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0 . 1 . I n t r o d u c t i o n 1

0.1 Introduction
These lecture notes describe a new development in the calculus of variations which
is called Aubry-Mather-Theory.

The starting point for the theoretical physicist Aubry was a model for the descrip
tion of the motion of electrons in a two-dimensional crystal. Aubry investigated a
related discrete variational problem and the corresponding minimal solutions.

On the other hand, Mather started with a specific class of area-preserving annulus
mappings, the so-called monotone twist maps. These maps appear in mechanics
as Poincare maps. Such maps were studied by Birkhoff during the 1920s in several
papers. In 1982, Mather succeeded to make essential progress in this field and
to prove the existence of a class of closed invariant subsets which are now called
Mather sets. His existence theorem is based again on a variational principle.

Although these two investigations have different motivations, they are closely re
lated and have the same mathematical foundation. We will not follow those ap
proaches but will make a connection to classical results of Jacobi, Legendre, Weier
strass and others from the 19th century.

Therefore in Chapter I, we will put together the results of the classical theory
which are the most important for us. The notion of extremal fields will be most
relevant.

In Chapter II we will investigate variational problems on the 2-dimensional torus.
We will look at the corresponding global minimals as well as at the relation be
tween minimals and extremal fields. In this way, we will be led to Mather sets.

Finally, in Chapter III, we will learn the connection with monotone twist maps,
the starting point for Mather's theory. In this way we will arrive at a discrete
variational problem which forms the basis for Aubry's investigations.

This theory has additional interesting applications in differential geometry. One
of those is the geodesic flow on two-dimensional surfaces, especially on the torus.
In this context the minimal geodesies play a distinguished role. They were inves
tigated by Morse and Hedlund in 1932.

As Bangert has shown, the theories of Aubry and Mather lead to new results for
the geodesic flow on the two-dimensional torus. As the last section of these lecture
notes will show, the restriction to two dimensions is essential. These differential
geometric questions are treated at the end of the third chapter.
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The beautiful survey article of Bangert should be at hand when reading these
lecture notes.

Our description aims less at generality. We rather aim to show the relations of
newer developments with classical notions like extremal fields. Mather sets will
appear as 'generalized extremal fields' in this terminology.

For the production of these lecture notes I was assisted by O. Knill to whom I
want to express my thanks.

Zurich, September 1988, J. Moser

0.2 On these lecture notes
These lectures were presented by J. Moser in the spring of 1988 at the Eid-
genossische Technische Hochschule (ETH) Zurich. Most of the students were en
rolled in the 6th to the 8th semester of the 4 year Mathematics curriculum. There
were also graduate students and visitors from the research institute at the ETH
(FIM) in the auditorium.

In the last decade, the research on this particular topic of the calculus of variations
has made some progress. A few hints to the literature are listed in an Appendix.
Because some important questions are still open, these lecture notes are maybe of
more than historical value.

The notes were typed in the summer of 1988. J. Moser had looked carefully through
the notes in September 1988. Because the text editor in which the lecture were
originally written is now obsolete, the typesetting was done from scratch with
LMgX in the year 2000. The original had not been changed except for small,
mostly stylistic or typographical corrections. In 2002, an English translation was
finished and figures were added.

Cambridge, MA, December 2002, O. Knill



Chapter 1

One-dimensional variational
problems

1.1 Regularity of the minimals
Let ft be an open region in Mn+1. We assume that ft is simply connected. A point
in ft has the coordinates (t,xi,...,xn) = (t,x). Let F = F(t,x,p) G Cr(ft x W1)
with r > 2 and let (t\,a) and (t2,b) be two points in ft. The space

r := {7 : t -> x(t) G ft | x G C1^,^], ^1) = a,x(t2) = b }

consists of all continuously differentiable curves which start at (t\,a) and end at
(t2, b). On T is defined the functional

J(7)= j" F(t,x(t),x(t))dt
Jt!

Definition. We say that 7* G T is minimal in T if

I(7)>/(7*), v7er.

We first search for necessary conditions for a minimum of / while assuming the
existence of a minimal.

Remark. A minimum does not need to exist in general:

• It is possible that T = 0.

• It is also possible that a minimal 7* is contained only in ft.
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• Finally, the infimum could exist without the minimum being achieved.

Example. Let n = 1 and F(t,x,x) = t2 -x2,(^,a) = (0,0),(*2,&) = (1,1).
We have

7m(«) = tm, I{lm) = —L-, inf■ I{lm) = 0,m + 6 m6N
but for all 7 G T one has I(^) > 0.

Theorem 1.1.1. If 7* is minimal in T, then

FPj(t,x*,x*) = / FXj(s,x*,x*) ds = const

for all t\ < t < t2 and j = l,...,n. These equations are called integrated Euler
equations.

Definition. One calls 7* regular if det(FPiPj) ^ 0 for x = x*,p = x*.

Theorem 1.1.2. // 7* is a regular minimal, then x* G C2[t\,t2] and one has for
j = l,...,n,

^ F P j ( t , x * , x * ) = F X j ( t , x * , x * ) ( 1 . 1 )
These equations are called Euler equations.

Definition. An element 7* G T satisfying the Euler equations (1.1) is called an
extremal in I\

Warning. Not every extremal solution is a minimal!

Proof of Theorem 1.1.1. We assume that 7* is minimal in T. Let f G Cr)(ti,t2) =
{x G Cl[ti,t2] I x(t\) = x(t2) = 0 } and 7e : t i-> x(t) + e£(t). Because ft is open
and 7 G ft, also 7e G fi for small enough e. Therefore,

0 = !/(7€)u,
r*2

[\\(t),i(t))dtJt!

with Aj(t) = FPj(t) — ft2 FXj(s) ds. Theorem 1.1.1 is now a consequence of the
f o l l o w i n g l e m m a . □
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Lemma 1.1.3. If X G C[t\,t2) and

ft2

f t

then A = const.

[\x,£)dt = o, vtectitut2]Jt,

Proof. Define c = (t2 - ti)"1 J^ X(t) dt and put £(t) = /t*(A(s) - c) ds. Now
£ G Cq^i,^]- By assumption we have:

0= f\x, i)dt= f\x,(X-c))dt= [\x-c)2dt,
J t ! J t X J t !

where the last equation followed from Jt 2(A - c) dt = 0. Because A is continuous,
this implies with / 2(A — c)2 dt = 0 the claim A = const. D

Proof of Theorem 1.1.2. Put y* = FPj(t,x*,p*). Since by assumption det(FPiPj) ^
0 at every point (t,x*(t),x*(t)), the implicit function theorem assures that func
tions pi = (f)k(t,x*,y*) exist, which are locally C1. From Theorem 1.1.1 we know

y ) = c o n s t - f F X j ( s , x * , x * ) d s G C 1 ( 1 . 2 )Jt!
and so

x*k = <l>k(t,x*,y*)eC1 .
Therefore x*k G C2. The Euler equations are obtained from the integrated Euler
e q u a t i o n s i n T h e o r e m 1 . 1 . 1 . □

Theorem 1.1.4. // 7* is minimal, then
n

(Fpp(t,x\y*)C,0 = J2 JW*.**>y*KiCi > 0

holds for all t\ < t < t2 and all ( G Kn.

Proof. Let 7e be defined as in the proof of Theorem 1.1.1. Then 7e : t »-> x*(t) +

0 < / / : = ^ / ( 7 £ ) | e = o ( 1 . 3 )

= / 2 (FPPi 0 + 2(Fpx£, 0 + (FXI& 0 d« • (1.4)
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II is called the second variation of the functional J. Let t G (£1,^2) be arbitrary.
We construct now special functions £j G Cr](t\,t2):

Zj(t) = (Mt-:71-),

where Q G R and ^ G C\R) by assumption, ^(A) = 0 for |A| > 1 and JR(^')2 dX =
1. Here ip' denotes the derivative with respect to the new time variable r, which
is related to t as follows:

t = T + eX, e~ldt = dX .

The equations

4(i) = e-10V'(^)
and (1.3) give

0 < e3II = [(FPPC,0W)2(X) dX + 0(e) .
J r

For e > 0 and e —▶ 0 this means that

( F p p ( t , x ( t ) , x ( t ) ) C , O > 0 . □

Definition. We call the function F autonomous, if F is independent of t.

Theorem 1.1.5. // F is autonomous, every regular extremal solution satisfies
n

H = -F + 'S^2iPjFPj = const.
3=1

The function H is also called the energy. In the autonomous case we have therefore
energy conservation.

Proof. Because the partial derivative Ht vanishes, one has

3 = 1
n d

= 2_^ \^xj X3 ~ Fpj X3 + X3 Fpj + X3 jI *Pj )

3 = 1
n

— / v ■T x j ' E j " p j ^ j ' X j P j ' X . j x j : = '

3 = 1

Because the extremal solution was assumed to be regular, we could use the Euler
e q u a t i o n s ( T h e o r e m 1 . 1 . 2 ) i n t h e l a s t s t e p . □
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In order to obtain sharper regularity results we change the variational space. We
have seen that if Fpp is not degenerate, then 7* G T is two times differentiable even
though the elements in F are only C1. This was the statement of the regularity
Theorem 1.1.2.

We consider now a bigger class of curves

A = {7 : [^1,^2] —▶ fl, £ •-> x(t),x G Lip[ti,t2],x(ti) = a,x(t2) = b } .

Lip[ti,t2] denotes the space of Lipschitz continuous functions on the interval
[£i,£2]- Note that x is now only measurable and bounded. Nevertheless there are
results analogous to Theorem 1.1.1 or Theorem 1.1.2:

Theorem 1.1.6. // 7* is a minimal in A, then
rtn

F P j ( t , x * , x * ) — / F X j ( s , x * , x * ) d s = c o n s t ( 1 . 5 )Jt!

for Lebesgue almost all t G [£1, £2] and all j — 1,..., n.

Proof. As in the proof of Theorem 1.1.1 we put 7e = 7 + e£, but this time, £ is in

Lip0[£i,£2] := {7 : t h-> x(t) G ft, x G Lip[£i,£2],x(£i) = x(t2) = 0 } .
So,

0 = JeHle)\e=0
= lim(/(7e)-/(7o))A

e—+0

= lim / 2[F(t,7* + e£,7* + c£) - F(£,7*,7*)]A * ■

To take the limit e —> 0 inside the integral, we use Lebesgue's dominated conver
gence theorem: for fixed t we have

lim[F(t,7* + <*,r + e0 - F(t,7*,7*)]A = (Fx,0 + (FP,£)e—>0

and

^7* + ^,7*+^)~^7,7) < gup |Fx(5>a:(a),iW|^)+|irp(a>x(*)|4W.
€ a € [ t i , t 2 ]

The last expression is in L1[ti,t2\. Applying Lebesgue's theorem gives

0 = ̂ /(7«)|e=o = J V*>0 + (FPA) dt = j" X(t)i dt

with X(t) = Fp — f 2 Fx ds. This is bounded and measurable.
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Define c = (£2 - U)'1 /t* A(£) dt and put f (£) = f£(\(s) - c) ds. We get f G
Lip0[£i,£2] and in the same way as in the proof of Theorem 1.1.4 or Lemma 1.1.3
one concludes

0 = f \ x , i ) d t = f \ x , ( X ( t ) - c ) ) ) d t = f \ x - c ) 2 d t ,
J t ! J t ! J t !

where the last equation followed from J 2(A - c) dt = 0. This means that X = c
f o r a l m o s t a l l t G [ £ i , £ 2 ] . □

Theorem 1.1.7. Ifj* is a minimal in A and Fpp(t,x,p) is positive definite for all
(t,x,p) G fl x Rn, then x* G C2[£i,£2] and

dt

for j = l,...,n.

~ J + P j \ " > X 1 X ) ~ ^ X J \ ^ " > X 1 X )

Proof. The proof uses the integrated Euler equations in Theorem 1.1.1. It makes
use of the fact that a solution of the implicit equation y = Fp(t,x,p) for p =
$(t, x, y) is globally unique. Indeed: if two solutions p and q would exist with

y = Fp(t,x,p) = Fq(t,x,q) ,

it would imply that

0 = (Fp(t, x,p) - Fp(t, x, q),p -q) = (A(p -q),p- q)

with
A= / Fpp(t,x,p + X(q-p)) dX

Jo
and because A was assumed to be positive definite, p = q follows.

From the integrated Euler equations we know that

y(t) =Fp(t,x,x)

is continuous with bounded derivatives. Therefore x = $>(t,x,y) is absolutely
continuous. Integration leads to x G C1. The integrable Euler equations of The
orem 1.1.1 tell now that Fp is even in C1 and we get, with the already proven
global uniqueness result, that x is in C1 and hence that x is in C2. We obtain the
E u l e r e q u a t i o n s b y d i f f e r e n t i a t i n g ( 1 . 5 ) . □
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A remark on newer developments: we have seen that a minimal 7* G A is two
times continuously differentiable. A natural question is whether we obtain such
smooth minimals also in bigger variational spaces as in

Aa = {7 : [£i,£2] -> fl,£ ■-> x(t), x G WM[*iM*(*i) = a,x(t2) = b } ,

the space of absolutely continuous curves 7. One has in that case to deal with
singularities for minimal 7 which form a set of measure zero. Also, the infimum
in this class Aa can be smaller than the infimum in the Lipschitz class A. This
is called the Lavremtiev phenomenon. Examples of this kind have been given by
Ball and Mizel. One can read more about it in the work of Davie [9].

In the next chapter we consider the special case when fl = T2 x R. We will also
work in the bigger function space

3 = {7 : [£i,£2] ->«,£-▶ x(t),x G W^lhMlx^) = a,x(t2) = b } ,

and assume some growth conditions on F = F(t, x,p) for p —> 00.

1.2 Examples
Example 1) Free motion of a mass point on a manifold.

Let M be an n-dimensional Riemannian manifold with metric g^ G C2(M), (where
the matrix-valued function gij is of course assumed to be symmetric and positive
definite). Let

F(x,p) = -gij(x)plpj .

We use the Einstein summation convention, which tells us to sum over lower and
upper indices.

On the manifold M two points a and b in the same chart U C M are given. U is
homeomorphic to an open region in Rn and we define W = U x R. We also fix
two time parameters t\ and t2 in R. The space A can now be defined as above.
From Theorem 1.1.2 we know that a minimal 7* to

p t 2 p t 2

I ( x ) = F ( t , x , x ) d t = g i j ( x ) x i x j d t ( 1 . 6 )J t ! J t !

has to satisfy the Euler equations

FPk = gkiP1 ,

Fxk = 2dx^9i j {x)p lp j '
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The Euler equations for 7* can, using the identity

- — 9 i k ( x ) x X J = - — 9 j k ( x ) x X J

and the Christoffel symbols

Tijk = 2[~dx~i9jk^x) + dx~JgM " dx^9ij(x)]'

be written as
gkiX == I ijkX X ,

which are with

of the form
xfc = -Tkijxixj .

These are the differential equations describing geodesies. Since F is independent
of t, it follows from Theorem 1.1.5 that

pkFpk -F = pkgkipi -F = 2F-F = F
are constant along the orbit. This can be interpreted as the kinetic energy. The
Euler equations describe the orbit of a mass point in M which moves from a to b
under no influence of any exterior forces.

Example 2) Geodesies on a manifold.

Using the notation of the last example we consider the new function

G(t, x,p) = y/gijWpipi = V2F .
The functional

7(7) = / y/gijW&xi dt

gives the arc length of 7. The Euler equations

— G p i = G x i ( 1 . 7 )

can, using the previous function F, be written as
d Fpi _ Fxi
d t y / 2 F V 2 F

and these equations are satisfied if

(1.8)

j F v i = F x i ( 1 . 9 )
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because -^F = 0. So we obtain the same equations as in the first example. Equa
tions (1.8) and (1.9) are however not equivalent because a reparameterization of
time t h-> r(t) leaves only equation (1.8) invariant and not equation (1.9). The
distinguished parameterization for the extremal solution of (1.9) is proportional
to the arc length.

The relation of the two variational problems which we have met in examples 1)
and 2) is a special case of the Maupertius principle which we mention here for
completeness:

Let the function F be given by

F = F2 + Fi + Fq ,

where Fi are independent of t and homogeneous of degree j. (Fj is homogeneous
of degree j, if Fj(t, x, Xp) = XFj(t, x,p) for all A G R.) The term F2 is assumed to
be positive definite. Then the energy

pFp-F = F2- F0
is invariant. We can assume without loss of generality that we are on an energy
surface F2 - F0 = 0. With F2 = F0, we get

F = F- (y/ft - y/Fo~)2 = 2y/F2F0 -F1=G

and

I ( x ) = [ 2 G d t = f 2 ( 2 ^ F 2 F ^ - F 1 ) d tJ t ! J t !
is independent of the parameterization. Therefore the right-hand side is homoge
neous of degree 1. If x satisfies the Euler equations for F and the energy satisfies
F2 — Fi = 0, then x satisfies also the Euler equations for G. The case derived in
examples 1) and 2) correspond to F\ = 0, Fo = c > 0.

Theorem 1.2.1. (Maupertius principle) If F = F2 + F\ + Fq, where Fj are homo
geneous of degree j and independent of t and F2 is positive definite, then every x
on the energy surface F2 — Fq = 0 satisfies the Euler equations

Jtp ~ Fx
with F2 = Fo if and only if x satisfies the Euler equations -^Gp = Gx.

Proof. If x is a solution of -^Fp = Fx with F2 — Fq = 0, then

sfGdt = 6fFdt-2 I\\fF~2 - \/Fo))S(y/F2 - y/Yo) = 0 .
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(Here 51 denotes the first variation of the functional I.) Therefore x is a crit
ical point of JG dt = J(2y/F2F0 - Fx) dt and x satisfies the Euler equations
foGp = Gx. On the other hand, if x is a solution of the Euler equations for G, we
reparameterize x in such a way that, with the new time

= t(s)= f
J t !

y/F2(T,x(T),x(T~jj ^
y/F0(T,x(T),x(T)) T'

x(t) satisfies the Euler equations for F, if x(s) satisfies the Euler equations for G.
If x(t) is on the energy surface F2 = F0, then x(t) = x(s) and x satisfies also the
E u l e r e q u a t i o n s f o r F . □

We see from Theorem 1.2.1 that in the case Fi = 0, the extremal solutions of F
even correspond to the geodesies in the Riemannian metric

Qij^py = (p,p)x = AF0(x,p)F2(x,p) .

This metric g is called the Jacobi metric.

Example 3) A particle in a potential in Euclidean space.

We consider now the path x(t) of a particle with mass m in Euclidean space Rn,
where the particle moves under the influence of a force defined by the potential
U(x). An extremal solution to the Lagrange function

F(t, x,p)=mp2/2 + E- U(x)

leads to the Euler equations
dUmx = - — .ox

E is then the constant energy

E = pFp-F = mp2/2 + U .

The expression F2 = mp2/2 is positive definite and homogeneous of degree 2.
Furthermore F0 = E - U(x) is homogeneous of degree 0 and F = F2 + F0.
From Theorem 1.2.1 we conclude that the extremal solutions of F with energy E
correspond to geodesies of the Jacobi metric

9ij(x) = 2(E-U(x))6ij.

It is well known that the solutions are not always minimals of the functional. They
are stationary solutions in general.
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Consider for example the linear pendulum, where the potential is U(x) = tu2x and
where we want to minimize

I(x) = / F(t,x,x) dt = (x2 - u)2x2) dtJ o J o
in the class of functions satisfying x(0) = 0 and x(T) = 0. The solution x = 0
is a solution of the Euler equations. It is however only a minimal solution if
0 < T < tt/uj. (Exercise). If T > n/w, we have 7(f) < 1(0) for a certain £ 6 C(0, T)
with £(0) = ^(T) = 0.

Example 4) Geodesies on the rotationally symmetric torus in R3

The rotationally symmetric torus, embedded in R3, is parameterized by

(u, v) h-> ((a + bcos(2TTv)) cos(2ttu), (a + bcos(2irv)) sin(27ru), bsm(2irv)) ,

where 0 < b < a. The metric gij on the torus is given
by

gu = 4ir2(a + bcos(2irv))2 = Aw2r2 ,
f f 2 2 = 4 i . .

912 = ff21 = 0 ,

so that the line element ds has the form

ds2 = 47r2[(a + 6cos(27rw))2 du2 + b2dv2} = ^2(r2du2 + b2dv2) .

Evidently, v = 0 and v = 1/2 are geodesies, where v = 1/2 is a minimal geodesic.
The curve v = 0 is however not a minimal geodesic!

If u is the time parameter, we can reduce the problem of finding extremal solutions
to the functional

Ittz / (a + bcos(2nv))zuz + bzvz dt
Jt,

to the question of finding extremal solutions to the functional

4ttV f * F(v,v')du
J Uo

with Uj = u(tj), where

F(v, v') = ^J(l+ cos(2nv))2 + (v>)2 = ^ r- + (v>)<
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with v' = 3^. This worked because our original Lagrange function is independent
of u. With E. Nother's theorem we obtain immediately the angular momentum as
an invariant. This is a consequence of the rotational symmetry of the torus. With
u as time, this is a conserved quantity. All solutions are regular and the Euler
equations are

- ( - ) - F

Because F is autonomous, ^
implies energy conservation

E = v'Fv, - F

0, Theorem 1.1.5

-b2r2/F
—b2rsm(ip) = const.

where r = a + bcos(2nv) is the distance to the axes
of rotation and where sm(ip) = r/F. The geometric
interpretation is that ip is the angle between the
tangent of the geodesic and the meridian u = const.
For E = 0 we get tf) = 0 (mod7r): the meridians are
geodesies. The conserved quantity rsin(^) is called
the Clairaut integral. It appears naturally as an
invariant for a surface of revolution.

Example 5) Billiards

To motivate the definition of billiards later on, we first consider the geodesic flow
on a two-dimensional smooth Riemannian manifold M homeomorphic to a sphere.
We assume that M has a strictly convex boundary in R3. The images of M under
the maps

zn : R3 -» R3, (x,y,z) h^ (x,y,z/n)

Mn = zn(M) are again Riemannian manifolds. They have the same properties as
M and especially possess well-defined geodesic flows. For larger and larger n, the
manifolds Mn become flatter and flatter. In the limit n —> oo, we end up with a
strictly convex and flat region on which the geodesies are straight lines leaving the
boundary with the same angle as the impact angle. The limiting system is called
billiards. If we follow a degenerate geodesic and the successive impact points at the
boundary, we obtain a map. This map can be defined also without preliminaries:
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Let T be a convex, smooth and closed curve in the
plane of arc length 1. We fix a point O and an ori
entation on T. Every point P on T is now assigned a
real number s, the arc-length of the arc from O to P
in the positive direction. Let t be the angle between
the line passing through P and the tangent of T in P^
P. For t G (0,7r) this line has a second intersection P
with T. To that intersection we can assign two num
bers, si and £i. If t = 0 we put (si,£i) = (s,t) and p
for t = 7r we define (si,£i) = (s + 1,£).

Let (j) be the map (s,£) »-> (si,£i). It is a map from the closed annulus

A = {(s,t) | seR/Z,te [0,tt] }

onto itself. It leaves the boundary 6 A = {£ = 0} U {£ = 7r} of A invariant. If 0 is
written as

4>(s,t) = (s1,t1) = (f(s,t),g(s,t)),
then §-tf >0.

Maps of this kind are called monotone twist maps. We construct now a new line
through P by reflecting the line segment P\P at the normal to the curve in P.
This new line intersects T in a new point P2. Iterating this, we end up with a
sequence of points Pn, where <f>(Pn) = Pn+i- The set {Pn \ n G N } is called an
orbit of P.

An orbit is called closed or periodic if there exists n > 0 with Pi+n = Pi. We can
define / also on the strip A which is the covering surface

i = Rx [0,?r]

of A. For the lifted map 4> define 0(s,O) = 0, <p(s,7r) = 1. One calls a point P
periodic of type p/q with p G Z, q G N \ {0}, if sg = s + p, tq = t. In this case,

r S n Pl i m — = -n—▶oo 77, g

holds. An orbit is called of type a, if

lim — = a .
n—>oo 72

A first question is whether orbits of prescribed type a G (0,1) exist. We will deal
with billiards in the last chapter and outline there the connection with the calculus
of variations.
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1.3 The accessory variational problem
In this section we learn additional necessary conditions for minimals.
Definition. If 7* is an extremal solution in A and % = 7* + ecj) with 0 G Lip0 \t\, £2],
we define the second variation as

"(« - GsgO'<*>!-
It2

(A4>,4>) + 2(BJ>,<t>) + (C<t>,(l))dt,

where A = Fpp(t, x*,x*),B = Fpx(t, x*,x*) and C = Fxx(t, x*,x*). More generally
we define the symmetric bilinear form

7/(0, j,) = [ 2 (A/>, 7/;) + (B0, V) + (B^, 0) + (C(j>, ^) <i£
7t i

and put 7/(0) =//(</>,(/>).
It is clear that 11 ((f)) > 0 is a necessary condition for a minimum.

Remark. The symmetric bilinear form II plays the role of the Hessian matrix for
an extremal problem on Rm.

For fixed </>, we can look at the functional II((j), ip) as a variational problem. It is
called the accessory variational problem. With

F(t, <f>, 0) = (A& </>) + 2(£</>, <j>) + (Ccf>, (/>) ,
the Euler equations to this problem are

d t ^ ) ^ ^
which are

j t ( A J > + B T < t ) ) = B J ) + C < j ) . ( 1 . 1 0 )
These equations are called the Jacobi equations for </>.
Definition. Given an extremal solution 7* : t »-> x*(t) in A. A point (s,x*(s)) G
Q with s > £1 is called a conjugate point to (£i,x*(£i)), if a nonzero solution
</> G Lip[£i,£2] of the Jacobi equations (1.10) exists, which satisfies (j)(t\) = 0 and
cf>(s) = 0.
We also say, 7* has no conjugate points, if no conjugate point of (£1, x*(ti)) exists
on the open segment {(£,£*(£)) | £1 < £ < £2 } C ft.

Theorem 1.3.1. If 7* is a minimal, then 7* has no conjugate point.
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Proof. It is enough to show that II(4>) > 0 for all 0 G Lip0[£i,£2] implies that no
conjugate point of (ti,x(t\)) exists on the open segment {(£,#*(£)) | t\ < t < t2 }.

Let i\) G Lip0[£i,£2] be a solution of the Jacobi equations, with ip(s) = 0 for
s G (£i, £2) and (j)(ip, ip) = (Aip+BTip)ip+(Bip+Cilj)ip. Using the Jacobi equations,
we get

f 0(V>, ip)dt = j (Aip + BT*p)<ip + (Bj> + C^)ip dtJ t ! J t !
= [ (Aip + BTiP)ip +^-(Aip + BTi>)^) dt

J u d t
= jS ±[(Ai> + BT^)dt
= [(AiP + BT^)\st l=0.

Because ip(s) ^ 0, the assumption ip(s) = 0 would with ip(s) = 0 and the unique
ness theorem for ordinary differential equations imply that ip(s) = 0. This is
excluded by assumption.

The Lipschitz function

W , " ( 0 , t e [ s , t 2 ] ,

satisfies, by the above calculation, 11$) = 0. It is therefore also a solution of the
Jacobi equation. Because we have assumed II(<t>) > 0, V0 G Lip0[£i,£2], ip must
be minimal, ip is however not C2, because ip(s) 7^ 0, but ip(t) = 0 for £ G (s,t2].
T h i s i s a c o n t r a d i c t i o n t o T h e o r e m 1 . 1 . 2 . □

The question now arises whether the existence of conjugate points of 7 in (£i,£2)
implies that //(/) > 0 for all 0 G Lip0[£i,£2]. The answer is yes in the case n = 1.
In the following, we also will deal with the one-dimensional case n — \ and assume
that A,B,C G C1[£i,£2] and A > 0.

Theorem 1.3.2. Given n = 1, A > 0 and an extremal solution 7* G A.
There are no conjugate points of 7 if and only if

7/(0) = j2 A<])2 + 2E00 + Ccj)2 dt > 0, V0 G Lip0[£i, £2] .

The assumption 77(0) > 0, V0 G Lip0[£i,£2] is called the Jacobi condition. The
orem 1.3.1 and Theorem 1.3.2 together say that a minimal satisfies the Jacobi
condition in the case n = 1.
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Proof. One direction has been dealt with already in the proof of Theorem 1.3.1.
We still have to show how the existence theory of conjugate points for an extremal
solution 7* leads to

/ ,

t2
A<j)2 + 2£00 + C02 dt > 0, V0 G Lip0[£i,£2] .

First we prove this under the stronger assumption that there exists no conjugate
point in (t\, t2}. We claim that there is a solution 0 G Lip[£i, £2] of the Jacobi equa
tions which satisfies 0(£) > 0, V£ G [£1, £2] and 0(£i - e) = 0 as well as 0(£i — e) = 1
for a certain e > 0. One can see this as follows:

Consider a solution -0 of the Jacobi equations with xp(t\) = 0,ip(t\) = 1, so that
by assumption the next larger root s2 satisfies s2 > t2. By continuity there is e > 0
and a solution 0 with <j>(t\ - e) = 0 and ^(£1 - e) = 1 and 0(£) > 0,V£ G [£i,£2].
For such a 0 we can apply the following Lemma of Legendre:

Lemma 1.3.3. If ip is a solution of the Jacobi equations satisfying ip(t) > 0, V£ G
[£i,£2], then for every 0 G Lip0[£i,£2] with £ := 0/t/> we have

77(0) = / 2 A02 + 2£00 + C02 dt= j* A^2i2 dt>0.
J t i J t j

Proof. The following calculation goes back to Legendre. Taking the derivative of
<t> — £V> gives 0 = ip€ + t/j£ and therefore

77(0) = [2 A<j>2 + 2£00 + C02 dt
Jt!

= [ 2 (A 2̂ + 2BW + Cxp2)? dt
Jt!

r t 2 f t 2
+- [ 2 (2Ai\)̂ \) + 2B<f)ii dt+ f2 A )̂2i2 dt

J t ! J t !

[ 2[(AiP + B*P)iP + ^-(AiP + £</#]£2J u d t

+(Aij> + B^^-J2 + A^2i2 dtat

j 2 jt ((Aj> + B t̂?) dt+ f2 Aip2i2 dt
t2|t2 , f 2 A.1,2(2= (A4> + B4>)tl>tX+ / Wfdt

Jt!

= 0 4- / 2 A^2i2 dt
Jt!
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where we have used in the third equality that 0 satisfies the Jacobi equations. □
For the continuation of the proof of Theorem 1.3.2 we still have to deal with the
case when (£2, x*(£2)) is a conjugate point. This is Problem 6 in the exercises. □
The next theorem is true only when n = l,A(t,x,p) > 0, M(t,x,p) G ft x R.

Theorem 1.3.4. Assume n = 1, A > 0. For i = 1,2 let 7* be minimals in

Ai = {7 : £ h-> xi(t) I xi G Lip[£i,£2],Xi(£i) = ai,Xi(t2) = 6» } .

TTie minimals 71 and 72 intersect for t\ <t <t2 at most once.

Proof. Assume there are two 7; in Aj which intersect in the interior of the interval
[£i,£2] at the places s\ and s2 with s\ ^ s2.

We define new paths 7 and 7 as follows:

„n\ - J 72(£) i f£G[£i ,5l ]U[52,£2]1 [ ) ~ I 7 i ( £ ) i f £ G [ 5 l , s 2 ] ,

-m _ J 7 i (£) i f£G[£i ,Si ]U[s2,£2]7 1 j ~ I 7 2 ( £ ) i f £ G [ 5 l , s 2 ] .

We denote also by 7* the restriction of 7$ to [si, s2].
Let

A0 = {7 : £ •-* x(£),x(£) G Lip[si,52], x(5^) = xi(si) = x2(si) } .
In this class we have /(71) = 7(72) because both 71 and 72 are minimal. This
means

1(7) = 7(71) in Ai,
7(7) = 7(72) in A2 .

Therefore 7 is minimal in Ai and 72 is minimal in A2. This contradicts the reg
ularity theorem. The curves 7 and 7 can therefore not be C2 because 71 and 72
intersect transversally as a consequence of the uniqueness theorem for ordinary
d i f f e r e n t i a l e q u a t i o n s . □

Application: The Sturm theorems.

Corollary 1.3.5. If s\ and s2 are two successive roots of a solution 0 ^ 0 of the
Jacobi equation, then every solution which is linearly independent of (j) has exactly
one root in the interval (s\,s2).
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Corollary 1.3.6. If q(t) < Q(t) and

0 + <?0 = 0,
$ + Q$ = 0,

and si,s2 are two successive roots of $, then 0 has at most one root in (si,s2).

The proof the of Sturm theorems is an exercise (see Exercise 7).

1.4 Extremal fields for n=l
In this section we derive sufficient conditions for minimality in the case n = 1.
We will see that the Euler equations, the assumption Fpp > 0 and the Jacobi
conditions are sufficient for a local minimum. Since all these assumptions are of
local nature, one can not expect more than one local minimum. If we talk about
a local minimum, this is understood with respect to the topology on A. In the C°
topology on A, the distance of two elements 71 : £ \-+ x\(t) and 72 : £ •—▶ x2(t) is
given by

d(7i>72)= max {|xi(£)-x2(£)| } .
t£ [ t ! , t2 ]

A neighborhood of 7* in this topology is called a wide neighborhood of 7. A
different possible topology on A would be the C1 topology, in which the distance
of 71 and 72 is measured by

^1(71,72) = supte[tljt2]{|a;i(£) - x2(£)| + \xx(t) - x(t)\ } .

An open set containing 7* is then called a narrow neighborhood of 7*.

Definition. 7* G A is called a strong minimum in A, if 7(7) > 7(7*) for all 7 in
a wide neighborhood of 7*.
7* G A is called a weak minimum in A, if 7(7) > 7(7*) for all 7 in a narrow
neighborhood of 7*.

We will see that under the assumption of the Jacobi condition, a field of extremal
solutions can be found which cover a wide neighborhood of the extremal solutions
7*.

Definition. An extremal field in ft is a vector field x = ip(t,x),ip G Cx(ft) which
is defined in a wide neighborhood U of an extremal solution and which has the
property that every solution x(t) of the differential equation x = ip(t,x) is also a
solution of the Euler equations.
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Examples.

1) F = ^p2 has the Euler equation x = 0 and the extremal field: x = ip(t,x)
c = const.

2) F = y/l +p2 has the Euler equations x = 0 with a solution x = Xt. The equa
tion x = ip(t, x) = x/t defines an extremal field for £ > 0.

3) For the geodesies on a torus embedded in R3, the Clairaut angle 0 satisfies the
equation rsin(0) = c with — (a — b) < c < (a — b). This angle defines an extremal
field. (See Exercise 12).

Theorem 1.4.1. ip = ip(t,x) defines an extremal field in U if and only if for all
7 G U and 7 : £ h-> x(t) one has

for p = t/>(£, x), where D^ := dt + ipdx + (ipt + ^x)dp.

Proof, i/j defines an extremal field if and only if for all 7 G li, 7 : £ 1—▶ x(t)

—Fp(t,x,p) = Fx(t,x,p)

for p = x = ip(t, x(t)). We have

(dt + xdx + -^(t, x(t))dp)Fp = Fx ,

(d t+^dx + ( ^ t + ^x^ )dp )Fp = Fx . D

Theorem 1.4.2. 7/7* can be embedded in an extremal field in a wide neighborhood
li 0/7* and Fpp(t,x,p) > 0 for all (t,x) G ft and for all p, then 7* is a strong
minimal. If Fpp(t,x,p) > 0 for all (t,x) G ft and for all p, then 7* is a unique
strong minimal.

Proof. Let li be a wide neighborhood of 7* and let Fpp(t,x,p) > 0 for (t,x) G
ft, Vp. We show that 7(7*) > 7(7) for all 7 G U. Let for 7 G C2(ft)

F( t ,x ,p) = F( t ,x ,p)-9t-9xp,

hi) = f2 F(t,x,p)dt = I(1)-g(t,x)\^
Jt!

(t2,a)
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We look for 7 G C2 so that

F ( t , x , ^ ( t , x ) )=0 ,
F(t,x,p)>0, Vp.

(This means that every extremal solution of the extremal field is a minimal one!)

Such an F defines a variational problem which is equivalent to the one defined by
F because Fp = 0 for p = i/;(t, x).

We consider now the two equations

gx = Fp(t,x,ip) ,
gt = F(t,x, ip)-Fp(t,x, i j) i l ; ,

which are called the fundamental equations of the calculus of variations. They
form a system of partial differential equations of the form

gx = a(t, x) ,
gt = b(t, x) .

These equations have solutions if ft is simply connected and if the integrability
condition at = bx is satisfied (if the curl of a vector field in a simply connected
region vanishes, then the vector field is a gradient field). Then g can be computed
as a (path independent) line integral

g = / a ( t , x ) d x + b ( t , x ) d t . □

We now interrupt the proof for a lemma.

Lemma 1.4.3. The compatibility condition at = bx :
f ) r )
-Fp(t, x, V>(£, x)) = fa(F- 1>Fp)(t, x, r/>(t, x))

is true if and only if ip is an extremal field.

Proof. This is a calculation. One has to consider that

a(t,x) = Fp(t,x,tp(t,x))
and that

b(t,x) = (F -x/;Fp)(t,x,^(t,x))
are functions of the two variables £ and x, while F is a function of three variables
£, x,p, where p = ip(t, x). We write dtF, dxF and dpF, for the derivatives of F with
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respect to the first, the second and the third variables. We write -^F(t,x,ip(t,x))
rsp. J^F(t,x,ip(t,x)), if p = ip(t,x) is a function of the independent random
variables £ and x. Therefore

Jta^x) = dt '
= ( d t + i p t d p ) F p , ( 1 . 1 2 )

:a ( t , x ) = -Fp( t , x , iP { t , x ) ) = Fp t + i> tFpp (1 .11 )

and because

—Fp(t, x, ip(t, x)) = Fpx + ipxFpp = (dx + ipxdp)Fpr \ x p \ v ) a / ) r v i ^ / y ^ p x i * r x ^ p p \ ~ x ' r x ^ p / * p )

also

—b(t ,x) = —[F( t ,x ,xP( t ,x) ) - iP( t ,x)Fp( t ,x , iP( t ,x) ) } (1 .13)
= (dx + ipxdp)F-(i>xFp + i>Fpx + ipil>xFpp) (1.14)
= F x - ( i p x + i p d x + W x d p ) F p . ( 1 . 1 5 )

(1.11) and (1.13) together give

—b - —a = Fx- (dt + ipdx + (V>t + ^x)dp)Fp
= Fx — D^F .

According to Theorem 1.4.1, the relation dxb — dta = 0 holds if and only if t/>
d e f i n e s a n e x t r e m a l f i e l d . □

Continuation of the proof of Theorem 1.4.2:

Proof. With this lemma, we have found a function g which itself can be written
as a path-independent integral

g(t, x)= (F- il>Fp) dt' + Fp dx'
J(t!,a)

called a Hilbert invariant integral. For every curve 7 : £ 1—▶ x(t) one has:

J ( 7 ) = F d t = F d t - F p x d t + F p d x . ( 1 . 1 6 )

Especially for the path 7* of the extremal field x = tp(t,x), one has

J ( 7 * ) = f ( F - i P F p ) d t + F p d x . ( 1 . 1 7 )
J~i*
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For every 7 G A the difference of (1.17) with (1.16) gives

7(7) - 7(7*) = / F(t, x, x) - F(t, x, iP)-(x- i/>)Fp(t, x, il>) dt
J1

= / E(t,x,x,i/;) dt ,
J1

where E(t, x,p, q) = F(t, x,p)-F(t, x, q)-(p-q)Fp(t, x, q) is called the Weierstrass
excess function or shortly the Weierstrass E-function. By the intermediate value
theorem there is a value q G \p,q] with

(v - a)2
E(t,x,p,q) = yy 2H) Fpp(t,x,q) > 0 .

This inequality is strict if Fpp > 0 and p ^ q. Therefore 7(7) - 7(7*) > 0 and
if Fpp > 0, then 7(7) > 7(7*) for 7 / 7*. In other words 7* is a unique strong
m i n i m a l . □

The Euler equations, the Jacobi condition and the condition Fpp > 0 are sufficient
for a strong local minimum:

Theorem 1.4.4. Let 7* be an extremal with no conjugate points. Assume Fpp > 0
on ft and let 7* be embedded in an extremal field. It is therefore a strong minimal.
If Fpp > 0 on ft, then 7* is a unique minimal.

Proof. We construct an extremal field which contains 7* and make Theorem 1.4.2
applicable.

Choose r < £1 close enough to £1, so that all solutions 0 of the Jacobi equations
with 0(r) = 0 and 0(r) ^ 0 are nonzero on (r, £2]. This is possible by continuity.
We construct now a field x = u(t,n) of solutions to the Euler equations, so that
for small enough \n\,

u(r,n) = x*(t) ,
^ ( r ^ ) = x * ( r ) + n .

This can be achieved by the existence theorem for ordinary differential equations.
We show that for some S > 0 with \n\ < 5, these extremal solutions cover a wide
neighborhood of 7*. To do so we prove that uv(t, 0) > 0 for £ G (r, £2].

If we differentiate the Euler equations

—Fp(t,u,u) = Fx(t,u,u)
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at 77 = 0 with respect to 77 we get

— (Aiirj + Bu^) = Buv + Cuv

and see that 0 = uv is a solution of the Jacobi equations. With the claim u^t, 0) >
0 for £ G [£i,£2] we obtained the statement at the beginning of the proof.

From ^(£,0) > 0 in (r, £2] follows, with the implicit function theorem, that for 77
in a neighborhood of zero, there is an inverse function 77 = v(t,x) of x = u(t,n)
which is C1 and for which the equation

0 = v(t,x*(t))

holds. Especially, the C1 function (ut and v are C1)

ip(t,x) = ut(t,v(t,x))

defines an extremal field ip,
x = ip(t,x)

which is defined in a neighborhood of {(£,#*(£)) | t\ < t < t2 }. Of course every
solution of x = tp(t,x) in this neighborhood is given by x = u(t, h) so that every
s o l u t i o n o f x — i p ( t , x ) i s a n e x t r e m a l . □

1.5 The Hamiltonian formulation
The Euler equations

± F - Fdt P j X j '
which an extremal solution 7 in A has to satisfy, form a system of second order
differential equations. If J^ FPiPj^1^ > 0 for £ ^ 0, the Legendre transformation

I : ft x Rn -+ ft x Rn,(t,x,p) h+ (t,x,y)
is defined, where yj = FPj (£, x,p) is uniquely invertible. It is in general not surjec-
tive. A typical example of a not surjective case is

f = Vi+p2, y= /T^—g(-i, i).
\ / l + p 2

The Legendre transformation relates the Lagrange function with the Hamilton
function

H(t,x,y) = (y,p) -F(t,x,p) ,
where

p = Hy(t,x,y) .
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We have Hyy(t,x,y) = py = y~l = F~pl > 0 and the Euler equations become,
after a Legendre transformation, the Hamilton differential equations

X j = t i y . ,
Vj = ~HXj •

They form a system of first order differential equations. One can write these Hamil
ton equations again as Euler equations using the action integral

pt2' = / y x
Jt!

yx — H(t,x,y) dt.

This was Cartan's approach to this theory. The differential form
a = ydx - Hdt = dS

is called the integral invariant of Poincare-Cartan. The above action integral is
of course the Hilbert invariant Integral which we met in the third section.

If the Legendre transformation is surjective we call ft x Rn the phase space. It
is important that y is now independent of x so that the differential form a does
not depend only on the (£, x) variables: it is also defined in the phase space ft x Rn.

If n = 1, the phase space is three dimensional. For a function h : (t,x) »-▶ h(t,x)
the graph

E = {(t,x,y) G ft x Rn | y = h(t,x) }
is a two-dimensional surface.

Definition. The surface E is called invariant under the flow of H, if the vector field

Xh = dt + Hydx — Hxdy
is tangent to E.

Theorem 1.5.1. Let (n = 1). If x = ip(t,x) is an extremal field for F, then

E = {(t,x,y) G ft x R | y = Fp(t,x,^(t,x)) }

is C1 and invariant under the flow of H. On the other hand, if E is a surface
which is invariant under the flow of H and has the form

E = {(t,x,y) G ft x R | y = h(t,x) } ,

where h G Cx(ft), then the vector field x = r/)(t,x) defined by

tp = Hy(t,x,h(t,x))

is an extremal field.
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Proof. We assume first that an extremal field x = ip(t,x) for F is given. Then
according to Theorem 1.11,

-Lsjjj-Lp — * x

and by the lemma in the proof of Theorem 1.4.2 this is the case if and only if there
exists a function g which satisfies the fundamental equations

gx(t,x) = Fp(t,x,ip) ,
9t(t, x) = F(t, x, ip) - ipFp(t, x, ip) = -H(t, x,gx) .

The surface
E = {(t,x,p) | y = gx(t,x,ip) }

is invariant under the flow of H:

Xif(y-gx) = [dt + Hydx - Hxdy](y - gx)
= = H y 9 x x g x t * * x

= -dx[gt + H(t,x,gx)\ = 0.

On the other hand, if
X = {(t,x,p)\y = h(t,x)}

is invariant under the flow of 77, then by definition

0 = XH(y-h(t,x)) = [dt + Hydx-Hxdy}(y-h(t,x))
— —Hyhx — ht — Hx
= -dx[gt + H(t,x,h)]

with a function g(t, x) = f* h(t, xf) dx' satisfying the HamUton-Jacobi equations

gx = h(t, x) = y = Fp(t, x, x) ,
9 t = - H ( t , x , g x ) .

This means that x = gx(t,x) = Hy(t,x, h(x,y)) defines an extremal field. □
Theorem 1.5.1 tells us that instead of considering extremal fields we can look at
surfaces which are given as the graph of gx, where g is a solution of the Hamilton-
Jacobi equation

9t = -H(t,x,gx) .
They can be generalized to n > 1: We look for g G C2(ft) at the manifold E :=
{(t,x,y) G ft x Rn | Vj = 9x. }, where

gt + H(t,x,9x) =0 .

The following result holds:
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Theorem 1.5.2. a) E is invariant under Xh-
b) The vector field x = ip(t,x), with ip(t,x) = Hy(t,x,gx) defines an extremal field
f o rF.
c) The Hilbert integral J F + (x — ip)F dt is path independent.

The verification of these theorems is done as before in Theorem 1.5.1. One has to
consider that in the case n > 1 not every field x = \p(t, x) of extremal solutions can
be represented in the form ip = Hy. The necessary assumption is the solvability of
the fundamental equations

n

gt = F(t,x,xp)-^2^jFPj(t ,x, ip) ,

g x = F P j ( t , x , * P ) . ( 1 . 1 8 )

From the n(n + l)/2 compatibility conditions which have to be satisfied, only the
n(n - l)/2 assumptions

d X k F P j ( t , x ^ ) = d X j F P k ( t , x , ^ P ) ( 1 . 1 9 )

are necessary. Additionally, the n conditions

D^FPj (£, x, ip) = FXj (£, x, ip)

hold. They express that solutions of x — ip are extremal.

Definition. A vector field x = ip(t,x) is called a Mayer field if there is a function
g(t,x) which satisfies the fundamental equations (1.18).
We have seen that a vector field is a Mayer field if and only if it is an extremal field
which satisfies the compatibility conditions (1.19). Equivalently, the differential
form

a = 22 Vjdxj - H(t, x, y) dt
j

is closed on E = {(t,x,y) \ y = h(t,x)}:

da\i 2_] hjdxj — H(t, x, h)dt 0.

Because ft is simply connected this is equivalent to exactness a\^ = dg or

r i j = z 9 x j • >

- H ( t , x , h ) = g t ,
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which is, with the Legendre transformation, equivalent to the fundamental equa
tions

Fp(t,x,ip) = gx ,
F(t,x,ip) -ipFp = gt .

In this way, a Mayer field defines a manifold as the graph of a function y = h(t, x)
in such a way that da = 0 on g = h.

In invariant terminology an n-dimensional submanifold of a (2n + 1)-dimensional
manifold with a 1-form a is called a Legendre manifold, if da vanishes there. (See
[3] Appendix 4K).

Geometric interpretation of g.
A Mayer field given by a function g = g(t, x) which satisfies gt + 77(£, x, gx) = 0 is

x = Hy(t,x,gx) = ip(t,x) .

This has the following geometric significance:

The manifolds g = const, as for example the manifolds g = A and g = B, are
equidistant with respect to J F dt in the sense that along an extremal solution
7 : £ i-> x(t) with x(tA) G {g = A} and x(ts) € {g = B] one has

/ F(t, x(t),ip(t, x(t))) dt = B-A.JtA

Therefore

Jt-g(t, x(t)) =9t + ip9x = F- iPFp(t, x, V>) + ipFp(t, x, V>) = F(t, x, ^)

and

f B F(t, x(t),<P(t, x(t))) dt= fB jg(t, x(t)) dt = g(t, x{t))\\BA =B-A.
J t A J t A

Because these are minimals, J F(t,x,ip(t,x) dt measures a distance between the
manifolds g — const. The latter are also called wave fronts, an expression which
has its origin in optics, where F(x,p) = n(x)^/l + \p\2 and ?7(x) is called the
refraction index. The function g is often denoted by S = S(t,x). The Hamilton-
Jacobi equation

St + H(x,Sx)=0
has in this case the form

S2 + \SX\2 = V2.
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Therefore

F p = n u ■ , o = V i P :

77 = PFP - F = -n/yjn2 - \y\2 = -^/n2 - \y\2

and consequently St + H(x,Sx) = St - yjn2 - S2 = 0 holds. The corresponding
extremal field

x = 1>(t,x) = Hv{t,St)= ~Sx ~Sx
Vv2-\sx\2 st

is in the (£,x)-space orthogonal to S(t,x) = const.:

(i,x) = (l,x) = X(St,Sx)

with A = Srt~1. 'Light rays are orthogonal to wave fronts'.

1.6 Exercises to Chapter 1
1) Show that in example 4) of section 1.1, the metric 9ij has the form given there.

2) In Euclidean three-dimensional space, a surface of revolution is given in cylin
drical coordinates as

f(z,r) = 0.
The local coordinates on the surface of revolution are z and 0. The surface is
defined by the function r = r(z) giving the distance from the axes of rotation.

a) Show that the Euclidean metric on R3 induces the metric on the cylinder given
by

ds2 = gndz2 +g22<l<t>2

with
911 = 1 + (^)2' 922 = r2^ ■

b) Let F{{4>,z),((j),z)) = \{gzzz2 + r2(z)<j)2). Show that along a geodesic the
functions

O F 2 - d F
p,:=-^r <P,Pz := - = gnz

are constant.

Hint. Proceed as in example 4) and work with z and 0 as 'time parameter'.
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c) Denote by ez and e</> the standard basis vectors on the cylinder R x T and a
point on the cylinder by (z,(p). The angle ip between e^ and the tangent vector
v = (z, 0) at the geodesic is given by

cos(V0 = (v,e(f))/yj(v,v)(e(f),e4)) .

Show that rcos(ip) = p^/y/F, and that consequently the theorem of Clairaut
holds, which says that r cos(ip) is constant along every geodesic on the surface of
revolution.

d) Show that the geodesic flow on a surface of revolution is completely integrable.
Find the formulas for 0(£) and z(t).

3) Show that there exists a triangle inscribed into a smooth convex billiards which
has maximal length. (In particular, this triangle does not degenerate to a 2-gon.)
Show that this triangle is a closed periodic orbit for the billiards.

4) Prove that the billiards in a circle has for every p/q G (0,1) periodic orbits of
type a = p/q.

5) Let A > 0 and A,B,Ce Cl[ti,t2}. Consider the linear differential operator

L<1> = ^-(A$ + B$) - (B$ + C$) .dt
Prove that for ip > 0,ip G C1[t1,t2], C € C1[tut2] the identity

L((iP)=*p-1jt(Aip2() + (L(*P)
holds. Especially for Lip — 0, ip > 0 one has

L(W) = 4>-1jt(AiP20.
Compare this formula with the Legendre transformation for the second variation.

6) Complete the proof of Theorem 1.3.2 using the Lemma of Legendre. One has
still to show that for all 0 G Lip0[£i,£2] the inequality

rt2
n{<j>) = / A<f>2 + 2B(p<f> + C(j)2 dt>0

holds if (t2,x*(t2)) is the nearest conjugate point to (t\,x*(ti)). Choose for every
small enough e > 0 a C1 function t]e, for which

u \ - J ° * G ( - o o , < i +€ / 2 ) U ( t 2 - e / 2 , o o ) ,^ ~ \ 1 t & [ t 1 + e , t 2 - e ] ,
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and show then that

a) II(nt(p) > 0, Ve small enough,
b) 77(77e0) -▶ 77(0) for e -> 0.

7) Prove the Sturm theorems (Corollaries 1.3.5 and 1.3.6).

8) Let F G C2(ft x R) be given in such a way that every C2 function £ i->
x(t), (t,x(t)) G ft satisfies the Euler equation

~jl*<p[t,x,X) = rx(t,x,x) .

Prove that if ft is simply connected, F must have the form

F(t,x,p) =gt + gxp

with geC1 (ft).

9) Show that for all x G Lip0[0,a]
a

x2 - x2 dt > 0
/Jo

if and only if \a\ < n.

10) Show that x = 0 (the function which is identically 0) is not a strong minimal
for

/ F(t, x, x)dt= [ (x2 - x4) dt, x(0) = x(l) = 0 .i / O J o

11) Determine the distance between the conjugate points of the geodesies v = 0 in
Example 4) and show, that on the geodesic v = 1/2, there are no conjugate points.

Hint. Linearize the Euler equations for F = ^/| + cos(27n;))2 + (v')2.

12) Show that the geodesic in example 4) which is given by 7 = rsin(^) defines
an extremal field if -(a - b) < c < a - b. Discuss the geodesic for c = a - b, for
a — b < c < a + b and for c = a + b.



Chapter 2

Extremal fields and global
minimals

2.1 Global extremal fields
The two-dimensional torus has the standard representation T2 = R2/Z2. We
often will work on its covering surface 1R2, where everything is invariant under
its fundamental group Z2. In this chapter we deal with the variational principle
/ F(t,x,p) dt on R2, where F is assumed to satisfy the following properties:

i) F € C2(T2 x R2):

a ) F e C 2 (
b) F(t+l,x,p) = F(t,x+l,p) = F{t,x,p) .

ii) F has quadratic growth: There exist S > 0, c> 0 such that

(2.1)

c) 6< Fpp < 6-1 ,
d ) | F x | < c ( l + p 2 ) , ( 2 . 2 )
e) |Ftp| + |Fpx| < c(l + |p|) .

Because of Ft = -Ht, Fx = -Hx and Fpp = H~J these assumptions appear in
the Hamiltonian formulation as follows:

i) He C2(T2 x R2):

a ) H e C 2 ( R 3 ) , f 2 3 ,
b ) H ( t + l , x , y ) = H ( t , x + l , y ) = H ( t , x , y ) . y ' J
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ii) 77 has quadratic growth: There exist 6 > 0, c> 0 such that

C ) 5 < H y y < 8 - 1 ,
d ) \ H x \ < c ( l + y 2 ) , ( 2 . 4 )
e) \Hty\ + \Fyx\<c(l + \y\).

Example. Nonlinear pendulum.

Let V(t,x) G C2(T2) be defined as

V(t,x) = (g(t)/(2^)) cos(2nx)
and F = p2/2 + V(t, x). The Euler equation

x = g ( t ) s i n ( 2 7 n r ) ( 2 . 5 )

is a differential equation which describes a pendulum, where the gravitational
acceleration g is periodic and time dependent. A concrete example would be the
tidal force of the moon. The linearized equation of (2.5) is called the Hills equation

x = g(t)x
and has been investigated in detail, especially in the case g(t) = -u2(l+ecos(2nt)),
where Hills equation is called the Mathieu equation. One is interested in the sta
bility of the system in dependence on the parameters uj and e. One could ask for
example whether the weak tidal force of the moon could pump up a pendulum on
the earth, if the motion of the pendulum is without friction.

The just encountered stability question is central to the general theory.
Definition. A global extremal field on the torus is a vector field x = ip(t, x) with
ip G C^T2), for which every solution x(t) is extremal: D^FP - Fx\p=ll) = 0.
Are there such extremal fields at all?

Example. The free nonlinear pendulum.
If the gravitational acceleration g(t) = g is constant, there is an extremal field. In
this case, F is autonomous, and according to Theorem 1.1.5,

E = pFp-F = p2/2 - V(x) = const.

so that for E > max{l/(:r) | x G T1 } an extremal field is given by

x = iP(t, x) = y/2(E - V(x)) .

The problem is thus integrable and explicit solutions can be found using an elliptic
integral.



2 . 1 . G l o b a l e x t r e m a l fi e l d s 3 5

The existence of an extremal field is equivalent to stability. Therefore, we know
with Theorem 1.5.1 that in this case, the surfaces

Z = {(t,x,y) \y = Fp(t,x,iP(t,x))}

are invariant under the flow of Xh •

The surface £ is an invariant torus in the phase space T2 x R2. The question of
the existence of invariant tori is subtle and part of the so called KAM theory.
We will come back to it in the last chapter.
Definition. An extremal solution x = x(t) is called a global minimal, if

/J r F(t, x + (p,x + cp)- F(t, x, x)dt>0

for all 0 G Lipcomp(R) = {0 G Lip(R) with compact support. }

Definition. A curve 7 : £ \-> x(t) has a self intersection in T2, if there exists
(j, k) G 1? such that the function x(t + j) - k - x(t) changes sign.
In order that a curve has no self intersection we must have for all (j, k) G 1? either
x(t + j) -k- x(t) > 0 or x(t + j) -k- x(t) = 0 or x(t + j) -k- x(t) < 0.

Theorem 2.1.1. Ifip G CX(T) is an extremal field, then every solution of x = ip(t,x)
is a global minimal and has no self intersections on the torus.

Proof. Assume 7 : £ i-> x(t) is a solution of the extremal field x = ip(t, x). Because
Fpp(t,x,p) > 0 according to condition c) at the beginning of this section all the
conditions for Theorem 1.4.2 are satisfied. For all £1 and £2 G R, 7 is a minimal in

A(£i,£2) := {i:t^x(t) \ x G Lip(£i,£2), x(h) =x(h),x(t2) =x(t2) } .

Let 0 be an arbitrary element in Lipcomp(R) and let 7 be given as x(t) = x(t) +
0(£). Because 0 has compact support there exists T > 0 so that 7 G A(-T,T).
Therefore, one has

[ F ( t , x , Z ) - F ( t , x , i c ) d t = f F ( t , x , i ) - F ( t , x , x - ) d tJ r J - t

IT
E(t,x,x,ip(t,x)) dt>0 ,

T

where E is the Weierstrass E-function. This means that 7 is a global minimal.

If x(t) is an extremal solution to the extremal field, then also y(t) = x(t + j) - k
is an extremal solution, because ip is periodic in £ and x. If x and y have a self
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intersection, x = y follows by the uniqueness theorem for ordinary differential
equations and x, y satisfy the same differential equation

x = i p ( t , x ) , y = i P ( t , y ) . □
We have seen that every extremal solution in one extremal field is a global minimal.
What about global minimals without an extremal field. Do they still exist? In the
special case of the geodesic flow on the two dimensional torus, there exists only
one metric for which all solutions are minimals. This is a theorem of Eberhard
Hopf [16] which we cite here without proof.

Theorem 2.1.2. (Hopf) If all geodesies on the torus are global minimals, then the
torus is fiat: the Gaussian curvature is zero.

The relation of extremal fields with minimal geodesies will be treated later again,
where we will also see that in general, global extremal fields do not need to exist.
According to Theorem 1.5.1 an extremal field ip can be represented by a function
ip = H(t,x,gx), where g(t,x) satisfies the Hamilton-Jacobi equations

gt + H(t,x,gx)=0, gxeC\T2).
The existence of a function g on T2 solving the Hamilton-Jacobi equations glob
ally is equivalent to the existence of a global extremal field. While it is well known
how to solve the Hamilton-Jacobi equations locally, we deal here with a global
problem and periodic boundary conditions. The theorem of Hopf shows that this
problem can not be solved in general.

We will see that the problem has solutions if one widens the class of solutions.
These will form weak solutions in some sense. The minimals will lead to weak
solutions of the Hamilton-Jacobi equations.

2.2 An existence theorem
The aim of this section is to prove the existence and regularity of minimals with
given boundary values or with periodic boundary conditions within a function
class which is bigger then the function class considered so far. We will use here
the assumptions (2.1) and (2.2) on quadratic growth.

Let Wlf2[ti, t2] denote the Hilbert space obtained by closing Cl[ti, t2] with respect
to the norm

||a?||2 = [\x2 + x2)dt.
Jt!

One calls it a Sobolev space. It contains Lip[£i,£2], the space of Lipschitz contin
uous functions which is also denoted by W1,00.



2 . 2 . A n e x i s t e n c e t h e o r e m 3 7

Analogously as we have dealt with variational problems in T and A we search now
in

S := {7 : £ ■-▶ x(t) G T2 | x G W1'2[£i,£2],x(£i) = a,x(t2) = b }
for extremal solutions to the functional

rt2r * 2

J(7) = / F(t,x,x)dt .
Jt!

The set H is not a linear space. But with

,,v a(t2-t) + b(t-h)^ o ( £ ) = 7 ,
£2 —1\

S = xo 4- So, where

S0 = {7 : £ h+ x(£) G T2 I x G W1'2[£i,£2],x(£1) = 0,x(£2) = 0 }

is a linear space.

Theorem 2.2.1. It follows from conditions (2.1) to (2.2) £/m£ there exists a min
imal 7* : £ »-» x*(£) m S. Furthermore x* G C2[£i,£2] and x* satisfies the Euler
equations.

The proof is based on a basic principle: a lower semi-continuous function which is
bounded from below takes a minimum on a compact topological space.

Proof 1) 7 is bounded from below:

p — inf{7(7) I 7 G £} > -00 .
From S < Fpp < S~l we obtain by integration: there exists c with

-p2 -c<F(t,x,p) <S~1p2 + c,

so that for every 7 G H,

J(7) = / F(£, x, x) dt > - / x2 dt - c(t2 - £2) > -c(t2 - t2) > -00 .
J t ! ^ ^ t i

This is called coercivity. Denote by p the just obtained finite infimum of 7.

2) The closure of the set

K := {7 G S I 7(7) < fi + 1 }

(using the topology given by the norm) is weakly compact.



3 8 C h a p t e r 2 . E x t r e m a l fi e l d s a n d g l o b a l m i n i m a l s

Given 7 G K. From

^ + 1>7(7)> - j " x2dt-c( t2- t l )

follows
pt2I *Jt!

2 dt< -(fl + l + c(t2-t1)=:M1 ,

and with |x(£)| <a + f£ x(t) dt<a+ [/t*2 x2 d£(£2 - £i)]1/2 we get

J2 x2dt< (£2 - £i)(a + [-5(p + 1)(£2 - £i)]1/2)2 =: M2 .

Both together lead to

rt2 1 + x2) dt<Mx+M2.pt2

/ ( i2It!
This means that the set K is bounded. Therefore its strong closure is bounded
too. Because a bounded and closed set is weakly compact in S, the closure of K
is weakly compact.

(It is an exercise to give a direct proof of this step using the theorem of Arzela-
Ascoli.)

3) 7 is lower semi-continuous in the weak topology.
We have to show that 7(7) < liminfn^oo I(^n) if 7n ^w 7. (The symbol -^w
denotes the convergence in the weak topology.)

a) The function p 1—▶ F(t, x,p) is convex:

F(t,x,p) - F(t,x,q) > Fp(t,x,q)(p - q) .

Proof. This is equivalent to E(t,x,p,q) > 0, an inequality which we have seen in
the proof of Theorem 1.4.2.

b) If xn —^ x, then /t*2 0[xn - x] dt -▶ 0 for 0 G L2[£i,£2].

Proof. The claim is clear for 0 G C1 by partial integration. Because C1 is dense
in L2,we can for an arbitrary 0 G L2 and e > 0 find an element 0 G C1 so that
||0 — 011^2 < e. We have then

/ 0 ( x n - x ) d t \ < \ 0 ( x n - x )
\ J t ! I \ J t !

dt + 2eMl ,
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and therefore
I ft2

limsup / 0(xn — x) dt
n—>oo \Jti

< 2eM1 .

c) If xn -^w x, then Jt 2 0[xn — x] dt —> 0 for 0 G L2[£i, £2].

Proof xn —>w x implies that xn converges uniformly to x.

/t*2 x2 d£ < Mi implies that |xn(£) - xn(s)| < Mx(\t - si)1/2 and xn(t) < a +
M(t — £i). Therefore, {xn | n G N } is an equicontinuous family of uniformly
bounded functions. According to Arzela-Ascoli, there exists a subsequence of xn
which converges uniformly. Because xn —>w x, we must have x as the limit. From
H^n - #||l°° —▶ 0 follows with Holders inequality that

I f t 2 I f t 2
/ 0[xn - x] dt\ < / |0| dt, \\xn - x||Loc -> 0 .

\ J t \ I J t !

Using a),b) and c), we can now prove the claim:
rt2

I(ln) ~ I(lf) = / F(t, x, x) - F(t, xn,xn)
J t !
—F(t, x, xn) + F(t, x, xn) — F(t, x, x) dt

pt2
> / F x ( t , x , x n ) ( x n - x ) d t

Jt!
rt2

+ I Fp(t,x,x)(xn - x) dt =: Dn .
Jt!

In that case, x(£) is in the interval [xn(£), x(£)] and x is in the interval [xn(£), x(£)].
For the inequality, we had used a). Since Fx is in L1 (because \FX\ < c(l-hx2) GL1),
and Fp is in L1 (because \FP\ < c(l + |x|) G L2 C L1), we conclude with b) and c)
that Dn converges to 0 for n —▶ oo. This finishes the proof:

l im in f (7(7n) -7(7) )>0.n—>oo

4) Existence of the minimals.
The existence of minimals is accomplished from 1) to 3) and the fact that a lower
semi-continuous function which is bounded from below takes a minimum on a
compact space.

5) Regularity of the minimals.
Let 7* : £ i—> x* (£) be a minimal element in 5 from which we had proven existence
in 4). For all 0 : £ i-> y(t), 0 G 3

7(7 + 60) > 7(7*).
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This means that the first variation must disappear if it exists.

Claim. The first variation lime^0(^(7* 4- 60) - I(j*))/e exists.

[7(7* + 60) - 7(7*)]/£ = / 2[F(t,x* + ey,x* + ey) - F(£,x*,x*)] dt/e
Jt!

rt2
= / [X(t,e)y + p(t,e)y)dt

Jt!

with

A(£,e) = / Fp(t,x*,x* +0ey)d0Jo

p(t,e) = j Fx(t ,x*+6ey,x*)d0 .Jo

These estimates become for e < 1 and #o £ [0,1]:

|A(£,e)| < c(l + |x* + 6^0y|)<c(l + |x*| + |y|),
|M£,6)| < c(l + (x*)2 + y2).

According to the Lebesgue theorem, both A(£,e)y and p(t,e)y are in L1[£i,£2]
because the majorants c(l + |x*| + \y\)y and c(l + (x*)2 + y2)y are Lebesgue
integrable. With the convergence theorem of Lebesgue follows the existence of
lim€^0[J(7* + 60) - 7(7*)]/£ = 0 so that

lim[7(7 + 60) - 7(7)]/e = / ' Fp(t,x*x*)y + Fx(t,x\x*)ye ~ " 0 J t X

= / Vfp(£,x*x*)- j Fx(s,x*x*)ds + c\y

dt

dt

= 0

This means that

Fp(t,x*,x*) = / Fx(s,x*,x*) ds + <Jt!
is absolutely continuous. From Fpp > 0 and the implicit function theorem we find
x* G C° and x* e C1. From the integrated Euler equations we get Fp G C1.
Again applying the implicit function theorem gives x* G C1 from which x* G C2
i s o b t a i n e d . □
In the second part of this section we will formulate the corresponding theorem on
the existence of periodic minimals.
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Definition. A curve 7 : £ i-> x(i) is periodic of type (q,p) for (q,p) G Z2,q / 0, if
x(£ + <?) -p = x(£).
Define for g ^ 0,

3Pi, = {7 : * -▶ *(*) = -* + £(«) I £ £ W^Ma], £(* + Q) = W) }

with the vector space operations

P7i • -£ + p6(£),

71+72 : -£ + 6(£)+ &(£),

if jj : t h+ H + £j(t). The dot product

(71,72) = / £162 +£16*Jo
makes Ep,q a Hilbert space.
Definition. A minimal of the functional

J(7) = / F(t,x,x)dtJo
is called a periodic minimal of type (q, p) . We write M(q, p) for the set of periodic
minimals of type (q,p).
We will sometimes also abbreviate x G M(q,p) if 7 G A^(g,p) is given by 7 : £ 1—>
x(£).

Theorem 2.2.2. For every (q,p) G Z2 m£/i q ^ 0, there exists an element 7* G
A4(g,p) with 7 : £ 1—> x*(£) 50 £/ia£ x* G C2(R) satisfies the Euler equations.

The proof of Theorem 2.2.2 follows the same lines as the proof of Theorem 2.2.1.

Remark on the necessity of the quadratic growth.
The assumptions of quadratic growth (2.1)-(2.2) could be weakened. For the exis
tence theorem it would suffice to assume super linear growth. A classical theorem
of Tonelli guarantees the existence of absolutely continuous minimals under the
assumption that Fpp > 0 and

F( t ,x ,p)>cP(p) := l im ^ = 00.|P|-oo \p\

On the other hand, such an existence theorem no longer holds if F has only linear
growth in p. One can show for example that

F(x,p) = \/l+p2 + x V2^2
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with boundary conditions

x(-l) = -a,x(l) = a
has no minimal for sufficiently large a, even though in this example, Fpp > 0 has
only linear growth at x = 0. As a reference to the theorem of Tonelli and the above
example see [9].

We also give an example without global minimals, where F(£, x,p) is periodic in £
and x: let

F(t,x,p) = a(t,x)^/l+p2
with a(t,x) = 1 + b(t2 + x2) for |£|, |x| < 1. If b = b(X) > 0, there exists a C°°-
function, which vanishes identically outside the interval [0.1,0.2]. We take a(t,x)
with period 1 in £ and periodically continue a in x to get a function on R2. Then,
a(t, x) > 1 for all £, x G R and the variational problem is

/ F(t,x,x) dt = a(t,x) ds ,

where ds = y/1 + x2 dt.

We consider a unique minimal segment, which is contained in the disc t2+x2 < 1/4
and which is not a straight line. Now we use the rotational symmetry of the prob
lem and turn the segment in such a way that it can be represented as a graph
x = x(£), but so that x(r) = oo for a point P = (r, x(r)).

Because this segment is a unique minimal for the corresponding boundary con
dition, it must have a singularity at £ = r. The condition of quadratic growth
excludes such a singular behavior.

2.3 Properties of global minimals
In this section we derive properties for global minimals, which will allow us to
construct them in the next section. Throughout this section we always assume
that the dimension is 1.
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Definition. Denote by M the set of global minimals. Given x and y in M we write

x<y, i f x(t)<y(t) , V£,
x <y, if x(£) <y(£), V£ ,
x = y, if x(£) = y(£), V£ .

Theorem 2.3.1. a) Two different global minimals x and y in M do intersect at
most once.
b) If x < y, then x = y or x < y.
c) 7/lim^oc |x(£) - y(t)\ + \x(t) - y(t)\ = 0 and supt>0(|x(£)| 4- \y(t)\) < M < oo
for x < y or x > y.
d) Two different periodic minimals of type (q, p) do not intersect.

Proof, a) Let x and y be two global minimals which intersect twice in the interval
[£i, £2]. The same argument as in the proof of Theorem 1.3.4 with S instead of the
function space A leads to a contradiction.

b) Assume x(£) = y(t) for some £ G R. Then, x < y implies x(£) = y(t). The func
tions are differentiable and even C2. According to the uniqueness theorem for ordi
nary differential equations applied to the Euler equations xFpp + xFxp + Ftp = Fx,
we must have x = y.

c) Assume the claim is wrong and that there exists
a time £ G R with x(£) = y(t). Claim (*):

lim
T - K X )

/ F( t ,x ,x)dt- f F( t ,y,y)dt 0 .

Proof. We can construct z as follows:

z(t) -{ y(t) , t e [ r , T - i ]
x(t) -(t- T)(y(t) - x(t)) ,te[T-l,T}{

Because of the minimality of x we have

d t <

q(t)

iz(t).
y(t)

x(t)

"▶t

/ F ( t , x , x ) d t < / F ( t , z , z ) d t

= J F(t,y,y)dt + j F(t,z,z)-F(t,y,y)dt

= [ F(t, y, y)dt+ [ F(t, z, z) - F(t, y, y) dt .
J t J t - 1
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For £ G [T — 1, T] the point (x(£),x(£)) is by assumption contained in the compact
set T2 x [-M, M\. The set n = [T - 1, T] x T2 x [-M, M] is compact in the phase
space Hxl. Now

fJ T - l

T
F ( t , z , z ) -F ( t , y, y )d t

< max {Fx ( t ,u ,v ) \ z ( t ) - y ( t ) \+Fp( t ,u ,v ) \ z ( t ) - y ( t ) \ }
(t,u,v)£U

-▶ 0

for T —> oo because of the assumptions on \y(t) — x(£)| and \y(t) — x(£)|. One
has (z(t) - y(t)) = (x(t) - y(t))(l +1 - T) for £ G [T - 1,T] finishing the proof
of claim (*). On the other hand, the minimals x(£) and y(t) have to intersect
transversally at a point £ = r. Otherwise they would coincide according to the
uniqueness theorem of differential equations. This means that there exists e < 0
so that the path £ h-» x(£) is not minimal on [r — e, T] for large enough T. Therefore

• On the interval [r — e, r + e] the action can be decreased by a fixed positive
value if a minimal C2-path q(t) is chosen from x(£ — e) to y(t + e) instead of
continuing x(t) and y(t) along [r - e,r + e] and going around corners.

• According to claim (*) the difference of the actions of x(£) and y(t) on the
interval [r,T] can be made arbitrarily small if T goes to oo.

• The path
q(t) , te[T-e,r + e] ,
z ( t ) , t e [ r - e , T } ,

has therefore for large enough T a smaller action than x(£). This contradicts
the assumption that x(£) is a global minimal.

{

d) Instead of looking for a minimum of the functional

7(7) = / F(t,x,x)dtJo
in Sg?p, we can seek a minimum of

/ q + e
F( t ,x ,x)dt

because both functionals coincide on Eq,p. If 7 has two roots in (0, q], we can find
e > 0, so that 7 has two roots in (e,q + e). Therefore, 7e(7) can not be minimal,
by the same argument as in a), and therefore also not on 7(7). The function 7 has
therefore at most one root in (0,q\. According to Theorem 2.3.2 a) below (which
uses in the proof only part a) of this theorem) 7 has therefore also at most one
r o o t i n ( 0 , N q ] , b u t i s p e r i o d i c w i t h p e r i o d q . □
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Theorem 2.3.2. For all N G N,(q,p) G 7L,q ^ 0 one has:
a) 7 G .M((7,p) z/ and on/?/ if'7 G M(Nq,Np).
b) The class M(q,p) is characterized by p/q G Q.
cj M(q,p) C X.

Proa/, a) (i) Let 7 G M(Nq,Np) be defined as

7:*(t) = ?t + £(t)

with ^(t + Nq) = £(£). We claim that 1 e M(q,p). Put y(£) = x(£ + <?) = ^t + n(t)
with r/(£) = x(£ + q). Since x(£) - y(t) = x(t) - n(t) = x(t) - x(t + q) has period
Nq and

/ (x-y)dt= / m-Z(t + q))dt = 0,J o J o
x(t) — y(t) disappears by the intermediate value theorem at two places in (0, Nq)
at least. Theorem 2.3.1 a) implies x = y and

r N q p q
I(l)\oq = / F(t,x,x) dt = N F(t,x,x) dt = NI(^)\q0 .J o J o

Because Enq,np 3 2g?p,

i n f I ( V ) \ l > _ i n f N - ' n ^ ^ N - ' l ^ ^ I ^ l

proving 7 G M(q,p).

(ii) On the other hand, if 7 G M(q,p) is given, we show that 7 G M(Nq, Np). The
function 7 is also an element of 'ENq.Np- According to the existence Theorem 2.2.2
in the last section, there exists a minimal element ( G M(Nq,Np) for which we
have

iV/(7)g = /(7)lo/9>^(C)lo/9-
From (i), we conclude that £ G M(q,p) and that

NI(7)\l > NI(Q\l .
Because 7 G M(q,p) we also have NI(^)\^ < NI(()\l and therefore

jvi(7)I8 = wj«)I8
and finally

n-y)C = no\o9
which means that 7 G M(Nq, Np).



4 6 C h a p t e r 2 . E x t r e m a l fi e l d s a n d g l o b a l m i n i m a l s

b) follows immediately from a).

c) Let 7 G M(q,p). We have to show that for 0 G Lipcomp(R),

/ F(t, x + 0, x + 0) - F(t, x, x) dt > 0 .J r

Choose N so big that the support of 0 is contained in the interval [-Nq, Nq]. Call
0 the 27Vg-periodic continuation of 0. Since 7 G M(g,p),

rNq
/ F(£,x4-0,x + 0)-F(£,x,x)d£ = / F(£,x + 0,x 4- 0) - F(£,x,x) dtJ R J - N q

r N q _ .
= / F(£,x + 0,x + 0)-F(£,x,x)

J-Nq

Nq
Nq

dt
Nq

> 0 . □

Theorem 7.2 can be summarized as follows: a periodic minimal of type (q,p) is
globally minimal and characterized by a rational number p/q. We write therefore
M(p/q) instead of M(q,p).

Theorem 2.3.3. Global minimals have no self intersections on T2.

Definition. Denote by M[0, T] the set of minimals on the interval [0, T].

The proof of Theorem 2.3.3 needs estimates for elements in M[0, T]:

Lemma 2.3.4. Letj G M[0,T],<y : t *-> x(t) andA>T>l, so that |x(T)-x(0)| <
A. There are constants c§,c\,c2 which only depend on F, so that for all t G [0,T]:

a ) \ x ( t ) - x ( 0 ) \ < C 0 ( A ) = c 0 A , ( 2 . 6 )
b ) \ x ( t ) \ < C 1 ( A ) = c 1 A 2 T ~ 1 , ( 2 . 7 )
c ) | x ( £ ) | < C 2 ( ^ ) = c 2 ^ 4 T - 2 . ( 2 . 8 )

Proof, n : £ i—> y(t) G M[0, T]. From S < Fpp < S x we get by integration (compare
Theorem 2.2.1):

-ai4--x2<F < S~1x2 + a1,

-a! + -y2<F < <5-1y2 + a1.
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Because of the minimality of 7 the inequality 7(7) < 7(77) holds. With y =
T"1 (x(0)(T - £) 4- x(T)t) we have

r r T r T

- a i T + - x 2 d t < / F ( t , x , x ) d t
r T

< j F ( t , y , y ) d t
Jo

< 6
■ 7Jo

y2 dt + axT

< 5~l[x(T) - x(0))2T-1 + axT
< 5~lA2T~l + axT .

We conclude that

2 ^ - 1/ x2 dt < A5~2A2T-1 + SmTS-1 < a2A2TJo
Now the proof of claim a) can be finished:

\ x ( t ) - x ( 0 ) \ = • x ds

< \Tt

j l xJo
-.1/2

ds

< Vf[a2A2T-1}1/2 = c0A.

Because 7 is in M[0, T], the function x(£) satisfies the Euler equations -^Fp = Fx,
which are

p p ' x p 1 F t p - t x .

With Fpp > S, \FX\ < c(l + x2), \Fxp\ < c(l + \X\) and |Ftp| < c(l 4- |x|), we can
estimate x as follows: there exists a constant a% with

|x| <a3(l + x2)
and therefore also b) is proven: for all £, s G [0, T] one has

I r l r T
\x(t) - x(s)\ = \ xdt <a3 (l + x2)dt< a3[T + a2A2T~l) < aA±A2T~l .\ J s J o

There exists s G [0,T] with \x(s)\ = \[x(T) - x(0)]T"1| < AT'1 so that

|x(£)| < AT'1 +a4A2T~l < cxA2T~l .

c) is done by noting:

|x(£)| < a3(l + x2) < a3[l 4- (ci^T"1)2] < c2A4T~2 . □
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We turn now to the proof of Theorem 2.3.3 which said that global minimals have
no self intersections.

Proof. Assume that there exists 7 G M with a self intersection. This means, there
exists (q,p) G Z2, q ^ 0 and r G R with

x(r + q) — p = x(t) .
Without loss of generality we can assume r = 0. Writing x(£) = |£ 4- £(£) one has

x(T + q)-p=^t + i(t + q).
Q

Because there is at most one intersection of x(£) and x(t + q) — p, we have

x ( t + q ) - p - x ( t ) > 0 , ' > 0 \ w W c h m fi a n s / * ( * + 9 ) - * W > 0 , * > 0
x(t + q)-p-x(t)<0, t<0 j wmcnmeans \ Z(t + q)-S(t)<0, t<0

or

x ( t + q ) - p - x ( t ) < 0 , t > 0 \ . . . f £ ( t + q ) - £ ( t ) < 0 , t > 0' k w h i c h m e a n s } v ' v '}x(t + q)-p- x(t) > 0, t < 0 / "" '""" \ £(t + q) - £(t) > 0, t < 0 '
We can restrict ourselves without loss of generality to the first case. (Otherwise,
replace t by —t.) From

£ ( i + « ) - p - £ ( * ) < 0 , t > 0 \ . . . r t , . v t , , W r w ^
« * + , ) -P - { ( t )>o , t<o )wh l chmeans {^ ) - ^ -« )<0^<«

follows that for every n G N,

U £ ) : = ^ ( £ + n a ) > ^ n _ ! ( £ ) , £ > 0 , ( 2 . 9 )
£ n ( £ ) : = £ ( £ - n < ? ) > £ _ n + 1 ( £ ) , £ < < ? . ( 2 . 1 0 )

Therefore, £n(£) is a monotonically increasing sequence for fixed £ > 0 and £-n(£)
is monotonically increasing for £ < q and n —> oo also. According to the existence
theorem for periodic minimals in the last section, there exists a periodic minimal
0 G M(q,p) 0 : £ h-> z(£),z(£) = ££ + ((£) with C(£) = C(£ + <?)• The requirement

z(0) < x(0) < z(0) + 2

can be achieved by a translation of z. We have therefore

C(0) < m = £{q) < C(0) + 2 .
Because 7 and 0 can not intersect two times in [0,a], we have for £ G [0, g]

*(£) < x(t) < z(t) + 2 ,
C(£) < e(£)<C(£) + 2.
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Because C(£ 4- nq) = ((t) and £n(£) > £n_i(£) > £(£), £-n(£) > £-n+i(£) for
£ € [0> #]> f°r all n > 0 and £ G [0, g], either

C(<)<^n(*)<C(*)+2

or
C(<) >&(*)><(*)+ 2.

If both estimates were wrong, there would exist t', t" G [0, q] and n', ra" > 0 with

MO = C(0 + 2,
£n»(«") - C(*") + 2,

which would lead to two intersections of x(£) and z(t) at £ = £' + ra' and £ = t" + n".
Again we can restrict ourselves to the first case so that for all £ > 0 the inequalities
C(£) < £n(£) < £n+i(£) < C(£) + 2 hold for £ > 0, where C(£) has period q. This
means that there exists k;(£), with £n(£) —> ^(£) for n —▶ oo, pointwise for every
£ > 0. Because £n+i(£) = £(£ + q) —> n(t + q) = «(£), this k, has period q. If we can
prove the three claims

i) 3M, |x(£)| < M, £>0,
ii) \x(t + q) — p — x(t)\ —> 0, £ —> oo ,
iii) \x(t + q) — p — x(t)\ —▶ 0, £ —> oo ,

we are finished by applying Theorem 2.3.1 c) to the global minimals given by x(£)
and y(t) = x(t + q) — p. The inequalities x < y or y < x mean that 7 can have no
self intersections in contradiction to the assumption.

The claims i) to iii) follow in a similar way as in Lemma 2.3.4. They are equivalent
to

i ) ' 3 M , \ U t ) \ < M , £ G [ 0 , T ] ,
i i ) ' | fn+1(*) - fn(* ) | ->0, ra^oo,£G[0,g] ,
Hi)' |£n+i(£)-£n(£)|-+0, ra-+oo,£G [0,q] .

Claim i)' has already been proven by giving the periodic function n(t). With
Lemma 2.3.4 we see that

\ U t ) \ < C i ,
\L(t)\ < c2.

This means that £n(£) and £n(£) form an equicontinuous uniformly bounded se
quence of functions. According to the theorem of Arzela-Ascoli, they converge
u n i f o r m l y . S o , a l s o ( i i ) a n d ( i i i ) a r e p r o v e n . □
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As a corollary of Theorem 3.2.2, we see that if 7 € At and 7 is not periodic, an
order on Z2 is denned by

(j, fc) < (f, fc') if x(t + j)-k< x(t + j') - fc', Vt. (2-11)

Any two allowed pairs (j,k) and (f ,k') can be compared: (j,k) < (j',k') or
( j , k )> ( j ' , k f ) .

2.4 A priori estimates and a compactness property

Theorem 2.4.1. For a global minimal 7 G M,*y : t •—> x(£), the limit

x(t)a = lim
t — 0 0 t

exists.

Definition. For 7 G M, the limiting value a = lim^oo ^ is called the rotation
number or the average slope of 7.
The proof is based on the fact that the minimal 7 and its translates Tqp^ : t 1—▶
x(t + q) — p do not intersect.

Proof. The first part of the proof.

1) It is enough to show that the sequence x(j)/j for j G Z, converges. According
to Lemma 2.3.4 with T = 1 and A = \x(j + 1) - x(j)\ + 1, for £ G [j,j + 1] and
j > 0 we have

\x(t)-x(j)\<co(\x(j + l)-x(j)\ + l)
and

x ( £ ) x ( j )
t < 2M + *u,(i-i)

t t J

< | s ( t ) - s ( j ) | { | s ( j ) | ( * - j )
j j t

< |x(t) - xQ")| t K7)| 1
j *

x(j + 1) - a;(j)< co

If we assume that a = lim^oo x(j)/j exists, we have

x { t ) x ( j )

\<3)\ 1
j t

lim
t—*oo

= 0.
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2) Because x(£) has no self intersections, the map

f:S^S,S = {x(j) - k, (j,k) eZ2},s = x(j) -k~ f(s) = x(j + 1) - k

is monotone and commutes with s i—> s + 1. This means

f ( s ) < f ( s ' ) , s < s '
f(s + l) = f(s) + l.

In other words, f (s) := f (s) — s is per iodic with per iod 1. □

Lemma 2.4.2. Vs, s' G S, \f(s) - f(s')\ < 1.

Proof. We assume that the claim is wrong and that there exists s and s' G S such
that

|/(S)-/V)l>i.
We can assume without restricting generality that f(s) > f(sf) + 1. We also can
assume that s < sf < s + 1 by the periodicity of /. We have therefore

f ( a ) - s - f ( s ' ) + s ' > 1 . ( 2 . 1 2 )

The monotonicity of / implies for s < s' < s + 1 that

/(*)</(*')</(* + !)•
From this, we get

f ( s ) + s f < f ( s f ) + s + l . ( 2 . 1 3 )
E q u a t i o n ( 2 . 1 2 ) c o n t r a d i c t s E q u a t i o n ( 2 . 1 3 ) . □
Continuation of the proof. The iterates of f,

fm : x(j) -k^x(j + m)-k ,

exist for every mGZ and /m has the same properties as /.

3) The numbers

&( / ) = sup / (a ) ,ses
o ( / ) = i n f / 0 0 ,

exist because of Lemma 2.3.4. Also

b(f) - a(f) < 1 .
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In particular, both are finite because

b < 1 4- (f(so) - s0) <oo,s0= x(0) .

a and b are subadditive:

b(fj+k)<b(P) + b(fk),
a(f+k)<a(n+a(fk),

because

sup(/'+fe(S) -s)< sup(P(fk(s) - fk(s)) + sup(/fe(s) -s)< b(P) + b(fk) .

It is well known that in this case

j - > o o J

V <fj)lim —-—- = a
j - > o o J

exist. Because
0 < 6(/n) - a(fn) < 1

h o l d s , a = ( 3 . T h e t h e o r e m i s p r o v e n . □
The result in Theorem 2.4.1 can be improved quantitatively. By the subadditivity
of a and b, one has:

a( fk) > fca( / ) ,
b ( f k ) < kb ( f ) ,

and therefore
a( / )<^Q<^»<K/)m m

which gives with m —> oo,
a(f) <a< b(f) .

This means
-1 < a(f) - b(f) < f(s) -a< b(f) - a(f) < 1 .

We have proven the following lemma:

Lemma 2.4.3. \f(s) - s - a\ < 1, Vs G S .

If Lemma 2.4.3 is applied to fm, it gives

\ f rn (s ) -s -ma\ <1 ,VsgS.
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This is an improvement of Theorem 2.4.1:

/m(s) - s <
m

Especially,
\x(m) — x(0) — ma\ < 1

Theorem 2.4.4. 7/7 : £ *-+ x(t) is a global minimal, then V£ G R, Vm G Z,

|x(£ 4- ra) — x(t) — ma\ < 1 .

Proof. If instead of the function F(£, x, x) the translated function F(t + r, x, x) is
taken, we get the same estimate as in Lemma 2.4.3 and analogously

|x(£ + m) — x(t) — ma\ < 1 . □

Theorem 2.4.5. There is a constant c, which depends only on F (especially not on
7 G M nor on a), so that for all t, t' G R,

c(t + t') - x(t) - at'\ < cy/l + a2 .

Proof. Choose j G Z so that j < t' < j + 1.
Lemma 2.4.3 applied to s = x(t + j) gives

|x(£ + J + 1)- x(t + j)\ = \f(s) - s\ < \a\ + 1

which according to Lemma 2.3.4 with T = 1 and A = H-|a|
gives

|x(£ + £,)-x(£4-j)| <co(|a| + l) .
Using this and Theorem 2.4.4 we obtain Lemma 2.3.4.

|x(£ 4- £') - x(t) - at'\ < |x(£ + j) - x(t) - aj\ + \x(t + tf) - x(t + j)\
+N (£ , - j ) |

< |14- co(|a| + 1) 4- M = (co + l)(|a| 4- 1)
< 2(c0 + l)\/a2 + l
=: cy/a2 + 1 . □
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Theorem 2.4.5 has the following geometric interpretation: a global minimal 7 is
contained in a strip of width 2c. The width 2c is independent of 7 and a!

From Theorem 2.4.1 follows that there exists a function a : M —▶ R,7 »-▶ a(j)
which assigns to a global minimal its rotation number.
Definition. We define

Ma = {7 G M I a(j) = a } c M .

Lemma 2.4.6. a) M = \JaeR = Ma.
b) Mar\M(3 = H\,a^(3.
c) Mp/q D M(p/q) ± 0 .

Proof, a) and b) follow from Theorem 2.4.1.
c) Mp/q D M(p/q) is obvious. The fact that M(p/q) ^ 0 was already proven in
T h e o r e m 2 . 2 . 1 . □

Theorem 2.4.7. Let 7 G Ma,J : £ »-> x(t), \a\ < A > 1. Then there exist constants
do,d\ and d2, so that for all t,t\,t2 G R:

a) |x(£i) - x(£2) - a(tx - t2)\ < D0(A) := d0A ,
b) \x(t)\ <D1(A) = d1A2 ,
c) \x(t)\ < D2(A) := d2A4 .

Proof. Claim a) follows directly from Theorem 2.4.5:

|x(£i) - x(£2) - a(h - t2)\ < c^l + a2 < V2c\a\ < V2A =: d0A .

b) From a), we get

|x(£ + T)- x(£)| < \ol\T + d0A < A(T + d0) ,

which give with Lemma 2.3.4 and with the choice T = 1,

|x(£)| < Cl[A(T + dQ)]2T~l = dxA2 .

c) Because

1*1 < aa(l + N2) < 0,3(1 + dJA4) < 2a3d2A4 = d2A4

(compare Lemma 2.3.4 in the last section), also the third estimate is true. □
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Remark. Denzler [10] has given estimates of the form

D1(A) = edlA .

The improvements in Theorem 2.4.7 use the minimality property and are likely
not optimal. One expects

D , ( A ) = d x A ,
D2(A) = d2A2,

an estimate holding for F = (1 4- \ sin(27rx))p2 because

E = (14- -sin(27rx))x2

is an integral of motion and A is of the order \[E.

Definition. We write A4/Z for the quotient space given by the equivalence relation
~ on M:

x ~ y o 3k G Z, x(£) = y(t) + k .

In the same way we define the quotient Ma/Z on the subsets Ma-

Definition. The CX(R) topology on C^-functions on R is defined as follows:
Xm(t) —▶ x(£),ra —▶ oo if for all compact K C R, the sequence xm converges
uniformly in the CX(K) topology. Analogously, for r > 0, the Cr(R) topologies
are defined. On the space of C^-curves 7 : R -> f£, £ i-> xm(£), the CX(R) topology
is given in a natural way by 7n —> 7 if xm —> x in C^R).

Lemma 2.4.8. a is continuous on M, if we take the C°(R) topology on M.

Proof. We have to show that xm —▶ x implies am := o;(xm) —+ a := a(x). Because
Theorem 2.4.7 gives |xm(£) — xm(0) - at\ < Do, one has

. | x ( £ ) - x m ( £ ) - x ( 0 ) 4 - x m ( 0 ) | 2 7 ) 0
| « m - « | < 1 - — j — •

Given e > 0 choose £ so large that 2Do/t < e/2 and then ra so that

|x(£)-xm(£)-x(0) + xm(0)|
£ <e/2

in C(K), where K = [—T,T] is a compact interval which contains 0 and £. There
f o r e l a — a m | < e . □
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Corollary 2.4.9. y]\a\<AMa/Z is compact in the Cl(R) topology.

Proof. The fact that [j\a\<A^/^ ls relatively compact in C1(R) follows from
the theorem of Arzela-Ascoli and Theorem 2.4.7. To show compactness we need
to show the closedness in CX(R). Let 7m be a sequence in \J\a\<M^ot/Z with
7m -> 7 € CX(R) in the C1 topology. We claim that 7 G U|a|<M Ma/Z.

1) 7 : £ i-» x(t) G AI. Otherwise, there would exist a function </> G C(lomz)(R) with
support in [-T, T] satisfying

r T r T

comp\

/ F(t,x + (j),x + (j))dt< j F(t,x,x)dt.J - T J - T

Because of the uniform convergence xm -» x, xm —> x on [-T, T] we know that
for sufficiently large ra also

/ F(t,xm + <l),xm + j>)dt< F(£,xm,xm) d£

holds. This is a contradiction.

2) The fact that 7 G U|a|<M^Wz follows from the continuity in a if the C1
topology is chosen on M. (We would even have continuity in the weaker C° topol
o g y b y L e m m a 2 . 4 . 8 . ) □
We know from Lemma 2.4.6 already that M D M(p/q) ^ 0 and that Ma ^ 0 for
rational a. With Corollary 2.4.9 the existence of minimals with irrational rotation
number is established:

Theorem 2.4.10. Ma i=- 0 for every a G R.

Proof. Given a G R, there exists a sequence {am} C Q with am —> a.

For every rra choose an element 7m G A4am C U|0|c>4 M.p/1* with a < A.
By the compactness obtained in Corollary 2.4.9 there is a subsequence of 7m G
M a r n w h i c h c o n v e r g e s t o a n e l e m e n t 7 G . M a . D

2.5 A^a for irrational a, Mather sets
If a is irrational and 7 G A^a, 7 : £ 1—> x(£), we have a total order on the funda
mental group Z2 of T2 defined by

0', k) < (j',k') <* x(j) - k < x(j') - k' .
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It has also the property

(j, k) = (jf, kf) & x(j) -k = x(jf) - k' .

Proof. If x(j)-k = x(j')-k', thenx(t + q)-p = x(t) with q = j'-j andp = k'-k,
which means q — p = 0ora = p/q. Because a is irrational, (j, k) = (j', k') follows.
This order is the same as the order defined by F = p2/2:

(j, k) < (/, k1) &aj-k< aj' - k' .

Let St := {a(j + t)-k\ (j, k) G Z2 } and 5 = {(£, 9) \ 6 = a(j +1) - k G St, t G
R, (j, fc) G Z2}. We define the map

u: S ->R,(t,6 = a(j + t)-k)y-> x(j + t)-k .

Theorem 2.5.1. a) u is strictly monotone in 6:

a(j + t)-k < a(f + t) -k' & x(j +1) - k < x(f + t)-k' .

b)u(t + l,0) = u(t,6).
c)u(t,6 + l) =u(t,6) + l.

Proof, a) a(j + t) - k < a(jf + t) - k' & x(j + t) - k < x(f + t) - k! is with
q = jf — j and p = k' — k equivalent to

0 < aq - p O x(t) < x(t + q) - p .

We can assume q > 0 because otherwise (j, k) could be replaced with (jf, k') and
"<" with ">".

i) From x(£) < x(£ + q) — p we obtain by induction for all ra G N:

x(£) < x(£ 4- nq) — np ,
or after division by nq,

x( t ) x( t + nq) p
n q n q q

The limit ra —> oo gives
0 < a - - .

Q

Because a is irrational, we have aq > p.

ii) For the reversed implication we argue indirectly: from x(£) > x(t + q) — p we
get, proceeding as in i), also a < p/q.
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b) For 0 = a(j +1) - k we have

u(t+l,6) = u(t+l,a(j+t)-k) = u(t+l,a(j-l+t+l)-k) = x(t+j)-k = u(t,0) .

c) u(t, 6 + 1) = u(t, a(j + t)-k + l)=x(t + j)-k + l = u(t, 0) + 1. □
For t = 0we obtain

u(0,0 + a) = x(j + 1) - k = f(x(j) -k) = f(u(0,0)) ,

Therefore, with uo(0) = u(O,0),

uo(0 + a) = fouo(0).

The map / is therefore conjugated to a rotation by the angle a. However u is
defined on 5, a dense subset of R. If u could be extended continuously to R, then,
by the monotonicity proven in Theorem 2.5.1, it would be a homeomorphism and
/ would be conjugated to a rotation.

By closure we define two functions u+ and u~:

u + ( t , 0 ) = l i m u ( t , 6 n ) ,"n—▶",6/n>c/
u ~ ( t , 0 ) = l i m u ( t , 0 n ) .

There are two cases:

case A): U+ = u = u (which means u is continuous).
case B): u+ ^ u~.

In the first case, u = u(t,0) is continuous and strictly monotone in 0: indeed if
0 < 0', there exist (j, k) and (jf, k') with

0<(t + j)a-k<(t + j ')a -k' <0'

and therefore also with Theorem 2.5.1 a),

u(t, 0) < u(t, (t + j)a -k)< u(t, (t + j')a - kf) < u(t, 0')

and we have the strict monotonicity. This means that the map

h: (t,0)-+(t,u(t,0))

is a homeomorphism on the plane R2. It can be interpreted as a homeomorphism
on the torus because it commutes with every map

(t,O)»(t + j,0 + k).
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For every fi G R we have 7/3 G Ma, where

7/3 : £ •-> x(£, /?) = u(£, a£ 4- fi)

satisfies x(t,fi) < x(t,fi') for fi < fi'. We have therefore a one-parameter family of
extremals.

Question. Is this an extremal field? Formal differentiation gives

^-x(t,fi) = (dt + ade)u(t,0) = (dt + ade)uh-l(t,x) .dt

In order to have an extremal field, we have to establish that

ip(t,x) = (dt + ade)uh-l(t,x) = x(t,fi)

is continuously differentiable. This is not the case in general. Nevertheless, we can
say:

Theorem 2.5.2. If a is irrational, \a\ < A and 7 : £ h-> x(£) G Ma and if we are
in the case A), then ip = (dt + ade)uh~l G Lip(T2).

Proof. (The proof requires Theorem 2.5.3 below). First of all, ip is defined on the
torus because

ip(t + l,x) = ip(t,x) = ip(t, x + 1) .
To verify the Lipschitz continuity we have to find a constant L such that

\iP(t',x') - ip(t",x")\ < L(\tf - £"| 4- \x' - x"|) .

For x1 = x(t',fi') and x" = x(t",fi") we introduce a third point y = x(t',fi").

m',y)-*P(t",x")\ = \x(t',fi")-x(t",fi")\
< \t'-t"\C2(A),

m',x')-iP(t',y)\ = \x(t',fi')-x(t',fi")\
< M(A)\x' - y\ (Theorem 2.5.3)
< M ( A ) \ x ' - x " \ ,

m',x')-xP(t",x")\ < mf,y)-iP(t",x")\ + \iP(tf,x')-iP(t',y)\
< L(A)(|£,-£,,| + |x,-x,,|),

with L(A) = max{C2(A),M(A)}, where M(A) is defined below. In the first step
of the second equation we have used the following Theorem 2.5.3. D
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Theorem 2.5.3. Let 7,77 G Ma, 7 : £ ^ z(£),*7 : £ ^ 2/(£), x(£) > y(t), \a\ < A
with A > 1. 77iere zs a constant M = Af(A) swc/i £/m£ |x - £| < M\x - y\ for all
£GR.

Proof. For x,y G M[-T,T], Lemma 2.3.4 assures that

\x\,\y\<C1(A) = c1A2T-1 .

Let £(£) = x(£) - 2/(£) > 0 in [-T, T]. It is enough to show

\£{0)\<M\Z(0)\

because of the invariance of the problem with respect to time translation. Sub
traction of the two Euler equations

—Fp( t , x , x ) -Fx ( t , x , x ) = 0 ,

j t F p ( t , y, y ) - F x ( t , y, y ) = 0 ,

gives

with
^(M + B£)-(BZ + Ct) = 0

A0 = / Fpp(t,x + \(y-x),x + X(y- x) dX ,
Jo

B = / Fpx(t,x + \(y-x),x + \(y - x)) d\ ,
Jo- f
Jo

C = / Fxx(t,x + \(y-x),x + \(y-x) dX .
Jo

By assumptions (i) and (ii) in Section 2.1, we conclude

S < A0 < S'1 ,
\ B \ < A ,
\C\ < A2,

with A = c0i42T-1, where Co is an F dependent constant > 1 and A > 1 is a
bound for |a| and \x(T) - x(-T)\, \y(T) - y(-T)\. With the following lemma, the
p r o o f o f T h e o r e m 2 . 5 . 3 i s d o n e . □
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Lemma 2.5.4. Let £ = £(t) be in [—T, T] a positive solution of the Jacobi equation
dt I±(A0Z + BS) = BZ + CZ. Then,

lim < Mm
where M = 5c0A2T-lS~2.

Proof. Because £ > 0 for t G [—T, T], we can form

For t = —r we get

r):=Ao^ + B.

*? = -v=-dt I—r~
+ MM + BQ

and so

= ylo1('72-2JBr? + B2-J4oC)

^ = V(^-5)2-c.
This quadratic differential equation is called Riccati equation. We want to esti
mate \n(0)\. In our case we can assume ra(0) > 0 because if we replace (t,h) by
(-£, —h) and B by (-B), the Riccati equation stays invariant.

Claim. |ra(0)| < AX8~l.
If the claim were wrong, then ra(0) > 4A<5-1. For £ > 0, as long the solution exists,
the relation

ra(r) > ra(0) > 4A(TX
follows. Indeed, for ra > 4AJ-1,

r 2 r 2 o

\2Bn\ + \B2 - AoC\ < 2Ara 4- A2(l + (T1) < 2Ara + 2A2<T1 < -L-+-I-= -r,28

so that from the Riccati equation, we get

$1 > &tf _ 3 25) > 52/A > 0
< i r 4
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This inequality leads not only to the monotonicity property, but also the compar
ison function

,K ' ~ 1 - t?(0)5t/A

which is infinite for t = 4(S_1?7(0)_1. Therefore,

T < 4<r177(0)-1

or 7j(0) < AT~l5~l < 4A2T~18~1 = 4A<5_1 which contradicts our assumption.
The claim |t?(0)| < 4A£_1 is now proven. Because

i = At\v-B)

one has
lemi < S-^iXS'1 + A) < 5XS~2 = Sc0A2T-x8-2 . U

Definition. A global Lipschitz-extremal field on the torus is given by a vector field
x = ip(t,x) with ip G Lip(T2), so that every solution x(£) is extremal.
Theorem 2.5.2 says that a minimal with irrational rotation number in case A) can
be embedded into a global Lipschitz-extremal field.

Example. Free pendulum.

F = \ (p2 ~ n cos(^7rx)) nas tne Euler equations

x = - sin(27rx)

with the energy integral

E = — + — cos(2ttx) > .2 4 t t v } ~ 4 ? r

Especially for E = (47r)_1 we get

x2 = — (1 - cos(27rx)) = — sin2(7rx)
Z 7 T 7 T

or
x = ±sin(7rx)/v/7r

and in order to get the period 1, we take

|x| = | sin(7rx)/v/7r| = ip(t,x) .

ip is not C1 but Lipschitz continuous with Lipschitz constant y/n.
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In the Hamiltonian formulation, things are similar. Because Lipschitz surfaces have
tangent planes almost everywhere only, we make the following definition:
Definition. A Lipschitz surface E is called invariant under the flow of 77, if the
vector field

Xh — dt + Hydx — Hxdy
is almost everywhere tangential to E.

Theorem 2.5.5. If x = ip(t,x) a Lipschitz extremal field is for F, then

E = {(t,x,y) G Q X R | y = Fp(t,x,iP(t,x)) }

is Lipschitz and invariant under the flow of H. On the other hand, ifT, is a surface
which is invariant under the flow of H given by

E = {(£, x, y) G n x R | y = h(t, x) } ,

with h G Lip(f2), then the vector field x = ip(t,x) defined by

xp = Hy(t,x,h(t,x))

is a Lipschitz extremal field.

The mathematical pendulum from the first section had invariant C1 tori. However
for the energy E = (47r)_1, the extremal field is only Lipschitz continuous.

While for irrational a and in case A), the construction of Lipschitz extremal fields
has been established, the question appears whether there might be different ip G
Ma, which can not be embedded into this extremal field. The answer is negative:

Theorem 2.5.6. 7/7,ra G Ma, 7 : £ h-> x(t), ra : £ i-> y(t) are given and a is
irrational and if we are in case A), then there exists (3 G R, such that y = u(t, at +
(3) and n is in case A) too.

The proof of Theorem 2.5.6 will be given later.

Remarks.
1) Theorem 2.5.6 states that all elements of Ma belong to the extremal field,
which is generated by 7 and that the decision to belong to case A) or B) does not
depend on the element 7 G Ma.
2) In case A) there is for every a exactly one 7 G M(a), with x(0) = a. This follows
from the existence and uniqueness theorem for ordinary differential equations.
3) In case A) every 7 G Ma is dense in T2, because the map is a homeomorphism
in this case.
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What happens in case B)? Can it occur at all?

Example. Consider F = \p2 + V(t,x). Assume that
the torus is parameterized by |x| < 1/2, \t\ < 1/2.
Define V as a C°°(T2)-function for 0 < p < r < 1/6:

V ( t , x ) > M > l , x 2 + t 2 < p 2 ,
V(t,x) =v(t2+x2) >0 , p2 <x2 + t2 < r2 ,

V ( t , x ) = 0 , x 2 + t 2 > r 2 .

Claim. For every a <E R with p2M > 6(|a| + 1|)4,
case B) happens for Ma-

Proof. Assume that there exists anaEl with

p2M > 6[\a\ + l]4

and that we were in case A). According to the above remark 3), there would be a
minimal 7 G M,"f : 11-> x(t) with x(0) = 0.

We will show now that 7 can not be minimal in the class of curves, which start
at A := (tua = x(ti)) = (-0.5,a;(-0.5)) and end at B = (ti,b = x(t2)) =
(0.5,a;(0.5)). This will lead to a contradiction.

Since by Theorem 2.4.4, \x(t + j) - x(t) - ja\ < 1 for every j e Z, the inequality

m:=|x(-)-x(--)|<l + |a
Let t\ and t2 be chosen in such a way that

h < 0 < t2 ,
t2+x ( t )2 < p2 , t€ [ t i , t 2 } .

This means that the diameter 2p of Bp = {(t,x) \ t2 + x2 < p2 } is smaller than
or equal to the length of 7 between x(t\) and x(t2):

2p< f2yjl + x2dt< v'i^lTl/'V + i2)^]172

and therefore with t = t2

^ ^ V{l + x2)dt > —
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The action of 7 connecting A with B can now be estimated:
- 1 / 2 r t 2

F ( t , x , x ) d t > / F ( £ , x , x )
- 1 / 2 J t i

dt

> [t2 Ik 22(x2 + l )4-(M--)d£

> ^ + (M-i),.

With the special choice r = 2p[2M — l]-1/2 we have

/ • V 2 2 o 2 1 ,
/ F(£,x,x) dt > — + (M - -)r = 2py/2M - p .

7 - 1 / 2 T 2
We choose now a special path ra : £ 1—▶ y(t) inside the region where V = 0. This
can be done with a broken line £ h-> y(t), where

y <
ra

(1/2 -r)
< 3ra .

We have then

/ F ( t , y , y ) d t < y d t < - m 2 < U l + \ a \ ) 27 - 1 / 2 7 - 1 / 2 * A *

By the minimality of 7 we have

2p j2M^p< - { l + \ a \ ) 2
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and so
81

4p2(2M-p)<^(l + H)4,
Q1

4Mp2<^-(l + |a|)4,
Mp2 < 6(1 4- \a\)4 ,

w h i c h i s a c o n t r a d i c t i o n t o t h e a s s u m p t i o n . □
Remarks.
1) Because V can be approximated arbitrarily well by real-analytic V, it is also
clear that there exist real-analytic V for which we are in case B).
2) Without giving a proof we note that in this example, for fixed p, r, M and
sufficiently large a we are always in case A). The reason is that for big a, the
summand p2/2 has large weight with respect to V(t, x). To do the a —▶ oo limit in
the given variational problem is equivalent to do the e —▶ 0 limit in the variational
problem

F' = ^-+eV(t,x).

The latter is a problem in perturbation theory, a topic in the so-called KAM
theory in particular.

Let 7 G Ma and a irrational be given and assume that Ma is in case B). By
definition we have u+ ^ u~, where u+ and u~ are the functions constructed from
7. For every £ the set {6 \ u+(t,0) ^ u~(t,6) } is countable.
Definition. Define the sets

M ± - - { u ± ^ e ) \ 0 e R }

and the limit set of the orbit 7

M(1) = {u±(t,6) |£,0GR}.

Mt := jVf+ n M^ is the set of continuity of w+ rsp. u~. There are only countably
many discontinuity points. An important result of this section is the following
theorem:

Theorem 2.5.7. Let a be irrational, 7 : £ 1—> x(£),ra : £ 1—▶ y(t) both in M(a) with
corresponding functions u*1 and v±. Then there exists a constant c G R such that
u±(t,0) =v±(t,6 + c).
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Proof. 1) It is enough to prove the claim for £ = 0.

We use the notation Uq(0) = ^(0,0). Assume, there exists c with

u±(0)=v±(0 + c),V0.

Then also
u$(0 + a) =v£(0 + a + c) .

Define for fixed 0,

7:£ h-> x(t) :=u±(t,at + 0) ,
fj:t i-> v(t) :=v±(t,at + 0 + c) .

7 and fj are in Ma- Because of the two intersections

* ( i ) = y ( i ) ,
5 (0 ) = y (0 ) ,

the two curves 7 and 77 are the same. Replacing at + 0 with at + 0 + c establishes
the claim i/±(£, 0) = v±(£, 0 + c) for all £.

2) If for some A G R and some 0 G R the conditions vq~ (0 + A) - % (0) < 0 hold,
then vo(0 -f A) - uo(0) < 0, V0 G R.

Otherwise, ^(0 + A) — i*o~(0) changes sign. By semicontinuity, there would exist
intervals 7+ and 7~ of positive length, for which

Vq(0 + X)-Uq(0)>O, in7+,
Vq(0 + X)-Uq(0) <0, in 7" .

We put

x(£) = u^(t,at) ,
2/(*) = v^ (£,«£ +A).

Then

y(j) ~*ti) = y(J) ~k~ (HJ) ~k) =^o"(A + <*3 ~k)~uo(aJ ~k)
and this is positive, if aj — k G 7+ and negative if aj — k G I~. Because
{aj — k,j,k G Z } is dense in R there would be infinitely many intersections
of x and y. This is a contradiction.

3) c := sup{A I Vq (0 + X) - u^ (0) < 0, V0 } is finite and the supremum is attained.
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There exists a constant M, so that for all 9 6 R,

\vo(0 + \)-(O + \)\<M,
\ u ^ { 9 ) - e \ < M .

Because of Theorem 2.5.1, both functions on the left-hand side are periodic. There
fore

\v^(0 + X)-u^(0)-X\ <2M
or

Vq(0 + X)-Uq(0) >X-2M.
Because the left-hand side is < 0, we have

A < 2 M

and c is finite. If a sequence An converges from below to c and for all ra

Vo(O + Xn)-u^(0)<O, V0,
then also

Vq(0 + c)-Uq(0)<O, V0
because of the left semi continuity of Vq .

4) Vq (0 + c) - Uq (0) — 0, if 0 + c is a point of continuity of Vq.

Otherwise there would exist 0* with

vo(6*+c)-u^(e*)<0,
where 0* + c is a point of continuity. This implies that there exists X> c with

Vo(O* + X)-Uq(0*)<O.
With claim 2) we conclude that

Vo(O + X)-u~(0)<O, V0.

This contradicts the minimality of 7.

5)«±(0 + c)=ti±(0),W.

Having only countably many points of discontinuity the functions v£ and u^ are
uniquely determined by the values at the places of continuity:

Vo(0 + c) = Uo(6),W.
Because v£ = v^ and uj = Uq at the places of continuity,

v + ( e + c ) = u + ( 6 ) y e . □



2 . 5 . M a f o r i r r a t i o n a l a , M a t h e r s e t s 6 9

In the next theorem the gap size

£(£) =x+(£)-x"(£) = u+(t,at + 0) - u~(t,at + /?)

is estimated:

Theorem 2.5.8. Let \a\ < A and let M(A) be the constant of Theorem 2.5.3. There
exists a constant C = C(A) = \og(M(A)), with

exp(-C|£ - s\) < Z(t)/£(s) < exp(C|£ - s\) .

Proof. According to Theorem 2.5.3 the relation

\i(t)\ < Mm
holds and therefore

\i\li < m,
| | l o g £ | < M ,

| l o g ^ ( t ) - l o g C ( s ) | < M \ t - s \ . D

Theorem 2.5.9. For irrational a, the set Ma is totally ordered: V7,ra G Ma we>
have 7 < ra or 7 = ra or 7 > ra.

Remarks.
1) Theorem 2.5.9 says that two minimals with the same rotation number do not
intersect.

2) As we will see in the next section, this statement is wrong for a G Q, where
pairs of intersecting orbits, so called homoclinic orbits can exist.

3) Still another formulation of Theorem 2.5.9 would be: the projection

p: Ma -+R,xi-^x(0)

is injective. This means that for every a G R there exists at most one x G M with
x(0) = a. Only in case A), the projection p is also surjective.

4) Theorem 2.5.9 implies Theorem 2.5.5.

Proof of Theorem 2.5.9. We use that for x G Ma the set of orbits

{-1jk :x(t + j)-k }
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and therefore also their closure M(x) is totally ordered.
Because by definition u~(t,at + /3) G Ma(x), the claim follows for

y(t)=u±(t,at + (3).
It remains the case, where y is itself in a gap of the Mather set of x:

u-(O,0)<y(O)<u+(O,l3).
Because by Theorem 2.5.7 the functions u^ are also generated by y, we know that
for all £,

u~ (£, at + f3) < y(t) < u~ (t, at + f3).
We need to show the claim only if both x and y are in the same gap of the Mather
set. Let therefore

u-(0,/3) <x(0) <y(0) <u+(0,p) .
We claim that the gap size

£(t) = u+(t, at + f3)- vT (£, at + (3) > 0

converges to 0 for £ —▶ oo. This would mean that x and y are asymptotic. With
Theorem 2.5.3 also \x-y\ —> 0 and we would be finished by applying Theorem 2.3.1
c). The area of the gap

/ £(£) dt < p(T2)

is finite because p(T2) is the area of the torus. From Theorem 2.5.8 we know that
for £ G [ra, ra 4-1),

M"1 < £(£)/£(ra) < M .
Because

^£(ra)<M h(t)dt <oo,
w e h a v e l i m ^ o o £ ( r a ) = l i m ^ ^ £ ( £ ) = 0 . □
The question is left open whether there are minimal orbits in the gaps of the
Mather sets. Instead we characterize the orbits of the form

x(t) = u±(t,at + (3) .
Let

Ua = {xeMa\ 3/3 x(£) = ^(at + 13)} .

Definition. An extremal solution x(£) is called recurrent, if there exist sequences
jn and kn with jn -> oo, so that x(t + jn) - kn - x(t) -> 0 for ra -+ oo. Denote
the set of recurrent minimals with Mrec and define Mraec := Mrec n Ma-

Theorem 2.5.10. For irrational a we have Ua = Ml
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Proof, (i) Ua C MT-
If x G Ua,x = u+(t,at + (3), then

x(t + jn) -k = u+(t,at + (3 + ajn - kn)

and it is enough to find sequences jn,kn with ajn — kn —> 0. Therefore, x is re
current. In the same way the claim is verified for x(t) = u~(t,at + (3).

(ii)MraeccUa.
We assume, x e Ma\ Ua- This means that x is recurrent and it is in a gap

u"(0,/3) <x(0) <u+(0,/?) ,
z(jn) - kn -> ^(0), jn ~> OO .

By the construction of n±(0,/3) we have

z(jn) -fen -^(O,/?)

a n d t h e r e f o r e x ( 0 ) = ^ ( 0 , ( 3 ) . T h i s i s a c o n t r a d i c t i o n . □

Definition. Define Mraec(i) := .Ma(7) n AC"-

Theorem 2.5.11. If a is irrational, then for all 71 and 72 G Ma,

Maec(li) = Maec(72) = Maec-

Proof According to Theorem 2.5.10 we have Mraec = Ua and by construction we
get Mraec(i) = Ua- Theorem 2.5.7 assures that Ua is independent of 7. □
For every (j, fc) G 1?, let

Tjik :M^M, x(t) i-> x(£ 4- j) - fc .

Ma and therefore also Mraec is invariant under 7}^. Which are the smallest,
nonempty and closed subsets of Ma which are Tj^-invariant, that is invariant
under all Tj^?

Theorem 2.5.12. 7n Ma, there is exactly one smallest non-empty Tj^-invariant
closed subset: it is Mr^c.

Proof. Mraec is Tj^-invariant, closed and not empty. Let Ma C Ma have the
same properties and let x* G Ma. Because of the closedness and invariance of
Mraec(x*) C Ma and because of Theorem 2.5.11, also Mraec C Ma. □
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We know Ma for irrational a by approximation by periodic minimals. We can now
show that every recurrent minimal can be approximated by periodic minimals.

Theorem 2.5.13. Every x G Mraec can be approximated by periodic orbits in M.

Proof. The set M* of orbits which can be approximated by periodic minimals is
Tj ^-invariant, closed and not empty. Because of Theorem 2.5.12 we have Mraec C
M \ □

Definition. In case B) one calls the elements in Mraec Mather sets.

Mather sets are perfect sets. They are closed, nowhere dense sets for which every
point is an accumulation point. A perfect set is also called a Cantor set.

Let us summarize the central statement of this section:

Theorem 2.5.14. For irrational a, the following holds:
case A): All minimal x e Ma are dense on the torus. This means that for all
(£, a) G R2, there exists a sequence (jn, kn) G I? with x(t + jn) — kn —> a.
case B): no minimal 7 G Ma is dense on the torus. In other words if u~ (0,(3) <
a < u+(Q,(3), then (0,a) is never an accumulation point of x.

We know that both cases A) and B) can occur. It is a delicate question to decide
in which of the cases we are. The answer can depend on how well a can be ap
proximated by rational numbers.

Appendix: Denjoy theory.
The theory developed so far is related with Denjoy theory from the first third of
the twentieth century. We will state the main results of this theory without proofs.

Let / be an orientation preserving homeomorphism on the circle T. The following
Lemma of Poincare should be compared with Theorem 2.4.1.

Lemma 2.5.15. The rotation number a(f) = limn^oo fn(t)/n exists and is inde
pendent oft.

Let St = {a(j + t)-k I (j,k) G Z2 } and 5 = {(£,0) | 0 = a(j + t)-k G St,t G R }
and define

u : S -+ R , (£,0 = a(j +1) - fc) -> fj(t) - fc .

The next theorem should be compared with Theorem 2.5.1.
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Theorem 2.5.16. a) u is strictly monotone in 0. This means

a(j + t)-k< a(jf + t)-kf <* fj(t) - fc < f3'(t) - k' .

b)u(t + l,0) = u(t,0).
c)u(t,0 + l) = u(t,0) + l.

Again we define by closure two functions u*~ and u~:

u+( t ,0) = l im u( t ,0n) ,
0<0n->0

u ( t ,0 ) — l im u ( t ,0n )e>en-̂ e
There are two cases:

case A): u+ = u = u (u\s continuous) ,
case B): u+ ^ u~.

The set
£±(£) := {u G T | 3jn -> ±oo,/^(£) - uj }

is closed and /-invariant. The following theorem of Denjoy (1932) should be com
pared to Theorems 2.5.10, 2.5.11 and 2.5.12.

Theorem 2.5.17. If a is irrational, then C = £+(£) = £"(£) is independent of
t and the smallest non-empty f-invariant, closed subset of T. In the case A) we
have C = T, in the case B) the set C is a perfect set. If f is of bounded variation,
we are in case A). For f G C1 it provides examples, where we are in case B).

In case B) one calls the set £ a Denjoy-minimal set. We see now the relations:

The intersection of a Mather set with the line t = to is
a Denjoy-minimal set for the continuation f of the map
f : x(j) — fc —> x(j + 1) — fc onto the circle.

2.6 Ma for rational a
Let a = p/q with q ^ 0. We have seen in Lemma 2.4.6 of Section 2.4 and Theo
rem 2.2.2 that

Mp /q -DM(q ,p ) ^$ .
M(p/q) = M(q,p) is the set of minimal periodic orbits of type (q,p).

Question. Is Mp/q = M(p/q)c?. No! Indeed there are pairs of orbits in Mp/q, which
intersect once and which can therefore not be contained in the totally ordered set
M(p/q).
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Example.
1) F = p212, x = 0, x(£) = at + (3. In this case we have Mp/q = M(p/q).

2) F = p2/2 + cos(2ttx) , E = x2/2 + cos(2?rx) is constant. Take a = 0. We have
Mo / M(0), because M(0) is not totally ordered and M is totally ordered by
Theorem 2.5.9. Note that M(0) is not well ordered because there are seperatrices
with energy E = (47r)_1 defined by

x = ±|sin(7rx)|/v/7r .

They both have zero rotation number and they intersect.

Definition. Two periodic orbits x\ < x2 G M(p/q) are called neighboring if there
exists no x G M(p/q) with x\ < x < x2.
Note that M(p/q) is well ordered, justifying the above definition.

Theorem 2.6.1. Let 7 G Mp/q. There are three possibilities:
a) 7 G M(p/q), therefore x(t + q) — p = x(t).
o+) There are two neighboring periodic minimals 71 > 72, 7i G M(p/q) : 7; : £ h->
Xi(t), so that
xi(£) - x(£) —> 0 /or £ —> 00 and
x2(£) - x(£) —▶ 0 /or £ —> -00.
o~) There are two neighboring periodic minimals 71 > 72, 7* G M(p/q) : 7* : £ i->
Xj(£), 50 £/m£
^2(£) - z(£) —▶ 0 for £ —> 00 and
xi(£) - x(£) —> 0 /or £ —▶ -00.

Proo/ Let 7 G Mp/q,j : t ^> x(£) but in 7 g M(p/q). Therefore, for all £

(z) x(£ 4- g) - p > x(t) or
(ii) x(t + q) -p < x(t) .

We will show that (i) implies case o+). By (i) the sequence

yj(t) = x(t + jq)-pj
is monotonically increasing for j -» 00 and bounded because of the estimate

l0;W-y;(O)|<Co.
Therefore 2/7 converge to a function x2(£) which is again in Mp/q. It is even pe
riodic and of type (q,p) and therefore an element in M(p/q). In the same way,
yj converges for j -> 00 to a function x G M(p/q). We still have to show that
xi and x2 are neighboring. Let 7* : x* G M(p/q) with xx < x* < x2 and call
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A = (t0,x(to)) = (t0,x*(to)) the now mandatory intersection of x* with x. We de
fine also the points B = {t0+q,x*(t0+q)),P = (T-q,x{T-q)) andQ = (T,z(T)),
where z : t >-> x(t — q) and T > t0 + q. The new curves

z.*(t\ — / x*(^' t£[t0,t0 + q] ,X l W - \ z ( t ) t € [ t 0 + q , T } ,

i * ( t \ . _ J * ( * ) , t€ [ t 0 , T- q ) ,X 2 [ t ) - \ w ( t ) t€ [ T - q , T ] ,

with w(t) = (T — t)x(t) — (T — q — t)z(t) are concurrent in the class of curves
between A and Q. We have

r T - q r T
dt

r i - q r i
/ F ( t , x , x ) d t = F ( t , z , z )

J t 0 J t Q + q
and

/ F ( t , w , w ) d t = t - > o o / F ( t , x 2 , x 2 ) d t
J T - q J T - q

= / F ( t , x 2 , x 2 ) d t
J t0

/ F ( £ , x * , x * ) d £ .

(The first equality in the last equation holds asymptotically for T —▶ oo. The sec
ond equality is a consequence of the periodicity of X2. The last equation follows
from the minimality of x2 and x* in M(p/q).)

Therefore, for T —> oo, the actions of i\ and x2 between A and Q are approxima-
tively equal. However, the action of the path £ h-> xi(£) can be decreased at B by
a fixed and T-independent amount because y has a corner there.

Therefore x* can not be minimal between A and P. This is a contradiction. Con
sequently the assumption of the existence of x* is absurd.

The proof that (ii) implies case b) goes along the same way. □

Definition. In the cases b±) the orbits x\ and x2 are called heteroclinic orbits if
xi = x2 (mod 1) one calls them homoclinic orbits. We denote the set of x, which
are in case b^ with M , .

Theorem 2.6.2. If x\,x2 G M(p/q) are neighboring, then there exist at least two
non-periodic x+,x~ G Mp/q, where x± is asymptotic to x2 for t —▶ ±00 and
asymptotic to x\ for £ —■> 4= 00.
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Proof. Let xx(£) and x2(£) be two neighboring minimals in M(p/q). By Theo
rem 2.2.1 there exists for every ra G N a minimal zn(t) with zn(-n) = xi(-ra),
zn(n) = x2(n).

Call xm(£) = [x\(t) + x2(£)]/2 the middle line of x\ and x2. By time translation,
one can always achieve that

Zn(t) = Zn(t + Tn)
intersects the middle line xm in the interval [0, q].

Because of the compactness proven in Theorem 2.4.9 there is a subsequence of zn
which converges in Mp/q to an element x+ which also intersects the middle line
xm in the interval [0,q]. This xm is not periodic: between x\ and X2 there is by
assumption no periodic minimal of type (q,p).

I t i s o b v i o u s h o w o n e c a n c o n s t r u c t x ~ a n a l o g o u s l y . □
Example. Heteroclinic connection of two neighboring geodesies (M. Morse 1924)
[23].

We will see below that on the torus, two minimal neighboring closed geodesies of
the same length can be connected by an asymptotic geodesic.

Theorems 2.6.1 and 2.6.2 can be summarized as follows:

Theorem 2.6.3. Mp/q = M+/q U M~/q U M(p/q). If not Mp/q = M(p/q), then

M; /q^<bandM;/q^<b.

Appendix: stability of periodic minimals.
A periodic extremal solution x of type (q,p) satisfies the Euler equation

~T;rp\t,x,x) = rx(t,X,X) .

Let £ be a solution of the Jacobi equation

We abbreviate this as
d

V-^ppsJ + ( i,^pi -^xxjs — " •

dt (a£) + b£ = 0, a = Fpp(t, x, x) > 0 .

With £(£) being a solution, also £(£ -f q) is a solution and if £i and £2 are two
solutions, then the Wronski determinant [£1,62] := a(£i£2 — £2^1) is a constant.
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It is different from zero if and only if £1 and £2 are linearly independent. In this
case, there is a matrix A, so that

6(£ + <z) \=A( hit)
t2(t + q) J \b(t)

or W(t + q) = W(t) with W = ( )} y J. The comparison of the Wronskian

a(t + q)detW(t + q) = [&,&](* + q) = [6,6](£) = a(£)det^(£)

leads because of a(t + q) = a(t) > 0 to

det(A) = 1 ,

and this means that with A also A-1 is an eigenvalue of A. There are three possi
bilities:

Elliptic case |A| = 1, A ^ ±1 (stable case )
Parabolic case |A| = ±1
Hyperbolic case A real, A^±l (unstable case)

Definition. We say that the extremal solution x is elliptic, hyperbolic or parabolic,
if we are in the elliptic, the hyperbolic or the parabolic case.
It turns out that periodic minimals are not stable:

Theorem 2.6.4. Periodic minimals 7 G M(p/q),/y : £ »-» x(t) are not elliptic.

Proof. We know that for all global minimals 7 G M(p/q) a solution £ ^ 0 of
the Jacobi equations has at most one root. If two roots would exist, there would
be a conjugate point, which is excluded by Jacobi's Theorem 1.3.1. Assume now
that 7 is elliptic. There is then by definition a complex solution C(£) of the Jacobi
equation which satisfies

£(t + q) = AC(£), |A| = 1, A = eiaq # 0,1, a G R .

For 7r(£) = e~iat((t) we have therefore

tt(£ + q) = tt(£) .

Of course also
£(£) = ReC(£) = Re(eMn(t))

is a solution of the Jacobi equation. From eiaq / 0,1 follows that there exists
N > 1 so that

Re(exp(i7Vo;(7)) < 0 .
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This means that
Z(t + Nq)Z(t)<0

so £ has a root £ G [0, Nq], But also £ + kNq are roots for every fc G N. This is a
c o n t r a d i c t i o n . □

We show now that the situation is completely different for ra > 1 and that the
above argument does not apply. To do so, consider for ra = 2 the integral

/ 'Jtx

2

| x2 — aJx|2 dt
t

2 _ t _ | 2

with x G Lip(R,R2), where J = I j and where a is a real constant. In
the class of periodic curves

x(£ 4-1) = x(£) ,
x = 0 obviously is a minimal because

I(x) \ l l = f2 \x-aJx\2dt>0.
Jt i

On the other hand the Jacobi equation gives

t-2aJZ + a2Z = (±-aJ)2ti = 0.at
Let c G C2 \ {0 } be a complex eigenvector of J, for example

1
, Jc = ic .\ l J

Obviously
i(t) = Re(eiatc)

is a nontrivial solution of the Jacobi equation. This means that x = 0 is elliptic.
However x has no root. If f (r) = 0 were a root, we could achieve by translation
that £(0) = 0 and so c = -c. From

Jc = ic

would follow Jc = -ic and c = 0. This would imply that £ is identical to 0.

This example shows also that for ra > 2, periodic minimals can be elliptic.
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A remark on the average action:
Definition. For 7 G Ma, define the average action as

$(7)= l im T_1 / F(t,x,x)dtT - > ° ° J o

Theorem 2.6.5. a) For 7 G Ma the average action is finite. It is independent of
7. We write therefore also 0(a) = $(7) with 7 G Ma-
b) On the set of rational numbers Q, the map a 1—> 0(a) is strictly convex and
Lipschitz continuous.

We conjecture that a 1—» 0(a) is continuous on the whole real line R.

Proof, a) For a = p/q and periodic x, the claim follows from
r<l

0(a) ^o"1 / F(£,x,x) d£ .Jo
In the case a = p/q, where x is not periodic, the statement follows from the fact
that x is by Theorem 2.6.1 asymptotic to a periodic x.

For irrational a we can assume that 7 is in Ma, because non-recurrent orbits are
asymptotic to recurrent orbits x = u±(t,at + (3).

According to H. Weyl, there exists for every irrational a a Riemann integrable
function /(£, 0) which is periodic in £ and 0 so that

l im T~l [ f(t ,at + (3)dt= [ [ f( t ,0)dtd0.T ^ ° ° J o J o J o

One shows this first for exp(27r(fc£ + j0)), then for trigonometric polynomials,
then for continuous functions and finally, by lower approximation, for Riemann
integrable functions. The claim follows if we put

f(t,0) = F(t,u±(t,0),(di + ade)u±(t,0)) .

b) For a = p/q, (3 = p'/qf, 7 = pa + (1 — p)(3 with p = s/r G (0,1) we get the
inequality

0(7) < f&(a) + (1- pM(3) .
Let x G M(p/q), y G M(p'/q'). If x(£o) = y(to) is the obligate intersection of x
and y we define

z( t \ = f XW> * € [ *o ,£o 4 - qq 's ] ,V ; \ y(t) - (p'q - pq')s, t G [t0 + qq's, £0 + qqfr] .
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It is piecewise smooth, continuous and when continued periodically, z has the
rotation number

(p'q(r -s)+ pq's)/(q'qr) = (1 - p)(3 + pa = 7 .
Because z is not C2 we have

Hi) <-q-qTrJ F& z> *) dt = /"*(«) + (! " *W) •
O is Lipschitz continuous because

0(7)-0(/?) < p(0(a) - 0(/?))
= [ ( 7 - / ? ) / ( a - / 3 ) ] ( * ( a ) - * ( i 8 ) )
< (7 - 0)2max(0(a), 0(/3))/(a - 0) . D

Appendix: A degenerate variational problem on the torus.

Finding Ma for irrational a is computationally reduced to the determination of
u = u^(t, 0) because u+ and u~ agree almost everywhere, u satisfied the equation
(write D for dt + ado)

DFp(t,u,Du) = Fx(t,u,Du) .
These are the Euler equations to the variational problem

/ / F ( t , u ,Du )d td0 ,Jo Jo
where u(t, 0) - 0 has period 1 in £ and 0 and where u(t, 0) is monotone in 0.

One could try to find u directly. The difficulty with that is that for the minimum,
whose existence one can prove, the validity of the Euler equation can not be ver
ified so easily. It could be that the minimals are located at the boundary of the
admissible functions. This can happen for example if u is constant on an interval
or if it has a point of discontinuity.

The problem can however be regularized if one looks at

F(t,0,u(t,0),Vu(t,0)) := ^u2e + F(t,u(t,0),Du(t,0))

with v > 0. One studies then the variational problem

, Vu) dt d0[ [ F(*,<Jo Jo

in the limit v —> 0 for u(t, 0) - 0 G VF1'2(T2). It turns out that for v > 0 a minimal
automatically is strictly monotone. This is done in [10].
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2.7 Exercises to chapter II
1) Show that for a sequence 7n : £ »—> xn(£) in E one has r)n —>w 7 if and only if
xn converges to x, the family {xn} is equicontinuous and if there exists M G R so
that ||7n||s< Af.

2) Prove the weak compactness of K in the proof of Theorem 2.2.1 directly with
the help of the theorem of Arzela-Ascoli.

3) Investigate the solutions of the nonlinear pendulum with F = p2/2 + (l/27r) •
cos(27rx) and the corresponding Euler equations x = sin(27rx) for minimality in
the following cases:

a) A periodic oscillation x(£) = x(£ 4- T) with x =^ 0,
b) the stable equilibrium x = 0,
c) the unstable equilibrium x = 1/2.

4) Show that for 7 : £ 1—> x(£) with 7 G M the following holds: V£i,£2 G R

1 2 - ( 1 J , , - \ \ h - t , J I



Chapter 3

Discrete Systems, Applications

3.1 Monotone twist maps

In this chapter we consider situations which are closely related to the questions
in Chapter II. Indeed, they are more or less the same questions, even though the
assumptions are not identical. The topics require some small changes. But the
underlying ideas remain the same.

The results of Mather apply to monotone twist maps, a topic which will appear
now as an application of the earlier theory. Before we define these maps we derive
them via a Poincare map from the variational problem treated in Chapter II.

We assume that F is given on the torus T2. We also assume that there are no ex
tremal solutions in [0,1] which have conjugate points. This means that if (t\,x(ti))
and (^2,^(^2)) are conjugate points, then t<i—t\ > 1.

Under the assumptions of Chapter II, there exist solutions
of the Euler equations

for all t. (See Exercise 1). Therefore the Poincare map

/ : S1 x R -* S1 x R, (x(0),x(0)) i-» (x(l),i;(l))

is well defined on the cylinder S1 xR = {t = 0,i£S,
i€R},a hyper-surface in the phase space Q, x R.
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Let x be a solution of the Euler equations. We define

x0 :=x(0), xi = x(l) ,
2/o := Fp(0,xo,xo), y\ := Fp(0,xi,xi) ,

and consider x from now on as a function of £, x0 and x\. With

5(x0,xi)= / F(t,x,x) dtJo
one has

n f 1 _ d x _ d x _ / * * d ^ , d x 1 ^ d x ns-° " lF'̂ +F'̂ dt=X[F- - sF«î <*+F*te/° - -»»•

and (if x0 is considered as a function of xo and xi),

SXox! = —Fpp(0,xo,xo)-— .

Because
<= dx(£,x0,xi)

9xi
is a solution of the Jacobi equation (differentiate dtFp = Fx with respect to x\)
there are by assumption no conjugate points. Because f (1) = 1 and £(0) = 0 we
have £(£) > 0 for £ G (0,1) and this means

or SXqXi < 0. Summarizing, we can state that

f - (xo,yo) •-▶ (xi,yi)

satisfies

yo = SXo , y\ = SXl ,

Sxnx, < 0 , which means -— > 0 .dx0
In classical mechanics, S is called a generating function for the canonical trans
formation (j) (see [3]). The Hamilton-Jacobi method to integrate the Hamilton
equations consists of finding a generating function S in such a way that

H(t,x0,SXo(xo,x1)) = K(xi) .
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The original Hamilton equations

x0 = Hyo,y0 = -Hx0
transform then to the integrable system

xi =0,2/i = KXl .

Many integrable systems in Hamiltonian mechanics can be solved with the Hamilton-
Jacobi method. An example is the geodesic flow on the ellipsoid.

Instead of starting with the variational principle we could also define monotone
twist maps directly:
Definition. A map

<f>: A->A,(x,y) i-» (f(x,y),g(x,y)) = (xuyx)
on the annulus

A = {(x,y) | x (mod I),a < y < b, —oo < a < b < oo }

is called a monotone twist map, if it is an exact, boundary preserving C1-diffeo
morphism which has a continuation onto the cover i = Ex [a, b] of A:

( 0 ) f , g e C \ A ) ,
(i) f(x + l,y) = f(x, y) + l, g(x + l,y)= g(x, y) ,
(ii) a = ydx — y\dx\ — dh ,
(iii) g(x,a) = a, g(x,b) = b ,
( i v ) d y f ( x , y ) > 0 .

In the cases when a and b are finite, one could replace the assumption (ii) also
with the somehow weaker requirement of area-preservation:

dxdy — dx\dy\ .
The exact symplecticity (ii) follows from that. With the generating function h
from (ii), we can write these assumptions in a different but equivalent way. We
write hi for the derivative of h with respect to the zth variable.

(0)' h G C2(R2) ,
(i)' h(x + l,x' + 1) = h(x,x') ,
(ii)' y = -hi(x,xi),yi = h2(x,xx) ,
(hi)' h\(x,x') + h2(x,xf) = 0, for h\(x,xf) = a,b ,
(iv)' hxx, < 0 .

We are interested in the orbits (xj,yj) = (j^(x,y) (j G Z) of the monotone twist
map (j). The dynamics given by (j) is completely determined by the function h which
is defined on the torus T2 and which satisfies (0)' to (iv)'. The equations of motion

h2(xj-i,Xj) + hi(xj,Xj+i) = 0
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form a second order difference equation on T1. It can be seen as the Euler equa
tions to a variational principle.

It is not difficult to see that the function h coincides with the generating function
S if (j) is the Poincare map.

The analogy between the continuous and the discrete case is as follows:

continuous discrete

F(t,x,p) Lagrange function h ( x j , X j + i ) generating function

/ " F ( t , x ,x )d t action Ej=niM^i^i + l) action

di^x = F* Euler equation /i2 = — h\ Euler equation

Fpp >0 Legendre condition hi2 < 0 twist condition

x(t) extremal solution X j orbit

x(t) minimal X j minimal

x(t) velocity Axj = xj+i - Xj first difference

x(t) acceleration £j + l — 2Xj + Xj-i second difference

y = Fp(t,x,p) momentum 2/j+i = h2(xj+i,Xj) momentum

Example. 1) The standard map of Taylor, Greene and Chirikov.

Consider on the cylinder

{ (x , y ) \ x (mod l ) , yeR}
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the map

Because

<f>: x + y + 2^ sin(27rx)
y + £ sin(27rx) ) = ( :

(j)(x + l,y)
<p(x,y + l)

(xi 4-1,2/) = (xi,yi),
(xi + 1,2/ + 1) = (xi,2/i + 1) ,

the map (j) commutes with all elements of the fundamental group of the torus
and can therefore be seen as a transformation on the torus. It has the generating
function

h(x,x\) = (xi - x)2 A / f t N ( A x ) 2 A , o ,
C O S ( 2 7 T X ) = — C O S ( 2 7 T X )2 t t v j 2 2 t t v j

If one considers a few orbits of (j), one often sees stable periodic orbits in the center
the so-called 'stable islands'. The unstable, hyperbolic orbits are contained in a
'stochastic sea', which in the experiments typically appear as the closure of one
orbit. Invariant curves which wind around the torus are called KAM tori. If the
parameter value is increased — numerically one sees this for example at 0.97..
— then also the last KAM torus, the 'golden torus', vanishes. The name 'golden'
originates from the fact that the rotation number is equal to the golden mean.

The formal analogy between discrete and continuous systems can be observed well
with this example:

continuous system discrete system

F(£,x,p) = ^-^cos(27rx) h(xj,xj+1) = (*'+12"*')2 - 4^cos(27rx,)

Fpp = 1 > 0 f t i2 = -K0

x = ^ sin(27rx) ^2xj = ^sin{2TTxj)

y = Fp=p Vj+i = h2(xj,xj+l) = {xj+i - Xj) = Axj

There is an essential difference between the continuous system, the mathematical
pendulum, and its discrete brother, the standard map. The continuous system is
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integrable: one can express x(t) using elliptic integrals and Jacobi's elliptic func
tion. The standard map however is not integrable for most parameter values. We
will return to the standard map later.

Example 2) Billiards.

We take over the notation from the first section. The map

{S,t) H^ (8l, tl)

on the annulus S1 x [0, n] becomes in the new coordinates

,y) = (s,-cos(i)) ,

a map on the annulus A = S x [-1,1]. In order to show that

0 : (x,y) h-> (xi,y{] = (f(x,y),g(x,y))
is a monotone twist map, we simply give a generating function

h(x,xi) = -d(P,Pi).

It has the properties (0') until (iv'). Here d(P,Pi) denotes the Euclidean distance
between the points P and P} on boundary of the table. These points are labeled
by x = s and x\ = S\ respectively.

Proof. (0') is satisfied if the curve is C2.
(i') is clear.
(ii') cos(f) = hx,-cos(ti) = hXl.
(iii') x = f(x, 1) or f(x, -1) implies hx + hXl = 0.
(iv') hXXl < 0 follows from the strict convexity of the curve.

Example 3) Dual billiards.

As in billiards, we start with a closed convex oriented curve in the plane. We
define a map 4> on the exterior of T as follows. From a given point P E E we draw
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the tangent L to T and denote by Q the contact point which is at the center of the
segment L fl T. The line L is chosen from the two possible tangents according to
the orientation of T. We call Pi the mirror of P reflected at Q. The map (j) which
assigns to the point P the point P\ can be inverted. It is uniquely defined by the
curve T. The emerged dynamical system is called dual billiards. The already posed
questions, as for example the question of the existence of periodic points or the
existence of invariant curves, appear here too.

There are additional problems which do not appear in billiards. One can for exam
ple ask for which V every orbit is bounded or whether there are billiard tables V
for which there is an orbit which escapes to infinity. While this stability question
is open in general, there is something known if T is smooth or if it is a polygon as
we will see later on.

The dual billiards map </> has a generating
function h. To find it, we use the coordinates

x = 6/(2n), y = t2/2 ,

where (£, 0) are the polar coordinates of the
vector (Pi — P)/2. The generating function
h(x,x\) is the area of the region between the
line segments QP\,P\Q\ and the curve seg
ment of T between Q and Q\. The map

(j>: (x,y) h-> (xi,2/i)

is defined on the half-cylinder A = S1 x [0, oo)
and the generating function h satisfies proper
ties (0') until (iv'), if 7 is a convex C^-curve.
(Exercise).

Periodic orbits.
The existence of periodic orbits in monotone twist maps is guaranteed by the
famous fixed point theorem of Poincare-BirkhofF which we prove here only in a
special case. In the next section we will look at the topic from the point of view
of the theory developed in Chapter II and also will see that periodic orbits have
to exist.
Definition. A map <\>,

(z,y) >-> (f(x,y),g(x,y)) = (xuyx)
defined on the annulus A = {(x, y) \ x mod 1, a < y < b, —oo < a < b < 4-oo }, is
called a twist map if it has the following properties:
(0) 0 is a homeomorphism of A.
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(i) f(x + 1,2/) = f(x, y) + 1, g(x + 1,2/) = g(x, y) (continuation onto a cover of A).
(ii) dxdy = dx\dy\ (area preserving).
(iii) g(x,y) = y for y = a,b (preserving the boundary).
(iv) f(x, a) — x > 0, f(x, b) - x < 0 (twist map property).

Theorem 3.1.1. (Poincare-Birkhoff 1913) A twist map (j) has at least two fixed
points.

A proof can be found in [6]. Unlike for monotone twist maps the composition of
twist maps is again a twist map. As a corollary we obtain the existence of infinitely
many periodic orbits:

Corollary 3.1.2. For every twist map </> there is a q0, so that for all q > q0 there
exist at least two periodic orbits of period q.

Proof. Define

ra = max{/(x, a) — x|xGR}<0,
M = m i n { / ( x , 6 ) - x | x G R } > 0 .

We use the notation (j^(x,y) = (fi(x,y),gi(x,y)). For every q > 0, we have

q - l

max(fq(x,a) — x) < max{S^fi+1(x,a) - fj(x,a) } < qm < qM
j=o
q - \

< mn{£/''+1(*,&) - fj(x,b) } < mm{r(x,b) - x) } .
j =0

Let qo be so large that qoM - q0m > 1. If q > q0, there is p G Z, such that
qm < p < qM. And with

<t>q,p: (x>y) ^ (fq(x,y)-p,9q(x,y)),

the twist maps satisfy

(f)q,p(x, a) < qm -p<0< qM — p < (j>q,P(x, b) .

According to Poincare-Birkhoff, the maps (j)q,p have at least two fixed points. This
m e a n s t h a t ( j ) h a s t w o p e r i o d i c o r b i t s o f t y p e ( q , p ) . □
It is easy to prove a special case of Theorem 3.1.1:
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Special case.
A monotone twist map satisfying fy(x,y) > 0 for all (x,y) G A has at least two
fixed points, if the map rotates the boundaries of the annulus in opposite directions
(property (iv) for twist maps).

Proof. Proof of the special case: because of the twist condition, there exists a
function z(x) satisfying

f(x,z(x)) = x .
The map z is C1 because of property (0) for the monotone twist maps. Thanks to
area-preservation, the map must intersect the curve

7 : x i—▶ (x,z(x)) G A

with the image curve ^(7) in at least two points. These intersections define two
fi x e d p o i n t s o f t h e m a p ( fi . Q

Definition. By an invariant curve of a monotone twist map (fi we mean a closed
curve in the interior of A, which surrounds the inner boundary {y = a } once and
which is invariant under (fi.

Prom Birkhoff [12] is the following theorem:

Theorem 3.1.3. (Birkhoff 1920) Every invariant curve of a monotone twist map
is star shaped. This means that it has a representation as a graph y = w(x) of a
function w.

For a careful proof see the appendix of Fathi in [15].

Theorem 3.1.4. Every invariant curve of a monotone twist map can be represented
as a graph y = w(x) of a Lipschitz continuous function w.

Proof. Let 7 be an invariant curve of the monotone twist map (fi. From Birkhoff's
theorem we know that 7 is given as a graph of a function w. The map (fi induced
on 7 is a homeomorphism

(x,w(x)) *-+ (ip(x),w(ip(x))) = (f(x,w(x)),g(x,w(x)))

given by a strictly monotone function ip. Let (xj,yj) and (xfj,y'j) be two orbits on
7. Then Xj and x'- are solutions of the Euler equations

-h i (x j ,x j+ i ) = h2(x j - i ,X j ) ,
h2(x,j_1,xfj) = -/ii(x^-,x^+1) .
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If we add both of these equations for j — 0 and add hi(x0,x[) - h2(x-i,x0) on
both sides, we get

h2(x'_1,x,0) - h2(x-i,x'Q) + /ii(x0,xi) - hi(xo,xi)
= h2(x-i,x0) - h2(x-i,x'0) + hi(xo,x[) -hi(x0,x[) .

By the intermediate value theorem we have

8(x,_l - x_i) + S(x[ - xi) < L(x'o - xo) ,
where S = min(-hi2) > 0 and L = max(\hn\ + \h22\) < oo. Because xx =
ifi(xo),X-i = ip~l(xo), we have

\rl>(x'0) - 1>(xo)\, H-\x'0) - r\x0)\ < ±\x'Q - x0\ .

This means that ip and ip-1 are Lipschitz continuous and also

w(x) = -h\(x,ip(x))
i s L i p s c h i t z c o n t i n u o u s . D

The question about the existence of invariant curves is closely related to stability:
Definition. The annulus A is called a region of instability, if there is an orbit
(xj,yj) which goes from the inner boundary to the outer boundary. More precisely,
this means that for all e > 0, there exists n, ra G Z so that

yn€Ue := {a < 2/ < a + e } ,
VmZVe := {b - e < y < b } .

Theorem 3.1.5. A is a region of instability if and only if there are no invariant
curves in A.

Proof. If there exists an invariant curve 7 in A, then this curve divides the annulus
A into two regions Aa and Ab in such a way that Aa is bounded by 7 and the
inner boundary {y = a } and At, is bounded by the curves 7 and {y = b }. Because
of the continuity of the map and the invariance of the boundary, the regions are
mapped into themselves. A can therefore not be a region of instability.

If A is no region of instability, there exists e > 0, so that one orbit which starts in
U€ never reaches Ve. The ^-invariant set

U=\JP(U)
is therefore disjoint from V. It is bounded by a (^-invariant curve 7. According to
Theorems 3.1.3 and 3.1.4 this curve is Lipschitz continuous. □
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One knows that for small perturbations of the integrable monotone twist map

invariant curves with 'sufficiently irrational' rotation numbers survive. This is the
statement of the twist map theorem, which is part of so-called KAM theory. See
[24] for a reference to a proof.
Definition. The space Cr(A) of Cr-diffeomorphisms on A has the topology:

\\<fil ~ foWr = SUp
m+n<r

d m + n ( / i - / 2 )
dxmdyn

where (fij(x,y) = (fj(x,y),gj(x,y)).

+ drn+n(gi-g2)
QxmQyn

Definition. We say that an irrational number (3 is Diophantine, if there are positive
constants C and r, so that for all integers p and q > 0 one has

\ 0 - - \ > C q - r .
Q

Theorem 3.1.6. (Twist map theorem) Given a G Cr[a,b] with r > 3 and
&'(y) > & > 0, V2/ G [a, b], there exists e > 0, so that for every area-
preserving Cr-diffeomorphism (fi of A with \\(fi — (fio\\ < c and every Diophantine
(3 G [a(a),a(6)], there exists an invariant Cl-curve 73. The map (fi induces on 7^
a C1 -diffeomorphism with rotation number (3.

Remark. For r < 3 there are counterexamples due to M. Hermann.

Relating the continuous and the discrete systems:

At the beginning of this section we have seen that if F satisfies Fpp > 0 and is
chosen so that no extremal solution has a conjugate point, then the Poincare map
(fi has the generating function

h(x,x') = / F(t,x,x) dt .Jo
The map (fi is then a monotone twist map. The exclusion of conjugate points was
necessary. In general — if conjugate points are not excluded — one can represent
the Poincare map (fi as a product of monotone twist maps: there exists Af G N, so
that the maps

</>Ntj : (x(J/N),y(j/N)) ~ (x((j + 1)/N),y((j + 1)/W))
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are monotone twist maps, if (x(t),y(t)) is a solution of the Hamilton equations

x = Hy,y = -Hx

and Hyy > 0. Each map

x(t + e) = x(t) + eHy + 0(e2) ,
y(t + e) = y(t)-eHx + 0(e2),

is then a monotone twist map for small enough e. The Poincare map (fi can therefore
be written as

(fi = <I>N,N-1 O (pN,N-2 ° ••• ° 4>N,0 •
We see that the extremal solutions of f F dt correspond to products of monotone
twist maps.

The question now appears whether every monotone twist map can be obtained
from a variational problem on the torus. For smooth (C°°) maps, this is indeed
the case ([25]). The result is:

Theorem 3.1.7. (Interpolation theorem) For every C°° monotone twist map (fi
there is a Hamilton function H = H(t,x,y) G C°°(R x A) with

a) H(t + 1, x, y) = H(t, x, y) = H(t, x + l,y),
b) Hx(t,x,y) =Q,y = a,b,
C) Hyy > 0 ,

so that the map (fi agrees with (x0,2/o) •-* (x\,y\), where (x(t),y(t)) is a solution
of

x = Hy(t, x,y),y = -Hx(t, x, y) .

With this interpolation theorem, Mather theory for monotone C°° twist maps is
a direct consequence of the theory developed in Chapter II.

3.2 A discrete variational problem
In this section we investigate a variational problem which is related to the problem
treated in Chapter II. Rather than starting from the beginning, we just list the
results which one can prove using the ideas developed in Chapter II. In [26] the
proofs are made explicit for this situation. Let

$ = {x : Z »-▶ R }

be the space of two-sided sequences of real numbers equipped with the product
topology. An element x G $ is called a trajectory or an orbit and one can write
(xj)jez for x.
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Definition. For a given function h : R2 —> 72 define

k - 1

H(xj,...,xk) = ^2h(xi9Xi+i)
i = j

and say, (xJ5 ...,Xfc) is a minimal segment if

H(xj +^-,xj+i +£j+i,...,xfc+£fc) > H(xj,...,xk),

forall^,...,aeR.

Definition. An orbit (xj) is called minimal, if every segment (xj,...,xk) is a
minimal segment. One writes M for the set of minimal elements for $. If h G
C2(R2), we say that x is stationary or extremal if x satisfies the Euler equations

h2(xi-i,Xi) + hi(xi,Xi+i) = 0,Vi G Z .

Of course, every minimal orbit is extremal. We could ask that h satisfies the con
ditions

(i) h(x, x') = h(x + 1, x' + 1) ,
(ii) h G C2(R) ,
( i i i ) h12(x,y)< -5<0 .

The generating function of a monotone twist map satisfies these requirements.
Additionally it also has the property

(iv) h\(x,x') + h2(x,x') = 0, if h\(x,x') = a,b .
The theory can be developed also with fewer assumptions [4]: the requirements
(ii) and (iii) can be replaced. Instead of (i) to (iii) it suffices to work with the
following assumptions only:

(i;) h(x,x') = h(x + l,x' + 1)
(ii') h G C2(R)
(iii') h(x, x + A) —> oo, uniform in x, A —> oo
(iv') x < x' or 2/ < y' =» h(x, y) + h(x', y') < h(x, yf) + h(x', y)
(v') (x',x,x"),(2/',x,2/") minimal =» (x' - y')(x" - y") < 0.

Assumption (iii') follows from (iii) if h G C2 because of
c r x - \ - X p x + \

-A2- > j d t j h12( tv )dv

= -h(x,x + X) + h(x + X,x + X)- f t i (^0^
J X

= -h(x,x + X) + 0(X) .
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Assumption (iv') is similar to (iii), because

-5(x'-x)(y'-y)> [ f hl2(Z,r)) dti dn = h(x',y') + h(x,y)-h(x,y')-h(xf,y)
J x J y

and (v') follows from (iii) by the monotonicity of y i-> h\(x,y) and x »-> h2(x,y).
The assumption x' < y' means h2(x',x) > h2(yf,x) > h2(y',y) and x" < 2/" gives
h\(x,x") > hi(x,y") > h\(y,y"). These inequalities together contradict the Euler
equations h2(x',x) + h\(x,x") = 0 and h2(yf,y) + h\(y,y") = 0.

We translate now the results and definitions in Chapter II to the current situation.
The explicit translated proofs can be looked up in [4].

Theorem 3.2.1. (Compare Theorem 2.4.1 or [4], 3.16J. For every (x{)iez € M the
rotation number a = lim^oo xi/i exists.

For monotone twist maps, the rotation number is contained in the twist in
terval [aa,a!b], where aa,&b are the rotation numbers of orbits which satisfy
hi(xj,Xj+i) = a (rsp. hi(xj,Xj+i) = b).
Definition. The set of minimals with rotation number a is denoted by Ma-

Definition. An orbit x is called periodic of type (q,p), if Xj+q -p = Xj. Call the
set of these orbits M(q,p).

Definition. We say that two trajectories (xi)iez and (yj)jez intersect
a) at the place k, if (xk-\ - 2/fc-i)(zfc+i - 2/fc+i) < 0 and xk = yk,
b) between k and fc + 1, if (xk - yk)(xk+x - yk+x) < 0.

Definition. On M is defined the partial order

x < y & Xi < 2/i,Vz G Z ,

x < y & Xi < yi, Vi G Z .

The next result can be compared with Theorem 2.3.1 or [4], 3.1, 3.2, 3.9.

Theorem 3.2.2. a) Two different minimal trajectories intersect at most once.
b) If x < y, then x = y or x < y.
c) 7/lim^oo \x{ - yi\ = 0, then x <y or x > y.
d) Two different minimals of type (q,p) do not intersect. The set M(q,p) is totally
ordered.

Remark. The strategy in the proof of Theorem 3.2.2 is the same as for Theo
rem 2.3.1. For a), we need the transversality condition (v') as well as the order
relation (iv').
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Theorem 3.2.3. (Compare Theorem 2.3.3 or [4], 3.13). Minimals have no self in
tersections on T2.

See Theorems 6.2 and 8.6 in [4] or [4] 3.3 and 3.17) as a comparison to the following
theorem:

Theorem 3.2.4. a) For every (q,p) G Z2 with q ^ 0, there is a minimal of type
(q,p)-
b) Ma ^ 0 for all a G R.

For monotone twist maps this means that for every a in the twist interval [aa, o^]
there exist minimal trajectories with rotation number a.

Theorem 3.2.5. (Compare Theorem 2.5.9 or [4], 4.1). For irrational a the set Ma
is totally ordered.

Definition. For x G A4a and irrational a, define the maps vr1 : R \—> R,

u^ : aj — k i—> Xj — k

by closure of the two semicontinuous functions

u + ( 0 ) = l i m u ( 6 n )

vT(0) = l im u(0n) .

There are again two cases A) and B):
case A): u^ = u~ = u
case B): u+ / u~.

Theorem 3.2.6. (Compare Theorems 9.1, 9.13 or [4], 2.3./ u^ are both strictly
monotone in 0.

Definition. A trajectory x G Ma is called recurrent, if there exist (jm, fcm) G Z2,
such that x;+jm — km —> xi for ra —> oo. The set of the recurrent trajectories is
denoted by Mrec. The elements of Mr^c = Ma H Mrec are called Mather sets in
case B). Define also

Ua '•= {x G Ma | Xj — u+(aj + (3) or Xj = u~(aj + (3) }

for (3 G R.

Compare the next result with Theorems 2.5.10-2.5.13 or 4.5, 4.6 in [4].
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Theorem 3.2.7. a) Ua = Mraec.
b) Ma is independent of the element x which generated u.
c) x G Maec can be approximated by periodic minimals.
d) Every x G Ma is asymptotic to an element x~ G Maec.

On Uraec = Ma define the map

ip : u(0) ^ u(0 + a) .

Definition. In the case when h generates a monotone twist map (fi, we define for
every irrational a G [aa,ab] the set

Ma = {(x,y) | x = ^(0),0 G R,y = -hx(x,iP(x)) }.

Theorem 3.2.8. (Mather, compare with 7.6 in [4\). If h is a generating function for
a monotone twist map on the annulus A, then for every irrational a in the twist
interval [aa, a^], one has:
a) Ma is a non-empty subset of A, which is (fi-invariant.
b) Ma is the graph of a Lipschitz function u : Aa —> [a, b], which is defined on the
closed set Aa = {^(0) \ 0 G R } by uj(x) = -hi(x,tp(x)).
c) The map induced on Ma is order-preserving.
d) The set Aa, the projection of MQ on S1 is either the entire line R or it is a
Cantor set. In the first case we are in case A) and the graph of u is an invariant
Lipschitz curve. In the second case we are in case B) and Ma is called a Mather
set with rotation number a.

We point to the recent papers of S.B. Angenent [2, 1], where these ideas are
continued and generalized. In those papers, periodic orbits are constructed for
monotone twist maps which do not need to be minimal but which have a prescribed
index in the sense of Morse theory. In the proofs, Conley's generalized Morse
theory is used. Furthermore, Angenent studied situations where the second order
difference equations like h2(xi-\,Xi) + hi(xi,Xi+i) = 0 are replaced by higher
order difference equations.

3.3 Three examples
In this section we return to the three examples of monotone twist maps which had
been mentioned above: the standard map, billiards and the dual billiards.
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The standard map

Mather has shown in [22] that the standard map has for parameter values |A| > 4/3
no invariant curves in A. We show first, that for |A| > 2, no invariant curves can
exist.

According to Birkhoff's Theorem 3.1.4, an invariant curve is a graph of a Lipschitz
function y = u(x) on which the induced map is

Xi =1p(x) = f(x,Lj(x)) .

This map ip is a solution of the equation

hx(x,ip(x)) + h2(ip~l(x),x) = 0 .

If we plug in

h\(x,x\) — —(x\ — x) — —-sin(27rx) ,2tt
h2(x,xi) = xi - x0 ,

we get

or

— (ip(x) — x) — — sin(27rx) + x — ip l (x) = 0
2tt

ifi(x) + xp~l(x) — 2x— — sin(27rx) .2tt
The left-hand side is a monotonically increasing Lipschitz continuous function. For
|A| > 2 we obtain a contradiction, because then the derivative on the right-hand
side

2-Acos(2ttx)
has roots.

Theorem 3.3.1. (Mather) The standard map has no invariant curves for parameter
values \X\ > 4/3.

Proof. We have even seen that the map ip which is induced on the invariant curve
satisfies the equation

g(x) = rp(x) + \p~l(x) — 2x — —- sin(27rx) .2tt
For Lebesgue almost all x, we have

ra := 2 - |A| < g'(x) < 2 + \X\ =: M .
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Denote by esssup(/) the essential supremum of / and by essinf (/) the essential
infimum. Let

R = esssup ip'(x) ,
r = essinf ipf(x) .

Therefore, for almost all x,

r < tpf(x) < R ,
R-1 < (ip~l)'(x) < r-1

and therefore

a) max{7? + 7?"1,r + r~1} < max#'(x) < M ,
b) 2 min{r, R'1} <r + R~l < min g'(x) = ra .

From a) follows

max(R,r~1) < i(M+\/M2-4) .

From b) follows
2

max(7t!,r_1) > min(7?,r_1) > — .ra
Together 2 1< - ( M + \ / M 2 - 4 ) .r a 2
If we plug in m = 2 — |A| and M — 2 + |A|, we obtain

(3|A|-4) |A|<0.

T h e r e f o r e , | A | < 4 / 3 . □
Remarks.

1) Theorem 3.3.1 was improved by Mac Kay and Percival in [19]. They could show
the nonexistence of invariant curves for |A| > 63/64.

2) Numerical experiments of Greene [13] suggest that at a critical value A =
0.971635..., the last invariant curve disappears.

Theorem 3.3.2. There exists e > 0 so that for \X\ < e and for every Diophantine
rotation number (3, the set Mp is an invariant Lipschitz curve.

Proof. Apply the twist Theorem 3.1.6. The function a(y) is of course given by
a ( y ) = y . □



3 . 3 . T h r e e e x a m p l e s 1 0 1

Remark. Today there exist explicit bounds for e [15]. Celletti and Chierchia have
recently shown [8] that the standard map has analytic invariant curves for |A| <
0.65.

A direct consequence of Theorem 3.2.7 and Theorem 3.3.1 is:

Theorem 3.3.3. For every a £ R, there exist Mather sets Ma for the standard
map. For a = p/q there are periodic orbits of type (q,p), for irrational a and
|A| > 4/3, the set Ma projects onto a Cantor set.

If we look at a few orbits of the standard map for different values of A, the nu
merical calculations show the following picture:

In the unperturbed case A = 0 all orbits are lo
cated on invariant curves. For A = 0.2, the ori
gin (0,0) is an elliptic fixed point. While increas
ing A, for example for A = 0.4, a region of in
stability grows near a hyperbolic fixed point. For
A = 0.6, there are still invariant KAM tori. For
A = 0.8 the dynamics is already quite compli
cated. For A = 1.0 it is known that no invariant
curves which wind around the torus can exist any
more. For A = 1.2, the 'stochastic sea' dominates
already the regions of stability. One believes that
for large A, the dynamics is ergodic on a set of
positive measure. For A = 10.0 one can no more
see islands even though their existence is not ex
cluded.

Birkhoff billiards

Also due to Mather [21] are examples of closed, smooth convex curves T which
define billiards with no invariant curves.

Theorem 3.3.4. (Mather) If V has a flat point, a point at which the curvature
vanishes, then <j> has no invariant curve.

For example, the curve given by x4 + y4 = 1 has flat points.

Proof. If an invariant curve for the billiard map <j> exists, then through every point
P of r there would exist a minimal billiard trajectory. This means that it maxi
mizes the length. We show that this can not be true for the flat point Pq 6 I\
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If there would exist a minimal through Po, we
denote with P_i and Pi the neighboring re
flection points of the billiard orbit. We draw
the ellipse, which passes through Po and which
has both points P_i and P\ as focal points. In
a neighborhood of P0, the curve T is outside
the ellipse, because P0 is a flat point. This
means that for a point P G T in a neighbor
hood of P0, the length of the path P_iPPi is
bigger than the length of the path P_iP0Pi,
which contradicts the minimality of the orbit
(maximality of the length).

□

Definition. A piecewise smooth closed curve 7 in the interior of the billiard table
T is called a caustic if the billiard orbit which is tangential to 7 stays tangent to
T after every reflection at 7.

A caustic of course leads to an invariant curve {(s, ip(x)) } for the billiard map. In
that case ip(s) is the initial angle of the billiard map path at the boundary which
hits the caustic.

Lazutkin and Douady have proven [18, 11] that for a smooth billiard table T with
positive curvature everywhere, there always are "whisper galleries" near T.

Theorem 3.3.5. If the curvature of the curve T is positive everywhere and T G C6,
there exist caustics near the curve T. These caustics correspond to invariant curves
of the billiard map near y = 0 and y = tt.

From Hubacher [17] is the result that a discontinuity in the curvature of T does
not allow caustics near T.

Theorem 3.3.6. If the curvature of T has a discontinuity at a point, there exist no
invariant curves in the annulus A near y = — 1 and y = 1.

This theorem does not make statements about the global existence of invariant
curves in the billiard map in this case. Indeed, there are examples where the cur
vature of T has discontinuities, even though there are caustics.

A direct consequence of Theorem 3.2.7 is also the following result:

Theorem 3.3.7. For every a G (0,1), there are orbits of the billiard map with
rotation number a.
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Appendix. Ergodic billiard of Bunimovich.

Definition. An area preserving map (fi of the annulus A is called ergodic, if every
^-invariant measurable subset of (fi has Lebesgue measure 0 or 1.

If (fi is ergodic, then A is itself a region of instability. Moreover, there are then
orbits in A, which come arbitrarily close to every point in A. This is called tran
sitivity. Bunimovich [7] has given examples of ergodic billiards. Ergodic billiards
have no invariant curves.

Remark. Mather theory still holds but not necessarily for the Bunimovich billiard,
which produces a continuous but not a smooth billiard map.

Dual Billards

The dual billiard was suggested by B.H. Neumann (see [24]). Unlike in the case of
billiards, affine equivalent curves produce affine equivalent orbits. Mathers Theo
rem 3.2.8 applied to this problem gives:

Theorem 3.3.8. 7/T is smooth, then there exists for every a G (0,1) a point (x,y)
such that (x,y) £ r and such that the iterates rotate around 7 with an average
angular speed a.

An application of the twist Theorem 3.1.6 with zero twist is the following theorem:

Theorem 3.3.9. If the curve 7 is at least Cr with r > A, then every orbit of the
dual billiards is bounded.

Let T be an arbitrary convex closed
curve. For every angle ip G [0,27r) we / f //j^p^*^ '*^S%k>
cons t ruc t the sma l les t s t r i p bounded { ' * s / ' £ * ~ *£ - \
b y t w o l i n e s a n d w h i c h h a s s l o p e & { ( ( j j x V ? w \i t
tire curve T. The two lines intersect T , * (M
a r c t a n ( , 0 ) , a n d w h i c h c o n t a i n s t h e e n - ' f * ' 1 ' & l \ " *

min general in two intervals. Let £ be the \ w' \ J l^Mp , i
vector which connects the center of the x\ % vb, ~~ , "3/$ < k f afi r s t i n t e r v a l w i t h t h e c e n t e r o t h e s e c - \ \ \ & \ ' 0 &f t ! s ? r
ond interval. The convex closed curve 7 x V \^ N , - $ *f /
with polar representation r(ip) = |f^| is \ \ M^^<< -j>fa^ &$£* '
called the fundamental curve of T. v^ *** ^T^;^ . ^^
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It is invariant under reflection at the
origin. The curve is therefore the
boundary of a unit ball in R2 with norm

||x|| = min{A G R | Ax G 7 } .

Denote by 7* the boundary of the unit
bal l in the dual space of the Banach ^ iM^^%^
space (R2,|| • ||). This curve is called %;/}/i*l^>%
t h e d u a l f u n d a m e n t a l c u r v e o f T. F a r ^ v < i ^ f
away f rom the cu rve T the o rb i t i s near ^ "^
a curve which has the form of the dual
fundamental curve of T. If F is a poly
gon, then also the dual fundamental
curve 7* of T is a polygon. If the corners
of 7 have rational coordinates, then T
is called a rational polygon.
The following result is due to Vivaldi and Shaidenko [27] :

Theorem 3.3.10. (Vivaldi and Shaidenko) IfT is a rational polygon, then all orbits
of the dual billiard are periodic. In this case there are invariant curves which are
close to the dual fundamental curve 7* ofT.

(Note added later: the proof in [27] had a gap but new proofs are available, see
Appendix).

Open problem: It is not known whether there exists a dual billiards for which
there are no invariant curves. In other words:

Problem. Is it possible that for a convex curve 7 and a point
P outside of 7 the sequence <fi™(P) is unbounded, where (fi1
is the dual billiards map?

3.4 A second variational problem

Actually, one could find Mather sets in the discrete case by investigating a func
tion u satisfying the following properties:

(i) u is monotone.
(ii) u(0 + l) = u(0) + l.
(iii) hi(u(0), u(0 + a)) + h2(u(0 - a), u(0)) = 0 .



3 . 5 . M i n i m a l g e o d e s i e s o n T 2 1 0 5

This is again a variational problem. Equation (iii) is the Euler equation describing
extrema of the functional

Ia(u)= j h(u(0),u(0 + a))d0Jo
on the class J\f of the functions, which satisfy (i) and (ii). This is how Mather
proved first the existence of u^ [20]. A difficulty with this approach is to prove
existence of the Euler equations. While this works formally:

d fl
—Ie(u + ev)\e=o = / h1(u,u(0 + a))v + h2(u,u(0) + a))v(0 + a) d0d e J o

r l

[hx(u,u(0 + a)) + h2(u(0 - a),u(0))]v(0) d0/o
we can not vary arbitrarily in the class M, because otherwise the monotonicity
could get lost. Mather succeeded with a suitable parameterization.

/ 'Jo

A different possibility is to regularize the variational problem. Consider for every
v > 0 the functional

lM(u)= ^-u2e + h(u(0),u(0 + a))d0 .Jo 2
We look for a minimum in the class of functions u, for which u(0)—0 is a probability
measure on S1:

u- IdeM^T1) .
The Euler equation to this problem is a differential-difference equation

-vuee + hx(u(0),u(0 + a)) + h2(u(0 + a),u(0)) = 0
for which one can show that the minimum u*e is regular and monotone:

ul(0) -0e C2(SX), dul(0)/d0 > 0 .
Because the unit ball in Ml(Sl) is weakly compact, the sequence v^ —> 0 has a
subsequence ix*fc which converges weakly to u* where u* satisfies the requirements
(i) to (iii).

Remark. This strategy could maybe also be used to find Mather sets numerically.

3.5 Minimal geodesies on T2
Minimal geodesies on the torus were investigated already in 1932 by Hedlund [14].
In [5], Bangert has related and extended the results of Hedlund to the above theory.
In this section, we describe this relation. For the proofs we refer to Bangert's
article.
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The two-dimensional torus T2 = R2/Z2 is equipped with a positive definite metric

ds2=gij(q)dqidqj,gijeC2(T2).
The length of a piecewise continuous curve 7 : [a, b] —▶ R2 is measured with

L{l) = f F(q,q)dt,
J a

F(q,g) = (M9)W2,
and the distance of two points p and q is

d(q,p) = inf{L(7) | 7(a) = p,7(6) = q} .
One calls such a metric a Finsler metric. A Finsler metric is a metric defined by
d, where F is homogeneous of degree 1 and satisfies the Legendre condition. The
just defined metric generalizes the Riemannian metric, for which gij is symmetric.

Definition. A curve 7 : R —▶ R2 called a minimal geodesic if for all [a, b] C R one
has

db(a)Mb)) = L(7)\ba.
Again we denote by M the set of minimal geodesies in R2.
Already in 1924, Morse had investigated minimal geodesies on covers of 2-dimen-
sional Riemannian manifolds of genus > 2 [23]. Hedlund's result of 1934 was:

Theorem 3.5.1. a) Two minimal geodesies intersect at most once.
b) There is a constant D, which only depends on g, so that every minimal geodesic
is contained in a strip of width 2D: 3 constants A, B, C with A2 + B2 = 1, so that
for every minimal geodesic 7 : t \-> (qi(t),q2(t)) one has

\Aqi(t) + Bq2(t) + C\< D,Vt G R .

c) In every strip of this kind, there exists a geodesic: VA, B, C with A2 + B2 = 1,
3 minimal geodesic 7 : 11—> ( î(^),^2(^)),

\Aqx(t) + Bq2(t) + C\ < D,Vt G R

with rotation number
a = -A/B= l im q^/q^t)t—▶oo

which also can take the value 00.
d) 7 G M has no self intersections on the torus.
e) If a is irrational, then Ma, the set of minimal geodesies with rotation number
a, is well ordered.
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How does this result relate to the theory developed in Chapter II? The variational
problem which we had studied earlier is given by

7(7) = f F(t,x,x) dt = J F(qi,q2, ̂ |) dQl ,
where (t,x(t)) is the graph of a function. Now we allow arbitrary curves
(qi(t),Q2(t)), which can in general not be written as graphs q2 = (fi(q\). Also
if we had q2 = (fi(q\), as for example in the case of the Euclidean metric

F = [l + (fj» )»]!/»,
dq\

one has in general not quadratic growth. Bangert has shown how this problem
can be avoided. We assume that the following existence theorem (compare [4], 6.1,
6.2) holds:

Theorem 3.5.2. a) Two arbitrary points p and q on R2 can be connected by a
minimal geodesic segment: EI7* : [a, b] —+ R2,s \—> q*(s) with q*(a) = p,q*(b) = q
and 7/(7*) = d(p,q).
b) In every homotopy class {7 : s 1—> q(s) | q(s + L) — q(s) + j,j G Z2 }, there is
at least one minimal. This minimal has no self intersections on T2.

Let 7:sh q(s) = (qi(s),q2(s)) be a geodesic parametrized by the arc length s.
According to the just stated theorem, there is a minimal 7* : s i—> q*(s) with

q*(s + L) = q*(s) + e2,
where e2 is the basis vector of the second coordinate. Because this minimal set
has no self intersections, we can apply a coordinate transformation so that in the
new coordinates

qi(s) = 0,q2(s) = s .
Therefore, one has

(k,s)=q*(s) + k,VkeZ.
Define

M^»7):=d((0,0,(l,»?)),
where d is the metric d in the new coordinate system. The length of a curve
between p and q composed of minimal geodesic segments is given by

r - l

^rh(xj,Xj+i) .
3 = 1

The minimum
r - l

minxr=p$Zh^»a:J+1)

is assumed by a minimal geodesic segment, which connects (l,xi) with (r,x2).
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The following statement reduces the problem to the previously developed theory.
It should be compared with 6.4 in [4].

Theorem 3.5.3. The function h satisfies properties (if) to (iv').

We can summarize the results as follows and compare them with [4], 6.5 up to
6.10:

Theorem 3.5.4. a) For every a G R, there exists a minimal geodesic with rotation
number a.
b) A minimal geodesic does not have self intersections on the torus.
c) Periodic minimal geodesies are minimal in their homotopy class.
d) Two different periodic minimal geodesies of the same period don't intersect.
e) A minimal geodesic 7 with rotation number a is either periodic or contained in
a strip formed by two periodic minimal geodesies 7+ and 7" of the same rotation
number. In every time direction, 7 is asymptotic to exactly one geodesic 7+ or
7~. There are no further periodic minimal geodesies between 7+ and 7". In other
words, they are neighboring.
f) In every strip formed by two neighboring minimal periodic geodesies 7"" and 7+
of rotation number a there are heteroclinic connections in both directions.
g) Two different minimal geodesies with irrational rotation number do not inter
sect.
h) For irrational a there are two cases:
case A): Through every point of R2 passes a recurrent minimal geodesic with ro
tation number a.
case B): The recurrent minimal geodesies of this rotation number intersect every
minimal periodic geodesic in a Cantor set.
i) Every non-recurrent minimal geodesic of irrational rotation number a is enclosed
by two minimal geodesies, which are asymptotic both forward and backwards,
j) Every non-recurrent minimal geodesic can be approximated by minimal
geodesies.

3.6 Hedlund's metric on T3
In this last section, we describe a metric on the three-dimensional torus as con
structed by Hedlund. It shows that the above theory is restricted to dimension
n = 2. The reason is that unlike in three dimensional space, non-parallel lines in
R2 must intersect.

The main points are the following:
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1) It is in general false that there exists for every direction
a minimal in this direction. There are examples, where one
has only three asymptotic directions.

2) It is in general false that if 7*(s + L) — 7*(s) + fc is
minimal in this class M{L,k), then also 7*(s + NL) =
-y*{s) + NL is minimal in M(NL, Nk). Otherwise 7* would
be a global minimal and would therefore be asymptotic to
one of the three distinguished directions.

There are however at least dim(i/i(T3,R)) = 3 minimals [5]:

Theorem 3.6.1. On a compact manifold M with dim(M) > 3 and non-compact
cover, there are at least dim(Hi(M,R) minimal geodesies.

The example:

* i

Define on the three dimensional torus T'5 = R'VZ'' the metric

9ij{x) =ri2(x)Sij

rtiere n € C°°(T3),r? > 0.

We need three closed curves 71,72 and 73 on T'5 which pairwise do not intersect.
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Let Ci denote the unit basis vectors in R3. Define

71 : t \-> tei ,

72 : t r—> te2 + -tei ,

73 : t \—> 1
te3 + -te2 +

3

1
2*Cl'

r = IK-
3 = 1

We fix 0 < e < 10 2. The e-neighborhood Ue(^i) form thin channels in T3, which
do not intersect. Denote by

3

U(l) = |J Ue(7o)

the entire channel system.

Let 0 < €i < e < 10"2 for i = 1,2,3 and n G C°°(T3) with

i) n(x) < 1 + e, Vx G T3 ,
ii) r/(x) >1, VxGT3\f7(7) ,

iii) n(x) >Ci,\/xe U(ji) \ 7* ,
iv) r?(x) = 6i, Vx G 7i .

The results are:

Theorem 3.6.2. a) The total length of the minimal segments outside U(j) is smaller
than 4.
b) Every minimal changes at most four times from one channel to another.
c) Every minimal is for s —> ±00 asymptotic to one of the curves 7^.
d) Every curve 7; is a minimal.

Proof. We take first a piecewise C1 curve,

7 : [a, b] (->R3,sk> 7(5)

parameterized by the arc length s. If ry2|7(s)|2 = 1, then
p b r b

£(7) — / ^ItI ds = ds = b — a .
J a J a

Denote by A the set of times, for which 7 is outside the channels

A = {se[a,b}:1(s)tU(r)}
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and let
\(A) := [ ds< L(7) .J A

Finally we need the vector x = 7(6) — 7(a). To continue the proof we will need
t w o l e m m a s . □

Lemma 3.6.3. (Estimate of the time outside the channels). For every piecewise
C1 -curve 7 : [a, b] —▶ R3, we have

a7(A)< - [L (7 ) - ^6J | x | J ] + 10
- 2

Proof. Define for j = 1,2,3,

Aj = {se[a,b] I 7(5) G Ue(^j) } ,
a = {5 g M 17(s) £tf(r)} ,

so that [a, b] = AU AiU A2U A3. If nj is the number of visits of 7 in Ue(ji), then

/ 7 j ^Jaj

/ 7 j d «

/ 7 j d s■/MM;

< 2^-c, i ^ j ,

/ 7 j ^7[a,6]

< / \jj\ds + y2 / 7» ds > / ry|7j| ds + 2(n; + nk)e
J A - j . J A , I J A

I 7 ^ d s = | x j | — / 7 ^ d s
J [ a , b ] \ A j J [ a , b ] \ A j

= X(A) + 2(m + nk)e, ({i, j,fe} = {1,2,3})

We have

KAj) = / 7/I7I ds > €j
Jaj

I li ds
Ja3

> ej{\xj\ - X(A) - 2(ni + nk)e } .

Addition gives
3

L(7) = X(A) + ^X(A3)
i = i

> X(A) + (J2 ej\xj\) ~ 3cA(i4) - 4e2(ni +n2+ n3)
3

3
= (l-3e)\(A) + Y,fo\xj\-^2nj}-
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On the other hand, there must be n\ + n2 + n3 — 1 changes between channels and
during these times the 7 are outside of Ue(T). Because the distance between two
channels is > (1/2 - 2c),

X ( A ) > r £ n j - l \ ( \ - 2 e )

follows. Therefore

^2nj<X(A)(1--2e)-i
and

1 3
L ( i ) > A ( A ) [ l - 3 £ - 4 e 2 ( - - 2 e ) - 1 + ^ e j | x , | - 4 e2

3
> ^ (A(A) + ^6 , |x , | -462) .

3 = 1

From this follows
3

( L M - '
10X ( A ) < 1 - l ) ( L ( 1 ) - ^ 2 e J \ x J \ ) + 1 0 - 2 . D

j = i

Lemma 3.6.4. (Estimation of the length of a minimal).

3

7,(7) = d(7(a),7(6)) < ]>>N + 3(1 + 6) .
2^1

Proof The length of a minimal from 7(0) to one of the channels f/e(7j) is less
than or equal to 1 + e. Also the length of a path which switches from Ue(jj) to
Uedi) is smaller than or equal to (1 + e). The length of a path in a channel Ue(ji)
is smaller than Cj|xj|. Therefore

3

L ( 7 ) < 3 ( 1 + € ) + £ € > ,■ ! . □
3 = 1

Continuation of the proof of Theorem 3.6.2.
a) follows now directly from Lemma 3.6.3 and Lemma 3.6.4:

A(A)<^(L(7) -^e j |^ | ) + 10-2<^3( l + e) + 10-2<4.
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b) Let 7 : [a, b] —> R2 be a minimal segment, so that 7(a) and 7(6) G U(T). We
have

3

L(7)<2(l + 6) + 26 + ^6j|xj|.

If AT is the number of times the channel is changed, then

JV(i - 2c) < X(A) < li[2(l + 6) + 2e + IO"2]

which means N < 5 and therefore AT < 4.

c) Because we only have finitely many changes a minimal 7 is finally contained in
a channel Ue(^k) and it is not difficult to see that 7 must be asymptotic to 7^.
( E x e r c i s e ) . □
Remark. Again as an exercise it can be shown that for all p, x G R3 one has

3 3

5^Ciki| -4 < d(p,p + x) < ^q|x;| +4
2 = 1 2 = 1

and with that we get the so-called stable metric

The stable norm on 77i(T3,R) is defined as follows. If 7 is a closed curve in T3
which represents an element in 77i(T3,R), then the stable norm is defined as

|H|=J(7(0),7(i)).
It has a unit ball of the form of an octahedron. It turns out there is in general
a close relation between the existence properties of minimal geodesies and the
convexity of the unit ball in the stable norm. (See [5]).

3.7 Exercises to chapter III
1) Verify that for the billiard and for the dual billiard, the generating functions
have properties (0') through (iv').

2) Show that in Hedlund's example, a minimal geodesic is always asymptotic to
one of the curves 7^.

3) Prove that the curves 7^, k = 1,2,3 in Hedlund's example are minimal.
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4) Verify in Hedlund's example the inequality
3 3

5^Ci|a?i| -4<d(p,p + x) < ^€i|xi|+4.
2 = 1 2 = 1
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Appendix A

Remarks on the literature

Every problem in the calculus of varia
tions has a solution, provided the word
solution is suitably understood.

David Hilbert

Since these lectures were delivered by Moser, quite a bit of activity happened in
this branch of dynamical system theory and calculus of variations. In this ap
pendix some references to the literature are added. It goes without saying that
this snapshot can not be exhaustive.

For the classical results in the calculus of variation see [36, 44]. In the meantime
also the books [43, 91] have appeared. Notes of Hildebrandt [42] which were partly
available in mimeographed form when the lectures had been delivered, have now
entered the book [36]. This book is recommended to readers who want to know
more about classical variational problems. Finally, one should also mention the
review articles [73, 78].

More information about geodesic flows can be found in the sources [21, 13, 79].
Related to the theorem of Hopf are papers on integrable geodesic flows on the
two-dimensional torus with Liouville metrics gij(x,y) — (f(x) + h(y))Sij (see
[8, 69, 82]). For these metrics the flow has additionally to the energy integral
H(x,y,p,q) — (p2 + q2)/A(f(x) + h(y)) also the quadratic integral F(x,y,p,q)
— (h(y)p — f(x)q)/4(f(x) + h(y)). The problem to list all integrable geodesic flows
on two dimensional Riemannian manifolds seems open (see [96]). Another theo
rem of Hopf type can be found in [80]. The higher dimensionsional generalization
known under the name Hopf conjecture has been proven in [20].
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More about Aubry-Mather theory can be found in [63]. Mather's first work is the
paper [62]. The variational problem was later reformulated for invariant measures.
It has been investigated further in [65, 67, 66, 68, 33]. See also the review [63].

Angenent's work mentioned in these lectures as preprints is published in [3]. The
preprint of Bangert has appeared in [9].

The construction of Aubry-Mather sets as a closure of periodic minimals was done
in [45, 46]. For a different approach to Aubry-Mather theory see [37]. While Gole's
approach does not give all the results of Mather theory it has the advantage of
being generalizable [51]. For higher dimensional Aubry-Mather theory, see [84].
For billiards, Aubry-Mather theory leads to average minimal action invariants
[85]. The regularized variational principle mentioned in the course is described in
detail in [75, 76]. For a reader who wants to learn more about the origins of the
approach described in these notes, the papers [72, 29] are relevant. Aubry-Mather
sets have been found as closed sets of weak solutions of the Hamilton-Jacobi equa
tions ut + H(x, t, u)x = 0, which is a forced Burger equation ut + uux + Vx (x, t) = 0
in the case i7(x, t,p) = p2/2 + V(x, t) ([100]). Mane's work on Aubry-Mather the
ory announced in [60] appeared later in [61].

The theorem of Poincare-Birkhoff which was first proven by Birkhoff in [14] has
been given other proofs in [19, 64, 1].

For Aubry-Mather theory in higher dimensions, many questions are open. In [83]
the average action was considered in higher dimensions. The higher-dimensional
Frenkel-Kontorova model is treated in [84].

A good introduction to the theory of billiards is [92]. A careful proof for the
existence of classes of periodic orbits in billiards can be found in [99]. A result
analoguous to the theorem of Hopf for geodesies is proven in [12] or [102].

A question sometimes attributed to Birkhoff asks whether every smooth and
strictly convex billiard is integrable. The problem is still open and also depends on
the definition of integrability. Although Birkhoff made indications in [15, 16], he
never seems have written down such a conjecture. The question was asked explic
itly by H. Poritski in [81] who also started to attack the problem in that paper.
The conjecture should therefore be called the Birkhoff-Poritski conjecture. For
analytic entire perturbations, there is something known [28]. For more literature
about caustics in billiards see [92, 49, 39].

More about the standard map can be found in the textbooks [86, 23, 47, 54]. The
map appeared around 1960 in relation with the dynamics of electrons in microtrons
[26]. It was first studied numerically by Taylor in 1968 and by Chirikov in 1969
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(see [34, 25]). The map appears also by the name of the 'kicked rotator' and de
scribes equilibrium states in the Frenkel-Kontorova model [52, 4].

The existence of stable 'islands' in the standard map for arbitrary large values of
A has been proven by Duarte [30].

While it is known that for A ^ 0, the standard map is non-integrable, has posi
tive topological entropy and horse shoes (i.e., [31, 3, 35]), the question, whether
hyperbolicity can hold on a set of positive Lebesgue measure stays open. While
many area-preserving diffeomorphisms on the torus are known to be non-ergodic
with positive topological entropy (i.e., [97, 104]), it is not known whether positive
metric entropy is dense in the C°° topology. The issue of the positivity of the
Lyapunov exponents on some set of positive Lebesgue measure for Hamiltonian
systems has been addressed at various places or reviews [70, 104, 25, 101, 55, 59,
41, 87, 90, 24, 27, 30, 103, 58, 98]. According to [30], the particular mathematical
problem of positive entropy of the Chirikov standard map was promoted in the
early 1980s by Sinai. The textbook [86] states a conjecture (H2) that the entropy
of the Chirikov standard map is positive for all A > 0 and that the entropy grows
to infinity for A —▶ oo.

The break-up of invariant tori and the transition of "KAM Mather sets" to "Can-
torous Mather sets" in particular has recently been an active research topic. The
question, whether the MacKay fixed point exists is open. In a somewhat larger
space of 'commuting pairs', the existence of a periodic orbit of period 3 was proven
in [89]. A new approach to the question of the break-up of invariant curves is the
theory of renormalisation in a space of Hamiltonian flows [50], where a nontrivial
fixed point is conjectured also. For renormalisation approaches to the break-up of
invariant curves one can consult [57, 88, 89, 50].

With the variational problem for twist maps one can also look for general critical
points. An elegant construction of critical points is due to Aubry and Abramovici
[7, 5, 6]. See [48] for a reformulation using the Percival functional. Aubry and
Abramovici's approach shows that many Mather sets are hyperbolic sets. Hyper
bolicity of Mather sets had first been demonstrated for the standard map in [38].

A part of the theory of the break-up of invariant curves was coined 'converse KAM
theory' ([56]). Many papers appeared on this topic (i.e., [32, 11]).

The dual billiards is often also called 'exterior billiards' or 'Moser billiards'. The
reason for the later name is that Moser often used it for illustrations, in pa
pers or talks, for example in the paper [71] or in the book [70]. The question,
whether a convex exterior billiards exists which has unbounded orbits is also open.
Newer results on this dynamical system can be found in [93, 94, 18, 95]. Vivaldi
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and Shaidenko's proof on the boundedness of rational exterior billiards had a gap.
A new proof has been given in [40] (see also [17]).

The different approaches to Mather theory are:

• Aubry's approach via minimal energy states. This was historically the first
one and indicates connections with statistical mechanics and solid state
physics.

• Mathers construction is a new piece of calculus of variation.

• Katok's construction via Birkhoff periodic orbits is maybe the technically
most elegant proof.

•

•

Goles proof leads to weaker results but has the advantage that it can be
generalized.

Bangert connected the theory to the classical calculus of variation and the
theory of geodesies.
Moser's viscosity proof is motivated by classical methods in the theory of
partial differential equations.

Unlike for classical variational problems, where the aim is to find compact solutions
of differentiable functionals, the theme of these lectures shows that Mather theory
can be seen as a variational problem, where one looks for noncompact solutions
which are minimal with respect to compact perturbations. For such variational
problems the existence of solutions needs already quite a bit of work.

In an extended framework the subject leads to the theory of noncompact mini
mals, to the perturbation theory of non-compact pseudo-holomorphic curves on
tori with almost complex structure [77], to the theory of elliptic partial differential
equations [74, 22] or to the theory of minimal foliations [10].

As Hedlund's example shows, Mather's theory can not be extended to higher di
mensions without modifications. The question arises for example what happens
with a minimal solution on an integrable three-dimensional torus if the metric is
deformed to the Hedlund metric. Another question is whether there is a Mather
theory which is applicable near the flat metric of the torus.

In [53] the Hedlund metric was investigated and the existence of many solutions
for the geodesic flow and non-integrability is proven. For metrics of the Hedlund
type on more general manifolds one can consult [2].
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