the point exp n, moves

round the larger circle in the positive direction to the point — exp 71- , along

the barrier, round the smaller circle in the negative direction, back along the

barrier, and round the remainder of the larger circle to its original position.

24. Suppose each plane to be divided up into an infinite series of rings

by circles of radii

-(2»+l)» -n n Sn
g(2»+l) *,

Show how to make any ring in one plane correspond to any ring in the

other, by taking suitable values of the powers in the equations z=Zl
, Z=z~ l

.

25. If z=Z{
, any value of the power being taken, and Z moves along an

equiangular spiral whose pole is the origin in its plane, then z moves along an

equiangular spiral whose pole is the origin in its plane.

26. How does Z-zai
, where a is real, behave as z approaches the origin

along the real axis. \Z moves round and round a circle whose centre is the

origin (the unit circle if zai has its principal value), and the real and imaginary

parts of Z both oscillate finitely.]

27. Discuss the same question for Z=za + bi
, where a and b are any real

numbers.

28. Show that the region of convergence of a series of the type 2 an z» ai
T

- »

where a is real, is an angle, i.e. a region bounded by inequalities of the type

6 < am z < 61 [The angle may reduce to a line, or cover the whole plane.]

29. Level Curves. It f{z) is a function of the complex variable z, we
call the curves for which 1/(2) |

is constant the level curves of f(z). Sketch

the forms of the level curves of

z — a (concentric circles), (2 -a) (z- b) {Cartesian ovals),

(z-a)/(z — b) (coaxal circles), exp 2 (straight lines).

30. Sketch the forms of the . level carves of (z — a)(z-b)(z-c),

(l+z*/3+z2
)/z. [Some of the level curves of the latter function are drawn in

Fig. 59, the curves marked i-vii corresponding to the values

•10, 2- v/3 = -27, -40, 1-00, 2-00, 2+ N/3 = 373, 4'53

of 1/(2) I

. The reader will probably find but little difficulty in arriving at a

general idea of the forms of the level curves of any given rational function
;

but to enter into details would carry us into the general theory of functions

of a complex variable.]
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Fig. 59.

Fig. 60. Fig. 61.
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31. Sketch the forms of the level curves of (i) zexpz, (ii) sinz. [See

Fig. 60, which represents the level curves of sin z. The carves marked i-vni

correspond to £= -35, -50, 71, 1-00, 1-41, 2-00, 2-83, 4-00.]

32. Sketch the forms of the level curves of exp z-c, where c is a real

constant. [Fig. 61 shows the level curves of [exp 2— 1|, the curves i-vn
corresponding to the values of k given by \ogk= -1-00, --20, —

'05, 000,

•05, -20, 1-00.]

33. The level curves of sin z-c, where c is a positive constant, are

sketched in Figs. 62, 63. [The nature of the curves differs according as

to whether c<\ or c>l. In Fig. 62 we have taken c=-5, and the curves

i-viii correspond to £=-29, -37, *50, -87, 1-50, 2-60, 4-50, 779. In Fig. 63

we have taken c= 2, and the curves i-vii correspond to £="58, 1-00, 1"73,

3-00, 5-20, 9 -

00, 15 -

59. If c= l then the curves are the same as those of

Fig. 60, except that the origin and scale are different.]

Fig. 62. Fig. 63.

34. Prove that if 0<<9<tt then

cos 8+ 1 cos 30+ i cos 58 + ...=£ log cot2 \8,

sin0 + Jsin3#+isin50 + ... = !7r,

and determine the sums of the series for all other values of 6 for which they

are convergent. [Use the equation

*+^3 +!s5+...=!iog(j±0

where 2= cos 8+i sin 8. When 8 is increased by it the sum of each series

simply changes its sign. It follows that the first formula holds for all values

of 8 save multiples of it (for which the series diverges), while the sum of the

second series is Jtt if 2kn <8<{2k+ 1) «-, -Jtt if (2k+ l) n<8<(2k+2) it,

and if 8 is a multiple of 71-.]



432 THE LOGARITHMIC AND EXPONENTIAL FUNCTIONS [X

35. Prove that if 0< 6<%n then

COS 6-\ COS 30+ i COS 50 — . . . = j 77,

sin 6-1 sin 30+ \ sin 50 - . . . = | log (sec + tan 0)
2

;

and determine the sums of the series for all other values of for which they

are convergent.

36. Prove that

cos cos a+ J? cos 20 cos 2a + J cos 30 cos 3a +...= — j log {4 (cos - cos a)2},

unless 0-a or 0+a is a multiple of 2n.

37. Prove that if neither a nor b is real then

dx log (-a)— log (-b)

/„'o (x-a)(x-b) a-b

each logarithm having its principal value. Verify the result when a= ci,

b= —ei, where c is positive. Discuss also the cases in which a or b or both

are real and negative.

38. Prove that if a and /3 are real, and #>0, then

dx TTl

/. X2 -(a+ ip) 2 2 (a + ifty

What is the value of the integral when j3<0 ?

39. Prove that, if the roots of Ax2+ 2Bx+ C=0 have their imaginary

parts of opposite signs, then

dx TTl

! _„ Ax2+ 2Bx+ C s,l{B2 -AC)'

the sign of S/{B
2 — AC) being so chosen that the real part of is/(B2 -AC)}/Ai

is positive.
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(To Chapters III, IV, V)

The Proof that every Equation has a Root

Let Z=P(z)= a zn+ a1 z
n ~ 1 + ...+ an

be a polynomial in z, with real or complex coefficients. We can represent

the values of z and Z by points in two planes, which we may call the 2-plane

and the Z-plane respectively. It is evident that if z describes a closed path y
in the z-plane, then Z describes a corresponding closed path r in the Z-plane.

We shall assume for the present that the path T does not pass through the

origin.

To any value of Z correspond an infinity of values of am Z, differing by

multiples of 2n, and each of these values varies continuously as Z describes

r.* We can select a particular value of am Z corresponding to each point

Fig. A. Fig. B.

of r, by first selecting a particular value corresponding to the initial value

of Z, and then following the continuous variation of this value as Z moves

along r. We shall, in the argument which follows, use the phrase 'the

amplitude of Z' and the formula am Z to denote the particular value of the

amplitude of Z thus selected. Thus &mZ denotes a one-valued and con-

tinuous function of X and T, the real and imaginary parts of Z.

* It is here that we assume that T does not pass through the origin.

n. 28
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When Z, after describing T, returns to its original position, its amplitude

may be the same as before, as will certainly be the case if r does not enclose

the origin, like path (a) in Fig. B, or it may differ from its original value by

any multiple of 2tt. Thus if its path is like (6) in Fig. B, winding once round

the origin in the positive direction, then its amplitude will have increased

by 2?r. These remarks apply, not merely to r, but to any closed contour in

the if-plane which does not pass through the origin. Associated with any

such contour there is a number which we may call ' the increment of am Z
when Z describes the contour ', a number independent of the initial choice of

a particular value of the amplitude of Z.

We shall now prove that if the amplitude of Z is not the same when. Z
returns to its original position, then the path of z must contain inside or on

it at least one point at ivhich Z=0.

We can divide y into a number of smaller contours by drawing parallels

to the axes at a distance Si from one another, as in Fig. C* If there is,

on the boundary of any one of these contours, a point at which Z=0,
what we wish to prove is already established. We may therefore suppose

ffi .

'
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Hence, if am Z is changed when z describes y, there must be at least one

of the smaller contours, say y t , such that am Z is changed when z describes

y1 . This contour may be a square whose sides are parts of the auxiliary

parallels, or may be composed of parts of these parallels and parts of the

boundary of y. In any case every point of the contour lies in or on the

boundary of a square &x whose sides are parts of the auxiliary parallels and
of length 5j.

We can now further subdivide yt
by the help of parallels to the axes at a

smaller distance 82
from one another, and we can find a contour y2 , entirely

included in a square A 2 , of side 82 and itself included in Al5 such that amZ
is changed when z describes the contour.

Now let us take an infinite sequence of decreasing numbers 8it 82 > ...,

8m , ..., whose limit is zero.* By repeating the argument used above, we can

determine a series of squares A1} A 2 , ..., Am , ... and a series of contours y1}

72> •••) y»M ••• such that (i) Am + 1 lies entirely inside Am ,
(ii) ym lies entirely

inside A,„, (iii) amZ is changed when z describes ym .

If
{
x-,n, 2/m) and (xm+ 8m , ym+ 8m ) are the lower left-hand and upper right-

hand corners of Am , it is clear that x
x , x2 , ..., xm) ... is an increasing and

#i+ &ij #2+ #2) •••' xm+ 8m , ••• a decreasing sequence, and that they have a

common limit x . Similarly ym and ym+8m have a common limit y , and

(x
, y ) is the one and only point situated inside every square A)U . How-

ever small 8 may be, we can draw a square which includes (x
, y ), and whose

sides are parallel to the axes and of length 8, and inside this square a closed

contour such that am Z is changed when z describes the contour.

It can now be shown that

P(z +iy )=0.

For suppose that P(xQ+ iy ) = a, where
|
a| = p>0. Since P(x+ ty) is a con-

tinuous function of x and y, we can draw a square whose centre is (^ , #o)

and whose sides are parallel to the axes, and which is such that

I

P (?+iy)-P (x + iy )\<hp

at all points x+ iy inside the square or on its boundary. At all such points

P(x+ iy) = a +
(f>,

where
| |

< hp. Now let us take any closed contour lying entirely inside

this square. As z describes this contour, Z=a+ cp also describes a closed

contour. But the latter contour evidently lies inside the circle whose centre

is a and whose radius is \p, and this circle does not include the origin.

Hence the amplitude of Z is unchanged.

But this contradicts what was proved above, viz. that inside each square A,u

we can find a closed contour the description of which by z changes amZ
Hence P (x + iy ) = 0.

* We may, e.g., take 5m=o 1/2
m_1

.

28—2
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All that remains is to show that we can always find some contour such that

am Z is changed when z describes y. Now

\ a z a z* a znJ

We can choose R so that

I

a
\ I I

a2 I I

an
|

\o^fE
+
\o^\W

+ "' + \a \Rn< '

where § is any positive number, however small ; and then, if y is the circle

whose centre is the origin and whose radius is R, we have

Z=a zn (l + p),

where
| p |
< 8, at all points on y. "We can then show, by an argument

similar to that used above, that am(l+p) is unchanged as z describes

y in the positive sense, while am zn on the other hand is increased by 2mr.

Hence a,mZ is increased by 2mr, and the proof that Z—0 has a root is

completed.

We have assumed throughout the argument that neither r, nor any of the

smaller contours into which it is resolved, passes through the origin. This

assumption is obviously legitimate, for to suppose the contrary, at any stage

of the argument, is to admit the truth of the theorem.

We leave it as an exercise to the reader to infer, from the discussion

which precedes and that of § 43, that when z describes any contour y in the

positive sense the increment of amZ is 2kir, where k is the number of roots

of Z—0 inside y, multiple roots being counted multiply.

There is another proof, proceeding on different lines, which is often given.

It depends, however, on an extension to functions of two or more variables of

the results of §§ 102 et seq.

We define, precisely on the lines of § 102, the upper and lower bounds of a

function f(x, y), for all pairs of values of x and y corresponding to any point

of any region in the plane of (x, y) bounded by a closed curve. And we

can prove, much as in § 102, that a continuous function / (x, y) attains its-

upper and lower bounds in any such region.

Now \Z\ = \P(x+ iy)\

is a positive and continuous function of x and y. If m is its lower bound for

points on and inside y, then there must be a point z for which \Z\ = m, and

this must be the least value assumed by \Z\. If m=0, then P(2 )=0, and

we have proved what we want. We may therefore suppose that m>0.

The point z must lie either inside or on the boundary of y : but if y is

a circle whose centre is the origin, and whose radius R is large enough, then

the last hypothesis is untenable, since
|
P (z)

\

-*- oo as
|
z

\

~»- go . We may
therefore suppose that z lies inside y.
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If we put 8==2o+ £, and rearrange P{z) according- to powers of f, we obtain

P(z) = P(z
) + A 1

£+A 2 (* + ... + A n C'
1

,

say. Let A k be the first of the coefficients which does not vanish, and let

\A k \
= fi,

| ( | =p. We can choose p so small that

l^ + ilp +U fc + 2 |p
2+ ... +M n |p"- fc <ip.

Then \P(z)-P(z )-A k£*\<h H.p\

and |P(2)|<|P(2o)+Js f
s |+^pfc

.

Now suppose that z moves round the circle whose centre is z and radius p.

Then
P(z ) +AU k

moves k times round the circle whose centre is P(z ) and radius
|
A k £

k
\

= p.p
k

,

and passes k times through the point in which this circle is intersected by

the line joining P{zq) to the origin. Hence there are k points on the circle

described by z at which
\
P (z ) + A h £

k
|

=
| P (z

) \

— pp
k and so

\P (z)\<\P (z
(i
)\-

l
xpk+ \p.p

k=m-\ppk<m;
and this contradicts the hypothesis that m is the lower bound of

|
P (z)

|

.

It follows that m must be zero and that P (z ) = 0.

EXAMPLES ON APPENDIX I

1. Show that the number of roots of f(z) = which lie within a closed

contour which does not pass through any root is equal to the increment of

{\ogf(z)}/2ni

when z describes the contour.

2. Show that if R is any number such that

L^li j_ L?2 1 , . |«nl ^i
R "*"

B?
+,,,+ Rn ^ '

then all the roots of zn + a
l z

n ~ 1 + ... + an=0 are in absolute value less than

R. In particular show that all the roots of zh - \Zz -7 = are in absolute

value less than 2^.

3. Determine the numbers of the roots of the equation z2P+ az+ b=
where a and b are real and p odd, which have their real parts positive and

negative. Show that if a>0, 6>0 then the numbers are p — 1 and ^ + 1 ; if

a<0, 6>0 they are p + l and p — 1 ; and if 6<0 they are p and p. Discuss

the particular cases in which a=0 or 6= 0. Verify the results when jo= l.

[Trace the variation of &m(z2p+az+ b) as z describes the contour formed

by a large semicircle whose centre is the origin and whose radius is R, and

the part of the imaginary axis intercepted by the semicircle.]

4. Consider similarly the equations

s^v+ az+ b^O, zi*- 1 + az + b= 0, zii + 1 + az+ b = 0.
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5. Show that if a and /3 are real then the numbers of the roots of the

equation z2n + a2z2n
~ 1 +^2=0 which have their real parts positive and

negative are n-1 and n+1, or n and n, according as n is odd or even.

{Math. Trip. 1891.)

6. Show that when z moves along the straight line joining the points

z=zu z= z
2 , from a point near zt to a point near z2 , the increment of

1 1

+—
is nearly equal to tt.

7. A contour enclosing the three points z=zv z=z2 , z=z3 is denned by

parts of the sides of the triangle formed by zu z2 , z3 , and the parts exterior

to the triangle of three small circles with their centres at those points.

Show that when z describes the contour the increment of

Z — Zy Z — Z2 Z — £3

is equal to - 2 jr.

8. Prove that a closed oval path which surrounds all the roots of a cubic

equation / (s) = also surrounds those of the derived equation f'(z)= 0. [Use

the equation

/' (*) =/(*) (t-V +A + 7V) .
\Z - i,

1
i, — c2 Z- 43/

where zx , z2 , z3 are the roots of f(z)=0, and the result of Ex. 7.]

9. Show that the roots of/'(s) = are the foci of the ellipse which touches

the sides of the triangle («l5 z2 , z3 ) at their middle points. [For a proof see

Cesaro's Elementares Lehrbuch der algebraischen Analysis, p. 352.]

10. Extend the result of Ex. 8 to equations of any degree.

11. If f(z) and
(f>

(z) are two polynomials in z, and y is a contour which

does not pass through any root of f(z), and
| cf> (z) |<|/(z)

|
at all points on 7,

then the numbers of the roots of the equations

/(*)=o, /(2)+<M*)=o

which lie inside y are the same.

12. Show that the equations

ez= az, ez= az2
, es=az3

,

where a>e, have respectively (i) one positive root (ii) one positive and one

negative root and (iii) one positive and two complex roots within the circle

1 2 1
= 1. (Math. Trip. 1910.)
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(To Chapters IX, X)

A Note on Double Limit Problems

In the course of Chapters IX and X we came on several occasions into

contact with problems of a kind which invariably puzzle beginners and

are indeed, when treated in their most general forms, problems of great

difficulty and of the utmost interest and importance in higher mathematics.

Let us consider some special instances. In § 213 we proved that

log (1 + x) =x - \x2+ \x3 - ...,

where —l<x£.\, by integrating the equation

l/{l + t) = l-t+t2 -...

between the limits and x. What we proved amounted to this, that

rx
dt

rx rx rx

\
-— = dt- tdt+ \ t

2 dt-...;
JoHf Jo Jo Jo

or in other words that the integral of the sum of the infinite series 1 — 1+

1

2 — . . .,

taken between the limits and x, is equal to the sum of the integrals of its

terms taken between the same limits. Another way of expressing this fact is to

say that the operations of summation from to oo , and of integration from

to x, are commutative when applied to the function ( — l)n t
n

, i.e. that it does

not matter in what order they are performed on the function.

Again, in § 216, we proved that the differential coefficient of the ex-

ponential function

exp x= 1 +.t,+ H
_

,
+ ...

is itself equal to exp x, or that

Dx
[

-x+^
]
+ ..}j =Dx l +Dx x+Dx

l̂

+...;
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that is to say that the differential coefficient of the sum of the series is equal

to the sum of the differential coefficients of its terms, or that the operations of

summation from to oo and of differentiation with respect to x are commu-

tative when applied to xMjn\.

Finally we proved incidentally in the same section that the function

exp x is a continuous function of x, or in other words that

lim('l+a;+!7+...)=l+£+!j + ...=lim l+lima'+lim §-. + ...;

i.e. that the limit of the sum of the series is equal to the sum of the limits of

the terms, or that the sum of the series is continuous for x=$, or that the

operations of summation from to oo and of making x tend to £ are com-

mutative when applied to xnjn !.

In each of these cases we gave a special proof of the correctness of the

result. We have not proved, and in this volume shall not prove, any general

theorem from which the truth of any one of them could be inferred im-

mediately. In Ex. xxxvn. 1 we saw that the sum of a finite number of con-

tinuous terms is itself continuous, and in § 113 that the differential coefficient

of the sum of a finite number of terms is equal to the sum of their differential

coefficients ; and in § 160 we stated the corresponding theorem for integrals.

Thus we have proved that in certain circumstances the operations symbolised

by
lim..., Dx ..., j...dx

are commutative with respect to the operation of summation of a finite number

of terms. And it is natural to suppose that, in certain circumstances which

it should be possible to define precisely, they should be commutative also with

respect to the operation of summation of an infinite number. It is natural to

suppose so : but that is all that we have a right to say at present.

A few further instances of commutative and non-commutative operations

may help to elucidate these points.

(1) Multiplication by 2 and multiplication by 3 are always commutative,

for

2x3x.r=3x2xA-
for all values of x.

(2) The operation of taking the real part of z is never commutative with

that of multiplication by i, except when z=0 ; for

i x R (x+ iy) = ix, R, {i x (x+ iy)} = -y.

(3) The operations of proceeding to the limit zero with each of two

variables x and y may or may not be commutative when applied to a

function f(x,y). Thus

lim {lim (x+y)} = \im x= 0, lim { lim (.r + ?/)} = limy=0;
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but on the other hand

lira'—"M = lim - = lirnl = l,

lim ( lim ^£) = lim —^ = lim ( - 1)= - 1.

(4) The operations 2..., lim... may or may not be commutative. Thus
l x-*-l

if .r-^1 through values less than 1 then

lim^ 2 V -#4=lim log(l +o;) = log2,
x+\ I l n

) x^-l

g J lim ^__AL £»L = 2 ^—^ =log 2
;

2
1

but on the other hand

lim J2 (^'l -a;'l + 1)l=lim{(l-^) + (.r-^2
) + ...} = liml = l,

2 \lim(xn -xn + 1
)\ = 2 (1 - l) = + + 0-K.. = 0.

l \x-*-l J l

The preceding examples suggest that there are three possibilities with

respect to the commutation of two given operations, viz. : (1) the operations

may always be commutative
; (2) they may never be commutative, except in

very special circumstances
; (3) they may be commutative in most of the ordinary

cases which occur practically.

The really important case (as is suggested by the instances which we

gave from Ch. IX) is that in which each operation is one which involves

a passage to the limit, such as a differentiation or the summation of an

infinite series : such operations are called limit operations. The general

question as to the circumstances in which two given limit operations are

commutative is one of the most important in all mathematics. But to

attempt to deal with questions of this character by means of general theorems

would carry us far beyond the scope of this volume.

"We may however remark that the answer to the general question is on

the lines suggested by the examples above. If L and L' are two limit

operations then the numbers LL'z and L'Lz are not generally equal, in the

strict theoretical sense of the word 'general'. We can always, by the exercise

of a little ingenuity, find z so that LL'z and L'Lz shall differ from one another.

But they are equal generally, if we use the word in a more practical sense,

viz. as meaning 'in a great majority of such cases as are likely to occur

naturally '' or in ordinary cases.
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Of course, in an exact science like pure mathematics, we caunot be satisfied

with an answer of this kind ; and in the higher branches of mathematics the

detailed investigation of these questions is an absolute necessity. But for

the present the reader may be content if he realises the point of the remarks

which we have just made. In practice, a result obtained by assuming that

two limit-operations are commutative is probably true : it at any rate affords

a valuable suggestion as to the answer to the problem under consideration.

But an answer thus obtained must, in default of a further study of the general

question or a special investigation of the particular problem, such as we gave

in the instances which occurred in Ch. IX, be regarded as suggested only and

not proved.

Detailed investigations of a large number of important double limit

problems will be found in Bromwich's Infinite Series.



APPENDIX III

(To § 158 and Chapter IX)

The circular functions

The reader will find it an instructive exercise to work out the theory of

the circular functions, starting from the definition

dt
(1) y—y (^) = arc tan x— \

-

—

.'o 1 +
Df *

t2

The equation (1) defines a unique value of y corresponding to every real

value of as. As y is continuous and strictly increasing, there is an inverse

function x=x (y), also continuous and steadily increasing. We write

(2) x= x (y) = tan y. Df

.

If we define it by the equation

Df.
<3 > **-£&.

then this function is defined for — \tc <.y <\n.

"We write further

1 x
(4) cosy=—===, siny=—==, Df.

S/l + x1 \/l + x2

where the square root is positive; and we define cosy and siny, when y is - £ n

or ^7r, so that the functions shall remain continuous for those values of y.

Finally we define cosy and siny, outside the interval (
— ^ir, hir), by

(5) tan (y+ 7r) = tany, cos (y+ n)= -cosy, sin (y+ n)= —siny. Df.

We have thus defined cosy and siny for all values of y, and tany for all

values ofy other than odd multiples of \tt. The cosine and sine are continuous

for all values of y, the tangent except at the points where its definition fails.

The further development of the theory depends merely on the addition

formulae. Write

1— X\X%

and transform the equation (1) by the substitution

Xi+u t-x\
t=i , u=- —

J .1—#!%' l+Xit
We find

Xi+.v2 f%2 du fa>i du fa du
arc tan = / = / - h + / h1-^1%2 J - Xl l + U- JO 1 + U* JO l+«2

= arc tan X\ + arc tan x2 .

* These letters at the end of a line indicate that the formulae which it contains

are definitions.



444 APPENDIX III

From this we deduce

tanyi+tanyo .
(
-
6 >

ta"^ +^-l-tan yi tanl>

an equation proved in the first instance only when yu y2 , and y\+y<i lie in

(
— -^rr, \n), but immediately extensible to all values of y x

and y2
by means of

the equations (5).

From (4) and (6) we deduce

cos (yi +y2)= ± (cos y 1
cos y2

— sin y 1
sin y2).

To determine the sign put y2=0. The equation reduces to cosy
1
=±cosy

l ,

which shows that the positive sign must be chosen 'for at least one value of y2 ,

viz. #2= 0- It follows from considerations of continuity that the positive sign

must be chosen in all cases. The corresponding formula for sin(y 1 +y2) may
be deduced in a similar manner.

The formulae for differentiation of the circular functions may now be de-

duced in the ordinary way, and the power series derived from Taylor's

Theorem.

An alternative theory of the circular functions is based on the theory of

infinite series. An account of this theory, in which, for example, cos.v is

defined by the equation

COSx=l- -+--..,

will be found in Whittaker and Watson's Modern Analysis (Appendix A).



APPENDIX IV

The infinite in analysis and geometry

Some, though not all, systems of analytical geometry contain 'infinite'

elements, the line at infinity, the circular points at infinity, and so on. The
object of this brief note is to point out that these concepts are in no way
dependent upon the analytical doctrine of limits.

In what may be called ' common Cartesian geometry ', a point is a pair of

real numbers (x, y). A line is the class of points which satisfy a linear relation

ax+ by + c= 0, in which a and 6 are not both zero. There are no infinite elements,

and two lines may have no point in common.

In a system of real homogeneous geometry a point is a class of triads of

real numbers (x, y, z), not all zero, triads being classed together when their

constituents are proportional. A line is a class of points which satisfy a linear

relation ax + by+ cz= 0, where a, b, c are not all zero. In some systems one

point or line is on exactly the same footing as another. In others certain

' special ' points and lines are regarded as peculiarly distinguished, and it is on

the relations of other elements to these special elements that emphasis is laid.

Thus, in what may be called 'real homogeneous Cartesian geometry', those

points are special for which 2= 0, and there is one special line, viz. the line

2=0. This special line is called 'the line at infinity'.

This is not a treatise on geometry, and there is no occasion to develop the

matter in detail. The point of importance is this. The infinite of analysis

is a ' limiting ' and not an ' actual ' infinite. The symbol ' <x> ' has, throughout

this book, been regarded as an 'incomplete symbol', a symbol to which no

independent meaning has been attached, though one has been attached to

certain phrases containing it. But the infinite of geometry is an actual and

not a limiting infinite. The 'line at infinity' is a line in precisely the same

sense in which other lines are lines.

It is possible to set up a correlation between 'homogeneous' and 'common'
Cartesian geometry in which all elements of the first system, the special

elements excepted, have correlates in the second. The line ax + by + cz — 0, for

example, corresponds to the line ax+ by + c= 0. Every point of the first line

has a correlate on the second, except one, viz. the point for which 2=0.

When (x, y, z) varies on the first line, in such a manner as to tend in the limit

to the special point for which 2=0, the corresponding point on the second line

varies so that its distance from the origin tends to infinity. This correlation

is historically important, for it is from it that the vocabulary of the subject

has been derived, and it is often useful for purposes of illustration. It is how-

ever no more than an illustration, and no rational account of the geometrical

infinite can be based upon it. The confusion about these matters so prevalent

among students arises from the fact that, in the commonly used text books of

analytical geometry, the illustration is taken for the reality.
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