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1 Introduction

Cyclic cohomology, a major discovery of the eighties, was defined by Alain Connes
and, independently, by Boris Tsygan. Since its initial construction, various mathe-
maticians contributed to the development of this theory, most notably Cuntz, Good-
willie, Karoubi, Kassel, Loday, Quillen, Wodzicki. The main impetus for the study
of cyclic cohomology was given by Connes’s noncommutative geometry, in which it
plays the role similar to de Rham cohomology in the classical differential geometry.
Noncommutative geometry offers a radically new approach to geometry, providing
new powerful tools to study certain important spaces that are beyond the reach of
methods of the classical differential geometry. Examples of such spaces are: the
space of Penrose tilings of the plane, the space of leaves of a foliation, spaces of
irreducible representations of discrete groups, and phase spaces arising in quantum
field theory. Additionally, it has already been demonstrated that noncommutative
geometry is very useful in addressing one of the most fascinating and difficult prob-
lems of physics, the problem of unification of fundamental forces of nature. Basic
ideas of noncommutative geometry strongly rely on the theory of C∗ -algebras and
real analysis. For example, the algebra of functions on a topological space is replaced
by a noncommutative C∗ -algebra. Among the many useful properties of cyclic co-
homology is its close relation to K -theory, which I endeavour to explain in these
notes.

This is the extended version of lectures delivered at the Mathematical Institute
of the Adam Mickiewicz University in Poznań in April 1995. A part of this text is
based on the graduate lecture course presented by the author at the Department of
Mathematics of the University of Texas at Austin in the Fall Semester of 1991. I in-
tended to provide the reader with a rapid introduction to the basics of K -theory and
cyclic cohomology, focusing on the relations between the two theories and outlining
their possible applications. Although this exposition is in no way complete, I tried to
present here some of the more exciting recent results. There are now some very good
texts on the subjects. First, Connes’s book [Co3] gives a very full and stimulating
account of the early successes of noncommutative geometry and it is an indispensable
reference to the subject. Secondly, cyclic homology has been exhaustively described
in the monograph of Loday [L2]. The reader may also wish to consult the review
articles by the same author. Finally, the book by Rosenberg [R2] provides a very
good introduction to the algebraic K -theory, whereas Wegge-Olsen’s book [We] gives
an entertaining exposition of the basics of the K -theory of operator algebras.

I am very grateful to Professor Micha l Karoński for inviting me to Poznań, and
for organizing the lectures. I wish to express my gratitude to Alain Connes, Joachim
Cuntz and Daniel Quillen for many discussions and for sharing their insights with
me. I thank also Nick Gilbert, Bill Oxbury, Steven Wilson, John Parker, Gavin
Jones, Tony Scholl, Jürg Wildeshaus, Lyndon Woodward, Takashi Kimura, Arkady
Vaintrob, José Gracia-Bondia and Peter Vámos for many interesting conversations.
I thank especially Joseph C. Várilly for his careful and critical reading of the early
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version of my Austin Lecture Notes, and Grzegorz Banaszak for reading an earlier
draft of these notes and his many comments and useful suggestions. Finally, I extend
my thanks to the almost defunct British Rail for providing me with some interesting
working conditions.

Exeter-Southampton, April 1996.
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2 The K -functor in various situations

2.1 The Grothendieck group

We begin with the introduction of a simple yet powerful notion of Grothendieck’s
K -functor. This chapter contains a long list of examples of various situations in
which the K -functor appears naturally. It will, therefore, be useful to have at our
disposal a few of its equivalent descriptions.

2.1 Definition. Let A be an abelian semigroup; we assume for simplicity that it
contains a zero element. The Grothendieck group K(A) of A is an abelian group that
has the following universal property: There is a canonical semigroup homomorphism
φA : A → K(A) such that for any group G and a semi-group homomorphism
ψ : A → G, there is a unique homomorphism γ : K(A) → G such that ψ = γφA .
This means that the following diagram is commutative.

A ✲φA
K(A)

❅
❅❅❘

ψ
�

��✠
γ

G

To prove the existence of K(A), and for later reference, we provide three construc-
tions of K(A) (cf. [At1]).

1. Let F (A) be the free abelian group generated by elements of A, and let E(A)
be the subgroup of F (A) generated by the elements of the form a+a′−(a⊕a′),
where ⊕ denotes addition in F (A). We define K(A) = F (A)/E(A), with
φA : A → K(A) being the composition of the inclusion A → F (A) with the
canonical surjection F (A)→ K(A).

2. Let △ : A → A × A be the diagonal homomorphism of semigroups, and let
K(A) be the set of cosets of △(A) in A × A. A priori it is only a quotient
semigroup, but it is not difficult to check that the interchange of factors in
A× A induces an inverse in K(A) so that K(A) is in fact a group. We then
define φA : A → K(A) to be the composition of the map a 7→ (a, 0) with the
natural projection A× A→ K(A).

3. Let us now consider the following equivalence relation on the product A× A.
We put (a, b) ∼ (a′, b′) when there exists a p ∈ A such that

a+ b′ + p = a′ + b+ p

Then by definition K(A) = A × A/ ∼. Elements of K(A) will be denoted
[(a, b)].
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We thus have a way of assigning an abelian group to each abelian semigroup.
Moreover, one checks that K is in fact a covariant functor from the category of
abelian semigroups to the category of abelian groups. This means that the following
diagram is commutative, for any homomorphism γ : A→ B of semigroups.

A
φA−→ K(A)yγ

y K(γ)

B
φB−→ K(B)

(2.2)

If B is a group, the map φB is an isomorphism.

2.3 Example. Let N be the set of natural numbers including zero. Then K(N) =
Z.

To formulate a slightly less trivial variant of this example, let us consider the
category Vec of all finite dimensional vector spaces. Since vector spaces of a given
dimension are all isomorphic, there is a semi-group isomorphism [Vec] → N . Here
the set [Vec] of isomorphism classes of vector spaces is a semi-group with respect to
the operation induced by the direct sum of vector spaces. Thus, from the functoriality
of the K -functor, K([Vec]) = Z.

2.4 Lemma. If A is an abelian semigroup then any element in K(A) can be written
as [a]− [b] for some elements a, b ∈ A and where [a] = [(a, 0)], in the notation of 3.
Moreover,

[a]− [b] = [a′]− [b′]

if and only if there exists c ∈ A such that

a+ b′ + c = a′ + b+ c

Proof. According to 3., any element in K(A) is the class of some (a, b) = (a, 0) +
(0, b). Note that

[(0, b)] = −[(b, 0)]

in K(A).

2.5 Corollary. Let a, b be two elements in A. Then [a] = [b] if and only if there
exists a c ∈ A such that a⊕ c = b⊕ c.

2.2 The K -theory of spaces

As a first example of the general construction of the K -groups we shall discuss the
basics of the topological K -theory of Atiyah and Hirzebruch. Their construction
assigns an invariant to any compact topological space X by applying the K -functor
to the semigroup of complex vector bundles on X . We begin our tour with an
important result, due to Serre and Swan (cf. [At1, Kar1]).
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2.2.1 The Serre-Swan Theorem

2.6 Theorem. [Serre-Swan] Let X be a compact Hausdorff space. Let A = C(X) be
the algebra of continuous functions on X . We shall denote by Vec(X) the category
of complex vector bundles over X , and by P(A) the category of finitely generated
projective modules over A. Then the categories Vec(X) and P(A) are equivalent.

Proof. Let Γ be the functor from Vec(X) to P(A) which to any vector bundle E
associates the space of its continuous sections Γ(E). It is clear that Γ(E) is an
A-module with the A action defined by

(fs)(x) = f(x)s(x)

for f ∈ A and s ∈ Γ(E). To check that this functor is well defined, i.e., that Γ(E) is
in fact a finitely generated projective module over A, we need to recall the theorem
of Swan (see, e.g. [Kar1]):

2.7 Theorem. [Swan] Any vector bundle E over a compact Hausdorff space is a
direct summand in a trivial bundle. In other words, there exists a vector bundle F
such that E ⊕ F is trivial.

We show first that Γ maps a trivial rank n bundle over X to the free finitely
generated A-module An . Indeed, any continuous section s of E is a continuous map
s ∈ C(X,Cn) = C(X)n = An . On the other hand, any such function is a section of
E , and so E = An . If E is now an arbitrary vector bundle over the compact space
X , then by Swan’s theorem it is a direct summand in a trivial bundle, thus Γ(E) is
a direct summand in An , for some n. It follows that Γ(E) is finitely generated and
projective.

Furthermore, let us consider two trivial bundles E = X ×Cm and F = X ×Cn .
Any morphism f of two such bundles is given by a matrix Mf (x) = (aij(x)), i =
1, . . . , m, j = 1, . . . , n with entries in A. It is clear that if two bundle morphisms
have the same matrices then they are the same. Moreover, any such matrix M
represents a morphism of trivial bundles. This shows that the functor Γ establishes
an equivalence between subcategories of trivial bundles and free finitely generated
A-modules.

Before we can treat the general case, we need to introduce the notion of the
Karoubi envelope of a category.

2.8 Definition. Let C be any category, and let C ′ be a category whose objects
are pairs (X, e) where X ∈ Ob(C ) and e : X → X is an idempotent, i.e. e2 = e.
Morphisms in the category C ′ are defined by

HomC′((X, e), (X
′, e′)) = {f ∈ HomC(X,X

′)|fe = f, e′f = f}

The category C ′ associated with C is called the Karoubi envelope of C .
The reminder of the proof of theorem 2.6 relies on the following simple facts.
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2.9 Lemma. The Karoubi envelope of the category VecT (X) of trivial complex bun-
dles of finite rank on a compact space X is equivalent to the category Vec(X) of
complex vector bundles of finite rank on X .

Proof. We need to show that any vector bundle E on X is of the form eṼ , where
Ṽ is the trivial complex vector bundle with fibre V and e : Ṽ → Ṽ is a projection.

If F is a vector bundle and e is a projection on F , then eF and (1 − e)F are
subbundles of F . This follows from the fact that the rank of a projection is an upper
semicontinuous function on X . Thus in particular, eṼ is a subbundle of Ṽ .

To prove the converse, by Swan’s theorem there exists a bundle E ′ such that
E ⊕E ′ = Ṽ . But such a direct sum decomposition of the trivial bundle Ṽ defines a
projection e such that eṼ = E .

2.10 Lemma. The Karoubi envelope of the category F(A) of finitely generated free
modules over A is the category P(A) of all finitely generated projective A-modules.

Proof. Let P be a finitely generated projective A-module. Since P is finitely
generated, there is a surjection π : An → P for some n. Since P is projective, π
has a section, i.e., an A-module map s : P → An such that πs : P → P is the
identity map. It is obvious that the composite e = sπ : An → An is an idempotent
on An such that eAn = P . Thus P is a direct summand in An and the image of
the projection e.

2.11 Lemma. If C , D are two equivalent categories, then their Karoubi envelopes
C ′ , D ′ are also equivalent categories.

Proof. The proof is not difficult and is left to the reader.

Theorem 2.6 is now proved.

2.2.2 K0(X)

2.12 Definition. Let Vec(X) be the space of finite rank vector bundles on a
compact Hausdorff space X . Let [Vec(X)] be the semigroup of isomorphism classes
of vector bundles on X with addition induced by the Whitney sum of vector bundles.
We define K0(X) = K([Vec(X)])

The following statement is an easy translation of lemma 2.4 to this special case.

2.13 Lemma. Every element of K0(X) can be written as [E]− [θn] for some n and
some vector bundle E . Here [θn] denotes the class of a trivial bundle of rank n.
Moreover,

[E]− [θn] = [F ]− [θp]

if and only there exists q such that

E ⊕ θp+q = F ⊕ θn+q.(2.14)
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Proof. Let [E]− [F ] be an element of K0(X), and let F ′ be a supplement of F in
the trivial bundle of rank n, for some n. We have

[E]− [F ] = [E] + [F ′]− ([F ] + [F ′]) = [E + F ′]− [θn]

The second part of the lemma is now clear.

2.15 Remark. It follows from (2.14) and (2.4) that two classes [E] and [F ] are
equal in K0(X) if and only if there exists n

E ⊕ θn ≃ F ⊕ θn.

Two such bundles E and F are called stably equivalent. We need to consider stable
equivalence instead of just isomorphism of bundles because there is no cancellation
law in the category of vector bundles.

2.16 Lemma. If X = ∗ consists of just one point, then K0(∗) = Z.

Proof. A vector bundle over a point is just a vector space, and so this problem
reduces to example 2.3.

2.17 Remark. This example, although trivial, identifies a class of topological
spaces whose K0 -group is trivial. This is thanks to the homotopy invariance of K0 ,
which we shall discuss in the next section. We can say here that if a compact space X
is contractible to a point, then K0(X) = K0(∗) = Z. This fact may be interpreted
geometrically by saying that any vector bundle over a contractible compact space
must be trivial.

Finally, we note that K0(X) is contravariant in X . This is due to the fact that
any continuous map f : Y → X acts by pullback on vector bundles over X thus
inducing a map Vec(X)→ Vec(Y ) and so a map K0(X)→ K0(Y ).

2.2.3 Reduced K -theory

Let us consider the constant map

p : X −→ ∗

which sends the space X to a single point ∗ . This map induces a map of the
corresponding K -groups

p∗ : K0(∗) −→ K0(X)

9



2.18 Definition. The reduced K -theory K̃0(X) is defined to be the cokernel of
the map p∗ :

0 −→ Z
p∗
−→ K0(X) −→ K̃0(X) −→ 0(2.19)

2.20 Proposition. A choice of the base-point in X defines a canonical splitting of
the sequence (2.19) so that

K̃0(X) ≃ ker[K0(X) −→ K0(∗) ≃ Z]

and
K0(X) ≃ Z⊕ K̃0(X)

Proof. A choice of the base-point in X gives the inclusion i : ∗ →֒ X , which induces
a homomorphism i∗ : K0(X)→ K0(∗) = Z that is a left inverse of the map p∗ .

2.21 Proposition. If X is a disjoint union X = X1⊔ . . .⊔Xn then the inclusions
of Xi into X induce a decomposition of K0(X) as a direct product K0(X1)⊕ . . .⊕
K0(Xn).

Proof. Any bundle over X is characterized by its restrictions to each Xi so the
semigroup of isomorphism classes of bundles over X is a product of isomorphism
classes of bundles over the components Xi . Hence the result.

2.22 Remark. This proposition is not true for the reduced K̃0 -functor. For
example, if X is the disjoint union of two points p1 and p2 then K̃0(X) = Z but
K̃0(pi) = 0 for i = 1, 2.

2.23 Definition. Let E be any finite rank complex vector bundle over a topological
space X , and let us denote by Ex the fibre of E over the point x ∈ X . We define
the rank function r : X → N by r(x) = dimEx . Since E is locally trivial, the
rank function is also locally constant. The space of all locally constant N-valued
functions on X with pointwise addition is an abelian semigroup, which we shall
denote by H0(X,N).

The map r extends in a natural way to a group homomorphism

r : K0(X) −→ H0(X,Z),

by defining
r([E]− [F ]) = r(E)− r(F ).

for all [E]− [F ] ∈ K0(X). The group H0(X,Z) is the 0-th Čech cohomology group
of X .
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2.24 Proposition. Let K ′(X) = ker[r : K0(X) −→ H0(X,Z)]. The short exact
sequence

0→ K ′(X)→ K0(X)→ H0(X,Z)→ 0

splits canonically. It follows that if X is connected, then K ′(X) is isomorphic to the
reduced K -group K̃0(X).

Proof. Let f : X → N be a locally constant function. Since X is compact, f
only takes on a finite number of values n1, . . . , np . Let X = X1 ∪ . . . ∪ Xp , where
Xi = f−1({ni}). Let E be the vector bundle whose restriction to Xi is given by
E|Xi

= Xi × Cni , i = 1, . . . , p. The correspondence f 7→ E defines a semigroup
homomorphism

t : H0(X,N)→ [Vec(X)]

which induces a map H0(X,Z) → K0(X). This map is a right inverse to the map
r : K0(X)→ H0(X,Z).

When X is connected, H0(X,Z) ≃ Z, and so from the first part we have that
K ′(X) ≃ coker [Z→ K(X)] ≃ K̃0(X).

2.25 Remark. The group H0(X,Z) is the zeroth homology group of X with
integer coefficients. The rank function r , which takes values in H0(X,Z), is a first
example of the Chern character.

2.2.4 Homotopy invariance and excision

The homotopy invariance and excision are two basic properties of the topological
K -functor which are most useful in computations of K -groups. Also, as they are
imitated in various other versions of K -theory, it is worthwhile to develop a clear ge-
ometric picture for results of this type. The homotopy invariance, which was already
alluded to in the previous section, describes the behaviour of the K -functor with
respect to continuous deformations of the base space X . The interest in excision, on
the other hand, originates from another basic operation in algebraic topology. Let X
be a compact space and Y a closed subspace. We shall define a compact space X/Y ,
in which Y is shrunk to a point, in some sense. We need to extend our definition of
the K -functor so that it behaves well with respect to this operation; this will lead to
the introduction of the relative K -theory. This new functor will establish K -theory
as an ‘exotic’ cohomology theory. For more details the reader may wish to consult
[At1] or [Kar1].

We begin with the homotopy invariance of K0 . Let Y be a compact Hausdorff
space and let f, g be two maps from Y to X . We say that f and g are homotopic
if and only if there exists a continuous map F : Y × I → X , where I is the unit
interval, such that F0 = F (·, 0) = f and F1 = F (·, 1) = g .

2.26 Theorem. [Homotopy invariance] Let Y be a compact Hausdorff space, and
let f, g : Y → X . Let us assume that f and g are homotopic maps from Y . For

11



any vector bundle E there is an isomorphism

f ∗E ≃ g∗E

It follows that the maps induced by f and g on K -groups are the same, i.e.:

K0(f) = K0(g) : K0(X) −→ K0(Y )

The proof of this theorem is not difficult and relies on the following two results.

2.27 Proposition. [Tietze’s extension theorem] Let X be a compact Hausdorff
space, Y a closed subspace, and let E be a bundle over X . Any continuous section
s : Y → E|Y can be extended to X .

Proof. Take s ∈ Γ(E|Y ). Since, locally, s is a vector-valued function, we know
(from Tietze’s theorem for vector valued functions) that for any x ∈ X there exists
an open neighbourhood U containing x and t ∈ Γ(E|U) such that t and s agree
on the overlap U ∩ Y . Since X is compact, we can find a finite subcover {Uα} by
such sets. Let tα ∈ Γ(E|Uα) be the corresponding section and let {pα} a partition
of unity subordinate to the cover {Uα} . We define sα ∈ Γ(E) by

sα =

{
pα(x)tα(x), if x ∈ Uα

0 otherwise

Then
∑
α sα is a section of E whose restriction to Y is s.

2.28 Proposition. Let Y be a closed subspace of a compact Hausdorff space X
and let E , F be two vector bundles over X . If f : E|Y → F |Y is an isomorphism,
then there exists an open set U containing Y and an extension f : E|U → F |U of
f , which is an isomorphism.

Proof. Since F is a section of Hom(E|Y , F |Y ) it can be extended to a section of
Hom(E, F ) . Let U be a set of those points for which this map is an isomorphism.
Then U is open and contains Y .

We shall now prove Theorem 2.26. Our goal it to show that the isomorphism
class of the bundle F ∗t E , where F : Y × I → X is the homotopy between the maps
f and g , does not depend on t. Let π : Y × I → Y be the projection onto the first
factor. For any t ∈ I , the bundles F ∗E and π∗F ∗t E are identical when restricted
to the closed subspace Y × {t} of Y × I . Using the fact that Y is a compact
space and the previous theorem we conclude that the bundles F ∗E and π∗F ∗t E are
isomorphic on some strip Y × δt, where δt is a neighbourhood of t in I . Hence
the isomorphism class [F ∗t E] of the bundle F ∗t E is a locally constant function of t.
Since I is connected, this function is in fact constant and this implies that

f ∗E = F ∗0E ≃ F ∗1E = g∗E

as required. The second statement of Theorem 2.26 is now clear.
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2.29 Remark. Using homotopy invariance of the K -functor it is now easy to see
that if X is a contractible space compact space, then every vector bundle over X is
trivial.

We now pass to the description of the excision properties of K0 . We shall keep
our assumption that X is a compact Hausdorff space and that Y is a closed subspace.
If we excise Y from X , i.e., form the space X − Y , the resulting space is no longer
compact, but only locally compact.

2.30 Definition. By X/Y we mean X with Y shrunk to a point, which we shall
denote by ∞ . Thus X/Y is the one-point compactification of the locally compact
space X − Y . When Y is the empty set, we take X+ = X/∅ to be X with a base
point.

In order to understand what the operation X → X/Y does to the K -theory, it
will be useful to have some description of vector bundles on the quotient space X/Y
in terms of bundles on X . Let us assume that E is a vector bundle over X/Y and
that E∞ = Cr . Since the canonical map π : X → X/Y identifies Y with ∞ , the
restriction of the the pullback bundle π∗E to Y is the trivial bundle π∗E|Y = Y ×Cr .
We shall show that there is a one-one correspondence between vector bundles over
the quotient space X/Y and vector bundles over X whose restriction to Y is a
trivial bundle.

Suppose then that E is a vector bundle over X and that α : E|Y → Y × V
is an isomorphism. We call α a trivialization of E over Y . Let us denote by
π : Y × V → V the projection onto the second factor. We define an equivalence
relation on E|Y by setting e ≃ e′ if and only if

πα(e) = πα(e′).

This relation identifies the points in the restriction of E to Y which are ‘on the same
level’ relative to the trivialization α . We then extend this relation trivially to the
whole of E .

2.31 Lemma. The set of equivalence classes Eα of this equivalence relation is a
vector bundle over X/Y .

Proof. We note that since the trivialization procedure described above does not affect
the bundle away from Y , the only problem here is to check that the bundle Eα is
locally trivial near ∞ . For this, use Tietze’s theorem to extend α to an isomorphism
α̃ : E|U → U × V , where U is some open set containing Y . Then α̃ induces an
isomorphism (E|U)α̃ ≃ U × V . We remark that U cannot be taken to be X in
general.
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Suppose now that α0 and α1 are homotopic trivializations of E over Y . This
means that we have a trivialization β of E × I over Y × I ⊂ X × I inducing α0

and α1 over the end points of I . Let

f : (X/Y )× I −→ (X × I)/(Y × I)

be the natural map. Then f ∗((E× I)β) is a bundle on (X/Y )× I whose restriction
to X/Y × {i} is Eαi

for i = 0, 1. Thus

Eα0
≃ Eα1

and we have established the following.

2.32 Proposition. A trivialization α of a bundle E over Y ⊂ X defines a bundle
Eα over X/Y . The isomorphism class of Eα depends only on the homotopy class
of α .

Now that we know how to describe vector bundles over the quotient space X/Y
we may consider K0(X/Y ), and define the relative K -theory K0(X, Y ).

2.33 Definition. The relative K -group K0(X, Y ) is

K0(X, Y ) = K̃0(X/Y )

It follows from the properties of K̃0 that the relative K -theory is a contravariant
functor of (X, Y ). We also note that since K0(X) = K̃0(X+), we have K0(X, ∅) =
K0(X).

2.34 Proposition. Let X be a compact space and Y a closed subspace. There is
an exact sequence

K0(X, Y )
∗
−→ K0(X)

ı∗
−→ K0(Y )

where ı : Y → X and  : (X, ∅)→ (X, Y ) are inclusions.

Proof. Since the composite map ı∗∗ is induced by the composition ı : (Y, ∅) →
(X, Y ), we have that ı∗∗ = 0. This yields Im ∗ ⊂ ker ı∗ .

Now suppose that ξ ∈ ker ı∗ . We may represent ξ as the formal difference
ξ = [E] − [θn] for some vector bundle E and a trivial bundle of rank n over X .
Since ı∗ξ = 0 it follows that [E|Y ] = [θn|Y ] in K0(Y ), which means that the bundles
E|Y and θn|Y are stably isomorphic. This implies that we have, for some integer m,
(E⊕ θm)|Y = θn⊕ θm . In other words, we have constructed a trivialization α of the
bundle (E ⊕ θm)|Y . This defines a bundle (E ⊕ θm)α on X/Y and so an element

η = [(E ⊕ θm)α]− [θn ⊕ θm] ∈ K̃0(X/Y ) = K0(X, Y )

of the relative K -theory. Then

∗(η) = [E ⊕ θm]− [θn ⊕ θm] = [E]− [θn] = ξ

which proves that ker ı∗ ⊂ Im ∗ .

14



2.35 Corollary. Let X be a compact space, and Y a closed subspace, equipped
with a base point. The sequence

K(X, Y ) −→ K̃(X) −→ K̃(Y )

is exact.

Proof. Let y0 be the base point of Y , and so a base point of X . The result follows
from the fact

K(X) ≃ K̃(X)⊕K(y0)

K(Y ) ≃ K̃(Y )⊕K(y0)

and the previous statement.

2.2.5 More on the Serre-Swan Theorem

We shall now proceed to give an algebraic description of the module of sections of a
vector bundle over X/Y . Since X/Y is a compact space, the Serre-Swan theorem
applies, and so the space Γ(X/Y, Ē) of continuous sections of a bundle Ē over
X/Y is a projective module over C(X/Y ). We want to show this explicitly, by
constructing a free module in which Γ(X/Y, Ē) is a direct summand.

We have seen that any bundle Ē over X/Y can be described using a bundle
E over X together with a trivialization φ : E|Y ≃ Y × Cr of the restriction of E
to Y . Sections of Ē are thus sections of E which are constant over Y . Using the
isomorphism φ we can say that a section of Ē over X/Y is a section s of E such
that φ ◦ s : Y → Cr = C̃r is constant. The space of sections Γ(X/Y, Ē) is a module
over the algebra of functions C(X/Y ), where functions act on sections by pointwise
multiplication. We note here that a function f ∈ C(X/Y ) is the same as a function
on X which is constant on Y .

To focus our attention, let us consider a trivial bundle E over X together with
an isomorphism φ : E|Y

∼
→ C̃r which trivializes E over Y . This isomorphism φ

may be regarded as an element of GLr(C(Y )), the group of invertible r×r matrices
with entries in C(Y ). As we have seen before, the bundle E together with the
isomorphism φ may be regarded as a bundle Ē over the quotient space X/Y . We
note that even when the bundle E is trivial, the quotient bundle Ē need not be. We
want to find maps

Γ(X/Y, Ē)→ C(X/Y )N → Γ(X/Y, Ē)

for some N , which compose to the identity map.
We first construct the map on the right. Tietze’s extension theorem shows that

there is a surjection C(X) → C(Y ). We use this map to lift φ to Mr(C(X)), and
we shall denote the resulting matrix by p. This matrix need no longer be invertible,
so let us assume that φ−1 lifts to a matrix q . The matrix valued functions p and q
then satisfy pq|Y = qp|Y = 1, where 1 denotes the identity in the group GLr(C(Y )).
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For a vector ξ ∈ Cr , consider qξ ∈ C(X)r = Γ(X,E). Then clearly φ(qξ)|Y is a
constant function on Y and thus qξ is a section of Ē over X/Y . This is also true if
ξ is any element of C(X/Y )r . This remark defines a map C(X/Y )r → Γ(X/Y, Ē)
by sending ξ 7→ qξ .

Now consider s ∈ Γ(X/Y, Ē). Hence s ∈ Γ(X,E) is such that φ◦s|Y is constant.
Since ps|Y = φ ◦ s|Y is also constant, this gives a map Γ(X/Y, Ē) → C(X/Y )r ,
s 7→ ps.

Passing to the general case, we want to establish the following sequence

Γ(X/Y, Ē)

(
p
β

)

−→ C(X/Y )2r
(q α)
−→ Γ(X/Y, Ē)

where α, β ∈ Mr(C(X)) vanish on Y . We want to find α, β, p, q such that p and q
are lifts of φ and φ−1 as before and that the composite map above is the identity,
that is

qp+ αβ = 1(2.36)

Let us denote by I the ideal of matrix-valued functions vanishing on Y . Condition
2.36 is equivalent to qp ≡ 1 mod I2 . Now it follows from the definition of p and q
that they satisfy qp ≡ 1 mod I . We then write qp = 1−(1−qp) and upon multiplying
this identity on the left by 1 + (1− qp) we get

(1 + (1− qp))qp = 1− (1− qp)2

Hence if we replace q by q̃ = (1 + (1− qp))q then q̃p ≡ 1 mod I2 and q̃|Y = q|Y . We
can then choose α and β to be any elements of I , for instance put α = β = 1− qp.

The example just described corresponds to the following purely algebraic situa-
tion. Let R be a ring and let I be an ideal in R . Let us denote by Ĩ the augmentation
of I . We establish contact with the geometric case described before by means of the
following identification:

A = C(X)
A/I = C(Y )

Ĩ = C(X/Y )
(2.37)

The objects on the left are related together by the following cartesian square:

Ĩ −→ C

↓ ↓
A

π
−→ A/I

Let φ ∈ GLr(A/I). Following Milnor [M, p.20], let us define M(Ar,Cr, φ) to be an
Ĩ -module consisting of all s ∈ Ar such that φ(πs) is a constant function with values
in Cr , and hence determines an element of Cr . We claim that M(Ar,Cr, φ) is a
projective finitely generated module over Ĩ . More precisely, if p ∈ Mr(A) is such
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that p ∼= φ mod I and q ∈ Mr(A) is such that q ∼= φ−1 mod I then we have the
following maps

M(Ar,C, φ)

(
p

1− qp

)

−−−−→ (Ĩ)2r
(1+(1−qp)q (1−qp))
−−−−→ M(Ar,Cr, φ)

whose composition is the identity map. We see that the module M is the image of
the following projection operator:

M(Ar,Cr, φ) = Im e = Im

(
p

1− qp

)
((2q − qpq) (1− qp))

where the matrix e is an idempotent over Ĩ . We can express the same fact in yet
another way when we notice that there is the following identity

(
φ 0
0 φ−1

)
=

(
1 φ
0 1

)(
1 0
−φ−1 1

)(
1 φ
0 1

)(
0 −1
1 0

)
(2.38)

Now this matrix can be lifted to an invertible matrix

ω =

(
1 p
0 1

)(
1 0
−q 1

)(
1 p
0 1

)(
0 −1
1 0

)
(2.39)

Then the projection operator associated to φ over A/I , whose image is the module
M(Ar,Cr, φ) is given by

e = ω

(
1 0
0 0

)
ω−1(2.40)

We shall shortly define higher K -groups. In particular, elements of K1(Y ) will be
represented by invertible matrices. The above construction will then be used to
provide a connecting homomorphism K1(Y )→ K0(X/Y ).

2.2.6 Higher K -groups and Bott periodicity

If a space X is locally compact, we can define the K -theory of X using the one-point
compactification X+ of X and the reduced K -theory:

K0(X) = K̃0(X+)

For example, in the case when X is a compact space and Y is a closed subspace, we
have

K0(X\Y ) = K̃0((X\ Y )+) = K̃0(X/Y )

which makes connection with the convention we have used earlier.

2.41 Definition. For any natural n we define

K−n(X) = K0(X ×Rn) = K0(Sn(X))

where Sn(X) = X ×Rn is called the n-th reduced suspension of X .
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One of the most important properties of these K -groups is that they have the
excision property, which means that the following long sequence is exact.

→ K−n−1(Y )→ K−n(X\Y )→ K−n(X)→ K−n(Y )→ K−n(Y )→ . . .→ K0(Y )

Another quite amazing fact is that the above sequence is in fact periodic with period
two. This follows from the Bott periodicity theorem which implies that

K0(S2(X)) ≃ K0(X)

We can therefore say that we have the following exact sequence of length six

K0(X\Y ) −→ K0(X) → K0(Y )x
y

K−1(Y ) ←− K−1(X) ←− K−1(X\Y )

2.3 Algebraic K -theory

2.3.1 K0(Λ) and projective Λ-modules

Let Λ be a ring with a unit. We shall now investigate how much we can say about the
K -groups of Λ proceeding in a purely algebraic way. We have already taken some
preliminary steps towards establishing the necessary algebraic formalism in Section
2.2.5. As we can only hope to sketch a broad outline of this beautiful theory, the
reader should consult the literature for more details on the subject. We recommend
especially Rosenberg’s book [R2] and a more or less up-to-date overview [LL].

Let us denote by P(Λ) the category of finitely generated projective left Λ-
modules. This is a subcategory of the category ΛMod of all left Λ-modules.

2.42 Definition. We define K0(Λ) to be the Grothendieck group of [P(Λ)], the
semigroup of isomorphism classes of elements of P(Λ).

2.43 Example. Let Λ = k be a field, and let V be the category of vector spaces of
finite dimension over k , which are the same as finitely generated projective modules
over k . Since two vector spaces V and W are isomorphic if and only if their dimen-
sions are the same, the map dim : [V] → N establishes an isomorphism of abelian
semigroups (we assume that 0 ∈ N). Then K0(k) = K0(N) = Z.

If φ : Λ→ Λ′ is a ring homomorphism, then we may equip Λ′ with the structure
of a right Λ-module by λ′ ·λ = λ′φ(λ). Thus φ induces a functor Φ : ΛMod→ Λ′Mod
by M 7→ Λ′ ⊗Λ M . The functor Φ maps free modules to free modules, preserves
the property of being finitely generated, projective, etc. Thus it induces a functor
[P(Λ)] → [P(Λ′)] and so a functor Φ : K0(Λ) → K0(Λ

′). Of course, this remark is
just an example of the general statement (2.2). (Compare also [R2, Theorem 1.1.3].)

Finally, when Λ is a commutative ring, and M , N are two modules over Λ, then
the tensor product M⊗ΛN has the structure of a Λ-module λ(m⊗Λn) = λm⊗Λn =
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m⊗Λ λn. It follows that the category P(Λ) is closed under the tensor product ⊗Λ

and this operation induces a product in K0 : [P ] · [Q] = [P ⊗ΛQ] for all modules P ,
Q in P(Λ).

2.44 Example. If Λ = Z is the ring of integers, then the map that sends a module
to its rank induces an isomorphism K0(Z) = Z, and so all projective Z-modules are
free.

A similar result holds for local rings [M], and principal ideal domains. Recall
that an element λ of the ring Λ is called a unit if there exists a µ ∈ Λ such that
λµ = µλ = 1. The multiplicative group of units in Λ is denoted by Λ× . A ring
Λ is called a local ring iff the set M = Λ − Λ× consisting of all non-units is a left
ideal, and therefore also a right ideal. Now if Λ is a local ring, then every finitely
generated projective module is free [M, Kap], and so K0(Λ) is the free cyclic group
generated by [Λ].

There is an equivalent description of K0(Λ) in terms of idempotents, i.e. maps
p such that p2 = p. This approach is particularly useful in defining the K -theory
of operator algebras, but it is also quite convenient to have this description in the
present setting. We have already touched on this problem in our discussion of the
Swan theorem. Any projective Λ-module P is a direct summand in a free module
Λn , for some natural n. Let us define a map p : Λn → Λn by putting p equal the
identity map on P and 0 on Q. Then it is clear that p is an idempotent, and that
p determines the Λ-module P up to isomorphism. We shall denote by GLn(Λ) the
group of invertible n× n matrices with entries in Λ. By definition, this is the group
of units in the algebra of n× n matrices Mn(Λ).

We construct the following two direct systems. First we note that there is an

inclusion Mn(Λ) →֒ Mn+1(Λ) given by a 7→

(
a 0
0 0

)
. Let us denote by M(Λ) the

ring of ‘infinite matrices’, that is the direct limit of this direct system. M(Λ) may
be considered as the union of all Mn(Λ), and so every element in M(Λ) is in fact a
matrix of finite size. Secondly, we have the inclusion GLn(Λ) →֒ GLn+1(Λ) defined

by a 7→

(
a 0
0 1

)
. We denote by GL(Λ) the direct limit of this system. Inside

M(Λ) we single out the set Id(Λ) of idempotent matrices. GL(Λ) acts on Id(Λ) by
conjugation. It turns out that the set of orbits of the action of GL(Λ) on Id(Λ) may
be identified with the semigroup [P(Λ)] [R2, p. 8].

2.45 Theorem. The set [Id] of orbits of the action of GL(Λ) on Id(Λ) is a semi-

group, with the semigroup operation induced by (p, q) 7→

(
p 0
0 q

)
. Moreover,

K0(Λ) = K([Id]) .

To illustrate how this point of view works in practice, let us prove the following
important property of K0 known as the Morita invariance.
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2.46 Theorem. There is a natural isomorphism K0(Λ) → K0(Mn(Λ)), for any
ring Λ and a natural number n.

Proof. This result rests on the observation that Mk(Mn(Λ)) = Mkn(Λ). We use this
remark to identify the group GL(Mn(Λ)) with GL(Λ) and the set Id(Mn(Λ)) with
Id(Λ). Now apply the previous theorem.

We record also the fact that K0 is continuous in the following sense. Let {Λα}α∈A
be a direct system of rings indexed by some partially ordered set A, and let Λ =
lim
−→

Λα be the direct limit of this system. If we apply the K0 -functor to this direct

system, we obtain a direct system of abelian groups {K0(Λα)} .

2.47 Theorem.

K0(Λ) = lim
−→

K0(Λα)

2.3.2 K1(Λ) and the Whitehead Lemma

There is another interesting subgroup of GLn(Λ) that we may single out. Let En(Λ)
be the subgroup consisting of elementary matrices eλij which differ from the identity
matrix only by an element λ in the ij -th place, where i 6= j . Then for any n ≥ 3
the group En(Λ) is perfect, which means that

[En(Λ), En(Λ)] = En(Λ)

where the group on the left is generated by commutators [x, y] = xyx−1y−1 .
The direct system used to define GL(Λ) restricts to a direct system of the groups

En(Λ) →֒ En+1(Λ), whose direct limit will be denoted E(Λ). The key result linking
the properties of GL(Λ) and E(Λ) is the following lemma.

2.48 Lemma. [Whitehead]

[GL(Λ), GL(Λ)] = E(Λ)

Proof. We first need to express the commutator [x, y] of two elements of GLn(Λ) by
a matrix in GL2n(Λ):

(
xyx−1y−1 0

0 1

)
=

(
x 0
0 x−1

)(
y 0
0 y−1

)(
(yx)−1 0

0 yx

)
(2.49)

Then we use the formula (2.38) to express each matrix on the right in terms of
elementary matrices in E2(Mn(Λ)). Finally, use the relations satisfied by the ele-
mentary matrices to show that each of the matrices on the right is in fact an element
of the group E2n(Λ). (See [R2, Lemma 2.1.2] for details).

2.50 Definition.

K1(Λ) = GL(Λ)/E(Λ)
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It follows from Whitehead’s lemma that

K1(Λ) = GL(Λ)ab = GL(Λ)/[GL(Λ), GL(Λ)]

On the other hand we recall from group homology that GL(Λ)ab is the first homology
group of GL(Λ) with integer coefficients, and so we have the isomorphism K1(Λ) =
H1(GL(Λ),Z). Moreover, a ring homomorphism φ : Λ → Λ′ induces a group ho-
momorphism GL(Λ) → GL(Λ′) that restricts to a homomorphism E(Λ) → E(Λ′).
Hence there is an induced map

K1(φ) : K1(Λ) −→ K1(Λ
′)

2.51 Example. (cf. [LL, p. 27][M]) Let us assume that Λ is a commutative ring.
Then taking the determinant of a matrix extends to a homomorphism det : GL(Λ)→
Λ× . We shall denote by SL(Λ) the kernel of this map:

SL(Λ) = ker(det) =
∞⋃

n=1

SLn(Λ)

where, as usual, SLn(Λ) = ker [det : GLn(Λ)→ Λ×]. The obvious inclusion E(Λ) ⊂
SL(Λ) implies that det descends to a group homomorphism

det : K1(Λ) −→ Λ×

There is therefore the following short exact sequence

1→ SK1(Λ) −→ GL(Λ)/E(Λ)
det
−→ Λ× → 1

where SK1(Λ) = SL(Λ)/E(Λ). This sequence splits, since det has a right inverse
given by the map Λ× = GL1(Λ) →֒ GL(Λ) → K1(Λ). Thus we see that K1(Λ) =
Λ×⊕SK1(Λ) and so, in the commutative case, the computation of K1(Λ) reduces to
finding SK1(Λ). There are some special cases when SK1(Λ) is trivial, making det
an isomorphism. This happens, for instance, when Λ is a Dedekind domain, a local
ring or a finite commutative ring. So in particular, if Λ = Z K1(Z) = Z× = Z2 . In
the case when Λ is a field k , we have K1(k) = k× = K1(k[x]).

2.3.3 Relative K -groups and Milnor’s construction

We have already encountered the relative K -theory in the topological setting, where
it appeared as a natural object associated with the operation of taking the quotient
of a topological space. In the category of rings it is clearly useful to consider short
exact sequences of the form

0→ I → R
q
−→ R/I → 0
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where I is an ideal in R . Since the map q is a ring homomorphism, it induces a
map of K -groups

q∗ : K0(R)→ K0(R/I)

We shall now define a relative K -group K0(R, I) in such a way that it will fit into
the following short exact sequence

K0(R, I) −→ K0(R)
q∗−→ K0(R/I)

An important point to be considered is the relation between K0(R, I) and K0(I).

2.52 Definition. If I is an ideal in a ring R then the double of R along I is the
following subring of the direct product R× R :

D(R, I) = {(x, y) ∈ R× R | x− y ∈ I}

The double D(R, I) relates to the ring R and the ideal I via the following short
exact sequence

0→ I → D(R, I)
p1−→ R→ 0

where p1 : R × R → R is the projection onto the first coordinate. This sequence
splits, and the splitting map is given by the diagonal embedding of R into the direct
product R × R . The kernel of the projection map p1 may be identified with the
ideal I .

2.53 Definition. The relative K0 -group of a ring R and an ideal I is defined by

K0(R, I) = ker{p1∗ : K0(D(R, I))→ K0(R)}

Similarly, we define

K1(R, I) = ker{p1∗ : K1(D(R, I))→ K1(R)}

2.54 Remark. Milnor [M] uses the above formulae to define the K -groups of the
ideal I . This does not lead to any difficulty in the case of K0(I), since in that
case K0(R, I) does not depend on the ‘ambient’ ring R , and only on the ideal I .
Therefore, if we define

K0(I) = ker{K0(Ĩ)→ K0(Z)}

we can write K0(R, I) = K0(I) (cf. [R2, Theorem 1.5.9]). This is our first excision
statement in algebraic K -theory. The same statement is not, in general, true for the
group K1(R, I), which does depend on the ring R . See [M, Remark 4, p. 34] and
[S].
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In order to understand the general structure of the excision-type results for the
groups K0 and K1 , we shall briefly describe Milnor’s patching theorem [M, p. 19 ff.]
that leads to the Mayer-Vietoris sequence. Let us begin with the following cartesian
square of rings

A
ı2−→ A2yı1

y2
A1

ı1−→ B

Thus, in particular, for any two a1 ∈ A1 and a2 ∈ A2 such that 1(a1) = 2(a2) there
exists a unique a ∈ A such that ık(a) = ak , for k = 1, 2. If P is a finitely generated
A-module, we shall denote by ı1♮P the induced module ı1♮P = P ⊗A A1 . We note
that there is a canonical isomorphism

1♮ı1♮P = 2♮ı2♮P

which is easy to check when we notice that this equation is the same as

(P ⊗A A1)⊗A1
B = P ⊗A (A1 ⊗A1

B) = P ⊗A B = (P ⊗A A2)⊗A2
B

Let P1 and P2 be finitely generated projective modules over A1 and A2 , respec-
tively. Let us assume that there is an isomorphism h : 1♮P1 ≃ 2♮P2 of B -modules.
We define M = M(P1, P2, h) ⊂ P1 × P2 by

M = {(p1, p2) ∈ P1 × P2 | h1∗p1 = 2∗p2}

where i∗pi = pi⊗1 ∈ Pk⊗Ai
B , k = 1, 2. Thus M appears in the following cartesian

diagram
M −→ P2y

y2∗
P1

h1∗−→ 2♮P2

(2.55)

2.56 Theorem. [Milnor’s patching theorem] If either 1 or 2 is surjective, then
M is a finitely generated A-module such that ık♮M ≃ Pk , k = 1, 2.

Proof. Assume first that the modules Pk are free: P1 = Ar1 , P2 = As2 . Note that in
this case 1♮P1 = Br and 2♮P2 = Bs . Assume that the isomorphism h : Br → Bs

may be lifted to an isomorphism h′ : Ar1 → As2 , so that 1h
′ = h. We form two

modules associated with this data: M(Ar1, A
s
2, h) and M(As1, A

1
s, id) ≃ As and then

use the two corresponding diagrams of the form 2.55 to prove that M(Ar1, A
s
2, h) ≃ As1

is therefore a free module.
Suppose now that the map 2 is surjective and P1 and P2 are free modules, as

in the previous step. We claim that the module M(P1, P2, h) is projective, where
h : (1♮P1 = Br) ≃ (2♮P2 = Bs). Let h−1 : Bs → Br be the inverse map. Then, by
naturality,

M(Ar1, A
s
2, h)⊕M(As1, A

r
s, h
−1) = M(Ar+s1 , Ar+s2 , h⊕ h−1)
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where h⊕h−1 is represented by the matrix

(
h 0
0 h−1

)
. Now use the formula 2.38 to

lift the last matrix to an invertible matrix over Ar+s1 . This step reduces our problem
to the previous case, and shows that M(Ar+s1 , Ar+s2 , h ⊕ h−1) is a free module, and
therefore M(P1, P2, h) is projective.

Finally, when P1 and P2 are finitely generated projective modules over their
respective rings, we can find projective modules Q1 and Q2 such that Pk⊕Qk ≃ Ark ,
k = 1, 2. Let h : P1 ⊗A1

B
∼
−→ P2 ⊗A2

B be an isomorphism postulated by the
theorem’s hypothesis. Since we have

Pk ⊗Ak
B ⊕Qk ⊗Ak

B ≃ Br

we can write:

Q1 ⊗A1
B ⊕ Br = Q1 ⊗A1

B ⊕ (P1 ⊗A1
B ⊕Q2 ⊗A2

B)
= Q2 ⊗A2

B ⊕ Br

This shows that if we replace Qk by Qk ⊕ Ar , we can claim that h lifts to an
isomorphism k : Q1 ⊗A1

B ≃ Q2 ⊗A2
B . Then the identity

M(P1, P2, h)⊕M(Q1, Q2, k) = M(P1 ⊕Q1, P2 ⊕Q2, h⊕ k)

shows that M(P1, P2, h) is finitely generated and projective by the previous case.

2.57 Corollary. Under the same hypotheses as in Milnor’s theorem the sequence

Kk(A)
(ı1∗,ı2∗)
−→ Kk(A1)⊕Kk(A2)

1∗−2∗−→ Kk(B)

is exact for k = 0, 1.

In fact, we can do better than this. Let us define a map δ : K1(B) → K0(A)
as follows. Take [u] ∈ K1(B), where u ∈ GLn(B). This matrix determines an
isomorphism h : 1♮A

n
1 ≃ 2♮A

n
2 of free B -modules. Thus there is a projective module

M = M(An1 , A
n
2 , h) over A. Define

δ[u] = [M ]− [An] ∈ K0(A)

We leave it to the reader to check that δ is a well defined homomorphism. Thus
combining the short exact sequences of Corollary 2.57 with the connecting homo-
morphism δ we get a Mayer-Vietoris sequence of length six:

K1(A)→ K1(A1)⊕K1(A2)→ K1(B)
δ
−→ K0(A)→ K0(A1)⊕K0(A2)→ K0(B)
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2.3.4 Relative K -groups and excision

The Mayer-Vietoris sequence is the direct analogue of the sequence of the same name
known from algebraic topology. We shall now demonstrate a few applications of the
techniques introduced in the previous section.

2.58 Proposition. If I is an ideal in a ring R then

K0(I) = K0(R, I)

Proof. Recall that K0(I) = ker{ǫ : K0(Ĩ) → K0(Z)} where ǫ is the augmentation
homomorphism:

0→ I → Ĩ
ǫ
−→ Z→ 0

and Ĩ = I >✁Z. Let us denote D = D(R, I) and let us define a unital homomor-
phism γ : Ĩ → D by γ : (x, n) 7→ (n · 1, n · 1 + x) for n ∈ Z and x ∈ I . Then there
is the following cartesian diagram

Ĩ
γ
−→ Dyǫ

yp1
Z

ı
−→ R

where ı : Z → R is the inclusion. This diagram satisfies the conditions of Milnor’s
theorem, so there is the corresponding Mayer-Vietoris sequence:

→ K1(R)
δ
−→ K0(Ĩ)

(γ∗,ǫ∗)
−→ K0(D)⊕K0(Z)

p1∗−ı∗−→ K0

Let us take [u] ∈ ker ǫ∗ = K0(I). Then

0 = (p1∗ − ı∗)(γ∗, ǫ∗)[u] = p1∗γ∗[u]

which shows that γ∗[u] ∈ ker p1∗ = K0(R, I). Thus the homomorphism γ∗ restricts
to a homomorphism γ∗ : K0(I) → K0(R, I). We want to show that this map is an
isomorphism. First we note that

ker{γ∗ : K0(I)→ K0(R, I)} = ker γ∗ ∩ ker ǫ∗ = Im δ

by exactness of the Mayer-Vietoris sequence. Let us then recall the definition of
the connecting homomorphism δ . Let [u] ∈ K1(R) be represented by an invertible
matrix u ∈ GLn(R). Let us form the module M(Zn, Dn, u). If we identify Dn

with the subset of R2n consisting of the elements (p1, p2) such that pk ∈ Rn and
p1 − p2 ∈ I

n , then we see that the invertible matrix u lifts to an invertible matrix(
u 0
0 u

)
∈ GLn(D) ⊂ GL2n(R). Thus M(Zn, Dn, u) = Ĩn is a free Ĩ -module.

Thus
δ[u] = [M ]− [Ĩn] = 0

This implies that ker{γ∗ : K0(I)→ K0(R, I)} = 0.

25



To show that γ∗ is surjective, let ξ ∈ K0(R, I). Then p1∗ξ = 0 and

K0(D)⊕K0(Z) ∋ (ξ, 0)
p1∗−ı∗7−→ 0

There exists thus a class η ∈ K0(Ĩ) such that

(γ∗, ǫ∗)η = (ξ, 0)

Since evidently ǫ∗η = 0, η ∈ K0(I). This finishes the proof.

Another important application of the Mayer-Vietoris sequence is given by the
following prototype of the excision property in the algebraic K -theory.

2.59 Theorem. For any ideal I ⊂ R we have the exact sequence of K -groups

K1(R, I)→ K1(R)→ K1(R/I)→ K0(R, I)→ K0(R)→ K0(R/I)

This statement follows in a straightforward way from the Mayer-Vietoris sequence
applied to the cartesian square

D(R, I)
p2−→ Ryp1

y
R −→ R/I

when we proceed in a similar way to the proof of Proposition 2.58.

2.3.5 Quillen’s higher K -theory

Let G be a discrete group, and let EG be a contractible space on which G acts
freely. The quotient space BG = EG/G is called the classifying space of the group
G. The classifying space is used to compute the homology of G; by definition
H∗(G,Z) = H∗(BG,Z), so that the group homology H∗(G,Z) may be computed in
terms in homology of the topological space BG. The homotopy groups of BG are
rather simple, since BG is connected, π0(BG) = 0, π1(BG) = G and πn(BG) = 0
for n ≥ 2. In other words, BG is the Eilenberg-Maclane space of type K(G, 1).

2.60 Definition. An H -space is a space X equipped with maps

µ : X ×X → X, i : X → X

and a point e, which satisfy the axioms of a group up to homotopy. This means that

1. The maps X3 → X that send (x, y, z) to µ(x, µ(y, z)) and µ(µ(x, y), x) are
homotopic.

2. The maps X → X sending x to µ(e, x) and µ(x, e) are homotopic to the
identity.
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3. The map X → X sending x to µ(x, i(x)) is homotopic to the constant map
x 7→ e, and similarly for the map x 7→ µ(i(x), x).

We record here the fact that the fundamental group of an H -space is abelian and
that the Hurewicz map h : π1(X)→ H1(X,Z) is an isomorphism.

Let us now consider the group GL(Λ) defined above, and let BGL(Λ) be its clas-
sifying space. Quillen [Q2] defines a space BGL(Λ)+ with the following properties.
First of all, BGL(Λ)+ is an H -space, and secondly, the canonical inclusion

φ : BGL(Λ) −→ BGL(Λ)+

induces an isomorphism in homology

H∗(BGL(Λ),Z)
≃
−→ H∗(BGL(Λ)+,Z)

2.61 Definition. For n > 0 we define

Kn(Λ) = πn(BGL(Λ)+)

2.62 Example. Using the Hurewicz map we find that

K1(Λ) = π1(BGL(Λ)+)
≃
−→ H1(BGL(Λ)+,Z) = H1(GL(Λ),Z)

and H1(GL(Λ),Z) = GL(Λ)/[GL(Λ), GL(Λ)] = GL(Λ)/E(Λ) and we recover K1(Λ)
defined in the previous section.

Furthermore, it can be shown that K2(Λ) = H2(E(Λ),Z), and that K3(Λ) =
H3(St(Λ),Z), where St(Λ) is the so called Steinberg groups associated with Λ [M].

Quillen has shown that for any positive n the groups Kn(Λ) are finitely generated,
if Λ is the ring of integers in a number field. Unfortunately, the algebraic K -groups
are hard to calculate, even the K -theory of the integers Z is not known in all
generality. So far, apart from the examples mentioned above, it has been shown that
K2(Z) = Z2 , K3(Z) = Z48 . It has been suggested for some time that K4(Z) = 0, but
it seems that a recent proof of this fact was withdrawn. The problem of calculating
these K -groups has deep relations with arithmetic geometry and number theory.

2.4 K -theory of C∗-algebras

2.63 Definition. A C∗ -algebra is a Banach algebra A over C equipped with a
conjugate-linear involution ∗ : A→ A such that

(xy)∗ = y∗x∗, ‖x∗x‖ = ‖x‖ 2

for all x, y in X .
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It a basic fact of the theory of C∗ -algebras that the norm on a C∗ algebra is uniquely
determined by the algebra structure. The spectral radius R(x) of an element x of
X is defined by

R(x) = sup{|λ|, λ ∈ C | x− λ is not invertible}

Then the square of the norm of any element x of a C∗ -algebra is the same as the
spectral radius of x∗x:

‖x‖ 2 = R(x∗x)

The above definition introduces the so called abstract C∗ -algebras. Concrete C∗ -
algebras are defined in terms of their representations in a Hilbert space H . In fact
an involutive algebra A is a C∗ -algebra if and only if it admits a ∗-representation
π on a Hilbert space H such that π(x) = 0 implies that x = 0 and the image π(A)
of A is closed in norm in the algebra of bounded operators on H .

We remark also that a theorem of Gelfand and Naimark states that for any
unital commutative algebra A there exists a compact topological space X such that
A is the algebra of continuous complex-valued functions on X (cf. [Co3, II.1]). To
describe this space, let us define a character of A to be a homomorphism χ : A→ C

preserving the unit of A, i.e. χ(1) = 1. The space of all such homomorphisms,
called the spectrum of A is compact when equipped with the topology of pointwise
convergence on A. The Gelfand transform is the following map

A ∋ x 7→ (x̂ : Spec (A)→ C)

where x̂(χ) = χ(x). The Gelfand transform establishes an isomorphism of A onto
the C∗ -algebra C(X) of continuous functions on X .

We can therefore say that in the commutative case the algebra of continuous
functions C(X) on a topological space carries the same amount of information as
the space itself. This observation lies at the basis of noncommutative geometry,
which has been developed by Alain Connes. It allows one to extend most of the
classical geometric and analytic tools used for the study of a compact space X to
the case when the corresponding algebra of coordinate functions is noncommutative.

To define K0 of a C∗ -algebra, let us form the C∗ -algebra M(A) of infinite ma-
trices. We define it using the same direct system of matrix algebras as considered
in the purely algebraic case. This time, however, this direct system is considered in
the category of C∗ -algebras, and the direct limit M(A) is a normed algebra with a
C∗ -algebra norm, but not necessarily complete. Let p, q be two projections, that is
self adjoint idempotents in M(A). We say that p and q are homotopic in M(A) if
and only if there exists v ∈M(A) such that v∗v = p, vv∗ = q .

2.64 Definition. If A is a unital C∗ -algebra then the group K0(A) is defined as
the Grothendieck group of the abelian semigroup P (A) of the homotopy classes of
projections in M(A). The addition in P (A) is given by

[p] + [q] =

(
p 0
0 q

)
∈Mk+m(A) ⊂M(A)
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for p, q ∈ Mk,m(A).

We can now follow the pattern established in the previous two sections to give
the following basic properties of K0(A).

1. Homotopy invariance. Let A and B be C∗ -algebras. We say that two mor-
phisms α, β : A → B are homotopic if there exists a family of morphisms γt ,
where t ∈ [0, 1] such that γt(a) is a norm continuous path in B for every fixed
a ∈ A. Moreover, γ0 = α and γ1 = β .

2.65 Proposition. If α0, α1 : A→ B are homotopic morphisms, the induced maps
K0(A)→ K0(B) coincide.

2. There is a natural isomorphism K0(A ⊕ B) ≃ K0(A) ⊕K0(B). This may be
regarded as a special case of the following property.

3. Half-exactness. If J is a nonunital algebra, let us denote by J̃ = C✄< J the
augmented algebra. Then define

K0(J) = ker(K0(J̃)→ Z)

2.66 Proposition. Let
0→ J → A→ B → 0

be an exact sequence of C∗ -algebras. Then the sequence

K0(J)→ K0(A)→ K0(B)→ 0

is exact at K0(A).

4. Morita equivalence The map x 7→

(
x 0
0 0

)
induces an isomorphism K0(A)→

K0(M2(A)).

2.67 Definition. For an algebra A we define the suspension SA of the algebra A

SA = {f : S1 → A | f(1) = 0}

Then we define K1(A) = K0(SA).

5. The index map.

2.68 Proposition. Let us consider a short exact sequence of algebras as in the
previous Proposition. Then there exists a connecting morphism δ : K1(A/J) →
K0(J). This map is called the index map in K -theory.
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6. Bott periodicity.
Ki(A) ≃ Ki+2(A)

7. Excision.

2.69 Proposition. Let 0→ J → A→ A/J → 0. Then there is the following exact
sequence of length six.

K0(J) −→ K0(A) → K0(A/J)x
y

K1(A/J) ←− K1(A) ←− K1(J)

8. Stability For any algebra A and the algebra of compact operators K we have
K0(A⊗K) = K0(A).

9. Continuity

2.70 Proposition. Let A be the C∗ -algebra direct limit of the directed system
{Ai}i∈I . Then there is the corresponding direct system of K -groups {K0(Ai)}i∈I
and

K0(A) = lim
−→

K0(Ai)

We now list some basic examples of the K -theory groups [We, 6.5].

2.71 Example.

1. K0(C) = Z, K1(C) = 0. The same result is true for the algebra Mn(C) of
matrices over C , by the Morita equivalence.

2. Let K be the algebra of compact operators. Then K0(K) = Z and K1(K) =
0. For the algebra B of bounded operators we have K0 = K1 = 0. Hence from
the long exact sequence of K -theory groups it follows that K0(B/K) = 0 and
K1(B/K) = Z. The algebra B/K is called the Calkin algebra.

3. Let Tn be the n-torus. Then Ki(C(Tn)) = Z2n−1

, for i = 0, 1. In the case of
the sphere Sn we have two possibilities. When n is even, K0(C(Sn)) = Z/2Z
and K1(C(Sn)) = 0, whereas for n odd K0 = K1 = Z.

Cuntz has proved a very interesting characterization of functors of K -theory type.
Namely any functor F from the category of C∗ -algebras to the category of abelian
groups which is continuous, half-exact, homotopy invariant and stable is the same
as the K -functor. More precisely, if F (C) = Z and F (SC) = 0, then F = K0 ,
whereas in the opposite case when F (C) = 0 and F (SC) = Z, F = K1 . See [Cu1]
for more details.
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2.4.1 Algebraic K -theory of C⋆ -algebras

Since any unital Banach (or C∗ )-algebra R is a ring, it makes sense to define both
algebraic Kalg(R) and ‘topological’ Ktop(R) K -theories for R . Here by Ktop

i (R) we
mean the two K -groups defined in the previous section. Comparing the definitions
given above we see that Ktop

0 (R) = Kalg
0 (R). In other degrees there is a map

Kalg
i (R) −→ Ktop

i (R)(2.72)

which is induced by the (identity) map GL(R)discrete → GL(R)top . Here GL(R)discrete

is the group GL(R) treated as a discrete group, whereas in forming GL(R)top we
take into account the topology of the algebra R . The map of K -theories is not an
isomorphism in general, as is expected from the differences in their properties. For
instance, the Bott periodicity which holds for C⋆ -algebras (or Banach algebras in
general) is not shared by the algebraic K -theory.

When i = 1 we have the following descriptions of the K1 -groups in both cases:

Kalg
1 (R) = GL(R)/E(R), Ktop

1 (R) = GL(R)/GL0(R)

where GL0(R) is the connected component of GL(R). Since the group of elementary
matrices E(R) lies in GL0(R), the natural map is surjective. However, it is not even
injective for C [R1, p.455], since Kalg

1 (C) is isomorphic to the multiplicative group
C× via the determinant map, whereas Ktop

1 (C) = 0.
In general, there are results about the comparison of the two K -theories only for

special classes of algebras. For instance, there is a conjecture of Karoubi that the
map (2.72) is an isomorphism for stable C⋆ -algebras. We say that a C⋆ -algebra A is
stable if and only if A⊗̂πK ≃ A, where K is the algebra of compact operators, and
⊗̂π denotes the completed projective tensor product. We shall comment on Karoubi’s
conjecture in the context of Suslin-Wodzicki excision theorem in K -theory.

2.5 K -homology

K -homology arose from the study of elliptic operators on manifolds and it is the
dual theory to K -theory. The initial ideas are due to Atiyah [At2], which were later
on developed by Brown-Douglas-Fillmore, Kasparov and Connes.

First we need to explain a relation between K -theory and the theory of Fredholm
operators. Let us then assume that H is a separable Hilbert space. A Fredholm
operator T on H is a bounded linear operator on H such that T has a finite
dimensional kernel and cokernel. Then the index of T is defined by

index T = dim ker T − dim coker T

The index of the Fredholm operator is invariant under compact perturbations:

index (T + A) = index T
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for any compact operator A. Moreover, if S is a bounded operator sufficiently near
in norm to T then S is also Fredholm and index T = indexS . The last statement
may be reformulated as follows. If we topologise the space F of Fredholm operators
on H using the norm topology, then we have defined a continuous map

index : F −→ Z

This map is in fact surjective, and so induces a bijection

π0(F ) −→ Z

where π0(F ) is the set of connected components of F .
Suppose now that X is a compact space and that T : X → F is a continuous

map, so that Tx is a family of Fredholm operators depending continuously on the
parameter x ∈ X . If dim ker Tx is independent of x, then the family of vector spaces
ker Tx forms a vector bundle ker T over X . A similar statement is true in the case
of the cokernel of T . We can thus define the index of the family of operators Tx by

index T = [ker T ]− [coker T ] ∈ K0(X)

If ker Tx has a variable dimension, one can still reduce to the previous case by
composing with a projection. Atiyah [At1] shows that there is a bijection of the set
[X, F ] of homotopy classes of maps T : X → F onto K0(X). The composition of
operators in F corresponds to the addition in K0(X), and the adjoints correspond
to taking the negative.

Let P be an elliptic operator of order m on a closed manifold M . The operator
P may be acting on functions, vector-valued functions, or more generally, on sections
of vector bundles over M . Ellipticity implies that there exists an operator Q, called
the parametrix, such that PQ and QP are equal to the identity operator, modulo
operators of lower order. Moreover, for any function f , the operator Pf − fP is an
operator of degree m− 1.

If we allow the operator P to be a pseudodifferential operator, then as show
Atiyah and Singer, it is enough to concentrate on operators of order 0. We then say
that P is a Fredholm operator if and only if there exists a pseudodifferential operator
Q such that PQ− 1 and QP − 1 are compact operators, and for any function f ,
Pf − fP is a compact operator.

We can represent classes in K -homology K0(X) using homotopy classes of such
Fredholm operators. To see that this really describes an object dual to K -theory, let
us take a class [P ] ∈ K0(X) and [e] ∈ K0(X). Then we have the following pairing

([e], [P ]) −→ index (ePe) ∈ Z

This idea is extended by the following important notion [Co1].

2.73 Definition. An even Fredholm module is a quadruple (A,H, F, γ) where

1. A is a C∗ -algebra acting on a Hilbert space H .
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2. F and γ are self-adjoint anticommuting involutions, i.e., F ∗ = F , γ∗ = γ ,
F 2 = γ2 = 1, Fγ + γF = 0.

3. For all a ∈ A, [F, a] is a compact operator in H .

2.74 Remark. There is a similar definition of an odd Fredholm module, where we
do not assume the existence of the involution γ . In point (3) of the above definition
we can replace the ideal of compact operators by any Schatten ideal Lp(H). In that
case we call the resulting Fredholm module p-summable.

2.75 Example. Let H = L2(S1) be the space of L2 -integrable functions on the
circle. This is a separable Hilbert space with a basis given by Fourier modes. It has
the direct sum decomposition H = H+⊕H− into spaces of functions whose Fourier
series expansion contains positive (negative) frequencies, respectively. Let γ be the
corresponding involution, i.e. we assume that H± are the ±1 eigenspaces of γ . The
involution F is given in this case by the Hilbert transform einθ 7→ e−inθ . We may
describe this transform explicitly using the following formula (cf. e.g. [PS, p. 83])

F (f)(θ) =
1

2π
P.V.

∫ 2π

0

∑

k

sign (k)eik(θ−φ)f(φ)dφ

where P.V.
∫ 2π
0 = limǫ→0

(∫ θ−ǫ
0 +

∫ 2π
θ+ǫ

)
is the principal value of the integral. A theo-

rem of Fefferman and Sarason [P] then states that the operator [F, f ] is compact for
a function f on S1 if and only if f is of Vanishing Mean Oscillation. In particular,
this is satisfied by any continuous function on the circle. This result indicates the
possible choice of function algebra on S1 which we may consider. By requiring that
f belongs to a suitable Besov space we may obtain a p-summable Fredholm module.

2.76 Example. [Co3, IV.5] Let Γ be a discrete group. We define the reduced C⋆

algebra C⋆
r (Γ) associated with Γ as follows. Consider the Hilbert space l2(Γ) (this

may be understood as the space of L2 -functions on Γ with the counting measure),
and let {ξh}h∈Γ be an orthonormal basis. There is a natural action of Γ on l2(Γ)
given by

g 7→ λg; λg(ξh) = ξgh

This way we define a homomorphism from Γ to the group of unitary operators in the
Hilbert space l2(Γ). The algebra C∗r (Γ) is by definition the C∗ -algebra generated
by these symbols, i.e. we have λ∗g = λg−1 and λgλh = λgh .

Consider now a tree T on which the group acts freely and transitively. T is a
one-dimensional simplicial complex which is connected and simply connected. Take
T i to be the set of vertices when i = 0 and edges when i = 1. For p ∈ T 0 put
φ : T 0 − {p} → T 1 to be the map which sends a vertex q to the unique 1-simplex
containing q which is a subset of the path [p, q]. Let us define H+ = l2(T 0) and
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H− = l2(T 1) which gives an orthogonal decomposition of the Hilbert space H .
Furthermore, let us define an operator P on H by Pξp = 0 and Pξq = ξφ(q) . Then
there is the following involution F on H anticommuting with the involution γ whose
eigenspaces are the Hilbert subspaces H± :

F =

(
0 P−1

P 0

)

This way we have defined an even Fredholm module over the algebra C∗r (Γ). This
Fredholm module was constructed by Julg and Valette [JV] and may be used to
prove an important theorem by Pimsner and Voiculescu that the algebra C∗r (Γ) has
no nontrivial idempotents.

2.77 Example. Let M be an even dimensional manifold, dimM = 2l , which
is compact, conformal, oriented. Let H = L2(M,Λl

CT
∗) be the Hilbert space of

square-integrable sections of the bundle of differential forms in the middle degree,
equipped with the scalar product

〈ω1, ω2〉 =
∫

M
ω1 ∧ ∗ω̄2

Here ∗ denotes the Hodge star-operator, which is determined by the conformal struc-
ture. Let γ = (−1)l(l−1)/2∗ be the corresponding involution. Singer posed the fol-
lowing question: Does there exist an involution F anticommuting with γ which is
equal to the identity operator when restricted to the space of exact forms? Connes,
Sullivan and Teleman gave a positive answer to this question using the following
construction of a Fredholm module. There exists a partial isometry S : H− → H+

such that Im d is the graph of S , where

d : C∞(M,Λl−1
C T ∗)→ C∞(M,ΛlT ∗)

and where we denote by H± the ±1 eigenspaces of the involution γ . Let Hl be
the cohomology group of M in the middle dimension l , which we identify with the
Hilbert space of harmonic forms. Put

H′ = H⊕Hl = (H⊖Hl)⊕ (Hl ⊕Hl)

Let F be the involution given by

(
0 S
S∗ 0

)
on the first summand and by

(
0 1
1 0

)

on the second. We can now state the following theorem of Connes, Sullivan and
Teleman [CST].

2.78 Theorem.

1. The triple (H′, F, γ) is a Fredholm module over C∞(M) canonically associated
with the conformal structure on M .

34



2. This Fredholm module uniquely determines a conformal structure on M .

This theorem generalizes to quasi-conformal manifolds, where the Fredholm module
constructed by it is used to derive local formulae for Pontryagin classes. Also, we can
say that this Fredholm module serves as the noncommutative analogue of a manifold
equipped with a conformal structure. It is then natural to try to find the correct
notion of differentiable manifold in noncommutative geometry. This has been done
by Connes, Ellwood and the author in [BCE].

2.6 KK -theory

An important generalization of both K -theory and K -homology has been proposed
by Kasparov. A central notion of his theory is the Kasparov module which we can
define as follows.

2.79 Definition. Let A and B be C∗ -algebras. An even Kasparov module is a
triple (E , F, γ) where

1. E is a countably generated Hilbert space over B . This means that it is a
complete space and a right B -module which admits a scalar product with
values in B .

2. A is represented as a ∗-algebra by bounded operators on E .

3. F is a bounded operator on E such that for all a ∈ A, (F 2 − 1)a, (F ∗ − F )a
and [F, a] are compact operators on E .

4. γ is a self-adjoint bounded involution on E , anticommuting with F and com-
muting with the action of A. This means that γ2 = 1, γ∗ = γ , Fγ = −γF ,
and for all a ∈ A γa = aγ .

As in the case of Fredholm modules, an odd Fredholm module is a pair (E , F )
satisfying the first three conditions above. We define KK(A,B) to be the set of
homotopy classes of even Kasparov modules. The set of homotopy classes of odd
Kasparov modules defines KK1(A,B). There is a natural abelian group structure
on KK(A,B) which is induced by the direct sum of Kasparov modules. The link
between KK -theory and K -theory and K -homology is provided by the identifica-
tions

KK(C, A) = K0(A), KK(A,C) = K0(A)

A good introduction to KK -theory is given in the article by Cuntz [Cu2] and in
his lecture notes [Cu3]; see also the article by Higson [Hig].
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3 Cyclic homology

Cyclic cohomology was discovered by Connes in 1981. It was introduced as an exten-
sion of the de Rham cohomology of differentiable manifolds to the noncommutative
setting, and serves as a natural target for the Chern character homomorphism from
K -theory. In this chapter we shall concentrate on the formal description of this
theory, and its relation to K -theory will be explained in the next chapter. Recent
work of Cuntz and Quillen [CQ1, CQ2, CQ3] has provided new insights into the
foundations of the theories of cyclic type and, as we shall see later, may be used in
the case of homology theories associated with topological algebras. We begin our
discussion of cyclic homology with the introduction of the differential graded algebra
of noncommutative forms ΩA.

3.1 Noncommutative differential forms

3.1.1 The harmonic decomposition

Let us assume that A is a unital algebra over C . The algebra of abstract differential
forms ΩA [Arv, Kar2, CQ1] over A (also called noncommutative differential forms)
is the universal differential graded algebra generated by the algebra A together with
symbols da, a ∈ A subject to the following relations:

1. da is linear in a.

2. Leibniz rule: d(ab) = d(a)b+ adb.

3. d(1) = 0

The above conditions imply that d : A → ΩA is a derivation. In the following we
shall fix the algebra A and denote Ω = ΩA. We may describe Ω more explicitly
as follows. First, it is a graded vector space, which in degree n is isomorphic to
Ωn = A ⊗ Ā⊗n , where Ā = A/C . The map that establishes this isomorphism is
given explicitly by

a0da1 · · · dan ↔ (a0, . . . , an)

where (a0, . . . , an) is the image of the simple tensor a0 ⊗ · · · ⊗ an in the space
A⊗ Ā⊗n . In the basis given by this above isomorphism, the differential d is defined
by the following formula

d(a0da1 · · · dan) = da0 · · · dan
d(a0, . . . , an) = (1, a0, . . . , an)

The graded vector space Ω becomes a graded algebra when introduce the following
multiplication of forms

(a0da1 · · · dan) · (an+1dan+2 · · · dak) = (−1)na0a1da2 · · · dak
+
∑n
i=1(−1)n−ia0da1 · · · d(aiai+1) · · · dak
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Using this definition, we may extend d to a graded derivation on Ω:

d(ωη) = d(ω)η + (−1)deg(ω)ωdη

which makes Ω into a differential graded algebra. Finally, dΩn ≃ Ā⊗n .

3.1 Remark. The space of 1-forms Ω1 plays an important role of its own. First
of all, it is the kernel of the multiplication map m : A ⊗ A → A, and so it fits into
the short exact sequence

0→ Ω1 i
−→ A⊗ A

m
−→ A

The inclusion map i is given explicitly by

i(a0da1) = a0(a1 ⊗ 1− 1⊗ a1)

This inclusion makes the A-bimodule structure of Ω1 quite explicit. The other
important property of the bimodule Ω1 is that, together with the derivation d : A→
Ω1 it provides a universal model for derivations of A with values in an A-bimodule.
This means that for any derivation D : A→ M of A with values in an A-bimodule
M , there exists a unique bimodule map φ : Ω1 →M such that D = φd .

It it possible to define the space of n-forms Ωn as the n-fold tensor product of
the A-bimodule Ω1A over A:

ΩnA = Ω1A⊗A n. . . ⊗AΩ1A

Let us denote a typical element of this tensor product by ω1 · . . . ·ωn , with ωi ∈ Ω1A,
for i = 1, . . . , n. Then the product on ΩA may be defined as the following map
Ωn × Ωm → Ωn+m

(ω1 · · ·ωn, η1 · · · ηn) 7→ ω1 · · ·ωn · η1 · · · ηn

It is not difficult to check that Ωn defined this way is isomorphic to A⊗ Ā⊗n .

The algebra ΩA has the following universal property.

3.2 Proposition. Let R be a differential graded algebra R =
⊕

nRn and let u :
A → R0 be an algebra homomorphism. Then there exists a unique homomorphism
u∗ : Ω→ R of differential graded algebras which extends u.

Proof. It is easy to check that the map

u∗(a0da1 · · · dan) = ua0d(ua1) · · ·d(uan)

is a DG algebra homomorphism with the required property.

3.3 Proposition. The homology of Ω with respect to the differential d is trivial in
positive degrees and equals C in degree 0.
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Proof. It is clear that there is the following exact sequence

0→ dΩn−1 s
−→ Ωn −→ dΩn → 0(3.4)

for n ≥ 1, where s(ω) = 1⊗ω . In degree zero there is a surjection d : A→ dA ≃ Ā ,
whose kernel is C .

As a first interesting homology theory that can be associated with an algebra
A we introduce the Hochschild homology H⋆(A,M) of A with coefficients in an A-
bimodule M . The quickest way to define Hn(A,M) is to say that the n-th homology
group is the n-th left derived functor of the commutator quotient space functor

M♮ = M/[A,M ]

Following Quillen [Q3] it is sometimes convenient to use the following suggestive
notation to denote the commutator quotient space: M⊗A = M/[A,M ]. Let us now
explain what this means.

To calculate Hochschild homology one uses the following standard resolution of
the algebra A by free A-bimodules:

b′
−→ A⊗ Ā⊗2 ⊗ A

b′
−→ A⊗ Ā⊗ A

b′
−→ A⊗ A

b′
−→ A→ 0

where

b′(a0, . . . , an+1) =
n∑

i=0

(−1)i(a0, . . . , aiai+1, . . . , an+1)

One checks that (b′)2 = 0. Alternatively, one may write the same resolution in terms
of Ω as follows. Using the isomorphism Ωn = A⊗ Ān , we have

b′
−→ Ω2 ⊗ A

b′
−→ Ω1 ⊗A

b′
−→ A⊗ A

b′
−→ A→ 0(3.5)

where the differential b′ is now given by the following formula

b′(ωda⊗ a′) = (−1)deg(ω)(ωa⊗ a′ − ω ⊗ aa′)(3.6)

and in degree zero we have b′(a⊗ a′) = aa′ . The above complex is contractible, the
contracting homotopy being provided by the map s introduced in Proposition 3.3.

If we apply the commutator quotient space functor to the complex Ω⊗A of (3.5)
and use the canonical isomorphism

(Ω⊗A)⊗A ≃ Ω; ω ⊗ a 7→ aω

(this isomorphism holds for any A-bimodule), we obtain the complex Ω =
⊕
n Ωn

equipped with the differential

b(a0, . . . , an) =
n−1∑

j=0

(a1, . . . , aiai+1, . . . , an)

+ (−1)n(ana1, . . . , an−1)
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Equivalently, this differential may be defined using the following compact formula

b(ωda) = (−1)deg(ω)[ω, a]

and b(a) = 0. It is now easy to check that b2 = 0:

b2(ωdada′) = (−1)|ω|+1b(ωdaa′ − a′ωda)
= (−1)|ω|+1b(ωd(aa′)− ωada′ − a′ωda)
= − (ωaa′ − aa′ω − ωaa′ + a′ωa− a′ωa+ aa′ω)
= 0

3.7 Definition. The Hochschild homology HH(A) of the algebra A is the homol-
ogy of Ω with respect to the differential b:

Hn(ΩA, b) = HHn(A)

We shall now define the Karoubi operator and state its basic properties. [Kar2,
Lemme 2.12][CQ2, Kast].

3.8 Definition. If ω ∈ ΩA we put

κ(ωda) = (−1)deg(ω)daω

Equivalently, we may write the above formula in the following form.

κ(a0, . . . , an ) = (−1)n(an, a0, . . . , an−1 ) + (−1)n−1(1, ana0, . . . , an−1 )

3.9 Remark. Using the definition of ΩnA given in Remark 3.1 we can define the
Karoubi operator as the generator of the action of the cyclic group on Ωn :

κ : ω1 · · ·ωn 7→ (−1)nωn · ω1 · · ·ωn−1

The Karoubi operator is linked to the differentials b and d by the following formula.

3.10 Lemma.

bd+ db = 1− κ

Proof. Using the definition of b and κ we may write

(bd + db)(ω da) = b(dωda) + (−1)|ω|d[ω, a]
= (−1)|ω|+1[dω, a] + (−1)|ω|d[ω, a]
= [ω, da] = ωda− (−1)|ω|daω

which gives the required formula.
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It now follows easily that κ commutes with both b and d , e.g.

bκ = b(1− (bd+ db)) = b− bdb = κb

Let us define

B =
n∑

j=0

κjd

as an operator B : Ωn → Ωn+1 . It follows that dB = Bd = B2 = 0 and that B
commutes with κ

Bκ = κB = B

Moreover, it is not difficult to see that bB + Bb = 0; this fact derives from the
following lemma [CQ2].

3.11 Lemma. The following identities hold in the space Ωn :

κn = 1 + bκ−1d
κn+1 = 1− db

κn(n+1) = 1− Bb = 1 + bB

Proof. We note that for any i, 0 ≤ i ≤ n

κi(a0da1 . . . dan) = (−1)i(n−1)dan−i+1 . . . dana0da1 . . . dan−i

which gives in particular

κn(a0da1 . . . dan) = da1 · · ·dana0.

This we can rewrite as follows

κn(a0da1 . . . an) = a0da1 . . . dan + [da1 . . . dan, a0]
= a0da1 . . . dan + (−1)nb(da1 . . . danda0)

which yields the first formula. The second formula follows from

κn+1 = κ(1 + bκ−1d) = κ + bd = 1− db

when we use the first identity of the lemma. Finally we have

κn(n+1) − 1 =
n∑

i=0

κni(κn − 1) =
n∑

i=0

bκin−1d = bB

where we use the fact that κ is an operator of order n + 1 on dΩn . Then we note
that we can write the same expression in the following way

κn(n+1) − 1 =
n−1∑

i=0

κ(n+1)i(κn+1 − 1) = −
n−1∑

i=0

κ(n+1)idb = −Bb
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We thus get the third formula of the lemma.

We note that the last formula in Lemma 3.11 implies that bB + Bb = 0 which
indicates that (Ω, b, B) may be organized into the following double complex.

y b

y b

y b

Ω2 B
←−−−− Ω1 B

←−−−− Ω0
y b

y b

Ω1 B
←−−−− Ω0

y b

Ω0

(3.12)

where Ω0 = A, and where in bidegree (p, q) we find Ωp−q .
Cuntz and Quillen noticed [CQ2] that in analogy with the de Rham complex on a

Riemannian manifold, the two differentials b, d , of degree −1 (+1, respectively), on
the graded algebra Ω may be regarded as formal adjoints of each other, with 1 − κ
playing the role of the Laplacian. It is therefore natural to study the spectral decom-
position of Ω into eigenspaces of the Karoubi operator κ, paying special attention
to the subspace of ‘harmonic’ forms, i.e. the space where κ = 1.

3.13 Lemma.

(κn − 1)(κn+1 − 1) = 0

on Ωn . Consequently, there is a direct sum decomposition

Ω = ker(κ− 1)2 ⊕
⊕

ξ

ker(κ− ξ)

where ξ denotes all roots of unity different from 1.

Proof. The first result follows directly from identities in Lemma 3.11. Since (x− 1)2

is the largest power of (x−1) dividing (xn−1)(xn+1−1), the generalized eigenspace
for κ with eigenvalue 1 is the kernel of (κ− 1)2 . Moreover, it follows from the first
formula of this lemma that there is an eigenspace ker(κ− ξ) associated to each root
of unity ξ 6= 1.

Let us denote by P the operator of spectral projection onto the generalized
eigenspace where κ has an eigenvalue 1. We then have the following harmonic
decomposition

Ω = PΩ⊕ (1− P )Ω

of the space of differential forms Ω. Note that 1−κ is invertible on (1−P )Ω. This
decomposition is preserved by any operator commuting with κ. Thus, for example,

41



it it invariant under the action of the operators b, d , B . Moreover, one can introduce
the following analogue of the ‘Green’s operator’ G for 1− κ, which is defined to be
the inverse of 1 − κ on (1 − P )Ω, and 0 on PΩ. Then PG = GP = 0, and G
commutes with the operators commuting with κ.

Let us denote P⊥ = 1− P . We have the following [CQ2, 2.1].

3.14 Proposition. The complex P⊥Ω is contractible with respect to both b and
d. Consequently, the complexes Ω and PΩ have the same homology with respect to
differentials b and d.

Proof. On P⊥Ω one has the identity 1 = G(bd+db). Since G commutes with b and
d we have that (Gdb)d = G(bd + db)d = d . Hence Gbd is a projector with image
dP⊥Ω, and similarly, Gbd projects onto bP⊥Ω. Since the sum of these projectors
is 1, we have the decomposition P⊥Ω = dP⊥Ω ⊕ bP⊥Ω. Furthermore, we have
that (Gd)b = Gdb and b(Gd) = Gbd which indicates that b and Gd are inverse
isomorphisms between dP⊥Ω and bP⊥Ω. In the same way we show that d maps
bP⊥Ω isomorphically onto dP⊥Ω with inverse Gb. The statement of the proposition
is now clear.

3.1.2 Cyclic homology

We shall now devote some attention to the properties of the total complex (B (Ω), b+
B) of the double complex (3.12).

3.15 Definition. The cyclic homology of the algebra A is the homology of the
total complex BΩ. Hence, in degree n, we have:

HCn(A) = Hn(B (ΩA), b+B)

3.16 Example. The simplest example of this situation is the case when A = C is
the algebra of complex numbers. Then Ω0C = C and ΩnC = 0 for n ≥ 1. Thus
the double complex (3.12) has a particularly simple form

y 0

y 0

0
0

←−−−− 0
0

←−−−− Cy 0

y 0

0
0

←−−−− Cy 0

C
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It follows that the total complex B (ΩC) is

C
0
←− 0

0
←− C

0
←− 0←− . . .

with C in even degrees and 0 in odd degrees. Thus HC2k(C) = C and HC2k+1(C) =
0.

The total complex B (Ω) is equipped with the following Connes periodicity op-
erator S . Elements of B (Ω) may be described as polynomials

∑
p≥0 u

pωn−2p , where
ωn−2p ∈ Ωn−2p . Then we put S(u0ωk) = 0 and S(upωk) = up−1ωk for p ≥ 1, which
is illustrated by the following diagram

y b

✑
✑

✑
✑✰

S
y b

✑
✑

✑
✑✰

S
y b

Ω2 B
←−−−− Ω1 B

←−−−− Ω0

y b

✑
✑

✑
✑✰

S
y b

✑
✑

✑
✑✰

S

Ω1 B
←−−−− Ω0

y b

✑
✑

✑
✑✰

S

Ω0

(3.17)

It is clear from this diagram, that there is the following exact sequence of complexes

0→ Ω
I
−→ B(Ω)

S
−→ B (Ω)[2]→ 0(3.18)

where the map I is the inclusion of the column p = 0. Furthermore, B (Ω)[2] denotes
the suspension of the complex B (Ω). Recall that for any complex X =

⊕
n∈ZXn

equipped with differential d of degree −1 the k -th suspension is the complex X [k]
defined by

X [k]n = Xn−k, dX[k] = (−1)kdX

With these conventions in mind we see that the sequence (3.18) leads to the following
long exact sequence of homology groups first derived by Connes in the dual case of
cohomology [Co1, LQ].

→ HHn+2(A)
I
−→ HCn+2(A)

S
−→ HCn(A)

B
−→ HHn+1(A)→

Here the connecting map B is induced by
∑
p≥0 u

pωn−2p 7→ Bωn .
Finally, we define the periodic cyclic homology to be the homology of the complex

HPν(A) = Hν(
∏

n

Ωn, b+B)

where ν ∈ Z2 . Thus the periodic cyclic homology is a Z2 -graded homology theory
associated with the following periodic complex

−→ Ω̂even b+B
−→ Ω̂odd b+B

−→ Ω̂even −→

where Ω̂even =
∏
k≥0 Ω2k , and similarly in the odd case.
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3.19 Example. Take the algebra of polynomials in one variable P and consider
also the algebra Q of Laurent polynomials in one variable z . Then in both cases,
the bimodule of forms Ω1 is of dimension one over P , that is it is generated by
one element dz . We want to calculate its periodic cyclic cohomology. First, the
Hochschild-Kostant-Rosenberg theorem states that there is a quasi-isomorphism of
mixed complexes

(ΩA, b, B)→ (ΩA, 0, d)

where A = P,Q, ΩA is the de Rham complex of the algebra A, and d is the usual
de Rham differential. In our case, ΩA is zero in degrees higher than one.

To calculate the periodic cyclic cohomology we note that the total complex of
the mixed complex (Ω̂A, 0, d) may be arranged as the following double complex

0
−→ P

d
−→ P

0
−→ P

d
−→ P −→

where the domain of d is in the even degrees and its range in the odd. Here we have
used that Ω1P ≃ P . Then ker d : P → P is isomorphic to C , whereas its image
coincides with P , and integration gives the inverse map. Thus

3.20 Lemma.

HP ∗(P ) =

{
C when ∗ = 2ν
0 otherwise

In the case of the algebra of Laurent polynomials Q, the map d : Q→ Q from even
degrees to odd is not surjective: the one-dimensional space of monomials a−1z

−1dz
is not in its image. Therefore in this case we have a different result:

3.21 Lemma.

HP ∗(Q) =

{
C when ∗ = 2ν
C otherwise

It is worth noting that the isomorphism is induced by the evaluation map ǫ0 in the
even degrees and by the residue map in the odd degrees.

3.22 Remark. The double complex (3.12) has the following origin. We define an
action of the cyclic group of order n on the space A⊗n by letting the generator act
as

λ(a1, . . . , an ) = (−1)n−1(an, a1, . . . , an−1 )

We denote by N the corresponding cyclic norm operator N =
∑n−1
i=0 λ

i . The four
operators b, b′ , λ and N are related as follows [T].

3.23 Lemma. One has

b(λ− 1) = (λ− 1)b′, b′N = Nb(3.24)
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Proof. We check that

b′ =
n∑

j=1

λj−1cλ−j b =
n+1∑

j=1

λj−1cλ−j

where
c(a1, . . . , an ) = (−1)n−1(ana1, . . . , an−1)

is the crossover term in the formula for b.These identities imply (3.24)

It follows from (3.24) that we can organize the two complexes with differentials
b and b′ , respectively, into the following double complex which we shall denote by
C••(A).

y b

y −b
′

y b

A⊗2
1−λ

←−−−− A⊗2
N

←−−−− A⊗2
1−λ

←−−−−y b

y −b
′

y b

A
1−λ

←−−−− A
N

←−−−− A
1−λ

←−−−−

(3.25)

Columns in the even degrees are copies of the Hochschild complex

C(A) = (
⊕

n≥0

A⊗n+1 , b)

and the odd degree columns are (when A is unital) the acyclic Hochschild complexes
B(A) = (

⊕
n≥0 A

⊗n+1 , b′). The rows in the above complex are exact. (This is
true if A is an algebra over a field k of characteristic zero). Loday and Quillen have
demonstrated that the total complexes of C••(A) and of B (Ω) are quasi-isomorphic,
by which we mean the following. There is a canonical surjection TotC••(A) →
B (Ω) induced by the projection A⊗n → Ωn described previously. This surjection
induces an isomorphism H⋆(TotC••(A)) ≃ H⋆(B (Ω)). This statement is known as
the simplicial normalization theorem [LQ, Kas2]

3.26 Definition. The cokernel of the map 1 − λ from the b′ -complex to the b-
complex in the zeroth column of the above complex is the cyclic complex Cλ

• (A). It
is equipped with the differential b.

Thus the cyclic complex Cλ(A) may be defined as the cokernel of the map (1−λ)
in the following augmented complex

y b

y b

y −b
′

y b

0 ←− Cλ
1 (A) ←− A⊗2

1−λ
←−−−− A⊗2

N
←−−−− A⊗2

1−λ
←−−−−y b

y b

y −b
′

y b

0 ←− Cλ
0 (A) ←− A

1−λ
←−−−− A

N
←−−−− A

1−λ
←−−−−
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Using the periodicity of the double complex C••(A) we check that the following
short sequences of complexes are exact

0←− Cλ(A)←− C(A)←− Im (1− λ)←− 0
0←− Im (1− λ)←− B(A)←− Cλ(A)←− 0

From the first sequence we have the following long exact sequence of homology groups

→ HCn+1(A)→ Hn(Im (1− λ))→ HHn(A)→ HCn(A)→

whereas, when A is unital, the second sequence yields

Hn(Im (1− λ)) = HCn−1(A)

since in this case the b′ -complex is acyclic. The two facts together give once again
Connes’s long exact homology sequence.

−→ HHn(A) −→ HCn(A)
S
−→ HCn−2(A) −→ HHn−1(A) −→

The connecting homomorphism in the sequence is the Connes S -operator.

3.1.3 The nonunital case

When the algebra A does not have a unit, a slight modification of the formalism
is required, pretty much following the same lines as when we defined K -groups for
nonunital rings. Let Ã be the augmented algebra Ã = C✄< A, which is charac-
terized by the existence of the augmentation map, i.e. an algebra homomorphism
ǫ : Ã → C . This map induces an augmentation ΩÃ → ΩC = C , which makes ΩÃ
into an augmented differential graded algebra

ΩÃ = C⊕ Ω̄Ã(3.27)

The augmentation ideal Ω̄Ã in this algebra is the universal nonunital differential
graded algebra generated by the nonunital algebra A. This is precisely the universal
algebra used by Connes [Co1, Co3] (see also [Arv]); this algebra is also discussed
under the name of differential envelope by Kastler [Kast], and by Karoubi [Kar2].
We remark that Ω̄Ã is closed under all the operators defined on ΩÃ .

To describe the algebras ΩÃ and Ω̄Ã in more detail, let us note that in degree
n we have that ΩnÃ = Ã⊗ A⊗n which gives the following isomorphism

Cn(A)⊕ Cn−1(A)
∼
−→ Ω̄nÃ

Here Cn(A) = A⊗n+1 denotes as in [CQ2, §5] the space of unnormalized n-chains.
This isomorphism allows us to represent elements of Ω̄Ã as column vectors with
components in C and operators on Ω̄Ã are described by 2×2-matrices of operators
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on C . It is not difficult to check that the operators d̃ , b̃ , B̃ , κ̃ are given by the
following expressions

d̃ =

(
0 0
1 0

)
, b̃ =

(
b 1− λ
0 −b′

)
,

κ̃ =

(
λ 0

b′ − b λ

)
, B̃ =

(
0 0
Nλ 0

)
,

where Nλ =
∑n−1
i=1 λ

i in degree n. Furthermore, the identities b̃2 = 0 and b̃B̃+B̃b̃ = 0
on Ω̄Ã are equivalent to the Connes-Tsygan identities (3.24). It is now obvious that
Ω̄Ã corresponds to the first two columns of the double complex 3.25.

3.2 Deformations of the algebra ΩA

3.2.1 Universal algebra extensions

The algebra Ω of noncommutative differential forms is just one example of a universal
algebra that can be associated with a given algebra A. We shall now introduce
two important deformations of Ω. First of all we define the algebra RA which is
important in the study of algebra extensions. Secondly, in the next section, we shall
discuss the Cuntz algebra QA, which is sometimes called the algebra of quantized
differential forms over A.

3.28 Definition. Let A and B be unital algebras. A based linear map is a linear
map ρ : A→ B that sends the unit of A to the unit of B .

Let ρ be a based linear map. We define its curvature to be the bilinear map

ω(a1, a2) = ρ(a1a2)− ρ(a1)ρ(a2)(3.29)

In other words, ω measures the deviation of ρ from an algebra homomorphism.
Since ω vanishes when either of its arguments is 1, it can be viewed as a linear map
ω : (Ā⊗2 = dΩ1A)→ B .

3.30 Definition. Let T (A) =
⊕
n≥0 A

⊗n be the tensor algebra of the underlying
vector space of A. Then we put [CQ1, §1]

RA = T (A)/T (A)(1T − 1A)T (A)

where 1T is the identity of T (A), and 1A is the identity of A, regarded as a tensor
of degree one.

Let ρ̂ : A→ RA be the map defined as the composition of the inclusion A→ T (A)
with the canonical surjection T (A)→ RA. It is clear that ρ̂ is a based linear map.
The algebra RA has the following universal property. Let R be a unital algebra
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and let ρ : A → R be a based linear map. Then there exists a unique algebra
homomorphism RA→ R which sends ρ̂ to ρ.

If we apply the universal property to the identity map A→ A we see that there
is a unique homomorphism RA → A. Let IA be its kernel. This way we obtain
an algebra extension A = RA/IA for which ρ̂ is a based linear lifting, i.e. a based
linear map which is a section of the canonical surjection RA→ A. RA is called the
universal extension of A.

To describe the algebraic structure of RA in a way that reflects the product on
A, we need first to introduce a certain deformation of the product in the algebra ΩA
of differential forms. This product has been discovered by Fedosov [F] in his work
on index theorems. If ω and η are homogeneous elements of ΩA then

ω ◦ η = ωη − (−1)|ω|dωdη(3.31)

where we denote by |ω| = deg(ω). This product is associative and compatible with
the even-odd grading on ΩA, and so makes ΩA into a superalgebra. We note that
this product is not commutative in general. The following proposition establishes a
link between the universal extension RA and the algebra ΩevA of even differential
forms equipped with the Fedosov product [CQ1, Propn. 1.2].

3.32 Proposition. There is a canonical isomorphism RA ≃ ΩevA, where the al-
gebra ΩevA of even forms is equipped with the Fedosov product. Explicitly, this
isomorphism is given by the map

ρ̂(a0)ω̂(a1, a2) · · · ω̂(a2n−1, a2n)↔ a0da1 · · · da2n

Under this isomorphism, the ideal IAn corresponds to
⊕
k≥n Ω2kA. The associated

graded algebra grIARA =
⊕
IAn/IAn+1 is isomorphic to the algebra ΩevA of even

forms with the ordinary product.

Proof. (Sketch) Let us denote by θ : A → ΩevA the canonical inclusion, which is a
based linear map. Note that θ is not an algebra homomorphism. The curvature of
θ is given by

θ(a1a2)− θ(a1) ◦ θ(a2) = a1a2 − a1 ◦ a2 = da1da2

Let Ψ : RA→ ΩevA be the corresponding morphism given by the universal property
of RA. Then Ψ(ρ̂(a)) = θ(a) = a, and

Φ(ω̂(a1, a2)) = Ψ(ρ̂(a1a2)− ρ̂(a1)ρ̂(a2)) = da1da2

from which it follows that

Φ(ρ̂(a0)ω̂(a1, a2) · · · ω̂(a2n−1, a2n)) = a0da1 · · · da2n

where we use that the Fedosov product of closed forms coincides with the usual
product. On the other hand there is a well defined map Φ : ΩevA→ RA

Φ : a0da1 · · ·da2n 7→ ρ̂(a0)ω̂(a1, a2) · · · ω̂(a2n−1, a2n)
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We check that Φ is surjective and that Φ and Ψ are inverses of each other.

If we identify RA with the algebra of even forms as in the above proposition,
then the universal property of RA may be stated as follows. For any based linear
map ρ : A → B there exists a unique algebra homomorphism ρ⋆ : RA → B given
by

ρ⋆(a0da1 · · · da2n) = ρ(a0)ω(a1, a2) · · ·ω(a2n−1, a2n)

where ω is the curvature of ρ. Moreover, using the same identification we see that
IA =

⊕
k≥1 Ω2kA.

Let R be an algebra. We now want to describe briefly the following interesting
supercomplex [CQ3, §4] which we shall denote X(R):

X(R) :
♮d

−−−−−→ R
β

−−−−−→ Ω1R♮
♮d

−−−−−→ R
β

−−−−−→

Here Ω1R♮ = Ω1R/[Ω1R,R] = Ω1R/bΩ2R and ♮ : Ω1R → Ω1R♮ denotes the canon-
ical projection. Moreover, β(♮(xdy)) = b(xdy) = [x, y]. The X -complex has been
defined and studied in detail in the case of free algebras and coalgebras by Quillen
[Q2] and by Cuntz and Quillen in general [CQ1, CQ3]. The importance of this
complex lies in its relation to the periodic cyclic homology of an algebra. It may be
regarded as the first order approximation of the standard double complex 3.12. There
are, however, important cases when the X -complex contains sufficient cohomological
information. This complex may be regarded as a noncommutative analogue of the
ordinary de Rham complex ΩR for commutative algebras. If R is a smooth com-
mutative algebra, then an extension of the Hochschild-Kostant-Rosenberg theorem
[HKR, LQ] states that this complex calculates the cyclic homology of the algebra.
Moreover, there is a class of algebras called quasi-free for which the X -complex is
sufficient to calculate their homology. An algebra is quasi-free if and only if its
dimension (relative to Hochschild cohomology) is not greater than one.

There is another important situation, when the X -complex comes into its own,
namely when R = RA, and our immediate task will be to find an explicit description
of X(RA). We have already seen that we may identify RA with the algebra of
even differential forms ΩevenA equipped with the Fedosov product, and so we now
need to find a similar description for the commutator quotient space Ω1(RA)♮ . To
avoid confusion with the differential d on ΩA, we shall denote by δ the canonical
derivation from RA to Ω1(RA). First we note that there is a canonical isomorphism
of RA-bimodules

RA⊗ Ā⊗ RA
∼
−→ Ω1(RA); x⊗ a⊗ y 7→ xδay

from which it follows that there is an isomorphism of commutator quotient spaces

RA⊗ Ā
∼
−→ Ω1(RA)♮; x⊗ a 7→ ♮(xδa)
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It is clear that we can write the last isomorphism as

ΩodA
∼
−→ Ω1(RA)♮; xda 7→ ♮(xδa)

Since we have seen before that RA ≃ ΩevA, we have that the X -complex of the
algebra RA may be identified with ΩA as a Z2 -graded vector space. It is not very
difficult to identify the differentials β and ♮δ in terms of this isomorphism [CQ3, §5,
Eqn. (9), Lemma 5.3]. From our general definition of the X -complex follows that

β(♮(xδy)) = x ◦ y − y ◦ x = xy − yx− dxdy + dydx = b(xdy)− (1 + κ)d(xdy)

which gives
β = b− (1 + κ)d : ΩodA −→ ΩevA

The calculation of the other differential is slightly more involved, we get in this case

♮δ = −Nκ2b+B : ΩevA −→ ΩodA

where Nκ2 =
∑n−1
j=0 κ

2jb on Ω2nA.

Let c be the scaling operator which is multiplication by cq on ΩqA, where c2n =
c2n+1 = (−1)nn!. Cuntz and Quillen proved the following important fact [CQ3, Thm.
6.2].

3.33 Theorem. The maps

cP : X(RA) −→ ΩA, c−1P : ΩA −→ X(RA),

where P is the projection onto the space of harmonic forms, are inverse modulo
homotopy, so that (X(RA), β⊕ ♮δ) and (ΩA, b+B) are homotopy equivalent super-
complexes.

The importance of this theorem stems from the fact that the X -complex has
additional functorial properties, which are not shared by the standard b+B -complex
ΩA, as we shall see in the following sections.

3.2.2 The Cuntz algebra QA

We now pass to the description of the Cuntz algebra QA [Cu4] associated with an
algebra A. If A is a unital algebra, then the Cuntz algebra QA is defined as the
free product QA = A ∗A in the category of unital algebras, i.e., with amalgamation
over the identity of A. There are two canonical homomorphisms ι, ιγ from A to QA
and a canonical automorphism of QA of order two: ω 7→ ωγ which interchanges ι
and ιγ . The algebra QA is a superalgebra which means that QA is Z2 -graded and
the grading is compatible with multiplication.

For a ∈ A, let p(a) and q(a) denote the even and odd components of ι(a)
with respect to the Z2 -grading of QA. If we put a = ι(a) and aγ = ιγ(a), then

50



p(a) = (a + aγ)/2 and q(a) = (a − aγ)/2. The following relations determine the
product in QA.

p(a1a2) = p(a1)p(a2) + q(a1)q(a2)
q(a1a2) = p(a1)q(a2) + q(a1)p(a2)

We deduce from these relations that any element in QA may be represented as a
linear combination of elements of the form p(a0)q(a1) · · · q(an). Note finally that the
unit of the algebra A is also the unit of QA, and that we have p(1) = 1, q(1) = 0.

There is a canonical map QA→ A which identifies the two copies of the algebra
A inside QA. This map is called the folding map, and its kernel is denoted by qA.
There is a natural completion of this algebra Q̂A = lim

←−
QA/qAn with respect to the

qA-adic topology induced by the ideal qA. This completion is again a Z2 -graded
algebra.

There is a linear isomorphism µ between the underlying graded vector space of
the Cuntz algebra QA and the graded vector space of forms ΩA which on generators
is defined by

µ : p(a0)q(a1) · · · q(an) 7→ a0da1 · · · dan(3.34)

In particular, if a ∈ A as a subalgebra of QA then µ(a) = µ(p(a)) + µ(q(a)) =
a+ da ∈ ΩA.

The map µ becomes an isomorphism of Z2 -graded algebras when the algebra ΩA
is equipped with the Fedosov product (3.31). We may therefore think of the Cuntz
algebra as a deformation of the algebra of differential forms ΩA. In particular, under
this isomorphism, the ideal J of forms of degree one or higher in ΩA is identified
with the folding ideal qA of the Cuntz algebra.

Using this isomorphism it is easy to see that if Ã is an augmented algebra then
QÃ is also augmented

QÃ = C⊕ Q̄Ã

where Q̄Ã , the reduced part of the Cuntz algebra, is the Cuntz algebra associated
with A in the nonunital category.

If A is in fact a unital algebra then the unit 1 of A has two images u and uγ

in QÃ which are idempotents. The corresponding involutions f = 2u − 1 and f γ

generate inside the algebra Q̂Ã an algebra which is isomorphic to Q̂C̃ , the group
algebra of the infinite dihedral group. We shall record its basic properties for future
use [Cu4].

The dihedral group generated by the two involutions f and f γ may be presented
using the following two generators. First, let

L = log(ff γ) = −
∑

n≥1

(2fq(f))n/n

Since (ff γ)γ = f γf = (ff γ)−1 , we have on the one hand (eL)γ = e−L while on the
other (eL)γ = e(L

γ) from which follows that Lγ = −L, i.e. L is odd with respect to
the canonical automorphism γ .
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We put W = eL/2 . Since ff γ = expL we have

Wf γ = WfeL = eL/2e−Lf = e−L/2f = feL/2

so that
f γ = W−1fW(3.35)

It is now a good moment to state explicit formulae for L and W that we shall
need later [B3].

3.36 Proposition. Let L = log(ff γ) = −
∑
n≥1(2fq(f))n/n. Then

log(ff γ) = −
∑

i≥1

22i−1 ((i− 1)!)2

(2i− 1)!
p(f)q(f)2i−1.

Let us now define Wt = exp(tL/2) for t ∈ [0, 1].

3.37 Proposition. For all t ∈ [0, 1] we have

Wt = 1 +
∑

n≥1

(−1)n22n−1

(
t/2 + n− 1

2n− 1

)
((t/2n)q(f)2n + p(f)q(f)2n−1)

Moreover, we have that W−t = W γ
t . Thus p(W−t) = p(Wt) and q(W−t) = −q(Wt).

3.2.3 The Cuntz algebra and KK -theory

The original motivation for introducing the Cuntz algebra QA was its relation to
the KK -theory, which we now explain very briefly.

Let (E , F, γ) be an even Kasparov module as in Section 2.6. We shall assume that
F is in fact a self-adjoint involution, as F can always be modified in this way [Co1].
It is not difficult to check that such a Kasparov module induces a homomorphism α
from qA to K , the ideal of compact operators on E . This homomorphism is defined
by setting α(ω) = 1+γ

2
ω ,

αγ(ω) = 1+γ
2
FωF .

First, we want to describe K0(A) in terms of the ideal qA. Note that there
are canonical maps π0, π1 : qA → A, which are restrictions of the natural maps
id ∗ 0, 0 ∗ id : QA→ A. In particular, there is an induced map

K0(π0) : K0(qA) −→ K0(A)(3.38)

It turns out that this map is in fact an isomorphism [Cu3, Propn. 3.2].

3.39 Proposition. The map 3.38 is an isomorphism with the inverse

K0(ı)−K0(ı
γ) : K0(A) −→ K0(qA) ⊂ K0(QA)

Here ı, ıγ : A→ QA.
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This proposition has the following interesting corollary. We shall denote by [A,B]
the set of homotopy classes of homomorphisms between two C∗ -algebras A and B .
For two such algebras, we endow [A,K⊗B] with the following semigroup structure:

[φ] + [ψ] =

[(
φ 0
0 ψ

)]

where (
φ 0
0 ψ

)
: A −→M2(K⊗B) ≃ K⊗ B

is the homomorphism that maps ω to

(
φ(ω) 0

0 ψ(ω)

)
.

3.40 Proposition. There is an isomorphism

[qC,K⊗ A]
∼
−→ K⊗A

To define this map, let e be the canonical generator of K0(qC) ≃ K0(C) ≃ Z. Then
to any [φ] ∈ [qC,K⊗ A] we assign the element K0(φ)(e) ∈ K0(K⊗ A) ≃ K0(A).

Moreover, it turns out that [qC,K ⊗ A] is an abelian group. If γ is the restriction
to qC of the canonical involution on QC that exchanges the two copies of C inside
QC , then the inverse element to [φ] is [φγ].

With these results at hand we may define KK(A,B) as follows.

3.41 Definition. Given two C⋆ -algebras A and B we put

KK(A,B) = [qA,K⊗ B]

One can use this definition to demonstrate the existence of the Kasparov product

KK(A1, A2)×KK(A2, A3)→ KK(A1, A3)

for any C∗ -algebras A1 , A2 and A3 .

3.3 Cochains and characters

In this section we develop basic features of the theory of cochains on an algebra in
both Z and Z2 -graded cases. A thorough discussion of cochain complexes in cyclic
cohomology in terms of the bar construction on an algebra is given in Quillen’s paper
[Q2] and in the Z2 -graded case in the paper of Cuntz and Quillen [CQ2].

First, let us define the Hochschild cochain complex.

3.42 Definition. Let M be a bimodule over the algebra A. An n-cochain f on
A with values in M is a linear map f : A⊗n → M . The space of such cochains
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is denoted by Cn(A,M). The graded space C⋆(A,M) is made into a differential
complex using the following differential

(bf)(a1, . . . , an+1) = a1f(a2, . . . , an+1) +
n∑

i=1

(−1)if(a1, . . . , aiai+1, . . . , an+1)

+ (−1)n+1f(a1, . . . , an)an+1

Of particular interest are cochains on A with values in the dual space A∗ which is
an A-bimodule with the usual action of A:

(af)(a′) = f(a′a)
(fa)(a′) = f(aa′)

It is clear that one can identify the space of linear maps A⊗n → A∗ with the space
of linear functionals A⊗n+1 → C . In this case, we obtain the Hochschild complex
which calculates the Hochschild cohomology HH⋆(A), the dual theory to Hochschild
homology defined in 3.7.

There is a simplicial normalization theorem that states that Hochschild cohomol-
ogy may be calculated using the reduced (or simplicially normalized) cochain complex
(
⊕
n(ΩnA)∗, b), where b is the transpose of the differential defined on noncommuta-

tive forms.

3.43 Definition. The cyclic cochain complex is the complex (C⋆
λ(A), b) of cochains

f : A⊗n+1 → C which are invariant under the action of cyclic group: λf = f , where
(λf)(a0, a1, . . . , an) = (−1)nf(an, a0, . . . , an−1). The differential b is the restriction
of the differential on the space of Hochschild cochains to the space of cyclic cochains:

(bf)(a0, . . . , an+1) =
n∑

i=0

(−1)if(a0, . . . , aiai+1, . . . , an+1)

+ (−1)n+1f(an+1a0, . . . , an)

This complex computes the cyclic cohomology of the algebra A.

3.44 Example. Let M be a compact oriented manifold, and let A be the algebra
of smooth functions on M . Put

φ(a0, . . . , an ) =
∫

M
a0da1 . . . dan

for a0, . . . , an ∈ A. Then φ is a cyclic cocycle.

This example may be generalized in the following way. Recall that by a k -
dimensional current on the manifold M we mean a continuous linear functional
C : Ωk(M)→ C . For example, if k = 0, C is a distribution on M . The value of C
on any k -form ω is denoted by

ω 7→
∫

C
ω
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A k -current C is called closed, if

∫

C
dη = 0

for all k − 1-forms η . One then has the following.

3.45 Lemma. If C is a closed k -current, then

φ(a0, . . . , ak ) =
∫

C
a0da1 . . . dak

is a cyclic cocycle.

3.46 Example. Let S be a Clifford bundle over a compact manifold M and let D
be the corresponding Dirac operator. Let V be a vector bundle over M , represented
as the range of a projection-valued function e. Then the Dirac operator DV on S
with coefficients in V is given by DV = e(D ⊗ 1)e. Assume that kerD = 0; then
D−1 is a bounded operator. Define

τ(f0, f1, . . . , f2p) = Trs(D
−1[D, f0]D

−1[D, f1] . . .D
−1[D, f2p])

where fi are (possibly matrix valued) smooth functions on M . Here Trs denotes a
supertrace. (More on supertraces in the next section.) We note that for large enough
p, the expression in brackets is a trace class operator.

3.47 Lemma. τ is a cyclic cocycle.

The importance of cyclic cocycles defined by the above formula is illustrated by
the following statement.

3.48 Lemma. If e is a projection-valued function corresponding to a vector bundle
V , then

IndexDV = τ(e, . . . , e)

3.49 Example. Let (A,H, F, γ) be an even p-summable Fredholm module. Then

τ2n = Tr γa0[F, a1] . . . [F, a2n]

is a cyclic cocycle called the character of the Fredholm module.
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3.4 Supertraces

We finish the chapter with a discussion of Z2 -graded cochain complexes introduced
by Connes in [Co2] which will be needed in our discussion of entire cyclic cohomology
of Banach algebras. The material in this section is taken from [CQ2, §8].

A cochain f is now an element of (ΩA)∗ , the dual space to ΩA. Hence f is the
same as a sequence (fn), where fn is a linear functional on ΩnA.

Let us identify the Cuntz algebra QA with the algebra ΩA equipped with the
even-odd grading and the Fedosov product 3.31

ω ◦ η = ωη − (−1)deg(ω)dωdη

3.50 Definition. A cochain f on ΩA is a supertrace on QA if and only if for any
two homogeneous elements ω , η of QA

f(ω ◦ η) = (−1)deg(ω)deg(η)f(η ◦ ω)

In other words, a supertrace is a cochain vanishing on supercommutators with respect
to the Fedosov product.

We have the following result [CQ2, Propn. 8.1].

3.51 Proposition. The following conditions are equivalent for τ ∈ (ΩA)∗ :

1. τ is a supertrace on QA.

2. Connes’ infinite cycle identity holds [Co2]

τ([ω, η]) = (−1)deg(ω)2τ(dωdη)

Here [ω, η] = ωη − (−1)deg(ω)deg(η)ηω is the supercommutator with respect to
the ordinary product on ΩA.

3. τ is κ-invariant, i.e. τκ = τ , and τn−1b = 2τn+1d for n > 0.

Proof. Assume that τ satisfies Connes’ cycle identity. Then τ([dω, dη]) = 0. Thus
if we apply τ to the Fedosov supercommutator [ω, η]s

[ω, η]s = [ω, η]− (−1)deg(ω)2dωdη + (−1)deg(ω)[dω, dη]

we see that τ([ω, η]s) = 0, hence τ is a supertrace on QA. Conversely, if τ is a
supertrace on QA, then τ vanishes on terms of the form [dω, dη]s = [dω, dη], which
implies that τ satisfies Connes’ identity.

To see that a supertrace τ satisfies the identities in point 3) above, we note that
as the Cuntz algebra QA is generated by a and da, τ is a supertrace if and only if
it vanishes on the supercommutators

[ω, a]s = (−1)deg(ω)(b− (1 + κ)d)(ωda)
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and
[ω, da]s = (1− κ)(ωda)

Let us now define the rescaling operator z on ΩA which multiplies by zn on
ΩnA, where we define

z2m =
(−1)m

m!
, z2m+1 =

(−1)m2m

(2m+ 1)!!

where (2m + 1)!! = 1 · 3 · · · (2m + 1). This rescaling is precisely what is needed to
translate the last condition of the previous statement into a cocycle condition in the
b+B -complex ((ΩA)∗, b+B).

3.52 Proposition. τ is a supertrace on QA if and only if the rescaled cochain
τ z = τ ◦ z is κ-invariant and such that τ z(b+B) = 0 except in degree zero.

In degree zero a slight modification is needed, but it only affects odd supertraces
on QA (supertraces whose nonzero components are in odd degrees). In even degrees
we have a bijection between even, κ-invariant b+B -cocycles and even supertraces on
QA. In odd degrees κ-invariant odd b + B -cocycles correspond to odd supertraces
τ such that τ(da) = 0 for any a ∈ A.

For future use we record the following fact [CQ2, Propn. 8.5].

3.53 Proposition. For a cochain f ∈ (ΩA)∗ , the following are equivalent:

1. f is κ-invariant, i.e. f(1− κ) = 0.

2. fbB = 0 and fP = f .

It follows in particular that harmonic cocycles, i.e. cocycles f such that fP = f are
automatically κ-invariant.
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4 Chern characters

4.1 K -theory and Chern classes

One of the features of the topological K -theory which makes it so useful in a variety
of applications is the existence of the Chern character homomorphism. It is also
one of the key properties of cyclic cohomology, as we shall see presently. To set the
necessary background for our discussion, we shall review briefly the construction of
the Chern character in the topological K -theory.

Let E be a complex vector bundle over a compact topological space X . We can
associate with it certain cohomology classes ci(E) ∈ H2i(X,Z), which are called the
characteristic classes of E . These classes are used to classify bundles in a certain
way and their basic properties are as follows:

1. c0(E) = 1 ∈ H0(X,Z).

2. For all n ≥ 0, cn(E ⊕ F ) =
∑
i+j=n ci(E) ∪ cj(E).

3. If f : Y → X is a continuous map, then cn(f ∗E) = f ∗cn(E).

The second of the above axioms, the Whitney sum formula, implies that c(E) =∑
i>0 ci(E) ∈ H⋆(X,Z) depends only on the class of the bundle E in K0(X). Thus ci

extend to functions ci : K0(X)→ H2i(X,Z) and we can define the Chern character
ch : K0(X)→ H∗(X,Q), which satisfies the following properties:

1. ch0(E) equals the rank r(E) of E , where r(E) ∈ H0(X,Z) ≃ Z.

2. ch(E ⊕ F ) = ch(E) + ch(F ).

3. ch(f ∗(E)) = f ∗(ch(E)), for a continuous map f : Y → X .

We remark here that the first of these axioms makes an explicit connection with the
rank function defined in (2.23. It turns out that the rank of a vector bundle gives rise
to a characteristic class in degree zero. In the case when X is a smooth manifold,
there is a useful explicit description of the Chern character. We assume that E is a
smooth vector bundle equipped with connection ∇E , whose curvature is ∇2

E . Then
the Chern character ch(E) ∈ H∗(X,R) is represented by the closed differential form

ch(E) = tr(exp(∇2
E/2πi))

To obtain numerical invariants of X , we can associate with any closed de Rham
current C , a map IC from K∗ to C defined by

IC(E) = 〈C, ch(E)〉

This geometric construction can be reformulated in algebraic terms, when we
replace the topological K -theory by the K -theory of a suitable ring or a C⋆ -algebra.
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Connes’s great discovery was that in such algebraic case it is possible to construct a
Chern character which takes its values in cyclic cohomology (or more precisely, the
periodic cyclic cohomology). We shall indicate the main points of this translation in
the following two sections.

4.2 Higher traces

We set out to discuss the algebraic version of the Chern-Weil theory of characteristic
classes in a vector bundle. Let us first consider two unital rings A and B and a
based linear map ρ : A→ B with curvature ω (cf. (3.28):

ω(a1, a2) = ρ(a1a2)− ρ(a1)ρ(a2)

If we assume that the linear map ρ is to play the role of a linear connection in a vector
bundle, then it is reasonable to treat the bilinear form ω as the formal analogue of
the curvature of ρ. Since ω vanishes if either of its arguments is the identity of A, it
is in fact a two-cochain ω : dΩ1A ⊂ Ω2A→ C . It turns out that one can reproduce
practically the complete formal structure of the Chern-Weil theory starting with the
‘connection’ ρ and its curvature ω , and this was done in detail in Quillen’s paper
[Q2]. For example, there is the Bianchi identity

b′ω = −[ρ, ω]

which is not difficult to check directly. There is a natural cyclic cocycle that may
be regarded as the algebraic analogue of the Chern character: τ(ωn/n!)N , for any
trace τ : B → C . We shall use this cocycle to construct Connes classes in cyclic
cohomology associated with so higher traces.

Let R be an algebra and let I be an ideal in R . Furthermore, let u : A→ R/I
be an algebra isomorphism.

4.1 Definition. Given an algebra A, a pair consisting of an algebra extension
A = R/I and a trace τ : R/Im+1 → C on the quotient algebra R/Im+1 , for m ≥ 0,
is called an even higher trace on the algebra A.

An odd higher trace on an algebra A is an extension A = R/I together with a
linear map τ : Im → C satisfying τ [R, Im] = 0, where m > 0.

We recall here that if B is an algebra then a trace τ : B → C is a linear map
that vanishes on commutators of elements in B , i.e., it annihilates the space [B,B].
Similarly, if M is a B -bimodule, then τ : M → C is a trace on M iff it vanishes on
[B,M ]. This notion may be generalized slightly by considering traces with values in
a vector space V .

In his article [Q3], Quillen constructs certain cyclic cocycles associated with higher
traces. In the case of an even higher trace τ we choose a linear lifting ρ : A → R
and consider its curvature ω

ω(a1, a2) = ρ(a1a2)− ρ(a1)ρ(a2)
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Since ρ is an homomorphism of algebras modulo the ideal I , the curvature ω has
values in I . This data can be used to construct the following Chern-Simons form,

cs2n+1 =
∫ 1

0
τ(ρ(tb′ρ+ t2ρ2)n/n!)Ndt ∈ C2n

λ (A)(4.2)

It is a cyclic (2n)-cocycle for n ≥ m, hence the name even higher trace for the trace
τ . This cocycle determines a class in cyclic cohomology which we call a Connes class
and denote cn2n(τ). This is a cyclic cohomology class of degree 2n associated with
the higher trace τ .

In the case of an odd higher trace, we can construct the Chern character form

ch2n(τ, ρ) = τ(ωn/n!)N ∈ C2n−1
λ (A)(4.3)

which is a cyclic (2n− 1)-cocycle for n ≥ m. Its cohomology class will be denoted
by cn2n−1(τ) and called the Connes class associated to the odd higher trace τ .

4.4 Remark. In the case, when the trace τ takes values in a vector space V , the
cyclic cocycles obtained this way are also V -valued. Since we assume that V is a
trivial A-module, the notion of a cyclic cocycle extends in a straightforward way to
include V -valued cyclic cocycles.

To summarise, we have defined two types of cyclic cohomology classes associated
with higher traces. In the even case, the Connes class is represented by an algebraic
analogue of the Chern-Simons form, whereas in the odd case, the representative of
a Connes class is the analogue of the Chern character. Connes classes are related
by the action of the S -operator, in a way which resembles Bott periodicity in the
standard K -theory.

4.5 Theorem. The Connes classes associated to a higher trace are independent of
the choice of the lifting ρ and they satisfy

S cnj(τ) = cnj+2(τ)

This theorem was first proved in the odd case by Connes in [Co1] and in both cases
by Quillen in [Q3].

4.3 Even higher traces and K0(A)

Higher traces and Connes classes are key elements in establishing a relation between
cyclic cohomology and algebraic K -theory. We begin with a discussion of the even
case, following closely the paper of Quillen [Q3, II.2].

Recall that any idempotent matrix e ∈Mr(A) represents a class in K0(A), when
A is a unital algebra. Any trace τ : A→ V on A induces a map of abelian groups

τ∗ : K0(A)→ V
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which is defined by
τ∗ : [e] 7→ τ̃ (e),

where τ̃ is the extension of the trace τ to the matrix algebra Mr(A) = A⊗Mr(C)

τ̃ = τ ⊗ tr : A⊗Mr(C)→ V.

We use here τ to denote the usual matrix trace on Mr(C).
Let us now assume that we are given an even higher trace on the algebra A,

i.e. an extension A = R/I and a trace τ : R/Im+1 → V . We can define an index
map associated with this higher trace as follows. We put indτ equal to the following
composition

K0(A)
≃
−→ K0(R/I

m+1)
τ∗−→ V.

The first map is induced by the surjection R/Im+1 → R/I . Since the ideal I is
nilpotent in R/Im+1 , the kernel of this map is nilpotent and the induced map on
K -theory is an isomorphism. The reason for that is basically that any idempotent
matrix over A can be lifted to an idempotent matrix over R/Im+1 . To describe
this lifting process in more detail, let e be an idempotent matrix in Mr(A) and let
f = ρ(e) be its lift in Mr(R). The matrix f is an idempotent modulo the ideal
Mr(I) which means that the matrix f − f 2 has entries in I . We want to modify
this matrix so that it becomes an idempotent matrix.

To do this, let us consider the polynomial ring k[x]/(x(1 − x))n+1 . From the
Chinese Remainder Theorem we can decompose

k[x]/(x(1− x))n+1 = k[x]/xn+1 + k[x]/(1− x)n+1

Let fn(x) be the unique polynomial of degree not greater than 2n + 1 whose class
in k[x]/(x(1− x))n+1 is an idempotent and fn(0) = 0 and fn(1) = 1. Thus fn(x) ∼=
xmod x(1− x).

We note that for n ≥ m we have a homomorphism

k[x]/((x− x2)n+1)→Mr(R/I
m+1).

which is defined by sending x to f . By the Chinese remainder theorem, there is
a unique idempotent p in k[x]/((x − x2)n+1) which reduces to x modulo (x − x2).
The idempotent lifting of e is then the image of p under this homomorphism.

To represent p (uniquely) by a polynomial of degree not greater that 2n− 1 we
introduce the following function

fn(x) =

∫ x

0
tn(1− t)ndt

∫ 1

0
tn(1− t)ndt

=
(2n+ 1)!

(n!)2

∫ x

0
(t− t2)ndt

=
(2n+ 1)!

(n!)2

∫ 1

0
x(tx− t2x2)ndt
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Note that fn(1) = 1.
Let ρ : A → R be a linear lifting of A into R and let ρ̃ denote the extension

of ρ to matrices. From the above construction follows that for n ≥ m the image of
fn(ρ̃(e)) in the algebra Mr(R/I

m+1) is an idempotent matrix reducing to e. Thus
we have

indτ [e] =
(2n+ 1)!

(n!)2

∫ 1

0
τ̃ ρ̃(e)(tρ̃(e)− t2ρ̃(e)2)ndt

Let us denote by (e)2n+1 the image of e⊗2n+1 in Cλ
2n(Mr(A)). This is a cyclic 2n-

cycle in the cyclic complex of Mr(A).

4.6 Definition. The Chern character homomorphism is a map Ch(2n) : K0(A) →
HC2n(A) defined by

Ch(2n)[e] =
(2n)!

n!
[tr(e)2n+1]

This homomorphism was defined by Connes in [Co1].

4.7 Theorem. The index map associated to the higher trace τ is given by pairing
the associated Connes cyclic cohomology class with the Chern character:

indτ [e] = 〈cn(2n)(τ),Ch(2n)[e]〉

Proof. We use the definition of Connes classes to calculate the following

〈cs2n+1(τ, ρ) (2n)!
n!

[tr(e)2n+1]〉 = 〈cs2n+1(τ̃ , ρ̃)
(2n)!

n!
[tr(e)2n+1]〉

=
(2n)!

(n!)2

∫ 1

0
τ̃(ρ̃(e)(tb′ρ̃(e, e) + t2ρ̃2(e, e))nN(e)2n+1)dt

Now use that N(e)2n+1 = (2n+ 1)(e)2n+1 (this follows from the fact that (e)2n+1 is
a cyclic cycle), and the cochain formulae

b′ρ̃(e, e) = ρ̃(e · e) = ρ̃(e)
ρ̃2(e, e) = −ρ̃(e)ρ̃(e)

to check that this expression is the same as the formula that we have derived for the
index.

4.4 Toeplitz operators

As an example of a concrete situation corresponding to the theory explained above
we shall discuss Toeplitz operators and a certain index theorem.

Let H = L2(S1, dθ/2π) be the space of square-integrable functions on the circle
S1 . This space is a module over the algebra of smooth functions A = C∞(S1), where
the module structure is given by pointwise multiplication. The family of functions
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{zn} , for z ∈ S1 and n ∈ Z is a basis for H . By definition, the Hardy space is the
closure of the linear span of {zn} for n ≥ 0. Let us denote by e the projection from
H onto the Hardy space.

We define a Toeplitz operator for any function f ∈ A by

Tf (g) = e(fg)

for any g in the Hardy space. Hence we can write that Tf = efe : H → H . The
Toeplitz operator has the following matrix form with respect to the decomposition
H = eH⊕ (1− e)H given by the projection e.

Tf =

(
efe ef(1− e)

(1− e)fe (1− e)f(1− e)

)

4.8 Lemma. If g ∈ A then [e, g] is an operator with a smooth Schwartz kernel, in
particular it is of trace class. Also, for f, g ∈ A

trH(f [e, g]) = 1/2πi
∫

S1

fdg

Proof. Use the Fourier transform of the function g to write

g(θ) =
∑

n

einθ
∫
e−inθ

′

g(θ′)dθ′/2π.

Since

(eg)(θ) =
∑

n≥0

einθ
∫
e−inθ

′

g(θ′)dθ′/2π

=
∫ ∑

n≥0

ein(θ−θ
′)g(θ′)dθ′/2π

=
∫

1

1− ei(θ−θ′)
g(θ′)dθ′/2π

the kernel function of the operator e is

e(θ, θ′) =
1

1− ei(θ−θ′)
.

A very similar calculation yields the kernel function of the operator [e, g]:

[e, g](θ − θ′) =
g(θ − θ′)

ei(θ−θ′)

which is a smooth function over the torus. The trace of the operator [e, g] is then
given by

trH(f [e, g]) =
∫
f(θ)([e, g](θ, θ))dθ/2π = 1/2π

∫
f(θ)g′(θ)dθ
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We may state the result of the last lemma in a slightly different way. Let R =
L(H) be the algebra of bounded operators on H and let I = L1(H) be the ideal
of trace class operators on H . If e defines the projection onto the Hardy space as
before, then let us define a linear map ρ : A→ R by

ρ(f) = efe = Tf

It follows from the last lemma that ρ is a homomorphism of algebras modulo trace
class operators.

4.9 Remark. Note that

φ(f, g) = trH(ρ(f)ρ(g)− ρ(fg))− trH(ρ(g)ρ(f)− ρ(gf))

is a cyclic cocycle.

4.10 Lemma. In the notations introduced above

φ(f, g) = trH(f [e, g])

Proof. Take a Toeplitz operator T ∈ I . Then

trH(eT) = trH(eTe) = treH(eTe)

which follows if we use the matrix representation of T.
Now we note that if D is a derivation, and e is a projection, then (De)e +eDe =

De and eDe = De (1 − e) , (1 − e)De = (De)e. Thus e[e, g] = [e, g](1 − e), etc.
Using these identities we calculate

trH(ρ(f)ρ(g)− ρ(fg)) = treH(ef [e, g]e)

= (ef [e, g])

and

treH(ρ(g)ρ(f))− ρ(gf) = treH(efege− egfe)

= treH(eg(e− 1)fe)

= trH(eg(e− 1)f)

= trH([e, g](e− 1)f)

= trH((e− 1)f [e, g]).

If we subtract the two expressions, we get the required formula.
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If f is an invertible function on the circle, then the Toeplitz operator ρ(f) :
eH → H has a parametrix ρ(f−1), i.e., ρ(f) is a Fredholm operator. The index of
such an operator is defined by

index ρ(f) = treH(1− ρ(f−1)ρ(f))− treH(1− ρ(f)ρ(f−1)).

It follows from our calculations that

index ρ(f) = φ(f−1, f) = 1/2πi
∫

S1

f−1df

Thus the index of a Toeplitz operator associated to a function f is the winding
number of f .

4.5 Odd higher traces and K1(A)

We want to show how to construct an index map associated to an odd higher trace.
For this we shall study again the connecting homomorphism in the K -theory exact
sequence

K1(I)→ K1(R)→ K1(R/I)
δ
−→ K0(I)→ K0(R)→ K0(R/I).

which we encountered in 2.59. Let us recall the main idea of Milnor’s patching
construction (see 2.56). For any u ∈ GLr(R/I) we construct a finitely generated
projective module Pu over Ĩ . One proves that Pu is projective by lifting u ⊕ u−1

to an invertible matrix T ∈ M2r(R). This gives Pu as the image of the projection
operator

e = Te0T
−1, e0 =

(
1 0
0 0

)

acting on the space (Ĩ)2r . Then the image δ(u) is represented by the idempotent e.
We shall now describe this procedure in some detail [Q3].

Let p and q be the lifts to Mr(R) of u and u−1 respectively. We define x and
y to be such that qp = 1− x and pq = 1− y . It follows from these definitions that
the matrices x and y have entries in I and that xq = qy . Using this remark and
applying induction we show that xiq = qyi . Let n ≥ 1. Our goal is to construct
an invertible matrix T , which is the lift of u⊕ u−1 to M2r(R). For this we need to
modify the parametrix q in the following way. Let

qn = (1 + x+ . . .+ x2n−1)q = q(1 + y . . .+ y2n−1).

Then it is not difficult to check that qnp = 1− x2n and pqn = 1− y2n . We have

(qn xn)

(
p
xn

)
= 1

and from this follows that the matrix

en =

(
p
xn

)
(qn xn) =

(
1− y2n pxn

xnqn x2n

)
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is an idempotent with entries in Ĩ . It is now clear that the matrices

T =

(
p −yn

xn qn

)
, T−1 =

(
qn xn

−yn p

)

are inverses of each other over R . Moreover, T reduces to u⊕u−1 modulo the ideal
I and Te0T

−1 = en . Thus the idempotent en represents the class δ[u] for any n ≥ 1.

We proceed with the construction of the index map on K1(R/I). Let τ be a
trace defined on I , regarded as an algebra, which means that τ [I, I] = 0. There is
an induced map τ∗ : K0(I)→ V which can be described as follows. We first extend
τ to a trace on Ĩ by putting it to be zero on C . Then we extend it to matrices over
Ĩ in the usual way, using the formula τ̃ = τ ⊗ tr , where tr is the standard matrix
trace. Next we define τ∗ on K0(I) by applying τ̃ to idempotent matrices over Ĩ .
We find that

τ∗(δ[u]) = τ̃(en) = (τ̃(x2n − y2n))
= τ̃ ((1− qp)2n − (1− pq)2n)

(4.11)

4.12 Lemma. Assume that R/I is nilpotent, i.e. Rm ⊂ I for some m. Then K0(I)
maps onto K0(R) and the kernel is killed by τ∗ , so that τ∗ descends to a map defined
on K0(R).

Proof. The assumption of nilpotence implies that K0(R/I) = 0. From the K -theory
exact sequence then follows that the map K0(I)→ K0(R) is surjective. The kernel
of this map is the image of δ , so we need to show that τ∗δ = 0. By nilpotence, any
matrix u = 1− w with w ∈ Mr(R/I) is invertible with inverse

u−1 = 1 + w + · · ·+ wn

for some n. Lifting w to a matrix z over R , we can take p = 1− z and

q = 1 + z + · · ·+ zn.

Then p and q commute, and τ∗δ[u] = 0 from (4.11).

We are now ready to define the index map associated to an odd higher trace on.
Let us then assume that the higher trace is given by an extension A = R/I and a
linear map τ : Im → V vanishing on the commutator space [R, Im]. If we apply the
above lemma in the case of the algebra I and the ideal Im , we see that the trace
map τ∗ : K0(I

m)→ V descends to a map τ∗ : K0(I)→ V .

4.13 Definition. The index homomorphism indτ associated to the higher trace τ
is the composition

K1(A) = K1(R/I)
δ
−→ K0(I)

τ∗−→ V.
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This definition can be illustrated with the following diagram.

−→ K1(R/I)
δ
−→ K0(I)x

x

K1(R/I
m)

δ
−→ K0(I

m)
τ∗−→ V

Here the first horizontal row is a part of the K -theory sequence associated to the
algebra extension A = R/I , and the vertical arrows are surjective maps, and the
one on the right is explained in the previous lemma. The lemma states that one can
calculate the index by taking a class [u] to δ[u] using the connecting homomorphism
δ , lifting it to K0(I

m) and then applying the trace τ∗ . We use this fact in the
following statement.

4.14 Proposition. Let u be an invertible matrix over A and let p and q be ma-
trices over R reducing modulo I to u and u−1 respectively. Then

indτ [u] = τ̃{(1− qp)n − (1− pq)n}

for n ≥ m.

Proof. In our computation of the connection morphism δ we have seen that the class
δ[u] is represented by the idempotent en over (Ĩ)n , where n could be chosen as large
as we like. Hence taking n ≥ m we find that

indτ (e) = τ̃ (x2n − y2n)

with x = 1− qp and y = 1− pq . As τ [R, Im] = 0, we have for i ≥ m that

τ̃ (xi+1 − yi+1) = τ̃(xi − qpxi − yi + pqyi)
= τ̃(xi − yi − qpxi + pxiq)
= τ̃(xi − yi)

Let u ∈ GLr(Ã) be such that u− 1 ∈Mr(A), so that also u−1− 1 ∈Mr(A). We
write

(u−1, u)2n = (u−1 − 1, u− 1, . . . , u−1 − 1, u− 1) ∈Mr(A)⊗2nλ = Cλ
2n−1(Mr(A))

This is a cycle in the cyclic complex of the matrix algebra Mr(A). To check this we
identify the cyclic complex of Mr(A) with the reduced cyclic complex of the aug-

mented algebra ˜(Mr(A)). Then the matrices u and u−1 can be viewed as elements

of ˜(Mr(A)), and that (u−1, u, . . . , u−1, u) is obviously a cycle in this reduced cyclic
complex. Thus (u−1 − 1, u − 1)2n , which is the corresponding element of the cyclic
complex of the algebra Mr(A) is a cycle.
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4.15 Definition. The Chern character homomorphism

Ch(2n−1) : K1(A) −→ HC2n−1(A)

is given by
Ch(2n−1)[u] = (n− 1)![tr(u−1 − 1, u− 1)2n]

The numerical factor in the above definition is needed to make sure that the Chern
homomorphism is compatible with the S operation.

We finish this section proving another index theorem-type statement. Recall that
an odd higher traces give rise to Connes classes cn(τ) ∈ HC2n−1(A, V ), for n ≥ m,
which are represented by cyclic cocycles represented by the Chern character 4.3.

4.16 Proposition. The index map associated to the higher trace τ is given by
pairing the associated Connes cyclic cohomology class with the Chern character

indτ [u] = 〈cn(2n−1)(τ),Ch(2n−1)[u]〉

Proof. Let ρ : A→ R be a linear lifting of A into R . We extend it to a map Ã→ R̃
so as to be the identity on k , and we denote by ρ̃ the obvious extension to matrices.
The right side is then

〈ch(ρ, τ), (n− 1)!tr(u−1 − 1, u− 1)2n〉 = 〈ch2n(ρ̃, τ̃), (n− 1)!(u−1 − 1, u− 1)2n〉
= n−1τ̃ (ω̃n)N(u−1 − 1, u− 1)2n

where we have used that
ch2n(ρ̃, τ̃) = ch2n(ρ, τ)tr

Now we use the following

N(u−1 − 1, u− 1)2n = n{(u−1 − 1, u− 1)2n − (u− 1, u−1 − 1)2n}
ω̃(u−1 − 1, u− 1) = (b′ρ̃+ ρ̃2)(u−1 − 1, u− 1) = 1− ρ̃(u−1)ρ̃(u)

and similarly with u−1 and u interchanged. We now see that the right hand side of
the index formula is

τ̃{(1− ρ̃(u−1)ρ̃(u))n − (1− ρ̃(u)ρ̃(u−1))n}

which is the same as the formula for the index in Proposition 4.14.
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5 Excision in cyclic homology and algebraic K -

theory

This chapter brings three important results in cyclic homology and algebraic K -
theory. The first is the Loday-Quillen theorem on the relation between cyclic homol-
ogy and the Lie algebra homology. This theorem establishes cyclic homology as as
sort of additive K -theory, as will be explained below. Then we briefly describe the
theorem of Wodzicki about excision in cyclic homology and the theorem of Suslin
and Wodzicki on excision in the rational algebraic K -theory. The proof of the last
theorem relies on the result of Loday and Quillen and completes the discussion of
excision begun in 2.3.4.

5.1 The Loday-Quillen theorem

If g is any Lie algebra over a field k , then its homology with coefficients in k is
defined to be Hn(g) = TorU(g)

n (k, k) , where U(g) is the universal enveloping algebra
of g . There is a Koszul complex which computes this homology. The space of n-
chains Cn(g) in this complex is the n-th exterior power of g , Λng . This complex
is equipped with a degree −1 differential, which on the space of n-chains is defined
by the following formula

d(x1 ∧ . . . ∧ xn) =
n∑

i=1

(−1)i+j [xi, xj ] ∧ . . . ∧ x̂i ∧ . . . ∧ x̂j ∧ . . . ∧ xn

We shall be mostly interested in Lie algebras associated with various matrix algebras.
Let A be an algebra over a field k . The algebra of matrices Mr(A) becomes a Lie
algebra if we equip it with the obvious bracket [x, y] = xy − yx. This Lie algebra
will be denoted glr(A). Then for any r there is an inclusion glr(A) → glr+1(A),
which is induced by the canonical inclusion defined for matrix algebras in previous
sections. We put gl(A) to be the union of all the Lie algebras glr(A).

When A is a unital algebra, then the Lie algebra gl(A) of matrices over A
contains the Lie algebra of scalar matrices gl(k). Let us consider matrices of a fixed
dimension r . The Lie algebra glr(k) acts on the chain complex of glr(A) by means
of the Lie derivative

X(v1 ∧ · · · ∧ vk) =
k∑

i=1

v1 ∧ · · · ∧ [X, vi] ∧ · · · ∧ vk

for X in glr(k) and vi in glr(A). The quotient of the Koszul complex C•(gl(A)) by
the above action is called the complex of coinvariants and denoted by C•(gl(A))gl(k) .

The complex C•(gl(A)) of the Lie algebra chains has a natural structure of a
coalgebra. The diagonal map

△ : gln(A) −→ gln(A)⊕ gln(A)
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given by X 7→ X ⊕X induces the coproduct

C•(gl(A)) −→ C•(gl(A))⊗ C•(gl(A)).

This coproduct induces a coproduct on homology thus making H•(gl(A)) into a
coalgebra. On the other hand there is the following map

gln(A)⊕ gln(A)→ gl2n(A)→ gl(A)

where the first arrow is given by the direct sum of matrices. This map induced the
map of complexes

C•(gln(A)⊕ gln(A)) = C•(gln(A))⊗ C•(gln(A)) −→ C•(gl2n(A))

Taking the direct limits of both sides we obtain a product

C•(gl(A))⊗ C•(gl(A)) −→ C•(gl(A)).

This product is neither associative nor commutative, because in general the matrix
(x⊕y)⊕z is only conjugate to the matrix x⊕(y⊕z). In fact, these two matrices are
related by a permutation. The same is true for the matrices x⊕y and y⊕x. However,
on passing to the complex of coinvariants C•(gl(A))gl(k) , one obtains a commutative,
associative product. The proof of this statement uses the fact that the complex of
coinvariants C•(gl(A))gl(k) is the same as the complex C•(gl(A))GL(k) together with
the fact that matrices representing permutations are elements of GL(k).

5.1 Proposition. The complex of coinvariants C•(gl(A))gl(k) is a commutative and
cocommutative graded Hopf algebra.

This is not the only Hopf algebra which results from the two operations defined here.
It turns out that the Lie algebra homology H•(gl(A)) inherits the structure of a
Hopf algebra.

Recall that an element x of a general Hopf algebra H is called primitive if and
only if

△x = x⊗ 1 + 1⊗ x

where △ is the coproduct in H . In the commutative and cocommutative case, H
is generated as a Hopf algebra by its primitive part PrimH , which by definition
consists of all its primitive elements. It is therefore a natural problem to determine
the primitive part of the Hopf algebra H•(gl(A)). The answer turns out to be very
interesting—the primitive part of H•(gl(A)) is the cyclic complex of the algebra A.
This is the statement of the theorem of Loday and Quillen. A first step in the proof
of this result is the following Proposition.

5.2 Proposition. The Lie algebra homology H•(gl(A)) is a commutative and co-
commutative graded Hopf algebra, whose primitive part is the homology of the complex
Prim (C•(gl(A))gl(k)).
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This proposition simply states that the operation of taking the primitive part com-
mutes with the homology functor. It also indicates that we should take a closer look
at the complex of coinvariants C•(gl(A))gl(k) . For this we shall need some elemen-
tary facts from the invariant theory. A classic reference for this topic is the book by
Herman Weyl [Weyl], but it is known for its unreadability. There is a very nice proof
of the basic theorems of the theory of invariants given in the paper by Atiyah, Bott
and Patodi [ABP], and a thorough discussion may be found in Loday’s monograph
[L2]. We use Loday’s exposition in the summary presented here. A brief description
of the invariant theory is also given in the lecture notes by Husemoller and Kassel
[HK] and in the paper by Feigin and Tsygan [FT].

We begin with the invariant theory for glr(k). A key observation here is that if
M is a glr(k)-module with the usual Lie algebra action, and at the same time it is
a GLr(k)-module with the adjoint action, then there is an isomorphism Mglr(k) ≃
MGLr(k) .

Let V be an r -dimensional vector space over k . The group of automorphisms of
V is then the group GLr(k). The group of permutations σn of n letters acts on the
n-fold tensor power V ⊗n of V on the left as follows

σ(v1, . . . , vn ) = (vσ−1(1), . . . , vσ−1(n) ).

We can extend this action by linearity to the action of the group algebra k[Σn] of
the symmetric group Σn . This way we obtain a ring homomorphism µ : k[Σn] →
End(V ⊗n ). On the other hand, the group GLr(V ) acts diagonally on the space V ⊗n

and by conjugation on the algebra End(V ). The image of the map µ falls into the
part of End(V ) which is invariant under the action of GLr(V ). A first fundamental
theorem of invariant theory states that the map

µ : k[Σn] −→ End(V ⊗n )GLr(V )

is surjective. The space on the right hand side is the invariant subspace of End(V ⊗n ),
that is the space of all φ ∈ End(V ⊗n ) such that g−1φg = φ for any g ∈ GLr(V ).
This claim is then improved to the following statement. (We assume that k is a field
of characteristic zero.)

5.3 Proposition. The map µ is an isomorphism for r ≥ n. Otherwise, its kernel
is a two sided ideal In,r in the ring k[Σn] generated by ǫr+1 = Σσ∈Σr+1

sgn(σ)σ .

Let V ∗ be the dual space of V . Then End(V ) = V ⊗ V ∗ . Moreover, End(V ) ≃
End(V )∗ and End(V ⊗n ) = End(V )⊗n . It is also not difficult to see that, if G is a
group, then for any G-module M we have

(MG)∗ = (M∗)G.

We can now define a map

T : k[Σn] −→ End(V ⊗nGLr(V ))
∗
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as the composition of the map µ with the isomorphism

End(V ⊗n )GLr(V ) ≃ (End(V ⊗n )GLr(V ))
∗

.

5.4 Proposition. When n ≥ r = dim V , the map T is an isomorphism.

Let us denote the Lie algebra associated with the algebra End(V ) by g = glr(k).
For any permutation σ ∈ Σn we define a map

trσ : g⊗n −→ k

as follows. Let (X1, . . . , Xn) ∈ g⊗n . Suppose that the permutation σ has the
following decomposition as a product of cycles: σ = σ1 · · ·σk . For a cycle σl =
(in1

, . . . , inl
), l = 1, . . . , k put X(σl) to be the product X(σl) = X in1 · · ·X inl . The

functional trσ is defined by

trσ(X1, . . . , Xn) =
k∏

i=1

trX(σi)

5.5 Lemma. For any σ ∈ Σn , the functional trσ is g-invariant.

Proof. If σ is a cyclic permutation, then for any X ∈ g we have

−(Xtrσ) =
n∑

i=1

trσ(X1, . . . , [X,X i], . . . , Xn)

=
∑

i

tr(Xσ(1), . . . , Xσ(n))

= tr[X,Xσ(1) · · ·Xσ(n)] = 0

which shows that trσ is an invariant functional in this case. In general, if the
permutation σ is a product of two or more cycles, we note that the action of g

affects each cycle separately. Thus using the above calculation we show that trσ is
g -invariant for any σ ∈ Σn .

It turns out that the maps trσ are good models for invariant n-cochains on glr(k)
in view of the following result.

5.6 Proposition. The family {trσ}, with σ ∈ Σn , spans the space of invariant
n-functionals on the Lie algebra glr(k). The maps trσ are linearly independent if
and only if r ≤ n.

We remark that the isomorphism of proposition 5.4 is given explicitly by

T : σ 7→ trσ
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We now set out to find the primitive part of the Lie algebra homology of gl(A).
We do this in a few steps following the original paper of Loday and Quillen [LQ].
First we shall use the fact that the Lie algebra glr(k) is reductive. This will allow
us to replace the standard complex calculating the Lie algebra homology by a quasi-
isomorphic complex of coinvariants. Then we apply the invariant theory to calculate
the complex of coinvariant elements explicitly. In the end we identify the complex
of coinvariants with the cyclic complex.

First we recall some facts from the theory of Lie algebras.

5.7 Definition. A representation of a Lie algebra is called simple or reducible if it
does not contain a nontrivial subrepresentations. A representation of a Lie algebra
is called semisimple if it is a direct sum of simple representations. Finally, a Lie
algebra is called reductive if its adjoint representation is semisimple.

5.8 Example. The Lie algebra glr(k) is reductive for any finite value of r .

5.9 Proposition. Let g be a Lie algebra, and let h be a Lie subalgebra. Let V be a
g-module, and assume that g and V are semisimple h-modules. Then the surjective
map C•(g, V )→ C•(g, V )h is a quasi-isomorphism, i.e. it induces an isomorphism

H•(g, V ) ∼= H•(C•(g, V )h, d)

Proof. The assumption of semisimplicity implies that Cn(g, V ) is a direct sum
of representations of h. The trivial representation corresponds to the module of
coinvariants Cn(g, V )h . Let Ln be the sum of all other components.

Since h is a Lie subalgebra, its action is compatible with the differential d on the
standard complex which means that one has the following direct sum decomposition
of complexes

C•(g, V ) = C•(g, V )h ⊕ L•

We need to show that L• is an acyclic complex. To prove this we consider the
action of the Lie algebra h on its homology. From our assumptions follows that
L• is a direct sum of nontrivial h-modules which implies that the corresponding
components in H•(L•) are also nontrivial h-modules. But on the other hand one
knows that H•(g, V ) is a trivial g -module, and thus a trivial h-module. This implies
that H•(L•) has to be zero.

5.10 Corollary. If A is a unital algebra then the complex C•(glr(A)) is quasi-
isomorphic to the complex C•(glr(A))glr(k) .

Proof. Apply Proposition 5.9 to the case when g = glr(A), h = glr(k).

With theses results at hand, we can compute the coinvariant complex explicitly.
We first note that there is the following isomorphism

glr(A)⊗n = glr(k)⊗n ⊗ A⊗n .
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which implies that
(glr(A)⊗n )g = (glr(k)⊗n )g ⊗ A⊗n .

This is turn gives
(glr(A)⊗n )g = k[Σn]⊗ A⊗n .

where we use Proposition 5.6 to show that (glr(k)⊗n )g = k[Σn], for r ≥ n. We now
apply these considerations to the standard Lie complex C•(glr(A)). We write

Cn(glr(A))g = ((glr(A)⊗n )Σn)g = (k[Σn]⊗ A⊗n )Σn.

where we use that the actions of g and the permutation group Σn commute. Thus
we have the following statement.

5.11 Lemma. One has the following isomorphism:

Cn(glr(A))g = (k[Σn]⊗ A⊗n )Σn .

for any r ≤ n.

There is the following description of the coproduct on C•(glr(A))g in terms of this
isomorphism. Let σ ∈ Σn and let (I, J) be an ordered partition of the set {1, . . . , n}
such that σ(I) ⊂ I and σ(J) ⊂ J . Let σI (σJ , respectively), denote the restriction
of σ to I (J ). Then for any (a1, . . . , an) ∈ A⊗n we have

△(σ ⊗ (a1, . . . , an )) =
∑

I,J

(σI ⊗ aI)⊗ (σJ ⊗ aJ)

This coproduct makes the above isomorphism an isomorphism of coalgebras. A
primitive element with respect to this coproduct will correspond to a permutation σ
whose only invariant subset of {1, . . . , n} is the whole set, i.e., a cyclic permutation.
Let Un be the conjugacy class of the cycle τ = (1, . . . , n).

5.12 Proposition. [Loday-Quillen] The primitive part of the graded vector space
C•(gl(A))g is the graded space Cλ

• (A) of cyclic chains on A.

Proof. From the remark preceding this lemma follows that the primitive part of
C•(gr(A))gl is

PrimC•(glr(A))g =
⊕

n≥1

(k[Un]⊗ A⊗n )Σn

Let us assume that the cyclic group Zn is embedded in the group of permutations Σn

by sending the canonical generator to the cyclic permutation τ . There is a bijection
between Un , regarded as a Σn -space and the quotient space Σn/Zn . The bijection is
given by στσ−1 7→ [σ] ∈ Σn/Zn . It follows that the Σn -module k[Un] is isomorphic
to a module induced from the trivial Zn -module k by the inclusion Zn → Σn . This
means that we have the following isomorphism

(k[Un]⊗ A⊗n)Σn ≃ k ⊗k[Σn] k[Σn/Zn]⊗ A⊗n

= k ⊗k[Zn] (k ⊗A⊗n)
= (A⊗n)Zn
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We claim that the space (A⊗n )Zn is the space of cyclic chains. To check this, notice
that the generator of Zn acts on (A⊗n )Zn by sgn(τ)τ . This is the same as the action
of the operator λ which we used to define the cyclic complex. This gives

(A⊗n )Zn = A⊗n/(1− λ) = Cλ
n(A)

We have thus proved that, as a graded vector space, the space of primitive coin-
variant chains on glr(A) is the same as the space of cyclic chains. Now we need to
take care of the differentials to make sure that this identification is a map of com-
plexes and therefore induces an isomorphism on the level of homology. This comes
down to the following simple lemma.

5.13 Lemma. The isomorphism of graded vector spaces

(A⊗n )Zn = Cλ
n(A)

is a chain map.

Proof. Calculation.

5.14 Theorem. [Loday-Quillen] The primitive part of the Lie algebra homology
H•(gl(A)) is the cyclic homology HC•(A) of the algebra A. More precisely, one has
the following isomorphism

PrimH•(gl(A)) ∼= HC•−1(A)

5.2 Excision in cyclic homology

In this section we prove the excision property of cyclic homology, which was first
demonstrated by Wodzicki [Wo]. We now want to study a relation between an
excision property associated with an algebra extension A = R/I and the notion of
H -unitality. We recall that the ideal I in the algebra extension A = R/I , regarded
as a nonunital algebra, has the excision property if there exists the following long
exact sequence in cyclic homology.

→ HCq+1(A)→ HCq(I)→ HCq(R)→ HCq(A)→

Wodzicki shows that not all ideals I have this property, but only those that are
H -unital (homologically unital), by which we mean the following.

5.15 Definition. A non-unital algebra I is called H-unital (homologically unital)
if and only if the complex (B(I), b′) (see Remark 3.22) is acyclic.
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5.16 Theorem. [Wodzicki] Let 0→ I → R→ A→ 0 be a short exact sequence of
algebras, where the kernel I is an H -unital algebra. Then there is the following long
exact sequence in cyclic homology

→ HCq+1(A)→ HCq(I)→ HCq(R)→ HCq(A)→ .(5.17)

The idea of proof that we present here is quite simple [B1]. To the short exact
sequence

0→ I
ı
−→ R

π
−→ A→ 0

we can associate a sequence of cyclic complexes

Cλ
• (I)

ı∗−→ Cλ
• (R)

π∗−→ Cλ
• (A).

This sequence is not exact. However, we shall show that, from the point of view of
homology, this sequence behaves as if it were exact. A key ingredient in this approach
is the theorem by Goodwillie, which describes the cyclic complex of the semidirect
product algebra [G2, FT].

Let A be an algebra and let M be a bimodule over A. We form the semidirect
product algebra A⊕M in which M is assumed to be an ideal of square zero. Thus
the product in this algebra is given by the following formula

(a,m)(a′, m′) = (aa′, am′ +ma′)

There is a natural grading on A⊕M which places A in degree zero and M in degree
one. This grading induces a grading on the cyclic complex Cλ

• (A⊕M)

Cλ
• (A⊕M) = Cλ

• (A)⊕
⊕

p≥1

Cλ
• (A⊕M)(p)

where the summands on the right are subcomplexes and where Cλ
• (A⊕M)(p) denotes

the part of the cyclic complex Cλ
• (A⊕M) which is of degree p in M . In degree n

the space Cλ
n(A ⊕M)(p) is spanned by the symbols (a0, . . . , an) where each ai is

homogeneous in A⊕M and
∑

deg ai = p.
Let us define the n-fold cyclic tensor product (M⊗A)n by

(M⊗A)n = M⊗A
n
· · · ⊗AM⊗A = (M⊗A

n
· · · ⊗AM)⊗A⊗Aop A

where Aop is the ‘opposite’ algebra. This space carries two natural actions of the
symmetric group of order n. First we let

σ (m1, . . . , mn) = (mn, m1, . . . , mn−1)

and the second action, which we used above in the definition of the cyclic complex,
is obtained by letting the generator act as λ = (−1)n−1σ . We shall denote the cor-
responding quotient spaces of these actions by (M⊗A)nσ and (M⊗A)nλ , respectively.
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Let us now assume that A is a nonunital algebra and let us denote by Ã the
augmented algebra Ã = C✄< A. We recall that the algebra of differential forms
ΩÃ is an augmented DG algebra:

ΩÃ = C⊕ Ω̄Ã

The difference between ΩÃ and Ω̄Ã is in degree zero, where Ω0Ã = C✄< A and
Ω̄0Ã = A.

Let C (A) = Ω̄Ã⊗ Ã, so that in degree n we find

C n(A) = Ã⊗ A⊗n ⊗ Ã

We shall consider C (A) as a complex equipped with the differential b′ 3.6.
Let M be an A-bimodule. Then the tensor product M ⊗Ã C (A) is a complex

of A-bimodules. We extend the definition of the cyclic tensor product to form the
complex

(M ⊗Ã C (A)⊗Ã)p

whose typical generator in degree p+ n is of the form

(m1, a1, . . . , ai, m2, ai+1, . . . , aj , m3, aj+1 . . . , mp, . . . , an)

for mi ∈ M and aj ∈ A. Again, there are two actions of the cyclic group order p
that one can introduce in this complex. The first is given by an extension of the
action of the generator σ to complexes, and the other action is defined with the use
of the generator λ . The action of the latter operator in degree n can be described
explicitly by

λ(m1, . . . , ai, . . . ,︸ ︷︷ ︸
n−l−1 terms

mp, s1, . . . , sl) = (−1)(n−l−1)(l+1)(mp, s1, . . . , sl, m1, . . . )

for ri, sj ∈ A and mk ∈M .
Let us now consider the space (M [1] ⊗Ã C (A)⊗Ã)pλ of coinvariants with respect

to the action of the cyclic group of order p. Here we treat the A-module M as a
complex concentrated in degree zero, so that M [1] is of degree 1. There is a canonical
map which sends a generator

(m1, x1, . . . , xi1 , m2, xi1+1, . . . , mp, xip−1+1, . . . , xl) ∈ (M [1]⊗Ã C (A)⊗Ã)p

in degree p+ l to itself, regarded as a cyclic chain of degree p+ l− 1. This way one
defines a map

(M [1]⊗Ã C (A)⊗Ã)pσ −→ Cλ
• (A⊕M)(p)[1].

We note here that since we work with complexes, the action of σ involves signs.
Since we have

(M [1]⊗Ã C (A)⊗Ã)p = (M ⊗Ã C (A))[p]
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and the cyclic group acts on C[1]⊗p via the sign of a permutation, we have in fact
defined a map

(M ⊗Ã C (A)⊗Ã)pλ[p− 1] −→ Cλ
• (A⊕M)(p).

The reason that [p−1] rather than [p] appears on the left is the degree convention in
the cyclic complex. We can now state the following theorem of Goodwillie [G2, Q3].

5.18 Theorem. The canonical map

(M ⊗Ã C (A)⊗Ã)pλ[p− 1] −→ Cλ
• (A⊕M)(p)

is an isomorphism of complexes for p ≥ 1.

5.19 Remark. If R is a unital algebra, we can replace in the above formulae Ã
by R , and the nonunital algebra A by R̄ to get analogous statements in the unital
case. Both cases have been discussed in [Q3].

In the case we are interested in, we consider an H -unital ideal I in an algebra
R . We want to treat R as a filtered algebra, and so we shall digress a little to recall
what we need from the theory of filtered algebras.

First, we say that a vector space V is equipped with an increasing filtration if
there is a family of subspaces FpV , p ∈ Z such that

· · · ⊂ Fp−1V ⊂ FpV ⊂ · · ·V.

Associated to this data there is a graded vector space which we shall denote by
gr V =

⊕
p grpV where

grpV = FpV/Fp−1V.

If V and W are two filtered vector spaces, their tensor product V ⊗W is also a
filtered vector space with filtration defined by

Fp(V ⊗W ) =
∑

i+j=p

FiV ⊗ FjW ⊂ V ⊗W.

Furthermore, there is a canonical isomorphism of graded vector spaces

gr (V ⊗W ) = (gr V )⊗ (grW ).(5.20)

Using this general principle we see that if V is a filtered vector space then the
filtration of V induces filtrations of multiple tensor products V ⊗n for any positive
integer n. We also have the following analogue of the isomorphism (5.20)

gr V ⊗n = (gr V )⊗n.
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Let A be an algebra. A filtration of A is a family FpA, p ∈ Z, of k -submodules
of A which gives a filtration of A as a vector space and which satisfies

FpA · FqA ⊂ Fp+qA.

The only algebra filtration that we shall see in this chapter will satisfy the following
two conditions: F−1A = 0 and

⋃
p FpA = A.

The product A⊗A→ A is thus compatible with filtrations and induces a graded
algebra structure on gr A, where the grading is with respect to nonnegative integers.
Moreover, an algebra filtration induces a filtration by subcomplexes of the Hochschild
complex C•(A,A) = C•(A), and the cyclic complex Cλ

• (A). Thus in the case of,
say, the cyclic complex Cλ

• (A) we have that the space FpC
λ
n(A) is spanned by the

elements (a0, . . . , an ), where ai ∈ FpiA and
∑
pi ≤ p.

The grading on the algebra grA induces a grading C•(grA) =
⊕
pC•(A)(p) of the

Hochschild complex by subcomplexes. A generalization of the isomorphism (5.20) to
the algebraic situation states that there is a canonical isomorphism of complexes

grpC•(A) = C•(gr A)(p).

A similar result holds for the cyclic complex.

We now want to apply this general theory together with Goodwillie’s Theorem
5.18 to the case of an algebra extension A = R/I . We regard R as a filtered algebra,
with filtration given by

F0R = I, FpR = R, p ≥ 1.

It is quite clear that the associated graded algebra is then just

gr(R) = I ⊕R/I = I ⊕M.

where we denote M = R/I when we want to stress the I -bimodule structure of the
algebra A = R/I . The algebra gr(R) has a very simple product induced from the
product on R : I · I ⊂ I , M · I = I ·M = M2 = 0. In particular, this means that I
acts trivially on M .

Let us form the complex M ⊗Ĩ C (I)⊗Ĩ which in degree n is given by

(M ⊗Ĩ C (I)⊗Ĩ)n = M ⊗ I⊗n .

This complex is equipped with the differential b given by the usual formula

b(m, a1, . . . , an) = (ma1, a2, . . . , an)

+
n−1∑

i=1

(−1)i(m, a1, . . . , aiai+1, . . . , an)

+ (−1)n(anm, a1, . . . , an−1).
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Taking into account the product on the associated graded algebra gr(R) we see that
this differential is simply

b(m, r1, . . . , rn ) = m⊗ (−b′)(r1, . . . , rn )

since rnm = mr1 = 0 in this case. Thus we have the following isomorphism of
complexes

M ⊗Ĩ C (I)⊗Ĩ ≃M ⊗ (I⊗• , b′) .(5.21)

The complex (I⊗• , b′) is just the complex (B(I), b′) of the ideal I considered as a
nonunital algebra (compare 3.22).

To describe the cyclic complex of the algebra gr(R) we note that from the above
and Theorem 5.18

Cλ
• (I ⊕M) = Cλ

• (I) ⊕ (M ⊗ B(I)) ⊕ (M ⊗Ĩ C (I)⊗Ĩ)λ[1]⊕ . . . .

The general term in filtration degree p is

Cλ
• (I ⊕M)(p) = (M ⊗Ĩ C (I)⊗Ĩ)

p
λ[p− 1]

which we can write using (5.21) as follows

(M ⊗Ĩ C (I)⊗Ĩ)
p = (M ⊗ B(I)⊗)p

Now assume that the ideal I , considered as a nonunital algebra, is H -unital. This
means that the bar construction B(I) in the formula above is a contractible complex.
Thus the following canonical map is a quasi-isomorphism

Cλ
• (I ⊕M)(p) ≃ (M⊗p)λ[p− 1]

for p ≥ 1. When p = 0 we have that

Cλ
• (I ⊕M)(0) = Cλ

• (I).

Finally, let us introduce the following filtration on the cyclic complex Cλ
• (M),

where M = R/I . We put FpC
λ
n(M) = 0 for p ≤ n, and FpC

λ
n(M) = Cλ

n(M),
p ≥ n + 1. We note that the canonical surjection π : Cλ

• (R) → Cλ
• (M) carries

FpC
λ
• (R) onto FpC

λ
• (M).

5.22 Lemma. Let A = R/I be an algebra extension where we assume that the ideal
I is H -unital. Then for p ≥ 1 the map

grpC
λ
• (R)→ grpC

λ
• (A)

induced by the canonical projection π : R→ A is a quasi-isomorphism.
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Proof. We denote again by M the I -bimodule A = R/I in the semidirect product
algebra gr(R) = I ⊕M . Using that

Cλ
• (I ⊕M)(p) = Cλ

• (gr(R))(p) = grpC
λ
• (R)

we can make the following identifications

(M ⊗ C(I)⊗)pλ[p− 1]
∼
→ Cλ

• (gr R)(p) = grpC
λ
• (R)

for p ≥ 1. For p = 0, Cλ
• (gr R)(0) = Cλ

• (I).
From the above analysis follows that, when I is an H -unital algebra, the nonzero

homology of grpC
λ
• (R) is simply M⊗pλ located in degree p− 1. This is the same as

the homology of grpC
λ
• (M). Furthermore, for p = 0, the nonzero homology of B(I)

is I . The lemma then follows from the fact that the isomorphism of Theorem 5.18,
the augmentation C(I)→ I and π are compatible with the filtration on R .

5.23 Proposition. The projection map π induces a quasi-isomorphism

Cλ
• (R)/Cλ

• (I)→ Cλ
• (R/I)

when the ideal I is an H -unital algebra.

Proof. The lemma above implies by induction that π induces a quasi-isomorphism

FpC
λ
• (R)/F0C

λ
• (R)→ FpC

λ
• (R/I)

for all p. Since F0C
λ
• (R) = Cλ

• (I), and the filtration of R is exhaustive, we have the
required result.

Theorem 5.16 now follows from Proposition 5.23 if we apply the homology functor
to the exact sequence of complexes

0 −→ Cλ
• (I) −→ Cλ

• (R) −→ Cλ
• (R)/Cλ

• (I) −→ 0.

5.3 Excision in algebraic K -theory

From the point of view of calculations in the algebraic K -theory it is important to
know how to compare the K -groups Kn(A) and Kn(A/I), where I is an ideal in
A. We have treated the corresponding problem for cyclic homology in the previous
section. It is possible to define abstractly the relative K -groups Kn(A, I) so that
they fit in the exact sequence

→ Kn+1(A/I)→ Kn(A, I)→ Kn(A)→ Kn(A/I)→ · · · → K0(A/I)

We have defined relative K -groups for n = 0, 1 in Section 2.3.3, and we shall indicate
how to do that for positive n in a moment. The best we can hope for is that if the
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relative K -groups depend only on the ideal I , then we could substitute the K -theory
K(I) in place of the relative groups K(A, I). Recall from 2.54, Section 2.3.3 that
to define Kn(I) we treat I as a nonunital algebra and consider its augmentation
Ĩ = Z✄ < I where the product is defined by (n, u)(m, v) = (nm, nv + mu + uv)
Then we define

Kn(I) = ker[Kn(Ĩ)→ Kn(Z)]

This definition should be compatible with the definition of relative K -theory in the
sense that Kn(I) = Kn(Ĩ, I). A natural question at this stage is the following: Is
the natural map Kn(I) → Kn(A, I) an isomorphism? We shall say that an ideal I
for which this isomorphism takes place has the excision property. It has been shown
by H. Bass that this is indeed so in degree 0, and we have checked this result in 2.58.
It is known that for arbitrary ideals this statement is false for n > 0. It is clear then
that one needs to find a class of ideals that would satisfy the excision property. Suslin
and Wodzicki have formulated a simple necessary and sufficient condition for an ideal
I to have the excision property in the algebraic K -theory [SW]. Their result may
be stated as follows. For any abelian group M we shall denote by MQ = M ⊗Z Q.

5.24 Theorem. [Suslin-Wodzicki] For any nonunital ring I the following conditions
are equivalent.

1. I has the excision property with respect to KQ .

2. IQ is H -unital.

5.25 Corollary. If I is a Q-algebra (not necessarily unital) then the following
conditions are equivalent.

1. I has the excision property with respect to K .

2. I is H -unital.

Among the many important applications of this result there is a proof of the following
Karoubi conjecture.

5.26 Theorem. Let us denote by K the C∗ -algebra of compact operators in a sep-
arable Hilbert space. Then there is a canonical isomorphism for every n ≥ 0

Kalg
n (A⊗̂πK) ≃ Ktop

n (A⊗̂πK)

In the above formula, ⊗̂π denotes the projective completed tensor product in category
of C∗ -algebras. Moreover, Ktop

n denotes the topological K -theory, i.e. the K -theory
defined in the category of C∗ -algebras as in the first chapter. This theorem then
implies the following corollary proved by Wodzicki.

5.27 Theorem. For any C∗ -algebra A the algebraic K -theory Kalg
n (A ⊗ K) is

periodic with period 2.
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To explain the statement of the theorem, recall that

Kn(A) = πn(BGL(A)+)

for n ≥ 1. The homology groups of the general linear group GL(A) are re-
lated in an important way to the algebraic K -theory. Consider the homology
H∗(GL(A),Q) =

⊕
n≥0Hn(GL(A),Q) with rational coefficients which is a commu-

tative and cocommutative Hopf algebra and so it is completely determined by its
primitive part. It turns out that the primitive part of this algebra is precisely the
algebraic K -theory of A:

PrimH∗(GL(A),Q) ≃
⊕

n≥1

Kn(A)Q

This theorem is the prototype of the Loday-Quillen theorem in cyclic homology.
Let I be a two-sided ideal in the algebra A. The canonical surjection A→ A/I

induces a group homomorphism GL(A) → GL(A/I). Let us denote by GL(A/I)
the image of GL(A) inside GL(A/I) under this map. There is an induced map
BGL(A)+ → BGL(A/I)+ with a connected homotopy fibre F (A, I).

5.28 Definition. The relative K -theory groups are defined by

Kn(A, I) = πn(F (A, I)

for n ≥ 1.

It follows that the long exact sequence involving relative K -theory stated at the
beginning of this section is a long exact sequence associated with a fibration.

The main theorem proved by Wodzicki and Suslin is the following [SW].

5.29 Theorem. Let I be a (not necessarily unital) algebra over Q. Then the fol-
lowing conditions are equivalent.

1. I is H -unital.

2. I has the excision property in cyclic homology.

3. I has the excision property with respect to KQ .

The equivalence of conditions 1 and 2 was proved by Wodzicki in [Wo], who also
showed that if I has the excision property with respect to KQ then it is H -unital.
Thus the main result of Suslin and Wodzicki was to prove that if I is H -unital then
it has the excision property in KQ . We refer to the paper [SW] and to Loday’s
exposition [L3].
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6 Further examples

6.1 Derivations and cyclic homology

We shall now devote some time to calculations and examples. We begin with another
application of Theorem 5.18 which will be used to show that the derivations of an
algebra A act trivially on the periodic cyclic homology of A. First let us recall that
a derivation D of an algebra A is a linear map D : A → A satisfying the Leibniz
rule

D(ab) = D(a)b+ aD(b)

for all a, b in A. This formula uses the fact that the algebra A is a bimodule over
itself and one defines a derivation with values in a bimodule M over A to be a linear
map D : A → M satisfying the same Leibniz rule. As we have mentioned in 3.1,
there is a universal model for derivations of A with values in an A-bimodule, which
is provided by the bimodule of 1-forms Ω1A and the derivation d : A→ Ω1A. Recall
also, that Ω1 enters the exact sequence

0→ Ω1 i
−→ A⊗A

m
−→ A→ 0(6.1)

where the inclusion i is given by

i(a0da1) = a0(a1 ⊗ 1− 1⊗ a1)

The short exact sequence (6.1) gives rise to a corresponding short exact sequence
of Hochschild chain complexes

0 −→ C•(A,Ω
1A) −→ C•(A,A⊗ A)

m⊗1
−→ C•(A,A) −→ 0(6.2)

which leads to a long exact sequence in Hochschild homology

→ Hn(A,A⊗ A)→ Hn(A,A)
δ
−→ Hn−1(A,Ω

1A)→ Hn−1(A,A⊗ A)→(6.3)

where δ denotes the connecting homomorphism.

6.4 Proposition. The boundary homomorphism

δ : H•+1(A,A) −→ H•(A,Ω
1A)

is an isomorphism in positive degrees. In degree 0 this map is injective.

Proof. We shall give an explicit formula for the connecting homomorphism δ . For
this purpose let us define a lifting s : Cp(A,A)→ Cp(A,A⊗A) by

(a0, a1, . . . , ap)→ (a0 ⊗ 1, a1, . . . , ap).
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Now for any p-chain (a0, . . . , ap ) we have

bs(a0, . . . , ap) = (a0 ⊗ a1)⊗ (a2, . . . , ap) +
∑

(−1)i(a0 ⊗ 1)⊗ ( . . . , aiai+1, . . . )
+ (−1)p(apa0 ⊗ 1)⊗ (a2, . . . , ap−1)

sb(a0, . . . , ap) = (a0a1 ⊗ 1)⊗ (a2, . . . , ap) +
∑

(−1)i(a0 ⊗ 1)⊗ ( . . . , aiai+1, . . . )
+ (−1)p(apa0 ⊗ 1)⊗ (a2, . . . , ap−1)

The difference of the expressions calculated above is

(bs− sb)(a0, . . . , ap) = (a0a1 ⊗ 1)⊗ (a2, . . . , ap)
− (a0 ⊗ a1)⊗ (a2, . . . , ap).

(6.5)

It is clear that the map m ⊗ 1⊗p−1 : Cp−1(A,A ⊗ A) → Cp−1(A,A) in the exact
sequence of chain complexes (6.2) sends this expression to zero; from the exactness of
the sequence (6.2) then follows that there exists a chain in Cp−1(A,Ω

1A) whose image
under this map (bs− sb)(a0, . . . , ap ). To identify this chain we use the definition of
the bimodule Ω1A. We have

ı(a0da1) = b′(a0 ⊗ a1 ⊗ 1) = a0a1 ⊗ 1− a0 ⊗ a1.

This together with (6.5) gives the boundary map δ :

δ : Cp(A,A) −→ Cp−1(A,Ω
1A)

a0 ⊗ (a1, . . . , ap) 7→ a0da1 ⊗ (a2, . . . , ap).

Now we need to show that this map induces an isomorphism in homology in
positive degrees. For this we define a map f : C•(A,A⊗ A)→ C•+1(A,A) by

f : (x⊗ y)⊗ (a1, . . . , ap )→ (y, a1, . . . , ap , x).

We then calculate

fb((x⊗ y)⊗ (a1, . . . , ap)) = (ya1, . . . , ap, x)

+
p−1∑

i=1

(−1)i( . . . , aiai+1, . . . )

+ (−1)p(y, a1, . . . , ap−1, apx)

= b′f(y, a1, . . . , ap, x).

This calculation shows that the complex C•(A,A⊗A) with differential b is isomor-
phic to the complex C•(A,A) with the differential b′ with degrees shifted by one.
But the latter complex is contractible since we assume that the algebra A is unital,
so we see that the homology of the complex C•(A,A⊗ A) is zero in positive de-
grees. This means that in the homology long exact sequence (6.3) every third term
is zero in positive degrees, hence the boundary map δ indeed gives an isomorphism
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H•+1(A,A)→ H•(A,Ω
1A). In lowest degrees the long exact homology sequence has

the following form

0 −→ H1(A,A) −→ Ω1A −→ A −→ A/[A,A] −→ 0

which shows that in this case the map is injective, and the proposition follows.

We are now ready to relate these facts to the Connes long exact sequence

→ Hn(A,A)
I
−→ HCn(A)

S
−→ HCn−2(A)

B
−→ Hn−1(A,A)→

Let us then consider the semi-direct product algebra A ⊕ Ω1A, where we assume
that the ideal Ω1A has zero product. From the formula of Theorem 5.18, the cyclic
complex of A⊕ Ω1A can be written to the first order in Ω1A as follows

Cλ
• (A⊕ Ω1A) = Cλ

• (A)⊕ C•(A,Ω
1A)⊕ · · ·

where the complex C•(A,Ω
1A) of degree one in Ω1A is the Hochschild complex of

A with coefficients in Ω1A. Let π denote the projection

π : Cλ
• (A⊕ Ω1A) −→ C•(A,Ω

1A).

There is a corresponding map from cyclic to Hochschild homology

HC•(A⊕ Ω1A)→ H•(A,Ω
1A).

Let D : A → A be a derivation of an algebra A. It acts on homology via the
corresponding Lie derivative LD : C(A,A)→ C(A,A) defined by

LD(a0 ⊗ · · · ⊗ ap) =
p∑

i=0

(a0, . . . , Dai, . . . , ap).

6.6 Proposition. The following diagram

HC•(A)
B

−−−−→ H•+1(A,A)yd̃
y δ

HC•(A,A⊕ Ω1A)
p

−−−−→ H•(A,Ω
1A)

commutes. Here δ is the boundary map of Proposition 6.4, and d̃ is the inclusion
map induced by the canonical map 1⊕ d : A→ A⊕ Ω1A.
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Proof. Let us assume that (a0, . . . , ap ) ∈ Cλ
p (A). We have

πd̃(a0, . . . , ap) = π(a0 + da0, . . . , ap + dap)

=
p∑

i=0

(ao, . . . , dai, . . . , ap)

=
p∑

i=0

(−1)pi(dai, ai+1, . . . , ap, a0, . . . , ai−1).

From the calculation of the boundary map δ we see that this element comes from
the chain ∑

(−1)pi(1, ai, . . . , ap, a0, . . . , ai−1) = B(a0, . . . , ap )

which proves the proposition.

6.7 Remark. We note that this proposition gives a different way to find a formula
for the operator B , which appears in the Connes long exact sequence, and which we
defined in Section 3.1.

6.8 Theorem. The composite map LD◦S : HC• → HC•−2 acts as the zero operator
on cyclic homology.

Proof. Let us consider the following diagram

HC•(A)
B

−−−−→ H•+1(A,A)
δ

−−−−→ H•(A,Ω
1A)yLD

y D̃

HC•(A)
I

←−−−− H•(A,A)

where I and B are maps from the long exact homology sequence of Connes and
D̃ : H•(A,Ω

1A)→ H•(A,A) is induced by the map

D̃ : Ω1A −→ A, a1da2 7→ a1Da2.

We show that this diagram is commutative. To this end we calculate

(a0, . . . , ap)
δB
7→

∑
(−1)pi(dai, ai+1, . . . , ap, a0, . . . , ai−1)

D̃
7→

∑
(−1)pi(Dai, ai+1, . . . , ap, a0, . . . , ai−1)

I
7→

∑
(a0, . . .Dai, . . . ap)

= LD(a0, . . . , ap).

Hence we can write
LD ◦S = ID̃δBS = 0

since BS = 0 from the Connes long exact sequence. This completes the proof.
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6.9 Corollary. Any derivation of the algebra A acts trivially on the periodic cyclic
homology HPν(A).

Proof. We recall that the complex which computes the periodic homology is the in-
verse limit of the cyclic complex with respect to the action of the periodicity operator
S .

6.10 Remark. Theorem 6.8 was proved by Goodwillie in [G2] in the setting of his
theory of cyclic objects. The proof given here is taken from [B1].

6.2 Cyclic and reduced cyclic homology

As another application of Goodwillie’s theorem 5.18 we shall discuss the reduced
cyclic homology of a unital algebra. In this case the long exact sequence derived in
the previous section becomes a long exact sequence relating cyclic and reduced cyclic
homology theory of an algebra.

We note first that when A is unital, one has the following short exact sequence

0 −→ k −→ A −→ Ā −→ 0(6.11)

which gives the sequence of complexes

Cλ
• (k)

ı
−→ Cλ

• (A)
π
−→ C̄λ

• (A)(6.12)

where C̄λ
• (A) is the reduced cyclic complex, i.e. the cyclic complex of the nonunital

algebra Ā . As before, this sequence is not exact but it has a similar property as the
sequence discussed in the previous section—it gives an exact sequence in homology.

A unital algebra can be regarded as a filtered algebra with the following simple
filtration. We assume that F0A = k and that FpA = A for all p ≥ 1. The associated
graded algebra gr A is in this case just gr A = k ⊕ Ā. It follows from the definition
of our filtration that the ideal Ā has zero product. This filtration of the algebra A
induces filtrations of the Hochschild and cyclic complexes. We shall be particularly
interested in the filtration induced on the cyclic complex Cλ

• (A) of the algebra A.
Let us introduce the following filtration of the reduced cyclic complex C̄λ(A)• .

We put FpC̄
λ
n(A) = 0 for p ≤ n and FpC̄

λ
n(A) = C̄λ

n(A), p ≥ n + 1. We note that
the canonical surjection π : Cλ(A)• → C̄λ

• (A) carries FpC
λ
• (A) onto FpC̄

λ
• (A). Then

we have the following analogue of Lemma 5.22.

6.13 Lemma. For p ≥ 1 the map

grpC
λ
• (A)→ grpC̄

λ
• (A)

induced by π is a quasi-isomorphism.
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Proof. The associated graded algebra gr A of the algebra A given by gr A = k ⊕
Ā is the semi direct product algebra. From Theorem 5.18 we have the following
isomorphism

Σp−1(Ā⊗ B(k)⊗)pλ
∼
→ Cλ(gr A)(p) = grpC

λ(A)

for p ≥ 1. For p = 0, Cλ(gr A)(0) = Cλ(k). Now the homology of grpC
λ(A)

consists of just Ā⊗pλ in degree p−1 which is the same as the homology of grpC̄
λ
• (A).

On the other hand, in degree zero, the nonzero homology of B(k) is k . The result
of the lemma follows from the fact that the three maps used here: the isomorphism
of Theorem 5.18, the canonical projection π and the augmentation B (k) → k are
compatible with the filtration on A.

Proceeding by induction we see that the map

FpC
λ
• (A)/F0C

λ
• (A)→ FpC̄

λ(A)•

is a quasi-isomorphism for all p. As F0C
λ(A) = Cλ(k) and the increasing filtration

is exhaustive, we have the following statement.

6.14 Proposition. The projection map π induces a quasi-isomorphism

Cλ
• (A)/Cλ

• (k)→ C̄λ
• (A)

There is a short exact sequence of complexes

0 −→ Cλ
• (k) −→ Cλ

• (A) −→ Cλ
• (A)/Cλ

• (k) −→ 0

so if we use the corresponding long exact sequence in homology and Proposition 6.14
above we have the following.

6.15 Theorem. There is a long exact homology sequence

−→ HCn(k) −→ HCn(A) −→ H̄Cn(A) −→ HCn−1(k) −→

6.16 Remark. This theorem is proved in a different way in [LQ] with the use of a
short exact sequence of reduced and normalized double complexes.

6.3 Canonical classes in reduced cyclic cohomology

It is not difficult to find a cohomology version of the long exact sequence derived in
Theorem 6.15. Since the operation V 7→ V ∗ of taking a dual vector space is exact,
we obtain a long exact sequence relating cyclic and reduced cyclic cohomology:

−→ HCn(k) −→ H̄Cn+1(A) −→ HCn+1(A) −→ HCn+1(k) −→

Moreover this sequence is obtained from the sequence of complexes

C̄•λ(A)
π∗

−→ C•λ(A)
ı∗
−→ C•λ(k)
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where * denotes the transpose map on dual vector spaces and the maps ı and π are
the same as in the previous section. These maps have the following properties. It is
clear that ı∗π∗ = 0, π∗ is injective, and ı∗ is surjective. Moreover, the map induced
by π∗ from C̄λ(A)• to the kernel of ı∗ is a quasi-isomorphism. Thus we see that, as
in the dual case of homology, this sequence, although not exact, can be regarded as
an exact sequence if we are only interested in its cohomology.

The cyclic cohomology of the field k is particularly simple.

6.17 Lemma. One has

HCn(k) =

{
k, n = 2i
0, otherwise.

Proof. We note that there are no cyclic cochains in odd degrees and that the space
of cyclic cochains in even degrees is one dimensional. The result then follows from
the fact that the differential b is identically zero in the even degrees.

Hence the cyclic cohomology of a field is generated in each even degree by a
canonical generator. In degree 2n this generator is the image of 1 ∈ HC0(k) under
Sn . We want to use this fact together with the cohomology long exact sequence to
describe some canonical reduced cohomology classes in H̄C•(A). For this we shall
discuss the connecting map HC2n(k)→ H̄C2n+1(A). We shall use a method similar
to the usual transgression procedure of Chern-Weil theory. This means that we want
to construct a cochain f ∈ C2n

λ (A) such that ı∗f ∈ C2n
λ (k) is a cocycle whose class

generates HC2n(k), and bf = π∗g with g ∈ C̄2n+1
λ (A). Under these assumptions

g is a reduced cyclic cocycle, whose class [g] ∈ H̄C2n+1(A) is the image under the
above connecting map of the generator [ı∗f ] ∈ HC2n(k).

Let us then consider B(A)∗ , the dual of the acyclic Hochschild complex defined
in 3.22. We recall that B(A)∗ is a differential graded algebra, with pointwise mul-
tiplication of chains and with differential b′ . The cyclic norm operator N gives a
trace on B(A)∗ with values in C•λ(A). In degree n the operator N is given by the
formula

N =
n∑

i=0

λi.

Let us choose a 1-cochain ρ : A→ k such that ρ(1) = 1. As this is a linear map,
we can consider its curvature, which is a two-cochain ω = b′ρ − ρ2 . Consider the
Chern-Simons form associated with ρ

cs2n+1 = N
∫ 1

0
ρ(tb′ρ− t2ρ2)ndt/n!.

which is a cyclic cocycle of degree 2n. We have already encountered this definition
in formula 4.2 of Section 4.2.

6.18 Lemma. One has the following transgression identity

b cs2n+1 = ch2n+2
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where ch2n+2 = Nωn+1/(n+1)! is the Chern character form determined by the cochain
ρ and trace N .

Proof. Let ρt be a one-parameter family of cochains as above. Let ω̇t denote the
derivative of ωt with respect to the parameter t, and let ad ρt = [ρr, ·]. We have

∂t(ω
n
t ) =

n∑

i=1

ωi−1t ω̇tω
n−i
t

=
n∑

i=1

ωi−1t (b′ − ad ρt)ρ̇tω
n−i
t

= (b′ − ad ρt)
n∑

i=1

ωi−1t ρ̇tω
n−i
t .

Let µn,t =
∑
i ω

i−1
t ρ̇tω

n−i
t . We calculate

∂t(N(ωnt )) = N(b′ − ad ρt)µn,t
= bN(µn,t)
= b(N(nρ̇tω

n−1
t ))

where we use that N is a trace, it vanishes on commutators and that bN = N b′

on cochains. If we apply this formula to the family ρt = tρ, then ωt = tb′ρ − t2ρ2 .
Integrating from 0 to 1 gives

ch2n+2 = bN
∫ 1

0
ρ(tb′ρ− t2ρ2)ndt/n!

= b cs2n+1

which proves the lemma.

We note that since ρ(1) = 1, ω vanishes if any of its arguments is 1, hence the
cochain ch2n+2 is reduced, i.e. it is in the image of π∗ . We now need to check that
the Chern-Simons form descends to a non-trivial element in C2n

λ (k). For this we
calculate

f(1, . . . , 1︸ ︷︷ ︸
2n+1

) = cs2n+1(1, . . . , 1)

=
2n+ 1

n!

∫ 1

0
(t− t2)ndt

=
n!

(2n)!

so that the Chern-Simons form cs2n+1 restricts to C2n
λ (k). Since the differential b is

zero on this space, this form is also closed. We note that the resulting cohomology
class is dual to the canonical homology class of the cyclic chain ((2n)!/n!)N e⊗2n+1 ,
where e is the identity map on k . We have thus established the following [B1].
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6.19 Theorem. Let A be a unital algebra and ρ : A → k a linear map such that
ρ(1) = 1. Let ch2n+2 = N(ωn+1/(n + 1)!) be the Chern character form determined
by the map ρ and the trace N . Then the reduced cyclic cohomology class [ch2n+2] ∈
H̄C2n+1(A) is induced from the canonical generator of HC2n(k) by the connecting
map HC2n(k)→ H̄C2n+1(A).

6.4 Reduced cyclic cohomology of the Weyl algebra

The theorem proved in the last section states that if A is a unital algebra then
there are canonical reduced cohomology classes in every odd degree. In this section
we want to present an example an algebra whose reduced cyclic cohomology can be
completely determined in this way.

Let n be an integer ≥ 1. Let V be a vector space with basis {pi, qj} , i, j =
1, . . . , n. We define the Weyl algebra An to be the quotient of the tensor algebra of
the vector space V by the ideal I generated by elements

pi ⊗ qj − qj ⊗ pi − δij
pi ⊗ pj − pj ⊗ pi
qi ⊗ qj − qj ⊗ qi.

The Weyl algebra An is equipped with a canonical filtration where FpAn is the
image of

⊕
n≤p V

⊗n . As in the case of universal enveloping algebras gr An = S(V ) is
a (commutative) polynomial ring. We want to calculate the reduced cyclic homology
of this algebra. Feigin and Tsygan [FT] show that the Weyl algebra An has the
following cyclic and Hochschild homology.

6.20 Proposition. The Hochschild homology of the Weyl algebra An is

Hi(An, An) =

{
k, i = 2n
0 otherwise

The cyclic homology of the algebra An is given by

HCi(An) =

{
k, for i ≥ 2n and even
0 otherwise.

To calculate the reduced cyclic homology of An , we use the above result and
the long exact sequence relating cyclic homology and reduced cyclic homology. In
particular, we need to show that the maps HC2i(k) → HC2i(An) are nonzero for
i ≥ n. We check that this is indeed the case using the following theorem of Block
[Blo].

6.21 Proposition. Let A be a filtered algebra and assume that for an integer n the
Hochschild homology Hi(gr A) = 0 for i > n. Then the natural map HCi(F0A) →
HCi(A) is an isomorphism for all i ≥ n and a monomorphism for i = n − 1. In
particular HPi(F0A) ≃ HPi(A) for all i.
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We now proceed as follows. From the constraint on the Hochschild homology and
Connes’ long exact homology sequence follows that the operator S is bijective in
high degrees. If a map HC2i(k)→ HC2i(An) were to vanish, then since these maps
are compatible with S , it would vanish in degrees 2j for all j ≥ i. Thus the map on
periodic homology would be zero, contradicting the theorem of Block, and we have
the following.

6.22 Theorem. The reduced cyclic homology of the Weyl algebra An is given by

H̄Ci(An) =

{
k, for i = 2m+ 1 < 2n
0 otherwise.

6.23 Remark. The reduced Hochschild homology of the Weyl algebra is the same
as the Hochschild homology of An in degrees not less than 2. In lower degrees we
have an exact sequence

0 −→ H1(A) −→ H̄1(A) −→ H0(A) −→ H̄0(A) −→ 0

so that we have H̄1(A) = k .

We can easily translate this result into a corresponding statement about coho-
mology. In this case we see from Theorem 6.19 that all reduced cyclic cohomology
classes of the Weyl algebra are induced from the cyclic classes of the field k by means
of the transgression procedure explained in the previous section.

6.5 Excision in periodic cyclic cohomology

In the previous sections we have already discussed the results of Wodzicki on excision
in cyclic homology and Suslin and Wodzicki on excision in the algebraic K -theory.
We have seen that we can associate a long exact sequence in cyclic homology or
rational K -theory with the short exact sequence of algebras

0 −→ I −→ R −→ R/I −→ 0

when the ideal I is H -unital. It turns out that, in the setting of periodic cyclic
cohomology, a more general statement can be proved, and that was done recently
by Cuntz and Quillen [CQ5]. We shall now review their proof. First we need to
introduce a weaker condition than H -unitality.

6.24 Definition. Let J be an algebra over a field of characteristic zero and let
. . . ⊂ Jn ⊂ Jn−1 ⊂ . . . ⊂ J2 ⊂ J be the filtration of J by its increasing powers.
If we denote by Cn(J) the space of n-cochains on J then we shall say that J is
approximately H -unital if and only if the complex (lim

−→

k

C⋆(Jk), b′) is acyclic. In the

following we shall denote by C⋆(J∞) = lim
−→

k

C⋆(Jk).
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For comparison, let us recall that Wodzicki’s notion of H -unitality only required that
the complex (C⋆(J), b′) be acyclic. His condition implies in particular that J2 = J .
The following lemma gives a useful criterion for approximate H -unitality.

6.25 Lemma. Let J be an algebra and let us denote by m : J ⊗ J → J the multi-
plication map on J . Assume that there is a k ≥ 1 and a linear map φ : Jk → J ⊗ J
which is a section of m in the sense that m(φ(x)) = x for x ∈ Jk . Assume moreover
that φ satisfies the following formula for x ∈ J and y ∈ Jk

φ(xy) = xφ(y)

Then J is approximately H -unital.

Proof. We note that, for every q there is a p ≥ q and a J -linear splitting ψ :
Jp → Jq ⊗ Jq of the multiplication m : Jq ⊗ Jq → J2q ⊃ Jp which is obtained
by iterating φ and then multiplying the last q variables together. Now define Ψ :
Cn(Jp) → Cn+1(J

q) to be the map defined by Ψ(a0, . . . , an) = (a0, . . . , ψ(an)). Let
ω ∈ Cn(Jp). We have (−1)n+1(Ψb′ − b′Ψ)ω = ω ∈ Cn(Jp). This shows that J is
approximately H -unital.

We have the following important example of an application of this lemma.

6.26 Proposition.

1. Let J be a left ideal in a unital quasi-free algebra R (see Section 3.2.1). Then
there exists a left J -linear lift φ : J2 → J ⊗ J for the multiplication map
m : J ⊗ J → J2 and therefore J is approximately H -unital.

2. Let e : R → J be a linear projection onto J such that e(1) = 0. Then the
formula

φ(a) = 1⊗ a+ b′(1⊗ e)b′α(a)

defines an R-linear lift J → R ⊗ J for the multiplication map R ⊗ J → J .
The restriction of φ to J2 is therefore a map as in the first part.

Proof. 1) From [CQ1, Propn. 5.1] follows that J is a projective left R-module
and hence there exists an R-linear lift φ : J → R ⊗ J for the multiplication map
m : R⊗ J → J . To obtain the required map, consider the restriction of φ to J2 .

2) We have that φ(a) ∈ R⊗ J if a ∈ J . Since mb′ = 0 we have that mφ(a) = a.
Furthermore, if a ∈ R and b ∈ J we have

φ(ab) = 1⊗ ab+ b′(1⊗ e)b′(aα(b) + α(a)b+ da db)
= 1⊗ ab+ b′(1⊗ e)(ab′α(b) + b′(α(a))b− d(a)b⊗ 1 + da⊗ b)
= 1⊗ ab+ ab′(1⊗ e)b′α(b) + b′(da⊗ b)
= aφ(b)

Let us now list some examples of approximately H -unital algebras [CQ5]. It is
interesting that these algebras are not H -unital.
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6.27 Example. Let A = C[x1, . . . xn] be the algebra of polynomials in n variables
and let J = 〈h〉 be the principal ideal J = hA generated by a polynomial h ∈ A.
Then J is approximately H -unital, as we can see by defining a map φ : J → J ⊗ J
by φ(gh) = gh⊗ h and checking that it satisfies the conditions of the lemma above.
Similarly, principal ideals in the algebra of Laurent polynomials C[z, z−1].

6.28 Example. If A is a Banach algebra and C(k)(S1, A) is the algebra of k -times
continuously differentiable functions from S1 to A, where k ≥ 1, then let

S(k)(A) = {f ∈ C(k)(S1, A) | f(1) = 0}

be the corresponding differentiable suspension. Then this algebra is approximately
H -unital.

6.29 Example. An extension of Lemma 6.25 allows one to show that the Schatten
ideals Lp(H) in the algebra of bounded linear operators in a separable Hilbert space
are approximately H -unital

6.30 Example. For an algebra A we denote its tensor algebra by TA and by IA
the kernel of the natural surjection homomorphism TA → A. From Section 3.2.1
(see also [CQ1]) we know that TA may be identified with the nonunital algebra ΩevA
of even forms over the algebra A equipped with the Fedosov product. If we use this
identification, then the ideal IA is spanned by forms of degree at least two. There
is the following IA-linear splitting φ : (IA)2 → IA⊗ IA of the multiplication map:
φ(ωda db) = ω ⊗ da db. This shows that IA is approximately H -unital.

6.31 Example. If A is an algebra, then let A ∗ A be the free nonunital product
of A by itself, and let qA be the kernel of the folding map A ∗ A → A. The free
product A ∗ A is isomorphic to the nonunital algebra ΩA of differential forms over
A equipped with the Fedosov product, and the ideal qA corresponds to the forms of
degree at least one. Then qA is approximately H -unital as may be seen by defining
the splitting φ : (qA)2 → qA⊗ qA using the formula φ(ωda) = ω ⊗ da.

6.32 Theorem. Let 0 → J → A → A/J → 0 be an exact sequence of algebras
and suppose that J is approximately H -unital. Then there exists a six-term exact
sequence in periodic cyclic cohomology

HP 0(J) ←− HP 0(A) ←− HP 0(A/J)y
x

HP 1(A/J) −→ HP 1(A) −→ HP 1(J)
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Proof. (Cf. [CQ5]). The proof relies on the excision properties of cyclic cohomology
and on the fact that HP i = lim

−→
HC2n+i(A) where the direct limit is taken with

respect to Connes’s periodicity operator S . For any k , let us define the complex of
relative cyclic cochains Cn

λ (A, Jk) as the cokernel of the canonical map Cn
λ (A/Jk)→

Cn
λ (A) induced by the surjection A → A/Jk . Thus for all k we have the following

exact sequence

0 −→ Cn
λ (A/Jk) −→ Cn

λ (A) −→ Cn
λ (A, Jk) −→ 0(6.33)

Furthermore, since for each k we have the following short exact sequence

0→ Jk/Jk+1 −→ A/Jk+1 −→ A/Jk → 0(6.34)

it follows that there is a sequence of surjections

A/J ←− A/J2 ←− A/J3 ←− · · · ←− A/Jk ←− · · ·

Thus there is a direct system of spaces of cyclic n-cochains

Cn
λ (A/J)→ Cn(A/J2)→ · · · → Cn(A/Jk)→ · · ·

which, together with the sequence (6.33), gives rise to the following short exact
sequence

0 −→ lim
−→

Cn
λ (A/Jk) −→ Cn

λ (A) −→ lim
−→

Cn
λ (A, Jk) −→ 0

where the limits are taken as k →∞ . It now follows that there is the following long
exact sequence of cyclic cohomology groups

→ HCn−1(A, J∞)→ lim
−→

HCn(A, Jk)→ HCn(A)→ HCn(A, J∞)→(6.35)

Here by HCn(A, J∞) we denote the cyclic cohomology of the complex of asymptotic
cochains C⋆

λ(A, J∞). An important step in the proof is provided by the following
lemma.

6.36 Lemma. The induced map HCn(A, J∞)→ HCn(J∞) is an isomorphism.

The sequence (6.35) is compatible with the operator S : HCn → HCn+2 , since S
commutes with the restriction map for cochains. Hence we may pass to periodic cyclic
cohomology by taking the direct limit with respect to the action of S . Moreover,
since for any k , the sequence

0 −→ J/Jk −→ A/Jk −→ A/J −→ 0

represents a nilpotent extension, we have the following fact (another theorem of
Goodwillie [G1]): The map HP ⋆(A/J) → HP ⋆(A/Jk) is an isomorphism. Putting
these results together we obtain the following exact sequence of length six.

HP 0(J∞) ←− HP 0(A) ←− HP 0(A/J)y
x

HP 1(A/J) −→ HP 1(A) −→ HP 1(J∞)
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If we apply this result to the short exact sequence 0→ J → J → 0→ 0, we see that
HP ⋆(J∞) ≃ HP ⋆(J). This finishes the proof of Theorem.

We can now state and prove the general case of the above theorem.

6.37 Theorem. To any short exact sequence of algebras 0 → J → A → A/J → 0
there corresponds an exact sequence in periodic cyclic cohomology as in Theorem
6.32.

Proof. There are the following canonical short exact sequences. First there is the
universal extension of A

0 −→ IA −→ TA −→ A −→ 0(6.38)

where TA is the nonunital tensor algebra over A. Secondly, let K be the kernel of
the canonical surjection in the following short exact sequence

0 −→ K −→ TA −→ A/J −→ 0(6.39)

The algebras IA and K are ideals in the unital tensor algebra T̃A which is free
and therefore quasi-free. Hence they are both approximately H -unital by Propo-
sition 6.26. Then Theorem 6.32 applied to sequences (6.38) and (6.39) gives that
HP ⋆(IA) ≃ HP ⋆+1(A) and HP ⋆(K) ≃ HP ⋆+1(A/J). If we now consider the fol-
lowing short exact sequence of algebras

0 −→ IA −→ K −→ J −→ 0

then the two facts mentioned above together with the long exact sequence given by
Theorem 6.32 give the proof of the present Theorem.

6.40 Remark. Cuntz and Quillen provide also a considerable extension of this
result to the case of bivariant periodic cyclic homology [CQ6]. Moreover, Cuntz
has proved that bivariant periodic cyclic homology of Fréchet algebras also has the
excision property [Cu5].
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7 Entire cyclic cohomology of Banach algebras

7.1 Topology on ΩA and QA

So far, in our discussion of various cyclic theories associated with an algebra A we
have ignored the question of topology. Even if A was a topological algebra, we have
disregarded this extra piece of information. We now want to discuss the entire cyclic
cohomology, which is a generalization of the periodic cyclic cohomology to the class
of Banach algebras. This version of cyclic cohomology, which was introduced by
Connes in [Co2], seems better suited for the study of infinite dimensional spaces, like
the configuration space of the constructive field theory or the dual space of higher
rank discrete groups.

We define the entire cochain complex as follows. A cochain in this complex is
a linear map f : T (A) → C which is represented by a possibly infinite sequence of
multilinear functionals on A

(f0, f1, . . . , fn, . . .)

where fn : A⊗n+1 → C . A cochain is called even (odd) if its components fn are
nonzero when n is even (odd). This way we obtain a Z/2-graded complex equipped
with the differential b + B acting between spaces of cochains of opposite parity.
This complex is not very interesting as its cohomology is trivial. When A is a
Banach algebra, inside this cochain complex there is a subcomplex of entire cochains
satisfying the following growth condition

∑

n≥0

‖f2n‖ n! rn <∞(7.1)

for all positive real r . There is an identical condition to be satisfied by odd cochains.
We shall denote this complex of unnormalized entire cochains by C∗ǫ (A). The co-
homology of this complex is the entire cyclic cohomology. We can define a similar
theory when we consider the same growth condition but we require that the cochains
be simplicially normalized. In other words, if f is a cochain, we require that

fn(a0, a1, . . . , an) = 0

whenever ai = 1 for some 1 ≤ i ≤ n. In other words, a simplicially normalized
cochain is a linear map f : ΩA → C . The space of simplicially normalized entire
cochains will be denoted by Ω∗ǫA.

We begin our excursion into the entire cyclic cohomology with a discussion of
the topological versions of universal algebras defined in Section 3.1. Let then A be
a unital Banach algebra equipped with a norm || || . Let us denote by Ā = A/C
the quotient space which is a Banach space equipped with the quotient space norm.
The space of one-forms Ω1A becomes a Banach space with the completed projective
tensor product norm Ω1A = A⊗̂πĀ. The operator d : A→ Ω1A is now a continuous
operator of unit norm. For any n ≥ 1 we equip the space of n-forms

ΩnA = Ω1A⊗A
n
· · · ⊗AΩ1A(7.2)
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with the topology of the completed projective tensor product [Arv, p. 260 ff]. The
differential d becomes a continuous derivation of unit norm and the product in ΩA
is now a continuous map.

Given this topological structure, we may now equip the differential graded algebra
ΩA =

⊕
n≥0 ΩnA with the following family of norms || ||r parametrized by a positive

real r . If ω =
∑
n≥0 ωn , we put

‖ω‖ r =
∑

n≥0

‖ωn‖ r
n

The derivation d becomes a continuous map d : (ΩA, || ||r) → (ΩA, || ||r). In
particular, ‖da‖ r ≤ r‖a‖ for a ∈ A. If ωn is a homogeneous form of degree n then

‖ωn‖ r = rn‖ωn‖ , ‖dωn‖ r = rn+1‖dωn‖ ≤ rn+1‖ωn‖ = r‖ω‖ r

For any two r′ < r , let

frr′ : (ΩA, || ||r) −→ (ΩA, || ||r′)

be the identity map, which in this case is norm decreasing. This way we obtain
a direct system {(ΩA, || ||r), frr′} . Let ΩrA denote the completion of the space
(ΩA|| ||r) with respect to the norm || ||r . This is now a Banach algebra, which
means that for any two forms ω , η in ΩrA we have [Arv, p. 262]

‖ωη‖ r ≤ ‖ω‖ r‖η‖ r.

where the product is defined using the formula (7.2).
There is an induced direct system (ΩrA, frr′) of Banach algebras. We denote by

ΩǫA the direct limit of this system as r → 0:

ΩǫA = lim
−→

ΩrA

ΩǫA is a locally convex algebra. Finally, we denote by fr the canonical maps
fr : ΩrA → ΩǫA, which are continuous algebra homomorphisms. The deriva-
tion d extends to a continuous derivation dr : ΩrA −→ ΩrA. The composite
fr ◦ dr : ΩrA −→ ΩǫA is a continuous derivation of ΩrA with values in ΩǫA and all
derivations fr ◦dr are compatible with the maps fr′r . Thus this family of derivations
is equivalent to a continuous derivation d : ΩǫA −→ ΩǫA which makes ΩǫA into a
topological differential graded algebra equipped with the locally convex topology
induced by the topologies on ΩrA.

In the case when A is a unital Banach algebra, for any positive real r , the
completion ΩrÃ is an augmented Banach algebra

ΩrÃ = C⊕ Q̄rÃ

from which it follows that also the direct limit of the corresponding direct system is
an augmented algebra

ΩǫÃ = C⊕ Ω̄ǫÃ
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We now define a topology on the Cuntz algebra QA using the families of norms
|| ||r on ΩA together with the isomorphism µ (3.34) between the two superalgebras.
If ω is an element of the Cuntz algebra QA then its norm ‖ω‖ Qr

, for any positive
r is defined by

‖ω‖ Qr
= ‖µ(ω)‖ r

In particular, for a ∈ A, ‖a‖ Qr
= ‖a+ da‖ r = ‖a‖ + r‖da‖ . This means that the

isomorphism µ induces a new norm on the the algebra A which is equivalent to the
original Banach norm on A.

We shall need the following estimates for the Fedosov product.

7.3 Lemma. For any r > 0, and for any ω, η ∈ ΩrA we have

‖ω ◦ η‖ r ≤ Cr‖ω‖ r‖η‖ r

where Cr = 1+r2 and ◦ denotes the Fedosov product of forms. If either of the forms
ω , η is closed then this estimate reduces to

‖ω ◦ η‖ r ≤ ‖ω‖ r‖η‖ r

Proof. If ω =
∑
ωn and η =

∑
ηn then

ω ◦ η =
∑

n≥0

∑

i+j=n

ωi ◦ ηj

=
∑

n≥0

∑

i+j=n

ωiηj − (−1)|ωi|dωidηj

The norm || ||Qr of this form may then be estimated as follows.

‖ω ◦ η‖ r ≤
∑

n≥0


 ∑

i+j=n

‖ωiηj‖


rn +

∑

n≥0


 ∑

i+j=n

‖dωidηj‖


rn+2

≤
∑

n≥0


 ∑

i+j=n

‖ωi‖ ‖ηj‖ π


rn + r2

∑

n≥0


 ∑

i+j=n

‖ωi‖ ‖ηj‖


rn

= (1 + r2)‖ω‖ r‖η‖ r

The last statement of the lemma is now clear.

7.4 Corollary. If x, y ∈ QrA then

‖xy‖ Qr
= ‖µ(x) ◦ µ(y)‖ r ≤ (1 + r2)‖µ(x)‖ r‖µ(y)‖ r = Cr‖x‖ Qr

‖y‖ Qr
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Hence, in particular, the multiplication in the Cuntz algebra is continuous in this
topology.

We now introduce a direct system of normed spaces (QA, || ||Qr) as in the case
of the algebra of differential forms. For any pair r′ < r there is a map

frr′ : (QA, || ||Qr) −→ (QA, || ||Qr′
)

which is the identity map. Using the estimates

‖ω‖ Qr′
= ‖µ(ω)‖ r′ < ‖µ(ω)‖ r = ‖ω‖ Qr

we see that for any two r′ < r the map frr′ is continuous and norm decreasing. Let
us denote by QrA the completion of the space (QA, || ||Qr), then there is a direct
system (QrA, frr′) of complete normed spaces. We denote by QǫA its direct limit
taken as r → 0.

As before, in the case of a unital Banach algebra A, the Cuntz algebra QǫÃ is
also an augmented algebra. This follows from the fact that for any r we have

QrÃ = C⊕ Q̄rÃ

so that we have
QǫÃ = C⊕ Q̄ǫÃ

where Q̄ǫÃ is the direct limit of the direct subsystem Q̄rÃ.

7.2 Simplicial normalization

We now want to prove the simplicial normalization theorem, which states that the
entire complexes defined with the use of either unnormalized entire cochains C∗ǫ (A),
or normalized cochains Ω∗ǫA, lead to the same entire cohomology theory.

7.5 Theorem. The inclusion

ΩǫA
∗ → Cǫ(A)∗

induces an isomorphism
HE∗sn(A) ≃ HE∗(A)

7.2.1 A homotopy of superalgebras

A first step in the proof of the simplicial normalization theorem for entire cyclic
cohomology will be to show that the algebras QǫÃ and C ⊕ QǫA are homotopy
equivalent. At the same time we shall establish a homotopy equivalence between
the superalgebras Q̄ǫÃ and QǫA. The required homotopy is defined using a certain
family {φt} of continuous superalgebra homomorphisms φt : QǫÃ → QǫÃ. The
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definition and properties of the family φt (see also [Cu4]) will depend in an important
way on the properties of the operators L and Wt established in section 3.2.2. The
exposition below follows [B2].

For any t ∈ [0, 1] we put

a 7→ at = e−tL/2aetL/2 = W−taWt

aγ 7→ aγt = etL/2aγe−tL/2 = Wta
γW−t

(7.6)

We note that the first of the two maps is a homomorphism from the algebra A to
the underlying algebra of QǫÃ and that the other map is induced from the first by
applying the canonical automorphism γ which sends at to aγt . This pair of algebra
homomorphisms extends to the following family of homomorphisms φt : QÃ −→
QǫÃ. For ω ∈ QǫÃ, ω = p(a0)q(a1) · · · q(an), we have

φt(ω) = ωt = pt(a0)qt(a1) · · · qt(an)

where
pt(a) = p(at) = 1/2(at + aγt )
qt(a) = q(at) = 1/2(at − a

γ
t )

We remark that φ0 is the identity map whereas φ1 is the map which sends f to f γ

by (3.35).

7.7 Theorem. The family φt defined above is a family of continuous superalgebra
homomorphisms from QǫÃ to QǫÃ.

It is clear that the folding map in QC̃

0→ qC̃→ QC̃→ C̃→ 0(7.8)

induces a canonical projection

QÃ −→ C⊕QA

The kernel of this projection is an ideal I generated in QÃ by qC̃ , the kernel of
the folding map (7.8). In the analytic situation, in any of the completions QrÃ we
consider the closed ideal Ir , which is the completion of the ideal I in the topology
defined by the norm || ||Qr . Thus we deduce that there are the following continuous
isomorphisms

C⊕QrA = QrÃ/Ir, QrA = Q̄rÃ/Ir(7.9)

This observation, together with the properties of the family {φt} of homomorphisms
of QǫÃ allows us to define a lift of QǫA back into QǫÃ. In fact we prove

7.10 Proposition. We have the following continuous isomorphism of locally convex
superalgebras

φ1/2(Q̄ǫÃ) ≃ QǫA

102



Proof. First we define a map φ1/2(Q̄ǫÃ) → QǫA. Since φt : Q̄ǫÃ → Q̄ǫÃ is a
continuous homomorphism for any t ∈ [0, 1], there exists a positive real r such that
φ1/2(Q̄Ã) ⊂ Q̄rÃ. We then put for any ω ∈ Q̄ǫÃ

φ1/2(ω) 7→ [φ1/2(ω)] ∈ Q̄rÃ/Ir

Since this map is just the restriction of the canonical projection Q̄rÃ→ Q̄rÃ/Ir to
the image of φ1/2 , it is continuous.

To define the inverse map, let [ω] ∈ Q̄rÃ/Ir and let us choose a representative
ω0 ∈ QrA of this class. We define

ξ : Q̄rÃ/Ir ∋ [ω] 7→ φ1/2(ω0) ∈ Qr′Ã

This map is well defined, since for any r > 0, φ1/2 vanishes on the ideal Ir , so
that the above assignment does not depend on the choice of ω0 . To show that it is
continuous we note that, as the space Q̄rÃ/Ir is equipped with the quotient space
norm

||[ω]||Qr = inf
η∈Ir
||ω + η||Qr ,

for any r there exists ω0 ∈ [ω] such that ||ω0||Qr ≤ 2||[ω]||Qr . Since φt is continuous
for any t ∈ [0, 1], from the estimate follows that there is an r′ < r such that

‖ξ([ω])‖ Qr′
=
∥∥∥φ1/2(ω0)

∥∥∥
Qr′

≤M ||ω0||Qr ≤ 2M ||[ω]||Qr

This shows that the map ξ is continuous for all r and so it is continuous in the
locally convex topology on the union of Q̄rÃ/Ir ≃ QrA. This finishes the proof.

With this proposition we have constructed the following homotopy

QǫÃ −→ C⊕ φ1/2(Q̄ǫÃ) ≃ C⊕QǫA
l
→֒ QǫÃ(7.11)

where the map l is the lift provided by the previous theorem. There is a correspond-
ing homotopy of the reduced part Q̄ǫÃ onto QǫA

Q̄ǫÃ −→ φ1/2(Q̄ǫÃ) ≃ QǫA
l
→֒ Q̄ǫÃ

7.2.2 Homotopy of supertraces

We now proceed with the discussion of the action of the family φt on the entire
cyclic cohomology. We shall do this extending a relation between cocycles in the
Z2 -graded complex and supertraces which was discussed in Section 3.4 to the entire
case. We shall also need to show that supertraces that are homotopic in a sense
explained below correspond to cohomologous cocycles.

To describe homotopy of supertraces on QA we use the X -complex approach
of Cuntz and Quillen [CQ3] which we already encountered in the section 3.2.1. We
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therefore need to discuss supertraces on the superbimodule Ω1QA over the Cuntz
algebra QA. As before, supertraces on Ω1QA are linear functionals T which vanish
on the supercommutator quotient space Ω1QA♮s = Ω1QA/[QA,Ω1QA]s . First of
all, it turns out that we may identify the supercommutator quotient space Ω1Q♮sA
with the space Ω1A⊕ΩA [CQ4]. We shall use the following notation. Let θ be the
inclusion θ : A→ QA and θγ the composition of θ with the canonical automorphism
γ of QA. We let p denote the cochain on A given by p = (θ + θγ)/2 and similarly
q = (θ−θγ)/2. We then have the following identification of the even part (Ω1Q♮sA)ev

of the supercommutator space

⊕

n≥0

A⊗ Ā2n+1 ≃
−→ (Ω1Q♮sA)ev

This isomorphism is given by the cochains (θγq2ndθ)ev . The odd part of the super-
commutator space is

Ω1A⊕
⊕

n≥1

A⊗ Ā⊗2n
≃
−→ (Ω1QA♮s)

od

where this time the isomorphism is given by cochains (θdθ)od , (θq2n−1dθ)od . Using
this coordinate system, Cuntz and Quillen show [CQ4] that the components of an
even supertrace T on Ω1QA are given by the following cochains

T2n+1 = T (θγq2ndθ) : A⊗ Ā2n → C

On the other hand, an odd supertrace T has the following cochains as its components

T2n = T (θq2n−1dθ), T1 = Tθdθ, T1b = 0

To summarize, using the above isomorphisms we can represent any supertrace T on
Ω1Q in terms of cochains on Ω1A⊕ΩA. From now on components of functionals on
Ω1QA will always be written in terms of these isomorphisms. We can now state the
following [CQ4].

7.12 Proposition. Let T be a supertrace on Ω1QA and let δ be the differential
δ : QA→ Ω1QA. Then we have

(T ◦ δ)2n = −nPbT2n−1 +BT2n+1

(T ◦ δ)2n+1 = (n+ 1/2)PbT2n −BT2n+2

(7.13)

We say that two supertraces on QA are homotopic if and only if there exists a
supertrace T on Ω1QA such that

τ0 − τ1 = T ◦ δ.
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7.14 Proposition. If τ0 and τ1 are homotopic supertraces on QA then the corre-
sponding cocycles τ z0 and τ z1 are cohomologous in the cochain complex (ΩA∗, b+B).

Proof. Let us first assume that τ0 and τ1 are even homotopic supertraces on QA.
Since the difference of two even supertraces is an even supertrace, we can rescale it
and use the formula (7.13) to find the corresponding cocycle. We get

(τ1 − τ0)
z
2n =

(−1)n

n!
(τ1 − τ0)

=
(−1)n

n!
(T ◦ δ)2n

=
(−1)n

n!
(−nPbT2n−1 + BT2n+1)

The rescaled cochain (τ1− τ0)
z is a κ-invariant cocycle in the complex (ΩA, b+B).

Moreover, it is invariant under the operator P , and so the above identity indicates
that therefore the right hand side must also be P -invariant. We thus have

(τ1 − τ0)
z = (τ1 − τ0)

zP = −nbPT2n−1 +BPT2n+1

where we have used that P commutes with b and B . If we denote by T̃2n+1 =
(−1)nPT2n+1/n! we may write

(τ1 − τ0)
z
2n = bT̃2n−1 +BT̃2n+1

which demonstrates that the cocycle (τ1 − τ0)
z is a coboundary.

Let us now assume that τ0 and τ1 are odd supertraces. In this case, the rescaled
cocycle (τ1 − τ0)

z satisfies the following homotopy identity

(τ1 − τ0)
z
2n+1 =

(−1)n2n

(2n + 1)!!
((n +

1

2
)PbT2n −BT2n+2)

= bT̃2n +BT̃2n+2

where T̃2n =
(−1)n2n

(2n + 1)!!
PT . We have used again the fact that the cocycle (τ1 − τ0)

z

is P -invariant.

Finally, in the case when A is a Banach algebra, one shows as in [Co2, Prop.
2.4] that cocycles coming from a continuous supertrace on QǫA satisfy the entire
growth condition 7.1. Moreover, any entire cohomology class may be represented by
an entire cyclic cocycle that comes from a continuous supertrace on QǫA.

Our next step is to prove that the family φt of homomorphisms establishes an
isomorphism between the homotopy classes of supertraces on Q̄ǫÃ and QǫA.

7.15 Proposition. Let τ be a continuous supertrace on Q̄ǫÃ. Then τt = τ ◦ φt is
a continuous supertrace on Q̄ǫÃ whose homotopy class does not depend on t.
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Proof (Sketch). Since φt is a superalgebra homomorphism, it is clear that τt = τ ◦φt
is a continuous supertrace for all t ∈ [0, 1]. Let us define the following map T on
Ω1QǫÃ. For any ω , η in Q̄ǫÃ we put

T (ωδη) =
∫ 1

0
τ(φt(ω)φ̇t(η))dt

One checks that T is a well-defined continuous supertrace on Ω1QǫÃ .

7.16 Corollary. The family φt of homomorphisms of QǫÃ induces an isomor-
phism of homotopy classes of supertraces on Q̄ǫÃ and QǫA.

Hence, using Connes’s correspondence between entire cyclic cohomology classes
and continuous supertraces, we may use Corollary 7.16 to deduce that the entire
cochain complexes ΩǫA

∗ and Ω̄ǫA
∗ are quasi-isomorphic. Moreover, Cuntz and

Quillen have proved that the entire cochain complexes Ω̄ǫA
∗ and C∗ǫ (A) are also

quasi-isomorphic. We thus have the isomorphisms:

HE∗sn(A) ≃ H∗(Ω̄ǫA
∗, b+B) ≃ HE∗(A)

which finishes the proof of simplicial normalization theorem 7.5. See [B2].

7.3 Homotopy invariance of entire cyclic cohomology

As another application of the theory of supertraces to the entire cyclic cohomology
we present a different proof of the homotopy invariance of entire cyclic cohomology
[Kh].

Let us then consider two unital Banach algebras A and B and a continuous
family of homomorphisms ft : A→ B . We assume that each of the homomorphisms
ft is continuous for t ∈ [0, 1] and that the family is uniformly bounded, i.e. that
there exists a constant M such that ‖ft‖ ≤ M for t ∈ [0, 1]. We suppose, moreover,
that the corresponding family of derivatives ḟt with respect to the parameter t is
continuous and uniformly bounded by a constant N on the interval [0, 1]. We then
have the following.

7.17 Theorem. Let ft : A→ B be a family of homomorphisms of Banach algebras
satisfying the properties given above. Then f0 and f1 induce the same map on the
entire cyclic cohomology HE∗(B)→ HE∗(A).

Proof. The family of homomorphisms ft : A→ B extends to a family of continuous
homomorphisms of the corresponding Cuntz algebras Φt : QrA → QrB for any
positive real r if we define

Φt(p(a0)q(a1) · · · q(an)) = p(ft(a0))q(ft(a1)) · · · q(ft(an))
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To prove that this map is continuous for any positive real r we first need to find
estimates for ||p(ft(a))||Qr and ||q(ft(a))||Qr . From the definition of the norm on
the Cuntz algebra we have

‖p(ft(a))‖ = ‖ft(a)‖ ≤M ‖a‖ = M ‖p(a)‖

and
‖q(ft(a))‖ = ‖d(ft(a))‖ = inf

λ∈C
‖ft(a) + λft(1)‖

≤ ‖ft‖ inf
λ∈C
‖a+ λ‖ = ‖ft‖ ‖da‖

≤ M‖q(a)‖

Thus if ω =
∑
ωn ∈ ΩrA then using the above estimates we have that

||ω||Qr =
∑
‖Φt(ωn)‖ rn ≤Mn+1‖ωn‖ r

n

= M ||ω||Qr

This shows that Φt is a continuous homomorphism Φt : QrA→ QrB for all positive
r and so it extends to a continuous homomorphism Φt : QǫA → QǫB . This means
that Φt induces a map Φ∗t from the space of continuous supertraces on QǫB to the
space of continuous supertraces on QǫA.

We now want to prove that f0 and f1 induce the same map on the entire cyclic
cohomology. Let us then assume that T is a continuous supertrace on QǫB , we want
to show that the supertraces on QǫA T ◦Φ0 and T ◦Φ1 are homotopic. But we can
define a supertrace on Ω1QǫB by the formula

τ(ωδη) =
∫ 1

0
T (Φt(ω)Φ̇t(η))dt

It is clear that we have Tδη = TΦ1(η)− TΦ0(η) which means that the supertraces
TΦ0 and TΦ1 are homotopic. We now need to check that Φt and Φ̇t are continuous.
But since we have for any a ∈ A

d/dt(p(ft(a))) = p(ḟt(a))

d/dt(q(ft(a))) = q(ḟt(a))

we can estimate the norms of these elements as before, using the fact that the deriva-
tive ḟt is uniformly bounded by N . We find that

∥∥∥p(ḟt(a))
∥∥∥ ≤ N‖p(a)‖

∥∥∥q(ḟt(a))
∥∥∥ ≤ N‖q(a)‖

From this point on the proof is the same as in the case of simplicial normalization
theorem.
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7.4 Derivations and entire cyclic cohomology

As a final application of the technique of supertraces on the Cuntz algebra to entire
cyclic cohomology we shall derive Khalkhali’s result [Kh] on the triviality of the
action of derivations on the entire complex [B4].

Let us assume that D : A→ A is a derivation. There is an induced Lie derivative
LD acting on the differential forms ΩA which is defined using the following formula

LD(a0da1 . . . dan) =
n∑

i=0

a0da1 · · · d(Dai) · · ·dan(7.18)

We check that LD is a well-defined map of b+B -complexes.

7.19 Lemma. The Lie derivative commutes with b, κ and d. Consequently, it
commutes with B .

Proof. The first statement follows from the fact that LD is a derivation on ΩA. Let
us consider

LDb(ωda) = LD((−1)deg(ω)(ωda− daω))
= (−1)deg(ω)(LD(ω)da− LD(da)ω + ωLDda− daLDω)
= b(LD(ω)da) + b(ω(LDda))
= bLD(ωda)

Hence LDb = bLD . We check the remaining two cases in the same way.

Another simple calculation, using the definition of the Fedosov product and the
fact that LD commutes with d establishes the following lemma.

7.20 Lemma. LD is a derivation on the Cuntz algebra.

Proof.

LD(ω ◦ η) = LD(ωη)− (−1)deg(ω)LD(dωdη)
= LD(ω)η + ωLD(η)− (−1)deg(ω)(d(LDω)dη − dωdLDη)
= (LDω) ◦ η + ω ◦ LD(η)

From the universal property of Ω1QA follows that there exists a unique QA-
bimodule map Φ : Ω1QA→ QA such that LD = Φ◦ δ where δ : QA→ Ω1QA is the
canonical differential. If τ is a supertrace on QA we can define a map T : Ω1QA→ C

by
T (ωδη) = τ(ωΦ(δη))

7.21 Proposition. T is a supertrace on Ω1QA
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Proof. We need to show that T vanishes on supercommutators. Let α , ω and η be
homogeneous elements of QA. Then the supercommutator [α, ωδη]s with respect to
the Fedosov product is given by the following formula

[α, ωδη]s = αωδη − (−1)deg(α)deg(ω)deg(η)(ωδ(ηα)− ωηδα)

so that

T [α, ωδη]s = τ {αωLDη

−(−1)deg(α)deg(ω)deg(η)(ωLD(ηα)− ωηLDα)
}

= τ(αωLDη)− τ(αωLDη)
= 0

7.22 Theorem. If D is a derivative D : A → A on a Banach algebra A then the
corresponding Lie derivative LD acts as zero on the entire cyclic cohomology of A.

Proof. As we have seen in the proof of the simplicial normalization theorem, we may
represent entire cohomology classes by normalized entire cocycles which correspond
to continuous supertraces on QǫA. Let τ be such a trace. Then for any η ∈ QǫA

LD(τ)(η) = τLDη = Tδη

which shows that
LD(τ) = T ◦ δ

so that LD(τ) represents a null-homotopic supertrace on Ω1QǫA.

7.5 The JLO cocycle

The entire cyclic cohomology allows one to extend the theory of finitely summable
Fredholm modules to the cases where such assumption is too restrictive. Explicit
examples of such situations are given in Connes’ book [Co3]. We shall content our-
selves here with a brief exposition of the so called JLO-cocycle and Chern characters
of θ -summable modules.

Let T be a compact operator in a Hilbert space H , and let us denote by µn(T )
its n-th eigenvalue. The following notion has been introduced by Connes in [Co2].

7.23 Definition. A θ -summable Fredholm module over an algebra A is given by
a Fredholm module (H, F ) over A such that for all a ∈ A [F, a] ∈ J1/2 , where J1/2

is an ideal of compact operators defined by

J1/2 = {T ∈ K(H) | µn(T ) = O((logn)−1/2)}
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θ -summable Fredholm modules may be described in terms of unbounded oper-
ators as follows. Connes proves that the conditions of the θ -summable Fredholm
module imply the existence of an unbounded self-adjoint operator D satisfying the
following properties:

1. signD = D/ | D |= F .

2. For any a ∈ A, the operator [D, a] is bounded.

3. tr(exp(−D2)) is finite.

The resulting pair (H, D) is called a θ -summable K -cycle. We want to define a
character associated with this object. As we recall, the notion of a character, which
was defined in terms of cyclic cocycles, depended on the existence of a certain trace.
In the present case, the character will be defined as an entire cyclic cocycle.

It follows from our discussion of the entire cyclic cohomology that we may rep-
resent entire cohomology classes by cocycles coming from supertraces on the Cuntz
algebra QA. Unfortunately, in applications, it is not always easy to construct such
supertraces. To circumvent this problem, Connes has introduced a certain involution
algebra L together with a continuous algebra homomorphism

ρ : QǫA −→ L

It is possible to construct a trace τ on L , which then pulls back to a trace on QǫA,
allowing us to construct entire cyclic cocycles. We shall give the required formula in
the even case; both cases are treated in Connes’ paper and also in his book.

7.24 Theorem. Let (H, D, γ) be an even θ -summable K -cycle on a locally convex
algebra A, and let τ be a trace on the involution algebra L . Then the following
equality defines a normalized even entire cocycle {φ2n}n∈N :

φ2n(a0, . . . , a2n) = Γ(n+
1

2
)τρ(Fa0[F, a1] · · · [F, a2n])

for all aj ∈ A.

This is the θ -summable analogue of the Chern character of a Fredholm module.
Unfortunately, the formula given above is not very easy to use in applications. Jaffe,
Leśniewski and Osterwalder have defined a simpler entire cyclic cocycle [JLO] which
was then shown to be cohomologous to the Chern character by Connes in [Co4]. The
construction of the JLO-cocycle, as it is now known, was motivated by θ -summable
K -cycles arising in the supersymmetric quantum field theory.

Let △n be the set

△n = {si ≥ 0, i = 0, . . . , n |
∑

si = 1}

Then the even JLO-cocycle is defined by the following formula

ψ2n(a0, . . . , a2n) =
∫

△n

ds0 · · · dsn tr(γa0e
−s0D2

[D, a1] · · · [D, a2n]e−s2nD
2

)

There is an interesting discussion of the algebraic properties of this cocycle using
superconnections in Quillen’s paper [Q2].
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