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0.1. Introduction 1

0.1 Introduction

These lecture notes describe a new development in the calculus of variations which
is called Aubry—Mather—Theory.

The starting point for the theoretical physicist Aubry was a model for the descrip-
tion of the motion of electrons in a two-dimensional crystal. Aubry investigated a
related discrete variational problem and the corresponding minimal solutions.

On the other hand, Mather started with a specific class of area-preserving annulus
mappings, the so-called monotone twist maps. These maps appear in mechanics
as Poincaré maps. Such maps were studied by Birkhoff during the 1920s in several
papers. In 1982, Mather succeeded to make essential progress in this field and
to prove the existence of a class of closed invariant subsets which are now called
Mather sets. His existence theorem is based again on a variational principle.

Although these two investigations have different motivations, they are closely re-
lated and have the same mathematical foundation. We will not follow those ap-
proaches but will make a connection to classical results of Jacobi, Legendre, Weier-
strass and others from the 19th century.

Therefore in Chapter I, we will put together the results of the classical theory
which are the most important for us. The notion of extremal fields will be most
relevant.

In Chapter II we will investigate variational problems on the 2-dimensional torus.
We will look at the corresponding global minimals as well as at the relation be-
tween minimals and extremal fields. In this way, we will be led to Mather sets.

Finally, in Chapter III, we will learn the connection with monotone twist maps,
the starting point for Mather’s theory. In this way we will arrive at a discrete
variational problem which forms the basis for Aubry’s investigations.

This theory has additional interesting applications in differential geometry. One
of those is the geodesic flow on two-dimensional surfaces, especially on the torus.
In this context the minimal geodesics play a distinguished role. They were inves-
tigated by Morse and Hedlund in 1932.

As Bangert has shown, the theories of Aubry and Mather lead to new results for
the geodesic flow on the two-dimensional torus. As the last section of these lecture
notes will show, the restriction to two dimensions is essential. These differential
geometric questions are treated at the end of the third chapter.



2 0.2. On these lecture notes

The beautiful survey article of Bangert should be at hand when reading these
lecture notes.

Our description aims less at generality. We rather aim to show the relations of
newer developments with classical notions like extremal fields. Mather sets will
appear as ‘generalized extremal fields’ in this terminology.

For the production of these lecture notes I was assisted by O. Knill to whom I
want to express my thanks.

Ziirich, September 1988, J. Moser

0.2 On these lecture notes

These lectures were presented by J. Moser in the spring of 1988 at the Eid-
genossische Technische Hochschule (ETH) Ziirich. Most of the students were en-
rolled in the 6th to the 8th semester of the 4 year Mathematics curriculum. There
were also graduate students and visitors from the research institute at the ETH
(FIM) in the auditorium.

In the last decade, the research on this particular topic of the calculus of variations
has made some progress. A few hints to the literature are listed in an Appendix.
Because some important questions are still open, these lecture notes are maybe of
more than historical value.

The notes were typed in the summer of 1988. J. Moser had looked carefully through
the notes in September 1988. Because the text editor in which the lecture were
originally written is now obsolete, the typesetting was done from scratch with
KETEX in the year 2000. The original had not been changed except for small,
mostly stylistic or typographical corrections. In 2002, an English translation was
finished and figures were added.

Cambridge, MA, December 2002, O. Knill



Chapter 1

One-dimensional variational
problems

1.1 Regularity of the minimals

Let Q be an open region in R®+!. We assume that {2 is simply connected. A point

in Q has the coordinates (t,z1,...,z,) = (t,z). Let F = F(t,z,p) € C"(2 x R?)

with r > 2 and let (¢1,a) and (t2,b) be two points in Q. The space
[:={y:t>z(t)€Q|zeCt,t, z(t1) = a,z(t2) =b }

consists of all continuously differentiable curves which start at (¢1,a) and end at
(t2,b). On T is defined the functional

I(y) = / "Rt 2(t), (1)) dt .

t1
Definition. We say that v* € I is minimal in T’ if

I(v) > I(v*), VyeT.

We first search for necessary conditions for a minimum of I while assuming the
existence of a minimal.

Remark. A minimum does not need to exist in general:
o It is possible that I = §.

e It is also possible that a minimal v* is contained only in Q.
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e Finally, the infimum could exist without the minimum being achieved.

Example. Let n = 1 and F(¢,z,%) = t? - 22, (t1,a) = (0,0), (t2,b) = (1,1).
We have

Tm(t) =17, I(ym) =

but for all v € T one has I(v) > 0.

m—_l‘__3,"llfé% I(vm) =0,

Theorem 1.1.1. If v* is minimal in T, then
t
Fp (t,z*,2%) = / Fp,(s,2*,2%) ds = const
t1

forallt; <t <ty and j = 1,...,n. These equations are called integrated Euler
equations.

Definition. One calls v* regular if det(Fy,, ) # 0 for z = z*,p = &*.

Theorem 1.1.2. If v* is a regular minimal, then x* € C?[t|,t;] and one has for
i=1...,n,

p Fp,(t,z*,5%) = Fyp,(t,z%,2") (1.1)

These equations are called Euler equations.

Definition. An element v* € I satisfying the Euler equations (1.1) is called an
extremal in ['.

Warning. Not every extremal solution is a minimal!

Proof of Theorem 1.1.1. We assume that v* is minimal in T'. Let £ € C}(t1,t2) =
{z € Cty,t2] | z(t1) = z(t2) =0 } and . : t — xz(t) + €£(t). Because ) is open
and «y € €, also v, € §2 for small enough ¢. Therefore,

& 1) emo

[ (96 + P 98) a0

t1]1

0

- / (A(0),E(1)) dt

t

with A;(t) = Fp,(t) — :12 Fy,(s) ds. Theorem 1.1.1 is now a consequence of the
following lemma. a
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Lemma 1.1.3. If A € C[t;, 2] and

12
/ (A7£) dtZO, ercé[tl,tg]

t

then A = const.

Proof. Define ¢ = (tg — t;)7? )\( ) dt and put £(t) ft (A(s) — ¢) ds. Now
¢ € Ci[t1,t2). By assumption we have.

to X t2 t2
0= (,\,g)dt:/ ()\,(/\—c))dtz/ (A—c)?dt,
13 t1 t1
where the last equation followed from :12()\ —¢) dt = 0. Because A is continuous,
this implies with fttf()\ —¢)? dt = 0 the claim A\ = const. O
Proof of Theorem 1.1.2. Put y5 = Fy, (t,z*,p*). Since by assumption det(Fp,p, ) #

0 at every point (t,z*(t),*(t)), the implicit function theorem assures that func-
tions p} = ¢x(t,z*,y*) exist, which are locally C*. From Theorem 1.1.1 we know

t
¥} = const — / Fy (s,2* %) ds € C* (1.2)
31

and so
Ty = dr(t,z",y") € ct.

Therefore z; € C2. The Euler equations are obtained from the integrated Euler
equations in Theorem 1.1.1. O

Theorem 1.1.4. If v* is minimal, then

(Fop(t,z*,y%)¢,¢) = Z Fpup, (t,7%,y%)Gi¢; > 0

3,j=1

holds for all t; <t <ty and all { € R™.

Proof. Let 7. be defined as in the proof of Theorem 1.1.1. Then ~, : ¢t — z*(t) +
€€(t), € € Cy.
d2
0<Il = —=I(7)|e= 1.
= (d€)2 (7 )l 0 ( 3)

- / (Fo ) + 2Fysb ) + (Faaf £) dt (1.4)
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I1 is called the second variation of the functional I. Let t € (¢1,¢2) be arbitrary.
We construct now special functions &; € C}(t1, t2):
t—r
€

&i(t) = Go( )

where {; € Rand ¢ € C'(R) by assumption, ¢(A) = 0 for [\ > 1and [(¢)? dA =
1. Here 9 denotes the derivative with respect to the new time variable 7, which
is related to t as follows:

t=T4+e e ldt =dX.

The equations
t—71

&(t) =Gy (—)

€
and (1.3) give

0< 1T = [ (B QW20 dA +0(e)
R
For ¢ > 0 and € — 0 this means that

(Fpp(t, x(t),2()),¢) 2 0. O

Definition. We call the function ' autonomous, if F' is independent of t.

Theorem 1.1.5. If F is autonomous, every regular extremal solution satisfies
n
H=-F+ ijij = const .
=1

The function H is also called the energy. In the autonomous case we have therefore
energy conservation.

Proof. Because the partial derivative H; vanishes, one has

d d =
EEH = E(_F+;Pjij)

n

. . . d
= Z(-szxj - ijwj + :L‘jFp]. + ijij)

j=1
n
= Y ~Fpi;—F, & +i;F, +i;F;, =0.
j=1

Because the extremal solution was assumed to be regular, we could use the Euler
equations (Theorem 1.1.2) in the last step. O
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In order to obtain sharper regularity results we change the variational space. We
have seen that if F},;, is not degenerate, then v* € I is two times differentiable even
though the elements in I' are only C!. This was the statement of the regularity
Theorem 1.1.2.

We consider now a bigger class of curves

A= {7 : [tl,tZ] — Q, t— IIJ(t),CL‘ S Lip[tl,tg],m(tl) = a,-’L‘(tZ) =b } .

Lip[t1,t2] denotes the space of Lipschitz continuous functions on the interval
[t1,t2)- Note that & is now only measurable and bounded. Nevertheless there are
results analogous to Theorem 1.1.1 or Theorem 1.1.2:

Theorem 1.1.6. If v* is a minimal in A, then

t2
Fy(t,z*,2%) — / Fy,(s,z*,%") ds = const (1.5)

t1

for Lebesgue almost allt € [t1,t2]) and all j =1,...,n.

Proof. As in the proof of Theorem 1.1.1 we put v, = 7y + €€, but this time, £ is in
Lipo[tl,tg] = {’Y it (L'(t) eQ, ze Lip[tl,tgl,l’(tl) = .’L‘(tg) =0 } .
So,
d
= =1 e)le=
0 de (Ve)le=0
= lim(I(v) = I(70))/e
t2

= lim [F(t,v* + €&, 7 + €€) — F(t,7*,%")]/e dt .

e—0 t

To take the limit ¢ — 0 inside the integral, we use Lebesgue’s dominated conver-
gence theorem: for fixed ¢t we have

m[F(t," + €6,7* + €€) = F(t,7",7*)]/e = (Fz,6) + (F,§)
and

Flb,y" + 63" +e6) “Fb13) b s, a(s), 6()1E(s) HE (5, 2()|ECS) -

€ s€[t1,t2]

The last expression is in L'[t;, ¢2]. Applying Lebesgue’s theorem gives

ty

0= ad;I(’Ye)le:O=/2(Fx,§)+(FP’£) dt = )‘(t)g dt

t1 t1

with A(t) = F, — f:f F, ds. This is bounded and measurable.
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Define ¢ = (t; — t;)7! fztl A(t) dt and put £(t) = ttlz()\(s) —c¢) ds. We get € €
Lipy[t1,t2] and in the same way as in the proof of Theorem 1.1.4 or Lemma 1.1.3
one concludes

t2

0:/2()\,5) dt=/2(/\,()\(t)—c))) dt=[ (r—o2dt,

ty t1 31

where the last equation followed from fttf()\ —¢) dt = 0. This means that A = ¢
for almost all ¢ € [t1,¢2]. o

Theorem 1.1.7. If v* is a minimal in A and F,p(t,x,p) ts positive definite for all
(t,z,p) € X x R", then z* € C?[ty,ts) and

de

T (t,z*, &%) = Fp,(t,z%, &%)

fl

forj=1,..,n.

Proof. The proof uses the integrated Euler equations in Theorem 1.1.1. It makes
use of the fact that a solution of the implicit equation y = F,(¢,z,p) for p =
®(t,z,y) is globally unique. Indeed: if two solutions p and g would exist with

y = FP(tPT?p) = Fq(ta$7‘1) ¥

it would imply that

0= (Fp(t,2,p) — Fp(t,z,9),p—q) = (Alp—q),p — q)
with )
A= [ Fultz.p+ M- p) ar
and because A was assumed to be positive definite, p = ¢ follows.

From the integrated Euler equations we know that
y(t) = Fp(t,z,2)

is continuous with bounded derivatives. Therefore & = ®(¢,z,y) is absolutely
continuous. Integration leads to x € C'. The integrable Euler equations of The-
orem 1.1.1 tell now that F, is even in C! and we get, with the already proven
global uniqueness result, that # is in C' and hence that z is in C?. We obtain the
Euler equations by differentiating (1.5). a
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A remark on newer developments: we have seen that a minimal v* € A is two
times continuously differentiable. A natural question is whether we obtain such
smooth minimals also in bigger variational spaces as in

Ao = {7:[t1,t2] = Dt z(t), 2 € Whity, to], 2(t1) = a,2(t2) = b},

the space of absolutely continuous curves 7. One has in that case to deal with
singularities for minimal v which form a set of measure zero. Also, the infimum
in this class A, can be smaller than the infimum in the Lipschitz class A. This
is called the Lavremtiev phenomenon. Examples of this kind have been given by
Ball and Mizel. One can read more about it in the work of Davie [9].

In the next chapter we consider the special case when £ = T? x R. We will also
work in the bigger function space

E={y:[t1,ta] = Ot - z(t),z € W1’2[t1,t2],z(t1) =a,z(ta) =b},

and assume some growth conditions on F = F(t, z,p) for p — oo.

1.2 Examples

Example 1) Free motion of a mass point on a manifold.

Let M be an n-dimensional Riemannian manifold with metric g;; € C?(M), (where
the matrix-valued function g;; is of course assumed to be symmetric and positive
definite). Let

Fla.p) = 505@p'p

We use the Einstein summation convention, which tells us to sum over lower and
upper indices.

On the manifold M two points a and b in the same chart U C M are given. U is
homeomorphic to an open region in R™ and we define W = U x R. We also fix
two time parameters t; and f; in R. The space A can now be defined as above.
From Theorem 1.1.2 we know that a minimal v* to

tz t2 . .
I(z) = / F(t,z,z)dt = / gij(z)E*d’ dt (1.6)
131 ty
has to satisfy the Euler equations
Fpk = gkipi ’

19 y
Fy, = 5@91‘]‘(?3)1’?7-
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The Euler equations for v* can, using the identity
18 .. 10 L
iﬁgik(it)m i = §@gﬂc($)x’x’

and the Christoffel symbols

1.0 14] 0
Dijr = E[@gﬂc(w) + @gik(f) - a?gij(w)] )

be written as
it = Tyt

which are with

g7 =g, Tf; = g"* T

of the form o
i* = -T¥a'a .

These are the differential equations describing geodesics. Since F is independent
of t, it follows from Theorem 1.1.5 that

P'Fr —F=p*gup' —F=2F-F=F
are constant along the orbit. This can be interpreted as the kinetic energy. The
Euler equations describe the orbit of a mass point in M which moves from a to b
under no influence of any exterior forces.
Example 2) Geodesics on a manifold.

Using the notation of the last example we consider the new function

10)= [ a@ss a

gives the arc length of 4. The Euler equations

The functional

d
i i = G i 1.7
can, using the previous function F', be written as
d F F,.
— = == (1.8)
dt \/2F +/2F
and these equations are satisfied if
d F,.,=F_ (1.9)

ap



1.2. Examples 11

because %F = (. So we obtain the same equations as in the first example. Equa-
tions (1.8) and (1.9) are however not equivalent because a reparameterization of
time ¢ ~— 7(t) leaves only equation (1.8) invariant and not equation (1.9). The
distinguished parameterization for the extremal solution of (1.9) is proportional
to the arc length.

The relation of the two variational problems which we have met in examples 1)
and 2) is a special case of the Maupertius principle which we mention here for
completeness:

Let the function F' be given by
F=FK+Fh+F,

where F; are independent of ¢ and homogeneous of degree j. (F; is homogeneous
of degree j, if Fj(t,z, \p) = AFj(t,z,p) for all A € R.) The term F; is assumed to
be positive definite. Then the energy

pr——FZFQ—FO

is invariant. We can assume without loss of generality that we are on an energy
surface Fo — Fy = 0. With F; = Fj, we get

F=F—(VF-VF)?=2yRFR-F =G
and
to to
I(z) = Gdt :/ 2/ FoFy — Fy) dt
t ty
is independent of the parameterization. Therefore the right-hand side is homoge-
neous of degree 1. If z satisfies the Euler equations for F' and the energy satisfies

F, — F} = 0, then z satisfies also the Euler equations for G. The case derived in
examples 1) and 2) correspond to F; =0, Fy =¢ > 0.

Theorem 1.2.1. (Maupertius principle) If F = Fy + Fy + Fy, where F; are homo-
geneous of degree j and independent of t and F» is positive definite, then every
on the energy surface Fy — Fy = 0 satisfies the Euler equations

d

Et'Fp = FI

with Fy = Fy if and only if x satisfies the Fuler equations %G,, =G,.

Proof. If z is a solution of a‘-isz = F, with Fy — F3 =0, then

s [Gar=s [Fa—2 [(VE- VENSWE: - Vo) =0.
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(Here &I denotes the first variation of the functional I.) Therefore z is a crit-
ical point of [G dt = [(2y/F;F, — Fy) dt and z satisfies the Euler equations
;:G = Gz. On the other hand, if z is a solution of the Euler equations for G, we
reparameterize z in such a way that, with the new time

/ VFa(r,z(1), 2(1)) dT
t1

Fo('r z(7), (7))

z(t) satisfies the Euler equations for F, if z(s) satisfies the Euler equations for G.
If z(t) is on the energy surface F, = Fy, then z(t) = z(s) and z satisfies also the
Euler equations for F. O

We see from Theorem 1.2.1 that in the case Fy = 0, the extremal solutions of F'
even correspond to the geodesics in the Riemannian metric

9:;(2)p'P’ = (p,p)s = 4Fo(x,p) F2(z,p) .

This metric g is called the Jacobi metric.
Example 3) A particle in a potential in Euclidean space.

We consider now the path z(t) of a particle with mass m in Euclidean space R,
where the particle moves under the influence of a force defined by the potential
U(z). An extremal solution to the Lagrange function

F(t,z,p) = mp?/2 + E - U(x)

leads to the Euler equations
ou

me=——.
oz

E is then the constant energy
E=pF,—F=mp?/2+U .

The expression F» = mp?/2 is positive definite and homogeneous of degree 2.
Furthermore £y, = E — U(z) is homogeneous of degree 0 and F = F, + Fp.
From Theorem 1.2.1 we conclude that the extremal solutions of F' with energy E
correspond to geodesics of the Jacobi metric

It is well known that the solutions are not always minimals of the functional. They
are stationary solutions in general.
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Consider for example the linear pendulum, where the potential is U(z) = w?z and
where we want to minimize

T T
I(x)= [ F(tx ) dtz/ (2 — w?2?) dt

J0

in the class of functions satisfying z(0) = 0 and #(7") = 0. The solution z = 0
is a solution of the Euler equations. It is however only a minimal solution if
0< T < m/w. (Exercise). f T' > 7 /w, we have I(£) < I(0) for a certain £ € C'(0,T)
with £(0) = &(T) = 0.

Example 4) Geodesics on the rotationally symmetric torus in R*
The rotationally symmetric torus, embedded in R?, is parameterized by

(u,v) = ((@+ bcos(2mv)) cos(2mu), (a + beos(27mv)) sin(27u), bsin(27v)) |

where 0 < b < a. The metric g;; on the torus is given
by

gin = 4n?(a+ beos(2mv))? = 4nr?
g2 = 4m°b*,
12 = gan=0,

so that the line element ds has the form
ds* = 47*((a + beos(2mv))? du® + b2dv?] = dr?(r2du? + b2 do?) .

Evidently, v = 0 and v = 1/2 are geodesics, where v = 1/2 is a minimal geodesic.
The curve v = 0 is however not a minimal geodesic!

If u is the time parameter, we can reduce the problem of finding extremal solutions
to the functional

ta
4m? / (a + beos(2mv))?u® + b*0* dt
ty
to the question of finding extremal solutions to the functional
iy
47h? / F(v,v') du ,
. u-.!

with u; = u(t;), where

2
Fv,v') = \/{% +cos(27mv))? + (v')% =/ 5 + (v')?
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with v/ = ::—3 This worked because our original Lagrange function is independent
of u. With E. Nother's theorem we obtain immediately the angular momentum as
an invariant. This is a consequence of the rotational symmetry of the torus. With
u as time, this is a conserved quantity. All solutions are regular and the Euler

equations are
d [V
— | =|=F.
du (F) ;

Because F' is autonomous, % = 0, Theorem 1.1.5
implies energy conservation

E = YEy-F

2
v
= —b*r?/F

= —b*rsin(y) = const. ,

where r = a + beos(27v) is the distance to the axes
of rotation and where sin(1)) = r/F. The geometric
interpretation is that i) is the angle between the
tangent of the geodesic and the meridian u = const.
For E = 0 we get ¥ = 0 (modn): the meridians are
geodesics. The conserved quantity rsin(y) is called
the Clairaut integral. It appears naturally as an
invariant for a surface of revolution.

Example 5) Billiards

To motivate the definition of billiards later on, we first consider the geodesic flow
on a two-dimensional smooth Riemannian manifold M homeomorphic to a sphere.
We assume that M has a strictly convex boundary in R”. The images of M under
the maps

zn R3S RS, (z,9,2) = (z,y,2/n)

M, = z,(M) are again Riemannian manifolds. They have the same properties as
M and especially possess well-defined geodesic flows. For larger and larger n, the
manifolds M, become flatter and flatter. In the limit n — oo, we end up with a
strictly convex and flat region on which the geodesics are straight lines leaving the
boundary with the same angle as the impact angle. The limiting system is called
billiards. If we follow a degenerate geodesic and the successive impact points at the
boundary, we obtain a map. This map can be defined also without preliminaries:
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Let T be a convex, smooth and closed curve in the

plane of arc length 1. We fix a point O and an ori- o
entation on I'. Every point P on I is now assigned a

real number s, the arc-length of the arc from O to P P
in the positive direction. Let t be the angle between
the line passing through P and the tangent of I" in
P. For t € (0, 7) this line has a second intersection P
with I'. To that intersection we can assign two num-
bers, s; and #;. If £ = 0 we put (s1,t1) = (s,t) and P
for t = 7 we define (s1,%1) = (s + 1,1).

Let ¢ be the map (s,t) — (s1,t1). It is a map from the closed annulus
A={(s,t)| s€eR/Z,t € [0,7] }

onto itself. It leaves the boundary 64 = {t = 0} U {t = 7} of A invariant. If ¢ is
written as

d(s.t) = (s1,t1) = (f(s,8),9(s,1)) ,
then %f > 0.

Maps of this kind are called monotone twist maps. We construct now a new line
through P by reflecting the line segment P; P at the normal to the curve in P.
This new line intersects I' in a new point P». Iterating this, we end up with a
sequence of points P,, where ¢(P,) = P,41. The set {P, | n € N } is called an
orbit of P.

An orbit is called closed or periodic if there exists n > 0 with Py, = P;. We can
define f also on the strip A which is the covering surface

A=Rx[0,7]

of A. For the lifted map ¢ define ¢(s,0) = 0, ¢(s,7) = 1. One calls a point P
periodic of type p/q with p € Z, ¢ € N\ {0}, if s, = s + p, %, = t. In this case,
Sn _ P

lim — ==
n—oo N q

holds. An orbit is called of type o, if

A first question is whether orbits of prescribed type e € (0, 1) exist. We will deal
with billiards in the last chapter and outline there the connection with the calculus
of variations.
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1.3 The accessory variational problem

In this section we learn additional necessary conditions for minimals.

Definition. If y* is an extremal solution in A and . = v*+e€¢ with ¢ € Lipg[ti, ta],
we define the second variation as

16 = () 10kms

- / "(44,8) + 2(Bé,8) + (Co, ) dt

ta

where A = Fy,(t,2%,1*), B = F,,(t,z*,2*) and C = F,.(t,z*,£*). More generally
we define the symmetric bilinear form

I1($, ) = / “(4d,9) + (B, ) + (B, 8) + (Co, ) dt

t

and put II{¢) = I1(8, ¢).

It is clear that II{¢) > 0 is a necessary condition for a minimum.

Remark. The symmetric bilinear form II plays the role of the Hessian matrix for
an extremal problem on R™.

For fixed ¢, we can look at the functional I1(¢,) as a variational problem. It is
called the accessory variational problem. With

F(t,$,6) = (A, $) + 2(B, ) + (Co, ) ,

the Euler equations to this problem are
d
@ (Fe) = P

%(A¢;+BT¢) =Bo+Co. (1.10)

These equations are called the Jacobi equations for ¢.

which are

Definition. Given an extremal solution v* : ¢ — z*(¢) in A. A point (s,z*(s)) €
Q) with s > t; is called a conjugate point to (t;,z*(¢;)), if a nonzero solution
¢ € Liplty,t] of the Jacobi equations (1.10) exists, which satisfies ¢(t;) = 0 and
#(s) =0.

We also say, v* has no conjugate points, if no conjugate point of (¢;,z*(¢;)) exists
on the open segment {(t,z*(¢)) [ t1 <t <tz } C Q.

Theorem 1.3.1. If v* is a minimal, then v* has no conjugate point.
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Proof. It is enough to show that II(¢$) > 0 for all ¢ € Lipy[t1,t2] implies that no
conjugate point of (t,,z(t;)) exists on the open segment {(t,z*(t)) [ t1 <t <tz }.

Let ¢ € Lipy[t1,t2] be a solution of the Jacobi equations, with ¢(s) = 0 for
s € (t1,t2) and ¢(3, ¥) = (Avp+BT )+ (Bip+Cip)ib. Using the Jacobi equations,
we get

/ (A + BTw) + (B + Cu) dt

ty

b, ) dt
t1

/ (Av+ BT+ (4D + BT
t1

d
A+ BT at

[(A¢ + BTy)yl;, = 0.

Because ¥(s) # 0, the assumption 9(s) = 0 would with 1(s) = 0 and the unique-
ness theorem for ordinary differential equations imply that 1(s) = 0. This is
excluded by assumption.

The Lipschitz function

7 — 'L/)(t), te [t ) )
¥(t) = { 0, te [sl,tZ] ,

satisfies, by the above calculation, IT(¢) = 0. It is therefore also a solution of the
Jacobi equation. Because we have assumed II(¢) > 0, V¢ € Lipy[t1, 2], 1/1 must
be minimal. ¢ is however not C?, because (s) # 0, but ¥(t) =0fort e (s ,t2).
This is a contradiction to Theorem 1.1.2. O

The question now arises whether the existence of conjugate points of v in (t;,%2)
implies that II(f) > 0 for all ¢ € Lipy[t,,t2]. The answer is yes in the case n = 1.”
In the following, we also will deal with the one-dimensional case n = 1 and assume
that A,B,C S Cl[tl,tg] and A > 0.

Theorem 1.3.2. Given n =1, A > 0 and an extremal solution v* € A.
There are no conjugate points of v if and only if

t2 . .

I1(¢) = / A¢? + 2Bpd + Co? dt > 0, Vo € Lipy|ti, ta] -
ty

The assumption I1(¢) > 0,V¢ € Lipg[t),t2] is called the Jacobi condition. The-

orem 1.3.1 and Theorem 1.3.2 together say that a minimal satisfies the Jacobi

condition in the case n = 1.
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Proof. One direction has been dealt with already in the proof of Theorem 1.3.1.
We still have to show how the existence theory of conjugate points for an extremal
solution v* leads to

t2 . .
A¢* +2Bgg + C¢* dt > 0,Y¢ € Lipy|t:,ta] .

t1
First we prove this under the stronger assumption that there exists no conjugate
point in (t1,?,]. We claim that there is a solution ¢ € Lip[t1, t2] of the Jacobi equa-
tions which satisfies $(t) > 0,Vt € [t1,t2] and @(t; —€) = 0 as well as ¢(t; —€) = 1
for a certain € > 0. One can see this as follows:

Consider a solution v of the Jacobi equations with (t;) = 0, 1[1(t1) =1, so that
by assumption the next larger root s, satisfies s» > t2. By continuity there is € > 0
and a solution ¢ with ¢(t; —€) = 0 and 9¥(t; — €) = 1 and ¢(t) > 0,Vt € [t1, o).
For such a q; we can apply the following Lemma of Legendre:

Lemma 1.3.3. If v is a solution of the Jacobi equations satisfying ¥(t) > 0,Vt €
[t1,t2], then for every ¢ € Lipy[ty, t2] with & := ¢/y we have

()= [ AP +2Bgd+Cdt= [ AP dt>0.

i t

Proof. The following calculation goes back to Legendre. Taking the derivative of
¢ = &Y gives b= 1/1{ + 1[J£ and therefore

t2 . .
A¢® + 2Boo + Co? dt

t1

t2
/ (A¢? + 2Bynp + Cp?)E2 dt

t1

11(¢)

to . to .
+ / (2499 + 2ByY2)Ec dt + | Ay?€% dt

31 t1

2] . . d .
_ / (A% + BY)) + = (4dh + BY)yle?
t1
(A + Bw)dJ%&? + Ap2E? dt
t2 . iz .
- [% ((A¢ . de)w&?) drr [ avéar
ty

t1

= (A¢ + By)y / Ap2€2 dt

t1

to .
= 0+ [ A% dt,

31
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where we have used in the third equality that ¢ satisfies the Jacobi equations. [

For the continuation of the proof of Theorem 1.3.2 we still have to deal with the
case when (t, z*(t2)) is a conjugate point. This is Problem 6 in the exercises. [J

The next theorem is true only when n = 1, A(t,z,p) > 0, V(¢t,z,p) € @ x R.

Theorem 1.3.4. Assumen =1,A > 0. Fori= 1,2 let v; be minimals in
Ai = {’)’ A .’L‘i(t) | z; € Lip[tl,tzl,xi(tl) = ai,xi(tg) = bl' } .

The minimals v, and 72 intersect for t; <t <tz at most once.

Proof. Assume there are two «y; in A; which intersect in the interior of the interval
[t1,12] at the places s; and sy with s; # s5.

We define new paths vy and 7 as follows:

—

Yo(t) if t € [t1,s1) U [s2,t2], : N
t = . a, 1 i .,
1( ) { ’)’1(t) ifte [81,32] s ' L '
() = y(t) ift € [ty,s1]U[s2, 2], a i E
v ~2(t) if t € [s1,82] . ' N
We denote also by ¥; the restriction of v; to [s1, s2]. L. 's >t

Let
Ao = {’y t l‘(t),l‘(t) € Lip[sl,SQ], .’If(Si) = rl(si) = CEQ(Si) } .

In this class we have I(%;) = I{%2) because both 4; and -, are minimal. This
means

1(7) = 1(71) in Al )

I(y) = I(y2)inA;z.
Therefore 4 is minimal in A; and -2 is minimal in Ag. This contradicts the reg-
ularity theorem. The curves 7 and « can therefore not be C? because 7; and 7,

intersect transversally as a consequence of the uniqueness theorem for ordinary
differential equations. |

Application: The Sturm theorems.

Corollary 1.3.5. If s1 and s; are two successive roots of a solution ¢ # 0 of the
Jacobi equation, then every solution which is linearly independent of ¢ has ezactly
one root in the interval (sy, s2).
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Corollary 1.3.6. If ¢(t) < Q(t) and

btap = 0,
P+QP = 0,

and sy, 82 are two successive roots of ®, then ¢ has at most one root in (s, s2).

The proof the of Sturm theorems is an exercise (see Exercise 7).

1.4 Extremal fields for n=1

In this section we derive sufficient conditions for minimality in the case n = 1.
We will see that the Euler equations, the assumption F,, > 0 and the Jacobi
conditions are sufficient for a local minimum. Since all these assumptions are of
local nature, one can not expect more than one local minimum. If we talk about
a local minimun, this is understood with respect to the topology on A. In the C°
topology on A, the distance of two elements v; : ¢ — z;(t) and o : t — z5(¢) is
given by
d(v1,72) = terﬂ?:)tcz]{lml(t) za2(t)| } -

A neighborhood of v* in this topology is called a wide neighborhood of ~. A
different possible topology on A would be the C! topology, in which the distance
of v and 72 is measured by

di(71,72) = sUPseps, oo {l@1(t) — 22()] + |E1(8) — &(8)] } -
An open set containing v* is then called a narrow neighborhood of ~*.

Definition. v* € A is called a strong minimum in A, if I{y) > I(y*) for all v in
a wide neighborhood of ~yx.

v* € A is called a weak minimum in A, if I(y) > I(y*) for all v in a narrow
neighborhood of ~v*.

We will see that under the assumption of the Jacobi condition, a field of extremal

solutions can be found which cover a wide neighborhood of the extremal solutions
*

y*.
Definition. An extremal field in Q is a vector field z = (¢, z),9¥ € C(Q) which
is defined in a wide neighborhood U of an extremal solution and which has the
property that every solution z(t) of the differential equation & = (¢, ) is also a
solution of the Euler equations.
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Examples.

1) F = 1p? has the Euler equation & = 0 and the extremal field: & = (t,z) =
¢ = const.

2) F = /1 + p? has the Euler equations & = 0 with a solution z = A¢. The equa-
tion £ = ¥(t,z) = z/t defines an extremal field for ¢t > 0.

3) For the geodesics on a torus embedded in R?, the Clairaut angle ¢ satisfies the
equation rsin(¢) = ¢ with —(a — b) < ¢ < (a — b). This angle defines an extremal
field. (See Exercise 12).

Theorem 1.4.1. ) = (t,z) defines an extremal field in U if and only if for all
yEU and v : t— x(t} one has

DyF,=F,

for p =(t,x), where Dy := 0y + Y8, + (Y1 + Y1p;)0p.

Proof. 1 defines an extremal field if and only if for all y € U, v : t — z(t)

d
%Fp(tyl‘yp) = Fx(tal‘7p)

for p =z = ¥(¢t, z(t)). We have

(O + £0z + %d)@, z(t))0p) Fp
(Or + 8 + (Y1 + Y20)0p) Fp

[
&7 0
O

Theorem 1.4.2. If v* can be embedded in an extremal field in a wide neighborhood
U of v* and Fpp(t,z,p) > 0 for all (t,x) € Q and for all p, then v* is a strong
minimal. If Fpp(t,z,p) > 0 for all (t,x) € Q and for all p, then v* is a unique
strong minimal.

Proof. Let U be a wide neighborhood of v* and let Fp,(t,z,p) > 0 for (¢t,x) €
Q,Vp. We show that I(y*) > I(y) for all v € U. Let for v € C%(Q)

F(t,x,p) = F(tal"p)_gt_gzp,

ta
i) = [ Feepd=16)- ooy
t1
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We look for v € C? so that

F(t,z,9(t,7)) =0,

F(t,z,p) >0, Vp.

(This means that every extremal solution of the extremal field is a minimal one!)

Such an F defines a variational problem which is equivalent to the one defined by
F because Fj, = 0 for p = y(t,z).

We consider now the two equations
gI = Fp(tv x7 1/}) b
gt = F(t7z7¢)_Fp(t7x7dj)¢ ’

which are called the fundamental equations of the calculus of variations. They
form a system of partial differential equations of the form

g = a(t,a:),
g = b(t,(l))

These equations have solutions if  is simply connected and if the integrability
condition a; = b, is satisfied (if the curl of a vector field in a simply connected
region vanishes, then the vector field is a gradient field). Then g can be computed
as a (path independent) line integral

gz/a(t,a:) dz + b(t, ) dt . O

We now interrupt the proof for a lemma.

Lemma 1.4.3. The compatibility condition a; = b,:

0 0
gt‘Fp(t,iE,'(/l(t,.’L')) = %(F - "/)FP)(tvwi(t’x))

is true if and only if ¢ is an extremal field.

Proof. This is a calculation. One has to consider that
a(t, z) = Fp(t, z,9(t, z))

and that
bt,z) = (F — ¢ Fp)(t, z,9(¢, z))

are functions of the two variables ¢t and z, while F is a function of three variables
t,z,p, where p = 9(t,z). We write 8, F, 9, F and 9, F, for the derivatives of F with
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respect to the first, the second and the third variables. We write %F (t,z,¥(t, z))
ISp. B%F(t,x,w(t,m)), if p = ¢(t,z) is a function of the independent random
variables t and z. Therefore

aJ 0
aa(t,x) = an(t,z,w(t,x)) = Fpt + Y1 Fpp (1.11)
= (0 +:0p)Fp (1.12)
and because
0
&Fp(tﬁc’ w(t7x)) = sz + wszp = (a:c + w:cap)Fp 3
also
d 19}
a_xb(tam) = %[F(t,(lj, ’(ﬁ(t,:l:)) - ’lﬂ(t, :L‘)Fp(t,l‘, ’l[)(t,il)))] (1'13)
= (8 + ¥20p)F — (Yo Fp + Y Fpe + Y1po Fpp) (1.14)
= Fz - (1!11 + 1/)3: + w"pzap)Fp . (115)

(1.11) and (1.13) together give
b —a = Fp— (0 + 90z + (s + Y1) 0p) Fp
= F,-DyF.

According to Theorem 1.4.1, the relation 8;b — d;a = 0 holds if and only if ¥
defines an extremal field. |

Continuation of the proof of Theorem 1.4.2:

Proof. With this lemma, we have found a function g which itself can be written
as a path-independent integral

(t,z)
g(t,z) = /( (F —yF,) dt' + F, dz’

tl,a)

called a Hilbert invariant integral. For every curve < : t — z(t) one has:
I('y)=/th=/th—Fpa'cdt+dew. (1.16)
¥ v
Especially for the path v* of the extremal field £ = (¢, z), one has

I(v*) = /‘(F—zpF,,) dt + F, dz . (1.17)
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For every v € A the difference of (1.17) with (1.16) gives

I(y) = I(v")

/F(t,z,dc) —F(t,z,9) — (& — ) Fp(t,z,v) dt

i

/ E(t,z,4v) dt
Y

where E(t,z,p,q) = F(t,z,p)—F(t,z,q)—(p—q) F,(t, z,q) is called the Weierstrass
excess function or shortly the Weierstrass E-function. By the intermediate value
theorem there is a value g € [p, q] with

(p—q)?

E(t,z,p,q) = 5

Fop(t,z,q) > 0.

This inequality is strict if F,, > 0 and p # ¢. Therefore I(y) — I(y*) > 0 and
if F,p, > 0, then I(y) > I(y*) for v # ~*. In other words v* is a unique strong
minimal. O

The Euler equations, the Jacobi condition and the condition F,, > 0 are sufficient
for a strong local minimum:

Theorem 1.4.4. Let v* be an extremal with no conjugate points. Assume F,, > 0
on ) and let v* be embedded in an extremal field. It is therefore a strong minimal.
If Fyp > 0 on Q, then v* is a unique minimal.

Proof. We construct an extremal field which contains v* and make Theorem 1.4.2
applicable.

Choose 7 < t; close enough to t1, so that all solutions ¢ of the Jacobi equations
with ¢(7) = 0 and ¢(7) # 0 are nonzero on (r,t;]. This is possible by continuity.
We construct now a field x = wu(t,n) of solutions to the Euler equations, so that
for small enough ||,

wrn) = z'(1),

This can be achieved by the existence theorem for ordinary differential equations.
We show that for some 6 > 0 with |n| < §, these extremal solutions cover a wide
neighborhood of v*. To do so we prove that u,(t,0) > 0 for ¢t € (7, t2].

If we differentiate the Euler equations

d . .
EFp(t’ u,0) = Fe(t,u,a)



1.5. The Hamiltonian formulation 25
at 7 = 0 with respect to n we get

d
= (At + Biiy) = By + Cuy

and see that ¢ = u, is a solution of the Jacobi equations. With the claim u,(t,0) >
0 for t € [t;,t2] we obtained the statement at the beginning of the proof.

From u,(t,0) > 0 in (7, t2] follows, with the implicit function theorem, that for
in a neighborhood of zero, there is an inverse function 1 = v(t,z) of x = u(t,n)
which is C? and for which the equation

0 = v(t, 2 (1))
holds. Especially, the C! function (u; and v are C?)

P(t,z) = ue(t,v(t, )

defines an extremal field v,

T =y(t, x)
which is defined in a neighborhood of {(¢t,z*(t)) | t; <t < t3 }. Of course every
solution of & = (¢, ) in this neighborhood is given by = = u(t, h) so that every
solution of z = (¢, ) is an extremal. O

1.5 The Hamiltonian formulation

The Euler equations
d

dt
which an extremal solution «y in A has to satisfy, form a system of second order
differential equations. If Y ij Fpip, €17 >0 for £ # 0, the Legendre transformation

Iy, = Fyy s

[:QOx R - QxR (t,z,p) — (t,z,9)

is defined, where y; = F},,(t, z, p) is uniquely invertible. It is in general not surjec-
tive. A typical example of a not surjective case is

p

Ve

The Legendre transformation relates the Lagrange function with the Hamilton
function

F=+y1+p? y= €(-1,1).

H(t71"7y) = (y7p) - F(tal',P) )
where
b= Hy(t,a:,y) .
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We have Hy,(t,z,y) = py =y, = F,;;' > 0 and the Euler equations become,
after a Legendre transformation, the Hamilton differential equations

T; = H’.’lj’
'g} = _HIJ' M

They form a system of first order differential equations. One can write these Hamil-
ton equations again as Euler equations using the action integral

t2
Sz/ y& — H(t,z,y) dt .
[31

This was Cartan’s approach to this theory. The differential form
a=ydr — Hdt =dS
is called the integral invariant of Poincaré—Cartan. The above action integral is

of course the Hilbert invariant Integral which we met in the third section.

If the Legendre transformation is surjective we call  x R™ the phase space. It
is important that y is now independent of = so that the differential form o does
not depend only on the (¢, z) variables: it is also defined in the phase space 2 x R™.

If n = 1, the phase space is three dimensional. For a function h : (t,z) — h(t,z)
the graph
L ={(t,z,y) € A xR" |y =h(t,2) }

is a two-dimensional surface.

Definition. The surface ¥ is called invariant under the flow of H, if the vector field
Xy =0, + Hy0, — H,0,

is tangent to X.

Theorem 1.5.1. Let (n =1). If £ = ¢(t,z) is an extremal field for F, then
E={(t,z,y) € AxR|y=Fy(t,z,9¥(z)) }

is C! and invariant under the flow of H. On the other hand, if % is a surface
which is invariant under the flow of H and has the form

L={(tz,y) e QxR|y=nh(tx)},
where h € C1(R), then the vector field & = 9(t,z) defined by
P = Hy(t,z, h(t, x))

is an extremal field.
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Proof. We assume first that an extremal field = = 9(¢,z) for F is given. Then
according to Theorem 1.11,
DyF, =F,

and by the lemma in the proof of Theorem 1.4.2 this is the case if and only if there
exists a function g which satisfies the fundamental equations

gr(t’z) = Fp(t’xad)) y
gt(t,:lt) F(tvxaw) - wFP(tvwi) = —H(tal':gx) .

il

The surface
Y= {(tv‘r’p) ' y= gz(t,.’li,'(/)) }

is invariant under the flow of H:
Xu(y—g:) = [0+ HyOr — HiOy|(y — 92)

= —Hyfex — Gzt — H,
= —0g:+ H(t,z,9:)]=0.

On the other hand, if
= {(t,z,p)|y=h{tz)}
is invariant under the flow of H, then by definition
0=Xg(y—h(t,z)) = [0+ H,0, — Hy3y|(y — h(t,x))
= —Hyh,—h;—H;
= =09t + H(t,z,h)]

with a function g(¢,z) = faz h(t,z') dz’ satisfying the Hamilton-Jacobi equations

gz = h(t,])) =y=Fp(t7$7$) y
g = "H(t,l‘,gx) .
This means that & = g,(t,z) = Hy(t,z, h(x,y)) defines an extremal field. O

Theorem 1.5.1 tells us that instead of considering extremal fields we can look at
surfaces which are given as the graph of g,, where g is a solution of the Hamilton—
Jacobi equation

g =—-H(t,z,9,) .

They can be generalized to n > 1: We look for g € C?(f2) at the manifold ¥ :=
{(t,x,y) € xR" I Yj = 9g=z; }a where

gt+H(t,x,gx) =0.

The following result holds:



28 Chapter 1. One-dimensional variational problems

Theorem 1.5.2. a) 3 is invariant under Xg.

b) The vector field & = 4(t, x), with Y(t,z) = Hy(t,z,g,) defines an extremal field
for F.

¢) The Hilbert integral [ F + (& — ¢)F dt is path independent.

The verification of these theorems is done as before in Theorem 1.5.1. One has to
consider that in the case n > 1 not every field & = ¢(¢, z) of extremal solutions can
be represented in the form 1) = H,. The necessary assumption is the solvability of
the fundamental equations

F(tvwi) - ijij(tym"w) )

Jj=1

F,,(t,2,9) . (1.18)

gt

9z

From the n(n + 1)/2 compatibility conditions which have to be satisfied, only the
n(n — 1)/2 assumptions

82, Fy, (t,2,0) = B, Fy, (t,, ) (1.19)

are necessary. Additionally, the n conditions

D¢ij(t>$aw) = Fz]- (t,.’l:,’(,[))
hold. They express that solutions of & = 1/ are extremal.

Definition. A vector field & = (¢, ) is called a Mayer field if there is a function
g(t, ) which satisfies the fundamental equations (1.18).

We have seen that a vector field is a Mayer field if and only if it is an extremal field
which satisfies the compatibility conditions (1.19). Equivalently, the differential
form

a= Zyjdxj - H(t,z,y) dt
J
is closed on £ = {(¢,z,y) |y = h(t,2) }:
dals =d Zhjdiﬂj — H{t,z,h)dt| =0.
Jj

Because (2 is simply connected this is equivalent to exactness a|s = dg or

h] = gz]- ’
—-H{t,z,h) = g,
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which is, with the Legendre transformation, equivalent to the fundamental equa-
tions

Fp(t’a:»"/)) = Gz,
F(tvz’¢)_¢FP = Gt.

In this way, a Mayer field defines a manifold as the graph of a function y = h(t, z)
in such a way that da =0 on g = h.

In invariant terminology an n-dimensional submanifold of a (2n + 1)-dimensional
manifold with a 1-form « is called a Legendre manifold, if da vanishes there. (See
(3] Appendix 4K).

Geometric interpretation of g.
A Mayer field given by a function g = g(t,z) which satisfies g, + H(t,z,g,) =0 is

= Hy(t,z,9:) = Y(t,x) .

This has the following geometric significance:

The manifolds g = const, as for example the manifolds g = A and g = B, are
equidistant with respect to [ F dt in the sense that along an extremal solution
v :ts x(t) with z(ta) € {g = A} and z(tg) € {g = B} one has

/tB F(t,z(t),¥(t,z(t)) dt =B — A .

ta

Therefore

d
azg(tﬂx(t)) =Gt + 1/’9: = F - ¢Fp(t11:1¢) + ¢Fp(t7$,¢) = F(t7$7¢) )

and

[ Ftat.vz0) i = [ Sota®) de= t.a)liz =B~ 4.

ta ta

Because these are minimals, [ F(t,z,9%(t,z) dt measures a distance between the
manifolds g = const. The latter are also called wave fronts, an expression which
has its origin in optics, where F(z,p) = n(z)+/1+ |p|? and n(z) is called the
refraction index. The function g is often denoted by S = S(t,z). The Hamilton—
Jacobi equation

S+ H(z,S;)=0

has in this case the form
St2 + !Sz|2 = 772 .



30 Chapter 1. One-dimensional variational problems

Therefore

F, = n— —yp=—Y
P - - & - ’
V1+|pl? vn? - |yl?
H = pF,—F=-n/yn:—|yf=—vn2—|y?

and consequently S; + H(z,S;) = S; — {/n? — S2 = 0 holds. The corresponding
extremal field

T=9(t,x) = Hy(t,S;) = -5 _ -5,

Vi —|S:2 S

is in the (¢, z)-space orthogonal to S(t, ) = const.:

(i’ .Z‘) = (17'7"‘) = )‘(Stasz)

with A = ;L. "Light rays are orthogonal to wave fronts’.

1.6 Exercises to Chapter 1

1) Show that in example 4) of section 1.1, the metric g;; has the form given there.

2) In Euclidean three-dimensional space, a surface of revolution is given in cylin-
drical coordinates as

flz,r)=0.

The local coordinates on the surface of revolution are z and ¢. The surface is
defined by the function r = r(z) giving the distance from the axes of rotation.

a) Show that the Euclidean metric on R3 induces the metric on the cylinder given
by
ds® = g11dz* + gpodg?

with d

gin=1+ (é)z’ g22 =7°(2) .
b) Let F((¢,2),($,2)) = 2(g..5> + 2(2)¢?). Show that along a geodesic the
functions

= a_F,Jq'g = B_F — g3
Py = 8(;3 yDz = 92 =4gn

are constant.

Hint. Proceed as in example 4) and work with z and ¢ as ‘time parameter’.
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c) Denote by e, and e, the standard basis vectors on the cylinder R x T and a
point on the cylinder by (z,¢). The angle 1 between e, and the tangent vector
v = (2, ¢) at the geodesic is given by

cos(®) = (v, ¢)/ 1/ (v,0) (ean o)

Show that rcos(y) = ps/VF, and that consequently the theorem of Clairaut
holds, which says that r cos(¢) is constant along every geodesic on the surface of
revolution.

d) Show that the geodesic flow on a surface of revolution is completely integrable.
Find the formulas for ¢(t) and z(t).

3) Show that there exists a triangle inscribed into a smooth convex billiards which
has maximal length. (In particular, this triangle does not degenerate to a 2-gon.)
Show that this triangle is a closed periodic orbit for the billiards.

4) Prove that the billiards in a circle has for every p/q € (0, 1) periodic orbits of
type o = p/q.

5) Let A >0 and A, B,C € C'[t;,t5]. Consider the linear differential operator
Ld= %(Aci) + B®) — (B® + C9®) .
Prove that for 1 > 0,4 € C[t}, t2], ¢ € C[ty, t2] the identity
o d ;
L(Cy) =9 15(1‘1@02() + ¢L(¥)
holds. Especially for Ly = 0,1 > 0 one has
1 d :
L(Gy) =47} Z(Av*0)
Compare this formula with the Legendre transformation for the second variation.

6) Complete the proof of Theorem 1.3.2 using the Lemma of Legendre. One has
still to show that for all ¢ € Lipy[t1,t2] the inequality

ta
11(¢) = /t Ad® + 2Bod + C¢? dt > 0

holds if (t2,z*(t2)) is the nearest conjugate point to (¢1,2*(t1)). Choose for every
small enough € > 0 a C'! function 7, for which

_ 0 te(—oo,t;+€/2)U(ta—€/2,00),
nelt) = {1 Oote[t1+e,t2—26], >
ne(t) = 0(6_1)76_’0’
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and show then that

a) II(n.¢) > 0, Ve small enough,
b) II(n.¢) — I1(¢$) for € — 0.

7) Prove the Sturm theorems (Corollaries 1.3.5 and 1.3.6).

8) Let F € C?*(Q x R) be given in such a way that every C? function ¢ s
z(t), (t,z(t)) € Q satisfies the Euler equation

d
—F r) = z\ly 7. .
pr p(t,x, &) = Fy(t, z,2)

Prove that if € is simply connected, F must have the form
F(t,z,p) = g + gz
with g € C}(Q).

9) Show that for all z € Lip,[0, q]

/ &2 -z2dt>0
0

if and only if |a| < 7.

10) Show that z = 0 (the function which is identically 0) is not a strong minimal
for

/01 F(t,z, &) dt = /OI(IQ —:ic4) dt, z(0) = z(1) = 0.

11) Determine the distance between the conjugate points of the geodesics v = 0 in
Example 4) and show, that on the geodesic v = 1/2, there are no conjugate points.

Hint. Linearize the Euler equations for F = /% + cos(2mv))Z + (v/)2.

12) Show that the geodesic in example 4) which is given by I = rsin(¢) defines
an extremal field if —(a — b) < ¢ < a — b. Discuss the geodesic for ¢ = a — b, for
a—b<c<a-+bandfore=a+b



Chapter 2

Extremal fields and global
minimals

2.1 Global extremal fields

The two-dimensional torus has the standard representation T? = R?/Z2. We
often will work on its covering surface R?, where everything is invariant under
its fundamental group Z2. In this chapter we deal with the variational principle
[ F(t,z,p) dt on R2, where F is assumed to satisfy the following properties:

i) F e C2(T? x R2):

a) FcC*R3),
b) F(t+1,z,p)=F(t,z+1,p) = F(t,z,p) .

ii) F has quadratic growth: There exist 4 > 0, ¢ > 0 such that
) §<F,<d?,
d) |Fe| <c(l1+p%), (2.2)
e) |Fip| + |Fpel < c(1+|pl) .

Because of F; = —H;, F, = —H; and Fy,, = Hy‘y1 these assumptions appear in
the Hamiltonian formulation as follows:

i) H € C¥T? x R?):

a) HeCxR3),
b) H(t+1l,z,y)=H(t,z+1,y) =H(zy).
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ii) H has quadratic growth: There exist § > 0, ¢ > 0 such that

c) 6<Hy <§!

d) [Hil <c(i+?), (2.4)
) [Huyl + 1yl < (1 4 1y
Example. Nonlinear pendulum.
Let V(t,z) € C%(T?) be defined as
V(t,z) = (g(t)/(2m)) cos(2nz)
and F = p?/2 + V(t,z). The Euler equation
Z = g(t)sin(2nz) (2.5)

is a differential equation which describes a pendulum, where the gravitational
acceleration g is periodic and time dependent. A concrete example would be the
tidal force of the moon. The linearized equation of (2.5) is called the Hills equation

¥ =g(t)x

and has been investigated in detail, especially in the case g(t) = ~w?(14-¢ cos(27t)),
where Hills equation is called the Mathieu equation. One is interested in the sta-
bility of the system in dependence on the parameters w and e. One could ask for
example whether the weak tidal force of the moon could pump up a pendulum on
the earth, if the motion of the pendulum is without friction.

The just encountered stability question is central to the general theory.

Definition. A global extremal field on the torus is a vector field £ = Y(t, z) with
¥ € CY(T?), for which every solution z(t) is extremal: Dy F, — Fy|p=y = 0.

Are there such extremal fields at all?

Example. The free nonlinear pendulum.
If the gravitational acceleration g(t) = g is constant, there is an extremal field. In
this case, F' is autonomous, and according to Theorem 1.1.5,

E =pF, - F =p*/2—V(z) = const.
so that for E > max{V(z) |z € T' } an extremal field is given by
T =9Y(t,z) =/2(E-V(x)).

The problem is thus integrable and explicit solutions can be found using an elliptic
integral.
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The existence of an extremal field is equivalent to stability. Therefore, we know
with Theorem 1.5.1 that in this case, the surfaces

Y= {(t,z,y) I y= Fp(trx,"/)(t’x)) }

are invariant under the flow of Xpy.

The surface ¥ is an invariant torus in the phase space T? x R2. The question of
the existence of invariant tori is subtle and part of the so called KAM theory.
We will come back to it in the last chapter.

Definition. An extremal solution z = z(t) is called a global minimal, if
/ F(t,z + ¢,@ + ¢) — F(t,z,&) dt >0
R
for all ¢ € Lip,mp(R) = {¢ € Lip(R) with compact support. }

Definition. A curve v : ¢t — (t) has a self intersection in T?, if there exists
(j, k) € Z? such that the function z(t + j) — k — z(t) changes sign.

In order that a curve has no self intersection we must have for all (j, k) € Z? either
z(t+7)—k—z(t) >0or z(t+j) —k—z(t) =0 or z(t +j) — k —z(t) <0.

Theorem 2.1.1. Ify) € C*(T) is an extremal field, then every solution of & = (t, x)
is a global minimal and has no self intersections on the torus.

Proof. Assume 7 : t — Z(t) is a solution of the extremal field & = (¢, z). Because
F,,(t,z,p) > 0 according to condition c) at the beginning of this section all the
conditions for Theorem 1.4.2 are satisfied. For all t; and t; € R, 7 is a minimal in

Alt1,ty) == {y: t > z(t) | = € Lip(t1, t2), z(t1) = T(t1), z(t2) = Z(t2) } -

Let ¢ be an arbitrary element in Lip,,,,,(R) and let ¥ be given as Z(t) = Z(t) +
#(t). Because ¢ has compact support there exists T > 0 so that ¥ € A(-T,T).
Therefore, one has

T
/F(t,i,i)—F(t,E,i)dt = / F(t,z,7) — F(t,%,7) dt
R T

.
/ E(t,%,z,9%(t,F)) dt > 0,

=T

where E is the Weierstrass E-function. This means that ¥ is a global minimal.

If z(t) is an extremal solution to the extremal field, then also y(t) = z(t +j) — k
is an extremal solution, because 1 is periodic in ¢ and z. If z and y have a self
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intersection, £ = y follows by the uniqueness theorem for ordinary differential
equations and z,y satisfy the same differential equation

T = ’(,/)(t, x),y = ¢(t, y) . g

We have seen that every extremal solution in one extremal field is a global minimal.
What about global minimals without an extremal field. Do they still exist? In the
special case of the geodesic flow on the two dimensional torus, there exists only
one metric for which all solutions are minimals. This is a theorem of Eberhard
Hopf [16] which we cite here without proof.

Theorem 2.1.2. (Hopf) If all geodesics on the torus are global minimals, then the
torus is flat: the Gaussian curvature is zero.

The relation of extremal fields with minimal geodesics will be treated later again,
where we will also see that in general, global extremal fields do not need to exist.
According to Theorem 1.5.1 an extremal field ¢ can be represented by a function
Y = H(t,z,g,), where g(t, ) satisfies the Hamilton-Jacobi equations

g+ H(t,2,9,) = 0, g, € CY(T?) .

The existence of a function g on T? solving the Hamilton—Jacobi equations glob-
ally is equivalent to the existence of a global extremal field. While it is well known
how to solve the Hamilton—-Jacobi equations locally, we deal here with a global
problem and periodic boundary conditions. The theorem of Hopf shows that this
problem can not be solved in general.

We will see that the problem has solutions if one widens the class of solutions.
These will form weak solutions in some sense. The minimals will lead to weak
solutions of the Hamilton—Jacobi equations.

2.2 An existence theorem

The aim of this section is to prove the existence and regularity of minimals with
given boundary values or with periodic boundary conditions within a function
class which is bigger then the function class considered so far. We will use here
the assumptions (2.1) and (2.2) on quadratic growth.

Let W:2[t1, t;] denote the Hilbert space obtained by closing C|¢,, t5] with respect
to the norm .
2
2] =/ (22 +3%) dt
t1
One calls it a Sobolev space. It contains Lipl[t;, t2], the space of Lipschitz contin-
uous functions which is also denoted by Wl-*°,
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Analogously as we have dealt with variational problems in I' and A we search now
in
Zi={y:tr z(t) € T? |z € W'2[ty,ta),2(t1) = a,z(t2) = b}

for extremal solutions to the functional
tz
I(y) = / F(t,z,z) dt .
t

The set Z is not a linear space. But with

_ a(tg — t) + b(t - tl)

zolt
o) te—t1

= = z¢ + Zp, where
So={y: t—xz(t)€T? |z € Wh2[ts,t], z(t1) = 0,z(tz) =0 }

is a linear space.

Theorem 2.2.1. It follows from conditions (2.1) to (2.2) that there exists a min-
imal v* 1 t — z*(t) in E. Furthermore z* € C?[t1,t2] and z* satisfies the FEuler
equations.

The proof is based on a basic principle: a lower semi-continuous function which is
bounded from below takes a minimum on a compact topological space.

Proof. 1) I is bounded from below:

w=inf{I(y) |y €E} > —00.

From 6 < F,, < 6~! we obtain by integration: there exists ¢ with
pp g

é
ZPQ —c< F(t,z,p) <5 'p*+c,

so that for every v € E,

to to
I(y) = / F(t,z,z) dt > g/ 2 dt — c(ty —ta) > —c(ta —ta) > —00.

12 ty

This is called coercivity. Denote by u the just obtained finite infimum of I.
2) The closure of the set
Ki={yeE|I(v) <p+1}

(using the topology given by the norm) is weakly compact.
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Given v € K. From
N
pH12I0) 2 [ - clts 1)
t1

follows

ity 4
/ .’i‘2dtS5(u+1+C(t2—t1)=iM1,

[31
and with |z(t )|<a+f dt<a+[ft 22 dt(ty — t1)]/? we get
t2
/ 2 dt < (b2~ t1)( (a+[5 (H+1)(t2—t1)]1/2)2 M, .
ty
Both together lead to
t2
Il = [ @ +2%) de < My 0
1

This means that the set K is bounded. Therefore its strong closure is bounded
too. Because a bounded and closed set is weakly compact in =, the closure of K
is weakly compact.

(It is an exercise to give a direct proof of this step using the theorem of Arzela—
Ascoli.)

3) I is lower semi-continuous in the weak topology.
We have to show that I(y) < liminf, oo I(,) if ¥n —w 7. (The symbol —,,
denotes the convergence in the weak topology.)

a) The function p — F(t,z,p) is convex:

F(t,z,p) - F(t,z,q9) > Fp(t,z,9)(p - q) .

Proof. This is equivalent to E(t,z,p,q) > 0, an inequality which we have seen in
the proof of Theorem 1.4.2.

b) If z,, —, , thenft &y, — & dt — 0 for ¢ € L?[ty,ts).
Proof. The claim is clear for ¢ € C! by partial integration. Because C! is dense

in L?, we can for an arbitrary ¢ € L? and € > 0 find an element ¢ € C! so that
[l — ¢||L2 < €. We have then

(xn - dt’

qS(zn - ) dt( + 2eM, ,
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and therefore

ta
lim sup / &(&, — ) dt‘ < 2eM;j .
ty

n-—+00

¢) If 7, —, «, then [,? ¢[zy — z] dt — 0 for ¢ € L2[t, ta)].
Proof. x,, —, x implies that x, converges uniformly to z.

242 dt < M, implies that |, (t) — zn(s)] < Mi([t — s)/? and za(t) < a +
M(t — ty). Therefore, {z, | n € N } is an equicontinuous family of uniformly
bounded functions. According to Arzela—Ascoli, there exists a subsequence of z,,
which converges uniformly. Because z,, —,, z, we must have z as the limit. From
[|zn — z||Le — O follows with Holders inequality that

t

2 3/
dlrn — 2] dt’ S/ || dt, ||z — x||pe — 0.
ty

ty
Using a),b) and ¢), we can now prove the claim:

I(v,) - I(y) = / ’ F(t,z, &) — F(t,zn, %)

ty

~F(t,z,z,) + F(t,z,2,) — F(t,z, ) dt

ta
/ F(t,%,2,)(z, — ) dt
31

v

ta
+ / Fy(t,z,7)(&, — 2) dt =: D, .
t;

In that case, Z(t) is in the interval [z, (t),z(t)] and T is in the interval [&,(t), £(t)].
For the inequality, we had used a). Since F} isin L! (because |F,| < c(1+i2) € L),
and F, is in L' (because |F,| < ¢(1+|2]) € L? C L'), we conclude with b) and c)
that D,, converges to 0 for n — oo. This finishes the proof:

lim inf(I(7) — 1(7)) > 0.

n—o0

4) Existence of the minimals.

The existence of minimals is accomplished from 1) to 3) and the fact that a lower
semi-continuous function which is bounded from below takes a minimum on a
compact space.

5) Regularity of the minimals.
Let v* : t — z*(¢) be a minimal element in Z from which we had proven existence
in4). Forall g : t — y(t), p € =

I(y+ep) > I(v").
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This means that the first variation must disappear if it exists.

Claim. The first variation lim.o{I(y* + €@) — I{y*))/¢ exists.

O +eg) —I(v)l/e = / (F(t" + ey, a 4 i) - F(t,2*,5°)) dife

31

JR T

t
with

1
Ate) = / Fy(t, 2", 4" + fej) db
0

1
plte) = / F.(t,z* + fey,z*) db .
0

These estimates become for € < 1 and 6, € [0, 1]:

A2, €l
|ult, )|

c(1+ 12" + efogl) < (1 + |2 + 19]) ,

<
< (14 @) +97).

According to the Lebesgue theorem, both A(t,€)y and u(t,€)y are in Ll[t, 5]
because the majorants c(1 + |#*| + |y])y and c(1 + (¢*)? + y?)y are Lebesgue
integrable. With the convergence theorem of Lebesgue follows the existence of
lime_o[I(y* + €d) — I(v*)]/e = 0 so that

tz
lim(I(r+e) - Ilfe = [ Ftaa)i+ Falta’ 2y dt

t1

to s

/ <Fp(t, %) — / F.(s,z*&*) ds + c) ydt
2] ty

= 0.

This means that .
Fy(t,z*, %) =/ F.(s,z*,2*) ds+¢

131
is absolutely continuous. From F,, > 0 and the implicit function theorem we find
@* € C° and z* € C'. From the integrated Euler equations we get F, € C!.
Again applying the implicit function theorem gives i* € C! from which z* € C?
is obtained. 0

In the second part of this section we will formulate the corresponding theorem on
the existence of periodic minimals.
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Definition. A curve v : t — z(t) is periodic of type (q,p) for (g,p) € Z2,q # 0, if
z(t+q) —p=2(t).
Define for ¢ # 0,

Epq={y:itrz(t) = gt +E(t) | €€ WhA[ty, ta], £t +q) =&(¢) }

with the vector space operations

pn gt + p&i(t) ,

Y +y2 §t+§1(t)+62(t),

ify; it %t + &;(t). The dot product

q . .
(11,7%) = /0 §1&2 + 6162 dt

makes Z, , a Hilbert space.

Definition. A minimal of the functional
q
I(~) =/ F(t,z,z) dt
0

is called a periodic minimal of type (q,p) . We write M(q, p) for the set of periodic
minimals of type (g, p).

We will sometimes also abbreviate z € M(q,p) if v € M(q,p) is given by v : £t —

z(t).

Theorem 2.2.2. For every (q,p) € Z* with q # 0, there exists an element v* €
M(q,p) with 7 : t — x*(t) so that z* € C*(R) satisfies the Euler equations.

The proof of Theorem 2.2.2 follows the same lines as the proof of Theorem 2.2.1.

Remark on the necessity of the quadratic growth.

The assumptions of quadratic growth (2.1)—(2.2) could be weakened. For the exis-
tence theorem it would suffice to assume superlinear growth. A classical theorem
of Tonelli guarantees the existence of absolutely continuous minimals under the
assumption that Fy,, > 0 and

F(t,2,p) > ¢(p) = lm 22) _

ES

On the other hand, such an existence theorem no longer holds if F' has only linear
growth in p. One can show for example that

F(z,p) = V1+p* +2°p?
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with boundary conditions
z(~1)=—a,z(1) =a

has no minimal for sufficiently large a, even though in this example, F,, > 0 has
only linear growth at £ = 0. As a reference to the theorem of Tonelli and the above
example see [9].

We also give an example without global minimals, where F(t, z, p) is periodic in ¢

and z: let
F(t,z,p) = a(t,z)\/1 + p?

with a(t,z) = 1 + b(t? + z2) for [t],|z| < 1. If b = b(A) > 0, there exists a C>-
function, which vanishes identically outside the interval [0.1,0.2]. We take a(t, z)
with period 1 in ¢ and periodically continue a in z to get a function on R?. Then,
a(t,z) > 1 for all t,z € R and the variational problem is

/F(t,z,:ic) dt:/a(t,x) ds,

where ds = V1 + 22 dt.

b(2
A( )

\,.
P x
o

-

A

We consider a unique minimal segment, which is contained in the disc t?+z? < 1/4
and which is not a straight line. Now we use the rotational symmetry of the prob-
lem and turn the segment in such a way that it can be represented as a graph
z = z(t), but so that &(r) = oo for a point P = (7, z(7)).

0.1 02

Because this segment is a unique minimal for the corresponding boundary con-
dition, it must have a singularity at ¢ = 7. The condition of quadratic growth
excludes such a singular behavior.

2.3 Properties of global minimals

In this section we derive properties for global minimals, which will allow us to
construct them in the next section. Throughout this section we always assume
that the dimension is 1.
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Definition. Denote by M the set of global minimals. Given r and y in M we write

x <y, ifz(t) <y(t), vt,
z <y, if z(t) <yt), Vi,
r=y, ifz(t)=uy(t), Vvt.

Theorem 2.3.1. a) Two different global minimals x and y in M do intersect at
most once.

b) Ifr <y, thenz=y orz<y.

¢) If limy oo |2(t) — y(t)| + |z(t) — y(t)| = 0 and sup,-o(|z(t)| + ly(t)]) < M < 0
forz<yorzxz>uy.

d) Two different periodic minimals of type (q,p) do not intersect.

Proof. a) Let x and y be two global minimals which intersect twice in the interval
[t1,t2]. The same argument as in the proof of Theorem 1.3.4 with = instead of the
function space A leads to a contradiction.

b) Assume z(t) = y(t) for some t € R. Then, z < y implies #(t) = y(t). The func-
tions are differentiable and even C2. According to the uniqueness theorem for ordi-
nary differential equations applied to the Euler equations £ Fy, + 2 Fyp + Fyp = Fy,
we must have z = y.

¢) Assume the claim is wrong and that there exists

a time t € R with z(¢) = y(¢t). Claim (*): x 1 |
T T | e
lim / F(t,w,a’v)dt—/ F(t,y,y)dt| =0. ! T :
T—o0 - - I | |
Proof. We can construct z as follows: i E X0 E
1 q(t) | 1
Z(t)_—‘{ y(t) 7t€[T7T_1]’ | : E
z(t) — ¢ —T)(y(t) —=(t)) ,teT-1,T] 1L 1 | . >t
€ T T+E T4 T

Because of the minimality of z we have

T T
/F(t,:c,:’z)dt < /F(t,z,é)dt
T TT T
- / Fit,y, ) dt + / F(t,2,2) — F(t,y, ) dt

T

T T
- / Flt,,3) dt + / F(t,2,2) - F(t,9,4) dt .

T-1
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For t € [T —1,T) the point (x(t), Z(t)) is by assumption contained in the compact

set T2 x [~M, M]. The set Il = [T'— 1,T] x T? x [-M, M] is compact in the phase
space {2 x R. Now

T
/ F(t,2,2) - F(t,y,9) dt

T-1
< « glg)xen{Fz(t,u,v)lz(t) = y(t)] + Fp(t, u,v)2(t) — 9(¢)| }
— 0

for T — oo because of the assumptions on |y(t) — z(¢)| and |y(t) — £(¢)|. One
has (2(t) — y(t)) = (z(t) —y(t))(1 +t —T) for t € [T — 1,T] finishing the proof
of claim (*). On the other hand, the minimals z(¢) and y(t) have to intersect
transversally at a point ¢ = 7. Otherwise they would coincide according to the
uniqueness theorem of differential equations. This means that there exists ¢ < 0
so that the path ¢t — z(t) is not minimal on [7 —¢, T for large enough 7. Therefore

o On the interval [T — €, 7 + €] the action can be decreased by a fixed positive
value if a minimal C2-path g(t) is chosen from z(t — €) to y(t + €) instead of
continuing z(t) and y(t) along [t — ¢, 7 + €] and going around corners.

e According to claim (*) the difference of the actions of z(t) and y(¢) on the
interval [r,T] can be made arbitrarily small if T' goes to co.

e The path
g(t) ,te[r—¢€1+¢,
tH{z(t) ,te[r—¢T],

has therefore for large enough T a smaller action than z(#). This contradicts
the assumption that z(t) is a global minimal.

d) Instead of looking for a minimum of the functional

I(y)= /Oq F(t,z,z) dt

in 2, 5, we can seek a minimum of

q+e€
I(y) = / F(t,z,z) dt

because both functionals coincide on E, ,,. If 4 has two roots in (0, g], we can find
€ > 0, so that v has two roots in (¢, q + €). Therefore, I.() can not be minimal,
by the same argument as in a), and therefore also not on (7). The function -y has
therefore at most one root in (0, g]. According to Theorem 2.3.2 a) below (which
uses in the proof only part a) of this theorem) + has therefore also at most one
root in (0, Ng|, but is periodic with period gq. O
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Theorem 2.3.2. For all N € N,(q,p) € Z,q # 0 one has:
a) v € M(q,p) if and only if y € M(Ngq, Np).

b) The class M(q,p) is characterized by p/q € Q.

c) M(q,p) C M.

Proof. a) (i) Let v € M(Ngq, Np) be defined as
yia(t) = gt +£(2)

with £(t + Ngq) = £(t). We claim that v € M(q,p). Put y(t) = z(t +q) = Et +n(t)
with n(t) = z(t + q). Since z(t) — y(t) = z(t) — n(t) = z(t) — z(t + q) has period
Ngq and

Ngq Ngqg
/ u—wa:/ (1)~ €t +q) dt =0,
0 0

z(t) — y(t) disappears by the intermediate value theorem at two places in (0, Nq)
at least. Theorem 2.3.1 a) implies z = y and

Ngq q
I :/O F(t,z,&)dt = N/O F(t,z,z) dt = NI(v)|3 .
Because Eng,np O Zq,ps

inf I(n)|§ > inf N7U@mE =N =1

nN€Eq.p NEZENG,Np

proving v € M(q, p).

(ii) On the other hand, if v € M(q, p) is given, we show that v € M(Ng, Np). The
function 7 is also an element of Zn4 np. According to the existence Theorem 2.2.2
in the last section, there exists a minimal element { € M(Ngq, Np) for which we
have

NI()§= Il > 1Ol -
From (i), we conclude that ( € M(q,p) and that
NI(y)§ = NI(QIS -
Because v € M(q, p) we also have NI(v)|2 < NI({)|§ and therefore
NI(y)l§ = NI(Q)g

and finally
IMly* =10l
which means that v € M(Ngq, Np).
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b) follows immediately from a).

c) Let v € M(q,p). We have to show that for ¢ € Lip y,(R),

/F(t,z+¢,a‘c+q's) — F(t,z,2)dt > 0.
R

Choose N so big that the support of ¢ is contained in the interval [-Ng, Ng|. Call
é the 2Ng-periodic continuation of ¢. Since 7 € M(q,p),

Ng

/F@x+¢i+@—F@L@dt: F(t,z + 6,4 + ¢) — F(t,z, &) dt
R —Ngq

Ng ~ 5
/ F(t,z + ¢, 2+ ¢) — F(t,z,&) dt
~Ng

0. a

v

Theorem 7.2 can be summarized as follows: a periodic minimal of type (q,p) is
globally minimal and characterized by a rational number p/q. We write therefore
M(p/q) instead of M(q,p).

Theorem 2.3.3. Global minimals have no self intersections on T?.

Definition. Denote by M[0,T] the set of minimals on the interval [0, T).

The proof of Theorem 2.3.3 needs estimates for elements in M[0, T]:

Lemma 2.3.4. Lety € M[0,T],y:t— z(t) and A > T > 1, so that |z(T)—z(0)] <
A. There are constants ¢y, c1,c, which only depend on F, so that for all t € [0, T):

a) |x(t) — z(0)| < Co(A) = oA, (2.6)
b) |2(t)] < Ci(A) = 1t AT, 27
c) |3(t)] < Ca(A) = cuA*T~2. (2.8)

Proof. n:t— y(t) € M[0,T]. From § < F,, < §~! we get by integration (compare
Theorem 2.2.1):

)
—a; + Zg‘ﬂ <F < §'%%+4aq,

b
—a+ P <F < 67 +a
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Because of the minimality of -y the inequality I(y) < I(n) holds. With y =
T~ (z(0)(T — t) + z(T)t) we have

5 T T
—a1T+—/ ?dt < /F(t,x,a‘c)dt
4 0 0
-
< [ P
0
T
< 5"1/ 7 dt +a, T
6]
< 57 M2(T) - z(0)PT '+ T
S 5_1A2T_1 + alT .

We conclude that
T
/ 22 dt <4672AT7! +8a,T6 7! < ax AT .
0

Now the proof of claim a) can be finished:

t
/ 1-zds
0
¢ 1/2
\/Z[/ ;t?ds]
0

VT[a, A2T7YV2 = A .

z(t) —z(0)] =

IA

IN

Because 7 is in M|0, T}, the function z(t) satisfies the Euler equations £ F, = F,,
which are
#F,, + 2Fyp + Fyp = F .

With F,p, > 8, |Fy| < (14 22), |Frp| < c(1+ |X|) and |F,p| < ¢(1 + |2]), we can
estimate % as follows: there exists a constant az with

%] < az(1 + 2?)

and therefore also b) is proven: for all ¢, s € [0,T] one has

t T
lz(t) — 2(s)| = / ¥ dt‘ < a3/ (1+2%) dt < a3[T + a2 AT !] < a,4A°T 7! .
s 0

There exists s € [0,T] with |2(s)| = |[z(T) — z(0)]T~!| < AT~! so that
|£(t)| < AT™! + 0 AT < ) A%T7! .
¢) is done by noting;:

1£(t)| < az(1 + 2%) < a3[l + (1 AT H)?] < AT ™2 . 0
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We turn now to the proof of Theorem 2.3.3 which said that global minimals have
no self intersections.

Proof. Assume that there exists v € M with a self intersection. This means, there
exists (¢, p) € Z?, ¢ # 0 and 7 € R with

z(r+q)—p=2z(r).

Without loss of generality we can assume 7 = 0. Writing z(t) = gt + &(t) one has
P
(T+q)—p= Et+£(t+q).

Because there is at most one intersection of z(t) and z(t + q) — p, we have

z(t+q)—p—2z(t) >0, t>0 . Et+q)—&(t)>0, t>0
z(t+q) —p—z(t) <0, t<0}thhmeans{E(t+q)—§(t)<0, t<0
or

z(t+q)—p—2z(t) <0, t>0
z(t+q)—p—2z(t)>0 t<0

E(t+q)—&(t) <0, t>0

} which means { Et+q)—£(t)>0, t<0

We can restrict ourselves without loss of generality to the first case. (Otherwise,
replace t by —t.) From

§(t+q)—p—£&(t) <0, t>0

E(t+q)—p—Et) >0, t<0 } which means { £(t) —&(t—q) <0, t<gq

follows that for every n € N,

Enl(t) = &(t+ng)>&a(t), t>0, (2.9)
fn(t) §(t - nQ) > §~n+1(t)’ t< q. (2'10)

Therefore, £,(t) is a monotonically increasing sequence for fixed ¢t > 0 and £_,,(t)
is monotonically increasing for t < ¢ and n — oo also. According to the existence
theorem for periodic minimals in the last section, there exists a periodic minimal
6 € M(q,p) 0:t 2(t),2(t) = Bt + ((t) with ((t) = ((t + g). The requirement

2(0) < z(0) < z(0) + 2
can be achieved by a translation of z. We have therefore
¢(0) < £(0) = &(q) < C(0) +2.
Because 7 and 8 can not intersect two times in [0, ¢], we have for ¢t € [0, q]

z(t) < =z(t)<=z(t)+2,
) < &) <(t)+2.
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Because ((t + ng) = ((t) and &,(t) > &no1(t) > £(t), £-n(t) > €-nya(t) for
t € [0,q], for all n > 0 and t € [0, g}, either

C(t) <&nlt) <((t) +2

C(t) > &nl(t) > () + 2.

If both estimates were wrong, there would exist t/,t” € [0, ¢] and n',n” > 0 with

&) = ((t)+2,
Eu(t") = (") +2,

which would lead to two intersections of z(t) and z(t) at t = t'+n' and t = " +n".
Again we can restrict ourselves to the first case so that for all ¢ > 0 the inequalities
C(t) < &n(t) < &nyr1(t) < ((t) + 2 hold for t > 0, where ((t) has period ¢. This
means that there exists x(t), with £,(t) — k(t) for n — oo, pointwise for every
t > 0. Because &,11(t) = £(t + q) — k(¢ + q) = k(t), this & has period ¢. If we can
prove the three claims

i) 3M, st <M, t>0,
i) le(t+q)—p—z(t)| -0, t—o0,
i) |E(t+q)—p—2(t)| >0, t— o0,

we are finished by applying Theorem 2.3.1 ¢) to the global minimals given by z(t)

and y(t) = z(t + ¢) — p. The inequalities £ < y or y < = mean that v can have no
self intersections in contradiction to the assumption.

The claims i) to iii) follow in a similar way as in Lemma 2.3.4. They are equivalent
to

iy AM, el <M, teo,T],
i)’ |§n+1(t) - {n(t)[ — 0, n—oo,t€0,q],
7'”), l£n+1(t) - gn(t)l - 07 n— OO,t € [07 Q] .

Claim i)’ has already been proven by giving the periodic function «(t). With
Lemma, 2.3.4 we see that

1€a (1)
[€n (8]
This means that &,(t) and £,(t) form an equicontinuous uniformly bounded se-

quence of functions. According to the theorem of Arzela—Ascoli, they converge
uniformly. So, also (ii) and (iii) are proven. a

Cla

<
< Cs.
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As a corollary of Theorem 3.2.2, we see that if v € M and ~ is not periodic, an
order on Z? is defined by

(G, k) < (7, K') if 2(t + §) — k < z(t +j') — k', V¢ . (2.11)
Any two allowed pairs (j,k) and (j',k’) can be compared: (j,k) < (5/,k') or
(4, k) > (7', k).

2.4 A priori estimates and a compactness property

Theorem 2.4.1. For a global minimal vy € M,~ : t — z(t), the limit
z(t)

a= lim —=
t—oo t

exists.

Definition. For v € M, the limiting value a = lim,_, o z—(ttl is called the rotation
number or the average slope of .

The proof is based on the fact that the minimal v and its translates T,y : t
z(t + g) — p do not intersect.

Proof. The first part of the proof.

1) It is enough to show that the sequence z(j)/j for j € Z, converges. According
to Lemma 2.3.4 with T = 1 and A = |z(j + 1) — 2(j)| + 1, for t € [§,j + 1] and
j > 0 we have

|2(t) — 2(5)| < coll(G + 1) — 2(§)| + 1)

and

Lo < [ i
< l=@® fw(j)l + I:v(q')l (t—J)
- J J i
L BB -2() | O
- J J ot
< (J+1)—$(J)’+|()|l
< R

If we assume that o = lim;_,o, {j)/j exists, we have

o) _20)
t

lim

t—o0

=0,
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2) Because z(t) has no self intersections, the map
f:8—8,8={x(G)—k (k) €2’ },s=2(j) —k+ f(s) =2(j+1) —k

is monotone and commutes with s — s + 1. This means

f(s) < f(s),s<s
f(s+1) = f(s)+1.

In other words, f(s) := f(s) — s is periodic with period 1. a

Lemma 2.4.2. Vs,s’ € S, |f(s) - f(s')| < 1.

Proof. We assume that the claim is wrong and that there exists s and s’ € § such
that

1f(s) = F(sHl > 1.
We can assume without restricting generality that f(s) > f(s') + 1. We also can
assume that s < s’ < s + 1 by the periodicity of f. We have therefore

f(s)—s—f(sH+s >1. (2.12)

The monotonicity of f implies for s < s’ < s+ 1 that

f) <f(8) < fls+1).
From this, we get

fs)+s <f(s)+s+1. (2.13)
Equation (2.12) contradicts Equation (2.13). a

Continuation of the proof. The iterates of £,
fhra() -k z(G+m) -k,
exist for every m € Z and f™ has the same properties as f.

3) The numbers

b(f) = supf(s),

SES

a(f) = inf f(s),

s€S

exist because of Lemma 2.3.4. Also

b(f) —a(f) <1.
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In particular, both are finite because
b <1+ (f(s0) — s0) < 00,80 = z(0) .
a and b are subadditive:

b(f7FF) <b(f7) +b(f*)
a(f7**) < a(f) +a(f¥),

because
sup(f/**(s) — s) < sup(f7(f*(s) — f*(s)) + sup(f¥(s) — s) < b(£7) + b(f*) .
It is well known that in this case

lim m

! = ﬁy
j—oo 7

J
lim a(f) = «
jooo  j

exist. Because
0<b(f")—a(f") <1

holds, a = 3. The theorem is proven. ad

The result in Theorem 2.4.1 can be improved quantitatively. By the subadditivity
of a and b, one has:

a(f¥) = ka(f),
b(f*) < kb(f),
and therefore fm b Fm
a(p) < WMD) <y
which gives with m — oo,
a(f) < a <b(f).

This means .
~1<a(f) ~b(f) < fls) —a<b(f) —a(f) < 1.

‘We have proven the following lemma:

Lemma 2.4.3. |f(s)~s—a| <1,Vs€ §.

If Lemma 2.4.3 is applied to f™, it gives

|f™(s)—s—ma|<1,Vs€S.
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This is an improvement of Theorem 2.4.1:

15?_@:_8 - a} <L
m ~m’
Especially,
lz(m) —z(0) —ma| < 1.

Theorem 2.4.4. If v : t = x(t) is a global minimal, then ¥t € R,Ym € Z,

lz(t+m) —z(t) —ma| <1.

Proof. If instead of the function F(t, z,z) the translated function F(t + 7,z, %) is
taken, we get the same estimate as in Lemma 2.4.3 and analogously

|z(t+m) —z(t) —ma| < 1. a

Theorem 2.4.5. There is a constant ¢, which depends only on F (especially not on
v € M nor on a), so that for all t,t' € R,

lz(t+t) —z(t) — at'| <evV1+a?.

Proof. Choose j € Z so that j <t' <j+1.

Lemma, 2.4.3 applied to s = z(t + j) gives T
lz(t+7+1) —ax(t+ )| = |f(s) —s| < |a] +1 S J
which according to Lemma 2.3.4 with T = 1 and A = 1+|q| < /
gives // 20\><//
|z(t +¢') — 2(t + )| < collal +1) - . =
Using this and Theorem 2.4.4 we obtain Lemma 2.3.4. i

|zt +5) — 2(t) = ] + |zt + ) — z(t + 5)]
+Hal(t' - )|

1+ colel +1) +laf = (co + 1)(|ef +1)

200+ 1)Vea?+1

cva?+1. 0

lz(t +t') — z(t) — at’|

IN A

Il
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Theorem 2.4.5 has the following geometric interpretation: a global minimal ~ is
contained in a strip of width 2¢. The width 2¢ is independent of v and o!

From Theorem 2.4.1 follows that there exists a function & : M — R,y — a(v)
which assigns to a global minimal its rotation number.

Definition. We define

Mo={yeMl|aly)=a} M.

Lemma 2.4.6. a) M =J, g = Ma.
b) MaNMp =0,a# 0.
c) Myiq D M(p/q) #0 .

Proof. a) and b) follow from Theorem 2.4.1.

¢) My/q O M(p/q) is obvious. The fact that M(p/q) # @ was already proven in
Theorem 2.2.1. a

Theorem 2.4.7. Let vy € My, :t— z(t),|a| < A > 1. Then there exist constants
do,d; and da, so that for all t,t1,t, € R:

a) |.’L‘(t1) — .'L‘(tQ) - a(t1 - tz)l S D()(A) = doA s
b)  |i(t)] < Di(A) =d; A%,

Proof. Claim a) follows directly from Theorem 2.4.5:
|z(t1) — 2(t2) — alts — t2)]| < eV/1+ 02 < V2a| < V2A =: doA .
b) From a), we get
lz(t + T) — z(t)| < |a|T + doA < A(T + dy) ,
which give with Lemma 2.3.4 and with the choice T =1,
[6(t)] < 1A(T + do) 2T~ = dy A%
¢) Because
12| < as(1+ |2[%) < az(1 + d?A%) < 2a3d%A* = dy A*

(compare Lemma 2.3.4 in the last section), also the third estimate is true. a
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Remark. Denzler {10] has given estimates of the form
Dl(A) = edlA -

The improvements in Theorem 2.4.7 use the minimality property and are likely
not optimal. One expects

D(A) = diA,
Dy(A) = dA?,

an estimate holding for F' = (1 + 5 sin(2nz))p® because
1. .9
E=(1+ 3 sin(2nz))t
is an integral of motion and A is of the order VE.

Definition. We write M /Z for the quotient space given by the equivalence relation
~ on M:
z~yeIkeZxit)=ylt)+k.

In the same way we define the quotient M, /Z on the subsets M,.
Definition. The C'(R) topology on C!-functions on R is defined as follows:

Zm(t) — z(t),m — oo if for all compact K C R, the sequence z,, converges
uniformly in the C'(K) topology. Analogously, for r > 0, the C"(R) topologies

are defined. On the space of Cl-curves y: R — Q,t — z,,(t), the C'(R) topology
is given in a natural way by vy, — v if z,, — z in C*(R).

Lemma 2.4.8. o is continuous on M, if we take the C°(R) topology on M.

Proof. We have to show that z,, — z implies o, := a(z;,) — o ;= o(z). Because
Theorem 2.4.7 gives |z, (t) — 2, (0) — at| < Dy, one has

j2(t) = 2m(t) = 2(0) + 2 (0)] | 2Do

- <
o —al < t t
Given € > 0 choose t so large that 2D/t < ¢/2 and then m so that

|z(t) — 2m(t) — 2(0) + 2m (0)|
t

<e€/2

in C(K), where K = [-T,T] is a compact interval which contains 0 and t. There-
fore |a — am| < €. O
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Corollary 2.4.9. ,,j< 4 Ma/Z is compact in the C'(R) topology.

Proof. The fact that |Ji, <4 M/Z is relatively compact in CY(R) follows from
the theorem of Arzela-Ascoli and Theorem 2.4.7. To show compactness we need
to show the closedness in C'(R). Let ~,, be a sequence in Ujaj<r Ma/Z with

Ym — v € C'(R) in the C* topology. We claim that v € M, /7.
la|l<M

1) v : t = x(t) € M. Otherwise, there would exist a function ¢ € Clomp(R) with
support in [T, T)| satisfying
T

T -
/F(t,z+¢,i‘+¢)dt</ F(t,z,t) dt .

-T -T

Because of the uniform convergence z,, — x, £,, — & on [-T,T] we know that
for sufficiently large m also

T

T
/ F(t,Tm + &, &m + ¢) dt </ F(t,Tm, &) dt
-T -T

holds. This is a contradiction.

2) The fact that v € U,y <p Ma/Z follows from the continuity in o if the C?

topology is chosen on M. (We would even have continuity in the weaker C° topol-
ogy by Lemma 2.4.8.) a

We know from Lemma 2.4.6 already that M D> M(p/q) # @ and that M, # @ for
rational . With Corollary 2.4.9 the existence of minimals with irrational rotation
number is established:

Theorem 2.4.10. M, # @ for every a € R.

Proof. Given a € R, there exists a sequence {a,,} C Q with a,,, — a.

For every m choose an element v, € Mq,, C U gca Ms/Z with a < A.
By the compactness obtained in Corollary 2.4.9 there is a subsequence of v,, €
M., which converges to an element v € M,,. a

2.5 M, for irrational o, Mather sets

If o is irrational and v € M, v : t — z(t), we have a total order on the funda-
mental group Z? of T? defined by

(j7 k) < (j,7kl) Aad LE(j) —k< .’L‘(j,) -k
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It has also the property
(.77k) = (jlvk,) Aad l‘(]) —k= 1’(]/) -k

Proof. If z(j)—k = z(j')— K/, then z(t+q)—p = z(t) withq = 7' —j and p = k' -k,
which means ¢ = p = 0 or & = p/q. Because « is irrational, (3, k) = (5, k') follows.
This order is the same as the order defined by F = p?/2:

G,k)y< (G K)Y®aj—k<aj -k .

Let S, = {a(j +1) — k| (j,k) €22 } and S = {(1,0) |0 = a(j +t) —k € S, t €
R, (j,k) € Z*}. We define the map

u: SR, 0=a(f+t)-k)—z(j+t)—k.

Theorem 2.5.1. a) u is strictly monotone in 0:
aj+t)—k<a(j’+t)-K oz@i+t)—k<z(f +t) -k .

b) u(t +1,0) = u(t,8).
c) u(t,0+1) =u(t,8) + 1.

Proof a) a(j +t) —k < a(j' +t) — K & z(j +t) — k < z(j' + t) — k' is with
g=7 —jand p =k’ — k equivalent to

O<ag-poez(t)<z(t+q) —p.

We can assume ¢ > 0 because otherwise (j, k) could be replaced with (5/, k') and
“<77 with “>”.

i) From z(t) < z(t + ¢) — p we obtain by induction for all n € N:
z(t) < z(t +nq) —np ,

or after division by ngq,
z(t) < z(t+ng) p
ng ng g’
The limit n — oo gives
0<a- P .
q

Because « is irrational, we have g > p.

ii) For the reversed implication we argue indirectly: from z(t) > z(t + ¢q) — p we
get, proceeding as in i), also a < p/q.
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b) For 8 = a(j +t) — k we have
u(t+1,0) = u(t+1,a(j+t)—k) = u(t+1, a(j—1+t+1)—k) = z(t+5)—k = u(t,9) .
c)ut,0+1)=ult,a(j+t)—k+1)=z(t+j) —k+1=u(tf) +1. O
For t = 0 we obtain
w(0,0+a) =z(j +1) — k= f(z(j) — k) = f(u(0,0))
Therefore, with uo(8) = u(0, 8),
up(0 + &) = foug(8) .

The map f is therefore conjugated to a rotation by the angle o. However u is
defined on S, a dense subset of R. If u could be extended continuously to R, then,
by the monotonicity proven in Theorem 2.5.1, it would be a homeomorphism and
f would be conjugated to a rotation.

By closure we define two functions ut and u™:

ut(t,8) = 0n_£i9{191@9 ul(t,6,) ,
u {t,0) = Gn—-}ti91,101n<0 u(t,6,) .
There are two cases:
case A): ut = u~ = u (which means u is continuous).

case B): ut # u~.

In the first case, u = u(t,8) is continuous and strictly monotone in 6: indeed if
6 < @', there exist (j, k) and (j', k") with

O<(t+i)a—k<(t+j)a-k <€
and therefore also with Theorem 2.5.1 a),
u(t,0) <ult,(t+j)a—k) <ult,(t+75)a - k) <ut,d)
and we have the strict monotonicity. This means that the map
h:(t,0) — (t,u(t,8))

is a homeomorphism on the plane R?. It can be interpreted as a homeomorphism
on the torus because it commutes with every map

(t,0) — (t+ 4,0 + k) .



2.5. M, for irrational o, Mather sets 59

For every B € R we have v3 € M,,, where
g 1t z(t, B) = u(t,at + B)

satisfies z(t, B) < z(t, ') for B < 3'. We have therefore a one-parameter family of
extremals.

Question. Is this an extremal field? Formal differentiation gives
d -1
Ew(t,ﬂ) = (0y + adg)u(t,0) = (0 + adg)uh™"(t,z) .
In order to have an extremal field, we have to establish that

Y(t, z) = (0; + adp)uh™ (¢, z) = (¢, B)

is continuously differentiable. This is not the case in general. Nevertheless, we can
say:

Theorem 2.5.2. If o is irrational, |a| < A and v : t — z(t) € M, and if we are
in the case A), then v = (8; + adp)uh~! € Lip(T?).

Proof. (The proof requires Theorem 2.5.3 below). First of all, ¢ is defined on the
torus because

Pt +1,z) =yt z) =Y,z +1).
To verify the Lipschitz continuity we have to find a constant L such that

Bt o) = 9", ") < LA~ 2]+ |2 — ")

For 2/ = z(t', ') and =" = z(t”, 3") we introduce a third point y = z(t’, 5”).

[W(t',y) — p(t",2")] 2 (t', 8") - 2(t", 8”)]

< |t - ¢1Ch(A),
() =o', y)l = &, 5) - (¢, 87
< M(A)|z' —y| (Theorem 2.5.3)
< M(A)le’ - 2",
[t 2') —9(t",2")] < [t y) — ", 2"+ Yt 2') — (', y)|
< LAY — ")+ |2 —2"]),

with L(A) = max{C2(A), M(A)}, where M(A) is defined below. In the first step
of the second equation we have used the following Theorem 2.5.3. O
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Theorem 2.5.3. Let y,n € Mg, v : t — z(t),n : t — y(t), z(t) > y(t), o] < A
with A > 1. There is a constant M = M(A) such that |z — | < M|z — y| for all
teR.

Proof. For z,y € M[—T,T], Lemma 2.3.4 assures that
Z], [g] < C1(A) = c; A*T .
Let £(t) = z(t) — y(t) > 0 in [T, T]. It is enough to show
£(0)] < M(0)

because of the invariance of the problem with respect to time translation. Sub-
traction of the two Euler equations

d . ,
EZFp(t,w,x)—Fz(t,x,z) = 0,
d
_F t 7) — x\Y 7' = )
Pt v9) — Fa(t,9,9) 0
gives
d . )
S (Aok + BE) — (B + 0€) = 0
with
1
Ay = /Fpp(t,z+)\(y—z),d:+/\(y—:'t)d)\,
0
1
B = /sz(t,x+)\(y—z),:ic+)\(y—5c))d)\,
0
1
Cc = /Fm(t,:v+)\(y—z),a'c+/\(y—d:)d)\.
0

By assumptions (i) and (ii) in Section 2.1, we conclude

6 S AOS(S—lv
|IBl < A,
IC] < A2,

with A\ = c9A?T ™!, where cq is an F dependent constant > 1 and A > 1 is a
bound for |a| and |z(T") — z(—T)|, |y(T) — y(—T)|- With the following lemma, the
proof of Theorem 2.5.3 is done. O
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Lemma 2.5.4. Let & = £(t) be in [T, T a positive solution of the Jacobi equation
4 (Ao€ + BE) = BE + CE. Then,

1£(0)] < M£(0),
where M = 5¢co A2T—1572.

Proof. Because £ > 0 for t € [-T,T], we can form
7= Ag% +B.

For t = —7 we get

d . d Aok + B¢
v =g\ T

(A€ +BE) £
3 &

. N\ 2 .

B¢+ C¢ 3 3

= —— —eeee A P —_
£ + Ay (£> -+-B£

= Ay*(n* —2Bn+ B® — A)C)

(Ao + BE)

and so p
Erz:AEl(n—B)Q—C-

This quadratic differential equation is called Riccati equation. We want to esti-
mate |n(0)|. In our case we can assume 7(0) > 0 because if we replace (t,h) by
(—t,—h) and B by (—B), the Riccati equation stays invariant.

Claim. |[n(0)] < 4Xé~".
If the claim were wrong, then 7(0) > 4A\6~!. For t > 0, as long the solution exists,
the relation

n(r) 2 n(0) > 4xs~"

follows. Indeed, for n > 4371,

5 2 2
12B7| + |B? — AoC| < 22 + A2(1 +671) < 2hn + 202671 < % + 5% - %n%

so that from the Riccati equation, we get

dn 2 35 2
s -2 > .
dT_5(n 417<5)_<5n/4>0
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This inequality leads not only to the monotonicity property, but also the compar-
ison function ©)
n
>
n(r) 2 1—n(0)ér/4
which is infinite for ¢ = 467 1(0)~!. Therefore,

T < 467 'n(0)!

or n(0) < 4T7167! < 4A?T~16~! = 416! which contradicts our assumption.
The claim [n(0)| < 4Xd~! is now proven. Because

§=A$m—m

one has

1£(0)| < 5—1(4/\6—1 +A) < 5M072 = 500A2T_15_2 . a

(0)

Definition. A global Lipschitz-extremal field on the torus is given by a vector field
& = y(t, z) with ¢ € Lip(T?), so that every solution z(t) is extremal.

Theorem 2.5.2 says that a minimal with irrational rotation number in case A) can
be embedded into a global Lipschitz-extremal field.

Example. Free pendulum.
F =} (p? — L cos(2nz)) has the Euler equations
= ! sin{2nx)
S 2

with the energy integral

2

I 1
E= 5 + Ecos(va) Z =
Especially for E = (47)~! we get
it = —1—(1 — cos(2mz)) = 1 sin?(7z)
- 2n o7

or
& = tsin(nz)//m
and in order to get the period 1, we take

2] = |sin(rz)/ V7| = 9(t, z) .

9 is not C! but Lipschitz continuous with Lipschitz constant /7.
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In the Hamiltonian formulation, things are similar. Because Lipschitz surfaces have
tangent planes almost everywhere only, we make the following definition:

Definition. A Lipschitz surface ¥ is called invariant under the flow of H, if the
vector field

Xy =0, + H,9, — H,9,

is almost everywhere tangential to X.

Theorem 2.5.5. If & = ¢(t,xz) a Lipschitz extremal field is for F, then
E={{t,z,y) e QxR |y =Fp(t,z,9(,7)) }

s Lipschitz and invariant under the flow of H. On the other hand, if ¥ is a surface
which is invariant under the flow of H given by

Y={tz,y) eQxR|y=~h(tzx)},
with h € Lip(Q), then the vector field & = (¢, z) defined by
Y = Hy(t,z, h(t,x))

is a Lipschitz extremal field.

The mathematical pendulum from the first section had invariant C* tori. However
for the energy E = (4m)~!, the extremal field is only Lipschitz continuous.

While for irrational o and in case A), the construction of Lipschitz extremal fields
has been established, the question appears whether there might be different 9 €
M., which can not be embedded into this extremal field. The answer is negative:

Theorem 2.5.6. If v,n € Mg, v :t — z(t), n : t — y(t) are given and a is
irrational and if we are in case A), then there exists § € R, such that y = u(t, ot +
B) and n is in case A) too.

The proof of Theorem 2.5.6 will be given later.

Remarks.

1) Theorem 2.5.6 states that all elements of M, belong to the extremal field,
which is generated by v and that the decision to belong to case A) or B) does not
depend on the element v € M,,.

2) In case A) there is for every a exactly one v € M(a), with z(0) = «. This follows
from the existence and uniqueness theorem for ordinary differential equations.

3) In case A) every v € M,, is dense in T2, because the map is a homeomorphism
in this case.
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What happens in case B)? Can it occur at all?

Example. Consider F' = Jp* + V/(t,x). Assume that
the torus is parameterized by |¢| < 1/2, |t| < 1/2.
Define V' as a C>°(T?)-function for 0 < p < r < 1/6:

Vit,e)>M>1 , 224+ <p?,
Vit,z) =v(® +23) 20 , p*<z®+83<r?,
Vit,z) =0 , 22 +2>r2.

Claim. For every a € R with p’M > 6(|a| + 1|)?,
case B) happens for M,,.

Proof. Assume that there exists an o € R with
p°M > 6[|a| + 1]

and that we were in case A). According to the above remark 3), there would be a
minimal v € M, v : t — z(t) with z(0) = 0.

We will show now that v can not be minimal in the class of curves, which start

at A := (t;,a = z(t;)) = (—0.5,2(-0.5)) and end at B = (t;,b = z(t2)) =

(0.5,2(0.5)). This will lead to a contradiction.

Since by Theorem 2.4.4, |z(t + j) — z(t) — ja| < 1 for every j € Z, the inequality
mi= |J,(-;-) —I(—%H <1+|al.

Let t, and ¢, be chosen in such a way that

t, < 0 < ta,
t* +z(t) < p% telt,ty].

This means that the diameter 2p of B, = {(t,z) | t* + 2 < p? } is smaller than
or equal to the length of vy between z(t;) and x(t2):

ta by
295/ \/1+i?dt5\/t2-x,[[ (1 + #2) dt]'/2
i Ji

and therefore with = 7 — 7,
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B B

1 -
YA YA

The action of v connecting A with B can now be estimated:

1/2 to
/ F(t,z,&)dt > / Flt,z, &) dt

-1/2 t

2
> 2p 1
With the special choice 7 = 2p[2M — 1]71/? we have
1/2 2p 1
/ F(t,2,8) dt > 2+ (M ~ )7 = 2p\/3M .
~1/2

We choose now a special path 7 : t — y(t) inside the region where V = 0. This
can be done with a broken line t — y(t), where

‘We have then

1/2 172 g2 9
F(t,.7) dt s/ Vgt < dm? <

By the minimality of v we have

2p\/2M p< (1+ |a)?
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and so
42(M — p) < S (1 +lal),
AM? < (14 Jal)*,
Mp* < 6(1 + a])*,
which is a contradiction to the assumption. 0
Remarks.

1) Because V can be approximated arbitrarily well by real-analytic V', it is also
clear that there exist real-analytic V' for which we are in case B).

2) Without giving a proof we note that in this example, for fixed p,r, M and
sufficiently large o we are always in case A). The reason is that for big «, the
summand p?/2 has large weight with respect to V(¢,z). To do the & — oo limit in
the given variational problem is equivalent to do the ¢ — 0 limit in the variational
problem

p?

F' = 5t eV(t,z).

The latter is a problem in perturbation theory, a topic in the so-called KAM
theory in particular.

Let v € M, and « irrational be given and assume that M, is in case B). By
definition we have ut # u~, where u* and u™ are the functions constructed from
7. For every t the set {6 | ut(t,0) # u™(t,0) } is countable.

Definition. Define the sets
ME = {u*(t,0) |0 R}
and the limit set of the orbit +

M(y) = {u®(t,0) |t,0c R} .

M, := M} NM; is the set of continuity of u* rsp. u~. There are only countably
many discontinuity points. An important result of this section is the following
theorem:

Theorem 2.5.7. Let a be irrational, v : t — z(t),n : t — y(t) both in M(a) with
corresponding functions u® and vEt. Then there exists a constant ¢ € R such that
ut(t,0) = vE(t,0 + ¢).
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Proof. 1) It is enough to prove the claim for ¢ = 0.

We use the notation uZ(6) = u®(0,6). Assume, there exists ¢ with
uf(8) = vE(0+c),v0.
Then also
uf(@+a)=vE@+a+c).
Define for fixed 9,
it i(t) =ut(t,at +6),
o 3t) = vEtat+0+0¢).

=

4 and 17 are in M,. Because of the two intersections

z(0) = 9(0),

the two curves 4 and 7 are the same. Replacing ot + § with ot + 6 + ¢ establishes
the claim u*(t,0) = v(t,0 + ¢) for all ¢.

2) If for some A € R and some 6 € R the conditions v; (6 + A) — ug (6) < 0 hold,
then vo(# + A) — up(0) <0, V8 € R.

Otherwise, vy (6 + A) — ug (6) changes sign. By semicontinuity, there would exist
intervals I+ and I~ of positive length, for which

vy (@+AN) —ug(0)>0,inl",
vg (0 + ) —ug(8) <0, inl™ .

We put

#) = uyltat),
g9(t) = vy (t,at+ ).
Then
90G) — 2() =90) — k- (2() — k) =vg A+ aj — k) —ug (e — k)
and this is positive, if aj — k € It and negative if aj — k € I~. Because

{aj — k,j,k € Z } is dense in R there would be infinitely many intersections
of Z and §. This is a contradiction.

3) ¢ :=sup{A | vy (0+ ) —ug (#) <0,V8 } is finite and the supremum is attained.
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There exists a constant M, so that for all € R,

g (0+A)—(0+A)| <M,
lug (8) — 6] < M .

Because of Theorem 2.5.1, both functions on the left-hand side are periodic. There-
fore
[ (8 + X) — ug (6) = Al < 2M

or
vy (0+\) —ug(8) > A—2M .

Because the left-hand side is < 0, we have
A< 2M
and c¢ is finite. If a sequence \,, converges from below to ¢ and for all n
vy (0 + Ap) —ug (0) <0, V6,

then also
vy (B+¢) —uy (8) <0, Vo

because of the left semi continuity of v .
4) vg (0 + ¢) — uy (6) = 0, if 6 + c is a point of continuity of v; .
Otherwise there would exist 8* with
vy (0" +¢)—uy (0°) <0,
where 6* + ¢ is a point of continuity. This implies that there exists A > ¢ with
vy (0" +A) —ug(6*) < 0.
With claim 2) we conclude that
vy (0+X) —uy(8) <0, V6.
This contradicts the minimality of +.

5) v (0 + ¢) = uE (9), ve.

Having only countably many points of discontinuity the functions vg and u, are
uniquely determined by the values at the places of continuity:

vy (0 +¢) =uy (0),V0 .
Because vy = vy and ug = uy at the places of continuity,

vg (0 +¢) = uf (6),V6 . O
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In the next theorem the gap size
)=zt (t) -z (t) =ut(t,at + B) —u" (t,at + B)

is estimated:

Theorem 2.5.8. Let |a] < A and let M(A) be the constant of Theorem 2.5.3. There
exists a constant C = C(A) = log(M(A)), with

exp(—Clt — s|) < £(t)/¢(s) < exp(Clt - s]) -

Proof. According to Theorem 2.5.3 the relation

E(t)] < ME(2)

holds and therefore

lél/e < M,
d
Eloggl S Ma
|log&(t) —logé&(s)] < Mt —s|. O

Theorem 2.5.9. For irrational o, the set M is totally ordered: ¥y,n € M, we
have y <nory=mnorvy>n.

Remarks.
1) Theorem 2.5.9 says that two minimals with the same rotation number do not

intersect.

2) As we will see in the next section, this statement is wrong for o € Q, where
pairs of intersecting orbits, so called homoclinic orbits can exist.

3) Still another formulation of Theorem 2.5.9 would be: the projection
p: My — Rz — z(0)

is injective. This means that for every a € R there exists at most one z € M with
z(0) = a. Only in case A), the projection p is also surjective.

4) Theorem 2.5.9 implies Theorem 2.5.5.

Proof of Theorem 2.5.9. We use that for z € M, the set of orbits

{’)’]k.’r(t‘f-])‘k}



70 Chapter 2. Extremal fields and global minimals

and therefore also their closure M(z) is totally ordered.
Because by definition u™ (¢, at + 8) € My(z), the claim follows for

y(t) = uE(t,at + B) .
It remains the case, where y is itself in a gap of the Mather set of z:

u™(0,8) < y(0) < u*(0,8) .

* are also generated by y, we know that

Because by Theorem 2.5.7 the functions u
for all ¢,
u(tat+0) <y(t) <u (t,at+ ).
We need to show the claim only if both z and y are in the same gap of the Mather
set. Let therefore
u (0,8) < 2(0) < y(0) <u*(0,5).

We claim that the gap size
) =ut(t,at+6) —u (t,at +8) >0

converges to 0 for t — oo. This would mean that = and y are asymptotic. With
Theorem 2.5.3 also [£—y| — 0 and we would be finished by applying Theorem 2.3.1
c). The area of the gap

/ £(t) dt < u(T?)
R

is finite because u(T?) is the area of the torus. From Theorem 2.5.8 we know that
fort € [n,n+1),
M~ <g(t)/en) < M.

Because
> em) < M [ &) di <o,
neN R
we have lim,,_, £(n) = lim;,, £(t) = 0. O

The question is left open whether there are minimal orbits in the gaps of the
Mather sets. Instead we characterize the orbits of the form
z(t) = ut(t,at + B) .
Let
Uy ={x € Mo |38 2(t) =uF(at +6) } .

Definition. An extremal solution z(¢) is called recurrent, if there exist sequences
Jn and ky with j, — oo, so that (¢t + j,) — kn — z(t) — 0 for n — co. Denote
the set of recurrent minimals with M"™*° and define ML*¢ := M™° N M,,.

Theorem 2.5.10. For irrational o we have U, = ML,
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Proof. (i) U, C M.
If £ €Uy, z =ut(t,at + §), then

z{t + jn) —k =ut(t,at + B + aj, — k)

and it is enough to find sequences j,,k, with aj, — k, — 0. Therefore, z is re-
current. In the same way the claim is verified for z(t) = u= (¢, at + ).

(ii) ML2° C U,
We assume, £ € M, \ Uy. This means that z is recurrent and it is in a gap

u (0,3) < z(0) < u*(0,4),

By the construction of u*(0,3) we have
x(]n) - kn i u:t(07 /8)

and therefore z(0) = u*(0, 3). This is a contradiction. O

Definition. Define M7 7(7y) := Mo (y) N M.

Theorem 2.5.11. If « is irrational, then for all v, and v2 € M,

MEEE(n) = MEE2() = MEE©

Proof. According to Theorem 2.5.10 we have M[*° = U, and by construction we
get M7“(y) = U,. Theorem 2.5.7 assures that U, is independent of . a

For every (j, k) € Z2, let
T : M- M, z(t) — z(t+j) k.

M, and therefore also M. is invariant under Tj ;. Which are the smallest,
nonempty and closed subsets of M, which are T s-invariant, that is invariant
under all T} 7

Theorem 2.5.12. In M, there is exactly one smallest non-empty T r-invariant
closed subset: it is M5

Proof. M€ is Tj k-invariant, closed and not empty. Let M C M, have the
same properties and let z* € M.,. Because of the closedness and invariance of
MIE(z*) C M, and because of Theorem 2.5.11, also My C M. O
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We know M,, for irrational a by approximation by periodic minimals. We can now
show that every recurrent minimal can be approximated by periodic minimals.

Theorem 2.5.13. Every x € M7 can be approzimated by periodic orbits in M.

Proof. The set M”* of orbits which can be approximated by periodic minimals is
T k-invariant, closed and not empty. Because of Theorem 2.5.12 we have M7°° C
M*. O
Definition. In case B) one calls the elements in M{°° Mather sets.

Mather sets are perfect sets. They are closed, nowhere dense sets for which every
point is an accumulation point. A perfect set is also called a Cantor set.

Let us summarize the central statement of this section:

Theorem 2.5.14. For irrational a, the following holds:

case A): All minimal x € M, are dense on the torus. This means that for all
(t,a) € R?, there exists a sequence (jn, kn) € Z? with x(t + j) — ky, — a.

case B): no minimal y € M, is dense on the torus. In other words if u=(0, 3) <
a < ut(0,8), then (0,a) is never an accumulation point of x.

We know that both cases A) and B) can occur. It is a delicate question to decide
in which of the cases we are. The answer can depend on how well o can be ap-
proximated by rational numbers.

Appendix: Denjoy theory.
The theory developed so far is related with Denjoy theory from the first third of
the twentieth century. We will state the main results of this theory without proofs.

Let f be an orientation preserving homeomorphism on the circle T. The following
Lemma of Poincaré should be compared with Theorem 2.4.1.

Lemma 2.5.15. The rotation number a(f) = lim,_, f*(t)/n exists and is inde-
pendent of t.

Let Sy = {a(j+t)—k|(j,k)€Z* }and S = {(t,0) |0 = a(j+t)—k € S;,t R }
and define
u:S—R,(t0=a(j+t)—k)— fi(t)— k.

The next theorem should be compared with Theorem 2.5.1.
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Theorem 2.5.16. a) u is strictly monotone in 6. This means
aj+t)—k<a(f +t)—kK o fIt)—k< f7(t) -k .

b) u(t+1,6) = u(t,0).
c)u(t,0+1)=u(t6)+1.

Again we define by closure two functions u* and u™:

+ .

t,0) = 1

u" (t,0) 0<é£n_’ u(t,6,) ,
u (t,0) = >lénm_’ u(t,6,) .

There are two cases:

case A): vt =u~ =u (uis continuous),

case B): ut #u”.
The set 4
LE(t) :={w € T| Ijn — 00, f7"(t) » w }

is closed and f-invariant. The following theorem of Denjoy (1932) should be com-
pared to Theorems 2.5.10, 2.5.11 and 2.5.12.

Theorem 2.5.17. If « is irrational, then L = LT (t) = L7 (t) is independent of
t and the smallest non-empty f-invariant, closed subset of T. In the case A) we
have L =T, in the case B) the set L is a perfect set. If f' is of bounded variation,
we are in case A). For f € C! it provides examples, where we are in case B ).

In case B) one calls the set £ a Denjoy-minimal set. We see now the relations:

The intersection of a Mather set with the line t = tg is
a Denjoy-minimal set for the continuation f of the map
f:z(j) —k — x(j + 1) — k onto the circle.

2.6 M, for rational o

Let o = p/q with g # 0. We have seen in Lemma 2.4.6 of Section 2.4 and Theo-
rem 2.2.2 that
Mypjq D M(g,p) #0 .

M(p/q) = M(q,p) is the set of minimal periodic orbits of type (g,p).

Question. Is M,, ), = M(p/q)? No! Indeed there are pairs of orbits in M, /4, which
intersect once and which can therefore not be contained in the totally ordered set

M(p/q)-
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Example.
1) F =p?/2, % =0, z(t) = ot + B. In this case we have M,,/, = M(p/q).

2) F = p%/2 + cos(2nz) , E = ©%/2 + cos(2nx) is constant. Take o = 0. We have
Mg # M(0), because M(0) is not totally ordered and M is totally ordered by
Theorem 2.5.9. Note that M(0) is not well ordered because there are seperatrices
with energy E = (4m)~! defined by

& = +|sin(rz)|/V/7 .
They both have zero rotation number and they intersect.

Definition. Two periodic orbits z; < 2, € M(p/q) are called neighboring if there
exists no x € M(p/q) with z; < x < 5.

Note that M(p/q) is well ordered, justifying the above definition.

Theorem 2.6.1. Let v € M,,,. There are three possibilities:

a) v € M(p/q), therefore z(t + q) — p = z(t).

b*) There are two neighboring periodic minimals v, > 2, v; € M(p/q) 1 7; : t —
z;(t), so that

z1(t) —z(t) = 0 fort — oo and

zo(t) — z(t) — 0 for t — —oo.

b~) There are two neighboring periodic minimals v, > o, 7; € M(p/q): v t—
z;(t), so that

z2(t) — z(t) — 0 for t — co and

z1(t) —z(t) > 0 fort — —oo.

Proof. Let v € Mp;q,7 : t — z(t) but in v ¢ M(p/q). Therefore, for all ¢
(@) zt+q) —p > =z(t) or
(@yzt+q) —-p < =z(t).
We will show that (i) implies case b%). By (i) the sequence
yi(t) = z(t+jg) — pj
is monotonically increasing for j — co and bounded because of the estimate
ly;(t) = 4;(0)| < Co .

Therefore y; converge to a function z,(t) which is again in Myp/q- It is even pe-
riodic and of type (g,p) and therefore an element in M(p/q). In the same way,
y; converges for j — oo to a function z € M(p/q). We still have to show that
z1 and 2 are neighboring. Let v* : z* € M(p/q) with z; < z* < z, and call
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A = (t9,z(to)) = (to,z*(to)) the now mandatory intersection of z* with . We de-
fine also the points B = (ty+q,2*(to+q)), P = (T —q,z(T—q)) and Q = (T, 2(T)),
where 2 : t — z(t — q) and T > ty + ¢. The new curves

., . *(t), te€to,to+q],
zi(t) = { z,z(t) te [[t(()) +0(17 7({]] )
L, o (t), telto, T —4q],
a0 = {0 LRI

with w(t) = (T — t)z(t) — (T — q — t)2(t) are concurrent in the class of curves
between A and Q. We have

T—q T
/ F(t,z,z) dt = / F(t, z,2) dt
t

to ot+gq
and

T T .
/ F(t, w, 'U)) dt =T o0 / F(t, .’Z‘Q, .’ig) dt

T—q T—q

to+q .
- / F(t, &2, 52) dt

to

to+q
= / F(t,z*, &%) dt .

to
(The first equality in the last equation holds asymptotically for T — oo. The sec-

ond equality is a consequence of the periodicity of z2. The last equation follows
from the minimality of z2 and z* in M(p/q).)

Therefore, for T — oo, the actions of #; and Z; between A and  are approxima-
tively equal. However, the action of the path ¢t — Z,(t) can be decreased at B by
a fixed and T-independent amount because y has a corner there.

Therefore * can not be minimal between A and P. This is a contradiction. Con-
sequently the assumption of the existence of x* is absurd.

The proof that (ii) implies case b) goes along the same way. a
Definition. In the cases b*) the orbits ; and z2 are called heteroclinic orbits if

z; = z2 (mod 1) one calls them homoclinic orbits. We denote the set of z, which
are in case b¥) with M:/q.

Theorem 2.6.2. If x1,12 € M(p/q) are neighboring, then there exist at least two
non-periodic x¥,z= € My, where z* is asymptotic to o for t — *oo and
asymptotic to x; for t — Foo.




76 Chapter 2. Extremal fields and global minimals

Proof. Let z,(t) and zo(t) be two neighboring minimals in M(p/q). By Theo-
rem 2.2.1 there exists for every n € N a minimal z,(t) with z,(—n) = z,(—n),

zZn(n) = z2(n).

Call z,,(t) = [z1(t) + z2(t)]/2 the middle line of z; and z;. By time translation,
one can always achieve that

Zn(t) = 2 (t + )

intersects the middle line z,, in the interval [0, g].

Because of the compactness proven in Theorem 2.4.9 there is a subsequence of Z,
which converges in M,,/, to an element 2+ which also intersects the middle line
Zm in the interval [0,q]. This z,, is not periodic: between z; and z, there is by
assumption no periodic minimal of type (g, p).

It is obvious how one can construct z~ analogously. O

Example. Heteroclinic connection of two neighboring geodesics (M. Morse 1924)
[23].

We will see below that on the torus, two minimal neighboring closed geodesics of
the same length can be connected by an asymptotic geodesic.

Theorems 2.6.1 and 2.6.2 can be summarized as follows:

Theorem 2.6.3. M,,/, = M;/q UM, UM(p/q). If not My,q = M(p/q), then
M, # 0 and M, #9.

r/q

Appendix: stability of periodic minimals.
A periodic extremal solution x of type (g, p) satisfies the Euler equation

d
= t) = F:(t,z,2) .
thp(t,x, z) (t,z,%)
Let £ be a solution of the Jacobi equation
d : d
—(F —F x — Lzx =V.
=t Foo) + (G Fow = Fe)§ = 0
We abbreviate this as
d, .
%(af) +b=0, a=Fyp(t,z,z)>0.

With £(t) being a solution, also £(¢ + ¢) is a solution and if & and &; are two
solutions, then the Wronski determinant [¢1,&s] := a(§,£2 — £2€1) is a constant.
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It is different from zero if and only if £; and & are linearly independent. In this
case, there is a matrix A, so that

< &ift+q) ) =A( &i(t) )
&t +q) &(t) )
or W(t+q) =W(t) with W = ( 21 gl ) The comparison of the Wronskian
2 &
a(t + q)detW(t + q) = [£&1,&)(t + q) = [£1,&2](t) = a(t)detW(t)
leads because of a(t + ¢q) = a(t) > 0 to
det(4) =1,

and this means that with X also A~! is an eigenvalue of A. There are three possi-
bilities:

Elliptic case [A\| = 1,A # £1 (stable case )
Parabolic case Al = £1
Hyperbolic case ) real, A # £1  (unstable case)

Definition. We say that the extremal solution z is elliptic, hyperbolic or parabolic,
if we are in the elliptic, the hyperbolic or the parabolic case.

It turns out that periodic minimals are not stable:

Theorem 2.6.4. Periodic minimals v € M(p/q),v : t — z(t) are not elliptic.

Proof. We know that for all global minimals v € M(p/q) a solution & # 0 of
the Jacobi equations has at most one root. If two roots would exist, there would
be a conjugate point, which is excluded by Jacobi’s Theorem 1.3.1. Assume now
that ~ is elliptic. There is then by definition a complex solution {(t) of the Jacobi
equation which satisfies

Ct+q) = AC(E), A =LLA=¢ £0,1,a €R.
For 7(t) = e~ ***({(t) we have therefore
m(t+q) =m(t).

Of course also
£(t) = Re((t) = Re(e'*'n(t))

is a solution of the Jacobi equation. From e*®? # 0,1 follows that there exists
N > 1 so that
Re(exp(iNag)) < 0.
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This means that
£(t+Ng)é(t) <0
so £ has a root ¢ € [0, Ng]. But also t + kNgq are roots for every k € N. This is a

contradiction. a

We show now that the situation is completely different for n > 1 and that the
above argument does not apply. To do so, consider for n = 2 the integral

t2

/ | £ — aJz|® dt
t
. . ) 0 1 .
with z € Lip(R,R?), where J = 10 and where a is a real constant. In

the class of periodic curves
z(t+1) ==z(t),

z = 0 obviously is a minimal because

3
I(z)|? = / |t —aJz|?dt>0.

ty

On the other hand the Jacobi equation gives
. L d )
£€—2aJl+a {z(a—aJ) £=0.

Let c € C?\ {0 } be a complex eigenvector of J, for example

c= < 1 ),Jc:ic.
)

£(t) = Re(e'*c)

Obviously

is a nontrivial solution of the Jacobi equation. This means that = = 0 is elliptic.
However x has no root. If £(7) = 0 were a root, we could achieve by translation
that £(0) = 0 and so ¢ = —c. From

Je=ic

would follow Jc = —ic and ¢ = 0. This would imply that ¢ is identical to 0.

This example shows also that for n > 2, periodic minimals can be elliptic.
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A remark on the average action:

Definition. For v € M,, define the average action as

T
<I>(’y):71im T—l/ F(t,z,z) dt .
— 00 0

Theorem 2.6.5. a) For v € M, the average action is finite. It is independent of
v. We write therefore also ®(a) = ®(y) with v € M,,.

b) On the set of rational numbers Q, the map a — ®(a) is strictly convexr and
Lipschitz continuous.

We conjecture that o — ®(«) is continuous on the whole real line R.

Proof. a) For oo = p/q and periodic z, the claim follows from

®(a) =q! /Oq F(t,z, &) dt .

In the case @ = p/q, where z is not periodic, the statement follows from the fact
that x is by Theorem 2.6.1 asymptotic to a periodic z.

For irrational o we can assume that 7 is in M,, because non-recurrent orbits are
asymptotic to recurrent orbits & = u®(t,at + ).

According to H. Weyl, there exists for every irrational o a Riemann integrable
function f(t,0) which is periodic in ¢t and 6 so that

T 1ol
. —1 _
TIHI;OT /Of(t,at+ﬁ)dt—/0 /0 f(t,0) dtdé .

One shows this first for exp(2n(kt + j6)), then for trigonometric polynomials,
then for continuous functions and finally, by lower approximation, for Riemann
integrable functions. The claim follows if we put

f(t,0) = F(t,u™(t,0), (0, + adg)u®(t,)) .

b) For a = p/q, B8 =9'/q, v = pa+ (1 — p)B with p = s/r € (0,1) we get the
inequality

B(y) < p®(a) + (1 - p)&(8) .
Let z € M(p/q), y € M(p'/¢). If z(to) = y(to) is the obligate intersection of z
and y we define

z(t) _ { x(t), te [tO,tO + qq's] »

Tl y@®) - ('a—pd)s, telto+aqs to+qq'r].
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It is piecewise smooth, continuous and when continued periodically, z has the
rotation number

('a(r —s) +pd's)/(dqr) = (1 - p)B+ pa=1.
Because z is not C? we have
1
qq'r
® is Lipschitz continuous because
B(v) - ®(B) < p(®(a)-2(B))
= [(v=8)/(a-B)(2(a) — 2(B))
< (v - B)2max(®(a), ®(8))/(a - B) . 0

o(y) <

/ " P(t2,3) dt = pB(a) + (1 - p)B(B) .

Appendix: A degenerate variational problem on the torus.

Finding M,, for irrational « is computationally reduced to the determination of
u = u*(t,0) because u* and u~ agree almost everywhere. u satisfied the equation
(write D for 8; + ady)

DF,(t,u,Du) = F,(t,u, Du) .

These are the Euler equations to the variational problem

1,1
/ / F(t,u, Du) dtdf ,
o Jo

where u(t,8) — 0 has period 1 in ¢t and 6§ and where u(t,6) is monotone in 6.

One could try to find u directly. The difficulty with that is that for the minimum,
whose existence one can prove, the validity of the Euler equation can not be ver-
ified so easily. It could be that the minimals are located at the boundary of the
admissible functions. This can happen for example if u is constant on an interval
or if it has a point of discontinuity.

The problem can however be regularized if one looks at

F(t,0,u(t,0), Vu(t,0)) = gug + F(t,u(t, ), Du(t, §))

with v > 0. One studies then the variational problem

1 1
/ / F(t,u, Vu) dt do
0 0

in the limit v — 0 for u(t,8) — 6 € WH3(T?). It turns out that for ¥ > 0 a minimal
automatically is strictly monotone. This is done in {10].
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2.7 Exercises to chapter II

1) Show that for a sequence v, : t — z,(t) in Z one has +,, —, v if and only if
x, converges to x, the family {z,} is equicontinuous and if there exists M € R so
that [yallz < M.

2) Prove the weak compactness of K in the proof of Theorem 2.2.1 directly with
the help of the theorem of Arzela—Ascoli.

3) Investigate the solutions of the nonlinear pendulum with F = p?/2 + (1/27) -
cos(2mz) and the corresponding Euler equations & = sin{2#z) for minimality in
the following cases:

a) A periodic oscillation z(t) = z(t + T') with z # 0,
b) the stable equilibrium z = 0,

¢) the unstable equilibrium z = 1/2.

4) Show that for «y : t — z(t) with v € M the following holds: ¥¢;,t, € R

to _ 2
1 / #2dt<e (———w(h) x(tl)) F1%.
ta —t1 Jy, o — 1t




Chapter 3

Discrete Systems, Applications

3.1 Monotone twist maps

In this chapter we consider situations which are closely related to the questions
in Chapter II. Indeed, they are more or less the same questions, even though the
assumptions are not identical. The topics require some small changes. But the
underlying ideas remain the same.

The results of Mather apply to monotone twist maps, a topic which will appear
now as an application of the earlier theory. Before we define these maps we derive
them via a Poincaré map from the variational problem treated in Chapter II.

We assume that F' is given on the torus T?. We also assume that there are no ex-
tremal solutions in [0, 1] which have conjugate points. This means that if (¢,,z(t,))
and (t2,z(t2)) are conjugate points, then o —£; > 1.

Under the assumptions of Chapter II, there exist solutions
of the Euler equations

d

an = Fr

for all t. (See Exercise 1). Therefore the Poincaré map
f:8' xR — 8! xR, (x(0),2(0) — (x(1),2(1))

is well defined on the cylinder S' x R = {t = 0,z € S,
@ € R }, a hyper-surface in the phase space () x R.
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Let z be a solution of the Euler equations. We define

zg := z(0), z; = z(1),

Yo = F,,(O,xo,a'co), = FP(O,.’L‘l,.’i‘l) 5

and consider x from now on as a function of ¢, zy and z,. With

1
S{zg, 1) =/ F(t,z, ) dt
0

one has
1 . 1
dz dz d dx dz
Sz = Fo—+F,—dt= | [Fo— —Fp]l— dt+ F,—[s = w0,
0 /0 dzo T Pdzg & /O[ P e et i
1 . 1
dzr dzr d dz dz
Sy, = Fo—+F,—dt= | [F,— —F]— dt+ F,— |} =y,
! /0 dz, + Pdr, /0 [ dt p]dml + Pdx, lo=v1

and (if & is considered as a function of zg and z;),

.\ dT
51011 = —FPP(O, Io,Zo)d—z(l) .

Because
_ 8x(t, Zo, Il)

€)= 0

is a solution of the Jacobi equation (differentiate 0,F, = F, with respect to ;)
there are by assumption no conjugate points. Because £(1) = 1 and £(0) = 0 we
have £(t) > 0 for t € (0,1) and this means
: dg
=059
€0 = 32>

or S;.z, < 0. Summarizing, we can state that

f (2o, 90) = (z1,91)

satisfies

Yo = _Szo y 1= Sz1 y

Szozy <0 ,  which means % >0.
6.’730

In classical mechanics, S is called a generating function for the canonical trans-
formation ¢ (see [3]). The Hamilton-Jacobi method to integrate the Hamilton
equations consists of finding a generating function S in such a way that

H(t,.’L‘O,SIO(.Z'(),.’IIl)) = K(.’El) .
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The original Hamilton equations
T = Hyo:yo = —on
transform then to the integrable system
1= 0,11 = Ky, .
Many integrable systems in Hamiltonian mechanics can be solved with the Hamilton—

Jacobi method. An example is the geodesic flow on the ellipsoid.

Instead of starting with the variational principle we could also define monotone
twist maps directly:

Definition. A map
¢ tA— A7 (nr,y) — (f(x,y),g(a:,y)) = (xl’yl)

on the annulus
A={(z,y) |z (mod 1),a <y <h —0<a<b<oo}

is called a monotone twist map, if it is an exact, boundary preserving C 1_diffeo-
morphism which has a continuation onto the cover A =R x [a,b] of A:
0 f,9eC4),

(

(1) f(z+1,y)=f(:1:,y)+1,g(x+1,y)=g(z,y),
(il) a=ydz—y1dr, =dh,

(
(

—_

iii) g(.’E,a) =a, g(va) =b,
iv) Oyf(z,y)>0.

In the cases when a and b are finite, one could replace the assumption (ii) also
with the somehow weaker requirement of area-preservation:

dxdy = dx,dy; .

The exact symplecticity (ii) follows from that. With the generating function h
from (ii), we can write these assumptions in a different but equivalent way. We
write h; for the derivative of h with respect to the ith variable.

(0) heC*R?),

(i) hz+1,27+1)=h(z,2),

i) y=-hi(z,z1), 1 = ho(z, 71) ,

(iil)  hi(z,z") + ho(z,2") =0, for hy(z,2") = a,b,
(iv)  hg <0.

We are interested in the orbits (z;,y;) = ¢’(z,y) (j € Z) of the monotone twist
map ¢. The dynamics given by ¢ is completely determined by the function & which

is defined on the torus T2 and which satisfies (0)’ to (iv)’. The equations of motion

ho(zj—1,2;) + hi(z),2541) =0
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form a second order difference equation on T!. It can be seen as the Euler equa-

tions to a variational principle.

It is not difficult to see that the function h coincides with the generating function

S if ¢ is the Poincaré map.

Chapter 3. Discrete Systems, Applications

The analogy between the continuous and the discrete case is as follows:

continuous

discrete

F(t,z,p)

Lagrange function

h(zj,z541)

generating function

[ Ft,z,2) dt

action

Y2 hl(Es,T501)

action

%Fj =F; Euler equation ha=—hy Euler equation
Fp>0 Legendre condition | hi2 <0 twist condition
z(t) extremal solution z; orbit

z(t) minimal z; minimal

z(t) velocity Az; =541 — x5 first difference
Z(t) acceleration ZTjt1 —2x; + 51 second difference
y = Fy(t,z,p) momentum Yj+1 = h2(Tj41,2;) momentum

Example. 1) The standard map of Taylor, Greene and Chirikov.

Consider on the cylinder

{(z,y) |z (mod 1),y ¢ R }
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the map
e ( z ) . ( m+y-i;\—2’->—'sin(21rz) ) _ ( x ) .
y Y + 5> sin(2nx) 1
Because
plz+ly) = (z;1+1ly)=(z1,1),
Hz,y+1) = (m+Ly+1) = (21,91 +1),

the map ¢ commutes with all elements of the fundamental group of the torus
and can therefore be seen as a transformation on the torus. It has the generating
function

(Az)?

=" o cos(27z) .

If one considers a few orbits of @, one often sees stable periodic orbits in the center
the so-called ‘stable islands’. The unstable, hyperbolic orbits are contained in a
‘stochastic sea’, which in the experiments typically appear as the closure of one
orbit. Invariant curves which wind around the torus are called KAM tori. If the
parameter value is increased — numerically one sees this for example at 0.97..
— then also the last KAM torus, the ‘golden torus’, vanishes. The name ‘golden’
originates from the fact that the rotation number is equal to the golden mean.

The formal analogy between discrete and continuous systems can be observed well
with this example:

continuous system discrete system

F(t,z,p) = 22 — 25 cos(2nz) | h(zj,xj41) = (—thIQ—IJ - 125 cos(2mz;)

Fpp=1>0 hio=-1<0
i = 2 sin(2nz) A%z = 2 sin(2nz;)
y=I=p Yi+1 = ha(zj,2501) = (211 — ;) = Az

There is an essential difference between the continuous system, the mathematical
pendulum, and its discrete brother, the standard map. The continuous system is
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integrable: one can express x(t) using elliptic integrals and Jacobi’s elliptic func-
tion. The standard map however is not integrable for most parameter values. We
will return to the standard map later.

Example 2) Billiards.

We take over the notation from the first section. The map
(s,1) — (s1.11)

on the annulus S' x [0, 7] becomes in the new coordinates
(z,y) = (s, —cos(t)) ,

a map on the annulus A = § x [~1,1]. In order to show that

¢: (z,y) = (z1,3) = (f(z,9), 9(,y))

is a monotone twist map, we simply give a generating function

hz,zy) = —d(P, Py) .

It has the properties (0’) until (iv’). Here d(P, P;) denotes the Euclidean distance
between the points P and P, on boundary of the table. These points are labeled
by # = s and z, = s, respectively.

Proof. (0') is satisfied if the curve is C*.

(") is clear.

(ii') cos(t) = hy, —cos(ty) = hy,.

(iii') # = f(x,1) or f(z,—1) implies h, + h,, = 0.

(iv') her, <0 follows from the strict convexity of the curve. O

Example 3) Dual billiards.

As in billiards, we start with a closed convex oriented curve in the plane. We
define a map ¢ on the exterior of ' as follows. From a given point P € E we draw
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the tangent L to I and denote by @) the contact point which is at the center of the
segment L NT'. The line L is chosen from the two possible tangents according to
the orientation of I'. We call P; the mirror of P reflected at Q. The map ¢ which
assigns to the point P the point P; can be inverted. It is uniquely defined by the
curve I'. The emerged dynamical system is called dual billiards. The already posed
questions, as for example the question of the existence of periodic points or the
existence of invariant curves, appear here too.

There are additional problems which do not appear in billiards. One can for exam-
ple ask for which I' every orbit is bounded or whether there are billiard tables I’
for which there is an orbit which escapes to infinity. While this stability question
is open in general, there is something known if I is smooth or if it is a polygon as
we will see later on.

The dual billiards map ¢ has a generating
function h. To find it, we use the coordinates

z=0/(2m), y=12/2,

where (t,0) are the polar coordinates of the
vector (P, — P)/2. The generating function
h(z,z;) is the area of the region between the
line segments QP;,P;Q; and the curve seg-
ment of I' between Q and @;. The map

¢:(z,y) — (z1,91)

is defined on the half-cylinder A = S! x [0, 00)
and the generating function h satisfies proper-
ties (0') until (iv’), if ~y is a convex C'-curve.
(Exercise).

Periodic orbits.

The existence of periodic orbits in monotone twist maps is guaranteed by the
famous fixed point theorem of Poincaré-Birkhoff which we prove here only in a
special case. In the next section we will look at the topic from the point of view
of the theory developed in Chapter II and also will see that periodic orbits have
to exist.

Definition. A map ¢,

(:L‘, y) — (f(a:,y),g(z,y)) = (5131,3/1)

defined on the annulus A = {(z,y) |z mod l,a <y <bh, —co<a<b< 40}, is
called a twist map if it has the following properties:
(0) ¢ is a homeomorphism of A.
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(i) flz+1,y) = f(z,y) + 1,9(z+ 1,y) = g(z,y) (continuation onto a cover of A).
(ii) dzdy = dz1dy, (area preserving).

(iii) g(z,y) = y for y = a,b (preserving the boundary).

(iv) f(z,a) — x>0, f(z,b) — z < 0 (twist map property).

Theorem 3.1.1. (Poincaré-Birkhoff 1913) A twist map ¢ has at least two fized
points.

A proof can be found in [6]. Unlike for monotone twist maps the composition of
twist maps is again a twist map. As a corollary we obtain the existence of infinitely
many periodic orbits:

Corollary 3.1.2. For every twist map ¢ there is a qq, so that for all ¢ > qo there
exist at least two periodic orbits of period q.

Proof. Define

m = max{f(z,a)—z|z€R} <0,
M = min{f(z,b)~z|z€R}>0.

We use the notation ¢’(z,y) = (f(z,y), ¢’ (z,y)). For every q > 0, we have

g—1
max(f¥(z,a) —z) < max{)_ fI*(z,a) - fi(z,a) } < qm < gM
=0
g—1
min{z Yz, b) — f(x,b) } < min{f%(z,b) —z)}.

=0

IA

Let go be so large that goM — qom > 1. If ¢ > qq, there is p € Z, such that
gm < p < ¢M. And with

d)q,p : (IE, y) = (fq(x’ y) —pvgq(xv y)) )
the twist maps satisfy
g p(z,0) <gm—p <0< gM —p < ¢g p(z,b) .

According to Poincaré-Birkhoff, the maps ¢, , have at least two fixed points. This
means that ¢ has two periodic orbits of type (g,p). a

It is easy to prove a special case of Theorem 3.1.1:
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Special case.

A monotone twist map satisfying f,(z,y) > 0 for all (z,y) € A has at least two
fixed points, if the map rotates the boundaries of the annulus in opposite directions
(property (iv) for twist maps).

Proof. Proof of the special case: because of the twist condition, there exists a
function z(x) satisfying

fz,z(z)) == .
The map z is C! because of property (0) for the monotone twist maps. Thanks to
area-preservation, the map must intersect the curve

vyixz e (z,2(x)) € A

with the image curve ¢(v) in at least two points. These intersections define two
fixed points of the map ¢. O

Definition. By an invariant curve of a monotone twist map ¢ we mean a closed
curve in the interior of A, which surrounds the inner boundary {y = a } once and
which is invariant under ¢.

From Birkhoff [12] is the following theorem:

Theorem 3.1.3. (Birkhoff 1920) Every invariant curve of a monotone twist map
is star shaped. This means that it has a representation as a graph y = w(z) of a
function w.

For a careful proof see the appendix of Fathi in [15].

Theorem 3.1.4. Every invariant curve of a monotone twist map can be represented
as a graph y = w(x) of a Lipschitz continuous function w.

Proof. Let v be an invariant curve of the monotone twist map ¢. From Birkhoff’s
theorem we know that ~ is given as a graph of a function w. The map ¢ induced
on 7y is a homeomorphism

(z,w(z)) — (P(z), w(y(2))) = (f(z,w()), 9(z, w(z)))

given by a strictly monotone function 9. Let (z;,y;) and (z’,y}) be two orbits on
7. Then z; and z; are solutions of the Euler equations

—hi(zj,2541) = ha(zj-1,7;),
ho(z)_y,25) = _hl($;'v“3;‘+1)‘
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If we add both of these equations for j = 0 and add hy(zo,z}) — ho(z_1, 7)) on
both sides, we get

ha(x’ 1, 2() — ho(z_1,25) + R (0, 77) — hi(z0, 1)
= ho(z_1,70) — ho{z_1,20) + h1(Z0,2}) — b1 (x5, 2})
By the intermediate value theorem we have
8(z’y = z-1) +8(z) — 21) < Lzg — 20)
where 6 = min(—h;2) > 0 and L = max(|hi1| + |h2a|) < co. Because z; =

Y(zo),z-1 = ¥~ '(z0), we have

- - L
[ (zg) — (o)l [~ (25) — ¥~ (zo)| < 3170 — 2ol -
This means that 1 and 1~ are Lipschitz continuous and also

w(z) = ~hi(z,9%(z))
is Lipschitz continuous. O

The question about the existence of invariant curves is closely related to stability:

Definition. The annulus A is called a region of instability, if there is an orbit
(z;,y;) which goes from the inner boundary to the outer boundary. More precisely,
this means that for all € > 0, there exists n,m € Z so that

ymelUe = {a<y<a+e},

ym€Ve = {b—e<y<b}.

Theorem 3.1.5. A is a region of instability if and only if there are no invariant
curves in A.

Proof. If there exists an invariant curve -y in 4, then this curve divides the annulus
A into two regions A, and A, in such a way that A, is bounded by v and the
inner boundary {y = a } and A, is bounded by the curves v and {y = b }. Because
of the continuity of the map and the invariance of the boundary, the regions are
mapped into themselves. A can therefore not be a region of instability.

If A is no region of instability, there exists € > 0, so that one orbit which starts in
U, never reaches V. The ¢-invariant set

v= ¢ W)
jJEZ
is therefore disjoint from V. It is bounded by a ¢-invariant curve . According to
Theorems 3.1.3 and 3.1.4 this curve is Lipschitz continuous. O
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One knows that for small perturbations of the integrable monotone twist map
¢a<§)H($+;(y)>, al(y)25>0’

invariant curves with ‘sufficiently irrational’ rotation numbers survive. This is the
statement of the twist map theorem, which is part of so-called KAM theory. See
[24] for a reference to a proof.

Definition. The space C"(A) of C"-diffeomorphisms on A has the topology:
ot (f1 — f2) ‘3m+"(91 - 92) )

oxr™oy™ dx™oy™
Definition. We say that an irrational number g is Diophantine, if there are positive
constants C and 7, so that for all integers p and ¢ > 0 one has

l|¢1 — ¢2|lr = sup (

m+n<r

where ¢;(z,y) = (fi(z,v),9;(z,9)).

8-E1>cq.
q

Theorem 3.1.6. (Twist map theorem) Given o € CT[a,b] with r > 3 and
o(y) > & > 0, Vy € [a,b], there exists € > 0, so that for every area-
preserving C”-diffeomorphism ¢ of A with ||¢p — ¢al| < € and every Diophantine
B € [a(a),a(b)], there exists an invariant C*-curve y3. The map ¢ induces on v
a C'-diffeomorphism with rotation number (3.

Remark. For » < 3 there are counterexamples due to M. Hermann.
Relating the continuous and the discrete systems:

At the beginning of this section we have seen that if F' satisfies F,, > 0 and is
chosen so that no extremal solution has a conjugate point, then the Poincaré map
¢ has the generating function

1
h(z,z') = / F(t,z,) dt .
0

The map ¢ is then a monotone twist map. The exclusion of conjugate points was
necessary. In general — if conjugate points are not excluded — one can represent
the Poincaré map ¢ as a product of monotone twist maps: there exists N € N, so
that the maps

on,; : (@(G/N),y(G/N)) — (((G + 1/N),y((5 + 1)/N))
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are monotone twist maps, if (z(t), y(t)) is a solution of the Hamilton equations

and Hy, > 0. Each map

z(t+e) = z(t)+eH, + O(e?)

ylt+e) = y(t)—eH, +O0(e),
is then a monotone twist map for small enough e. The Poincaré map ¢ can therefore
be written as

¢=@NN-109NN-20..00Np -

We see that the extremal solutions of [ F dt correspond to products of monotone
twist maps.

The question now appears whether every monotone twist map can be obtained
from a variational problem on the torus. For smooth (C*) maps, this is indeed
the case ([25]). The result is:

Theorem 3.1.7. (Interpolation theorem) For every C™ monotone twist map ¢
there is a Hamilton function H = H(t,z,y) € C*°(R x A) with

a) H(t+1l,z,y)=H(t,z,y) = H(t,z +1,y),
b) Hx(t,x,y) :O’yza’b’
c) Hy, >0,

so that the map ¢ agrees with (zo,yo) — (x1,v1), where (x(t),y(t)) is a solution
of
T = Hy(tax»y)7y - —Hx(t,x,y) .

With this interpolation theorem, Mather theory for monotone C™ twist maps is
a direct consequence of the theory developed in Chapter II.

3.2 A discrete variational problem

In this section we investigate a variational problem which is related to the problem
treated in Chapter II. Rather than starting from the beginning, we just list the
results which one can prove using the ideas developed in Chapter II. In [26] the
proofs are made explicit for this situation. Let

P={z:Z— R}

be the space of two-sided sequences of real numbers equipped with the product
topology. An element x € ® is called a trajectory or an orbit and one can write
(zj)jez for x.
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Definition. For a given function h : R? — R define

k—1
H(IL'], "'7:Ek) = Z h(Ii,.’I)i+1)

i=j
and say, (z;,...,zx) is a minimal segment if

H(.’L‘j + §j7$j+l +§j+1, oy Tk +€k) > H(.’I)j,...,ﬁl]k),

for all &;,...,& € R.

Definition. An orbit (z;) is called minimal, if every segment (z;,...,zx) is a
minimal segment. One writes M for the set of minimal elements for ®. If h €
C?(R?), we say that r is stationary or extremal if  satisfies the Euler equations

ho(zi—1, i) + hi(zi, £ig1) =0, Vi €EZ.

Of course, every minimal orbit is extremal. We could ask that h satisfies the con-
ditions

(i) Az, z")=h{z+1,2"+1),

(ii) heC?*R),

(i)  hio(z,y) < -6 <0
The generating function of a monotone twist map satisfies these requirements.
Additionally it also has the property

(iv) hi(z, 2’y + ho(z,2') =0, if hi(z,2') = a,b.
The theory can be developed also with fewer assumptions [4]: the requirements
(ii) and (iii) can be replaced. Instead of (i) to (iii) it suffices to work with the
following assumptions only:

iy Az, 2)y=h{z+1,2"+1)

iy heC*(R)

(iii')  Rh{z,z+ A) — oo, uniform in x, A — oo

(iv') z<a' or y<y = h(z,y)+h(@,y) < h(z,y) + h(@',y)

(v) («,z,2"),(¢y,z,y”) minimal = (' —y')(z" —y") < 0.

Assumption (iii’) follows from (iii) if h € C? because of

26 T+ T+
—A 3 2 / dﬁ/ hi2(€,n) dn
x 3
z+A

= —h(:v,x+/\)+h(sc+/\,z+/\)—/ hi(€,€) de

T

\%

= —h(z,z+ N +O0(}N).
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Assumption (iv') is similar to (iii), because

3 -z)(y —y) 2 / ’ / " haa(,m) de dn = h(z' ) +h(z,y)—h(z,y')— h(z',y)

and (v') follows from (iii) by the monotonicity of y ~ h;(z,y) and = — ha(z,y).
The assumption z’ < y’ means ha(z’,z) > ho(y',z) > ha(v',y) and 2" < y” gives
hi(z,2") > hi(z,y") > hi1(y,y"). These inequalities together contradict the Euler
equations ho(2’,z) + hi(z,z"”) = 0 and ho(y',y) + h1(y,y”) = 0.

We translate now the results and definitions in Chapter II to the current situation.
The explicit translated proofs can be looked up in [4].

Theorem 3.2.1. (Compare Theorem 2.4.1 or [4], 3.16). For every (z;)icz € M the
rotation number o = lim; o /1 exists.

For monotone twist maps, the rotation number is contained in the twist in-
terval [0, ], where a,,ap are the rotation numbers of orbits which satisfy
hi(zj,2;41) = a (rsp. hi(z;,x;+1) = b).

Definition. The set of minimals with rotation number o is denoted by M.

Definition. An orbit x is called periodic of type (q,p), if ;44 — p = z;. Call the
set of these orbits M(q, p).

Definition. We say that two trajectories (z;);cz and (y;);ez intersect
a) at the place k, if (zx—1 — Yx—1)(Tks1 — Yx+1) < 0 and zx = yx,
b) between k and & + 1, if (zx — y&)(Tki1 — Yky1) <O.

Definition. On M is defined the partial order
r<yer <y,Vi€eZ,

sy <y,VieZ.

The next result can be compared with Theorem 2.3.1 or [4], 3.1, 3.2, 3.9.

Theorem 3.2.2. a) Two different minimal trajectories intersect at most once.
b)Ifz <y, thenz =y orz <y.

¢) Iflim; oo |z; — ;| =0, thenz <y orz > y.

d) Two different minimals of type (q,p) do not intersect. The set M(q,p) is totally
ordered.

Remark. The strategy in the proof of Theorem 3.2.2 is the same as for Theo-
rem 2.3.1. For a), we need the transversality condition (v') as well as the order
relation (iv’).
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Theorem 3.2.3. (Compare Theorem 2.3.3 or [4], 3.13). Minimals have no self in-
tersections on T2.

See Theorems 6.2 and 8.6 in [4] or [4] 3.3 and 3.17) as a comparison to the following
theorem:

Theorem 3.2.4. a) For every (q,p) € Z? with q # 0, there is a minimal of type

(g,p).
b) My # 0 for all a € R.

For monotone twist maps this means that for every a in the twist interval [a,, )
there exist minimal trajectories with rotation number a.

Theorem 3.2.5. (Compare Theorem 2.5.9 or (4], 4.1). For irrational o the set M,
18 totally ordered.

Definition. For z € M, and irrational o, define the maps u* : R — R,

uFraj—k—x;—k

by closure of the two semicontinuous functions

ut(8) = 9<lgm_)‘9 u(6y,)
u (0) = 9>1gm_d9 u(f,) .

There are again two cases A) and B):
case A ut =u~ =u
case B): ut #u~.

Theorem 3.2.6. (Compare Theorems 9.1, 9.13 or [4], 2.3.). u® are both strictly
monotone in 6.

Definition. A trajectory x € M, is called recurrent, if there exist (j, km) € Z2,
such that x,1;, — km — z; for m — oo0. The set of the recurrent trajectories is
denoted by M"%°. The elements of M) *® = M, N M"* are called Mather sets in
case B). Define also

Uy ={z €My |zj=ut(aj+B)orz;=u (aj+B) }
for 3 € R.
Compare the next result with Theorems 2.5.10-2.5.13 or 4.5, 4.6 in [4].
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Theorem 3.2.7. a) U, = M}5°.

b) M, is independent of the element © which generated u.
c) x € M€ can be approzimated by periodic minimals.

d) Every x € M, is asymptotic to an element z~ € MLF°,

On U¢ = M, define the map

Yiu@)—u@+ o).

Definition. In the case when h generates a monotone twist map ¢, we define for
every irrational a € [a,, as) the set

Ma ={(z,y) | 2 = u*(0),0 € R,y = ~hu(2,%(2)) }.

Theorem 3.2.8. (Mather, compare with 7.6 in [4]). If h is a generating function for
a monotone twist map on the annulus A, then for every irrational o in the twist
interval (g, ap), one has:

a) M, is a non-empty subset of A, which is ¢-invariant.

b) M, is the graph of a Lipschitz function w : Ay — [a,b], which is defined on the
closed set Ay = {u*(8) |0 € R} by w(zx) = —hy(z,¥(z)).

¢) The map induced on M, is order-preserving.

d) The set A,, the projection of My on S! is either the entire line R or it is a
Cantor set. In the first case we are in case A) and the graph of w is an invariant
Lipschitz curve. In the second case we are in case B) and M, is called a Mather
set with rotation number a.

We point to the recent papers of S.B. Angenent [2, 1], where these ideas are
continued and generalized. In those papers, periodic orbits are constructed for
monotone twist maps which do not need to be minimal but which have a prescribed
index in the sense of Morse theory. In the proofs, Conley’s generalized Morse
theory is used. Furthermore, Angenent studied situations where the second order
difference equations like ha(z;—1,;) + hi1(xi,xi+1) = O are replaced by higher
order difference equations.

3.3 Three examples

In this section we return to the three examples of monotone twist maps which had
been mentioned above: the standard map, billiards and the dual billiards.
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The standard map

Mather has shown in [22] that the standard map has for parameter values |A| > 4/3
no invariant curves in A. We show first, that for |A| > 2, no invariant curves can
exist.

According to Birkhoff’s Theorem 3.1.4, an invariant curve is a graph of a Lipschitz
function y = w(z) on which the induced map is

z1 = P(z) = f(z,w(z)) .
This map % is a solution of the equation

hi(z,9(z)) + ha (¥~ (z),2) = 0.

If we plug in

A
hi(z,zy) = —(z1 —z) — ﬁsin(27rz) ,
ho(z,21) = 21 — 20 ,

we get
—(Y(z) - x) - 5)\7—r sin(2rz) +z — ¥ (z) =0
or

P(z) + v~ (z) = 2z — % sin{27zx) .

The left-hand side is a monotonically increasing Lipschitz continuous function. For
[A] > 2 we obtain a contradiction, because then the derivative on the right-hand
side

2 — Acos(2mz)

has roots.

Theorem 3.3.1. (Mather) The standard map has no invariant curves for parameter
values |A| > 4/3.

Proof. We have even seen that the map ¢ which is induced on the invariant curve
satisfies the equation

g(z) =¢(x) + ¢~ (z) = 2z - % sin(27x) .
For Lebesgue almost all x, we have

m:=2—-|A<g(x)<2+[A\|=M.
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Denote by esssup(f) the essential supremum of f and by essinf(f) the essential
infimum. Let

R = esssup¢/(x),

r = essinf ¢'(z) .
Therefore, for almost all z,
r < Y'(z)<R,
R < (@ Y)(@)<rt,

and therefore
a) max{R+R Lr+r7'} <maxg'(z) <M,
b) 2min{r,R"'} <r+ R ! <ming'(z) =m.
From a) follows

(M + VM2 -4).

max(R,r!) <

N =

From b) follows

max(R,r"!) > min(R,r"!) > % .
Together
%55M+%Wf@.
If we plug in m =2 — |A| and M = 2 + |)|, we obtain
BIAl-4)A <0.
Therefore, |A| < 4/3. O

Remarks.

1) Theorem 3.3.1 was improved by Mac Kay and Percival in [19]. They could show
the nonexistence of invariant curves for [A| > 63/64.

2) Numerical experiments of Greene [13] suggest that at a critical value A =
0.971635..., the last invariant curve disappears.

Theorem 3.3.2. There exists € > 0 so that for |\| < € and for every Diophantine
rotation number B3, the set Mg is an invariant Lipschitz curve.

Proof. Apply the twist Theorem 3.1.6. The function a(y) is of course given by
a(y) =y O
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Remark. Today there exist explicit bounds for e [15]. Celletti and Chierchia have
recently shown [8] that the standard map has analytic invariant curves for |A| <
0.65.

A direct consequence of Theorem 3.2.7 and Theorem 3.3.1 is:

Theorem 3.3.3. For every o € R, there exist Mather sets M, for the standard
map. For o = p/q there are periodic orbits of type (q,p), for irrational o and
[A| > 4/3, the set M, projects onto a Cantor set.

If we look at a few orbits of the standard map for different values of A, the nu-
merical calculations show the following picture:

In the unperturbed case A = 0 all orbits are lo-
cated on invariant curves. For A = 0.2, the ori-
gin (0,0) is an elliptic fixed point. While increas-
ing A, for example for A = 0.4, a region of in-
stability grows near a hyperbolic fixed point. For
A = 0.6, there are still invariant KAM tori. For
A = 0.8 the dynamics is already quite compli-
cated. For A = 1.0 it is known that no invariant
curves which wind around the torus can exist any
more. For A = 1.2, the ‘stochastic sea’ dominates
already the regions of stability. One believes that
for large A, the dynamics is ergodic on a set of
positive measure. For A = 10.0 one can no more
see islands even though their existence is not ex-
cluded.

Birkhoff billiards

Also due to Mather [21] are examples of closed, smooth convex curves I' which
define billiards with no invariant curves,

Theorem 3.3.4. (Mather) If T' has a flat point, a point at which the curvature
vanishes, then ¢ has no invariant curve.

For example, the curve given by ! + y* = 1 has flat points.

Proof. If an invariant curve for the billiard map ¢ exists, then through every point
P of T there would exist a minimal billiard trajectory. This means that it maxi-
mizes the length. We show that this can not be true for the flat point P, € T,
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If there would exist a minimal through Py, we

denote with P_; and P; the neighboring re-

flection points of the billiard orbit. We draw

the ellipse, which passes through Py and which

has both points P_; and P; as focal points. In

a neighborhood of Py, the curve I' is outside

the ellipse, because Py is a flat point. This

means that for a point P € I" in a neighbor-

hood of Py, the length of the path P_; PP, is )
bigger than the length of the path P_, PP, \.A
which contradicts the minimality of the orbit P R

(maximality of the length).
O

Definition. A piecewise smooth closed curve « in the interior of the billiard table
I is called a caustic if the billiard orbit which is tangential to v stays tangent to
" after every reflection at .

A caustic of course leads to an invariant curve {(s,(z)) } for the billiard map. In
that case 9(s) is the initial angle of the billiard map path at the boundary which
hits the caustic.

Lazutkin and Douady have proven [18, 11] that for a smooth billiard table I with
positive curvature everywhere, there always are “whisper galleries” near I'.

Theorem 3.3.5. If the curvature of the curve T is positive everywhere and I' € C8,
there ezist caustics near the curve I'. These caustics correspond to invariant curves
of the billiard map near y =0 and y = .

From Hubacher [17] is the result that a discontinuity in the curvature of I' does
not allow caustics near I'.

Theorem 3.3.6. If the curvature of T' has a discontinuity at a point, there exist no
wnvariant curves in the annulus A neary = —1 and y = 1.

This theorem does not make statements about the global existence of invariant
curves in the billiard map in this case. Indeed, there are examples where the cur-
vature of I' has discontinuities, even though there are caustics.

A direct consequence of Theorem 3.2.7 is also the following result:

Theorem 3.3.7. For every a € (0,1), there are orbits of the billiard map with
rotation number a.




3.3. Three examples 103

Appendix. Ergodic billiard of Bunimovich.

Definition. An area preserving map ¢ of the annulus A is called ergodic, if every
¢-invariant measurable subset of ¢ has Lebesgue measure 0 or 1.

If ¢ is ergodic, then A is itself a region of instability. Moreover, there are then
orbits in A, which come arbitrarily close to every point in A. This is called tran-
sitivity. Bunimovich [7] has given examples of ergodic billiards. Ergodic billiards
have no invariant curves.

Remark. Mather theory still holds but not necessarily for the Bunimovich billiard,
which produces a continuous but not a smooth billiard map.

Dual Billards

The dual billiard was suggested by B.H. Neumann (see [24]). Unlike in the case of
billiards, affine equivalent curves produce affine equivalent orbits. Mathers Theo-
rem 3.2.8 applied to this problem gives:

Theorem 3.3.8. If T is smooth, then there erists for every a € (0,1) a point (z,y)
such that {z,y) ¢ T' and such that the iterates rotate around y with an average
angular speed .

An application of the twist Theorem 3.1.6 with zero twist is the following theorem:

Theorem 3.3.9. If the curve v is at least C" with r > 4, then every orbit of the
dual billiards is bounded.

Let T' be an arbitrary convex closed
curve. For every angle ¢ € [0,27) we
construct the smallest strip bounded
by two lines and which has slope
arctan(e), and which contains the en-
tire curve I'. The two lines intersect I' |
in general in two intervals. Let £ be the |
vector which connects the center of the
first interval with the center o the sec-
ond interval. The convex closed curve ~
with polar representation r(y) = || is
called the fundamental curve of T".
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It is invariant under reflection at the
origin. The curve is therefore the
boundary of a unit ball in R? with norm

[lz|]| =min{A e R | Az €~ }.

Denote by v* the boundary of the unit
ball in the dual space of the Banach
space (R?,]| - ||). This curve is called
the dual fundamental curve of I'. Far
away from the curve I' the orbit is near
a curve which has the form of the dual
fundamental curve of I'. If I is a poly-
gon, then also the dual fundamental
curve v* of T is a polygon. If the corners
of v have rational coordinates, then T’
is called a rational polygon.

The following result is due to Vivaldi and Shaidenko [27] :

Theorem 3.3.10. (Vivaldi and Shaidenko) If T is a rational polygon, then all orbits
of the dual billiard are periodic. In this case there are invariant curves which are
close to the dual fundamental curve v* of I'.

(Note added later: the proof in [27] had a gap but new proofs are available, see
Appendix).

Open problem: It is not known whether there exists a dual billiards for which
there are no invariant curves. In other words:

Problem. Is it possible that for a convex curve v and a point
P outside of v the sequence ¢7(P) is unbounded, where ¢.,
is the dual billiards map?

3.4 A second variational problem

Actually, one could find Mather sets in the discrete case by investigating a func-
tion u satisfying the following properties:

(i) u is monotone.
(if) w(6+1)=u(0)+1.
(iii) h1(uw(0),u(0 + a)) + ho(u(d — a),u(8)) =0 .
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This is again a variational problem. Equation (iii) is the Euler equation describing
extrema, of the functional

1
Io(u) = /0 h(u(8), u(8 + o)) do

on the class A of the functions, which satisfy (i) and (ii). This is how Mather
proved first the existence of u* [20]. A difficulty with this approach is to prove
existence of the Euler equations. While this works formally:

d 1
ale(u + €v)|e=0 = / hi(u,u( + a))v + ho(u,u(0) + a))v(0 + a) df
0

1
- / (s (w6 + @) + ha(u(8 — ), u(6))](6) dB

we can not vary arbitrarily in the class A, because otherwise the monotonicity
could get lost. Mather succeeded with a suitable parameterization.

A different possibility is to regularize the variational problem. Consider for every
v > 0 the functional

! v
IV () = /0 §ug + h(u(8),u(d +a)) df .

We look for a minimum in the class of functions u, for which u(6)—8 is a probability
measure on S':
u—Id e MY(T").

The Euler equation to this problem is a differential-difference equation
—vugg + hy(u(8),u(8 + a)) + ho(u(@ + a),u(d)) =0
for which one can show that the minimum uj is regular and monotone:
ul(0) — 6 € C*(S'), dul(6)/d6 > 0.

Because the unit ball in M!(S!) is weakly compact, the sequence v, — 0 has a
subsequence u}, which converges weakly to u* where u* satisfies the requirements

(i) to (ii).

Remark. This strategy could maybe also be used to find Mather sets numerically.

3.5 Minimal geodesics on T?

Minimal geodesics on the torus were investigated already in 1932 by Hedlund [14].
In [5], Bangert has related and extended the results of Hedlund to the above theory.
In this section, we describe this relation. For the proofs we refer to Bangert’s
article.
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The two-dimensional torus T? = R2/Z? is equipped with a positive definite metric
ds® = g;;(q)dq'dq’, gi; € C*(T?) .

The length of a piecewise continuous curve v : [a,b] — R? is measured with

b
i) = [ Fada,
F(g,q9) = (lg:;;(a)d'd"])}/?,

and the distance of two points p and q is

d(g,p) = inf{L(y) | v(a) = p,v(b) = q} .

One calls such a metric a Finsler metric. A Finsler metric is a metric defined by
d, where F' is homogeneous of degree 1 and satisfies the Legendre condition. The
just defined metric generalizes the Riemannian metric, for which g; ; is symmetric.

Definition. A curve 7y : R — RR? called a minimal geodesic if for all [a,b] C R one
has

d(v(a),7(b)) = LM -
Again we denote by M the set of minimal geodesics in R2.

Already in 1924, Morse had investigated minimal geodesics on covers of 2-dimen-
sional Riemannian manifolds of genus > 2 [23]. Hedlund’s result of 1934 was:

Theorem 3.5.1. a) Two minimal geodesics intersect at most once.

b) There is a constant D, which only depends on g, so that every minimal geodesic
is contained in a strip of width 2D: 3 constants A, B,C with A2+ B? = 1, so that
for every minimal geodesic vy : t — (q1(t), g2(t)) one has

|Aqi(t) + Bga(t) + C| < DVt €R .

c¢) In every strip of this kind, there exists a geodesic: YA, B,C with A> + B> =1,
3 minimal geodesic v : t — (q1(t), g2(t)),

|Aqi(t) + Bga2(t) + C| < D,Vt € R

with rotation number
a=—A/B= lim ¢(t)/q(t)

which also can take the value co.

d) v € M has no self intersections on the torus.

e) If « is irrational, then M, the set of minimal geodesics with rotation number
«, is well ordered.
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How does this result relate to the theory developed in Chapter II? The variational
problem which we had studied earlier is given by

. dgs
I(’Y) =/F(t,(L‘,ZE) dt :/F(qlalIZa )dfh )
¥ ¥ dq

where (t,z(t)) is the graph of a function. Now we allow arbitrary curves
(g1(t), ¢2(t)), which can in general not be written as graphs g2 = ¢(q;). Also
if we had g2 = ¢(q1), as for example in the case of the Euclidean metric

dQ2 1
=[1+ /2
=0+ (G2
one has in general not quadratic growth. Bangert has shown how this problem

can be avoided. We assume that the following existence theorem (compare [4], 6.1,
6.2) holds:

)

Theorem 3.5.2. a) Two arbitrary points p and g on R? can be connected by a
minimal geodesic segment: 3v* : [a,b] — R?, s — ¢*(s) with ¢*(a) = p,q*(b) = ¢
and L(y*) = d(p,q).

b) In every homotopy class {v: s+ q(s) | (s + L) = q(s) + j,j € Z? }, there is
at least one minimal. This minimal has no self intersections on T2.

Let v : s — ¢(s) = (g1(s),g2(s)) be a geodesic parametrized by the arc length s.
According to the just stated theorem, there is a minimal v* : s — ¢*(s) with

T(s+L)=q(s)+ez,

where e; is the basis vector of the second coordinate. Because this minimal set
has no self intersections, we can apply a coordinate transformation so that in the
new coordinates

q1(s) = 0,q2(s) =
Therefore, one has
(k,s)=q"(s)+k ,Vke Z.
Define
h(€,m) := d((0,€),(L,m) ,

where d is the metric d in the new coordinate system. The length of a curve
between p and q composed of minimal geodesic segments is given by

r—1

D h(zj,Ti41) -

=1

The minimum
nr= q§ :
zl-p h ‘7:]7:1"]+1

is assumed by a minimal geodesic segment, which connects (1, z1) with (r, z2).
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The following statement reduces the problem to the previously developed theory.
It should be compared with 6.4 in [4].

Theorem 3.5.3. The function h satisfies properties (i') to (iv').

We can summarize the results as follows and compare them with [4], 6.5 up to
6.10:

Theorem 3.5.4. a) For every a € R, there exists a minimal geodesic with rotation
number «.

b) A minimal geodesic does not have self intersections on the torus.

¢) Periodic minimal geodesics are minimal in their homotopy class.

d) Two different periodic minimal geodesics of the same period don’t intersect.

e) A minimal geodesic -y with rotation number « is either periodic or contained in
a strip formed by two periodic minimal geodesics v* and v~ of the same rotation
number. In every time direction, v is asymptotic to ezactly one geodesic v© or
~~. There are no further periodic minimal geodesics between v* and v~—. In other
words, they are neighboring.

f) In every strip formed by two neighboring minimal periodic geodesics v~ and v+
of rotation number « there are heteroclinic connections in both directions.

g) Two different minimal geodesics with irrational rotation number do not inter-
sect.

h) For irrational « there are two cases:

case A): Through every point of R? passes a recurrent minimal geodesic with ro-
tation number a.

case B): The recurrent minimal geodesics of this rotation number intersect every
minimal periodic geodesic in a Cantor set.

t) Every non-recurrent minimal geodesic of irrational rotation number « is enclosed
by two minimal geodesics, which are asymptotic both forward and backwards.

j) Every non-recurrent minimal geodesic can be approzimated by minimal
geodesics.

3.6 Hedlund’s metric on T3

In this last section, we describe a metric on the three-dimensional torus as con-
structed by Hedlund. It shows that the above theory is restricted to dimension
n = 2. The reason is that unlike in three dimensional space, non-parallel lines in
R? must intersect.

The main points are the following:
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1) It is in general false that there exists for every direction
a minimal in this direction. There are examples, where one
has only three asymptotic directions.

2) It is in general false that if v*(s + L) = v*(s) + k is
minimal in this class M(L, k), then also v*(s + NL) =
~v*(s)+NL is minimal in M(NL, Nk). Otherwise v* would
be a global minimal and would therefore be asymptotic to
one of the three distinguished directions.

There are however at least dim(H; (T, R)) = 3 minimals [5]:

Theorem 3.6.1. On a compact manifold M with dim(M) > 3 and non-compact
cover, there are at least dim(H,(M,R) minimal geodesics.

The example:

Define on the three dimensional torus T* = R*/Z* the metric
gij(z) = n*(z)dij ,
where n € C*(T"),n > 0.

We need three closed curves v;,7» and v3 on T? which pairwise do not intersect.
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Let e; denote the unit basis vectors in R3. Define
Mt t +— tep,

1
’)’2:t [and t€2+"2°t61,

1 1
’)’3Zt — t€3+ §t€2+ Etel s

3
r = U Y5 -
j=1

We fix 0 < € < 1072, The e-neighborhood U, (;) form thin channels in T3, which
do not intersect. Denote by

3
JORILACS

Jj=1

the entire channel system.

Let 0 <¢; <e< 1072 for i = 1,2,3 and € C°(T3) with

i) n(z) <1l+e Yz eT?,
i) ()21, Vee T\ U(y),
) nz) > Ve e UM\ v,
iv) () =€, VT € ~; .

The results are:

Theorem 3.6.2. a) The total length of the minimal segments outside U{~y) is smaller
than 4.

b) Every minimal changes at most four times from one channel to another.

¢) Every minimal is for s — oo asymptotic to one of the curves ;.

d) Every curve v; is a minimal.

Proof. We take first a piecewise C! curve,
v : [a,b] = R3, 5+ 7(s)
parameterized by the arc length s. If n%|¥(s)|? = 1, then

b b
L(’y):/nl'ﬂds:/ ds=b—a.
a a

Denote by A the set of times, for which v is outside the channels

A={sea,b]:7(s) ¢ UI)}
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and let

AMA) = /Ads < L{v) .

Finally we need the vector £ = y(b) — y(a). To continue the proof we will need
two lemmas. g

Lemma 3.6.3. (Estimate of the time outside the channels). For every piecewise
C'-curve v : [a,b] — R®, we have

11 -
v(4) € — 10 ijixljl +1072

7j=1

Proof. Define for j =1,2,3,

Aj = {s € [a’b] I'Y(s) € Uf('Yj) } s
A={s€ea,b][~(s) ¢UD)},

so that [a,b] = AU A; U Ay U As. If n; is the number of visits of v in Uc(7y;), then

/’.)’j ds
A;
/ijds
A

2

/ ")’j ds
fa,b1\A;

We have

< 2”]'6, 7‘74.77

/ 7]' ds / ’.)’j ds
[a.b] [a.b]\ 4,

/m|ds+§j/%ds

[ sl ds + 2+ ma)e
i#] A

A(A) + 2(n; +ni)e, ({i,5,k} ={1,2,3}) .

/ ")’]' ds
A

J

Y

= |z;| -

IA

I

A(4;) = / N3l ds > ¢, > ¢;{];] ~ MA) = 2(n; + e }

Aj

Addition gives

L(v)

Il

+Z/\

Zejlle — 3eA(A) — 4€*(ny + ny + n3)

v

3
(1=30)A(A) + > _[ejlz;] — 4e®n;] .
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On the other hand, there must be n; + ny +ns — 1 changes between channels and
during these times the 7 are outside of U.(T"). Because the distance between two
channels is > (1/2 — 2¢),

3
MA) = D n =1 (5 - 2)
j=1
follows. Therefore s
S S AA)(G - 207
j=1
and
L(y) 2> MA)L - 3¢ — 4€%( ———26 +Zejlx]|—4e
3
> A+ ejlzs] - 4€?)
Jj=1

From this follows

11
MA) < 5 (L Zej|xj| )+1072. O
j=1

Lemma 3.6.4. (Estimation of the length of a minimal).

L(y) = d( J|~731|+31+f)

u‘Mw

Proof. The length of a minimal from «(a) to one of the channels U(y;) is less
than or equal to 1 + €. Also the length of a path which switches from U.(y;) to
Uc(v;) is smaller than or equal to (1 +¢). The length of a path in a channel U,(v;)
is smaller than €;|x;|. Therefore

3
L) <3(1+€)+ Y elzl- O
j=1
Continuation of the proof of Theorem 3.6.2.
a) follows now directly from Lemma 3.6.3 and Lemma 3.6.4:

3
1 _
(L(’r)~j§::16jle|)+10 <3+ + 1070 <4

11
<
A4 < 15
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b) Let v : [a,b] — R? be a minimal segment, so that y(a) and v(b) € U(T). We

have
3

L(’Y) S 2(1 +6) + 2¢ + Zejlxj| .
7=1

If N is the number of times the channel is changed, then

N(3 —26) S MA) < 70 [2(1+0) + 26+ 107

10
which means N < 5 and therefore N < 4.

¢) Because we only have finitely many changes a minimal + is finally contained in
a channel U.(y:) and it is not difficult to see that v must be asymptotic to 7.
(Exercise). d

Remark. Again as an exercise it can be shown that for all p, z € R® one has

3 3

Y elwil—4<dpp+z) <D el +4

i=1 i=1
and with that we get the so-called stable metric

3
- _ d(p,p+ Nz)
dpp-+a) = Jim “EEET= =3 el
J:
The stable norm on H;(T?,R) is defined as follows. If 7 is a closed curve in T3
which represents an element in H;(T?,R), then the stable norm is defined as

llo]| = d(+(0), (L)) -
It has a unit ball of the form of an octahedron. It turns out there is in general
a close relation between the existence properties of minimal geodesics and the
convexity of the unit ball in the stable norm. (See [5]).

3.7 Exercises to chapter III

1) Verify that for the billiard and for the dual billiard, the generating functions
have properties (0') through (iv’).

2) Show that in Hedlund’s example, a minimal geodesic is always asymptotic to
one of the curves .

3) Prove that the curves ~y, kK = 1,2,3 in Hedlund’s example are minimal.
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4) Verify in Hedlund’s example the inequality

3 3
Z€¢|1’z‘| -4<d(pp+z)< Z€i|$i| +4.

i=1 =1
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Appendix A

Remarks on the literature

Every problem in the calculus of varia-
tions has a solution, provided the word
solution is suitably understood.

David Hilbert

Since these lectures were delivered by Moser, quite a bit of activity happened in
this branch of dynamical system theory and calculus of variations. In this ap-
pendix some references to the literature are added. It goes without saying that
this snapshot can not be exhaustive.

For the classical results in the calculus of variation see [36, 44]. In the meantime
also the books [43, 91] have appeared. Notes of Hildebrandt [42] which were partly
available in mimeographed form when the lectures had been delivered, have now
entered the book [36]. This book is recommended to readers who want to know
more about classical variational problems. Finally, one should also mention the
review articles [73, 78].

More information about geodesic flows can be found in the sources [21, 13, 79].
Related to the theorem of Hopf are papers on integrable geodesic flows on the
two-dimensional torus with Liouville metrics g;;(z,y) = (f(z) + h(y))d:; (see
[8, 69, 82]). For these metrics the flow has additionally to the energy integral
H(z,y,p,9) = (p* + ¢°)/4(f(z) + h(y)) also the quadratic integral F(z,y,p,q)
= (h(y)p— f{x)q)/4(f(z) + h{y)). The problem to list all integrable geodesic flows
on two dimensional Riemannian manifolds seems open (see [96]). Another theo-
rem of Hopf type can be found in [80]. The higher dimensionsional generalization
known under the name Hopf conjecture has been proven in [20].
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More about Aubry-Mather theory can be found in [63]. Mather’s first work is the
paper [62]. The variational problem was later reformulated for invariant measures.
It has been investigated further in [65, 67, 66, 68, 33]. See also the review [63].

Angenent’s work mentioned in these lectures as preprints is published in [3]. The
preprint of Bangert has appeared in [9].

The construction of Aubry-Mather sets as a closure of periodic minimals was done
in [45, 46]. For a different approach to Aubry-Mather theory see [37]. While Golé’s
approach does not give all the results of Mather theory it has the advantage of
being generalizable [51]. For higher dimensional Aubry-Mather theory, see [84].
For billiards, Aubry-Mather theory leads to average minimal action invariants
[85]. The regularized variational principle mentioned in the course is described in
detail in (75, 76]. For a reader who wants to learn more about the origins of the
approach described in these notes, the papers [72, 29| are relevant. Aubry—Mather
sets have been found as closed sets of weak solutions of the Hamilton-Jacobi equa-
tions u; + H(z,t,u), = 0, which is a forced Burger equation u; +uu, + Valz,t) =0
in the case H(z,t,p) = p?/2+ V(z,t) ([100]). Mané’s work on Aubry—Mather the-
ory announced in [60] appeared later in [61].

The theorem of Poincaré-Birkhoff which was first proven by Birkhoff in [14] has
been given other proofs in [19, 64, 1].

For Aubry-Mather theory in higher dimensions, many questions are open. In [83]
the average action was considered in higher dimensions. The higher-dimensional
Frenkel-Kontorova model is treated in [84].

A good introduction to the theory of billiards is [92]. A careful proof for the
existence of classes of periodic orbits in billiards can be found in [99]. A result
analoguous to the theorem of Hopf for geodesics is proven in [12] or [102].

A question sometimes attributed to Birkhoff asks whether every smooth and
strictly convex billiard is integrable. The problem is still open and also depends on
the definition of integrability. Although Birkhoff made indications in [15, 16}, he
never seems have written down such a conjecture. The question was asked explic-
itly by H. Poritski in [81] who also started to attack the problem in that paper.
The conjecture should therefore be called the Birkhoff-Poritski conjecture. For
analytic entire perturbations, there is something known [28]. For more literature
about caustics in billiards see [92, 49, 39].

More about the standard map can be found in the textbooks [86, 23, 47, 54]. The
map appeared around 1960 in relation with the dynamics of electrons in microtrons
[26]. It was first studied numerically by Taylor in 1968 and by Chirikov in 1969
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(see [34, 25]). The map appears also by the name of the ‘kicked rotator’ and de-
scribes equilibrium states in the Frenkel-Kontorova model [52, 4].

The existence of stable ‘islands’ in the standard map for arbitrary large values of
A has been proven by Duarte [30].

While it is known that for A # 0, the standard map is non-integrable, has posi-
tive topological entropy and horse shoes (i.e., [31, 3, 35]), the question, whether
hyperbolicity can hold on a set of positive Lebesgue measure stays open. While
many area-preserving diffeomorphisms on the torus are known to be non-ergodic
with positive topological entropy (i.e., [97, 104]), it is not known whether positive
metric entropy is dense in the C* topology. The issue of the positivity of the
Lyapunov exponents on some set of positive Lebesgue measure for Hamiltonian
systems has been addressed at various places or reviews [70, 104, 25, 101, 55, 59,
41, 87, 90, 24, 27, 30, 103, 58, 98]. According to [30], the particular mathematical
problem of positive entropy of the Chirikov standard map was promoted in the
early 1980s by Sinai. The textbook [86] states a conjecture (H2) that the entropy
of the Chirikov standard map is positive for all A > 0 and that the entropy grows
to infinity for A — oo.

The break-up of invariant tori and the transition of “KAM Mather sets” to “Can-
torous Mather sets” in particular has recently been an active research topic. The
question, whether the MacKay fixed point exists is open. In a somewhat larger
space of ‘commuting pairs’, the existence of a periodic orbit of period 3 was proven
in [89]. A new approach to the question of the break-up of invariant curves is the
theory of renormalisation in a space of Hamiltonian flows [50], where a nontrivial
fixed point is conjectured also. For renormalisation approaches to the break-up of
invariant curves one can consult [57, 88, 89, 50].

With the variational problem for twist maps one can also look for general critical
points. An elegant construction of critical points is due to Aubry and Abramovici
[7, 5, 6]. See [48] for a reformulation using the Percival functional. Aubry and
Abramovici’s approach shows that many Mather sets are hyperbolic sets. Hyper-
bolicity of Mather sets had first been demonstrated for the standard map in [38].

A part of the theory of the break-up of invariant curves was coined ‘converse KAM
theory’ ([56]). Many papers appeared on this topic (i.e., {32, 11]).

The dual billiards is often also called ‘exterior billiards’ or ‘Moser billiards’. The
reason for the later name is that Moser often used it for illustrations, in pa-
pers or talks, for example in the paper [71] or in the book [70]. The question,
whether a convex exterior billiards exists which has unbounded orbits is also open.
Newer results on this dynamical system can be found in [93, 94, 18, 95]. Vivaldi
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and Shaidenko’s proof on the boundedness of rational exterior billiards had a gap.
A new proof has been given in [40] (see also [17]).

The different approaches to Mather theory are:

e Aubry’s approach via minimal energy states. This was historically the first
one and indicates connections with statistical mechanics and solid state
physics.

¢ Mathers construction is a new piece of calculus of variation.

¢ Katok’s construction via Birkhoff periodic orbits is maybe the technically
most elegant proof.

¢ Golés proof leads to weaker results but has the advantage that it can be
generalized.

o Bangert connected the theory to the classical calculus of variation and the
theory of geodesics.

e Moser’s viscosity proof is motivated by classical methods in the theory of
partial differential equations.

Unlike for classical variational problems, where the aim is to find compact solutions
of differentiable functionals, the theme of these lectures shows that Mather theory
can be seen as a variational problem, where one looks for noncompact solutions
which are minimal with respect to compact perturbations. For such variational
problems the existence of solutions needs already quite a bit of work.

In an extended framework the subject leads to the theory of noncompact mini-
mals, to the perturbation theory of non-compact pseudo-holomorphic curves on
tori with almost complex structure [77], to the theory of elliptic partial differential
equations [74, 22] or to the theory of minimal foliations [10].

As Hedlund’s example shows, Mather’s theory can not be extended to higher di-
mensions without modifications. The question arises for example what happens
with a minimal solution on an integrable three-dimensional torus if the metric is
deformed to the Hedlund metric. Another question is whether there is a Mather
theory which is applicable near the flat metric of the torus.

In [53] the Hedlund metric was investigated and the existence of many solutions
for the geodesic flow and non-integrability is proven. For metrics of the Hedlund
type on more general manifolds one can consult [2].
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