
Chapter 1


Introduction 

1.1 What is a Plasma? 

1.1.1 An ionized gas 

A plasma is a gas in which an important fraction of the atoms is ionized, so that the electrons

and ions are separately free.


When does this ionization occur? When the temperature is hot enough.


Balance between collisional ionization and recombination:


Figure 1.1: Ionization and Recombination 

Ionization has a threshold energy. Recombination has not but is much less probable.


Threshold is ionization energy (13.6eV, H). χi


Integral over Maxwellian distribution gives rate coefficients (reaction rates). Because of

the tail of the Maxwellian distribution, the ionization rate extends below T = χi. And in

equilibrium, when


nions < σiv > 
= , (1.1) 

nneutrals < σr v > 
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Figure 1.2: Ionization and radiative recombination rate coefficients for atomic hydrogen 

>the percentage of ions is large (∼ 100%) if electron temperature: Te ∼ χi/10. e.g. Hydrogen 
>is ionized for Te ∼ 1eV (11,600◦k). At room temp r ionization is negligible. 

For dissociation and ionization balance figure see e.g. Delcroix Plasma Physics Wiley (1965) 
figure 1A.5, page 25. 

1.1.2 Plasmas are QuasiNeutral 

If a gas of electrons and ions (singly charged) has unequal numbers, there will be a net charge 
density, ρ. 

ρ = ne(−e) + ni(+e) = e(ni − ne) (1.2) 

This will give rise to an electric field via 

ρ e �.E = = (ni − ne) (1.3) 
�0 �0 

Example: Slab. 

dE ρ 
dx 

= 
�0 

(1.4) 

x → E = ρ 
�0 

(1.5) 
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Figure 1.3: Charged slab 

This results in a force on the charges tending to expel whichever species is in excess. That 
is, if ni > ne, the E field causes ni to decrease, ne to increase tending to reduce the charge. 

This restoring force is enormous ! 

Example 

Consider Te = 1eV , ne = 1019m−3 (a modest plasma; c.f. density of atmosphere nmolecules ∼
3 × 1025m−3). Suppose there is a small difference in ion and electron densities Δn = (ni − ne) 

so ρ = Δn e (1.6) 

Then the force per unit volume at distance x is 

x 
Fe = ρE = ρ2 x 

= (Δn e)2 (1.7) 
�0 �0 

Take Δn/ne = 1% , x = 0.10m. 

Fe = (1017 × 1.6 × 10−19)2 0.1/8.8 × 10−12 = 3 × 106N.m−3 (1.8) 

Compare with this the pressure force per unit volume ∼ p/x : p ∼ neTe(+niTi) 

Fp ∼ 1019 × 1.6 × 10−19/0.1 = 16N m−3 (1.9) 

Electrostatic force >> Kinetic Pressure Force. 

This is one aspect of the fact that, because of being ionized, plasmas exhibit all sorts of col
lective behavior, different from neutral gases, mediated by the long distance electromagnetic 
forces E, B. 

Another example (related) is that of longitudinal waves. In a normal gas, sound waves are 
propagated via the intermolecular action of collisions. In a plasma, waves can propagate 
when collisions are negligible because of the coulomb interaction of the particles. 
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1.2 Plasma Shielding 

1.2.1 Elementary Derivation of the Boltzmann Distribution 

Basic principle of Statistical Mechanics:


Thermal Equilibrium ↔ Most Probable State i.e. State with large number of possible ar

rangements of microstates.


Figure 1.4: Statistical Systems in Thermal Contact 

Consider two weakly coupled systems S1, S2 with energies E1, E2. Let g1, g2 be the number of 
microscopic states which give rise to these energies, for each system. Then the total number 
of microstates of the combined system is (assuming states are independent) 

g = g1g2 (1.10) 

If the total energy of combined system is fixed E1 + E2 = Et then this can be written as a 
function of E1: 

and 

g 
dg 
dE1 

= 

= 

g1(E1)g2(Et − E1) 
dg1 

dE 
g2 − g1 

dg2 

dE 
. 

(1.11) 

(1.12) 

The most probable state is that for which dg 
dE1 

= 0 i.e. 

1 
g1 

dg1 

dE 
= 

1 
g2 

dg2 

dE 
or 

d 
dE 

ln g1 = 
d 

dE 
ln g2 (1.13) 

Thus, in equilibrium, states in thermal contact have equal values of d 
dE ln g. 

One defines σ ≡ ln g as the Entropy. 

And [ d 
dE ln g]−1 = T the Temperature. 

Now suppose that we want to know the relative probability of 2 microstates of system 1 in 
equilibrium. There are, in all, g1 of these states, for each specific E1 but we want to know 
how many states of the combined system correspond to a single microstate of S1. 

Obviously that is just equal to the number of states of system 2. So, denoting the two values 
of the energies of S1 for the two microstates we are comparing by EA, EB the ratio of the 
number of combined system states for S1A and S1B is 

g2(Et − EA) 
= exp[σ(Et − EA) − σ(Et − EB )] (1.14) 

g2(Et − EB ) 
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Now we suppose that system S2 is large compared with S1 so that EA and EB represent very 
small changes in S2’s energy, and we can Taylor expand 

dσ dσg2(Et − EA) 
exp −EA + EB (1.15) 

g2(Et − EA) 
� 

dE dE 

Thus we have shown that the ratio of the probability of a system (S1) being in any two 
microstates A, B is simply 

exp 
−(EA − EB ) 

, (1.16) 
T 

when in equilibrium with a (large) thermal “reservoir”. This is the wellknown “Boltzmann 
factor”. 

You may notice that Boltzmann’s constant is absent from this formula. That is because of 
using natural thermodynamic units for entropy (dimensionless) and temperature (energy). 

Boltzmann’s constant is simply a conversion factor between the natural units of temperature 
(energy, e.g. Joules) and (e.g.) degrees Kelvin. Kelvins are based on ◦C which arbitrarily 
choose melting and boiling points of water and divide into 100. 

Plasma physics is done almost always using energy units for temperature. Because Joules 
are very large, usually electronvolts (eV) are used. 

1eV = 11600K = 1.6 × 10−19Joules. (1.17) 

One consequence of our Botzmann factor is that a gas of moving particles whose energy is 
1 2 2 
mv adopts the MaxwellBoltzmann (Maxwellian) distribution of velocities ∝ exp[− mv ].

2 2T 

1.2.2 Plasma Density in Electrostatic Potential 

When there is a varying potential, φ, the densities of electrons (and ions) is affected by it. 

If electrons are in thermal equilibrium, they will adopt a Boltzmann distribution of density 

eφ 
ne ∝ exp( ) . (1.18) 

Te 

This is because each electron, regardless of velocity possesses a potential energy −eφ. 

Consequence is that (fig 1.5) a selfconsistent loop of dependencies occurs. 

This is one elementary example of the general principle of plasmas requiring a selfconsistent 
solution of Maxwell’s equations of electrodynamics plus the particle dynamics of the plasma. 

1.2.3 Debye Shielding 

A slightly different approach to discussing quasineutrality leads to the important quantity 
called the Debye Length. 

Suppose we put a plane grid into a plasma, held at a certain potential, φg . 
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Figure 1.5: Selfconsistent loop of dependencies


Figure 1.6: Shielding of fields from a 1D grid. 

Then, unlike the vacuum case, the perturbation to the potential falls off rather rapidly into 
the plasma. We can show this as follows. The important equations are: 

d2φ 
Poisson�s Equation = (ni − ne) (1.19) �2φ = 

dx2 
− 

�

e 

0 

Electron Density ne = n∞ exp(eφ/Te). (1.20) 

[This is a Boltzmann factor; it assumes that electrons are in thermal equilibrium. n∞ is 
density far from the grid (where we take φ = 0).] 

Ion Density ni = n∞ . (1.21) 

[Applies far from grid by quasineutrality; we just assume, for the sake of this illustrative 
calculation that ion density is not perturbed by φperturbation.] 

Substitute: � � � � 
d2φ 

= 
en∞ 

exp 
eφ 

. (1.22) 
dx2 �0 Te 

− 1 

This is a nasty nonlinear equation, but far from the grid |eφ/Te << 1 so we can use a Taylor 
expression: exp eφ � 1 + eφ . So 

| 
Te Te 

2d2φ 
= 

en∞ e
φ = 

e n∞ 
φ (1.23) 

dx2 �0 Te �0Te 
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Solutions: φ = φ0 exp(−|x /λD ) where |

�0Te 
(1.24) λD ≡ 

2e n∞ 

This is called the Debye Length 

Perturbations to the charge density and potential in a plasma tend to fall off with charac

teristic length λD .


In Fusion plasmas λD is typically small. [e.g. ne = 1020m−3Te = 1keV λD = 2 × 10−5m =

20µm]


Usually we include as part of the definition of a plasma that λD << the size of plasma. This

ensures that collective effects, quasineutrality etc. are important. Otherwise they probably

aren’t.


1.2.4 PlasmaSolid Boundaries (Elementary) 

When a plasma is in contact with a solid, the solid acts as a “sink” draining away the plasma. 
Recombination of electrons and ions occur at surface. Then: 

1. Plasma is normally charged positively with respect to the solid. 

Figure 1.7: PlasmaSolid interface: Sheath 

2. There is a relatively thin region called the “sheath”, at the boundary of the plasma, 
where the main potential variation occurs. 

Reason for potential drop: 
Different velocities of electrons and ions. 

If there were no potential variation (E= 0) the electrons and ions would hit the surface at 
the random rate 

1 
nv̄ per unit area (1.25) 

4 
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[This equation comes from elementary gaskinetic theory. See problems if not familiar.] 

The mean speed ¯ 8T T .v = 
πm ∼ 

m 

Because of mass difference electrons move ∼ mi faster and hence would drain out of plasma 
me 

faster. Hence, plasma charges up enough that an electric field opposes electron escape and

reduces total electric current to zero.


Estimate of potential:


1Ion escape flux 
4 n

�
iv̄i 

1Electron escape flux 
4 n

� ¯evi 

Prime denotes values at solid surface. 

Boltzmann factor applied to electrons: 

n� = n∞ exp[eφs/Te] (1.26) e 

where φs is solid potential relative to distant (∞) plasma. 

Since ions are being dragged out by potential assume n�i ∼ n∞ (Zi = 1). [This is only

approximately correct.]


Hence total current density out of plasma is


j = qi 
1 
4 
n�i ̄vi + qe 

1 
4 

n�e ̄ve � � 
(1.27) 

= 
en∞ 

4 
{v̄i − exp 

eφs 

Te 
v̄e} (1.28) 

This must be zero so 

φs = 

= 

Te 

e 
Te 

e 

ln | v̄i 

v̄e 
| = 

Te 

e 
1 
2 

ln 
� 

me 

mi 

� 

1 
2 

ln 
� 

Ti 

Te 

me 

mi 

� 

[if Te = Ti.] 

(1.29) 

(1.30) 

For hydrogen mi 
me 

= 1800 so 1 
2 ln me 

mi 
= −3.75. 

The potential of the surface relative to plasma is approximately −4 Te . 
e 

[Note T
e 
e is just the electron temp r in electronvolts expressed as a voltage.] 

1.2.5 Thickness of the sheath 

Crude estimates of sheath thickness can be obtained by assuming that ion density is uniform. 
Then equation of potential is, as before, 

d2φ 
= 

en∞ 
exp 

eφ 
(1.31) 

dx2 �0 Te 
− 1 
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We know the rough scalelength of solutions of this equation is


1 
2�0Te

λD = 
e2n∞ 

the Debye Length. (1.32) 

Actually our previous solution was valid only for |eφ/Te << 1 which is no longer valid. | 
When −eφ/Te > 1 (as will be the case in the sheath). We can practically ignore the electron 
density, in which case the solution will continue only quadratically. One might expect, 
therefore, that the sheath thickness is roughly given by an electric potential gradient 

T 1 
(1.33) − 

e λD 

extending sufficient distance to reach φS = −4 Te i.e. 
e 

distance x ∼ 4λD 

This is correct for the typical sheath thickness but not at all rigorous. 

1.3 The ‘Plasma Parameter’ 

Notice that in our development of Debye shielding we used nee as the charge density and 
supposed that it could be taken as smooth and continuous. However if the density were so 
low that there were less than approximately one electron in the Debye shielding region this 
approach would not be valid. Actually we have to address this problem in 3d by defining 
the ‘Plasma Parameter’, ND , as 

ND = Number of particles in the ‘Debye Sphere’. ⎛ ⎞ 
4 T⎝πλ3 

D 

3 
2 

1 
2 

⎠ . (1.34) = n. ∝

3 n 

<If ND ∼ 1 then the individual particles cannot be treated as a smooth continuum. It will be 
seen later that this means that collisions dominate the behaviour: i.e. short range correlation 
is just as important as the long range collective effects. 

Often, therefore we add a further qualification of plasma: 

ND >> 1 (Collective effects dominate over collisions) (1.35) 

1.4 Summary 

Plasma is an ionized gas in which collective effects dominate over collisions. 

[λD << size , ND >> 1 .] (1.36) 

14 



1.5 Occurrence of Plasmas 

Gas Discharges: Fluorescent Lights, Spark gaps, arcs, welding, lighting


Controlled Fusion


Ionosphere: Ionized belt surrounding earth


Interplanetary Medium: Magnetospheres of planets and starts. Solar Wind.


Stellar Astrophysics: Stars. Pulsars. Radiationprocesses.


Ion Propulsion: Advanced space drives, etc.


& Space Technology Interaction of Spacecraft with environment


Gas Lasers: Plasma discharge pumped lasers: CO2, He, Ne, HCN.


Materials Processing: Surface treatment for hardening. Crystal Growing.


Semiconductor Processing: Ion beam doping, plasma etching & sputtering.


Solid State Plasmas: Behavior of semiconductors.


For a figure locating different types of plasma in the plane of density versus temperature see

for example Goldston and Rutherford Introduction to Plasma Physics IOP Publishing, 1995,

figure 1.3 page 9. Another is at http://www.plasmas.org/basics.htm 

1.6 Different Descriptions of Plasma 

1. Single Particle Approach. (Incomplete in itself). Eq. of Motion. 

2. Kinetic Theory. Boltzmann Equation. � � � 
∂ ∂ ∂ ∂f 
∂t 

+ v. 
∂x 

+ a. 
∂v 

f = 
∂t 

col. 

(1.37) 

3. Fluid Description. Moments, Velocity, Pressure, Currents, etc. 

Uses of these. 

Single Particle Solutions → Orbits 
→ Kinetic Theory Solutions → Transport Coefs. 
→ Fluid Theory → Macroscopic Description 

All descriptions should be consistent. Sometimes they are different ways of looking at the 
same thing. 
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1.6.1 Equations of Plasma Physics


ρ 
.E =	 .B = 0�

�0	
�

∂B	 1 ∂E (1.38) =	 = µ0j +�∧ E	 − 
∂t 

�∧B 
c2 ∂t 

F = q(E + v ∧B) 

1.6.2 Self Consistency 

In solving plasma problems one usually has a ‘circular’ system: 

The problem is solved only when we have a model in which all parts are self consistent. We

need a ‘bootstrap’ procedure.


Generally we have to do it in stages:


• Calculate Plasma Response (to given E,B) 

• Get currents & charge densities 

• Calculate E & B for j, p. 

Then put it all together. 
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Chapter 2


Motion of Charged Particles in Fields


Plasmas are complicated because motions of electrons and ions are determined by the electric

and magnetic fields but also change the fields by the currents they carry.


For now we shall ignore the second part of the problem and assume that Fields are Prescribed.


Even so, calculating the motion of a charged particle can be quite hard.


Equation of motion:


dv 
m = q ( E + v B ) (2.1) 

dt� �� � charge Efield velocity 
∧ 

Bfield 
Rate of change of momentum Lorentz Force 

Have to solve this differential equation, to get position r and velocity (v= ṙ) given E(r, t), B(r, t). 

Approach: Start simple, gradually generalize. 

2.1 Uniform B field, E = 0. 

mv̇ = qv ∧ B (2.2) 

2.1.1 Qualitatively 

in the plane perpendicular to B: Accel. is perp to v so particle moves in a circle whose 
radius rL is such as to satisfy 

2 
⊥v

rL 

Ω is the angular (velocity) frequency 

mrLΩ2 = m = q v⊥B (2.3) | |

1st equality shows Ω2 = v 2 
L 

2 /r⊥ (rL = v⊥/Ω) 
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Figure 2.1: Circular orbit in uniform magnetic field. 

vHence second gives m ⊥Ω2 = q v⊥B
Ω | |

q B 
i.e. Ω = 

| |
. (2.4) 

m 

Particle moves in a circular orbit with 

q B 
angular velocity Ω = 

| |
the “Cyclotron Frequency” (2.5) 

m 
v

and radius rl = ⊥ 
the “Larmor Radius. (2.6) 

Ω 

2.1.2 By Vector Algebra 

• Particle Energy is constant. proof : take v. Eq. of motion then 

d 1 
mv.v̇ = mv 2 = qv.(v ∧ B) = 0. (2.7) 

dt 2 

• Parallel and Perpendicular motions separate. v = constant because accel (∝ v ∧ B) 
is perpendicular to B. 

Perpendicular Dynamics: 

Take B in ẑ direction and write components 

mv̇x = qvy B , mv̇y = −qvxB (2.8) 

Hence 
qB qB �2 

v̈x = v̇y = vx = −Ω2 vx (2.9) 
m 

− 
m 

Solution: vx = v⊥ cos Ωt (choose zero of time) 

Substitute back: 
m q

vy = v̇x = −|
q 
| 
v⊥ sin Ωt (2.10) 

qB 
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Integrate: 
v

x = x0 + ⊥ 
sin Ωt , y = y0 + 

q v⊥ 
cos Ωt (2.11) 

Ω |q| Ω 

Figure 2.2: Gyro center (x0, y0) and orbit 

This is the equation of a circle with center r0 = (x0, y0) and radius rL = v⊥/Ω: Gyro Radius.

[Angle is θ = Ωt]


Direction of rotation is as indicated opposite for opposite sign of charge:


Ions rotate anticlockwise. Electrons clockwise about the magnetic field.


The current carried by the plasma always is in such a direction as to reduce the magnetic

field.


This is the property of a magnetic material which is “Diagmagnetic”.


When v� is nonzero the total motion is along a helix.


2.2 Uniform B and nonzero E 

mv̇ = q(E + v ∧ B) (2.12) 

Parallel motion: Before, when E = 0 this was v = const. Now it is clearly 

qE�
v̇ = (2.13) � 

m 

Constant acceleration along the field.


Perpendicular Motion


Qualitatively:


Speed of positive particle is greater at top than bottom so radius of curvature is greater.

Result is that guiding center moves perpendicular to both E and B. It ‘drifts’ across the

field.


Algebraically: It is clear that if we can find a constant velocity vd that satisfies


E + vd ∧ B = 0 (2.14) 
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Figure 2.3: E ∧ B drift orbit 

then the sum of this drift velocity plus the velocity 

d 
vL = [rLe iΩ(t−t0)]	 (2.15) 

dt 

which we calculated for the E = 0 gyration will satisfy the equation of motion. 

Take ∧B the above equation: 

0 = E ∧ B + (vd ∧ B) ∧ B = E ∧ B + (vd.B)B − B2 vd (2.16) 

so that 

vd = 
E ∧ B 

(2.17) 
B2 

does satisfy it.


Hence the full solution is


v = v + vd + vL	 (2.18) 
parallel crossfield drift Gyration 

where 
qE�

v̇	 = (2.19) � 
m 

and 

vd (eq 2.17) is the “E × B drift” of the gyrocenter. 

Comments on E × B drift: 

1. It is independent of the properties of the drifting particle (q, m, v, whatever). 

2. Hence it is in the same direction for electrons and ions. 

3. Underlying physics for this is that in the frame moving at the E × B drift E = 0. We 
have ‘transformed away’ the electric field. 

4. Formula given	 above is exact except for the fact that relativistic effects have been 
ignored. They would be important if vd ∼ c. 
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2.2.1 Drift due to Gravity or other Forces 

Suppose particle is subject to some other force, such as gravity.	 Write it F so that 

1 
mv̇ = F + q v ∧ B = q( F + v ∧ B)	 (2.20) 

q 

This is just like the Electric field case except with F/q replacing E. 

The drift is therefore 

vd =
1 F ∧ B 

(2.21) 
q B2 

In this case, if force on electrons and ions is same, they drift in opposite directions.


This general formula can be used to get the drift velocity in some other cases of interest (see

later).


2.3 NonUniform B Field 

If Blines are straight but the magnitude of B varies in space we get orbits that look quali
tatively similar to the E ⊥ B case: 

Figure 2.4: �B drift orbit 

Curvature of orbit is greater where B is greater causing loop to be small on that side. Result 
is a drift perpendicular to both B and �B. Notice, though, that electrons and ions go in 
opposite directions (unlike E ∧ B). 

Algebra 

We try to find a decomposition of the velocity as before into v = vd + vL where vd is 
constant.


We shall find that this can be done only approximately. Also we must have a simple expres

sion for B. This we get by assuming that the Larmor radius is much smaller than the scale

length of B variation i.e.,


rL << B/|�B	 (2.22) | 

21 



� � 

� 
| | � 

in which case we can express the field approximately as the first two terms in a Taylor 
expression: 

B � B0 + (r.�)B (2.23) 

Then substituting the decomposed velocity we get: 

dv 
m 

dt 
= m ̇vL = q(v ∧ B) = q[vL ∧ B0 + vd ∧ B0 + (vL + vd) ∧ (r.�)B] (2.24) 

or 0 = vd ∧ B0 + vL ∧ (r.�)B + vd ∧ (r.�)B (2.25) 

Now we shall find that vd/vL is also small, like r|�B /B. Therefore the last term here is |
second order but the first two are first order. So we drop the last term. 

Now the awkward part is that vL and rL are periodic. Substitute for r = r0 + rL so 

0 = vd ∧ B0 + vL ∧ (rL.�)B + vL ∧ (r0.�)B (2.26) 

iΩt−We now average over a cyclotron period. The last term is so it averages to zero: ∝ e

⊥ 

Ω 

0 = vd ∧ B + �vL ∧ (rL.�)B� . (2.27) 

To perform the average use 

v q
sin Ωt, cos Ωt (2.28) rL = (xL, yL) = 

q

cos Ωt, 
−q 

sin ΩtvL = ( ̇xL, ẏL) = v (2.29) ⊥
q| |

d 
So [vL ∧ (r.�)B]x = vy y 

dy 
B (2.30) 

d 
[vL ∧ (r.�)B]y = −vxy 

dy 
B (2.31) 

(Taking �B to be in the ydirection). 

Then 

2 
⊥ 

Ω 

2 
⊥ 

Ω 
v

v�cos Ωt cos Ωt� 

−�cos Ωt sin Ωt�
 = 0 (2.32)
=�vy y� 
2 
⊥ 

Ω 
1 vq 

q| | 
q 
q| | 

(2.33)
=�vxy� = 
2 

So 
2 
⊥ B�
Ω 

q 1 v�vL ∧ (r.�)B� = (2.34) − 
q 2| | 

Substitute in: 

0 = vd ∧ B − 
2 
⊥ B�

2Ω 
q v

q
| | 

(2.35) 
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and solve as before to get 

v �B ∧B 
2 
⊥

2Ω
−1 
q||

=

q v

q
| | 

2 
⊥ 

2Ω 
B ∧�B 

(2.36) vd = 
B2 B2 

or equivalently 
1 mv

q 2B 

2 
⊥ B ∧�B 

(2.37) vd = 
B2 

This is called the ‘Grad B drift’. 

2.4 Curvature Drift 

When the Bfield lines are curved and the particle has a velocity v� along the field, another 
drift occurs. 

Figure 2.5: Curvature and Centrifugal Force 

Take |B constant; radius of curvature Re.| 
To 1st order the particle just spirals along the field. 

In the frame of the guiding center a force appears because the plasma is rotating about the

center of curvature.


This centrifugal force is Fcf


Fcf = m 
2 
�v

Rc 
pointing outward (2.38) 

as a vector 
Rc2Fcf (2.39) = mv

R2 

c 

[There is also a coriolis force 2m(ω ∧ v) but this averages to zero over a gyroperiod.] 

Use the previous formula for a force 

2 
�mv

q B2 qB2 R2 
c 
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1 Fcf ∧B Rc ∧B 
(2.40) vd = =




This is the “Curvature Drift”.


It is often convenient to have this expressed in terms of the field gradients. So we relate Rc


to �B etc. as follows:


Figure 2.6: Differential expression of curvature 

(Carets denote unit vectors) 

From the diagram 
db = b̂2 − b̂1 = −R̂cα (2.41) 

and 
d� = ∝ Rc (2.42) 

So 
db 
dl 

= − 
R̂c 

Rc 
= − 

Rc 

R2 
c 

(2.43) 

But (by definition) 
db 
dl 

= ( ̂B.�)b̂ (2.44) 

So the curvature drift can be written


2 
� 

2 
� B ∧ (ˆ bb.�)ˆRc Bmv mv

(2.45) vd = 
R2 

c 

∧
 = 
B2 q B2q 

2.4.1 Vacuum Fields 

Relation between �B & Rc drifts 

The curvature and �B are related because of Maxwell’s equations, their relation depends 
on the current density j. A particular case of interest is j = 0: vacuum fields. 

Figure 2.7: Local polar coordinates in a vacuum field 

�∧B = 0 (static case) (2.46) 
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Consider the zcomponent


1 ∂ 
0 = (�∧B)z = (rBθ ) (Br = 0 by choice). (2.47) 

r ∂r 
∂Bθ Bθ 

= + (2.48) 
∂r r 

or, in other words, 
B 

(�B)r = (2.49) −
Rc 

[Note also 0 = (�∧B)θ = ∂Bθ /∂z : (�B)z = 0] 

and hence (�B)perp = −B Rc/R
2 .c 

Thus the grad B drift can be written: 

mv2 mV 2 Rc ∧B 
(2.50) v�B = ⊥ B ∧�B 

= ⊥ 

2q B3 2q R2B2 
c 

and the total drift across a vacuum field becomes 

1 2 1 2 vR + v�B = mv + mv 
Rc ∧B 

. (2.51) 
q � 2 ⊥ R2B2 

c 

Notice the following: 

1. Rc & �B drifts are in the same direction. 

2. They are in opposite directions for opposite charges. 

3. They are proportional to particle energies 

4. Curvature ↔ Parallel Energy (× 2) 
↔ Perpendicular Energy �B 

5. As a result one can very quickly calculate the average drift over a thermal distribution 
of particles because 

1 2 T 
mv = (2.52) �

2 � � 2 
1 2 mv = T 2 degrees of freedom (2.53) �
2 ⊥�


Therefore ⎛ � � ⎞

ˆ b2T Rc ∧B 2T B ∧ b.� ˆ⎠ (2.54) �vR + v�B � = 

q R2B2 
⎝= 

q B2 
c 
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2.5	 Interlude: Toroidal Confinement of Single Parti

cles 

Since particles can move freely along a magnetic field even if not across it, we cannot ob
viously confine the particles in a straight magnetic field. Obvious idea: bend the field lines 
into circles so that they have no ends. 

Figure 2.8: Toroidal field geometry 

Problem 

Curvature & �B drifts 

1 1
 R ∧ B2 2 
⊥ (2.55)
+vd = mv mv


R2B22
q 
1 1
 12 2 

⊥ (2.56)
+= mv |vd|	
q 

mv

2 BR 

Ions drift up. Electrons down. There is no confinement. When there is finite density things


Figure 2.9: Charge separation due to vertical drift 

are even worse because charge separation occurs → E Outward Motion. → E ∧ B → 

2.5.1	 How to solve this problem? 

Consider a beam of electrons v = 0 v⊥ = 0. Drift is 

2 
�mv

q BT R 

26 
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What Bz is required to cancel this?


Adding Bz gives a compensating vertical velocity


Bz 
v = v for Bz << BT (2.58) � 

BT 

We want total 
Bz 

2 

vz = 0 = v� 
BT 

+ 
mv� q 

(2.59) 
q BT R 

So Bz = −mv�/Rq is the right amount of field. 

Note that this is such as to make 

mv
rL(Bz ) = 

| �| 
= R . (2.60) 

qBz ||

But Bz required depends on v� and q so we can’t compensate for all particles simultaneously. 

Vertical field along cannot do it. 

2.5.2 The Solution: Rotational Transform 

Figure 2.10: Tokamak field lines with rotational transform 

Toroidal Coordinate system (r, θ, φ) (minor radius, poloidal angle, toroidal angle), see figure 
2.8.


Suppose we have a poloidal field Bθ


Field Lines become helical and wind around the torus: figure 2.10.
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In the poloidal crosssection the field describes a circle as it goes round in φ. 

Equation of motion of a particle exactly following the field is: 

dθ Bθ Bθ Bφ Bθ 
r = vφ = v = v (2.61) 
dt Bφ Bφ B � 

B � 

and 
r = constant. (2.62) 

Now add on to this motion the cross field drift in the ẑ direction. 

Figure 2.11: Components of velocity 

dθ Bθ 
r = v� + vd cos θ (2.63) 
dt B 
dr 

= vd sin θ (2.64) 
dt 

Take ratio, to eliminate time: 
1 dr ud sin θ 

= (2.65) 
r dθ Bθ v� + vd cos θ

B 

Take Bθ, B, v�, vd to be constants, then we can integrate this orbit equation: 

Bθv
[ln r] = [− ln � 

+ vd cos θ|] . (2.66) | 
B 

πTake r = r0 when cos θ = 0 (θ = 
2 ) then 

Bvd 
r = r0/ 1 + cos θ (2.67) 

bθv

If Bvd << 1 this is approximately 
Bθ v

r = r0 − Δ cos θ (2.68) 

where Δ = Bvd r0Bθ v

This is approximately a circular orbit shifted by a distance Δ: 
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Figure 2.12: Shifted, approximately circular orbit 

Substitute for vd 

12 
� +
 2 

⊥)(mvB 1 1mv

2Δ (2.69) r0� 

Bθ BφRq v
12 

� 
2 
⊥+1 mv
 mv rp 

(2.70) 2 � 
qBθ Rv

mv r0 r0
If v⊥ = 0 Δ = (2.71) ,= rLθ

qBθ R R


where rLθ is the Larmor Radius in a field Bθ × r/R.


Provided Δ is small, particles will be confined. Obviously the important thing is the poloidal

rotation of the field lines: Rotational Transform.


Rotational Transform 

rotational transform ≡ 
poloidal angle 

1 toroidal rotation 
(2.72) 

(transform/2π =) ι ≡ 
poloidal angle 
toroidal angle 

. (2.73) 

(Originally, ι was used to denote the transform. Since about 1990 it has been used to denote 
the transform divided by 2π which is the inverse of the safety factor.) 

‘Safety Factor’ 

1 toroidal angle �
s ‘q . (2.74)
= = 

ι poloidal angle


Actually the value of these ratios may vary as one moves around the magnetic field. Definition

strictly requires one should take the limit of a large no. of rotations.


qs is a topological number: number of rotations the long way per rotation the short way.


Cylindrical approx.:

rBφ 

qs = (2.75) 
RBθ 
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In terms of safety factor the orbit shift can be written 

r Bφr 
= rLθ	 = rLφ = rLqs (2.76) |Δ| 

R Bθ R 

(assuming Bφ >> Bθ ). 

2.6	 The Mirror Effect of Parallel Field Gradients: E = 
0, �B � B 

Figure 2.13: Basis of parallel mirror force 

In the above situation there is a net force along B. 

Force is 

< F� > 

sin α 

= 

= 

−|qv ∧ B|
−Br 

B 

sin α = −|q|v⊥B sin α (2.77) 

(2.78) 

Calculate Br as function of Bz from �.B = 0. 

1 ∂ ∂ �.B = 
r ∂r 

(rBr ) + 
∂z 

Bz = 0 . (2.79) 

Hence 

rBr = − 
� 

r 
∂Bz 

∂z 
dr (2.80) 

Suppose rL is small enough that ∂Bz 
∂z � const. 

[rBr ]
rL 
0 � 

� rL 

0 
rdr 

∂Bz 

∂z 
= − 

1 
2 

r 2 
L 
∂Bz 

∂z 
(2.81) 

So 

Br (rL) = − 
1 
2 
rL 

∂Bz 

∂z 
(2.82) 

sin α = − 
Br 

B 
= + 

rL 

2 
1 
2 

∂Bz 

∂z 
(2.83) 
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1 
2 

Hence

2 
⊥ ∂Bz∂Bz mv

< F
v⊥rL 

. (2.84) −|q| = −
2 ∂z B ∂z 

As particle enters increasing field region it experiences a net parallel retarding force. 

Define Magnetic Moment 
1 2 mv⊥/B . (2.85) µ ≡ 
2 

Note this is consistent with loop current definition 

q v q rLv| | ⊥ 
= 
| | ⊥ 

2πrL 
µ = AI = πr
2 .L (2.86) 

2 

Force is F = µ.��B 

This is force on a ‘magnetic dipole’ of moment µ. 

F = µ.��B (2.87) 

Our µ always points along B but in opposite direction. 

2.6.1 Force on an Elementary Magnetic Moment Circuit 

Consider a plane rectangular circuit carrying current I having elementary area dxdy = dA. 
Regard this as a vector pointing in the z direction dA. The force on this circuit in a field 
B(r) is F such that 

∂Bz
Fx = Idy[Bz (x + dx) − Bz (x)] = Idydx 

∂x 
(2.88) 

Fy = −Idx[Bz (y + dy) − Bz (y)] = Idydx 
∂Bz 

∂y 
(2.89) 

Fz = −Idx[By (y + dy) − By (y)] − Idy[Bx(x + dx) − Bx(x)]� � 
(2.90) 

= −Idxdy 
∂Bx 

∂x 
+ 

∂By 

∂y 
= Idydx 

∂Bz 

∂z 
(2.91) 

(Using �.B = 0). 

Hence, summarizing: F = Idydx�Bz . Now define µ = IdA = Idydxẑ and take it constant. 
Then clearly the force can be written 

F = �(B.µ) [Strictly = (�B).µ] (2.92) 

µ is the (vector) magnetic moment of the circuit.


The shape of the circuit does not matter since any circuit can be considered to be composed

of the sum of many rectangular circuits. So in general


µ = IdA (2.93) 
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and force is 
F = �(B.µ) (µ constant), (2.94) 

We shall show in a moment that |µ| is constant for a circulating particle, regard as an 
elementary circuit. Also, µ for a particle always points in the B direction. [Note that this 
means that the effect of particles on the field is to decrease it.] Hence the force may be 
written 

F = −µ�B	 (2.95) 

This gives us both: 

•	 Magnetic Mirror Force: 
F = −µ��B (2.96) 

and 

Grad B Drift: • 
1 F ∧B µ B ∧�B

.	 (2.97) v�B = = 
q B2 q B2 

2.6.2 µ is a constant of the motion 

‘Adiabatic Invariant’ 

Proof from F

Parallel equation of motion 
dv

m � 
= F = −µ

dB	
(2.98) 

dt � 
dz 

So 
dB dB2 mv

dv� 
= 

d 
(
1 
mv� ) = −µvz = −µ	 (2.99) � 

dt dt 2	 dz dt 
or 

d 1 2 dB 
( mv� ) + µ = 0 .	 (2.100) 

dt 2 dt 

Conservation of Total KE 

d 1 2 1 2 

dt 
(
2 
mv � + 2 

mv⊥) = 0 (2.101) 

d 1 
= ( mv 2 + µB) = 0	 (2.102) 

dt 2 � 

Combine 
d dB 

(µB) − µ = 0	 (2.103) 
dt dt 
dµ 

= = 0 As required	 (2.104) 
dt 
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Angular Momentum 

of particle about the guiding center is 

2 mv 2m 1 mv
rLmv = ⊥ 

mv = 2 ⊥ (2.105) ⊥ |q|B ⊥ 
q B| |

2m 
= µ . (2.106) 

q| |

Conservation of magnetic moment is basically conservation of angular momentum about the 
guiding center. 

Proof direct from Angular Momentum 

Consider angular momentum about G.C. Because θ is ignorable (locally) Canonical angular 
momentum is conserved. 

p = [r ∧ (mv + qA)]z conserved. (2.107) 

Here A is the vector potential such that B = �∧A 

the definition of the vector potential means that 

1 ∂(rAθ ))
Bz = (2.108) 

r ∂r � 2rL µmrL ⇒ rLAθ (rL) = r.Bz dr =
2 

Bz = 
q

(2.109) 
0 | | 

Hence 

mµ 
p = 

−q
rLv⊥m + q (2.110) 

q q| | 
q 

| | 
= mµ. (2.111) −

|q|

So p = const ↔ µ = constant.


Conservation of µ is basically conservation of angular momentum of particle about G.C.


2.6.3 Mirror Trapping 

F� may be enough to reflect particles back. But may not!


Let’s calculate whether it will:


Suppose reflection occurs.


At reflection point v�r = 0.


Energy conservation

11 2 2 m(v⊥0 + v�0) = mv 2 (2.112) ⊥r2 2 
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Figure 2.14: Magnetic Mirror 

µ conservation 
1 2 1 2mv
2 ⊥0 = 2 mv⊥r (2.113) 

B0 Br 

Hence 

2 2 Br 2 v⊥0 + v�0 = 
B0 

v⊥0 (2.114) 

B0 v2 

= ⊥0	 (2.115) 
2Br v⊥0 + v2 

�o 

2.6.4	 Pitch Angle θ 

v
tan θ = ⊥	

(2.116) 
v

B0 v2 

= ⊥0 = sin2 θ0	 (2.117) 
2Br v⊥0 + v2 

�0 

So, given a pitch angle θ0, reflection takes place where B0/Br = sin2 θ0. 

If θ0 is too small no reflection can occur. 

Critical angle θc is obviously 
θc = sin−1(B0/B1) 

1 
2 (2.118)


Loss Cone is all θ < θc.


Importance of Mirror Ratio: Rm = B1/B0.


2.6.5 Other Features of Mirror Motions 

Flux enclosed by gyro orbit is constant. 
2πm2v

Φ = πr 2 B = ⊥ B	 (2.119) L q2B2 
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Figure 2.15: Critical angle θc divides velocity space into a losscone and a region of mirror
trapping 

22πm 1 mv
= 2 ⊥ (2.120) 

q2 B 
2πm 

= 
q2 

µ = constant. (2.121) 

Note that if B changes ‘suddenly’ µ might not be conserved. 

Figure 2.16: Flux tube described by orbit 

Basic requirement 
rL << B/|�B (2.122) | 

Slow variation of B (relative to rL). 

2.7 Time Varying B Field (E inductive) 

Particle can gain energy from the inductive E field 

∂B 
= (2.123) � ∧ E − 

∂t 
dΦ 

or E.dl = B.ds = (2.124) − 
s 

˙ − 
dt 

Hence work done on particle in 1 revolution is 

dΦ ˙δw = q E.d� = +|q| 
s 
B.ds = + q = |q|Bπr 2 (2.125) L− | | ˙ | | 

dt 
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Figure 2.17: Particle orbits round B so as to perform a line integral of the Electric field 

(d� and v⊥q are in opposition directions). 

δ 
� 

1 
2 
mv 2 

⊥ 

� 

= |q| Ḃπr 2 
L = 

2π Ḃm 
|q|B 

1 
2 mv2 

⊥ 

B 

2π Ḃ 

(2.126) 

= 
|Ω| 

µ. (2.127) 

Hence 
d 
dt 

� 
1 
2 
mv 2 

⊥ 

� 

= 
|Ω|
2π 

δ 
� 

1 
2 
mv 2 

⊥ 

� 

= µ 
db 
dt 

(2.128) 

but also 
d 
dt 

� 
1 
2 
mv 2 

⊥ 

� 

= 
d 
dt 

(µB) . (2.129) 

Hence 
dµ 

= 0. (2.130) 
dt 

Notice that since Φ = 2πm µ, this is just another way of saying that the flux through the gyro 
q2 

orbit is conserved.


Notice also energy increase. Method of ‘heating’. Adiabatic Compression.


2.8 Time Varying Efield (E, B uniform) 

Recall the E ∧ B drift: 

vE∧B = 
E ∧ B 

(2.131) 
B2 

when E varies so does vE∧B . Thus the guiding centre experiences an acceleration 

v̇E∧B = 
d E ∧ B 

(2.132) 
dt B2 

In the frame of the guiding centre which is accelerating, a force is felt. 

Fa = −m
d E ∧ B 

(Pushed back into seat! − ve.) (2.133) 
dt B2 
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This force produces another drift


1 Fa ∧ B m d E ∧ B 
(2.134) vD = = 

q B2 qB2 dt B2 
∧ B 

m d � 
= (E.B) B − B2E (2.135) − 

qB dt 
m ˙= E (2.136) 

qB2 ⊥ 

This is called the ‘polarization drift’. 

m ˙vD = vE∧B + vp = 
E ∧ B 

+ 
qB2 

E (2.137) 
B2 ⊥ 

1 ˙= 
E ∧ B 

+
ΩB 

E⊥ (2.138) 
B2 

Figure 2.18: Suddenly turning on an electric field causes a shift of the gyrocenter in the 
direction of force. This is the polarization drift. 

Startup effect: When we ‘switch on’ an electric field the average position (gyro center) of 
an initially stationary particle shifts over by ∼ 1 the orbit size. The polarization drift is this 

2 
polarization effect on the medium. 

Total shift due to vp is � � 

Δr vpdt = 
m 

qB2 
Ê⊥dt = 

m 
qB2 

[ΔE⊥] . (2.139) 

2.8.1 Direct Derivation of dE effect: ‘Polarization Drift’ dt 

Consider an oscillatory field E = Ee−iωt (⊥ r0B) 

dv 
m = q (E + v ∧ B) (2.140) 

dt 
= q Ee−iωt + v ∧ B (2.141) 

Try for a solution in the form 
v = vD e

−iωt + vL (2.142) 
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where, as usual, vL satisfies mv̇L = qvL ∧B 

Then 

(1) m(−iωvD = q (E + vD ∧B) x�−iωt (2.143) 

Solve for vD : Take ∧B this equation: 

(2) −miω (vD ∧B) = q E ∧B + B2 .v D B −B2 vD (2.144) |

add miω × (1) to q × (2) to eliminate vD ∧B. 

2m 2ω2 vD + q (E ∧B −B2 vD) = miωqE (2.145) 

m2ω2 miω E ∧B 
(2.146) or : vD = E +1 − 

q2B2 
−

qB2 B2 

ω2 iωq 
i.e. vD 1 − 

Ω2 
= −

ΩB|q| 
E + 

E ∧B 
(2.147) 

B2 

Since −iω ∂ this is the same formula as we had before: the sum of polarization and 
∂t 

E ∧B drifts
↔ 

except for the [1 − ω2Ω2] term.


This term comes from the change in vD with time (accel).


Thus our earlier expression was only approximate. A good approx if ω << Ω.


2.9 Non Uniform E (Finite Larmor Radius) 

dv 
m = q (E(r) + v ∧B) (2.148) 

dt 

Seek the usual soltuion v = vD + vg. 

Then average out over a gyro orbit 

dvD 
m = 0 = �q (E(r) + v ∧B)� (2.149) �

dt 
� 

= q [�E(r)�+ vD ∧B] (2.150) 

Hence drift is obviously 

vD = 
�E(r)� ∧B 

(2.151) 
B2 

So we just need to find the average E field experienced. 

Expand E as a Taylor series about the G.C. 

y2 ∂2x2∂2 

E(r) = E0 + (r.�) E + +
2! ∂y2 

E + cross terms + . (2.152) 
2!∂x2 
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∂2 
(E.g. cross terms are xy 

∂x∂y E).


Average over a gyro orbit: r = rL(cos θ, sin θ, 0).


Average of cross terms = 0.


Then

2r�E(r)� = E + (�rL�.�)E + 

� L� (2.153) 
2! 
�2E. 

linear term �rL� = 0. So 
2 

(2.154) �E(r)� � E + 
r

4 
L �2E 

Hence E ∧B with 1st finiteLarmorradius correction is 

2 E ∧B 
vE∧B = 1 + 

rL 2 . (2.155) 
r 
�

B2 

[Note: Grad B drift is a finite Larmor effect already.] 

Second and Third Adiabatic Invariants 

There are additional approximately conserved quantities like µ in some geometries. 

2.10 Summary of Drifts 

vE = 
E ∧B 

B2 
Electric Field (2.156) 

vF 

vE 

= 

= 

1 
q 
F ∧B 

B2 � 

1 + 
r2 
L 

4 
�2 

� 
E ∧B 

B2 

General Force 

Nonuniform E 

(2.157) 

(2.158) 

2 
⊥ B ∧�B
mv

GradB (2.159) v�B = 
B32q 

2 
� Rc ∧Bmv

Curvature (2.160) vR = 
q R2B2 

c 

1 1 Rc ∧B2 mv 2 
⊥ Vacuum Fields. (2.161) vR + v += mv
�B 

R2B2 
c2q 

Ė
⊥q 
q Ω|B| | |

Polarization (2.162) vp = 

Mirror Motion 
mv2 

⊥µ ≡ 
2B 

is constant (2.163) 

Force is F = −µ�B. 
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Chapter 3

Collisions in Plasmas

3.1 Binary collisions between charged particles

Reduced-mass for binary collisions:

Two particles interacting with each other have forces

F12 force on 1 from 2.

F21 force on 2 from 1.

By Newton’s 3rd law, F12 = −F21.

Equations of motion:
m1r̈1 = F12 ; m2r̈2 = F21 (3.1)

Combine to get

r̈1 − r̈2 = F12

(
1

m1

+
1

m2

)
(3.2)

which may be written
m1m2

m1 + m2

d2

dt2
(r1 − r2) = F12 (3.3)

If F12 depends only on the difference vector r1 − r2, then this equation is identical to the
equation of a particle of “Reduced Mass” mr ≡ m1m2

m1+m2
moving at position r ≡ r1 − r2 with

respect to a fixed center of force:
mrr̈ = F12(r) . (3.4)

This is the equation we analyse, but actually particle 2 does move. And we need to recognize
that when interpreting mathematics.

If F21 and r1 − r2 are always parallel, then a general form of the trajectory can be written
as an integral. To save time we specialize immediately to the Coulomb force

F12 =
q1q2

4πε0

r

r3
(3.5)

Solution of this standard (Newton’s) problem:
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θ
θ1

v1 χ
r

2: target

1: projectile

Impact Parameterb

Figure 3.1: Geometry of the collision orbit

Angular momentum is conserved:

mrr
2θ̇ = const. = mrbv1 (θ clockwise from symmetry) (3.6)

Substitute u ≡ 1
r

then θ̇ = bv1

r2 = u2 bv1

Also

ṙ =
d

dt

1

u
= − 1

u2

du

dθ
θ̇ = −bv1

du

dθ
(3.7)

r̈ = −bv1
d2u

dθ2
θ̇ = −(bv1)

2 u2 d2u

dθ2
(3.8)

Then radial acceleration is

r̈ − rθ̇2 = −(bv1)
2 u2

(
d2u

dθ2
+ u

)
=
|F12|
mr

(3.9)

i.e.
d2u

dθ2
+ u = − q1q2

4πε0

1

mr (bv1)
2 (3.10)

This orbit equation has the elementary solution

u ≡ 1

r
= C cos θ − q1q2

4πε0

1

mr (bv1)
2 (3.11)

The sin θ term is absent by symmetry. The other constant of integration, C, must be deter-
mined by initial condition. At initial (far distant) angle, θ1, u1 = 1

∞ = 0. So

0 = C cos θ1 −
q1q2

4πε0

1

mr (bv1)
2 (3.12)

There:

ṙ1 = −v1 = −bv1
du

dθ
|1 = +bv1C sin θ1 (3.13)

Hence

tan θ1 =
sin θ1

cos θ1

=
−1/Cb

q1q2

4πε0
1

mr(bv1)2
/C

= − b

b90

(3.14)
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where

b90 ≡
q1q2

4πε0

1

mrv2
1

. (3.15)

Notice that tan θ1 = −1 when b = b90. This is when θ1 = −45◦ and χ = 90◦. So particle
emerges at 90◦ to initial direction when

b = b90 “90◦ impact parameter′′ (3.16)

Finally:

C = −1

b
cosecθ1 = −1

b

(
1 +

b2
90

b2

) 1
2

(3.17)

3.1.1 Frames of Reference

Key quantity we want is the scattering angle but we need to be careful about reference
frames.

Most “natural” frame of ref is “Center-of-Mass” frame, in which C of M is stationary. C of
M has position:

R =
m1r1 + m2r2

m1 + m2

(3.18)

and velocity (in lab frame)

V =
m1v1 + m2v2

m1 + m2

(3.19)

Now

r1 = R +
m2

m1 + m2

r (3.20)

r2 = R− m1

m1 + m2

r (3.21)

So motion of either particle in C of M frame is a factor times difference vector, r.

Velocity in lab frame is obtained by adding V to the C of M velocity, e.g. m2ṙ
m1+m2

+ V.

Angles of position vectors and velocity differences are same in all frames.

Angles (i.e. directions) of velocities are not same.

3.1.2 Scattering Angle

In C of M frame is just the final angle of r.

− 2θ1 + χ = π (3.22)

(θ1 is negative)

χ = π + 2θ1 ; θ1 =
χ− π

2
. (3.23)
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−θ1

−θ1

−θ1

χ
−θ1

Figure 3.2: Relation between θ1 and χ.

tan θ1 = tan
(

χ

2
=

π

2

)
= − cot

χ

2
(3.24)

So

cot
χ

2
=

b

b90

(3.25)

tan
χ

2
=

b90

b
(3.26)

But scattering angle (defined as exit velocity angle relative to initial velocity) in lab frame
is different.

Final velocity in CM frame

v′CM = v1CM (cos χc, sin χC) =
m2

m1 + m2

v1 (cos χc, sin χc) (3.27)

[ χc ≡ χ and v1 is initial relative velocity]. Final velocity in Lab frame

v′L = v′CM + V =
(
V +

m2v1

m1 + m2

cos χc,
m2v1

m1 + m2

sin χc

)
(3.28)

So angle is given by

cot χL =
V + m2v1

m1+m2
cos χc

m2v1

m1+m2
sin χx

=
V

v1

m1 + m2

m2

cosecχc + cot χc (3.29)

For the specific case when m2 is initially a stationary target in lab frame, then

V =
m1v1

m1 + m2

and hence (3.30)

cot χL =
m1

m2

cosecχc + cot χc (3.31)

This is exact.

Small angle approximation (cot χ→ 1
χ
, cosecχ→ 1

χ
gives

1

χL

=
m1

m2

1

χc

+
1

χc

⇔ χL =
m2

m1 + m2

χc (3.32)

So small angles are proportional, with ratio set by the mass-ratio of particles.
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Figure 3.3: Collisions viewed in Center of Mass and Laboratory frame.

3.2 Differential Cross-Section for Scattering by Angle

Rutherford Cross-Section

By definition the cross-section, σ, for any specified collision process when a particle is passing
through a density n2 of targets is such that the number of such collisions per unit path length
is n2σ.

Sometimes a continuum of types of collision is considered, e.g. we consider collisions at
different angles (χ) to be distinct. In that case we usually discuss differential cross-sections
(e.g dσ

dχ
) defined such that number of collisions in an (angle) element dχ per unit path length

is n2
dσ
dχ

dx. [Note that dσ
dχ

is just notation for a number. Some authors just write σ(χ), but I

find that less clear.]

Normally, for scattering-angle discrimination we discuss the differential cross-section per unit
solid angle:

dσ

dΩs

. (3.33)

This is related to scattering angle integrated over all azimuthal directions of scattering by:
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r0dχ

χ

dΩs

r0 sin χ

Figure 3.4: Scattering angle and solid angle relationship.

dΩs = 2π sin χdχ (3.34)

So that since
dσ

dΩs

dΩs =
dσ

dχ
dχ (3.35)

we have
dσ

dΩs

=
1

2π sin χ

dσ

dχ
(3.36)

Now, since χ is a function (only) of the impact parameter, b, we just have to determine the
number of collisions per unit length at impact parameter b.
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Figure 3.5: Annular volume corresponding to db.

Think of the projectile as dragging along an annulus of radius b and thickness db for an
elementary distance along its path, d`. It thereby drags through a volume:

d`2πbdb . (3.37)

Therefore in this distance it has encountered a total number of targets

d`2πbdb . n2 (3.38)
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at impact parameter b(db). By definition this is equal to d`dσ
db

dbn2. Hence the differential
cross-section for scattering (encounter) at impact parameter b is

dσ

db
= 2πb . (3.39)

Again by definition, since χ is a function of b

dσ

dχ
dx =

dσ

db
db⇒ dσ

dχ
=

dσ

db
=

∣∣∣∣∣ db

dχ

∣∣∣∣∣ . (3.40)

[db/dχ is negative but differential cross-sections are positive.]

Substitute and we get

dσ

dΩs

=
1

2π sin χ

dσ

db

∣∣∣∣∣ db

dχ

∣∣∣∣∣ =
b

sin

∣∣∣∣∣ db

dχ

∣∣∣∣∣ . (3.41)

[This is a general result for classical collisions.]

For Coulomb collisions, in C of M frame,

cot
(

χ

2

)
=

b

b90

(3.42)

⇒ db

dχ
= b90

d

dχ
cot

χ

2
= −b90

2
cosec2χ

2
. (3.43)

Hence

dσ

dΩs

=
b90 cot χ

2

sin χ

b90

2
cosec2χ

2
(3.44)

=
b2
90

2

cos χ
2
/ sin χ

2

2 sin χ
2

cos χ
2

1

sin2 χ
2

(3.45)

=
b2
90

4 sin4 χ
2

(3.46)

This is the Rutherford Cross-Section.

dσ

dΩs

=
b2
90

4 sin4 χ
2

(3.47)

for scattering by Coulomb forces through an angle χ measured in C of M frame.

Notice that dσ
dΩs

→∞ as χ→ 0.

This is because of the long-range nature of the Coulomb force. Distant collisions tend to
dominate. (χ→ 0⇔ b→∞).
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3.3 Relaxation Processes

There are 2 (main) different types of collisional relaxation process we need to discuss for a
test particle moving through a background of scatterers:

1. Energy Loss (or equilibrium)

2. Momentum Loss (or angular scattering)

The distinction may be illustrated by a large angle (90◦) scatter from a heavy (stationary)
target.

If the target is fixed, no energy is transferred to it. So the energy loss is zero (or small if
scatterer is just ‘heavy’). However, the momentum in the x direction is completely ‘lost’ in
this 90◦ scatter.

This shows that the timescales for Energy loss and momentum loss may be very different.

3.3.1 Energy Loss

For an initially stationary target, the final velocity in lab frame of the projectile is

v′L =
(

mlv1

m1 + m2

+
m2v1

m1 + m2

cos χc ,
m2v1

m1 + m2

sin χc

)
(3.48)

So the final kinetic energy is

K ′ =
1

2
m1v

′2
L =

1

2
m1v

2
1

{(
m1

m1 + m2

)2

+
2m1m2

(m1 + m2)
2 cos χc (3.49)

+
m2

2

(m1 + m2)
2

(
cos2 χc + sin2 χc

)}
(3.50)

=
1

2
m1v

2
1

{
1 +

2m1m2

(m1 + m2)
2 (cos χc − 1)

}
(3.51)

=
1

2
m1v

2
1

{
1 +

2m1m2

(m1 + m2)
2 2 sin2 χc

2

}
(3.52)

Hence the kinetic energy lost is ∆K = K −K ′

=
1

2
m1v2

4m1m2

(m1 + m2)
2 sin2 χc

2
(3.53)

=
1

2
m1v

2
1

4m1m2

(m1 + m2)
2

1(
b

b90

)2
+ 1

[using cot
χc

2
=

b

b90

] (3.54)

(exact). For small angles χ � 1 i.e. b/b90 � 1 this energy lost in a single collision is
approximately (

1

2
m1v

2
1

)
4m1m2

(m1 + m2)
2

(
b90

b

)2

(3.55)
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If what we are asking is: how fast does the projectile lose energy? Then we need add up the
effects of all collisions in an elemental length d` at all relevant impact parameters.

The contribution from impact parameter range db at b will equal the number of targets
encountered times ∆K:

n2d`2πbdb︸ ︷︷ ︸
encounters

1

2
m1v

2
1

4m1m2

(m1 + m2)
2

(
b90

b

)2

︸ ︷︷ ︸
Loss per encounter (∆K)

(3.56)

This must be integrated over all b to get total energy loss.

dK = n2d`K
4m1m2

(m1 + m2)
2

∫ (
b90

b

)2

2πbdb (3.57)

so
dK

d`
= K n2

m1m2

(m1 + m2)
2 8πb2

90 [ln |b|]max
min (3.58)

We see there is a problem both limits of the integral (b→ 0, b→∞) diverge logarithmically.
That is because the formulas we are integrating are approximate.

1. We are using small-angle approx for ∆K.

2. We are assuming the Coulomb force applies but this is a plasma so there is screening.

3.3.2 Cut-offs Estimates

1. Small-angle approx breaks down around b = b90. Just truncate the integral there;
ignore contributions from b < b90.

2. Debye Shielding says really the potential varies as

φ ∝
exp

(
−r
λD

)
r

instead of ∝ 1

r
(3.59)

so approximate this by cutting off integral at b = λD equivalent to

bmin = b90. bmax = λD. (3.60)

dK

d`
= Kn2

m1m2

(m1 + m2)
2 8πb2

90 ln |Λ| (3.61)

Λ =
λD

b90

=
(

ε0Te

ne2

) 1
2

/ (
q1q2

4πε0mrv2
1

)
(3.62)
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So Coulomb Logarithm is ‘ln Λ’

Λ =
λD

b90

=
(

ε0Te

ne2

) 1
2

/ (
q1q2

4πε0mrv2
1

)
(3.63)

Because these cut-offs are in ln term result is not sensitive to their exact values.

One commonly uses Collision Frequency. Energy Loss Collision Frequency is

νK ≡ v1
1

K

dK

dL
= n2v1

m1m2

(m1 + m2)
2 8πb2

90 ln |Λ| (3.64)

Substitute for b90 and mr (in b90)

νK = n2v1
m1m2

(m1 + m2)
2 8π

[
q1q2

4πε0
m1m2

m1+m2
v2

1

]2

ln Λ (3.65)

= n2
q2
1q

2
2

(4πε0)
2

8π

m1m2v3
1

ln Λ (3.66)

Collision time τK ≡ 1/νK

Effective (Energy Loss) Cross-section
[

1
K

dK
d`

= σKn2

]
σK = νK/n2v1 =

q2
1q

2
2

(4πε0)
2

8π

m1m2v4
1

ln Λ (3.67)

3.3.3 Momentum Loss

Loss of x-momentum in 1 collision is

∆px = m1(v1 − v′Lx) (3.68)

= m1v1

{
1−

(
m1

m1 + m2

+
m2

m1 + m2

cos χc

)}
(3.69)

= px
m2

m1 + m2

(1− cos χc) (3.70)

' px
m2

m1 + m2

χ2
c

2
= px

m2

m1 + m2

2b2
90

b2
(3.71)

(small angle approx). Hence rate of momentum loss can be obtained using an integral
identical to the energy loss but with the above parameters:

dp

d`
= n2p

∫ bmax

bmin

m2

m1 + m2

2b2
90

b2
2πbdb (3.72)

= n2p
m2

m1 + m2

4π b2
90 ln Λ (3.73)

Note for the future reference:

dp

dt
= v

dp

d`
= n2v

2 m1m2

m1 + m2

4πb2
90 ln Λ. (3.74)
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Therefore Momentum Loss.

Collision Frequency

νp = v1
1

p

dp

d`
= n2v1

m2

m1 + m2

4πb2
90 ln Λ (3.75)

= n2v1
m2

m1 + m2

4π

[
q1q2

4πε0
m1m2

m1+m2
v2

1

]2

ln Λ (3.76)

= n2
q2
1q

2
2

(4πε0)
2

4π (m1 + m2)

m2m2
1v

3
1

ln Λ (3.77)

Collision Time τp = 1/νp

Cross-Section (effective) σ = νp/n2v1

Notice ratio
Energy Loss νK

Momentum loss νp

=
2

m1m2

/
m1 + m2

m2m2
1

=
2m1

m1 + m2

(3.78)

This is

' 2 if m1 >> m2 (3.79)

= 1 if m1 = m2 (3.80)

� 1 if m1 � m2. (3.81)

Third case, e.g. electrons → shows that mostly the angle of velocity scatters. Therefore
Momentum ‘Scattering’ time is often called ‘90◦ scattering’ time to ‘diffuse’ through 90◦ in
angle.

3.3.4 ‘Random Walk’ in angle

When m1 << m2 energy loss << momentum loss. Hence |v′L ' v1. All that matters is the
scattering angle: χL ' χc ' 2b90/b.

Mean angle of deviation in length L is zero because all directions are equally likely.
But:
Mean square angle is

∆α2 = n2L
∫ bmax

bmin

χ2 2πbdb (3.82)

= Ln2 8π b2
90 ln Λ (3.83)

Spread is ‘all round’ when ∆α2 ' 1. This is roughly when a particle has scattered 90◦ on
average. It requires

Ln2 8πb2
90 ln Λ = 1 . (3.84)
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So can think of a kind of ‘cross-section’ for ‘σ90’ 90◦ scattering as such that

n2L‘σ90’ = 1 when Ln2 8π b2
90 ln Λ = 1 (3.85)

i.e. ‘σ90’ = 8π b2
90 ln Λ (= 2σp) (3.86)

This is 8 ln Λ larger than cross-section for 90◦ scattering in single collision.

Be Careful! ‘σ90’ is not a usual type of cross-section because the whole process is really
diffusive in angle.

Actually all collision processes due to coulomb force are best treated (in a Mathematical
way) as a diffusion in velocity space

→ Fokker-Planck equation.

3.3.5 Summary of different types of collision

The Energy Loss collision frequency is to do with slowing down to rest and exchanging
energy. It is required for calculating

Equilibration Times (of Temperatures)
Energy Transfer between species.

The Momentum Loss frequency is to do with loss of directed velocity. It is required for
calculating

Mobility: Conductivity/Resistivity
Viscosity
Particle Diffusion
Energy (Thermal) Diffusion

Usually we distinguish between electrons and ions because of their very different mass:
Energy Loss [Stationary Targets] Momentum Loss

Kνee = ne
e4

(4πε0)
2

8π

m2
ev

3
e

ln Λ pνee =K νee ×
[
me + me

2me

= 1
]

Kνei = ni
Z2e4

(4πε0)
2

8π

memiv3
e

ln Λ pνei =K νei ×
[
me + mi

2me

' mi

2me

]
kνii = ni

Z2e4

(4πeo)
2

8π

m2
i v

3
i

ln Λ pνii =K νii ×
[
mi + mi

2mi

= 1
]

(3.87)

Kνie = ne
Z2

e e
4

(4πε0)
2

8π

mimev3
i

ln Λ pνie =K νie = ×
[
me + mi

2mii
' 1

2

]
Sometimes one distinguishes between ‘transverse diffusion’ of velocity and ‘momentum loss’.
The ratio of these two is

∆p2
1

p2∆L

/∣∣∣∣∣∆p‖
p∆L

∣∣∣∣∣ =
dχ2

L

dL

/∣∣∣∣∣1p dp

dL

∣∣∣∣∣ (3.88)

=

(
m2

m1+m2
χc

)2

m2

m1+m2

χ2
c

2

=
2m2

m1 + m2

. (3.89)
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So

‘σ90’

‘σp’
=

2m2

m1 + m2

= 1 like particles (3.90)

' 2 m1 << m2 (3.91)

' 2m2

m1

m2 << m1 . (3.92)

Hence

⊥νee = pνee = Kνee (= ‘νee’!!) (3.93)

⊥νei = 2pνei = Kνee
ni

ne

Z2 (= Zνee) (= ‘νei’) (3.94)

⊥νii = pνii = Kνii (= νii!!) (Like Ions) (3.95)

⊥νie =
2me

mi

pνie =
me

mi

Kνie = Kνii = νii (3.96)

[But note: ions are slowed down by electrons long before being angle scattered.]

3.4 Thermal Distribution Collisions

So far we have calculated collision frequencies with stationary targets and single-velocity
projectiles but generally we shall care about thermal (Maxwellian) distributions (or nearly
thermal) of both species. This is harder to calculate and we shall resort to some heuristic
calculations.

3.4.1 e→ i

Very rare for thermal ion velocity to be ∼ electron. So ignore ion motion.

Average over electron distribution.

Momentum loss to ions from (assumed) drifting Maxwellian electron distribution:

fe(v) = ne

(
me

2πTe

) 3
2

exp

[
−m (v − vd)

2

2T

]
(3.97)

Each electron in this distribution is losing momentum to the ions at a rate given by the
collision frequency

νp = ni
q2
eq

2
i

(4πε0)
2

4π (me + mi)

mim2
ev

3
ln Λ (3.98)

so total rate of loss of momentum is given by (per unit volume)

− dp

dt
=
∫

fe(v) νp(v) mev d3v (3.99)

To evaluate this integral approximately we adopt the following simplifications.
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1. Ignore variations of ln Λ with v and just replace a typical thermal value in Λ =
λD/b90(v1).

2. Suppose that drift velocity vd is small relative to the typical thermal velocity, written

ve ≡
√

te/me and express fe in terms of u ≡ v
ve

to first order in ud ≡ vd

ve
:

fe = ne
1

(2π)
3
2 v3

e

exp
[−1

2
(u− ud)

2
]

(3.100)

' ne

(2π)
3
2 v3

e

(1 + u.ud) exp

[
−u2

2

]
= (1 + uxud) fo (3.101)

taking x-axis along ud and denoting by fo the unshifted Maxwellian.

Then momentum loss rate per unit volume

− dpx

dt
=

∫
feνpmevxd

3v

= νp(vt)me

∫
(1 + uxud)fo

v3
e

v3
vx d3 v (3.102)

= νp(vt)mevd

∫ u2
x

u3
fo d3 v

To evaluate this integral, use the spherical symmetry of fo to see that:∫ u2
x

u3
fod

3v =
1

3

∫ u2
x + u2

y + u3
z

u3
fod

3v =
1

3

∫ u2

u3
fod

3v

=
1

3

∫ α

0

ve

v
fo4πv2dv

=
2π

3
ve

∫ α

0
fo2vdv

=
2π

3
ve

ne

(2π)
3
2 v3

e

∫ α

0
exp

(
−v2

2v2
e

)
dv2

=
2π

3

ne

(2π)
3
2

2 =
2

3 (2π)
1
2

ne . (3.103)

Thus the Maxwell-averaged momentum-loss frequency is

− 1

p

dp

dt
≡ νei =

2

3 (2π)
1
2

νp(vt) (3.104)

(where p = mevdne is the momentum per unit volume attributable to drift).

νei =
2

3 (2π)
1
2

ni
q2
eq

2
i

(4πε0)
2

4π (me + mi)

mim2
ev

3
e

ln Λe (3.105)

=
2

3 (2π)
1
2

ni

(
ze2

4πε0

)2
4π

m
1
2
e T

3
2

e

ln Λe (3.106)

(substituting for thermal electron velocity, ve, and dropping me

mi
order term), where Ze = qi.

This is the standard form of electron collision frequency.
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3.4.2 i→ e

Ion momentum loss to electrons can be treated by a simple Galilean transformation of the
e→ i case because it is still the electron thermal motions that matter.

ElectronsIons Ions Electrons←−

vi = 0 vd = −vi

−→

vi 0

≡

Figure 3.6: Ion-electron collisions are equivalent to electron-ion collisions in a moving refer-
ence frame.

Rate of momentum transfer, dp
dt

, is same in both cases:

dp

dt
= −pν (3.107)

Hence peνei = piνie or

νie =
pe

pi

νei =
neme

nimi

νei (3.108)

(since drift velocities are the same).

Ion momentum loss to electrons is much lower collision frequency than e → i because ions
possess so much more momentum for the same velocity.

3.4.3 i→ i

Ion-ion collisions can be treated somewhat like e → i collisions except that we have to
account for moving targets i.e. their thermal motion.

Consider two different ion species moving relative to each other with drift velocity vd; the
targets’ thermal motion affects the momentum transfer cross-section.

Using our previous expression for momentum transfer, we can write the average rate of
transfer per unit volume as: [see 3.74 “note for future reference”]

− dp

dt
=
∫ ∫

vr
m1m2

m1 + m2

vr4π b2
90 ln Λ f1f2d

2v1d
3v2 (3.109)

where vr is the relative velocity (v1 − v2) and b90 is expressed

b90 =
q1q2

4πε0

1

mrv2
r

(3.110)
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and mr is the reduced mass m1m2

m1+m2
.

Since everything in the integral apart from f1f2 depends only on the relative velocity, we
proceed by transforming the velocity coordinates from v1,v2 to being expressed in terms of
relative (vr) and average (V say)

vr ≡ v1 − v2 ; V ≡ m1v1 + m2v2

m1 + m2

. (3.111)

Take f1 and f2 to be shifted Maxwellians in the overall C of M frame:

fj = nj

(
mj

2πT

) 3
2

exp

[
−mj (vj − vdj)

2

2T

]
(j = 1, 2) (3.112)

where m1vd1 + m2vd2 = 0. Then

f1f2 = n1n2

(
m1

2πT

) 3
2
(

m2

2πT

) 3
2

exp

[
−m1v

2
1

2T
− m2v

2
2

2T

]

×
{
1 +

v1.m1vd1

T
+

v2.m2vd2

T

}
(3.113)

to first order in vd. Convert CM coordinates and find (after algebra)

f1f2 = n1n2

(
M

2πT

) 3
2
(

mr

2πT

) 3
2

exp

[
−MV 2

2T
− mrv

2
r

2T

]

×
{
1 +

mr

T
vd.vr

}
(3.114)

where M = m1 + m2. Note also that (it can be shown) d3v1d
3v2 = d3vrd

3V . Hence

− dp

dt
=
∫ ∫

vrmrvr4π b2
90 ln Λn1n2

(
M

2πT

) 3
2
(

mr

2πT

) 3
2

exp

(
−MV 2

2T

)
exp

(
−mrv

2
r

2T

){
1 +

mr

T
vd.vr

}
d3vrd

3V (3.115)

and since nothing except the exponential depends on V , that integral can be done:

− dp

dt
=
∫

vr mrvr4π ln Λ n1n2

(
mr

2πT

) 3
2

exp

(
−mrv

2
r

2π

){
1 +

mr

T
vd.vr

}
d3vr (3.116)

This integral is of just the same type as for e− i collisions, i.e.

− dp

dt
= vdvrtmr 4π b2

90(vrt) ln Λt n1n2

∫ u2
x

u3

f̂o(vr)d
3vr

= vdvrtmr4 π b2
90(vrt) ln Λt n1n2

2

3 (2π)
2
2

(3.117)
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where vrt ≡
√

T
mr

, b2
90(vrt) is the ninety degree impact parameter evaluated at velocity vtr,

and f̂o is the normalized Maxwellian.

− dp

dt
=

2

3 (2π)
1
2

(
q1q2

4πε0

)2 4π

m2
rv

3
rt

ln Λt n1n2 mrvd (3.118)

This is the general result for momentum exchange rate between two Maxwellians drifting at
small relative velocity vd.

To get a collision frequency is a matter of deciding which species is stationary and so what the
momentum density of the moving species is. Suppose we regard 2 as targets then momentum
density is n1m1vd so

ν12 =
1

n1m1vd

dp

dt
=

2

3 (2π)
1
2

n2

(
q1q2

4πε0

)2 4π

mrv3
rt

ln Λt

m1

. (3.119)

This expression works immediately for electron-ion collisions substituting mr ' me, recov-
ering previous.

For equal-mass ions mr =
m2

i

mi+mi
= 1

2
mi and vrt =

√
T

mr
=
√

2T
mi

.

Substituting, we get

νii =
1

3π
1
2

ni

(
q1q2

4πε0

)2 4π

m
1
2
i T

3
2

i

ln Λ (3.120)

that is, 1√
2

times the e− i expression but with ion parameters substituted. [Note, however,

that we have considered the ion species to be different.]

3.4.4 e→ e

Electron-electron collisions are covered by the same formalism, so

νee =
1

3π
1
2

ne

(
e2

4πε0

)2
4π

m
1
2
e T

3
2

e

ln Λ . (3.121)

However, the physical case under discussion is not so obvious; since electrons are indistigu-
ishable how do we define two different “drifting maxwellian” electron populations? A more
specific discussion would be needed to make this rigorous.

Generally νee ∼ νei/
√

2 : electron-electron collision frequency ∼ electron-ion (for momentum
loss).

3.4.5 Summary of Thermal Collision Frequencies

For momentum loss :

νei =

√
2

3
√

π
ni

(
Ze2

4πε0

)2
4π

m
1
2
e T

3
2

e

ln Λe . (3.122)
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νee ' 1√
2

νei . (electron parameters) (3.123)

νie =
neme

nimi

νei . (3.124)

νii′ =

√
2

3
√

π
ni′

(
qiqi′

4πε0

)2 4π

m
1
2
i T

3
2

i

(
mi′

mi + mi′

) 1
2

ln Λi (3.125)

Energy loss Kν related to the above (pν) by

Kν =
2mi

m1 + m2

pν . (3.126)

Transverse ‘diffusion’ of momentum ⊥ν, related to the above by:

⊥ν =
2m2

m1 + m2

pν . (3.127)

3.5 Applications of Collision Analysis

3.5.1 Energetic (‘Runaway’) Electrons

Consider an energetic (1
2
mev

2
1 >> T ) electron travelling through a plasma. It is slowed down

(loses momentum) by collisions with electrons and ions (Z), with collision frequency:

pνee = νee = ne
e4

(4πε0)
2

8π

m2
ev

3
1

ln Λ (3.128)

pνei =
1

2
Z νee (3.129)

Hence (in the absence of other forces)

d

dt
(mev) = − (pνee + pνei) mpv (3.130)

= −
(
1 +

Z

2

)
νee mev (3.131)

This is equivalent to saying that the electron experiences an effective ‘Frictional’ force

Ff =
d

dt
(mev) = −

(
1 +

Z

2

)
νee mev (3.132)

Ff = −
(
1 +

Z

2

)
ne

e4

(4πε0)
2

8π ln Λ

mev2
(3.133)
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Notice

1. for Z = 1 slowing down is 2
3

on electrons 1
3

ions

2. Ff decreases with v increasing.

Suppose now there is an electric field, E. The electron experiences an accelerating Force.

Total force

F =
d

dt
(mv) = −eE + Ff = −eE −

(
1 +

Z

2

)
ne

e4

(4πε0)
2

8π ln Λ

mev2
(3.134)

Two Cases (When E is accelerating)

1. |eE| < |Ff |: Electron Slows Down

2. |eE| > |Ff |: Electron Speeds Up!

Once the electron energy exceeds a certain value its velocity increases continuously and the
friction force becomes less and less effective. The electron is then said to ahve become a
‘runaway’.

Condition:
1

2
mev

2 >
(
1 +

Z

2

)
ne

e4

(4πε0)
2

8π ln Λ

2eE
(3.135)

3.5.2 Plasma Resistivity (DC)

Consider a bulk distribution of electrons in an electric field. They tend to be accelerated by
E and decelerated by collisions.

In this case, considering the electrons as a whole, no loss of total electron momentum by
e− e collisions. Hence the friction force we need is just that due to νei.

If the electrons have a mean drift velocity vd(<< vthe) then

d

dt
(mevd) = −eE − νeimevd (3.136)

Hence in steady state

vd =
−eE

meνei

. (3.137)

The current is then

j = −neevd =
nee

2E

meνei

(3.138)

Now generally, for a conducting medium we define the conductivity, σ, or resistivity, η, by

j = σE ; ηj = E

(
σ =

1

η

)
(3.139)
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Therefore, for a plasma,

σ =
1

η
=

nee
2

meνei

(3.140)

Substitute the value of νei and we get

η ' niZ
2

ne

· e2m
1
2
e 8π ln Λ

(4πε0)
2 3
√

2π T
3
2

e

(3.141)

=
Ze2m

1
2
e 8π ln Λ

(4πε0)
2 3
√

2π T
3
2

e

(for a single ion species). (3.142)

Notice

1. Density cancels out because more electrons means (a) more carriers but (b) more
collisions.

2. Main dependence is η ∝ T−3/2
e . High electron temperature implies low resistivity (high

conductivity).

3. This expression is only approximate because the current tends to be carried by the
more energetic electrons, which have smaller νei; thus if we had done a proper average
over f(ve) we expect a lower numerical value. Detailed calculations give

η = 5.2× 10−5 ln Λ

(Te/eV )
3
2

Ωm (3.143)

for Z = 1 (vs. ' 10−4 in our expression). This is ‘Spitzer’ resistivity. The detailed
calculation value is roughly a factor of two smaller than our calculation, which is not
a negligible correction!

3.5.3 Diffusion

For motion parallel to a magnetic field if we take a typical electron, with velocity v‖ ' vte it
will travel a distance approximately

`e = vte/νei (3.144)

before being pitch-angle scattered enough to have its velocity randomised. [This is an order-
of-magnitude calculation so we ignore ν̄ee.] ` is the mean free path.

Roughly speaking, any electron does a random walk along the field with step size ` and step
frequency νei. Thus the diffusion coefficient of this process is

De‖ ' `2
e νei '

v2
te

νei

. (3.145)

Similarly for ions

Di‖ ' `2
i νii '

v2
ti

νii

(3.146)
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Notice

νii/νei '
(

me

mi

) 1
2

' vti

vte

(if Te ' Ti) (3.147)

Hence `e ' `i

Mean free paths for electrons and ions are ∼ same.

The diffusion coefficients are in the ratio

Di

De

'
(

me

mi

) 1
2

: Ions diffuse slower in parallel direction. (3.148)

Diffusion Perpendicular to Mag. Field is different

GC GC

rL rL

Figure 3.7: Cross-field diffusion by collisions causing a jump in the gyrocenter (GC) position.

Roughly speaking, if electron direction is changed by ∼ 90◦ the Guiding Centre moves by
a distance ∼ rL. Hence we may think of this as a random walk with step size ∼ rL and
frequency νei. Hence

De⊥ ' r2
Leνei '

v2
te

Ω2
e

νei (3.149)

Ion transport is similar but requires a discussion of the effects of like and unlike collisions.

Particle transport occurs only via unlike collisions. To show this we consider in more detail
the change in guiding center position at a collision. Recall mv̇ = qv ∧B which leads to

v⊥ =
q

m
rL ∧B (perp. velocity only). (3.150)

This gives

rL =
B ∧mv⊥

qB2
(3.151)

At a collision the particle position does not change (instantaneously) but the guiding center
position (r0) does.

r′0 + r′L = r0 + rL ⇒ ∆r0 ≡ r′0 − r0 = −(r′L − rL) (3.152)
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Change in rL is due to the momentum change caused by the collision:

r′L − rL =
B

qB2
∧m(v′ − v) ≡ B

qB2
∧∆(mv) (3.153)

So

∆r0 = − B

qB2
∧∆(mv). (3.154)

The total momentum conservation means that ∆(mv) for the two particles colliding is equal
and opposite. Hence, from our equation, for like particles, ∆r0 is equal and opposite. The
mean position of guiding centers of two colliding like particles (r01 + r02)/2 does not change.

No net cross field particle (guiding center) shift.

Unlike collisions (between particles of different charge q) do produce net transport of particles
of either type. And indeed may move r01 and r02 in same direction if they have opposite
charge.

Di⊥ ' r2
Li

pνie '
v2

ti

Ω2
i

pνie (3.155)

Notice that r2
Li/r

2
Le ' mi/me ; pνie/νei ' me

mi

So Di⊥/De⊥ ' 1 (for equal temperatures). Collisional diffusion rates of particles are same
for ions and electrons.

However energy transport is different because it can occur by like-like collisins.

Thermal Diffusivity:

χe ∼ r2
Le (νei + νee) ∼ r2

Le νei (νei ∼ νee) (3.156)

χi ∼ r2
Li (

pνie + νii) ' r2
Li νii (νii >> νie) (3.157)

χi/χe ∼ r2
Li

r2
Le

νii

νei

' mi

me

m
1
2
e

m
1
2
i

=
(

mi

me

) 1
2

(equal T) (3.158)

Collisional Thermal transport by Ions is greater than by electrons [factor ∼ (mi/me)
1
2 ].

3.5.4 Energy Equilibration

If Te 6= Ti then there is an exchange of enegy between electrons and ions tending to make
Te = Ti. As we saw earlier

Kνei =
2me

mi

pνei =
me

mi

⊥νei (3.159)

So applying this to averages.

Kνei '
2me

mi

νei (' νie) (3.160)
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Thermal energy exchange occurs ∼ me/mi slower than momentum exchange. (Allows Te 6=
Ti). So

dTe

dt
= −dTi

dt
= −Kνei (Te − Ti) (3.161)

From this one can obtain the heat exchange rate (per unit volume), Hei, say:

Hei = − d

dt

(
3

2
neTe

)
=

d

dt

(
3

2
niTi

)
(3.162)

= −3

4
n

d

dt
(Te − Ti) =

3

2
nKνei (Te − Ti) (3.163)

Important point :

Kνei '
me

mi

Zνee '
1

Z2

(
Me

mi

) 1
2

νii. (3.164)

‘Electrons and Ions equilibrate among themselves much faster than with each other’.

3.6 Some Orders of Magnitude

1. ln Λ is very slowly varying. Typically has value ∼ 12 to 16 for laboratory plasmas.

2. νei ≈ 6× 10−11(ni/m
3) / (Te/eV )

3
2 (ln Λ = 15, Z = 1).

e.g. = 2× 105s−1 (when n = 1020m−3 and Te = 1keV.) For phenomena which happen
much faster than this, i.e. τ � 1/νei ∼ 5µs, collisions can be ignored.
Examples: Electromagnetic Waves with high frequency.

3. Resistivity. Because most of the energy of a current carrying plasma is in the B field
not the K.E. of electrons. Resistive decay of current can be much slower than νei. E.g.
Coaxial Plasma: (Unit length)

Inductance L = µo ln b
a

Resistance R = η 1/πa2

L/R decay time

τR ∼ µoπa2

η
ln

b

a
' nee

2

meνei

µo πa2 ln
b

a

∼ nee
2

meε0

a2

c2

1

νei

=
ω2

pa
2

c2
· 1

νei

>>
1

νei

. (3.165)

Comparison 1 keV temperature plasma has ∼ same (conductivity/) resistivity as a slab
of copper (∼ 2× 10−8Ωm).

Ohmic Heating Because η ∝ T−3/2
e , if we try to heat a plasma Ohmically, i.e. by simply

passing a current through it, this works well at low temperatures but its effectiveness falls
off rapidly at high temperature.
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Result for most Fusion schemes it looks as if Ohmic heating does not quite yet get us to the
required ignition temperature. We need auxilliary heating, e.g. Neutral Beams. (These slow
down by collisions.)
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Chapter 4


Fluid Description of Plasma


The single particle approach gets to be horribly complicated, as we have seen.


Basically we need a more statistical approach because we can’t follow each particle separately.

If the details of the distribution function in velocity space are important we have to stay

with the Boltzmann equation. It is a kind of particle conservation equation.


4.1 Particle Conservation (In 3d Space) 

Figure 4.1: Elementary volume for particle conservation 

Number of particles in box ΔxΔyΔz is the volume, ΔV = ΔxΔyΔz, times the density n. 
Rate of change of number is is equal to the number flowing across the boundary per unit 
time, the flux. (In absence of sources.) 

∂ 
[ΔxΔyΔz n] = Flow Out across boundary. (4.1) − 

∂t

Take particle velocity to be v(r) [no random velocity, only flow] and origin at the center of 
the box refer to flux density as nv = J. 

Flow Out = [Jz (0, 0, Δz/2) − Jz (0, 0, −Δz/2)] ΔxΔy + x + y . (4.2) 
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Expand as Taylor series

∂ 

Jz (0, 0, η) = Jz (0) + Jz . η (4.3) 
∂z 

So, 

∂ 
flow out (nvz )ΔzΔxΔy + x + y (4.4) � 

∂z 
= ΔV � . (nv). 

Hence Particle Conservation 
∂ 

n = �.(nv) (4.5) − 
∂t 

Notice we have essential proved an elementary form of Gauss’s theorem 

�.Ad3 r = A.dS. (4.6) 
v ∂γ 

The expression: ‘Fluid Description’ refers to any simplified plasma treatment which does 
not keep track of vdependence of f detail. 

1. Fluid Descriptions are essentially 3d (r). 

2. Deal with quantities averaged over velocity space (e.g. density, mean velocity, ...). 

3. Omit some important physical processes (but describe others). 

4. Provide tractable approaches to many problems. 

5. Will occupy most of the rest of my lectures. 

Fluid Equations can be derived mathematically by taking moments1 of the Boltzmann Equa
tion. 

0th moment d3 v (4.7) 

1st moment vd3 v (4.8) 

2nd moment vvd3 v (4.9) 

These lead, respectively, to (0) Particle (1) Momentum (2) Energy conservation equations. 

We shall adopt a more direct ‘physical’ approach. 
1They are therefore sometimes called ‘Moment Equations.’ 
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4.2 Fluid Motion 

The motion of a fluid is described by a vector velocity field v(r) (which is the mean velocity 
of all the individual particles which make up the fluid at r). Also the particle density 
n(r) is required. We are here discussing the motion of fluid of a single type of particle of 
mass/charge, m/q so the charge and mass density are qn and mn respectively. 

The particle conservation equation we already know. It is also sometimes called the ‘Conti
nuity Equation’ 

∂ 
n + �.(nv) = 0 (4.10) 

∂t 
It is also possible to expand the �. to get: 

∂ 
n + (v.�)n + n�.v = 0 (4.11) 

∂t 

The significance, here, is that the first two terms are the ‘convective derivative” of n 

D d ∂ 
+ v.� (4.12) 

Dt 
≡ 

dt 
≡ 

∂t 

so the continuity equation can be written 

D 
Dt

n = −n�.v (4.13) 

4.2.1 Lagrangian & Eulerian Viewpoints 

There are essentially 2 views. 

1. Lagrangian. Sit on a fluid element and move with it as fluid moves. 

Figure 4.2: Lagrangean Viewpoint 

2. Eulerian. Sit at a fixed point in space and watch fluid move through your volume 
element: “identity” of fluid in volume continually changing 
∂ means rate of change at fixed point (Euler). 
∂t 
D d ∂ + v.� means rate of change at moving point (Lagrange). 
Dt ≡ 

dt ≡ 
∂t


dx ∂ + dy ∂ + dz ∂ : change due to motion.
v.� = 
∂t ∂x ∂t ∂y ∂t ∂z 
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Figure 4.3: Eulerian Viewpoint 

Our derivation of continuity was Eulerian. From the Lagrangian view 

D d ΔN ΔN d 1 dΔV 
Dt 

n = 
dt ΔV 

= − 
ΔV 2 dt 

ΔV = −n 
ΔV dt 

(4.14) 

since total number of particles in volume element (ΔN) is constant (we are moving with 
them). (ΔV = ΔxΔyΔz.) 

d dΔx dΔy dΔz 
Now ΔV = ΔyΔz + ΔzΔx + ΔyΔx (4.15) 

dt dt dt dt 
1 dΔx 1 dΔy 1 dΔz 

= ΔV + + (4.16) 
Δx dt Δy dt Δx dt 

d (Δx)
But = vx (Δx/2) − vx (−Δx/2) (4.17) 

dt 
∂vx

Δx etc. . . . y . . . z (4.18) � 
∂x 

Hence � � 
d ∂vx ∂vy ∂vz

ΔV = ΔV + + (4.19) 
dt ∂x ∂y ∂z 

= ΔV �.v 

and so 
D 
Dt 

n = −n�.v (4.20) 

Lagrangian Continuity. Naturally, this is the same equation as Eulerian when one puts 
D ∂ = + v.�.
Dt ∂t 

The quantity −�.v is the rate of (Volume) compression of element. 

4.2.2 Momentum (Conservation) Equation 

Each of the particles is acted on by the Lorentz force q[E + ui ∧ B] (ui is individual particle’s

velocity).


Hence total force on the fluid element due to EM fields is


(q [E + ui ∧ B]) = ΔN q (E + v ∧ B) (4.21) 
i 
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(Using mean: v = i u/ΔN.)


EM Force density (per unit volume) is:


FEM = nq(E + v ∧ B). (4.22) 

The total momentum of the element is 

mui = m ΔN v = ΔV mnv (4.23) 
i 

so Momentum Density is mnv.


If no other forces are acting then clearly the equation of motion requires us to set the time

derivative of mnv equal to FEM . Because we want to retain the identity of the particles

under consideration we want D/Dt i.e. the convective derivative (Lagrangian picture).


In general there are additional forces acting.

(1) Pressure (2) Collisional Friction. 

4.2.3 Pressure Force 

In a gas p(= nT ) is the force per unit area arising from thermal motions. The surrounding 
fluid exerts this force on the element: 

Figure 4.4: Pressure forces on opposite faces of element. 

Net force in x direction is 

p (Δx/2) ΔyΔz + p (−Δx/2) ΔyΔz (4.24) − 
∂p ∂p −ΔxΔyΔz = −ΔV = −ΔV (�p)x (4.25) � 
∂x ∂x 

So (isotropic) pressure force density (/unit vol) 

Fp = (4.26) −�p 

How does this arise in our picture above? 
Answer: Exchange of momentum by particle thermal motion across the element boundary. 

Although in Lagrangian picture we move with the element (as defined by mean velocity v) 
individual particles also have thermal velocity so that the additional velocity they have is 

wi = ui − v ‘peculiar’ velocity (4.27) 
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Because of this, some cross the element boundary and exchange momentum with outside. 
(Even though there is no net change of number of particles in element.) Rate of exchange 
of momentum due to particles with peculiar velocity w, d3w across a surface element ds is 

f (w)mw d3 w � �� � × w . ds (4.28) 

momm density at w flow rate across ds 

Integrate over distrib function to obtain the total momentum exchange rate: 

ds. mwwf (w)d3 w (4.29) 

The thing in the integral is a tensor. Write 

p = mwwf (w)d3 w (Pressure Tensor) (4.30) 

Then momentum exchange rate is 
p . ds (4.31) 

Actually, if f (w) is isotropic (e.g. Maxwellian) then � 

pxy = m wx wy f (w)d3 w = 0 etc. (4.32) � 

and pxx = mw 2 
x f (w)d3 w ≡ nT (= pyy = pzz = ‘p’) (4.33) 

So then the exchange rate is pds. (Scalar Pressure). 

Integrate ds over the whole ΔV then x component of momm exchange rate is 

p 
� 

Δx 
2 

� 

ΔyΔz −−p 
� −Δx 

2 

� 

ΔyΔz = ΔV (�p)x (4.34) 

and so 
Total momentum loss rate due to exchange across the boundary per unit volume is 

�p (= −Fp) (4.35) 

In terms of the momentum equation, either we put �p on the momentum derivative side or

Fp on force side. The result is the same.


Ignoring Collisions, Momentum Equation is


D 
(mnΔV v) = [FEM + Fp] ΔV (4.36) 

Dt 
DRecall that nΔV = ΔN ; 
Dt (ΔN ) = 0; so 

Dv 
L.H.S. = mnΔV . (4.37) 

dt 

Thus, substituting for F�s: 
Momentum Equation. 

Dv ∂v 
mn = mn + v.�v (4.38) = qn (E + v ∧B) −�p

Dt ∂t 
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4.2.4 Momentum Equation: Eulerian Viewpoint 

Fixed element in space. Plasma flows through it. 

1. E.M. force on element (per unit vol.) 

FEM = nq(E + v ∧B) as before. (4.39) 

2. Momentum flux across boundary (per unit vol) 

= �. m(v + w)(v + w) f (w) d3 w (4.40) 

= m(vv + vw + wv +ww) f (w) d3 w} (4.41) 

integrates to 0 
= mnvv + p} (4.42) 

= mn(v.�)v + mv [ .(nv)] + �p (4.43) 

(Take isotropic p.) 

3. Rate of change of momentum within element (per unit vol) 

∂ 
= (mnv) (4.44) 

∂t 

Hence, total momentum balance: 

∂ 
(mnv) + mn(v.�)v + mv [ .(nv)] + �p = FEM (4.45) 

∂t 
�

Use the continuity equation: 
∂n 

.(nv) = 0 , (4.46) 
∂t 

to cancel the third term and part of the 1st: 

∂ ∂n ∂v ∂v 
(mnv) + mv (�. (nv)) = mv{ + �. (nv)}+ mn = mn (4.47) 

∂t ∂t ∂t ∂t 

Then take �p to RHS to get final form: 

Momentum Equation: 

∂v 
mn + (v.�) v = nq (E + v ∧B) −�p . (4.48) 

∂t 

As before, via Lagrangian formulation. (Collisions have been ignored.) 
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4.2.5 Effect of Collisions 

First notice that like particle collisions do not change the total momentum (which is averaged

over all particles of that species).


Collisions between unlike particles do exchange momentum between the species. Therefore

once we realize that any quasineutral plasma consists of at least two different species (elec

trons and ions) and hence two different interpenetrating fluids we may need to account for

another momentum loss (gain) term.


The rate of momentum density loss by species 1 colliding with species 2 is:


ν12n1m1(v1 − v2) (4.49) 

Hence we can immediately generalize the momentum equation to � � 

m1n1 
∂v1 

∂t 
+ (v1.�) v1 = n1q1 (E + v1 ∧B) −�p1 − ν12n1m1 (v1 − v2) (4.50) 

With similar equation for species 2. 

4.3 The Key Question for Momentum Equation: 

What do we take for p?


Basically p = nT is determined by energy balance, which will tell how T varies. We could

write an energy equation in the same way as momentum. However, this would then contain

a term for heat flux, which would be unknown. In general, the kth moment equation contains

a term which is a (k + 1)th moment.


Continuity, 0th equation contains v determined by

Momentum, 1st equation contains p determined by 
Energy, 2nd equation contains Q determined by . . . 

In order to get a sensible result we have to truncate this hierarchy. Do this by some sort of 
assumption about the heat flux. This will lead to an 
Equation of State: 

pn−γ = const. (4.51) 

The value of γ to be taken depends on the heat flux assumption and on the isotropy (or 
otherwise) of the energy distribution. 

Examples 

1. Isothermal: T = const.: γ = 1. 

2. Adiabatic/Isotropic: 3 degrees of freedom γ = 5 .
3 

3. Adiabatic/1 degree of freedom γ = 3. 
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4. Adiabatic/2 degrees of freedom γ = 2. 

In general, n(�/2)δT = −p(δV/V ) (Adiabatic � degrees) 

� δT −δV δn 
(4.52) = = + 

2 T V n 

So 

δp δn δT 2 δn 
= + = 1 + , (4.53) 

p n T � n 

i.e. 
pn−(1+ 2 

� ) = const. (4.54) 

In a normal gas, which ‘holds together’ by collisions, energy is rapidly shared between 3 
spacedegrees of freedom. Plasmas are often rather collisionless so compression in 1 dimension 
often stays confined to 1degree of freedom. Sometimes heat transport is so rapid that the 
isothermal approach is valid. It depends on the exact situation; so let’s leave γ undefined 
for now. 

4.4 Summary of TwoFluid Equations 

Species j 

Plasma Response 

1. Continuity: 
∂nj 

.(njvj) = 0 (4.55) 
∂t 

2. Momentum: 

∂vj
mjnj + (vj.�) vj νjknjmj (vj − vk) (4.56) 

∂t 
= njqj (E + vj ∧B) −�pj − ¯

3. Energy/Equation of State: 
pjn

−γ = const.. (4.57) j 

(j = electrons, ions). 

Maxwell’s Equations 

.B = 0 .E = ρ/�o (4.58) 

�∧B 
1 ∂E −∂B 

= µoj + 
c2 ∂t 

�∧ E = 
∂t 

(4.59) 
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With


ρ = qene + qini = e (−ne + Zni) (4.60) 

j = qeneve + qinivi = e (−neve + Znivi) (4.61) 

= ene (ve − vir) (Quasineutral) (4.62) −

Accounting 

Unknowns Equations 
ne, ni 2 Continuity e, i 2 
ve, vi 6 Momentum e, i 6 
pe, pi 2 State e, i 2 
E, B 6 Maxwell 8 

16 18 

but 2 of Maxwell (�. equs) are redundant because can be deduced from others: e.g. 

∂ �. (�∧E) 

and �. (�∧B) 

= 

= 

0 = −
∂t 

(�.B) 

0 = µo�.j + 
1 
c2 

∂ 
∂t 

(�.E) = 
1 
c2 

∂ 
∂t 

� −ρ 
�o 

+ �.E 
� 

(4.63) 

(4.64) 

So 16 equs for 16 unknowns. 

Equations still very difficult and complicated mostly because it is Nonlinear 

In some cases can get a tractable problem by ‘linearizing’. That means, take some known 
equilibrium solution and suppose the deviation (perturbation) from it is small so we can 
retain only the 1st linear terms and not the others. 

4.5 TwoFluid Equilibrium: Diamagnetic Current 

∂ ∂Slab: ∂ = 0 
∂y , ∂z = 0. 

∂x �
Straight Bfield: B = Bẑ. 

∂Equilibrium: 
∂t = 0 (E = −�φ) 

Collisionless: ν 0.→
Momentum Equation(s): 

mjnj(vj.�)vj (4.65) = njqj(E + vj ∧B) −�pj 

Drop j suffix for now. Then take x, y components: 

d dp 
mn vx vx = nq(Ex + vyB) − (4.66) 

dx dx 
d 

mn vx vy = nq(0 − vxB) (4.67) 
dx 
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Eq 4.67 is satisfied by taking vx = 0. Then 4.66 → 

dp 
nq(Ex + vy B) − = 0.	 (4.68) 

dx 

i.e. 
1 dp 

vy = 
−Ex 

+	 (4.69) 
B nqB dx 

or, in vector form: 
B 

v = 
E ∧ B �p	

(4.70) 
B2 

− 
nq 
∧ 

B2 � �� � � �� � 
E∧B drift Diamagnetic Drift 

Notice: 

•	 In magnetic field (⊥) fluid velocity is determined by component of momentum equation 
orthogonal to it (and to B). 

•	 Additional drift (diamagnetic) arises in standard F ∧ B form from pressure force. 

•	 Diagmagnetic drift is opposite for opposite signs of charge (electrons vs. ions). 

Now restore species distinctions and consider electrons plus single ion species i. Quasineu
trality says niqi = −neqe. Hence adding solutions 

BE ∧ B 
(niqi + neqe) + pi) ∧neqeve + niqivi = 

B2 � �� � −� (pe	 (4.71) 
B2 

=0 

Hence current density: 
B 

j = −� (pe + pi) ∧	 (4.72) 
B2 

This is the diamagnetic current. The electric field, E, disappears because of quasineutrality. 
(General case j qj nj vj = −�( pj )∧B/B2). 

4.6	 Reduction of Fluid Approach to the Single Fluid 
Equations 

So far we have been using fluid equations which apply to electrons and ions separately. 
These are called ‘Two Fluid’ equations because we always have to keep track of both fluids 
separately. 

A further simplification is possible and useful sometimes by combining the electron and ion 
equations together to obtain equations governing the plasma viewed as a ‘Single Fluid’. 
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Recall 2fluid equations: 

∂nj
Continuity (Cj) + �.(njvj) = 0. (4.73) 

∂t 
∂ 

Momentum (Mj) mjnj + vj.� vj = njqj (E + vj ∧B) −�pj + Fjk (4.74) 
∂t 

(where we just write Fjk = vjknjmj (vj − vk) for short.) −
Now we rearrange these 4 equations (2 × 2 species) by adding and subtracting appropriately 
to get new equations governing the new variables: 

Mass Density ρm = neme + nimi (4.75) 

C of M Velocity V = (nemeve + nimivi) /ρm (4.76) 

Charge density ρq = qene + qini (4.77) 

Electric Current Density j = qeneve + qinivi (4.78) 

= qene (ve − vi) by quasi neutrality (4.79) 

Total Pressure p = pe + pi (4.80) 

1st equation: take me × Ce + mi × Ci → 

∂ρm
(1) + �. (ρmV) = 0 Mass Conservation (4.81) 

∂t 

2nd take qe × Ce + qI × Ci → 

(2) 
∂ρq 

+ �.j = 0 Charge Conservation (4.82) 
∂t 

3rd take Me + Mi. This is a bit more difficult. RHS becomes: 

= ρqE + j ∧B −� (pe + pi) (4.83) njqj (E + vj ∧B) −�pj + Fjk 

(we use the fact that Fei − Fie so no net friction). LHS is 

� ∂ 
mjnj + vj.� vj (4.84) 

∂t j 

The difficulty here is that the convective term is nonlinear and so does not easily lend itself 
to reexpression in terms of the new variables. But note that since me << mi the contribution 
from electron momentum is usually much less than that from ions. So we ignore it in this 
equation. To the same degree of approximation V � vi: the CM velocity is the ion velocity. 
Thus for the LHS of this momentum equation we take 

� ∂ ∂ 
mini + vj.� vj � ρm + V.� V (4.85) 

∂t ∂t j 
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so: � � 
∂ 

(3) ρm + V.� V = ρq (4.86) 
∂t 

E + j ∧B −�p 

qeFinally we take 
me 

Me + qi Mi to get: 
mi � ∂ � nj q

2 
j qj qj

+ (vj .�) (E + vj ∧B) − Fjk } (4.87) �pj +{nj qj vj = 
∂t mj mj mjj j 

Again several difficulties arise which it is not very profitable to deal with rigorously. Observe 
that the LHS can be written (using quasineutrality niqi + neqe = 0) as ρm ∂t 

∂ j provided 
ρm 

we discard the term in (v.�)v. (Think of this as a linearization of this question.) [The 
(v.�)v convective term is a term which is not satisfactorily dealt with in this approach to 
the single fluid equations.] 

In the R.H.S. we use quasineutrality again to write 
2 
j 1 1 mini + menenj q qeqi22 22E E = n E = − ρmE, (4.88) += ne q e qe e mj neme nimi nemenimi memij 

2 2 2 
i 

� nj q neq niqq e ve +vj = vi 
mj me mi


qeqi neqemi niqime

= ve + vi}

memi 
{ 

qi qe 

qeqi mi me 
= nemeve + nimivi − + (qeneve + qinivi)}−

memi 
{

qi qe 

qeqi mi me 
(4.89) = −

memi 
{ρmV − 

qi 
+ 

qe 
j} 

Also, remembering Fei = � 

j 

−νeinemi(ve − vi) = −Fie, 
qj 

mj 
Fjk = −νei 

� 

neqe − neqi 
me 

mi 

� 

(ve − vi) � � 

= −νei 1 − 
qe 

qi 

me 

mi 
j (4.90) 

So we get � � � � � � � � 

ρm 
∂ 
∂t 

j 
ρm 

= − 
qeqi 

memi 
ρmE + ρmV − � 

mi 

qi 
+ � 

me 

qe 
j ∧B 

− 
qe 

me 
�pe − 

qi 

mi 
�pi − 1 − 

qe 

qi 

me 

mi 
νeij (4.91) 

memiRegroup after multiplying by 
qe qiρm 

: 

memi ∂ j 1 mi me
E + V ∧B = + + j ∧B (4.92) − 

qeqi ∂t ρm ρm qi qe 

qe qi memi qe me memi �pe �pi νeij− 
me 

+ 
mi ρmqeqi 

− 1 − 
qi mi qeqiρm 
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Notice that this is an equation relating the Electric field in the frame moving with the fluid

(L.H.S.) to things depending on current j i.e. this is a generalized form of Ohm’s Law.


One essentially never deals with this full generalized Ohm’s law. Make some approximations

recognizing the physical significance of the various R.H.S. terms.


memi ∂ j 
arises from electron inertia. 

qeqi ∂t ρm 

it will be negligible for low enough frequency. 

1 mi me 
+ j ∧B is called the Hall Term. 

ρm qi qe 

and arises because current flow in a Bfield tends to be diverted across the magnetic field. 
It is also often dropped but the justification for doing so is less obvious physically. 

qi qe �pi term �pe for comparable pressures, 
mi 

� 
me 

and the latter is ∼ the Hall term; so ignore qi�pi/mi. 

Last term in j has a coefficient, ignoring me/mi c.f. 1 which is 

memiνei meνei 
= = η the resistivity. (4.93) 

q2qeqi (nimi) e ne 

Hence dropping electron inertia, Hall term and pressure, the simplified Ohm’s law becomes: 

E + V ∧B = ηj (4.94) 

Final equation needed: state: 

pen
−γe + pin

−γi = constant.e i 

Take quasineutrality ⇒ ne ∝ ni ∝ ρm. Take γe = γi, then 

pρ−γ = const. (4.95) m 

4.6.1 Summary of Single Fluid Equations: M.H.D. 

Mass Conservation : 
∂ρm 

∂t 
+ � (ρmV) = 0 (4.96) 

Charge Conservation : 
∂ρq 

∂t 
+ �.j = 0 (4.97) � � 

∂ 
Momentum : ρm 

∂t 
+ V.� V = ρq E + j ∧B −�p (4.98) 

Ohm�s Law : E + V ∧B = ηj (4.99) 

Eq. of State : pρ−γ 
m = const. (4.100) 

77




� � � 

4.6.2 Heuristic Derivation/Explanation


Mass Charge: Obvious. 

� � 
∂ 

Momm ρm 
∂t 

+ V.� V = ρq E ���� + j ∧B � �� � − �p���� (4.101) � �� � Electric Magnetic Force Pressure 
rate of change of body force on current 

total momentum density 

Ohm’s Law 

The electric field ‘seen’ by a moving (conducting) fluid is E + V ∧B = EV electric field in 
frame in which fluid is at rest. This is equal to ‘resistive’ electric field ηj: 

EV = E + V ∧B = ηj (4.102) 

The ρq E term is generally dropped because it is much smaller than the j ∧B term. To see 
this, take orders of magnitude: 

.E = ρq /�0 so ρq ∼ E�0/L (4.103) 

1 ∂E 
+ so σE = j ∼ B/µ0L (4.104) �∧B = µ0j 

c2 ∂t 

Therefore � �2 � 
ρq E �0 B Lµ0 L2/c2 

= 
light transit time 

�2 

. (4.105) 
jB 

∼ 
L µ0σL B2 

∼ 
(µ0σL2)2 resistive skin time 

This is generally a very small number. For example, even for a small cold plasma, say Te = 1 
eV (σ ≈ 2 × 103 mho/m), L = 1 cm, this ratio is about 10−8 . 

Conclusion: the ρq E force is much smaller than the j ∧B force for essentially all practical 
cases. Ignore it. 

Normally, also, one uses MHD only for low frequency phenomena, so the Maxwell displace
ment current, ∂E/c2∂t can be ignored. 

Also we shall not need Poisson’s equation because that is taken care of by quasineutrality. 

4.6.3 Maxwell’s Equations for MHD Use 

.B = 0 ; 
−∂B 

; . (4.106) � �∧ E = 
∂t 

�∧B = µoj 

The MHD equations find their major use in studying macroscopic magnetic confinement 
problems. In Fusion we want somehow to confine the plasma pressure away from the walls 
of the chamber, using the magnetic field. In studying such problems MHD is the major tool. 

On the other hand if we focus on a small section of the plasma as we do when studying 
shortwavelength waves, other techniques: 2fluid or kinetic are needed. Also, plasma is 
approx. uniform. 
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‘Macroscopic’ Phenomena MHD 

‘Microscopic’ Phenomena 2Fluid/Kinetic 

4.7 MHD Equilibria 

Study of how plasma can be ‘held’ by magnetic field. Equilibrium ⇒ V = ∂ = 0. So
∂t 

equations reduce. Mass and Faraday’s law are ∼ automatic. We are left with 

(M om m) → ‘Force Balance’ 0 = j ∧B −�p (4.107) 

Ampere �∧B = µoj (4.108) 

Plus �.B = 0, �.j = 0.


Notice that provided we don’t ask questions about Ohm’s law. E doesn’t come into MHD

equilibrium.


These deceptively simple looking equations are the subject of much of Fusion research. The

hard part is taking into account complicated geometries.


We can do some useful calculations on simple geometries.


4.7.1 θpinch 

Figure 4.5: θpinch configuration. 

So called because plasma currents flow in θdirection.


Use MHD Equations


Take to be ∞ length, uniform in zdir.


By symmetry B has only z component.


By symmetry j has only θ comp.


By symmetry �p has only r comp.
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So we only need


Force (j ∧B)r − (�p)r = 0 (4.109) 

Ampere (�∧B)θ = (µoj)θ (4.110) 
∂ 

i.e. jθ Bz − 
∂r 

p = 0 (4.111) 

∂ −
∂r 

Bz = µojθ (4.112) 

Eliminate j : − 
Bz 

µo 

∂Bz 

∂r 
− 

∂p 
∂r 

= 0 (4.113) 

i.e. 

∂ 
∂r 

� 
B2 

z 

2µo 
+ p 

� 

= 0 (4.114) 

Solution 
B2 

z 

2µo 
+ p = const. (4.115) 

Figure 4.6: Balance of kinetic and magnetic pressure 

B2 B2 
z z ext+ p = (4.116) 

2µo 2µo 

[Recall Single Particle Problem] 

Think of these as a pressure equation. Equilibrium says total pressure = const. 

B2 
z + p = const. (4.117) 

2µo ���� ���� kinetic pressure 
magnetic pressure 
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Ratio of kinetic to magnetic pressure is plasma ‘β’. 

2µop
β = 

B2 
z 

(4.118) 

measures ‘efficiency’ of plasma confinement by B. Want large β for fusion but limited by 
instabilities, etc. 

4.7.2 Zpinch 

Figure 4.7: Zpinch configuration. 

so called because j flows in zdirection. Again take to be ∞ length and uniform. 

j = jz ez B = Bθ ̂ˆ eθ (4.119) 

∂p 
Force (j ∧B)r − (�p)r = −jz Bθ − = 0 (4.120) 

∂r 
1 ∂ 

Ampere = (rBθ ) − µojz = 0 (4.121) (�∧B)z − (µoj)z r ∂r 
Eliminate j: 

Bθ ∂ ∂p 
(rBθ ) − = 0 (4.122) 

µor ∂r ∂r 
or � � 

B2 ∂ Bθ 
2 

θ + + p = 0 (4.123) 
µor ∂r 2µo���� � �� � 

Extra Term Magnetic+Kinetic pressure 

Extra term acts like a magnetic tension force. Arises because Bfield lines are curved. 
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Can integrate equation � b B2 
� �b

dr Bθ 
2 

θ + + p(r) = 0 (4.124) 
a µo r 2µo a 

If we choose b to be edge (p(b) = 0) and set a = r we get 

Figure 4.8: Radii of integration limits. 

Bθ 
2 (b) Bθ 

2 (r) � b Bθ 
2 dr� 

p(r) = + (4.125) 
2µo 

− 
2µo r µo r� 

Force balance in zpinch is somewhat more complicated because of the tension force. We 
can’t choose p(r) and j(r) independently; they have to be self consistent. 

Example j = const. 
1 
r 

∂ 
∂r 

(rBθ) = µojz ⇒ Bθ = 
µojz 

2 
r (4.126) 

Hence 

p(r) = 
1 

2µo 

� 
µojz 

2 

�2 

{b2 − r 2 + 
� b 

r 
2r�dr�} (4.127) 

= 
µoj

2 
z 

4 
{b2 − r 2} (4.128) 

Figure 4.9: Parabolic Pressure Profile. 

Also note Bθ(b) = µo jz b 
2 so 

p = 
B2 

θb 

2µo 

2 
b2 
{b2 − r 2} (4.129) 
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4.7.3 ‘Stabilized Zpinch’ 

Also called ‘screw pinch’, θ − z pinch or sometimes loosely just ‘zpinch’. 

Zpinch with some additional Bz as well as Bθ 

∂ 
(Force)r jθ Bz − jz Bθ −	 = 0 (4.130) 

∂r 

∂ 
Ampere : Bz = µojθ	 (4.131) 

∂r 
1 ∂ 

(rbθ ) = µojz	 (4.132) 
r ∂r 

Eliminate j: 

Bz ∂Bz Bθ ∂ ∂p 
(rBθ ) − = 0	 (4.133) − 

µo ∂r 
− 

µor ∂r ∂r 
or	 � � 

B2 ∂ B2 
θ + + p = 0	 (4.134) 

µor ∂r 2µo���� � �� � 
Mag Tension Mag (θ+z)+Kinetic pressure 

θ only 

4.8 Some General Properties of MHD Equilibria 

4.8.1	 Pressure & Tension 

j ∧B −�p = 0 : (4.135) �∧B = µoj 

We can eliminate j in the general case to get 

1 �p.	 (4.136) 
µo 

(�∧B) ∧B = 

Expand the vector triple product: 

1 1 
(4.137) �p = 

µo 
(B.�) B − �B2 

2µo 

Bput b = |B| so that �B = �Bb = B�b + b�B. Then 

1	 1 �p = 
µo 
{B2 (b.�) b + Bb (b.�) B} − 

2µo 
�B2 (4.138) 

B2 1 
=	 (�− b (b.�)) B2 (4.139) 

µo 
(b.�) b − 

2µo 

B2 B2 

= 
µo 

(b.�) b −�⊥ 
2µp 

(4.140) 
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Now �⊥ 
B2 

is the perpendicular (to B) derivative of magnetic pressure and (b.�)b is the 
2µo 

curvature of the magnetic field line giving tension. 

(b.�)b has value 1 . R: radius of curvature. 
R

| | 

4.8.2 Magnetic Surfaces 

0 = B. [j ∧B −�p] = −B.�p (4.141) 

*Pressure is constant on a field line (in MHD situation). 

(Similarly, 0 = j.[j ∧B −�p] = j.�p.) 

Figure 4.10: Contours of pressure. 

Consider some arbitrary volume in which �p = 0. That is, some plasma of whatever shape. 
Draw contours (surfaces in 3d) on which p = const. At any point on such an isoberic surface 
�p is perp to the surface. But B.�p = 0 implies that B is also perp to �p. 

Figure 4.11: B is perpendicular to �p and so lies in the isobaric surface. 

Hence


B lies in the surface p = const.


In equilibrium isobaric surfaces are ‘magnetic surfaces’.


[This argument does not work if p = const. i.e. �p = 0. Then there need be no magnetic

surfaces.]
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4.8.3 ‘Current Surfaces’ 

Since j.�p = 0 in equilibrium the same argument applies to current density. That is


j lies in the surface p = const.


Isobaric Surfaces are ‘Current Surfaces’.


Moreover it is clear that


‘Magnetic Surfaces’ are ‘Current Surfaces’.


(since both coincide with isobaric surfaces.)


[It is important to note that the existence of magnetic surfaces is guaranteed only in the

MHD approximation when �p = 0 > Taking account of corrections to MHD we may not

have magnetic surfaces even if �p = 0.] 

4.8.4 Low β equilibria: ForceFree Plasmas 

In many cases the ratio of kinetic to magnetic pressure is small, β << 1 and we can approx
imately ignore �p. Such an equilibrium is called ‘force free’. 

j ∧B = 0 (4.142) 

implies j and B are parallel. 

i.e. 
j = µ(r)B (4.143) 

Current flows along field lines not across. Take divergence: 

0 = .j = . (µ (r) B) = µ (r) �.B + (B.�) µ (4.144) 

= (B.�) µ.	 (4.145) 

The ratio j/B = µ is constant along field lines.


µ is constant on a magnetic surface. If there are no surfaces, µ is constant everywhere.


Example: ForceFree Cylindrical Equil. 

j ∧B	 = ⇔ j = µ(r)B (4.146) 

= µoj = µoµ(r)B (4.147) �∧B 

This is a somewhat more convenient form because it is linear in B (for specified µ(r)). 

Constantµ : �∧B = µoµB (4.148) 

leads to a Bessel function solution 
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Bz = BoJo(µoµr) (4.149) 

Bθ = BoJ1(µoµr) (4.150) 

for µoµr > 1st zero of Jo the toroidal field reverses. There are plasma confinement schemes 
with µ � const. ‘Reversed Field Pinch’. 

4.9 Toroidal Equilibrium 

Bend a zpinch into a torus 

Figure 4.12: Toroidal zpinch 

Bθ fields due to current are stronger at small R side ⇒ Pressure (Magnetic) Force outwards. 

Have to balance this by applying a vertical field Bv to push plasma back by jφ ∧ Bv . 

Figure 4.13: The field of a toroidal loop is not an MHD equilibrium. Need to add a vertical 
field. 

Bend a θpinch into a torus: Bφ is stronger at small R side outward force. ⇒ 

Cannot be balanced by Bv because no jφ. No equilibrium for a toroidally symmetric θpinch.


Underlying Single Particle reason:


Toroidal θpinch has Bφ only. As we have seen before, curvature drifts are uncompensated

in such a configuration and lead to rapid outward motion.
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Figure 4.14: Chargeseparation giving outward drift is equivalent to the lack of MHD toroidal 
force balance. 

We know how to solve this: Rotational Transform: get some Bθ . Easiest way: add jφ. From 
MHD viewpoint this allows you to push the plasma back by jφ ∧Bv force. Essentially, this 
is Tokamak. 

4.10 Plasma Dynamics (MHD) 

When we want to analyze nonequilibrium situations we must retain the momentum terms. 
This will give a dynamic problem. Before doing this, though, let us analyse some purely 
Kinematic Effects. 

‘Ideal MHD’ Set eta = 0 in Ohm’s Law. ⇔
A good approximation for high frequencies, i.e. times shorter than resistive decay time. 

E + V ∧B = 0. Ideal Ohm�s Law. (4.151) 

Also 
−∂B 

Faraday�s Law. (4.152) �∧ E = 
∂t 

Together these two equations imply constraints on how the magnetic field can change with 
time: Eliminate E: 

∂B 
+ �∧ (V ∧B) = + (4.153) 

∂t 
This shows that the changes in B are completely determined by the flow, V. 

4.11 Flux Conservation 

Consider an arbitrary closed contour C and spawning surface S in the fluid. 

Flux linked by C is 

Φ = B.ds (4.154) 
S 

Let C and S move with fluid:


Total rate of change of Φ is given by two terms:
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Figure 4.15: Motion of contour with fluid gives convective flux derivative term. 

∂B
Φ̇ = .ds + B.(V ∧ dl) (4.155) � CS �∂t �� � �� � 

Due to changes in B Due to motion of C 

= (V ∧B).dl (4.156) 
S 
�∧ E.ds −− � C 

= (E + V ∧B).dl = 0 by Ideal Ohm�s Law. (4.157) − 
C 

Flux through any surface moving with fluid is conserved. 

4.12 Field Line Motion 

Think of a field line as the intersection of two surfaces both tangential to the field everywhere: 

Figure 4.16: Field line defined by intersection of two flux surfaces tangential to field. 

Let surfaces move with fluid. 

Since all parts of surfaces had zero flux crossing at start, they also have zero after, (by flux

conserv.).


Surfaces are tangent after motion
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Their intersection defines a field line after. ⇒ 

We think of the new field line as the same line as the old one (only moved). 

Thus: 

1. Number of field lines (≡ flux) through any surface is constant. (Flux Cons.) 

2. A line of fluid that starts as a field line remains one. 

4.13 MHD Stability 

The fact that one can find an MHD equilibrium (e.g. zpinch) does not guarantee a useful 
confinement scheme because the equil. might be unstable. Ball on hill analogies: 

Figure 4.17: Potential energy curves 

An equilibrium is unstable if the curvature of the ‘Potential energy surface’ is downward 
d2 

away from equil. That is if 
dx2 {Wpot} < 0.


In MHD the potential energy is Magnetic + Kinetic Pressure (usually mostly magnetic).


If we can find any type of perturbation which lowers the potential energy then the equil is

unstable. It will not remain but will rapidly be lost.


Example Zpinch


We know that there is an equilibrium: Is it stable?


Consider a perturbation thus:


Figure 4.18: ’Sausage’ instability


Simplify the picture by taking the current all to flow in a skin. We know that the pressure 
B2 

is supported by the combination of B2/2µo pressure and 
µor tension forces. 
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Figure 4.19: Skincurrent, sharp boundary pinch. 

At the place where it pinches in (A)

Bθ and 1 increase → Mag. pressure & tension increase ⇒ inward force no longer balance


r 
by p ⇒ perturbation grows.


At place where it bulges out (B)

Bθ & 1 decrease → Pressure & tension ⇒ perturbation grows.


r 

Conclusion a small perturbation induces a force tending to increase itself. Unstable (≡ δW < 
0). 

4.14 General Perturbations of Cylindrical Equil. 

Look for things which go like exp[i(kz + mθ)]. [Fourier (Normal Mode) Analysis]. 

Figure 4.20: Types of kink perturbation. 

Generally Helical in form (like a screw thread). Example: m = 1 k = 0 zpinch 

4.15 General Principles Governing Instabilities 

(1) They try not to bend field lines. (Because bending takes energy). Perturbation 
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Figure 4.21: Driving force of a kink. Net force tends to increase perturbation. Unstable.


Figure 4.22: Alignment of perturbation and field line minimizes bending energy. 

(Constant surfaces) lies along magnetic field. 

Example: θpinch type plasma column: 

Figure 4.23: ‘Flute’ or ‘Interchange’ modes. 

Preferred Perturbations are ‘Flutes’ as per Greek columns → ‘Flute Instability.’ [Better 
name: ‘Interchange Instability’, arises from idea that plasma and vacuum change places.] 

(2) Occur when a ‘heavier’ fluid is supported by a ‘lighter’ (Gravitational analogy).


Why does water fall out of an inverted glass? Air pressure could sustain it but does not

because of RayleighTaylor instability.


Similar for supporting a plasma by mag field.


(3) Occur when | B decreases away from the plasma region.
| 
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Figure 4.24: Inverted water glass analogy. Rayleigh Taylor instability.


2 
B 

2 
AB B

2µo 2µo 

Perturbation Grows. ⇒ 

< (4.158) 

(4) Occur when field line curvature is towards the plasma (Equivalent to (3) because of 
�∧B = 0 in a vacuum). 

Figure 4.25: Vertical upward field gradient is unstable. 
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Figure 4.26: Examples of magnetic configurations with good and bad curvature.
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4.16 Quick and Simple Analysis of Pinches 

θpinch B | = const. outside pinch |
≡ No field line curvature. Neutral stability 

zpinch B | away from plasma outside 
≡ Bad Curvature (Towards plasma) ⇒ Instability.


Generally it is difficult to get the curvature to be good everywhere. Often it is sufficient

to make it good on average on a field line. This is referred to as ‘Average Minimum B’.

Tokamak has this.


General idea is that if field line is only in bad curvature over part of its length then to perturb

in that region and not in the good region requires field line bending:


Figure 4.27: Parallel localization of perturbation requires bending. 

But bending is not preferred. So this may stabilize.


Possible way to stabilize configuration with bad curvature: Shear

Shear of Field Lines


Figure 4.28: Depiction of field shear. 

Direction of B changes. A perturbation along B at z3 is not along B at z2 or z1 so it would

have to bend field there → Stabilizing effect.


General Principle: Field line bending is stabilizing.


Example: Stabilized zpinch


Perturbations (e.g. sausage or kink) bend Bz so the tension in Bz acts as a restoring force

to prevent instability. If wave length very long bending is less. ⇒ Least stable tends to be

longest wave length.


Example: ‘Cylindrical Tokamak’ 
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Tokamak is in some ways like a periodic cylindrical stabilized pinch. Longest allowable wave 
length = 1 turn round torus the long way, i.e. 

kR = 1 : λ = 2πR. (4.159) 

Express this in terms of a toroidal mode number, n (s.t. perturbation ∝ exp i(nφ + mθ): 
φ = z n = kR.

R 

Most unstable mode tends to be n = 1.


[Careful! Tokamak has important toroidal effects and some modes can be localized in the

bad curvature region (n = 1).


Figure 4.29: Ballooning modes are localized in the outboard, bad curvature region.
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Chapter 5


Electromagnetic Waves in Plasmas


5.1	 General Treatment of Linear Waves in Anisotropic 
Medium 

Start with general approach to waves in a linear Medium: Maxwell: 

1 ∂E	 ∂B 
;	 (5.1) �∧B = µoj + 

c2 ∂t 
�∧ E = − 

∂t 

we keep all the medium’s response explicit in j. Plasma is (infinite and) uniform so we Fourier 
analyze in space and time. That is we seek a solution in which all variables go like 

exp i(k.x − ωt) [real part of]	 (5.2) 

It is really the linearised equations which we treat this way; if there is some equilibrium field

OK but the equations above mean implicitly the perturbations B, E, j, etc.


Fourier analyzed:


ik ∧B = µoj + 
−iω 
c2 

E ; ik ∧ E = iωB (5.3) 

Eliminate B by taking k∧ second eq. and ω× 1st 

iω2 

ik ∧ (k ∧ E) = ωµoj − 
c2 

E (5.4) 

So 
ω2 

k ∧ (k ∧ E) + E + iωµoj = 0 (5.5) 
2c

Now, in order to get further we must have some relationship between j and E(k, ω). This 
will have to come from solving the plasma equations but for now we can just write the most 
general linear relationship j and E as 

j = σ.E	 (5.6) 
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σ is the ‘conductivity tensor’. Think of this equation as a matrix e.g.: ⎛ ⎞ ⎛	 ⎞⎛ ⎞ 
jx σxx σxy ... Ex ⎜ ⎟ ⎜	 ⎟⎜ ⎟ ⎝	 jy ⎠ = ⎝ ... ... ... ⎠⎝ Ey ⎠ (5.7) 
jz ... ... σzz Ez 

This is a general form of Ohm’s Law. Of course if the plasma (medium) is isotropic (same 
in all directions) all offdiagonal σ�s are zero and one gets j = σE. 

Thus 
ω2 

k(k.E) − k2E + E + iωµoσ.E = 0	 (5.8) 
2c

Recall that in elementary E&M, dielectric media are discussed in terms of a dielectric con
stant � and a “polarization” of the medium, P, caused by modification of atoms. Then 

�oE = D P and .D = ρext	 (5.9) ���� − ���� � ���� 
Displacement Polarization	 externalcharge 

and one writes 
P = χ �oE (5.10) 

susceptibility 

Our case is completely analogous, except we have chosen to express the response of the 
medium in terms of current density, j, rather than “polarization” P For such a dielectric 
medium, Ampere’s law would be written: 

1	 ∂D ∂ �∧B = jext + = ��oE, if jext = 0 ,	 (5.11) 
µo	 ∂t ∂t 

where the dielectric constant would be � = 1 + χ. 

Thus, the explicit polarization current can be expressed in the form of an equivalent dielectric 
expression if 

∂E ∂E ∂ 
j + �o = σ.E + � = �o�.E	 (5.12) 

∂t ∂t ∂t 
or 

σ 
� = 1 +	 (5.13) 

−iω�o 

Notice the dielectric constant is a tensor because of anisotropy. The last two terms come 
from the RHS of Ampere’s law: 

∂ 
j + (�oE) .	 (5.14) 

∂t 
If we were thinking in terms of a dielectric medium with no explicit currents, only implicit (in 

∂�) we would write this 
∂t (��oE); � the dielectric constant. Our medium is possibly anisotropic 

∂so we need 
∂t (�o�.E) dielectric tensor. The obvious thing is therefore to define 

1 iµoc
2 

� = 1 + σ = 1 + σ	 (5.15) 
−iω�o ω 
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� 

� 

� 

Then 

k(k.E) − k2E + 
ω2 

c2 
�.E = 0 (5.16) 

and we may regard �(k, ω) as the dielectric tensor. 

Write the equation as a tensor multiplying E: 

D.E = 0 (5.17) 

with 

D = {kk − k21 + 
ω2 

c2 
�} (5.18) 

Again this is a matrix equation i.e. 3 simultaneous homogeneous eqs. for E. ⎞⎛⎞⎛ 
Dxx Dxy ... Ex ⎜⎝ 

⎜⎝ 
⎟⎠ 

⎟⎠ = 0 (5.19)
D Eyx ... ... y 

... ... Dzz Ez 

In order to have a nonzero E solution we must have 

det D |= 0. (5.20) | 

This will give us an equation relating k and ω, which tells us about the possible wavelengths 
and frequencies of waves in our plasma. 

5.1.1 Simple Case. Isotropic Medium 

σ = σ 1 (5.21) 

� = � 1 (5.22) 

Take k in z direction then write out the Dispersion tensor D. ⎞⎛⎞⎛⎞⎛ ω2 
k2 � 0 00 0 0 0 0
 2c⎜⎜⎝ 

⎟⎟⎠ 
⎜⎝ 

⎟⎠ 
⎜⎝ 

⎟⎠ ω2 

2c
� 0
k2D = 0 0 0 0 0 0+− 

k2 
0 0 ω20 0 kk 0 0 

2 �� c

kk k21 ω2 
2c⎤⎡ 

−k2 + ω
2 
� 0 02c

−k2 + ω
2 

0=

⎢⎢⎣ 

⎥⎥⎦ (5.23)
� 02c
ω2 

0 0 2c

Take determinant: �2
ω2 ω2 

−k2 + � 
2c

det D
|
 =|
c

� = 0. (5.24)

2 

Two possible types of solution to this dispersion relation: 
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(A) 
ω2 

− k2 + � = 0. (5.25) 
2c ⎞⎛⎞⎛ 

0 0 0 Ex ⎜⎝ 0 0 0
 ⎜⎝ 
⎟⎠ E
 ⎟⎠ = 0 Ez = 0. (5.26) y⇒ ⇒

0 0 ω2 
� Ez2c

Electric field is transverse (E.k = 0) 

Phase velocity of the wave is 
ω c 

= (5.27) 
k 

√
� 

This is just like a regular EM wave traveling in a medium with refractive index 

kc 
N ≡ = 

√
� . (5.28) 

ω 

(B) 
ω2 

� = 0 i.e. � = 0 (5.29) 
2c ⎞⎛⎞⎛ 

Dxx 0 0 Ex ⎜⎝ 0 D 0
yy 
⎜⎝ 

⎟⎠ E
 ⎟⎠ = 0 Ex = Ey = 0. (5.30) y⇒ ⇒

0 0 0 Ez 

Electric Field is Longitudinal (E ∧ k = 0) E � k.


This has no obvious counterpart in optics etc. because � is not usually zero. In plasmas

� = 0 is a relevant solution. Plasmas can support longitudinal waves.


5.1.2 General Case (k in zdirection) ⎤⎡ 
−N2 + �xx �xy �xzω2 2k2c⎢⎣ 

⎥⎦ ,
 N2−N2 + �D =
 = (5.31) yx yy yz 2 ω2c
�zx �zz zy 

When we take determinant we shall get a quadratic in N2 (for given ω) provided � is not 
explicitly dependent on k. So for any ω there are two values of N2 . Two ‘modes’. The 
polarization E of these modes will be in general partly longitudinal and partly transverse. 
The point: separation into distinct longitudinal and transverse modes is not possible in 
anisotropic media (e.g. plasma with Bo). 

All we have said applies to general linear medium (crystal, glass, dielectric, plasma). Now 
we have to get the correct expression for σ and hence � by analysis of the plasma (fluid) 
equations. 
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5.2 High Frequency Plasma Conductivity 

We want, now, to calculate the current for given (Fourier) electric field E(k, ω), to get the 
conductivity, σ. It won’t be the same as the DC conductivity which we calculated before 
(for collisions) because the inertia of the species will be important. In fact, provided 

ω � ν̄ei (5.32) 

we can ignore collisions altogether. Do this for simplicity, although this approach can be 
generalized. 

Also, under many circumstances we can ignore the pressure force −�p. In general will 
be true if ω � vte,i We take the plasma equilibrium to be at rest: vo = 0. This gives a 

k 
manageable problem with wide applicability. 

Approximations: 
Collisionless ν̄ei = 0 

‘Cold Plasma� �p = 0 (e.g. T � 0) (5.33) 
Stationary Equil vo = 0 

5.2.1 Zero Bfield case 

To start with take Bo = 0: Plasma isotropic Momentum equation (for electrons first) 

∂v 
mn + (v.�)v = nqE (5.34) 

∂t 

Notice the characteristic of the cold plasma approx. that we can cancel n from this equation 
and on linearizing get essentially the single particle equation. 

∂v1 
m = qE (Drop the 1 suffix now). (5.35) 

∂t 

This can be solved for given ω as 
q 

v = E (5.36) 
−iωm 

and the current (due to this species, electrons) is 

2nq
j = nqv = E (5.37) 

−iωm 

So the conductivity is 
2nq

σ = i (5.38) 
ωm 

Hence dielectric constant is 

i nq2 1 
� = 1 + σ = 1 − = 1 + χ (5.39) 

ω�o m�o ω2 
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Longitudinal Waves (Bo = 0) 

Dispersion relation we know is 

2nq 1 
� = 0 = 1 − (5.40) 

m�o ω2 

[Strictly, the � we want here is the total � including both electron and ion contributions to 
the conductivity. But 

σe 

σi 
� 

mi 

me 
(for z = 1) (5.41) 

so to a first approximation, ignore ion motions.] 

Solution � � 

ω2 = 
neq

2 
e . (5.42) 
�ome

In this approx. longitudinal oscillations of the electron fluid have a single unique frequency: 

1 
22nee

ωp = (5.43) . 
me�o 

This is called the ‘Plasma Frequency’ (more properly ωpe the ‘electron’ plasma frequency). 
If we allow for ion motions we get an ion conductivity 

iniq
2 

σi = i (5.44) 
ωmi 

and hence 

2 
i�tot = 1 + 

i 
(σe + σi) = 1 − 

neqe 
2 

+ 
niq 1 

(5.45) 
ω�o �ome �omi ω2 

= 1 − ω2 + ω2 /ω2 
pe pi 

where 
1 
22niq

ωpi ≡ i (5.46) 
�omi 

is the ‘Ion Plasma Frequency’. 

Simple Derivation of Plasma Oscillations 

Take ions stationary; perturb a slab of plasma by shifting electrons a distance x. Charge 
built up is neqx per unit area. Hence electric field generated 

E = − 
neqex 

�o 
(5.47) 
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Figure 5.1: Slab derivation of plasma oscillations 

Equation of motion of electrons 
dv neq

2xe me = − ; (5.48) 
dt �o 

i.e. � � 
2d2x neq

+ e x = 0 (5.49) 
dt2 �ome 

Simple harmonic oscillator with frequency 

2neq
ωpe = e Plasma Frequency. (5.50) 

�ome 

The Characteristic Frequency of Longitudinal Oscillations in a plasma. Notice 

1. ω = ωp for all k in this approx. 

2. Phase velocity ω can have any value. 
k 

3. Group velocity of wave, which is the velocity at which information/energy travel is 

dω 
vg = = 0 !! (5.51) 

dk 

In a way, these oscillations can hardly be thought of as a ‘proper’ wave because they do 
not transport energy or information. (In Cold Plasma Limit). [Nevertheless they do emerge 
from the wave analysis and with less restrictive approxs do have finite vg .] 

Transverse Waves (Bo = 0) 

Dispersion relation: 

ω2 

− k2 + � = 0 (5.52) 
c2 
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or


2 � �k2c
N 2 = � = 1 − ω2 + ω2 /ω2 

pe pi≡ 
ω2 

1 − ω2 (5.53) � pe/ω
2 

Figure 5.2: Unmagnetized plasma transverse wave. 

Figure 5.3: Alternative dispersion plot. 

Alternative expression: 
ω2 ω2 

− k2 + = 0 (5.54) 
2c2 

− 
c

p 
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which implies


ω2 2 2 = ω2 + k c (5.55) p 

2 2ω = ω2 + k c . (5.56) p 

5.2.2 Meaning of Negative N 2: Cut Off 

When N2 < 0 (for ω < ωp) this means N is pure imaginary and hence so is k for real ω. 
Thus the wave we have found goes like 

exp{± k x− iωt (5.57) | | } 

1 

i.e. its space dependence is exponential not oscillatory. Such a wave is said to be ‘Evanescent’ 
or ‘Cut Off’. It does not truly propagate through the medium but just damps exponentially. 

Example: 

2 

Figure 5.4: Wave behaviour at cutoff. 

A wave incident on a plasma with ωp 
2 > ω2 is simply reflected, no energy is transmitted 

through the plasma. 

5.3 Cold Plasma Waves (Magnetized Plasma) 

Objective: calculate �,D,k(ω), using known plasma equations.


Approximation: Ignore thermal motion of particles.


Applicability: Most situations where (1) plasma pressure and (2) absorption are negligible.

Generally requires wave phase velocity � vthermal. 
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5.3.1 Derivation of Dispersion Relation 

Can “derive” the cold plasma approx from fluid plasma equations. Simpler just to say that 
all particles (of a specific species) just move together obeying Newton’s 2nd law: 

∂v 
m = q(E + v ∧B) (5.58) 

∂t 

Take the background plasma to have E0 = 0, B = B0 and zero velocity. Then all motion 
is due to the wave and also the wave’s magnetic field can be ignored provided the particle 
speed stays small. (This is a linearization). 

∂v 
m = q(E + v ∧B0), (5.59) 

∂t 

where v, E ∝ exp i(k.x − ωt) are wave quantities. 

Substitute ∂ → −iω and write out equations. Choose axes such that B0 = B0(0, 0, 1). 
∂t 

− iωmvx = q(Ex + vy B0) 

−iωmvy = q(Ey − vxB0) (5.60) 

−iωmvz = qEz 

Solve for v in terms of E. 

iωEx − ΩEy 

ω2 

q 
vx = 

m 
q 

− Ω2 

ΩEx + iωEy 
(5.61) vy = 

m ω2 − Ω2 

q i

Ez
vz = 

m ω 

where Ω = qB0 is the gyrofrequency but its sign is that of the charge on the particle species 
m 

under consideration.


Since the current is j = qvn = σ.E we can identify the conductivity tensor for the species

(j) as:
 ⎡ ⎤2 2qj nj iω 

mj ω2 −Ω2 mj ω2−Ω2 0 
j 
− 

qj nj Ωj

j 
2 2nj Ωj njqj qj iω 

⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎦ 
σj = (5.62) 0 

mj ω2 −Ω2 mj ω2−Ω2 
j j 

iqj 
2 

nj0 0

m ω 

The total conductivity, due to all species, is the sum of the conductivities for each 

σ = σj (5.63) 
j 

So 
2q1 nj iω 

σxx = σyy = 
j mj ω2 − Ωj 

2 
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� 

� 

� =


� 

� 

� 

� � 

yx =
−

2qj nj Ωj 

j mj ω2 − Ωj 
2 (5.65) σxy = −σ

2qj nj i 
σzz = (5.66) 

mj ωj 

1Susceptibility χ = −iω�o 
σ. ⎤⎡⎤⎡ 

�xx �xy 0 S −iD 0 
S⎢⎣ 

⎥⎦ 
⎢⎣ 

⎥⎦� � 0 iD 0 (5.67) = yx yy 

0 0 �zz 0 0 P 

where 

ω2 
pj 

j ω2 − Ωj 
2

�xx = �yy = S = 1 − (5.68)


Ωj ω2 
pj 

ω ω2 − Ω2 
jj 

i�xy = −i�yx = D = (5.69) 

ω2 
pj�zz = P = 1 − (5.70) 

ω2 
j 

and 

ω2 
pj ≡ 

q2 
j nj 

�omj 
(5.71) 

is the “plasma frequency” for that species. 

S & D stand for “Sum” and “Difference”: 

1 1 
S = 

2 
(R + L) D = 

2 
(R − L) (5.72) 

where R & L stand for “Righthand” and “Lefthand” and are: 

ω2 ω2 
pj , L = 1 − pj (5.73) R = 1 − 

ω (ω + Ωj ) j ω (ω − Ωj )j 

The R & L terms arise in a derivation based on expressing the field in terms of rotating 
polarizations (right & left) rather than the direct Cartesian approach. 

We now have the dielectric tensor from which to obtain the dispersion relation and solve 
it to get k(ω) and the polarization. Notice, first, that � is indeed independent of k so the 
dispersion relation (for given ω) is a quadratic in N 2 (or k2). 

Choose convenient axes such that ky = Ny = 0. Let θ be angle between k and B0 so that 

Nz = N cos θ , Nx = N sin θ . (5.74) 

Then ⎤⎡ 
−N 2 cos2 θ + S −iD N 2 sin θ cos θ 

+iD −N 2 + S 0 
0 

D =
⎢⎣ 
⎥⎦ (5.75) 

N 2 sin θ cos θ −N 2 sin2 θ + P 
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and

= AN4 −BN2 + C (5.76) � D �

where 

A ≡ S sin2 θ + P cos 2 θ (5.77) 

B ≡ RL sin2 θ + P S(1 + cos 2 θ) (5.78) 

C P RL (5.79) ≡ 

Solutions are 

N2 = 
B ± F

, (5.80) 
2A 

where the discriminant, F , is given by 

F 2 = (RL − P S)2 sin4 θ + 4P 2D2 cos 2 θ (5.81) 

after some algebra. This is often, for historical reasons, written in the equivalent form (called 
the AppletonHartree dispersion relation) 

N2 = 1 − 2(A −B + C) 
(5.82) 

2A −B ± F 

The quantity F 2 is generally +ve, so N2 is real ⇒ “propagating” or “evanescent” no wave

absorption for cold plasma.


Solution can also be written


tan 2 θ = 
P (N2 −R) (N2 − L) 

(5.83) −
(SN2 −RL) (N2 − P ) 

This compact form makes it easy to identify the dispersion relation at θ = 0 & π i.e. parallel 
2 

and perpendicular propagation tan θ = 0, ∞. 

Parallel: P = 0 , N2 = R N2 = L 
RL Perp: N2 = 
S N2 = P . 

Example: Righthand wave 

N2 = R. (Single Ion Species). 

ω2 ω2 
pe pi (5.84) N2 = 1 −

ω (ω − Ωe ) 
−

ω (ω + Ωi )| | | |

This has a wave resonance N2 Ωe|, only. Righthand wave also has a cutoff at →∞ at ω = |
R = 0, whose solution proves to be ⎡� �2 

⎤1/2 
Ωe|+ Ωi

ω = ωR = 
|Ωe| − |Ωi|

+ ⎣ | | | 
+ ω2 + ω2 ⎦ (5.85) 

2 2 pe pi 
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Since mi � me this can be approximated as: ⎧⎨ ω2 
pe 

1 
2 

⎫⎬|Ωe|
ωR � 1 + 1 + 4 (5.86) ⎩ |Ωe|2 ⎭2


This is always above |Ωe .|

Figure 5.5: The form of the dispersion relation for RH wave. 

One can similarly investigate LH wave and perp propagating waves. The resulting wave 
resonances and cutoffs depend only upon 2 properties (for specified ion mass) (1) Density 

ω2 mi ↔ pe (2) Magnetic Field ↔ Ωe . [Ion values ωpi, are got by 
me 

factors.] | | |Ωi|
2 
pΩeThese resonances and cutoffs are often plotted on a 2D plane |

ω 
| , 

ω
(∝ B, n) called the 

ω2 

C M A Diagram.


We don’t have time for it here.


5.3.2 Hybrid Resonances Perpendicular Propagation 

RL “Extraordinary” wave N 2 = 
S 

(ω + Ωe) (ω + Ωi) − 
2 
peω

ω (ω + Ωi) − 
2 
piω

ω 

2 
peω

ω
(ω + Ωe) (ω − Ωe) (ω − Ωi) − (ω − Ωi) ... 

N 2 = 
e ) (ω2 − Ωi 

2) − ω2 
pi (ω

2 − Ω2(ω2 − Ω2 
pe (ω

2 − Ωi 
2) − ω2 

e ) 
(5.87) 

Resonance is where denominator = 0. Solve the quadratic in ω2 and one gets 

ω2 + Ω2 + ω2 
ipi + Ω2 

pe e ω2 + Ω2 
pi − Ωi 

2 
pe e − ω2 

�2 

ω2 = 
2 

±
 + ω2 ω2 
pe pi (5.88) 

2 
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ω2 
meNeglecting terms of order 
mi 

(e.g. pi ) one gets solutions 
ω2 

pe 

ω2 
U H = ω2 

pe + Ω2 
e Upper Hybrid Resonance. (5.89) 

ω2 
LH = 

Ω2 
e ω

2 
pi 

Ω2 
e + ω2 

pe 

Lower Hybrid Resonance.. (5.90) 

At very high density, ω2 
pe � Ω2 

e 

ω2 
LH � |Ωe||Ωi| (5.91) 

geometric mean of cyclotron frequencies. 

At very low density, ω2 
pe � Ω2 

e 

ω2 
LH � ω2 

pi (5.92) 

ion plasma frequency 

Usually in tokamaks ω2 
pe ∼ Ω2 

e . Intermediate. 

Summary Graph (Ω > ωp) 

Figure 5.6: Summary of magnetized dispersion relation 

Cutoffs are where N 2 = 0. 

Resonances are where N 2 → ∞. 

Intermediate angles of propagation have refractive indices between the θ = 0, π lines, in the 
2 

shaded areas. 
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5.3.3 Whistlers 

(Ref. R.A. Helliwell, “Whistlers & Related Ionospheric Phenomena,” Stanford UP 1965.) 

For N 2 � 1 the right hand wave can be written 

N 2 −ω2 

, (N = kc/ω) (5.93) � 
ω (ω − 

pe 

Ωe )| |

Group velocity is 
−1 −1

dω dk d N ω 
vg = = = . (5.94) 

dk dω dω c 

Then since 
ωp

N (5.95) = ,11 
ω (|Ωe − ω)| 22 

we have


Thus


⎧⎨ 
⎫⎬11 1 1 ωd d ωpω 2 

1 

2 
2 2(N ω) = ω += p 1 3⎩ ⎭1dω dω ( Ωe − ω)| | 

p/2 
ω (|Ωe − ω)| (|Ωe − ω)|2 2 22 

ω
Ωe − ω) + ω}{(| |=


13 

(|Ωe − ω)|
ω

ω
2 2 

Ωe /2| |
p
(5.96) =


13 

( Ωe − ω) ω
2|
 |
 2 

13 

c 2 (|Ωe − ω)| ω
2 2 

(5.97) vg = 
ω |Ωe|p

Group Delay is 
L 1 1 

(5.98) 
g 
∝


ω

∝
3 1 31v (|Ωe − ω)| ω 

Ωe

ω 
Ωe

2 2 22 1 −
| | | | 

Figure 5.7: Whistler delay plot
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Plot with L as xaxis. 
vg 

Resulting form explains downward whistle.


Lightning strike ∼ δfunction excites all frequencies.


Lower ones arrive later.


Examples of actual whistler sounds can be obtained from http://wwwistp.gsfc.nasa.

gov/istp/polar/polar_pwi_sounds.html. 

5.4 Thermal Effects on Plasma Waves 

The cold plasma approx is only good for high frequency, N2 ∼ 1 waves. If ω is low or N2 � 1 
one may have to consider thermal effects. From the fluid viewpoint, this means pressure. 
Write down the momentum equation. (We shall go back to B0 = 0) linearized 

∂v1 
mn = nqE1 −�p1 ; (5.99) 

∂t 

remember these are the perturbations: 

p = p0 + p1 . (5.100) 

Fourier Analyse (drop 1’s) 
mn(−iω)v = nqE − ikp (5.101) 

The key question: how to relate p to v 

Answer: Equation of state + Continuity 

State 
pn−γ = const. ⇒ (p0 + p1) (n0 + n1)

−γ = p0n
−γ 
0 (5.102) 

Use Taylor Expansion � � 

(p0 + p1) (n0 + n1)
−γ � p0n

−γ 
0 1 + 

p1 

p0 
− γ 

n1 

n0 
(5.103) 

Hence 
p1 n1 

= γ (5.104) 
p0 n0 

Continuity 
∂n 

. (nv) = 0 (5.105) 
∂t 

Linearise: 
∂n1 ∂n 

. (n0v1) = 0 .v = 0 (5.106) 
∂t 

⇒ 
∂t 

+ n0�

Fourier Transform 
− iωn1 + n0ik.v1 = 0 (5.107) 
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i.e.

k.v 

n1 = n0 (5.108) 
ω 

Combine State & Continuity 

k.v 

p1 = p0γ 
n1 

n0 
= p0γ 

n0 ω 

no 
= p0γ 

k.v 
ω 

(5.109) 

Hence Momentum becomes 

mn (−iω) v = nqE − 
ikp0γ 

ω 
k.v (5.110) 

Notice Transverse waves have k.v = 0; so they are unaffected by pressure. 

Therefore we need only consider the longitudinal wave. However, for consistency let us

proceed as before to get the dielectric tensor etc.


Choose axes such that k = kˆ
ez then obviously: 

iq iq 
vx = Ex vy = Ey (5.111) 

ωm ωm 

q Ez 
vz = 

m −iω + (ik2γp0/mnω) 
(5.112) 

Hence ⎤⎡ 
1 0 0 

inq2 ⎢⎢⎣ 
⎥⎥⎦ 

0 1 0σ (5.113) = 
ωm
 0 0 

k

1 
2p0γ

1− 
mnω2 

ω2 
p 

⎡ ⎤ 
1 −
 0 0

ω2⎢⎢⎢⎣ 

⎥⎥⎥⎦ 

iσ

�0ω 

ω2 
p 

ω20 1 −
 0� = 1 + (5.114) = 
2wp0 0 1 −


ω2−k2 p0γ 
mn 

(Taking account only of 1 species, electrons, for now.)


We have confirmed the previous comment that the transverse waves (Ex, Ey ) are unaffected.

The longitudinal wave is. Notice that � now depends on k as well as ω. This is called ‘spatial

dispersion’.


For completeness, note that the dielectric tensor can be expressed in general tensor notation

as


ω2 1 
� = p 1 + kk 

k2 p0 γ − 11 − 
ω2 1 − 2ω mn⎞⎛ 
ω2 1p ⎝1 + kk1 − 
ω2 

⎠ (5.115)
= 2w mn 
p0γ − 1

k2 

This form shows isotropy with respect to the medium: there is no preferred direction in 
space for the wave vector k. 
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But once k is chosen, � is not isotropic. The direction of k becomes a special direction. 

Longitudinal Waves: dispersion relation is 

�zz = 0 (as before) (5.116) 

which is 
ω2 

1 −
− 

p

k2p0γ 
= 0 . (5.117) 

ω2 
mn 

or 
ω2 = ω2 + k2 p0γ 

(5.118) p mn 
Recall p0 = n0T = nT ; so this is usually written: 

γT 
ω2 = ω2 + k2 = ω2 + k2γv 2 (5.119) p p t m 

[The appropriate value of γ to take is 1 dimensional adiabatic i.e. γ = 3. This seems plausible 
since the electron motion is 1d (along k) and may be demonstrated more rigorously by kinetic 
theory.] 

The above dispersion relation is called the BohmGross formula for electron plasma waves. 
Notice the group velocity: 

dω 1 dω2 γkvt 
2 

vg = = = � � 1 = 0. (5.120) 
dk 2ω dk 2 

�
ω2 + γk2vt 

2 

p 

1 
and for kvt > ωp this tends to γ 2 vt. In this limit energy travels at the electron thermal 
speed. 

5.4.1 Refractive Index Plot 

Bohm Gross electron plasma waves: 

2 ω2 
pN2 = 

c
2 1 − 

ω2 
(5.121) 

γevte 

Transverse electromagnetic waves: 

ω2 
pN2 = 1 − 

ω2 
(5.122) 

These have just the same shape except the electron plasma waves have much larger vertical 
scale: 

On the EM wave scale, the plasma wave curve is nearly vertical. In the cold plasma it was 
exactly vertical. 

We have relaxed the Cold Plasma approximation. 
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Figure 5.8: Refractive Index Plot. Top plot on the scale of the BohmGross Plasma waves. 
Bottom plot, on the scale of the EM transverse waves 

5.4.2 Including the ion response 

As an example of the different things which can occur when ions are allowed to move include 
longitudinal ion response: 

ω2 ω2 
pi0 = �zz = 1 − pe (5.123) 

mene mini 
ω2 − k

2peγe 
− 

ω2 − k
2piγi 

This is now a quadratic equation for ω2 so there are two solutions possible for a given ω. One 
will be in the vicinity of the electron plasma wave solution and the inclusion of ω2 

pi which is 

pe will give a small correction. 

Second solution will be where the third term is same magnitude as second (both will be 
� 1). This will be at low frequency. So we may write the dispersion relation approximately 
as: 

� ω2 

ω2 ω2 
pi pi = 0 (5.124) −

− k
2peγe 

− 
ω2 

mene mini
− k

2piγi 

i.e. 

k2piγi ω2 

ω2 pi k
2peγe 

= + 
mini ω2 menepe 
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= k2 γipi γepe 1 
+ 

ni ne mi 

= k2 γiTi + γeTe 
(5.125) 

mi 

[In this case the electrons have time to stream through the wave in 1 oscillation so they 
tend to be isothermal: i.e. γe = 1. What to take for γi is less clear, and less important 
because kinetic theory shows that these waves we have just found are strongly damped 
unless Ti � Te.] 

These are ‘ionacoustic’ or ‘ionsound’ waves 

ω2 
2 = c (5.126) sk2 

cs is the sound speed 
γiTi + Te Te2 c = (5.127) s mi 

� 
mi 

Approximately nondispersive waves with phase velocity cs. 

5.5 Electrostatic Approximation for (Plasma) Waves 

The dispersion relation is written generally as 

N ∧ (N ∧ E) + �.E = N(N.E) − N 2E + �.E = 0 (5.128) 

Consider E to be expressible as longitudinal and transverse components E�, Et such that 
N ∧ E� = 0, N.Et = 0. Then the dispersion relation can be written 

N (N.E�) − N 2 (E� + Et) + �. (E� + Et) = −N 2Et + �.Et + �.E� = 0 (5.129) 

or � � 
N 2 − � .Et = �.E� (5.130) 

Now the electric field can always be written as the sum of a curlfree component plus a 
divergenceless component, e.g. conventionally 

E = �� + � �� � (5.131) A � −�φ � ˙

Curl−f ree Divergence−f ree 

Electrostatic Electromagnetic 

and these may be termed electrostatic and electromagnetic parts of the field. 

For a plane wave, these two parts are clearly the same as the longitudinal and transverse 
parts because 

−ikφ is longitudinal (5.132) − �φ = 

˙ ˙ ˙and if �.A = 0 (because �.A = 0 (w.l.o.g.)) then k.A = 0 so A is transverse. 

115 



� � 

�

‘Electrostatic’ waves are those that are describable by the electrostatic part of the electric 
field, which is the longitudinal part: |E�| � |Et|. 
If we simply say Et = 0 then the dispersion relation becomes �.E� = 0. This is not the most 
general dispersion relation for electrostatic waves. It is too restrictive. In general, there is 
a more significant way in which to get solutions where |E�| � |Et|. It is for N 2 to be very 
large compared to all the components of � : N 2 �� � �. 
If this is the case, then the dispersion relation is approximately 

N 2Et = �.E� ; (5.133) 

Et is small but not zero. 

We can then annihilate the Et term by taking the N component of this equation; leaving 

N.�.E� = (N.�.N) E� = 0 : k.�.k = 0 . (5.134) 

When the medium is isotropic there is no relevant difference between the electrostatic dis
persion relation: 

N.�.N = 0 (5.135) 

and the purely longitudinal case �.N = 0. If we choose axes such that N is along ẑ, then the 
medium’s isotropy ensures the offdiagonal components of � are zero so N.�.N = 0 requires 
�zz = 0 ⇒ �.N = 0. However if the medium is not isotropic, then even if 

N.�.N = N 2�zz = 0 (5.136) 

there may be offdiagonal terms of � that make 

�.N = 0 (5.137) 

In other words, in an anisotropic medium (for example a magnetized plasma) the electrostatic 
approximation can give waves that have nonzero transverse electric field (of order ||�||/N 2 

times E�) even though the waves are describable in terms of a scalar potential. 

To approach this more directly, from Maxwell’s equations, applied to a dielectric medium 
of dielectric tensor �, the electrostatic part of the electric field is derived from the electric 
displacement 

�.D = �. (�0�.E) = ρ = 0 (no free charges) (5.138) 

So for plane waves 0 = k.D = k.�.E = ik.�.kφ. 

The electric displacement, D, is purely transverse (not zero) but the electric field, E then 
gives rise to an electromagnetic field via � ∧ H = ∂D/∂t. If N 2 �� � � then this magnetic 
(inductive) component can be considered as a benign passive coupling to the electrostatic 
wave. 

In summary, the electrostatic dispersion relation is k.�.k = 0, or in coordinates where k is 
in the zdirection, �zz = 0. 
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5.6 Simple Example of MHD Dynamics: Alfven Waves 

Ignore Pressure & Resistance. 
DV 

ρ 
Dt 

= j ∧ B (5.139) 

E + V ∧ B = 0 (5.140) 

Linearize: 
V = V1, B = B0 + B1 (B0 uniform), j = j1. (5.141) 

∂V 
ρ 

∂t 
= j ∧ B0 (5.142) 

E + V ∧ B0 = 0 (5.143) 

Fourier Transform: 
ρ(−iω)V = j ∧ B0 (5.144) 

E + V ∧ B0 = 0 (5.145) 

Eliminate V by taking 5.144 ∧B0 and substituting from 5.145. 

1 
E + 

−iωρ 
(j ∧ B0) ∧ B0 = 0 (5.146) 

or 
1 B0

2 

E = (5.147) −
−iωρ

{(j.B0) B0 − B0
2j} = 

−iωρ
j⊥ 

So conductivity tensor can be written (z in B direction). ⎤⎡ 
1 0 0 −iωρ ⎢⎣ 

⎥⎦σ =
 0 1 0 (5.148) 
B2 

0 0 0 ∞ 

where ∞ implies that E� = 0 (because of Ohm’s law). Hence Dielectric Tensor ⎤⎡ 
1 0 0
⎢⎣ 

σ ρ ⎥⎦� = 1 + = 1 +
 0 1 0 (5.149) . 
−iω�0 �0B2 

0 0 ∞ 

Dispersion tensor in general is: 

ω2 

NN − N2D = + � (5.150) 
2c

Dispersion Relation taking N = Nx, Ny = 0 ⊥ ⎡ ⎤ρ−N 2 + 1 + 0 N⊥N
�0B2� 

ρ0 −N� 
2 − N2 + 1 + 

�0B2 0⊥ 
⎢⎣ 

⎥⎦ = 0 (5.151)
D
|
 =| 
N⊥N� 0 ∞ 
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Figure 5.9: Compressional Alfven Wave. Works by magnetic pressure (primarily). 

Meaning of ∞ is that the cofactor must be zero i.e. 

ρ ρ −N 2 + 1 + −N 2 + 1 + = 0 (5.152) � �0B2 �0B2 

The 1’s here come from Maxwell displacement current and are usually negligible (N 2 
⊥ � 1). 

So final waves are 

ρ1. N 2 = ⇒ Nondispersive wave with phase and group velocities 
�0B2 � � 1 � � 1 

2 2c c2�0B
2 B2 

vp = vg = = = (5.153) 
N ρ µ0ρ 

where we call � � 1 
2B2 

the ‘Alfven Speed’ (5.154) 
µ0ρ 

≡ vA 

Polarization: 

E = Ez = 0, Ex = 0. Ey = 0 ⇒ Vy = 0 Vx = 0 (Vz = 0) (5.155) 

Party longitudinal (velocity) wave → Compression “Compressional Alfven Wave”. 

2k2cρ2. N 2 = 
�0B2 = 

ω2 

Any ω has unique k�. Wave has unique velocity in � direction: vA.

Polarization


Ez = Ey = 0 Ex = 0 ⇒ Vx = 0 Vy = 0 (Vz = 0) (5.156) 

Transverse velocity: “Shear Alfven Wave”. 

Works by field line bending (Tension Force) (no compression). 
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Figure 5.10: Shear Alfven Wave 

5.7 NonUniform Plasmas and wave propagation 

Practical plasmas are not infinite & homogeneous. So how does all this plane wave analysis 
apply practically?


If the spatial variation of the plasma is slow c.f. the wave length of the wave, then coupling

to other waves will be small (negligible).


Figure 5.11: Comparison of sudden and gradualy refractive index change. 

For a given ω, slowly varying plasma means N/dN � λ or kN/dN � 1. Locally, the plasma 
dx dx 

appears uniform. 

Even if the coupling is small, so that locally the wave propagates as if in an infinite uniform 
plasma, we still need a way of calculating how the solution propagates from one place to 
the other. This is handled by the ‘WKB(J)’ or ‘eikonal’ or ‘ray optic’ or ‘geometric optics’ 
approximation. 

WKBJ solution 

Consider the model 1d wave equation (for field ω) 

d2E 
dx2 

+ k2E = 0 (5.157) 

with k now a slowly varying function of x. Seek a solution in the form 

E = exp (iφ (x)) (−iωt implied) (5.158) 
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φ is the wave phase (= kx in uniform plasma). 

Differentiate twice � �2
d2E d2φ dφ iφ = e (5.159) 
dx2 

{i
dx2 

− 
dx 

}

Substitute into differential equation to obtain � �2
dφ d2φ 

= k2 + i (5.160) 
dx dx2 

Recognize that in uniform plasma d2φ = 0. So in slightly nonuniform, 1st approx is to 
dx2 

ignore this term. 
dφ 

(5.161) 
dx 
� ±k(x) 

Then obtain a second approximation by substituting 

d2φ dk 
(5.162) 

dx2 
� ± 

dx 

so � �2
dφ dk 

k2 ± i (5.163) 
dx 

� 
dx 

dφ i dk 
using Taylor expansion. (5.164) k ±

dx 
� ± 

2k dx 

Integrate: 
x 1 

2kdx + i ln kφ � ± (5.165) 

Hence E is � � � x1iφE kdx (5.166) ±i= e =
 1 
2 

exp

k 

This is classic WKBJ solution. Originally studied by Green & Liouville (1837), the Green 
of Green’s functions, the Liouville of Sturm Liouville theory.


Basic idea of this approach: (1) solve the local dispersion relation as if in infinite homogeneous

plasma, to get k(x), (2) form approximate solution for all space as above.


Phase of wave varies as integral of kdx.

1In addition, amplitude varies as . This is required to make the total energy flow uniform. 1 
2k 

Two Stream Instability


An example of waves becoming unstable in a nonequilibrium plasma. Analysis is possible

using Cold Plasma techniques.


Consider a plasma with two participating cold species but having different average velocities.
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These are two “streams”. 
Species1 Species2 

. → . 
(5.167) 

M oving. Stationary. 
Speed v 

We can look at them in different inertial frames, e.g. species (stream) 2 stationary or 1 
stationary (or neither). 

We analyse by obtaining the susceptibility for each species and adding together to get total 
dielectric constant (scalar 1d if unmagnetized). 

In a frame of reference in which it is stationary, a stream j has the (Cold Plasma) suscepti
bility 

−ω2 

χj = 
ω2 

pj . (5.168) 

If the stream is moving with velocity vj (zero order) then its susceptibility is 

−ω2 

χj = pj . (k & vj in same direction) (5.169) 2(ω − kvj )

Proof from equation of motion: 

qj ∂ ̃v 
E = + v.�˜ v = −i (ω − kvj ) ˜v = (−iω + ik.vj ) ˜ v . (5.170) 

mj ∂t 

Current density 
j = ρj vj + ρj .˜ ρvj . (5.171) v + ˜

Substitute in 

∂ρ �.j + = ik.˜ vρ − iωρ̃ = 0 (5.172) vρj + ik.˜
∂t 

k.ṽ 
ρ̃j = ρj (5.173) 

ω − k.vj 

Hence substituting for ṽ in terms of E: 

k.E − χj �0�.E = ρ̃j = 
ρj qj 

2 , (5.174) 
mj −i (ω − k.vj )

which shows the longitudinal susceptibility is 

pjχj = 
ρj qj 1

= 
−ω2 

(5.175) 2− 
mj �0 (ω2 − kvj ) (ω − kvj )

2 

Proof by transforming frame of reference: 

Consider Galileean transformation to a frame moving with the stream at velocity vj . 

x = x� + vj t ; t� = t (5.176) 
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exp i (k.x − ωt) = exp i (k.x� − (ω − k.vj ) t
�) (5.177) 

So in frame of the stream, ω� = ω − k.vj . 

Substitute in stationary cold plasma expression: 

ω2 ω2 
pj 

2 2 . (5.178) − 
ω�

χj = pj = − 
(ω − kvj )

Thus for n streams we have 

� � ω2 
pj� = 1 + χj = 1 − 

(ω − kvj )
2 . (5.179) 

j j 

Longitudinal wave dispersion relation is 

� = 0. (5.180) 

Two streams 
ω2 ω2 

p1 P 2 (5.181) 20 = � = 1 − 
(ω − kv1)

2 − 
(ω − kv2)

For given real k this is a quartic in ω. It has the form: 

Figure 5.12: Twostream stability analysis. 

If � crosses zero between the wells, then ∃ 4 real solutions for ω. (Case B).


If not, then 2 of the solutions are complex: ω = ωr ± iωi (Case A).


The time dependence of these complex roots is


exp (−iωt) = exp (−iωr t ± ωit) . (5.182) 

122 



� � 

� 

The +ve sign is growing in time: instability.


It is straightforward to show that Case A occurs if


3 
22 2 

|
k(v2 − v1) < ωp1 + ω| 3 3 
p2 . (5.183) 

Small enough k (long enough wavelength) is always unstable. 

Simple interpretation (ω2 
p1, v1 = 0) a tenuous beam in a plasma sees a negative � ifp2 � ω2 

kv2
< 

p1.| | ∼ ω

Negative � implies charge perturbation causes E that enhances itself: charge (spontaneous) 
bunching. 

5.9 Kinetic Theory of Plasma Waves 

Wave damping is due to waveparticle resonance. To treat this we need to keep track of the 
particle distribution in velocity space → kinetic theory. 

5.9.1 Vlasov Equation 

Treat particles as moving in 6D phase space x position, v velocity. At any instant a particle 
occupies a unique position in phase space (x, v). 

Consider an elemental volume d3xd3v of phase space [dxdydzdvxdvy dvz ], at (x, v). Write 
down an equation that is conservation of particles for this volume 

∂ � 
− 

∂t 
f d3 xd3 v = [vxf (x + dxx̂, v) − vxf (x, v)] dydzd3 v 

+ same for dy, dz 

+ [axf (x, v + dvx ̂x) − axf (x, v)] d3 xdvy dvz 

+ same for dvy , dvz (5.184) 

Figure 5.13: Difference in flow across xsurfaces (+y + z). 

a is “velocity space motion”, i.e. acceleration. 

123 



�

Divide through by d3xd3v and take limit 

∂f ∂ ∂ ∂ ∂ ∂ ∂ 
= (vxf) + (vy f) + (vz f) + (axf) + (ay f) + (az f)− 

∂t ∂x ∂y ∂z ∂vx ∂vy ∂vz 

= . (vf) + �v . (af) (5.185) 

∂[Notation: Use 
∂
∂ 
x ↔ �; 

∂v v ].↔ �
Take this simple continuity equation in phase space and expand: 

∂f 
+ (�.v) f + (v.�) f + (�v .a) f + (a.�v ) f = 0. (5.186) 

∂t 

Recognize that � means here ∂ etc. keeping v constant so that �.v = 0 by definition. So 
∂x 

∂f ∂f ∂f 
+ v. + a. = −f (�v .a) (5.187) 

∂t ∂x ∂v 

Now we want to couple this equation with Maxwell’s equations for the fields, and the Lorentz 
force 

q 
a = (E + v ∧B) (5.188) 

m 
Actually we don’t want to use the E retaining all the local effects of individual particles. We 
want a smoothed out field. Ensemble averaged E. 

Evaluate 

q q 
v .a = v . (E + v ∧B) = v . (v ∧B) (5.189) � �

m m
�

q 
= B. (�v ∧ v) = 0. (5.190) 

m 

So RHS is zero. However in the use of smoothed out E we have ignored local effect of one 
particle on another due to the graininess. That is collisions. 

Boltzmann Equation: � � 
∂f ∂f ∂f ∂f 
∂t 

+ v. 
∂x 

+ a. 
∂v 

= 
∂t 

collisions 

(5.191) 

Vlasov Equation ≡ Boltzman Eq without collisions. For electromagnetic forces: 

∂f 
∂t 

+ v. 
∂f 
∂x 

+ 
q 
m 

(E + v ∧B) 
∂f 
∂v 

= 0. (5.192) 

Interpretation: 

Distribution function is constant along particle orbit in phase space: d 
dt f = 0. 

d ∂f dx ∂f ∂v ∂f 
dt 

f = 
∂t 

+ 
dt 

. 
∂x 

+ 
dt 

. 
∂v 

(5.193) 

Coupled to Vlasov equation for each particle species we have Maxwell’s equations. 
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VlasovMaxwell Equations 

∂fj 

∂t 
+ v. 

∂fj 

∂x 
+ 

qj 

mj 
(E + v ∧B) . 

∂fj 

∂vj 
= 0 (5.194) 

�∧ E = 
−∂B 
∂t 

, �∧B = µ0j + 
1 
c2 

∂E 
∂t 

(5.195) 

ρ �.E = 
�0 

, �.B = 0 (5.196) 

Coupling is completed via charge & current densities. 

ρ = qjnj = qj fjd
3 v (5.197) 

j J 

j = qjnjVj = qj fjvd3 v. (5.198) 
j j 

Describe phenomena in which collisions are not important, keeping track of the (statistically

averaged) particle distribution function.


Plasma waves are the most important phenomena covered by the VlasovMaxwell equations.


6dimensional, nonlinear, timedependent, integraldifferential equations!


5.9.2 Linearized Wave Solution of Vlasov Equation 

Unmagnetized Plasma 

Linearize the Vlasov Eq by supposing 

f = f0(v) + f1(v) exp i (k.x − ωt) , f1 small. (5.199) 

also E = E1 exp i (k.x − ωt) B = B1 exp i (k.x − ωt) (5.200) 

∂Zeroth order f0 equation satisfied by ∂ 
∂t , ∂x = 0. First order: 

q ∂f0 − iωf1 + v.ikf1 + (E1 + v ∧B1) . = 0. (5.201) 
m ∂v 

[Note v is not per se of any order, it is an independent variable.] 

Solution: 
1 q ∂f0

f1 = (5.202) 
i (ω − k.v) m 

(E1 + v ∧B1) .
∂v 

∂f0For convenience, assume f0 is isotropic. Then ∂f0 is in direction v so v ∧B1. = 0 
∂v ∂v 

q ∂f0 

f1 = m E1. ∂v (5.203) 
i (ω − k.v) 

We want to calculate the conductivity σ. Do this by simply integrating: � 2 � ∂f0v 
∂v d3j = qf1vd3 v = 

q
v .E1. (5.204) 

im ω − k.v 
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Here the electric field has been taken outside the vintegral but its dot product is with 
∂f0/∂v. Hence we have the tensor conductivity, 

2 � ∂f0q v 
σ = ∂v d3 v (5.205) 

im ω − k.v 

Focus on zz component: 

σzz 
2 � ∂f0 

1 + χzz = �zz = 1 + = 1 + 
q vz ∂vz d3 v (5.206) 

−iω�0 ωm�0 ω − k.v 

Such an expression applies for the conductivity (susceptibility) of each species, if more than 
one needs to be considered. 

It looks as if we are there! Just do the integral! 

Now the problem becomes evident. The integrand has a zero in the denominator. At least 
we can do 2 of 3 integrals by defining the 1dimensional distribution function 

fz(vz) ≡ f(v)dvxdvy (k = kẑ) (5.207) 

Then 
∂fz2 � q vz ∂vzχ = dvz (5.208) 

ωm�0 ω − kvz 

(drop the z suffix from now on. 1d problem). 
ωHow do we integrate through the pole at v = 
k ? Contribution of resonant particles. Crucial 

to get right. 

Path of velocity integration 

First, realize that the solution we have found is not complete. In fact a more general solution 
can be constructed by adding any solution of 

∂f1 ∂f1 
+ v = 0 (5.209) 

∂t ∂z 

∂f [We are dealing with 1d Vlasov equation: 
∂t + v ∂f + qE ∂f = 0.] Solution of this is 

∂z m ∂v 

f1 = g(vt − z, v) (5.210) 

where g is an arbitrary function of its arguments. Hence general solution is 

q E ∂f0


f1 = m ∂v


i (ω − kv) 
exp i (kz − ωt) + g (vt − z, v) (5.211) 

and g must be determined by initial conditions. In general, if we start up the wave suddenly 
there will be a transient that makes g nonzero. 
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So instead we consider a case of complex ω (real k for simplicity) where ω = ωr + iωi and

ωi > 0.


This case corresponds to a growing wave:


exp(−iωt) = exp(−iωr t + ωit) (5.212) 

Then we can take our initial condition to be f1 = 0 at t → −∞. This is satisfied by taking

g = 0.


For ωi > 0 the complementary function, g, is zero.


Physically this can be thought of as treating a case where there is a very gradual, smooth 
start up, so that no transients are generated.


Thus if ωi > 0, the solution is simply the velocity integral, taken along the real axis, with

no additional terms. For


∂f 2 � 
∂v q v 

ωi > 0, χ = dv (5.213) 
ωm�o C ω − kv 

where there is now no difficulty about the integration because ω is complex. 

Figure 5.14: Contour of integration in complex vplane. 

ωThe pole of the integrand is at v = 
k which is above the real axis. 

The question then arises as to how to do the calculation if ωi ≤ 0. The answer is by “analytic

continuation”, regarding all quantities as complex.


“Analytic Continuation” of χ is accomplished by allowing ω/k to move (e.g. changing the ωi)

but never allowing any poles to cross the integration contour, as things change continuously.


Remember (Fig 5.15)


F dz = residues × 2πi (5.214) 
c 

(Cauchy’s theorem)


Where residues = limz→zk [F (z)/(z −zk )] at the poles, zk , of F (z). We can deform the contour

how we like, provided no poles cross it. Hence contour (Fig 5.16)
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Figure 5.15: Cauchy’s theorem.


Figure 5.16: Landau Contour 

We conclude that the integration contour for ωi < 0 is not just along the real v axis. It 
includes the pole also.


To express our answer in a universal way we use the notation of “Principal Value” of a

singular integral defined as the average of paths above and below


F 1 F 
℘ dv = + dv (5.215) 

v − v0 2 C1 C2 v − v0 

Figure 5.17: Two halves of principal value contour.


Then 

(5.216) } 
∂f012 1 ω ∂f0v 
∂v χ = 

ωm�o 
{℘ dv − 2πi 

2ω − kv k2 ∂v

v= 

k
ω 

Second term is half the normal residue term; so it is half of the integral round the pole. 
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Figure 5.18: Contour equivalence. 

Our expression is only shorthand for the (Landau) prescription: 
“Integrate below the pole”. (Nautilus). 

Contribution from the pole can be considered to arise from the complementary function 
g(vt− z, v). If g is to be proportional to exp(ikz), then it must be of the form g = exp[ik(z − 
vt)]h(v) where h(v) is an arbitrary function. To get the result previously calculated, the value 
of h(v) must be (for real ω) 

1 ∂f0 

k ∂v

ωq

h(v) = π 
m 

δ v − (5.217) 
k 

k
w 

⎞⎛ 
2ω ∂f0 

k2 ∂v 
q

(so that vgdv = ⎝πi 
q
⎠ 

k
ω 

.) (5.218) 
−iω�o ωm�o 

This Dirac delta function says that the complementary function is limited to particles with 
“exactly” the wave phase speed ω . It is the resonant behaviour of these particles and the 

k 
imaginary term they contribute to χ that is responsible for wave damping.


We shall see in a moment, that the standard case will be ωi < 0, so the opposite of the

prescription ωi > 0 that makes g = 0. Therefore there will generally be a complementary

function, nonzero, describing resonant effects. We don’t have to calculate it explicitly 
because the Landau prescription takes care of it. 

5.9.3 Landau’s original approach. (1946) 

Corrected Vlasov’s assumption that the correct result was just the principal value of the inte

gral. Landau recognized the importance of initial conditions and so used Laplace Transform

approach to the problem


∞
Ã(p) = e−ptA(t)dt (5.219) 

0 

The Laplace Transform inversion formula is 

s+i∞1 
eptÃ(p)dpA(t) = (5.220) 

s large 
Ã(p) 

2πi s−i∞ 

Ã(p) (i.e. where the path of integration must be chosen to the right of any poles of 
enough). Such a prescription seems reasonable. If we make �(p) large enough then the 
integral will presumably exist. The inversion formula can also be proved rigorously so that 
gives confidence that this is the right approach. 
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Ã iωtA(t)dt, which can be identified as If we identify p → −iω, then the transform is 
the Fourier transform that would give component 

= e

˜
A ∝ e−iωt , the wave we are discussing. 

Making �(p) positive enough to be to the right of all poles is then equivalent to making �(ω) 
positive enough so that the path in ωspace is above all poles, in particular ωi > �(kv). For 
real velocity, v, this is precisely the condition ωi > 0, we adopted before to justify putting 
the complementary function zero. 

Either approach gives the same prescription. It is all bound up with satisfying causality. 

5.9.4 Solution of Dispersion Relation 

We have the dielectric tensor ⎧⎨ 
dv − πi


ω ∂f0 

k2 ∂v


⎫⎬ ⎭ 
k
ω 

, (5.221)

∂f02 vq ∂v � = 1 + χ = 1 + ℘ ⎩ωm�0 ω − kv 

for a general isotropic distribution. We also know that the dispersion relation is
⎤⎡ 
0 0−N 2 + �t �2 

N 2 + �t � = 0 (5.222) ⎢⎣ 
⎥⎦0 0−N 2 + �t = −

0 0 �


Giving transverse waves N 2 = �t and

longitudinal waves � = 0.

Need to do the integral and hence get �.


Presumably, if we have done this right, we ought to be able to get back the coldplasma

result as an approximation in the appropriate limits, plus some corrections. We previously

argued that coldplasma is valid if ω

ω
k � vt. So regard kv as a small quantity and expand: ⎡ ⎤�2∂f0 1 ∂f0 kv kv v 
dv ⎣1 + ⎦ dv� dv = v℘ + + ... 

ω kv ω ∂v ω ω1 −
ω ⎡ ⎤�2 

fo 
1 2kv kv − ⎣1 + ⎦ dv+ 3 (by parts) + ...
= 

ω ω ω 

� −1 3nT k2 

n + + ... (5.223) 
ω m ω2 

Here we have assumed we are in the particles’ average rest frame (no bulk velocity) so that 
f0vdv = 0 and also we have used the temperature definition 

nT = mv 2f0dv , (5.224) 

appropriate to one degree of freedom (1d problem). Ignoring the higher order terms we get: ⎧⎨ 
⎫⎬ ⎭ 

k
ω 

(5.225)

ω2 

p T k2 ω2 1 ∂f0
� = 1 − 1 + 3 + πi 

ω2 ⎩ m ω2 k2 n ∂v 
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2 
pω

This is just what we expected. Cold plasma value was � = 1 − We have two corrections 
ω2 . 

� �2 
vt1. To real part of �, correction 3 T k2 

= 3 
vp 

due to finite temperature. We could have 
m ω2 

got this from a fluid treatment with pressure. 

2. Imaginary part → antihermitian part of � → dissipation. 

Solve the dispersion relation for longitudinal waves � = 0 (again assuming k real ω complex). 
Assume ωi � ωr then 

T k2 ω2 1 ∂f02 
p {1 + 3 ω2 + 2ωr ωii = ω2 

r(ωr + iωi) + πi | }
k
ω 

m ω2 k2 n ∂v 
T k2 ω2 1 ∂fo

ω2 
p {1 + 3 + πi r 

m ω2 k2 nr 

(5.226) |
 }ωr 

∂v
 k 

1 ωr 
2 1 ∂f0 π ωr 1 ∂f0

ω2 
p = ω2 

pHence ω1 πi (5.227) | |ω ωr r 

k2 k2 n ∂v 2ωr i ∂v 2k kn 

For a Maxwellian distribution 

m 
1 
2 

2mv
f0 = exp n (5.228) 

2πT 
− 

2T 

1 
2 

2∂f0 

∂v 
m mv mv

= exp n (5.229) 
2πT 

− 
T 

− 
2T 

ω2 � � 
mr 

1 
2 m
 mω2π 

pωi � −ω2 r exp (5.230) −
2T k2k3 2πT T
2 

The difference between ωr and ωp may not be important in the outside but ought to be 
retained inside the exponential since 

m 
2T 

ω2 
p 

k2 

� 

1 + 3 
T 
m 

k2 

ω2 
p 

� 

= 
mω2 

p 

2T k2 
+ 

3 
2 

(5.231) 

1 
2 ω3 mω2π 1 3 

So ωi � −ωp
p exp (5.232) 

38 k3 vt 
−

2T k
p 
2 
−

2 

Imaginary part of ω is negative ⇒ damping. This is Landau Damping. 

Note that we have been treating a single species (electrons by implication) but if we need 
more than one we simply add to χ. Solution is then more complex. 

5.9.5 Direct Calculation of Collisionless Particle Heating 

(Landau Damping without complex variables!)


We show by a direct calculation that net energy is transferred to electrons.
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Suppose there exists a longitudinal wave 

E = E cos(kz − ωt)ˆ (5.233) z 

Equations of motion of a particle 

dv q 
= E cos(kz − ωt) (5.234) 

dt m 
dz 

= v (5.235) 
dt 

Solve these assuming E is small by a perturbation expansion v = v0 + v1 + ..., z = z0(t) +

z1(t) + ... .


Zeroth order:

dvo 

= 0 ⇒ v0 = const , z0 = zi + v0t (5.236) 
dt 

where zi = const is the initial position. 

First Order 

dv1 q q 
= E cos (kz0 − ωt) = E cos (k (zi + v0t) − ωt) (5.237) 

dt m m

dz1


= v1 (5.238) 
dt 

Integrate: 
qE sin (kzi + kv0 − ωt) 

+ const. (5.239) v1 = 
m kv0 − ω 

take initial conditions to be v1, v2 = 0. Then 

qE sin (kzi + Δωt) − sin (kzi) 
(5.240) v1 = 

m Δω 

where Δω ≡ kv0 − ω, is () the frequency at which the particle feels the wave field. 

qE cos kzi − cos (kzi + Δωt) sin kzi 
(5.241) z1 = 

m Δω2 
− t 

Δω 

(using z1(0) = 0).


2nd Order (Needed to get energy right)


dv2 qE 
= 

M 
{cos (kzi + kv0t − ωt + kz1) − cos (kzi + kv0t − ωt)}

dt

qE


= kzi{− sin (kzi + Δωt)} (kz1 � 1) (5.242) 
m 

Now the gain in kinetic energy of the particle is 

1 2 1 2 mv 
1 
mv0

2 = m{(v0 + v1 + v2 + ...)2 − v0 }2 
− 

2 2

1 2
=
2 
{2v0v1 + v1 + 2v0v2 + higher order} (5.243) 
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and the rate of increase of K.E. is 

d 1 2 dv1 dv1 dv2 
mv = m v0 + v1 + v0 (5.244) 

dt 2 dt dt dt 

We need to average this over space, i.e. over zi. This will cancel any component that simply 
oscillates with zi. �� � 

d 1 2 dv1 dv1 dv2 
mv = v0 + v1 + v0 m (5.245) 

dt 2 dt dt dt 

dv1 
v0 = 0 (5.246) 

dt � � � � �� 
dv1 q2E2 sin (kzi + Δωt) − sin kzi 

cos (kzi + Δωt)v1 = 
dt m2 Δω 

q2E2 sin (kzi + Δωt) − sin (kzi + Δωt) cos Δωt + cos (kzi + Δωt) sin Δωt 
= 

m2 Δω 

cos (kzi + Δωt) 

q2E2 � 
sin Δωt 2 = cos (kzi + Δωt) 

m2 Δω

q2E2 1 sin Δωt


= (5.247) 
m2 2 Δω� � �� � � 

dv2 −q2E2 cos kzi − cos (kzi + Δωt) sin kzi 
sin (kzi + Δωt)v0 = kv0

dt m2 Δω2 
− t 

Δω 

sin Δωt cos Δωt 
= 

−q2E2 

kv0 

�� 

Δω2 
− t 

Δω 
sin2 (kzi + Δωt)

2m
q2E2 kv0 

� 
sin Δωt cos Δωt 

= + t (5.248) 
m2 2 

− 
Δω2 Δω 

Hence 

d 1 2 q2E2 � 
sin Δωt sin Δωt cos Δωt 

mv = − kv0 + kv0t (5.249) 
dt 2 2m Δω Δω2 Δω 

ωt 
= 

q2E2 � −ω sin Δωt 
+ cos Δωt + t cos Δωt (5.250) 

2m Δω2 Δω 

This is the spaceaveraged power into particles of a specific velocity v0. We need to integrate 
over the distribution function. A trick identify helps: 

ωt ∂ ω sin Δωt −ω 
sin Δωt + cos Δωt + t cos Δωt = + sin Δωt (5.251) 

Δω2 Δω ∂Δω Δω 
1 ∂ ω sin Δωt 

= + sin Δωt (5.252) 
k ∂v0 Δω 
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Hence power per unit volume is 

d 1 
P = mv 2 f (v0) dv0

dt 2 

q2E2 � ∂ ω sin Δωt 
= f (v0) + sin Δωt dv0

2mk ∂v0 Δω 
q2E2 � � �

ω sin Δωt ∂f 
= + sin Δωt dv0 (5.253) − 

2mk Δω ∂v0 

As t becomes large, sin Δωt = sin(kv0 − ω)t becomes a rapidly oscillating function of v0. 
Hence second term of integrand contributes negligibly and the first term, 

ω sin Δωt sin Δωt 
= ωt (5.254) ∝ 

Δω Δωt 

becomes a highly localized, deltafunctionlike quantity. That enables the rest of the inte
grand to be evaluated just where Δω = 0 (i.e. kv0 − ω = 0). 

Figure 5.19: Localized integrand function. 

So: 
q2E2 ω ∂f � sin x 

P − | dx (5.255) =

k
ω 

2mk k ∂v x 
x = Δωt = (kv0 − ω)t. 
and sin x dz = π so 

x 
πq2ω ∂f0

P = −E 
2mk2 

|

k
ω (5.256) 

∂v 
We have shown that there is a net transfer of energy to particles at the resonant velocity ω 

k 

from the wave. (Positive if ∂f is negative.) 
∂v | 

5.9.6 Physical Picture 

Δω is the frequency in the particles’ (unperturbed) frame of reference, or equivalently it is 
kv� where v� is particle speed in wave frame of reference. The latter is easier to deal with. 0 0 

Δωt = kv0t is the phase the particle travels in time t. We found that the energy gain was of 
the form � sin Δωt 

d (Δωt) . (5.257) 
Δωt 
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Figure 5.20: Phase distance traveled in time t. 

This integrand becomes small (and oscillatory) for Δωt � 1. Physically, this means that 
if particle moves through many wavelengths its energy gain is small. Dominant contribution 
is from Δωt < π. These are particles that move through less than 1 wavelength during the 

2 
period under consideration. These are the resonant particles. 

Figure 5.21: Dominant contribution 

Particles moving slightly faster than wave are slowed down. This is a secondorder effect. 

Figure 5.22: Particles moving slightly faster than the wave. 

Some particles of this v0 group are being accelerated (A) some slowed (B). Because A’s are

then going faster, they spend less time in the ‘down’ region. B’s are slowed; they spend more

time in up region. Net effect: tendency for particle to move its speed toward that of wave.


Particles moving slightly slower than wave are speeded up. (Same argument). But this is

only true for particles that have “caught the wave”.


Summary: Resonant particles’ velocity is drawn toward the wave phase velocity.


Is there net energy when we average both slower and faster particles? Depends which type

has most.


Our Complex variables wave treatment and our direct particle energy calculation give con

sistent answers. To show this we need to show energy conservation. Energy density of
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Figure 5.23: Damping or growth depends on distribution slope 

wave: 
1 1 1 

W = [ + n m ṽ2| ] (5.258) 2� E |0
2� | |

2 2

<sin2> Electrostatic P article Kinetic 

Magnetic wave energy zero (negligible) for a longitudinal wave. We showed in Cold Plasma 
treatment that the velocity due to the wave is ˜ = qE Hencev −iωm 

ω2 

W � 
1 �0E

2 

2 2

1 + p (again electrons only) (5.259) 

ω2 

When the wave is damped, it has imaginary part of ω, ωi and 

dW 1 dE2 

= W = 2ωiW (5.260) 
dt E2 dt 

Conservation of energy requires that this equal minus the particle energy gain rate, P . Hence 

2ωp 

+E2 πq2ω ∂f0 
2mk2−P


= 
π ω 1 ∂f0 2 

k� ω|∂v = ω2 
pωi = (5.261) |ω ×
 2ωp2
k2 n ∂v
�0E22W k

1 + 1 + 
ω2 ω21 

So for waves such that ω ∼ ωp, which is the dispersion relation to lowest order, we get 

ωi = ω2 π ωr 1 ∂f0 
p . (5.262) 
2 k2 n ∂v ωr 

k 

This exactly agrees with the damping calculated from the complex dispersion relation using

the Vlasov equation.


This is the Landau damping calculation for longitudinal waves in a (magnetic) fieldfree

plasma. Strictly, just for electron plasma waves.


How does this apply to the general magnetized plasma case with multiple species?


Doing a complete evaluation of the dielectric tensor using kinetic theory is feasible but very

heavy algebra. Our direct intuitive calculation gives the correct answer more directly.
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5.9.7 Damping Mechanisms 

Cold plasma dielectric tensor is Hermitian. [Complex conjugate*, transposeT = original 
matrix.] This means no damping (dissipation). 

The proof of this fact is simple but instructive. Rate of doing work on plasma per unit 
volume is P = E.j. However we need to observe notation. 

Notation is that E(k, ω) is amplitude of wave which is really �(E(k, ω) exp i(k.x − ωt)) and 
similarly for j. Whenever products are taken: must take real part first. So 

P = � (E exp i (k.x − ωt)) .� (j exp i (k.x − ωt)) � 1 � �1 � 
= Ee iφ + E∗e−iφ . je iφ + j∗e−iφ (φ = k.x − ωt.)

2 2 
1 � 

.j∗e−2iφ = E.je 2iφ + E.j∗ + E∗.j + E∗ (5.263) 
4 

The terms e2iφ & e−2iφ are rapidly varying. We usually average over at least a period. These 
average to zero. Hence 

1 1 �P � = [E.j∗ + E∗.j] = 
2 
� (E.j∗) (5.264) 

4 
Now recognize that j = σ.E and substitute 

1 
[E.σ∗.E∗ + E∗.σ.E] (5.265) �P � = 

4 

But for arbitrary matrices and vectors: 

A.M.B = B.MT .A; (5.266) 

(in our dyadic notation we don’t explicitly indicate transposes of vectors). So 

E.σ∗.E∗ = E∗.σ∗T .E (5.267) 

hence 
1 � 

�P � = E∗. σ∗T + σ .E (5.268) 
4 

If � = 1 + 1 σ is hermitian �∗T = �, then the conductivity tensor is antihermitian −iω�0 

σ∗T = −σ (if ω is real). In that case, equation 5.268 shows that < P >= 0. No dissipation. 
Any dissipation of wave energy is associated with an antihermitian part of σ and hence �. 
Cold Plasma has none. 

Collisions introduce damping. Can be included in equation of motion 

dv 
m = q (E + v ∧ B) − mv ν (5.269) 

dt 

where ν is the collision frequency. 
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Whole calculation can be followed through replacing m(−iω) with m(ν − iω) everywhere.

This introduces complex quantity in S, D, P .


We shall not bother with this because in fusion plasmas collisional damping is usually neg

ligible. See this physically by saying that transit time of a wave is


Size 1 meter 
3 × 10+8m/s 

� 3 × 10−9 seconds. (5.270) 
Speed 

∼ 

(Collision frequency)−1 ∼ 10µs → 1ms, depending on Te, ne. 

When is the conductivity tensor Antihermitian? 

Cold Plasma: 
ω2 

pj⎤⎡ 

where


S = 1 − 

D = j 

S −iD 0

S


j ω2−Ω2 
j 

Ωj ωpj⎢⎣ 
⎥⎦iD 0 (5.271) 

ω ω2−Ω2 
j 

ω20 0 P

P = 1 − pj 

j ω2 

This is manifestly Hermitian if ω is real, and then σ is antiHermitian.


This observation is sufficient to show that if the plasma is driven with a steady wave, there

is no damping, and k does not acquire a complex part.


Two stream Instability 

�zz = 1 − 
ω2 

pj 

(ω − kvj )j 

(5.272) 2 

In this case, the relevant component is Hermitian (i.e. real) if both ω and k are real.


But that just begs the question: If ω and k are real, then there’s no damping by definition.


So we can’t necessarily detect damping or growth just by inspecting the dieletric tensor form

when it depends on both ω and k.


Electrostatic Waves in general have � = 0 which is Hermitian. So really it is not enough to

deal with � or χ. We need to deal with σ = −iω�oχ, which indeed has a Hermitian component

for the twostream instability (even though χ is Hermitian) because ω is complex.


5.9.8 Ion Acoustic Waves and Landau Damping 

We previously derived ion acoustic waves based on fluid treatment giving 

ω2 ω2 
pi�zz = 1 − pe (5.273) 

mene mini 
ω2 − k

2peγe 
− 

ω2 − k
2piγi 

γiTi+γeTeLeading to ω2 � k2 . 
mi 
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Kinetic treatment adds the extra ingredient of Landau Damping. Vlasov plasma, unmagne

tized: 

ω2 
pe 1 ∂foe dv ω2 

pi 1 ∂foi dv 
�zz = 1 − 

k2 C v − ω 
k ∂v
 n 

− 
k2 C v −

(5.274) ω ∂v n
k 

Both electron and ion damping need to be considered as possibly important.


Based on our fluid treatment we know these waves will have small phase velocity relative to

electron thermal speed. Also cs is somewhat larger than the ion thermal speed.


Figure 5.24: Distribution functions of ions and electrons near the sound wave speed. 

So we adopt approximations 
ω ω 

vte � 
k 

, vti < (<) 
k 

(5.275) 

and expand in opposite ways. 

Ions are in the standard limit, so 

ω2 3Ti k
2 ω2 1 ∂foipi 1 + χi � − 

ω2 
+ πi w/k (5.276) |

m ω2 k2 ni ∂v 

Electrons: we regard ω as small and write 
k 

1 ∂foe dv 1 ∂foe dv 
v ∂v
 n 
∂foe 

dv 
∂v2 

℘ ℘ω ∂v v − n

k 

2 
n 
2 

= 

me 
foedv for Maxwellian. −

2Te 
= 

n 
me 

= (5.277) −
Te 

Write F0 = fo/n. 

Contribution from the pole is as usual so ⎤⎡ 
ω2 

pe me ∂Foe⎣ ⎦χe =
−
 + πi (5.278) −
k2 Te ∂v 

ω/k 
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Collecting real and imaginary parts (at real ω) 

ω2 ω2 k2 
pi 3Ti

εr (ωr ) = 1 + pe me 
1 + (5.279) 

k2 � 
Te 
− 

ωr 
2 m ωr 

2 

∂Foi
εi(ωr ) = −π

k

1 
2 

ω2 ∂Foe |ω/k + ω2 
pe ∂v pi ω/k (5.280) 

∂v 
|

The real part is essentially the same as before. The extra Bohm Gross term in ions appeared 
previously in the denominator as 

ω2 ω2 k2 
pi pi 3Ti 

ω2 − k
2piγi 

↔ 
ω2 

1 + 
mi ω2 

(5.281) 
mi 

Since our kinetic form is based on a rather inaccurate Taylor expansion, it is not clear that 
it is a better approx. We are probably better off using 

ω2 1pi 
3Tik2 . (5.282) 

ω2 1 − 
miω2 

Then the solution of εr (ωr ) = 0 is 

ω2 � �
Te + 3Ti 1r = (5.283) 

k2 mi 1 + k2λ2 
De 

as before, but we’ve proved that γe = 1 is the correct choice, and kept the k2λ2 term (1st De 

term of εr ). 

The imaginary part of ε gives damping. 

General way to solve for damping when small 

We want to solve ε(k, ω) = 0 with ω = ωr + iωi , ωi small. 

Taylor expand ε about real ωr : 

dε 
ε(ω) ε(ωr ) + iωi 

dω 
|ωr (5.284) 

∂ 
= ε(ωr ) + iωi ε(ωr ) (5.285) 

∂ωr 

Let ωr be the solution of εr (ωr ) = 0; then 

∂ 
ε(ω) = iεi(ωr ) + iωi ε(ωr ). (5.286) 

∂ωr 

This is equal to zero when 
εi (ωr ) 

. (5.287) ωi = 
∂ε(ωr )

− 
∂ωr 
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If, by presumption, εi � εr , or more precisely (in the vicinity of ε = 0), ∂εi/∂ωr � ∂εr /∂ωr 

then this can be written to lowest order: 

εi (ωr ) 
(5.288) ωi = 

∂εr (ωr )
− 

∂ωr 

Apply to ion acoustic waves: 

∂εr (ωr ) ω2 k2 
pi 4Ti 

= 2 + 4 (5.289) 
∂ωr ωr 

3 mi ωr 
2 

so ⎡ ⎤ � 

ωi = 
π ωr 

3 ⎣ 1 ⎦ ω2 ∂Foe 
pi 

∂Foi 
ω/k (5.290) 

k2 ω2 
pi 2 + 4 4Ti k2 pe ∂v 

|ω/k + ω2 

∂v 
|

mi ω2 
r 

For Maxwellian distributions, using our previous value for ωr , 

1 
∂Foe 

∂v


2me mev 
e− mev2 

2Teωr = 
k
| − 

2πTe Te ωrv= 
k ⎛ ⎞ 

1
1 + 3Ti 

Te 

3 
1 Te + 3Ti 1
2me me2 ⎝ ⎠− √
2π 

−
= exp 
1 + k2λ2 

DTe 2mimi 1 + k2λ2 
D 

1 
21 + 3Ti1 

21 me me Te� , (5.291) = − √
2π mi Te 1 + k2λ2 

De 

where the exponent is of order me/mi here, and so the exponential is 1. And 

⎛ ⎞1 

1 + 3Ti 
Te 

12
1 + 3Ti∂Foi 1 Te ⎝− 

Te Te ⎠ (5.292) 
D 

2mi 
ωr =| 
k 

−√
2π 

exp 
1 + k2λ2∂v Ti Ti1 + k2λ2 

D 
2Ti 

Hence 

⎡ ⎤ � � 
ωi π ω2 ⎣ 1 1 + 3

T
T
e

i 

r = ⎦ � 

1 
2 

− √
2π 

×
k2k2 2 + 4 3Tiωr 1 + k2λ2 

D2 
rωmi ⎡ ⎛ ⎞⎤ 

1
1 + 3Ti1 

Te ⎝− 
Te Te ⎠⎦ (5.293) 

D 

2mi me me mi2 ⎣ +
 exp 
1 + k2λ2Te Ti Ti 2Time mi 

ωi π 1 1 + 3
T
T
e

i 

3 
2 

= − 3Ti 
×

[1 + k2λ2 
De] 

3 
2ωr 2 2 + 4


Te+3Ti⎛ ⎞ 
1 3

1 + 3TiTe ⎝− 
Te Te ⎠ . (5.294) 

De 

2me 2 

+ exp

1 + k2λ2Ti 2Timi 

electron 
ion damping 
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[Note: the coefficient on the first line of equation 5.294 for ωi/ωr reduces to � − π/8 for 
Ti/Te � 1 and kλDe � 1.] 

∼ me 1Electron Landau damping of ion acoustic waves is rather small: ωi .
ωr mi 70

∼ 

Ion Landau damping is large, ∼ 1 unless the term in the exponent is large. That is 

Te
unless 

Ti 
� 1 . (5.295) 

� 
Physics is that large Te 

Ti 
pulls the phase velocity of the wave: � 

Te+3Ti 
mi 

= cs above the ion 
Tithermal velocity vti = 
mi 

. If cs � vti there are few resonant ions to damp the wave. 

[Note. Many texts drop terms of order Ti early in the treatment, but that is not really 
Te 

accurate. We have kept the first order, giving extra coefficient 
3 
23Ti Te + 3Ti � 1 + 

3 Ti 

2 Te 
(5.296)
1 + 

Te Te + 6Ti 

and an extra factor 1 + 3Ti in the exponent. When Ti ∼ Te we ought really to use full 
Te 

solutions based on the Plasma Dispersion Function.] 

5.9.9 Alternative expressions of Dielectric Tensor Elements 

This subsection gives some useful algebraic relationships that enable one to transform to 
different expressions sometimes encountered. 

χzz = 

= 

= 

= 

q2 

ωm�o 

� 

C 

v ∂fo 
∂v 

ω − kv 
dv = 

q2 

ω2m�o 

ω 
k 

� 

C 

� 
ω 

ω − kv 
− 1 

� 

q2 

m�o 

1 
k2 

� 

C 

1 
ω 
k − v 

∂fo 

∂v 
dv 

ω2 
p 

k2 

� 

C 

1 
ω 
k − v 

1 
n 

∂fo 

∂v 
dv 

ω2 
p 

k2 

� 

℘ 
� 1 

ω 
k − v 

∂Fo 

2v 
dv − πi 

∂Fo 

∂v 
|ω 

k 

� 

∂fo 

∂v 
dv (5.297) 

(5.298) 

(5.299) 

(5.300) 

where Fo = fo 
n is the normalized distribution function. Other elements of χ involve integrals 

of the form 

χjl 
ωm�o 

q2 
= 
� vj 

∂fo 
∂vl 

ω − k.v 
d3 v . (5.301) 

When k is in zdirection, k.v = kzvz. (Multi dimensional distribution f0). 
∂foIf (e.g., χxy) l = z and j = l then the integral over vl yields 
∂vl 

dvl = 0. If j = l = z then 

∂fo 
vj 

∂vj 
dvj = − fodvj , (5.302) 
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by parts. So, recalling the definition fz f dvxdvy,≡ 

2 foz 
dvz 

q
χxx = χyy = − 

ωm�o ω − k.v 
ω2 Foz 

= dvz. (5.303) − 
ω 
p 

ω − k.v 

The fourth type of element is 

2 ∂fovxq ∂vz d3χxz = v . (5.304) 
ωm�o ω − kzvz 

This is not zero unless fo is isotropic (= fo(v)). 

If f is isotropic 
∂fo 

∂vz 
= 

dfo 

dv 
∂v 
∂vz 

= 
vz 

v 
dfo 

dv 
(5.305) 

Then 

∂fo vxvz 1 dfo 
d3 v 

vx ∂vz d3 v = 
ω − kzvz ω − kzvz v dv 

vz ∂fo 
d3 v = 0 (5.306) = 

ω − kzvz ∂vx 

(since the vxintegral of ∂fo/∂vx is zero). Hence for isotropic Fo = f0/n, with k in the 
zdirection, ⎤2 

p 
⎡ 

ω Foz dvz 0+0− 
ω C ω−kvz⎢⎢⎢⎣ 

⎥⎥⎥⎦ 

2 
pω Foz 

ω C ω−kvz 
χ = 0+ (5.307) 0 dvz−


2 
pω

k C ω−kvz ∂vz 

1 ∂Foz0 0
 dvz 

(and the terms 0+ are the ones that need isotropy to make them zero). ⎤⎡ 
�t 0 0 ⎢⎣ 0 �t 0 ⎥⎦ (5.308) 
0 0 �l 

where 

ω2 

�t = 1 − p Foz 
dvz (5.309) 

ω C ω − kvz 

ω2 
p 1 ∂Foz

�l = 1 − dvz (5.310) ω ∂vzk2 C v − 
k 

All integrals are along the Landau contour, passing below the pole. 
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5.9.10 Electromagnetic Waves in unmagnetized Vlasov Plasma 

For transverse waves the dispersion relation is 

k2c2 ω2 � 

= N 2 = �t = 1 − p 1 foz dvz 
(5.311) 

ω2 ω n C (ω − kz vz ) 

This has, in principle, a contribution from the pole at ω − kvz = 0. However, for a non
relativistic plasma, thermal velocity is � c and the EM wave has phase velocity ∼ c. Con
sequently, for all velocities vz for which foz is nonzero kvz � ω. We have seen with the cold 
plasma treatment that the wave phase velocity is actually greater than c. Therefore a proper 
relativistic distribution function will have no particles at all in resonance with the wave. 

Therefore: 

1. The imaginary part of �t from the pole is negligible. And relativisitically zero. 

2. 

2ω2 1 � ∞ 
� 

kvz k2vp foz 1 + + + ... dvz�t � 1 − 
ω2 n −∞ ω ω2 

z 

ω2 k2 Tp= 1 − 
ω2 

1 + + ... 
ω2 m 

ω2 2k2v� p1 − 
ω2 ω2 

t1 + 

ω2 

� p (5.312) 1 − 
ω2 

2k2vtThermal correction to the refractive index N is small because 
ω2 � 1. 

Electromagnetic waves are hardly affected by Kinetic Theory treatment in unmagnetized 
plasma. Cold Plasma treatment is generally good enough. 
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