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Chapter 1 - INTRODUCTION

1.1 Introduction.

The discipline known as Mathematical Logic will not specifically be defined within this text. Instead,
you will study some of the concepts in this significant discipline by actually doing mathematical logic. Thus,
you will be able to surmise for yourself what the mathematical logician is attempting to accomplish.

Consider the following three arguments taken from the disciplines of military science, biology, and
set-theory, where the symbols (a), (b), (c), (d), (e) are used only to locate specific sentences.

(1) (a) If armored vehicles are used, then the battle will be won. (b) If the infantry walks to the
battle field, then the enemy is warned of our presence. (c) If the enemy is warned of our presence
and armored vehicles are used, then we sustain many casualties. (d) If the battle is won and we
sustain many casualties, then we will not be able to advance to the next objective. (e) Consequently,
if the infantry walks to the battle field and armored vehicles are used, then we will not be able to
advance to the next objective.

(2) (a) If bacteria grow in culture A, then the bacteria growth is normal. (b) If an antibiotic is
added to culture A, then mutations are formed. (c) If mutations are formed and bacteria grow in
culture A, then the growth medium is enriched. (d) If the bacteria growth is normal and the growth
medium is enriched, then there is an increase in the growth rate. (e) Thus, if an antibiotic is added
to culture A and bacteria grow in culture A, then there is an increase in the growth rate.

(3) (a) If b ∈ B, then (a, b) ∈ A × B. (b) If c ∈ C, then s ∈ S. (c) If s ∈ S and b ∈ B, then
a ∈ A. (d) If (a, b) ∈ A×B and a ∈ A, then (a, b, c, s) ∈ A×B×C ×S. (e) Therefore, if c ∈ C and
b ∈ B, then (a, b, c, s) ∈ A×B × C × S.

With respect to the three cases above, the statements that appear before the words “Consequently,
Thus, Therefore” need not be assumed to be “true in reality.” The actual logical pattern being presented is
not, as yet, relative to the concept of what is “true in reality.” How can we analyze the logic behind each of
these arguments? First, notice that each of the above arguments employs a technical language peculiar to the
specific subject under discussion. This technical language should not affect the logic of each argument. The
logic is something “pure” in character which should be independent of such phrases as a ∈ A. Consequently,
we could substitute abstract symbols – symbols that carry no meaning and have no internal structure – for
each of the phrases such as the one “we will not be able to advance to the next objective.” Let us utilize the
symbols P, Q, R, S, T, H as replacements for these phrases with their technical terms.

Let P = armored vehicles are used, Q = the battle will be won, R = the infantry walks to the battle field,
S = the enemy is warned of our presence, H = we sustain many casualties, T= we will not be able to advance
to the next objective. Now the words Consequently, Thus, Therefore are replaced by the symbol ⊢, where the
⊢ represents the processes the human mind (brain) goes through to “logically arrive at the statement” that
follows these words.

Mathematics, in its most fundamental form, is based upon human experience and what we do next
is related totally to such an experience. You must intuitively know your left from your right, you must
intuitively know what is means to “move from the left to the right,” you must know what it means to
“substitute” one thing for another, and you must intuitively know one alphabet letter from another although
different individuals may write them in slightly different forms. Thus P is the same as P, etc. Now each
of the above sentences contains the words If and then. These two words are not used when we analyze the
above three logical arguments they will intuitively be understood. They will be part of the symbol → .
Any time you have a statement such as “If P, then Q” this will be symbolized as P → Q. There is one
other important word in these statements. This word is and. We symbolize this word and by the symbol
∧. What do these three arguments look like when we translate them into these defined symbols? Well, in
the next display, I’ve used the “comma” to separated the sentences and parentheses to remove any possible
misunderstandings that might occur. When the substitutions are made in argument (1) and we write the
sentences (a), (b), (c), (d), (e) from left to right, the logical argument looks like

P → Q, R→ S, (S ∧ P )→ H, (Q ∧H)→ T ⊢ (R ∧ P )→ T. (1)′
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Now suppose that you use the same symbols P, Q, R, S, H, T for the phrases in the sentence (a), (b), (c),
(d), (e) (taken in the same order from left to right) for arguments (2), (3). Then these next two arguments
would look like

P → Q, R→ S, (S ∧ P )→ H, (Q ∧H)→ T ⊢ (R ∧ P )→ T. (2)′

P → Q, R→ S, (S ∧ P )→ H, (Q ∧H)→ T ⊢ (R ∧ P )→ T. (3)′

Now, from human experience, compare these three patterns (i.e. compare them as if they are geometric
configurations written left to right). It is obvious, is it not, that they are the “same.” What this means for
us is that the logic behind the three arguments (1), (2) , (3) appears to be the same logic. All we need to
do is to analyze one of the patterns such as (1)′ in order to understand the process more fully. For example,
is the logical argument represented by (1)′ correct?

One of the most important basic questions is how can we mathematically analyze such a logical pattern
when we must use a language for the mathematical discussion as well as some type of logic for the analysis?
Doesn’t this yield a certain type of double think or an obvious paradox? This will certainly be the case if we
don’t proceed very carefully. In 1904, David Hilbert gave the following solution to this problem which we
re-phrase in terms of the modern computer. A part of Hilbert’s method can be put into the following form.

The abstract language involving the symbols P, Q, R, S, T, H, ⊢, ∧,→ are part of the computer language
for a “logic computer.” The manner in which these symbols are combined together to form correct logical
arguments can be checked or verified by a fixed computer program. However, outside of the computer we use
a language to write, discuss and use mathematics to construct, study and analyze the computer programs
before they are entered into various files. Also, we analyze the actual computer operations and construction
using the same outside language. Further, we don’t specifically explain the human logic that is used to do
all of this analysis and construction. Of course, the symbols P, Q, R, S, T, H, ⊢, ∧,→ are a small part
of the language we use. What we have is two languages. The language the computer understands and the
much more complex and very large language — in this case English — that is employed to analyze and
discuss the computer, its programs, its operations and the like. Thus, we do our mathematical analysis of
the logic computer in what is called a metalanguage (in this case English) and we use the simplest possible
human logic called the metalogic which we don’t formally state. Moreover, we use the simplest and most
convincing mathematical procedures — procedures that we call metamathematics. These procedures are
those that have the largest amount of empirical evidence that they are consistent. In the literature the term
meta is sometimes replaced by the term observer. Using this compartmentizing procedure for the languages,
one compartment the computer language and another compartment a larger metalanguage outside of the
computer, is what prevents the mathematical study of logic from being “circular” or a “double think” in
character. I mention that the metalogic is composed of a set of logical procedures that are so basic in
character that they are universally held as correct. We use simple principles to investigate some highly
complex logical concepts in a step-b-step effective manner.

It’s clear that in order to analyze mathematically human deductive procedures a certain philosophical
stance must be taken. We must believe that the mathematics employed is itself correct logically and, indeed,
that it is powerful enough to analyze all significant concepts associated with the discipline known as “Logic.”
The major reason we accept this philosophical stance is that the mathematical methods employed have
applications to thousands of areas completely different from one another. If the mathematical methods
utilized are somehow in error, then these errors would have appeared in all of the thousands of other areas
of application. Fortunately, mathematicians attempt, as best as they can, to remove all possible error from
their work since they are aware of the fact that their research findings will be used by many thousands of
individuals who accept these finding as absolutely correct logically.

It’s the facts expressed above that leads one to believe that the carefully selected mathematical proce-
dures used by the mathematical logician are as absolutely correct as can be rendered by the human mind.
Relative to the above arguments, is it important that they be logically correct? The argument as stated in
biological terms is an actual experimental scenario conducted at the University of Maryland Medical School,
from 1950 – 51, by Dr. Ernest C. Herrmann, this author’s brother. I actually aided, as a teenager, with the
basic mathematical aspects for this experiment. It was shown that the continued use of an antibiotic not only
produced resistant mutations but the antibiotic was also an enriched growth medium for such mutations.
Their rate of growth increased with continued use of the same antibiotic. This led to a change in medical
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procedures, at that time, where combinations of antibiotics were used to counter this fact and the saving of
many more lives. But, the successful conclusion of this experiment actually led to a much more significant
result some years later when my brother discovered the first useful anti-viral agent. The significance of this
discovery is obvious and, moreover, with this discovery began the entire scientific discipline that studies and
produces anti-viral drugs and agents.

From 1979 through 1994, your author worked on one problem and two questions as they were presented
to him by John Wheeler, the Joseph Henry Professor of Theoretical Physics at Princeton University. These
are suppose to be the “greatest problem and questions on the books of physics.” The first problem is called
the General Grand Unification Problem. This means to develop some sort of theory that will unify, under
a few theoretical properties, all of the scientific theories for the behavior of all of the Natural systems that
comprise our universe. Then the two other questions are “How did our universe come into being?” and
“Of what is empty space composed?” As research progressed, findings were announced in various scientific
journals. The first announcement appeared in 1981 in the Abstracts of papers presented before the American
Mathematical Society, 2(6), #83T-26-280, p. 527. Six more announcements were made in this journal, the
last one being in 1986, 7(2),# 86T-85-41, p. 238, entitled “A solution of the grand unification problem.”
Other important papers were published discussing the methods and results obtained. One of these was
published in 1983, “Mathematical philosophy and developmental processes,” Nature and System, 5(1/2), pp.
17-36. Another one was the 1988 paper, “Physics is legislated by a cosmogony,” Speculations in Science and
Technology, 11(1), pp. 17-24. There have been other publications using some of the procedures that were
developed to solve this problem and answer the two questions. The last paper, which contained the entire
solution and almost all of the actual mathematics, was presented before the Mathematical Association of
America, on 12 Nov., 1994, at Western Maryland College.

Although there are numerous applications of the methods presented within this text to the sciences, it
is shown in section 3.9 that there exists an elementary ultralogic as well as an ultraword. The properties
associated with these two entities should give you a strong indication as to how the above discussed theoretical
problem has been solved and how the two physical questions have been answered.
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Chapter 2 - THE PROPOSITIONAL CALCULUS

2.1 Constructing a Language By Computer.

Suppose that you are given the symbols P, Q, ∧, and left parenthesis (, right parenthesis ). You want to
start with the set L0 = {P, Q} and construct the complete set of different (i.e. not geometrically congruent
in the plane) strings of symbols L1 that can be formed by putting the ∧ between two of the symbols from the
set L0, with repetitions allowed, and putting the ( on the left and the ) on the right of the construction.
Also you must include the previous set L0as a subset of L1. I hope you see easily that the complete set
formed from these (metalanguage) rules would be

L1 = {P, Q, (P ∧ P ), (Q ∧Q), (P ∧Q), (Q ∧ P )} (2.1.1)

Now suppose that you start with L1 and follow the same set of rules and construct the complete set of
symbol strings L2. This would give

L2 = {P, Q, (P ∧ P ), (P ∧Q), (P ∧ (P ∧ P )), (P ∧ (P ∧Q)), (P ∧ (Q ∧ P )),

(P ∧ (Q ∧Q)), (Q ∧ P ), (Q ∧Q), (Q ∧ (P ∧ P )), (Q ∧ (P ∧Q)), (Q ∧ (Q ∧ P )),

(Q ∧ (Q ∧Q)), ((P ∧ P ) ∧ P ), ((P ∧ P ) ∧Q), ((P ∧ P ) ∧ (P ∧ P )), ((P ∧ P ) ∧ (P ∧Q)),

((P ∧ P ) ∧ (Q ∧ P )), ((P ∧ P ) ∧ (Q ∧Q)), ((P ∧Q) ∧ P ), ((P ∧Q) ∧Q),

((P ∧Q) ∧ (P ∧ P )), ((P ∧Q) ∧ (P ∧Q)), ((P ∧Q) ∧ (Q ∧ P )),

((P ∧Q) ∧ (Q ∧Q)), ((Q ∧ P ) ∧ P ), ((Q ∧ P ) ∧Q),

((Q ∧ P ) ∧ (P ∧ P )), ((Q ∧ P ) ∧ (P ∧Q)), ((Q ∧ P ) ∧ (Q ∧ P )),

((Q ∧ P ) ∧ (Q ∧Q)), ((Q ∧Q) ∧ P ), ((Q ∧Q) ∧Q),

((Q ∧Q) ∧ (P ∧ P )), ((Q ∧Q) ∧ (P ∧Q)),

((Q ∧Q) ∧ (Q ∧ P )), ((Q ∧Q) ∧ (Q ∧Q))}. (2.1.2)

Now I did not form the, level two, L2 by guess. I wrote a simple computer program that displayed this
result. If I now follow the same instructions and form level three, L3, I would print out a set that takes four
pages of small print to express. But you have the intuitive idea, the metalanguage rules, as to what you
would do if you had the previous level, say L3, and wanted to find the strings of symbols that appear in L4.
But, the computer would have a little difficulty in printing out the set of all different strings of symbols or
what are called formulas, (these are also called well-defined formula by many authors and, in that case, the
name is abbreviated by the symbol wffs). Why? Since there are 2,090,918 different formula in L4. Indeed,
the computer could not produce even internally all of the formulas in level nine, L9, since there are more
than 2.56 × 1078 different symbol strings in this set. This number is greater than the estimated number of
atoms in the observable universe. But you will soon able to show that (((((((((P ∧Q)∧ (Q∧Q))))))))) ∈ L9

(∈ means member of) and this formula is not a member of any other level that comes before L9. You’ll also
be able to show that (((P ∧Q) ∧ (P ∧Q)) is not a formula at all. But all that is still to come.

In the next section, we begin a serious study of formula, where we can investigate properties associated
with these symbol strings on any level of construction and strings that contain many more atoms, these are
the symbols in L0, and many more connectives, these are symbols like ∧, → and more to come.

2.2 The Propositional Language.

The are many things done in mathematical logic that are a mathematical formalization of obvious and
intuitive things such as the above construction of new symbol strings from old symbol strings. The intuitive
concept comes first and then the formalization comes after this. In many cases, I am going to put
the actual accepted mathematical formalization in the appendix. If you have a background in mathematics,
then you can consult the appendix for the formal mathematical definition. As I define things, I will indicate
that the deeper stuff appears in the appendix by writing (see appendix).

We need a way to talk about formula in general. That is we need symbols that act like formula variables.
This means that these symbols represent any formula in our formal language, with or without additional
restrictions such as the level Ln in which they are members.
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Definition 2.2.1. Throughout this text, the symbols A, B, C, D, E, F (letters at the front of the
alphabet) will denote formula variables.

In all that follows, we use the following interpretation metasymbol, “⌈ ⌉:” I’ll show you the meaning of
this by example. The symbol will be presented in the following manner.

⌈A⌉: . . . . . . . . . . . . .
There will be stuff written where the dots . . . . . . . . . . . . . . . are placed. Now what you do is the
substitute for the formula A, in ever place that it appears, the stuff that appears where the . . . . . . . . . .
. . . . are located. For example, suppose that

⌈A⌉: it rained all day, ⌈∧⌉: and
Then for formula A ∧A, the interpretation ⌈A ∧A⌉: would read

it rained all day and it rained all day
You could then adjust this so that it corresponds to the correct English format. This gives

It rained all day and it rained all day.

Although it is not necessary that we use all of the following logical connectives, using them makes it
much easier to deal with ordinary everyday logical arguments.

Definition 2.2.2. The following is the list of basic logical connectives with their technical names.
(i) ¬ (Negation) (iv) → (The conditional)
(ii) ∧ (Conjunction) (v) ↔ (Biconditional)
(iii) ∨ (Disjunction)

REMARK: Many of the symbols in Definition 2.2.2 carry other names throughout the literature and
even other symbols are used.

To construct a formal language from the above logical connectives, you consider (ii), (iii), (iv), (v) as
binary connectives, where this means that some formula is placed immediately to the left of each of them
and some formula is placed immediately to the right. BUT, the symbol ¬ is special. It is called an unary
connective and formulas are formed as follows: your write down ¬ and place a formula immediately to the
right and only the right of ¬. Hence if A is a formula, then ¬A is also a formula.

Definition 2.2.3. The construction of the propositional language L (see appendix).

(1) Let P, Q, R, S, P1, Q1, R1, S1, P1, Q2, R2, S2, . . . be an infinite set of starting formula
called the set of atoms.

(2) Now, as our starting level, take any nonempty subset of these atoms, and call it L0.

(3) You construct, in a step-by-step manner, the next level L1. You first consider as members
of L1 all the elements of L0. Then for each and every member A in L0 (i.e. A ∈ L0) you add (¬A)
to L1. Next you take each and every pair of members A, B from L0 where repetition is allowed
(this means that B could be the same as A), and add the new formulas (A ∧ B), (A ∨ B), (A →
B), (A ↔ B). The result of this construction is the set of formula L1. Notice that in L1 every
formula except for an atom has a left parenthesis ( and a right parenthesis ) attached to it. These
parentheses are called extralogical symbols.

(4) Now repeat the construction using L1 in place of L0 and you get L2.

(5) This construction now continues step-by-step so that for any natural number n you have a
level Ln constructed from the previous level and level Ln contains the previous levels.

(6) Finally, a formula F is a member of the propositional language L if and only if there is some
natural number n ≥ 0 such that F ∈ Ln.

Example 2.2.1 The following are examples of formula and the particular level Li indicated is the first
level in which they appear. Remember that ∈ means “a member or element of”.

P ∈ L0; (¬P ) ∈ L1; (P ∧ (Q→ R)) ∈ L2; ((P ∧Q)∧R) ∈ L2; (P ∧ (Q∧R)) ∈ L2; ((P → Q)∨ (Q→
S)) ∈ L2; (P → (Q→ (R→ S2))) ∈ L3.
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Example 2.2.2 The following are examples of strings of symbols that are NOT in L.

(P ); ((P → Q); ¬(P ); ()Q; (P → (Q)); (P = (Q→ S)).

Unfortunately, some more terms must be defined so that we can communicate successfully. Let A ∈ L.
The size(A) is the smallest n ≥ 0 such that A ∈ Ln. Note that if size(A) = n, then A ∈ Lm for each level m
such that m ≥ n. And, of course, A 6∈ Lk for all k, if any, such that 0 ≤ k < n. (6∈ is read “not a member
of”). Please note what symbols are metasymbols and that they are not symbols within the formal language
L.

There does not necessary exist a unique interpretation of the above formula in terms of English language
expressions. There is a very basic interpretation, but there are others that experience indicates are logically
equivalent to the basic interpretations. The symbol IN means the set {0, 1, 2, 3, 4, 5, . . .} of natural numbers
including zero.

Definition 2.2.4 The basic English language interpretations.

(i) ⌈¬⌉: not, (it is not the case that).

(ii) ⌈∧⌉: and

(iii) ⌈∨⌉: or

(iv) For any A ∈ L0, ⌈A⌉: a simple declarative sentence, a sentence which contains no interpreted
logical connectives OR a set of English language symbols that is NOT considered as decomposed
into distinct parts.

(v) For any n ∈ IN, A, B ∈ Ln; ⌈A ∨B⌉: ⌈A⌉ or ⌈B⌉.

(vi) For any n ∈ IN, A, B ∈ Ln; ⌈A ∧B⌉: ⌈A⌉ and ⌈B⌉.

(vii) For any n ∈ IN, A, B ∈ Ln; ⌈A→ B⌉: if ⌈A⌉, then ⌈B⌉.

(viii) For any n ∈ IN, A, B ∈ Ln; ⌈A↔ B⌉: ⌈A⌉ if and only if ⌈B⌉.

(ix) The above interpretations are then continued “down” the levels Ln until they stop at level L0.

Please note that the above is not the only translations that can be applied to these formulas. Indeed,
the electronic hardware known as switching circuits or gates can also be used to interpret these formulas.
This hardware interpretation is what has produced the modern electronic computer.

Unfortunately, when translating from English or conversely the members of L, the above basic inter-
pretations must be greatly expanded. The following is a list for reference purposes of the usual English
constructions that can be properly interpreted by members of L.

(x) For any n ∈ IN, A, B ∈ Ln; ⌈A↔ B⌉:
(a) ⌈A⌉ if ⌈B⌉, and ⌈B⌉ if ⌈A⌉. (g) ⌈A⌉ exactly if ⌈B⌉.
(b) If ⌈A⌉, then ⌈B⌉, and conversely. (h) ⌈A⌉ is material equivalent to ⌈B⌉.
(c) ⌈A⌉ is (a) necessary and sufficient (condition) for ⌈B⌉
(d) ⌈A⌉ is equivalent to ⌈B⌉. (sometimes used in this manner)
(e) ⌈A⌉ exactly when ⌈B⌉. (i) ⌈A⌉ just in case ⌈B⌉.
(f) If and only if ⌈A⌉, (then) ⌈B⌉.

(xi) For any n ∈ IN, A, B ∈ Ln; ⌈A→ B⌉:
(a) ⌈B⌉ if ⌈A⌉. (h) ⌈A⌉ only if ⌈B⌉.
(b) When ⌈A⌉, then ⌈B⌉. (i) ⌈B⌉ when ⌈A⌉.
(c) ⌈A⌉ only when ⌈B⌉. (j) In case ⌈A⌉, ⌈B⌉.
(d) ⌈B⌉ in case ⌈A⌉. (k) ⌈A⌉ only in case ⌈B⌉.
(e) ⌈A⌉ is a sufficient condition for ⌈B⌉.
(f) ⌈B⌉ is a necessary condition for ⌈A⌉.
(g) ⌈A⌉ materially implies ⌈B⌉. (l) ⌈A⌉ implies ⌈B⌉.

(xii) For any n ∈ IN, A, B ∈ Ln; ⌈A ∧B⌉:
(a) Both ⌈A⌉ and ⌈B⌉. (e) Not only ⌈A⌉ but ⌈B⌉.
(b) ⌈A⌉ but ⌈B⌉. (f) ⌈A⌉ while ⌈B⌉.
(c) ⌈A⌉ although ⌈B⌉. (g) ⌈A⌉ despite ⌈B⌉.
(d) ⌈A⌉ yet ⌈B⌉.
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(xiii) For any n ∈ IN, A, B ∈ Ln; ⌈A ∨B⌉:
(a) ⌈A⌉ or ⌈B⌉ or both. (d) ⌈A⌉ and/or ⌈B⌉
(b) ⌈A⌉ unless ⌈B⌉. (e) Either ⌈A⌉ or ⌈B⌉. (usually)
(c) ⌈A⌉ except when ⌈B⌉. (usually)

(xiv) For any n ∈ IN, A, B ∈ Ln; ⌈(A ∨B) ∧ (¬(A ∧B))⌉:
(a) ⌈A⌉ or ⌈B⌉ not both. (c) ⌈A⌉ or else ⌈B⌉. (usually)
(b) ⌈A⌉ or ⌈B⌉. (sometimes) (d) Either ⌈A⌉ or ⌈B⌉. (sometimes)

(xv) For any n ∈ IN, A, B ∈ Ln; ⌈(¬(A↔ B))⌉: ⌈((¬A)↔ B)))⌉:
(a) ⌈A⌉ unless ⌈B⌉. (sometimes)

(xvi) For any n ∈ IN, A, B ∈ Ln; ⌈(A↔ (¬B))⌉:
(a) ⌈A⌉ except when ⌈B⌉. (sometimes)

(xvii) For any n ∈ IN, A, B ∈ Ln; ⌈(¬(A ∨B))⌉:
(a) Neither ⌈A⌉ nor ⌈B⌉.

(xviii) For any n ∈ IN, A ∈ Ln; ⌈(¬A)⌉:

Not ⌈A⌉ (or the result of transforming ⌈A⌉ to give the intent of “not” such as “⌈A⌉ doesn’t hold” or
“⌈A⌉ isn’t so.”

EXERCISES 2.2

In what follows assume that P, Q, R, S ∈ L0.
1. Let A represent each of the following strings of symbols. Determine if A ∈ L or A 6∈ L. State your
conclusions.

(a) A = (P ∨ (Q→ (¬S)) (f) A =)P ) ∨ ((¬S)))
(b) A = (P ↔ (Q ∨ S)) (g) A = (P ↔ (¬(R ↔ S)))
(c) A = (P → (S ∧R)) (h) A = (R ∧ (¬(R ∨ S))→ P )
(d) A = ((P )→ (R ∧ S)) (i) A = (P ∧ (P ∧ P )→ Q)
(e) A = (¬P )→ (¬(R ∨ S)) (j) A = ((P ∧ P )→ P → P )

2. Each of the following formula A are members of L. Find the size(A) of each.

(a) A = ((P ∨Q)→ (S → R)) (c) A = (P ∨ (Q ∧ (R ∧ S)))
(b) A = (((P ∨Q)→ R)↔ S) (d) A = (((P ∨Q)↔ (P ∧Q))→ S)

3. Use the indicated atomic symbol to translate each of the following into a member of L.

(a) Either (P) the port is open or (Q) someone left the shower on.

(b) If (P) it is foggy tonight, then either (Q) the Captain will stay in his cabin or (R) he will call me to
extra duty.

(c) (P) Midshipman Jones will sit, and (Q) wait or (R) Midshipman George will wait.

(d) Either (Q) I will go by bus or (R) (I will go) by airplane.

(e) (P) Midshipman Jones will sit and (Q) wait, or (R) Midshipman George will wait.

(f) Neither (P) Army nor (Q) Navy won the game.

(g) If and only if the (P) sea-cocks are open, (Q) will the ship sink; (and) should the ship sink, then
(R) we will go on the trip and (S) miss the dance.

(h) If I am either (P) tired or (Q) hungry, then (R) I cannot study.

(i) If (P) Midshipman Jones gets up and (Q) goes to class, (R) she will pass the quiz; and if she does
not get up, then she will fail the quiz.

4. Let ⌈P ⌉: it is nice; ⌈Q⌉: it is hot; ⌈R⌉: it is cold; ⌈S⌉: it is small. Translate (interpret) the following
formula into acceptable non-ambiguous English sentences.

(a) (P → (¬(Q ∧R))) (d) ((S → Q) ∨ P )
(b) (S ↔ P ) (e) (P ↔ ((Q ∧ (¬R)) ∨ S))
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(c) (S ∧ (P ∨Q)) (f) ((S → Q) ∨ P )

2.3 Slight Simplification, Size, Common Pairs and Computers.

Each formula has a unique size n, where n is a natural number, IN, greater than or equal to zero. Now
if size(A) = n, then A ∈ Lm for all m ≥ n, and A 6∈ Lm for all m < n. For each formula that is not an atom,
there appears a certain number of left “(” and right “)” parentheses. These parentheses occur in what is
called common pairs. Prior to the one small simplification we may make to a formula, we’ll learn how to
calculate which parentheses are common pairs. The common pairs are the parentheses that are included in
a specific construction step for a specific level Ln. The method we’ll use can be mathematically established;
however, its demonstration is somewhat long and tedious. Thus the “proof” will be omitted. The following
is the common pair rule.

Rule 2.3.1. This is the common pair rule (CPR). Suppose that we are given an expression that is
thought to be a member of L.

(1) Select any left parenthesis “(.” Denote this parenthesis by the number +1.

(2) Now moving towards the right, each time you arrive at another left parenthesis “(” add the number
1 to the previous number.

(3) Now moving towards the right, each time you arrive at a right parenthesis “)” subtract the number
1 from the previous number.

(4) The first time you come to a parenthesis that yields a ZERO by the above cumulative alge-
braic summation process, then that particular parenthesis is the companion parenthesis with which the first
parenthesis you started with forms a common pair.

The common pair rule will allow us to find out what expressions within a formula are also formula. This
rule will also allow us to determine the size of a formula. A formula is written in atomic form if only atoms,
connectives, and parentheses appear in the formula.

Definition 2.3.1 Non-atomic subformula.

Given an A ∈ L (written in atomic form). A subformula is any expression that appears between and
includes a common pair of parentheses.

Note that according to Definition 2.3.1, the formula A is a subformula. I now state, without proof, the
theorem that allows us to determine the size of a formula.

Theorem 2.3.1 Let A ∈ L and A is written in atomic form. If there does not exist a parenthesis in A,
then A ∈ L0 and A has size zero. If there exists a left most parenthesis “(” [i.e. no more parentheses appear
on the left in the expression], then beginning with this parenthesis the common pair rule will yield a right
most parenthesis for the common pair. During this common pair procedure, the largest natural number
obtained will be the size of A.

Example 2.3.1. The numbers in the next display are obtained by starting with parenthesis a and show
that the size(A) = 3.

A = ( ( ( P ∧Q ) ∨R ) → ( S ∨ P ) )
a b c d e f g h
1 2 3 2 1 2 1 0

Although the common pairs are rather obvious, the common pair rule can be used. This gives (c,d), (b,e),
(f,g), and (a,h) as common pairs. Hence, the subformula are A, (P ∧Q), ((P ∧Q) ∨ R), (S ∨ P ) and you
can apply the common pair rule to each of these to find their sizes. Of course, the rule is most useful when
the formula are much more complex.

The are various simplification processes that allow for the removal of many of the parenthesis. One
might think that logicians like to do this since those that do not know the simplifications would not have
any knowledge as to what the formula actually looks like. The real reason is to simply write less. These
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simplification rules are relative to a listing of the strengths of the connectives. However, for this beginning
course, such simplification rules are not important with one exception.

Definition 2.3.2 The one simplification that may be applied is the removal of the outermost left
parenthesis “(” and the outermost right parenthesis “).” It should be obvious when such parentheses have
been removed. BUT, they must be inserted prior to application of the common pair rule and Theorem 2.3.1.

One of the major applications of the propositional calculus is in the design of the modern electronic
computer. This design is based upon the basic and simplest behavior of the logical network which itself
is based upon the simple idea of switching circuits. Each switching device is used to produce the various
types of “gates.” These gates will not specifically be identified but the basic switches will be identified.
Such switches are conceived of as simple single pole relays. A switch may be normally open when no current
flows through the coil. One the other hand, the switch could be normally closed when no current flows.
When current flows through the relay coil, the switch takes the opposite state. The coil is not shown only
the circuit that is formed or broken when the coil is energized for the P or Q relay. The action is “current
through a coil” and leads to or prevents current flowing through the indicated line.

For what follows the atoms of our propositional calculus represent relays in the normally open position.
Diagrammatically, a normally open relay (switch) is symbolized as follows:

(a) ⌈P ⌉ : | P \

Now for each atom P, let ¬P represent a normally closed relay. Diagrammatically, a normally closed relay
is symbolized by:

(b) ⌈¬P ⌉ : | ¬P |

Now any set of normally open or closed relays can be wired together in various ways. For the normally
open ones, the following will model the binary connectives →, ↔,∧, ∨. This gives a non-linguistic model.
In the following, P, Q are atoms and the relays are normally open.

| P \
(i) ⌈P ∨Q⌉ : | |

| | Q \ |

(ii) ⌈P ∧Q⌉ : | P \ | Q \

| ¬P |
(iii) ⌈P → Q⌉ : | |

| | Q \ |

(iv) In order to model the expression P ↔ Q we need two coils. The P coil has a switch at both ends, one
normally open the other normally closed. The Q coil has a switch at both ends, one normally open the other
normally closed. But, the behavior of the two coils is opposite from one another as shown in the following
diagram, where (iii) denotes the previous diagram.

| ¬Q |
⌈P → Q⌉ : (iii) | |

| | P \ |

EXERCISES 2.3

1. When a formula is written in atomic form, the (i) atoms, (ii) (not necessary distinct) connectives, and (iii)

the parentheses are displayed. Of the three collections (i), (ii), (iii), find the one collection that can be used

to determine immediately by counting the (a) number of common pairs and (b) the number of subformula.

What is it that you count?

2. For each of the following formula, use the indicated letter and list as order pairs, as I have done for

Example 2.3.1 on page 16, the letters that identify the common pairs of parentheses.

14



(A) = ((P → (Q ∨R))↔ (¬S))

ab c de f gh

(B) = ((P ∨ (Q ∨ (S ∨Q)))→ (¬(¬R)))

ab c d efg h i jkm

(C) = (((¬(P ↔ (¬R)))→ ((¬Q)↔ (R ∨ P )))↔ S)

abc d e fgh ij k m nop q

3. Find the size of each of the formula in problem 3 above.

4. Although it would not be the most efficient, (we will learn how to find logically equivalent formula so

that we can make them more efficient), use the basic relay (switching) circuits described in this section (i.e.

combine them together) so that the circuits will model the following formula.

(a) ((P ∨Q) ∧ (¬R)) (c) (((¬P ) ∧Q) ∨ ((¬Q) ∧ P ))

(b) ((P → Q) ∨ (Q→ P )) (d) ((P ∧Q) ∧ (R ∨ S))

2.4 Model Theory – Basic Semantics.

Prior to 1921 this section could not have been rigorously written. It was not until that time when

Emil Post convincingly established that the semantics for the language L and the seemingly more complex

formal approach to Logic as practiced in the years prior to 1921 are equivalent. The semantical ideas had

briefly been considered for some years prior to 1921. However, Post was apparently the first to investigate

rigorously such concepts. It has been said that much of modern mathematics and various simplifications

came about since “we are standing on the shoulders of giants.” This is, especially, true when we consider

today’s simplified semantics for L.

Now the term semantics means that we are going to give a special meaning to each member of L and

supply rules to obtain these “meanings” from the atoms and connectives whenever a formula is written

in atomic form (i.e. only atoms, connectives and parentheses appear). These meanings will “mirror” or

“model” the behavior of the classical concepts of “truth” and “falsity.” HOWEVER, so as not to impart

any philosophical meanings to our semantics until letter, we replace “truth” by the letter T and “falsity” by

the F.

In the applications of the following semantical rules to the real world, it is often better to model the T

by the concept “occurs in reality” and the F by the concept “does not occur in reality.” Further, in many

cases, the words “in reality” many not be justified.

Definition 2.4.1 The following is the idea of an assignment. Let A ∈ L and assume that A is written

in atomic form. Then there exists some natural number n such that A ∈ Ln and size(A) = n. Now there is

in A a finite list of distinct atoms, say (P1, P2, . . . , Pm) reading left to right. We will assign to each Pi in

the list the symbol T or the symbol F in as many different ways as possible. If there are n different atoms,

there will be 2n different arrangements of such Ts and Fs. These are the values of the assignment. This can

be diagrammed as follows:

(P1, P2, . . . , Pm)

(l l · · · l)

( T , F , . . . , T )

Example 2.4.1 This is the example that shows how to give a standard fixed method to display and

find all of the different arrangements of the Ts and Fs for, say three atoms, P, Q, R. There would be a

total of 8 different arrangements. Please note how I’ve generated the first, second and third columns of the

following “assignment” table. This same idea can be used to generate quickly an assignment table for any

finite number of atoms.
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P Q R

T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F

The rows in the above table represent one assignment (these are also called truth-value assignments)

and such an assignment will be denoted by symbols such as a = (a1, a2, a3), where the ai take the value T

or F . In practice, one could re-write these assignments in terms of the numbers 1 and 0 if one wanted to

remove any association with the philosophical concept of “truth” or “falsity.”

For this fundamental discussion, we will assume that the list of atoms in a formula A ∈ L is known and

we wish to define in a appropriate manner the intuitive concept of the truth-value for the formula A for a

specific assignment a. Hence you are given a = (a1, a2, . . . , an) that corresponds to the atoms (P1, P2, . . . , Pn)

in A and we want a definition that will allow us to determine inductively a unique “truth-value” from {T, F}

that corresponds to A for the assignment a.

Definition 2.4.2 The truth-value for a given formula A and a given assignment a is denoted by v(A, a).

The procedure that we’ll use is called a valuation procedure.

Prior to presenting the valuation procedure, let’s make a few observations. If you take a formula with

m distinct atoms, then the assignments a are exactly the same for any formula with m distinct atoms no

matter what they are.

(1) An assignment a only depends upon the number of distinct atoms and not the actual atoms them-

selves.

(2) Any rule that assigns a truth-value T or F to a formula A, where A is not an atom must depend

only upon the connectives contained in the formula.

(3) For any formula with m distinct atoms, changing the names of the m distinct atoms to different

atoms that are distinct will not change the assignments.

Now, we have another observation based upon the table of assignments that appears on page 20. This

assignment table is for three distinct atoms. Investigation of just two of the columns yields the following:

(4) For any assignment table for m atoms, any n columns, where 1 ≤ n ≤ m can be used to obtain

(with possible repetition) all of the assignments that correspond to a set of n atoms.

The actual formal inductively defined valuation procedure is given in the appendix and is based upon

the size of a formula. This formal procedure is not the actual way must mathematicians obtain v(A, a) for a

given A, however. What’s presented next is the usual informal (intuitive) procedure that’s used. It’s called
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the truth-table procedure and is based upon the ability of the human mind to take a general statement and

to apply that statement in a step-by-step manner to specific cases. There are five basic truth-tables.

The A, B are any two formula in L. As indicated above we need only to define the truth-value for the

five connectives.

(i)

A | ¬A
T | F

F | T

(ii)

A | B | A ∨B

T | T | T

T | F | T

F | T | T

F | F | F

(iii)

A | B | A ∧B

T | T | T

T | F | F

F | T | F

F | F | F

(iv)

A | B | A→ B

T | T | T

T | F | F

F | T | T

F | F | T

(v)

A | B | A↔ B

T | T | T

T | F | F

F | T | F

F | F | T

Observe that the actual truth-value for a connective does not depend upon the symbols A or B but

only upon the values T or F . For this reason the above general truth-tables can be replaced with a simple

collection of statements relating the T and F and the connectives only. This is the quickest way to find the

truth-values, simply concentrate upon the connectives and use the following:

(i)
¬F

T ,
¬T

F .

(ii)
T∨T

T ,
T∨F

T ,
F∨T

T ,
F∨F

F

(iii)
T∧T

T ,
T∧F

F ,
F∧T

F ,
F∧F

F

(iv)
T→T

T ,
T→F

F ,
F→T

T ,
F→F

T

(v)
T↔T

T ,
T↔F

F ,
F↔T

F ,
F↔F

T

The procedures will now be applied in a step-by-step manner to find the truth-values for a specific

formula. This will be displayed as a truth-table with the values in the last column. Remember that the

actual truth-table can contain many more atoms than those that appear in a given formula. By using all the

distinct atoms contained in all the formulas, one truth-table can be used to find the truth values for more

than one formula.

The construction of a truth-table is best understood by example. In the following example, the numbers

1, 2, 3, 4 for the rows and the letters a, b, c, d, e, f that identify the columns are used here for reference only

and are not used in the actual construction.
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Example 2.4.2 Truth-values for the formula A = (((¬P ) ∨R)→ (P ↔ R)).

P R ¬P (¬P ) ∨R P ↔ R v(A, a)

(1) T T F T T T

(2) T F F F F T

(3) F T T T F F

(4) F F T T T T

a b c d e f

Now I’ll go step-by-step through the above process using the general truth-tables on the previous page.

(i) Columns (a) and (b) are written down with their usual patterns.

(ii) Now go to column (a) only to calculate the truth-values in column (c). Note as mentioned previously

there will be repetitions.

(iii) Now calculate (d) for the ∨ connective using the truth-values in columns (b) and (c).

(iv) Next calculate (e) for the ↔ connective using columns (a) and (b).

(v) Finally, calculate (f), the value we want, for the → connective using columns (d) and (e).

EXERCISES 2.4

1. First, we assign the indicated truth values for the indicated atoms v(P ) = T, v(Q) = F, v(R) = F and

v(S) = T. These values will yield one row of a truth-table, one assignment a. For this assignment, find the

truth-value for the indicated formula. (Recall that v(A, a) means the unique truth- value for the formula A.)

(a) v((R→ (S ∨ P )), a) (d) v((((¬S) ∨Q)→ (P ↔ S)), a)

(b) v(((P ∨R)↔ (R ∧ (¬S))), a) (e) v((((P ∨ (¬Q)) ∨R)→ ((¬S) ∧ S)), a)

(c) v((S ↔ (P → ((¬P ) ∨ S))), a)

2. Construct complete truth tables for each of the following formula.

(a) (P → (Q→ P )) (c) ((P → Q)↔ (P ∨ (¬Q)))

(b) ((P ∨Q)↔ (Q ∨ P )) (d) ((Q ∧ P )→ ((Q ∨ (¬Q))→ (R ∨Q)))

3. For each of the following determine whether or not the truth-value information given will yield a unique

truth-value for the formula. State your conclusions. If the information is sufficient, then give the unique

truth-value for the formula.

(a) (P → Q)→ R, v(R) = T (d) (R→ Q)↔ Q, v(R) = T

(b) P ∧ (Q→ R), v(Q→ R) = F (e) (P → Q)→ R, v(Q) = F

(c) (P → Q)→ ((¬Q)→ (¬P )) (f) (P ∨ (¬P ))→ R, v(R) = F

For (c), v(Q) = T
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2.5 Valid Formula.

There may be something special about those formula that take the value T for any assignment.

Definition 2.5.1 (Valid formulas and contradictions). Let A ∈ L. If for every assignment a to the atoms

in A, v(A, a) = T, then A is called a valid formula. If to every assignment a to the atoms of A, v(A, a) = F,

then A is called a (semantical) contradiction. If a formula A is valid, we use the notation |= A to indicate

this fact.

If we are given a formula in atomic form, then a simple truth-table construction will determine whether

or not it is a valid formula or a contradiction. Indeed, A is valid if and only if the column under the A in

its truth-table contains only T in each position. A formula A is a contradiction if and only if the column

contains only F in every position. From our definition, we read the expression |= A “A is a valid formula.”

We read the notation 6|= A “A is not a valid formula. Although a contradiction is not a valid formula, there

are infinitely many formula that are not valid AND not a contradiction.

Example 2.5.1 Let P, Q ∈ L0.

(i) |= P → P

P | P → P

T | T

F | T

(ii) |= P → (Q→ P )

P | Q |Q→ P |P → (Q→ P )

T | T | T | T

T | F | T | T

F | T | F | T

F | F | T | T

(iii) 6|= P → Q

P | Q |P → Q

T | T | T

T | F | F

F | T | T

F | F | T

(iv) contradiction P ∧ (¬P )

P | ¬P |P ∧ (¬P )

T | F | F

F | T | F

We now begin the mathematical study of the validity concept.

Throughout this text, I will “prove” various theorems in a way that is acceptable to the mathematical

community. Since the major purpose for this book is NOT to produce trained mathematical logicians, but,

rather, to give the tools necessary to apply certain results from the discipline to other areas, I, usually, don’t

require a student to learn either these “proofs” or the methods used to obtain the proofs.

Theorem 2.5.1 A formula A ∈ L is valid if and only if ¬A is a contradiction.

Proof. First, notice that a is an assignment for A if and only if a is a assignment for ¬A. Assume that

|= A. Then for any a for A, v(A, a) = T. Consequently, from the definition of v, v(¬A, a) = F. Since a is

any arbitrary assignment, then v(¬A, a) = F for all assignment a.

Conversely, let a be any assignment to the atoms in ¬A. Then a is an assignment to the atoms in A.

Since ¬A is a contradiction, v(¬A, a) = F. From the truth-table (or the formal result in the appendix), it

19



follows that v(A, a) = T. Once again, since a is an arbitrary assignment, this yields that v(A, a) = T for all

assignments and, thus, |= A.

Valid formula are important elements in our investigation of the propositional logic. It’s natural to

ask whether or not the validity of a formula is completely dependent upon its atomic components or its

connectives? To answer this question, we need to introduce the following substitution process.

Definition 2.5.2 (Atomic substitution process.) Let A ∈ L be written in atomic form. Let P1, . . . , Pn

denote the atoms in A. Now let A1, . . . An be ANY (not necessarily distinct) members of L. Define A∗ to be

the result of substituting for each and every appearance of an atom Pi the corresponding formula Ai.

Theorem 2.5.2 Let A ∈ L. If |= A, then |= A∗.

Proof. Let a be any assignment to the atoms in A∗. In the step-by-step valuation process there is a level

Lm where the formula A∗ first appears. In the valuation process, at level Lm each constituent of A∗ takes

on the value T or F . Since the truth-value of A∗ only depends upon the connectives (they are independent

of the symbols used for the formulas) and the truth-values of the v(Ai, a) are but an assignment b that can

be applied to the original atoms P1, . . . , Pn, it follows that v(A∗, a) = v(A, b) = T. But, a is an arbitrary

assignment for A∗. Hence, |= A∗.

Example 2.5.2 Assume that P, Q ∈ L0. Then we know that |= P → (Q → P ). Now let A, B ∈ L

be any formula. Then |= A → (B → A). In particular, letting A = (P → Q), B = (R → S), where

P, Q, R, S ∈ L0, then |= (P → Q)→ ((R→ S)→ (P → Q)).

Theorem 2.5.2 yields a simplification to the determination of a valid formula written with some connec-

tives displayed. If you show that v(A, c) = T where you have created all of the possible assignments c not to

the atoms of A but only for the displayed components, then |= A. (You think of the components as atoms.)

Now the reason that this non-atomic method can be utilized follows from our previous results. Suppose

that we have a list of components A1, · · · , An and we substitute for each distinct component of A a distinct

atom in place of the components. Then any truth-value we give to the original components, becomes an

assignment a for this newly created formula A′. Observe that using A1, · · · , An it follows that (A′)∗ = A.

Now application of theorem 2.5.2 yields if |= A′, then |= A. What this means is that whenever we wish to

establish validity for a formula we may consider it written in component variables and make assignments

only to these variables; if the last column is all Ts, then the original formula is valid.

WARNING: We cannot use the simplified version to show that a formula is NOT valid. As a counter

example, let A, B ∈ L. Then if we assume that A, B behave like atoms and want to show that the composite

formula A→ B is not valid and follow that procedure thinking it will show non-validity, we would, indeed,

have an F at one row of the truth-table. But if A = B = P, which could be the case since A, B are

propositional language variables, then we have a contradiction since |= P → P. Hence, the formula can be

considered as written in non-atomic form only if it tests to be valid.

It’s interesting to note the close relation which exists between set-theory and logic. Assume that we

interpret propositional symbols as names for sets which are subsets of an infinite set X. Then interpret

the conjunction as set-theoretic intersection (i.e. ⌈∧⌉ : ∩), the disjunction as set-theoretic union (i.e.

⌈∨⌉ : ∪), the negation as set-theoretic complementation with respect to X (i.e. ⌈¬⌉ : X − or X\), and the

combination of validity with the biconditional to be set-theoretical equality (i.e ⌈|= A↔ B⌉ : A = B). Now

the valid formula (P ∧ ((Q ∨R)))↔ ((P ∧Q)∨ (P ∧R)) translates into the correct set-theoretic expression

(P ∩ ((Q ∪ R))) = ((P ∩Q) ∪ (P ∩ R)). Now in this text we will NOT use the known set-theoretic facts to

establish a valid formula even though some authors do so within the setting of the theory known as a Boolean

algebra. This idea would not be a circular approach since the logic used to determine these set-theoretic

expressions is the metalogic of mathematics.
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In the next theorem, we give, FOR REFERENCE PURPOSES, an important list of formula each of

which can be establish as valid by the simplified procedure of using only language variables.

Theorem 2.5.3 Let A, B, C be any members of L. Then the symbol |= can be place before each of

the following formula.

(1) A→ (B → A) (8) B → (A ∨B)

(2) (A→ (B → C))→ (9) (A→ C)→ ((B → C)→

((A→ B)→ (A→ C)) ((A ∨B)→ C))

(3) (A→ B)→ (10) (A→ B)→ ((A→ (¬B))→ (¬A))

((A→ (B → C))→ (A→ C))

(4) A→ (B → (A ∧B)) (11) (A→ B)→

((B → A)→ (A↔ B))

(5) (A ∧B)→ A (12) (¬(¬A))→ A

(6) (A ∧B)→ B (13) (A↔ B)→ (A→ B)

(7) A→ (A ∨B) (14) (A↔ B)→ (B → A)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(15) A→ A (17) (A→ B)→ ((B → C)→

(A→ C))

(16) (A→ (B → C))↔ (18) (A→ (B → C))↔ ((A ∧B)→ C))

(B → (A→ C))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(19) (¬A)→ (A→ B) (20) ((¬A)→ (¬B))↔ (B → A)

(21) ((¬A)→ (¬B))→ (B → A)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(22) A↔ A (23) (A↔ B)↔ (B ↔ A)

(24) ((A↔ B) ∧ (B ↔ C))→ (A↔ C)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(25) ((A ∧B) ∧ C)↔ (A ∧ (B ∧ C)) (30) ((A ∨B) ∨ C)↔ (A ∨ (B ∨ C))

(26) (A ∧B)↔ (B ∧A) (31) (A ∨B)↔ (B ∨A)

(27) (A ∧ (B ∨ C))↔ (32) (A ∨ (B ∧ C))↔

((A ∧B) ∨ (A ∧ C)) ((A ∨B) ∧ (A ∨ C))

(28) (A ∧A)↔ A (33) (A ∨A)↔ A

(29) (A ∧ (A ∨B))↔ A (34) (A ∨ (A ∧B))↔ A

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(35) (¬(¬A))↔ A (36) ¬(A ∧ (¬A))

(37) A ∨ (¬A)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(38) (¬(A ∨B))↔ ((¬A) ∧ (¬B)) (39) (¬(A ∧B))↔ ((¬A) ∨ (¬B))

(40) (¬(A→ B))↔ (A ∧ ((¬B))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(41) (A ∨B)↔ (¬((¬A) ∧ (¬B))) (44) (A ∧B)↔ (¬((¬A) ∨ (¬B)))

(42) (A→ B)↔ (¬(A ∧ (¬B))) (45) (A→ B)↔ ((¬A) ∨B)

(43) (A ∧B)↔ (¬(A→ (¬B))) (46) (A ∨B)↔ ((¬A)→ B)
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(47) (A↔ B)↔ ((A→ B) ∧ (B → A))

EXERCISES 2.5

(1) Use the truth-table method to establish that formula (1), (2), (21), (32), and (47) of theorem 2.4.3 are

valid.

(2) Determine by truth-table methods whether or not the following formula are contradictions.

(a) ((¬A) ∨ (¬B))↔ (c) (¬(A→ B))↔ ((¬A) ∨B)

(¬((¬A) ∨ (¬B)))

(b) (¬A)→ (A ∨B) (d) (((A ∨ (¬B)) ∧ (¬P )))↔

(((¬A) ∨B) ∨ P )

2.6 Equivalent Formula.

As it will be seen in future sections, one major objective is to investigate the classical human deductive

processes and how these relate to the logic operator used in the solution to the General Grand Unification

Problem. In order to accomplish this, it has been discovered that humankind seems to believe that certain

logical statements can be substituted completely for other logical statements without effecting the general

“logic” behind an argument. Even though this fact will not be examined completely in this section, we will

begin its investigation.

Throughout mathematics the most basic concept is the relation which is often called equality. In the

foundations of mathematics, there’s a difference between equality, which means that objects are identically

the same (i.e. they cannot be distinguished one from another by any property for the collection that contains

them), and certain relations which behave like equality but that can be distinguished one from another and

do not allow for substitution of one for another.

Example 2.6.1 When you first defined the rational numbers from the integers you were told the strange

fact that 1/2, 2/4, 3/6 are “equal” but they certainly appear to be composed of distinctly different symbols

and would not be identical from our logical viewpoint.

We are faced with two basic difficulties. In certain areas of mathematical logic, it would be correct

to consider the symbols 1/2, 2/4, 3/6 as names for a single unique object. On the other hand, if we were

studying the symbols themselves, then 1/2, 2/4, 3/6 would not be consider as names for the same object

but, rather, they are distinctly different symbols. These differences need not be defined specifically but can

remain on the intuitive level for the moment. The are two types of “equality” relations. One type simple

behaves like equality but does not allow for substitution, in general. But then we have another type that

behaves like equality and does allow for substitution with respect to certain properties. This means that

these two objects are identical as far as these properties are concerned. Or, saying it another way, a set of

properties cannot distinguish between two such objects, while another set of properties can distinguish them

one from another.

Recall that a binary relation “on” any set X can be thought of as simply a set of ordered pairs (a, b)

that, from a symbol string viewpoint, has an ordering. The first coordinate is the element you meet first in

writing this symbol from left to right, in this case the a. The second coordinate is the next element you arrive

at, in this case the b. Also recall that two ordered pairs are identical (you can substitute one for another

throughout your mathematical theory) if their first coordinates are identical and their second coordinates

are identical (i.e. can not be distinguished one from another by the defining properties for the set in which

they are contained.) The word “on” means that the set of all first coordinates is X and the set of all second

22



coordinates is X. Now there are two ways of symbolizing such a binary relation, either by writing it as a set

of ordered pairs R or by doing the following:

Definition 2.6.1 (Symbolizing ordered pairs.) Let R be a nonempty set of ordered pairs. Then

(a, b) ∈ R if and only if a R b. The expression a R b is read “a is R related to b” or similar types of

expressions.

In definition 2.6.1, the reason the second form is used is that many times it’s simply easier to write a

binary relation’s defining properties when the a R b is used. It’s this form we use to define a very significant

binary relation that gives the concept of behaving like “equality.”

Definition 2.6.2 (The equivalence relation.) A binary relation ≡ on a set X is called an equivalence

relation if for each a, b, c ∈ X it follows that

(i) a ≡ a (Reflexive property).

(ii) If a ≡ b, then b ≡ a. (Symmetric property).

(iii) If a ≡ b and b ≡ c, then a ≡ c. (Transitive property).

Now when we let X = L, then the only identity or equality we use is the intuitive identity. Recall that

this means that two symbol string are recognized as congruent geometric configurations or are intuitively

similar strings of symbols. This would yield a trivial equivalence relation. As a set of ordered pairs, an

identity relation is {(a, a) | a ∈ X}, which is (i) in definition 2.6.2. Parts (ii), (iii) also hold for this identity

relation.

For the next theorem, please recall that the validity of a formula A does not depend upon an assignment

a that contains MORE members than the number of atoms contained in A. Such an assignment is used by

restricting the Ts and Fs to those atoms that are in A.

Theorem 2.6.1

Let A, B ∈ L and a an arbitrary assignment to the atoms that are in A and B.

(i) Then v(A↔ B, a) = T if and only if v(A, a) = v(B, a).

(ii) |= A↔ B if and only if for any assignment a to the atoms that are in A and B, v(A, a) = v(B, a).

Proof. Let A, B ∈ L.

(i) Then let the size(A ↔ B) = n ≥ 1. Then A, B ∈ Ln−1. This result now follows from the general

truth-tables on page 22.

(ii) Assume that |= A↔ B and let a be an arbitrary assignment to the atoms that are contained in A

and B. Then v(A↔ B, a) = T if and only if v(A, a) = v(B, a) from part (i). Conversely, assume that a is an

assignment for the atoms in A and B. Then a also determines an assignment for A and B separately. Since,

v(A, a) = v(B, a) then from (i), it follows that v(A↔ B, a) = T. But a is arbitrary, hence, |= A↔ B.

Definition 2.6.3 (The logical equivalence relation ≡.) Let A, B ∈ L. Then define A ≡ B iff |= A↔ B.

Notice that definition 2.6.3 is easily remembered by simply dropping the |= and replacing ↔ with ≡ .

Before we proceed to the study of equivalent propositional formulas, I’ll anticipate a question that almost

always arises after the next few theorems. What is so important about equivalent formula? When we study

the actual process of logical deduction, you’ll find out that within any classical propositional deduction

a formula A can be substituted for an equivalent formula and this will in no way affect the deductive

conclusions. What it may do is to present a more easily followed logical process. This is exactly what

happens if one truly wants to understand real world logical arguments. For example, take a look at theorem

2.5.3 parts (29) and (34) and notice how logical arguments can be made more complex, unnecessarily, by
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adding some rather complex statements, statements that include totally worthless additional statements such

as any additional statement B that might be selected simply to confuse the reader.

Theorem 2.6.2 The relation ≡ is an equivalence relation defined on L.

Proof. Let A, B, C ∈ L. From the list of valid formula that appear in theorem 2.5.3, formula (22)

yields that for each A ∈ L, |= A↔ A. Hence, A ≡ A.

Now let A, B ∈ L and assume that A ≡ B. Then for any assignment a, |= A ↔ B implies that

v(A, a) = v(B, a) from theorem 2.6.1. Since the equality means identically the same symbol (the only

equality for our language), it follows that v(B, a) = v(A, a). Consequently, B ≡ A.

Now assume that A ≡ B, B ≡ C. Hence, |= A↔ B, |= B ↔ C. Again by application of theorem 2.6.1

and the definition of |=, it follows that |= A↔ C. Consequently, A ≡ C and ≡ is an equivalence relation.

We now come to the very important substitution theorem, especially when deduction is concerned. It

shows that substitution is allowed throughout the language L and yields a powerful result.

Definition 2.6.4 (Substitution of formula). Let C ∈ L be any formula and A a formula which is a

composite element in C. Then A is called a subformula. Let CA denote the formula C with the subformula

A specifically identified. Then the substitution process states that if you substitute B for A then you obtain

the CB, where you have substituted for the specific formula A in C the formula B.

Example 2.6.2 Suppose that C = (((¬P ) ∨Q)→ ((P ∨ S)↔ S)). Let A = (P ∨ S) and consider CA.

Now let B = (S ∧ (¬P )). Then CB = (((¬P ) ∨Q) → ((S ∧ (¬P )) ↔ S)), where the substituted formula is

identified by the underline.

Theorem 2.6.3 If A, B, C ∈ L and A ≡ B, then CA ≡ CB .

Proof. Let A ≡ B. Then |= A ↔ B. Let a be any assignment to the atoms in CA and CB . Then a

may be considered as an assignment for CA, CB, A, B. Let size(CA) = n. In the truth-table calculation

process (or formal process) for v(CA, a) there is a step when we (first) calculate v(A, a). Let size(A) = k ≤ n.

If size(A) = n, then A = C and CB = B and we have nothing to prove. Assume that k < n. Then the

calculation of v(CA, a) at this specific level only involves the calculation of v(A, a) and the other components

and other connectives not in A. The same argument for CB shows that calculation for CB at this level uses

the value v(B, a) and any other components and other connectives in C which are all the same as in CA.

However, since A ≡ B, theorem 2.6.1 yields v(A, a) = v(B, a). Of course, the truth-values for the other

components in CA that are the same as the other components in CB are equal since these components are

the exact same formula. Consequently, since the computation of the truth-value for CA and CB now continue

from this step and all the other connective are the same from this step on, then CA and CB would have the

same truth-value. Hence v(CA, a) = v(CB , a). But a is arbitrary; hence, |= CA ↔ CB. Thus CA ≡ CB .

Corollary 2.6.3.1 If |= A↔ B and |= CA, then |= CB .

Proof. From the above theorem |= CA ↔ CB, it follows that for any assignment a to the atoms in CA

and CB , v(CA, a) = v(CB , a). However, v(CA, a) = T. Moreover, all of the assignments for the atoms in CA

and CB will yield all of the assignments b for the atoms in CB as previously mentioned. Hence, if b is any

assignment for the atoms in CB , then v(CB , b) = T and the result follows.

[Note: It follows easily that if C, A, B are written in formula variables and, hence, represent a hidden

atomic structure, then Theorem 2.6.3 and its corollary will also hold in this case.]

The next result seems to fit into this section. It’s importance cannot be over-emphasized since it mirrors

our major rule for deduction. For this reason, it’s sometimes called the semantical modus ponens result.

Theorem 2.6.4 If |= A and |= A→ B, then |= B.
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Proof. Suppose that A, B ∈ L. Let |= A, |= A → B and a be any assignment to the atoms in A, B.

Then v(A, a) = T = v(A → B, a). Thus v(B, a) = T. Since a is any assignment, then, as used previously,

using the set of all assignments for A, B, we also obtain all of the assignments for B. Hence v(B, b) = T for

any assignment for Bs atoms and the result follows.

EXERCISES 2.6

1. There is a very important property that shows how equivalence relations can carve up a set into important
pieces, where each piece contains only equivalent elements. Let ≡ be any equivalence relation defined on the
non-empty set X. This equivalence relation can be used to define a subset of X. For every x ∈ X, this subset
is denoted by [x]. Now to define this very special and important set. For each x ∈ X, let [x] = {y | y ≡ x}.
Thus if you look at one of these sets, say [a], and you take any two members, say b, c ∈ [a], it follows that
b ≡ c. Now see if you can establish by a simple logical argument using the properties (i), (ii), (iii) of definition
2.6.2 that:

(A) If there is some z ∈ X such that z ∈ [x] and z ∈ [y], then [x] = [y]. (This equality is set equality,

which means that [x] is a subset of [y] and [y] is a subset of [x].)

(B) If x ∈ X, then there exists some y ∈ X such that x ∈ [y].

2. (A) Of course, there are usually many interesting binary relations defined on a non-empty set X. Suppose
that you take any binary relation B defined on X and you emulate the definition we have used for [x].
Suppose that you let (x) = {y | y B x}. Now what if properties (A) and (B) and the reflexive property (i)
of definition 2.6.2 hold true for this relation. Try and give a simple argument that shows in this case that B
is, indeed, an equivalence relation.

(B) In (A) of this problem, we required that B be reflexive. Maybe we can do without this additional
requirement. Try and show that this requirement is necessary by looking at a set that contains two and only
two elements {a, b} and find a set of ordered pairs, using one or both of its members, that yields a binary
relation on {a, b} such that (A) and (B) of problem 1 hold but (i) of definition 2.6.2, the reflexive property,
does not hold. If you can find one, this is an absolute counter-example that establishes that the reflexive
property is necessary.

3. One of the more important properties of ≡ is the transitive property (iii). For example, if CA ≡ CB and

CB ≡ CD, then CA ≡ CD. Now this can be applied over and over again a finite number of times. Notice

what can be done by application of theorem 2.5.3 parts (26) and (31). Suppose that you have a formula C

containing a subformula (A ∨ B), where (A ∨ B) ≡ (B ∨ A) or (A ∧ B), where (A ∧B) ≡ (B ∧A). Letting

H = (A∨B) and K = (B ∨A), then CH ≡ CK . Now recall that, in general, on a set X where an equality is

defined, an operation, say ∆, is commutative if for each x, y ∈ X, it follows that x ∆ y = y ∆ x. Thus for

the operation and the (not equality) equivalence relation ≡ the same type of commutative law for ∨ holds.

In the following, using if necessary the transitive property, establish that (A), (B), (C), (D) (E) hold by

stating the particular valid formula(s) from theorem 2.5.3 that need to be applied.

(A) Given CD where D = (A ∨ (B ∨C)), then CD ≡ CE , where E = ((A ∨B) ∨C). This would be the

associative law for ∨. Now establish the associative law for ∧.

(B) Given CH , where H = (A∨B). Show that CH ≡ CK where K only contains the ¬ and→ connectives.

(C) Given CH , where H = (A∧B). Show that CH ≡ CK where K only contains the ¬ and→ connectives.

(D) Given CH , where H = (A ↔ B). Show that CH ≡ CK where K only contains the ¬ and →

connectives.

(E) Given CH , where H = (¬(¬(¬ · · ·A · · ·))). (i.e. the formula has “n” ¬ to its left.) Show that

CH ≡ CK where K only contains one and only one ¬ or no ¬.

4. Using the results from problem (3), and using, if necessary a finite number of transitive applications,

re-write each of the following formula in terms of an equivalent formula that contains only the ¬ and →

connectives. (The formulas are written in the allowed slightly simplified form.)
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(a) (¬(A ∨B))→ (B ∧ C) (c) ((A ∨B) ∨ C) ∧D.

(b) A↔ (B ↔ C) (d) ¬((A ∨ (¬B)) ∨ (¬(¬D)))

5. In mathematics, it’s the usual practice to try and weaken hypotheses as much as possible and still

establish the same conclusion. Consider corollary 2.6.3.1. I wonder if this can be weakened to the theorem

“if |= A → B and |= CA, then |= CB? Try to find an explicit formula such that |= A → B and |= CA, but

6|= CB. If you can find such a formula in L, then this would mean that the hypotheses cannot be weakened

to |= A→ B and |= CA.

2.7 The Denial, Full Disjunctive Normal Form, Logic Circuits.

From this point on in this chapter, when we use language symbols such as P, Q, R, S, A, B, C, D, E,

F and the like, it will always be assumed that they are members of L. This will eliminate repeating this over

and over again.

As was done in the exercises at the end of the last section, checking theorem 2.5.3, we see that (A →

B) ≡ ((¬A) ∨ B). Further, (A ↔ B) ≡ ((A ∧ B) ∨ ((¬A) ∧ (¬B))). Consequently, for any C, we can take

every subformula that uses connective → and ↔, we can use the substitution process and, hence, express C

in a equivalent form D where in D only the connectives ¬, ∨, and ∧ appear. Obviously, if D is so expressed

with at most these three connectives, then ¬C ≡ ¬D and ¬D is also expressed with at most these three

connectives. Further, by use of the valid formula theorem, any formula with more that one ¬ immediately to

the left (e.g. (¬(¬(¬A)))) is equivalent to either a formula for no ¬ immediately to the left, or at the most

just one ¬ immediately on the left. Since ¬(A ∨B) ≡ ((¬A) ∧ (¬B)) and ¬(A ∧ B) ≡ ((¬A) ∨ (¬B)) then,

applying the above equivalences, we can express any formula C in an equivalent form D with the following

properties.

(i) D is expressed entirely in atoms.

(ii) Every connective in D is either ¬, ∨,∧.

(iii) And, when they appear, only single ¬’s appear immediately to the left of atoms.

Definition 2.7.1 (The denial.) Suppose that A is in the form D with properties (i), (ii), (iii) above.

Then the denial Ad of A is the formula obtained by

(a) dropping the ¬ that appears before any atom.

(b) Placing a ¬ before any atom that did not have such a connective immediately to the left.

(c) Replacing each ∨ with ∧.

(d) Replacing each ∧ with ∨.

(e) Adjust the parentheses to make a correct language formula.

Example 2.7.1 Let A = ((¬P ) ∨ (¬Q)) ∧ (R ∧ (¬S)). Then Ad = (P ∧Q) ∨ ((¬R) ∨ S). Notice were

the parentheses have been removed and added in this example.

Theorem 2.7.1 Let A be a formula containing only atoms, the connective ¬ appearing only to the

immediate left of atoms, if at all, and any other connectives are ∧ and/or ∨. Then ¬A ≡ Ad.

Proof. (This is the sort of thing where mathematicians seem to be proving the obvious since we have

demonstrated a way to create the equivalent formula. The proof is a formalization of this process for ANY

formula based upon one of the most empirically consistent processes known to the mathematical community.

The process is called induction on the natural numbers, in this case the unique natural number we call the

size of a formula.)
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First, we must show the theorem holds true for a formula of size 0. So, let size(A) = 0. Then A = P ∈ L0

and is a single atom. Then Ad = ¬A. Further, ¬A = ¬P. We know that for any formula D, D ≡ D. Hence,

¬A ≡ Ad for this case.

Now (strong) induction proofs are usually done by assuming that the theorem holds for all A such

that size(A) ≤ n, where n > 0. Then using this last statement, it is shown that one method will yield the

theorem’s conclusions for size(A) = n + 1. However, this specific procedure may not work, yet, since there is

not one simple method unless we start at n > 1. Thus let size(A) = 1. Then there are three possible forms.

(i) Let A = ¬P. Then, from theorem 2.5.3, it follows that ¬A = ¬(¬P ) ≡ P. Now notice that if A = B, then

|= A↔ B. Further, Ad = P implies that ¬A ≡ Ad. For the cases where A = P ∧Q or A = P ∨Q, the result

follows from theorem 2.5.3, parts (38), (39).

Now assume that the theorem holds for a formula A of size r such that 1 ≤ r ≤ n. Let size(A) = n + 1.

Also we make the following observation. Because of the structure of the formula A, A cannot be of the form

¬B where size(B) ≥ 1. Indeed, if the formula has a ¬ and a ∨ or an ∧, then size(A) > 1. Consequently,

there will always be two and only two cases.

Case (a). Let A = B∨C. Consider ¬A = ¬(B∨C). From the above discussion, observe that size(¬B) ≤ n.

Hence, by the induction hypothesis, ¬B ≡ Bd and, in like manner, ¬C ≡ Cd. Theorem 2.5.3, shows that

¬(B ∨C) ≡ (¬B)∧ (¬C). Since equal formula are equivalent, then substitution yields, ¬(A ∨C) ≡ Bd ∧Cd.

Again, since Ad = Bd ∧ Cd, and equal formula are equivalent, substitution yields ¬A ≡ Ad.

Case (b). Let A = B ∧ C. This follows as in case (a) from theorem 2.5.3. Thus the theorem holds for

size(A) = n + 1. From the induction principle, the theorem holds for any (specially) constructed formula

since every such formula has a unique size which is a natural number.

On page 28, I mentioned how you could take certain valid formula and find a correct set-theoretic

formula. The same can be done with the denial of the special form A. If you have any knowledge in this

area, the ¬ is interpreted as set-complementation with respect to the universe. We can get another one of

D’Morgan’s Laws, for complementation using ¬A ≡ Ad.

Since any formula is equivalent, by theorem 2.5.3 part (29), to infinitely many different formula, it might

seen not to intelligent to ask whether or not a member of L is equivalent to a formula that is unique in some

special way? Even if this is true, is this uniqueness useful? So, the basic problem is to define the concept of

a unique equivalent form for any give formula.

Well, suppose that A is a contradiction and P is any atom. Then A ≡ (P ∧ (¬P )). And if B is any

valid formula, then B ≡ (P ∨ (¬P )). Hence, maybe the concept of a unique equivalent form is not so easily

answered. But, we try anyway.

Let A be a formula that is in atomic form and contains only the atoms P1, . . . , Pn. We show that there

is a formula equivalent to A that uses these are only these atoms and that does have an almost unique form.

The formula we construct is called the full disjunctive normal form and rather than put this into a big

definition, I’ll slowly described the process by the truth-table procedure.

Let the distinct atoms P1, . . . , Pn be at the top of a truth-table and in the first “n” columns. Now

observe that when we calculate the truth-values for a formula A ∧ (B ∧ C) we have also calculated the

truth-values for the formula (A∧B)∧C) since not only are these formula equivalent, but they use the same

formula A, B, C, the exact same number and type of connective, in the exact same places. Indeed, only the

parentheses are in different places. For this reason, we often drop the parentheses in this case when we are

calculating the truth value for A ∧ (B ∧C). Now for the procedure. Consider any row k, where 1 ≤ k ≤ 2n.

(a) For each T that appears in that row under the atom Pi, write done the symbol Pi.

(b) For each F that appears in that row under the atom Pj , write done the symbol (¬Pj).
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(c) Continue this process until you have used (once) each truth value that appears in row k making sure

you have written down all these symbols in a single row and have left spaces between them.

(d) If there is more than one symbol, then between each symbol put a ∧ and insert the outer most

parentheses.

(e) The result obtained is called the fundamental conjunction.

Example 2.7.2 Suppose that the kth row of our truth table looks like

P1 P2 P3

T F F

Then, applying (a), (b), (c), we write down

P1 (¬P2) (¬P3)

Next we do as we are told in (d). This yields

(P1 ∧ (¬P2) ∧ (¬P3)).

Now the assignment for the k row is a = (T, F, F ). Notice the important fact that v((P1 ∧ (¬P2) ∧

(¬P3)), a) = T. What we have done to remove any possibility that the truth-value would be F. But, also it’s

significant, that if we took any other distinctly different assignment b, then v((P1 ∧ (¬P2) ∧ (¬P3)), b) = F.

These observed facts about this one example can be generally established.

Theorem 2.7.2 Let k be any row of a truth-table for the distinct set of atoms P1, . . . , Pn. Let a be the

assignment that this row represents. For each ai = T, write down Pi. For each aj = F, write down (¬Pj).

Let A be the formula obtained by placing conjunctions between each pair of formula if there exists more

than one such formula. Then v(A, a) = T, and for any other distinct assignment b, v(A, b) = F.

Proof. See theorems 1.6 and 1.7 on pages 13, 14 of the text “Boolean Algebras and Switching Circuits,”

by Elliott Mendelson, Schaum’s Outline Series, McGraw Hill, 1970.

Now for any formula C composed of atoms P1, . . . , Pm and which is not a contradiction there will be,

at the least, one row assignment a such that v(C, a) = T. We now construct the formula that is equivalent

to C that we has an almost unique form.

Definition 2.7.1 (Full disjunctive normal form.) Let C not be a contradiction.

(a) Take every row k for which v(C, a) = T.

(b) Construct the fundamental conjunction for each such row.

(c) Write down all such fundamental conjunctions and between each pair, if any, place a ∨.

(d) The result of the construction (a), (b), (c) is called the full disjunctive normal form for C. This

can be denoted by fdnf(C).

Example 2.7.2 Suppose that C = P ↔ (Q ∨R). Now consider the truth-table.
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P Q R C

T T T T

T T F T

T F T T

T F F F

F T T F

F T F F

F F T F

F F F T

Now we construct fundamental conjunctions for rows 1, 2, 3, 8. This yields (P ∧ Q ∧ R), (P ∧ Q ∧

(¬R)), (P ∧ (¬Q) ∧ R), ((¬P ) ∧ (¬Q) ∧ (¬R)). Notice that I have not included for the ∧ the internal

parentheses since they can be placed about any two expressions.

Then putting these together we have

fdnf(C) = (P ∧Q ∧R) ∨ (P ∧Q ∧ (¬R))∨

(P ∧ (¬Q) ∧R) ∨ ((¬P ) ∧ (¬Q) ∧ (¬R)).

Theorem 2.7.3 Let non-contradiction C ∈ L. Then fdnf(C) ≡ C.

Proof. See the reference given in the proof of theorem 2.7.2.

The is no example 2.7.3. The fdnf is unique in the following sense.

Theorem 2.7.4. If formula B, C have the same number of atoms which we can always denote by the

same symbols P1, . . . , Pm. If fdnf(B) and fdnf(C) have the same set of fundamental conjunctions except for

a change in order of the individual conjuncts, then fdnf(B) ≡ fdnf(C).

Proof. I’m sure you could prove this from our validity theorem, substitution, and the properties of ≡ .

Usually, when elementary concepts in logic are investigated, the subject of computers is often of interest.

The reason for this is that, technically, computers perform only a very few basic underlying processes all

related to propositional logic. So, for a moment, let’s look at some of the basic logic circuits, many of which

you can construct. Such circuits are extensions of the (switching) relay circuits where we simply suppress

the actual device the functions in the fashion diagrammed on pages 17, 18. Since any formula A is equivalent

to its fdnf, its the fdnf that’s used as a bases for these elementary logic circuits. An important procedure

within complex logic circuits is simplification or minimizing techniques. Simplification does not necessarily

mean fewer devices. The term simplification includes the concept of something being more easily constructed

and/or less expensive. We will have not interest is such simplification processes.

Looking back at pages 17, we have three logic devices. The or-gate ©∨, diagram (i); the and-gate ©∧,

diagram (ii), and an inverter ©¬, which is the combination of the two diagrams above diagram (i). The

inverter behaves as follows: when current goes in one end, it opens and no current leaves the exit wire, the

output. But, when input is no current, then output is current. (We need not use current, of course. Any

two valued physical event can be used.) In the following diagrams the current direction and what is called
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the logical flow is indicated by the line with an arrow. If there is no flow, then no arrows appear. Now each

gate has at least two inputs and one output in our diagrams except the inverter.

It’s very, very easy to understand the behavior of the or-gates and the and-gates. They have the same

current flow properties as a corresponding truth-table, where T means current flows and F means no current

flows. The basic theorem used for all logic circuits is below.

Theorem 2.7.5 If A ≡ B, then any logic circuit that corresponds to A can be substituted for any

logical circuit that corresponds to B.

Proof. Left to you.

Example 2.7.4 Below are diagrams for two logic circuits. For the first circuit, note that if no circuit

flows into lines A and B, then there is a current flowing out the C line. In current flows in the A and B line

from left to right, then again current flows out the C line. But if current flows in the A and not in the B,

or in the B and not in the A, then no current flows out the C line. I’ll let you do the “flow” analyze for the

second diagram.

In the first diagram, the symbolցx means that the arrow has been removed from the pathway indicator.

(This is done to minimize the storage space required when processing this monograph.) The diagrams only

show what happens when both A and B have current.

−→−−A −−→−−−−−−−−→©∧−−(A ∧B)−−−−−−−−−−−−→ց
©¬ ր



y

րցx ©∨−−−−→C−−−−→

ր ցx

∣

∣

ր−−→−−B−−−−→©¬−−(¬B)−−©∧−−((¬A) ∧ (¬B))−−−−−−

C = (A ∧B) ∨ ((¬A) ∧ (¬B))

−→−−A−→−−−−−−−−−−−−−−−−−−−−−−−−−−−−→





y







y

©∧−−−−−→©∨−−−−−−©¬←−−−−−©∨
x









y

x







−→−−B−→−−−−−−−−−−−−(−−−−−−−−−−−−−−−→
∣

∣

∣

∣

−−−−−−D−−−−−→−−−−−−−−−−−−−−−−−−→

D = (A ∧B) ∨ (¬(A ∨B)) and

C ≡ D

An important aspect of logic circuits is that they can be so constructed so that they will do binary

arithmetic. Here is an example of binary arithmetic.

0 1
+1 1
1 0 0

The process goes like this. First 1+1 = 1 0. Thus you get a 0 = S with a carry over digit = 1 = C. The carry

over digit is then added to the next column digit 1 and you get 1 0, which is a 0 with a carry over of 1. The

following logic circuit does a part of this arithmetic. If current in A, B indicates 1, no current indicates 0.

This represents the first step and yields the basic S and the basic cover number C. (Insert Figure 2 below.)
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−→−−A−→−−−−−−−−−−−−−−−−−−−−−−−−−−−−→





y







y

©∨−−−−−→©∧−−−−−−©¬←−−−−−©∧−−C−−−−−→
x







∣

∣

x







−→−−B−→−−−−−−−−−−−−(−−−−−−−−−−−−−−−→
∣

∣

∣

∣

−−−−−−S−−−−−−−−−−−−−−−−−−−−−−−−−

EXERCISES 2.7

1. Express each of the following formula as an equivalent formula in terms of, at the most, one ¬ on the

left of an atom, and the connectives ∨ or ∧.

(a) P ↔ (A→ (R ∨ S)) (d) ((¬P )↔ Q)→ R

(b) ((¬P )→ Q)↔ R (e) (S ∨Q)→ R

(c) (¬((¬P ) ∨ (¬Q)))→ R (f) (P ∨ (Q ∧ S))→ R

2. Write the denial for each of the following formula.

(a) ((¬P ) ∨Q) ∧ (((¬Q) ∨ P ) ∧R) (c) ((¬R) ∨ (¬P )) ∧ (Q ∧ P )

(b) ((P ∨ (¬Q)) ∨R)∧ (d) (((Q ∧ (¬R)) ∨Q) ∨ (¬P )) ∧ (Q ∨R)

(((¬P ) ∨Q) ∧R)

3. Write each of the following formula in its fdnf, if it has one.

(a) (P ∧ (¬Q)) ∨ (P ∧R) (c) (P ∨Q)↔ (¬R)

(b) P → (Q ∨ (¬R)) (d) (P → Q)→ ((Q→ R)→ (P → R))

4. Using only inverters, or-gates and and-gates, diagram the logic circuits for the following formula. Notice

that you have three inputs.

(a) (A ∨ (¬B)) ∨ (B ∧ (C ∨ (¬A))) (b) (A→ B) ∨ (¬C)

5. The following two diagrams correspond to an output which is a composite formula in terms of A, B, C.

Write down this formula.

(a)

−→−−A−−−−−−−−−−−−−−−→©¬−−−−−−−−−−−−−





y

∣

∣

∣

∣

©∨←−−−−−©∧−−−−−←−−−−−−−©∨


y

x







x







−→−−B−→−−−−−−(−−−−−−−−−−−−−−−−−−−−−→


y

−→−−−C−−−−−→©∧−−−−−→−−−−−−−−−−−−−−−−−−→
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(b)

−→−−A−→−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→





y







y

©∨−→©∧−−−−−−−−−−©¬←−−−−−©∧
x







∣

∣

x







−→−−B−→−−−−−−−−−−(−−−−−−−−−−−−−−−−−−→
∣

∣

∣

∣

−−−−−−−−−−−−−−−−−−−−−−−−∣

∣

∣

∣

∣

∣

∣

∣

©∨−→©∧←−−−−−−−−−©¬−−−−−−©∧
x









y

x







−→−−C−→−−−−−−−−−−(−−−−−−−−−−−−−−−−−−→






y

−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−−−−−→

2.8 The Princeton Project, Valid Consequences (in General).

After the methods were discovered that use logical operators to generate a solution to the General

Grand Unification Problem, and that give an answer to the questions “How did our universe come into

being?” and “Of what is empty space composed?” I discovered that the last two questions were attacked, in

February — April 1974, by John Wheeler and other members of the Physics and Mathematics Department

at Princeton University. Wheeler and Patton write, “It is difficult to imagine a simpler element with which

the construction of physics might begin than the choice yes–no or true–false or open circuit–closed circuit. .

. . which is isomorphic [same as] a proposition in the propositional calculus of mathematical logic.” [ Patton

and Wheeler, Is Physics Legislated by a Cosmogony, in Quantum Gravity, ed. Isham, Penrose, Sciama,

Oxford University Press, Oxford (1975), pp. 538–605.] These basic concepts are exactly what we have just

studied.

These individuals, one of the world’s foremost group of scientists, attempted to solve this problem by a

statistical process, but failed to do so. Because they failed, they rejected any similar approach to the problem.

They seemed to be saying that “If we can’t solve these problems, then no one can.” They were wrong in their

rejection of the propositional calculus as a useful aspect for such a solution. But, the solution does not lay

with this two valued truth–falsity model for the propositional logic. The solution lies with the complementary

aspect we’ll study in section 2.11 called proof theory. Certain proof theory concepts correspond to simple

aspects of our truth–falsity model. In particular, we are able to determine by assignment and truth-table

procedures whether or not a logical argument is following basic human reasoning processes (i.e. classical

propositional deduction). However, what you are about to study will not specifically identify what the brain

is doing, but it will determine whether or not it has done its deduction in terms of the classical processes

must easily comprehend by normal human beings.

Let {A1, . . . , An} be a finite (possibly empty) set of formula. These formula represent the hypotheses

or premises for a logical argument. For convenience, it has become common place to drop the set-theoretic

notation { and } from this notation. Since these are members of a set, they are all distinct in form. Again from

the concepts of set-theory, these formula are not considered as “ordered” by the ordering of the subscripts.
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Definition 2.8.1 (Valid consequence.) A formula B is a valid consequence (or simply a consequence)

of a set of premises A1, . . . , An if for any assignment a to the atoms in each A1, . . . , An AND B such that

v(A1, a) = · · · = v(An, a) = T, then v(B, a) = T. If B is a valid consequence of A1, . . . , An, then this is

denoted by A1, . . . , An |= B.

As usual, if some part of definition 2.8.1 does not hold, then B is an invalid (not a valid) consequence of

A1, . . . , An. This is denoted by A1, . . . , An 6|= B. It is important to notice that definition 2.8.1 is a conditional

statement. This leads to a very interesting result.

Theorem 2.8.1 Let A1, . . . , An be a set of premises and there does not exist an assignment to the

atoms in A1, . . . , An, such that the truth-values v(Ai, a) = T for each i, where 1 ≤ i ≤ n. Then, for ANY

formula B ∈ L, A1, . . . , An |= B.

Proof. In a true conditional statement, if the hypothesis is false, then the conclusion holds.

The conclusion of theorem 2.8.1 is so significant that I’ll devote an entire section (2.10) to a more in-

depth discussion. Let’s continue with more facts about the valid consequence concept. We will need two

terms, however, for the work in this section that are also significant for section 2.10.

Definition 2.8.2 (Satisfaction.) If given a set of formula A1, . . . , An (n ≥ 1), there exists an assignment

a to all the atoms in A1, . . . , An such that v(A1, a) = · · · = v(An, a) = T, then the set of premises are said to

be satisfiable. The assignment itself is said to satisfy the premises. One the other hand, if such an assignment

does not exist, then the premises are said to be not satisfied.

Theorem 2.8.2 (Substitution of equivalence.) If An ≡ C and A1, . . . , An |= B, then A1, . . . , An−1, C |=

B. If B ≡ C and A1, . . . , An |= B, then A1, . . . , An |= C.

Proof. Left to you.

Are many logical arguments that seem very complex, in reality, a disguised simple deduction?

Conversely, can we take a simple deduction and make it look a little more complex? The following the-

orem is not the last word on this subject and is very closely connected with what we mean when we say

that such and such is a set of premises. When we write the premises A1, . . . , An, don’t we sometime (all the

time?) say “and” when we write the comma “,”? Is this correct?

Theorem 2.8.3 (The Deduction Theorem) Let Γ be any finite (possible empty) set of formula and

A, B ∈ L.

(i) Γ, A |= B if and only if Γ |= A→ B.

(ii) Let A1, . . . , Ai, . . . An be a finite (nonempty) set of formula, where 1 < i ≤ n. Then A1, . . . , An |= B

if and only if A1, . . . , Ai |= (Ai+1 → (· · · → (An → B) · · ·)).

(iii) Let A1, . . . , Ai, . . . An be a finite (nonempty) set of formula, where 1 < i ≤ n. Then A1, . . . , An |= B

if and only if (A1 ∧ · · · ∧Ai), . . . , An |= B.

(iv) A1, . . . , An |= B if and only if |= (A1 ∧ · · · ∧An)→ B.

Proof. (i) Assume that Γ, A |= B. Let a be an assignment to the set of atoms in Γ, A, B. If a satisfies

Γ, A, then v(A, a) = T. Also from the hypothesis, v(B, a) = T. Hence, v(A → B, a) = T. Now if Γ is not

satisfied (whether or not A is), then from theorem 2.8.1, Γ |= A→ B. If a satisfies Γ and does not satisfy A,

then v(A, a) = F. Thus, v(A→ B, a) = T. All the cases have been covered; hence, in general, Γ |= A→ B.

Conversely, assume that Γ |= A → B and let a be as previous defined. If a does not satisfy Γ, then a

does not satisfy Γ, A. If a satisfies Γ and does not satisfy A, then a does not satisfy Γ, A. Hence, we only
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need to consider what happens if a satisfies Γ, A. Then, in this case, v(A, a) = T. Since v(A → B, a) = T,

then v(B, a) = T. Therefore, Γ, A |= B.

(ii) (By induction on the number m of connectives → placed between the formula on the right of |=.)

(a) The m = 1 case is but part (i). Assume theorem holds for m connectives. Then one more applications

of (i) shows it holds for m + 1 connectives → . Hence, the result holds in general. Similarly the converse

holds.

(iii) (By induction on the m number of connectives ∧ placed between A1, . . . , Ai.) Suppose that

A1, A2, . . . , An |= B.

(a) Let m = 1. Suppose that A1, A2, . . . , An |= B. Let a be an assignment to all the atoms in (A1 ∧

A2), . . . , An, B that satisfies (A1 ∧ A2), . . . , An. Then v(A1 ∧ A2, a) = T. Hence, v(A1, a) = v(A2, a) = T.

Then a is an assignment to all the atoms in A1, A2, . . . , An, B. Now v(A1, a) = v(A2, a) = T = · · · = v(An, a).

This implies that v(B, a) = T. Hence, (A1 ∧A2), . . . , An |= B.

(b) Now assume theorem holds for m or less connectives ∧ and suppose that i = m + 2. We know that

A1, A2, . . . , Ai, · · · , An |= B. Now from (ii), we know that A1, A2, . . . , Am+1 |= (Am+2 → (· · · (An → B) · · ·))

from (ii). The induction hypothesis yields (A1 ∧ A2 ∧ . . . ∧ Am+1) |= (Am+2 → (· · · (An → B) · · ·)). From

this we have (A1 ∧A2 ∧ . . .∧Am+1), Am+2 |= (Am+3 → (· · · (An → B) · · ·)). Application of (i) and (ii) yields

(A1 ∧ · · · ∧Am+2), . . . , An |= B. The general result follows by induction and the converse follows in a similar

manner.

(iv) Obvious from the other results.

When you argue logically for a conclusion, it’s rather obvious that one of your hypotheses is a valid con-

clusion. Further, if you start with a specific set of hypotheses and obtained a finite set of logical conclusions.

You then often use these conclusions to argue for other consequences. Surely it should be possible to go

back to your original hypotheses and argue to you final conclusions without going through the intermediate

process.

Theorem 2.8.4

(i) A1, . . . , An |= Ai for each i = 1, . . . , n.

(ii) If A1, . . . , An |= Bj , where j = 1, . . . , p, and B1, . . . , Bp |= C, then A1, . . . , An |= C.

Proof. (i) Let a be any assignment that satisfies A1, . . . , An. Hence, v(Ai, a) = T, for each i = 1, . . . , n.

Thus A1, . . . , An |= Ai for each i = 1, . . . , n.

(ii) Let a be an assignment to all the atoms in A1, . . . , An, Bi, . . . , Bp, C. Of course, this is also an

assignment for each member of this set. Conversely, any assignment to any of the formula in this set can

be extended to an assignment to all the atoms in this set. Suppose that v(Ai, a) = T, for each i such that

1 ≤ i ≤ m. Since A1, . . . , An |= Bj, where j = 1, . . . , p, then v(Bj , a) = T, where j = 1, . . . , p. This a

satisfies Bj for each j = 1, . . . , p. Hence, from the remainder of the hypothesis, v(C, a) = T and the proof is

complete.

[For those who might be interested. This is not part of the course. First, we know that if A ≡ B,

then we can substitute throughout the process |= anywhere A for B or B for A. Because of theorem 2.8.3,

all valid consequences can be written as A |= B, where A is just one formula. (i) Now A |= A, and (ii) if

A |= B, B |= C, then A |= C. Thus |= behaves almost like the partial ordering of the real numbers. If you

substitute ≤ for |= you have A ≤ A, if A ≤ B, B ≤ C, then A ≤ C. In its present form it does not have

the requirement that (iii) if A ≤ B, B ≤ A, then A = B. However, notice that if A |= B, B |= A, then

|= A → B, |= B → A. This implies that A ≡ B. Hence we could create a language by taking one and only
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one member of from each equivalence class [A] (see problem 1, Exercise 2.6.) and only used these for logical

deduction. (A very boring way to communicate.) Then (iii) would hold. Hence, in this case, everything

known about a partial ordering should hold for the |= .]

EXERCISE 2.8

1. First, note the discussion at the top of page 57 as to how to use truth-tables to determine if a conse-

quence is valid. Now use the truth-table method to determine whether the following consequences are valid

consequences from the set of premises.

(a) P → Q, (¬P )→ Q |= Q.

(b) P → Q, Q→ R, P |= R.

(c) (P → Q)→ P, ¬P |= R.

(d) (¬P )→ (¬Q), P |= Q.

(e) (¬P )→ (¬Q), Q |= P.

2.9 Valid Consequences — Model Theory and Beyond.

The most obvious way to show that B is a valid consequence of A1, . . . , An is by the truth-table method.

(i) Simply set up a truth-table for the formulas A1, . . . , An, B.

(ii) Look at every row, where under each Ai there is a T, and if in that row the B is a T, then B is a

valid consequence of A1, . . . , An.

Of course, if A1, . . . , An is not satisfiable, then it is automatically the case that B is a valid consequence.

BUT, in most cases you would have a very large truth-table. For example, for the arguments of section 1.1,

you would need a truth-table with 26 + 1 = 65 rows and about 8 columns. You might get a research grant,

of some sort, so that you could get the materials for such a truth-table construction. This is the strict model

theory approach. Why? Because the truth-table is a “model” (i. e. not the real thing) for classical human

propositional deduction. When I deduce what I hope is a logical conclusion, I don’t believe I construct a

truth-table in my mind. Maybe some do, but I don’t. So, is there another method that is model theory

viewed in a different way that may be a shorter method? The method comes from theorem 2.8.3 part (iv).

NOTATION CHANGE. It seems pointless to keep saying “Let a be an assignment to the atoms

in A. Then v(A, a) = T or F.” Why not do the following: just write v(A, a) = v(A) = T. When we see

v(A) = T or F, we know that there is some assignment to the atoms that makes it so.

Now what theorem 2.8.3 tells us is that all we need to do is to show that |= (A1 ∧· · · ∧An)→ B. But, if

one selects an assignment such that v(B) = F , then |= (A1∧· · ·∧An)→ B if and only if v((A1∧· · ·∧An)) = F.

We need not look at the case when v(B) = T. (Why not ?) The method is a natural language algorithm.

This means that I use some of the terms that I’ve previously introduced and ordinary English to give a

series of repeatable instructions. Now whether or not this method is shorter than the truth-table method

depends upon how clever you are in a certain selection process. Only experience indicates that it is often

much shorter. The instructions themselves are not short in content. But remember these methods took over

2,000 years to develop.

Special Method 2.9.1 (To show that |= (A1∧· · ·∧An)→ B.) In what follows, the symbol⇒ represents

that word forces.

(1) First, let v(B) = F. In the simplest case, this truth-value for B ⇒ a fixed truth-value on each of the

atoms of B. Let these atoms have these forced truth-values.
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Example 2.9.1.1 Let B = P → (Q → R). Then v((P → (Q → R))) = F ⇒ v(P ) = T ; v(Q) =

T ; v(R) = F and these are the only possibilities.

(2) See if these forced and fixed atom truth-values forces any of the premises to have a fixed truth-value.

(3) If (2) occurs and the value of the premise is F, then the process stops and you have a valid

consequence.

Example 2.9.1.2 Suppose that one of the premises is A = P ∧ R. Then for example 2.9.1.1 atomic

values you would have that v(A) = F. You can stop the entire process. B is an valid consequence of the

premises.

(4) If (2) occurs and the truth-value is T for a premise, then simply write it down as its value.

(5) If (4) occurs and there are more premises that are NOT forced to take on a specific truth value by

the forced atomic truth-values for B, then you can select any of the remaining premises, usually those with

the fewest non-forced atoms (but not always), and set the truth value of the selected premise as T.

Example 2.9.1.3 Suppose that process did not stop at step (3). Let one of the premises be A1 = S∨R.

Then setting v(A1) = T ⇒ v(S) = T.

(6) You now have some premises with forced or selected values of T. Now use the forced atomic values

and begin again with (2) for the remaining process.

(7) If this the simplest part of the process stops, then it will either force a premise to be F and you may

stop and declare the consequence valid or all the premises will be selected or forced to be T and you have

found one assignment that proves that the consequence is invalid.

Example 2.9.1.4 Suppose that you what to answer the question P1 → (P2 → P3), (P3 ∧ P4) →

P5, (¬P6)→ (P4 ∧ (¬P5))
?

|=P1 → (P2 → P6).

(i) Well, let v(P1 → (P2 → P6)) = F. Then v(P1) = v(P2) = T, v(P6) = F. These values do not force

any of the premises to be any fixed value.

(ii) Select the first premise and let v(P1 → (P2 → P3)) = T. From (i) ⇒ v(P3) = T. The values that

have been forced do not force the remaining premises to take any fixed value.

(iii) Let v((¬P6) → (P4 ∧ (¬P5))) = T ⇒ v(P4 ∧ (¬P5)) = T from (1). Hence v(P4) = T, v(P5) = F.

But these forced atoms ⇒ v((P3 ∧ P4)→ P5) = F.

(iv) Hence, |= holds. Notice that for this example a truth table requires 65 rows.

Example 2.9.1.4 Suppose that you what to answer the question P → R, Q → S, (¬R) ∨ (¬S)
?

|=P ∨

(¬Q).

(i) Let v(P ∨ (¬Q)) = F, ⇒ v(P ) = F, v(Q) = T.

(ii) Let v(Q→ S) = T, from (i),⇒ v(S) = T.

(iii) Let v((¬R) ∨ (¬S)) = T, from (ii),⇒ v(R) = F.

(iv) Now (i) and (iii) ⇒ v(P → R) = T.

(v) Since all premises were either selected or forced to be T, then B is an invalid consequence from the

premises.

Is all of this important? Well, suppose that you were given a set of orders by your commanding officer.

You tried to follow these orders but could not do so. Why can’t they be carried out? You discover, after

a lot of work, that the consequence your commanding officer claimed was a result of the set of premises he
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gave is invalid. Next you must prove this fact at a court-martial. Yes, it could be very important. But the

above method need not be as straightforward as the examples indicate.

Special Method 2.9.2 (Difficulties with Method 2.9.1.) (Case studies.) This special method, can

brake down and become very complex in character for one basic reason. Either the selection of the (might

be) consequence as an F or the selection of any of the premises as a T need not produce fixed values for the

atoms. Now what do you do? For the case study difficulties, its easier to establish INVALID consequences.

(1) Suppose that your assumption that the (may be) consequence B has truth-value F does not yield

unique atomic truth-values. Then you must brake up the problem into all the cases produced by all the

different possible truth-values for the atoms in B.

Example 2.9.2.1 Let B = P ↔ Q. Then for v(P ↔ Q) = F there are the following two cases. (a)

v(P ) = F, v(Q) = T. (b) v(P ) = T, v(Q) = F.

(2) For premises that are not forced to have specific truth-values, then your selection of a truth-value

for a (possible) premise A need not yield unique atomic truth-values. This will lead to more case studies.

Indeed, possible case studies within case studies.

(3) During any of the specific case studies if the truth-values of all possible premises yields T, then you

may stop for you have an invalid consequence.

(4) If during any case study you get one or more of the assume premises to be forced to be F, then this

does NOT indicate that you have a valid consequence. You must get an F for some assumed premise for all

possible case studies before you can state that it is a valid argument.

Example 2.9.2.2 Suppose that you what to answer the question P → R, Q→ S, (¬R)∨(¬S)
?

|=P ∧Q.

(i) Let v(P ∧ Q) = F. You have three cases. (a) v(P ) = F, v(Q) = F. (b) v(P ) = T, v(Q) = F. (c)

v(P ) = F, v(Q) = T.

Case (a). No assumed premise is forced to be anything. So, select v(Q → S) = T. This yields two

subcases. (a1) v(S) = F, (a2) v(S) = T.

Case (b). Again let v(Q→ S) = T. Again we have two subcases. (b1) v(S) = F, (b2) v(S) = T.

Case (c). Again let v(Q→ S) = T. Now this ⇒ v(S) = T.

(ii) Now we would go back and select another assumed premises such as P → R and set its value to T.

Then assuming cases (a), (a1) see what happens to the atoms in P → R. This might produce more cases

such as (a11) and an (a12). We would have a lot to check if we believed that B might be a valid consequence.

(iii) Notice that we have only one more assumed premises remaining (¬R) ∨ (¬S). We can assume that

v(P → R) = T and there are atomic values that will produce this truth-value. Now S does not appear

in this formula hence under condition (b1) v(S) = F. v((¬R) ∨ (¬S)) = T. Hence we have found a special

assignment that shows that B is an invalid consequence.

(iv) Lets hope the method doesn’t lead to many case studies since it might be better to use truth-tables.

NOTE ON FORMULA VARIABLES. You do not need to use the atomic form of a formula when a valid

consequence is being determined. What you actually can do is to substitute for every specific atom in every

place it appears a formula variable symbol, and distinct variables for distinct atoms. If for each variable

formula symbol you substitute a fixed formula in atomic form, then in the valid consequence truth-table

the various levels at which the premises are T is only dependent on the connectives that are in the original

formula prior to substitution if the premise is not a single atom. If it is a single atom, then the atom as a

premise still only depends upon it being give a T value. The same would be true for any formula substituted

throughout the premises and assumed consequence for that atom. Thus, in exercise 1 below formula variable
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symbols have been used. Simply consider them to behave like atoms. Each time you determine that the

indicated formula is a valid consequence, then you have actually determined the case for infinitely many

formula. But if it is an invalid consequence, then you cannot make such a variable substitution. Such an

“invalid” result only holds for atoms.

EXERCISE 2.9

1. Using the special method 2.9.1 or 2.9.2 (in the formula variable form) to determine whether or not

(a) (¬A) ∨B, C → (¬B) |= A→ C.

(b) A→ (B → C), (C ∧D)→ E, (¬G)→ (D ∧ (¬E)) |= A→ (B → G).

(c) (A ∨B)→ (C ∧D), (D ∨ E)→ G |= A→ G.

(d) A→ (B ∧C), (¬B) ∨D, (E → (¬G))→ (¬D), B → (A ∨ (¬E)) |= B → E.

2. Translate the following natural language arguments into propositional formula using the indicated propo-

sitional symbols and determine by method 2.9.1 or 2.9.2 whether or not the argument is valid or invalid.

(Remember that you do NOT need to know what the terms in a phrase mean to check the validity of an

argument.)

(a) Either I shall go home (H), or stay and study (S). I shall not go home. Therefore I shall stay and

study.

(b) If the set of real numbers is infinite (I), then it has cardinality c (C). If the set of real numbers is

not infinite, then it forms a finite set (D). Therefore, either the set of real numbers has cardinality c or it

forms a finite set.

(c) A Midshipman’s wage may sometime increase (S) only if there is inflation (I). If there is inflation,

then the cost of living will increase (C). Now and then a Midshipman’s wage has increased. Therefore, the

cost of living has increased.

(d) If 2 is a prime number (P), then it is the least prime number (L). If 2 is the least prime number,

then 1 is not a prime number (N). The number 1 is not a prime number. Therefore, 2 is a prime number.

(e) Either the set of real numbers is well-ordered (W) or it contains a well-ordered subset (C). If the

set of real numbers is well-ordered, then every nonempty subset contains a first element (R). The natural

numbers form a well-ordered subset of the real numbers (N). Therefore, the real numbers are well-ordered.

(f) If it is cold tomorrow (C), then I’ll wear my heavy coat (I) if the sleeve is mended (M). It will be

cold tomorrow and the sleeve will not be mended. Therefore, I’ll not wear my heavy coat.

(g) If the lottery is fixed (L) or the Colts leave town again (C), then the tourist trade will decline (D)

and the town will suffer (S). If the tourist trade decreases, then the police force will be more content (P).

The police force is never content. Therefore, the lottery is fixed.

2.10 Satisfaction and Consistency.

As mentioned previously, the concept of when a set of formula is satisfied is of considerable importance.

Suppose that we assume that a set of premises refer to “things” that occur in reality. As you’ll see, in

order for a set of premises to differentiate between different occurrences it must be satisfiable. We recall the

definition.

Definition 2.10.1 (Satisfaction.) A nonempty (finite) set of premises A1, . . . , An is satisfiable if there

exists an assignment a to all the atoms that appear in the premises such that v(Ai) = T for each i such that

1 ≤ i ≤ n.
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One way to attack the problem of satisfaction is to make a truth-table. If there is a row such that under

every Ai there is a T, then the set of premises is satisfiable. As we did in the previous section, there is a short

way to do this without such specific truth-tables. But, for the propositional calculus, why is satisfaction so

important?

Definition 2.10.2 A set of formula A1, . . . , An is consistent if for each B ∈ L, A1, . . . , An 6|= B ∧ (¬B).

A set of premises is inconsistent if there exist some B ∈ L such that A1, . . . , An |= B ∧ (¬B).

Actually definition 2.10.2 is technical in character since if we only had this definition it might never (in

time) be possible to know whether a set of premises is consistent. Also, as yet consistency may not seem

as an important property. Notice that that formula B ∧ (¬B) is a contradiction. Thus sometimes a set of

premises that is inconsistent are also said to be contradictory. Notice that definition 2.10.2 includes the

possible empty set of premises. This yields the pure validity concept. The next result shows that our pure

validity concept is consistent.

Theorem 2.10.1 If B ∈ L, then 6|= B ∧ (¬B).

Proof. Let (for an appropriate assignment a) v(B) = T. Then v(B ∧ (¬B)) = F. One the other hand, if

v(B) = F, then v(B ∧ (¬B)) = F. Since every assignment to B ∧ (¬B) is an assignment to B and conversely,

the result follows.

As mentioned above, it is assumed by many individuals, although it cannot be established, that human

deduction corresponds to a humanly comprehensible “occurred in reality” concept. I won’t discuss the

philosophical aspects of this somewhat dubious assumption, but even if it’s, at the least, partially true the

concept of consistency is of paramount importance. Theorem 2.10.1 gives a slight indication of what is going

on. Not every formula in our language is a valid formula. The concept of simply consistent is defined by

the statement that a set of premises is simply consistent if not all formula are consequences of the premises.

Obviously, by theorem 2.10.1, there is no difference between the two concepts for an empty set of premises.

The worst thing that can happen for any nonempty set of premises A1, . . . , An in the scientific or

technical areas is that A1, . . . , An |= B, where B is ANY member of L. Why? This would mean that all

formula including contradictions are valid consequences. Now if we associate with A1, . . . An |= B, the notion

that if each Ai occurs in reality, then B will occur in reality, then this worst case scenario says “all things

B will occur in reality.” Intuitively, this just doesn’t imply that any theory based upon this set of premises

cannot differentiate between occurrences, but “true” could not be differentiated from “false.” But how can

we know when a set of premises has this worst case scenario property?

Theorem 2.10.2 A nonempty set of premises A1, . . . , An is inconsistent if and only if A1, . . . , An |= B

for every B ∈ L.

Proof. Let A1, . . . , An be inconsistent and any B ∈ L. Then there is some C ∈ L such that A1, . . . , An |=

C∧(¬C). Considering any assignment a to the atoms in C and B, then v(C∧(¬C)) = F. Hence, C∧(¬C) |= B.

Application of theorem 2.8.4 (ii) yields A1, . . . , An |= B.

Conversely, simply let the formula in L be C∧(¬C). Then A1, . . . , An |= C∧(¬C) satisfies the definition.

Corollary 2.10.2.1 A nonempty set of premises A1, . . . , An is consistent if and only if there exists some

B ∈ L such that A1, . . . , An 6|= B.

Well, the above definitions and theorems, although they give us information about the concept of

inconsistency, DO NOT GIVE any actual way to determine whether or not a set of premises is consistent.

The theorems simply say that we need to check valid consequences for infinity many formula. Not an easy

thing to do. For over 2,000 years, there was no way to determine whether or not a set of premises was

consistent except to show that human propositional deduction leads to a specific contradiction.
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Theorem 2.10.3 A nonempty set of premises A1, . . . , An is inconsistent if and only if it is not satisfiable.

Proof. Assume that A1, . . . , An is inconsistent. Thus there is some B ∈ L such that A1, . . . , An |=

B ∧ (¬B). Hence, |= (A1 ∧ · · · ∧ An) → (B ∧ (¬B)) by the Deduction theorem. But for any assignment to

atoms in Ai and B, v(B ∧ (¬B)) = F. Now let A1, . . . , An be satisfiable. Hence , there is an assigmment v

such that v(Ai) = T, i = 1, . . . , n. Extend this assignment to v′ so that it is an assignment for any different

atoms that might appear in B. Thus, v′(A1 ∧ · · · ∧ An) → (B ∧ (¬B)) = F. This contradicts the stated

Deduction theorem. Hence, inconsistency implies not satisfiable.

Conversely, suppose that A1, . . . , An is not satisfiable. Then for any B ∈ L, A1, . . . , An |= B from the

definition of satisfiable (theorem 2.8.1). By theorem 2.10.2, A1, . . . , An is inconsistent.

Corollary 2.10.3.1 A nonempty set finite of premises is consistent if and only if it is satisfiable.

Since the concept of satisfaction is dependent upon the concept of valid consequence, the same variable

substitution process (page 59) can be used for the atoms that appear in each premise. Thus when you

consider the formula variables as behaving like atoms, when inconsistency is determined, you have actually

shown that infinitely many sets of premises are inconsistent. Consistency, however, only holds for atoms

and not for the * type of variable substitution. As an example, the set P → Q, Q is a consistent set, but

P → ((¬R) ∧ R), (¬R) ∧ R is an inconsistent set. Now, it is theorem 2.10.3 and its corollary that gives a

specific and FINITE method to determine consistency. A (large sometimes) truth-table will do the job. But

we can also use a method similar to the forcing method of the previous section.

Special Method 2.10.1 The idea is to try and to pick out a specific assignment that will satisfy a set

of premises, or to show that when you select a set of premises to be T, then this ⇒ a premise to be F and,

hence, the set would be inconsistent.

(1) First, if the premises are written in formula variables then either substitute atoms for the variables

or, at the least, consider them to be atoms.

(2) Now select a premise, say A1 and let v(A1) = T. If possible select a premise that forces a large

number of atoms to have fixed values. If this is impossible, then case studies may be necessary.

(3) Now select another premise that uses the maximum number of the forced atoms and either show that

this premise has a value T or F. If it has a value F and there are no case studies then the set is inconsistent.

If it is T or you can select it to be T, then the process continues.

(4) If the process continues, then start again with (3). Again if a premise if forced to be F, then the set

is inconsistent. This comes from the fact that the other premises that have thus far been used are FORCED

to be T.

(5) If the process continues until all premises are forced to be T, then what has occurred is that you

have found an assignment that yields that the set is consistent.

(6) If there are case studies, the process is more difficult. A case study is produced when a T value for

a premise has non-fixed truth-values for the atoms. You must get a forced F for each case study for the set

to be inconsistent. If you get all premises to be T for any case study, then the set is consistent.

(7) Better still if you’ll remember what you’re trying to establish, then various short cuts can be used.

For consistency, we are trying to give a metalogic argument that there is an assignment that gives a T for

all premises. Or, for inconsistency, show that under the assumption that some premises are T, then this will

force, in all cases, some other premise to be an F.

Example 2.10.1 Determine whether or not the set of premises (A ∨ B) → (C ∧ D), (D ∨ F ) →

G, A ∨ (¬G) (written in formula variable form) is consistent. First, re-express this set in terms of atoms.

(P ∨Q)→ (R ∧ S), (S ∨ S1)→ S2, P ∨ (¬S2).
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(a) Let v(P ∨ (¬S2)) = T. Then there are three cases.

(a1), v(P ) = T, v(S2) = F ;

(a2), v(P ) = T, v(S2) = T ;

(a3), v(P ) = F, v(S2) = F.

(b) But, consider the first premise. Then v((P ∨ Q) → (R ∧ S)) = T. Now consider case (a1). Then

v(P ∨Q) = T ⇒ v(R ∧ S) = T ⇒ v(R) = v(S) = T. Still under case (a1), ⇒ v((S ∨ S1)→ S2) = F. But we

must continue for the other cases for this (b) category. Now for (a2), we have that v((S ∨ S1) → S2) = T.

Hence, we have found assignments that yield T for all premises and the set is consistent.

Example 2.10.2 Determine whether or not the set of premises A ↔ B, B → C, (¬C) ∨D, (¬A) →

D, ¬D. (written in formula variable form) is consistent. First, re-express this set in terms of atoms. P ↔

Q, Q→ R, (¬R) ∨ S, (¬P )→ S, ¬S.

(a) Let v(¬S) = T ⇒ S = F.

(b) Let v((¬R) ∨ S) = T ⇒ v(R) = F.

(c) Let v(Q→ R) = T ⇒ v(Q) = F.

(d) Let v(P ↔ Q) = T ⇒ v(P ) = F ⇒ v((¬P ) → S) = F. Thus the set is inconsistent and, hence, we

can substitute the original formula variables back into the set of premises.

If |= is associated with ordinary propositional deduction, then it should also mirror the propositional

metalogic we are using. One of the major metalogical methods we are using is called “proof by contradiction.”

This means that you assume as an additional premise the negation of the conclusion. Then if you can establish

a contradiction of anything, then the given hypotheses can be said to “logically” establish the conclusion.

The next theorem about valid consequence mirrors this notion.

Theorem 2.10.4 For any set of premises, A1, . . . , An |= B if and only if A1, . . . , An,¬B |= C ∧ (¬C)

for some C ∈ L.

Proof. Let A1, . . . , An |= B. If A1, . . . , An is inconsistent, then A1, . . . , An |= C ∧ (¬C) for all C ∈ L.

Adding any other premise such as ¬B does not alter this. So, assume that A1, . . . , An is consistent. Hence,

consider any assignment a to all the atoms such that v(Ai) = T, 1 ≤ i ≤ n and v(B) = T and such an

assignment exists. Thus for any such assignment v(¬B) = F. Consequently, for any assignment b either

v(Aj) = F for some j such that 1 ≤ j ≤ n, or all v(Ai) = T and v(¬B) = F. Hence, A1, . . . , An,¬B is not

satisfied. Hence, for some (indeed, any) C ∈ L, A1, . . . , An,¬B |= C ∧ (¬C).

Conversely, let A1, . . . , An,¬B |= C ∧ (¬C) for some C ∈ L. Then A1, . . . , An,¬B is inconsistent and

thus given any assignment a such that v(Ai) = T for each i such that 1 ≤ i ≤ n, then v(¬B) = F. Or, in

this case, v(B) = T. Consequently, A1, . . . , An |= B.

EXERCISES 2.10

1. By the special method 2.10, determine if the indicated set of premises is consistent.

(a) A→ (¬(B ∧ C)), (D ∨ E)→ G, G→ (¬(H ∨ I)), (¬C) ∧ E ∧H.

(b) (A ∨B)→ (C ∧D), (D ∨ E)→ G, A ∨ (¬G).

(c) (A→ B) ∧ (C → D), (B → D) ∧ ((¬C)→ A), (E → G) ∧ (G→ (¬D)), (¬E)→ E.

(d) (A→ (B ∧ C)) ∧ (D → (B ∧ E)), ((G→ (¬A)) ∧H)→ I, (H → I)→ (G ∧D),¬((¬C)→ E).
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2.11 Proof Theory – General Concepts.

Actually, we are investigating the propositional logic in a historically reversed order. The concept of

proof theory properly began with Frege’s Begriffschrift which appeared in 1879 and was at its extreme with

Principia Mathematica written by Whitehead and Russell from 1910 –1913. Philosophically, proof “theory,”

even though it can become very difficult, seems to the nonmathematician to be somewhat more “pure” in its

foundations since it seems to rely upon a very weak mathematical foundation if, indeed, it does have such

a foundation. However, to the mathematician this could indicate a kind of weakness in the basic tenants

associated with the concept of the formal proof. Notwithstanding these philosophical differences, basic proof

theory can be investigated without utilizing any strong mathematical procedures. Since we are studying

mathematical logic, we will not restrict our attention to the procedures used by the formal logician but,

rather, we are free to continue to employ our metamathematical concepts.

The concept of formalizing a logical argument goes back to Aristotle. But it again took over 2,000 years

before we could model, in another formal way, the various Aristotle formal logical arguments. Proof theory

first requires a natural language algorithm that gives simple rules for writing a formal proof. The rules that

are used can be checked by anyone with enough training to apply the same rules. But, in my opinion, the

most important part of proof theory is the fact that we view the process externally while the philosophical

approach views the process internally. (We study the forest, many philosophers study the trees, so to speak.)

For example, we know that every propositional formula can be replaced by an equivalent formula expressed

only in the connectives ¬ and → . Thus we can simplify our language construction process considerably.

Definition 2.11.1 (The Formal Language L′.)

(1) You start at step (2) of definition 2.2.3.

(2) Now you go to steps (3) — (6) of definition 2.2.3 but only use the ¬ and → connectives.

Notationally, the language levels constructed in definition 2.11.1 are denoted by L′n and B ∈ L′ if and

only if there is some n ∈ IN such that B ∈ L′n. Also don’t forget that level L′n contains all of the previous

levels. Clearly L′ is a proper subset of L. Also, all the definitions of size, and methods to determine size,

and simplification etc. hold for L′.

Now proof theory does not rely upon any of the concepts of truth—falsity, what will or will not occur

in reality, and the like we modeled previously. All the philosophical problems associated with such concepts

are removed. It is pure, so to speak. But as mention it relies upon a set of rules that tells us in a step-by-step

manner, hopefully understood by all, exactly what formulas we are allowed to write down and exactly what

manipulations we are allowed to perform with these formulas. It’s claimed by some that, at the least, it’s

mirroring some of the procedures the human beings actually employ to obtained a logical conclusion from a

set of premises. Proof theory is concerned with the notion of logical argument. It, of course, is also related

to the metalogical methods the human being uses. We start with the rules for a formula theorem that is

obtained from an empty set of premises. The word “theorem” as used here does not mean the metalanguage

things called “Theorems” in the previous sections. It will mean a specially located formula. We can use

formula variables and connectives to write formula schemata or schema. Each schemata would represent

infinitely many specific selections from L′. We will simply call these formulas and use the proper letters to

identify them as formula variables.

Definition 2.11.2 (A formal proof of a theorem.)

(1) A formal proof contains two FINITE COLUMNS, one of formulas Bi, the other column stating the

reason Ri you placed the formula in that step.

B1 R1

42



B2 R2

... ...

... ...

... ...

... ...

Bn Rn

The formula used represent any members of L′ and each must be obtained in the following manner.

(2) A step i in the formal proof corresponds to a specific formula Bi. It can be a specific instance of one

of the following axioms. For any formula A, B, C where as before A, B, C are formula variables (we note

that because of the way we have of writing subformula, the A, B, C can also be considered as expressed in

formula variables), write

P1 : A→ (B → A),

P2 : (A→ (B → C))→ ((A→ B)→ (A→ C)),

P3 : ((¬A)→ (¬B))→ (B → A).

(3) Formula can only be obtained by one other procedure. It’s called modus ponens and is abbreviated

by the symbol MP. It’s the only way that we can obtain a formula not of the type in (2) and is considered

to be our one rule of logical inference.

Step Bj is obtained if there are two PREVIOUS steps Bi and Bk such that

(i) Bi is of the form A,

(ii) Bk is of the form A→ B. Then

(iii) Bj is of the form B

Note that the order of the two needed previous steps Bi and Bk is not specified. All that’s needed is that

they come previous to Bj .

(4) The last step in the finite column is called a (formal) theorem and the total column of formulas is

called the (formal) proof of theorem.

(5) If a proof of a theorem E exists, then this is denote by ⊢ E.

Since we are using variables, any proof of a theorem is actually a proof for any formula you substitute for

the respective variables (i.e. infinitely many proofs for specific formula.) In our examples, problems and the

like, I won’t repeat the statement “For any A ∈ L′.” The fact that I’m using variable symbols will indicate

this.

Example 2.11.1

Show that ⊢ A→ A.

Proof.

(1) (A→ ((A→ A)→ A))→ ((A→ (A→ A))→ (A→ A)) P2

(2) A→ ((A→ A)→ A) P1

(3) (A→ (A→ A))→ (A→ A) MP (1, 2)

(4) A→ (A→ A) P1

(5) A→ A MP (3, 4)

The MP step must include the previous step numbers used for the MP step. Now any individual who

can follow the rules can check that this last formula was obtained correctly. Also, there are many other
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proofs that lead to the same result. The idea is the same as used to demonstrate a Euclidean geometry

proof, but there is no geometric intuition available. Now at any point in some other proof if you should

need the statement A→ A as one of you steps (of course, you can use another symbol for A) then you could

substitute the above finite proof just before the step is needed and re-number all steps. BUT, rather than

do this all you need to do is to write the symbol ⊢ A → A since this indicates that a proof exists. By the

way, there is stored at a university in Holland literally thousand upon thousands of formal proofs. However,

in this course almost all of the formal proofs exhibited will be needed to establish our major results. These

are to show that the formal proof of a formal theorem is equivalent to the modeling concept we call validity.

One of the major results observed by Aristotle was the logical argument he called hypothetical syllogism

or HS. We next use the above procedure to establish this. But it’s a method of introducing a formal proof

and our result is a metatheorem proof.

Theorem 2.11.1 Assume that you have two steps in a possible proof of the form (i) A → B and (j)

B → C. Then you can write down at a larger step number (iii) A→ C.

Proof.

(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...

...

(i) A→ B Ri

...

...

(j) B → C Rj

(j + 1) (B → C)→ (A→ (B → C)) P1

(j + 2) (A→ (B → C) MP (j, j + 1)

(j + 3) (A→ (B → C))→ ((A→ B)→ (A→ C)) P2

(j + 4) (A→ B)→ (A→ C) MP (j + 2, j + 3)

(j + 5) A→ C MP (i, j + 4)

Whenever we use HS, the reason is indicated by the symbol HS(i, j) in the same manner as is done for

MP. IMPORTANT FACT. In the above metatheorem that yields HS, please note that the step (j) can come

before step (i).

Example 2.11.2

⊢ (¬(¬A))→ A

(1) (¬(¬A))→ ((¬(¬(¬(¬A)))) → (¬(¬A))) P1

(2) ((¬(¬(¬(¬A)))) → (¬(¬A))) → ((¬A)→ (¬(¬(¬A)))) ....

(3) (¬(¬A))→ ((¬A)→ (¬(¬(¬A)))) HS(1, 2)

(4) ((¬A)→ (¬(¬(¬A)))) → ((¬(¬A))→ A) ....

(5) (¬(¬A))→ ((¬(¬A)) → A) HS( , )

(6) ((¬(¬A))→ ((¬(¬A)) → A))→

(((¬(¬A)) → (¬(¬A)))→ ((¬(¬A) → A))) P2

(7) ((¬(¬A))→ (¬(¬A))) → ((¬(¬A))→ A) MP ( , )

(8) ((¬(¬A))→ (((¬(¬A)) → (¬(¬A))) → (¬(¬A))))→ (((¬(¬A))→

((¬(¬A)) → (¬(¬A))))→ ((¬(¬A)) → (¬(¬A)))) P2

(9) (¬(¬A))→ (((¬(¬A)) → (¬(¬A)))→ (¬(¬A))) ....

(10) ((¬(¬A)) → ((¬(¬A))→ (¬(¬A)))) →

((¬(¬A)) → (¬(¬A))) MP ( , )
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(11) (¬(¬A))→ ((¬(¬A))→ (¬(¬A))) ....

(12) (¬(¬A))→ (¬(¬A)) ....

(13) (¬(¬A))→ A MP ( , )

EXERCISES 2.11

(1) Rewrite the proof of ⊢ (¬(¬A))→ A as it appears in example 2.11.2 filling in the missing reasons. Some

may be examples.

(2) Give formal proofs of the next two theorems. You may use any previously established ⊢, or method. You

must state all your reasons.

(a) ⊢ A→ (¬(¬A)).

(b) ⊢ (¬B)→ (B → A).

2.12 Demonstrations, Deductions From Premises.

Given a nonempty set premises Γ (not necessarily finite), then what is the classical procedure employed

to deduce a formula A from Γ? Actually, we are only allowed to do a little bit more than we are allowed

to do in order to give a proof of a formal theorem. The next definition gives the one additional rule that

is assumed to be adjoined to definition 2.11.2 (formal proof of a theorem) in order to demonstrate that a

formula is deducible from a given set of premises.

Definition 2.12.1 (Deduction from premises.) A formula B ∈ L′ is said to be deduced from a set of Γ

or a consequence of Γ, where Γ is a not necessary finite (but possibly empty) set of premises, if B is the last

step in a FINITE column of steps and reasons as described in definition 2.11.2 where you are allowed one

additional rule.

(1) You may write down as any step a single instance of a formula as it appears in Γ, where the premises

are written in formula variable form. The reason given is premise.

(2) The finite column with reasons is called a demonstration.

Observe that whenever we have written a demonstration, because of the use of variables, we have actually

written infinitely many demonstrations. Deduction from a set of premises is what one usually considers when

one uses the terminology “a logical argument.” Now a proof of a theorem is a demonstration from an empty

set of premises. When B is deduced from the set Γ, then this is symbolized by writing Γ ⊢ B. The very

straightforward definition 2.12.1 yields the following simple results.

Theorem 2.12.1 Assume that Γ is any set of formula.

(a) If A ∈ Γ, or A is an instance of an axiom, then Γ ⊢ A.

(b) If Γ ⊢ A and Γ ⊢ A→ B, then Γ ⊢ B.

(c) If ⊢ A, then Γ ⊢ A.

(d) If Γ is empty and Γ ⊢ A, then ⊢ A.

(e) If Γ ⊢ A and D is any set of formula, then Γ ∪D ⊢ A.

(f) If Γ ⊢ A, then there exists some finite subset D of Γ such that D ⊢ A.

Proof. (A) Let A ∈ Γ. Then one step consisting of the line “(1) A. . . . . . . Premises” is a demonstration

for A. If A is an axiom, then one step from definition 2.11.2 yields a demonstration.
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(b) Let B1, . . . , Bm be the steps in a demonstration that A is deducible from Γ. Then Bm = A. Let

C1, . . . , Ck be a demonstration that A→ B is deducible from Γ. Now after writing the steps Bm+i = C1, i =

1, 2, . . . , k add the step Ck+1 : B. . . . . . . MP (m, m + k). Then this yields a demonstration that B is

deducible from Γ.

(c) Obvious.

(d) Since Γ is empty, rule (1) of definition 2.11.2 has no application. Hence, only the rules for a proof

of a formal theorem have been used and this result follows.

(e) We have, possibly, used formulas from Γ to deduce A. We have, possibly, used formulas from Γ∪D

to deduce A.

(f) Assume that Γ ⊢ A. Now let D be the set of all premises that have been utilized as a specific step

marked “premise” that appears in the demonstration Γ ⊢ A. Obviously, we may replace Γ with D and have

not altered the demonstration.

Example 2.12.1 To show that (¬(¬A)) ⊢ A.

(1) (¬(¬A)) Premise

(2) (¬(¬A))→ ((¬(¬(¬(¬A)))) → (¬(¬A))) .....

(3) (¬(¬(¬(¬A)))) → (¬(¬A)) MP ( , )

(4) ((¬(¬(¬(¬A)))) → (¬(¬A))) → ((¬A)→ (¬(¬(¬A)))) .....

(5) (¬A)→ (¬(¬(¬A))) MP ( , )

(6) ((¬A)→ (¬(¬(¬A)))) → ((¬(¬A))→ A) .....

(7) (¬(¬A))→ A MP ( , )

(8) A MP ( , )

Notice that example 2.12.1 and example 2.11.3 show that ⊢ (¬(¬A)) → A involve similar formulas.
Moreover, we have not used HS in example 2.12.1. Indeed, if we had actually made the HS substitution into
steps of example 2.11.3, then we would have at the least 21 steps in example 2.11.3. Even though we have
not considered as yet any possibilities that the semantical methods which have previously been employed
might be equivalent in some sense to the pure proof methods of this and section 2.11, it would certainly be of
considerable significance if there was some kind of deduction theorem for our proof theory. We can wonder
if it might be possible to substitute for |= in the metatheorem |= (¬(¬A)) → A if and only if (¬(¬A)) |= A
the symbol ⊢? Further, it’s possible to stop at this point and, after a lot of formal work, introduce you to
the actual type of deduction process used to create a universe. But to avoid the formal proofs of the needed
special formal theorems, I’m delaying this introduction until we develop the complete equivalence of valid
formulas and formal theorems. I’ll answer the previous question by establishing one of the most powerful
procedures used to show this equivalence.

EXERCISES 2.12

(1) Rewrite example 2.12.1 filling in the missing reasons.

(2) Complete the following deductions from the indicated set of premises. Write down the missing steps

and/or reasons.

Show that A→ B, B → C ⊢ A→ C.

(1) (B → C)→ (A→ (B → C)) P1

(2) B → C .....

(3) MP (1, 2)

(4) (A→ (B → C))→ ((A→ B)→ (A→ C)) .....

(5) (A→ B)→ (A→ C) .....
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(6) Premises

(7) A→ C .....

(b) Use 2(b) of exercise 2.11, to show in THREE steps that (¬A) ⊢ A→ B.

(c) Use the fact that ⊢ (B → A)→ ((¬A)→ (¬B)) and any previous results to show that ¬(A→ B) ⊢ B →

A.

(1) ¬(A→ B) Premise

(2) ⊢ (B → (A→ B))→ ((¬(A→ B))→ (¬B)) Given

(3) P1

(4) .....

(5) (¬B) .....

(6) (¬B)→ (B → A) .....

(7) B → A .....

2.13 The Deduction Theorem.

The Deduction Theorem is so vital to logic that some mathematicians, such as Tarski, use it as a basic

axiom for different logical systems. The following metaproof was first presented in 1930 and it has been

simplified by your present author. This simplification allows it to be extended easily to cover other types of

logical systems. What this theorem does is to give you a step by step process to change a formal proof into

another formal proof.

Theorem 2.13.1 (The Deduction Theorem) Let Γ a collection of formula from L′ written in formula

variable form. Assume that formula variables A, B represent arbitrary members of L′. Let Γ ∪ {A} be the

set of premises the contains and only contains the members of Γ and A. Then Γ ∪ {A} ⊢ B if and only if

Γ ⊢ A→ B.

Proof. For the necessity, assume that Γ ∪ {A} ⊢ B. Then there exists a finite A1, . . . , An ∈ Γ such that

A1, . . . , An, A ⊢ B. (Of course no actual member of A1, . . . , An need to be used.) Assume that every step

has been written with the reasons as either a premise, or an axiom, or MP.

(a) Renumber, say in red, all of the steps that have reasons stated as premises or axioms. Assume that

there are k such steps. Note that there must be at least three steps for MP to be a reason, and then it could

only occur in step 3. We now construct a new demonstration.

Case (m = 1). There is only one case. Let the formula be B1. Hence, B1 = B.

Subcase (1). Let B1 be a premise Aj . Assume that Aj 6= A. Now keep B1 = Aj in the new

demonstration and insert the two indicated steps (2) (3).

(1) B1 = Aj premise

(2) Aj → (A→ Aj) P1

(3) A→ Aj = A→ B MP

Now notice that the A, in these three steps does not appear as a single formula in a step.

Subcase (2). Assume that B1 = A. Then insert the five steps that yields ⊢ A → A (Example

2.11.1.) into the new demonstration. Now do not place the step B1 = A in the new demonstration. Again

we have as the last step A→ A and A does not appear as any step for in this new demonstration.

Subcase (3). Let B1 = C be any axiom. Simply repeat subcases (1) (2) and we have as a last

step A→ C and A does not appear in any step.
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Now we do the remaining by induction. Suppose that you have used m of the original renumbered steps

to thus far construct the new demonstration. Now consider step number Bm+1. Well, just apply the same

subcase procedures that are used under case m = 1. The actual induction hypothesis is vacuously employed

(i.e. not employed). Thus by induction, for any k steps we have found a way to use all non-MP steps of

the original demonstration to construct a new demonstration in such a manner that no step in the new

demonstration has, thus far, only A as its formula. Further, all original non-MP steps Bi are replaced in the

new demonstration by A→ Bi. Thus if the last formula Bn in the original demonstration is a non-MP step,

then Bn = B, and the last step in the new demonstration is A→ B. We must now use the original MP steps

to continue the new demonstration construction since A might be in the original demonstration an MP step

or the last step of the original demonstration might be an MP step.

After using all of the original non-MP steps, we now renumber, for reference, all the original MP steps.

We now define by induction on the number m of MP steps a procedure which will complete our proof.

Case (m = 1) We have that there is only one application of MP. Let Bj be this original MP step.

Then two of the original previous steps in the original demonstration, say Bg and Bh, were employed and

Bh = Bg → Bj . We have, however, in the new demonstration used these to construct the formula and we

have not used the original Bj step. Now use the two new steps (i) A → Bg, and (ii) A → (Bg → Bj) and

insert immediately after new step (ii) the following:

(iii) (A→ (Bg → Bj))→ ((A→ Bg)→ (A→ Bj)) P2

(iv) (A→ Bg)→ (A→ Bj) MP (ii, iii)

(v) A→ Bj MP (i, iv)

Now do not include the original Bj in the new demonstration just as in case where Bj = A.

Assume the induction hypothesis that we have m of the original MP steps used in the original demon-

stration now altered so that the appear as A→ . . ..

Case (m + 1). Consider MP original step Bm+1. Hence, prior steps in the old demonstration, say

Bg, Bh = Bg → Bm+1 are utilized to obtain the Bm+1 formula. However, all the original steps up to

but not including the Bm+1 have been replaced by a new step in our new demonstration in such a manner

they now look like (vi) A → Bg and (viii) A → (Bg → Bm+1) no matter how these step were originally

obtained. (The induction hypothesis is necessary at this point.) Now follow the exact same insertion process

as in the case m = 1. This yields a new step A→ Bm+1 constructed from the original Bm+1. Consequently, by

induction, we have defined a procedure by which all the original steps Bk have been used to construct a new

demonstration and if Bn was one of the original formula, then it now appears in the new demonstration as

A→ Bn. Further, no step in the new demonstration is the single formula A. This yields a newly constructed

demonstration that A1, . . . , An ⊢ A→ B.

For the sufficiency, assume that Γ ⊢ A→ B. The final step is Bk = A→ B. Now add the following two

steps. Bk+1 = A (premises), and Bk+1 = B, MP (k, k + 1). This yields Γ ∪ {A} ⊢ B.

Corollary 2.13.1.1 A1, . . . , An ⊢ B if and only if ⊢ (A1 → (A2 → · · · (An → B) · · ·)).

Now in the example on the next page, I follow the rules laid out within the proof of the Deduction

Theorem. The formula from the original demonstration used as a step in the new construction are represented

in roman type. Formula from the original demonstration used to obtain the new steps BUT not included

in the new demonstration are in Roman Type, BUT are placed between square brackets [ ]. In the case

⊢ A→ A, I will not include all the steps.

Example 2.13.1

(I) A→ B, B → C, A ⊢ C.
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(1) A→ B Premise

(2) B → C Premise

(3) A Premise

(4) B MP (1, 3)

(5) C MP (2, 4)

We now construct from (I) a new demonstration that

(II) A→ B, B → C,⊢ A→ C.

(1) A→ B Premise

(2) (A→ B)→ (A→ (A→ B)) P1

(3) A→ (A→ B) MP (1, 2)

(4) B→ C Premise

(5) (B → C)→ (A→ (B → C)) P1

(6) A→ (B → C) MP (4, 5)

(7) ⊢ A→ A Example 2.11.1

[Bg = A, Bj = B]

(8) (A→ (A→ B))→ ((A→ A)→ (A→ B)) P2

(9) (A→ A)→ (A→ B) MP (3, 8)

(10) A→ B MP (7, 9)

[Bg = B, Bj = C]

(11) (A→ (B → C))→ ((A→ B)→ (A→ C)) P2

(12) (A→ B)→ (A→ C) MP (6, 11)

(13) A→ C MP (10, 12)

I hope this example is sufficient. But note that although this gives a demonstration, it need not give

the most efficient demonstration.

EXERCISES 2.13

1. Give a reason why we should NOT use the Deduction theorem as a reason that from A ⊢ A, we have

⊢ A→ A.

2. Complete the following formal proofs of the indicated theorems by application of the Deduction Theorem

in order to insert premises. You will also need to insert, in the usual manner, possible ⊢ statements obtained

previously. Please give reasons.

(A) Show that ⊢ (B → A)→ ((¬A)→ (¬B))

(1) B → A Premise and D. Thm.

(2) ⊢ (· · · · · ·)→ B Ex. 2.12.1 and D. Thm.

(3) (¬(¬B))→ A HS( , )

(4)

(5) (¬(¬B))→ (¬(¬A)) .....

(6) ((¬(¬B))→ (· · · · · ·))→ ((¬A)→ (¬B)) .....

(7) · · · · · · · · · .....

(8) · · · · · · · · · D. Thm.

(B) Show that ⊢ ((A→ B)→ A)→ A

(1) (A→ B)→ A .....
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(2) · · · · · · · · · D.Thm. and Ex 2.12.2b

(3) (¬A)→ A .....

(4) (¬A)→ (¬(¬((¬A) → A))→ (¬A)) ....

(5) (¬(¬((¬A) → A))→ (¬A))→ · · · P3

(6) (¬A)→ (A→ · · · ((¬A)→ · · · · · ·)) .....

(7) ((¬A)→ (A→ (¬((¬A)→ A))))→ (((¬A)→ A)→

((¬A)→ (¬((¬A)→ A)))) .....

(8) · · · · · · · · · MP ( , )

(9) · · · · · · · · · MP (3, 8)

(10) ((¬A)→ (¬(· · · · · ·)))→ (((¬A)→ · · ·)→ · · · · · ·) P3

(11) · · · · · · · · · MP ( , )

(12) A .....

(13) ⊢ · · · · · · · · · D. Thm.

[3] Use the following demonstration that A→ B, A ⊢ B and construct, as in example 2.13.1, by use of the

procedures within the metaproof of the Deduction Theorem a formal demonstration that A→ B ⊢ A→ B.

[It’s obvious that this will not give the most efficient demonstration.]

A→ B, A ⊢ B

(1) A Premise

(2) A→ B Premise

(3) B MP (1, 2)

2.14 Deducibility Relations or |= implies ⊢ almost.

The Deduction Theorem for formal demonstrations seems to imply that the semantical concept of |=

and the proof-theoretic concept of ⊢ are closely related for they share many of the same propositional facts.

In this section, we begin the study which will establish exactly how these two seeming distinct concepts

are related. Keep in mind, however, that |= depends upon the mirroring of the classical truth-falsity, will

occur-won’t occur notion while ⊢ is dependent entirely upon the strict formalistic manipulation of formulas.

We are in need of two more formal proofs.

Example 2.14.1 ⊢ A→ ((A→ B)→ B).

(1) A Premise

(2) A→ B Premise

(3) B MP (1, 2)

(4) ⊢ A→ ((A→ B)→ B) D. Thm.

Example 2.14.2 ⊢ A→ ((¬B)→ (¬(A→ B))).

(1) ⊢ A→ ((A→ B)→ B) Ex. 2.14.1

(2) ((A→ B)→ B)→ ((¬B)→ (¬(A→ B))) Exer. 2.13 (A)

(3) A→ ((¬B)→ (¬(A→ B))) HS(1, 2)

The theorem we will need is that of Example 2.14.2. As done previously, the formal proofs or demon-

strations are done in formula variables. They hold for any formula consistently substituted for the variables.

In the semantics sections, most but not all deduction-type concepts such as validity and valid consequences
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also hold for formula variables. Non-validity was a notion that did not hold in formula variable form. In

what follows, we again assume that we are working in formula variables. Of course, they also hold for atoms

substituted for these variables. We use the notation for formula variables. Let A be a formula written in the

following manner. The formula variables A1, . . . , An and only these formula variables are used to construct

A with the L′ propositional connectives ¬, → . Thus A is written in formula variables. Since L′ ⊂ L, the

truth-table concept can be applied to L′. Now let a be an assignment to the atoms that would appear in

each Ai, i = 1, . . . , n when specific formula are substituted for the formula variables.

Definition 2.14.1 For each i, we define a formula A′i as follows:

(i) if v(Ai) = T, then A′i = Ai.

(ii) If v(Ai) = F, then A′i = (¬Ai).

(iii) If v(A) = T, then A′ = A.

(iv) If v(A) = F, then A′ = (¬A).

In the truth-table for A, reading from left to right, you have all the atoms then the formula Ai and

finally the formula A. Then we calculate the A truth-value from the Ai, with possibly additional columns if

needed.

Definition 2.14.2 (Deducibility relations.) For each row j of the truth-table, there are truth-values for

each of the Ai and A. These generate the formula A′i and A′, where the Ai are the formula that comprise A.

(i) The jth Deducibility relation is A′1, . . . , A
′

i ⊢ A′.

Theorem 2.14.1. Given A1, . . . , An and A as defined above. Then for any row of the corresponding

truth-table for A generated by the truth-values for A1, . . . , An, we have that A′1, . . . , A
′

n ⊢ A′.

Proof. First, assume that each Ai is an atom and A is expressed in atomic form. This allows for

induction and for all the possible truth-values for non-atomic Ai. We now do an induction proof on the size

of A.

Let size(A) = 0. The A = Ai for some i (possible more than one). As we know A1, . . . An ⊢ Ai for any

i, i = 1, . . . , n. Thus the result follows by leaving the original Ai or replacing it with ¬Ai as the case may

be.

Assume the induction hypotheses (in strong form) that the result holds for any formula A of size ≤ m

where m > 0. Let size(A) = m + 1.

There are two cases. (i) The formula A = ¬B, or case (ii) A = B → C, where size(B), size(C) ≤ m.

Note that by the induction hypothesis if q1, . . . , qk are the atoms in B, then q′1, . . . , q
′

k ⊢ B′. But adding

any other finite set of atoms does not change this statement. Hence, A′1, . . . , A
′

n ⊢ B′. In like manner,

A′1, . . . , A
′

n ⊢ C′.

Case (i). Let A = (¬B) Then (a), suppose that v(B) = T. Then B′ = B and v(A) = F. Hence, A′ =

(¬A) = (¬(¬B)). To the demonstration that A′1, . . . , A
′

n ⊢ B′ = B adjoin the proof that ⊢ B → (¬(¬B)).

Then consider one MP step. This yields the formula (¬(¬B)) = A′. Consequently, A′1, . . . , A
′

n ⊢ A′.

Subcase (b). Let v(B) = F. Then v(A) = T yields that A = A′. Hence, A′1, . . . , A
′

n ⊢ B′ = (¬B) = A =

A′.

For case (ii), let (a), v(C) = T. Thus v(A) = T and C′ = C, A′ = B → C. Hence, A′1, . . . , A
′

n ⊢ C. Now

add the steps ⊢ C → (B → C) and MP yields B → C. Consequently, A′1, . . . , A
′

n ⊢ B → C = A′.

Now, let (b) v(B) = F. Then v(A) = T, B′ = (¬B), A′ = A = B → C. Then consider A′1, . . . , A
′

n ⊢

B′ = (¬B) and adjoin to this proof the proof of ⊢ (¬B) → (B → C). (Exercise 2.12.2b) Then MP yields

A′1, . . . , A
′

n ⊢ B → C = A′.
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Next part (c) requires v(B) = T, v(C) = F. Then v(A) = F, B′ = B, C′ = (¬C), A′ = (¬A) = (¬(B →

C)). Using both demonstrations for A′1, . . . , A
′

n ⊢ B′ and for A′1, . . . , A
′

n ⊢ C′ and the result of Example

2.14.2 that ⊢ B → ((¬C)→ (¬(B → C))), two applications of MP yields A′1, . . . , A
′

n ⊢ (¬(B → C)) = A′. By

induction, the proof is complete for atomic Ai. Note that the * substitution process holds if done throughout

each step of the formal proof. Applying this process, the result holds in general.

Examples 2.14.3 Let A = B → (¬C). Then

B C A

T T F

T F T

F T T

F F T

Deducibility relations

(a) B, C ⊢ (¬(B → (¬C))), (b) B, (¬C) ⊢ B → (¬C),

(c) (¬B), C ⊢ B → (¬C), (d) (¬B), (¬C) ⊢ B → (¬C).

EXERCISES 2.14

1. For the following formula, write as in my example all of the possible deducibility relations.

(a) A = (¬B)→ (¬C). (b) A = B → C. (c) A = B → (C → B). (d) A = B → (¬(C → D)).

2.15 The Completeness Theorem.

One of our major goals is now at hand. We wish to show that |= and that ⊢ mean the same thing. As

I mentioned, I’m presenting only the necessary formal theorems that will establish this fact. We need just

one more. This will be example 2.15.4. We’ll do this in a few small steps.

Example 2.15.1

(¬A)→ A, (¬A) ⊢ B or ⊢ ((¬A)→ A)→ ((¬A)→ B).

(1) (¬A)→ A Premise

(2) (¬A) Premise

(3) A MP (1, 2)

(4) ⊢ (¬A)→ (A→ B) Exer. 2.11 (2b)

(5) A→ B MP (2, 4)

(6) B MP (3, 6)

Example 2.15.2

B → C ⊢ (¬(¬B))→ C or ⊢ (B → C)→ ((¬(¬B))→ C)

(1) B → C Premise

(2) (¬(¬B))→ B Exam. 2.11.3
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(3) (¬(¬B))→ C HS(1, 2)

Example 2.15.3

(¬A)→ A ⊢ A or ⊢ ((¬A)→ A)→ A

(1) (¬A)→ ((A→ A)→ (¬A)) P1

(2) ((¬(¬(A→ A))→ (¬A))→ (¬A))→ (A→ (¬(A→ A))) P3

(3) ⊢ ((A→ A)→ (¬A))→ (¬(¬(A→ A))→ (¬A))) Exam. 2.15.2

(4) ((A→ A)→ (¬A))→ (A→ (¬(A→ A))) HS(3, 2)

((5) (¬A)→ (A→ (¬(A→ A))) HS(1, 4)

(6) ⊢ ((¬A)→ A)→ ((¬A)→ (¬(A→ A))) Exam. 2.15.1

(7) (¬A)→ A Premise

(8) (¬A)→ (¬(A→ A)) MP (6, 7)

(9) ((¬A)→ (¬(A→ A)))→ ((A→ A)→ A) P3

(10) (A→ A)→ A MP (8, 9)

(11) ⊢ A→ A Exam. 2.11.1

(12) A MP (10, 11)

Example 2.15.4

A→ B, (¬A)→ B ⊢ B or ⊢ (A→ B)→ (((¬A)→ B)→ B)

(1) A→ B Premise

(2) (¬A)→ B Premise

(3) ⊢ B → (¬(¬B)) Exer. 2.11. 2(a)

(4) (¬A)→ (¬(¬B)) HS(2, 3)

(5) ((¬A)→ (¬(¬B))) → ((¬B)→ A) P3

(6) (¬B)→ A MP (4, 5)

(7) (¬B)→ B HS(6, 1)

(8) ((¬B)→ B)→ B Exam. 2.15.3

(9) B MP (7, 8

The next two results completely relate |= and ⊢ .

Theorem 2.15.1 (Completeness Theorem) If A ∈ L′ and |= A (in L), then ⊢ A.

Proof. Note that L′ ⊂ L. Now assume A ∈ L′ and |= A. We use an illustration that shows exactly

how an explicit proof for ⊢ A can be constructed. The process is a reduction process and this illustration

can be easily extended to a formally stated reduction processes. Let P1, P2, P3 be the atoms in A and

T = ⊢ (Pi → B)→ (((¬Pi)→ B)→ B). The ordering of the construction process is 0, followed by 1, then

2, then 3 and finally followed by 4. First, write done the formal steps that lead to each of the following

deducibility relations and then construct, in each case using the Deduction Theorem, the forms 0.

(1) P1, P2, P3 ⊢ AD.Thm
⇒

0 ⊢ P1 → (P2 → (P3 → A))

(2) P1, P2,¬P3 ⊢ AD.Thm
⇒

0 ⊢ P1 → (P2 → ((¬P3)→ A))

(3) P1,¬P2, P3 ⊢ AD.Thm
⇒

0 ⊢ P1 → ((¬P2)→ (P3 → A))
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(4) P1,¬P2,¬P3 ⊢ AD.Thm
⇒

0 ⊢ P1 → ((¬P2)→ ((¬P3)→ A))

(5) ¬P1, P2, P3 ⊢ AD.Thm
⇒

0 ⊢ (¬P1)→ (P2 → (P3 → A))

(6) ¬P1, P2,¬P3 ⊢ AD.Thm
⇒

0 ⊢ (¬P1)→ (P2 → ((¬P3)→ A))

(7) ¬P1,¬P2, P3 ⊢ AD.Thm
⇒

0 ⊢ (¬P1)→ ((¬P2)→ (P3 → A))

(8) ¬P1,¬P2,¬P3 ⊢ AD.Thm
⇒

0 ⊢ (¬P1)→ ((¬P2)→ ((¬P3)→ A))

1 Using (1) (5), insert T , MP, MP (a) ⇒⊢ P2 → (P3 → A)

1 Using (2) (6), insert T , MP, MP (b) ⇒⊢ P2 → ((¬P3)→ A))

1 Using (3) (7), insert T , MP, MP (c) ⇒⊢ (¬P2)→ (P3 → A)

1 Using (4) (8), insert T , MP, MP (d) ⇒⊢ (¬P2)→ ((¬P3)→ A))

2 Using (a) (c), insert T , MP, MP (e) ⇒⊢ P3 → A

2 Using (b) (d), insert T , MP, MP (f) ⇒⊢ (¬P3)→ A

3 Using (e) (f), insert T , MP, MP ⇒⊢ A

Using this illustration, it follows that if P1, P2, . . . , Pk are the atoms in A and we let P0 = A, then,

using the 2k deducibility relations to obtain the combined steps that yield the statements 0, each of the

steps of the form j ≤ k, will reduce the problem, by including additional steps, to one where only the forms

⊢ P ′k−j → (· · · (P ′k → P0) · · ·) occur. In this case, each P ′m, j ≤ m ≤ k, will be either a Pm or a ¬Pm and

reading from left-to-right will be, for each row of a standard truth table, the same forms P ′k−j, . . . , P
′

k as

constructed by Definition 2.14.2. After k applications of this process we have a formal proof, without any

need for the insertion of premises, that has the last step P0 = A.

Theorem 2.15.2 (Soundness Theorem) If A ∈ L′ and ⊢ A, then |= A.

Proof. Note that each instance of the axioms P1, P2, P3 is a valid formula. Also, we have that |= A

and |= A → B, then |= B. Thus at each step in the proof of for ⊢ A, we can insert correctly to the left of

the formula the symbol |= . Since the last step in the proof is A, then we can correctly write |= A.

Corollary 2.15.2.1 Let {A1, . . . , An, A} ⊂ L′. Then A1, . . . , An ⊢ A if and only if A1, . . . , An |= A.

Proof. By repeated application of deduction theorem and theorem 2.8.1 (a).

Due to these last two theorems, we can identify the connectives which we have used in L but not in L′

with equivalent formula from L′. Hence define A ∨B by (¬A) → B, A ∧B by (¬(A → (¬B))) and A↔ B

by (A→ B) ∧ (B → A).

There is a slight difference between the concept for L′ we denote by Γ ⊢ A and the concept Γ =

{A1, . . . , An} |= A. The concept Γ ⊢ A includes the possibility that Γ is infinite not just finite. Shortly,

we’ll be able to extend Γ |= A to the possibility that Γ is infinite. Before we do this however, I can, at last,

introduce you to the very first basic steps in the generation of a logical operator that mirrors a physical-like

process that will create universes.

2.16 Consequence Operators

In set theory, if you are given a set of anything A, like a set of formula from L′, then another set is

very easily generated. The set is denoted by P(A). This set is the set of all subsets of A. In the finite

case, suppose that A = {a, b, c}. Letting ∅ denote the empty set, then the set of all subsets of A is P(A) =

{∅, A, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. Notice that this set has 8 members. Indeed, if any set has n members,

then P(A) has 2n members. Obviously, if A is not finite, then P(A) is not finite.
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Most logical processes, like ⊢, satisfy a very basic set of process axioms. Notice that you can consider

Γ ⊢ B as a type of function. First, the entire process that yields a demonstration is done upon subsets of

A. When the subset is ∅, you get a formal theorem. The set of ALL theorems or deductions from a give

Γ is a subset of A. Let ∆ denote the set of all the deductions that can be obtained from Γ by our entire

deductive process. Then can we get anything new B 6∈ ∆ by considering the premises Γ∪∆? Well, suppose

we can and, of course, B is not a theorem. Then there is a finite set of formula from either Γ or ∆ that is

used in the demonstration. Suppose that from ∆ you have D1, . . . , Dm, where we may assume that these

are not theorems and they are used in the proof. But each of these comes from a proof using members from

Γ. So, just substitute for each occurrence of Di its proof. Then you have a proof of B using only members

of Γ. Thus you cannot get any more deductions by adjoining the set of all deductions to the original set of

premises.

So, what have we determined about the ⊢ process? Well, to express what we have learned

mathematically, consider a function C with the domain the set of all premises. But, this is just P(L′).

Then the codomain, the set of all deductions ∆ is also a subset of P(L′).

(1) C has as its domain P(L′) and its range is contained in P(L′).

(2) Since a one step demonstration yields a premise, then for each B ∈ P(L′), B ⊂ C(B).

(3) From the above discussion, for each B ∈ P(L′), C(C(B)) = C(B).

(4) Theorem 2.12.1 (f) or our above discussion states that if B ∈ C(A) then there exists a finite subset

D of A such that B ∈ C(D).

Any function that satisfies, (1), (2), (3), (4) is called a consequence operator. The important thing to

know is that ⊢ can be replace by such a consequence operator with additional axioms. For example, (5) for

each A, B, C ∈ L′, the set of all P1, the set of all P2, and the set of all P3 form the set C(∅). Then (6) for

each A ∈ P(L′), if A, A→ B ∈ C(A), then B ∈ C(A).

What mirrors the physical-like behavior that creates a universe are very special type of consequence

operators, one of which is denoted by ∗S. Operator ∗S is basically determined by a very simple logical

process S. It’s basis uses our description for ⊢ including (6) (our MP). But a different set of axioms.

These axioms are actually four very simple theorems from the language L′ with the definition for ∧. The

completeness theorem tells us that they are theorems in P(L′). Specifically, they are

(1) (A ∧ (B ∧C))→ ((A ∧B) ∧ C).

(2) ((A ∧B) ∧ C)→ (A ∧ (B ∧ C)).

(3) (A ∧B)→ A.

(4) (A ∧B)→ B.

It turns out that every know propositional deduction used throughout all the physical sciences, if they

are different from the one we are studying, have (1) – (4) as theorems.

Consequence operator S, can be generated by the consequence operators Sn, where the only difference

between S and Sn is that for Sn the MP step is restricted to level L′n. Although for A ∈ P(L′) if A ∈ S(A)

there exists some n such that A ∈ Sn(A), it is also true that for each n ≥ 3 Sn(A) ⊂ S(A) and Sn(A) 6= S(A).

When a consequence operator like Sn has this property then S said to be stronger than Sn.

Now I can’t go any further in discussing the very special consequence operator that generates a universe.

Why? Since the language L′ and the deductive process ⊢ must be greatly expanded so that it is more

expressive. Indeed, so that we can express almost everything within mathematics with our language. But,
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after we have done this, then in the very last section of this book, I’ll be able to show the mathematical

existence of, at the least, one of these universe generating consequence operators.

EXERCISE 2.16

In the following, let C be a consequence operator defined on P(L)′. See is you can give an argument that

establishes the following additional consequence properties based, originally, upon the axioms.

1. Let A, B be two sets of premises taken from L′. Suppose that A ⊂ B. Show that C(A) ⊂ C(B).

2. Recall that A ∪ B, the “union” set, is the set of all formula a formula A ∈ A ∪ B if and only if A ∈ A or

A ∈ B. Suppose that A ∪ B ⊂ L′. Show that A ⊂ C(B) if and only if C(A) ⊂ C(B).

3. Suppose that A ∪ B ⊂ L′. Show that C(A ∪ B) = C(A ∪ C(B)) = C(C(A ∪ C(B)).

Some other properties of idempotent operators.

We use the consequence operator as our prototype. Recall that an operator C (function, map, etc.) is

idempotent if for each X ∈ P(L), C(C(X)) = C(X).

Let S1 = {C(X) | X ∈ P(L)}, S2 = {Y | Y = C(Y ) ∈ P(L)}.

Theorem 1. The sets S1 = S2.

Proof. Let Y = C(X) ∈ S1. Then Y ∈ P(L) and Y = C(C(X)) = C(Y ). Thus Y ∈ S2.

Conversely, let Y = C(Y ) ∈ P(L). Then Y ∈ S1. Hence, S1 = S2.

We can ask if C(X1) = C(X2), does this matter? The answer is no since if Y = C(X1) = C(X2) =

C(C(X1)) = C(C(X2)) = C(Y ) ∈ S2. There is a significant unification U for any collection of physical

theories The definition of U required that we consider the set {Y | X ⊂ Y = C1(Y ) = C2(Y )}.

Note the identity map I(X) = X for each X ∈ P(L) is idempotent. (Indeed, a consequence operator if

we are considering only these objects.) So, one can inquire as to when a given C has an inverse C← = C−1.

As usual C−1 is an inverse if C−1(C(X)) = I(X).

Theorem 2. The idempotent operator C has an inverse if and only if C = I.

Proof. Suppose that idempotent C has an inverse C−1. Then for each X ∈ P(L), X = I(X) =

(C−1C)(X) = C−1(C(X)) = C−1(C(C(X))) = (C−1C)(C(X)) = I(C(X)) = C(X). Thus, from the defini-

tion of the identity operator, C = I.

Corollary 2.1. The only idempotent operator C that is one-to-one is the identity.

This corollary is an interesting result for consequence operators since all science-community the-

ories are generated by logic-systems which generate corresponding consequence operators. (You can

find the definition of a logic-system in my published paper “Hyperfinite and standard unifications for

physics theories,” Internat. J. Math. Math. Sci, 28(2)(2001), 17-36 with an archived version at

http://www.arxiv.org/abs/physics/0105012). So, for a the logic system used by any science-community,

there are always two distinct sets of hypotheses X1, X2 such that C(X1) = C(X2).

Another example of idempotent operators are some matrices. Can we apply these notions to functions

that take real or complex numbers and yield real or complex numbers? There is a result that states that

the only non-constant idempotent linear real valued function defined on, at least, [b, d], b, 0, d > 0 and

continuous at c ∈ (b, d) is f(x) = x. Can you “prove” this? It also turns out in this case that if you want

this identity form (i.e. f(x) = x), then continuity at some x = c is necessary. In fact under the axiom of

set theory called The Axiom of Choice, there is a function defined on all the reals that has either a rational
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value or is equal to zero for each x, is, clearly, not constant, is linear, idempotent and not continuous for any

real x. This makes it somewhat difficult to “graph.”

2.17 The Compactness Theorem.

With respect to ⊢, consistency is defined in the same manner as it was done for |=. We will use the

defined connectives ∧, ∨, ↔ .

Definition 2.17.1 (Formal consistency.) A nonempty set of premises Γ is formally consistent if there

does not exist a formula B ∈ L′ such that Γ ⊢ B ∧ (¬B).

For finite sets of premises Γ the Completeness and Soundness Theorems show that definition 2.17.1 is

equivalent to consistency for |= . In the case of a set of finitely many premises, then all of the consistency

results relative to |= can be transferred. But, what do we do when Γ is an infinite set of premises?

Well, we have used the assignment concept for finitely many premises. We then used the symbolism

v(A, a) for the truth-value for A and the assignment to a finite set of atoms that includes the atoms in A.

But if you check the proof in the appendix that such assignments exist in general, you’ll find out that we

have actually define a truth-value function on all the formula in L. It was done in such a manner, that it

preserved all of the truth-value properties required for our connectives for L. Obviously, we could reduce the

number of connectives and we would still be able to construct a function v that has a truth-value for each of

the infinitely many atoms and preserves the truth-value requirements for the connectives ¬ and → . What

has been proved in the appendix is summarized in the following rule.

Truth-value Rule. There exist truth-value functions, v, defined for each A ∈ L′ such that for each

atom A ∈ L′:

(a) v(A) = T or v(A) = F not both.

(b) For any A ∈ L′, v(A) = T if and only if v(¬A) = F.

(c) For any A, B ∈ L′, v(A→ B) = F if and only if v(A) = T and v(B) = F.

(d) A truth-value function v will be called a valuation function and any such function is unique in the

following sense. Suppose f and v are two functions that satisfy (a) and for each P ∈ L0 f(P ) = v(P ). Then

if (b) and (c) hold for both f and v, then f = v.

Because of part (d) of the above rule, there are many different valuation functions. Just consider a

different truth-value for some of the atoms in L0 and you have a different valuation function. In what

follows, we let E be the set of all valuation functions.

Definition 2.17.2 (Satisfaction)

(a) Let Γ ⊂ L′. If there exists a v ∈ E such that for each A ∈ Γ, v(A) = T, then Γ is satisfiable.

(b) A formula B ∈ L′ is a valid consequence of Γ if for every v ∈ E such that for each A ∈ Γ v(A) = T,

then v(B) = T.

It’s obvious that for finite sets of premises the definition 2.17.2 is the same as our previous definition

(except for a simpler language). Thus we use the same symbol |= when definition 2.17.2 holds. The proofs

of metatheorems for this extended concept of truth-values are slightly different than those for the finite case

of assignments. Indeed, it would probably have been better to have started with this valuation process and

not to have considered the finite assignment case. But, the reason I did not do this was to give you a lot a

practice with the basic concepts within elementary mathematical logic so as to build up a certain amount

of intuition. In all that follows, all of our formula variables are considered to be formula in L′. I remind

you, that all of our previous results that used assignments hold for this extended concept of |= if the set of

premises is a finite or empty set.
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Theorem 2.17.1

(a) |= A if and only if {(¬A)} is not satisfiable.

(b) A single formula premise {A} is consistent if and only if 6⊢ (¬A).

(c) The Completeness Theorem is equivalent to the statement that “Every consistent formula is satisfi-

able.”

(d) The set of premises Γ |= A if and only if Γ ∪ {(¬A)} is not satisfiable.

(e) If the set Γ is formally consistent and C ∈ Γ, then Γ 6⊢ (¬C).

Proof. (a), (b), (c) are left as an exercise.

(d) First, let Γ 6|= A. Then there is a v ∈ E such that v(C) = T for each C ∈ Γ but v(A) = F. This

v((¬A)) = T. Hence, Γ ∪ {(¬A)} is satisfiable.

For the converse, assume that Γ |= A. Now assume that there exists some v ∈ E such that v(C) = T for

each C ∈ Γ. Then for each such v v(A) = T. In this case, v((¬A)) = F. Now if no such v exists such that

v(C) = T for each C ∈ Γ, then Γ is not satisfiable. Since these are the only two possible cases for Γ∪{(¬A)},

it follows that Γ ∪ {(¬A)} is not satisfiable.

(e) Assume that Γ is formally consistent, C ∈ Γ and Γ ⊢ (¬C). This yields that Γ ⊢ C. Now to the

demonstration add the step ⊢ (¬C) → (C → A). Then two MP steps, yields that Γ ⊢ A. Since A is any

formula, simply let A = D ∧ (¬D). Hence Γ ⊢ D ∧ (¬D). This contradicts the consistency of Γ.

The important thing to realize is that to say that Γ is consistent says that no finite subset of Γ can yield

a contradiction. But if Γ is not itself finite, then how can we know that no finite subset of premises will not

yield a contradiction? Are there not just too many finite subsets to check out? We saw that if Γ is a finite

set, then all it needs in order to be consistent is for it to be satisfiable due to the Corollary 2.15.2.1. The

next theorem states that for infinite Γ the converse of what we really need holds. But, just wait, we will be

able to show that certain infinite sets of premises are or are not consistent.

Theorem 2.17.2 The set Γ is formally consistent if and only if Γ is satisfiable.

Proof. We show that if Γ is consistent, then it is satisfiable. First, note that we can number every

member of L′. We can number them with the set of natural numbers IN. Let L′ = {Ai | i ∈ IN} Now let Γ

be given. We extended this set of premises by the method of induction. (An acceptable method within this

subject.)

(1) Let Γ = Γ0.

(2) If Γ0 ∪ {A0} is consistent, then let Γ1 = Γ0 ∪ {A0}. If not, let Γ1 = Γ0.

(3) Assume that Γn has been defined for all n ≥ 0.

(4) We now give the inductive definition. For n + 1, let Γn+1 = Γn ∪ {An} if Γn ∪ {An} is consistent.

Otherwise, let Γn+1 = Γn.

It follows by the method of definition by induction, that the entire set of Γns has been defined for each

n ∈ IN and each of these sets contains the original set Γ. We now define that set Γ as follows: K ∈ Γ if and

only if there is some m ∈ IN such that K ∈ Γm.

We show that Γ is a consistent set. Suppose that Γ is not consistent. Then for some C ∈ L′ and finite

a subset A1, . . . , An of Γ, it follows that A1, . . . , An ⊢ C ∧ (¬C). However, since Γ ⊂ Γ1 ⊂ Γ2 ⊂ · · · ⊂ Γ

etc. and since A1, . . . , An is a finite set, there is some Γj such that A1, . . . , An is a subset of Γj. But this

produces a contradiction that Γj is inconsistent. Thus Γ is consistent.
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We now show that it is the “largest” consistent set containing Γ. Let A ∈ L′ and assume that Γ ∪ {A}

is consistent. If A ∈ Γ, then A ∈ Γ. If A /∈ Γ, then we know that there is some k such that A = Ak. But

Γk ∪ {Ak} ⊂ Γ ∪ {Ak} implies that Γk ∪ {Ak} is consistent. But then Ak ∈ Γk+1 ⊂ Γ. Hence, A ∈ Γ. We

need a few additional facts about Γ.

(i) A ∈ Γ if and only if Γ ⊢ A. (Such a set of formulas is called a deductive system.) First, the process

⊢ yields immediately that if A ∈ Γ, then Γ ⊢ A. Conversely, assume that Γ ⊢ A. Then F1 ⊢ A for a finite

subset of Γ. We show that Γ∪ {A} is consistent. Assume not. Then there is some finite subset F2 of Γ such

that F2 ∪ {A} ⊢ C ∧ (¬C) for some A ∈ L′. Thus F1 ∪ A2 ⊢ C ∧ (¬C). But this means that Γ ⊢ C ∧ (¬C).

This contradiction implies that Γ ∪ {A} is consistent. From our previous result, we have that A ∈ Γ.

(ii) If B ∈ L′, then either B ∈ Γ or (¬B) ∈ Γ. (When a set of premises has this property they are said

to be a (negation) complete set.) From consistency, not both B and ¬B can be members of Γ

(iii) If B ∈ Γ, then A→ B ∈ Γ for each A ∈ L′.

(iv) If A 6∈ Γ, then A→ B ∈ Γ for each B ∈ L′.

(v) If A ∈ Γ and B 6∈ Γ, then A→ B 6∈ Γ.

(Proofs of (ii) – (v) are left as an exercise.)

We now need to define an valuation on all of Γ. Simple to do. Let v(A) = T if A ∈ Γ and v(B) = F if

B 6∈ Γ. Well, does this satisfy the requirements of a valuation function? First, it is defined on all of L′?

(a) By (ii), if v(A) = T, then A ∈ Γ implies that (¬A) 6∈ Γ. Hence, v(¬A) = F.

(b) From (iii) –(v), it follows that v(A → B) = F if and only if v(A) = T and v(B) = F. Thus v is a

valuation function and Γ is satisfiable. But Γ ⊂ Γ implies that Γ is satisfiable and the proof is complete.

Now to show that if Γ is satisfiable, then it is consistent. Suppose that Γ is satisfiable but not consistent.

Hence there exists a finite F ⊂ Γ such that F ⊢ C ∧ (¬C) for some C ∈ L′. But then F |= C ∧ (¬C), by

corollary 2.15.2.1 and is not satisfiable. Hence since F ⊂ Γ, then Γ is not satisfiable. This contradiction

yields this result.

Theorem 2.17.3 The following statement are equivalent.

(i) If Γ |= B, then Γ ⊢ B. (Completeness)

(ii) If Γ is consistent, then Γ is satisfiable.

Proof. Assume that (i) holds and that Γ is consistent. If C ∈ Γ, then by theorem 2.17.1 part (e)

Γ 6⊢ (¬C). By the contrapositive if (i), then Γ |= (¬C). But by (d) of theorem 2.17.1, Γ ∪ {(¬(¬C))} is

satisfiable. Let v be the valuation. Then v(A) = T for each A ∈ Γ AND v((¬(¬C))) = T . Hence, v(C) = T.

Thus Γ is satisfiable.

Now assume that (ii) holds and let Γ |= B. Then by theorem 2.17.1 part (d) Γ∪{(¬B)} is not satisfiable.

Hence Γ ∪ {(¬B)} is inconsistent. Consequently, there is some C such that Γ ∪ {(¬B)} ⊢ C ∧ (¬C). By

Corollary 2.15.2.1, C ∧ (¬C) ⊢ A for any A ∈ L′. So, let A = (¬B) → B. So, in the demonstration that

Γ ∪ {(¬B)} ⊢ C ∧ (¬C) ⊢ (¬B)→ B, one MP step yields B. Thus Γ ⊢ B.

From theorem 2.17.3, since (ii) holds, then the extended completeness theorem (i) holds. But it really

seems impossible to show that an infinite Γ is inconsistent unless we by chance give a demonstration that

Γ ⊢ C ∧ (¬C) or to show that it is consistent by showing that Γ is satisfiable. For this reason, the next

theorem and others of a similar character are of considerable importance.
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Theorem 2.17.3 (Compactness) A set of formulas Γ is satisfiable if and only if every finite subset of Γ

is satisfiable.

Proof. Assume that Γ is satisfiable. Then there is some v ∈ E such that v(A) = T for each A ∈ Γ. Thus

for any subset F of Γ finite or otherwise v(B) = T for each B ∈ F.

Conversely, assume that Γ is not satisfiable. Then from theorem 2.17.2, Γ is not consistent. Hence there

is some C ∈ L′ and finite F ⊂ Γ such that F ⊢ C ∧ (¬C). By the soundness theorem, F |= C ∧ (¬C). Thus

F is not satisfiable and the proof is complete.

Corollary 2.17.4.1 A set of premises Γ is consistent if and only if every finite subset of Γ is consistent.

Example 2.17.1 Generate a set of premises by the following rule. Let A1 = (¬A), A2 = (¬A)∧A, A3 =

(¬A) ∧A ∧A, etc. Then the set Γ = {Ai | i ∈ IN} is inconsistent since A2 is not satisfiable.

Example 2.17.2 Generate a set of premises by the following rule. Let A1 = P, A2 = P ∨ P1, A3 =

P ∨ P1 ∨ P2, . . . , An = P ∨ · · · ∨ Pn−1. Then the set Γ = {Ai | i ≥ 1, i ∈ IN} is consistent. For consider a

nonempty finite subset F of Γ. Then there exists a formula Ak ∈ F (with maximal subscript) such that if

Ai ∈ F , then 1 ≤ i ≤ k. Let v ∈ E be a valuation such that v(P ) = T. Obviously such a valuation exists.

The function v also gives truth-values for all other members of F . But all other formula in F contain P and

are composed of a formula B such that Ai = P ∨B, 2 ≤ i ≤ k. But v(P ∨B) = T independent of the values

v(B). Hence F is satisfied and the compactness theorem states that Γ is consistent.

EXERCISES 2.17

1. Prove properties (ii), (iii), (iv), (v) for Γ as they are stated in the proof of theorem 2.17.2.

2. Prove statements (a), (b), (c) as found in theorem 2.17.1.

3. Use the compactness theorem and determine whether or not the following sets of premises are consistent.

(a) Let A ∈ L′. Now Γ contains A1 = A→ A, A2 = (A→ (A→ A), A3 = A→ (A→ (A→ A)), etc.

(b) Let A ∈ L′. Now Γ contains A1 = A→ A, A2 = (¬(A→ A)), A3 = A→ (¬(A→ A)) etc.

(c) Let A1 = P1 ↔ P2, A2 = P1 ↔ (¬P2), A3 = P2 ↔ P3, A4 = P2 ↔ (¬P3), etc.

The consistency of the process (1)(2)(3)(4) used in Theorem 2.17.2

We do not need Theorem 2.17.2 if Γ is a non-empty finite set of premises since then Corollary 2.15.2.1

applies. However, what follows holds for any set of hypotheses. Clearly, if the process (1)(2)(3)(4) is

consistent it is not an effective process since there are no rules given to determine, in a step-by-step process,

when a set such as Γ ∪ A, where A /∈ Γ, is consistent. On the other hand, there are various ways to show

convincingly that the process itself is consistent. This is done by the intuitive method of re-interpretation

and modeling. Two examples are described below. Later it will be shown more formally that such statements

that characterize such processes are consistent if and only if they have a set-theoretic model.

(A) Call any A ∈ L′ a “positive formula” if the ¬ symbol does not appear in the formula. Let Γ be a set

of positive formula. Apply the process (1)(2)(3)(4) where we substitute for “consistent” the phrase “a set of

positive formula.” Note that since we started with a set of positive formula, then we can determine whether

the set Γn ∪ {An} is a set of positive formula just by checking the one formula An. What has been done in

this example is that the original process (1)(2)(3)(4) has been re-interpreted using a determining requirement

that can actually be done or a requirement that most exist. The fact that an actual determination can be

made in finite time is not material to the consistency of the process. All that is required is that each formula

be either positive or negative, and not both. This re-interpretation is called a “model” for this process and
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implies that the original process is consistent relative to our intuitive metalogic. This follows since if the

process is not consistent, then a simple metalogical argument would yield that there is an actual formula in

L′ that is positive and not positive.* All of this is, of course, based upon the acceptance that the processes

that generated L′ are also consistent.

(B) We are using certain simple properties of the natural numbers to study mathematically languages

and logical processes. It is assume that these natural number processes are consistent. Using this assumption,

we have the following model that is relative to the a few natural number properties. Interpret Γ as a set of

even numbers and interpret each member of L′ as a natural number. Substitute for “consistent” the phrase

“is a set of even natural numbers.” Thus, all we need to do is to determine for the basic induction step is

whether Γn ∪{An} is a set of even numbers. Indeed, all that is needed is to show that An can be divided by

2 without remainder, theoretically a finite process. This gives a model for this induction process relative to

the natural numbers since a natural number is either odd or even, and not both. Hence, we conclude that

the original process is consistent relative to our metalogic.

* Formally, (1) B ∧ (¬B) ≡ ¬(B → B). (2) ⊢ (¬(B → B) → ((B → B) → Ci)). (3) (B → B) → Ci. (4)

⊢ B → B. (5) Ci. Just take C1 = “A is positive” and C2 = “A is not positive.”
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Chapter 3 - PREDICATE CALCULUS

3.1 A First-Order Language.

The propositional language studied in Chapter 2 is a fairly expressive formal language. Unfortunately,

we can’t express even the most obvious scientific or mathematical statements by using only a propositional

language.

Example 3.1.1 Consider the following argument. Every natural number is a real number. Three is a

natural number. Therefore, three is a real number.

The propositional language does not contain the concept of “every.” Nor does it have a method to

go from the idea of “every” to the specific natural number 3. Without a formal language that mirrors the

informal idea of “every” and the use of the symbol “3” to represent a specific natural number, we can’t follow

the procedures such as those used in chapter 2 to analyze the logic of this argument. In this first section,

we construct such a formal language. Accept for some additional symbols and rules as to how you construct

new formula with these new symbols, the method of construction of language levels is exactly the same as

used for L and L′. So that we can be as expressive as possible, we’ll use the connectives ∨, ∧, and↔ as they

are modeled by the connectives ¬,→. We won’t really need the propositions in our construction. But, by

means of a special technique, propositions can be considered as what we will call predicates with constants

inserted. This will be seen from our basic construction. This construction follows the exact same pattern as

definition 2.2.3. After the construction, I will add to the English language interpretations of definition 2.2.4

the additional interpretations for the new symbols.

Definition 3.1 (The First-Order Language Pd)

(1) A nonempty set of symbols written, at the first, with missing pieces (i.e. holes in them). They look

like the following, where the underlined portion means a place were something, yet to be described, will be

inserted.

(a) The 1-place predicates

P ( ), Q( ), R( ), S( ), P1( ), P2( ), . . . .

(b) The 2-place predicates

P ( , ), Q( , ), R( , )S( , ), P1( , ), P2( , ), . . . .

(c) The 3-place predicates

P ( , , ),Q( , , ), R( , , ), . . . .

(d) And so-forth, continuing, if necessary, through any n-place predicate, a symbol with a “(”

followed by n “holes,” where the underlines appear, followed by a “)”.

(2) An infinite set of variables, V = {x1, x2, x3, . . .}, where we let the symbols x, y, z,w represent any

distinct members of V.

(3) A nonempty set of constants C = {c1, c2, c3, c4, . . .} and other similar notation, where we let a, b, c, d

represent distinct members of C.

(4) We now use the stuff in (1), (2), (3) to construct a set of predicates, P , which are the atoms of Pd.

In each of the underlined places in (1), insert either a single variable from V or a single constant from C.

Each time you construct one of these new symbols, it is called a 1, 2, . . . , n-place predicate. The language

Pd will use one or more of these predicates.

(5) The non-atomic formula are constructed from an infinite set of connectives. The u-nary connective

¬ and the previous binary connectives ∨,∧, →, ↔ . You place these in the same positions, level for level,

as in the construction of definition 2.2.3.
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(6) Before every member of V , the variables, will be placed immediately to them left the symbol ∀.

Then before every member of V will be placed immediately to the left the symbol ∃. This gives infinitely

many symbols of the form U = {∀x1, ∀x2, ∀x3, ∀x4,. . .} and of the form EX = {∃x1, ∃x2, ∃x3, ∃x4,. . .}

where we use the symbols ∀x, ∀y, ∀x, ∃x, ∃y, ∃z and the like to represent any of these symbols. Each ∀x

is called an universal quantifier, each ∃x is called an existential quantifier.

(7) Now the stuff constructed in (6) is an infinite set of u-nary operators that behavior in the same

manner as does ¬ relative to the method we used to construct our language.

(8) Although in an actual first-order language, we usually need only a few predicates and a few universal

or existential quantifiers or a few constants, it is easier to simply construct the levels, after the first level

that contains all the predicates, in the following manner using parentheses about the outside of every newly

constructed formula each time a formula from level 2 and upward is constructed. Take every formula from

the preceding level and place immediately to the left a universal quantifier, take the same formula from the

previous level and put immediately to the left a existential quantifier, repeat these constructions for all of the

universal and existential quantifiers. Important: The formula to the right of the quantifier used for

this construction is called the scope of the quantifier. Now to the same formula from the preceding

level put immediately to left the ¬ in the same manner as was done in definition2.2.3.

(9) Now following definition 2.2.3, consider every formula from the previous level and construct the

formula using the binary connectives ∨, ∧, →, ↔ making sure you put parentheses about the newly formed

formula. AND after a level is constructed with these connectives we adjoin the previous level to the one just

constructed.

(10) The set of all formula you obtain in this manner is our language Pd.

(11) Any predicate that contains only constants in the various places behaves just like a proposition

in our languages L and L′ and can be considered as forming a propositional language. What we have

constructed is an extension of these propositional languages.

(12) I point out that there are other both less formal and more formal ways to construct the language

Pd.

This is not really a difficult construction.

Example 3.1.1 (i) The following are predicates. P (x), P (c), P (x, c), Q(x, x), Q(c, c1, z).

(ii) The following are not predicates. P (), P ( ), P (P, Q), P )(, Px, Pc.

(iii) The following are members of Pd. (P (c) ↔ Q(x)), (∀xP (c)), (∃yP (x)), (∀xP (x, y)), (¬(∀xP (z))),

(∃x(∀x(∃y(∀yP (c, d, w))))), ((∃x(P (x)↔ Q(d)))).

(iv) The following are not formula. P (∃x), (∀P (x)), (∀cP (x)), (∃x(∀y)P (x, y)), ((P (d)↔ Q(x)∃x).

As was done with the language L, we employ certain terminology to discuss various features of Pd. We

employ, whenever possible, the same definitions. Each element of Pd is called a formula. The first level

Pd0 is the set of all the atoms. Any member of Pd which is not an atom is called a composite formula. A

formula expressed entirely in terms of atoms and connectives is called an atomic formula. We let, as usually,

the symbols A, B, C,. . . be formula variables and represent arbitrary members of Pd.

If A ∈ Pd, then there is a smallest n such that A ∈ Pdn and A /∈ Pdk for any k < n. The number n

is the size of A. All the parenthesis rules, the common pair rules hold, where ∀x and ∃x behave like the ¬.

However, the parentheses that form the predicates are never included in these rule processes.

The English language interpretation rules for the predicates and the quantifiers take on a well-know

form, while the interpretation is the same for all the other connectives as they appear in 2.1. For the

following, we utilize the variable predicate forms A(x) and the like. These may be thought of as 1-place
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predicates for the moment. Since this interpretation is an inductive interpretation, where we interpret only

the immediate symbol, we need not know the exact definition for A(x) at this time.

(i) ⌈P ( )⌉ : ⌉ P ( , )⌉ : ⌈P ( , , )⌉ :

These are usually considered to be simple declarative sentences that relate various noun forms. In order

to demonstrate this, we use the “blank” word notation where the blanks are to be understood by the “–”

symbol and the “blanks” must be filled in with a variable or a constant. Here is a list of examples that may

be interpreted as 1-place, 2-place, 3-place and 4-place predicates. “– is lazy.” “– is a man.” “– plays –.” “–

is less than –.” “– > –.” “– plays – with –.” “– plus – equal –.” “– + – = –.” “– plays – with – at –.” “– +

– + – = –.”

(ii) The constants C are interpreted as identifying “names” for an element of a domain, a proper name and

the like, where if there is a common or required name such as “0,” “1,” or “sine,” then this common name

is used as a constant.

(iii) ⌈∀xA(x)⌉ :

For all x, ⌈A(x)⌉ : For arbitrary x, ⌈A(x)⌉ :

For every x, ⌈A(x)⌉. For each x, ⌈A(x)⌉.

Whatever x is ⌈A(x)⌉. (Common language)

Everyone is ⌈A(x)⌉.

⌈A(x)⌉ always holds.

Each one is ⌈A(x)⌉.

Everything is ⌈A(x)⌉.

(iv) ⌈∃xA(x)⌉ :

There exists an x such that ⌈A(x)⌉. There is an x such that ⌈A(x)⌉.

For suitable x, ⌈A(x)⌉. There is some x such that ⌈A(x)⌉.

For at least one x, ⌈A(x)⌉.

(Common language)

At least one x ⌈A(x)⌉.

Someone is ⌈A(x)⌉.

Something is ⌈A(x)⌉.

Great care must be taken when considering a negation and quantification as is now demonstrated since

a “not” before a quantifier or after a quantifier often yields different meanings.

(v) ⌈¬(∀xA(x))⌉ :

Not for all x, ⌈A(x)⌉. ⌈A(x)⌉ does not hold for all x.

⌈A(x)⌉ does not always hold. Not everything is ⌈A(x)⌉.

(vi) ⌈∀x(¬A(x))⌉ :

For all x, not ⌈A(x)⌉. ⌈A(x)⌉ always fails.

Everything is not ⌈A(x)⌉.

(vii) ⌈¬(∃xA(x))⌉ :

There does not exists an x such that ⌈A(x)⌉.
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There does not exists any x such that ⌈A(x)⌉.

There exists no x such that ⌈A(x)⌉. Nothing is ⌈A(x)⌉.

There is no x such that ⌈A(x)⌉. No one is ⌈A(x)⌉.

There isn’t any x such that ⌈A(x)⌉.

(viii) ⌈∃x(¬A(x))⌉ :

For some x, not ⌈A(x)⌉. Something is not ⌈A(x)⌉.

(All other ∃x with a not just prior to ⌈A(x)⌉.

There are many other possible English language interpretations for the symbols utilized within our

first-order language but the ones listed above will suffice.

EXERCISES 3.1

NOTE: Outer parenthesis simplification may have been applied.

1. Let A represent each of the following strings of symbols. Determine if A ∈ Pd or A /∈ Pd.

(a) A = (∃x(¬(∀xP (x, y)))) (d) A = (P (c) ∨ ∃x∀y)Q(x, y))

(b) A = ∀x(P (x)→ (∃cP (c, x))) (e) A = ∃x(∀y(P (x)→ Q(x, y)

(c) ∀x(∃y(∀z(P (x)))).

2. Find the size of A.

(a) A = ∃x(∀y(∃zP (x, y, z))).

(b) A = (P (c)→ (∃y(¬(∀xP (x, y))))).

(c) A = ∀x(P (x)→ ((∃yP (x, y))→ (P (c) ∨Q(c))))

(d) A = (P (c) ∨ (∃y(Q(x)→ P (y))))→ R(x, y, z).

3. Use the indicated predicate symbols, which may appear in previous lettered sections, and any arithmetic

symbols such as + for “sum of – and –” or < for “– is less than –,” or = for “– is equal

to –” and the like and translate the following into symbols from the language Pd. You may need to slightly

re-write the English language statement into one with the same intuitive meaning prior to translation

(a) If the product of finitely many factors is equal to zero, then at least one of the factors is zero. [Let

P ( ) be the predicate “– is the product of finitely many factors,” Q( , ) be the predicate “– is a factor

of –.”]

(b) For each real number, there is a larger real number. [Let R( ) be “– is a real number.”]

(c) For every real number x there exists a real number y such that for every real number z, if the sum

of z and 1 is less than y, then the sum of x and 2 is less than 4. [Note that “− + 1 < −” is a three place

predicate with a constant “1” in the second place.]

(d) All women who are lawyers admire some judge. [Let W ( ) be “– is a women,” let L( ) be “– is a

lawyer,” let J( ) be “– is a judge,” and let A( , ) be “– admires –.”]

(e) There are both lawyers and shysters who admire Judge Jones. [Let S( ) be “– is a shyster,” and

jet j symbolize the name “Jones.”]

(f) If each of two persons is related to a third person, then the first person is related to the second

person. [Let R( , ) be “– is related to –,” and let P ( ) be “– is a person.”]

(g) Every bacterium which is alive in this experiment is a mutation. [Let B( ) be “– is a bacterium,

A( ) be “– is alive in this experiment,” and M( ) be “– is a mutation.”]
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(h) The person responsible for this rumor must be both clever and unprincipled. [Let P ( ) be “– is a

person responsible for this rumor,” C( ) be “– is clever,” and U( ) be “– is unprincipled.”]

(i) If the sum of three equal positive numbers is greater than 3 and the sum of the same equal positive

numbers is less than 9, then the number is greater than 1 and less than 3.

(j) For any persons x and y, x is a brother of y if and only if x and y are male, and x is a different

person than y, and x and y have the same two parents. [Let (again) P ( ) be “– is a person,” B( , ) be

“– is a brother of – ,” M( ) be “– is a male,” −− 6= −− be “– is a different person than –,” Q( , ) be

“– and – have the same two parents.”]

4. Let P ( ) be “– is a prime number,” E( ) be “– is an even number,” O( ) be “– is an odd number,”

D( , ) be “– divides –.” Translate each of the following formal sentences into English language sentences.

(a) P (7) ∧O(7).

(b) ∀x(D(2, x)→ E(x)).

(c) (∃x(E(x)) ∧ P (x))) ∧ (¬(∃x(E(x) ∧ P (x)))) ∧ (∃y(x 6= y)) ∧ E(y) ∧ P (y).

(d) ∀x(E(x)→ (∀y(D(x, y)→ E(y)))).

(e) ∀x(O(x)→ (∃y(P (y)→ D(y, x)))).

3.2. Free and Bound Variable Occurrences.

Prior to the model theory (the semantics) for the language Pd, a further important concept must be

introduced. It’s interesting to note that the next concept dealing with variables took a considerable length

of time to formulate in terms of an easily followed rule. As usual, we are fortunate that much of the difficult

work in mathematical logic has been simplified so that we may more easily investigate these important

notions. For simplicity, the n-place predicates where all places are filled with constants will act as if they

are propositions. As will be seen, the presence of any quantifiers prior to such predicates will have NO

effect upon their semantical meaning nor will such a case involve any additional nonequivalent formula in

the formal deduction (proof theory) associated with Pd.

Definition 3.2.1 (Scope of a quantifier.)

Assume that a quantifier is symbolized by Q. Suppose that Q appears in a formula A ∈ Pd. Then in

that quantifier appears one and only one variable, say v ∈ V . Immediately to the right of the variable v, two

and only two mutually distinct symbols appear.

(1) A left parenthesis. If this is the case, then the subformula from that left parenthesis to its common

pair parenthesis us called the scope of that quantifier.

(2) No parenthesis appears immediately on the right. In this case, the predicate that appears immedi-

ately on the right is called the scope of that quantifier.

In general, to identify quantifiers and scopes, the quantifiers are counted by the natural numbers from

left to right. In what follows, we place the “quantifier” count as a subscript to the symbols ∀ and ∃ rather

than as subscripts to the variables. Note: if the same quantifier occurs more than once, then it is counted

more than once. Why? Because it is the location of the quantifier within a formula that is of first importance.

Example 3.2.1

(a) Let A = (∀1xP (x)) ∧Q(x). Then the scope of quantifier (1) is the predicate P (x).

(b) Let A = ∃1y(∀2x(P (x, y) → (∀3zQ(x)))). The scope of the quantifier (1) is (∀x(P (x, y) →

(∀zQ(x)))). The scope for the quantifier (2) is (P (x, y)→ (∀zQ(z))). The scope for quantifier (3) is Q(x).
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(c) Let A = ∀1x(∀2y(P (c)→ Q(x, y)))↔ (∃3xP (c, d)). Then the scope for quantifier (1) is (∀y(P (c)→

Q(x, y))). The scope for quantifier (2) is (P (c)→ Q(x, y)). The scope for quantifier (3) is P (c, d).

(d) Let A = (∀1x((R(x) ∧ (∃2xQ(x, y))) → (∃3yP (x, y)))) → Q(x, z). The scope of quantifier (1) is

((R(x) ∧ (∃xQ(x, y))) → (∃yP (x, y))). The scope of quantifier (2) is Q(x, y). The scope of quantifier (3) is

P (x, y). Notice that the second occurrence of Q(x, y) is not in the scope of any quantifier.

Once we have the idea of the scope firmly in our minds, then we can define the very important notion

of the “free” or “bound” occurrence of variable. We must have the formula in atomic form to know exactly

what variables behave in these two ways. This behavior is relative to their positions within a formula. We

call the position where a variable or constant explicitly appears as an occurrence of that specific variable or

constant with in a specific formula.

Definition 3.2.2 (Bound or free variables)

(1) Every place a constant appears in a formula is called a bound occurrence of the constant.

(2) You determine the free or bound occurrences after the scope for each quantifier has been determined.

You start the determination at level Pd0 and work your way up each level until you reach the level at which

the formula first appears in Pd. This is the “size” level.

(3) For level Pd0 every occurrence of a variable is a free occurrence.

(4) For each succeeding level, an occurrence of a variable is a bound occurrence if that variable occurs

in a quantifier or is not previously marked as a bounded occurrence in the scope of the quantifier.

(5) After all bound occurrences have been determined, than any occurrence of a variable that is not

bound is called a free occurrence.

(6) A bound occurrence of a specific variable is determine by a quantifier in which the variable appears.

This is called the bounding quantifier.

(7) Any variable that has a free occurrence within a formula is said to be free in the formula.

There are various ways to diagram the location of a specific variable and its bound occurrences. One

method is a line diagram and the other is to use the quantifier number and the same number for each bound

occurrence of the variable. I illustrate both methods. It turns out that for one concept the line diagram is

the better of the two.

Example 3.2.2 This is the example of the line diagram method of showing the location of each bound

variable.

(a) (∀x((P (x) ∧ (∃zQ(x, z)))→ (∃yM(x, y)))) ∧Q(x).

(b) (∀y((P (y) ∧ (∃xQ(x, z)))→ (∃zM(y, z)))) ∧Q(z).

(c) (∀x((P (x) ∧ (∃xQ(x, z)))→ (∃yM(x, y)))) ∧Q(z).

(d) (∀z((P (z) ∧ (∃xQ(x, z)))→ (∃yM(z, y)))) ∧Q(x).

In these line diagrams, each vertical line segment attached to a line segment identifies the bound occur-

rences for a specific quantifier. Notice that in (a) the x has a bound occurrence and is free in the formula.

Thus the concepts of free in a formula and bound occurrences are not mutually exclusive. In (b), the z has

a bound occurrence and free in the formula. In (c), z is the only variable free in the formula. In (d), x has

both a bound occurrence and is free in the formula.
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Example 3.2.3 The use of subscripts to indicate the bound occurrences of a variable AND its bounding

quantifier.

(a) ∀x1((P (x1) ∧ (∃z2Q(x1, z2)))→ (∃y3M(x1, y3))) ∧Q(x).

(b) ∀y1((P (y1) ∧ (∃x2Q(x2, z)))→ (∃z3M(y1, z3))) ∧Q(z).

The line diagram or number patterns themselves turn out to be of significance.

Definition 3.2.3 (Congruent Formula) Let A, B ∈ Pd and A, B are in atomic form. Assume that

all the bound occurrences of the variable in both A and B have been determined either by the line segment

method or numbering method. If in both A and B all the bound variables and only the bound variables are

erased and the remaining geometric form for A and for B are exactly the same (i.e. congruent), then the

formula are said to be congruent.

The basic reason the concept of congruence is introduced is due to the following theorem. After the

necessary machinery is introduce, it can be established. The↔ that appears in this theorem behaves exactly

as it does in the language L.

Theorem 3.2.1 If A, B ∈ Pd and A, B are congruent, then ⊢ A↔ B.

Example 3.2.3 In this example, we look at previous formula and determine whether they are congruent.

(a) In example 3.2.2, formula (a) is not congruent to (b) since the variable that occurs free in Q( ) in

(a) is x while the variable that occurs in Q( ) in (b) is z.

(b) Formulas (b) and (c) in example 3.2 are congruent.

Definition 3.2.4 (Sentences) Let A ∈ Pd. Then A is a sentence or is a closed formula if there are NO

variables that are free in the formula A.

For this text, sentences will be the most important formula in Pd. Although one need not restrict

investigations to sentences only, these other investigations are, usually, only of interest to logicians. Indeed,

most elementary text books concentrate upon the sentence concept due to their significant applications.

Further, you can always assign the concept of “truth” or “falsity” (occur or won’t occur) to sentences. The

“always assign” in the last sentence does not hold for formula in general.

EXERCISES 3.2

1. List the scope for each of the numbered quantifiers.

(a) (∀1x(∃2xQ(x, z)))→ (∃3xQ(y, z)).

(b) (∃1x(∀2y(P (c) ∧Q(y))))→ (∀3xR(x)).

(c) (P (c) ∧Q(x))→ (∃1y(Q(y, z)→ (∀2xR(x)))).

(d) ∀1z((P (z) ∧ (∃2xQ(x, z)))→ (∀3z(Q(c) ∨ P (z)))).

2. Use the subscript or line segment method to display the variables that are bound by a specific symbol ∀

or ∃.

(a) (∀z(∃y(P (z, y) ∧ (∀zQ(z, x)))→M(z))).

(b) (∀x(∃y(P (x, y) ∧ (∀yQ(y, x)))→M(x))).

(c) (∀z(∃x(P (z, x) ∧ (∀zQ(z, y)))→M(z))).

(d) (∀y(∃z(P (y, z) ∧ (∀zQ(z, x)))→M(y))).

(e) (∀y(∃z(P (z, y) ∧ (∀zQ(z, x)))→M(y))).
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(f) ∃x(∀z(P (x, z) ∨ (∀uM(u, y, x)))).

(g) ∃y(∀x(P (z, x) ∨ (∀xM(x, u, y)))).

(h) ∃y(∀x(P (y, x) ∨ (∀xM(x, y, z)))).

(i) ∃z(∀x(P (z, x) ∨ (∀xM(x, y, z)))).

(j) ∃x(∀x(P (z, x) ∨ (∀zM(x, y, z)))).

3. For the formula in [2] list as ordered pairs all formula that are congruent.

4. In the following formula, make a list as follows: write down the formula identifier, followed by the word

“free,” followed by a list of the variables that are free in the formula, followed by the word “bound,” followed

by the variables that have bound occurrences. (e.g. (g) Free, z, x, z; Bound x, z.)

(a) (P (x, y, z) ∨ (∃x(P (y)→ Q(x)))) ∧ (∀zR(z)).

(b) (∀xP (x, x, x)) → (Q(z) ∧ (∀zR(z))).

(c) (∀x(P (c) ∧Q(x))→M(x))↔ P (y).

(d) (∀x(∀y(∀z(P (x)→ Q(z))))) ∨Q(z).

(e) (P (c) ∧Q(x))→ ((∃xQ(x)) ∧ (∃y(Q(y, x)→M(d)))).

(f) ∀x(∃y((P (x) ∧Q(y))→ (P (c) ∧Q(c)))).

5. (a) Which formula in problem 1 are sentences?

(b) Which formula in problem 2 are sentences?

(c) Which formula in problem 4 are sentences?

3.3 Structures

In the discipline of mathematical logic, we use the simplest and most empirically consistent processes

known to the human mind to study the human experience of communicating by strings of symbols and

logical deduction. Various human abilities are necessary in order to investigate logical communication. One

must be able to recognize that the symbols within the quotation marks “a” and “b” are distinct. Moreover,

one must use various techniques of “ordering” in order to communicate in English and most other languages.

An individual must intuitively know which string of symbols starts a communication and the direction to

follow in order to obtain the next string of symbols. In the English language, this is indicated by describing

the direction as from “left to right” and from “top to bottom.” Without a complete intuitive knowledge of

these “direction concepts” no non-ambiguous English language communication can occur. These exact same

intuitive processes are necessary in the mathematical discourse. Mathematics, in its must fundamental form,

is based upon such human experiences.

In 1936, Tarski introduced a method to produce conceptually the semantical “truth” or “falsity” notion

for a predicate language Pd that mirrors the concepts used for the propositional language L′. The Tarski

ideas are informal in character, are based upon a few aspects of set-theory, but these aspects cannot be

considered as inconsistent, in any manner, since by the above mentioned human abilities and experiences

concrete symbol string examples can be given for these specific Tarski notions. The only possible difficulty

with the Tarski concepts lies in the fact that in order for certain sentences in Pd to exhibit “truth” or “falsity,”

the concept would need to be extended to non-finite sets. When this happens, some mathematicians take

the view that the method is weaker than the method of the formalistic demonstration. In this case, however,

most mathematicians believe that the Tarski method is not weaker than formal demonstrations since no

inconsistency has occurred in using the most simplistic of the non-finite concepts. This simplistic non-finite
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notion has been used for over 3,000 years. This non-finite notion is the one associated with the set called

the natural numbers IN.

In this text, the natural numbers, beginning with zero, are considered as the most basic of intuitive

mathematical objects and will not be formally discussed. This Tarski approach can be considerably simplified

when restricted to the set of all sentences S. It’s this simplification that we present next.

We first need to recall some of the most basic concepts, concepts that appear even in many high school

mathematics courses. Consider the following set of two alphabet letters A = {a, a, b}. First, the letters are

not assumed to be in anyway different simply due to the left to right order in which they have been written

or read. There is an “equality” defined for this set. Any two letters in this set are equal if they are intuitively

the same letter. One sees two “a” symbols in this set. In sets that contain identifiable objects such as the two

“a” symbols, it’s an important aspect of set-theory that only one such object should be in the set. Hence,

in general, specific objects in a set are considered as unique or distinct. On the other hand, variables can be

used to “represent” objects. In this case, it makes sense to write such statements such as “x = y.” Meaning

that both of the variables “x” and “y” represent a unique member of the set under discussion.

In mathematical logic, another refinement is made. The set A need not be composed of just alphabet

symbols. It might be composed of midshipmen. In this case, alphabet symbols taken from our list of

constants are used to name the distinct objects in the set. Take an a ∈ C. In order to differentiate between

this name for an object and the object it represents in a set, we use the new symbol a′ to denote the actual

object in the set being named by a.

Only one other elementary set-theory notion is necessary before we can define the Tarski method. This

is the idea of the ordered pair. This is where, for the intuitive notion, the concept of left to right motion is

used. Take any one member of A. Suppose you take a. Then the symbol (a, a) is an ordered pair. Using

the natural number counting process, starting with 1, the set members between the left parenthesis “(” and

the right parenthesis “)” are numbered. The first position, moving left to right, is called the first coordinate,

the second position is called the second coordinate. In this example, both coordinates are equal under our

definition of equality.

We can construct the set of ALL ordered pairs from the members in A. This set is denoted by A2 or

A×A and contains the distinct objects {(a, a), (b, b), (a, b)(b, a)}. What one needs to do is to use the equality

defined for the set A to define an equality for ordered pairs. This can be done must easily by using a word

description for this “ordered pair equality.” Two ordered pairs are “equal” (which we denote by the symbol

=) if and only if the first coordinates are equal AND the second coordinates are equal.

Well, what has been done with two coordinates can also be done with 3, 4, 5, 25, 100, 999 coordinate

positions. Just write down a left “(” a member of A, followed by a comma, a member of A, followed by a

comma, continue the described process, moving left to right, until you have, say 999 coordinates but follow

the last one in your symbol not by a comma but by a right “)”. What this is called is a 999-tuple. The set

of ALL 999-tuples so constructed from the set A is denoted by A999 rather than writing the symbol A 999

times and putting 998 × symbols between them. For any natural number a greater than 1, An denotes the

set of ALL n-tuples that can be constructed from the members of A.

Notice that we have defined equality of order pairs by using the coordinate numbers. To define equality

for n-tuples, where n is any natural number greater than 1, simply extend the above 2-tuple (ordered pair)

definition in terms of the position numbers. Thus two n-tuples are “equal” if and only if the first coordinates

are equal AND the second coordinates are equal AND . . . . AND the nth coordinates are equal.

The last set theory concept is the simple subset concept. A set B is a subset of the set A if and only

if every object in B is in A, where this statement is symbolized by B ⊂ A. The symbols “in A” mean that

you can recognize that the members of B are explicitly members of A by their properties. There is a special
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set called the empty set (denoted by ∅) that is conceived of as have NO members. From our definition for

“subset,” the empty set is a subset of any set since the ∅ contains no members and, thus, it certainly follows

that all of its members are members of any set. Lastly, a subset R of An, for n > 1, will be called an n-place

relation or an n-ary relation.

Definition 3.3.1 (Structures) Let Pd be a first-order language constructed from a nonempty finite or

infinite set {P1, P2, . . .} of predicates and an appropriate set C of constants that satisfies (iv). For our basic

application, a structure with an interpretation is an object M = 〈D, {P ′1, P
′

2, . . .}〉 where

(i) D is a nonempty set called the domain.

(ii) each n-place predicate Pi, where n > 1, corresponds to an n-place relation P ′i ⊂ Dn, and

(iii) the 1-place predicates correspond to specific subsets of D and

(iv) there is a function I that denotes the correspondence in (ii) and (iii) and that corresponds constants

ci ∈ N ⊂ C to members c′i in D, (this function I is a naming function). Constants in N correspond to

one and only one member in D and each member of D corresponds to one and only one member of N. Due

to how axioms are stated, the structure symbol M = 〈D, {P ′1, P
′

2, . . .}〉 may include a set of distinguished

elements that correspond to distinguished constants in C. In this case, these constants are considered as

contained in N and correspond under I to fixed members of D. [Only members of C appear in any member

of Pd.]

The rule you use to obtain the correspondences between the language symbols and the set theory objects

is called an interpretation. In general, M = 〈D, {P ′1, P
′

2, . . .}〉 is a structure for various interpretations and

includes distinguished elements.

Example 3.3.1 Let our language be constructed from a 1-place predicate P, a 2-place predicate Q

and two constants a, b. For the domain of our structure, let D = {a′, b′, c′}. Now correspond the one place

predicate P to the subset {a′, b′}. Let the 2-place predicate Q correspond to Q′ = {(a′, a′), (a′, b′)}. Finally,

let a correspond to a′ and b correspond to b′. The interpretation I can be symbolized as follows: I behaves

like a simple function. I takes the atomic portions of our language and corresponds then to sets. I(P ) =

P ′, I(Q) = Q′, I(a) = a′, I(b) = b′, a, b ∈ C.

Since the only members of Pd that will be considered as having a truth-value will be sentences, the

usual definition for the truth-value for members in Pd can be simplified. A level by level inductive definition,

similar to that used for the language L is used to obtain the truth-values for the respective sentences. This

will yield a valuation function v that is dependent upon the structure.

There is one small process that is needed to define properly this valuation process. It is called the free

substitution operator. We must know the scope of each quantifier and the free variables in the formula that

is the scope.

Definition 3.3.2 (Free substitution operator) Let the symbol Sx
λ have a language variable as the

superscript and a language variable or language constant as a subscript. For any formula A ∈ Pd, Sx
λA]

yields the formula where λ has been substituted for every free occurrence of x in A.

Example 3.3.2 Let A = ∀y(P (x, y)→ Q(y, x)).

(i) Sx
y A] = ∀y(P (y, y)→ Q(y, y))

(ii) Sx
xA] = ∀y(P (x, y)→ Q(y, x)).

(iii) Sx
c A] = ∀y(P (c, y)→ Q(y, c)).

Definition 3.3.3 (Structure Valuation for sentences). Given a structure M, with domain D, for a

language Pd.

72



(i) Suppose that P ( , . . . , ) ∈ Pd0 is an n-place predicate n ≥ 1, that contains only constants ci ∈ N

in each of the places. Then M |= P (c1, . . . , cn) if and only if (c′1, . . . , c
′

n) ∈ P ′, where for any ci ∈ N,

c′i = I(ci), and constants that denote special required objects such as “0” or “1” and the like denote fixed

members of D and are fixed members of D throughout the entire valuation process. Note that (c′1) ∈ P ′

means that c′1 ∈ P ′. [Often in this case, such a set constants is said to “satisfy” (with respect to M,)

the predicate(s) or formula.] Since we are only interested in “modeling” sentences, we will actually let the

“naming” subset N of C vary in such a manner such that I(N) varies over the entire set D.

(ii) If (i) does not hold, then M 6|= P (c1, . . . , cn).

(iii) Suppose that for a level m, the valuation |= or 6|= has been determined for formula A and B, and

specific members c′i of D.

(a) M 6|= A→ B if and only if M |= A and M 6|= B. In all other cases,M |= A→ B.

(b)M |= A↔ B if and only ifM |= A andM |= B, orM 6|= A andM 6|= B.

(c) M |= A ∨B if and only ifM |= A orM |= B.

(d)M |= A ∧B if and only ifM |= A andM |= B.

(e) M |= (¬A) if and only if M 6|= A.

Take note again that any constants that appear in the original predicates have been assigned FIXED

members of D and never change throughout this valuation for a given structure. In what follows, d and d′

are used to denote arbitrary members of N and the corresponding members of D. Steps (f) and (g) below

show how the various constants are obtained that are used for the previous valuations.

(f) For each formula C = ∀xA,M |= ∀xA if and only if for every d′ ∈ D it follows thatM |= Sx
d A].

Otherwise,M 6|= ∀xA.

(g) For each formula C = ∃xA,M |= ∃xA if and only if there is some d′ ∈ D such thatM |= Sx
d A].

Otherwise,M 6|= ∃xA.

(iv) Note that for 1-place predicate P (x) (f) and (g) say, that M |= ∀xP (x) if and only if for each

d′ ∈ D, d′ ∈ P ′ and M |= ∃xP (x) if and only if there exists some d′ ∈ D, such that d′ ∈ P ′.

Please note that, except for the quantifiers, the valuation process follows that same pattern as the T s

and F s follow for the truth-value valuation of the language L. Simply associate the symbol M |= A with

the T and the M 6|= A with the F. Since every formula that is valuated is a sentence, we use the following

language whenM |= A. The structureM is called a model for A in this case. IfM 6|= A, then we say thatM

is not a model for A. This yields the same logical pattern as the “occurs” or “does not occur” concept that

can be restated as “as M models” or “as M does not model.” Definition 3.3.3 is informally applied

in that metalogical arguments are used relative to the informal notions of “there exists” and

“for each” as they apply to members of sets. For involved sentences, this process can be somewhat

difficult.

In the appendix, it is shown that the process described in definition 3.3.3 is unique for every structure

in the following manner. Once an interpretation I is defined, then all valuations that proceed as described

in definition 3.3.3 yield the exact same results. Definition 3.3.3 is very concise. To illustrate what it means,

let D = {a′, 0′}, A = P (x, y) → Q(x) and P ′, Q′ ∈ M. It is determine whether M |= P (a, 0), M |=

P (a, a), M |= P (0, a), M |= P (0, 0), M |= Q(a), M |= Q(0). Now we use these results to determine

whether M |= ∀x(P (x, 0)→ Q(x)). This occurs only if M |= P (a, 0)→ Q(a), M |= P (0, 0)→ Q(0), where

we use the previous determinations.

Example 3.3.3 (a) Let A = (∀x(∃yP (x, y))) → (∃y(∀xP (x, y))). Let the domain D = {a′} be a one

element set. We define a structure for A = (∀x(∃yP (x, y))) → (∃y(∀xP (x, y))). Consider the 2-place relation
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P ′ = {(a′, a′)} and the interpretation I(P ) = P ′. As you will see later, one might try to show this by simply

assuming thatM |= (∀x(∃yP (x, y))). But this method will only be used whereM is not a specific structure.

For this example, we determine whether M |= (∀x(∃yP (x, y))) and whether M |= (∃y(∀xP (x, y))) and use

part (a) of definition 3.3.3. The valuation process proceeds as follows: first we have only the one statement

that M |= P (a, a). Next, given each c′ ∈ D, is there some d′ ∈ D such that (c′, d′) ∈ P ′? Since there

is only one member a′ in D and (a′, a′) ∈ P ′, then M |= (∀x(∃yP (x, y))). Now we test the statement

∃y(∀xP (x, y)). Does there exist a c′ ∈ D such that M |= Sy
c ∀xP (x, y)] = ∀xP (x, c); which continuing

through the substitution process, does there exists a c′ ∈ D such that for all d′ ∈ D in (d′, c′) ∈ P ′. The

answer is yes, since again there is only one element in D. Thus M |= ∃y(∀xP (x, y)). Hence, part (v) (a) of

definition 3.3.3 implies thatM |= A. Clearly, the more quantifiers in a formula the more difficult it may be

to establish that a structure is a model for a sentence.

(b) A slighter weaker approach is often used. The informal theory of natural numbers is used as the

basic mathematical theory for the study of logical procedures. It’s considered to be a consistent theory since

no contradiction has been produced after thousands of years of theorem proving. Thus a structure can be

constructed from the theory of natural numbers. Let D = IN and there is two constants 1, 2 and one 3-placed

relation P ′ defined as follows: (x, y, z) ∈ P ′ if and only if x ∈ IN, y ∈ IN and z ∈ IN and x + y = z. Using the

theory of natural numbers, one can very quickly determine whetherM |= A for various sentences.

Consider A = ∀xP (c1, c2, x). Then let c1 = 1, c2 = 2. [Note that the subscripts for the constants

are not really natural numbers but are tick marks.] Now consider the requirement that for all a′ ∈ IN,

M |= P (1, 2, a). Of course, since (1′, 2′, 5′) /∈ P ′, then M 6|= A. You will see shortly that this would imply

that A is not valid.

(c) Using the idea from (b), the sentence ∃x∀yP (x, y) hasM =< IN,≤> as a model. For there exists a

natural number x = 0 such that 0 ≤ y for each natural number y.

Example 3.3.4 The following shows how the instructions for structure valuation can be more formally

applied.

For M = 〈D, P 〉, let D = {a′, b′}, and P ′ = {(a′, a′), (b′, b′)}. we want to determine whether M |=

(∃y(∀xP (x, y))) → (∀x(∃yP (x, y))), and whether M |= (∀x(∃yP (x, y))) → (∃y(∀xP (x, y))) and also if

M |= ∀x(∃xP (x, x).

First we look at whether M |= (∃y(∀xP (x, y)). This means that first we establish that M |=

P (a, a), M 6|= P (a, b), M |= P (b, b), M 6|= P (b, a).

For the next stage we must determine whether (a) M |= ∀xP (x, a), (b) M |= ∀xP (x, b). Under the

substitution requirement, for (a) that (i) M |= P (a, a) and (ii) M |= P (b, a). However, M 6|= P (b, a).

Thus for (a) M 6|= ∀xP (x, a). In the same manner, it follows that for (b) M 6|= ∀xP (x, b). Under the

substitution requirement Sy
d ]∀xP (x, y) produces the two formula ∀xP (x, a), ∀xP (x, b) and if one or the

other or both satisfy |= then we know the M |= holds. But, from (a) and (b) we know this is not the

case so M 6|= ∃y(∀xP (x, y)). Now from our understanding of the → connective this implies that M |=

(∃y(∀xP (x, y)))→ (∀x(∃yP (x, y))).

Now consider ∀x(∃yP (x, y)). The first step looks at ∃yP (a, y) and ∃yP (b, y). In both cases, we have

that M |= ∃yP (a, y) and M |= ∃yP (b, y). Hence, we have that M |= ∀x(∃xP (x, y)). But this now implies

thatM 6|= (∀x(∃yP (x, y)))→ (∃y(∀xP (x, y))).

This is how one “thinks” when making and arguing for these valuations and you can actually make the

substitution if D is a finite set and get a formula in Pd. The ∀ can be replaced with a set of ∧ symbols,

one for each member of D and the ∃ can be replaced with a set of ∨ symbols one for each member of D. It

follows easily thatM |= ∀x(∃yP (x, y)) if and only ifM |= (P (a, a) ∨ P (a, b)) ∧ (P (b, a) ∨ P (b, b)).]
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What about ∀x(∃xP (x, x))? The substitution process says that under the valuation process this

∀x(∃xP (x, x)) is the same as ∃xP (x, x). The valuation process is ordered, first we do the Sx
dP (x, x). This

gives under the first step the formulas P (a, a), P (b, b). The second valuation process does not apply since

there are no free variables in ∃xP (x, x). The “or” idea for ∃ yields thatM |= ∀x(∃xP (x, x).

We now change the structure to D = {a′, b′}, and P ′ = {(a′, b′), (b′, a′)} and interpret this as same

before. One arrives at the same conclusions that M 6|= (∃y(∀xP (x, y)) and that M |= ∀x(∃xP (x, y)).

But, for this structure M 6|= ∀x(∃xP (x, x)). Hence, both structure are models for the sentences M |=

(∃y(∀xP (x, y))) → (∀x(∃yP (x, y))), ∀x(∃xP (x, x)). But for these three sentences, the second structure is

only a model for ∃y(∀xP (x, y)))→ (∀x(∃yP (x, y))).

Note: A single domain and collection of n-place relations, in general, may have many interpretations.

This follows from considering interpretations that use different members of D for the distinguished constants,

if any, and the fact that any number of n-placed predicates can be interpreted as the same n-place relation.

Thus for the above two structures if you have formula with five two-placed predicates, then you can interprete

them all to be P ′. However, if you are more interested in the logical behavior relative to a fixed structure,

then in this case, such a formula with the five n-place predicates holds in this structure if and only if the

sentence you get by replacing the five predicates with one predicate P (x, y) holds in the structure. [If you

have different distinguished constants in these predicates they still are different in the place where you

changed the predicate symbol name to P .] The obvious reason for this is that the actual valuation does

not depend upon the symbol used to name the n-placed predicate (i.e. the P , Q, P1 etc.) but only on the

function and the relation that interpretes the predicate symbol. For this reason, sometimes you will see the

definition for an interpretation state that the correspondence between predicate symbols and relations be

one-to-one.

EXERCISES 3.3

1. In each of the following cases, write the formula that is the result of the substitution process.

(a) Sx
a (∃xP (x))→ R(x, y)] (d) Sx

aSx
b (∃xP (x))→ R(x, y)]]

(b) Sy
x (∃yR(x, y))↔ (∀xR(x, y))] (e) Sx

aSy
x(∃yR(x, y))↔ (∀xR(x, y))]]

(c) Sy
a (∀xP (y, x)) ∧ (∃yR(x, y))] (f) Sx

aSy
b (∀zP (y, x)) ∧ (∃yR(x, y))]]

2. Let A ∈ Pd. Determine whether the following is ALWAYS true or not. If the statement does not hold for

all formula in Pd, then give an example to justify your claim.

(a) Sx
aSy

b A]] = Sy
b Sx

aA]] (c) Sx
y Sz

wA]] = Sz
wSx

y A]]

(b) Sx
y A] = Sy

xA] (d) Sx
xSy

yA]] = A

3. Let D = {a′, b′}, the 1-place relation P ′ = {a′} and the 2-place relation Q′ = {(a′, a′), (a′, b′)}. For each

of the following sentences and interpretation of the constant c, I(c) = a′, determine whetherM |= A, where

M = 〈D, a′, P ′, Q′〉.

(a) A = (∀x(P (c) ∨Q(x, x)))→ (P (c) ∨ ∀xQ(x, x)).

(b) A = (∀x(P (c) ∨Q(x, x)))→ (P (c) ∧ ∀xQ(x, x)).

(c) A = (∀x(P (c) ∨Q(x, x)))→ (P (c) ∧ ∃xQ(x, x)).

(d) A = (∀x(P (c) ∧Q(x, x)))↔ (P (c) ∧ ∀xQ(x, x)).

(e) A = (∀x(P (c) ∧Q(c, x)))↔ (P (c) ∧ ∀xQ(x, x)).
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3.4 Valid Formula in Pd..

Our basic goal is to replicate the results for Pd, whenever possible, that were obtained for L or L′.

What is needed to obtain, at the least, one ultralogic is a compactness type theorem for Pd.

Since we are restricting the model concept to the set of sentences S contained in Pd, we are in need of

a method to generate the simplest sentence for formula that is not sentence. Always keep in mind that

fact that a structure is defined for all predicates and constants in a specific language Pd. In

certain cases, it will be necessary to consider special structures with special properties.

Definition 3.4.1 (Universal closure) For any A ∈ Pd, with free variables x1, . . . , xn, (written in sub-

script order the universal closure is denoted by ∀A and ∀A = ∀x1(· · · (∀xnA) · · ·).

Obviously, if there are no free variables in A, then ∀A = A. In any case, ∀A ∈ S. This fact will not

be mentioned when we only consider members of S. We will use the same symbol |=, as previously used, to

represent the concept of a “valid” formula in Pd. It will be seen that it’s the same concept as the T and F

concept for L.

Definition 3.4.2 (Valid formula in Pd.) A formula A ∈ Pd is a valid formula (denoted by |= A) if for

every domain D and every structure M with an interpretation I for each constant in A and each n-placed

predicate in A, M |= ∀A.

A formula B is a contradiction if for every domain D and every structure M with an interpretation I

for each constant in A and each n-placed predicates in A, M 6|= ∀A.

We show that this is an extension of the valid formula concept as defined for L. Further, since every

structure is associated with an interpretaion, this will be denoted byMI .

Theorem 3.4.1 Let A, B, C ∈ S. Suppose that |= A; |= A→ B. Then |= B.

Proof. Suppose that |= A and |= A → B. Let MI be any structure for Pd. From the hypothesis,

MI |= A and MI |= A → B imply that MI |= B from definition 3.3.3 (consider the size (A → B) = m)

part (a).

In the metaproofs to be presented below, I will not continually mention the size of a formula for

application of definition 3.3.3.

Theorem 3.4.2 Let A, B, C ∈ S. Then (i) |= A→ (B → A), (ii) |= (A→ (B → C))→ ((A→ B)→

(A→ C)), (iii) |= ((¬A)→ (¬B))→ (B → A).

Proof. (i), (ii), (iii) follow in the same manner as does theorem 3.4.1 by restricting structures to specific

formulas. Notice that every formula in the conclusions are members of S. We establish (iii).

(iii) Let MI be a structure for Pd. Assume that MI |= (¬A) → (¬B) for otherwise the result would

follow from definition 3.3.3. Suppose thatMI |= ¬A and MI |= ¬B. Hence from definition 3.3.3,MI 6|= A

and MI 6|= B. Consequently, MI |= B → A ⇒ MI |= ((¬A) → (¬B)) → (B → A) from definition 3.3.3.

Suppose thatMI 6|= (¬A). Then MI |= A⇒MI |= B → A and in this final case the result also holds.

Theorem 3.4.3 Let A be any formal theorem in L. Let ∗A be obtained by substituting for each

proposition Pi a member Ai ∈ S. Then |= ∗A.

Proof. This follows in the exact same manner as the soundness theorem 2.15.2 for L′ extended to L

along with theorem 3.4.2.

Theorem 3.4.4 Let A ∈ L and |= A as defined in L′. Then |= ∗A as defined for Pd.

Proof. This follows from the completeness theorem 2.15.1 for L′ extended to L and theorem 3.4.3.
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What theorems 3.4.2 and 3.4.4 show is that we have a great many valid formula in Pd. However, is this

where all the valid formula come from or are there many valid formula in Pd that do not come from this

simple substitution process?

Example 3.4.1 Let A = P (x) → (∃xP (x)). Then ∀A = ∀x(P (x) → (∃xP (x))). Let MI denote a

structure for Pd. Suppose that MI 6|= ∀A. Then there is some d′ ∈ D such that MI 6|= P (d) → ∃xP (x).

Thus it most be that MI |= P (d) and MI 6|= ∃xP (x). But this contradicts definition 3.3.3 (v) part (g).

Thus |= P (x) → (∃xP (x)). It’s relatively clear, due to the location of the ∀ in the universal closure in the

formula, that there is no formula B ∈ L′ such that ∗B = ∀A.

There are many very important valid formula in Pd that are not obtained from theorems 3.4.2 and 3.4.4.

To investigate the most important, we use the following variable predicate notation. Let A denote a formula

from Pd. Then there are always three possibilities for an x ∈ V . Either x does not appear in A, x appears in

A but is not free in A, or x is free in A. There are certain important formula, at least for the proof theory

portion of this chapter, that are valid and that can be expressed in this general variable predicate language.

Of course, when such metatheorems are established, you need to consider these three possibilities.

With respect to our substitution operator Sx
λ, if A either does not contain the variable x or it has no

free occurrences of x, then Sx
λA] = A. Further it is important to note that the constant d that appears is a

general constant that is relative to a type of extended interpretation where it corresponds to some d′. But it

is not part of the original interpretation. This difference must be strictly understood.

Definition 3.4.3 (Free for) Let A ∈ Pd. Then a variable v is free for x in A if the formula Sx
v A], at the

least, has free occurrences of v in the same positions as the free occurrences of x.

Example 3.4.2 Notice (i) that x is free for x in any formula A ∈ Pd and Sx
xA] = A.

(ii) Further, if x does not occur in A or is not free in A, then any variable y is free for x in A and

Sx
y A] = A for any y ∈ V . The only time one gets a different (looking) formula that preserves free occurrences

through the use of the substitution operator Sx
λA] is when x is free in A and λ ∈ V is free for x and λ 6= x.

(iii) Let A = ∃yP (y, x). Then y is NOT free for x since Sx
y A] = ∃yP (y, y). You get a non-congruent

formula by this application of the substitution operator.

(iv) But z is free for x since Sx
z A] = ∃yP (y, z).

(v) If A = (∃xP (x, y)) → (∃yQ(x)), then y is NOT free for x since Sx
y A] = (∃xP (x, y) → (∃yQ(y)).

Again z is free for x.

Theorem 3.4.5 For any formula A with variables x1, x2, . . . , xn and only these free variables (where

the subscripts only indicate the number of distinct variables and not their subscripts in the set V), then for

any structureMI ,MI |= ∀A if and only if for each c′1 ∈ D and for each c′2 ∈ D and · · · and for each c′n ∈ D,

MI |= Sx1

c1
Sx2

c2
. . . Sxn

cn
A] . . .]].

Proof. From the definition of universal closure and definition 3.3.3.

Corollary 3.4.5.1 Under the same hypotheses as theorem 3.4.5, MI |= Sxi
ci

S
xj
cj . . . Sxk

ck
A] . . .]] for any

permutation (i, j, . . . , k) of the subscripts.

Theorem 3.4.6 Let y be free for x in A. Then Sy
dSx

y A]] = Sx
dSy

dA]].

Proof. The major argument to establish must of our validity results is dependent upon a rewording of

the substitution process. If there are any free occurrences of y, then x does not occur free at those places

that y occurs free in A. Substituting d for these specific free occurrences can be done first. Then, each y

obtained by substituting for a free x, due to the fact that y is free for x, can be changed to a d by simply

substituting the d for the free occurrences x. This yields the left hand side of the equation where all free
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occurrence of xs are changed to ys, any other free occurrence of y remains as it is, and then all the free

occurrences of y are changed to d.

Theorem 3.4.7 Suppose that A ∈ Pd and y is free for x in A, then

(i) if x does not occur free in A, then for any structure MI for Pd, MI |= ∀(∀xA) if and only if

MI |= ∀A if and only ifMI |= ∀x(∀A).

(ii) If x does not occur free in A, then for any structure MI for Pd, MI |= ∀(∃xA) if and only if

MI |= ∀A if and only ifMI |= ∃x(∀A)

(iii) |= (∀xA)→ Sx
y A]

(iv) |= Sx
y A]→ (∃xA).

Proof. (i) Let MI be a structure for Pd. Suppose that MI |= ∀(∀xA). Since x is not free in A, then

from corollary 3.4.5.1, MI |= (∀x∀A) ⇒MI |= ∀A, since under the substitution process there is no free x

for the substitution.

Conversely, suppose that MI |= ∀A. Since x is not free in A, then again from corollary 3.4.5.1,MI |=

∀A⇒MI |= ∀(∀xA) for the same reason.

(ii) This follows in the same manner as (i).

(iii) First suppose that x is not free in A. Then Sx
y A] = A. Let MI be a structure Pd and consider

the sentence ∀((∀xA) → A). Suppose that {x1, . . . , xn} are free variables in A. From 3.4.5, we must show

that MI |= Sx1

c1
· · ·Sxn

cn
((∀xA) → A), where cj ∈ D. However, making the actual substitutions yields that

Sx1

c1
· · ·Sxn

cn
((∀xA) → A) = Sx1

c1
· · ·Sxn

cn
(∀xA)] · · ·] → Sx1

c1
· · ·Sxn

cn
A] · · ·] = ∀(∀xA) → ∀A. We need only

suppose thatMI |= ∀(∀xA). Then from (i),MI |= ∀A. But thenMI |= ∀A→ ∀A from our definition 3.3.3.

Now assume that x is free in A. Note that x is not free in ∀xA, or in Sx
y A]. There are free occurrences

of y in Sx
y A] and there may be free occurrences of y in ∀xA. Any other variables that occur free in ∀xA, or

Sx
y A] are the same variables. Considering the actual substitution process for ∀((∀xA) → Sx

y A]) and using

corollary 3.4.5.1, we can permute all the other substitution processes for the other possible free variables

not y to be done “first.” When this is done the positions that the arbitrary ds take yield ∀xC and Sx
y C, where

C contains the various symbols d in the place of the other possible free variables and that correspond to the

d′ ∈ D. Consider ∀y((∀xA) → Sx
y C]). The valuation process for each d′ ∈ D yields Sy

d ((∀xC) → Sx
y C])] =

(∀xSy
dC])→ Sy

dSx
y C]] = (∀x(Sy

dC))→ Sx
d Sy

dC]] = (∀xB)→ Sx
dB, where B = Sy

dC]. Now simply assume that

MI |= ∀xB. Then for all d′ ∈ D, MI |= Sx
d B]. From definition 3.3.3, d′ ∈ D, MI |= (∀xB) → Sx

d B]. Since

d′ ∈ D is arbitrary, we have as this point in the valuationMI |= ∀y((∀xA)→ Sx
y C]). Multiple applications

of metalogic generalization as the d’s associated with the other free variables vary over D completes the

proof of part (iii) since MI is also arbitrary.

(iv) The same proof from (iii) for the case that x is not free in A holds for this case. Again in the same

manner as in the proof of part (iii), we need only assume thatMI is a structure for Pd and for the formula

Sx
y C]→ (∃xC), x or y are the only free variables in C and y is free for x. Consider ∀y((Sx

y C]→ (∃xC)). Then

for arbitrary c′ ∈ D, Sy
c (Sx

y C] → (∃xC)) = Sy
c Sx

y C]] → Sy
c ∃xC] = Sx

c Sy
c C]] → ∃x(Sy

c C]) = Sx
c B → ∃xB,

where B = Sy
c C]. Now if MI |= ∃xB. Then there exists some d′ ∈ D such that MI |= Sx

d B. Hence, letting

c′ = d′, we have MI |= Sx
c B → ∃xB. On the other hand, if MI 6|= ∃xB, then for all d′ ∈ D, MI 6|= Sx

d B.

This implies that MI 6|= Sx
c B. From definition 3.3.3, MI |= Sx

c B] → (∃xB). Since c is arbitrary, then

MI |= ∀y((Sx
y C] → (∃xC)). Again by multiple applications of generalization and since MI is an arbitrary

structure, the result follows.

There are many formulas in Pd that are not instances of valid propositional formula that may be of

interest to the pure logician. It’s not the purpose of this text to determine the validity of a member of Pd that

will not be of significance in replicating within Pd significant propositional metatheorems. However, certain
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formula in Pd are useful in simplifying ordinary everyday logical arguments. The next two metatheorems

relate to both of these concerns.

Theorem 3.4.8 If x is any variable and B does not contain a free occurrence of x, then

(i) Special process and notationMI |= A.

(ii) For any structure MI for Pd,, let A have free variables x1, . . . , xn. Then MI |=

¬(∀x1, . . . , (∀xnA) . . .) if and only ifMI |= (∃x1, . . . , (∃xn(¬A)) . . .).

(iii) IfMI |= B → A, then MI |= B → (∀xA).

(iv) IfMI |= A→ B, then MI |= (∃xA)→ B.

Proof. (i) To determine whether or notMI |= A, where A is not a sentence, we consider whether or not

MI |= ∀A. First, corollary 3.4.5.1 indicates that the order, from left to right, in which we make the required

substitution has no significance upon the whether or not MI |= ∀A. Note that after we write the, possibly

empty, sequence of statements “for each d′1, for each d′2, · · · ,∈ D” the universal closure substitution

operators Sx1

d1
, Sx2

d2
, · · · distribute over all of the fundamental connections ∨, ∧, →, ↔, ¬. [Note

that one must carefully consider the statements “for each d′1, for each d′2, · · · ,∈ D.”] What happens is that

when we have a variable that is not free in a subformula then the substitution process simply does not apply.

Further if the statements “for each d′1, for each d′2, · · · ,∈ D” still apply to the entire formula and substitution

operators have not been eliminated, then we can go from basic subformula that contain a universal closure

substitution operators to the left of each subformula back to a universal closure for the entire composite

formula. After making these substitutions, we would have, depending upon the domain D, a large set of

objects that now carry the d’s (or c’s) in various places and that act like sentences. If these sentences satisfy

the requirements ofMI |=, then by the metalogical axiom of generalizationMI |= holds for the universally

closed formula.

For example, consider the hypotheses of this theorem and the formulas B → A, and B → (∀xA). To

establish the result in (iii), MI |= B → A means MI |= ∀(B → A). Hence, we have the, possibly empty,

sequence of statements for each d1 · · · , d ∈ D, MI |= Sx1

d1
· · ·Sx

d (B → A) holds. The valuation can be

rewritten as Sx1

d1
· · ·Sx

d B → Sx1

d1
· · ·Sx

dA ⇒ Sx1

d1
· · ·B → Sx

d (Sx1

d1
· · ·A) = B′ → Sx

dA′. For the valuation

process B′ acts like a sentence and A′ acts like a formula with only one free variable, x. Thus, from our

observation about the metalogical process for quantification over the members of D, if by simply consider

B to be a sentence, and A to have, at the most, one free variable x, it can be shown thatMI |= B → ∀xA,

then we have established, in general, thatMI |= B → ∀xA.

Thus, this type of argument shows that in many of our following arguments, relative to structures, we

can reduce the valuation process to a minimum number of free variables that are present within a specific

formula.

From this point on, unless otherwise stated, we will ALWAYS assume that MI means a

structure for Pd and MI |= A means MI |= ∀A

(ii) If we have no free variables in A, then we have nothing to prove. Assume that A has only one free

variable x. Suppose thatMI |= (¬(∀xA)). This implies thatMI 6|= ∀xA. This means that there exists some

d′ ∈ D such that MI 6|= Sx
dA]. This implies that there exists some d′ ∈ D such that MI |= (¬Sx

d A]) =

Sx
d (¬A)]. Hence MI |= (∃x(¬A)). Now apply induction.

Note: As well be seen in the following proofs, other conclusions hold that are not expressed in (iii) or

(iv). These restricted conclusions are presented since these are basic results even where the universal closure

is not used.

(iii) By the special process, assume that B is a sentence and that A has at the most one free variable

x. Let MI |= B → A. If A has no free variables, then A and B are sentences. The statement that for each
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d′ ∈ D,MI |= B → A and the statement for each d′ ∈ D, MI |= B → Sx
dA] = B → A are identical and the

result holds in this case.

Suppose that x is the only free variable in A and B is a sentence. Then MI |= B → A means that, for

each d′ ∈ D,MI |= Sx
d (B → A)] = B → Sx

d A]. This is but the valuation process for the formula B → (∀xA).

Hence MI |= B → (∀xA). (Assume MI |= B. Then MI |= Sx
dA] for each d′ ∈ D implies MI |= ∀xA.)

(iv) Assume that B is a sentence and that A has, at the most, one free variable x. As was done in (iii),

if x is not free in A, the result follows. Assume that x is free in A and thatMI |= A→ B. Then this means

that, for each d′ ∈ D,MI |= Sx
d (A→ B)] = (Sx

d A])→ B. Hence, since D 6= ∅, that there exists some d′ ∈ D,

such that MI |= (Sx
dA])→ B. Consequently, by the special process,MI |= (∃xA) → B. This complete the

proof.

[Note: Parts (iii) and (iv) above do not hold if B contains x as a free variable. For an example, let

P (x) = A = B, D = {a, b}, P ′ = {a}. Assume that MI |= P (x) → P (x). Thus, for a, MI |= Sx
aP (x) →

P (x)] = P (a) → P (a) and, in like manner, MI |= P (b) → P (b). Since MI 6|= P (b), then MI 6|= ∀xP (x).

Hence, for the case d = a, we have that MI 6|= P (a) → ∀xP (x) ⇒ MI 6|= ∀(P (x) → ∀xP (x)) ⇒ MI 6|=

P (x)→ ∀xP (x).]

An important aspect of logical communication lies in the ability to re-write expressions that contain

quantifiers into logically equivalent forms. The next theorem yields most of the principles for quantifier

manipulation that are found in ordinary communication.

Theorem 3.4.9 For formulas A, B, C the following are all valid formulas, where C does not contain x

as a free variable.

(i) (∃x(∃yA(x, y)) ↔ (∃y(∃xA(x, y)).

(ii) (∀x(∀yA(x, y)) ↔ (∀y(∀xA(x, y)).

(iii) (¬(∃xA)) ↔ (∀x(¬A)).

(iv) (¬(∀xA)) ↔ (∃x(¬A)).

(v) (∃x(A ∨B))↔ ((∃xA) ∨ ((∃xB)).

(vi) (∀x(A ∧B))↔ ((∀xA) ∧ (∀xB)).

(vii) (∀x(C ∨B))↔ (C ∨ (∀xB)).

(viii) (∃x(C ∧B))↔ (C ∧ (∃xB)).

Proof. (i) This follows from Theorem 3.4.5 and the fact that the expression “there exists some d′ ∈ D

and there exists some c′ ∈ D” is metalogically equivalent to “there exists some c′ ∈ D and there exists some

d′ ∈ D.” Consequently, for arbitrary MI |=, if MI |= (∃x(∃yA(x, y))), then MI |= (∃y(∃xA(x, y))) and

conversely.

(ii) This follows immediately by Corollary 3.4.5.1.

(iii) (Special process.) This follows from the assumption that x is the only possible free variable in A,

the propositional equivalent |= ¬(¬A)↔ A, and theorem 3.4.8 part (ii).

(iv) Same as in (iii).

(v) (Special process.) We may assume that the only possible free variables in A ∨ B is the variable

x. Assume that for MI , an arbitrary structure and MI |= (∃x(A ∨ B)). Then there exists some d′ ∈ D

such that MI |= Sx
d (A ∨ B)] = (Sx

d A] ∨ Sx
dB]). Note that it does not matter whether the variable x is free

or not in A or B since this still holds whether or not a substitution is made. Hence, there exists some

d′ ∈ D such that MI |= Sx
d A] or there exists at the least the same d′ ∈ D such that MI |= Sx

d B]. Hence,

MI |= ((∃xA)∨(∃xB)). Now assume thatMI 6|= ∃x(A∨B). Thus, there does not exist any d′ ∈ D such that
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MI |= Sx
d (A∨B)]. This means there does not exists any d′ ∈ D such thatMI |= (Sx

dA]∨Sx
d B]). Therefore,

MI 6|= ((∃xA) ∨ (∃xB)). This result now follows.

(vi) Taking the proof of (v) and change the appropriate words and ∨ to ∧ this proof follows.

(vii) (Special process.) Assume that C does not have x as a free variable and that B may contain x

as a free variable. Further, it’s assumed that there are no other possible free variables. ∀x(C ∨ B) is a

sentence. Let MI be an arbitrary structure. Assume thatMI |= ∀x(C ∨B). Then for each d′ ∈ D, MI |=

Sx
d (C ∨B)] = C ∨Sx

d B]. Hence,MI |= C or for each d′ ∈ D, MI |= Sx
d B]. Hence,MI |= (C ∨ (∀xB)). Then

in like manner, since x is not free in C, MI |= (C ∨ (∀xB))⇒MI |= ∀x(C ∨B). [Note that this argument

fails if C and B both have x as a free variable. Since if MI |= ∀x(C ∨B), then considering any d′ ∈ D we

have that MI |= Sx
d (C ∨ B)] = Sx

d A] ∨ Sx
d B] ⇒MI |= Sx

dC] or MI |= Sx
d B]. But both or these statement

need not hold for a specific d′ ∈ D. Thus we cannot conclude thatMI |= ∀xC orMI |= ∀xB. ]

(viii) Left as an exercised.

Obviously, theorems such as 3.4.9 would be very useful if the same type of substitution for valid formula

with the ↔ in the middle holds for Pd as it holds in L or L′. You could simply substitute one for the

other in various places. Well, this is the case, just by simple symbolic modifications of the proofs of the

metatheorems 2.6.1, 2.6.2, 2.6.3, and corollary 2.6.3.1. We list those results not already present as the

following set of metatheorems for Pd and for reference purposes.

Definition 3.4.4 (≡ for Pd.) Let A, B ∈ Pd. Then define A ≡ B if and only if |= A ↔ B. [See note

on page 138.]

Theorem 3.4.10 The relation ≡ is an equivalence relation.

Proof. See note on page 38.

Theorem 3.4.11 If A, B, C ∈ Pd and A ≡ B, then CA ≡ CB.

Proof. Let |= ∀(A↔ B). It can be shown that this implies |= ∀(CA ↔ CB).

Corollary 3.4.11.1 If A, B, C ∈ Pd and A ≡ B, and |= CA, then |= CB.

With respect to A being congruent to B recall that all the formula have the exact same form, the exact

same free variables in the exact same places, and the bounded variables can take any variable name as long

as the formula retain the same bound occurrence patterns. Hence, structure valuation would yield the same

statement that either |= or 6|=, holds for A and B. Also see note on page 38

Theorem 3.4.12 Suppose that A, B ∈ Pd are congruent. Then A ≡ B.

Theorem 3.4.13 Let A ≡ B. ThenMI |= A if and only ifMI |= B.

Proof. From Definition 3.4.4, if A ≡ B, then |= ∀A↔ ∀B if and only if MI |= A implies MI |= B and

MI |= B impliesMI |= A.

EXERCISES 3.4

1. A formula A is a said to be n-valid, where n is a natural number greater than 0, if for any structureMI ,

with the domain containing n and only n elements, MI |= A.

(a) Prove that A = (∀x(∃yP (x, y)))→ (∃y(∀xP (x, y))) is 1-valid.

(b) A countermodel MI must be used to show that a formula A is not valid. You must define a structure

MI such thatMI 6|= A. Show by countermodel that the formula A in (a) is not 2-valid.

2. For each of the following, determine whether the indicated variable λ is free for x in the given formula A.

(a) A = ∀w(P (x) ∨ (∀xP (x, y)) ∨ P (w, x)); λ = y.
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(b) A is the same as in (a) but λ = w.

(c) A = (∀x(P (x) ∨ (∀yP (x, y)))) ∨ P (y, x); λ = x.

(d) A is the same as in (c) and λ = y.

(e) A = (∀x(∃yP (x, y))→ (∃yP (y, y, )); λ = y.

(f) A = (∃zP (x, z))→ (∃zP (y, z)); λ = z.

3. For the formula in question 2, write Sx
λA] whenever, as given in each problem, λ is free for x.

4. Give a metaproof for part (viii) of theorem 3.4.9.

5. Determine whether the formula are valid.

(a) Q(x)→ (∀xP (x)). (d) (∃x(∃yP (x, y)))→ (∃xP (x, x)).

(b) (∃xP (x))→ P (x). (e) (∃xQ(x))→ (∀xQ(x)).

(c) (∀x(P (x) ∧Q(x)))→ ((∀xP (x)) ∧ (∀xQ(x))).

6. A formula A is said to be in prenex normal form if A = Q1x1(Q2x2(· · · (Qnxn(A)) · · ·)), where Qi, 1 ≤

i ≤ n is one of the symbols ∀ or ∃. The following is a very important procedure. Use the theorems in this

or previous sections relative to the language L or Pd to re-write each of the following formula in a prenex

normal form that is equivalent to the original formula. [Hint. You may need to use the congruency concept

and change variable names. For example, ∀xP (x)→ ∀xQ(x) ≡ ∀xP (x)→ ∀yP (y) ≡ ∀y(∀xP (x)→ Q(y)) ≡

∀y(Q(y) ∨ (¬(∀xP (x)))) ≡ ∀y(Q(y) ∨ (∃x(¬P (x)))) ≡ ∀y(∃x(Q(y) ∨ (¬P (x)))).]

(a) (¬(∃xP (x))) ∨ (∀xQ(x)).

(b) ((¬(∃xP (x))) ∨ (∀xQ(x))) ∧ (S(c)→ (∀xR(x))).

(c) ¬(((¬(∃xP (x))) ∨ (∀xQ(x))) ∧ (∀xR(x))).

NOTE

It is not the case that |= ∀(A ↔ B) ↔ ((∀A) ↔ (∀B)). Let D = {a′, b′}, P ′ = {a′}, Q′ = {b′}.

Then MI 6|= ∀x∀y(P (x) ↔ Q(y)) since MI 6|= P (a) ↔ Q(a). However, since MI 6|= P (b) implies that

MI 6|= ∀xP (x) andMI 6|= Q(a) implies thatMI 6|= ∀yQ(y), then MI |= (∀xP (x))↔ (∀yQ(y)).

Using material yet to come, a way to establish Theorems 3.4.10 and 3.4.11 is to use the soundedness

and completeness theorem, the usual reduced language Pd′, and 14.7, 14.9 that appear in J.W. Robbin,

Mathematical Logic a first course,W. A. Benjamin, Inc NY (1969) p. 48. I note that these results are

established in Robbin by use of formal axioms and methods that are identical with the ones presented in the

next section. [The fact that the definition of ≡ via the universal closure is an equivalence relation follows

from the fact that for any formula C, ⊢ (∀C)→ C and ⊢ ∀(A↔ B) if and only if ⊢ A↔ B. Also ⊢ ∀(A↔

B) → (∀A) ↔ (∀B) implies that if |= ∀(A ↔ B), then |= (∀A) ↔ (∀B). From ⊢ ∀(A ↔ B) → (CA ↔ CB),

if |= ∀(A↔ B), then ⊢ (CA ↔ CB) implies ⊢ ∀(CA ↔ CB) implies |= ∀(CA ↔ CB) implies CA ≡ CB. Using

⊢ ∀(CA ↔ CB)→ ((∀CA)↔ (∀CB)), we have that if A ≡ B, andMI |= CA, thenMI |= CB . The fact that

for congruent A and B that A ≡ B also follows from ⊢ A↔ B. ]

3.5 Valid Consequences and Models

As in the case of validity, the (semantical) definition for the concepts of a valid consequence and

satisfaction are almost identical to those used for the language L.

Definition 3.5.1 (Valid consequence for Pd.) A sentence B in Pd ( i.e. B ∈ S) is a valid consequence

of a set of premises Γ ⊂ S, which may be an empty set, if for anyMI for Γ∪{B} wheneverMI |= A for each
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A ∈ Γ, thenMI |= B. This can be most easily remembered by using the following notation. Let Γ ⊂ S. Let

MI |= Γ mean that MI |= A for each A ∈ Γ. Then B is a valid consequence from Γ if whenever MI |= Γ,

then MI |= B, it being understood thatMI is a structure for the set Γ ∪ {B}. The notation used for valid

consequence is Γ |= B.

The concept of “satisfaction” also involves models and we could actually do without this additional

term.

Definition 3.5.2 (Satisfaction for Pd) A Γ ⊂ S is satisfiable if there exists aMI such thatMI |= Γ.

Γ is not satisfiable if no such structure exists.

As in the previous section, all of the results of section 2.8, 2.9 and 2.10 that hold for L also hold for this

concept extended to Pd. The following metatheorem contains processes that are not used in the metaproof

of its corresponding L language metatheorem. The remaining metatheorems follow in a manner very similar

to their counterparts in sections 2.8 — 2.10.

Theorem 3.5.1 (Substitution into valid consequences.) Let An, C, B ∈ S.

(i) If An ≡ C, and A1, · · · , An, · · · |= B, then A1, . . . , An−1, C, · · · |= B.

(ii) If B ≡ C, and A1, · · · , An, · · · |= B, then A1, · · · , An, · · · |= C.

Proof. (i) Suppose that An ≡ C. Let MI be a structure. The MI is defined for

C, B, A1, . . . , An−1, An, · · · . Suppose that MI |= Ai for 1 ≤ i. Then MI |= B. But MI |= An if and

only if MI |= C. Consequently, if MI |= {A1, . . . , An−1, C, · · ·}, then MI |= B. [Notice that these state-

ments are conditional. If for any structureMI you get for any sentence A in the set of premises thatMI 6|= A

you can simply disregard the structure.]

(ii) Suppose that MI is a structure and that MI is defined for B, C, A1, . . . , An, · · · . If MI |= Ai for

1 ≤ i, then MI |= B. But MI |= C. From this the result follows.

Theorem 3.5.2 (Deduction theorem) Let A, B, Ai ∈ S for 1 ≤ i ≤ n.

(i) A |= B if and only if |= A→ B.

(ii) A, . . . , An |= B if and only if A1 ∧ · · · ∧An |= B.

(iii) A, . . . , An |= B if and only if |= (A1 ∧ · · · ∧An)→ B.

(iv) A, . . . , An |= B if and only if |= (A1 → · · · → (An → B) · · ·).

As with the language L, consistency is of major importance. It is defined by the model concept. The

metatheorems that follow the next definition are established the same manner as their counterparts for L.

Definition 3.5.3 (Consistency) A nonempty set of premises Γ ⊂ S is consistent if there does not exist

a B ∈ S such that Γ |= B ∧ (¬B).

Theorem 3.5.4 If B ∈ S, then 6|= B ∧ (¬B).

Theorem 3.5.5 A nonempty finite set of premises Γ ⊂ S is inconsistent if and only if Γ |= B for every

B ∈ S. (Based on the proof method for 2.10.3.)

Corollary 3.5.5.1 A nonempty finite set of premises Γ ⊂ S is consistent if and only if there exists some

B ∈ S such that Γ 6|= B.

Corollary 3.5.6.1 A nonempty finite set of premises Γ ⊂ S is consistent if and only if it is satisfiable.

Even though we seem to have strong results that can be used to determine whether a sentence is a

valid consequence or that such a set is consistent, it turns out that it’s often very difficult to make such

judgments for the language Pd. The reasons for this vary in complexity. One basic reason is that some sets
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of premises tend to imply that the domain D is not finite. Further, when we made such determinations for

L, we have a specifically definable process that can be followed, the truth-table method. It can actually

be shown, that there is no known method to describe one fixed process that will enable us to determine

whether a sentence is valid or whether a set of premises is consistent. Thus we must rely upon ingenuity

to establish by models these concepts. Even then some mathematicians do not accept such metaproofs as

informally correct since some claim that the model chosen is defined in an unacceptable manner. The next

examples show how we must rely upon the previous definitions and metatheorems to achieve our goals of

establishing valid consequences or consistency. In some cases, however, no amount of informal argument will

establish the case one way or the other with complete assurance. I point out that these formal sentences are

translations from what ordinary English language sentences.

If you are given a finite set of premises A1, · · · , An then there are various ways to show that A1, · · · , An |=

B. One method is to use that Deduction Theorem and a general argument that |= A1 ∧ · · · ∧ An → B; the

propositional method of assuming that for a structure MI in general if 6|= B, then 6|= A1 or 6|= A2. For the

invalid consequence concept, you have two choices, usually. Consider ANY structureMI such thatMI 6|= B

and show that this leads to eachMI |= Ai, i = 1, . . . , n. However, to show that A1, · · · , An 6|= B, it is often

easier to define a structureMI and show thatMI |= Ai, i = 1, . . . , n, but thatMI 6|= B (i.e. the definition

for valid consequence does not hold.) Note that if there is noMI such thatMI 6|= B, then |= B.

Example 3.5.1. Consider the premises A1 = ∀x(P (x) → (¬Q(x))), A2 = ∀x(W (x) → P (x)), B =

∀x(W (x)→ (¬Q(x))). We now (attempt) to determine whether |= A1 ∧A2 → B.

Let MI be any structure. First, let D be any nonempty domain and the P ′, Q′, W ′ be any subsets

of D (not including the possible empty ones). Suppose that MI 6|=∀x(W (x) → (¬Q(x))). Then there exists

some c′ ∈ D such that MI 6|=Sx
c (W (x) → (¬Q(x)) = W (c) → (¬Q(c)). From our definition of what MI 6|=

means, (*) MI |= W (c) (*) and that MI 6|= ¬Q(c); which means thatMI |= Q(c). This does not force any

of the premises to have a specific |= or 6|=. Thus as done for the propositional calculus, let MI |= A2 =

∀x(W (x) → (¬Q(x)). Hence, for all d′ ∈ D, we have that MI |= W (d) → P (d). Now c is one of the ds.

Hence, we have thatMI |= W (c)→ P (c). What does this do to A1? We show thatMI 6|= A1. Assume that

MI |= A1. Hence, for all d′ ∈ D,MI |= P (d)→ (¬Q(d)). Again this would giveMI |= P (c)→ (¬Q(c)). We

know that MI 6|= ¬Q(c). Hence MI 6|= P (c). Thus MI 6|=W (c). This contradicts the (*) expression. Hence,

MI 6|=A1. Now consider an empty W ′. Then MI |= ∀x(W (x) → (¬Q(x))). Consider Q′ empty and W ′ not

empty. Then MI |= ∀x(W (x)→ (¬Q(x))). Hence, B is a valid consequence of A1, A2.

Example 3.5.2. Let A1 = ∃x(P (x)→ Q(x)), A2 = ∀x(W (x)→ P (x)), B = ∃x(W (x)→ (¬Q(x))). Is

B a valid consequence of the premises? Well, we guess, that this might be an invalid consequence. We try

to find a structure MI such that MI |= A1, MI |= A2 and MI 6|= B. Let D = {a′}, P ′ = Q′ = W ′ = D.

There are no constants in the sentences A1, A2 or B. N contains only one constant a which is interpreted

as a′. Clearly, MI |= A1 and MI |= A2. But, MI |= W (a) and MI 6|= (¬Q(a)). Consequently, MI 6|= B.

[Note the difficulty would be to first have a “feeling” that the argument from which these formula are taken

is not logically correct and then construct an acceptable structure that establishes this “feeling.” Not an

easy thing to do, if it can be done at all.]

Example 3.5.3. Let A = ∃y(∀xP (x, y)) and B = ∀x(∃yP (x, y). [In this case, P ′ cannot be the empty

relation, for if this were the case, then MI 6|= A for an appropriate structure.] We try to show that A |= B

and get nowhere. So, maybe the A 6|= B. Let’s see if we can obtain a countermodel. Let D = {a′, b′}. Let

P ′ = {(a′, b′), (b′, a′)}. Now extend this construction to a structure MI for Pd. Then for each d′ ∈ D there

exists some c′ ∈ D such that (c′, d′) ∈ P ′, which implies that MI |= A. On the other hand, there does not

exists some d′ ∈ D such that for each c′ ∈ D, (c′, d′) ∈ P ′. Hence, MI 6|= B for this structure. Thus, B is

not a valid consequence of A. However, it can easily be shown that A is a valid consequence of B.
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Example 3.5.4. Determine whether A1 = ∀x(P (x) → (¬Q(x))), A2 = ∀x(W (x) → P (x)) is a

consistent set of premises. This is not very difficult since we notice that if we construct a structure such that

for each d′ ∈ D MI 6|= P (d) and MI 6|= W (d), then this structure would yield that the set is consistent.

Simply let P ′ and W ′ be the empty set (and extended the construction to all of Pd) and the conditions are

met. Thus the set of premises is consistent.

Example 3.5.5. Add the premise A3 = ∀x(¬P (x)) to the premises A1 and A2 in example 3.5.3. The

same structure yieldsMI |= A3. Thus this new set of premises is consistent.

Example 3.5.6. Determine whether A1 = ∀x(P (x)∧(¬Q(x)), A2 = ∀x(W (x)∧P (x)) form a consistent

set of premises. Clearly, using only empty sets for the relations will not do the job. Let D = {d′}. Now let

P ′ = W ′ = D and Q′ is the empty set. Then for all d′ ∈ D,MI |= P (d), MI |= W (d), MI |= (¬Q(d)).

To show inconsistency, constructing models will not establish anything since we must show things don’t

work for any structure. The argument must be a general argument.

Example 3.5.7. Let A1 = ∃x(¬P (x)), A2 = ∀x(Q(x) → P (x)) and A3 = ∀xQ(x). Let MI be any

structure such thatMI |= ∀xQ(x). Then whatever set Q′ ⊂ D you select, it must have the property that for

all d′ ∈ D, d′ ∈ Q′. Hence, Q′ = D. Now if MI |= A2, then for all d′ ∈ D, MI |= Q(p) → P (d). Thus for

all d′ ∈ D, MI |= P (d) implies that d′ ∈ P ′. Thus P ′ = D. It follows that there does not exist a member d′

of the set P ′ such that d′ is not a member of P ′. ThusMI 6|= A1. Hence, the set of premises is inconsistent.

It might appear that it’s rather easy to show that sets of premises are or are not consistent, or that

sentences are valid consequences of sets of premises. But, there are sets of premises such as the 14 premises

discovered by Raphael Robinson for which it can be shown that there is no known way to construct a model

for these premises without assuming that the model is constructed by means that are either equivalent to

the premises themselves or by means that assume a set of premises from which Robinson’s premises can be

deduced. Such an obvious circular approach would not be accepted as an argument for the consistency of the

Robinson premises. The difficulty in determining valid consequences or consistency occurs when nonempty

n-place, n > 1, and nonfinite domains are needed to satisfy some of the premises. The only time you are

sure that your model will be accepted by the mathematical community for consistency argument is when

your model uses a finite domain. Robinson’s system, if it has a model, must have a domain that is nonfinite.

Further, the set of natural numbers satisfies the Robinson axioms.

Due to the above mentioned difficulties, it’s often necessary to consider a weaker form of the consistency

notion – a concept we term relative consistency. If you have empirical evidence that a set of premises Γ is

consistent, then they can be used to obtain additional premises that we know are also consistent. After we

show the equivalence of formal proof theory to model theory, then these premises can be used to construct

models.

Theorem 3.5.7 If a nonempty set of premises Γ is consistent and Γ |= Bi, where each Bi is sentence,

then the combined set of premises Γ ∪ {Bi} is consistent.

Proof. From consistency, there is a structure MI such that for each A ∈ Γ, MI |= A. But for MI we

also have that MI |= Bi for each i. Consequently, the structure MI yields the requirements for the set of

premises Γ ∪ {Bi} to be consistent.

EXERCISES 3.5

1. The following are translations from what we are told are valid English language argument. Use the model

theory approach and determine if, indeed, the sentence B is a valid consequence of the premises.

(a) A1 = ∀x(Q(x)→ R(x)), A2 = ∃xQ(x) |= B = ∃xR(x).
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(b) A1 = ∀x(Q(x)→ R(x)), A2 = ∃x(Q(x) ∧ Z(x)) |= B = ∃x(R(x) ∧ Z(x)).

(c) A1 = ∀x(P (x)→ (¬Q(x))), A2 = ∃x(Q(x) ∧R(x)) |= B = ∃x(R(x) ∧ (¬Q(x))).

(d) A1 = ∀x(P (x)→ Q(x)), A2 = ∃x(Q(x) ∧R(x)) |= B = ∃x(R(x) ∧ (¬Q(x))).

3.6 Formal Proof Theory

I hope to make the formal proof theory for this language as simple as possible. Again we will only do

formal proofs or demonstrations that will lead directly to our major conclusions. The language will be

Pd′ ⊂ Pd, where no existential quantifiers appear. Later we will simply use the abbreviation ∃xA for

the expression ¬(∀x(¬A)). This will allow us to extend all the proof theoretic notions for Pd′ to Pd. Also

recall that the language Pd can actually be considered as constructed with the connectives ∧,∨, ↔ since

these were abbreviations for the equivalent propositional equivalent formula. (i) A ∨ B is an abbreviation

for (¬A) → B. (ii) A ∧ B is an abbreviation for (¬(A → (¬B))). (iii) A ↔ B is an abbreviation for

(A → B) ∧ (B → A). From the semantics, these formula have the same pattern for |= as they have for

truth-values if it is assumed that A, B ∈ L (say A, B ∈ S.)

Definition 3.6.1 The language Pd′ is that portion of Pd in which no formula contains an existential

quantifier.

Definition 3.6.2 (A formal proof of a theorem)

(1) Use the entire process as described in definition 2.11.2 for the language L′ with the following additions

to the axioms P1, P2, P3 and to the rule modus ponens.

(2) For predicate variables A, B (i.e. metasymbols for any formula) you may write down as any step

the formula

P4 : ∀x(A→ B)→ (A→ (∀xB)) whenever x ∈ V AND x is NOT free in A.

P5 : (∀xA)→ Sx
λA] whenever λ ∈ V AND λ is free for x OR λ ∈ C (the set of constants, if any.)

(3) You add one more rule of inference, the rule called generalization. G(i). Taking any previous

step Bi, you may write down as a new step with a larger step number the step ∀xBi, for any x ∈ V .

(4) If you follow the above directions and the last step in your formal proof is A then we call A a theorem

for Pd′ and denote this (when no confusing will result) by ⊢ A.

The additional steps that can be inserted when we construct a formal demonstration from a set of

premises is exactly the same as in definition 2.12.1.

Definition 3.6.3 Let Γ be any subset of Pd′. Then a formal demonstration from Γ follows the exact

same rules as in definition 3.6.2 with the additional rule that we are allowed to insert as a step at any point

in the demonstration a member of Γ. If the last formula in the demonstration is A, then A is a deduction

from Γ and we denote this, when there is no confusion, by the symbol Γ ⊢ A.

Of course, a formal proof of a theorem or a demonstration for a formula contains only a finite number

of steps. Do we already have a large list of formal proofs for formal theorems that can be used within the

proof theory for Pd′?

Theorem 3.6.1 Consider any formal proof in L′ for the L′ theorem A. For each specific propositional

variable within A, substitute a fixed predicate variable at each occurrence of the propositional variable in A

to obtain the predict formula Â. Then for Pd′, we have that ⊢ Â.

Proof. Simply take each step in the formal proof in L′ that ⊢ A and make the same corresponding

consistent variable predicate substitutions. Since each axiom P1, P2, P3 and the MP rule are the same in

Pd′, this will give a formal proof in Pd′ for ⊢ Â.
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Theorem 3.6.2 Let Γ ⊂ Pd′ and A, B ∈ Pd′.

(a) If A ∈ Γ or A is an instance of an axiom Pi, 1 ≤ i ≤ 5, then Γ ⊢ A.

(b) If Γ ⊢ A and ⊢ A→ B, then Γ ⊢ B.

(c) If ⊢ A, then Γ ⊢ A.

(d) If Γ is empty and Γ ⊢ A, then ⊢ A.

(e) If Γ ⊢ A and D is any set of formula, then Γ ∪D ⊢ A.

(f) If Γ ⊢ A, then there exists a finite D ⊂ Γ such that D ⊢ A.

Proof. The same proof for theorem 2.12.1.

We now give an example of a formula that is a member of Pd′ and is not obtained by the method that

yields Â and is a formal theorem.

Example 3.6.1 For any 1-place predicate P (x) ∈ Pd′0, x, y ∈ V , ⊢ (∀xP (x))→ (∀yP (y)).

(1) (∀xP (x))→ P (y) P5

(2) ∀y((∀xP (x))→ P (y)) G(1)

(3) ∀y((∀xP (x))→ P (y))→ ((∀xP (x))→ (∀yP (y)) P4

(4) (∀xP (x))→ (∀yP (y)) M(1, 3)

It should be noted, that if x is not free in A, then P5 yields (∀xA) → Sx
y A] = (∀xA) → A, for any

λ ∈ V ∪C, since the second A has had no changes made. Further, if x is free in A, then P5 yields (∀xA)→ A.

Example 3.6.2 (Demonstration)

A→ (∀xB) ⊢ ∀x(A→ B)

(1) A→ (∀xB) Premise

(2) (∀xB)→ Sx
xB] = (∀xB)→ B P5

(3) A→ B HS(1,2)

(4) ∀x(A→ B) G(3)

The rule that we have given for Generalization is not the only rule of this type that is used throughout

the literature. In particular, some authors define deduction from a set of premises in a slightly different

manner than we have defined it. The reason for this depends upon how nearly we want the deduction

theorem for Pd′ to mimic the deduction theorem for L′, among other things. Also, note that the statement

that y is free for x, holds when x does not occur in A or does not occur free in A. The following two results

are useful in the sequel.

Theorem 3.6.3 If y is free for x in A ∈ Pd′, then ∀xA ⊢ ∀ySx
y A].

(1) ∀xA Premise

(2) (∀xA)→ Sx
y A] P5

(3) Sx
y A] MP(1,2)

(4) ∀ySx
y A] G(3)

Corollary 3.6.3.1 If y does not appear in A, then ∀ySx
y A] ⊢ ∀xA.

Proof. This follows since, in this case, y is free for x for y cannot be bound by any quantifier and x is

free for y for Sx
y A. Further, A = Sy

xSx
y A]]. We now apply theorem 3.6.3. Hence, ∀ySx

y A ⊢ ∀xSy
xSx

y A]] = ∀xA.
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Theorem 3.6.4 Let {x1, x2, . . . , xn} be any n free variables in A ∈ Pd′. Then Γ ⊢ A if and only if

Γ ⊢ ∀x1(∀x2(· · · (∀xnA) · · ·)).

Proof. Let n = 0. The result is clear.

Let n = 1. If Γ ⊢ A has x1 as free, then by application of generalization on x1 we have that Γ ⊢ ∀x1A.

Suppose that result holds for n free variables and suppose that x1, . . . , xn+1 are free variables in A.

Then x1, . . . , xn are free variables in ∀xn+1A. Now if Γ ⊢ A, then Γ∀xn+1A by generalization. Hence, from

the induction hypothesis, Γ ⊢ ∀x1(∀x2(· · · (∀xn+1A) · · ·)). Hence, by induction, for any n free variables in A

the result holds.

The converse follows by a like induction proof through application of P5 and one MP.

Corollary 3.6.3.1 For any A ∈ Pd′, Γ ⊢ A if and only if Γ ⊢ ∀A.

Theorem 3.6.5 For any A ∈ Pd′, if x ∈ V , then Γ ⊢ A if and only if Γ ⊢ ∀xA.

Proof. Let Γ ⊢ A. Then one application of generalization yields Γ ⊢ ∀xA.

Conversely, suppose that Γ ⊢ ∀xA. Then one application of ∀xA → Sx
xA = ∀xA → A followed by one

MP yields A.

EXERCISES 3.6

1. Complete the following formal demonstrations. Note that whenever P5 is applied, we write A for Sx
xA.

(A) ∀x(A→ B), ∀x(¬B) ⊢ ∀x(¬A).

(1) ∀x(A→ B) . . . . . .

(2) ∀x(¬B) . . . . . .

(3) . . . . . . . . . . . . P5

(4) A→ B MP( , )

(5) (A→ B)→ ((¬B)→ (¬A)) Exer. 2.13, 2A.

(6) . . . . . . . . . . . . MP( , )

(7) (∀x(¬B))→ (¬B) . . . . . .

(8) ¬B . . . . . .

(9) ¬A . . . . . .

(10) . . . . . . . . . . . . . . . . . .

(B) ∀x(∀yA) ⊢ ∀y(∀xA)

(1) . . . . . . . . . . . . . . . . . .

(2) (∀x(∀yA))→ ∀yA P5

(3) . . . . . . . . . . . . . . . MP( , )

(4) . . . . . . . . . . . . P5

(5) A MP(3,4)

(6) ∀xA . . . . . .

(7) ∀y(∀xA) . . . . . .

(C) A, (∀xA)→ C ⊢ ∀xC

(1) . . . . . . . . . . . . . . . . . .

(2) ∀xA . . . . . .
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(3) . . . . . . . . . . . . . . . . . .

(4) C MP(2,3)

(5) ∀xC . . . . . .

(D) ∀x(A→ B), ∀xA ⊢ ∀xB

(1) . . . . . . . . . . . . Premise

(2) . . . . . . . . . . . . Premise

(3) . . . . . . . . . . . . P5

(4) A→ B MP( , )

(5) (∀xA)→ A . . . . . .

(6) A MP(2,5)

(7) B . . . . . .

(8) ∀xB . . . . . .

3.7 Soundness and Deduction Theorem for Pd′.

Although the model theory portions of this text have been restricted to sentences, this restriction is

technically not necessary. Many authors give valuation processes for any member of Pd′. This yields certain

complications that appear only to be of interest to the logician. In the sciences, a theory is determined by

sentences. These are language elements that carry a definite “will occur” or “won’t occur” content. As far

as relations between proof theory concepts and the model theory concepts, we consider Γ ⊢ A, where the

elements need not be sentences. But for our model theory, we, at the least, require that each member of

Γ is a sentence and can always let A be a sentence when Γ |= A is considered. When the notation MI

is employed, it will be assume that MI is a structure for Pd′. Further, unless it is necessary, we will not

mention that our language variable are member of Pd′. Next is an important relation between a model and

a formal demonstration.

Theorem 3.7.1 (Soundness Theorem) Suppose that Γ ⊂ S, MI |= Γ, and Γ ⊢ A. Then MI |= A

(i.e. MI |= ∀A.)

Proof. In this proof, we use induction on the steps {Bi | i = 1, . . . , n} in a demonstration that Γ ⊢ A,

and show thatMI |= ∀Bi.

Case (n = 1, 2, 3). Let n = 1. Suppose that B1 is an instance of axioms P1, P2, P3. First, recall

the special process (i) of theorem 3.4.8. Thus, to establish that MI |= Pi, we may consider the language

variables as being sentences. Now simply replicate the proof for theorem 3.4.2.

Suppose that C = ∀xB → Sx
λB] is an instance of axiom P5. Again we need only assume that x is the

only free variable in B. Suppose that λ = y is free for x in B. Then theorem 3.4.7 (iii) yields the result.

Let the substitution in P5 be a constant λ = c. Suppose thatMI |= ∀xB. Then for all d′ ∈ D, MI |= Sx
d B.

In particular, MI |= Sx
c B. We leave it as an exercise, to show that if C is an instance of axiom P4, then

MI |= C. Finally, suppose that C ∈ Γ. Then MI |= Γ means that MI |= C.

Suppose n = 2 and B2 = ∀xB. Then for the case n = 1, B1 = B and MI |= B means that MI |= ∀B.

Hence, MI |= ∀(∀xB).

Suppose that n = 3 and B3 = C is an MP step. Then for the two previous steps, we have thatMI |= B

andMI |= B → C. From definition 3.3.3 and the special process,MI |= C.

Case (n + 1 > 3). Assume the induction hypothesis that the result holds for any proof with n or less

steps. Consider a proof with n + 1 steps. Now let C = Bn+1. If C is an instance of any of the axioms, then
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the result follows as in the case where n = 1. Suppose that C comes from two previous steps, Bi = B and

Bj = B → C by MP. By induction and the case n = 3 process, we have that MI |= C. Now suppose that

C = ∀xB is an instance of generalization. By induction and the case n = 2 process, we have that MI |= C.

Finally, for the case that C ∈ Γ, the result follows as in case n = 1. The complete result follows by induction.

Corollary 3.7.1.1 If ⊢ A, then |= A.

Of course, the importance of theorem 3.7.1 lies in desire that whatever is logically produced by the

mind using scientific logic will also hold “true” for any model for which each of the hypotheses hold “true.”

This is the very basis for the scientific method assumption that human deductive processes

correspond to natural system behavior. Before we can establish a converse to theorem 3.7.1 and with

it the very important “compactness” theorem, a deduction-type theorem is required. This theorem, however,

will not completely mimic the deduction theorem for the language L′.

Theorem 3.7.2 (Deduction theorem for Pd′.) Let Γ ⊂ Pd′, A, B ∈ Pd′. If Γ, A ⊢ B and the

demonstration for B contains no application of Generalization for a variable free in A, then Γ ⊢ A→ B.

Proof. We use all the methods described in the metaproof of theorem 2.13.1, the deduction theorem

for L′. Proceed by induction exactly as done in theorem 2.13.1 and replace the axioms P1, P2, P3, P4, R5

with steps that lead to A→ C, no new step contains the single formula A. Now if A appears as a step then

this formula as been replaced by a A → A. This leaves the MP and Generalization steps to replace. Now

re-number (i.e. count) these steps with their original ordering as G1, . . . , Gn. We now consider the induction

process on these steps.

Case n = 1. Suppose that G1 is an MP step. Then alter this step to produce other steps as done in the

metaproof of theorem 2.13.1. Now suppose that G1 = ∀yB, where B is from one of the previous original

steps and was not obtained by generalization or MP. However, the original steps have all be replaced by

A→ B. Between this new step and the step G1 insert the following three steps.

(1) ∀y(A→ B) Generalization

(2) ∀y(A→ B)→ (A→ (∀yB)) P4

(3) A→ ∀yB M(1,2)

[Notice that the insertion of step (2) requires that y not be free in A.] Now remove the original step

G1 = ∀yB.

Case (n+1) Assume that all the alterations have been made for G1, . . . , Gn steps. If Gn+1 is MP, proceed

in the same manner as in theorem 2.13.1. Suppose that Gn+1 = ∀yB, where B comes from an original step.

However, by induction all of the previous steps Bi, i ≤ n have been replaced by A → Bi. Consequently,

using this altered step, proceed as in case n = 1 to obtain the formula A → ∀yB that replaces step Gn+1.

By induction, all the original steps have been changed to the form A→ B and A does not appear as a step

in our new demonstration. The last step in our old demonstration was B and it now has been changed to

A→ B. Hence the theorem has been proved.

Corollary 3.7.2.1 Let {A1 . . . , An} ⊂ S and A1 . . . , An ⊢ B. Then ⊢ (A1 → (A2 → · · · (An → B) · · ·)).

Theorem 3.7.3 Let Γ ⊂ Pd′, A, B ∈ Pd′. If Γ,⊢ A→ B, then Γ, A ⊢ B.

Proof. The proof is the same as in theorem 2.13.1.

Corollary 3.7.3.1 If ⊢ (A1 → (A2 → · · · (An → B) · · ·)), then A1, . . . , An ⊢ B.

Theorem 3.7.4 Let {A1, . . . , An} ⊂ S. Then A1, . . . , An ⊢ B if and only if ⊢ (A1 → (A2 → · · · (An →

B) · · ·)).
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We now show why the deduction theorem must be stated with the additional restriction.

Example 3.7.1 First, it is obvious that P (x) ⊢ ∀xP (x). Just do the two step demonstration with the

premise as the first step, and generalization in x as the second step. Now to show that 6⊢ P (x) → ∀xP (x).

Suppose that we assume that ⊢ P (x)→ ∀xP (x). Consider the follows formal proof.

(1) ⊢ P (x)→ ∀xP (x) Given

(2) ⊢ (B → A)→ ((¬A)→ (¬B)) (A) page 83.

(3) ¬(∀xP (x))→ (¬P (x)) MP(1,2)

(4) ∀x(¬(∀xP (x)) → (¬P (x))) G(3)

(5) ∀x(¬(∀xP (x)) → (¬P (x)))→ (¬(∀xP (x)) → (∀x(¬P (x)))) P4

(6) ¬(∀xP (x))→ (∀x(¬P (x))) MP(4,5)

Now by the soundness theorem for Pd′ (6) yields |= ¬(∀xP (x)) → (∀x(¬P (x))). Consider the structure

MI where D = {a′, b′}, and P ′ = {a′}. Suppose that MI |= ¬(∀xP (x)). This means that it is not the

case that a′ ∈ P ′, or that b′ ∈ P ′. Since b′ /∈ P ′, then MI |= ¬(∀xP (x)). But MI 6|= ∀x(¬P (x)) for

this means that for a′ and b′ we must have that a′ /∈ P ′ and b′ /∈ P ′ which is not the case. Hence,

6|= ¬(∀xP (x)) → (∀x(¬P (x))). This contradiction shows that 6⊢ ¬(∀xP (x)) → (∀x(¬P (x))). Thus the use of

the unrestricted deduction theorem to go from P (x) ⊢ P (x), where we used generalization on x, to obtain

P (x) ⊢ ∀xP (x), then to ⊢ P (x)→ ∀xP (x) is in error.

EXERCISES 3.7

1. Show that if A ∈ Pd′, and A is an instance of axiom P4. Then |= A.

3.8 Consistency, Negation completeness and Compactness.

Almost all of the sciences, engineering and any discipline which must determine whether or not some-

thing “will occur” or “won’t occur,” use first-order languages to describe behavior. The material in this

section covers the most important of all of the first-order language concepts. The ramifications of these

investigations, some completed only 2 years ago, cannot be over stated. Many individuals who first obtained

the results presented next, became, over night, world famous figures within the scientific community due to

the significance of their findings. The conclusions in the next section on applications, can only be rigorously

obtained because of the results we next present.

Definition 3.8.1 A set of sentences Γ ⊂ S is (formally) consistent if there does NOT exist a sentence

B ∈ S such that Γ ⊢ B and Γ ⊢ ¬B.

A set of sentences Γ ⊂ S is inconsistent if it is not consistent.

A set of sentences Γ ⊂ S is (negation) complete if for every B ∈ S either Γ ⊢ B or Γ ⊢ ¬B.

Theorem 3.8.1 A set of sentences Γ is inconsistent if and only if for every B ∈ Pd′, Γ ⊢ B.

Proof. First, suppose that Γ is inconsistent. Then there is some B ∈ S such that Γ ⊢ B and Γ ⊢ ¬B.

Hence there are two demonstrations that use finitely many members of Γ and yield the final steps B and

¬B. Put the two demonstrations together, and let B appear as step i and ¬B appear as step Bj . Now, as

the next step, put the formal theorem (from the propositional calculus) ⊢ ¬B → (B → A) from Exercise

2.11 problem 2b, where A is ANY member of Pd′. Now two MP steps yields the formula A.

Suppose that for any formula C ∈ Pd′, it follows that Γ ⊢ C. Thus take any sentence B, where ¬B ∈ S

also. Then Γ ⊢ B and Γ ⊢ ¬B.
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What theorem 3.8.1 shows is that if Γ is inconsistent, then there is an actual logical argument that

leads to ANY pre-selected formula. The logical argument is correct. But the argument cannot differentiate

between the concepts of “will occur” or “won’t occur.” Indeed, any scientific theory using such an argument

would be worthless as a predictor of behavior. Well, is it possible that our definition for logical deduction

without premises is the problem or must it be the premises themselves that lead to the serious theorem 3.8.1

consequences?

Theorem 3.8.2 There does not exist a formula B ∈ Pd′ such that ⊢ B and ⊢ ¬B.

Proof. Suppose that there exists a formula B such that ⊢ B and ⊢ ¬B. Using the same process as used

in theorem 3.8.1, but only assuming that B ∈ Pd′, it follows that for any sentence A ∈ Pd′, ⊢ A. Hence

⊢ ∀A. Thus by corollary 3.7.1.1, for any structureMI we have thatMI |= ∀A. But the sentence in step (5)

of example 3.7.1, does not have this property. The result follows from this contradiction.

Thus the difficulties discussed after theorem 3.8.1 are totally caused by the premises Γ and not caused

by the basic logical processes we use. However, if it’s believed that a set of sentences in consistent, then we

might be able to obtain a larger consistent set.

Theorem 3.8.3 Let Γ ⊂ S be a consistent. Suppose that Γ 6⊢ B ∈ Pd′. Then Γ, (¬∀B) is consistent.

Proof. Assume that there exists some sentence C such that (a) Γ, (¬∀B) ⊢ C and (b) Γ, (¬∀B) ⊢ ¬C.

Now from the propositional calculus (c) ⊢ (¬C → (C → ∀B) and, hence, this holds for Pd′. Using both

demonstrations (a) and (b), and inserting them as steps in a demonstration, adjoin the step (¬C)→ (C →

∀B). Two MP steps, yield that Γ, ¬∀B ⊢ ∀B. Since ¬∀B is a sentence, then the deduction theorem yields

Γ ⊢ (¬∀B) → ∀B. Now adjoin the steps for the ⊢ ((¬∀B) → ∀B) → ∀B. One more MP step yields the

contradiction that Γ ⊢ ∀B ⊢ B.

Corollary 3.8.3.1 Suppose that Γ is any set of sentences and B is any sentence. If Γ,¬B is inconsistent,

then Γ ⊢ B. If Γ, B is inconsistent, then Γ ⊢ ¬B.

Proof. If Γ is inconsistent, then the result follows. If Γ is consistent, then the result follows from the

contrapositive of theorem 3.8.3. The second part follows from ¬(¬B) ⊢ B and B ⊢ ¬(¬B).

Theorem 3.8.4 If consistent Γ ⊂ S, then there is a language Pd′′ that contains all of the symbols of

Pd′, but with an additional set of constants and only constants adjoined, and a set of sentences Γ′′ ⊂ Pd′′

such that Γ ⊂ Γ′′ and Γ′′ is consistent and negation complete.

Proof. See appendix.

We now come to the major concern of this section, an attempt to mimic, as close as possible, the com-

pleteness and consistency results for L′. In 1931, Gödel, in his doctoral dissertation, convincingly established

his famous “completeness” theorem for Pd′ by showing for the natural number domain that ⊢ B if and only

if |= B. Since that time Gödel’s methods have been highly refined and simplified. Indeed, totally different

methods have achieved his results as simple corollaries and these new methods have allowed for a greater

comprehension of the inner workings of structures and models.

Theorem 3.8.5 If consistent Γ ⊂ S, then there exists a structure MI for Pd′ such that Γ ⊢ A if and

only ifMI |= ∀A. Further, the domain ofMI is in one-to-one correspondence with the natural numbers.

Proof. See appendix.

Corollary 3.8.5.1 (Gödel) Let A ∈ Pd′. ⊢ A if and only if |= A.

Proof. Let Γ = ∅. Assume that ⊢ A. Corollary 3.7.1.1 to the soundness theorem yields |= A.
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Conversely, assume that 6⊢ A. Then 6⊢ ∀A. Thus the set {¬(∀A)} is consistent by theorem 3.8.3. Hence,

from 3.8.5, there exists a structure MI such thatMI |= {¬(∀A)}. Consequently,MI 6|= ∀A. Thus 6|= A.

Due to corollary 3.8.5.1, the abbreviations we have used that yield quantifiers ∃x, and abbreviations for

the connectives ∨,∧, ↔ all have the correct properties with respect to |= as they would under the truth-value

definitions for L. This allows us to use the more expressive language Pd rather than Pd′.

Theorem 3.8.6*** A nonempty set of sentences Γ ⊂ Pd is consistent if and only if Γ has a model.

Proof. Let Γ be consistent. For each A ∈ Γ, Γ ⊢ A. Theorem 3.8.5 yields that there is a structure MI

such thatMI |= A for each A ∈ Γ. Hence MI is a model for Γ.

Conversely, assume that MI is a model for Γ and that Γ is inconsistent. Then let B be any sentence.

Then Γ ⊢ B and Γ ⊢ ¬B. Hence the soundness theorem would imply that MI |= B and MI |= ¬B. This

contradicts definition 3.3.3 part (e).

Theorem 3.8.7 (Extended Completeness) If Γ ⊂ Pd is a set of sentences, B is a sentence and Γ |= B,

then Γ ⊢ B.

Proof. Let Γ |= B and Γ is not consistent. Then Γ ⊢ B. So assume Γ is consistent and that Γ 6⊢ B. Then

from theorem 3.8.3, the set of sentences {Γ, ¬B} is consistent. Thus {Γ, ¬B} has a modelMI . Therefore,

MI 6|= B. ButMI |= Γ. Hence MI |= B. This contradiction yields the result.

We now come to one of the most important theorems in model theory. This theorem would have

remained the only why to obtain useful models if other methods had not been recently devised. It’s this

theorem we’ll use in the next section on applications.

Theorem 3.8.8 (Compactness) A nonempty set of sentences Γ ⊂ Pd has a model if and only if every

finite subset of Γ has a model.

Proof. Assume that Γ has a model MI . Then this is a model for any finite subset of of Γ. [Note: it’s a

model for an empty set of sentences since it models every member of such a set. (There are none.)]

Conversely, suppose that Γ does not have a model. Then Γ is inconsistent. Hence, taken any sentence

B ∈ Pd. Then there are two finite subsets F1, F2 of Γ such that F1 ⊢ B and F2 ⊢ ¬B. Thus the finite subset

F = F1 ∪ F2 is inconsistent. Hence F has no model. This completes the proof.

Important Piece of History

It was convincingly demonstrated in 1931 by Gödel that there probably is no formal way to demonstrate

that significant mathematical theories are consistent. For example, with respect to set-theory, the only known

method would be to establish a contradiction that is not forced upon set-theory by an actual demonstrable

error on the part of an individual. All mathematical and scientific theories can be stated in the first-

order language of set-theory. There are approximately 50,000 research papers published each year in the

mathematical sciences. No inconsistencies in modern set-theory itself has ever been demonstrated. The

number theory we have used to establish all of the conclusions that appear in this book is thousands of

years old and again no contradiction has ever been demonstrated. The theory of real numbers is hundreds of

years old and no contradictions in the theory have ever been demonstrated. The specific axiomatic systems

and logical procedures used to establish all of our results have never been shown to produce a contradiction.

What all this tends to mean is that empirical evidence demonstrates that our basic mathematical theories

and logical processes are consistent. Indeed, this evidence is more convincing than in any other scientific

discipline. This is one reason why science tends to utilize mathematical models.

Example 3.8.1 Let N be the set of axioms for the natural numbers expressed in a set-theoretic

language. Let Pd be the first-order language that corresponds to N . Then the theory of natural numbers
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is the set of sentences Γ = {B | B ∈ S, N ⊢ B}. This set Γ is assumed, from evidence, to be consistent.

Hence from theorem 3.8.6 there exists a structure MI such that MI |= Γ. This means from the definition

of MI |= Γ that there is a set of constants that name each member of the domain of the structure. This

domain is denoted by the symbol IN. There are also n-ary predicate symbols for the basic relations needed

for the axiom system and for many defined relations.

We interpret P (x, y) as the “=” of the natural numbers in IN. Depending upon the structure, this could

be the simple identity binary relation P (x, x). Now we come to the interesting part. Let our language

constants C be the constants naming all the members c′ of IN and adjoin to C a new constant b not a

member of C. Consider the sentences Φ = {¬P (c, b) | c ∈ C} that are members of a first-order language Pdb

that is exactly the same as Pd except for adjoining one additional constant b. Now consider the entire set of

sentences Γ∪Φ. What we will do is to show that Γ∪Φ has a model, ∗MI , by application of the compactness

theorem.

Take any finite set A of members of Γ∪Φ. If each member of A is a member of Γ, thenMI is a model for

A. Indeed, if {a1, . . . , an} are all the members of A that are members of Γ, then againMI |= {a1, . . . , an}.

So, assume that {an+1, . . . , am} are the remaining members of A that may not be recognized as members of

Γ. Well, there are only finitely many different constant {cn+1, . . . , cm} that are contained in these remaining

sentences in A. The theory of natural numbers states that given any nonempty finite set of natural numbers,

there is always another natural number c′ that is not equal to any member of this finite set. These constants

correspond to a finite set of natural numbers {c′n+1, . . . , c
′

m} and interpret b to be one of the natural numbers

c′. This process of interpreting, for a domain of the original structure, the one additional

constant as an appropriate domain member is a general procedure that is usually needed

when the compactness theorem is to be used. Thus each of the remaining sentences is modeled by

MI . The compactness theorem states that there is a structure ∗MI such that ∗MI |= Γ ∪ Φ. Thus there

is a domain D and various n-place relations that behave exactly like the natural numbers since Γ is the

theory of the natural numbers and ∗MI |= Γ. Indeed, the interpretation I restricted to the original set of

constants yields an exact duplicate of the natural numbers and we denote this duplicate by same symbol

IN. But there exists a member of the domain D of this structure, say b′, such that for each c′ ∈ IN, b′ 6= c′.

But for every original c′ we have that c′ = c′. Therefore, we have a structure that behaves, as described by

Pdb, like the natural numbers, but contains a new member that does not correspond to one of the original

natural numbers. [End of example.]

I give but two exercise problems for this section, each relative to showing that there exists mathematical

structures that behave like well-known mathematical structures but that each contains a significant new

member with a significant new property.

EXERCISES 3.8

1. Modify the argument given in example 3.8.1 as follows: let L(x, y) correspond to the natural number

binary relation of “less than” (i.e. <). Give an argument that shows that there is a structure ∗MI that

behaves like the natural numbers but in which there exists a member b′ that is “greater than” any of the

original natural numbers. [Note: this solves the “infinite” natural number problem by showing that there

exists a mathematical object that behaves like a natural number but is “greater than” every original natural

number.

2. Let IR denote the set of all real numbers. Let C be a set of constants naming each member of IR.‡ Suppose

that b is a constant not a member of C. Let Γ be the theory of real numbers. Let Q(0, y, x) be the 3-place

‡ The assumption is that the theory of real numbers is a consistent theory and, hence, has a model.

The proofs of Theorems 3.8.4 and 8.8.5 in the appendix, show that such a theory has a model with a
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predicate that corresponds to the definable real number 3-place relation 0′ < c′ < d′, where 0′, c′, d′ ∈ IR.

Now in the real numbers there is a set of elements G′ such that each member c′ of G′ has the property that

0′ < c′. Let G be the set of constants that correspond to the members of the set G′. Consider the set of

sentences Φ = {Q(0, b, g) | g ∈ G} in the language Pdb. Give an argument that shows that there exists a

structure ∗MI such that ∗MI |= Γ ∪ Φ. That is there exists a mathematical domain D that behaves like

the real numbers, but D contains a member b′ such that b′ is “greater than zero” but b′ is “less than” every

one of the original positive real numbers. [Note: this is an example of an infinitesimal and solves the three

hundred year old problem of Leibniz, the problem to show the mathematical existence of the infinitesimals.

These are objects that behave like real numbers but are not real numbers since they are greater than zero

but less than any positive real number.]

The method used in this section and the next to obtain these “nonstandard” objects has been greatly

improved over the years. The method presented here relies upon the assumption that the theory of real

numbers and the theory of propositional deduction are consistent theories and, hence, have models. Also

other processes have been employed that , although correct, may need further justification. Since the

middle and late 1960s, algebraic methods have been used to first obtain structures associated with first-

order statements. One structure, the standard structure M, would be based upon predicates that are

present within statements about the real numbers or, as explained in the next section, the first-order theory

of propositional deduction. Another structure that can be considered as containing M and termed an

“enlargement,” ∗M, is then constructed. These constructions do require the acceptance of an additional

set-theoretical axiom. To obtain the various nonstandard objects discussed in this and the next section, all

that is needed is to have enough real number or propositional deduction statements hold in the standard

structure. This will immediately show that the nonstandard objects, the infinitesimals, ultrawords and

ultralogics, mathematically exist within the ∗M.

Due to the significance of exercise problem 2 above, the following slightly more general result is estab-

lished here.

The following convention is used. The symbols used to denote constants and predicates will also be

used to denote the members of the domain and relations in a structure MI . Let Γ be the theory of real

numbers IR. This theory includes all of the defined relations and all possible deduced sentences, etc. For

this example, there is a 1-place predicate P (x) that is modeled by the set of all positive real numbers

P = {x | (0 < x) ∧ (x ∈ IR)}, where 0 corresponds to the zero in IR. The basic predicate to be used here is

Q(0, x, y), where Q will correspond to the relation Q = {(0, x, y) | (0 < |x| < y) ∧ (x ∈ IR) ∧ (y ∈ P )}.

The most basic assumption is that Γ is consistent and from Theorem 1 it has a modelMI , where IR is

the domain. The facts are that from a viewpoint external to this structure, it can be assumed that all we

need to name every member of IR is a set of constants that can be put into one-to-one relation with the even

natural numbers, our most basic assumed consistent theory. So, let there be such a set of constants C and

consider but one more constant b. Consider the following set of sentences

A = {Q(0, b, a) | a ∈ P ⊂ C}.

Note that this does not add any new predicates. What we do is to show that the set of sentence Γ ∪ A has

a model.

Theorem. There is a structure ∗MI that models Γ∪A, where the domain ∗IR contains new objects not

in IR and the entire theory Γ holds for ∗IR.

“denumerable” domain (i.e. can be put into a one-to-one correspondence with the natural numbers) and,

hence, for this structure the set of constants used in our language for the real numbers and in definition 3.1

can be extended so as to name all the members of IR.
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Proof. We have that Γ has a model MI . Let finite {A1, . . . An} ⊂ A. If {A1, . . . Ai} ⊂ Γ, then MI |=

{A1, . . . Ai}. Suppose that {Ai+1, . . . , An} ⊂ A, where Ak = Q(0, b, ak), i + 1 ≤ k ≤ n. Then {aj+1, . . . , an}

contains a minimal member in IR, ak. Now let b correspond to ak/2. Then for this member of IR we have that

MI |= {Ai+1, . . . , An}. Thus, by the Compactness Theorem, there is a structure ∗MI such that ∗MI |= A.

Now there are no new predicates in A. The only thing that can be different is the domain ∗IR. Of

course, all relations that model these predicates are now relative to ∗IR. What we are doing is metalogically

investigate the two structures MI and ∗MI from the external world rather than only internal to either of

the structures. By convention, we denote some of the predicates as they are interpreted in ∗MI for ∗IR by

the same letter when there is no confusion as to which domain they apply; otherwise, they will be preceded

by a * (translated by the word “hyper”). As pointed out, each member of the original IR is named by a

constant from C and these same constants name members of ∗IR. We call each such interpreted constant a

standard member of ∗IR. What happens is that there is a object in ∗IR that now is being named by b, and

that we denote by ǫ. This ǫ 6= a for any standard member of ∗IR. Why? Well, take any standard r ∈ ∗IR.

Using the theory Γ, if ǫ = r, then we have contradicted that if ǫ < r, then ǫ 6= r. Thus, this is a new object

that does not correspond to any standard element of ∗IR. Moreover, there are two such objects since Γ holds

for ∗IR, and, hence, −ǫ ∈ ∗IR and | − ǫ| = |ǫ|. [As indicated the “≤,” “| · |,” and “=” predicates must be

interpreted in ∗MI . This is the last time I’ll mention this fact.]

The objects −ǫ, ǫ are called infinitesimals. But do they behave like the infinitely small or little

ideal numbers o of Newton? Newton, as well as Leibniz, required the o, on one hand, to behavior like a

non-zero real number but then to behave like a zero. This is why some people rejected the entire idea

of an “ideal” number like o since it contradicts real number behavior. For example, Newton divides the

equation 3pox2 + 3p2o2x + p3o3 − 2dqoy − dq2o3 − abpo = 0 by o where o cannot act like a zero, and gets

3px2 + 3p2ox + p3o2 − 2dqy − dq2o − abp = 0. But now, he treats o as if it is zero and writes “Also those

terms are infinitely little where o is. Therefore, omitting them there results 3px2 − abp− 2dqy = 0.” This is

a direct contradiction as to the behavior of the o and, indeed, one should be able to apply the “omitting”

process to the first equation and this would only yield the identity 0 = 0.

First, let µ(0) be the set of all infinitesimals in ∗IR and include standard 0 in this set. To determine that

members of µ(0) have properties different from those of the original IR, we must investigate these from the

“meta” viewpoint. The non-Greek lower case letters will always be the constants used to name the standard

members of ∗IR.

(1) Let 0 6= λ ∈ µ(0). Let non-zero standard r ∈ ∗IR and arbitrary standard x ∈ ∗P. Then 0 < |λ| < x/|r|

since x/|r| is as standards member of ∗P. From the theory Γ, we have that 0 < |rλ| < x. Thus rλ ∈ µ(0)

since x is an arbitrary standard member of ∗P . [Note: Some would write this as ∗rλ ∈ µ(0).]

(2) Using stuff from (1), let λ, γ ∈ µ(0). We have that 0 < |λ| < x and 0 < |γ| < y where both x and

y are arbitrary standard members of ∗P . Hence, from Γ, we have that 0 < |λ + γ| ≤ |λ| + |γ| < x + y. But

x + y = z is also an arbitrary standard member ∗P . Thus, λ + γ ∈ µ(0). In like manner λγ ∈ µ(0).

(3) You can do all the ordinary real number algebra for the members of µ(0) since Γ holds for them.

However, if 0 6= λ, then 1/λ 6∈ µ(0), since for arbitrary standard x ∈ ∗P , x < 1/λ.

(4) For r, let µ(r) = {r + λ | λ ∈ µ(0)}. This is can a monad about r. Let r1 6= r2. Then µ(r1) is

completely disjoint from µ(r2). Why? Well, suppose not. Then there are two infinitesimals λ, γ such that

λ + r1 = γ + r2 ⇒ r1 − r2 = γ − λ ∈ µ(0). But r1 − r2 is a standard number and the only standard number

in µ(0) is 0. Thus, r1 = r2; a contradiction.

(5) Hence, every object in ∗IR that behaves like the original real numbers is “surrounded,” so to speak, by

its monad. Because of this uniqueness, we can for every member of µ(r1) ∪ µ(r2) ∪ · · · ∪ µ(rn) ∪ · · · = Mfin,
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where the r vary over all standard ∗IR, define an operator st with domain Mfin that yields the unique

standard r. Although the notion of the “limit” need never be considered, the st operator mirrors “limit”

algebra and can be applied to the Newton material above.

Let Newton’s o = λ 6= 0. Consider 3pλx2 + 3p2λ2x + p3λ3 − 2dqλy − dq2λ3 − abpλ = 0. Now divide

by λ and get 3px2 + 3p2λx + p3λ2 − 2dqy − dq2λ − abp = 0(1/λ) = 0. Using the properties of the st

operator applied to both sides of this equation, 3px2 + 3p2
st(λ)x + p3

st(λ2) − 2dqy − dq2
st(λ) − abp =

3px2 +3p2(0)x+ p3(0)− 2dqy− dq2(0)− abp = 3px2− 2dqy− abp = 0. Which is the same result as Newton’s

and eliminates any contradiction.

3.9 Ultralogics and Natural Systems.

In 1949 in the Journal of Symbolic Logic, Leon Henkin gave a new proof for our theorem 3.8.5 from

which the compactness theorem follows. Indeed, the proof that appears in the appendix is a modification

of Henkin’s proof. I note that the appendix proof most also be modified if we wish to apply a compactness

theorem to sets like the real numbers, as needed for exercise 3.8 problem 2. These modifications are rather

simple in character and it’s assumed that whenever the compactness theorem is used that it has been

established for the language being discussed.

What is particularly significant about the Henkin method is that it’s hardly possible to reject the

method. Why? Well, as shown in the proof in the appendix the model is constructed by using the language

constants and predicates themselves to construct the structure. What seems to be a very obvious approach

was used 18 years after the first Gödel proof. There is a certain conceptual correspondence between the use

of the language itself and the material discussed in this last section.

All of the metatheorems established throughout this text use a first-order metalanguage. These metathe-

orems describe various aspects of any formal first-order language. But these metatheorems also apply to

informal languages that can be represented or encoded by a formal language. That is such concepts as the

compactness theorem can be applied to obtained models for various “formalizable” natural languages and the

logical processes used within science, engineering and many other disciplines. In 1963, Abraham Robinson

did just this with the first published paper applying a similar device as the compactness theorem to obtain

some new models for the valuation process within formal languages. Your author has extended Robinson’s

work and has applied his model theoretic methods to all natural languages such as English, French, etc. The

method used is the Tarski concept of the consequence operator. Before we apply the compactness theorem

to obtain mathematically an ultralogic and an ultraword, a few very simply communication concepts need

to be discussed.

Definition 3.9.1 A Natural system is a set or arrangement of physical entities that are so related or

connected as to form an identifiable whole. Science specifically defines such collections of entities and gives

them identifying names. The universe in which we dwell, our solar system, the Earth, or a virus are Natural

systems.

The appearance of most Natural systems changes with “time.” I’ll not define the concept of time, there

are various definitions, and I simply mention that the time concept can be replaced by something else called

a universal event number if the time concept becomes a philosophical problem. One of the most important

aspects of any science that studies the behavior of a Natural system is the communication of the predicted

or observed behavior to other individuals. This communication can come in the form of word-pictures or

other techniques I’ll discuss below. Even if science cannot predict the past or future behavior of an evolving

or developing (i.e. changing in time) Natural system, it’s always assumed that at any instant of time the

appearance can be described.
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Definition 3.9.2 A Natural event is the actual and real objective appearance of a Natural system at a

given instant whether or not it’s described in any language or by other techniques.

From a scientific communication point of view, a description is all that can be scientifically known

about such a Natural event and the description is substituted for it. Relative to the behavior of a Natural

system, a general scientific approach is taken and it’s assumed that scientists are interested in various types

of descriptions for Natural system behavior. It’s not difficult to show that all forms of scientific description

can be reduced to finitely long strings of symbols. Modern computer technology is used to produce an

exact string of symbols that will reproduce, with great clarity, any photograph, TV tape, or sound. Today,

information is “digitized.” Relative to a visual instant-by-instant description, television is used. Each small

fluorescent region on a TV screen is given a coded location within a computer program. What electron beam

turns on or off, the intensity of the beam and the like is encoded in a series of binary digits. The computer

software then decodes this information and the beam sweeps out a glowing picture on a TV tube. At the

next sweep, a different decoded series of digits yields a slightly different picture. And, after many hundreds

of these sweeps, the human brain coupled with the eye’s persistence of vision yields a faithful mental motion

picture. Record companies digitize music in order to improve upon the reproduction quality. Schematics

for the construction of equipment can be faithfully described in words and phrases if a fine enough map

type grid is used. Thus, the complete computer software expressed in a computer language, the digitized

inputs along with schematics of how to build the equipment to encode and decode digitized information,

taken together, can be considered as an enormous symbol string the exact content of which will be what

you perceive on “the tube,” hear from a CD player, or other such devices.

Much of what science considers to be perception may be replaced by a long exact string of symbols.

All of the methods used by science to communicate descriptions for Natural system behavior will be called

the descriptions.

What all this means is that the actual objective evolution of a Natural system can be replaced by

descriptions for how such a system appears at specific instances during its evolution. The actual time

differences between successive “snap shorts” will depend upon the Natural system being studied, but they

could be minuscule if need be. Just think of a developing Natural system as an enormous sequence of

Natural events, that have been replaced by an enormous sequence of descriptions. As discussed above these

descriptions can be replaced by finitely long strings of symbols of one sort of another. This communication

fact is the common feature of all scientific disciplines.

The basic object used to study the behavior of Natural systems by means of descriptions of such behavior

is the consequence operator described in section 2.16. Actually, consequence operators are used more for

mathematical convenience than any other reason. For the purposes of this elementary exposition, ALL of

the consequence operator results can be re-expressed in the ⊢ notation. However, in the next definition we

indicate how deductive processes such as the propositional process denoted by ⊢ determine a consequence

operator.

Definition 3.9.3 For a propositional language L and a propositional type of deduction from premises

Γ ⊢ℓ B, a consequence operator C is defined as follows: For every Γ ⊂ L, C(Γ) = {A | A ∈ L and Γ ⊢ℓ A}.

Thus C(Γ) is the set of all formula “deduced” from Γ by the rules represented by ⊢ℓ .

Now recall the propositional language introduced in section 2.16. It’s constructed from a set of atoms

{P0, P1, . . .} in the usual manner, but only using the connectives ∧ and → . Of course, this language LS is a

sublanguage of our basic language L. For formal deductive process, there are four axioms written in language

variables.

(1) (A ∧ (B ∧C))→ ((A ∧B) ∧ C).
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(2) (A ∧B) ∧C → (A ∧ (B ∧ C)).

(3) (A ∧B)→ A.

(4) (A ∧B)→ B.

Notice that these axioms are theorems in L (i.e. valid formula) and, thus, also in LS . The process of

inserting finitely many premises in a demonstration is retained. The one rule of inference is modus ponens

as before. We denote the deductive process these instructions yield by the usual symbol ⊢. The consequence

operator defined by the process ⊢ is denoted by S.

There is actually an infinite collection of deductive processes that can be defined for L and LS. This is

done by restricting the modus ponens rule.

Definition 3.9.4 Consider all of the same rules as described above for ⊢ except we use only the MPn

modus ponens rule. Suppose two previous steps of a demonstration are of the form A → B and A and the

size(A → B) ≤ n. Then you can write down at a larger step number the formula A. [This is not the only

way to restrict such an MP process.] This is the only MP type process allowed for the ⊢n deductive process.

The major reason the process ⊢n is introduced is to simply indicate that there exist many different

deductive processes that one can investigate. All of the metamathematical methods used to obtain the

results in the previous sections of this text are considered as the most simplistic possible. They are the same

ones used in the theory of natural numbers. Hence, they are considered as consistent. Thus, everything that

has been done has a model. Let L = L′ be the domain. The language contains a set of atoms {P0, P1, . . .}.

Then we have the various 2-place relations between subsets of L′ we have denoted by ⊢n and ⊢ . The first

coordinate of each of these relations is a subset of L′, the premises, and the second coordinate is a single

formula deduced from the premises. If the set of premises is the empty set, then the second coordinates are

called theorems. To be consistent with our previous notation, we would denote the 2-place relations for a

deductive processes by ⊢′n and ⊢′ . This would not be the case for the members of L′.

We now come to an important idea relative to the relation ⊢ introduced, in 1978, by the author of this

book. The metatheory we have constructed in the past sections of this text, the mathematical theory that

tells us about the behavior of first-order languages and various deductive processes, is constructed from a

first-order language using the vary deductive processes we have been studying. Indeed, all the proofs can be

written in the exact same way as in the sections on formal deduction, using a different list of symbols or even

the same list but, say, in a different color. Another method, the one that is actual used for the more refined

and complex discusses of ultralogical and ultraword behavior, is to use another formal theory, first-order

set theory, to re-express all of these previous metatheorems. In either case, the compactness theorem for

first-order languages and deduction would hold.

There are two methods used to obtain models. If we assume that a mathematical theory is consistent,

then the theory can be used to define a structure, which from the definition, would be a model for the theory.

Theory consistency would yield all of the proper requirements for definition 3.3.3. On the other hand, you

can assume that a structure is given. We assume that the n-place relations and constant named objects are

related by a set of informal axioms that are consistent. Using this structure, we develop new information

about the structure. This information is obtained by first-order deduction and is expressed in an informal

first-order language. This informal first-order language can then be “formalized” by substituting for the

informal constants and relations, formal symbols. This leads to a formal theory for the structure. Both of

these methods yield what is called a standard structure and the formal theory is the standard theory.

For our propositional language L, we have the entire collection T of sentences that are established

informally in chapter 2 about this language relative to various predicates and we translate these informal

statements into a formal first-order theory E . One part of our mathematical analysis has been associated with
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a standard structure. We have used first-order logic and a first-order language to investigate the propositional

language and logic. Thousands of years of working with this structure has not produced a contradiction. The

structure is composed of a domain D, where D = L = C (the set of constants). There are various n-place

relations used. For example, three simplest are the 2-place relation on this domain ⊢′, the 1-place relation P ′

that corresponds to the non-empty set of atoms L0 ⊂ L, and x ∈ L that corresponds to L(x). The relation

⊢′ is defined as follows: A ⊢′ B, where A, B ∈ L′, if and only if A ⊢ B. Then P ′ is defined as P ∈ P ′ if

and only if P(P ) (i.e. “P is an atom.”) Although it is not necessary, in order to have some “interesting”

results, we assume that there are as many atoms as there are natural numbers. [In this case, it can be shown

that there are also as many members of L as there are natural numbers.] Since E is assumed consistent,

then there is a standard structure MI = 〈D, L′,⊢′,P ′, . . .〉 that models all of the n-placed predicates and

constants that appear in E , where we again note that for each A ∈ L, I(A) = A. The set E is a subset of a

first-order language L, where L is constructed from C and all of n-placed predicates use in E .

Theorem 3.9.1 Let b be one new constant added to the constants C. Construct a new first-order

language L′ with the set of constants C ∪ {b} and all of the n-placed predicates used to construct L. Then

L ⊂ L′. Let L0 be the set of atoms in L ⊂ C, where we consider them also as constants that name the

atoms, and let x ∈ L0 be the interpretation of the 1-place predicate P(x). Consider the set of sentences

Φ = {P(P ) ∧ b ⊢ P | P ∈ L0} ⊂ L′. Then there exists a model ∗MI for E ∪ Φ.

Proof. This is established as in the example and exercises of section 3.8. Consider any non-empty

finite F ⊂ E ∪ Φ. Then F = F1 ∪ F2, where F1 ⊂ E and F2 ⊂ Φ. Suppose that F1 6= ∅. Then MI |= F1.

Suppose that {A1, . . . , An} = F2, n ≥ 1. (Note: Ai, 1 ≤ i ≤ n are all distinct.) Consider the finite

set {P1, . . . , Pn} of atoms that appear in A1, . . . , An. (1) If n = 1, then there is only one atom P in this

set, and P ∈ D = L. Otherwise, (2) consider the formula formed by putting ∧ between each of the Pi as

follows: (P1 ∧ (· · · (Pn−1 ∧ Pn) and (P1 ∧ (· · · (Pn−1 ∧ Pn) ∈ D = L. In case (1), let b = P ; in case (2), let

b = (P1 ∧ (· · · (Pn−1 ∧ Pn). Then from the theory E , we know that (1) P(P ) ∧ b ⊢ P or (2) P(Pi) ∧ b ⊢ Pi,

i = 1, . . . , n. Hence, interpreting the b in case (1) as P , and b in case (2) as (P1 ∧ (· · · (Pn−1 ∧ Pn), then

MI |= F1. Consequently,MI models any finite subset of E ∪Φ. Hence by the compactness theorem there is

a model ∗MI for E ∪ Φ.

Let ∗b now denote that object in the domain of ∗MI that satisfies each of the sentences in Φ, where
∗⊢ denotes the corresponding binary relation that corresponds to ⊢ . Since the formal theory E corresponds

to the informal theory T and ∗MI |= E , then the structure, at the very least, behaves, as described by

the theory of chapter 2, as a propositional logic. But does this new structure have additional properties?

Note that ∗⊢ “behaves” like propositional deduction and ∗b “behaves,” thus far in this analysis, simply

like a formula in L. The object ∗b is called an ultraword and ∗⊢ is an example of a (very weak) ultralogic.

The reason why it is weak is that we have only related ∗b to the one relation ∗⊢. Hence, not much can be

said about the behavior of ∗b. However, we do know that ∗b does not behave like an atom in ∗MI for the

following statement (3) holds in MI ; (3) ¬∃x(P(P1) ∧ P(P2) ∧ P(x) ∧ x ⊢ P1 ∧ x ⊢ P2). Hence, (3) holds

in ∗MI . But the ¬∃ varies over the elements that, at the least, correspond to C ∪ {b} in its domain and,

hence, this statement applies to the each member of { ∗P1,
∗P2}, the ∗MI interpreted constants P1, P2,

that are members of the ∗P . Hence, whatever objects “behavior” like the atoms in ∗MI ,
∗b is not one of

them. If we consider other predicates, then more information and properties will hold in another structure.

Suppose that ⌈C( )⌉: “ is a consistent member of L.” In Φ, replace P(P ) with P(P )∧C(b) to obtain Φ′.

The same method as above shows that there is a structure ∗MI1 such that ∗MI1 |= E ∪ Φ′. The previous

properties for ∗b still hold. Using the sentence ¬∃x(∀y((P(y)∧C(x)) → x ⊢ y)), we are led to the conclusion

that ∗b ∗⊢ ∗P in ∗MI1 for all of the original atoms P ∈ L0. But, when a comparison is made, there is at

least one other object that we name d′ that behaves like an “atom” and ∗b ∗ 6⊢d′ in ∗MI1.
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Example 3.9.1 Correspond each atom in L to a description for the behavior of a Natural system at

a specific moment. Let the ordering of the natural numbers to which each atom corresponds correspond to

an ordering of an event sequence. Using the concepts of Quantum Logic, one can interpret the ultralogic ∗⊢

as a physical-like process that when applied to a single object ∗b yields each original interpreted description
∗P . Using certain types of special constructions that yield ∗MI , one has that ∗P = P. Hence, under these

conditions this ∗b and ∗⊢ yield the moment-by-moment event sequence that is the objectively real evolution

of a Natural system. This idea applies to ANY Natural system including the universe in which we dwell

and, thus, gives a describable process that can produce a universe.

Obviously, the approach used to obtain ultrawords and ultralogics as discussed in this section is very
crude in character. There arise numerous questions that one would like to answer. By refining the above
processes, using set-theory, consequence operators and other more complex procedures these questions have
all been answered. I list certain interesting ones with (very) brief answer.

(1) Can this process be refined so that the actual complex behavior expressed by each description is
retained within the model while it’s also being modeled by a proposition atom? (Yes)

(2) Can the ultraword ∗b be analyzed? (Yes, and they can have very interesting internal structures.)

(3) Can you assign a size to ∗b and, if so, how big is it? (Yes, and it is very, very big. It is stuffed with
a great deal of information.)

(4) If you take all the ultrawords that generate all of the our Natural systems, does there exist one
ultraword that when ∗⊢ is applied to this one ultraword then all the other ultrawords are produced and,
hence, all of the event sequences for all of the Natural systems that comprise our universe are produced?
(Yes. There is a ultimate ultraword w such that when ∗⊢ is applied to w all of the other ultrawords are
produced as well as all the consequences produced by these other ultrawords. What this shows is that all
natural event sequences are related by the physical-like process ∗⊢, among others, applied to w. This gives
a solution to the General Grand Unification problem.)

(5) Will there always be these ultranatural events no matter how we might alter the natural events?
(Yes)

(6) And many others.
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APPENDIX

Chapter 2

The major proof and definition method employed throughout this text is called induction. In the first
part of this appendix, we’ll explore this concept which is thousands of years old.

There are two equivalent principles, the weak and the strong. In most cases, the strong method is used.
We use the natural numbers IN = {0, 1, 2, 3, 4, . . .} either in their entirety or starting at some fixed natural
number m. There are two actual properties used. The first property is

(1) Any nonempty finite set of natural numbers contains a maximal member. This is a natural number
that is greater than or equal to every member of the set and is also contained in the finite set.

(2) The ordering < is a well-ordering. This means that any nonempty set of natural numbers, finite or
otherwise, contains a first element. This means that the set contains a member that is less than or equal
to every other member of the nonempty set. The actual induction property holds for many different sets of
natural numbers and you have a choice of any one of these sets. Let m ∈ IN. Then we have the set Nm of all
natural numbers greater than or equal to m. That is Nm = {n | n ∈ IN, m ≤ n}.

Principle 1. (Strong Induction). Suppose that you take any nonempty W ⊂ Nm. Then you show that
a statement holds for

(i) m ∈ W.

(ii) Now if upon assuming that for a specific n ∈ W, the statement we wish to establish holds for each
p ∈ IN, where m ≤ p ≤ n, you can show that n + 1 ∈W, (this is called the strong induction hypothesis.)

(iii) then you can declare that W = Nm. (We say that the result follows by induction.)

The major method in applying principle 1 is in how we define the set W . It is defined in terms of the
statement we wish to establish. The set W is defined by some acceptable description, a set of rules, that
gives a method for counting objects. I have used the term “acceptable.” This means a method that is so
clearly stated that almost all individuals having knowledge of the terms used in the description would be
able to count the objects in question and arrive at the same count. Now there is another principle that may
seem to be different from principle 1, but it is actually equivalent to it.

Principle 2. (Ordinary (weak) induction.) Suppose that you take any nonempty W ⊂ Nm. Then you
show that a statement holds for

(i) m ∈ W.

(ii) Now if upon assuming that for a specific n ∈ W, the statement we wish to establish holds n, you
can show that n + 1 ∈W, (this is called the weak induction hypothesis)

(iii) then you can declare that W = Nm. (We say that the result follows by induction.)

The difference in these two principles is located in part (ii). What you assume holds seems to be
different. In principle 1, we seem to require a stronger assumption than in principle 2. The next result shows
that the two principles are equivalent.

Theorem on the equivalence of the two principles 1 and 2. Relative to the natural numbers
and the subset Nm, principle 1 holds if and only if principle 2 holds.

Proof. We first show that principle 2 is equivalent to the fact that the simple ordering < on Nm is a
well-ordering. Assume principle 2 for Nm. Let nonempty W ⊂ Nm. Suppose that W does not have a first
element with respect to the ordering < . Then W 6= Nm since m is the first element in Nm. Thus m /∈ W.
We now define in terms of the ordering < a relation R where the second coordinate is the set W . We let
x R W if and only if for x ∈ IN, x < y for each y ∈ W. Let W1 = {x | x ∈ Nm, x R W}. From above,
we have since W ⊂ Nm, that m ∈ W1. Also W1 ∩W = ∅. For if a ∈ W1 ∩W, then a < a; a contradiction.
Assume that p ∈ W1 and q < p. Since p < n for each n ∈ W, then q < n for each n ∈ W. Hence q ∈ W1.
Hence, the nonempty natural number interval [m, q] = {x | m ≤ x ≤ q, x ∈ IN} ⊂ W1. We now show that
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q + 1 ∈ W1. Assume that q + 1 /∈ W1. Then there is some y ∈ W such that y ≤ q + 1 from the definition of
W1. If y 6= q + 1, then y ∈ [m, q] yields that y /∈W. From this contradiction, we have that y = q + 1 and no
x ≤ q < q + 1 is a member of W . Consequently, q + 1 is a first element of W ; a contradiction. Application
of principle 2 implies that W1 = Nm. Thus yields the contradiction that W = ∅.

Now assume that < is a well-ordering. Let nonempty W ⊂ Nm. Assume that m ∈ W and if arbitrary
n ∈ Nm, then n + 1 ∈ W, BUT W 6= Nm. Consider W1 = Nm −W = {x | x ∈ Nm, x /∈ W}. From our
assumption, W1 6= ∅. By the well-ordering of <, there exists in W1 a first element w1. Since m /∈ W1, it
follows that m ≤ x1 − 1 /∈ W1. Thus x1 − 1 ∈ W. From our assumption, x1 − 1 + 1 = x1 ∈ W. But by
definition W1 ∩W = ∅. This contradiction yields the result. The fact that <, with respect to the natural
numbers, is a well-ordering is equivalent to principle 2.

Now we show that the well-ordering <, restricted to any Nm, implies principle 1 for Nm. Let nonempty
W ⊂ Nm. Assume that W 6= Nm. Assume that m ∈ W and that if x ∈ W and m ≤ x ≤ n, x ∈ Nm, then
n + 1 ∈ W, but W 6= Nm. Consider W1 = Nm−W1. By well-ordering, W1 contains a first member w1. From
the above assumption, w1 6= m. Hence, we can express w1 as w1 = n + 1, for some n ∈ IN. Since w1 is a
first element, then each x ∈ Nm such that m ≤ x ≤ n, has the property that x ∈ W. From our principle 1
assumption, this implies that w1 = n + 1 ∈ W. This contradicts the definition of W1 since W1 ∩W = ∅. The
result follows.

We now complete this proof by showing that principle 1 and principle 2 are equivalent. Given Nm and
assume principle 2. Then Nm is well-ordered by < . From above principle 1 holds.

Now assume principle 1 holds. Let nonempty W ⊂ Nm and suppose that m ∈ W and if n ∈ W, then
n + 1 ∈W. Principle 1 states that if m ∈W, and assuming that for each r ∈ IN such that m ≤ r ≤ n, it can
be established that n + 1 ∈ W, then W = Nm. However, we are given that if n ∈ W, then n + 1 ∈ W and
m ≤ n ≤ n. So, trivially, there is such an r = n and this yields that n + 1 ∈ W. Thus principle 1 implies
that W = Nm.

There are two places that we use these equivalent induction processes. The first is called definition by
induction.

Principle 3 (Definition by induction) Consider a construction based upon the natural numbers Nm.

(i) Suppose that we describe a process for the case where n = m (i.e. for step m.)

(ii) Suppose that we assume that we have described a process for each n, where n ≥ m. (i.e. each step
n.)

(iii) Now use the n notation and describe a fixed set of rules for the construction of the entity for the
n + 1 step. (The induction step.)

Then you have described a process that obtains each step n ∈ Nm.

Theorem on principle 3. Principle 3 holds.

Proof. Suppose that you followed the rules in (i), (ii), (iii). Let W ⊂ Nm be the set of all natural
numbers great than or equal to m for which the construction has been described. From (i), m ∈ W. From
(ii), we may assume that you have constructed step n ∈ W. From (iii), you have described step n + 1 from
step n. Thus n + 1 ∈W. Hence by principle 2, W = Nm.

Notice that the concept of what is an acceptable description for a construction by induction depends
upon whether the description is so clear that all individuals will obtain the same constructed object.

Example 1. (Definition by induction) Let m = 1 and let b be a positive real number.

(1) Define b0 = 1 and b1 = b each being a real number.

(2) Assume that for arbitrary n ∈ N1, bn has been defined and is a real number.

(3) Define bn+1 = b · (bn), where · means the multiplication of real numbers. (Note since b is a real
number and by assumption bn is a real number, then b · (bn) is a real number.)

(4) Hence, by induction, bn has been defined and is a real number for all n ∈ N1 (and separately for
n = 0.)
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In definition 2.2.3 that appears below for the language L, we use the concept of definition by induction to
obtain a definition for each language level Ln. Although there are numerous examples of proof by induction
within the main part of this text, here is one more example.

Example 2. (Proof by induction) We show that if a natural number n is greater than or equal to 2,
then there exists a prime number p that is a factor of n.

Proof. Let m = 2 and let W ⊂ Nm such that each member n ∈ W has a prime factor. Since 2 is a
prime factor of itself, then 2 ∈ W. Assume that for arbitrary n ∈ W and each r ∈ N2 such that 2 ≤ r ≤ n,
we know that r ∈ W. Now consider n + 1. If n + 1 has no nontrivial factor b (i.e. not equal to 1 or b) such
that 2 ≤ b < n + 1, then n + 1 is a prime number and, hence, contains a prime factor. (Note: any such
nontrivial factor would be less than n + 1.) If n + 1 has a nontrivial factor b, then 2 ≤ b < n + 1. Thus for
this case, 2 ≤ b ≤ n. By the induction hypotheses, b has a prime factor p. Hence p being a prime factor of b
is also a prime factor of n + 1. Thus n + 1 has a prime factor. Consequently, W = Nn by induction.

Definition 2.2.3. The construction by induction of the propositional language L.

(1) Let A = {P, Q, R, S} ∪ (∪{Pi, Qi, Ri, Si | i ∈ IN− {0}}. The set A is called a set of atoms.

(2) Let ∅ 6= L0 ⊂ A.

(3) Suppose that Ln has been defined. Let Ln+1 = {(¬A) | A ∈ Ln}∪{(A∧B) | A, b ∈ Ln}∪{(A∨B) |
A, B ∈ Ln} ∪ {(A→ B) | A, B ∈ Ln} ∪ {(A↔ B) | A, B ∈ Ln} ∪ Ln.

(4) Now let L =
⋃

{Ln | 0 6= n ∈ IN}.

(5) Note: We are using set theoretic notation. If one wants to formalize the above intuitive ideas, the
easiest way is to use a set theory with atoms where each member of A is an atom. Then consider various
Ln+1 level n-ary relations, such as the ∧n+1 relation defined on the Ln and for the other logical connectives.
Then all nary ∧n relations have the same properties and the same interpretation. Because, they have the
same properties and interpretation, there is nothing gained by formalizing this construction.

(6) These formulas can also be defined in terms of the class concept, sequences of atoms, trees, closure
concepts and a lot more stuff. Or, just keep them intuitive in character.

The next theorem holds obviously due to the inductive definition but I present it anyway.

Theorem on uniqueness of size. For any A ∈ L there exists a natural number n ∈ IN such that
A ∈ Ln and if m ∈ IN and m < n, then A 6∈ Lm.

Proof. Suppose the A ∈ L. Then from the definition of L there exists some n such that A ∈ Ln. Let
K = {k | A ∈ Lk}. Then ∅ 6= K ⊂ IN. Hence, K has a smallest member which by definition would be the
size.

Theorem of the existence of a finite set of atoms that are contained in any formula A. Let
A ∈ L. Then there exists a finite set A1 of atoms that contains all the atoms in A.

Proof. We use strong induction.

Let A ∈ L. Then there exists a unique n such that size(A) = n.

(1) Let size(A) = 0. Then A ∈ L0 and, hence, A is a single atom. The set that contains this single atom
is a finite set of atoms in A.

(2) Suppose that there exists a finite set that contains all the atoms for a formula of size r ≤ n. Let
size(A) = n+1. Then from the definition of the levels either (i) A = ¬B, A = B∨C, A = B∧C, A = B → C,
or A = B ↔ C, where size of B ≤ n and C ≤ n. Hence, from the induction hypothesis, there is a finite set
of atoms A1 that are contained in B, and a finite set of atoms A2 that are contained in C. Hence, there is a
finite set that contains the atoms in A. Thus by induction, given any A ∈ L, then there exists a finite set of
atoms that contains all the atoms in A..

Theorem on existence of a unique assignment dependent valuation function. There exists a
function v: L→ {T, F} such that

(a) if A ∈ L0, then v(A) = F or T not both.

(b) If A = ¬B, then v(A) = F if v(B) = T, or v(A) = T if v(B) = F.
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(c) If A = B ∨ C, then v(A) = F if and only if v(B) = v(C) = F. Otherwise v(A) = T.

(d) If A = B ∧ C, then v(A) = T if and only if v(B) = v(C) = T . Otherwise v(A) = F.

(e) If A = B → C, then v(A) = F if and only if v(B) = T, v(C) = F. Otherwise v(A) = T.

(f) If A = B ↔ C, then v(A) = T ↔ v(B) = v(C). Otherwise v(A) = F.

The function v: L → {T, F} is unique in the sense that if any other function f : L → {T, F} has these
properties and f(A) = v(A) for each A ∈ L0 then f(A) = v(A) for each A ∈ L.

Proof. (By induction). We show that for every n ∈ IN there exists a function vn: Ln → {T, F} that
satisfies (a) — (f) above. Let n = 0 and A ∈ L0. Then define v0 by letting v0(A) = T or v0(A) = F
not both. Then v0 is a function. Now the other properties (b) — (f) hold vacuously. Suppose there is a
function vn (n 6= 0) defined that satisfies the properties. Define vn+1 as follows: vn+1|L(n) = vn. Now for
A ∈ Ln+1 − Ln, then A = ¬B, B ∨ C, B ∧ C, b→ C, B ↔ C. Thus define vn+1(A) in accordance with the
requirements of (b), (c), (d), (e), (f) of the above theorem. This gives a function since vn, by the induction
hypothesis, is a function on Ln and B, C ∈ Ln are unique members of Ln.

Now to show that for all n ∈ IN, if fn: L→ {T, F} has the property that if f0 = v0, and (a) — (f) hold
for f, then fn = vn. Suppose n = 0. Since f0 = v0 property holds for n = 0. Now suppose that vn (n 6= 0) is
unique (hence, (a) — (f) hold for vn) Consider, fn+1: L→ {T, F} and (a) — (f) hold for fn+1. Now fn+1|Ln

satisfies (a) — (f); hence fn+1|Ln = vn. Now looking at Ln+1 − Ln and the fact that f satisfies (b) — (f),
it follows that for each A ∈ Ln+1 − Ln, fn+1(A) = vn+1(A). Consequently, this part holds by induction.

Now let v =
⋃

{vn | n ∈ IN}. v is a function since for every n ≤ m, vn ⊂ vm. We show the v satisfies
(a) — (f). Obviously v satisfies (a) since v|L0 = v0. Now if A = ¬B, then there exists n ∈ IN such that
B ∈ Ln and A ∈ Ln+1 from the existence of size of A. Then v(A) = vn+1(A) = T, if vn(B) = F = v(B) or
vn+1(A) = F, if vn(B) = T = v(B). Hence (b) holds. In like manner, it follows that (c) – (f) hold and the
proof is complete.

It’s obvious how to construct the assignment and truth-table concepts from the above theorem. If A
contains a certain set of atoms, then restricting v to this set of atoms gives an assignment a. Conversely, all
assignments are generated by such a restriction. The remaining part of this theorem is but the truth-table
valuation process restricted to all the formula that can be constructed from this set of atoms starting with
the set L0.

Definition 2.11.1 The inductive definition for the sublanguage L′ is the exact same as in the case for
2.2.3.

Chapter 3

Important Note: All of the results established prior to theorem 3.8.4 hold for ANY predicate
language.

Definitions 3.1 and 3.6.1 These are obtained in the exact same manner as is 2.2.2.

Theorem on the existence and uniqueness of the process |= and 6|= described in 3.3.3 on
Structure Valuation. Given a structure MI = 〈D, Pn

i
′〉, where the interpretation I is a one-to-one

correspondence from N ⊂ C onto D and every n-place predicate Pn
i to an n-place relation Rn

i . There exists
a v: Pd→ {|=, 6|=} such that

(a) for each i ∈ IN and n ∈ IN−{0}, v(Pn
i (c1, . . . , cn) =|= if and only if (c′1, . . . , c

′

n) ∈ Rn
i , where for any

ci ∈ N, I(ci) = c′i.

(b) If A → B ∈ Pd, then v(A → B) = 6|= if and only if v(A) =|= and v(B) = 6|= . In all other cases,
v(A→ B) =|= .

(c) If A ↔ B ∈ Pd, then v(A ↔ B) =|= if and only if v(A) =|= and v(B) =|=, or v(A) = 6|= and
v(B) = 6|= .

(d) v(A ∨B) =|= if and only if v(A) =|= or v(B) =|= .

(e) v(A ∧B) =|= if and only if v(A) =|= and v(B) =|= .
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(f) v(¬A) =|= if and only if v(A) = 6|= .

In what follows, the constant d is a general constant and corresponds to a general member d′ of the set
D. Any constants that appear in the original predicates have been assigned FIXED members of D by I and
never change their corresponding elements throughout this valuation for a given structure.

(g) For each sentence C = ∀xA ∈ Pd, v(∀xA) =|= if and only if for every d′ ∈ D it follows that
v(Sx

d A]) =|= . Otherwise, v(∀xA) = 6|= .

(h) For each sentence C = ∃xA ∈ Pd, v(∃xA) =|= if and only if there is some d′ ∈ D such that
v(Sx

d A]) =|= . Otherwise, v(∃xA) = 6|= .

The function v is unique in the sense that if any other function f : Pd → {|=, 6|=} such that f = v for
the statements in (a), then f = v, in general.

Proof. The proof is by induction in the language levels m. Let m = 0. Define v0: Pd0 → {|=, 6|=} by
condition (a) for all the predicates. Then v0 satisfies (b) – (h) vacuously.

Suppose that vm: Pdm → {|=, 6|=} exists and satisfies (a) — (h). Define vm+1: Pdm+1 → {|= 6|=} as
follows: vm+1|Pdm = vm. For F ∈ Pdm+1 − Pdm, then F = ¬A, A ∧B, A ∨B, A↔ B, ∀xA, ∃xA, where
A, B ∈ Pdm. Now define for the specific F listed, the function by the appropriate conditions listed in (b)
— (h). We note that A, B are unique and this defines a function.

We show that each vm is a unique function f : Pdm → {|=, 6|=} satisfying (a) — (h) by induction. If f
is another such function, then letting m = 0 condition (a) implies that f = v0. Assume that vm is unique.
Let f : Pdm+1 → {|=, 6|=} and f satisfies (a) — (h). Then f |Pdm = g satisfies (a) — (h). Therefore, g = vn.
Now (b) — (h), yields that f = vm+1.

The remainder of this proof follows in the exact same manner as the end of the proof of the Theorem
on existence of a unique assignment dependent valuation function.

NOTE: In the remaining portion of this appendix, it will be assumed that our language contains a
non-empty countable set of constants C.

We need for the proof of theorem 3.8.5 another conclusion. A set of sentences Γ is universal for a
language Pd′ if and only if ∀xB ∈ Γ, whenever Sx

d B ∈ Γ for all d ∈ C.

Theorem 3.8.4 If consistent Γ ⊂ S, then there is a language Pd′′ that contains all of the symbols of
Pd′, but with an additional set of constants and only constants adjoined, and a set of sentences Γ′′ ⊂ Pd′′

such that Γ ⊂ Γ′′ and Γ′′ is consistent, negation complete, and universal.

Proof. First, we extend C by adjoining a new denumerable set of constants {b0, . . .} to C giving a new
language Pd′′. [For other languages, the set of new constants may need to be a “larger” set than this.] This
means that the set of sentences S′ for Pd′′ is denumerable and we can consider them as enumerated into an
infinite sequence S1, S2, . . . and these are all of the members of S′. We now begin an inductive definition for
an extension of Γn by adjoining a finite set of sentences from S1, S2, . . . which could mean that only finitely
many members of {b0, . . .} would appear in an any Γn.

First, for n = 0, let Γ0 = Γ. Suppose that Γn has been defined. We now define Γn+1.

(a) If Γn ∪ {Sn+1} is consistent, then let Γn+1 = Γn ∪ {Sn+1}.

(b) If Γn ∪{Sn+1} is inconsistent and Sn+1 is NOT of the form ∀xB, then let Γn+1 = Γ∪{¬Sn+1}.

(c) If Γn∪{Sn+1} is inconsistent and Sn+1 is of the form ∀xB, then let Γn+1 = Γ∪{¬Sn+1,¬Sx
b B]},

where b is the first constant in {b0, . . .} that does not appear in Γn.

We first show that for each n the set of sentences Γn is consistent. Obviously, for n = 0, the result
follows from the hypothesis that Γ = Γ0 is consistent. Now assume that Γn is consistent.

(a)’ Suppose that Γn+1 is obtained from case (a). Then Γn+1 is consistent.

(b)’ Suppose that Γn+1 is obtained from case (b). Then Γn ∪ {Sn+1} is inconsistent. Hence, from
corollary 3.8.3.1, Γn ⊢ ¬Sn+1. Now Γn+1 = Γn ∪{¬Sn+1}. Suppose that Γn ∪{¬Sn+1} is inconsistent. Then
corollary 3.8.3.1 yields that Γn ⊢ Sn+1. Hence, Γn is inconsistent. This contradiction yields that Γn+1 is
consistent.
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(c)’ Again Γn ∪ {Sn+1} is inconsistent yields that Γn ⊢ ¬Sn+1. Now also suppose that Γn+1 =
Γ∪{¬Sn+1,¬Sx

b B]}, where b is the first member of new constants that does not appear in Γn and assume that
this is an inconsistent collection of sentences. Then for some C ∈ Pd′′ we have that Γn∪{¬Sn+1,¬Sx

b B]} ⊢ C
and Γn ∪ {¬Sn+1,¬Sx

b B]} ⊢ ¬C. Then by the deduction theorem 3.7.4, Γn ∪ {¬Sx
b B]} ⊢ (¬Sn+1)→ C and

Γn ∪ {¬Sx
b B]} ⊢ (¬Sn+1) → (¬C). Then by adjoining the proof that Γn ⊢ ¬Sn+1 and two MP steps we

have that Γn ∪ {¬Sx
b B]} is inconsistent. Thus by corollary 3.8.1, Γn ⊢ ¬Sx

b B]. Now the constant b does not
occur anywhere in Γn. Thus in the last demonstration we may substitute for b some variable y that does not
appear anywhere in the demonstration for each occurrence of b. This yields a demonstration that Γn ⊢ Sx

y B.
By Generalization, Γn ⊢ ∀y(Sx

y B]). By corollary 3.6.3.1, we have that Γn ⊢ ∀xB = Sn+1. This contradicts
the consistency of Γn. Since this is the last possible case, then Γn+1 is consistent. Thus by induction for all
n, Γn is consistent.

We note that by definition Γ = Γ0 ⊂ Γ1 ⊂ · · · ⊂ Γn ⊂ · · · . We now define Γ′′ =
⋃

{Γn | n ∈ IN}. We
need to show that Γ′′ is consistent, negation complete and universal for Pd′′.

(1) Suppose that the set of sentences Γ′′ is inconsistent. Then there is finite subset F of Γ′′ that is
inconsistent. But, from our remark above, there is some m ∈ IN such that F ⊂ Γm. This implies that Γm is
inconsistent. From this contradiction, we have that Γ′′. [In fact, its maximally consistent, in that adjoining
any sentence to Γ′′ that is not in Γ′′, we get an inconsistent set of sentences.]

(2) The set Γ′′ is negation complete. Let A be any sentence in Pd′′. Then A is one of the Sn+1, where
n ∈ IN. From definition (a), (b), (c), either Sn+1 ∈ Γn+1 or ¬Sn+1 ∈ Γn+1. Thus Γ′′ is negation complete.

(3) We now show that Γ′′ is universal. Let ∀xB be a sentence in Pd′′ such that Sx
c B] ∈ Γ′′ for

each c ∈ C ∪ {b0, . . .}. Suppose that ∀xB /∈ Γ′′. We know that ∀xB = Sn+1 for some n ∈ IN. By case
(a), Γn ∪ {∀xB} is inconsistent, by negation completeness, ¬∀xB ∈ Γ′′. Now case (c) applies and Γn+1 =
Γn ∪ {¬Sn+1,¬Sx

b B]} ⊂ Γ′′. This implies that ¬Sx
b B] ∈ Γ′′. But our assumption was that Sx

c B] ∈ Γ′′ for all
constants in Pd′′. Since b is one of these constants, we have a contradiction. Thus ∀xB ∈ Γ′′.

Prior to establishing our major theorem 3.8.5, we have the following Lemma and the method to construct
the model we seek. Let the domain of our structure D = C for a specific Pd′. Let Γ be any non-empty set of
sentences from the language Pd′. For every n-place predicate Pn

i in Pd′, we define the n-place relation Rn
i

by (c1, . . . , cn) ∈ Rn
i if and only if P (c1, . . . , cn) ∈ Γ. we denote the structure obtained from this definition

by the notationMI(Γ).

Lemma 3.8 Let Γ be a consistent, negation complete and universal set of sentences from Pd′. Then
for any sentence A ∈ Pd′, MI(Γ) |= A if and only if A ∈ Γ.

Proof. This is established by induction on the size of a formula.

(a) For n = 0. Let sentence A ∈ Pd′0. The result follows from the definition ofMI(Γ).

(b) Suppose that theorem holds for n. Suppose that A ∈ Pd′n+1. Assume that A = B → C. Then
B, C ∈ Pd′n. We may assume by induction that the lemma holds for B and C. Suppose that A /∈ Γ′. From
negation completeness, ¬A ∈ Γ. But, in general, ¬(B → C) ⊢ B and ¬(B → C) ⊢ ¬C. Hence, Γ ⊢ B and
Γ ⊢ ¬C. If ¬B ∈ Γ, Γ is inconsistent. Then, from negation completeness, it must be that B ∈ Γ. For the
same reasons, ¬C ∈ Γ and, thus, C /∈ Γ. From the induction hypothesis,MI(Γ) |= B andMI(Γ) 6|= C. Thus
MI(Γ) 6|= A. Conversely, assume thatMI(Γ) 6|= A. Then MI(Γ) |= B and MI(Γ) 6|= C. By the induction
hypothesis, B ∈ Γ and C /∈ Γ. By negation completeness, ¬C ∈ Γ. From, B, ¬C ⊢ ¬(B → C), we have that
Γ ⊢ ¬(B → C). Again by negation completeness and consistency, it follows that ¬(B → C) ∈ Γ. Hence,
¬A ∈ Γ and A /∈ Γ.

(c) Let the sentence be A = ∀xB. Suppose thatMI(Γ) |= A. Then for each d ∈ D, MI(Γ) |= Sx
dB. By

the induction hypothesis, since Sx
d B ∈ Pd′n, then Sx

dB ∈ Γ. Since Γ is universal, ∀xB = A ∈ Γ. Conversely,
let A ∈ Γ. Now, in general, A ⊢ Sx

dB implies that Γ ⊢ Sx
dB, which implies again by negation completeness

and consistency that Sx
dB ∈ Γ for each d ∈ D. By the induction hypothesis, we have thatMI(Γ) |= Sx

dB for
each d ∈ D. From the definition of |=, we have that MI(Γ) |= A.

This completes the proof.
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Theorem 3.8.5 If consistent Γ ⊂ S, then there exists a structureMI for Γ such that Γ ⊢ A if and only
ifMI |= ∀A.

Proof. Let the consistent set of sentences Γ ⊂ Pd′. Then the language Pd′ can be extended to a language
Pd′′ and the set of sentences Γ extended to a set of sentences Γ′′ such that Γ′′ is consistent, negation complete,
and universal. Assume that Γ ⊢ A. Then Γ ⊢ ∀A. Consequently, Γ′′ ⊢ ∀A. Thus ∀A ∈ Γ′′. Now we use the
structureMI(Γ

′′). Then lemma 3.8 states thatMI(Γ
′′) |= ∀A, whereMI(Γ

′′) is considered as restricted to
Pd′ since ∀A ∈ Pd′.

Now suppose that Γ 6⊢ A. Then by repeated application of P5 and MP, we have that Γ 6⊢ ∀A. [See
theorem 3.6.4.] Thus Γ ∪ {¬(∀A)} is consistent by theorem 3.8.2. Consequently, ¬(∀A) ∈ Γ′′. Therefore,
MI(Γ

′′) |= ¬(∀A) implies that MI(Γ
′′) 6|= ∀A. Again, by restriction to the language Pd′, the converse

follows.
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Answers to Some of the Exercise Problems

Exercise 2.2, Section 2.2

[1] (a) A /∈ L. A required “ )” is missing. (b) A ∈ L. (c) A ∈ L. (d) A /∈ L. The error is the symbol (P ). (e)
A /∈ L. Another parenthesis error. (f) A /∈ L. The symbol string “ )P)” is in error. (g) A ∈ L. (h) A /∈ L.
Parenthesis error. (i) A /∈ L. Parenthesis error. (j) A /∈ L. Parenthesis error.

[3] (a) (P ∨ Q). (b) (P → (Q ∨ R)). (c) (P ∧ (Q ∨ R)). (d) (Q ∨ R). (e) ((P ∧ Q) ∨ R). (f) ¬(P ∨Q). (g)
((P ↔ Q) ∧ ((¬Q)→ (R ∧ S))). (h) ((P ∨Q)→ R). (i) (((P ∧Q)→ R) ∧ ((¬P )→ (¬R))).

[4] (a) If it is nice, then it is not the case that it is hot and it is cold.
(b) It is small if and only if it is nice.
(c) It is small, and it is nice or it is hot.
(d) If it is small, then it is hot; or it is mice.
(e) It is nice if and only if; it is hot and it is not cold, or it is small. [It may be difficult to express this

thought nonambiguously in a single sentence unless this “strange” punctuation is used. The “;’ indicates a
degree of separation greater than a comma but less then a period.]

(f) If it is small, then it is hot; or it is nice.

Exercise 2.3, Section 2.3

[1] (a) The number of (not necessarily distinct connectives) = the number of common pairs.
(b) The number of subformula = the number of common pairs.

[2] (No problem, sorry!)

[3] (A) has common pairs (a,h), (b,e), (c,d), (f,g).
(B) has common pairs (a,m), (b,g), (c,f), (d,e), (h,k), (i,j).
(C) has common pairs (a,q), (b,p), (d,g), (e,f), (i,o), (j,k), (m,n), (c,h).

Exercise 2.4, Section 2.4

[1]. First, we the assignment a = (T, F, F, T )↔ (P, Q, R, S).

(a) v((R→ (S ∨ P )), a) = (F → (T ∨ T )) = (F → T ) = F.
(b) v(((P ∨R)↔ (R ∧ (¬S))), a) = ((T ∨ F )↔ (F ∧ (¬T )) = (T ↔ (F ∧ F )) = F.
(c) v((S ↔ (P → ((¬P ) ∨ S))), a) = (T ↔ (T → ((¬T ) ∨ T )) = (T ↔ (T → T )) = (T ↔ T ) = T.
(d) v((((¬S) ∨Q)→ (P ↔ S)), a) = (((¬T ) ∨ F )→ (T ↔ T ) = (FtoT ) = T.
(e) v((((P ∨ (¬Q)) ∨R)→ ((¬S)∧ S)), a) = (((T ∨ (¬F )) ∨F )→ ((¬T )∧ T ) = (((T ∨ T )∨F )→ F ) =

(T → F ) = F.

3. (a) (P → Q)→ R, v(R) = T ⇒ ((P → Q)→ T ) = T always.
(b) P ∧ (Q→ R), v(Q→ R) = F ⇒ (P ∧ F ) = F always.
(c) (P → Q)→ ((¬Q)→ (¬P )), v(Q) = T ⇒ (P → T )→ (F → (¬P )) = T → T = T always.
(d) (R→ Q)↔ Q, v(R) = T ⇒ (T → Q)↔ Q = T always.
(e) (P → Q)→ R, v(Q) = F ⇒ (P → F )→ R = T or F.
(f) (P ∨ (¬P ))→ R, v(R) = F ⇒ (P ∨ (¬P ))→ F = T → F = F always.
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Assignment 4 Section 2.5

[1].

P Q R Q→ P (1) Q→ R P → (Q→ R) P → R P → Q

T T T T T T T T T

T T F T T F F F T

T F T T T T T T F

T F F T T T T F F

F T T F T T T T T

F T F F T F T T T

F F T T T T T T T

F F F T T T T T T

(P → Q)→ (P → R) (2) ¬P ¬Q (¬P )→ (¬Q) (21)

T T F F T T

F T F F T T

T T F T T T

T T F T T T

T T T F F T

T T T F F T

T T T T T T

T T T T T T

Now use Theorem 2.5.2, with P = A, Q = B, R = C.

[2] (a) A contradiction. (b) Not a contradiction. (c) A contradiction. (d) Not a contradiction.

Exercise 2.6, Section 2.6

[1] (A) Suppose that we assume that there is some z ∈ [x] ∩ [y]. Then we have that z ≡ x, z ≡ y. But
symmetry yields that x ≡ z. From the transitive property, we have that x ≡ y. Hence x ∈ [y]. Now let
u ∈ [x]. Then u ≡ x ⇒ u ≡ y. Thus u ∈ [y]. Thus [x] ⊂ [y]. Since y ≡ x, this last argument repeated for y
shows that [y] ⊂ [x]. Hence [x] = [y].

(B) Well, just note that for each x ∈ X it follows that x ≡ x. Hence, from the definition, x ∈ [x].

[2] (A) Since B is a binary relation on X, it is defined for all members of B. We are given that B is reflexive.
Thus we need to show that it is transitive and symmetric. So, let xBy. Then x ∈ (y). From reflexive, we
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have that x ∈ (x). From (A), we have that (x) = (y). Thus y ∈ (x). Therefore, yBx. Thus yields that B is
symmetric.

To show that it is transitive, assume that since B in on the entire set X, that x ∈ y, y ∈ (z). Then from
the reflexive property, y ∈ (y). Hence y ∈ (y) ∪ (z). Thus (y) = (z) from (A). Thus xBz. Re-writing this in
relation notation we, have that if xBy and yBz, then xBz. This B is an equivalence relation.

(B) To show that reflexive is necessary, consider the binary relation R = {(a, b), (b, a)} on the two
element set {a, b}. Note that is can be re-written as aRb, bRa. Then (b) = {a}, (a) = {b}. Now this relation
satisfies (A) vacuously (i.e (A) holds since that hypothesis never holds.) (B) is obvious. But, since neither
(a, a) nor (b, b) are members of R, then R is not an equivalence relation.

[3] (A) Let D = (A ∨ (A ∨B)), E = ((A ∨B) ∨ C). Now from (3) Theorem 2.5.3, we have that CD ≡ CE .
(B) Let D = (A∨B), E = ((¬A)→ B). Then from part (46) of Theorem 2.5.3, we have that CD ≡ CE .
(C) Let D = (A ∧B), E = (¬(A→ (¬B))). The part (43) of Theorem 2.5.3, yields this result.
(D) First, let D = (A↔ B). Let G = (A→ B) ∧ (B → C). Then from part (47) of Theorem 2.5.3, we

have that CD ≡ CG. We can now apply (C) twice, and let E = (¬((A → B) → (¬(B → C)))). This yields
CD ≡ DE .

(E) This actually requires a small induction proof starting at n = 0. Let n be the number of ¬ to the
left of A. If n = 0 or n = 1, then the property that there is either none or one such ¬ symbol to the left is
established. Suppose that we have already established this for some n > 1. Now let there be n+1 such symbols
to the left of A and let this formula be denoted by H . First, consider the subformula G such that¬G = H.
Then by the induction hypothesis, there is a formula K such that K contains no ¬ to the left or at the most
one ¬ to the left such that K ≡ G. If K has no ¬ to the left, then CH = C¬G ≡ C¬K ⇒ CH ≡ C¬K . Now if
K has one ¬ to the left, then, in like manner, CH ≡ C¬(¬K) ≡ CK ⇒ CH ≡ CK , where K has no ¬ symbols.
The result follows by induction.

Exercise 2.7, Section 2.7

[1] (a) P ↔ (A → (R ∨ S)) ≡ ((¬P ) ∨ (A → (R ∨ S))) ∧ ((¬(A → (R ∨ S))) ∨ P ) ≡ ((¬P ) ∨ ((¬A) ∨ (R ∨
S))) ∧ ((¬((¬A) ∨ (R ∨ S))) ∨ P ) ≡ ((¬P ) ∨ ((¬A) ∨ (R ∨ S))) ∧ (A ∧ ((¬R) ∧ (¬S)) ∨ P ).

(b) ((¬P ) → Q) ↔ R ≡ (((¬P ) → Q) → R) ∧ (R → ((¬P ) → Q)) ≡ (¬((¬P )) ∨ Q) → R) ∧
((¬R) ∨ (¬(¬P ) ∨ Q)) ≡ ((P ∨ Q) → R) ∧ ((¬R) ∨ (P ∨ Q)) ≡ ((¬(P ∨ Q)) ∨ R) ∧ ((¬R) ∨ (P ∨ Q)) ≡
(((¬P ) ∧ (¬Q)) ∨R) ∧ ((¬R) ∨ (P ∨Q)).

(c) (¬((¬P ) ∨ (¬Q)))→ R ≡ (P ∧Q)→ R ≡ (¬(P ∧Q)) ∨R ≡ ((¬P ) ∨ (¬Q)) ∨R.
(d) ((¬P ) ↔ Q) → R ≡ (¬((¬P ) ↔ Q)) ∨ R ≡ (¬(((¬P ) → Q) ∧ (Q → (¬P ))) ∨ R ≡ ((¬(¬(¬P )) ∧

(¬Q)) ∨Q) ∨ ((¬Q) ∨ (¬P ))) ∨R ≡ (((¬P ) ∧ (¬Q)) ∨Q) ∨ ((¬Q) ∨ (¬P ))) ∨R.
(e) (S ∨Q)→ R ≡ (¬(S ∨Q)) ∨R ≡ ((¬S) ∧ (¬Q)) ∨R.
(f) (P ∨ (Q ∧ S))→ R ≡ ((¬P ) ∧ ((¬Q) ∨ (¬S))) ∨R.

[2] (a) ((¬P ) ∨Q) ∧ (((¬Q) ∨ P ) ∧R)⇒ Ad = (P ∧ (¬Q)) ∨ ((Q ∧ (¬P )) ∨ (¬R))
(b) ((P ∨ (¬Q)) ∨R) ∧ (((¬P ) ∨Q) ∧R)⇒ Ad = (((¬P ) ∧Q) ∧ (¬R)) ∨ ((P ∧ (¬Q)) ∨ (¬R)).
(c) ((¬R) ∨ (¬P )) ∧ (Q ∧ P )⇒ Ad = (R ∧ P ) ∨ ((¬Q) ∨ (¬P ))
(d) (((Q ∧ (¬R)) ∨Q) ∨ (¬P )) ∧ (Q ∨R)⇒ Ad = ((((¬Q) ∨R) ∧ (¬Q)) ∧ P ) ∨ ((¬Q) ∧ (¬R)).

[3] (a) (P ∧Q ∧R) ∨ (P ∧ (¬Q) ∧R) ∨ (P ∧ (¬B) ∧ (¬C)).
(b) (P ∧Q∧R)∨ (P ∧Q∧ (¬R)) ∨ (P ∧ (¬Q)∧ (¬R)) ∨ ((¬P ) ∧Q∧R)∨ ((¬P ) ∧Q∧ (¬R))∨ ((¬P ) ∧

(¬Q) ∧R) ∨ ((¬P ) ∧ (¬Q) ∧ (¬R)).
(c) (P ∧Q ∧ (¬R)) ∨ (P ∧ (¬Q) ∧ (¬R)) ∨ ((¬P ) ∧Q ∧ (¬R)) ∨ ((¬P ) ∧ (¬Q) ∧R).
(d) (P ∧Q ∧R) ∨ (P ∧Q ∧ (¬R)) ∨ (P ∧ (¬Q) ∧R) ∨ (P ∧ (¬Q) ∧ (¬R)) ∨ ((¬P ) ∧Q ∧R) ∨ ((¬P ) ∧

Q ∧ (¬R)) ∨ ((¬P ) ∧ (¬Q) ∧R) ∨ ((¬P ) ∧ (¬Q) ∧ (¬R)).

[5] (a) C ∧ (A ∨ (B ∧ ((¬A) ∨B))).
(b) (C ∨ ((A ∨B) ∧ (¬(A ∧B)))) ∧ (¬(C ∧ ((A ∨B) ∧ (¬(A ∧B))))).

Exercise 2.8, Section 2.8

[1].

(a) P → Q, (¬P )→ Q |= Q.

(b) P → Q, Q→ R, P |= R.
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(c) (P → Q)→ P, ¬P |= R. (Since premises are not satisfied, |= holds.)

(d) (¬P )→ (¬Q), P 6|= Q. (From row three.)

(e) (¬P )→ (¬Q), Q |= P.

Exercise 2.9, Section 2.9

[1]. (a) (¬A) ∨B, C → (¬B) |= A→ C.

(1) v(A → C) = F ⇒ v(A) = T, v(C) = F ⇒ v(C → (¬B)) = T. Now (3), if v(B) = T, then
v((¬A) ∨B) = T. Consequently, INVALID. AND the letters represent atoms only.

(b) A→ (B → C), (C ∧D)→ E, (¬G)→ (D ∧ (¬E)) |= A→ (B → G).

(1) Let v(A → (B → G)) = F ⇒ v(A) = T, v(B → G) = F ⇒ v(B) = T, v(G) = F. (2) Let
v(A → (B → C)) = T ⇒ v(C) = T. (3) Let v((¬G) → (D ∧ (¬E))) = T ⇒ v(D ∧ (¬E)) = F ⇒ v(D) =
F, v(E) = T ⇒ v((C ∨D)→ E) = F. Hence, VALID.

(c) (A ∨B)→ (C ∧D), (D ∨ E)→ G |= A→ G.

(1) Let v(A → G) = F ⇒ v(G) = F, v(A) = T. (2) Let v((D ∨ E) → G) = T ⇒ v(D) = v(E) = F ⇒
v((A ∨B)→ (C ∧D)) = F. Hence, VALID.

(d) A→ (B ∧C), (¬B) ∨D, (E → (¬G))→ (¬D), B → (A ∨ (¬E)) |= B → E.

(1) Let v(B → E) = F ⇒ v(B) = T, v(E) = F. (2) Let v((¬B) ∨ D) = T ⇒ v(D) = T ⇒ v((E →
(¬G))→ (¬D)) = F. Hence VALID.

[2] (a) The argument is H ∨ S, (¬H) |= S. Let v(S) = F. Let v(¬H) = T ⇒ v(H) = F ⇒ v(H ∨ S) = F.
Hence, VALID.

(b) The argument is I → C, (¬I) → D |= C ∨D. (1) Let v(C ∨D) = F ⇒ v(C) = c(D) = F. (2) Let
v((¬I)→ D) = T ⇒ v(I) = T ⇒ v(I → C) = F. Hence, VALID.

(c) The argument is S → I, I → C, S |= C. (1) Let v(C) = F. (2) Let v(S) = T. (3) Let v(S → I) =
T ⇒ v(I) = T ⇒ v(I → C) = F. Hence, VALID.

(d) The argument is P → L, L → N, N |= P. (1) Let v(P ) = F ⇒ v(P → L) = T. (2) Let
v(N) = T ⇒ v(L→ N) = T. Hence, INVALID.

(e) The argument is W ∨ C, W → R, N |= W. (1) Let v(W ) = F ⇒ v(W → R) = T. We have only
one more premise remaining. This is NOT forced to be anything. We should be able to find values that will
make it T . Let v(C) = T ⇒ v(W ∨ C) = T. Hence INVALID. [Note this is an over determined argument.
The statement N if removed will still lead to an invalid argument. However, if we add the premises N →W,
then the argument is valid.

(f) The argument is C → (M → I), C ∧ (¬M) |= ¬I. (1) Let v(¬I) = F ⇒ v(I) = T ⇒ v(C → (M →
I)) = T, independent of the values for C, M. Thus for v(C) = T, v(M) = F ⇒ v(C ∧ (¬M)) = T. Hence,
INVALID.

(g) The argument is (L ∨ C) → (D ∧ S), D → P, ¬P |= L. (1) Let v(L) = F. (2) Let V (¬P ) = T ⇒
v(P ) = F. (3) Let v(D → P )) = T ⇒ v(D) = F. These values do not force v((L ∨ C) → (D ∧ S)) to be
anything. This will immediately yield INVALID since by special selection, say v(C) = F , we can always
get a value v((L ∨ C)→ (D ∧ S)) = T.

Exercise 2.10, Section 2.10

[1]. [Note: this is very important stuff. As will be shown in the next section, if a set of premises is inconsistent,
then there will always be a correct logical argument that will lead to any PRESELECTED conclusion.]

(a) A→ (¬(B ∧ C)), (D ∨ E)→ G, G→ (¬(H ∨ I)), (¬C) ∧ E ∧H.

(1) Let v(A→ (¬(B ∧C))) = T ⇒ v(C) = F, v(E) = T, v(H) = T. (2) Let v(G→ (¬(H ∨ I))) = T ⇒
v(G) = F ⇒ v((D ∨ E)→ G) = F. Hence INCONSISTENT.

(b) (A ∨B)→ (C ∧D), (D ∨ E)→ G, A ∨ (¬G).

(1) Let v(A ∨ (¬G)) = T ⇒ case studies (1i) v(A) = T, v(G) = T, (1ii), v(A) = T, v(G) = F. (1iii)
V (A) = F, v(G) = F. (2) Consider (1i). Then v(G) = T ⇒ v(D ∨ E)→ G) = T, independent of the values
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for D, E, C. (3) So, select v(C) = T, v(D) = T, then v((A ∨ B) → (C ∧D) = T. Thus we have found an
assignment that yields T for each member of the set of premises. Hence, they are CONSISTENT and the
formula symbols represent ATOMS.

(c) (A→ B) ∧ (C → D), (B → D) ∧ ((¬C)→ A), (E → G) ∧ (G→ (¬D)), (¬E)→ E.

(1) Let v((¬E)→ E) = T ⇒ V (E) = T. (2) Let v((E → G)∧(G→ (¬D))) = T ⇒ v(G→ (¬D)) = T ⇒
v(G) = T ⇒ v(D) = F. (2) Let v((A→ B)∧(C → D)) = T ⇒ v(A→ B) = T, v(C → D) = T ⇒ v(C) = F.
(3) Now suppose that v((B → D)∧ ((¬C) → A)) = T. Then v(B → D) = T, v(((¬C)→ A)) = T ⇒ v(B) =
F and from (2) → v(A) = F. From v(((¬C) → A)) = T this yields that v(¬C) = F ⇒ v(C) = T. But this
contradicts the statement just before (3). Hence, v((B → D) ∧ ((¬C) → A)) = F in all possible cases and
the set of premises is INCONSISTENT.

(d) (A→ (B ∧ C)) ∧ (D → (B ∧ E)), ((G→ (¬A)) ∧H)→ I, (H → I)→ (G ∧D),¬((¬C)→ E).

(1) Let v((A→ (B ∧C))∧ (D → (B ∧E))). = T ⇒ v(A→ (B ∧C)) = T, v(D → (B ∧E)) = T. (2) Let
v((¬((¬C) → E)) = T ⇒ v((¬C)→ E) = F ⇒ v(E) = F, v(C) = F and from (1) ⇒ v(D) = F, v(A) = F.
Also ⇒ v(G ∧D) = F. (3) Let v((H → I) → (G ∧D)) = T ⇒ v(H → I) = F ⇒ v(H) = T, v(I) = F. (4)
Let V (((G → (¬A)) ∧H) → I) = T ⇒ v(((G → (¬A)) ∧H)) = F ⇒ v(G → (¬A)) = F. But this implies
that v(¬A) = F ⇒ v(A) = T which contradicts the result in (2). Thus INCONSISTENT.

Exercise 2.11, Section 2.11

[1] ⊢ (¬(¬A))→ A

(1) (¬(¬A))→ ((¬(¬(¬(¬A)))) → (¬(¬A))) . . . . . . . . . . . . . . . . . . . . . . . P1

(2) ((¬(¬(¬(¬A)))) → (¬(¬A))) → ((¬A)→ (¬(¬(¬A)))) . . . . . . . . . . . . . . . . . P3

(3) (¬(¬A))→ ((¬A)→ (¬(¬(¬A)))) . . . . . . . . . . . . . . . . . . . . . . . . HS(1, 2)
(4) ((¬A)→ (¬(¬(¬A)))) → ((¬(¬A))→ A) . . . . . . . . . . . . . . . . . . . . . . . P3

(5) (¬(¬A))→ ((¬(¬A)) → A) . . . . . . . . . . . . . . . . . . . . . . . . . . . HS(3, 4)
(6) ((¬(¬A))→ ((¬(¬A)) → A))→

(((¬(¬A)) → (¬(¬A)))→ ((¬(¬A)) → A)) . . . . . . . . . . . . . . . . . . . . . . P2

(7) ((¬(¬A))→ (¬(¬A))) → ((¬(¬A))→ A) . . . . . . . . . . . . . . . . . . . . MP (5, 6)
(8) ((¬(¬A))→ (((¬(¬A)) → (¬(¬A))) → (¬(¬A))))→ (((¬(¬A))→

((¬(¬A)) → (¬(¬A))))→ ((¬(¬A)) → (¬(¬A)))) . . . . . . . . . . . . . . . . . . . P2

(9) (¬(¬A))→ (((¬(¬A)) → (¬(¬A)))→ (¬(¬A))) . . . . . . . . . . . . . . . . . . . . P1

(10) ((¬(¬A)) → ((¬(¬A))→ (¬(¬A)))) →
((¬(¬A)) → (¬(¬A))) . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP (8, 9)

(11) (¬(¬A))→ ((¬(¬A))→ (¬(¬A))) . . . . . . . . . . . . . . . . . . . . . . . . . . P1

(12) (¬(¬A))→ (¬(¬A)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP (10, 11)
(13) (¬(¬A))→ A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP (7, 12)

[2] (a) ⊢ A→ (¬(¬A))

(1) ((¬(¬(¬A))) → (¬A))→ (A→ (¬(¬A))) . . . . . . . . . . . . . . . . . . . . . . . P3

(2) ⊢ (¬(¬(¬A))) → (¬A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . from [1].
(3) A→ (¬(¬A)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP (1, 2)

(b) ⊢ (¬B)→ (B → A).

(1) (¬B)→ ((¬A)→ (¬B)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P1

(2) ((¬A)→ (¬B))→ (B → A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . P3

(3) (¬B)→ (B → A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HS(1, 2)

Exercise 2.12, Section 2.12

[1] (¬(¬A)) ⊢ A.

(1) (¬(¬A)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Premise
(2) (¬(¬A))→ ((¬(¬(¬(¬A)))) → (¬(¬A))) . . . . . . . . . . . . . . . . . . . . . . . . . P1

(3) (¬(¬(¬(¬A)))) → (¬(¬A)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP (1, 2)
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(4) ((¬(¬(¬(¬A)))) → (¬(¬A))) → ((¬A)→ (¬(¬(¬A)))) . . . . . . . . . . . . . . . . . . . P3

(5) (¬A)→ (¬(¬(¬A))) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP (3, 4)
(6) ((¬A)→ (¬(¬(¬A)))) → ((¬(¬A))→ A) . . . . . . . . . . . . . . . . . . . . . . . . . P3

(7) (¬(¬A))→ A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP (5, 6)
(8) A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP (1, 7)

[2] (a) A→ B, B → C ⊢ A→ C.

(1) (B → C)→ (A→ (B → C)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P1

(2) B → C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Premise
(3) A→ (B → C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP (1, 2)
(4) (A→ (B → C))→ ((A→ B)→ (A→ C)) . . . . . . . . . . . . . . . . . . . . . . . . P2

(5) (A→ B)→ (A→ C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP (3, 4)
(6) (A→ B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Premise
(7) A→ C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP (5, 6)

(b) (¬A) ⊢ A→ B.

(1) ¬A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Premise
(2) ⊢ (¬A)→ (A→ B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ex. 2.11 (2b)
(3) A→ B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP (1, 2)

(c) Given ⊢ (B → A)→ ((¬A)→ (¬B)). Show that
¬(A→ B) ⊢ B → A.

(1) ¬(A→ B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Premise
(2) ⊢ (B → A(→ B))→ ((¬(A→ B))→ (¬B)) . . . . . . . . . . . . . . . . . . . . . . . Given
(3) (B → (A→ B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P1

(4) (¬(A→ B))→ (¬B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP (2, 3)
(5) (¬B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP (1, 4)
(6) (¬B)→ (B → A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ex. 2.11 (2b)
(7) B → A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP (5, 6)

Exercise 2.13, Section 2.13

1. Well, we use the statement that ⊢ A→ A in the proof of the deduction theorem.

2.
(A) Show that ⊢ (B → A)→ ((¬A)→ (¬B))

(1) B → A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Premise and D. Thm.

(2) ⊢ (¬(¬B))→ B . . . . . . . . . . . . . . . . . . . . . . . . . . . Ex. 2.12.1 and D. Thm.

(3) (¬(¬B))→ A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HS(1, 2)

(4) A→ (¬(¬A)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ex 2.11: 2a

(5) (¬(¬B))→ (¬(¬A)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HS(3, 4)

(6) ((¬(¬B))→ (¬A(¬A))) → ((¬A)→ (¬B)) . . . . . . . . . . . . . . . . . . . . . . . . P3

(7) (¬A)→ (¬B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP (5, 6)

(8) ⊢ (B → A)→ ((¬A)→ (¬B)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Thm.

(B) Show that ⊢ ((A→ B)→ A)→ A

(1) (A→ B)→ A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Premise D. Thm

(2) ⊢ (¬A)→ (A→ B) . . . . . . . . . . . . . . . . . . . . . . . . . D.Thm. and Ex 2.12.2b

(3) (¬A)→ A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HS(1, 2)

(4) (¬A)→ (¬(¬((¬A) → A))→ (¬A)) . . . . . . . . . . . . . . . . . . . . . . . . . . . P1

(5) (¬(¬((¬A) → A))→ (¬A))→ (A→ (¬((¬A)→ A)) . . . . . . . . . . . . . . . . . . . . P3

(6) (¬A)→ (A→ (¬((¬A)→ A))) . . . . . . . . . . . . . . . . . . . . . . . . . . . HS(4, 5)
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(7) ((¬A)→ (A→ (¬((¬A)→ A))))→ (((¬A)→ A)→
((¬A)→ (¬((¬A)→ A)))) . . . . . . . . . . . . . . . . . . . . . . P2

(8) ((¬A)→ A)→ ((¬A)→ (¬((¬A)→ A))) . . . . . . . . . . . . . . . . . . . . . . MP (6, 7)

(9) (¬A)→ (¬((¬A)→ A)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP (3, 8)

(10) ((¬A)→ (¬((¬A)→ A)))→ (((¬A)→ A)→ A) . . . . . . . . . . . . . . . . . . . . . P3

(11) ((¬A)→ A)→ A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP (9, 10)

(12) A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP (3, 11)

(13) ⊢ ((A→ B)→ B)→ A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Thm.

[3]
A→ B, A ⊢ B

(1) ⊢ A→ A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ex. 2.11.1

(2) A→ B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Premise

(3) (A→ B)→ (A→ (A→ B)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P1

(4) A→ (A→ B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP (2, 3)

(5) (A→ (A→ B))→ ((A→ A)→ (A→ B)) . . . . . . . . . . . . . . . . . . . . . . . . P2

(6) (A→ A)→ (A→ B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP (4, 5)

(7) A→ B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP (1, 6)

Exercise 2.14, Section 2.14

[1] (a) (i) B, C ⊢ (¬B) → (¬C). (ii) B, (¬C) ⊢ (¬B) → (¬C). (iii) (¬B), C ⊢ ¬((¬B) → (¬C)). (iv)
(¬B), (¬C) ⊢ (¬B)→ (¬C).

(b) (i) B, C ⊢ B → C. (ii) B, (¬C) ⊢ ¬(B → C). (iii) (¬B), C ⊢ B → C. (iv) (¬B), (¬C) ⊢ B → C.

(c) (i) B, C, D ⊢ B → (C → D). (ii) B, C,¬D ⊢ ¬(B → (C → D)). (iii) B, ¬C, D ⊢ B → (C → D).
(iv) B, ¬C, ¬D ⊢ B → (C → D). (v) ¬B, C, D ⊢ B → (C → D). (vi) ¬B, C, ¬D ⊢ B → (C → D).
(vii)¬B, ¬C, D ⊢ B → (C → D).(viii) ¬B, ¬C, ¬D ⊢ B → (C → D).

(c) (i) B, C, D ⊢ ¬(B → (C → D)). (ii) B, C,¬D ⊢ B → (C → D). (iii) B, ¬C, D ⊢ ¬(B → (C →
D)). (iv) B, ¬C, ¬D ⊢ ¬(B → (C → D)). (v) ¬B, C, D ⊢ B → (C → D). (vi) ¬B, C, ¬D ⊢ B → (C →
D). (vii)¬B, ¬C, D ⊢ B → (C → D).(viii) ¬B, ¬C, ¬D ⊢ B → (C → D).

Exercise 2.16, Section 2.16

Almost all of the interesting stuff about consequence operators involves a much deeper use of set-theory than
used in these questions.

[1] Let A ⊂ B. Suppose thatA ∈ C(A). Then there is a finite F ⊂ A such that A ∈ C(F). But F ⊂ B. Thus
A ∈ C(B). Therefore, C(A) ⊂ C(B).

[2] Let A ⊂ C(B). Then C(A) ⊂ C(C(B)) = C(B) from [1] and our axioms.
Conversely, suppose that C(A) ⊂ C(B). Since A ⊂ C(A), then A ⊂ C(B).

[3] We know that A∪B ⊂ A∪C(B) ⊂ C(A)∪C(B) ⇒ (a) C(A∪B) ⊂ C(A∪C(B)) ⊂ C(C(A)∪C(B)). Now
C(A) ⊂ C(A∪B), C(B) ⊂ C(A∪B)⇒ C(A) ∪C(B) ⊂ C(C(A∪B)) = C(A∪B). Combining this with (a)
implies that C(A ∪ B) ⊂ C(A ∪ C(B)) ⊂ C(C(A) ∪ C(B)) ⊂ C(A ∪ B). Hence C(A ∪ B) = C(A ∪ C(B)) =
C(C(A) ∪ C(B)).

Note: This is reasonable. You cannot get more deductions if you consider the premises broken up into
subsets.

Exercise 2.17, Section 2.17

[1] (ii) If B ∈ L′, then either B ∈ Γ or ¬B ∈ Γ not both.

Proof. Assume that B /∈ Γ. Then Γ ∪ {B} is inconsistent. Thus there is a finite {A1, . . . , An} ⊂ Γ
and A1, . . . , An, B ⊢ C ∧ (¬C), for some C ∈ L′. We know that C ∧ (¬C) |= D for any D ∈ L′. Thus
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C ∧ (¬C) |= ¬B. Hence, A1, . . . , An, B |= ¬B ⇒ A1, . . . , An |= B → (¬B) |= ¬B ⇒ A1, . . . , An |= ¬B ⇒
A1, . . . , An ⊢ ¬B ⇒ ¬B ∈ Γ. Suppose that B, ¬B ∈ Γ. Then this contradicts Theorem 2.17.1 (e).

(iii) If B ∈ Γ, then A→ B ∈ Γ for each A ∈ L′.

Proof. Let B ∈ Γ. The Γ ⊢ B. Thus there is a finite F ⊂ Γ such that F ⊢ B. Hence F |= B. But
B |= A→ B for any A ∈ L′. Hence F |= A→ B ⇒ F ⊢ A→ B ⇒ Γ ⊢ A→ B ⇒ A→ B ∈ Γ.

(iv) If A /∈ Γ, then A→ B ∈ Γ for each B ∈ L′.

Proof. If A /∈ Γ, then ¬A ∈ Γ from (ii). But for any B ∈ L′, ¬A |= A→ B ⇒ ¬A ⊢ A → B and since
¬A ∈ Γ, Γ ⊢ A→ B. Hence A→ B ∈ Γ.

(v) If A ∈ Γ and B /∈ Γ, then A→ B /∈ Γ.

Proof. Let A ∈ Γ, B /∈ Γ. Suppose that A → B ∈ Γ. Then Γ ⊢ A → B. Since Γ ⊢ A, by one MP step
Γ ⊢ B ⇒ B ∈ Γ; a contradiction. The result follows.

[2] (a) |= A iff {¬A} is not satisfiable.

Proof. Let |= A. Then for each a, v(A, a) = T. Hence for each a, v(¬A, a) = F. Hence {¬A} is not
satisfiable.

Conversely, let {¬A} not be satisfiable. Then for each a, v(¬A, a) = F. This for each a, v(A, a) = T.
Thus A is satisfiable.

(b) {A} is consistent iff 6⊢ ¬A.

Proof. Let {A} be consistent and ⊢ ¬A. Hence |= ¬A. Hence for each a, v(¬A, a) = T ⇒ v(A, a) = F.
Hence A |= B ∧ (¬B) for some B. Thus A ⊢ B ∧ (¬B). Thus {A} is inconsistent: a contradiction.

Conversely, let 6⊢ ¬A. Then 6|= ¬A. Hence there is some a such that v(¬A, a) = F ⇒ v(A, a) = T ⇒
A 6|= B ∧ (¬B) for any B. A 6⊢ B ∧ (¬B) for any B implies that {A} is consistent.

(c) The Completeness Theorem is equivalent to the statement that every consistent formula is satisfiable.

Proof. Assume Completeness Theorem. Now let {A} be consistent. Then from (b) 6⊢ ¬A. Hence from
Completeness contrapositive, we have that 6|= ¬A. Thus there is some a such that v(¬A, a) = F. Hence
v(A, a) = T. Thus {A} is satisfiable.

Conversely, assume that all consistent formula are satisfiable. [Note we cannot use the Completeness
Theorem since this is what we want to establish.] Let |= A. Then clearly ¬A is not satisfiable. Hence,
from the contrapositive of our assumption, {¬A} is inconsistent. Thus ¬A ⊢anything. Consequently,
¬A ⊢ A ⇒ (a) ⊢ (¬A) → A. But ⊢ (A → A) → (((¬A) → A) → A), by example 2.15.4. But ⊢ A → A.
Hence by one MP step we have that ⊢ ((¬A)→ A)→ A. Adjoining this formal proof to (a), and we get ⊢ A.
This is but the Completeness Theorem.

[3] (a) Let a be any assignment to A. Then since |= A → A. Now this could be established by formal
induction, but more simply, note that if ∅ 6= F ⊂ Γ, then one member of F contains that largest number of
As, say n ≥ 2 and the smallest sized subformula is A → A which has truth value T . All other formula, if
any, have A→ to the left etc. and, hence, have value T . It appears that Γ is consistent.

(b) {A3} is finite inconsistent subset of Γ. Hence Γ is inconsistent.

(c) {A1, A2} is a finite inconsistent sunset of Γ. Hence, Γ is inconsistent.

Exercise 3.1, Section 3.1

[1] (a) A ∈ Pd, (b) A /∈ Pd, [Note the ∃c.] (c) A /∈ Pd, [Note the third (. (d) A /∈ Pd, [Note the symbols
∀y).] (e) A /∈ Pd, [Note the missing last two parentheses.]

[2] (a) size (A) = 3, (b) size (A) = 4 (c) size (A) = 4, (d) size (A) = 4.

[3] Please note the way I’ve translated these statements into first-order predicate form is not a unique
translation. It is, however, in a mathematically standard form. Also note that from this moment on, we will
simply any formula that has a sequence of more than one ∧s or ∨s by not putting parentheses about the inner
subformula. Indeed, the way we write or language tends not to include pauses between such combinations.
[They are all equivalent no matter where we put the parentheses.] Finally notice that when we use the
operators as abbreviations for the predicates we include ( and ) only to avoid confusion. If you make a
complete substitution , it will look like this (x + 1 = y) ≡ R(x, 1, y).
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(a) ∀x((P (x) ∧ (x = 0))→ (∃y(Q(y, x) ∧ (y > x))))

(b) ∀x(R(x)→ (∃y(R(x) ∧ (y > x))))

(c) ∀x(∃y(∀z((R(x) ∧R(y) ∧R(z) ∧ (z + 1 < y))→ (x + 2 < 4))))

(d) ∀x((W (x) ∧ L(x))→ (∃y(J(y) ∧A(x, y))))

(e) ∃x(L(x) ∧ S(x) ∧A(x, j))

(f) ∀x(∀y(∀z(((P (x) ∧ P (y) ∧ P (z) ∧R(x, z) ∧R(y, z))→ R(x, y))))

(g) ∀x(B(x)→M(x))

(h) ∀x(P (x)→ (C(x) ∧ U(x)))

(i) ∀x(∀y(∀z((x = y) ∧ (y = z) ∧ (x = z) ∧ (x > 0) ∧ (y > 0) ∧ (z > 0) ∧ (x + y + z > 3)∧
(x + y + z < 9))→ ((1 < x < 3) ∧ (1 < y < 3) ∧ (1 < z < 3)))))

(j) ∀x(∀y((P (x) ∧ P (y) ∧B(x, y))↔ (M(x) ∧M(y) ∧ (¬(x = y)) ∧Q(x, y))))

[4] [Note: In what follows, you do not need to inquire whether of not the statement holds in order to translate
into symbolic form.]

(a) Seven is a prime number and seven is an odd number.

(b) (Two different ways). For each number, if 2 divides the number, then the number is even. [Note:
A metalanguage variable symbol can also be used. For each X, if 2 divides X, then X is even. You can also
write it more concisely as “For each X, if X is a number and 2 divides X, then X is even.” This is the very
important “bounded form.” The X is restricted to a particular set.]

(c) Using the metasymbol method, we have “There exists an X such that X is an even number and X is
a prime number, and there does not exist an X such that X is an even number and X is a prime, and there
exists some Y such that Y is not equal to X and Y is an even number and Y is a prime number.

(d) For each X; if X is an even number, then for each Y, if X divides Y, then Y is an even number.

(e) For each X, if X is an odd number, then there exists a Y such that if Y is a prime number, then Y
divides X.

Exercise 3.2, Section 3.2

[1] (a) (1) scope = ∃xQ(x, z). (2) scope = Q(x, z). (3) scope = Q(y, z).

(b) (1) scope = ∀y(P (c) ∧Q(y)). (2) scope = P (c) ∧Q(y). (3) scope = R(x).

(c) (1) scope = (Q(y, z)→ (∀xR(x))). (2) scope = R(x).

(d) (1) scope = (P (z) ∧ (∃xQ(x, z))) → (∀z(Q(c) ∨ P (z)))). (2) scope = Q(x, z). (3) scope = (Q(c) ∨
P (z))).

[2]

(a) ∀z3(∃y2(P (z3, y2) ∧ (∀z1Q(z1, x))→M(z3))).

(b) ∀x3(∃y2(P (x3, y2) ∧ (∀y1Q(y1, x3))→M(x3))).

(c) ∀z3(∃x2(P (z3, x2) ∧ (∀z1Q(z1, y))→M(z3))).

(d) ∀y3(∃z2(P (y3, z2) ∧ (∀z1Q(z1, x))→M(y3))).

(e) ∀y3(∃z2(P (z2, y3) ∧ (∀z1Q(z1, x))→M(y3))).

(f) ∃x3(∀z2(P (x3, z2) ∨ (∀u1M(u1, y, x3)))).

(g) ∃y3(∀x2(P (z, x2) ∨ (∀x1M(x1, u, y3)))).

(h) ∃y3(∀x2(P (y3, x2) ∨ (∀x1M(x1, y3, z)))).

(i) ∃z3(∀x2(P (z3, x2) ∨ (∀x1M(x1, y, z3)))).

(j) ∃x3(∀x2(P (z, x2) ∨ (∀z1M(x2, y, z1)))).

[3] (a) ∼= (d); (f) ∼= (i).

[4] (a) Free, x, y, z; Bound x, z.
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(b) Free, z: Bound x, z.

(c) Free, x, y; Bound x.

(d) Free, z; Bound x, y, z.

(e) Free, x; Bound x, y.

(f) Free, none; Bound x, y.

[5] (a) They are (b), (d). (b) It is (b). (c) It is (f)

Exercise 3.3, Section 3.3
[1] (a) Sx

a (∃xP (x)) → R(x, y)] = (∃xP (x)) → R(a, y). (b) Sy
x (∃yR(x, y)) ↔ (∀xR(x, y))] = (∃yR(x, y)) ↔

(∀xR(x, x)). (c) Sy
a (∀xP (y, x)) ∧ (∃yR(x, y))] = (∀xP (a, x)) ∧ (∃yR(x, y)), (d) Sx

aSx
b (∃xP (x)) →

R(x, y)]] = (∃xP (x)) → R(b, y). (e) Sx
aSy

x(∃yR(x, y)) ↔ (∀xR(x, y))]] = (∃yR(x, y)) ↔ (∀xR(x, x)). (f)
Sx

aSy
b (∀zP (y, x)) ∧ (∃yR(x, y))]] = (∀zP (b, a)) ∧ (∃yR(a, y))

[2] (a) always true. (b) NOT true. Consider the example ∀yP (x, y). (c) Always true. An argument is that,
for the left hand side, we first substitute for all free occurrences of z, if any, a w. Whether or not the result
gives no free occurrences of w or not will not affect the substitution of x for the free occurrences of y since
these are all distinct variables. The same argument goes for the right hand side. (d) Always true. These are
the “do nothing” operators.

[3] (I have corrected the typo. by inserting the missing ( and ) in each formula.)

(a) A = (∀x(P (c)∨Q(x, x))) → (P (c)∨∀xQ(x, x)). We need to determine what the value of (∀x(P (c)∨
Q(x, x))) is for this structure. Thus we need to determine the “value” of the statement P ′(a′) or Q′(a′, a′)
and P ′(a′) or Q′(b′, b′). Since a′ ∈ P ′ thenM |= (∀x(P (c)∨Q(x, x))). For the statement (P (c)∨∀xQ(x, x)),
the same fact that a′ ∈ P ′ yields thatM |= (P (c) ∨ ∀xQ(x, x)). Hence M |= A.

(b) A = (∀x(P (c) ∨Q(x, x)))→ (P (c) ∧ ∀xQ(x, x)). We repeat the above for (∀x(P (c) ∨Q(x, x))) and
getM |= (∀x(P (c)∨Q(x, x))). We now check (P (c)∧∀xQ(x, x)). We know thatM |= P (c). But (b′, b′) /∈ Q′.
Hence M 6|= (P (c) ∧ ∀xQ(x, x))⇒M 6|= A.

(c) A = (∀x(P (c) ∨ Q(x, x))) → (P (c) ∧ ∃xQ(x, x)). Again we know that M |= (∀x(P (c) ∨ Q(x, x))).
AlsoM |= P (c). Further, (a′, a′) ∈ Q′. Thus M |= ∃xQ(x, x))⇒M |= (P (c) ∧ ∃xQ(x, x))⇒M |= A.

(d) A = (∀x(P (c) ∧Q(x, x))) ↔ (P (c) ∧ ∀xQ(x, x)). First, we know that M |= P (c). But (b′, b′) /∈ Q′.
Hence, know that under our interpretation the mathematical statement corresponding to (∀x(P (c)∧Q(x, x)))
is false. Thus M 6|= (∀x(P (c) ∧ Q(x, x))). We now check (P (c) ∧ ∀xQ(x, x)). Again since (b′, b′) /∈ Q′ the
mathematical statement is false. But then this implies thatM |= A.

(e) A = (∀x(P (c) ∧ Q(c, x))) ↔ (P (c) ∧ ∀xQ(x, x)). Since (a′, a′), (a′, b′) ∈ Q′ and a′ ∈ P ′ the math-
ematical statement (∀x(P (c) ∧ Q(c, x))) holds for this structure. Thus M |= (∀x(P (c) ∧ Q(c, x))). But as
shown in (d)M 6|= (P (c) ∧ ∀xQ(x, x)). Hence, M 6|= A.

Exercise 3.4, Section 3.4

[1] (a) Note that it was not necessary to discuss special structures in our definition for validity unless we
wanted to find a countermodel. But in this case we need to also look at certain special structures. In
particular, the case for this problem that P ′ = ∅. But in this case, for any structureMI 6|= (∀x(∃yP (x, y))).
Thus for this possibility, MI |= (∀x(∃yP (x, y)))→ (∃y(∀xP (x, y))).

Now letting D = {a′}, then the only other possibility is that P ′ = {(a′, a′)}. Mathematically, it is
true that there exists an a′ ∈ D, for all a′ ∈ D we have that (a′, a′) ∈ P ′. Hence, in this case, MI |=
∃y(∀xP (x, y))). Consequently,MI |= (∀x(∃yP (x, y)))→ (∃y(∀xP (x, y))).

(b) Consider D = {a′, b′}, P ′ = {(a′, a′), (b′, b′)}. Then since (a′, a′), (b′, b′) ∈ P ′, it follows that MI |=
(∀x(∃yP (x, y))). However, since (b′, a′), (b′, b′) /∈ P ′ the mathematical statement “there exists some d′ ∈ D
such that (a′, d′), (b′, d′)” does not hold. [Notice that the difference is that in the first case the second
coordinate can be any member of D while in the second case it must be a fixed member of D. Therefore,
MI 6|= (∀x(∃yP (x, y)))→ (∃y(∀xP (x, y))) and the formula is not 2-valid. [Hence, not valid in general]

[2]. In what follows I will make the substitution and see what happends in ecah case. (a) A = ∀w(P (x) ∨
(∀xP (x, y)) ∨ P (w, x)); λ = y ⇒ ∀w(P (y) ∨ (∀xP (x, y)) ∨ P (w, y)). Since y 6= w then y is free for x in A.
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(b) A = ∀w(P (x) ∨ (∀xP (x, y)) ∨ P (w, x)); λ = w ⇒ ∀w(P (x) ∨ (∀xP (x, y)) ∨ P (w, w)). Now the variable
has gone from a free occurrence in the underlined part to a bound occurrence. Hence w is not free for x in
this A.

(c) A = (∀x(P (x) ∨ (∀yP (x, y)))) ∨ P (y, x); λ = x. Yes, any variable is always free for itself.

(d) A = (∀x(P (x) ∨ (∀yP (x, y)))) ∨ P (y, x); λ = y ⇒ (∀x(P (x) ∨ (∀yP (x, y)))) ∨ P (y, y). Since the only
place that x is free in this formula is in the underlined position, the result of substitution still gives a free
occurrence, this time of y. Hence, in this case, y is free for x in A.

(e) A = (∀x(∃yP (x, y))→ (∃yP (y, y, )); λ = y. Since there are no free occurrences of x in this formula, then
any variable is free for x in this formula.

(f) A = (∃zP (x, z)) → (∃zP (y, z)); λ = z ⇒ (∃zP (z, z)) → (∃zP (y, z)). Since at the only position that x
was free, the substitution now makes this position a bound occurrence, then z is not free for x in A.

[3] See the above formula where I have made the substitutions in all cases.

[4] Assume that C does not have x as a free variable and that B may contain x as a free variable. Further, it’s
assumed that there are no other possible free variables. [This comes from, our use of the special process (i).]
∃x(C∧B) is a sentence. LetMI be an arbitrary structure. Assume thatMI |= ∃x(C∧B). Then there exists
some d′ ∈ D, MI |= Sx

d (C ∧ B)] = C ∧ Sx
d B]. Hence, MI |= C and for some d′ ∈ D, MI |= Sx

dB]. Hence,
MI |= (C ∧ (∃xB)). Then in like manner, since x is not free in C,MI |= (C ∧ (∃xB))⇒MI |= ∀x(C ∧B).
[Note I have just copied the metaproof of (vii) and made appropriate changes.]

[5] (a) Q(x) → (∀xP (x)). Of course, we first take the universal closure. This gives the sentence ∀(Q(x) →
(∀xP (x))). I have an intuitive feeling, since Q can be anything, that this in invalid. So, we must display
a countermodel. To establish that MI |= Q(x) → (∀xP (x)). We consider Sx

d (Q(x) → (∀xP (x))). Since x
is not free in ∀xP (x), the valuation of Sx

d (Q(x) → (∀xP (x))) is the same as the valuation for (∀xQ(x)) →
(∀xP (x)). Now this makes sense. But this is not even 1-valid. For take D = {a′}, Q′ = D, P ′ = ∅. Then
MI |= (∀xQ(x)) butMI 6|= (∀xP (x)). Hence MI 6|= ∀(Q(x)→ (∀xP (x))). Thus the formula is INVALID.

(b) (∃xP (x)) → P (x). One again you consider the universal closure and we consider the formula
(∃xP (x)) → (∀xP (x)). Thus also does not seem “logical” in general. [Note that taking an empty rela-
tion will not do it.] But take D = {a′, b′}, P ′ = {a′}. Now it follows that MI |= (∃xP (x)). Since b′ /∈ P ′,
then MI 6|= (∀xP (x)). Thus INVALID.

(c) (∀x(P (x)∧Q(x))) → ((∀xP (x))∧ (∀xQ(x))). We don’t need to do much work here. Simply consider
Theorem 3.4.9 part (vi). Then let A = P (x), B = Q(x). Since that formula is valid, then if MI is any
structure for (c), andMI |= (∀x(P (x)∧Q(x))), thenMI |= ((∀xP (x))∧(∀xQ(x))). Thus formula is VALID.

(d) (∃x(∃yP (x, y))) → (∃xP (x, x)). This seems to be be invalid since mathematically in the for MI |=
(∃x(∃yP (x, y))) we do not need x = y in the mathematical sense. This is that you can have some a′ and some
b′ 6= a′, which satisfy a binary relation but (a′, a′) and (b′, b′) do not and this is exactly how we construct
a countermodel. Let D = {a′, b′}, P ′ = {(a′, b′)}. Then MI |= (∃x(∃yP (x, y))), but MI 6|= (∃xP (x, x)).
Hence INVALID

(e) (∃xQ(x)) → (∀xQ(x)). This also seems to be invalid. Well, take D = {a′, b′}, Q′ = {a′}. Then
clearly,MI |= (∃xQ(x)). But since b′ /∈ Q′, then MI 6|= (∀xQ(x)).

[6] [This is a very important process.]

(a) (¬(∃xP (x))) ∨ (∀xQ(x)) ≡ (¬(∃xP (x))) ∨ (∀yQ(y)) ≡ (∀x(¬P (x))) ∨ (∀yQ(y)) ≡ ∀y(Q(y) ∨
(∀x(¬P (x))) ≡ ∀y(∀x(Q(y) ∨ P (x))).

(b) ((¬(∃xP (x)))∨ (∀xQ(x)))∧ (S(c) → (∀xR(x))) ≡ ((∀y(¬P (y)))∨ (∀xQ(x)))∧ (S(c) → (∀xR(x))) ≡
(∀y(∀x(¬P (y) ∨ Q(x)))) ∧ (S(c) → (∀xR(x))) ≡ (∀y(∀x(¬P (y) ∨ Q(x)))) ∧ (S(c) → (∀zR(z))) ≡
(∀y(∀x(¬P (y) ∨ Q(x)))) ∧ (S(c) → (∀zR(z))) ≡ (∀y(∀x(¬P (y) ∨ Q(x)))) ∧ (∀z(S(c) → R(z))) ≡
∀y(∀x(∀z((¬P (x)) ∨Q(x)) ∧ (S(c)→ R(z)))).

(c) ¬(((¬(∃xP (x)))∨(∀xQ(x)))∧(∀xR(x))) ≡ ¬(∀y(∀x(∀z((¬P (x))∨Q(y))∧R(z)))) = ∃y(∃x(∃z(P (x)∧
(¬Q(y))) ∨ (¬R(z)))).

Exercise 3.4, Section 3.5
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As suggested, I might try the deduction theorem for valid consequence determinations. [1] (a) Consider
A1 = ∀x(Q(x)→ R(x)), A2 = ∃xQ(x), B = ∃xR(x).

Suppose that MI is ANY structure, defined for A1, A2, B such that MI 6|= ∃xR(x). Hence, for
each c′ ∈ D, c′ /∈ R′. Thus, we have that R′ is the empty set. Hence, under the hypothesis assume that
MI |= ∀x(Q(x) → R(x)). This means that for each c′ ∈ D, MI |= Q(c) → R(c). However, we know that
MI 6|= R(c) for each c′ ∈ D. Hence for each c′ ∈ D, MI 6|= ∃xQ(c). Therefore, MI 6|= Q(x). This implies
that it is a VALID CONSEQUENCE.

Not using the deduction theorem, proceed as follows: suppose that MI is a structure defined for
A1, A2, B. Let MI |= A1, MI |= A2. Then for every c′ ∈ D, MI |= Q(c) → R(c). Now since MI |= A2,
then there is some c′1 ∈ D such that MI |= Q(c1) (i.e. Q′ is not empty). Since MI |= Q(c1)→ R(c1), then
for this c′1 we have that MI |= R(c1). Hence MI |= B. Thus it is a VALID CONSEQUENCE.
(b) A1 = ∀x(Q(x)→ R(x)), A2 = ∃x(Q(x) ∧Z(x)) |= B = ∃x(R(x) ∧Z(x)). (Without deduction theorem.)
Suppose that there is any structure MI defined for A1, A2, B and MI |= A1, MI |= A2. Hence, for each
c′ ∈ D,MI |= Q(c) → R(c) and there exists some c′1 ∈ D such that MI |= Q(c1) ∧ Z(c1). Thus c′1 ∈ Q′

and c′1 ∈ Z ′. Since c′1 ∈ Q′, then c′1 ∈ R′. Thus using this c′1 we have that MI |= ∃x(R(x) ∧ Z(x)). Hence
MI |= B implies that we have a VALID CONSEQUENCE.

(c) A1 = ∀x(P (x)→ (¬Q(x))), A2 = ∃x(Q(x) ∧R(x)) |= B = ∃x(R(x) ∧ (¬Q(x))).

We have a feeling that this might be invalid, so we need to construct a countermodel Consider a one
element domain D = {a′}. Let P ′ = ∅, Q′ = R′ = D. Let MI = 〈D, P ′, Q′, R′〉. Then MI |= A1, and
MI |= A2. But, since there is no member of c′ ∈ D such that MI |= R(c) and MI |= ¬Q(x) (i.e. there is
no member of D that is a member of D and not a member of D), it follows thatMI 6|= B. Hence, argument
if INVALID.

(d) A1 = ∀x(P (x)→ Q(x)), A2 = ∃x(Q(x) ∧R(x)) |= B = ∃x(R(x) ∧ (¬Q(x))).

Take the same structure as defined in (c). The fact thatMI |= A1 is not dependent upon the definition
of Q′. Hence, the argument is still INVALID.

Exercise 3.6, Section 3.6

(A) ∀x(A→ B), ∀x(¬B) ⊢ ∀x(¬A).

(1) ∀x(A→ B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Premise

(2) ∀x(¬B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Premise

(3) ∀x(A→ B)→ (A→ B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P5

(4) A→ B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP(1,3)

(5) (A→ B)→ ((¬B)→ (¬A)) . . . . . . . . . . . . . . . . . . . . . . . . . . Exer. 2.13, 2A.

(6) (¬B)→ (¬A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP(4,5)

(7) (∀x(¬B))→ (¬B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P5

(8) ¬B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP(2,7)

(9) ¬A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP(6,8)

(10) ∀x(¬A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G(9)

(B) ∀x(∀yA) ⊢ ∀y(∀xA)

(1) ∀x(∀yA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Premise

(2) (∀x(∀yA))→ ∀yA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P5

(3) ∀yA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP(1,2)

(4) (∀yA)→ A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P5

(5) A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP(3,4)

(6) ∀xA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G(5)

(7) ∀y(∀xA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G(6)

(C) A, (∀xA)→ C ⊢ ∀xC
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(1) A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Premise

(2) ∀xA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G(1)

(3) (∀xA)→ C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Premise

(4) C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP(2,3)

(5) ∀xC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G(4)

(D) ∀x(A→ B), ∀xA ⊢ ∀xB

(1) ∀x(A→ B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Premise

(2) ∀xA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Premise

(3) (∀x(A→ B))→ (A→ B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P5

(4) A→ B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP(1,3)

(5) (∀xA)→ A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P5

(6) A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP(2,5)

(7) B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MP(4,6)

(8) ∀xB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G(7)

Exercise 3.7, Section 3.7

1. Using the special process, it may be assumed that A has no free variables and the B has at most one
free variable x. We show that |= (∀x(A→ B))→ (A→ (∀xB)).

Proof. LetMI be any structure defined for A, B and we only need to suppose thatMI 6|= A→ (∀xB).

Consider the case that x is not free in B. Then B is a sentence. Now in this case MI |= ∀x(A → B)
iff MI |= A → B. Since MI 6|= B and MI |= A, it follows that MI 6|= A → B. Hence MI |= (A → B) →
(A→ B).

Now assume that x is free in B. Then we know that for MI |= ∀x(A → B) then MI |= A → Sx
dB for

each c′ ∈ D. But, we have from our assumption thatMI |= A and there is some c′ ∈ D such thatMI 6|= Sx
d B.

Hence MI 6|= Sx
d B for each c′ ∈ D. ThusMI 6|= ∀x(A→ B). Therefore,MI |= (∀x(A→ B))→ (A→ B).

Exercise 3.8, Section 3.8

1. Modify the argument given in example 3.8.1 as follows: let L(x, y) correspond to the natural number
binary relation of “less than” (i.e. <). Give an argument that shows that there is a structure ∗MI that
behaves like the natural numbers but in which there exists a member b′ that is “greater than” any of the
original natural numbers.

As in that example, let Γ be the theory of natural numbers, described by a given Pd, and each member
of C denotes a member of the domain D for a model MI for Γ, where MI |= models all of the theory
definable predicts as well. Again we let b be a constant not in the original C and adjoin this the C. Consider
the set of sentences Φ = {L(c, b) | c ∈ C}. Now consider the set of sentences Γ ∪ Φ and let A be a finite
subset of Γ∪Φ. If {a1, . . . , an} ⊂ A and {a1, . . . , an} ⊂ Γ, thenMI |= is a model {a1, . . . , an}. Suppose that
{an+1, . . . , am} are the remaining members of A that are not in Γ. Now we investigate the actual members
of Φ. We know from the theory of natural numbers that for any finite set of natural numbers there is a
natural number b′ greater than any member of that set. Now each member of {an+1, . . . , am} is but the
sentence L(c, b) where c ∈ C and b 6∈ C. Thus there are at most finitely many different ci ∈ C contained in
the formula in {an+1, . . . , am}. Each of these is interpreted as a name for a natural number. Hence let b be
interpreted as one of the b′ >′ all of the c′i. Consequently, MI |= A. Thus from the compactness theorem
there is a structure ∗MI that behaves in Pdb like the natural numbers but contains a type of natural number
that is “greater than” all of the original natural numbers.

2. Let IR denote the set of all real numbers. Let C be a set of constants naming each member of IR and
suppose that Pd is the language that describes the real numbers. Suppose that b is a constant not a member
of C. Let Γ be the theory of real numbers. Let Q(0, y, x) be the 3-place predicate that corresponds to the
definable real number 3-place relation 0′ < c′ < d′, where 0′, c′, d′ ∈ IR. Now in the real numbers there is a
set of elements G′ such that each member c′ of G′ has the property that 0′ < c′. Let G be the set of constants
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that correspond to the members of the set G′. Consider the set of sentences Φ = {Q(0, b, g) | g ∈ G} in the
language Pdb. Give an argument that shows that there exists a structure ∗MI such that ∗MI |= Γ∪Φ. That
is there exists a mathematical domain D that behaves like the real numbers, but D contains a member b′

such that b′ is “greater than zero” but b′ is “less than” every one of the original positive real numbers.
Well, simply consider any finite subset A of Γ∪Φ. Suppose that {a1, . . . , an} ⊂ A and that {a1, . . . , an} ⊂

Γ. LetMI |= Γ, whereMI |= models all of the theory definable predicts as well. Then MI |= {a1, . . . , an}.
Now suppose that {an+1, . . . , am} are the remaining members of A that are not in Γ. Now each member of
{an+1, . . . , am} is of the form Q(0, b, g) where g ∈ G is interpreted as a real number greater than 0′. Since,
in this case the g represent a finite set of such real numbers, then one of these real numbers, say g′1, is the
“smallest one” with respect to <′. Now consider the real number g′1/2 and let b be interpreted as this real
number. Then MI |= {an+1, . . . , am}. Hence we have that MI |= A. The compactness theorem states that
there is a structure ∗MI that behaves, in Pdb, like the real numbers. And, there exists in the structure a
real like number b′ such that 0′ <′ b′ <′ g′ for all of the original real numbers g′ such that 0′ <′ g′.

Discussion
In what follows prime notation has been charged to *

[1] (Note that we don’t mention the “constant” in the structure notation since we have originally
assigned all members of the domain and some members of the new domain constant names.) In the structure
∗MI = < ∗IN, ∗+, ∗=, ∗<, . . . > all the usual properties that can be expressed in a the appropriate first-order
language hold for ∗MI . One extremely useful additional property that one would like ∗MI to possess is
the embedding property. Is there a subset of ∗IN that can be used in every way as the natural numbers
themselves where the * operators restricted to this subset have the same properties as the original natural
numbers? After some effort in model theory, the answer is yes. Thus we can think of the natural numbers IN
as a “substructure” of the ∗MI . The interesting part of all of this is that a simple comparison of properties
can now be made. If there is one natural number ∗b then you can consider the set of all such members
of ∗IN. This set is denoted by IN∞ and is called the set of all “infinite natural numbers.” It has a algebra
that behaves as Newton wished for such objects. For example, if λ, β ∈ IN∞ and nonzero n ∈ IN, then
nλ + β ∈ IN∞. Further, for any n ∈ IN, we have that λ − n ∈ IN∞, [can you show this?] where we now
think of IN as the non-negative integers. But ∗IN has a property that no set of natural numbers has and
this property is why the set ∗IN cannot be “graphed” in the usual manner. Every nonempty subset of IN
has a first element. This means that if nonempty A ⊂ IN, then there is some a ∈ A such that a ≤ x for all
x ∈ A. But the set IN∞ does not have a first element with respect to ∗<. Suppose that IN∞ does have a first
element λ1. Then if you establish what has been written above, since the same basic properties for ∗< hold
as they do for <, we have that λ1 − 1 ∗<λ1, which contradicts the concept of first element with respect to
∗<. Indeed, a recent published paper that I am reviewing, has forgotten this simple fact.

[2] The structure here ∗MI = < ∗IR, ∗+, ∗·, ∗<, · · · > can haveMI = < IR, +, ·, <, . . . > embedded into
it in such a manner thatMI is a substructure of ∗MI . And, as in [1], this substructure behaves relative to
the all the properties of the first-order theory of real numbers just like the real numbers. In this case, we
have that ∗0 = 0 ∗< ∗b ∗< r for each positive real number r ∈ IR. Now we consider the entire set of all such
∗b and call this the set of positive infinitesimals µ(+0). Since all the algebra holds one adjoins to this set the
0 and {−ǫ | ǫ ∈ µ(+0)} = µ(0). Do these satisfy the theory of the “infinitely small” of Newton? Well, here
are a few properties. First, the normal arithmetic of the real numbers holds for µ(0). This we have that
if ǫ ∈ µ(+0), then 1/ǫ ∗> r for any r ∈ IR. Also when Newton had an object he called infinitely small and
squared it he claimed that this was “more infinitely small” in character. Well, 0 ∗< ǫ2 ∗< ǫ and they are not
equal. Then Newton claimed that if he took any real number and multiplied it by an infinitely small number
that the result was still infinitely small. One can establish that for each r ∈ IR, we have that r ∗· ǫ ∈ µ(0).
Indeed, we can establish that if f is any function defined on IR, continuous at r = 0 and f(0) = 0, then all
the properties of f hold for ǫ and when they are applied to ǫ the result is always an infinitesimal. There
is no where in the use of the Calculus that these infinitesimals contradict the intuitive procedures used by
mathematicians through 1824. Their properties also correct the error discovered in 1824 that led to the
introduction of the limit concept.
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A

and-gate 29.
assignment 15.
atomic formula,

propositional 13.
predicate 64.
first-order language 64.

atoms,
propositional 9, 10.
predicate 63.
first-order language 63.

B

binary 9,
relation 22.

bound occurrence of the constant
68.

C

closed formula 69.
common pair 15, 13,

rule 13.
complete set 59.
composite formula 64.
congruent formula 69.
connectives 9.
consequence,

of Γ 57.
consequence operator 55.

consistent,
propositional 39.
predicate, first-order 91.

constants, insertion of 63, 57.
contradiction,

propositional 39.
predicate, first-order 91.

countermodel 76.

D

deduction,
from a set of Γ 45.

deductive processes 98.
deductive system 59.
demonstration 45.
denial 26.
descriptions 98.
domain for a structure 72.
equality 22.

E

equivalence relation 23.
existential quantifier 64.
extralogical symbols 10.

F

formal demonstration,
first-order, 86.

formal proof, propositional 42,
43.

formally consistent,
predicate 91.
propositional 57.

formula variables,
predicate 64.
propositional 39.

formulas,
predicate 63.
propositional 9.

free for x in A 77.
free in the formula 68.
free substitution operator 72.
full disjunctive normal form 27.
fundamental conjunction 28.

G

generalization, first-order 86.

H

hypotheses, premises 32.
hypothetical syllogism 44.

I

induction 102.
inconsistent,

predicate, first-order 91.
propositional 39.

interpretation metasymbol 10.
interpretation, for first-order

structure 72.
inverter 29.

L

language levels 9.
logic circuits 29.
logical connectives 10.
logical flow 29.
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M

meta - 6.
model theory, propositional 35.
modus ponens 43.
model, first-order 73.

N

names domain members, first-order 94.
Natural event 98.
Natural system 97.
negation complete 91.
normally closed, switch 14.
normally open, switch 14.
not a model 73.
not satisfied 33.

O

observer language 6.
or-gate 29.

P

predicates 63,
1-place predicates 63.
2-place predicates 63.
3-place predicates 63.
n-place 63.

premises, hypotheses 32.
prenex normal form 82.

R

relative consistency 85.

S

satisfiable,
propositional 33, 38, 57
predicate, first-order 93.

satisfy = satisfiable
scope, 64

of that quantifier 67.
semantical modus ponens 24.
semantical 19.
semantics 15.
sentence 69.
set of all sentences 71.
simply consistent, propositional

39.
size of a formula 11, 64.
standard theory 100.

standard model 100.
stronger than for consequence

operators 55.
structure, first-order 72.
subformula 24.
substitution process,

propositional 20.

T

theorem, formal,
predicate, first-order 86.
propositional 42.

truth-table 15 - 17.

U

ultralogic 100.
ultraword 100.
unary connective 10.
unique equivalent form 27.
universal closure 76.
universal quantifier 64.
universal, formula called 106.

V

valid consequence of Γ,
propositional 57.

valid consequence,
predicate, first-order 82.
propositional 33, 57.

valid,
predicate, first-order 82.
propositional 19.

valuation procedure, 16.
in general for propositional 57.

variable predicate forms 63, 77
variable substitution,

propositional 40.
variables, predicate 63 - 64.

W

wffs = well formed formula 9.
well-ordered 102.
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