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Preface

This short lecture is consist of three parts.
In the first part, the Lüscher’s formula, which relates the scattering phase shift

to the two particle energy in the finite volume, explained. A comprehensive but less
rigorous derivation for the formula has been attempted in this lecture for the ππ
system as an example with the emphasis on the Bethe-Salpeter(BS) wave function. It
is important to note that the BS wave function at large separation behaves as the free
scattering wave with the phase shift which is determined by the unitarity of the S–
matrix in QCD. The Lüscher’s formula can be obtained from this asymptotic behavior
of the BS wave function.

In the second part, the BS wave function is considered at non-asymptotic region
where the interaction between two particles exists, in order to define the potential in
quantum field theories. This method is applied to the two-nucleon system in order to
extract the NN potential from lattice QCD.

In the last part, the origin of the strong repulsion at short distance in the NN po-
tential, called the repulsive core, is theoretically investigated by the Operator Product
Expansion and the renormalization group.
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2.2 Lüscher’s formula for the phase shift in the finite volume 12
2.3 Some references for the ππ phase shift from lattice QCD 17

3 Nuclear Potential from Lattice QCD 18
3.1 Strategy to extract potentials in quantum field theories 18
3.2 Extraction of the BS wave function on the lattice 23
3.3 Tensor potential 24
3.4 Results in lattice QCD 25

4 Repulsive core and operator product expansion in QCD 31
4.1 Basic idea 31
4.2 Renormalization group analysis and operator product expansion 33
4.3 OPE and Anomalous dimensions for two nucleons 36
4.4 Short distance behavior of the potentials and the repulsive core 45

5 Concluding Remarks 53

References 55



1

Intorduction: Nuclear Forces

In 1935 Yukawa introduced virtual particles, pions, to explain the nuclear force(Yukawa, 1935),
which bounds protons and neutrons inside nuclei. Since then, enormous efforts have
been devoted to understand the nucleon-nucleon (NN) interaction at low energies both
from theoretical and experimental points of view. To describe the elastic nucleon-
nucleon (NN) scattering at low-energies below the pion production threshold to-
gether with the deuteron properties, the notion of the NN potential turns out to
be very useful(Taketani et al., 1967; Hoshizaki et al., 1968; Brown and Jackson, 1976;
Machleidt, 1989; Machleidt and Slaus, 2001): it can be determined phenomenologi-
cally to reproduce the scattering phase shifts and bound state properties. Once the
potential is determined, it can be used to study systems with more than 2 nucleons
by using various many-body techniques.

Phenomenological NN potentials which can fit the NN data precisely (e.g. more
than 2000 data points with χ2/dof ≃ 1) at Tlab < 300 MeV are called the high-
precision NN potentials. Those in the coordinate space, some of which are shown in
Fig.1.1, are known to reflect some characteristic features of the NN interaction at dif-
ferent length scales (Taketani et al., 1967; Hoshizaki et al., 1968; Brown and Jackson, 1976;
Machleidt, 1989; Machleidt and Slaus, 2001):

(i) The long range part of the nuclear force (the relative distance r > 2 fm) is domi-
nated by the one-pion exchange introduced by Yukawa (Yukawa, 1935). Because
of the pion’s Nambu-Goldstone character, it couples to the spin-isospin density of
the nucleon and hence leads to a strong spin-isospin dependent force, namely the
tensor force.

(ii) The medium range part (1 fm < r < 2 fm) receives significant contributions from
the exchange of two-pions (ππ) and heavy mesons (ρ, ω, and σ). In particular, the
spin-isospin independent attraction of about 50 – 100 MeV in this region plays
an essential role for the binding of atomic nuclei.

(iii) The short range part (r < 1 fm) is best described by a strong repulsive core
as originally introduced by Jastrow (Jastrow, 1951). Such a short range repul-
sion is important for the stability of atomic nuclei against collapse, for deter-
mining the maximum mass of neutron stars, and for igniting the Type II super-
nova explosions (Tamagaki et al., 1993; Heiselberg and V. Pandharipande, 2000;
Lattimer and Prakash, 2000).

A repulsive core surrounded by an attractive well is in fact a common feature of the
“effective” potential between composite particles. The Lenard-Jones potential between
neutral atoms or molecules is a well-known example in atomic physics. The potential
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Fig. 1.1 Three examples of the modern NN potential in 1S0 (spin singlet and

S-wave) channel: CD-Bonn(Machleidt, 2001), Reid93(Stoks et al., 1994) and Argonne

v18(Wiringa et al., 1995).

between 4He nuclei is a typical example in nuclear physics. The origin of the repulsive
cores in these examples is known to be the Pauli exclusion among electrons or among
nucleons. The same idea, however, is not directly applicable to the NN potential,
because the quark has not only spin and flavor but also color which allows six quarks
to occupy the same state without violating the Pauli principle. Therefore, to account
for the repulsive core of the NN force, various ideas have been proposed as sum-
marized in Ref. (Myhrer and Wroldsen, 1988; Oka et al., 2000; Fujiwara et al., 2007):
exchange of the neutral ω meson (Nambu, 1957), exchange of non-linear pion field
(Jackson and Pasquier, 1985; Yabu and Ando, 1985), and a combination of the Pauli
principle with the one-gluon-exchange between quarks (Otsuki et al., 1965; Machida and M. Namiki, 1965;
Neudachin et al., 1977; Liberman, 1977; DeTar, 1979; Oka and Yazaki, 1980; Oka and Yazaki, 1981a;
Oka and Yazaki, 1981b; Toki, 1980; Faessler et al., 1982). Despite all these efforts, con-
vincing account of the nuclear force has not yet been obtained.

In this situation, it is highly desirable to study the NN interactions from the first
principle lattice QCD simulations. A theoretical framework suitable for such purpose
was first proposed by Lüscher (Lüscher, 1991): For two hadrons in a finite box with
the size L × L × L in periodic boundary conditions, an exact relation between the
energy spectra in the box and the elastic scattering phase shift at these energies
was derived: If the range of the hadron interaction R is sufficiently smaller than the
size of the box R < L/2, the behavior of the two-particle Bethe-Salpeter (BS) wave
function ψ(r) in the interval R < |r| < L/2 under the periodic boundary conditions
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has sufficient information to relate the phase shift and the two-particle spectrum.
Lüscher’s method bypasses the difficulty to treat the real-time scattering process on
the Euclidean lattice. Furthermore, it utilizes the finiteness of the lattice box effectively
to extract the information of the on-shell scattering matrix and the phase shift.

Recently, a closely related but an alternative approach to the NN interactions from
lattice QCD has been proposed(Ishii et al., 2007; Aoki et al., 2008; Aoki et al., 2010b).
The starting point is the same BS wave function ψ(r) as discussed in Ref. (Lüscher, 1991).
Instead of looking at the wave function outside the range of the interaction, the au-
thors consider the internal region |r| < R and define the energy-independent non-local
potential U(r, r′) from ψ(r) so that it obeys the Schrödinger type equation in a finite
box. Since U(r, r′) for strong interaction is localized in its spatial coordinates due
to confinement of quarks and gluons, the potential receives finite volume effect only
weakly in a large box. Therefore, once U is determined and is appropriately extrapo-
lated to L→ ∞, one may simply use the Schrödinger equation in the infinite space to
calculate the scattering phase shifts and bound state spectra to compare with experi-
mental data. Further advantage of utilizing the potential is that it would be a smooth
function of the quark masses so that it is relatively easy to handle on the lattice. This
is in sharp contrast to the scattering length which shows a singular behavior around
the quark mass corresponding to the formation of the NN bound state.

In this lecture, we first introduce the Lüscher’s method for the scattering phase
shift in Sec.2. Since the method is not only well established but also well explained in
Ref.(Lüscher, 1991), we mainly consider properties of the BS wave function, in terms of
which the scattering phase shift can be related to the energy shift of the 2 particles state
in the finite box. These properties are also used to define the NN potential in Sec.3,
where new method in Ref.(Ishii et al., 2007; Aoki et al., 2008; Aoki et al., 2010b) is
explained in detail. We finally consider a very recent attempt to understand the origin
of the repulsive core in the NN potential in Sec.4. Using the operator product expan-
sion and the renormalization group analysis in QCD, the potential derived from the
BS wave function in Sec.3 is shown to have the repulsive core, whose functional form
is also theoretically predicted(?). Brief concluding remarks are given in Sec.5.
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Phase Shift from Lattice QCD:
Lüscher’s formula in the finite
volume

2.0.1 Preparation: Scattering phase shift in quantum mechanics

In this subsection, as a preparation for the latter sections, we give some basics of the
scattering theory in quantum mechanics.

Let us consider the 3-dimensional Schrödinger equation, given by

[H0 + V (r)]ϕ(r) = Eϕ(r) (2.1)

where

H0 = −∇2

2m
, ∇2 = ∂2x + ∂2y + ∂2z . (2.2)

Hereafter we consider only the spherically symmetric potential that V (r) = V (r) with
r = |r|. In this case it is convenient to use the polar coordinate such that

∇2 =
1

r2
∂

∂f
r2
∂

∂r
− L̂2

r2
, L̂2 = −

[

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2

]

. (2.3)

Using the separation of the variables, we consider the following form of the solution
ϕ(r):

ϕ(r) =
∑

l

Rl(r)Ylm(θ, φ) (2.4)

where the spherical harmonic function Ylm satisfies

L̂2Ylm(θ, φ) = l(l+ 1)Ylm(θ, φ) (2.5)

L̂zYlm(θ, φ) = mYlm(θ, φ) (2.6)

and is normalized as
∫ 2π

0

dφ

∫ π

0

sin θd θ Ylm(θ, φ) Yl′m′(θ, φ) = δll′δmm′ . (2.7)

Note that in this lectrue X means a complex conjugate of X while X† is a hermitan
conjugate of X . Explicitly it is given by

Ylm(θ, φ) = c

√

2l + 1

4π
· (l − |m|)!
(l + |m|)!Plm(cos θ)eimφ, (2.8)
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c =

{

(−1)m m > 0
1 m ≤ 0

(2.9)

where Plm(z) is the Legendre bi-function of degree l, defined by

Plm(z) = (1− z2)m/2 d
|m|Pl(z)

dz|m|
, |m| ≤ l, (2.10)

Pl(z) =
1

2ll!

dl

dzl
(z2 − 1)l. (2.11)

For small l and m, for example, we have

Y00(θ, φ) =
1√
4π
, Y10(θ, φ) =

√

3

4π
cos θ, Y1±1 = ∓

√

3

8π
sin θe±iφ,

Y20(θ, φ) =

√

5

4π

1

2
(3 cos2 θ − 1), Y2±1(θ, φ) = ∓

√

15

8π
sin θ cos θe±iφ,

Y2,±2(θ, φ) = ∓
√

15

32π
sinθ e±i2φ. (2.12)

From eqs. (2.4) and (2.5), the 3-dimensional Schrödinger equation (2.1) is reduced
to the 1 dimensional equation for Rl as

1

r

d2

dr2
(rRl(r)) +

{

2m (E − V (r)) − l(l+ 1)

r2

}

Rl(r) = 0. (2.13)

Usually we further assume the following properties for the potential V (r):

lim
r→0

r2V (r) = 0, (2.14)

lim
r→∞

rnV (r) = 0 for ∀n ∈ Z. (2.15)

The first condition means

V (r) < O

(

1

r2

)

(2.16)

for small r, which leads to

Rl(r) = O(rl) (2.17)

for small r. The second condition means

V (r) = 0 for r > R, (2.18)

for sufficiently large R, so that eq. (2.13) becomes

R
′′

l (y) +
2

y
R

′

(y) +

{

1− l(l + 1)

y2

}

Rl(y) = 0 (2.19)
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for r > R, where y = kr and k2 = 2mE. The solution to this equation is obtained as

Rl(y) = Aljl(y) +Blnl(y) (2.20)

where spherical Bessel functions are given by

jl(x) = (−x)l
(

1

x

d

dx

)l(
sinx

x

)

≃



















xl

(2l + 1)!!
, x→ 0

sin(x− lπ/2)

x
, x→ ∞

, (2.21)

nl(x) = (−x)l
(

1

x

d

dx

)l
(cosx

x

)

≃



















x−(l+1)

(2l − 1)!!
, x→ 0

cos(x− lπ/2)

x
, x→ ∞

. (2.22)

Therefore, in r → ∞ limit, the above solution becomes

Rl(r) ≃ Al

sin
(

kr − l
2π
)

kr
+Bl

cos
(

kr − l
2π
)

kr
= Cl

sin
(

kr − l
2π + δl(k)

)

kr
(2.23)

where the scattering phase shift δl(k) is given by

tan δl(k) =
Bl

Al
, Cl =

√

A2
l +B2

l (2.24)

and Al = Cl cos δl(k), Bl = Cl sin δl(k). If δl(k) > 0 the interaction is attractive for
this k, while it is repulsive if δl(k) < 0.

For the particle-particle scattering in quantum mechanics, we consider the La-
grangean,

L =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 − V (|r1 − r2|). (2.25)

By introducing the relative coordinate r = r1 − r2 and the center of gravity R =
(m1r1 +m2r2)/(m1 +m2), the above Lagrangean becomes

L =
1

2
MṘ2

1 +
1

2
µṙ2 − V (r), (2.26)

where M = m1+m2 is the total mass and µ = m1m2/(m1+m2) is the reduced mass.
The corresponding Hamiltonian is given by

H = HG +Hrel, HG =
1

2M
P2, Hrel =

1

2µ
p2 + V (r), (2.27)

where P =MṘ and p = µṙ. While HG is a Hamiltonian for a free particle, Hrel corre-
sponds to the Hamiltonian for a particle under the potential V (r), whose Schrödinger
equation identical to eq.(2.1).
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2.1 Bethe-Salpeter wave function and phase shift in quantum

field theories

In this section, we construct a ”scattering wave” in quantum field theories whose
asymptotic behavior is identical to the one in the scattering wave in quantum me-
chanics given in eq.(2.23). Moreover we show that the phase shift corresponds to the
phase of the S-matrix required by the unitarity. For notational simplicity we consider
the ππ scattering in QCD here.

The unitarity of the S-matrix S†S = SS† = 1 with S = 1 + iT leads to

〈f |T |i〉 − 〈f |T †|i〉 = i
∑

n

〈f |T †|n〉〈n|T |i〉, (2.28)

where |n〉 are asymptotic states. In the case of ππ scattering in the center of mass
system that ka + kb → kc + kd where ka = (Ek,k), kb = (Ek,−k) and kc = (Ep,p),

kd = (Ep,−p) with Ek =
√

k2 +m2
π and Ep =

√

p2 +m2
π, we explicitly write

〈kc, kd|T |ka, kb〉 = (2π)4δ(4)(ka + kb − kc − kd)T (p,q) (2.29)

We consider the elastic scattering, where the total energy is below the 4π produc-
tion such that 2

√

k2 +m2
π < 4mπ, equivalently, k

2 < 3m2
π with k = |k| = |p|. In this

case, due to the energy-momentum conservation, the sum over intermediate state n in
Eq. (2.28) is restricted to the ππ states as

∑

n

|n〉〈n| =
∫

d3 p1

(2π)3Ep1

d3 p2

(2π)3Ep2

|p1.p2〉〈p1, p2| . (2.30)

Inserting this into Eq. (2.28), we have

T (p,k)− T †(p,k) = i
k

32π2Ek

∫

dΩq T
†(p,q)T (q,k) , (2.31)

where |q| = k and Ωq is the solid angle of the vector q. Using the partial wave
decomposition that

T (p,k) = 4π

∞
∑

l=0

l
∑

m=−l

Tl(k)Ylm(Ωp)Ylm(Ωk) (2.32)

and the orthogonal property of the spherical harmonics function Ylm(θ, φ) = Ylm(Ωq)
that

∫

dΩq Ylm(Ωq) Yl′m′(Ωq) = δll′δmm′ , (2.33)

the unitarity (2.31) becomes

Tl(k)− Tl(k) = i
k

8πEk
Tl(k) Tl(k). (2.34)
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A solution to this unitarity condition is easily obtained as

Tl(k) =
16πEk

k
eiδl(k) sin δl(k) , (2.35)

where δl(k) is an arbitrary real function of k, and can be interpreted as the scattering
phase shift, as seen later.

We now introduce the Bethe-Salpeter (BS) wave function for ππ system, defined
by

ϕ(r) = 〈0|T {πa(x+ r, ta)πb(x, tb)}|ka, a, kb, b; in〉 (2.36)

where |ka, a, kb, b; in〉 is a ππ asymptotic in-state in the center of mass system such
that ka = (Ek,k) and kb = (Ek,−k) with flavors a and b. The pion interpolating
operator is given by

πa(x, x0) = q̄(x)iγ5τaq(x), q(x) =

(

u(x)
d(x)

)

(2.37)

with the Pauli matrix τa. For simplicity we take ta = tb + ǫ with ǫ ≥ 0 and the ǫ→ 0
limit. We then simply write

ϕ(r) = 〈0|πa(x+ r, t)πb(x, t)|ka, a, kb, b; in〉. (2.38)

The name, the Bethe-Salpeter wave function, comes from the fact that this quantity
satisfies the Bethe-Salpeter equation(Bethe and Salpeter, 1951). Unlike field equations
such as the Dyson-Schwinger equations, the BS equation is derived from the diagram-
matic consideration. We here consider the BS wave function from the different point
of view.

By inserting the complete set of the out-states such that

1 =
∑

c

∫

d3p

(2π)32p0
|p, c; out〉 〈p, c; out|+

∑

X

|X ; out〉〈X ; out|
2EX

, (2.39)

we have

ϕ(r) = ϕelastic(r) + ϕinelastic(r) (2.40)

where

ϕelastic(r) =
√

Zπ

∫

d3p

(2π)32p0
eip·(x+r)−ip0t〈p, a; out|πb(x, t)|k, a,−k, b; in〉

(2.41)

ϕinelastic(r) =
∑

X

〈0|πa(x+ r, t)|X ; out〉 1

2EX
〈X ; out|πb(x, t)|k, a,−k, b; in〉 (2.42)

and |p, a, ; out〉 is an one-pion out-state with momentum p, which satisfies

〈0|πa(x, x0)|p, b; out〉 = δab
√

Zπe
−ip·x, p0 =

√

p2 +m2
π. (2.43)

On the other hand, X represents general states other than one-pion states.
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Using the reduction formula that

aout(p)T (O)− T (O)ain(p) = (−p2 +m2
π)T (π(p)O) (2.44)

T (O)a†in(p)− a†out(p)T (O) = (−p2 +m2
π)T (Oπ

†(p)) (2.45)

where O is an arbitrary field operator and

π(p) =

∫

d4x
eipx√
Zπ

π(x), (2.46)

we obtain

〈p, a; out|πb(x, t)|k, a,−k, b; in〉 =
√

Zπ(2π)
32k0δ

(3)(p− k)e−ikx

+
√

Zπ
e−iqx

m2
π − q2 − iε

T̂ (p, q, ka, kb) (2.47)

where off-shell T-matrix T̂ is defined by

T̂ (p, q, ka, kb) = (−p2 +m2
π)(−q2 +m2

π)G(p, q, ka, kb)(−k2a +m2
π)(−k2b +m2

π)

(2.48)

G(p, q, ka.kb)i(2π)
4δ(4)(p+ q − ka − kb) = 〈0|T {πa(p)πb(q)π†

a(ka)π
†
b(kb)}|0〉.

(2.49)

Here p = (p, p0), ka = (k, k0) and kb = (−k, k0) are on-shell 4-momenta, while
q = (−p, 2k0 − p0) is generally off-shell. Using this expression we obtain

ϕelastic(r) = Zπe
−i2k0teik·r + Zπe

−i2k0t

∫

d3p

(2π)32p0

eip·r

m2
π − q2 − iε

T̂ (p, q, ka, kb)

(2.50)

Similarly we have

ϕinelastic(r) = e−i2k0t
∑

X

√
ZπZX

2EX

eipXr

m2
π − q2 − iε

T̂X(pX , q, ka, kb) (2.51)

where q = (−pX , 2k0−(pX)0). For simplicity we hereafter set t = 0. We rescale ϕelastic

as

ϕ(r) = Zπϕ
elastic(r) + ϕinelastic(r) (2.52)

where

ϕelastic(r) = eik·r +

∫

d3p

(2π)3
1

p2 − k2 − iε
H(p,k)eip·r (2.53)

with

H(p,k) =
p0 + k0
8p0k0

T (p,q), (2.54)

and k = |k| and p = |p|.
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We now investigate the large r = |r| behavior of the BS wave function below
the 4π inelastic threshold. We first consider ϕelastic. Using the following partial wave
decomposition

H(p,k) = 4π
∑

l,m

Hl(p, k)Ylm(Ωp)Ylm(Ωk) (2.55)

ϕelastic(r) = 4π
∑

l,m

ilϕelastic
l (r, k)Ylm(Ωr)Ylm(Ωk) (2.56)

eip·r = 4π
∑

l,m

iljl(pr)Ylm(Ωr)Ylm(Ωp) , (2.57)

we have

ϕelastic
l (r, k) = jl(kr) +

∫

p2dp

2π2

1

p2 − k2 − iε
Hl(p, k)jl(pr). (2.58)

We assume that the interaction vanishes for large r:

− (∇2 + k2)ϕelastic(r) =

∫

d3p

(2π)3
H(p,k)eip·r −→

r→∞
0 , (2.59)

which, in terms of the partial wave, gives

∫

p2dp

2π2
Hl(p, k)jl(pr) −→

r→∞
0 . (2.60)

We evaluate the second term of eq.(2.58). Using the explicit form of the spherical
Bessel function jl(x) in eq.(2.21) we have

∫

p2dp

2π2

1

p2 − k2 − iε
Hl(p, k)jl(pr) = (−r)l

(

1

r

d

d r

)l ∫ ∞

0

p2−ldp

4π2ipr

eipr − e−ipr

p2 − k2 − iε
Hl(p, k)

= (−r)l
(

1

r

d

d r

)l ∫ ∞

−∞

p2−ldp

4π2ipr

eipr

p2 − k2 − iε
Hl(p, k)

(2.61)

Here we used the property that Hl(−p, k) = (−1)lHl(p, k), which is shown as

H(p,k) = 4π
∑

l,m

Hl(p, k)Ylm(Ωp)Ylm(Ωk) = 4π
∑

l,m

Hl(−p, k)Ylm(Ω−p)Ylm(Ωk)

= 4π
∑

l,m

(−1)lHl(−p, k)Ylm(Ωp)Ylm(Ωk) (2.62)

where Ω−p means θ → π− θ and φ→ π + φ. To proceed, we assume Hl(p, k) = O(pl)
for small p, so that no contribution around p = 0 appears in the above integral.

We know that the half off-shell T-matrix Hl(p, k) do not have any poles and cuts in
the real axis, since k2 is smaller than inelastic threshold. For simplicity we assume that
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Hl(p, k) has only poles in the complex p plain(this argument may also be generalized
for cuts):

Hl(p, k) =
∑

n>0,Imkn>0

Zn

p− kn
+

∑

n<0,Imkn<0

Zn

p− kn
+ H̃l(p, k) (2.63)

where H̃l(p, k) is analytic in p. Note that kn and Zn implicitly depend on k. This form
of the assumption satisfies the condition eq.(2.60), which becomes

(−r)l
(

1

r

d

d r

)l
∑

n>0,Imkn>0

k2−l
n Zn

2πknr
ei(Rekn)re−(Imkn)r ≃ 0, (2.64)

for k̄0r ≫ 1, where k̄0 = minn>0 Im kn > 0. Using the assumption (2.63), we can
evaluate eq.(2.61) as

=
4

4π
Hl(k, k)(−kr)l

(

1

kr

d

d kr

)l
eikr

kr
+ (−r)l

(

1

r

d

d r

)l
∑

n>0

k2−l
n Zne

iknr

2πknr(k2n − k2)

=
k

4π
Hl(k, k){nl(kr) + ijl(kr)} + (−r)l

(

1

r

d

d r

)l
∑

n>0

k2−l
n Zn

2πknr(k2n − k2)
ei(Rekn)re−(Imkn)r.

(2.65)

Since Imkn > 0, the sum over n > 0 vanishes exponentially for large r which satisfies
k̄0r ≫ 1. Similarly we can show that ϕinelastic(r) vanishes exponentially for large r as
long as k2 is smaller than inelastic threshold.

Therefore, for large r (k̄0r ≫ 1), we finally obtain

ϕl(r, k) ≃ Zπ

[

jl(kr) +
k

4π
Hl(k, k){nl(kr) + ijl(kr)}

]

≃ Zπ
eiδl(k)

kr
sin(kr + δl(k)− lπ/2) (2.66)

where the folowing form of the on-shell T-matrix determined from unitarity in eq.(2.35)

H(k, k) =
4π

k
eiδl(k) sin δl(k), (2.67)

and the asymptotic behaviour of jl(x) and nl(x) that

jl(x) ≃
sin(x− lπ/2)

x
, nl(x) ≃

cos(x− lπ/2)

x
(2.68)

are used.
Note that the derivation for the large r behavior of the BS wave function in this

section is similar but a little different from that in (Lin et al., 2002; Aoki et al., 2005b)
for ππ and in (Ishizuka, 2009; Aoki et al., 2010b) for NN , though the final results are
same.
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2.2 Lüscher’s formula for the phase shift in the finite volume

We now consider the finite volume(Lüscher, 1991). We assume that no interaction
(except exponentially small contributions) exists at r ≥ R, where R is sufficiently large.
Therefore, if the box size L is larger than 2R, there exist a region that R < r < L/2
where

(∇2 + k2)ϕL(r; k) = 0 (2.69)

is satisfied for the BS wave-function ϕL(r; k), which is given by

ϕL(r; k) = 〈0|πa(x+ r, 0)πb(y, 0)|ka, a, kb, b〉L, (2.70)

where the subscript L indicates that the state is constructed in the finite box. This
wave function is expanded in terms of the BS wave function in the infinite volume,
introduced in the previous sections as

ϕL(r; k) = 4π
∑

l,m

Clm(k)ϕl(r, k)Ylm(Ωr) (2.71)

where the coefficient Clm(k) is introduced to satisfy the periodic boundary condition
such that ϕL(r+ nL; k) = ϕL(r; k) for n = (nx, ny, nz) ∈ Z3. Note that

ϕl(r, k) = nl(kr)e
iδl(k) sin δl(k) + jl(kr)e

iδl(k) cos δl(k) (2.72)

for r ≥ R.
On the other hand, we can construct the solution of the Helmholtz equation

(∇2 + k2)ϕL(r; k) = 0 (2.73)

for r 6= 0 with the periodic boundary condition as

φL(r; k) =
∑

l,m

vlm(k)Glm(r, k) (2.74)

where

Glm(r, k) =
√
4πYlm(∇)G(r, k) (2.75)

G(r, k) =
1

L3

∑

p∈Γ

eip·r

p2 − k2
, Γ =

{

p|p = n
2π

L
,n ∈ Z3

}

, (2.76)

Ylm(p) ≡ plYlm(Ωp), p = |p|. (2.77)

It is easy to see the above ϕL(r; k) satisfies both Helmholtz equation and periodic
boundary condition for arbitrary vlm(k)’s as

(∇2 + k2)ϕL(r; k) =
∑

l,m

vlm(k)
√
4πYlm(∇)(∇2 + k2)G(r, k)
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=
∑

l,m

vlm(k)
√
4πYlm(∇)δ(3)(r) = 0 (2.78)

for r 6= 0 and

ϕL(r+ nL; k) =
∑

l,m

vlm(k)
√
4πYlm(∇)G(r + nL, k)

=
∑

l,m

vlm(k)
√
4πYlm(∇)G(r, k) = ϕL(r; k) (2.79)

The coefficient vlm can be determined by comparing eq.(2.74) with eq.(2.71). We
first rewrite

G(r, k) =
k

4π
n0(kr) +

∑

l,m

√
4πYlm(Ωr)glm(k)jl(kr) (2.80)

where

glm(k) =
√
4π

1

L3

∑

p∈Γ

(ip/k)l

p2 − k2
Ylm(Ωp). (2.81)

This can be easily seen as follows. Since

(∇2 + k2)
k

4π
n0(kr) = δ(r), (2.82)

G(r, k) − k

4π
n0(kr) (2.83)

satisfies the Helmholtz equation for all r and is smooth at r → 0, so that it can be
expanded by jl as

G(r, k)− k

4π
n0(kr) =

∑

l,m

√
4πglm(k)jl(kr)Ylm(Ωr). (2.84)

Using

eip·r = 4π
∑

lm

iljl(pr)Ylm(Ωr)Ylm(Ωp) (2.85)

in eq.(2.76), and considering the r → 0 limit in the both side of eq. (2.84), we obtain
eq.(2.81). (Note that jl(x) ≃ xl/(2l+ 1)!! as x→ 0.)

We next observe(Lüscher, 1991) that

Glm(r, k) =
√
4πYlm(∇)G(r, k) =

(−k)lk
4π
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Table 2.1 Non-zero independent elements of

Mlm,l′m′ .

Mlm,l′m′ a (M00) b ( M40 ) c (M60)
M00,00 1 0 0
M1m,1m 1 0 0
M20,20 1 18/7 0
M21,21 1 −12/7 0
M22,22 1 3/7 0
M22,2−2 0 15/7 0

M30,10 0 −4
√
21/7 0

M31,11 0 3
√
14/7 0

M33,1−1 0
√
210/7 0

M30,30 1 18/11 100/33
M31,31 1 3/11 −25/11
M32,32 1 −21/11 10/11
M32,3−2 0 15/11 −70/11
M33,33 1 9/11 −5/33

M33,3−1 0 3
√
15/11 35

√
15/33

×



Ylm(Ωr)nl(kr) +
∑

l′,m′

Mlm,l′m′Yl′m′(Ωr)jl′ (kr)



 , (2.86)

where non-zero elements of Mlm,l′m′ are given by the linear combination of

Mlm =
1

il(2l+ 1)

4π

k
glm(k). (2.87)

The following properties generally hold:

Mlm,l′m′ = Ml′m′,lm = Ml−m,l′−m′ . (2.88)

Non-zero elements at l, l′ ≤ 3 are expressed as

Mlm,l′m′ = aM00 + bM40 + cM60, (2.89)

with a, b, c given in table 2.1. See Ref.(Lüscher, 1991) for more details.
We now consider the cubic group O(3,Z), which has 24 elements and is generated

by following elements in the special cubic group SO(3,Z)

Rx =





1 0 0
0 0 −1
0 1 0



 , Ry =





0 0 1
0 1 0
−1 0 0



 , Rz =





0 −1 0
1 0 0
0 0 1



 , (2.90)

and the parity transformation Pr = −r. There are five irreducible representations
in SO(3,Z), denoted by A1, A2, E, T1 and T2, whose dimensions are 1,1,2,3, and
3, respectively. The irreducible representations of O(3,Z) are constructed these five
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Table 2.2 Decomposition of the angular momentum into irreducible representa-

tions of the cubic group

l rep. basis polynomials independent elements

0 A+
1 1

1 T−
1 ri i = 1, 2, 3

2 E+ r2i − r2j (i, j) = (1, 2), (2, 3)

2 T+
2 rirj i 6= j

3 A−
2 r1r2r3

3 T−
1 5r3i − 3r2rj i = 1, 2, 3

3 T−
2 ri(r

2
j − r2k) (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)

4 A+
1 5(r41 + r42 + r43)− 3r4

4 E+ 7(r4i − r4j )− 6r2(r2i − r2j ) (i, j) = (1, 2), (2, 3)

4 T+
1 rir

3
j − rjr

3
i i 6= j

4 T+
2 7(rir

3
j + rjr

3
i )− 6r2rirj i 6= j

irreducible representations of SO(3,Z) and the parity eigenvalue ±1. It is noted that
irreducible representations of the rotational group O(3,R) are decomposed in terms
of these irreducible representations. For example,

0 = A+
1 , 1 = T−

1 , 2 = E+ ⊕ T+
2 ,

3 = A−
2 ⊕ T−

1 ⊕ T−
2 , 4 = A+

1 ⊕ E+ ⊕ T+
1 ⊕ T+

2 , (2.91)

where a number denotes an eigenvalue of the angular momentum l. The corresponding
basis polynomials for each cubic representation are given in table2.2.

We now compare two expressions of ϕL(r; k) in some irreducible representations
of the cubic group. If we project the BS wave function to A+

1 representation, which
contains the l = 0 partial wave as well as l ≥ 4 contribution. Neglecting l ≥ 4
contribution, eq.(2.71) becomes

ϕ
A+

1

L (r; k) =
√
4πC00(k)e

iδ0(k) [n0(kr) sin δ0(k) + j0(kr) cos δ0(k)] (2.92)

for r ≥ R. In order to match this expression, eq.(2.74) must be

ϕ
A+

1

L (r; k) =
√
4πv00(k)G00(r, k)

=
√
4πv00

[

n0(kr) +
∑

lm

M00,lmYlm(Ωr)jl(kr)

]

, (2.93)

since Glm(r, k) with l 6= 0, which contains nl(kr), can not appear in this equation. By
comparing the two, we have

C00(k)e
iδ0(k) sin δ0(k) = v00 (2.94)

C00(k)e
iδ0(k) cos δ0(k) = v00M00,00 = v00M00, (2.95)

which leads to the famous Lüscher’s formula(Lüscher, 1991),
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cot(δ0(k)) = M00 =
4π

k
g00(k) =

4π

k

1

L3

∑

p∈Γ

1

p2 − k2
. (2.96)

Note that un-matched components proportional to M00,4m (m = 0,±4) give l = 4
contributions.

Let us briefly explain how to use this formula. We first calculate the energy E2(L)
of two pions in the center of mass frame on the finite L3 box with the periodic bound-
ary condition, where L is assumed to be larger than 2R. We then determine k, the
magnitude of the relative momentum of the two pions, from the equation that

E2(L) = 2
√

k2 +m2
π, (2.97)

where mπ is the pion mass in the infinite volume limit. We finally determine δ0(k),
by solving eq.(2.96) with k from eq.(2.97) and the spatial size L. It should be noted
that the momentum for one pion is quantized as p = 2πn/L on the finite box with
the periodic boundary condition. If an interaction between two pions were absent, we
would have E2(L) = 2

√

p2 +m2
π, so that k = |p|. The presence of the interaction

makes k is a little different from |p| on the finite box. The above Lüscher’s formula
relates the difference to the scattering phase shift. By applying the formula for two
pions with different p and L, we can determine the scattering phase shift δ0(k) at
several values of k.

Similarly as above, we consider the T−
1 representation, which contains the l = 1

partial wave as well as l ≥ 3 contributions. If latter ones are neglected, we again obtain

cot(δ1(k)) = M00 =
4π

k
g00(k). (2.98)

On the other hand, if the contribution from l = 3 partial wave can not be neglected,
in addition to the l = 1 component, we have

ϕ
T−

1

L (r; k) = 4π
∑

m

C1m(k)Y1m(Ωrr)e
iδ1(k) [n1(kr) sin δ1(k) + j1(kr) cos δ1(k)]

+ 4π
∑

m

C3m(k)Y3m(Ωr)e
iδ3(k) [n3(kr) sin δ3(k) + j3(kr) cos δ3(k)] ,

(2.99)

which should be compared with

ϕ
T−

1

L (r; k) =
∑

v1m(k)G1m(r, k) +
∑

v3m(k)G3m(r, k). (2.100)

From the matching condition we obtain, after a little algebra,

det

(

M10,10 − cot δ1(k), M30,10

M30,10, M30,30 − cot δ3(k)

)

= 0, (2.101)

for m = 0, and
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det





M11,11 − cot δ1(k), M31,11, M33,1−1

M31,11, M31,31 − cot δ3(k), M33,3−1

M33,1−1, M33,3−1, M33,33 − cot δ3(k)



 = 0, (2.102)

for m = 1,−3 or m = −1, 3, while we have

det

(

M32,32 − cot δ3(k), M32,3−2

M32,3−2, M32,32 − cot δ3(k)

)

= 0, (2.103)

for m = 2,−2. From the last equation, we can determine δ3(k) at some k and L.
Putting this δ3(k) into the first or the second equation, we can also extract δ1(k).

2.3 Some references for the ππ phase shift from lattice QCD

The BS wave function for the ππ system in the isospin I = 2 channel has been
investigated in quenched QCD at k ≃ 0(Aoki et al., 2005a) to extract the scattering
length a0 through the Lüscher’s formula in the center of mass system. The scattering
length is related to the scattering phase shift δ0(k) as

k

tan δ0(k)
=

1

a0
+ r0

k2

2
+ O(k4) , (2.104)

where r0 is called the effective range. The calculation of the BS wave function for
the ππ system in the I = 2 channel has been extended to the case of the non-zero
momentum in quenched QCD(Sasaki and Ishizuka, 2008) and the I = 2 ππ scat-
tering phase shift can be extracted using the Lüscher’s formula in the laboratory
system(Rummukainen and Steven Gottlieb, 1995).

Besides quenched calculations, there are only a few calculations for the ππ scatter-
ing phase shift.

The I = 2 ππ scattering length and phase shift have been calculated through the
Lüscher’s formula in 2–flavor lattice QCD with the O(a) improved Wilson fermion in
both center of mass and laboratory systems(Yamazaki et al., 2004). Both chiral and
continuum extrapolations have been taken, though the pion masses in the simulation
are rather heavy.

The I = 2 ππ scattering length has been calculated in the 2+1–flavor mixed action
lattice QCD, using the domain-wall valence quarks with the asqtad-improved staggered
sea quarks for msee

π ≃ 294, 348 and 484 MeV at a ≃ 0.125 fm(Beane et al., 2006;
Beane et al., 2008). The scattering phase shift has also been calculated at k ≃ 544
MeV and mπ ≃ 484 MeV.

Recently the I = 2 ππ scattering length has been calculated in 2–flavor twisted
mass lattice QCD for pion masses ranging from 270 MeV to 485 MeV at a ≃ 0.086
fm(Feng et al., 2010). The lattice spacing error is estimated at a ≃ 0.067 fm for one
pion mass.

The P -wave scattering phase shift for the I = 1 ππ system has been calculated in
2-flavor lattice QCD with an improvedWilson fermion at a = 0.22 fm in the laboratory
system(Aoki et al., 2007). Since mπ/mρ ≃ 0.41 in this calculation, the decay width of
ρ meson can be estimated from the scattering phase shift.



3

Nuclear Potential from Lattice QCD

In the previous section, we have explained the Lüscher’s method to extract the scat-
tering phase shift from the two particle energy in the finite box, considering the ππ
case as an example. To show the relation between the phase shift and the two particle
energy in the finite box, we use the fact that the BS wave function in the large sepa-
ration such that r ≥ R, where R is the interaction range between two particles in the
infinite volume, satisfies the free Schrödinger equation (the Helmholtz equation) with
the periodic boundary condition.

In this section, instead of the large distance behaviour, we consider the short dis-
tance properties of the BS wave function, from which we define the ”potential” between
two particles. We mainly consider the NN potential, though the method in this section
can be applied to any two particles in principle.

3.1 Strategy to extract potentials in quantum field theories

In this subsection, we describe the strategy to extract theNN potentials in QCD(Ishii et al., 2007;
Aoki et al., 2008; Aoki et al., 2010b).

As a preparation, we introduce the T -matrix of the NN scattering below the NNπ
inelastic threshold. The 4×4 T -matrix component for a given total angular momentum
J is decomposed into two 1×1 submatrices and one 2×2 submatrix as(Ishizuka, 2009;
Aoki et al., 2010b)

T J =





T J
l=J,s=0 0 01×2

0 T J
l=J,s=1 01×2

02×1 02×1 T J
l=J∓1,s=1



 (3.1)

where l is the orbital angular momentum between two nucleons and s is the total spin.
The unitarity tells us that

T J
l=J,s = T̂Js, T J

l=J∓1,s=1 = O(k)

(

T̂J−1,1 0

0 T̂J+1,1

)

O−1(k) (3.2)

with

T̂ls =
16πEK

k
eiδls(k) sin δls(k), O(k) =

(

cos ǫJ(k) − sin ǫJ(k)
sin ǫJ(k) cos ǫJ(k)

)

, (3.3)

where δls(k) is the scattering phase shift, whereas ǫJ(k) is the mixing angle between
l = J ± 1. Here the total energy of the two nucleons is given by 2Ek = 2

√

k2 +m2
N in

the center of mass frame.
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Let us start describing the strategy to extract the potential in QCD. We first define
the BS amplitude for two nucleons in the center of mass frame as

ϕE
αβ(r) = 〈0|T {Nα(y, 0)Nβ(x, 0)} |k, sa,−k, sb; in〉, (3.4)

where the relative coordinate denoted as r = x − y, the special momentum and the
helicity for incoming nucleon is denoted by (k, sa) or (−k, sb), the total energyE = 2Ek

with k = |k|. The local composite nucleon operator is given by

Nf
α(x) = ǫabcqa,fα (x)qb,gβ (x)(iτ2)gh(Cγ5)

βγqc,hγ (x)

= ǫabcqa,fα (x)
[

qb(x)iτ2Cγ5q
c(x)

]

, (3.5)

where qa,fα is a quark field with the color index a, the flavor index f and the spinor index
α. Here repeated index assumes a sum, C = γ2γ4 is the charge conjugation matrix
and iτ2 acts on the flavor index. Unless necessary, the flavor indices are implicit.

Let us briefly consider the meaning of the BS wave function. By writing

〈0|T {N(y, 0)N(x, 0)} =

∞
∑

n,m=0

∫

dE

2E
〈2N,n(N̄N),mπ,E|fnm(r, E)

(3.6)

where |2N,n(N̄N),mπ,E〉 is an in-state containing two nucleons, n pairs of nucleon-
antinucleon and m pions with the total energy E, we see that ϕE(r) = f00(r, E). (Our
normalization is 〈2N,n(N̄N),mπ,E||2N,n′(N̄N),m′π,E′〉〉 = 2Eδ(E−E′)δnn′δmm′ .
) Therefore the BS wave function ϕE(r) is an amplitude to find the in-state |2N,E〉
in T {N(y, 0)N(x, 0)} |0〉.

As in the case of ππ, the asymptotic behaviours of the BS wave function at r =
|r| > R, where R is the interaction range of two nucleons, agree with those of the
scattering wave of the quantum mechanics(Ishizuka, 2009; Aoki et al., 2010b). The BS
wave function for a given total angular momentum J has 4 components. For example,
the BS wave function for l = J, s = 0 at large r becomes

ϕl=J,s=0(r; k) −→
r>R

ZYJJz
(Ωr)e

iδJ0(k) (jJ (kr) cos δJ0(k) + nJ(kr) sin δJ0(k))

≃ ZYJJz
(Ωr)

eiδJ0(k)

kr
sin(kr + δJ0(k)− πJ/2). (3.7)

where Jz is the z component of the total angular momentum. See Refs. (Ishizuka, 2009;
Aoki et al., 2010b) for more details. This shows that the BS wave function can be
regarded as the NN scattering wave.

Now we define the non-local NN ”potential” through ϕE(r)(Ishii et al., 2007;
Aoki et al., 2008; Aoki et al., 2010b) as

(

k2

2µ
−H0

)

ϕE
αβ(x) =

∫

d3y Uαβ,γδ(x,y)ϕ
E
γδ(y), H0 =

−∇2

2µ
, (3.8)

where µ = mN/2 is the reduced mass of the two nucleons. It is noted that U(x,y)
is non-local but energy-independent and this potential is equivalent to the local but
energy dependent potential V (r,k), which is defined by
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K(r,k) ≡
(

k2

2µ
−H0

)

ϕ(r,k) = V (r,k)ϕ(x,k), (3.9)

where we write ϕ(r,k) = ϕE(r). To see the equivalence, we construct the dual basis
ϕ̃(k, r) as

ϕ̃(k, r) =

∫

d3p η−1(k,p)ϕ(r,p), (3.10)

where the metric is given by

η(k,p) =

∫

d3r ϕ(r,k)ϕ(r,p). (3.11)

It is easy to see that the dual basis satisfies

∫

d3y ϕ̃(k, r)ϕ(r,p) = δ(3)(k− p) (3.12)

∫

d3p ϕ(x,p)ϕ̃(p,y) = δ(3)(x− y). (3.13)

Using the dual basis, we obtain the non-local potential form the local one as

U(x,y) =

∫

d3p K(x,p)ϕ̃(p,y) =

∫

d3p V (x,p)ϕ(x,p)ϕ̃(p,y). (3.14)

This establishes one to one correspondence between the non-local but energy-independent
potential U(x,y) and the local but energy-dependent one V (r,k).

The equivalence also tells us that we need to know the BS wave function at all
energies to completely construct U(x,y). Although this is principle possible, it is in
practice very difficult. We therefore consider the following derivative expansion of
U(x,y).

U(x,y) = V (x,∇)δ(3)(x− y). (3.15)

The structure of the V (r,∇) can be determined as follows(Okubo and Marshak, 1958).
The most general (non-relativistic) NN potential is parameterized as

V (r1, r2,p1,p2, ~σ1, ~σ2, ~τ1, ~τ2, t) (3.16)

where ri, pi, ~σi and ~τi are the coordinate, the momentum, the spin and the isospin of
the i-th nucleon, respectively and the t is the time. There are several conditions this
potential should satisfy.

1. Probability conservation implies the hermiticity of the potential, V † = V .

2. Eneregy conservation imply the t independence while the momentum conservation
says that the potential depends on the combination r = r1 − r2 only.

3. Galilei invariance tells us that the potential contains p = p1−p2 only. From these
three conditions, we have V = V (r,p, ~σ1, ~σ2, ~τ1, ~τ2).



Strategy to extract potentials in quantum field theories 21

4. The total angular momentum conservation implies that V is invariant under ~J =
~L + ~S with the orbital angular momentum ~L = r × p and the total spin ~S =
(~σ1 + ~σ2)/2.

5. The potential should be invariant under parity, (r,p, ~σi) → (−r,−p, ~σi).

6. The potential is invariant under time-reversal, (r,p, ~σi) → (r,−p,−~σi).
7. Quantum statistics of the exchange of two nucleons implies the invariance of the

potential under (r,p, ~σ1, ~σ2, ~τ1, ~τ2) → (−r,−p, ~σ2, ~σ1, ~τ2, ~τ1).

8. From isospin invariance, V contains only 1 · 1 or ~τ1 · ~τ2 in the isospin space.

9. The potential has only ~σn
1 ~σ

m
2 terms with (n,m) = (0, 0), (1, 0), (0, 1), (1, 1). The

other higher order terms can be reduced to these terms because of the property
that σiσj = δij + iǫijkσk.

The terms which contain Pauli matrices and satisfy the above conditions are con-
structed as

~σ1 · ~σ2, (~σ1 + ~σ2) · ~L, (~σ1 · r)(~σ2 · r), (~σ1 · p)(~σ2 · p), (~σ1 · ~L)(~σ2 · ~L), (3.17)

which are customarily reorganized as

~σ1 · ~σ2, S12 ≡ 3(~σ1 · r̂)(~σ2 · r̂)− ~σ1 · ~σ2, ~L · ~S,

P12 ≡ (~σ1 · p)(~σ2 · p), W12 ≡ Q12 −
1

3
~σ1 · ~σ2~L2, (3.18)

where S12 is called the tensor operator, and

Q12 ≡ 1

2

[

(~σ1 · ~L)(~σ2 · ~L) + (~σ2 · ~L)(~σ1 · ~L),
]

, (3.19)

Finally we obtain

V =
∑

I=1,2

V I(r,p, ~σ1, ~σ2)P
τ
I (3.20)

where

V I = V I
0 + V I

σ (~σ1 · ~σ2) + V I
LS(

~L · ~S) + 1

2
{V I

T , S12}+
1

2
{V I

P , P12}+
1

2
{V I

W ,W12}
(3.21)

with coefficient functions V I
X = V I

X(r2,p2, ~L2) for I = 0, 1 and X = 0, σ, T, LS, P,W .
Here P τ

I is the projection operator to the state with the total isospin I, given by

P τ
I=0 =

1

4
− ~τ1 · ~τ2, P τ

I=1 =
3

4
+ ~τ1 · ~τ2. (3.22)

The anticommutators in Eq.(3.21) are necessary to make the potential hermitian, since

S12, P12 and W12 do not commute with the scalar potentials V I
X(r2,p2, ~L2).
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From the general consideration above, we have, for example at O(∇),

V (r,∇) =
∑

I=0,1

[

V I
0 (r) + V I

σ (r)~σ1 · ~σ2 + V I
T (r)S12 + V I

LS(r)~L · ~S
]

P τ
I

+ O(∇2). (3.23)

This form of the potential has often been used in nuclear physics. Note that the first
3 terms are O(1) while the LS potential is O(∇).

This is the strategy to define and extract the NN potential in QCD. There are
two important and mutually-related remarks.

The leading order potential in the derivative expansion is nothing but the local
potential V (r,k). By construction, this (local) potential reproduces the correct phase
shift δ(k) at k = |k|, while it is not guaranteed that this potential gives the correct
phase shift at different k′ = |k′|(6= k). This means that the local potential V (r,k) and
V (r,k′) may differ, and this energy dependence of the local potential gives a measure
for the non-locality of the non-local but energy independent potential U(x,y) because
of the equivalence between V and U . If the the first order in the derivative expansion
is good at low energy, we expect that energy dependence of the potential V is expected
to be small at small k.

Secondly it should be mentioned that the potential U defined through the BS
amplitude of course depends on the choice of the interpolating field operators N(x).
In principle, one may choose any (local) composite operators with the same quantum
numbers as the nucleon to define the BS wave function. Different choices for the
nucleon operator give different BS wave functions, which may leads to different NN
potentials, though they all gives the same scattering phase shift. While the potential
is not an physical observable in this sense, it does not mean that it is useless, however.
The strategy in this report gives one specific scheme for the NN potential in QCD,
which is defined through the BS amplitude constructed from the local nucleon field
without derivatives. This is quite analogous to the situation for the running coupling in
QCD. Although the running coupling is scheme-dependent, it is useful to understand
and describe the deep inelastic proton-electron scattering. Let us make this analogy
more concrete. A physical observables is the scattering data in both cases, the deep
inelastic scattering or the NN scattering. An example of the physical interpretation
is the almost free partons in proton for the case of the deep inelastic scattering, while
it is an existence of the repulsive core for the case of NN scattering. An theoretical
explanation for the phenomena is the asymptotic freedom of the QCD running coupling
for the free partons, while no valid theoretical explanation exists so far for the repulsive
core. In this report, we introduce one definite scheme for the potential based on QCD,
in order to show an existence of the repulsive core. Although the choice of the scheme
is irrelevant in principle, it is better to use a ”good” scheme in practice. In the case
of the running coupling, good convergence of the pertubative expansion may give one
criterion, though the popularly used MS coupling may not be the best one for this
criterion. In the case of the NN potential, on the other hand, good convergence of
the derivative expansion may give a criteria for a ”good” potential. In other words,
the good potential is almost local and energy-independent. The NN potential which
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is completely local and energy-independent at all energy range is therefore the best
one. It is also unique if the inverse scattering method holds for the NN case.

3.2 Extraction of the BS wave function on the lattice

In this subsection, we explain how to extract the BS wave function from correlation
functions on the lattice. For simplicity, we here consider the l = 0 state, namely the
S-state.

The BS wave function on the lattice with the lattice spacing a and the spatial
lattice volume L3 is extracted from the 4-point correlation function, by inserting the
complete set of the QCD eigenstates in the finite box as,

Gαβ(x,y, t− t0; J
P ) = 〈0|nβ(y, t)pα(x, t)Jpn(t0; J

P )|0〉 (3.24)

=

∞
∑

n=0

An〈0|nβ(y, t)pα(x, t)|En〉e−En(t−t0) (3.25)

−→
t>>t0

A0 ϕαβ(r; J
P ), r = x− y (3.26)

with the matrix element An = 〈En|Jpn(0)|0〉, where p (n) is the proton (neutron)
interpolating operator, p = Nu ( n = Nd), |En〉 is the QCD eigenstate with the
baryon number 2 and the total energy En = 2

√

k2n +m2
N . The state created by the

source Jpn have the conserved quantum numbers, (J, Jz) (total angular momentum
and its z-component), I(total isospin) and P (parity). To study the NN potential in
the JP = 0+ with I = 1 (1S0) channel and the JP = 1+ with I = 0 (3S1 and 3D1)
channel, a wall-source located at t = t0 with the Coulomb gauge fixing only at t = t0
is used,

Jpn(t0, J
P ) = P s

βα

[

pwall
α (t0)n

wall
β (t0)

]

(3.27)

where pwall(t0) and nwall(t0) are obtained by replacing the local quark fields q(x) in
N(x) by the wall quark fields,

qwall(t0) =
∑

x

q(x, t0). (3.28)

By construction, the source operator eq.(3.27) has zero orbital angular momentum
at t = t0, so that states with fixed (J, Jz) are obtained by the spin projection with
(s, sz) = (J, Jz), e.g. P

s=0
βα = (σ2)βα and P s=1,sz=0

βα = (σ1)βα. Note that the l and s are

not separately conserved, so that the state created by the source Jpn(t0; 1
+) becomes

a mixture of the l = 0 (S-state) and l = 2 (D-state) at later time t > t0.
The BS wave function in the orbital S state is then defined with the projection

operator for the cubic group PR with the irreducible representation R and that for
the spin P s as

ϕ(r;1 S0) = PA+

1 P s=0ϕ(r; 0+) ≡ 1

24

∑

g∈O(3,Z)

P s=0
αβ ϕαβ(g

−1r; 0+) (3.29)
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ϕ(r;3 S1) = PA+

1 P s=0ϕ(r; 1+) ≡ 1

24

∑

g∈O(3,Z)

P s=1
αβ ϕαβ(g

−1r; 1+), (3.30)

where the summation over g ∈ O(3,Z) is taken for the cubic transformation group
with 24 elements to project out the l = 0 component in the A+

1 representation, and
contributions from the higher orbital waves with l ≥ 4 contained in the A+

1 rep. are
expected to be negligible at low energy.

Form these BS wave functions, we can construct the local potentials at the leading
order of the derivative expansion. For the 1S0 channel, the central potential becomes

VC(r;
1 S0) ≡ V I=1

0 (r) + V I=1
σ (r) =

k2

mN
+

1

mN

∇2ϕ(r;1 S0)

ϕ(r;1 S0)
(3.31)

while for the 3S1 channel there are two independent terms, VC(r,
3 S1) = V I=0

0 (r) −
3V I=0

σ (r) and V I=0
T (r), at the leading order. For a while we ignore VT and define the

effective central potential as

V eff
C (r;3 S1) =

k2

mN
+

1

mN

∇2ϕ(r;3 S1)

ϕ(r;3 S1)
, (3.32)

where the ”effective” central potential means that it includes the effect of the tensor
potential VT as the second order pertubation.

It is noted here that k2 is determined from the total energy E0 of two nucleons as
E0 = 2

√

k2 +m2
N .

3.3 Tensor potential

While the central potential acts separately on the S and D components, the tensor
potential provides a coupling between these two components. We therefore consider a
coupled-channel Schödinger equation in the JP = 1+ channel, in which the BS wave
function has both S-wave and D-wave components as

(

H0 + VC(r; 1
+) + VT (r)S12

)

ϕ(r; 1+) =
k2

mN
ϕ(r; 1+). (3.33)

The projections to the S-wave and D-wave components similar to eq. (3.30) are defined
by

Pϕαβ(r) ≡ PA+

1 ϕαβ(r; 1
+), (3.34)

Qϕαβ(r) ≡ (1− PA+

1 )ϕαβ(r; 1
+). (3.35)

Here both Pϕαβ and Qϕαβ contain additional components with l ≥ 4 but they are
expected to be small at low nenergy.

Multiplying P and Q to eq.(3.33) from the left and using the properties that H0,
VC(r; 1

+) and VT (r) commute with P and Q, we obtain

H0[Pϕ](r) + VC(r; 1
+)[Pϕ](r) + VT (r)[PS12ϕ](r) =

k2

mN
[Pϕ](r) (3.36)
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Fig. 3.1 The NN wave function in 1S0 and 3S1 channels at mπ = 529 MeV, measured at

(t− t0) = 6a. The inset is a three-dimensional plot of the wave function ϕ(x, y, z = 0;1 S0).

H0[Qϕ](r) + VC(r; 1
+)[Qϕ](r) + VT (r)[QS12ϕ](r) =

k2

mN
[Qϕ](r) (3.37)

where, for simplicity, the spinor indices, α and β are suppressed. Note that S12 does
not commute with P or Q.

By solving these equations for (α, β) = (2, 1) component, we finally extract

VC(r; 1
+) =

k2

mN
− 1

D(r)
{[QS12ϕ]21(r)H0[Pϕ]21(r) − [PS12ϕ]21(r)H0[Qϕ]21(r)}

(3.38)

VT (r) =
1

D(r)
{[Qϕ]21(r)H0[Pϕ]21(r) − [Pϕ]21(r)H0[Qϕ]21(r)} (3.39)

where

D(r) ≡ [Pϕ]21(r)H0[QS12ϕ]21(r)− [Qϕ]21(r)H0[PS12ϕ]21(r). (3.40)

Note that the effective central potential is expressed as

V eff
C (r;3 S1) =

k2

mN
− H0[Pϕ]21(r)

[Pϕ]21(r)
(3.41)

with H0 = −∇2/mN .

3.4 Results in lattice QCD

The first result for the NN potential in lattice QCD based on the strategy in the
previous subsections appeared in Ref.(Ishii et al., 2007), where the (effective) central
potential has been calculated for 1S0 (3S1) channel in quenched QCD simulations at
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Fig. 3.2 The central potential in the 1S0 channel and the effective central potential in the
3S1 channels at mπ = 529 MeV.

the lattice spacing a ≃ 0.137 fm and the spacial extension L ≃ 4.4 fm. More details of
numerical simulations can be found in Ref. (Ishii et al., 2007).

Fig.3.1 shows the BS wave function in 1S0 and 3S1 channels at mπ = 529 MeV and
k2 ≃ 0, which is measured at t− t0 = 6a. The wave functions are normalized to be 1
at the largest spatial point r = 2.192 fm.

The reconstructed central and effective central potentials in the 1S0 and 3S1 chan-
nels atmπ = 529 MeV from the BS wave functions with the formulae (3.31) and (3.32)
are shown in Fig.3.2. The overall structure of the potentials are similar to the known
phenomenologicalNN potentials discussed in Sec.1, namely the repulsive core at short
distance surrounded by the attractive well at medium and long distances. The figure
also shows that the interaction between two nucleons is well switched off for r > 1.5
fm, so that the condition R < L/2 ≃ 2.2 is satisfied.

To check the stability of these potentials against the time-slice adopted to define
the BS wave function, the t-dependence of the 1S0 potential for several different values
of r is shown in Fig.3.3 at mπ = 529 MeV. In this case, the choice t − t0 = 6a for
the extraction of VC(r) is large enough to assure the stability within statistical errors,
which indicates the ground state dominance at this t.

The NN potentials in the 1S0 channel are compared among three different quark
masses in Fig.3.4. As the quark mass decreases, the repulsive core at short distance
and the attractive well at medium distance becomes stronger simultaneously.

The 3S1 and 3D1 components of the BS wave functions obtained from JP = 1+,
Jz = 0 state at mπ = 529 MeV and k2 ≃ 0 are plotted in Fig.3.5(a), according to
eqs. (3.34) and (3.35). Note that the 3D1 wave function becomes multi-valued as a
function of r due to the its angular dependence. It is expected that (α, β) = (2, 1) spin
component of the D-state wave function for JP = 1+ and Jz = 0 is proportional to the
Y20(θ, φ) ∝ 3 cos2 θ− 1. As shown in Fig.3.5(b), the D-state wave function, divided by
the Y20(θ, φ), becomes almost single-valued, so that the D-wave component is indeed
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Fig. 3.4 The central potentials in the 1S0 channel at three different quark masses.

dominant in Qϕ(r). The central potential VC(r; 1
+) and the tensor potential VT (r)

together with the effective central potential V eff
C (r;3 S1) in the 3S1 channel are plotted

in Fig.3.6. Note that V eff
C (r;3 S1) contains the effect of VT (r) implicitly as higher order

effects through the process such as 3S1 →3 D1 →3 S1. In the real world, V eff
C (r;3 S1)

is expected to acquire large attraction from the tensor force, which is reason why
the bound state for a deuteron exist in the 3S1 while no bound states appears for a
dineutron. As seen from Fig.3.6, the difference between VC(r; 1

+) and V eff
C (r;3 S1) is

still small in this quenched simulations due to relatively large quark masses.
The tensor potential VT (r) in Fig.3.6 is negative for the whole range of r within

statistical errors and has a minimum at short distance around 0.4 fm. If the tensor
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Fig. 3.6 The central potential VC(r; 1
+) and the tensor potential VT (r) obtained from the

J+ BS wave function at mπ = 529 MeV, together with V eff
C (r;3 S1).

force receives significant contribution from the one-pion exchange as expected from
the meson theory, VT would be rather sensitive to the change of the quark mass. As
shown in Fig.3.7, indeed the attraction of VT (r) substantially increases as the quark
mass decreases.

At present potentials are determined at leading order of the derivative expansion,
and examples presented so far are extracted from lattice data taken at k ≃ 0. If the
higher order terms such as VLS(r)~L · ~S becomes important, the LO local potentials
determined at k > 0 are expected to be different from the one at k ≃ 0. From such k
dependence of the LO local potentials, some of the higher order terms can in principle
be determined. A lattice QCD analysis on the k dependence has been recently carried
out by changing the spatial boundary condition of the quark field from the periodic
to the anti-periodic ones, which corresponds to the change from k ≃ 0 MeV to k =
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√

3(π/L)2 ≃ 250 MeV. In Fig.3.8, the local potential for the 1S0 channel obtained at
k ≃ 250 MeV is compared with the one at k ≃ 0 in quenched QCD at a = 0.137 fm
and mπ = 529 MeV. As seen from the figure, the k dependence of the local potential
turns out to be very small for every r within statistical errors. Namely the non-locality
of the potential with the choice of the local interpolating operator for the nucleon is
small, and the present local potential at the LO can be used to well describe phsyical
observables such as the phase shift δ0(k) from k ≃ 0 to k ≃ 250MeV without significant
modification, at least in quenched QCD at a = 0.137 fm and mπ = 529 MeV. This
also indicates that the definition for the potential through the BS wave function with
the local nucleon operator is a ”good scheme”.
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4

Repulsive core and operator product
expansion in QCD

As shown in the previous section, the lattice QCD calculations shows that the NN
potential defined through the BS wave function has not only the attraction at medium
to long distance, which has long well been understood in terms of pion and other heav-
ier meson exchanges, but also a characteristic repulsive core at short distance, whose
origin is still theoretically unclear. A recent attempt(Aoki et al., 2010a) to theoreti-
cally understand the short distance behavior of the potential in terms of the operator
product expansion(OPE) is explained in this section.

4.1 Basic idea

Let us first explain the basic idea. We consider the equal time BS wave function defined
by

ϕE
AB(r) = 〈0|OA(r/2, 0)OB(−r/2, 0)|E〉 (4.1)

where |E〉 is some eigen-state of a certain system with the total energy E, and OA,
OB are some operators of this system. We here suppress other quantum number of the
state |E〉 for simplicity. The OPE reads

OA(r/2, 0)OB(−r/2, 0) ≃
∑

C

DC
AB(r)OC(0, 0), (4.2)

from which we have

ϕE
AB(r) ≃

∑

C

DC
AB(r)〈0|OC(0, 0)|E〉. (4.3)

It is noted that r dependence appears solely in DC
AB(r) while the E dependence exists

only in 〈0|OC(0, 0)|E〉. Suppose that the coefficient function of the OPE behaves in
the small r = |r| limit as

DC
AB(r) ≃ rαC (− log r)βCfC(θ, φ) (4.4)

where θ, φ are angles in the polar coordinate of r, the BS wave function becomes

ϕE
AB(r) ≃

∑

C

rαC (− log r)βCfC(θ, φ)DC(E), DC(E) = 〈0|OC(0, 0)|E〉 (4.5)
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in this limit. The potential at short distances can be known from this expression. For
example, in the case of the Ising field theory in 2-dimensions, the OPE for the spin
field σ is given by

σ(x, 0)σ(0, 0) ≃ G(r)1 + c r3/4O1(0) + · · · , r = |x|, (4.6)

where O1(x) (=: ψ̄ψ(x) : in terms of the free fermion fields) is an operator of dimension
1, which leads to

ϕ(r, E) ≃ r3/4D(E) +O(r7/4), D(E) = c〈0|O1(0)|E〉, (4.7)

where |E〉 is a two-particle state with energy E = 2
√
k2 +m2. From this expression

the potential becomes

V (r) =
ϕ′′(r, E) + k2ϕ(r, E)

mϕ(r, E)
≃ − 3

16

1

mr2
(4.8)

in the r → 0 limit. The OPE predicts not only the r−2 behavior of the potential at short
distance but also its coefficient−3/16. Furthermore the potential at short distance does
not depend on the energy of the state in this example(Aoki et al., 2009b).

As will be seen later, the dominant terms at short distance have αC = 0. Among
these terms, we assume that C has the largest contribution such that βC > βC′ for
∀C′ 6= C. Since, as will be also seen later, such dominant operators with αC = 0
mainly couples to the zero angular momentum (L = 0) state, let us consider the BS
wave function with L = 0, given by

ϕE
AB(r) ≃ (− log r)βCDC(E) +

∑

C′ 6=C

(− log r)βC′DC′(E). (4.9)

Using

∇2(− log r)β = −β (− log r)β−1

r2

[

1− β − 1

− log r

]

, (4.10)

we obtain the following classification of the short distance behavior of the potential.

1. βC 6= 0: The potential at short distance is energy independent and becomes

V (r) ≃ − βC
r2(− log r)

, (4.11)

which is attractive for βC > 0 and repulsive for βC < 0.

2. βC = 0: In this case the potential becomes

V (r) ≃ DC′(E)

DC(E)

−βC′

r2
(− log r)βC′−1 , (4.12)

where βC′ < 0 is the second largest one. The sign of the potential at short distance
depends on the sign of DC′(E)/DC(E).

On the lattice, we do not expect divergence at r = 0 due to lattice artifacts at
short distance. The above classification hold at a≪ r ≪ 1/ΛQCD, while the potential
becomes finite even at r = 0 on the lattice.
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4.2 Renormalization group analysis and operator product

expansion

In Nf -flavor QCC regularized in D = 4 − 2ǫ, bare local composite operators O
(0)
A (x)

are renormalized as

O
(ren)
A (x) = ZAB(g, ǫ)O

(0)
B (x) , (4.13)

We here ignore the contribution from quark mass terms, which generates less singular
terms in the OPE. Throughout this section, summation of repeated indices is assumed.
The meaning of this formula is that finite results are obtained if we insert the right
hand side into any correlation function, provided the QCD coupling and the quark and
gluon fields are appropriately renormalized. We first consider an n–quark correlation

function without operator insertion G
(0)
n (g0, ǫ) (Here the dependence on the quark

momenta and other quantum numbers suppressed.), which is renormalized as

G(ren)
n (g, µ) = Z

−n/2
F (g, ǫ)G(0)

n (g0, ǫ), (4.14)

where the coupling renormalization is given by

g20 = µ2ǫZ1(g
2, ǫ)g2 . (4.15)

The renromalization constant Z1 in the minimal subtraction (MS) scheme has only
pure poles terms as

Z1(g
2, ǫ) = 1− β0g

2

ǫ
− β1g

4

2ǫ
+
β2
0g

4

ǫ2
+O(g6) (4.16)

where

β0 =
1

16π2

{

11N

3
− 2Nf

3

}

, β1 =
1

256π4

{

34N2

3
−
(

13N

3
− 1

N

)

Nf

}

.(4.17)

Similarly the quark field renormalization constant is given by

ZF (g, ǫ) = 1− γF0g
2

2ǫ
+O(g4). (4.18)

The gluon field renormalization constant is also similar but is not necessary for our

purpose. Similarly an n–quark correlation function with operator insertion G
(0)
n;A(g0, ǫ)

is renormalized as

G
(ren)
n;A (g, µ) = ZAB(g, ǫ)Z

−n/2
F (g, ǫ)G

(0)
n;B(g0, ǫ) , (4.19)

where

ZAB(g, ǫ) = δAB − γ
(1)
ABg

2

2ǫ
+O(g4). (4.20)

The renormalization group (RG) equations are obtained from the simple fact that
bare quantities are independent of the renormalization scale µ. Introducing the RG
differential operator
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D(µ) = µ
∂

∂µ
+ βD(g)

∂

∂g
(4.21)

the RG equation for n–quark correlation functions can be written as

{

D(µ) +
n

2
γF (g)

}

G(ren)
n (g, µ) = 0, (4.22)

where the RG beta function is

βD(g) ≡ µ
∂g

∂µ
= − ǫg

1 + g
2

∂ lnZ1

∂g

= −ǫg − β0g
3 − β1g

5 +O(g7), (4.23)

while the RG gamma function for quark fields is

γF (g) = βD(g, ǫ)
∂ lnZF

∂g
= γF0 g

2 +O(g4). (4.24)

Note that βD(g) differs from β4(g) only by −ǫg, and therefore has the smooth limit
to D = 4. The RG invariant Λ parameter satisfies D(µ)Λ = 0 with the Ansatz that

Λ = µ ef(g). (4.25)

The solution is the lambda-parameter in the MS scheme, ΛMS, if the arbitrary inte-
gration constant is fixed by requiring that for small coupling

f(g) = − 1

2β0g2
− β1

2β2
0

ln(β0g
2) + O(g2). (4.26)

Finally the RG equations for n–quark correlation functions with operator insertion are
of the form

{

D(µ) +
n

2
γF (g)

}

G
(ren)
n;A (g, µ)− γAB(g)G

(ren)
n;B (g, µ) = 0, (4.27)

where

γAB(g) = −ZACβD(g, ǫ)
∂Z−1

CB

∂g
= γ

(1)
ABg

2 +O(g4). (4.28)

Let us consider the OPE

O1(y/2)O2(−y/2) ≃ DB(y)OB(0). (4.29)

where O1 and O2 are nucleon operators and the set of operators OB are local 6–quark
operators of canonical dimension 9 and higher. All operators in (4.29) are renormalized
ones, but from now on we suppress the labels (ren). As we will see, the nucleon operators
are renormalized diagonally as

O1 = Z1(g, ǫ)O
(0)
1 , O2 = Z2(g, ǫ)O

(0)
2 , (4.30)

and the corresponding RG gamma functions are defined by
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γ1,2(g) = βD(g, ǫ)
∂ lnZ1,2

∂g
= γ

(1)
1,2g

2 +O(g4). (4.31)

Comparing (4.29) with its bare version,

O
(0)
1 (y/2)O

(0)
2 (−y/2) ≃ D

(0)
B (y)O

(0)
B (0), (4.32)

we can read off the renormalization of the coefficient functions as

DB(y) = Z1(g, ǫ)Z2(g, ǫ)D
(0)
A (y)Z−1

AB(g, ǫ) (4.33)

so the the RG equation becomes

D(µ)DB(g, µ, y) +DA(g, µ, y) γ̃AB(g) = 0, (4.34)

where the effective gamma function matrix is defined as

γ̃AB(g) = γAB(g)− [γ1(g) + γ2(g)] δAB. (4.35)

Hereafter we assume the dimensionless coefficient functions, which can be written as
DA(g, µ, y) = DA(g;µr) with r = |y|. For the case of operators with higher canonical
dimension 9 + α the coefficients are of the form rα times dimensionless functions
and the analysis is completely analogous and can be done independently, since in the
massless theory operators of different dimension do not mix. In the full theory quark
mass terms are also present, but they correspond to higher powers in r and therefore
can be neglected.

To solve the vector partial equation (4.34), we introduce ÛAB(g), the solution of
the matrix ordinary differential equation

β(g)
d

dg
ÛAB(g) = γ̃AC(g) ÛCB(g) (4.36)

and its matrix inverse UAB(g). With this solution, DB(g;µr) can be easily obtained
as

DB(g;µr) = FA(Λr)UAB(g), (4.37)

where the vector FA is RG-invariant. Now the running coupling ḡ is introduced as the
solution of the equation

f(ḡ) = f(g) + ln(µr) = ln(Λr) . (4.38)

Note that ḡ is a function of r but does not depend on µ. Since FB is RG invariant, we
can evaluate it at µ = 1/r as

FB(Λr) = DA(ḡ; 1) ÛAB(ḡ). (4.39)

By definition g = ḡ at µ = 1/r. Since, because of asymptotic freedom (AF), for r → 0
also ḡ → 0 as

ḡ2 ≈ − 1

2β0 ln(Λr)
, (4.40)

FB can be calculated perturbatively.
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Putting everything together, the operator product expansion (4.29) can be rewrit-
ten as

O1(y/2)O2(−y/2) ≃ FB(Λr) ÕB(0), (4.41)

where
ÕB = UBC(g)OC . (4.42)

There is a factorization of the operator product into perturbative and non-perturbative
quantities: FB(Λr) is perturbative and calculable (for r → 0) thanks to AF, whereas
the matrix elements of ÕB are non-perturbative but r-independent.

The coefficient functions have the perturbative expression

DA(g;µr) = DA;0 + g2DA;1(µr) + O(g4), (4.43)

and the basis of operators can be chosen such that the 1-loop mixing matrix is diagonal:

γ̃AB(g) = 2β0 βA g
2 δAB +O(g4). (4.44)

In such a basis the solution of (4.36) in perturbation theory takes the form

ÛAB(g) = {δAB +RAB(g)} g−2βB , (4.45)

where RAB(g) = O(g2), with possible multiplicative log g2 factors, depending on the
details of the spectrum of 1-loop eigenvalues βA. An operator OB first occurring at
ℓB-loop order on the right hand side of (4.29) has coefficient FB(Λr) with leading short
distance behavior

FB(Λr) ≈ DB,ℓB (1) ḡ
2(ℓB−βB) ≈ DB,ℓB(1) (−2β0 ln(Λr))

βB−ℓB . (4.46)

In principle, an operator with very large βB, even if it is not present in the expansion
at tree level yet, might be important at short distances. This is why it is necessary to
calculate the full 1-loop spectrum of βB eigenvalues. As we will see, no such operators
exist for the two nucleon case, and therefore operators with non-vanishing tree level
coefficients are dominating at short distances. The corresponding coefficient functions
have leading short distance behavior given by

FB(Λr) ≈ DB;0 (−2β0 ln(Λr))
βB . (4.47)

4.3 OPE and Anomalous dimensions for two nucleons

The general form of a gauge invariant local 3–quark operator is given by

BF
Γ (x) ≡ Bfgh

αβγ(x) = εabcqa,fα (x)qb,gβ (x)qc,hγ (x) , (4.48)

The color index runs from 1 to N = 3, the spinor index from 1 to 4, and the flavor
index from 1 to Nf . A summation over a repeated index is assumed, unless otherwise

stated. Note that Bfgh
αβγ is symmetric under any interchange of pairs of indices (e.g.

Bfgh
αβγ = Bgfh

βαγ) because the quark fields anticommute. For simplicity we sometimes use
the notation such as F = fgh and Γ = αβγ as indicated in (4.48).
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The nucleon operator is constructed from the above operators as

Bf
α(x) = (P+4)αα′ B

fgh
α′βγ(Cγ5)βγ(iτ2)

gh , (4.49)

where P+4 = (1 + γ4)/2 is the projection to the large spinor component, C = γ2γ4
is the charge conjugation matrix, and τ2 is the Pauli matrix in the flavor space (for
Nf = 2) given by (iτ2)

fg = εfg. Both Cγ5 and iτ2 are anti-symmetric under the
interchange of two indices, so that the nucleon operator has spin 1/2 and isospin 1/2.
Although the explicit form of the γ matrices is unnecessary in principle, we find it
convenient to use a chiral convention given by

γk =

(

0 iσk
−iσk 0

)

, γ4 =

(

0 1

1 0

)

, γ5 = γ1γ2γ3γ4 =

(

1 0
0 −1

)

. (4.50)

As discussed in the previous subsection, the OPE at the tree level (generically)
dominates at short distance. The OPE of two nucleon operators given above at tree
level becomes

Bf
α(x+ y/2)Bg

β(x− y/2) = Bf
α(x)B

g
β(x) +

yµ

2

{

∂µ[B
f
α(x)]B

g
β(x)−Bf

α(x)∂µ[B
g
β(x)]

}

+ O(y2). (4.51)

For the two-nucleon operator with either the combination [αβ], {fg} (S = 0) or the
combination {αβ}, [fg] (S = 1), terms odd in y vanish in the above OPE, so that only
even L contributions appear. These 6–quark operators are anti-symmetric under the
exchange (α, f) ↔ (β, g). On the other hand, for two other operators with ([αβ], [fg])
or ({αβ}, {fg}), which are symmetric under the exchange, terms even in y vanish in
the OPE and only odd L’s contribute.

Knowing the anomalous dimensions of the 6–quark operators appearing in the
OPE, which will be calculated later in this subsection, the OPE at short distance
(r = |y| ≪ 1, y4 = 0) becomes

Bf
α(x + y/2)Bg

β(x − y/2) ≃
∑

A

cA(r)O
fg,A
αβ (x) +

∑

B

dB(r)y
kOfg,B

αβ,k (x) + O(r2) ,

(4.52)

where the coefficient functions behave as

cA(r) ≃ (− log r)βA , dB(r) ≃ (− log r)βB , (4.53)

and βA,B are related to the anomalous dimensions of the 6–quark operators Ofg,A
αβ and

of those with one derivative Ofg,B
αβ,k . The wave function defined through the eigenstate

|E〉 is given by

ϕeven
E (y) = 〈0|Bf

α(x+ y/2)Bg
β(x− y/2)|E〉 ≃

∑

A

cA(r)〈0|Ofg,A
αβ (x)|E〉 (4.54)

for the anti-symmetric states, while
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ϕodd
E (y) = 〈0|Bf

α(x+ y/2)Bg
β(x− y/2)|E〉 ≃

∑

B

dB(r)y
k〈0|Ofg,B

αβ,k (x)|E〉 (4.55)

for the symmetric states. Hereafter we consider only 6–quark operators without deriva-
tives and calculate the corresponding anomalous dimensions.

The renormalization factor ZX of a k–quark operator X = [qk] is defined through
the relation

[qk]ren = ZX [qk0 ] = ZXZ
k/2
F [qk] , (4.56)

where q0(q) is the bare (renormalized) quark field. The wave function renormalization
factor for the quark field is given at 1-loop by

ZF = 1 + g2Z
(1)
F , Z

(1)
F = − λCF

16π2ǫ
(4.57)

where λ is the gauge parameter and CF = N2−1
2N .

At 1-loop the renormalization of simple k–quark operators without gauge fields is
given by the divergent parts of diagrams involving exchange of a gluon between any
pair of quark fields. The 1-loop correction to the insertion of an operator qa,fα (x)qb,gβ (x)
in any correlation function involving external quarks is expressed as the contraction
of

qa,fα (x)qb,gβ (x)
1

2!

∫

dDy dDz AA
µ (y)A

B
ν (z)[q̄

f1(y)igTAγµq
f1(y)][q̄g1(z)igTBγνq

g1(z)]

(4.58)

where trTATB = δAB/2 in our normalization. Since two identical contributions cancel
the 2! in the denominator, the contraction at 1-loop is given by

− g2(TA)aa1
(TA)bb1

∫

dDy dDz [SF (x− y)γµq(y)]
a1f1
α Gµν(y − z)

× [SF (x− z)γνq(z)]
b1g1
β (4.59)

where the free quark and gauge propagators are given in momentum space as

SF (p) =
−ip/+m

p2 +m2
, Gµν(k) =

1

k2

[

gµν − (1 − λ)
kµkν
k2

]

. (4.60)

The above contribution can be written as

g2

2N
{δaa1

δbb1 −Nδab1δa1b}
∫

dDp dDq

(2π)2D
Tαα1,ββ1

(p, q) qa1f1
α1

(p)eipxqb1g1β1
(q)eiqx

(4.61)

where

Tαα1,ββ1
(p, q) =

∫

dDk

(2π)D
[SF (p+ k)γµ]αα1

Gµν(k) [SF (q − k)γν ]ββ1
, (4.62)
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whose divergent part is independent of the momenta p, q and is given by

Tαα1,ββ1
(0, 0) =

1

16π2

1

ǫ

[

−1

4

∑

µν

σµν ⊗ σµν + λ1⊗ 1

]

αα1,ββ1

(4.63)

with σµν = i
2 [γµ, γν ]. The divergent part of the 1-loop contribution becomes

[

qa,fα (x)qb,gβ (x)
]1−loop,div

=
g2

32Nπ2

1

ǫ

[

(T0 + λT1) · qa(x) ⊗ qb(x)
]fg

α,β
(4.64)

where (bold–faced symbols represent matrices in flavor and spinor space)

(T0)
ff1,gg1
αα1,ββ1

= −1

4

∑

µν

{

sµν ⊗ sµν +Nsµν⊗̃sµν
}ff1,gg1

αα1,ββ1
, (4.65)

(T1)
ff1,gg1
αα1,ββ1

=
{

1⊗ 1+N1⊗̃1
}ff1,gg1

αα1,ββ1
. (4.66)

Here we use the notation

{X⊗Y}ff1,gg1αα1,ββ1
= Xff1

αα1
Y

gg1
ββ1

{X⊗̃Y}ff1,gg1αα1,ββ1
= X

gf1
βα1

Y
fg1
αβ1

, (4.67)

{sµν}fgαβ = δfg(σµν)αβ , {1}fgαβ = δfgδαβ . (4.68)

By the following Fierz identities for spinor indices

− 1

4

∑

µν

σµν ⊗ σµν = PR ⊗ PR + PL ⊗ PL − 2(PR⊗̃PR + PL⊗̃PL) , (4.69)

−1

4

∑

µν

σµν⊗̃σµν = PR⊗̃PR + PL⊗̃PL − 2(PR ⊗ PR + PL ⊗ PL) , (4.70)

where PR, PL are the chiral projectors, PR = (1 + γ5)/2 and PL = (1− γ5)/2, T0 can
be simplified as

(T0)
ff1,gg1
αα1,ββ1

= δff1δgg1 [δαα1
δββ1

− 2δβα1
δαβ1

] +Nδgf1δfg1 [δβα1
δαβ1

− 2δαα1
δββ1

]

(4.71)

where either α1, β1 ∈ {1, 2}(right-handed) or α1, β1 ∈ {3, 4}(left-handed) due to the
chiral projections in eqs. (4.69) and (4.70). In the following calculation of the 1-loop
anomalous dimensions, eq. (4.64) together with eqs. (4.71) and (4.66) are the key
equations.

We now calculate the anomalous dimensions of general 3–quark operators at 1-loop.
In terms of the renormalization factor defined as

Brenor.
3 = Z3q[q

3
0 ] = Z3qZ

3/2
F [q3], Z3q = 1 + g2(Z

(1)
3q + Z

(1)
3q,λ) + . . . , (4.72)

where Z
(1)
3q ( Z

(1)
3q,λ ) is the λ–independent (dependent) part at 1-loop, the divergent

part of the insertion of the 3–quark operator BF
Γ = Bfgh

αβγ at 1-loop is given by a linear
combination of insertion of baryon operators as
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(Γ(1)div)FΓ = −g2
(

Z
(1)
3q + Z

(1)
3q,λ +

3

2
Z

(1)
F

)FF ′

ΓΓ′

BF ′

Γ′ . (4.73)

The λ–dependent contribution from T1 in (4.66) is diagonal and given by

g2(Γ
(1)div
λ )FΓ = 3λ

g2

32π2

N + 1

Nǫ
BF

Γ , (4.74)

so that the λ–dependent part of Z3q vanishes:

Z
(1)
3q,λ = − 3λ

32π2

N + 1

Nǫ
− 3

2
Z

(1)
F =

λ

64Nπ2

3(N + 1)(N − 3)

ǫ
= 0 (N = 3). (4.75)

Therefore Z3q is λ–independent, as expected from the gauge invariance. We leave N
explicit in some formulae to keep track of the origin of the various terms, but we should
always set N = 3 at the end.

The λ–independent part of Γ(1) from T0 in (4.71) leads to (N = 3):

(Γ(1)div)fghαβγ =
(N + 1)

2N

g2

16π2ǫ

[

3Bfgh
αβγ − 2Bfgh

βαγ − 2Bfgh
γβα − 2Bfgh

αγβ

]

, (4.76)

(Γ(1)div)fghαβγ̂ =
(N + 1)

2N

g2

16π2ǫ

[

Bfgh
αβγ̂ − 2Bfgh

βαγ̂

]

, (4.77)

where α, β, γ ∈ {1, 2} (right-handed), while γ̂ ∈ {1̂ = 3, 2̂ = 4} (left-handed). Note
that the same results hold with hatted and unhatted indices exchanged. These results
can be easily diagonalized as

(Z
(1)
3q )fgh{ααβ} = (Z

(1)
3q )fgh

{α̂α̂β̂}
= 12

d

ǫ
, (4.78)

(Z
(1)
3q )f 6=gh

[αβ]α = (Z
(1)
3q )f 6=gh

[α̂β̂]α̂
= −12

d

ǫ
, (4.79)

(Z
(1)
3q )fgh{αβ}γ̂ = (Z

(1)
3q )fgh

{α̂β̂}γ
= 4

d

ǫ
, (4.80)

(Z
(1)
3q )f 6=gh

[αβ]γ̂ = (Z
(1)
3q )f 6=gh

[α̂β̂]γ
= −12

d

ǫ
, (4.81)

where d is given by

d ≡ 1

32Nπ2
=

1

96π2
. (4.82)

The square bracket denotes antisymmetrization [αβ] = αβ − βα, and curly bracket
means {αβ} = αβ + βα, {ααβ} = ααβ + αβα + βαα. The totally symmetric case
corresponds to the decuplet representation (for Nf = 3) and contains the Nf = 2 , I =
3/2 representation. The antisymmetric case corresponds to the octet representation
(for Nf = 3) and contains the Nf = 2 , I = 1/2 representation. The anomalous
dimension at 1-loop, obtained from

γ = g2γ(1) +O(g4) = βD(g, ǫ)
∂ lnZ3q

∂g
= −2Z

(1)
3q g

2ǫ+O(g4) , (4.83)

becomes
(

γ(1)
)fgh

{ααβ}
=
(

γ(1)
)fgh

{α̂α̂β̂}
= −24d , (4.84)
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(

γ(1)
)f 6=gh

[αβ]α
=
(

γ(1)
)f 6=gh

[α̂β̂]α̂
= 24d , (4.85)

(

γ(1)
)fgh

{αβ}γ̂
=
(

γ(1)
)fgh

{α̂β̂}γ
= −8d , (4.86)

(

γ(1)
)f 6=gh

[αβ]γ̂
=
(

γ(1)
)f 6=gh

[α̂β̂]γ
= 24d . (4.87)

We next consider the renormalization of arbitrary local gauge invariant 6–quark
operator of (lowest) dimension 9, which can be written as a linear combination of
operators

OC(x) = BF1,F2

Γ1,Γ2
(x) ≡ BF1

Γ1
(x)BF2

Γ2
(x) = OA(x)OB(x) , (4.88)

with A = (Γ1, F1) and B = (Γ2, F2). Note OA(x) and/or OB(x) may not be opera-
tors with proton or nucleon quantum numbers and separately may not be diagonally
renormalizable at one loop. The reason for considering the renormalization in more
generality is that in principle there may be operators in this class which occur in the
OPE of two nucleon operators at higher order in PT, but are relevant in the analysis
because of their potentially large anomalous dimensions.

According to the structure of the divergent part at 1-loop order, the operators in
eq. (4.88) mix only with operators OC′ = OA′OB′ which preserve the set of flavors
and Dirac indices in the chiral basis i.e.

F1 ∪ F2 = F ′
1 ∪ F ′

2 , Γ1 ∪ Γ2 = Γ′
1 ∪ Γ′

2 .

Note however that such operators are not all linearly independent. Relations between
them follow from a general identity satisfied by the totally antisymmetric epsilon
symbol which for N labels reads

Nεa1...aN εb1...bN =
∑

j,k

εa1...aj−1bkaj+1...aN εb1...bk−1ajbk+1...bN . (4.89)

For our special case, N = 3, this identity implies the following identities among the
6–quark operators

3BF1,F2

Γ1,Γ2
+

3
∑

i,j=1

B
(F1F2)[i,j]
(Γ1,Γ2)[i,j]

= 0 , (4.90)

where i-th index of abc and j-th index of def are interchanged in (abc, def)[i, j]. For
example, (Γ1,Γ2)[1, 1] = α2β1γ1, α1β2γ2 or (Γ1,Γ2)[2, 1] = α1α2γ1, β1β2γ2. Note that
the interchange of indices occurs simultaneously for both Γ1,Γ2 and F1, F2 in the above
formula. The plus sign in (4.90) appears because the quark fields are Grassmann.

As an example of identities, let us consider the case that Γ1,Γ2 = ααβ, αββ (α 6= β
and F1, F2 = ffg, ffg (f 6= g). The constraint gives

3Bffg,ffg
ααβ,αββ + (3− 2)Bffg,ffg

ααβ,αββ +Bfff,fgg
ααα,βββ + (2− 1)Bfgg,fff

αββ,ααβ

= 4Bffg,ffg
ααβ,αββ +Bfff,fgg

ααα,βββ +Bfgg,fff
αββ,ααβ = 0 , (4.91)

where minus signs in the first line come from the property that BF2,F1

Γ2,Γ1
= −BF1,F2

Γ1,Γ2
.
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An immediate consequence of the identity is that the divergent part of the λ–
dependent contributions, calculated from T1 in (4.64), must vanish, after the sum-
mation over the 9 different contributions from quark pairs on the different baryonic
parts A,B is taken. The λ–dependent part of the contribution of quark contractions
on the same baryonic parts is compensated by the quark field renormalization. Thus
the renormalization of the bare 6–quark operator is λ–independent as expected from
gauge invariance.

We thus need only to calculate the contributions from T0, which can be classified
into the following 4 different combinations for a pair of two indices:

(

f
α

) (

f
α

)

⇒ −(N + 1)
(

f
α

) (

f
α

)

, (4.92)
(

f
α

)

(

f
β

)

⇒ (1− 2N)
(

f
α

)

(

f
β

)

+ (N − 2)
(

f
β

)

(

f
α

)

, (4.93)
(

f1
α

) (

f2
α

)

⇒ −
(

f1
α

) (

f2
α

)

−N
(

f2
α

) (

f1
α

)

, (4.94)
(

f1
α

)

(

f2
β

)

⇒
{

(

f1
α

)

(

f2
β

)

− 2
(

f1
β

)

(

f2
α

)

}

+N
{(

f2
β

)

(

f1
α

)

− 2
(

f2
α

)

(

f1
β

)}

, (4.95)

where f 6= g and α 6= β ∈ (1, 2) (Right) or ∈ (3, 4) (Left).
The computation can be made according to the following steps:
i.) Select the total flavor content e.g. 3f + 3g or 4f + 2g (f 6= g). These are the

only cases for baryon operators with Nf = 2, but the approach is also applicable to
more general cases (Nf > 2).

ii.) Given a flavor content classify all the possible sets of Dirac labels in the chiral
basis e.g. 111223, 112234, ... It is obvious from the rules above that some have equiva-
lent renormalization at 1-loop e.g. 111223 and 112223 with 1 ↔ 2, and also those with
hatted and unhatted indices exchanged e.g. 111223 and 133344.

iii.) For given flavor and Dirac sets generate all possible operators. Then generate
all gauge identities between them and determine a maximally independent set {Si}.

iv.) Compute the divergent parts of the members of the independent basis:

Γdiv
i =

1

2ǫ
γijSj . (4.96)

v.) Finally compute the eigenvalues and corresponding eigenvectors of γT to de-
termine the operators which renormalize diagonally at 1-loop.

Some of the steps are quite tedious if carried out by hand. e.g. in the case 3f +3g
and Dirac indices 112234 there are initially 68 operators in step iii.) with 38 indepen-
dent gauge identities, and hence an independent basis of 30 operators. However all
the steps above can be easily implemented in an algebraic computer program using
MATHEMATICA or MAPLE.

For Nf = 2 the quark f(g) has I3 = 1/2( −1/2). If an eigenvalue is non-degenerate
the corresponding eigenvector belongs to a certain representation of the isospin group.
If the eigenvalue is degenerate then linear combinations of them belong to definite
representations. For the 3f + 3g case they can have I = 0, 1, 2, 3. Eigenvectors with
I = 0, 2 are odd under the interchange f ↔ g and those with I = 1, 3 are even. The
operators in the case 4f +2g have I3 = 1 and hence have I = 1, 2, 3. The eigenvectors
in this case can be obtained from those of the 3f + 3g case by applying the isospin
raising operator.
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The complete list of eigenvalues and possible isospins are given in Tables 4.1-4.3.
The most important results are summarized as follows.

1) For the 3f + 3g (and 4f + 2g) cases all eigenvalues γj ≤ 48d = 2γN , where γN
is the 1-loop anomalous dimension of the nucleon (3–quark) operator.

2) It is easy to construct eigenvectors with eigenvalue 2γN e.g. operators of the

form Bffg
α[β,α]B

ggf

α̂[β̂,α̂]
since there is no contribution from diagrams where the gluon line

joins quarks in the different baryonic parts.
3) Operators with higher isospin generally have smaller eigenvalues.
We now consider the renormalization of 6–quark operators which appear at the

tree level of the OPE more explicitly. Since

Cγ5 =









0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0









, (4.97)

in the chiral representation, the nucleon operator is written as

Bf
α = Bffg

α+α̂,[2,1] +Bffg

α+α̂,[2̂,1̂]
(4.98)

where α = 1, 2, α̂ = α+ 2, and f 6= g. This has anomalous dimension γN = 24d.
Two independent 6–quark operators occurring in the OPE at tree level can be

decomposed as follows. The spin-singlet (S = 0) and isospin-triplet (I = 1) operator
becomes

Bffg

α+α̂,[β,α]+[β̂,α̂]
Bffg

β+β̂,[β,α]+[β̂,α̂]
= B01

I +B01
II +B01

III +B01
IV +B01

V +B01
V I

(4.99)

where (α 6= β)

B01
I = Bffg

α[β,α]B
ffg
β[β,α] +Bffg

α̂[β̂,α̂]
Bffg

β̂[β̂,α̂]
, (4.100)

B01
II = Bffg

α[β,α]B
ffg

β[β̂,α̂]
+Bffg

α[β̂,α̂]
Bffg

β[β,α] +Bffg

α̂[β̂,α̂]
Bffg

β̂[β,α]
+Bffg

α̂[β,α]B
ffg

β̂[β̂,α̂]
,(4.101)

B01
III = Bffg

α[β,α]B
ffg

β̂[β,α]
+Bffg

α̂[β,α]B
ffg
β[β,α] +Bffg

α̂[β̂,α̂]
Bffg

β[β̂,α̂]
+Bffg

α[β̂,α̂]
Bffg

β̂[β̂,α̂]
,(4.102)

B01
IV = Bffg

α[β̂,α̂]
Bffg

β[β̂,α̂]
+Bffg

α̂[β,α]B
ffg

β̂[β,α]
, (4.103)

B01
V = Bffg

α[β̂,α̂]
Bffg

β̂[β,α]
+Bffg

α̂[β,α]B
ffg

β[β̂,α̂]
, (4.104)

B01
V I = Bffg

α[β,α]B
ffg

β̂[β̂,α̂]
+Bffg

α̂[β̂,α̂]
Bffg

β[β,α] . (4.105)

In the above some contributions are obtained from interchanges under (1, 2) ↔ (3, 4)
or (1, 3) ↔ (2, 4).

Similarly the spin-triplet (S = 1) and isospin-singlet (I = 0) operator is decom-
posed as

Bffg

α+α̂,[β,α]+[β̂,α̂]
Bggf

α+α̂,[β,α]+[β̂,α̂]
= B10

I +B10
II +B10

III +B10
IV +B10

V +B10
V I ,
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(4.106)

where

B10
I = Bffg

α[β,α]B
ggf
α[β,α] +Bffg

α̂[β̂,α̂]
Bggf

α̂[β̂,α̂]
, (4.107)

B10
II = Bffg

α[β,α]B
ggf

α[β̂,α̂]
+Bffg

α[β̂,α̂]
Bggf

α[β,α] +Bffg

α̂[β̂,α̂]
Bggf

α̂[β,α] + Bffg
α̂[β,α]B

ggf

α̂[β̂,α̂]
,(4.108)

B10
III = Bffg

α[β,α]B
ggf
α̂[β,α] +Bffg

α̂[β,α]B
ggf
α[β,α] +Bffg

α̂[β̂,α̂]
Bggf

α[β̂,α̂]
+ Bffg

α[β̂,α̂]
Bggf

α̂[β̂,α̂]
,(4.109)

B10
IV = Bffg

α[β̂,α̂]
Bggf

α[β̂,α̂]
+Bffg

α̂[β,α]B
ggf
α̂[β,α] , (4.110)

B10
V = Bffg

α[β̂,α̂]
Bggf

α̂[β,α] +Bffg
α̂[β,α]B

ggf

α[β̂,α̂]
, (4.111)

B10
V I = Bffg

α[β,α]B
ggf

α̂[β̂,α̂]
+Bffg

α̂[β̂,α̂]
Bggf

α[β,α] . (4.112)

It is important to note here that operators BSI
V I for both cases (SI = 01 and 10)

have the maximal anomalous dimension at 1-loop, since as noted in point 2) above,
no 1-loop correction from T0 joining quarks from the two baryonic components exists
for BF1,F2

αβγ,α̂′β̂′γ̂′
type of operators. Therefore there always exist some operators with

βA = 0 which dominate in the OPE at short distance.
The 1-loop corrections Γ(1) to 6–quark operators BSI are summarized as:

(

Γ01
I

)(1)
= −12

d

ǫ
B01

I ,
(

Γ01
II

)(1)
= 12

d

ǫ
B01

II ,
(

Γ01
III

)(1)
= 0 ,

(

Γ01
IV

)(1)
= 0 ,

(

Γ01
V

)(1)
= 6

d

ǫ
B01

V + 6
d

ǫ
B01

V I ,
(

Γ01
V I

)(1)
= 24

d

ǫ
B01

V I , (4.113)

for SI = 01. The last two results can be written as

(

Γ01
V ′

)(1)
= 6

d

ǫ
B01

V ′ ,
(

Γ01
V I′

)(1)
= 24

d

ǫ
B01

V I′ , , (4.114)

where

B01
V ′ = B01

V − 1

3
B01

V I , B01
V I′ = B01

V I . (4.115)

Similarly for SI = 10

(

Γ10
I

)(1)
= −4

d

ǫ
B10

I ,
(

Γ10
II

)(1)
= 20

d

ǫ
B10

II ,
(

Γ10
III

)(1)
= 0 ,

(

Γ10
IV

)(1)
= 8

d

ǫ
B10

IV ,
(

Γ10
V ′

)(1)
= 6

d

ǫ
B10

V ′ ,
(

Γ10
V I′

)(1)
= 24

d

ǫ
B10

V I′ , (4.116)

where

B10
V ′ = B10

V − 1

3
B10

V I , B10
V I′ = B10

V I . (4.117)

Denoting the eigenvalues of the anomalous dimension matrix by γC , the values of
γSI defined by
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γC − 2γN = 2dγSI , (4.118)

are given in table 4.4 (N = 3), which shows, in both cases, that the largest value is
zero while others are all negative. The case 2 in sect. 4.1 is realized: βC = 0 and

βC′ = β01
0 = − 6

33− 2Nf
for S = 0 , I = 1 , (4.119)

βC′ = β10
0 = − 2

33− 2Nf
for S = 1 , I = 0 . (4.120)

4.4 Short distance behavior of the potentials and the repulsive

core

As discussed before, the NN potential at the leading order of the derivative expansion
is given by

V I(r) = V I
0 (r) + V I

σ (r)~σ1 · ~σ2 + V I
T (r)S12 +O(∇). (4.121)

From the result in the previous subsection, the OPE of NN at tree level can be written
as

Bf
α(x + y/2)Bg

β(x − y/2) ≃ cV IB
fg
V I,αβ(x) + cII(− log r)β

SI
0 Bfg

II,αβ(x) + · · ·(4.122)

where cV I and cII are some constants, and · · · represents other contributions, which
are less singular than the first two at short distance. The spinor and flavor indices
α, β and f, g are explicitly written here. The anomalous dimensions βSI

0 are given in
(4.119) and (4.120).

In the case that S = 0 and I = 1 (α 6= β and f = g in eq.(4.122)), the leading
contributions couple only to the J = L = 0 state given by

|E〉 = |Lz = 0, Sz = 0, Iz = 1〉L=0,S=0,I=1 = |0, 0, 1〉0,0,1 . (4.123)

The relevant matrix elements are

cV I〈0|Bfg
V I,αβ |0, 0, 1〉0,0,0 = A0

V IY00[αβ]{fg}1, (4.124)

cII〈0|Bfg
II,αβ |0, 0, 1〉0,0,0 = A0

IIY00[αβ]{fg}1, (4.125)

where A0
II and A0

V I are non-perturbative constants, YLLz
is a spherical harmonic

function, [αβ] = (δα1δβ2 − δβ1δα2)/
√
2 represents the (S, Sz) = (0, 0) component, and

{fg}1 = δf1δg1 corresponds to isospin (I, Iz) = (1, 1). The wave function at short
distance is dominated by

ϕ
1S0

E (y) = 〈0|Bf
α(x+ y/2)Bg

β(x− y/2)|0, 0, 1〉0,0,1
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≃
(

A0
V I +A0

II(− log r)β
01
0

)

φ(1S0, 0)
11 + · · · , (4.126)

where φ(1S0, Jz = 0)IIz=11 = Y00[αβ]{fg}1. This wave function leads to

∇2

2m
ϕ

1S0

E (y) ≃ (− log r)β
01
0 −1

r2
−β01

0 A0
II

mN
φ(1S0, 0)

11 + · · · (4.127)

where m = mN/2 is the reduced mass of the two nucleon system. Since S12 is zero on
φ(1S0, 0)

11, we have

V 01
c (r)ϕ

1S0

E (y) ≃ (− log r)β
01
0 −1

r2
−β01

0 A
0
II

mN
φ(1S0, 0)

11 + · · · (4.128)

where V 01
c (r) = V0(r) − 3Vσ(r). Therefore the potential is obtained as

V 01
c (r) ≃ F 01(r)

A0
II

A0
V I

. (4.129)

where

FSI(r) =
−βSI

0 (− log r)β
SI
0 −1

mNr2
. (4.130)

The potential diverges as F 01(r) in the r → 0 limit, which is a little weaker than r−2.
In the case of the spin-triplet and isospin-singlet state (S = 1 and I = 0), the

leading contributions in eq.(4.122) couple only to the J = 1 state, which is given by

|E〉 = |3S1, Jz = 1〉+ x|3D1, Jz = 1〉 , (4.131)

where

|3S1, Jz = 1〉 = |Lz = 0, Sz = 1〉L=0,S=1 , (4.132)

|3D1, Jz = 1〉 = 1√
10

[

|0, 1〉 −
√
3|1, 0〉+

√
6|2,−1〉

]

L=2,S=1
, (4.133)

x is the mixing coefficient, which is determined by QCD dynamics, and 2S+1LJ specifies
quantum numbers of the state. We here drop indices I and Iz unless necessary.

Relevant matrix elements are given by

ci

〈

0
∣

∣

∣
Bfg

i,αβ

∣

∣

∣

3S1, 1
〉

= B0
i φ
(

3S1

)

, ci

〈

0
∣

∣

∣
Bfg

i,αβ

∣

∣

∣

3D1, 1
〉

= 0 , (4.134)

for i = II and V I, where B0
i are non-perturbative constants, and

φ
(

3S1

)

= Y00(θ, φ){αβ}1[fg] , (4.135)

with {αβ}1 = δα1δβ1.
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Using the above results, the BS wave function becomes

ϕJ=1
E (y) ≃

{

B0
V I + (− log r)β

10
0 B0

II

}

φ
(

3S1

)

, (4.136)

which leads to

∇2

2m
ϕJ=1
E (y) ≃ −β10

mN

(− log r)β
10
0 −1

r2
B0

IIφ
(

3S1

)

. (4.137)

On the other hand,

V (y)ϕJ=1
E (y) ≃ B0

V IV
10
c (r)φ

(

3S1

)

+ 2
√
2VT (r)B

0
V Iφ

(

3D1

)

, (4.138)

where V 10
c (r) = V 0

0 (r) + V 0
σ (r) and

φ
(

3D1

)

=
1√
10

[

Y20{αβ}1 −
√
3Y21{αβ}0 +

√
6Y22{αβ}−1

]

[fg] , (4.139)

with {αβ}−1 = δα2δβ2 and {αβ}0 = (δα1δβ2 + δβ1δα2)/
√
2.

By comparing eq.(4.137) with eq.(4.138), we obtain

V 10
c (r) ≃ F 10(r)

B0
II

B0
V I

, VT (r) ≃ 0 . (4.140)

This shows that the central potential V 10
c (r) diverges as F 10(r) in the r → 0 limit,

which is a little weaker than 1/r2, while the tensor potential VT (r) becomes zero in
this limit at the tree level in the OPE.

While the OPE predicts the functional form of the central potentials at short
distance fro both S = 0 and S = 1 channels, it can not determine whether it is
repulsive or attractive. The NN operators are decomposed as

Bf
αB

g
β = [BI +BII +BIII +BIV +BV +BV I ]

fg
αβ , (4.141)

where

(BI)
fg
αβ = [BRRBRR +BLLBLL]

fg
αβ , (4.142)

(BII)
fg
αβ = [BRRBRL +BRLBRR +BLLBLR +BLRBLL]

fg
αβ , (4.143)

(BIII)
fg
αβ = [BRRBLR +BLRBRR +BLLBRL +BRLBLL]

fg
αβ , (4.144)

(BIV )
fg
αβ = [BRLBRL +BLRBLR]

fg
αβ , (4.145)

(BV )
fg
αβ = [BRLBLR +BLRBRL]

fg
αβ , (4.146)

(BV I)
fg
αβ = [BRRBLL +BLLBRR]

fg
αβ . (4.147)

Here 3–quark operators in terms of left- and right- handed component are defined by

Bf
AX,α = (PA)αβB

f
X,β , Bf

X,α = Bfgh
αβγ(Cγ5PX)βγ(iτ2)gh , (4.148)

for A,X = R or L. We need to know

〈0|(Bi)
fg
αβ |2N,E〉 (4.149)

for i = II, V I.
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For f 6= g, Lorentz covariance leads to

〈0|Bf
XB

g
Y |2N, E〉 =

∑

A,B=R,L

CAB
XY (s)PAu(p, σ1)PBu(−p, σ2), (4.150)

where s = E2 = 4(p2 + m2
N ) with the total energy E in the center of mass frame,

σi (i = 1, 2) is the spin of the i-th nucleon, and CAB
XY is an unknown function of s.

Note that spinor indices are suppressed here. Invariance of QCD under the parity
transformation PBXP

−1 = γ4BX̄ where R̄ = L and L̄ = R gives

(4.150) = 〈0|PBf
XB

g
Y P

−1P |2N, E〉 =
∑

A.B

CAB
X̄Ȳ PĀγ4u(−p, σ1)PB̄γ4u(p, σ2)

=
∑

A,B

CĀB̄
X̄Ȳ PAu(p, σ1)PBu(−p, σ2), (4.151)

where γ4u(−p, σ1) = u(p, σ1) is used. The above relation implies CĀB̄
X̄Ȳ

= CAB
XY . There-

fore the matrix elements are evaluated as

〈0|(BII)
fg±gf
αβ |2N, E〉 = CRR,±

RL+LR{(PR ⊗ PR + PL ⊗ PL)u(p, σ1)u(−p, σ2)}αβ∓βα

(4.152)

and

〈0|(BV I)
fg±gf
αβ |2N, E〉 = CRL,±

RL {(PR ⊗ PL + PL ⊗ PR)u(p, σ1)u(−p, σ2)}αβ∓βα

(4.153)

The spinor in Dirac representation for γ matrices (Itzykson and Zuber, 1980) is
given by

u(±p,+) =
1√

EN +mN









EN +mN

0
∓pz
0









, u(±p,−) =
1√

EN +mN









0
EN +mN

0
±pz









(4.154)

for p = (0, 0, pz > 0), where EN =
√

p2 +m2
N . For I = 1 ( fg + gf) and S = 0

(σ1 = + and σ2 = − ) the above explicit form for the spinors gives

{(PR ⊗ PR + PL ⊗ PL)u(p,+)u(−p,−)}12−21 = EN , (4.155)

{(PR ⊗ PL + PL ⊗ PR)u(p,+)u(−p,−)}12−21 = mN , (4.156)

while, for I = 0 ( fg − gf) and S = 1 (σ1 = + and σ2 = + )

{(PR ⊗ PR + PL ⊗ PL)u(p,+)u(−p,+)}11 = mN , (4.157)
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{(PR ⊗ PL + PL ⊗ PR)u(p,+)u(−p,+)}11 = EN . (4.158)

Finally the ratio of the matrix elements becomes

〈0|(BII)
fg+gf
12 |2N, E〉

〈0|(BV I)
fg+gf
12 |2N, E〉

=
EN

mN

CRR,+
RL+LR(s)

CRL,+
RL (s)

(4.159)

for fg + gf and (σ1, σ2) = (+,−) ( 1S0 ), and

〈0|(BII)
fg−fg
11 |2N, E〉

〈0|(BV I)
fg−fg
11 |2N, E〉

=
mN

EN

CRR,−
RL+LR(s)

CRL,−
RL (s)

(4.160)

for fg − gf and (σ1, σ2) = (+,+) ( 3S1 ), where s = 4E2
N .

Unfortunately, the sign of the ratio for these matrix elements can not be deter-
mined. As a very crude estimation, the non-relativistic expansion for constituent
quarks whose mass mQ is given by mQ = mN/3 is considered. In the large mQ

limit, γ4q0 = q0 and γ4u0 = u0, where a subscript 0 for q and u means the 0-th
order in the non-relativistic expansion. In this limit, it is easy to show CAB

XY = C
for all X,Y,A,B, so that CRR

RL+LR = 2C and CRL
RL = C. Furthermore the first order

correction to CAB
XY = C vanishes in the expansion. Therefore the leading order of the

non-relativistic expansion gives

〈0|(BII)
fg+gf
12 |2N, E〉

〈0|(BV I)
fg+gf
12 |2N, E〉

≃ 2 + O

(

p2

m2
Q

)

(4.161)

for (σ1, σ2) = (+,−) ( 1S0 ), and

〈0|(BII)
fg−fg
11 |2N, E〉

〈0|(BV I)
fg−fg
11 |2N, E〉

≃ 2 + O

(

p2

m2
Q

)

(4.162)

for (σ1, σ2) = (+,+) ( 3S1 ). For both cases, the ration has positive sign, which gives
repulsion at short distance, the repulsive core.
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Table 4.1 Eigenvalues γj of the anomalous dimension

matrix γ and isospins of the corresponding eigenvec-

tors for the case 3f3g.

Dirac indices γj/(2d) I

111111 −24 0

111112 −24 0, 1

111122 −4 0

−24 0, 1

−40 2

111222 −4 0

−12 1

−24 0, 1

−40 2

−72 3

111113 −16 0, 1

111123 −6 0, 1

−16 0, 1

−24 1, 2

111223 0 0, 1

−6 0, 1

−16 0, 1

−18 1, 2

−24 1, 2

−48 2, 3

111133 −4 0

−16 0, 1, 2

111134 0 1

−4 0

−12 1

−16 0, 1, 2

111233 4 1

−4 0

−8 0, 1, 1

−16 0, 1, 2

−32 1, 2, 3
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Table 4.2 As in Table4.1 (continued).

Dirac indices γj/(2d) I

111234 20 0

8 1

4 1

0 1

−4 0

−8 0, 1, 1, 2

−12 1

−16 0, 0, 0, 1, 1, 2, 2, 2

−32 1, 2, 3

112233 8 0

4 1

−4 0, 0, 1, 2

−8 0, 1, 1, 2

−16 0, 1, 2

−28 2

−30 1, 2, 3

112234 20 0

12 1

8 0, 1

4 1

0 1, 1

−4 0, 0, 1, 2

−8 0, 1, 1, 2

−12 1

−16 0, 0, 1, 1, 2, 2, 2

−28 2

−32 1, 2, 3

−36 1, 2, 3

111333 −6 0, 1

−24 0, 1, 2, 3

111334 0 0, 1, 1, 2

−6 0, 1

−18 1, 2

−24 0, 1, 2, 3
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Table 4.3 As in Table4.1 (continued).

Dirac indices γj/(2d) I

112334 24 0, 1

6 0, 1

0 0, 0, 1, 1, 1, 1, 2, 2

−6 0, 1

−12 1, 1, 2, 2

−18 1, 1, 2, 2

−24 0, 1, 2, 3

−30 0, 1, 2, 3

Table 4.4 The value of γSI (defined in (4.72)) for

each eigen operator in the SI = 01 and SI = 10 states.

I II III IV V ′ V I ′

γ01 −36 −12 −24 −24 −18 0
γ10 −28 −4 −24 −16 −18 0



5

Concluding Remarks

In this lecture, we consider two different but closely related topics in lattice QCD
approaches to hadron interactions.

In the first part, we explain the Lüscher’s formula, which relates the scattering
phase shift to the two particle energy in the finite volume. Although this formula
is well-established and has appeared in the well-written reference(Lüscher, 1991), a
comprehensive (but less rigorous) derivation for the formula has been attempted in this
lecture for the ππ system as an example with the emphasis on the BS wave function.
It is important to stress that the BS wave function at large separation behaves as
the free scattering wave with the phase shift which is determined by the unitarity of
the S–matrix in QCD. The Lüscher’s formula can be obtained from this asymptotic
behavior of the BS wave function.

In the second part, on the other hand, we consider the BS wave function at non-
asymptotic region where the interaction between two particles exists, in order to define
the potential in quantum field theories. We apply this method for the two nucleons
to calculate the NN potential in QCD. The first result from lattice QCD has a good
shape, which reproduces both the repulsive core at short distance and the attractive
well at medium and long distances.

In the last part, the origin of the repulsive core is theoretically investigated by the
OPE and the renormalization group. The analysis predicts the r dependence of the
potentials at short distance, though it can not tell the sign of the potential, positive
(repulsive) or negative (attractive). A crude estimate by the non-relativistic quark
gives the positive sign, the repulsive core.

The method to investigate potentials through the BS wave function in lattice QCD
is a quite new approach, which may be applied to the following directions.

(1) In order to extract the realstic NN potentials from lattice QCD, it is necessary
to carry out full QCD simulations near the physical u, d quark masses. Studies along
this line using 2+1–flavor QCD configuration generated by PACS-CS Collaboration
(Aoki et al., 2009a) is currently under way(Ishii et al., 2008).

(2) The hyperon-nucleon (Y N) and hyperon-hyperon (Y Y ) potentials are essential
to understand properties of hyper nuclei and the hyperonic matter inside the neutron
star. While experimental scattering data are very limited due to the short life-time
of hyperons, the NN , Y N and Y Y interactions on the lattice can be investigated
in the same manner just by changing only the quark flavors. The ΞN potential in
quenched QCD(Nemura et al., 2009) and the ΛN potentila in both quenched and full
QCD(Nemura et al., 2008) are examined as a first step toward the systematic un-
derstanding of baryonic potentials. To this connection, the OPE analysis should be
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extended to the Nf = 3 case, in order to reveal the nature of the repulsive core in
baryon-baryon potentials. Since quark mass terms can be neglected in the OPE at
short distance, the analysis can be done in the exact SU(3) symmetric limit.

(3) The three-nucleon force is thought to play important roles in nuclear structures
and in the equation of state in high density matter. Since the experimental informa-
tion is very limited, the extension of the method to the three nucleons may lead to the
first principle extractions of the three-nucleon potentials in QCD. It is also interesting
to investigate the existence or the absence of the repulsive core in the three-nucleon
potentials. The calculation of anomalous dimensions of 9–quark operators will be re-
quired at 2-loop level.

(4) More precise evaluations including numerical simulations of matrix elements
〈0|OX |E〉 will be needed to understand the nature of the core in the potential through
the OPE analysis.
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