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Introduction

Introduction

We have in Ventus: Complex Functions Theory a-1 characterized the analytic functions by their
complex differentiability and by Cauchy-Riemann’s equation. We obtained a lot of important results
by arguing on line integrals in C. In this way we proved the Cauchy’s Integral Theorem and Cauchy’s
Integral Formula.

In Ventus: Complex Functions Theory a-2 we followed an alternative approach by proving that locally
every analytic function is described by its Taylor series. Historically this was the original definition
of an analytic function, introduced by Lagrange as early as in 1797. The advantage of this approach
is that it is easy to calculate on series. The disadvantage is that this approach is not global.

By combining the two aspects of analytic functions it is possible in the following to use Cauchy-
Riemann’s equations, when they are most convenient, and series when these give a better description,
so we can benefit from that we have two equivalent, though different theories of the analytic functions.

We collect in the present volume Ventus: Complex Functions Theory a-3 some applications which are
not natural to include in the former two volumes.

We prove the argument principle in Chapter 1 and show some powerful and unexpected applications.
Then we briefly sketch some criteria of stability of dynamic systems. These are important in some
engineering sciences.

In Chapter 2 we introduce the so-called many-valued functions,, and we visualize them by introducing
their corresponding Riemann surfaces..

Finally, in Chapter 3 we turn to more geometric applications of conformal mappings, which sometimes
can be used to solve some Dirichlet problems in an elegant way.

Complex Functions Theory is here described in an a series and a c series. The c series gives a lot of
supplementary and more elaborated examples to the theory given in the a series, although there are
also some simpler examples in the a series. When reading a book in the a series the reader is therefore
recommended also to read the corresponding book in the c series. The present a series is divided into
three successive books, which will briefly be described below.

a-1 The book Elementary Analytic Functions is defining the battlefield. It introduces the analytic
functions using the Cauchy-Riemann equations. Furthermore, the powerful results of the Cauchy
Integral Theorem and the Cauchy Integral Formula are proved, and the most elementary analytic
functions are defined and discussed as our building stones. The important applications of Cauchy’s
two results mentioned above are postponed to a-2.

a-2 The book Power Series is dealing with the correspondence between an analytic function and
its complex power series. We make a digression into the theory of Harmonic Functions, before
we continue with the Laurent series and the Residue Calculus. A handful of simple rules for
computing the residues is given before we turn to the powerful applications of the residue calculus
in computing certain types of trigonometric integrals, improper integrals and the sum of some not
so simple series.

a-3 The book Stability, Riemann surfaces, and Conformal maps starts with pointing out the con-
nection between analytic functions and Geometry. We prove some classical criteria for stability in
Cybernetics. Then we discuss the inverse of an analytic function and the consequence of extending

3
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this to the so-called multi-valued functions. Finally, we give a short review of the conformal maps
and their importance for solving a Dirichlet problem.

The author is well aware of that the topics above only cover the most elementary parts of Complex
Functions Theory. The aim with this series has been hopefully to give the reader some knowledge of
the mathematical technique used in the most common technical applications.

Leif Mejlbro
11th November 2010
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The argument principle, and criteria of stability

1 The argument principle, and criteria of stability

1.1 The argument principle

Roughly speaking, the argument principle along a simple closed curve C of an analytic function f
having only poles and no essential singularity relates the winding number of the image curve f(C)
with respect to w0 = 0 with the difference between the number of zeros and number of poles of f inside
C. This is an unexpected and strange property of an analytic function (without essential singularities
inside C), so we may expect some very powerful applications of it, and it is indeed so.

Let f : M → C be a function on any set M with complex values. By an argument function arg f we
(slightly incorrectly) denote any function on M , which for t ∈ M selects precisely one of the possible
values of arg f(t), a many-valued function already defined in Ventus: Complex Functions Theory a-1.
Notice that we do not at all assume that f is analytic.

Theorem 1.1.1 Assume that f : [a, b] → C\{0} is continuous and never 0. Then f has a continuous
argument function arg f(t), t ∈ [a, b].

–1

–0.5

0.5

1

1.5

2

–1.5 –1 –0.5 0.5 1

Figure 1: Proof of Theorem 1.1.1, part a).

Proof. a) If there exists an α, such that

f(t) ∈ C \
{

z = r eiα | r ≥ 0
}

for all t ∈ [a, b],

cf. Figure 1, then we fix an argument function by

α < arg f(t) < α + 2π, t ∈ [a, b].

This argument function is continuous. In fact, define

Logα : C \
{

z = r eiα | r ≥ 0
}

→ C

by

Logα z := ln |z| + iArgα z, Argα z ∈ ]α, α + 2π[,

5
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where Argα z denotes the uniquely determined argument of z in the interval ]α, α+2π[. Then Logα is
analytic in the slit complex plane, so it is in particular continuous. This implies that the composition
Logα ◦ f is also continuous, and so is its imaginary part,

�Logα ◦ f(t) = Argα f(t) = arg f(t), t ∈ [a, b].
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0

0.5
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Figure 2: Proof of Theorem 1.1.1, part b).

b) Then assume that no such α exists. Put

m := inf{|f(t)| | t ∈ [a, b]}.

Since f is continuous, and [a, b] is compact, the image f([a, b]), where 0 /∈ f([a, b]), is also compact
(by one of the main theorems of continuous functions), so

m := inf{|f(t)| | t ∈ [a, b]} = min{|f(t)| | t ∈ [a, b]} > 0.

Furthermore, by another main theorem of continuous functions, f is even uniformly continuous on
[a, b]. Therefore, we can choose δ > 0 corresponding to m > 0 (and independent of s and t), such that

|f(s) − f(t)| < m, if s, t ∈ [a, b] and |s − t| < δ.

Choose finitely many points a = t0 < t1 < · · · < tn = b, such that |tj − tj−1| < δ for all j = 1, . . . , n.
For every subinterval [tj−1, tj ] there exists a constant αj , such that

f(t) ∈ C \ {z = r · exp (iαj) | r ≥ 0} for all t ∈ [tj−1, tj ] .

We may e.g. choose αj = arg f (tj) + π.

It follows from a) that there exists a continuous argument function arg f on [tj−1, tj ] for every j =
1, . . . , n. Furthermore, we can choose these argument functions such that arg f (tj) has the same
value in both the adjacent intervals [tj−1, tj ] and [tj , tj+1], and the composed argument function is
continuous. �

Given one continuous argument function Θ = arg f , we get other continuous argument functions by
adding 2pπ for p ∈ Z, i.e. Θ(t) + 2pπ is also a continuous argument function for every fixed p ∈ Z.

6
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alpha_j

m
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f(t_j)
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Figure 3: Proof of Theorem 1.1.1, part b).

If conversely Θ(t) and Θ1(t) are continuous argument functions, then the difference Θ1(t) − Θ(t) is
again a continuous function on [a, b], which for every t ∈ [a, b] has the value 2pπ for some function
p = p(t) ∈ Z. Since [a, b] is connected, and p : [a, b] → Z is continuous, it follows from the definition
of connectedness that p(t) = p must be a constant. This implies that the difference

(1) arg f(b) − arg f(a)

is a constant independent of the chosen argument function arg in (1). We call this constant (1) the
argument variation of the function f over the interval [a, b].

–2
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0
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2

–3 –2 –1 1 2 3

Figure 4: The argument variation of a closed curve.

If f(a) = f(b), then the continuous curve described by the function z = f(t), t ∈ [a, b], is a closed
curve, which does not pass through 0. This means that the argument variation must be

(2) arg f(b) − arg f(a) = 2nπ for some n ∈ Z.

The uniquely determined number n ∈ Z is called the winding number of the function – or the curve
– with respect to 0.

7
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The winding number indicates the number of times the curve winds around 0 counted positive in the
positive orientation of the plane, and negative in the negative orientation of the plane. Notice that
positive and negative winding numbers cancel each other. This simple geometric interpretation often
makes is easy to find the winding number of a given curve.

The importance of the winding number will later be made clear by the argument principle. We first
prove

Theorem 1.1.2 Let f : [a, b] → C \ {0} and g : [a, b] → C be two continuous complex functions, for
which f(a) = f(b) and g(a) = g(b). If for all t ∈ [a, b],

(3) |g(t)| < |f(t)|,

then f and f + g have the same winding number n with respect to 0.

8

Download free eBooks at bookboon.com



Stability, Riemann Surfaces, 
Conformal Mappings

13 

The argument principle, and criteria of stability

Remark 1.1.1 A man is walking his dog around a monument, represented by movements in the
complex plane with the monument situated at 0. The dog has the distance |g(t)| from the man, and
the man has the distance |f(t)| from the monument. If the lace is so short that always |g(t)| < |f(t)|
and the man and the dog start and end at the same points, then they have both walked the same
number of times around the monument.

Another example is of course the Earth and the Moon. From the time when this planet/satellite
system was created, the Earth and the Moon have moved exactly the same number of times around
the sun. ♦

Proof. Since

|f(t) + g(t)| ≥ |f(t)| − |g(t)| > 0 for all t ∈ [a, b],

it follows that the two continuous functions f and f + g on [a, b] are always �= 0, and

f(a) = f(b), and (f + g)(a) = (f + g)(b).

The rewrite

f(t) + g(t) = f(t) ·
{

1 +
g(t)
f(t)

}

, t ∈ [a, b].

It follows from
∣

∣

∣

∣

g(t)
f(t)

∣

∣

∣

∣

< 1 that

�
{

1 +
g(t)
f(t)

}

≥ 1 −
∣

∣

∣

∣

g(t)
f(t)

∣

∣

∣

∣

≥ 0,

so 1 +
g(t)
f(t)

lies in the right hand half plane for every t ∈ [a, b]. In particular, the principal argument

Arg
(

1 +
g(t)
f(t)

)

is continuous for t ∈ [a, b].

Choosing any continuous argument function arg� f for f it follows that

arg� f(t) + Arg
{

1 +
g(t)
f(t)

}

:= arg(f + g)(t)

is a continuous argument function for f + g. Since

Arg
{

1 +
g(a)
f(a)

}

= Arg
{

1 +
g(b)
f(b)

}

,

we finally conclude that

arg(f + g)(b) − arg(f + g)(a) = arg� f(b) − arg� f(a) = 2πn. �.

The importance of Theorem 1.1.2 lies in the fact that we can move closed curves slightly without
changing its winding number with respect to 0.

9
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We first extend the definition of the winding number in the following obvious way. Let Ω ⊆ C be an
open domain, and let f : Ω → C \ {0} be a continuous (not necessarily analytic) function. If C is
a simple, closed curve in Ω, i.e. without any double points, then the image f(C) is a closed curve,
though not necessarily simple (it may have double points) in C \ {0}, and the geometric definition of
the winding number of the curve f(C) with respect to 0 makes sense.

We shall in the following restrict ourselves to analytic functions f : Ω → C, where Ω ⊆ C is an open
domain. We shall assume that the singularities of f are either removable of poles, and that f is not
identically zero.

Definition 1.1.1 Let the function f : Ω → C be given as above. We define its logarithmic derivative
as the analytic function

f ′(z)
f(z)

defined in the set {z ∈ C | f(z) �= 0}.

The name “logarithmic derivative” is due to the fact that if f(z) /∈ R− ∪ {0} for all z ∈ Ω, i.e. f(z)
is never a real negative number, or 0, then Log f(z) is analytic in all of Ω, and we have

(4)
d

dz
Log f(z) =

f ′(z)
f(z)

.

In general, there does not exist an analytic logarithm of f(z) defined in all of Ω. However, since the
right hand side of (4) is defined and analytic in {z ∈ Ω | f(z) �= 0}, and since it often occurs in the
applications, we have coined this name in Definition 1.1.1.

One very important result in this section is the following

Theorem 1.1.3 The argument principle. Let f : Ω → C be analytic in an open domain Ω, where
f is not identically zero, and where all isolated singularities of f in Ω are poles. Let C be a simple,
closed curve in Ω, not passing through any zero of f(z), and denote by ω ⊂ C the bounded domain
inside C.
Let Z denote the number of zeros (counted by multiplicity) and P the number of poles (also counted
by multiplicity) in ω. Then the difference Z − P is equal to the winding number of the closed curve
f(C) with respect to 0 in the w-plane.
We have more precisely,

(5)
1

2πi

∮

C

f ′(z)
f(z)

dz = Z − P = the winding number of f(C)with respect to w0 = 0.

Remark 1.1.2 Notice that ω in general is not a subset of Ω. We see that ω \ Ω is precisely the set
of all poles of f inside the simple, closed curve C. ♦

Proof. We first prove that the number of poles is finite, P < +∞. Let us assume that instead
P = +∞. Then f(z) has infinitely many poles {zn ∈ ω | n ∈ N} in the compact set ω, and the

reciprocal function g(z) :=
1

f(z)
would have the infinitely many zeros {zn ∈ ω | n ∈ N} in the compact

10
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set ω. Hence, there exists at least one cluster point z0 ∈ ω and a subsequence
{

znj

}

→ z0, and we
conclude from 0 = g

(

znj

)

→ g(z0) that also g(z0) = 0, so z0 is a non-isolated zero of g. This implies,
cf. Ventus: Complex Functions Theory a-1, that g(z) is identical 0, so f(z) is identical ∞, which is
not possible. Hence, the number of poles in ω must be finite, P ∈ N0.

Then we prove that
1

2πi

∮

C

f ′(z)
f(z)

dz is equal to the winding number of f(C) with respect to w0 = 0.

I

f(C)

w

C

z

f(z)z(t)

ba

Figure 5: The winding number in the proof of the argument principle.

Assume that the curve C is given by its parametric description z(t), t ∈ [a, b]. We define by composition
a continuous complex function g : [a, b] → C \ {0} by g(t) := f(z(t)) �= 0 for t ∈ [a, b], and g(t) has a
continuous argument function arg g.

Using the same construction as in b) of the proof of Theorem 1.1.1 it follows that each subinterval
[tj , tj+1] corresponds to a curve segment Cj of C, and

1
2πi

∮

C

f ′(z)
f(z)

dz =
n−1
∑

j=0

1
2πi

∫

Cj

f ′(z)
f(z)

dz =
n−1
∑

j=0

1
2πi

∫ tj+1

tj

g′(t)
g(t)

dt

=
n−1
∑

j=0

1
2πi

[ln |g(t)|+i arg g(t)]tj+1
tj

=
1

2πi

n−1
∑

j=0

{ln |g(tj+1)|−ln |g(tj)|} +
1
2π

n−1
∑

j=0

{arg g(tj+1)−arg g(tj)}

=
1

2πi
{ln |g(tn)|−ln |g(t0)|} +

1
2π

{arg g(tn)−arg g(t0)}

=
1

2πi
{ln |g(b)|−ln |g(a)|} +

1
2π

{arg g(b)−arg g(a)}

= 0 + winding number of g([a, b]) = f(C) with respect to w0 = 0.

Finally, we prove that
1

2πi

∮

C

f ′(z)
f(z)

dz = Z − P .

11

Download free eBooks at bookboon.com



Stability, Riemann Surfaces, 
Conformal Mappings

16 

The argument principle, and criteria of stability

The singularities of
f ′(z)
f(z)

in ω are precisely all zeroes and all poles of f in ω. Hence by the Residuum

Theorem, cf. Ventus: Complex Functions Theory a-2,

(6)
1

2πi

∮

C

f ′(z)
f(z)

dz =
∑

z0 zero

res
(

f ′

f
; z0

)

+
∑

z0 pole

res
(

f ′

f
; z0

)

.

Assume that z0 is a zero of multiplicity n for f . Then we have in a neighbourhood of z0,

f(z) = (z − z0)
n · h(z), where h(z0) �= 0.

If instead z0 is a pole of multiplicity p for f , then similarly in a neighbourhood of z0,

f(z) = (z − z0)
−n · h(z), where h(z0) �= 0.

The structure is the same in the two cases, so we may assume that we in some neighbourhood of z0

have

(7) f(z) = (z − z0)
m · h(z), where h(z) �= 0 everywhere in the neighbourhood and m ∈ Z.

12
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If m > 0, then z0 is a zero of multiplicity m, and if m < 0, then z0 is a pole of multiplicity −m = |m|.

In this neighbourhood,

f ′(z)
f(z)

=
m (z − z0)

m−1 · h(z) + (z − z0)
m · h′(z)

(z − z0)
m · h(z)

=
m

z − z0
+

h′(z)
h(z)

.

Since
h′(z)
h(z)

is analytic in this neighbourhood, we conclude that

res
(

f ′

f
; z0

)

= m.

Inserting this result into (6) we finally get

1
2πi

∮

C

f ′(z)
f(z)

dz = Z + (−P ) = Z − P,

and the argument principle is proved. �

Combining the argument principle and Theorem 1.1.2 we easily get the following importing result.

Theorem 1.1.4 Rouché’s theorem. Let f , g : Ω → C be analytic functions in an open domain Ω ⊆ C.
Let C be a simple closed curve in Ω, and assume that neither f(z) nor g(z) have singularities inside
C. If

|f(z)| > |g(z)| for all z ∈ C,

then the two functions f and f + g have the same number of zeros inside C (counted by their multi-
plicities), and it is equal to the winding number of either of the two functions f and f + g.

Proof. It follows from Theorem 1.1.2 that f and f + g have the same winding number with respect
to w0 = 0, hence

Zf+g − Pf+g = Zf − Pf .

According to the assumptions of the theorem, Pf+g = Pf = 0, thus Zf+g = Zf , and the theorem is
proved. �

Remark 1.1.3 In the proof of Rouché’s theorem we only used that Pf+g = Pf and not that their
common value is 0. We can therefore relax this theorem to the weaker requirement that the “larger”
function f(z) is allowed to have poles, while only the perturbation g(z) (the “smaller” function) must
not have poles inside C. Neither of them must have essential singularities. We notice that if Pf > 0,
then the number of zeros Zf+g = Zf = Pf+ the winding number, is clearly bigger than the winding
number. ♦

Notice that when we add the perturbation g(z) (without poles) the zeros of f + g may lie far away
from the zeros of f , even though their numbers are equal. We shall demonstrate this by the following
example.

13
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Example 1.1.1 Choose a constant a ∈ C, such that 0 < |a| < 1, i.e. a lies in the deleted disc D(0; 1).
Put f(z) = zn and g(z) = −a. Let C be the unit circle |z| = 1. Then we have the estimate

|f(z)| = |zn| = 1 > |a| = |g(z)| for |z| = 1,

and we conclude from Rouché’s theorem that the two functions f(z) = zn and f(z) + g(z) = zn − a
must have the same number of zeros inside C, because we trivially have no poles involved.

The function f(z) = zn has the n-tuple zero z0 = 0, while the perturbated function f(z)+g(z) = zn−a
has n simple roots, all lying on the circle |z| = n

√

|a| of radius n
√

|a| and centre 0. Here we use a solution
formula of the binomial equation from Ventus: Complex Functions Theory a-1. The addition of even
a very small constant a �= 0 will cause the (unstable) zero at z0 = 0 of multiplicity n to bifurcate into
n simple roots “relatively far away from z0 = 0. ♦

It is possible to find the exact value of more of less “impossible” line integrals of the form
∮

C

h′(z)
h(z)

dz

by applying Rouché’s theorem and the argument principle. The trick is to write h(z) as a sum,
h(z) = f(z) + g(z), where the dominating term f(z) should be chosen fairly simple. We shall demon-
strate the technique by the following deliberately laboured example.

Example 1.1.2 We shall find the exact value of the following line integral

1
2πi

∮

|z|=2

10z9+25 sinh z+ 1
2 exp

(

z
2

)

· exp
(

exp
(

z
2

))

z10+25 cosh z+exp
(

exp
(

z
2

)) dz.

The usual method of inserting a parametric description and hope for some divine inspiration is clearly
doomed to failure. Instead we put the denominator

h(z) := z10+25 cosh z+exp
(

exp
(z

2

))

,

and then notice that the line integral has the structure

1
2πi

∮

|z|=2

h′(z)
h(z)

dz = Zh − Ph = Zh,

because h(z) does not have poles, so Ph = 0.

We estimate each of the three terms of h(z) on the circle |z| = 2.

First,
∣

∣z10
∣

∣ = 210 = 1024 for |z| = 2.

Then use that |ez| = ex ≤ e2 < 8 to get

|25 cosh z| = 25
∣

∣

∣

∣

1
2

{

ez + e−z
}

∣

∣

∣

∣

≤ 25
2

· 2 · e2 ≤ 200 for |z| = 2,

where we of course can obtain a better estimate by using a pocket calculator. However, the estimate
above will later prove to be sufficient.

14
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Finally,
∣

∣

∣exp
(

exp
(z

z

))∣

∣

∣ ≤ ee < 33 = 27 for |z| = 2.

If we put f(z) = z10 and g(z) = 25 cosh z + exp
(

exp
(

z
2

))

, then we get for |z| = 2 the following
estimates

|g(z)| ≤ |25 cosh z| +
∣

∣

∣
exp

(

exp
(z

2

))∣

∣

∣
< 200 + 27 < 1024 =

∣

∣z10
∣

∣ = |f(z)|.

It follows from Rouché’s theorem that

1
2πi

∮

|z|=2

10z9+25 sinh z+ 1
2 exp

(

z
2

)

· exp
(

exp
(

z
2

))

z10+25 cosh z+exp
(

exp
(

z
2

)) dz = Zh = Zf+g = Zf = 10,

because f(z) = z10 has a zero of multiplicity 10 at z0 = 0 and no other zeros. ♦

When we choose the dominating term f(z) in the splitting h(z) = f(z) + g(z), we often take is as the
polynomial part of h(z). This is, however, not always the right thing to do, which is shown by the
following example.

Example 1.1.3 We shall find the number of zeros of the analytic function z5 + 5 sin z within the
rectangle of the corners ±π

2 ± i, cf. Figure 6. It follows by inspection that z = 0 is a (simple) zero.
The problem is, if there are other zeros inside C.

C

Pi/2-Pi/2

-i

i

–1.5

–1

–0.5

0

0.5

1

1.5

–2 –1 1 2

Figure 6: The curve C of Example 1.1.3.

Using a result from Ventus: Complex Functions Theory a-1 we get

| sin z|2 = | sinx · cosh y + i cosx · sinh y| = sin2 x + sinh2 y,

from which we conclude that

| sin z| ≥
∣

∣

∣
sin

(

±π

2

)∣

∣

∣
= 1 for z = ±π

2
+ i y, y ∈ [−1, 1],

15
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(the vertical line segments of C), and

| sin z| ≥ sinh 1 > 1 for z = x ± i, x ∈
[

−π

2
,

π

2

]

,

(the horizontal line segments of C).

Then choose f(z) = 5 sin z and g(z) = z2, where

|f(z)| = |5 sin z| ≥ 5 for z ∈ C,

(the assumed “larger” term is estimated downwards), and by a geometric inspection (choose the most
distant points on C from 0; cf. Figure 6)

|g(z)| =
∣

∣z2
∣

∣ ≤
∣

∣

∣

π

2
+ i

∣

∣

∣ =
π2

4
+ 1 <

10
4

+ 1 < 5 for z ∈ C,

(the assumed “smaller” term is estimated upwards).

Since |g(z)| < |f(z)| on C, it follows from Rouché’s theorem that Zf+g = Zf .

The (simple) zeros of the function f(z) = 5 sin z are given by the set {pπ | p ∈ Z}. Clearly, among
these only z0 = 0 lies inside C. Hence, z0 = 0 is the only zero of z2 + 5 sin z inside C, i.e. in the
rectangle.

16
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It is left to the reader to fill in the details of the proof of the following:
Assume that |λ| < 4 −

(

π
2

)2. Then the transcendent equation

z2 + 5 sin z = λ

has precisely one solution in the rectangle inside C.
Sketch of proof: Just repeat the proof above with the modification that now g(z) = z2 − λ. ♦

Another application of Rouché’s theorem is an alternative proof of the Fundamental Theorem of
Algebra.

Theorem 1.1.5 The Fundamental Theorem of Algebra. Every polynomial

P (z) = a0 + a1z + · · · + anzn, an �= 0,

of degree n ∈ N has precisely n complex roots (counted by their multiplicities).

Proof. Choose R > 0 so big that

|an| rn > |a0| + |a1| r + · · · + |an−1| rn−1 for every r ≥ R.

This follows from

1
r

{

|an−1| + |an−2| ·
1
r

+ · · · + |a0| ·
1

rn−1

}

→ 0 for r → +∞,

so there exists such an R > 0.

If we put f(z) = anzn and g(z) = a0 + a1z + · · · + an−1z
n−1, then |f(z)| > |g(z)| on every circle

Cr of centre 0 and radius r ≥ R, and it follows from Rouché’s theorem that P (z) = f(z) + g(z) and
f(z) = anzn have the same number of zeros inside every circle Cr, provided that r ≥ R, i.e. in all of
C. Since f(z) = anzn has the n-tuple zero z0 = 0 and no other zero, the theorem is proved. �

Example 1.1.4 Given the polynomial

P (z) = z3 + 2z2 − 50z + 100.

It follows from the Fundamental Theorem of Algebra that P (z) has three roots in C. We shall try
roughly to find where they are situated in C.

We first prove that all three roots lie inside the circle |z| = 9. Put

f1(z) = z3 and g1(z) = 2z2 − 50z + 100.

Then P (z) = f1(z) + g1(z) and

|f1(z)| = 729 and |g1(z)| ≤ 2 · 92 + 50 · 9 + 100 = 712 for |z| = 9,

so f1(z) and P (z) = f1(z) + g1(z) have the same number of roots inside |z| = 9, namely three.

17
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Then we prove that we have only one root lying inside the circle |z| = 4. In this case we choose
f2(z) = −50z and g2(z) = z3 + 2z2 + 100, and we get for |z| = 4,

|f2(z)| = | − 50z| = 200 and |g2(z)| =
∣

∣z3 + 2z2 + 100
∣

∣ ≤ 64 + 32 + 100 = 196,

so f2(z) = −50z and P (z) = f2(z) + g2(z) = z3 + 2z2 − 50z + 100 have the same number of roots
inside |z| = 4, namely one.

Finally we prove that there are no roots inside |z| = 7
4 . In this case we choose f3(z) = 100 and

g3(z) = z3 + 2z2 − 50z, so we get for |z| = 7
4 the estimate

|g3(z)| =
∣

∣z3+2z2−50z
∣

∣ ≤
{

2 +
7
4

}

·
{

7
4

}2

+50· 7
4

=
15
4
· 49
16

+
7
4
·50 <

{

1
4

+
7
4

}

·50 = 100 = |f3(z)| ,

so f3(z) = 100 (no roots) dominates, and the claim follows.

As a check we mention that the roots of z3 + 2z2 − 50z + 100 are approximately

−8.889 794 306, 2.658 473 477, 4.231 320 828,

i.e. it has three real roots.

Then we check what happens if we change the minus sign in the polynomial to a plus sign, i.e. we
consider the polynomial

P1(z) = z3 + 2z2 + 50z + 100.

The coefficients of P1(z) are numerically the same as the coefficients of P (z), so we can with no change
repeat the argument above. Thus,

• all three roots lie inside |z| = 9;

• there is only one root inside |z| = 4 (and hence two roots in the annulus 4 < |z| < 9);

• there are no roots inside |z| = 7
4 , thus precisely one root in the annulus 7

4 < |z| < 4.

There is nothing wrong with this analysis, except for the fact that we can directly by inspection find
the roots of P1(z), because we have the factorization

P(z) = z3 + 2z2 + 50z + 100 = (z + 2)
(

z2 + 50
)

,

so the roots are in this case

−2, 5
√

2 i, −5
√

2 i.

We notice that we get one real root and two complex conjugated roots of P1(z). ♦

Example 1.1.5 We shall in this example show that we are now able to compute line integrals like

(8)
∮

|z|=1

z − 1
ez − 3z

dz,

which does not fall into any of the standard categories considered previously.
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We shall aim at an application of the residuum formula, so we shall first find the zeros of the denomi-
nator h(z) = ez −3z inside |z| = 1. A direct attack on the transcendental equation h(z) = ez −3z = 0
does not look promising, if we want an exact solution, and not just an approximation. Let us first more
modestly find the number of zeros inside |z| = 1. It follows by choosing f(z) = −3z and g(z) = ez

that

|g(z)| = |ez| = ex ≤ e < 3 = | − 3z| = |f(z)| for |z| = 1,

so f(z) = −3z and f(z)+ g(z) = h(z) = ez − 3z have the same number of zeros inside |z| = 1, namely
one. Let z0 denote the zero of h(z) in this set. Then it is easily seen that z0 is real and 0 < z0 < 1,
so an approximate value can be found either by a pocket calculator or by an iteration procedure. We
shall here use another method, because we want to see if we can find the exact value of (8) and not
just an approximate one. We note so far that we have

exp (z0) = 3z0 and |z0| < 1 (and even z0 real and 0 < z0 < 1).

We shall need the following simple result from residuum calculus:

Let z0 be a zero of order m, or a pole of order −m, of an analytic function h(z) in a deleted neigh-
bourhood of z0, and let ϕ(z) be analytic in some neighbourhood of z0. Then

(9) res
(

ϕ(z) · h′(z)
h(z)

; z0

)

= m · ϕ (z0) .

The proof is simple, because a Laurent series expansion of ϕ(z) · h′(z)
h(z)

from z0 must have the form

ϕ(z) · h′(z)
h(z)

= ϕ (z0) ·
m

z − z0
+ · · · ,

where the dots indicate a power series in z − z0. Since the residuum at z0 is defined as the coefficient
of (z − z0)

−1 in this Laurent series expansion, the claim follows.

The result (9) indicates that we should try to rewrite the integrand of (8) in the form

(10)
z − 1

ez − 3z
=

z − 1
ez − 3

· ez − 3
ez − 3z

with

h(z) = ez − 3z, h′(z) = ez − 3, and ϕ(z) =
z − 1
ez − 3

.

This is legal, if we can prove that we never divide by zero, so we require that h′(z) = ez − 3 �= 0 for
|z| = 1. This is, however, obvious, because

|ez| ≤ ex ≤ e < 3 for |z| ≤ 1.

Using (10) it then follows from (9) and (8) and exp (z0) = 3z0 for the only zero (of multiplicity m = 1)
∮

|z|=1

z − 1
ez − 3z

dz =
∮

|z|=1

z − 1
ez − 3

· ez − 3
ez − 3z

dz =
∮

|z|=1

z − 1
ez − 3

· h′(z)
h(z)

dz

= 2πi res
(

z − 1
ez − 3

· h′(z)
h(z)

; z0

)

= 2πi · z0 − 1
exp (z0) − 3

· 1 = 2πi · z0 − 1
3z0 − 3

=
2πi

3
.
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Alternatively, one may directly apply one of the simple rules of computing the residuum given in
Ventus: Complex Functions Theory a-2, where we again use that z0 given by exp (z0) = 3z0 and
|z0| < 1 is a simple pole. In this approach we get instead

∮

|z|=1

z − 1
ez − 3z

dz = 2πi lim
z→z0

z − 1
d
dz {ez − 3z} = 2πi · lim

z→z0

z − 1
ez − 3

= 2πi · z0 − 1
exp (z0) − 3

= 2πi · z0 − 1
3z0 − 3

=
2πi

3
.

It is remarkable that we in neither of the two solutions methods need to find the zero z0 of the
denominator explicitly. We just eliminaten z0 by the equation exp (z0) = 3z0. ♦
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1.2 Criteria of Stability

When we consider the question of stability of mechanical or electric systems it is of paramount im-
portance to decide whether all zeros of a certain polynomial connected with the system lie in the left
half plane. As an example, the simplest oscillation problem will lead to a model, which is described
by a linear differential equation of constant coefficients

(11)
dnx

dtn
+ a1

dn−1x

dtn−1
+ · · · + an−1

dx

dt
+ anx = 0.

The corresponding characteristic polynomial, which is also called the transition function, and which
sometimes in the technical literature is found by taking the Laplace transform of (11), which is not
necessary in this simple case, because it is simply obtained by replacing each derivative djx

dtj by the
monomial λj in (11), is given by

(12) P (λ) = λn + a1λ
n−1 + · · · + an−1λ + an.

In general we are of course forced to use the Laplace transform, see below.

To illustrate what we are aiming at, we here for simplicity – it is not necessary, but very convenient
– assume that the complex roots λ1, . . . , λn of (12) are mutually different, λi �= λj , whenever i �= j.
Then the solution of (11) is given by

(13) x =
n

∑

j=1

Cj exp (λjt) , where C1, . . . , Cn ∈ C are arbitrary constants.

Let us consider the solution in (13) corresponding to the index j. We split λj into its real and
imaginary parts, λj = sj + i σj , where sj , σj ∈ R. Then the solution is the oscillation

exp (λjt) = exp (sjt) · {cos (σjt) + i sin (σjt)}

of the frequency σj (if σj �= 0). This oscillation is damped if sj < 0, and the amplitude tends to
infinity for t → +∞ if sj > 0, while the amplitude is 1, if sj = 0. We conclude that if the solution
(13) is stable, i.e. it is converging, them all the roots necessarily must lie in the open left half plane.

In more complicated cases we are forced to apply the Laplace transform, because (11) is then replaced
by a more general linear convolution equation, typically of the form

(14) y(t) = an
dnf

dtn
+ · · · + aof(t) + b

∫ t

0

ϕ(t − τ)f(τ) dτ,

where ϕ(t) = 0 and f(t) = 0 for t < 0, where ϕ(t) is a known function, while f(t) denotes the unknown
function with some given initial conditions f(0), . . . , f (n−1)(0).

When we use the Laplace transform on the equation (14) with the given initial conditions, we get an
equation of the form

(15) Y (s) = G(s) · F (s) + H(s), for �s > σ,

where Y (s) := L{y}(s) and F (s) := L{f}(s) are shorthand for the Laplace transforms of the functions
y(t) and f(t), and the transition function G(s) depends on the system and the initial conditions of f .
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We shall postpone the discussion of the Laplace transform itself to Ventus: Complex Functions Theory
a-4 and just note that (15) is a typical equation in Cybernetics. The solution method is then to solve
(15) with respect to the Laplace transform F (s) = L{f}(s) of the unknown function f(t),

(16) F (s) =
Y (s) − H(s)

G(s)
for �s > σ,

and then apply the inverse Laplace transform on (16) formally to get the solution

(17) f(t) = L−1

{

Y (s) − H(s)
G(s)

}

(t),

and then hope for some residuum formula, because the function in (16) is analytic. Such residuum
formulæ exist, but they are too complicated to bring here, so they are postponed to Ventus: Complex
Functions Theory a-4.

In principle, this seems to be a straightforward solution procedure, but in practice (17) may be very
difficult to compute, even with the announced residuum formula. We shall therefore instead consider
a simpler problem, namely given the transition function G(s) [derived e.g. by means of the Laplace
transform], what can be said about the stability of the solution (17) without computing (17)?.

First note that in (16) only the transition function G(s) occurs in the denominator. This means that
the poles of F (s) in (16) are precisely the zeros of the transition function G(s).

We saw above that the simple differential equation (11) has stable solutions, if and only if all roots of
the characteristic polynomial (12) lie in the open left half plane, �z < 0. The same holds in general,
so we shall search for criteria which guarantee that all zeros of G(s) lie in the open left half plane,
which will imply stability of the solution (17) without computing it explicitly.

In the loose motivation above we have allowed ourselves to use the Laplace transform in spite of the
fact that is has not yet been formally introduced. For historical reasons we have used the traditional
notation s ∈ C of the variable of the Laplace transform. Since we in the remaining part of this section
no longer shall use the Laplace function and only focus on the given transition functions as analytic
functions, we switch back to the usual complex variable z ∈ C. We shall furthermore assume, which
is customary in Cybernetics, that the transition function G(z) is a fractional function, i.e. a fraction
of two polynomials,

G(z) =
P (z)
Q(z)

=
a0z

n+a1z
n−1+ · · · +an−1z+an

b0zm+b1zm−1+ · · · +bm−1z+bm
,

where P (z) and Q(z) are never zero at the same points. In fact, if z0 was a zero of both P (z) and
Q(z), then z − z0 would be a factor in both polynomials, so it can be canceled.

Having made these assumptions we see that the zeros of G(z) are precisely the zeros of the numerator
P (z), so it is no longer necessary to include the denominator Q(z). Therefore, we need only consider
the numerator

(18) P (z) = a0z
n+a1z

n−1+ · · · +an−1z+an

in the following.

Since the conjugated polynomial

P (z) := a0z
n+a1z

n−1+ · · · +an−1z+an = a0z
n+a1z

n−1+ · · · +an
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has the complex conjugated roots of the roots of P (z), we conclude that the roots of the product
polynomial P (z)P (z) must either be real or can be paired as complex conjugated roots. This implies
that P (z)P (z) must have real coefficients. Since complex conjugation maps the left (or right) half
plane into itself, it follows that we without loss of generality in the following may assume that the
polynomial (18) has only real coefficients, a0, . . . , an ∈ R.

We introduce

Definition 1.2.1 Let P (z) be a polynomial of real coefficients. If all its zeros lie in the open left half
plane �z < 0, then P (z) is called a Hurwitz polynomial.

The importance of Hurwitz polynomials in the engineering applications is obvious from the above. If

the rational function G(z) =
P (z)
Q(z)

of real coefficients is a transition function of a dynamical system,

then its solution is stable if and only if the numerator P (z) is a Hurwitz polynomial.

By the Fundamental Theorem of Algebra,

(19) P (z) = a0z
n+ · · · +an = a0 (z−λ1) · · · (z−λn) , z ∈ C.

Assume that P (z) is a Hurwitz polynomial and that α+ iβ, β �= 0, is a complex root, necessarily lying
in the left half plane according to Definition 1.2.1, so α < 0. Since P (z) has real coefficients, α − iβ
is also a root (of the same multiplicity). It follows from α < 0 and

(z−α−iβ)(z−α+iβ) = (z−α)2 + β2 = z2−2αz+
(

α2+β2
)

that this polynomial has positive coefficients. This is also trivially the case, if λ < 0 is a real root.
When we multiply all these factors of positive coefficients, we again obtain a polynomial of positive
coefficients. We have therefore proved

Theorem 1.2.1 Given a polynomial

P (z) = a0z
n+a1z

n−1+ · · · +an, a0, a1, . . . , an ∈ R,

of real coefficients. A necessary condition that P (z) is a Hurwitz polynomial is that a0, a1, . . . , an

are all positive, or all are negative.

We only need to add to the proof above that if a0 < 0, then

1
a0

P (z) = zn +
a1

a0
zn−1 + · · · + an

a0

has only positive coefficients, so a0, a1, . . . , an have all the same sign – either all positive, or all
negative.

Remark 1.2.1 If n = 1 or n = 2, then the necessary condition of Theorem 1.2.1 is also sufficient.
For n ≥ 3 this is no longer true. The polynomial

16z3 + 8z2 + 9z + 17

of third degree has only positive coefficients, and its roots are −1, 1
4 ± i, so it is not a Hurwitz

polynomial, because it has two roots in the right half plane. ♦
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Theorem 1.2.2 A necessary and sufficient condition that every root of a polynomial of degree 3,

P (z) = a0z
3 + a1z

2 + a2z + a3

is a Hurwitz polynomial, is that all coefficients have the same sign and that

a1a2 − a0a3 > 0.

Proof. We need the following general result, that if the roots are denoted by r1, r2 and r3, then

a0z
3+a1z

2+a2z+a3 = a0 (z − r1) (z − r2) (z − r3)
= a0z

3 − a0 (r1+r2+r3) z2 + a0 (r1r2++r2r3+r3r1) z − r1r2r3.(20)

We either have one real root r and one pair of conjugate complex roots p ± iq, q �= 0, or three real
roots.

24

Download free eBooks at bookboon.com



Stability, Riemann Surfaces, 
Conformal Mappings

29 

The argument principle, and criteria of stability

First assume that we have the roots r ∈ R and p ± iq, where p, q ∈ R and q �= 0.

We get by identifying the coefficients of (20),

(21)
a1

a0
= − (r1+r2+r3) = −(r + 2p),

(22)
a2

a0
= r1r2+r2r3+r3r1 = p2 + q2 + 2pr,

(23)
a3

a0
= −r1r2r3 = −r

(

p2 + q2
)

.

Since all coefficients have the same sign, (21), (22) and (23) must all be positive. It follows in particular
from (23) that r < 0, and we have proved that the real root lies in the left half plane.

Then we assume that a1a2 − a0a3 > 0 and shall prove that the two roots p ± iq lie in the left half
plane, i.e. we shall only prove that p < 0. When the assumption is divided by a2

0 > 0, we get by using
(21), (22) and (23) that

0 <
a1

a0
· a2

a0
− a3

a0
= −(r + 2p)

(

p2 + q2 + 2pr
)

+ r
(

p2 + q2
)

= −2p
{(

p2 + q2 + 2pr
)

+ r2
}

= −2p
{

a2

a0
+ r2

}

.(24)

Since (22) is positive,it follows from (24) that p < 0, and we have proved that P (z) is a Hurwitz
polynomial in this case.

If all three roots are real, it simply follows from the assumption of the aj having the same sign that
the value of P (x) along the positive real axis, as well as at 0 has the same sign, so all three real roots
must be negative, and P (z) is a Hurwitz polynomial.

Then assume that the three roots r and p ± iq, one real and a pair of conjugate complex roots, all
lie in the left half plane. Then we already know from Theorem 1.2.1 that all the coefficients of the
polynomial have the same sign. We shall prove that a1a2 − a0a3 > 0. This follows from the reverse
computations, cf. (24),

0 < −2p
{

a2

a0
+ r2

}

= −2p
{(

p2 + q2 + 2pr
)

+ r2
}

= −(r + 2p)
(

p2 + q2 + 2pr
)

+ r
(

p2 + q2
)

=
a1

a0
· a2

a0
− a3

a0
=

a1a2 − a0a3

a2
0

,

and a1a2 − a0a3 > 0 follows.

If all three roots, r and p ± q are real and negative, then r < 0 and |q| < |p| = −p, and we still get
(21), i.e.

a1

a0
= −(r + 2p) > 0.

Formulæ (22) and (23) are replaced by a change of sign on q2, so we get

a2

a0
= p2 − q2 + 2pr > 0 and

a3

a0
= −r

(

p2 − q2
)

> 0.
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Then the reverse of (24) is modified in the following way,

0 < −2p
{

a2

a0
+ r2

}

= −2p
{(

p2 − q2 + 2pr
)

+ r2
}

= −(r + 2p)
(

p2 − q2 + 2pr
)

+ r
(

p2 − q2
)

=
a1

a0
· a2

a0
− a3

a0
=

a1a2 − a0a3

a2
0

,

and a1a2 − a0a3 > 0 also follows in this case, and the theorem is proved. �

We shall now prove another result on Hurwitz polynomials. Given the factorization (19), i.e.

P (z) = a0z
n+ · · · +an = a0 (z−λ1) · · · (z−λn) , z ∈ C.

If λj = α + iβ and �λj = α < 0, then for z = x + iy,

|z − λj |2 = (x − α)2 + (y − b)2.

Thus, for x > 0 and α < 0,

|z − λj |2 = (x − α)2 + (y − β)2 > (−x − α)2 + (−y + β)2 =
∣

∣−z − λj

∣

∣

2
.

This implies that if β = 0, then

|z − α| > | − z − α| for �z > 0,

and if β �= 0, then
∣

∣(z − λj)
(

z − λj

)∣

∣ >
∣

∣

(

−z − λj

)

(−z − λj)
∣

∣ for �z > 0.

When we multiply all the factors, we conclude that if P (z) is a Hurwitz polynomial, then

|P (z)| > |P (−z)| for �z > 0,

and replacing z by −z,

P (z)| < |P (−z)| for �z < 0.

We notice that if x = 0, then

|P (z)| = |P (iy)| = |P (−iy)| = |P (−z)| for �z = 0.

Conversely, assume that P (z) is a polynomial of real coefficients, such that

|P (z)| > |P (−z)| for �z > 0.

Then in particular P (z) �= 0 for �z > 0, so the zeros of P (z) must satisfy �z ≤ 0. Hence, if we require
that there are no zeros on the imaginary axis, i.e. we assume that P (iy) �= 0 for all y ∈ R, then P (z)
is a Hurwitz polynomial, and we have proved

Theorem 1.2.3 Let P (z) be a polynomial of real coefficients. Then P (z) is a Hurwitz polynomial, if
and only if







|P (z)| > |P (−z)| for �z > 0,

P (iy) �= 0 for y ∈ R.
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Assume that P (z) is a Hurwitz polynomial, and put

R(z) := P (1)P (z) − P (−1)P (−z).

When Theorem 1.2.3 is applied on P , we get

|P (1)P (z)| > |P (−1)P (−z)| for �z ≥ 0,

so we conclude that R(z) �= 0 for �z ≥ 0, and R(z) is a Hurwitz polynomial.

A trivial root of R(z) is z = −1, so the quotione
R(z)
z + 1

must be a polynomial, and it follows from the

above that

(25) Q(z) :=
R(z)
z + 1

=
P (1)P (z) − P (−1)P (−z)

z + 1

is a Hurwitz polynomial.

Then assume that P (z) is not a Hurwitz polynomial and that all its coefficients have the same sign.
We shall prove that Q(z) given by (25) is not a Hurwitz polynomial. If we can prove this, then it
follows that P (z) is a Hurwitz polynomial, if and only if Q(z) is a Hurwitz polynomial.

First assume that P (z) has a root iy0 on the imaginary axis. Then −iy0 is also a root, because P (z)
has real coefficients, and it follows by insertion into (25) that

Q(iy0) =
P (1)P (iy0) − P (−1)P (−iy0)

iy0 + 1
=

0 − 0
iy0 + 1

= 0,

so Q(z) is not a Hurwitz polynomial in this case.

Then assume that P (z0) = 0 for some z0 in the right half plane �z0 > 0. Then

(z0+1) Q(z0) = −P (−1)P (−z0) and (−z0+1) Q(−z0) = P (1)P (−z0) .

If also P (−z0) = 0, then clearly Q(z0) = 0, because z0 + 1 �= 0 for �z0 > 0. Hence, Q(z) is not a
Hurwitz polynomial in this case.

The remaining possibility is that P (−z0) �= 0. Since we have assumed that the real constants a0, . . . , an

all have the same sign, either positive or negative, we get

|P (−1)| =
∣

∣(−1)na0 + (−1)n−1a1 + · · · + an

∣

∣ < |a0 + a1 + · · · + an| = |P (1)|,

from which follows that

|(z0 + 1)Q(z0)| = |P (−1)| · |P (−z0)| < |P (1)| · |P (−z0)| = |(−z0 + 1)Q(−z0)| ,

from which

|Q(z0)| <

∣

∣

∣

∣

1 − z0

1 + z0

∣

∣

∣

∣

· |Q(−z0)| < |Q(−z0)| ,

because �z0 > 0 by assumption. Since z0 lies in the right half plane, this estimate shows that Q(z)
cannot be a Hurwitz polynomial, and the claim is proved.

Summing up, we have shown
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Theorem 1.2.4 Schur’s criterion. The polynomial P (z) of real coefficients is a Hurwitz polynomial,
if and only if the following two conditions are fulfilled,

1) all coefficients of P (z) have the same sign, positive or negative,

2) the polynomial

Q(z) =
P (1)P (z) − P (−1)P (−z)

z + 1

is a Hurwitz polynomial.

Since Q(z) clearly is of lower degree than P (z), we can repeat the application of Schur’s criterion
and thus get a sequence of polynomials Qj(z) of decreasing degrees, which either all are Hurwitz
polynomials, or none of them are Hurwitz polynomials. This process stops after at most n − 2 steps.

Example 1.2.1 Consider the polynomial

P (z) = z3 + 2z2 + 3z + 1

of positive coefficients, so condition 1) of Schur’s criterion is fulfilled.
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Then compute

Q(z) =
1

z + 1
{

7
(

z3+2z2+3z+1
)

− (−1)
(

−z3+2z2−3z+1
)}

= 6z2 + 10z + 8.

We see that Q(z) is a polynomial of degree 2 with only positive coefficients, so it is a Hurwitz
polynomial, and we conclude from Schur’s criterion that P (z) = z3 + 2z2 + 3z + 1 is also a Hurwitz
polynomial. ♦

Example 1.2.2 In case of the polynomial

P (z) = z3 + 2z2 + z + 3

we find

Q(z) =
1

z + 1
{

7
(

z3+2z2z+3
)

− 3
(

−z3+2z2−z+3
)}

= 10z2 − 2z + 12.

Since Q(z) does not have all coefficients of the same sign, it is not a Hurwitz polynomial, so P (z) is
not a Hurwitz polynomial. ♦

The next result is one of the most famous theorems in the theory of stability. Unfortunately, its proof
is very long, so it is not reasonable to give it here. Furthermore, we have already complete results
for n = 1 and n = 2, where Theorem 1.2.1 both gives necessary and sufficient conditions for Hurwitz
polynomials, and for n = 3 where Theorem 1.2.2 does the same, so in practice it is only needed for
n ≥ 4, and when n becomes too big, the computations become large.

Theorem 1.2.5 Routh-Hurwitz Stability Criterion (1895). Assume that the polynomial
P (z) = a0z

n + a1z
n−1 + · · · + an−1z + an has positive coefficients, a0, . . . , an > 0. Then P (z) is a

Hurwitz polynomial, if and only if the following inequalities hold,

D1 = a1 > 0, D2 =

∣

∣

∣

∣

∣

∣

a1 a0

a3 a2

∣

∣

∣

∣

∣

∣

> 0, D3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a0 0

a3 a2 a1

a5 a4 a3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0, . . . ,

Dn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a0 0 · · · 0

a3 a2 a1 · · · 0

...
...

...
...

a2n−1 a2n−2 a2n−3 . . . an

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0,

where we put ak = 0, whenever k > n.
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Example 1.2.3 In spite of what was mentioned above we shall here in the first two examples only
consider polynomials of degree 3. We get for the polynomial z3 + 2z2 + 3z + 1, cf. Example 1.2.1,

D1 = 2, D2 =

∣

∣

∣

∣

∣

∣

2 1

1 3

∣

∣

∣

∣

∣

∣

= 5, D3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 1 0

1 3 2

0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 5,

and it follows from Routh-Hurwitz criterion that all roots lie in the left half plane �z < 0. ♦

Example 1.2.4 Then consider the polynomial z3 + 2z2 + z + 3, cf. also Example 1.2.2. In this case
we get

D2 =

∣

∣

∣

∣

∣

∣

2 1

3 1

∣

∣

∣

∣

∣

∣

= −1 < 0,

(no need to compute D3), so the polynomial has at least one root in the closed right half plane �z ≥ 0.
The values on the imaginary axis are

P (iy) =
{

3 − 2y2
}

+ iy
(

1 − y2
)

�= 0 for all y ∈ R,

so we must have at least one root in the right half plane.

All coefficients are positive, so this root cannot be positive, and the polynomial must have two complex
conjugated roots in the right half plane. The third root must be real and negative.

By means of a pocket calculator we find the approximate values of the three roots,

−2.174 559 41 and 0.087 279 7 ± 1.171 312 1 · i. ♦

Example 1.2.5 Finally, let us consider a polynomial of positive coefficients and degree 5,

P (z) = z5 + z4 + 2z3 + z2 + z + 2.

We are in the situation that the roots can easily be found by inspection, because we immediately get
the factorization

P (z) =
(

z2+z+2
) (

z3+1
)

,

so its roots are

z1 = −1,
z2

z3

}

=
1
2
± i

√
3

2
,

z4

z5

}

= −1
2
± i

√
7

2
,

and we see that z2 and z3 lie in the right half plane, so P (z) is not a Hurwitz polynomial.
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We shall now instead apply Routh-Hurwitz criterion, and this time we shall do it to the very end,
even if we could stop at D4 < 0. The easy part is to compute

D1 = 1 > 0, D2 =

∣

∣

∣

∣

∣

∣

1 1

1 2

∣

∣

∣

∣

∣

∣

= 1 > 0, D3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0

1 2 1

2 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 2 > 0.

Then we continue with

D4 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 0

1 2 1 1

2 1 1 2

0 0 2 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −2 ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0

1 2 1

2 1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ 1 ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0

1 2 1

2 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −2 − 2 = −4 < 0,

and we conclude that P (z) is not a Hurwitz polynomial. However, for completeness we also compute

D5 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 0 0

1 2 1 1 0

2 1 1 2 1

0 0 2 1 1

0 0 0 0 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 0

1 2 1 1

2 1 1 2

0 0 2 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −2·2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0

1 2 1

2 1 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+2·1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0

1 2 1

2 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −12+4 = −8 < 0,

demonstrating that the computations become big, when n is large. ♦

The stability criteria above are all algebraic. There also exist geometrical stability criteria, of which
we shall only mention Nyquist’s criterion.

Consider a control system with a simple feedback. It can be shown that the corresponding transition
function is given by

f(z) =
H(z)

1 + H(z)
= 1 − 1

1 + H(z)
,

where H(z) is some fractional function.

The poles of f(z) are precisely the zeros of H(z) + 1.

Denote by P the number of poles of f in the right half plane, and consider the curve CR on Figure 7.
In engineering sciences, CR is conventionally always given the opposite orientation of that known in
Mathematics, cf. the arrows on Figure 7. This conventional change of orientation will in the following
cause a trivial change of the sign.
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-i R

R

i R

C_R

–2

–1

1

2

–1.5 –1 –0.5 0.5 1 1.5 2

Figure 7: The closed curve C in the proof of Nyquist’s criterion. Notice the reverse orientation of the
curve.

It follows from the argument principle that f(z) does not have poles in the right half plane, if and
only if there exists an R0 > 0, such that

∆R arg f(z) = 2πP for every R ≥ R0,

where ∆R arg f(z) denotes the growth of the argument of f(z), when z runs through CR in the
direction given on Figure 7, i.e. in the mathematically negative sense.
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On the other hand,

1
2π

∆R arg f(z) [= P ] for R ≥ R0,

is equal to the winding number of f(z) with respect to 0 in the w-plane (counted positive when
traversed in the mathematically negative sense), when z runs once through CR, also in the negative
sense as indicated on Figure 7. It follows from the identity

1 − f(z) =
1

1 + H(z)

that this winding number is equal to the winding number of
1

1 + H(z)
with respect to w = +1.

Finally, by taking the limit R → +∞ we have proved,

Theorem 1.2.6 Nyquist’s criterion (1932). Let H(z) =
P (z)
Q(z)

be a rational function, where P (z) and

Q(z) are polynomials, and assume that H(z) �= −1 on the imaginary axis. Let P denote the number

of poles of
1

1 + H(z)
in the right half plane.

The control system of simple feedback corresponding to the transition function f(z) =
H(z)

1 + H(z)
is

stable, if and only if the winding number with respect to the point w = +1 of
1

1 + H(z)
, when z runs

through the imaginary axis, is equal to this number of poles P in the right half plane.

The transition function f(z) =
H(z)

1 + H(z)
is a special way of writing transition functions of the type

f(z) =
1

K · G(z)
+ 1,

where G(z) is a rational function, and where the constant K is called the amplification factor of the
control system.

It is simple algebra to see that we have the correspondences

H(z) = −1 − K · G(z) and G(z) = − 1
K

{1 + H(z)}.

Hence, we easily derive the following generalized criterion of stability.

Theorem 1.2.7 Nyquist–Michailow’s criterion. Assume that G(z) is a rational function with no
zeros on the imaginary axis, and with N zeros in the right half plane.
The control system corresponding to the transition function

f(z) =
1

K · G(z)
+ 1

is stable, if and only if
1

G(z)
has the winding number N with respect to the point w = −K, when z

runs through the imaginary axis from −i∞ to +i∞.
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2 Many-valued functions and Riemann surfaces

2.1 Inverse mapping

We shall start this section by proving the following important theorem.

Theorem 2.1.1 Let f be analytic in an open domain Ω, and assume that f : Ω → f(Ω) is bijective.
Then the inverse map f−1 : f(Ω) → Ω exists and is analytic in f(Ω) and its derivative is given by

(26)
d

dw
f−1(w) =

1
f ′ (f−1(w))

.

Proof. The inverse f−1 trivially exists, because f is bijective. We shall prove that f−1 is also
analytic in f(Ω).

It follows from a theorem on local inverse maps in Ventus, Complex Functions Theory a-1, Chapter 3,
that the inverse function f−1 is analytic in a neighbourhood of every point w0 = f (z0), for which
f ′ (z0) �= 0, and if so, then its derivative at w0 is given by (26). Thus, we shall only prove that
f ′(z) �= 0 everywhere in Ω.

We shall prove this claim by contraposition. Proving the claim is equivalent to prove that if f ′ (z0) = 0
for some z0 ∈ Ω, then f is not injective in any neighbourhood of z0. Therefore, we shall assume that
f ′ (z0) = 0 in the following, and we shall find a neighbourhood of z0, such that f is not injective in
any smaller neighbourhood of z0.

Then we apply a result from Ventus, Complex Functions Theory a-2 on series, by which there is
a smallest integer n > 1, such that f (n) (z0) �= 0. If we write w0 = f (z0), then we have in a
neighbourhood of z0 that the series expansion of f(z) is locally given by

w = f(z) = w0 + an (z − z0)
n + an+1 (z − z0)

n+1 + · · · = w0 + (z − z0)
n

g(z),

where

g(z) = an + an+1 (z − z0) + · · ·

is analytic in a neighbourhood of z0, and g (z0) = an �= 0.

Choose any disc B (z0, r) contained in this neighbourhood, such that also
∣

∣

∣

∣

1 − 1
an

g(z)
∣

∣

∣

∣

< 1 for z ∈ B (z0, r) .

The use a result from Ventus, Complex Functions Theory a-2 on series to define an analytic function
h(z) = n

√

g(z) by

h(z) = n
√

g(z) = n
√

an · n

√

1 +
{

1
an

g(z) − 1
}

:= b0

+∞
∑

k=0

(

1
2
k

)

·
{

1
an

g(z) − 1
}k

=
+∞
∑

k=0

bk (z − z0)
k for z ∈ B (z0, r) ,

34

Download free eBooks at bookboon.com



Stability, Riemann Surfaces, 
Conformal Mappings

39 

Many-valued functions and Riemann surfaces

where b0 is anyone of the n solutions of the binomial equation zn = an. Then h(z)n = g(z).

If we put

k(z) = (z − z0)h(z) = b0 (z − z0) + b1 (z − z0)
2 + · · · ,

then

w = f(z) = w0 + {k(z)}n for z ∈ B (z0, r) .

Therefore, the map w = f(z) : B (z0, r) → C can be written as the composition of the three analytic
maps

t = k(z), s = tn, w = w0 + s.

Since k′ (z0) = b0 �= 0, it follows from the already quoted inverse theorem in Ventus, Complex Func-
tions Theory a-1, Chapter 3, that there exists a neighbourhood Ω0 ⊆ B (z0, r) of z0, which by t = k(z)
is mapped bijectively onto a neighbourhood T0 of k (z0) = 0. We may of course choose Ω0, such that
T0 = B(0, α) is an open disc of centre 0 and radius α > 0.

Then using the map s = tn, where n > 1, the disc B(0α1) is mapped surjectively, but not injectively

onto the disc B (0, αn
1 ) for every 0 < α1 ≤ α. Just notice that every number exp

(

p · 2iπ
n

)

· t for

p = 1, . . . , n and 0 < t < α, is mapped into the same point tn. We therefore conclude that if f ′ (z0) = 0,
then the map cannot be injective in any neighbourhood of z0, because such a neighbourhood contains
some B (0, α1), where 0 < α1 ≤ α, and the theorem is proved. �

In order to find the inverse map we note that it is important first to find a subset Ω of the z-plane, on
which f is injective. We know already that exp C = C\{0}, and that the points z +2iπ, p ∈ Z, are all
mapped into the same point ez by the exponential, so exp is not injective, unless we restrict ourselves
to suitable smaller subsets of C. On the other hand, we know that all solutions of the equation ew = z
for z ∈ C \ {0} are given by

(27) w = Log z + 2ipπ, p ∈ Z,

so even if there are infinitely many solutions in (27), they lie at a mutual distance ≥ 2π from each
other. It is therefore in practice possible to separate them.

Geometrically this is done by letting each p ∈ Z in (27) correspond to precisely one copy of f (Ωp) =
C \ {0}, and then put all these f (Ωp), p ∈ Z, above each other, slice them along the real negative axis
R− and then glue them together along these slits. In the present case we get a model of an infinite
winding staircase, which is called the Riemann surface of (the inverse map of) the exponential. In
other words, we replace the image f(Ω) by this Riemann surface and obtain that Ω = C by exp is in
a bijective correspondence with this Riemann surface, i.e. every point in C corresponds precisely to
one point on the Riemann surface – or to one point in just one sheet f (Ωp) for some p ∈ Z.

Riemann surfaces may be extremely complicated, so only the simplest ones are described in the
following sections, with the exception of Section 2.8, where we demonstrate the general technique by
a more complicated example.

One should also mention that instead of creating a Riemann surface of the inverse of exp we could
consider (27) as a definition of the many-valued inverse function, so the image of one point is given
by several complex numbers. We shall mainly adopt this aspect in the following.
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Since the topic of this chapter is the inverse of a map, it is quite natural in the following to interchange z
and w. Thus we shall be given an analytic function f(w) in the w-space, and we shall find a reasonable
expression of the inverse f−1(z). This is the same as solving the equation z = f(w) with respect to w
for given z ∈ f(Ω).

We used above in Theorem 2.1.1 that f−1 is always locally defined in some neighbourhood of f(w), if
f ′(w) �= 0, and that this is never possible, if instead f ′(w) = 0. Here we used a result from Ventus,
Complex Functions Theory a-1, Chapter 3. This observation leads to the following natural definition.

Definition 2.1.1 Let f : Ω → C be analytic in an open domain Ω in the w-plane. A point w0 ∈ Ω is
called a singular point of the map f(w), if f ′ (w0) = 0.

The image z0 = f (w0) of a singular point w0 becomes a branching point of the corresponding Riemann
surface. Such branching points are easy to handle, which we shall see in examples in the following.

There also exists another type of branching points which is far more difficult to treat. One example is
given by (27), where the point 0 does not belong to the domain of the right hand side for any p ∈ Z.
We shall say that z0 is a logarithmic branching point, if z0 is an isolated point of C \ f(Ω), and if
furthermore we cannot find any open domain Ω1 ⊃ Ω and any analytic function f1 : Ω1 → C, such
that f1(w) = f(w) for w ∈ Ω and z0 ∈ f1 (Ω1).
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The program of solving the equation z = f(w) with respect to w ∈ Ω can now be described in the
following way:

1) First find the singular points w0 ∈ Ω, i.e. the solutions of the equation f ′(w) = 0.

2) Then find the branching points z0 = f (w0), and notice that f does not establish any bijective
connection between any neighbourhood of w0 and z0.

3) Finally, check if the geometry of f(Ω) allows the possibility of logarithmic branching points.

4) Once f(Ω) has been identified, find the largest possible open subdomains ω ⊆ Ω, such that f :
ω → f(ω) is bijective. Every such maximum open subdomain is called a fundamental domain.

5) If the boundary of a fundamental domain ω is composed of piecewise differentiable curves contained
in Ω, then the boundary of f(Ω) \ f(ω) is composed of curves between either branching points
(logarithmic or not) or ∞. Every such curve in the z-plane is called a branch cut, and the uniquely
determined inverse map f−1 : f(ω) → ω, where ω is a fundamental domain, is called a branch of
f . Thus a branch is always a single-valued analytic function.

Notice that if f is not bijective then the fundamental domains and the branch cuts and the branches
of f are not uniquely determined. On the other hand, the branching points are always fixed.

Remark 2.1.1 It is in many cases possible, by using the fundamental domains, the branch cuts, some
sheets of paper, a pair of scissors, some glue or tape, and a lot of patience, to construct reasonable
models of the Riemann surface of a of a given analytic function. ♦

We shall not always describe the Riemann surface of a given analytic function, but we shall at least
always try to find an expression of the many-valued function f−1(z).

We shall in the following sections demonstrate how the above loosely described theory more explicitly
is applied in some classical examples. First we mention, however, the following geometric criterion of
stability in which we also include Riemann surfaces.

Assume that f(z) is a polynomial or a rational function. Then there exists a Riemann surface R of
f(z), such that f maps the z-plane bijectively onto R. The question of stability, cf. Section 1.2, is then
reduced to the statement that the image f(Ω) of the closed right half plane Ω := {z ∈ C | �z ≥ 0}
does not contain points above the point w = 0. If the image f(Ω) of the right half plane in R is
bounded by a curve Γ, in which case Γ must be the image of the imaginary axis, then we get the
following geometrical stability criterion.

Theorem 2.1.2 Assume that the domain f(Ω) to the right of the curve Γ on the Riemann surface
R does not contain any point above w = 0 (and Γ does not pass through any such point), then f(z) is
the transition function of a stable system.
If the condition above is not fulfilled, then the system is unstable.

It is usually in practice difficult to investigate Γ on the Riemann surface R itself. One considers
instead the projection γ of Γ onto the w-plane. We get a parametric description by putting z = iy,
y ∈ R, into the expression of f(z) and then split into real and imaginary parts. Thus we get the
parametric description of γ,

u = u(y), v = v(y), y ∈ R.
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The condition that w = 0 must not lie to the right of the curve is here only necessary. That it is not
sufficient is seen by the example f(z) = z3 − z2 + 2z − 3, in which case w = 0 does not lie to the
right of the curve γ. On the other hand, since the coefficients do not have the same sign, it follows
from Section 1.2 that this polynomial indeed has a root in the right half plane, so the corresponding
dynamic system is unstable.

2.2 The two-valued function
√

z.

The simplest example of a many-valued function is the square root w =
√

z In this case we consider,
cf. Section 2.1,

f : C → C, z = f(w) = w2, Ω = C.

It follows from f ′(w) = 2w that w0 = 0 is the only singular point, corresponding to the branching
point z0 = 0.

Write z and w in polar coordinates, i.e. z = r eΘ and w = R eiϕ. Then

r eiΘ = z = w2 = R2ei2ϕ,

from which

(28) r = R2 and Θ ≡ 2π (mod 2π).

It follows from (28) that f(C) = C, so C \ f(C) = ∅. Hence, we do not have a logarithmic branching
point in this case, and every branch cut must be a simple curve from 0 to ∞.

-w= R e^[i(phi+pi)}

phi

w=R e^{ipi}

omega_2

omega_1
theta = 2*phi

r=R^2

z=w^2

f

f^{–1}

wz

Figure 8: The z-plane and the w-plane in case of the map z = w2.

It follows from (28) that z = f(w) has an inverse map, if for every fixed R > 0 the angle 2ϕ lies in
an interval of at most the length 2π, i.e. if the angle ϕ of w itself lies in an open interval of at most
the length π. In fact, if both w and −w belongs to ω \ {0}, then f(w) = w2 = f(−w), and f is not
injective.

Define

ω1 := {w ∈ C | �w > 0} =
{

w = R eiΘ | R > 0, 0 < Θ < π
}

,
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and

ω2 := {w ∈ C | �w < 0} =
{

w = R eiΘ | R > 0, π < Θ < 2π
}

.

Then ω1 and ω2 are fundamental domains, and ω1 ∪ ω2 = C \ R, where R clearly is mapped into
R+ ∪ {0}. Here 0 is the branching point, and R+ is the branch cut from 0 to ∞. Using the above we
can then construct a model of the Riemann surface of the square root.

4 pi

2 pi

2 pi

0

f(omega_2)

f(omega_1)

z-sheets
w

omega_2

omega_1

2 pi

0

pi

pi

Figure 9: Construction of the Riemann surface for w = sqrtz.

We take three pieces of paper, one representing the w-plane, and the remaining ones, two copies of the
z-plane, lying above each other, though at this stage not touching each other. Sketch on the w-plane
the singular point w0 = 0 and the real axis and the two fundamental domains ω1 and ω2 defined above.
Cut both z-planes with a pair of scissors along the branch cut, i.e. along the real positive axis R+.
The upper slit z-plane is then in a unique correspondence with ω1, and similarly the lower z-plane is
in a unique correspondence with ω2. When we include the corresponding angle variations, we see that
the two slit z-planes together represent an angle variation of 4π. Then glue together the two half lines
of the two z-planes, which represent the same angle, namely 2π, and we obtain a connected surface
which allow an angle variation of 4π. This gluing process of the two z-planes corresponds to that we
unite the two fundamental domains ω1 and ω2 across the negative real axis in the w-plane, because it
corresponds to the seam of angle 2π in the two z-planes.

If we also add the real positive axis in the w-plane to this model, we see that this corresponds to
gluing together the remaining two edges of the model of the Riemann surface. In the ordinary three
dimensional space this is of course not possible without physically cutting the surface, but mentally
we can easily abstract from this false cutting by just measuring the angle on the Riemann surface
modulo 4π instead, so we identify the two remaining edges.

We have above created a bijective correspondence z = w2 between the w-plane and the two slit z-
planes by changing the domain of the angle in the lower one to [2π, 4π] and then we identify the angle
2π in the two planes, and then more sophisticated, the angle 0 in the upper z-plane with the angle
4π in the lower z-plane. Therefore, we can define w =

√
z as the inverse of this map.

As long as we consider both z-planes as defined above, the map w =
√

z is single valued. However,
one usually does not solve mathematical problems by using a pair of scissors and some glue, so instead
one identifies the two slit z-planes f (ω1) and f (ω2). The “image” w =

√
z by this identification must
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be one point w1 ∈ ω1, and at the same time another one w2 ∈ ω2, so we usually obtain a point from
each of the two chosen fundamental domains ω1 and ω2, and w =

√
z has become two-valued. Only

z = 0 is uniquely mapped into w = 0. This corresponds to that w = 0 is the singular point, and that
z = 0 is the branching point.

Finally, w =
√

z is already found in Ventus, Complex Functions Theory a-1. If w2 = z = r eiΘ, then
its two solutions are given by

(29) w = ±√
r · exp

(

i · Θ
2

)

=
√

r · exp
(

i · Θ + 2pπ

2

)

, p = 0, 1.

If in particular z = −1, then
√
−1 = ±i, which explains why we in general do not write

√
−1 but use

i instead for the imaginary unit.
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2.3 The n-valued function n
√

z

After this thorough investigation of the square root
√

z in Section 2.2 it is not hard to generalize the
model to n

√
z, n ∈ N \ {1}, so we only sketch the main points and leave the details to the reader. It

is well-known that the square root is always difficult in Mathematics. Roughly speaking, “if on has
understood the square root, then the rest is easy”, as it once was put to the author by a professor.

Choosing Ω = C we define in general fn : C → C for n ∈ N \ {1} by

z = fn(w) := wn.

From f ′
n(w) = nwn−1 follows that w = 0 is the only singular point, corresponding to the branching

point z = 0. This is not a logarithmic branching point, and every branch cut must be a simple curve
from 0 to ∞.

We choose the following fundamental domains,

ω1 =
{

w = R eiϕ | R > 0 and 0 < ϕ <
2π
n

}

,

ω2 =
{

w = R eiϕ | R > 0 and
2π
n

< ϕ <
4π
n

}

,

...
...

ωn =
{

w = R eiϕ | R > 0 and 2π · n − 1
n

< ϕ < 2π
}

.

The boundary curves, i.e. the half lines given by the angles ϕ = j · 2π
n

for each fixed j = 0, 1, . . . , n−1,
are all mapped into the branch cut R+. In this case we get n stacked slit z-planes, each in a bijective
correspondence with precisely one of the fundamental domains. When we glue together edges (branch
cuts) of the z-planes representing the same angle 2πj, j = 1, . . . , n − 1 we get an n-leafed Riemann
surface with 0 as its branch point. Finally, the remaining two edges are identified (cannot be done
physically in this model without falsely cutting through the other sheets of paper), i.e. the angle is
counted modulo 2nπ. In other words, we allow an angular variation of 2nπ on this Riemann surface
with respect to 0. The uniquely determined inverse map from the Riemann surface to the w-plane is
denoted by w = n

√
z.

If we identify all the n slit z-planes, we get instead an n-valued map n
√· : C \ {0} → C \ {0} with its

natural extension n
√

0 = 0 (notice, just one value, contrary to any other point in C \ {0}. It follows
from Ventus, Complex Functions Theory a-1, Chapter 3, that if z �= 0, then

(30) w = n
√

z = n
√

r · exp
(

i · Θ + 2pπ

n

)

, p = 0, 1, . . . , n − 1,

where we define in the positive real case n
√

r ∈ R+, since otherwise this notation is ambiguous. We
have furthermore used polar coordinates in the form z = r eiΘ.

When n > 2, there is no natural convention of sign, so one should always recall that n
√· in general is

an n-valued function.

41

Download free eBooks at bookboon.com



Stability, Riemann Surfaces, 
Conformal Mappings

46 

Many-valued functions and Riemann surfaces

2.4 The infinite-valued function log z

For Ω = C we define a function f : Ω → C by

f(w) = ew (= expw).

It follows from f ′(w) = ew �= 0 for all w ∈ C that this map has no singular points. It was proved in
Ventus, Complex Functions Theory a-1, Chapter 4, that f(C) = C\{0}. Clearly, z0 = 0 is an isolated
point of C \ f(C) = {0}, hence z0 = 0 is a logarithmic branch point.

According to Ventus, Complex Functions Theory a-1, Chapter 4, its many-valued inverse map
log C \ {0} → C is given by

(31) w = log z := Log z + 2ipπ, p ∈ Z.

By definition, the principal logarithm is defined by

(32) Log z = ln |z| + i · Arg z for z ∈ C \ {0},

where the principal argument is uniquely determined by Arg z ∈ ] − π, π]. By varying p ∈ Z in (31)
it therefore follows that we may choose the fundamental domains ωp, p ∈ Z, as the infinitely many
strips

(33) ωp = {w ∈ C | �w ∈ ](2p − 1)π, (2p + 1)π[}, p ∈ Z.

z = e^w

w=log z

–3pi..-pi f(omega_{–1})

-pi..pi f(omega_0)

pi..3pi f(omega_1)

z-sheets w

omega_{–1}

omega_0

omega_1

Figure 10: Construction of the Riemann surface of w = log z with a logarithmic branch point.

The lines �w = (2p + 1)π for p ∈ Z are all mapped into the branch cut by the map

f(w) = ew = e�w · ei(2p+1)π = −e�w,
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i.e. into the real negative half axis R−. Then each of the fundamental domains ωj is in a bijective
correspondence with the slit z-plane f (ωj) of number j ∈ Z, so the inverse map, log, maps the infinite-
leafed Riemann surface bijectively onto the w-plane. Notice that the logarithmic branch point z0 = 0
does not belong to the Riemann surface.

If we identify all the slit z-planes, we get instead the infinite-valued function log given by (31). We
introduced in Ventus, Complex Functions Theory a-1, Chapter 4, the many-valued argument function
by

arg z = {Arg z + 2pπ | p ∈ Z} for z ∈ C \ {0}

(and not defined for z = 0). Then it follows from (31) and (32) that

(34) log z = ln |z| + i · arg z, z ∈ C \ {0}.

Remark 2.4.1 Although there are many similarities between the real logarithm, ln : R+ → R, and
the many-valued logarithm log above, defined on C \ {0}, not all rules of computations for ln can be
generalized to log. As an example of what may go wrong, choose z = 1 + i. Then

|z| =
√

2 and arg z =
{ π

4
+ 2pπ

∣

∣

∣
p ∈ Z

}

,

thus

2 log(1 + i) = 2
{

1
2

ln 2 + i
(π

4
+ 2pπ

)

}

= ln 2 + i
π

2
+ 4ipπ, for p ∈ Z,

so 2 log(1 + i) is determined modulo 4πi.

For comparison, z2 = (1 + i)2 = 2i, where

∣

∣z2
∣

∣ = 2 and arg
(

z2
)

=
{ π

2
+ 2ipπ

∣

∣

∣
p ∈ Z

}

,

thus

log
(

{1 + i}2
)

=
{

ln 2 + i
π

2
+ 2ip

∣

∣

∣
p ∈ Z

}

,

and the two sets log
(

{1 + i}2
)

and 2 log(1 + i) are not identical. Cf. also an example in Ventus,
Complex Functions Theory a-1, Chapter 1. ♦

Finally, we shall compare the present three types of logarithms,

ln : R+ → R, Log : C \ {0} → C and log : C \ {0} → R,

where R denotes the corresponding Riemann surface.

Here, ln is the usual real logarithm, known from real Calculus, and the principal logarithm Log is a
natural extension of ln, i.e.

Log z := ln |z| + i · Arg z, z ∈ C \ {0}, Arg z ∈ ] − π, π[,

while log is interpreted as an infinite-valued function, when all the sheets of the Riemann surface R
are identified.
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In the presentation above, neither of the three logarithms is analytic. The real logarithm is not, because
R+ ⊂ C does not contain interior points from C. The principal logarithm Log is discontinuous on
R−, so it cannot be analytic either. However, if we remove R− from the domain of Log, then this
restriction of Log becomes analytic. Finally, it does not make sense to call analytic a many-valued
function, though it is indeed true that each of its branches is analytic. One obvious example is

Logpz := Log z + 2ipπ, z ∈ C \ (R− ∪ {0}) , p ∈ Z,

where in particular Log0 = Log.

–2i*pi

omega

–6

–4

–2

0

2

4

6

8

–8 –6 –4 –2 2 4 6 8

Figure 11: Example of a simple, though unusual fundamental domain ω of the logarithm.
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The fundamental domains need not be as nice as indicated above. For instance, the domain ω on
Figure 11 is a fundamental domain, because it is mapped bijectively by the map f(w) = ew onto a
slit z-plane, in which the branch cut is composed of the two differentiable curves

e(−1+i)t, t ∈ R+, and e(1+i)t, t ∈ R+ ∪ {0},

which can also be written

et

{

cos t + i · t

|t| · sin t

}

, t ∈ R \ {0},

supplied with 1 for t = 0. The latter example shows that the fundamental domains should be chosen
with care, no matter that we have a large freedom in defining them.

2.5 The many-valued functions az and za

Using the infinite-valued logarithm we can define the general exponentials w = az and the general
power functions w = za. Their inverse functions z = f(w) are usually not analytic functions, so there
does not exist a natural Riemann surface describing the general exponentials or the general power
functions. It can be proved that they are usually described by a bijective correspondence between two
Riemann surfaces, one above the z-plane, and another one above the w-plane. This implies of course
that we may expect some very strange phenomena, which go against one’s intuition. In other words:
Trust only the definitions, when these multi-valued functions are considered!

Remark 2.5.1 According to unsubstantiated folklore the first person ever to consider these functions
(in the seventeenth century) became a lunatic, because he spent many years in vain to interpret these
strange results, and he ended his days in a mental hospital. ♦

Definition 2.5.1 Let a ∈ C \ {0, e} be a fixed number. We define the general exponential az as the
many-valued function

(35) az := exp(z log a).

It follows from this definition that it is strictly speaking not correct to write ez for exp z. However,
the notation ez is often more convenient to use than exp z, so it has been convention to write ez in
this sense. For that reason only, a = e has been excluded from Definition 2.5.1. One may of course
also use ez in the sense of Definition 2.5.1, but then this should be explicitly noted in order to avoid
confusion.

On the other hand, the exclusion of a = 0 is very natural, because log 0 does not make any sense at
all in (35).

We notice that az actually is a symbol containing infinitely many unique functions. This is seen in
the following way: Since log a is given by the set

log a = {Log a + 2ipπ | p ∈ Z}, a ∈ C \ {0, e},

we may for each fixed p ∈ Z define the uniquely determined value

Logpa := Log a + 2ipπ,
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and we get the uniquely determined analytic function

(az)p := exp(z Log a + 2ipπz), z ∈ C,

the derivative of which is given by

d

dz
(az)p = Logp · (az)p , for fixed p ∈ Z.

We define the principal value of az by choosing p = 0, i.e.

(az)0 := exp(z Log a),

corresponding to the principal logarithm Log.

If we let z = 0 in (35), we get a0 = 1, so the infinite many unique functions (az)p, p ∈ Z, making up
the set az, all coincide for z = 0.

For practical computations we note the following: If we put Θ = Arg z, then

log a = ln a = ln |a| + i(Θ + 2pπ), p ∈ Z.

Hence, for z = x + iy �= 0,

az := exp(z log a) = exp({x + iy} · {ln |a| + i(Θ + 2pπ)})

= exp({x ln |a| − y(Θ + 2pπ)} + i{x(Θ + 2pπ) + y ln |a|}), p ∈ Z.(36)

Example 2.5.1 Choose a = 1. Then log 1 = 2ipπ, p ∈ Z, so ln |a| = 0 and Θ = 0. It follows from
(36) that

1z = exp({x · 0 − y · 2pπ} + i{x · 2pπ + y · 0})

= e−2py · {cos(2xpπ) + i sin(2xpπ)}, p ∈ Z.

Choose y = 0, thus z = x ∈ R. Then

1x = cos(2xpπ) + i · sin(2xpπ) = e2ixpπ, p ∈ Z.

If x ∈ R \ Q is irrational, it can be proved that 1x =
{

e2ixpπ | p ∈ Z
}

is a complex point set, which is
dense in the unit circle.

If x =
1
n

for some n ∈ N, we get the usual n roots of the binomial equation wn = 1, symbolized by

(37) n
√

1 =
{

exp
(

2ipπ

n

) ∣

∣

∣

∣

p = 0, . . . , n − 1
}

.

This shows that the previous theory given in Ventus, Complex Functions Theory a-1 is in agreement
with the present extension. ♦
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Example 2.5.2 It is not so difficult to accept the result of Example 2.5.1, because formula (37) is in
agreement with a previously known formula. However, the result becomes less understandable, if we
choose a = z = i, which we shall do now. Then we get by the definition,

ii := exp(i · log i) = exp(i · {0 + 2ipπ}) = exp(−2pπ), p ∈ Z,

so the symbol ii described only by the imaginary number i is actually a set of real positive numbers,

ii =
{

e2nπ | n ∈ Z
}

,

where we have put n = −p ∈ Z for convenience. ♦

Analogously to Definition 2.5.1 we define

Definition 2.5.2 Fix a ∈ C. The general power function za is defined on the set C \ {0} by

(38) za := exp(a log z), z ∈ C \ {0}.

To every branch Logpz of logz then corresponds a branch (za)p of za, and a small computation gives

d

dz
(za)p =

a

z
· (za)p .

The branch corresponding to the principal logarithm Log z and the slit domain Ω := C \ (R− ∪ {0})
is called the principal value of za.

When a = n ∈ Z, there is nothing new in (38).

When a ∈ Q we are still in agreement with the previous theory, cf. also Example 2.5.1.

Finally, when z ∈ C \ Q, then every reasonable geometric interpretation of z totally disappears.

Example 2.5.3 If we choose a = i and z �= 0, then it follows from (38) that

zi := exp(i{ln |z| + i(Arg z − 2pπ)})

= e−Arg z+2pπ · {cos(ln |z|) + i sin(ln |z|)}, p ∈ Z,

where we have used that arg z = {Arg z − 2pπ | p ∈ Z}. ♦

2.6 The many-valued function arcsin z

We shall leave the unpleasant many-valued functions az and za and instead proceed with the inverses
of the trigonometric and hyperbolic functions. We shall in this section give a full treatment of the
inverse of f(w) = sinw. The other inverses are only sketched in the following section, because the
reader may easily find them herself/himself by copying the method given here.

We consider z = f(w) = sinw, where Ω = C. Since

f ′(w) = cos w = 0 for w =
π

2
+ pπ, p ∈ Z,

47

Download free eBooks at bookboon.com



Stability, Riemann Surfaces, 
Conformal Mappings

52 

Many-valued functions and Riemann surfaces

cf. Ventus, Complex Functions Theory a-1, it follows that the singular points form the set
{ π

2
+ pπ

∣

∣

∣ p ∈ Z
}

, where
{

sin
(π

2
+ pπ

) ∣

∣

∣ p ∈ Z
}

= {−1, 1},

showing that every singular point by sine is mapped into one of the two branching points {−1, 1}.

We shall prove that in this case we do not have any (finite) logarithmic branching point. It suffices
to prove that f(C) = sin(C) = C, or, put in another way, that the equation f(w) = sinw = z has at
least one solution for every z ∈ C. It follows from the definition of sinw in Ventus, Complex Functions
Theory a-1 that we shall only solve the equation

sinw =
1
2i

(

eiw − e−iw
)

= z.

Since 2ieiw �= 0 for every w ∈ C, this equation is equivalent to

(39)
(

eiw
)2 − 2izeiw − 1 = 0,

which is an equation of second order in the unknown variable eiw, where we already have derived a
solution formula in Ventus, Complex Functions Theory a-1. Hence it is straightforward to write down
its solutions,

(40) eiw = iz ±
√

(iz)2 + 1 = iz ±
√

1 − z2.
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It is well-known that the product of the solutions of a second order equation is equal to the constant
term, hence the products of the solutions (40) of the equation (39) is −1. In particular, none of the
solutions (40) is 0 for any z ∈ C. Therefore, we can take the (complex) logarithm of (40), from which
we derive the solution formula

(41) w := arcsin z =
1
i

log
(

iz ±
√

1 − z2
)

for every z ∈ C.

It follows in particular from (41) that arcsin does not have a logarithmic branching point (in spite
of the fact that log enters (41)). Furthermore, (41) is an exact formula, in which the square root for
z �= ±1 has two values — here indicated by ± though this sign in principal is superfluous — and log
is the well-known infinite-valued complex logarithm.

The most obvious choice of fundamental domains of the logarithm are as shown in Section 2.4 hori-

zontal strips of height 2π. Due to the factor
1
i

in (41) we first guess that the fundamental domains of
arcsin z may be chosen as vertical strips of width 2π. We immediately see, however, that this cannot
be the whole story, because the square root ±

√
1 − z2 for z �= ±1 is 2-valued.

We compensate for the square root being 2-valued by choosing in our next guess of the fundamental
domains the vertical strips to be of width π. Since the ordinary real function Arcsin: [−1, 1] → R has
the range

[

−π

2
,
π

2

]

, we are led to consider the domains

ωp =
{

z ∈ C
∣

∣

∣
�z ∈

]

−π

2
+ pπ,

π

2
+ pπ

[}

, p ∈ Z.

First consider the case p = 0, i.e. the vertical strip

ω0 =
{

z ∈ C
∣

∣

∣ �z ∈
]

−π

2
,
π

2

[}

.

We shall prove that sinω0 is the complex plane C with the exception of the branch cuts, which are
the images by sine of the vertical lines �z = ±π

2
.

It follows from

z = x + iy = sinw = sinu · cosh v + i cos u · sinh v

that

x = sinu · cosh v and y = cos u · sin v.

The curve (actually an interval on the real axis)

(u(t), v(t)) = (t, 0), for t ∈
]

−π

2
,
π

2

[

,

is then mapped onto

(x(t), y(t)) = (sin t, 0) for t ∈
]

−π

2
,
π

2

[

,

i.e. into the interval ] − 1, 1[ on the real axis in C, traversed from −1 to +1.
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Let a ∈ R \ {0}. Then the curve (a horizontal line segment)

(42) (u(t), v(t)) = (t, a) for t ∈
]

−π

2
,
π

2

[

,

is mapped onto the curve

(43) (x(t), y(t)) = (cosh a · sin t, sinh a · cos t).

Since cosh a �= 0 and sinh a �= 0, we get

sin t =
x(t)

cosh a
and cos t =

y(t)
sinh a

,

hence

(44)
( x

cosh a

)2

+
( y

sinh a

)2

= 1.

Now, y(t) = sinh a · cos t, t ∈
]

−π

2
,
π

2

[

, has always the same sign as a, hence the line segment (42) is

mapped into a half ellipse of equation (44), and every half ellipse starts from the branch cut ]−∞,−1[
in the z-plane and ends at the branch cut ]1,+∞[, cf. the curves A and C on Figure 12.

zw

DC

3pi/2pi/2-pi/2

BA

omega_2omega_1

–1

A
D

z=sin w

Figure 12: Geometric analysis of a fundamental domain of arcsin z.

If we put α = sinh2 a > 0, then cosh2 a = 1 + sinh2 a = 1 + α, and (44) is written

(45)
x2

1 + α
+

y2

α
= 1 for a �= 0.

Therefore, if (x, y) is any point in the z-plane for which y �= 0, then we shall only prove that (x, y)
lies on precisely one of these ellipsoidal arcs.

We define for given (x, y) ∈ R2, where y �= 0, a function ϕ on R+ by

ϕ(α) :=
x2

1 + α
+

y2

α
, for α ∈ R+.

Then ϕ′(α) < 0, so ϕ is strictly decreasing, and since limα→0+ ϕ(α) = +∞ and limα→+∞ ϕ(α) = 0,
there exists precisely one α > 0, such that (45) is fulfilled.
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Then we use that sinh2 a = α and that sinh a and y always have the same sign, so we conclude that

sinh a =
y
√

α

|y| , α > 0 and y �= 0,

and it follows that the point (x, y) lies on a uniquely determined ellipsoidal arc from our system.
We therefore conclude that ω0 is a fundamental domain, because two different points on the same
ellipsoidal arc are mapped into two different points on the corresponding line segment in ω0.

The domain ω2n = ω0+2nπ is characterized by �z ∈
]

−π

2
+ 2nπ,

π

2
+ 2nπ

[

, so by using the periodicity

of the trigonometric functions occurring in (43) we conclude that we by the same analysis as above
for every ω2m, n ∈ Z, obtain the same ellipsoidal arcs, so every ω2n, n ∈ Z, is also a fundamental
domain.

Then consider ω1 =
{

z ∈ C
∣

∣

∣

∣

]

π

2
,
3π
2

[}

. In this case the horizontal curves given by the parametric

description

(u(t), v(t)) = (t, a), t ∈
]

π

2
,
3π
2

[

,

are mapped onto

(x(t), y(t)) = (cosh a · sin t, sinh a · cos t), t ∈
]

π

2
,
3π
2

[

,

= −(cosh a · sin τ, sinh a · cos τ), τ ∈
]

−π

2
,
π

2

[

,

where t = τ + π, cf. also (42) and (43). The change of sign implies that the curves (43) are reflected
with respect to the point (0, 0). This is indicated on Figure 12 by the curves called B and D.

w=arcsin z

z=sin w

a
b

f(omega_{–1})

d

c

b

a
f(omega_0)

c
df(omega_1)

z-sheets

w

–1 0 1

Figure 13: Construction of the Riemann surface of arcsin z.
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Then stack all the fundamental domains above each other and piece them together as indicated on
Figure 13, i.e. the branch cuts called a and c are glued together, and the same is done mentally for
the branch cuts called b and d without cutting the previously glued branch cuts a and c. This is of
course physically impossible in the three dimensional space, but we deduce at least that we locally
must have a square root structure in the neighbourhood of each of the two branching points −1 and
1. It follows by the periodicity that f (ω2n−1) and f (ω2n), n ∈ Z, are glued together as a square root
along the branch cut ] −∞,−1[ on the real axis (in the complex plane), and f (ω2n) and f (ω2n+1),
n ∈ Z, are glued together along the other branch cut ]1,+∞[ on the real axis.

Summing up we obtain the Riemann surface of w = arcsin z as an infinite stack of z-planes f (ωn),
n ∈ Z, where each of these is connected with the previous one f (ωn−1) by a square root structure
around one of the branching points, and is connected with the following one f (ωn+1) by a square root
structure around the other branching point, so the Riemann surface has infinitely many sheets.

If all the slit z-planes are identified, i.e. if we project the Riemann surface onto the underlying z-plane
C, then we get the infinite-valued function given by (41).
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Let us choose in the slit z-plane that branch of the square root in (41) which is defined by
√

1 − z2 := exp
(

1
2

Log
(

1 − z2
)

)

for z ∈ C \ (] −∞,−1] ∪ [1,+∞[),

where Log denotes the principal logarithm. Then we define the principal value Arcsin z of arcsin z by

(46) Arcsin z :=
1
i

Log
(

iz + exp
(

1
2

Log
(

1 − z2
)

))

, for z ∈ C \ (] −∞,−1] ∪ [1,+∞[).

Clearly, Arcsin z is an analytic branch of arcsin z, i.e. Arcsin z is an analytic function in the open
domain C \ (]−∞,−1] ∪ [1,+∞[). In practice one extends Arcsin z to the points {−1, 1}, using that
√

1 − (±1)2 = 0. This extension is continuous, though not analytic at {−1, 1}, because {−1, 1} are
not interior points. We check by the following computation

Arcsin(±1) =
1
i

Log(±i + 0) =
1
i

{

±i
π

2

}

= ±π

2
,

that this continuous extension agrees with the familiar definition of Arcsin (±1) known from Real
Calculus.

More generally we show that if z = t ∈ ]− 1, 1[, then (46) agrees with the definition of ArcsinRt given
in Real Calculus. We write for convenience ArcsinCz for the function defined by (46) in the following
proof.

1

t

sqrt{1-t^2}

theta

1

Figure 14: Geometry of Arcsin t for t ∈ ] − 1, 1[.

By the chosen branch above of the square root we first see that
√

1 − t2 > 0 for t ∈ ] − 1, 1[. Further-
more,

∣

∣

∣it +
√

1 − t2
∣

∣

∣
=

√

t2 + (1 − t2) = 1,

cf. Figure 14, where Θ = ArcsinRt in the real sense. Then we get the following computation using the
definition of Log z = ln |z| + iArg z,

ArcsinCt =
1
i

Log
(

it +
√

1 − t2
)

=
1
i

{

ln 1 + iArg
(

√

1 − t2 + it
)}

= Θ = ArcsinRt,

and we have proved that ArcsinCt = ArcsinRt for t ∈ ] − 1, 1[.
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2.7 The many-valued arcus functions and area functions

In this section we shall shortly without proofs, which are left to the reader, sketch the most important
results on the arcus functions and the area functions. The name “arcus function” is due to the fact
that they are geometrically connected with arcs, so they all have the prefix “arc” or “Arc”. The
area functions are similarly geometrically connected with areas, so they have the prefix “ar” or “Ar”,
supplied with the suffix “h” instead, and not “arc” or “Arc”, which is sometimes seen in texts.

For completeness we start with arcsin z, which has already been treated in more details in the previous
Section 2.6.

2.7.1 The infinite-valued arcus function arcsin z

We derived in Section 2.6 that the inverse of z = sinw is given by the infinite-valued function

(47) arcsin z =
1
i

log
(

iz ±
√

1 − z2
)

, z ∈ C,

with the two branching points z1 = −1 and z2 = +1.

The principal value Arcsin z is the analytic function

(48) Arcsin z =
1
i

Log
(

iz + exp
(

1
2

Log
(

1 − z2
)

))

, z ∈ Ω = C \ (] −∞,−1] ∪ [1,+∞[).

If z = t ∈ ] − 1, 1[, then the complex Arcsin t is equal to ArcsinRt known from Real Calculus, and it
can be extended by continuity to the branching points z1 = −1 and z2 = +1.

2.7.2 The infinite-valued arcus function arccos z

The inverse function of z = cosw is given by the infinite-valued function

(49) arccos z =
1
i

log
(

z ± i
√

1 − z2
)

, z ∈ C,

with the two branching points z1 = −1 and z2 = +1.

The principal value Arccos z is the analytic function

(50) Arccos z =
1
i

Log
(

z + i exp
(

1
2

Log
(

1 − z2
)

))

, z ∈ Ω = C \ (] −∞,−1] ∪ [1,+∞[).

If z = t ∈ ] − 1, 1[, then the complex Arccos t is equal to ArccosRt known from Real Calculus, and
it can be extended by continuity to the branching points z1 = −1 and z2 = +1.

2.7.3 The infinite-valued arcus function arctan z

The inverse function of z = tanw for w �= π

2
+ pπ, p ∈ Z, is given by the infinite-valued function

(51) arctan z =
1
2i

log
(

1 + iz

1 − iz

)

=
1
2i

log
(

i − z

i + z

)

, z ∈ C \ {−i, i},
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which has the two logarithmic branching points z1 = −i and z2 = i.

The principal value Arctan z is given by

(52) Arctan z =
1
2i

Log
(

1 + iz

1 − iz

)

=
1
2i

Log
(

i − z

i + z

)

, z ∈ Ω = C \ {iy | y ∈ R, |y| ≥ 1},

and when z = t ∈ R, this complex defined function is identical with the familiar ArctanRt, known
from Real Calculus.

The fundamental domain of (52) is a slit complex plane with the branch cuts along the imaginary axes,
i.e. along {iy | y ≥ 1} and {iy | y ≤ −1}. Since ±i are logarithmic branching points, the Riemann
surface becomes easier to construct than the Riemann surfaces of arcsin z or arccos z, because there
will only be one way to connect all the infinitely many fundamental domains.

2.7.4 The infinite-valued arcus function arccotz

The inverse function of z = cotw for w �= pπ, p ∈ Z, is given by the infinite-valued function

(53) arccotz =
1
2i

log
(

z + i

z − i

)

, z ∈ C \ {−i, i},

which has the two logarithmic branching points z1 = −i and z2 = i.

The principal value Arccot z is given by

(54) Arccot z =
1
2i

Log
(

z + i

z − i

)

, z ∈ Ω = C \ {iy | y ∈ R, |y| ≤ 1}.

It does not agree with the real ArccotRt for t ∈ R, because the branch cut of (54) is the interval
“[−i, i]” on the imaginary axis, which cuts through the real axis.

It is, however, possible to find another branch of arccotz which is equal to ArccotRt for t ∈ R. It is
defined by

(55) Arccot0z =
π

2
− Arctan z =

π

2
− 1

2i
Log

(

i − z

i + z

)

, z ∈ Ω = C \ {iy | y ∈ R, |y| ≥ 1}.

2.7.5 The infinite-valued area function arsinhz

The inverse function of z = sinhw is given by the infinite-valued function

(56) arsinhz = log
(

z ±
√

z2 + 1
)

, z ∈ C.

Its two branching points are z1 = −i and z2 = i.
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Its principal value is given by

(57) Arsinh z = Log
(

z + exp
(

1
2

Log
(

z2 + 1
)

))

, z ∈ Ω = C \ {iy | y ∈ R, |y| ≥ 1}.

When z = t ∈ R, then (57) is equal to the usual real ArsinhRt.

2.7.6 The infinite-valued area function arcoshz

The inverse function of z = coshw is given by the infinite-valued function

(58) arcoshz = log
(

z ±
√

z2 − 1
)

, z ∈ C.

Its branching points are z1 = −1 and z2 = 1.

The principal value Arcosh z is tricky, because it is defined by

(59) Arcosh z = Log
(

z + exp
(

1
2

Log
(

z2 − 1
)

))

.
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This definition requires that z must not

• lie on the imaginary axis, in which case z2 − 1 does not lie in the domain of Log,

• or in the real interval ] − 1, 1[, in which case z2 − 1 again becomes negative and hence not in the
domain of Log,

• or z = x must not lie in the real interval ] −∞,−1[, in which case x + exp
(

1
2

Log
(

x2 − 1
)

)

< 0,

and therefore not in the domain of Log,

• or z �= ±1, because Log 0 is not defined.

Omega_1

Omega_3

Omega_2

1–1

Figure 15: Domain of the principal value Arcosh z.

According to these exclusions we conclude that the domain of Arcosh z is the union of the three open
connected domains Ω1, Ω2 and Ω3 on Figure 15.

If we choose Ω1 as our domain of (59), then it can be proved that for z = t ∈ ]1,+∞[ the function
given by (59) is identical with the real ArcoshRt.

Of course this is not true for Ω2 and Ω3 for the simple reason that the interval ]1,+∞ does not lie in
these two connected domains.

The above may seem strange, because Ω1 does not correspond to a fundamental domain in the w-
plane. The reason of this unexpected analysis is that we use (58) as our definition and then apply the
somewhat rigid definition of the principal logarithm. Let us look closer at the process. The method is
to solve the equation

z = coshw =
1
2

{

ew + e−w
}

with respect to w, i.e. first solve the equation of second order in ew,

{ew}2 − 2z ew + 1 = 0,
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and then take the logarithm of the solutions. We end of course with (58) as in the real case, and
apparently no complex analysis is involved. So far, so good, and nothing can be changed here.

Then let us try to analyze what could be done instead. Since the square root is 2-valued, formula (58)
is also equivalent to

(60) arcoshz = log
(

z ±
√

1 − z2
)

= i arccos z, z ∈ C,

and this version can then be used to define another branch of arcoshz by instead using i · Arccos z
in the slit domain Ω = C \ (] −∞,−1] ∪ [1,+∞[). This version may look better than the previous
one. Unfortunately there is of course no hope that this branch is equal to the real ArcoshRt for t > 0,
because ]1,+∞[ does not lie in the domain of the alternative branch sketched above. So only Ω1 meets
our demands for the time being, although Ω1 clearly does not correspond to a fundamental domain.

The analysis above shows again that the many-valued functions may be very difficult to treat, when
we want to choose a convenient branch for a given problem. In particular, the reader is warned against
only to trust her/his intuition.

2.7.7 The infinite-valued area function artanhz

The inverse of the function z = tanh w for w �= i
{π

2
+ pπ

}

, p ∈ Z, is given by the infinite-valued
function

(61) artanhz =
1
2

log
(

1 + z

1 − z

)

, z ∈ C \ {−1, 1},

with the two logarithmic branching points z1 = −1 and z2 = 1.

Its principal value is given by

(62) Artanh z =
1
2

Log
(

1 + z

1 − z

)

, z ∈ Ω = C \ (] −∞,−1]) ∪ [1,+∞[),

and it is equal to the well-known real ArtanhRt for t ∈ ] − 1, 1[.

2.7.8 The infinite-valued area function arcothz

The inverse of the function z = coth w for w �= ipπ, p ∈ Z, is given by the infinite-valued function

(63) arcothz =
1
2

log
(

z + 1
z − 1

)

, z ∈ C \ {−1, 1},

with the two logarithmic branching points z1 = −1 and z2 = 1.

Its principal value is given by

(64) Arcoth z =
1
2

Log
(

z + 1
z − 1

)

, z ∈ Ω = C \ [−1, 1].

It is equal to the usual real ArcothRt, when z = t ∈ ] −∞,−1[∪ ]1,+∞[.
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2.7.9 Some further remarks on the arcus and area functions

We notice in particular the principal values

(65) Arcsin z, Arccos z, Arctan z, Arsinh z and Artanh z,

because they are all defined and analytic in the open disc B(0, 1) of centre 0 and radius 1. This is
not the case for remaining Arccot z, Arcosh z and Arcoth z. We see that the five functions of (65) all
have convergent series expansions from z0 = 0 in the set B(0, 1), and these series are obtained from
the real series expansions known from Real Calculus by replacing x ∈ ]− 1, 1[ by the complex variable
z ∈ B(0, 1).

The functions Arccot z and Arcoth z allow instead convergent Laurent series expanded from z0 = 0
in the open domain C \ B[0, 1].

Finally, it follows from the discussion of the principal value Arcosh z in Section 2.7.6 that the definition
of Arcosh z was chosen so unfortunate that we can neither get a reasonable power series expansion
nor a reasonable Laurent series expansion when expanded from z0 = 0.

2.8 Example: The inverse of z = 3w4 − 4w3 − 6w2 + 12w

In this section we analyze a simple example of an algebraic equation in two complex variables. It has
been constructed such that it is indeed possible to describe the corresponding Riemann surface without
using too complicated computations. In general, such an analysis is far more difficult, when we try
to describe the bijective correspondence between a z-Riemann surface and a w-Riemann surface. The
present example can give some guidelines of how to handle the general case.

We choose the function f : Ω = C → C as the polynomial function

(66) f(w) = 3w4 − 4w3 − 6w2 + 12w,

and we want to describe the w-Riemann surface of the equation

(67) f(w) = 3w4 − 4w3 − 6w2 + 12w = z.

Notice that since z is uniquely determined by given w, the z-Riemann surface is just the usual z-plane
C.

By the Fundamental Theorem of Algebra the equation (67) has for given z ∈ C four solutions w1,
w2, w3, w4. For most z ∈ C they are mutually different, so w = f−1(z) is usually 4-valued, which
implies that the corresponding Riemann surface is composed of four branches, i.e. we shall glue four
slit complex planes together in a way which we shall describe in the following.

We shall find the singular points in the w-plane, where the function w = f−1(z) is not 4-valued. These
are the solutions of the equation f ′(w) = 0, i.e.

f ′(w) = 12
(

w3 − w2 − w + 1
)

= 12
(

w2 − 1
)

(w − 1) = 12(w − 1)2(w + 1) = 0.

We conclude that the two singular points are w1 = 1 and w2 = −1. They correspond to the two
branching points in the z-plane,

z1 = f (w1) = 5 and z2 = f (w2) = −11.
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It follows implicitly from Section 2.3 that if w0 ∈ Ω is a zero of order n − 1 of f ′(w), i.e.

f (j) (w0) = 0 for j = 1, . . . , n − 1, and f (n) (w0) = f (1+n−1) (w0) �= 0,

then the Riemann surface is qualitatively of the same structure as the n-th root n
√

z − z0 in a neigh-
bourhood of z0 = f (w0), cf. Section 2.3.

Since w1 = 1 is a double root of f ′(w), i.e. n− 1 = 2, the Riemann surface must have the structure of
a cubic root in some neighbourhood of z1 = f (w1) = 5. Similarly we obtain the structure of a square
root in some neighbourhood of z2 = f (w2) = −11.

Remark 2.8.1 We could actually have used this principle already in Section 2.6, where we discussed
the Riemann surface of arcsin z and thus saved a lot of work. It was not done, because then the focus
of the text would have been shifted away from the main issue. ♦
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The reader who does not believe in the qualitative topological argument above may instead use the
following alternative direct proof, which is also of independent interest.

When we factorize f(w) − f (w1) = f(w) − 5, we get

f(w) − 5 = 3w4 − 4w3 − 6w2 + 12w − 5 = (3w + 5)(w − 1)3.

In a small neighbourhood of w0 = 1 the factor 3w + 5 only deviates very little from 3 · 1 + 5 = 8, so in
this neighbourhood (w − 1)3 determines the structure of the Riemann surface as locally the Riemann
surface of a cubic root, because we shall solve the equation

8(w − 1)3 ≈ (3w + 5)(w − 1)3 = z − f (w1) = z − 5

in a neighbourhood of z1 = 5.

Analogously, it follows from

f(w) − f (w2) = f(w) + 11 = 3w4 − 4w3 − 6w2 + 12w + 11

=
(

3w2 − 10w + 11
)

(w + 1)2 = z − f (w2) = z + 11 = z − z2,

that (w + 1)2 locally determines the structure of a square root, because the factor 3w2 − 10w + 11 in
some small neighbourhood of w2 = −1 deviates very little from 24, so

w ≈ −1 +

√

z − z2

24
, in a neighbourhood of z2 = −11,

and we have produced an alternative proof of the claim.

Usually one acts from the fundamental domains and then finds the branch cuts, but since the root
structures are well-known, we can here instead first fix the branch cuts and then find the fundamental
domains.

We choose the branch cut ] −∞,−11] for the square root, and the branch cut [5,+∞[ for the cubic
root.

II

IIIIIV

e

d

a

c

e

d

b

z-sheets w

a

c

b

Figure 16: Construction of the Riemann surface of 3w4 − 4w3 − 6w2 + 12w = z.
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When we construct the Riemann surface we must start with four z-planes, all containing at least one
branch cut. We have in total five branch cuts, two from the square root and three from the cubic root.
Therefore, just one plane must contain two branch cuts, and the remaining ones only one branch cut.
Let plane III on Figure 16 contain both branch cuts.

We have above plane III the two planes I and II, which together with III describe the cubic root.
Therefore, their branch cuts are given by [5,+∞[.

Similarly, planes III and IV describe the square root, so their branch cuts are given by ] −∞,−1].

Due the the previous qualitative analysis we immediately see that the planes are glued together along
the edges called a, b and d, respectively, and we imagine that we can also identify the edges called
c and e. (Of course, this cannot be physically realized in the usual three dimensional space without
cutting through an existing surface.)

It remains to find the fundamental domains in the w-plane. They must be bounded by curves which
by z = f(w) are mapped either onto ] − ∞,−11], which must hold for two curves from w = −1 to
∞, or onto [5,+∞[, which must hold for three curves from w = +1 to ∞. The half tangents at

w = +1 must mutually form the angle
2π
3

, because we in a small neighbourhood approximately have
the structure of a cubic root.

Assume that

C : w(t) = w = u + iv, t ∈ I,

is the parametric description of such a curve C. Then f(C) is either ] − ∞,−11[ or ]5,+∞[. In
particular, f(C) is contained in R, so we conclude that �f(w) = 0, thus

0 = �
{

3w4 − 4w3 − 6w2 + 12w
}

= 4v
{

3u3 − 3uv2 − 3u+v2 − 3u + 3
}

.

This implies that either v = 0, or

3u3 − 3uv2 − 3u2 + v2 − 3u + 3 = v2(1− 3u) + 3
(

u3 − u2 − u + 1
)

= v2(1− 3u) + 3(u− 1)2(u + 1),

so either

v = 0, or v2 =
3(u − 1)2(u + 1)

3u − 1
for u �= 1

3
.

Assume that v = 0. Obviously, the interval ] − 11, 5[ between the two branching points does not
belong to the range, so when we look at Figure 16 it follows that only u ≥ +1 is possible, and the
curve w(t) = u + iv = u for u = t ≥ +1 is mapped onto the branch cut [5,+∞[.

Since the half tangents of the curves at w = +1 form mutually the angle
2π
3

we also conclude that
u ≤ 1 for the two remaining curves of the cubic root.

If v �= 0, then

v2 =
3(u − 1)2(u + 1)

3u − 1
, for u �= 1

3
.

Since v2 > 0, we must have u �= 1 and also
u + 1
3u − 1

> 0, so either u < −1, or
1
3

< u < 1, or u > 1. The

latter possibility is immediately rejected, because we just proved above that u ≤ 1 for the remaining
curves describing the cubic root.
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We get from the above,

v = ±(u − 1)

√

3(u + 1)
3u − 1

= ±(u − 1)

√

1 +
4

3u − 1
(≈ ±(u − 1) if u < −1 large),

where, using the continuity at the finite end points,

1) the square root, u ∈ ] −∞,−1], with the asymptotes ±(u − 1),

2) the remaining two curves of the cubic root, u ∈
]

1
3
, 1

]

.

Clearly, |v| → +∞ for u → 1
3
+, so u =

1
3

is a vertical asymptote of the two curves above related to
the cubic root.

Together these curves divide the w-plane into four fundamental domains. The fundamental domain,
which contains the vertical axis, has both w = −1 and w = +1 as boundary points, so it must
necessarily correspond to plane II with two branch cuts. Then IV must correspond to the other
fundamental domain which is characterized by also having w = −1 as a boundary point. The remaining
two fundamental domains correspond to the planes I and II, depending only on how they are glued
together in the model of the Riemann surface.

This example was constructed in order to show the main steps in the construction of a Riemann
surface, and yet the computations should not be too complicated.

2.9 Simple examples of potential flows in Physics

We shall in the following present the four simplest 2-dimensional potentials occurring in the technical
sciences. In the first three cases, source (and sink), vortex and vortex source/sink, the potential is
described by a many-valued function. In the last case, the dipoles, we obtain a usual analytic function
as its potential.

2.9.1 Sources and sinks

The potential of a source at z = 0 is defined as a many-valued function of the form

(68) F (z) =
N

2π
log z + c, z ∈ C \ {0},

where N ∈ R \ {0} and c ∈ C are constants.

The number N is called the strength of the source. If N < 0, we instead call the source a sink.

When the potential F (z) = ϕ(x, y) + i · ψ(x, y) is split into its real and imaginary parts, we get

(69) ϕ(x, y) =
N

2π
ln |z| + c1, and ψ(x, y) =

N

2π
arg z + c2.

The equipotential curves are defined as the curves implicitly given by ϕ(x, y) = k, where k ∈ R is a

constant. They are in the present case circles |z| = C, where C = exp
(

2π
N

(k − c1)
)

, cf. Figure 17.
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Figure 17: Streamlines and equipotential curves of a source.

The streamlines are defined as the curves implicitly given by ψ(x, y) = k, where k ∈ R is a constant.
In the present case they are the half lines given in polar coordinates by Θ ∈ [0, 2π[ fixed, where
z = r · eiΘ and r > 0 varies. Cf. Figure 17.

If the strength N > 0 is positive, we interpret this model as a point source at z = 0, from which a
flow is going radially outwards. If instead N < 0 is negative, then z = 0 is interpreted as a point sink,
where the radial flow is going into z = 0, at which point it disappears.

64

Download free eBooks at bookboon.com



Stability, Riemann Surfaces, 
Conformal Mappings

69 

Many-valued functions and Riemann surfaces

2.9.2 Vortices

A vortex at z = 0 is defined by its complex many-valued potential

(70) F (z) =
Γi

2π
log z + c, z ∈ C \ {0}.

The number Γ ∈ R \ {0} is called the intensity of the vortex. When we split F (z) into its real and
imaginary parts, we get

(71) ϕ(x, y) = − Γ
2π

arg z + c1, and ψ(x, y) =
Γ
2π

ln |z| + c2.

The equipotential curves are given by ϕ(x, y) = k1, where k1 is some real constant, and the streamlines
are determined by ψ(x, y) = k2, where k2 is some real constant. Cf. also Figure 17. We see that the
streamlines are circles of centre z = 0, so the flow whirls around z = 0 in concentric circles.

Figure 18: Streamlines and equipotential curves of a vortex.

2.9.3 Vortex sources/sinks

When a source and a vortex, both at z = 0, are added, we get a vortex source/sink of the complex
potential

(72) F (z) =
N + iΓ

2π
log z + c, z �= 0,

of the real potential

(73) ϕ(x, y) =
N

2π
ln |z| − Γ

2π
arg z + c1,

and the flow function

(74) ψ(x, y) =
Γ
2π

ln |z| + N

2π
arg z + c2.
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Figure 19: Streamlines a vortex sink.

Using polar coordinates, z = r eiΘ, the flow function is given by

ψ(x, y) =
1
2π

{Γ · ln r + NΘ} + c2,

so the streamlines, ψ(x, y) = k, are in polar coordinates given by

(75) r = C · exp
(

−N

Γ
Θ

)

, Θ ∈ R,

which are recognized as logarithmic spirals. Cf. Figure 19

Similarly for the equipotential curves, which also become a system of logarithmic spirals, orthogonal
to the system of streamlines.

2.9.4 Dipoles

For given h > 0, consider a system consisting of a source at z1 = −h

2
of strength

N

h
, and a sink at

z2 =
h

2
of strength −N

h
, cf. Figure 20.

We choose the complex potential of this system as the analytic function

Fh(z) =
N

2πh
Log

(

z +
h

2

)

− N

2πh
Log

(

z − h

2

)

.

When we take the limit h → 0+ of this system we get the complex potential of a dipole,

(76) F (z) =
N

2π
lim

h→0+

1
h

{

Log
(

z +
h

2

)

− Log
(

z − h

2

)}

=
N

2π
· 1
z
, for z �= 0.

Clearly, F (z) =
N

2π
· 1
z

for z ∈ C \ {0} is single-valued, and it is easy to prove that the streamlines are

circular arcs of centre (0, y) on the imaginary axis and of radius |y|, where only the point z = 0 has
been excluded from the circles.
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Figure 20: Streamlines of a source and a sink of numerically equal strength.

–3

–2

–1

0

1

2

3

–1.5 –1 –0.5 0.5 1 1.5

Figure 21: Streamlines of a dipole, obtained by taking the limit h → 0+ in Figure 20.

Similarly, the equipotential curves are circular arcs of centre (x, 0) on the real axis and of radius |x|,
where only the point z = 0 has been excluded from the circles.
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3 Conformal mappings and the Dirichlet problem

3.1 Conformal mappings

Let f : Ω → C be an analytic map for which f ′(z) �= 0 for every z ∈ C. Choose any point z0 ∈ Ω
and put for convenience f (z0) = w0 and f ′ (z0) = � eiα. Then according to a theorem in Ventus,
Complex Functions Theory a-1, Chapter 3, some neighbourhood ω of z0 is by f mapped bijectively
onto a neighbourhood f(ω) of w0.

f(omega)w

w_0

w

z

z_0

omega

Omega

z

Figure 22: If f ′ (z0) �= 0, then f is locally bijective.

We notice that ∆f := f (z0 + ∆z)−f (z0) is for small values of |∆z| approximately equal to f ′ (z0)∆z,
hence the map is in some (small) neighbourhood of z0 approximately given by

w − w0 = f ′ (z0) · (z − z0) = � eiα · (z − z0) .

The latter map is a similarity, by which z0 is mapped into w0, and every vector z − z0 from z0 is
mapped into a vector w − w0, where w − w0 is obtained from the vector z − z0 by multiplying its
length by � and rotating it by the angle α.

Such a map f is called a conformal map (a local similarity), when also the sense of orientation of the
complex plane is preserved. The number � = |f ′ (z0)| is called the stretching factor of the map at z0,
and the number α = Arg f ′ (z0) is called the angle of rotation of the conformal map f at z0.

An angle at z0 is determined by two vectors from z0 . By a conformal map both vectors are rotated
the same angle α, so the size of the angle is preserved. We say that a conformal map f preserves
angles.

It follows from the above that an analytic function f is conformal at every point z in its domain for
which also f ′(z) �= 0. We mention without proof the opposite result:

Theorem 3.1.1 Let Ω ⊆ C be an open domain. If a map f : Ω → C is conformal everywhere in Ω,
then f is analytic in Ω.
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Remark 3.1.1 It should be emphasized that there of course exist analytic maps f which are not
conformal in all of its open domain Ω. This is not the case at points z ∈ Ω where f ′(z) = 0, and f
must necessarily be analytic at z, because otherwise the derivative did not exist. ♦

In practical applications conformal maps are very important, because they can be applied to reduce
complicated Dirichlet problems of the 2-dimensional Laplace differential operator

∆ :=
∂2

∂x2
+

∂2

∂y2
, z = x + iy,

into simpler problems, where one can apply a catalogue of known solutions, or in more complicated
cases, where a practical solution formula exists. One example of this has already been given in Ventus,
Complex Functions Theory a-2, Chapter 2 on Poisson’s integral formula for the Dirichlet problem of
a disc. By combining Poisson’s integral formula with the considerations above, it follows that all
we need is to find a conformal map, which maps the simply connected open domain of the original
Dirichlet problem to the open unit disc and then apply Poisson’s integral formula.

In principle, this is easy to understand. However, when we try to apply this method, we may come
across some nasty approximation problems, which cannot be solved at this step of the description of
the theory. Instead we head on by creating an arsenal of well-known conformal maps, which later may
be useful in solving the Dirichlet problem mentioned above.
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3.2 The Möbius transformations

The simplest possible class of conformal maps is the class of Möbius transformations, also called
the class of bilinear or linear fractional transformations,, or homographics. They are defined in the
following definition.

Definition 3.2.1 A Möbius transormation is an analytic map w = f(z) of the form

(77) w =
az + b

cz + d
, where a, b, c, d ∈ C and

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

�= 0.

If c = 0, then its domain is C. If c �= 0, then its domain is C \
{

−d

c

}

.

By a small computation,

dw

dz
=

ad − bc

(cz + d)2
=

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

· 1
(cz + d)2

�= 0, defined for z �= −d

c
,

thus a Möbius transformation is conformal everywhere in its domain.

Another small computation shows that (77) has its inverse given by

(78) z =
−dw + b

cw − a
, w �= a

c
,

∣

∣

∣

∣

−d b
c −a

∣

∣

∣

∣

=
∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

�= 0,

which again is a Möbius transformation.

Remark 3.2.1 It is quite natural to let the matrix
(

a b
c d

)

correspond to the map given in (77).

Then (78) corresponds to the matrix
(

−d b
c −a

)

, which is obtained from the former matrix by

interchanging the two diagonal elements and then change the signs of the diagonal, and finally, inter-
change the variables z and w. Since we often shall find the inverse of a Möbius transformations, this
observation will prove very useful in practice. ♦

We proved above that (77) defines a bijective map of C \
{

−d

c

}

onto C \
{a

c

}

(trivial modifications,

if c = 0). If we put C� = C ∪ {∞}, and let z = −d

c
be mapped into w = ∞, and z = ∞ into w =

a

c
,

then the extended Möbius transformation becomes a bijective map of C ∪ {∞} onto itself.

Conversely, it can be proved that the only bijective conformal maps f : C ∪ {∞} → C ∪ {∞} are the
(extended) Möbius transformation.

It was previously shown that a Möbius transformation corresponds to a regular (2 × 2)-matrix of
complex coefficients by

f(z) =
az + b

cz + d
∼

(

a b
c d

)

,

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

= ad − bc �= 0.
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A simple and straightforward, and also extremely tedious computation, which is left to the reader,
shows that composition of two Möbius transformations corresponds to matrix multiplication of their
corresponding matrices.

Theorem 3.2.1 The composition of two Möbius transformations f and g is again a Möbius trans-
formation, f ◦ g. If

f ∼
(

a1 b1

c1 d1

)

and g ∼
(

a2 b2

c2 d2

)

,

then

f ◦ g ∼
(

a3 b3

c3 d3

)

=
(

a1 b1

c1 d1

)(

a2 b2

c2 d2

)

.

Notice that the matrices are put in the same order as their corresponding Möbius transformations.

Remark 3.2.2 It follows from Theorem 3.2.1 that the class of Möbius transformations becomes a
group with the usual composition of maps as “multiplication”. This group is isomorphic with a
subgroup of the matrix group

(79)
{(

a b
c d

) ∣

∣

∣

∣

a, b, c, d ∈ C;
∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

= 1
}

.

In fact, if a matrix
(

a b
c d

)

corresponds to the Möbius transformation f(z) =
az + b

cz + d
, then all

matrices corresponding to f(z) are given by

λ

(

a b
c d

)

=
(

λa λb
λc λd

)

, for λ ∈ C \ {0}.

Since the equation in λ
∣

∣

∣

∣

λa λb
λc λd

∣

∣

∣

∣

= λ2

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

= 1

has two solutions, λ1 and λ2 = −λ1, we conclude that the group of Möbius transformations is isomor-
phic with a subgroup of index 2 of the group described in (79). ♦.

The following four simple examples will help us to describe the Möbius transformations in Theo-
rem 3.2.2.

Example 3.2.1 Every translation

w = z + b, b ∈ C,

is a Möbius transformation. In fact,

w = z + b =
1 · z + b

0 · z + 1
∼

(

1 b
0 1

)

, where
∣

∣

∣

∣

1 b
0 1

∣

∣

∣

∣

= 1 �= 0. ♦
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Example 3.2.2 Every similarity of stretching factor � > 0, and every rotation by an angle α ∈ R
around the origo is a Möbius transformation. In fact, their composition is homothetic and

w = az =
az + 0

0 · z + 1
∼

(

a 0
0 1

)

, where
∣

∣

∣

∣

a 0
0 1

∣

∣

∣

∣

= a = � eiα �= 0,

which is clearly a Möbius transformation. The similarity is obtained by choosing α = 0, and the
rotation is obtained by choosing � = 1. ♦

Example 3.2.3 A composition of the Möbius transformations of Example 3.2.1 and Example 3.2.2
gives the general similarity for a ∈ C \ {0} and b ∈ C,

w = az + b =
a · z + b

0 · z + 1
∼

(

a b
0 1

)

, where
∣

∣

∣

∣

a b
0 1

∣

∣

∣

∣

= a �= 0. ♦
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Example 3.2.4 The reciprocal transformation is a Möbius transformation,

w =
1
z

=
0 · z + 1
1 · z + 0

∼
(

0 1
1 0

)

, where
∣

∣

∣

∣

0 1
1 0

∣

∣

∣

∣

= −1 �= 0. ♦

Let

f(z) =
az + b

cz + d
∼

(

a b
c d

)

, where
∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

�= 0,

be a Möbius transformation. If c = 0, then

f(z) =
a

d
z +

b

d
∼

(

a/d b
0 1

)

,

is of course a general similarity, cf. Example 3.2.3.

If c �= 0, then we get by a simple matrix computation (again left to the reader),

(80)
(

a b
c d

)

=
(

(bc − ad)/c a/c
0 1

)(

0 1
1 0

)(

c d
0 1

)

.

We therefore conclude from the previous four examples and Theorem 3.2.1 that we have proved

Theorem 3.2.2 Every Möbius transformation is either a general similarity, or it is the composition
of a general similarity, the reciprocal transformation, and another general similarity.

Due to Theorem 3.2.2 and formula (80) the investigation of the properties of the Möbius transfor-
mations is reduced to the investigations of the general similarities and the reciprocal transformation.
Hence, if we can find geometrical properties which are preserved by these two special Möbius trans-
formations, then they are preserved in general by Möbius transformations. Once this was realized by
mathematicians in the past, they decided that the following definition is quite useful in the theory of
Möbius transformations.

Definition 3.2.2 A circle in the extended complex plane C ∪ {∞} is either a circle in the usual sense
in C, or a straight line, which is considered as a circle of “infinite radius” and no centre and passing
through ∞.

Assume that a finite circle has radius r > 0 and its centre at b ∈ C. Then its equation is given by
|z − b| = r, hence

(81) |z − b|2 − r2 = (z − b)
(

z − b
)

− r2 = z z − b z − b z +
{

|b|2 − r2
}

= 0.

A straight line in the plane has the equation αx + βy = c ∈ R, where (α, β) ∈ R2 \ {(0, 0)}. If we put

b :=
1
2
(α + iβ), an elementary computation shows that 2�

{

b z
}

= αx + βy = c, so the equation of a
straight line can also be written

(82) −2�
{

b, z
}

+ c = −
{

b z + b z
}

+ c = −b z − b z + c = 0.

73

Download free eBooks at bookboon.com



Stability, Riemann Surfaces, 
Conformal Mappings

78 

Conformal mappings and the Dirichlet problem

When we compare (81) and (82) it follows that a general circle in C ∪ {∞} has the equation

(83) a z z − b z − b z + c = 0, a, c ∈ R, b ∈ C, |b|2 − ac > 0.

We see that if a �= 0, then we get (81), and if a = 0, then we get (82).

Using (83) we prove

Theorem 3.2.3 Every Möbius transformation preserves the class of general circles in C ∪ {∞}, i.e.
every general circle in C ∪ {∞} is by a Möbius transformation mapped onto another general circle in
C ∪ {∞}.

Proof. It follows from Theorem 3.2.2 that we shall only prove the claim for the general similarities,

in which case it is trivial, and for the reciprocal transformation w =
1
z
. When we put z =

1
w

into (83)
it follows that the image curve has the equation

a

w w
− b

w
− b

w
+ c = 0.

When this equation is multiplied by w w = |w|2, we get

cw w − bw − bw + a = 0, c, a ∈ R, b ∈ C,
∣

∣b
∣

∣

2 − c a > 0,

and the claim follows. �

It is well-known that a circle in the complex plane is uniquely determined by three of its points.
Therefore, a Möbius transformation f is uniquely determined if we just know the (mutually different)
images w1 = f (z1), w2 = f (z2) and w3 = f (z3) of three mutually different points z1, z2 and z3 in
the z-plane. In fact, if

w = f(z) =
az + b

cz + d
,

then we get by insertion of wk = f (zk), k = 1, 2, 3, three linear equations in the four unknowns
a, b, c, d. Now, (c, d) �= (0, 0), so at least one of the coordinates is �= 0, and since the Möbius
transformation is unaltered, if the numerator and the denominator are multiplied by the same constant
λ �= 0, we may assume that either c or d is equal to 1 (this choice depends on which one is �= 0). By
such a choice we reduce the system to three linear equations in three unknowns, and the theory from
Linear Algebra takes over.

The above is of course not a precise proof, though the method works in practice. The details of Linear
Algebra sketched above were not carried out in full details, because we have the following more easy
method, which is highly recommended instead of the probably better known method from Linear
Algebra. We first introduce

Definition 3.2.3 Let z1, z2, z3 ∈ C be mutually different complex constants, and let z ∈ C be a
complex variable. We define the cross-ratio of z, z1, z2, z3 (in this order) by

(84) ϕ(z) = [z, z1, z2, z3] :=
z − z2

z − z3
:

z1 − z2

z1 − z3
.
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w_3

w_2w_1
z_3

z_2

z_1

wz

Figure 23: A Möbius transformation maps general circles into general circles in C ∪ {∞}, and domains
“to the left” onto domains “to the left”.

The cross-ratio ϕ(z) is clearly a Möbius transformation, so its domain can be extended to C ∪ {∞}
by putting

ϕ (z3) = ∞ and ϕ(∞) = 1 :
z1 − z2

z1 − z3
=

z1 − z3

z1 − z2
.

Since ϕ(z) is a Möbius transformation, we also allow z1, z2, z3 to be ∞, as long as all three constants
are mutually different. We mention that

(85) [z,∞, z2, z3] =
z − z2

z − z3
, [z, z1,∞, z3] =

z1 − z3

z − z3
, [z, z1, z2,∞] =

z − z2

z1 − z2
,

which formally are obtained by putting
∞
∞ := 1 into (84). Notice that this is the only place in Complex

Functions Theory that we allow this rule of computation.

The importance of the cross-ratios follows from the next theorem.

Theorem 3.2.4 Every Möbius transformation w = f(z) preserves cross-ratios, i.e.

[z, z1, z2, z3] = [f(z), f (z1) , f (z2) , f (z3)] = [w,w1, w2, w3] .

Proof. If w = f(z) = az + b is a general similarity, a �= 0, then we put w : k = a zk + b, k = 1, 2, 3,
and we get

[w,w1, w2, w3] =
w − w2

w − w3
:

w1 − w2

w1 − w3
=

(a z + b) − (a z2 + b)
(a z + b) − (a z3 + b)

:
(a z1 + b) − (a z2 + b)
(a z1 + b) − (a z3 + b)

=
a (z − z2)
a (z − z3)

:
a (z1 − z2)
a (z1 − z3)

= [z, z1, z2, z3] .

If instead w =
1
z

is the reciprocal transformation, we get similarly,

[w,w1, w2, w3] =

1
z
− 1

z2

1
z
− 1

z3

:

1
z1

− 1
z2

1
z1

− 1
z3

=
z2 − z

z3 − z
:

z2 − z1

z3 − z1
=

z − z2

z − z3
:

z1 − z2

z1 − z3
= [z, z1, z2, z3] .
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Since the claim holds for the general similarities and the reciprocal transformation, it follows from
Theorem 3.2.2 that it holds in general. �

We immediately get by using Theorem 3.2.4 and the previous remarks that a general circle in C ∪ {∞}
is determined by three mutually different points the following result

Corollary 3.2.1 Let z1, z2, z3 ∈ C ∪ {∞} be three mutually different points in the z-plane, and
w1, w2, w3 ∈ C ∪ {∞} three mutually different points in the w-plane. Let f denote the Möbius
transformation, for which

f (z1) = w1, f (z2) = w2, f (z3) = w3.

Then w = f(z) is uniquely determined by the cross-ratio

(86) [z, z1, z2, z3] = [f(z), w1, w2, w3] .
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The advantage of (86) is that according to (84) the right hand side can be written in the form

(87)
a f(z) + b

c f(z) + d
= [z, z1, z2, z3] = ϕ(z),

where, apart from a common factor �= 0, the coefficients a, b, c, d are determined by w1, w2, w3. Then
by using the inversion formula (78) we get

(88) f(z) =
−dϕ(z) + b

c ϕ(z) − a
.

It is in principle possible to express (88) alone in the given complex constants z1, z2, z3, w1, w2, w3

and the variable z, but it is not worth the effort, because the expression becomes very complicated.
A far better strategy in practice is first to compute ϕ(z) by (87) and then insert the result into (88)
and reduce.

Remark 3.2.3 It should here be mentioned that the cross-ratio defined above also occurs in the
theory of Riccati differential equations, which otherwise has nothing to do with Complex Functions
Theory. ♦

Example 3.2.5 As an illustration of the theory and method described above we want to find the
Möbius transformation which maps z = 1, i, 0 into w = 0, i, 1 in the given order.

CC

f

10

i

10

i

wz

Figure 24: The Möbius transformation of Example 3.2.5 reverses the direction on the circle, so the
open disc is mapped onto the interior of its complementary set.

It is convenient, though not necessary, first to make a geometrical analysis, cf. Figure 24. The point
sets z = 1, i, 0 and w = 0, i, 1 both determine the same circle C of the equation

C :
∣

∣

∣

∣

z − 1 + i

2

∣

∣

∣

∣

=
1√
2
.
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The difference is that z = 1, i, 0 on the circle are ordered in the positive sense of the plane, while w =
0, i, 1 on the circle are ordered in the negative sense of the plane. Since domains to the left of closed
curves are always mapped onto domains to the left of the image curves by Möbius transformations
(or, in general, by analytic functions) seen in the defined direction of the curves, we conclude that

the inner disc is mapped onto the unbounded set outside the circle C, i.e.
∣

∣

∣

∣

z − 1 + i

2

∣

∣

∣

∣

<
1√
2

is by

w = f(z) mapped onto
∣

∣

∣

∣

w − 1 + i

2

∣

∣

∣

∣

>
1√
2

in C ∪ {∞}.

After this geometrical digression we turn to the suggested method, which is the main topic here. It
follows from Corollary 3.2.1 that w = f(z) is given by

[z, 1, i, 0] = [w, 0, i, 1],

i.e.

z − i

z − 0
:

1 − i

1 − 0
=

w − i

w − 1
:

0 − i

0 − 1
,

which is reduced to

w − i

w − 1
= z1 :=

i

1 − i
· z − i

z
.

Then by the inverse transformation (78),

w =
z1 − i

z1 − 1
=

i

1 − i
· z − i

z
− i

i

1 − i
· z − i

z
− 1

=
i(z − i) − i(1 − i)z
i(z − i) − (1 − i)z

=
−z + 1

(2i − 1)z + 1
,

i.e.

w =
−z + 1

(2i − 1)z + 1
.

Check:

−z1 + 1
(2i − 1)z1 + 1

=
−1 + 1

(2i − 1) + 1
= 0 = w1,

−z2 + 1
(2i − 1)z2 + 1

=
−i + 1

(2i − 1)i + 1
=

1 − i

−2 − i + 1
==

1 − i

−1 − i
=

(1 − i)(−1 + i)
(−1 − i)(−1 + i)

=
2i
2

= i = w2,

−z3 + 1
(2i − 1)z3 + 1

=
1
1

= 1 = w3.

It follows that we have found our wanted Möbius transformation. ♦
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3.3 Some special Möbius transformations

We shall in this section shortly list all possible Möbius transformations between the upper half plane
and the unit disc. All proofs are very simple applications of Corollary 3.2.1, so they are left to the
reader as an exercise.

3.3.1 Unit disc onto unit disc

The Möbius transformations which map the unit disc onto itself are all of the structure

(89) w = eiα · z − z0

1 − z0 z
, where α ∈ R and |z0| < 1.

3.3.2 Unit disc onto complementary set of the unit disc

The Möbius transformations which map the open unit disc onto the complementary set of the closed
unit disc are either of the structure

(90) w = eiα · z − z0

1 − z0 z
, where α ∈ R and |z0| > 1,

or of the structure (more or less corresponding to z0 = ∞)

(91) w = eiα · 1
z
, where α ∈ R.

3.3.3 Upper half plane onto upper half plane

The Möbius transformations which map the upper half plane �z ≥ 0 onto itself all have the structure

(92) w =
a z + b

c z + d
, where a, b, c, d ∈ R and

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

> 0.

3.3.4 Upper half plane onto unit disc

The Möbius transformations which map the upper half plane �z ≥ 0 onto the unit disc |w| ≤ 1, have
all the structure

(93) w = eiα · z − z0

z − z0
, where α ∈ R and �z0 > 0.

3.3.5 Unit disc onto upper half plane

The Möbius transformations which map the unit disc |z| ≤ 1 onto the upper half plane �w ≥ 0, have
all the structure

(94) w =
w0 z − w0 eiα

z − eiα
, where α ∈ R and �w0 > 0.
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3.4 The transformation w = z2

We now leave the Möbius transformations in order to discuss other types of conformal maps. The
treatment of these is closely connected with the theory of Riemann surfaces. The difference is that
we here work in the opposite direction. Instead of defining a topological surface in the w-space which
is in bijective correspondence with (almost) all of the z-plane, we here choose to find fundamental
domains in the z-plan, which (almost) is mapped bijectively and conformally onto the w-plane.

Remark 3.4.1 Notice that compared with Chapter 2, where we dealt with the Riemann surfaces,
we have here for convenience tacitly interchanged the variables z and w. In Chapter 2 we always
created the Riemann surfaces in the z-space. By this interchange of variables we now have to consider
topological surfaces in the w-space instead. ♦

In the applications in the subsequent sections the reader should always notice the domains in the
z-space which by some given conformal map under consideration is mapped onto (almost) all of the
w-plane, or even better for the Dirichlet problem considered later on, onto the upper half plane.

w=z^2i

wz

Figure 25: The open upper half plane (a fundamental domain) in the z-plane is by w = z2 mapped
onto the slit w-plane.

We shall in this section treat the transformation w = z2, which is not bijective in all of the z-plane.
The map is in polar coordinates given by

� = r2, ϕ = 2Θ, where z = r eiΘ and w = � eiϕ.

This description shows that every angular space in the z-plane of vertex 0 and angle α > 0 is mapped
into another angular space in the w-plane of vertex 0 and angle 2α.

If 0 < 2α ≤ 2π, i.e. 0 < α ≤ π, then we can find a branch of the 2-valued square root function, such
that the inverse map is uniquely defined by this branch, also denoted z =

√
w. In particular, the open

upper half plane �z > 0 is by w = f(z) = z2 mapped bijectively and conformally onto the slit plane
C\(R+ ∪ {0}), and the open first quadrant in the z-plane is by the same mapping mapped bijectively
onto the open upper half plane in the w-plane.
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w=z^2

wz

Figure 26: The open first quadrant is mapped bijectively onto the open upper half plane by the map
w = z2.

Since f ′(z) = 2z �= 0 for �z > 0, this map is conformal in the open upper half plane.

We get from

w = u + iv = z2 = (x + iy)2 = x2 − y2 + 2ixy

that

u = x2 − y2 and v = 2xy.
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Hence the curves u = c in the slit w-plane correspond to the level curves x2 − y2 = c in the open
upper half plane, and the curves v = c in the slit w-plane correspond to the level curves 2xy = c in the
open upper half plane, cf. Figure 25. The systems of curves u = const. and v = const. are orthogonal.
Since the map is conformal, the angles are preserved, so the level curves in the upper half plane in
the z-plane must also form orthogonal systems of curves.

w=z^3

wz

Figure 27: The principal domain (an angular space with vertex at 0) is by w = z3 mapped bijectively
and conformally onto the slit w-plane.

It is easy to generalize the above to transformations of the form

w = f(z) = zn, n ∈ N.

Using polar coordinates we see that the angles are multiplied by n. In particular, the angular space

0 < Arg z <
2π
n

is mapped bijectively onto the slit w-plane C \ (R+ ∪ {0}), cf. Figure 27.

The general case of the angular space 0 < Arg z <
π

α
, where α ≥ 1 is positive real, can be treated

similarly by using the principal value of the many-valued function w = zα, so this angular space is
mapped bijectively and conformally onto the open upper half plane. Thus, every angular space in the
upper half plane can be mapped bijectively and conformally onto the open upper half plane.

By choosing another branch of log z we can extend this result to any angular space in the z-plane.
The simple details are left to the reader.

82

Download free eBooks at bookboon.com



Stability, Riemann Surfaces, 
Conformal Mappings

87 

Conformal mappings and the Dirichlet problem

pi/alpha

w=z^alpha

wz

Figure 28: The angular space 0 < Arg z <
π

α
, where α > 1, is by the principal value of the many-

valued function w = zα mapped onto the open upper half plane in the w-plane.

3.5 The exponential transformation w = exp z

If w = ez, then
dw

dz
= ez �= 0 for all z ∈ C, so this transformation is conformal everywhere in C. We

apply polar coordinates for w, which means that we put w = � eiϕ, and rectangular coordinates for z,
i.e. z = x + iy. Then the map is described by

� = ex, ϕ = y + 2nπ, n ∈ Z.

pi

-pi

w=exp z

w
z

Figure 29: The exponential transform w = exp z.

If we consider the horizontal strip in the z-plane given by y = �z ∈ ] − π, π[, cf. Figure 29, then this
strip is mapped bijectively onto the slit w-plane C \ (R− ∪ {0}) by the map

(95) � = ex, for x ∈ R, ϕ = y ∈ ] − π, π[,

which shows that the inverse map is the principal logarithm Log.
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0

i pi
w=exp z

wz

Figure 30: An horizontal strip of height π is mapped bijectively onto the upper half plane by the
exponential transformation w = exp z.

In particular, it follows that the infinite strip y = �z ∈ ]0, π[ in the z-plane is mapped by exp
conformally and bijectively onto the open upper half w-plane.

Now, w = � eiϕ = u + iv, so the map (95) is in rectangular coordinates in the w-plane given by

(96) u = ex cos y and v = ex sin by.
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The level curves in the z-plane corresponding to u = c is according to (96) implicitly given by
ex cos y = c. If c = 0, then we get the lines y = ±π

2
, and if c �= 0, then

x = ln
(

c

cos y

)

, where















y ∈
]

−π

2
,
π

2

[

, if c > 0,

y ∈
]

−π,
π

2

[

∪
]π

2
, π

[

, if c < 0.

Similarly, the level curves in the z-plane corresponding to v = c is implicitly given by ex sin y = 0. If
c = 0, then y = 0, and if c �= 0, then

x = ln
(

c

sin y

)

for







y ∈ ]0, π[, when c > 0,

y ∈ ] − π, 0[, when c < 0.

Since the map is conformal, the two systems of level curves are orthogonal to each other in the z-plane.

3.6 The sine transformation w = sin z

We consider w = sin z in the vertical strip x = �z ∈
]

−π

2
,
π

2

[

. Since
d

dz
sinx = cos z �= 0 in this

strip, the map is conformal.

pi/2-pi/2

w=sin z

wz

Figure 31: The vertical strip of breadth π is mapped onto a slit w-plane.

We shall show that this strip is mapped bijectively onto a slit w-plane, where the cuts are the real
u-intervals ]−∞,−1[ and [1,+∞[. It suffices to prove that every curve of the form z = t + iy0, where
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y0 ∈ R is fixed, and t ∈
]

−π

2
,
π

2

[

is the variable, is mapped bijectively onto a curve in the slit w-plane,
and that every point in the slit w-plane lies on precisely one of these curves.

We then split the sine transformation into its real and imaginary parts,

w = sin z = sinx cosh y + i cos x sinh y = u + iv.

If y = y0 is kept fixed, i.e. we consider the horizontal line segment in Figure 31, the the image curve
in the w-plane has the parametric description

(97) u(t) = cosh y0 · sin t, v(t) = sinh y0 · cos t, for t ∈
]

−π

2
,
π

2

[

.

If y0 = 0, then v = 0, and the interval ]− 1, 1[ on the u-axis in the w-plane is traversed precisely once.

Then notice that v and y0 always have the same sign, so it is enough to assume that y0 > 0, because
we can just reflect these curves in the real axis in order to get the remaining curves. Then eliminate
t of (97) to get that the line segment at height y0 > 0 is mapped into an half ellipse in the upper
w-plane of the equation

(98)
u2

cosh2 y0

+
v2

sinh2 y0

= 1,

which has the half axes cosh y0 and sinh y0.

Let (u0, v0) be any point in the upper half w-plane. We shall prove that there is precisely one y0 ∈ R+,
such that (u0, v0) lies on the curve given by (98).

Since v0 > 0 , we define a continuous and strictly decreasing function by

Φ(y) =
u2

0

cosh2 y
+

v2
0

sinh2 y
, y > 0.

It follows from

lim
y→0+

Φ(y) = +∞ and lim
y→+∞

Φ(y) = 0,

that there exists precisely one y0 ∈ R+, such that Φ (y0) = 1, and the claim is proved.

The open half strip, given by x ∈
]

−π

2
,
π

2

[

, y > 0, is by w = sin z mapped bijectively and conformally
onto the open upper half w-plane.

Finally, we shall find the level curves in the z-plane of the map w = sin z, corresponding to u = c, or
v = c. It follows from (97) that these are implicitly given by

u = c = sinx cosh y and v = c = cos x sinh y,

where x ∈
]

−π

2
,
π

2

[

and y ∈ R.

If u = 0, then x = 0, i.e. the imaginary axis.
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1–1pi/2-pi/2

w=sin z

wz

Figure 32: An half strip is mapped bijectively onto the open upper half plane by the sine transforma-
tion.

If u = c �= 0, then

x = Arcsin
(

c

cosh y

)

, where







|y| > ln
(

|c| +
√

c2 − 1
)

for |c| > 1,

y ∈ R for |c| < 1.

If v = 0, then y = 0, i.e. the line segment
]

−π

2
,
π

2

[

on the x-axis.

If v = c �= 0, then

y = ln

(

c

cosx
+

√

1 +
c2

cos2 x

)

for x ∈
]

−π

2
,
π

2

[

.

3.7 Zhukovski’s function

Zhukovski’s function (in some books spelled Joukowski’s function in a mixture of French and German
transcription of the Russian name) is defined by

(99) w = f(z) :=
1
2

{

z +
1
z

}

, for z ∈ C \ {0}.

It follows from f ′(z) =
1
2

{

1 − z−2
}

that Zhukovski’s function is conformal in C \ {−1, 0, 1}.

The inverse of Zhukovski’s function is found by solving the following equation of second degree,

(100) z2 − 2w z + 1 = 0
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pi/2-pi/2

w=sin z

w

z

Figure 33: The level curves of the sine transformation.

with respect to z. There will for every w value usually, in fact, for every w �= ±1, correspond two
z-values, z1 and z2.

–2

–1

0

1

2

–2 –1 1 2

Figure 34: Level curves of Zhukovski’s function defined on the complementary set of the unit disc.

Using that the product z1 · z2 = 1, cf. (100), it follows that if |z1| > 1, then |z2| < 1, and vice versa.
Therefore, these two domains are both mapped bijectively onto a slit w-plane.

Then notice that (100) can be solved for every w ∈ C, so the exceptional set in the w-plane must be
given by the image of the unit circle in the z-plane. This unit circle is in polar coordinated described
by z = eiΘ, Θ ∈ [0, 2π], thus

w =
1
2

{

eiΘ + e−iΘ
}

= cosΘ, for Θ ∈ [0, 2π],

so the boundary curve is mapped (twice) onto the interval [−1, 1] on the real u-axis.
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The image of the set |z| > 1 (as well of the set |z| < 1) is by Zhukovski’s function the slit complex
w-plane with the exception of the cut along the segment [−1, 1] on the real u-axis.

When we split into real and imaginary parts, we get

u =
1
2

{

x +
x

x2 + y2

}

and v =
1
2

{

y − y

x2 + y2

}

,

from which we get the level curves in |z| > 1. These are in polar coordinates given by

r2 + 1
2r

· cos Θ = u0 and
r2 − 1

2r
· sinΘ = v0,

where u0, resp. v0, are constants. The equipotential curves u = u0 = constant are given by the
equation

r =
u0 ±

√

u2
0 − cos2 Θ

cosΘ
for | cos Θ| < |u0| ,

where the sign in ± is always chosen such that r > 1.
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Similarly we find for the streamlines v = v0 the equation in polar coordinates,

(101) r =
v0

sinΘ
+

√

1 +
v2
0

sin2 Θ
, where either Θ ∈ ]0, π[ or Θ ∈]π, 2π[.

Notice that we have only + in front of the square root which is taking with its positive value. The
interpretation of (101) is that it describes the streamlines of a stationary potential flow around an
obstacle, which here is the unit disc. Such patterns of flow are actually found in practice, where one
only requires that the Reynold’s number is sufficiently small. When Reynold’s number becomes too
big, then the flow becomes unstable, and we get some unwanted eddies behind the disc seen in the
direction of the flow.

Zhukovski used as early as in 1911 the inverse map of w =
1
2

{

z +
1
z

}

as discussed above together

with another complex potential to describe the flow past the wing of an aeroplane.

First notice that if the friction of the air is very small, then we can replace any streamline by the
boundary of a rigid body without disturbing the flow, which will just glide along this body. In the
present case the body is represented by the unit disc.

Zhukovski’s clever idea was first to consider the many-valued function

(102) w :=
k

2πi
log z =

k

2π
arg z + i

k

2π
ln r = u + iv,

where k is a real constant. Its derivative is single-valued,

(103)
dw

dz
=

k

2πi

1
z
,

so we have uniquely defined a velocity field of some flow. The streamlines are given by v = v0 constant,
thus by (102),

k

2π
ln r = v0, or r = exp

(

2πv0

k

)

= a positive constant,

so the streamlines of (102) are circles of centre 0. In particular, the unit circle is one of its streamlines,
so we can combine (102) with Zhukovski’s function to get the (many-valued) complex potential

(104) w =
1
2

{

z +
1
z

}

− k

2πi
log z, |z| > 0.

This potential function also represents a flow around the unit disc. More precisely, its streamlines
represents a distorted translation flow past the unit disc. In polar coordinates the stream function is
given by

v = �
{

1
2

{

r eiΘ +
1

r eiΘ

}

− k

2πi
log z

}

=
1
2

{

r − 1
r

}

sinΘ +
k

2π
ln r,

so the streamlines given by v = v0 constant must fulfil the equation

sinΘ =
2r

r2 − 1

{

v0 −
k

2π
ln r

}

.
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We shall never obtain r = 1, if v0 �= 0. However, if v0 = 0, then

sinΘ = − k

2π
ln r

2r
r2 − 1

= −k

π
· r

r + 1
· ln r

r − 1
→ − k

2π
for r → 1 + .

Therefore, if 0 < k < 2π, then precisely two streamlines will reach the unit circle, namely at the two

angles Θ for which sinΘ = − k

2π
∈ ] − 1, 0[. Both these points on the unit circle lie in the lower half

plane, so the flow will give a thrust upwards on the unit disc, cf. Figure 35.

–1

–0.5

0.5

1

–2 –1 1 2

Figure 35: Streamlines for k = 1 of the many-valued potential

w =
1
2

{

z +
1
z

}

− 1
2πi

log z.

Of course the unit disc does not look like the profile of a wing of an aeroplane. We still need to apply
Riemann’s mapping theorem, which is too difficult to be given here in all details. The considerations
above may already seem rather difficult.

3.8 The Schwarz-Christoffel transformation

Conformal maps are often used when we want to transform a Dirichlet problem of the Laplace dif-
ferential equation from Physics into a simpler Dirichlet problem in the open half plane, or the unit
disc, where in both cases solution formulæ are known. Here we mention that conformal maps leave
the Laplace differential operator ∆ invariant, which will be proved in Section 3.9. This observation
reduces the problem to that we shall “only” consider the problem of mapping bijectively a simply con-
nected domain into e.g. the upper half plane by a conformal map. The existence of such a conformal
map follows from
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Theorem 3.8.1 The Riemann mapping theorem. Let Ω ⊂ C be a simply connected open domain
which is not all of C, Ω �= C. Then there exists a bijective and conformal map f : Ω → {w ∈ C |
�w > 0} of Ω onto the upper half plane.

This theoretical result is very deep, and its proof is about three pages long. As it does not give us
any clue of how in practice to construct such a bijective and conformal map, we shall skip the proof
here.

It was hinted in the paragraph above that it may be exceedingly difficult to find such a map, and
it surely is. Most of the known cases have already been treated in Sections 3.3–3.6 above. There is
still another class of simply connected open domains, for which we can explicitly construct such a
conformal map using an explicit solution formula, namely domains bounded by a polygon having a
finite number of vertices, one or more of which may lie at infinity.
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Theorem 3.8.2 The Schwarz-Christoffel formula (1867-1869). Given n real points on the x-axis,
x1 < x2 < · · · < xn, and corresponding n real numbers a1, a2, . . . , an, fulfilling

|aj | < 1 for all j = 1, . . . , n, and a1 + a2 + · · · + an = 2.

The Schwarz-Christoffel transformation F is given by

(105)

F (z) := A

∫ z

z0

dζ

(ζ − x1)
a1 (ζ − x2)

a2 · · · (ζ − xn)an
+ B, for A ∈ C \ {0} and B ∈ C constants,

where we define (ζ − xj)
aj := exp (aj Log∗ (ζ − xj)) for ζ lying in the closed upper half plane with the

exception of ζ = xj, and where Log∗(z) is any branch of the logarithm, for which Log∗(x) = lnx for
x > 0 and which has its branch cut from 0 to ∞ in the (open) lower half plane.

• The Schwarz-Christoffel transformation (105) maps the real axis in the z-plane onto a closed curve
consisting of line segments in the w-plane.

• The vertices in the w-plane are the points

w1 = F (x1) , w2 = F (x2) , . . . , wn = F (xn) ,

and at a vertex wj = F (xj) the tangent (seen in the sense of direction of the image curve) is
rotated the angle ajπ.

• If the closed curve does not cut itself, it is a polygon P in the w-plane, and (105) is a bijective
and conformal map of the upper half z-plane �z > 0 onto the domain Ω which has the polygon P
as its boundary.

Sketch of proof. The proof of this theorem is not an easy task either, and we shall here not give
a correct one. However, a couple of comments may make the result plausible. First notice the roles
of the constants A ∈ C \ {0} and B ∈ C in (105). The constant A defines a stretching and a rotation,
and the constant B a translation. Neither of these operations will affect the size of the rotation of the
tangents at the vertices. The core of (105) is therefore (of course) the simpler map

(106) w = F0(z) :=
∫ z

z0

dζ

(ζ − x1)
a1 · · · (ζ − xn)an

.

When (106) is differentiated, we get

(107)
dw

dz
=

1
(ζ − x1)

a1 · · · (ζ − xn)an
, |aj | < 1 and a1 + · · · + an = 2.

When z = x ∈ R and x < x (< x2 < · · · < xn), then

aj Arg∗ (x − xj) = ajπ for all j = 1, . . . , n,

hence

arg
(

1
(ζ − x1)

a1 · · · (ζ − xn)an

)

= −a1π − · · · − anπ + 2pπ = 2(p − 1)π, p ∈ Z, for x < x1,
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so it is real and positive,

1
(ζ − x1)

a1 · · · (ζ − xn)an
> 0 for x < x1.

Then we let x pass through x1, so we consider x1 < x < x2 < · · · < xn, in which case

a1 Arg∗ (x − x1) = 0 and aj Arg∗ (x − xj) = ajπ for all j = 2, . . . , n,

hence

arg
(

1
(ζ − x1)

a1 · · · (ζ − xn)an

)

= −a2π−· · ·−anπ+2pπ = 2(p−1)π+a1π, p ∈ Z, for x1 < x < x2,

which shows that the tangent has been rotated the angle a1π, when we pass through x = x1 on the
real line.

In the next step we consider x1 < x2 < x < x3 < · · · < xn, and conclude likewise that the tangent
is rotated the angle a2π when x passes through the singular point x2 of integration. In this way we
proceed and find that the rotation of the tangent is ajπ at the image point wj of the singular point
xj .

Choose for convenience z0 = x0 ∈ R, such that x0 < x1 in (106). The assumption that all |aj | < 1
assures that the line integral along the real axis is convergent. The fixed direction of the image curve
segment for xj < x < xj+1 must indeed consist of line segments, mutually forming angles of the size
ajπ seen in the sense of orientation, and the condition a1 + · · ·+an = 2 assures that the total rotation
of the tangents along the curve adds up to a1π + · · · + anπ = 2π. Since the real axis supplemented
with the infinite point in this case is considered as a closed curve, the same is true for the image curve,
so if none of the points of the image curve is ∞, then the image curve is indeed a closed curve. If
instead the image curve somewhere tends to ∞, then it must necessarily also leave ∞, so we get an
extended closed image curve by adding ∞ in this case.

If the curve does not cut itself, then it is a polygon P , and (106) must necessarily map the upper half
plane onto the interior of P . The map of R ∪ {∞} onto P is clearly bijective, forcing the map of the
open upper half plan also to be bijective onto the interior of P (this claim requires a larger proof),

and it is an analytic function with
dw

dz
given by (107) �= 0, so it is conformal. (�)

The above is not a fully correct proof, but it gives some guidelines and also shows that the results are
reasonable.

We still have a problem in the construction. All proofs focus on the rotation of the tangents, thus
fixing the constants a1, . . . , an, which define the rotation of the tangents at the points

w1 = F (x1) , . . . , wn = F (xn) .

The problem is:

Given w1, . . . , wn ∈ C, which are the vertices in the given order of a polygon in the w-plane. They
surely define the rotations ajπ of all tangents, which can be found by analyzing the figure. However,
we still have to find the real constants x1 < x2 < · · · < xn, such that wj = F (xj) for j = 1, . . . , n.

The literature does not give many hints in this direction, so usual one must use trial and error on a
computer.
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Another drawback of the formula (106) is that the integral may be very difficult to compute explicitly.

Theorem 3.8.2 can be extended to also allow aj = ±1. If aj = 1, then the image point is put equal to
∞, because the integral is divergent. We shall show this in Example 3.8.2 below, but first we consider
a simpler (infinite) example in Example 3.8.1.

Notice also that the streamlines are trivial in the upper z-plane, namely the lines which are parallel
to the x-axis, i.e. given by y = y0 > 0 constant. The streamlines in the w-space are then given by the
curve with the parametric description,

(u (x, y0) , v (x, y0)) , for x ∈ R, and y = y0 > 0 a constant.

Example 3.8.1 Given the semi-infinite strip in the w-plane shown in Figure 36. By definition, the
strip lies always to the left of the boundary curve, thus we have uniquely defines a sense of orientation
of the boundary curve. It follows immediately from this analysis that the rotation of the tangents are

a1π =
π

2
at w1 = iπ, and a2π =

π

2
at w = 0, thus a1 = a2 =

1
2
.

pi/2

pi/2

i pi

F

1–1

wz

Figure 36: Analysis of the Schwarz-Christoffel transformation of Example 3.8.1.

Choose x1 = −1 and x2 = 1. Then the required transformation is defined by

dw

dz
= A · 1

(z + 1)
1
2 (z − 1)

1
2

=
A√

z2 − 1
,
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thus by an integration,

w = A

∫ z dζ
√

ζ2 − 1
= A · Arcosh z + B.

Since w = 0 corresponds to z = 1, we get

0 = A · Arcosh 1 + B = B, thus B = 0.

Furthermore, w = iπ corresponds to z = −1, so

iπ = A · Arcosh(−1) = A · iπ, thus A = 1,

and the required transformation is then

w = Arcosh z or z = coshw.

From the latter follows that

z = x + iy = coshu · cos v + i · sinhu · sin v,

so

x = coshu · cos v and y = sinhu · sin v.
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The streamlines are given by y = y0 constant, i.e. implicitly by

sinhu · sin v = y0 > 0,

or explicitly, where u is given as a function of v,

u = Arsinh
( y0

sin v

)

= ln





y0

sin v
+

√

1 +
y2
0

sin2 v



 , v ∈ ]0, π[.

It is easily seen that

u(v) ≥ u
(π

2

)

= ln
(

y0 +
√

1 + y2
0

)

. ♦

Example 3.8.2 We consider the slit upper half w-plane of Figure 37. First find the orientation of
the boundary curve such that the domain always lies to the left of it. It follows that the cut at height
iπ is run through twice, giving a rotation of the tangent at w = iπ of the amount of a1π = −π, i.e.
a1 = −1, and at B: w = ∞, of the amount of a2π = +π, because it “continues to the left” on the
u-axes at ∞ in the reverse direction, cf. Figure 37, so a2 = +1.

B

B A
pi

i pi

F
0–1

wz

Figure 37: Analysis of the Schwarz-Christoffel transformation of Example 3.8.2.

We choose x1 = −1 and x2 = 0, by which choice the Schwarz-Christoffel transformation must have
the structure

dw

dz
= A · 1

(z + 1)(−1)z1
= A · z + 1

z
= A ·

{

1 +
1
z

}

,

from which we get by an integration,

(108) w = A · {z + Log z} + B, �z > 0.
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We shall find the constants A = A1 + A2 and B = B1 + iB2. We first get by taking the imaginary
part of (108) that

v = �{(A1 + iA2) (x + iy + ln |z| + iArg z) + (B1 + B2)}

= A1y + A2x + A2 ln |z| + A1 · Arg z + B2.(109)

Use that if w → ∞ on the line v = π, where u → −∞, then the image z = x ∈ R− is real and negative,
so y = 0, and furthermore, x → 0. Hence, Arg z = π through this limit process, and it follows from
(109), using that y = 0,

π = lim
x→0−

{A1 · 0 + A2 · x + A2 ln |x| + A1 · π + B2} = A1π + B2 + lim
x→0−

A2 · ln |x|.

Because ln |x| → −∞ for x → 0−, this is only possible, if A2 = 0. We get that

(110) π = A1π + B2.

If instead w → ∞ along the line v = 0 and u → −∞, then the image z = x ∈ R+ is positive real, so
y = 0 and x → 0+ through this limit process, and therefore Arg z = 0. Returning to (109) we have

0 = lim
x→0+

{A1 · 0 + A1 · 0 + B2} = B2,

so B2 = 0, and using (110) we get A1 = 1. Thus (108) is reduced to

(111) w = z + Log z + B1.

Finally, the point w = iπ is mapped into z = −1, so it follows from (111) that

iπ = −1 + iπ + B1,

hence B1 = 1, and the required function is

(112) w = z + Log z + 1.

When we take the real and imaginary parts of (112) we get

u = x + ln
√

x2 + y2 + 1 and v = y + Arg z = y + Arccot
x

y
.

The streamlines in the z-plane are trivially given by y0 > 0 constant, hence a parametric description
of the streamlines in the w-space is for given y = y0 > 0 given by

(113) (u, v) =
(

t + ln
√

t2 + y2
0 + 1, y0 + Arccot

t

y0

)

, for t ∈ R and y0 > 0 a constant,

cf. Figure 38.

Note that even this rather simple example gives a lot of computation, when one wants to find all
constants. ♦
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Figure 38: Some typical streamlines the Schwarz-Christoffel transformation of Example 3.8.2 based
on (113). They can be interpreted as the streamlines for the flow of an ideal incompressible fluid from
an infinite straight channel.

3.9 The Dirichlet problem

Some very important problems in Physics and the technical sciences deal with stationary fields and
their equipotential surfaces (or lines) and field lines. In case of two-dimensional fields this theory
was already mentioned in Ventus, Complex Functions Theory a-2, where it was modeled by analytic
functions. In fact, if the analytic function w = f(z) is given as a model, we first split it into its real
and imaginary parts,

(114) w = f(z) = u(x, y) + i · v(x, y), z ∼ (x, y) ∈ Ω,

where both functions u and v are harmonic, i.e.

∂2u

∂x2
+

∂2u

∂y2
= 0 and

∂2v

∂x2
+

∂2v

∂y2
= 0, for (x, y) ∈ Ω.

Given (114) as the model, then the equipotential curves are given by

u(x, y) = c1, where c1 ∈ R is an arbitrary constant,

and the imaginary part v(x, y) is called the stream function, and the streamlines are given by

v(x, y) = c2, where c2 ∈ R is an arbitrary constant.

Furthermore, with the exception of possible “singular points”, where f ′(z) = 0, or at isolated boundary
points, where f(z) is not defined, the system of all equipotential curves is always perpendicular to the
system of all streamlines.

The important thing here is therefore to solve the Laplace differential equation

(115) ∆ψ =
∂2ψ

∂x2
+

∂2ψ

∂y2
= 0, where for short ∆ =

∂2

∂x2
+

∂2

∂y2
.

One way of solving (115) is of course to find an analytic map w = f(z), such that ψ = �f(z), or
ψ = �f(z). However, without some further help this method does not look too promising to be
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recommended as standard, although it can sometimes be applied. Another way is to find a direct
real solution formula for some well-defined elementary domains. We shall in this section and in the
following one show how this is done. We first make precise the problem, we are going to solve.

Definition 3.9.1 Given an open and simply connected domain Ω of non-degenerated boundary
Γ = ∂Ω without double points. The Dirichlet problem on Ω is defined as the following boundary value
problem:
Given a real and piecewise continuous function h(x, y) on the boundary Γ of Ω, find an harmonic
function u(x, y) defined in Ω which is equal to h(x, y) on the boundary at every point of continuity of
h(x, y), i.e.

(116)



















∆u =
∂2

∂x2
+

∂2u

∂y2
= 0 for (x, y) ∈ Ω,

lim(x,y)→(x0,y0)
(x,y)∈Ω

u(x, y) = h(x0, y0) , if h is continuous on Γ at (x0, y0)

In order to make the theory as simple as possible we have in Definition 3.9.1 required that Ω is simply
connected, even it is also makes sense to formulate the Dirichlet problem for domains which are not
simply connected. We are of course here aiming at reasonable (though not trivial) solution formulæ.

Notice that even if Ω is simply connected and its boundary Γ is “nice”, we may still find examples
where Γ consists of several curves. One such example is given in Figure 39.
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Omega

Gamma_2Gamma_1

–2

–1

1

2

–2 –1 1 2

Figure 39: The domain Ω is simply connected, and the boundary Γ consists of two curves Γ1 and Γ2.

The following theorem connects the previous theory on conformal maps with the solution procedure of
the Dirichlet problem. It was actually the reason why the conformal maps were treated so thoroughly
in the previous sections, although they also are of independent interest.

Theorem 3.9.1 The composition of an harmonic function u(x, y) and a conformal map Φ(ξ, η) is an
harmonic function u ◦ Φ in the new variables.

Proof. By assumption, u(x, y) is harmonic, so to every given (x, y) ∈ Ω we can find r > 0, such that
ω := B((x, y), r) ⊆ Ω, and an analytic function f defined on ω, such that

u(x, y) = �f(z) for z ∼ (x, y) ∈ ω.

It follows from Section 3.1 that every conformal map is described by an analytic function in a simply
connected domain. Thus (x, y) = Φ(ξ, η) is described by

z = x + iy = g(ζ) = g(ξ + iη) ∈ Ω

for some analytic function g(ζ). Then the composition (f ◦ g)(ζ) is an analytic function, and the
real part is u ◦ Φ(ξ, η), which therefore is harmonic in the variables (ξ, η. Since this holds for every
(x, y) ∈ Ω, the theorem is proved. �

Theorem 3.9.1 can also be phrased in the following way that the Laplace differential operator in
the variables (x, y) is transformed by a conformal map into the Laplace differential operator in the
new variables (ξ, η). This observation implies that we can reduce the task of solving the Dirichlet
problem to transforming the open and simply connected domain Ω applying a conformal map into
some standard domain, like either the unit disc or the open upper half plane. The boundary conditions
are then carried over by the given conformal map to this standard domain.
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The existence of such a conformal map follows from Riemann’s mapping theorem.. We have further-
more in the previous sections developed explicit formulæ for special domains for this process.

The solution formula for the Dirichlet problem on the unit disc for given boundary condition h(x, y),
i.e.















∆u =
∂2

∂x2
+

∂2u

∂y2
, x2 + y2 < 1,

u(x, y) = h(x, y), x2 + y2 = 1,

has already been given in Ventus, Complex Functions Theory a-2 by Poisson’s integral formula. This
solution formula is for obvious reasons formulated in polar coordinates, so we use in (117) below that
z = x + iy = r eiΘ,

(117) u(z) = u(r,Θ) =
1
2π

∫ 2π

0

(

1 − r2
)

h
(

eiϕ
)

1 + r2 − 2r cos(Θ − ϕ)
dϕ, |z| = r < 1.

It is possible to prove, using some results from Functional Analysis, that if h
(

eiϕ
)

is bounded and
piecewise continuous, then (117) is the only bounded solution of (117).

Remark 3.9.1 We mention for completeness that if h
(

eiϕ
)

is not continuous, then there in general
exist unbounded solutions, but these will not be of any relevance in the applied sciences. However, if
h

(

eiϕ
)

is continuous everywhere on the unit circle |z| = 1, then (117) is the only solution. ♦

Due to the term cos(Θ−ϕ) in the denominator of the integrand, (117) is in general difficult to apply.
Instead we notice that we can use Section 3.3.5 to map the unit disc conformally and bijectively by

e.g. w = −i
z + 1
z − 1

onto the upper half plane. Then it can be proved (the straightforward and tedious

details are left to the interested reader) that we also have the following solution formula.

Theorem 3.9.2 (The Dirichlet problem for the upper half plane). Let h(x) be a real and bounded
and piecewise continuous function on R. Then the Dirichlet problem

(118)







∆u(x, y) = 0 for x ∈ R and y ∈ R+,

u(x, 0) = h(x) for x ∈ R a point of continuity of h(x),

has the following unique bounded solution in the upper half plane,

(119) u(x, y) =
y

π

∫ +∞

−∞

h(t)
(x − t)2 + y2

dt, for x ∈ R and y > 0.

Example 3.9.1 If h is continuous and bounded and h(−∞) = h(+∞), then we transform (119) back
to the case of the unit disc (117) to conclude that (119) is the only bounded solution. However, if
we choose the harmonic function u(x, y) = 2xy, then u(x, y) = �

{

z2
}

is harmonic in the upper half
plane, and u(x, 0) = 0, so both u1(x, y) = 2xy and u2(x, y) = 0 are solutions of the Dirichlet problem
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in the upper half plane with boundary condition 0 on the real axis. Clearly, u1(x, y) is unbounded
in the upper half plane, while u2(x, y) is bounded. This example shows that we cannot exclude the
assumption that the harmonic function should also be bounded in the upper half plane, if we want it
to be unique. ♦

Remark 3.9.2 The solution formula (119) has the structure of a so-called convolution. Given two
real functions f and g, their convolution is defined by

(f � f)(x) :=
∫ +∞

−∞
f(t)g(x − t) dt =

∫ +∞

−∞
f(x − t)g(t) dt,

provided that the integrals above make sense.

In the present case we define

ϕy(x) :=
1
π

y

x2 + y2
= −�

{

1
πz

}

for y > 0 fixed.

By assumption, h(x) is real, so we get from (119) that

(120) u(x, y) = (h � ϕy) (x == −�
{

h �
1
πz

}

(x, y), y > 0,

where h �
1
πz

denotes the convolution with respect to the real variable x.

We see by comparison that (120) is closely connected with the Hilbert transform H, which is defined
by

(121) Hf(x) :=
1
π

vp
∫ +∞

−∞

f(t)
x − t

dt =
1
π

vp
{

f �
1
t

}

(x),

where “vp” (“valeur principal”) denotes Cauchy’s principal value, which is here defined by

(122)
1
π

vp
∫ +∞

−∞

f(t)
x − t

dt :=
1
π

lim
ε→0+

∫ x−ε

−∞
+

∫ +∞

x−ε

f(t)
x − ε

dt,

i.e. we remove a symmetric interval around the singular point t = x of the integrand, integrate over
the remainder, and finally let the length of this symmetric interval tend to zero.

A direct computation of (122) is difficult and may even be impossible, but using the correspondence
between (121) and (119) and then the interpretation of (118) we may have a different approach of
(121) which may be successful. ♦

3.10 Some special Dirichlet problems for the upper half plane

Given a Dirichlet problem of one of the simply connected domains considered in the Sections 3.3–3.6,
we now know how to transform them into a Dirichlet problem in the upper half plane. The solution
integral (119) may still be difficult to compute explicitly, but one could try to approximate the given
boundary value function h(x), x ∈ R, by a piecewise constant function and then hope for a simple
solution formula, which can easily be used in practice. That this indeed is the case, follows from the
next theorem.
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Theorem 3.10.1 Given the Dirichlet problem

(123)







∆u(x, y) = 0 for y > 0,

h(x, 0) = h(x) for x ∈ R,

in the upper half plane, where the given boundary function h(x) is piecewise constant,

(124) h(x) =























A0, for x < x0,

Aj , for xj−1 < x < xj , j = 1, . . . , n,

An+1, for xn < x.

Then its unique bounded solution is given by

(125) u(x, y) =
1
π







A0 · Arg (z − z0) +
n

∑

j=1

Aj · Arg
(

z − xj

z − xj−1

)

+ An+1 · {π − Arg (z − xn)}







.

Proof. It was previously mentioned that there is only one bounded solution of (123), when h(x)
given by (124) is bounded. It is therefore possible to solve the problem by only using inspection,
where we use that the solution is linear in the boundary function.
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First consider the simple boundary problem, where

hn+1(x) =







An+1 for x > xn,

0 for x < xn.

Theta=Arg(z-z_n)

h=A_{n+1}h=00

Figure 40: Geometric analysis of the boundary value problem, where hn+1(x) = 0 for x < xn, and
hn+1(x) = An+1 for x > xn.

It follows by inspection, cf. Figure 40, that the function

(126) un+1(x, y) := An+1 ·
{

1 − 1
π

Arg (z − xn)
}

, � z > 0,

is bounded, and it has the right boundary values.

Finally, Arg(z − xn) = �Log (z − xn) is harmonic in the open half plane, because it is the imaginary
part of an analytic function, and so is u(x, y), hence (126) is the unique bounded solution of the
simplified Dirichlet problem.

The same method can be used for another simplified Dirichlet problem, where now

hj(x) =







Aj xj−1 < x < xj ,

0 otherwise.

In this case,

0 < Θj−1 = Arg (z − xj−1) < Θj = Arg (z − xj) < π,

because xj−1 < xj , so

(127) Arg (z − xj) − Arg (z − xj−1) = Arg
(

z − xj

z − xj−1

)

,
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Theta_j

Theta_{j–1}

Theta_j-Theta_{j–1}

h=0h=A_jh=0

Figure 41: Geometric analysis of the boundary value problem, where hj(x) = Aj for xj−1 < x < xj ,
and hj(x) = 0 otherwise.

because the left hand side also lies in ]0, π[, cf. Figure 41.

The boundary value of the left hand side of (127) is π for z = x ∈ ]xj−1, xj [, and 0 otherwise. It
follows that this boundary value problem has the unique bounded solution

(128) uj(x, y) =
Aj

π
Arg

(

z − xj

z − xj−1

)

.

Finally, the same method proves that if

h0(x) =







A0 for x < x0,

0 for x > x0,

then the unique bounded solution is given by

(129) u(x, y) =
A0

π
Arg (z − x0) .

When we add (129), (128) and (126), we get the boundary function (124) as well as the solution (125),
and the theorem is proved. �

Example 3.10.1 We give here an example of a combination of the theories above. We shall find the
idealized stationary distribution of temperature in an half infinite strip with fixed temperature T = 0
on the two infinite boundary lines and T = 2 on the bounded boundary line segment.

We choose the domain Ω =
]

−π

2
,
π

2

[

× R+, cf. Figure 42, which easily can be transformed into any
other such half infinite strip by a rotation, a stretching and a translation. It therefore suffices to
consider Ω given above.
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T=0

T=2T=2

T=0

pi/2-pi/2

z

Figure 42: The chosen domain in Example 3.10.1 with the boundary values of the Dirichlet problem.

Using the sine transform of Section 3.6 the map z1 = sin z maps Ω above conformally and bijectively
onto the upper half z1-plane with the boundary values

u1 (x1, 0) = h1 (x1) =























0 for x1 < −1,

2 for − 1 < x1 < 1,

0 for x1 > 1,

cf. Figure 43.

Then we apply (128) to get the bounded solution

u(x, y) = u1 (x1, y1) =
1
π

arg
(

sin z − 1
sin z + 1

)

.

We shall in the following prove that this function can be written

(130) u(x, y) =
2
π

Arccot
(

sinh2 y − cos2 x

2 sinh y · cosx

)

.

In fact, we use that Arg(λz1) = Arg z1 for λ = | sin z + 1|−2 > 0 to get

u(x, y) =
2
π

Arg
(

sin z − 1
sin z + 1

)

=
2
π

Arg

(

(sin z − 1)
(

sin z + 1
)

| sin z + 1|2

)

=
2
π

Arg
(

(sinx − 1)
(

sin z + 1
))

=
2
π

Arg
(

| sin z|2 + sin z − sin z − 1
)

=
2
π

Arg
(

| sin z|2 − 1 + 2i�{sin z}
)

=
2
π

Arg
(

sin2 x + sinh2 y − 1 + 2i · cos x · sinh y
)

=
2
π

Arg
(

sinh2 y − cos2 x + i · 2 cos x · sinh y
)

.
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u_1=0u_1=2u_1=2u_1=0

1–1

z

Figure 43: The Dirichlet problem of Figure 42 is by the map z1 = sin z mapped bijectively and
conformally onto a simpler Dirichlet problem in the upper half z1-plane.

Since 2 · cosx · sinh y > 0 for all (x, y) ∈ Ω, the principal argument Arg is described by the usual real
function Arccot, thus

u(x, y) =
2
π

Arg
(

sinh2 y − cos2 x + i · 2 cos x · sinh y
)

=
2
π

Arccot
(

sinh2 y − cos2 x

2 sinh y · cos x

)

,

and (130) is proved.

T=2T=2

T=0T=0

T=1

Figure 44: The level curves of the stationary distribution of the temperature field of Example 3.10.1.
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Using (130) we see that the level curves u(x, y) = c ∈ ]0, 2[ (curves of equal temperature) are given by

sinh2 y − cos2 x

2 · sinh y · cosx
= cot

(cπ

2

)

, 0 < c < 2 arbitrary,

whence

sinh2 y − 2 · cos x · coth
(cπ

2

)

· sinh y − cos2 x = 0.

Using that y > 0, hence also sinh y > 0, we get the following single valued solution of this equation,

sinh y = cosx · cot
(cπ

2

)

+
√

{

1 + cot2
(cπ

2

)}

cos2 x

= cot
(cπ

2

)

cosx +
cos x

sin
(cπ

2

) =
1 + cos

(cπ

2

)

sin
(cπ

2

) = cot
(cπ

4

)

cos x,

where sinh y > 0 requires + in front of the square root, and where we have used that cosx > 0 for
x ∈

]

−π

2
,
π

2

[

. The level curves are therefore given by

y = Arsinh
(

cot
(cπ

4

)

cos x
)

= ln
(

cot
(cπ

4

)

cosx +
√

1 + cot2
(cπ

4

)

cos2 x

)

for x ∈
]

−π

2
,
π

2

[

,

where c ∈ ]0, 2[ is an arbitrary constant. ♦
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Reynold’s number, 94
Riccati differential equation, 81
Riemann mapping theorem, 95
Riemann surface, 7, 38, 39, 41, 43, 63
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Rouché’s theorem, 17-21
Routh-Hurwitz stability criterion, 33

Schur’s criterion, 32
Schwarz-Christoffel formula, 97
Schwarz-Christoffel transformation, 95
series expansion, 63
similarity, 72, 76
sine transformation, 89
singular point, 40-46, 63
sink, 67
source, 67
square root, 42
stability, 7, 25, 27, 41
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stationary potential flow, 94
stream function, 103
streamline, 68, 69, 94, 99, 103
strength of source, 67
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Taylor series, 7
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