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Chapter 1

Introduction

1.1 Magnetic system : The Models

A magnet may be regarded as consisting of a set of magnetic dipoles residing on the
vertices of a crystal lattice. We often refer to the magnetic dipoles as spins. The
spins are able to exchange energy through interactions between themselves and
with other degrees of freedom of the crystal lattice (e.g., via spin orbit coupling).
There are many models which have been proposed to represent magnetic systems.
Ising, XY and Heisenberg models are three spin models which may be considered
to be the most basic models among them [I].

The simplest model describing interactions between spins, is the Ising Model,
proposed by E. Ising in 1925 to represent magnetic systems and alloys and mag-
netic phase transitions from ferromagnetic/antiferromagnetic to paramagnetic
states [2]. The model consists of a system of magnetic dipoles placed on a hyper-
cubic lattice, that can be either up or down and interact among themselves only

by nearest neighbour interactions. The Hamiltonian of the Ising model with no



external magnetic field can be written as

H=-> J;55;, (1.1)
<ij>

where the interaction between the ith and jth spins is denoted by J;;. This model
with nearest neighbour uniform interaction exhibits a temperature-induced con-
tinuous phase transition at a non-zero temperature in two and higher dimensions,
but not in one dimension. Though in this model a spin can have only two states
(either up or down), still it is possible to obtain phase transition and critical be-
haviour in a realistic manner from this simple model which has made it one of the

most studied models in history of condensed matter physics.
In the Heisenberg model, spins S; obey a continuous symmetry instead of
discrete symmetry. That means the S; are vectors. The Hamiltonian of equation

(L2) can be generalized as the Hamiltonian of Heisenberg and XY model.

In the Heisenberg model S; are allowed to point in all directions (47 steradians),
rather than having only up or down state of the spins (S; = £1). The Hamiltonian
of the XY Model is also given by equation (L2)) but the spins are unit vectors
confined to rotate in a plane. Since the Heisenberg and XY models involve more
than one component of spin, these models are essentially quantum in nature as
the different components of the spin do not commute. The Ising model on the
other hand, is purely classical in nature.

Ising model can be generalized to the g-state classical spin model popularly
known as Potts model [3] where lattice spins can take ¢ different discrete values.

In this model, a system of spins are considered to be confined in a plane, with



each spin pointing to one of the equally spaced directions specified by the angles

2
O, =" 5 =0,1,2.,g—1
q

The interaction Hamiltonian of the Potts model is given by

H - — Z Jz’j(SSi,Sja (13)
<ij>
where the interaction between spins S; and S;, is denoted by J;; and 0y, is the

Kronecker delta given by
1 a B
5,175:&[1—'—((]—1)6 e ]

and a = 0,1,...,¢ — 1 are ¢ unit vectors pointing in the ¢ symmetric directions of
a hypertetrahedron in ¢ — 1 dimensions. For ¢ = 2, Potts model is equivalent to
the Ising model. Though Potts model is a simple extension of the Ising model, it
has a much richer phase structure, which makes it an important testing ground
for new theories and algorithms in the study of critical phenomena [4].

Ising model does not have any intrinsic dynamics as it is a classical model. The
dynamics of Ising model can only be induced by the influence of some external
agents (change of temperature or field etc.). In this thesis to study the dynamics
of the magnetic systems we will restrict ourselves in the study of the dynamics of

Ising like classical spin systems only.

1.2 Dynamical phenomena

Dynamics of spin models is a much studied phenomenon and has emerged as a rich

field of present-day research. Models having identical static critical behavior may



display different behavior when dynamic critical phenomena are considered [5].
Our primary focus is on a prototypical system that is initially in a homogeneous
high-temperature disordered phase and the temperature is quenched (suddenly
dropped) to below the critical temperature. The quenching phenomenon below the
critical temperature is an important dynamical feature. Because of the complexity
of the domain coarsening process at the level of discrete spins, considerable effort
has been devoted in constructing a complementary approach that is based on
a phenomenological description at the continuum level. But here in this thesis
we have studied the quenching dynamics of Ising spin like system which exhibit
discrete symmetry, not the continuous one. The details of the dynamics and the
methodology is discussed in the next chapter (Chapter 2 ) of the thesis.

When a homogeneous system is quenched to below the critical temperature,
a coarsening mosaic of ordered-phase domains forms, as the distinct broken-
symmetry phases compete with each other in their quest to select the low-temperature
thermodynamic equilibrium state [6, [7]. As a result of this competition, equilib-
rium is never reached for an infinite system. Instead, self-similar behavior typically
arises, where the domain mosaic looks the same at different times but only its over-
all length scale changes. This self-similarity is an important simplifying feature
that is characteristic of coarsening. So one of the very interesting phenomena
widely studied in the quenching process is the domain growth [6, [7].

For the dynamics of zero temperature quenching the scenario is a little bit dif-
ferent. In one dimension, a zero temperature quench of the Ising model ultimately
leads to the equilibrium configuration, i.e., all spins point up (or down) for the
finite system size. The average domain size D increases in time ¢ as D(t) ~ t'/%,
where z is the dynamical exponent associated with the growth. In two or higher
dimensions, however, the system does not always reach equilibrium [8] even for

the finite system size, although the scaling relations still hold good. But even in
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one dimension, if the interactions are not restricted to nearest neighbours only,
the dynamical behaviour may change considerably, often leading to absence of
scaling altogether. We have therefore studied the zero temperature quenching
dynamics of Ising spin like models in several systems where the interactions are
more complicated than simple nearest neighbour type.

Apart from the domain growth phenomenon, another important dynamical
behavior commonly studied is persistence [9, [10]. In Ising model, in a zero tem-
perature quench, persistence is simply the probability that a spin has not flipped
till time ¢ and is given by P(t) ~ t=?. 0 is called the persistence exponent and is
unrelated to any other previously known static or dynamic exponents. A general
discussion of persistence and its scaling etc., has been included in the next chapter
(Chapter [2I).

With the understanding developed in connection with the dynamics of non-
linearly coupled many body systems in Physics for the last four decades, people
started to study the macroscopic dynamics of various social systems or networks.
One of the first models in sociophysics was proposed by Schelling [12] in 1971 to
simulate social segregation, which was similar (in purpose) to phase separation
models studied by physicists. In recent years, building on the development of the
kinetic theory of gases and statistical mechanics, physicists have begun to incorpo-
rate a statistical thermodynamic perspective in models of social physics in which
individuals are viewed as some effective atoms/molecule-like units (having spatial
and dynamical properties) and the law of large numbers yields social behaviours.
Microscopic human behaviour is assumed to be represented in such models by real
numbers. When these numbers are discrete and have binary choices, the social
system can be modeled as a magnetic model where the Ising spin variables can
represent the states of the individuals and the interactions among them by spin-

spin interactions [I3] [14]. Existence of a phase transition from a heterogeneous
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society to a homogeneous society [15], [16] in many opinion dynamics models also
adds to the interest of Sociophysics.

The dynamics of Ising model can also be mapped to a random walk problem
as domain coarsening is identical to a reaction diffusion system [I7]. The motions
of the domain walls in one dimension (with nearest neighbour interactions only),
can be viewed as the motions of the particles A with the reaction A + A — 0.
This means the particles are walkers and when two particles come on top of each
other they are annihilated. The annihilation reaction ensures domain coalescence

and coarsening.

1.3 The outline of the thesis

The work reported in this thesis includes studies on the zero temperature quench-
ing dynamics of Ising spin like models as well as opinion dynamics, which involves
Ising spin like variables. A random walk problem is also included in this thesis,
as domain coarsening in one dimension can be mapped to a reaction diffusion
system.

In chapter 2] we have presented a general discussion on the features associated
with the quenching dynamics, coarsening phenomena, persistence etc. and the
numerical methods we have used to study them.

In chapter [3] we have presented our investigation on the dynamics of a two
dimensional axial next nearest neighbour Ising (ANNNI) model following a quench

to zero temperature. The Hamiltonian is given by

L
H= —J() Z Si,jSi—i-l,j — Jl Z [Si,jSi,jH - /{Si,jSi7j+2]- (14)

1,7=1 i,j=1

For k < 1, the system does not reach the equilibrium ground state but slowly



evolves to a metastable state. For k > 1, the system shows a behaviour similar
to the two dimensional ferromagnetic Ising model in the sense that it freezes to a
striped state with a finite probability. The persistence probability shows algebraic
decay here with an exponent § = 0.235 4 0.001 while the dynamical exponent of
growth z = 2.08 + 0.01. For k = 1, the system belongs to a completely different
dynamical class; it always evolves to the true ground state with the persistence
and dynamical exponent having unique values. Much of the dynamical phenomena
can be understood by studying the dynamics and distribution of the number of
domains walls. We have also compared the dynamical behaviour to that of a
Ising model in which both the nearest and next nearest neighbour interactions are
ferromagnetic [18].

Randomness is known to affect the dynamical behaviour of complex systems to
a large extent. In the next chapter (chapter []) we have presented our investigation
on how the nature of randomness affects the dynamics in a zero temperature
quench of Ising model on two types of random networks. In both the networks,
which are embedded in a one dimensional space, the first neighbour connections
exist and the average degree is four per node. In the random model A, the second
neighbour connections are rewired with a probability p while in the random model
B, additional connections between neighbours at Euclidean distance [ (I > 1) are
introduced with a probability P(l) o [7*. We find that for both models, the
dynamics leads to freezing such that the system gets locked in a disordered state.
The point at which the disorder of the nonequilibrium steady state is maximum is
located. Behaviour of dynamical quantities like residual energy, order parameter
and persistence are discussed and compared. Overall, the behaviour of physical
quantities are similar although subtle differences are observed due to the difference
in the nature of randomness.

In chapter Bl we have proposed a new model of binary opinion for opinion
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dynamics in which the opinion of the individuals change according to the state of
their neighbouring domains. If the neighbouring domains have opposite opinions,
then the opinion of the domain with the larger size is followed (Model I). Starting
from a random configuration, the system evolves to a homogeneous state. The
dynamical evolution show novel scaling behaviour with the persistence exponent
0 ~ 0.235 and dynamic exponent z ~ 1.02 + 0.02. Here we have obtained a
new dynamical class. Introducing disorder in Model I through a parameter called
rigidity parameter p (probability that people are completely rigid and never change
their opinion), the transition to a heterogeneous society at p = 07 is obtained.
Close to p = 0, the equilibrium values of the dynamic variables show power
law scaling behaviour with p. We have also discussed the effect of having both
quenched and annealed disorder in the system [20]. Further, by mapping Model I
to a system of random walkers in one dimension with a tendency to walk towards
their nearest neighbour with probability €, we find that for any € > 0.5, the Model
I dynamical behaviour is prevalent at long times [21].

In chapter [6 a parameter p is defined to modify the dynamics introduced
in chapter [l such that a spin can sense domain sizes up to R = pL/2 in a one
dimensional system of size L. For the cutoff factor p — 0, the dynamics is Ising
like and the domains grow with time ¢ diffusively as ¢t'/# with z = 2, while for
p = 1, the original model I showed ballistic dynamics with z ~ 1. For intermediate
values of p, the domain growth, magnetization and persistence show model I like
behaviour up to a macroscopic crossover time t; ~ pL/2. Beyond ¢, characteristic
power law variations of the dynamic quantities are no longer observed. The total
time to reach equilibrium is found to be ¢t = apL + b(1 — p)>L?, from which we
conclude that the later time behaviour is diffusive. We have also considered the
case when a random but quenched value of p is used for each spin for which

ballistic behaviour is once again obtained [22].
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Chapter 2

Dynamical Phenomena in Ising

systems

2.1 Introduction

Dynamics of spin models, as mentioned in the previous chapter, has emerged as a
rich field of present day research. When a system is at the critical point or close to
the critical point, anomalies occur in a large variety of dynamical properties and
models having identical static critical behavior may display different dynamical
behavior when the system is close to the critical point. The dynamical properties
of a system are quantities which depend on the equations of motion and are not
determined simply by the equilibrium properties.

Over last few decades, a number of theoretical ideas like (i) the conventional
theory of critical slowing down, (ii) the ‘mode-coupling theory’ of transport phe-
nomena, (iii) the hypothesis of dynamical scaling and universality and (iv) the
renormalization group approach to critical dynamics etc. have been proposed and
discussed for understanding of dynamic critical phenomena. Brief reviews of these

concepts may be found in [I].
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2.2 Equilibrium dynamics

A system is in equilibrium when its bulk properties remain constant or at least
fluctuate closely around a constant mean value over a time period long enough in
the context of the study. The equilibrium statistical mechanics can be explored
totally once the partition function Z of the system is known. But even when the
system is in thermal equilibrium, to calculate any thermodynamic quantity we
need the knowledge of the variation of Z with temperature and other parameters
affecting the system (like external magnetic field). If the partition function can be
calculated exactly, the problem is said to have an exact solution [2] [3]. But when-
ever we are studying the dynamics of the system, most of the times a probabilistic
description is required for the formation of of equation of motion. Often it is not
possible to compute the probability distribution functions analytically in explicit
form, because of the complexity of the problem and we need to go for a number
of approximate techniques which include series expansions, field theoretical meth-
ods and computational methods. The focus of this chapter will be mainly the

computational methods, explicitly the method of Monte Carlo Simulation [4] 5]

2.2.1 Monte Carlo Study

Numerical simulation can be regarded as an experiment made on computer. For
stochastic systems in which the number of degrees of freedom is large and ana-
lytical methods are not very efficient, computer simulation becomes a very useful
method. Monte-Carlo methods aim at a numerical estimation of probability dis-
tributions as well as of averages, that can be calculated from them, making use
of (pseudo) random numbers [4]. Whenever we are considering any classical stem
(say for example Ising spin system) to calculate the average of any observable

quantity O, not all configurations are equally likely, rather their probabilities are
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proportional to the Boltzmann factor exp(—SFE). Thus the ensemble average of
the quantity of interest over all states p of the system (weighting each other with

its own Boltzmann probability) is given by

_ 2 Oy eXp(_ﬁEu)
0) 2o eXP(_ﬁEu)

(2.1)

where 5 = 1/kT, k being the Boltzmanns constant and E,, is the energy of the
state L.

One can choose N such states {1, f2, .., uy} randomly and take the above
average. However, it should be remembered that for the canonical ensemble the
fluctuations in the energy vanishes as 1/v/L (L be the system size) which means
that only a few states with energy very close to the average energy will occur with
high probability and contribute to the average. Thus it will be meaningful to
device a method by which one can generate the states which are more probable.

These states can be dynamically evolved from arbitrary initial states. The
mechanism of generating a new state ¢ from the initial state u of the system, in
a random fashion using a ‘transition probability” w,s is called a Markov pro-
cess [6]. For a Markov process all the transition probabilities should satisfy the
following two conditions :

1. They should not vary over time.

2. They should depend only on the properties of the current states p and 9,
and not on any other states the system has passed through (history independent).

The transition probabilities P(u — 0) must satisfy also the constraint

Y Pp—d)=1
5

If P4(t) is the probability of a state A at time ¢, then the master equation can be
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written as

% = %wBAPB(t) — ;wABPA(t)v (22)

where the first term is a gain term and the second one is the loss term. w’ s denote
the transition probabilities. The above equation (Equ. 2.2)) can be written, for

discrete times,

Pa(t+1) = Pa(t) = Y _wpaPp(t) = Y wapPalt). (2.3)

At steady state, which is expected to occur for large times, the RHS is zero which

gives the condition
wBAPB(t — OO) = wABPA(t — OO)

Since at equilibrium, the probabilities are given by the Boltzmanns expression,

we have,

wpA eXp(—ﬁEB) — WARB exp(—ﬁEA) (24)

The above condition (Equ 2.4]) is known as the principle of detailed balance.

That means the system is not sampling all the states with equal probability,
but sampling them according to the Boltzmann probability distribution. This
process of choosing states which are more probable than just choosing a set of
random states is known as importance sampling. Thus in an importance sam-

pling, average values are calculated using the formula

150, (2.5)

p=1

(0) =

instead of equation 211

There can be several choices for the transition probabilities. Metropolis and

14



Glauber are important among them. In this thesis we have basically studied the
nonequilibrium quenching dynamics of Ising spin systems using Glauber dynamics.

The detail of these are discussed in next section of this chapter.

2.3 Quenching dynamics

The phenomena in which the temperature of a system is suddenly dropped from
very high (7" — oo) to a very low value (T ~ 0), is called quenching. For
an Ising spin system very high temperature means the system is in completely
random disordered phase. The behaviour of Ising spin system following a deep
quench below the critical temperature comprises a central topic in the study of
the nonequilibrium dynamics of the system nowadays. Systems quenched from a
disordered phase into an ordered phase do not order instantaneously. Instead, the
length scale of ordered regions grows with time as the different broken symmetry
phases compete each other to select the equilibrium state [7].

The nonequilibrium process is very complex and critical to understand [8].
Here the probability distributions are not the simply Boltzmann distributions (as
in equilibrium process) and changing at each and every time step. This process
may be roughly devided in two different categories. First, the dynamical system
which evolve according to some given dynamical rules exist and there is no so called
Hamiltonian describing the system. Second the systems, where the equilibrium
state is known and one starts far from equilibrium. Then we evolve the system
according to a rule which has been determined from the equilibrium dynamics
of the system (these rules lead the system to the equilibrium many times) and
observe what happens. Thus in the second case we use the transition probabilities
determined from the equilibrium dynamics of the system and we also use the

formula given by equation to calculate the average of any observable quantity
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O. One of the example pf the second case is the quenching dynamics of Ising spin
system, in which we are interested.

Many rigorous and nonrigorous results have been obtained on different ques-
tions arising in this context: the formation of domains, their subsequent evolution
(discussed in Sec. [2.3.2]), spatial and temporal scaling properties, the persistence
properties at zero and positive temperature (Sec. 2.3.3)); the observed aging phe-
nomena in both disordered and ordered systems and many others [7], 9].

It may be noted that Glauber dynamics can be used when the order parame-
ter is not conserved. For system with conserved order parameter, the dynamical
evolution can be studied using e.g, the Kawasaki exchange dynamics [10]. In this
thesis we shall present our investigation on those systems, where the order param-
eter is not conserved. So in this thesis we shall discuss the quenching phenomena

considering the evolution of the Ising spin system using Glauber Dynamics [11].

2.3.1 Glauber dynamics

Let us take a Ising spin system with Hamiltonian

H=-)Y" 7J;S5;, (2.6)
<ij>

where S; = 41 and the interaction between the ith and jth spins is denoted
by Ji;. We start from a completely random disordered phase (that means spins
are completely uncorrelated and S; = +1 equiprobably) which evolve by very
low finite temperature Glauber dynamics [11] corresponding to a quench from
very high temperature (7' — o0) to very low one (7' ~ 0). For each initial
spin configuration, one realization of the dynamics was performed until the final
state has been reached. As Glauber dynamics is essentially a single spin flip

dynamics, one may consider single spin flips to generate the configuration B from
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the configuration A. Thus only one spin in configuration A is flipped to get the
configuration B. The choice of transition probability w4p in Glauber dynamics is
simply

wap = 1/2(1 — tanh(5 A E)) (2.7)

where AE = Egp — E4 and = 1/kT

So the precise steps for performing Monte Carlo simulation following Glauber
dynamics will be as follows :

1. Pick up a spin at random.

2. Calculate the change of energy AE which is essentially Efipped — Epresent-

3. Flip the spin according to the probability given by equation (2.7]).

For zero temperature Glauber dynamics (that means the Ising spin system is
quenched to T" = 0 temperature) the rule of spin flip will be as follows (obtained
by putting 7" = 0 in equation 2.7]) :

1. If AE <0 : The spin will flip (wap = 1)

2. If AE > 0 : The spin will not flip (wap = 0)

3. If AE =0 : The spin will flip with probability 1/2 (wap = 1/2)

For a system of N spins, one Monte Carlo time step is said to be completed
after N such flippings. Here the process of update we have considered (pick up a
spin at random and update it according to the rule) is known as random update.
In the process of random update, in one MC time step a single spin can be picked
up more than once and there may exist few spins which could not be picked up at
all. There is another process of update, known as sequential update where each
and every spin of the spin system are used to be picked up sequentially one after
another for update.

Random update process can be of two types named (a) random sequential

update and (b) random parallel update. In the random update process either all

17



spins are randomly selected and updated at each time step, or only one spin is
randomly selected and updated in each time step. We refer to the first update rule
as random parallel update, and the second as random sequential update. The time
interval between updates is taken At = 1 in parallel updates, and At = 1/N in
sequential updates, such that in both cases O(N) spins are updated per unit time.
Here N is the number of spins or the system size. Glauber dynamics was originally
introduced as a sequential updating process [11] and in one dimension evolution
under this dynamics with random sequential updating is already well known and
can be derived analytically [I2]. The process of updating of all the spins of the
spin system simultaneously, at one go following the rule of the dynamics, is known
as parallel update [13].

Here in this thesis we have used the process of random sequential update

everywhere.

2.3.2 Domain coarsening

It is mentioned earlier that when a system is quenched from a homogeneous high
temperature disordered state to a low temperature state it does not order instan-
taneously. Broken symmetry phases compete each other to select the equilibrium
state and the domains grow with time. A scale-invariant morphology is developed,
i.e., the network of domains is (statistically) independent of time when lengths are
rescaled by a single characteristic length scale that typically grows algebraically
with time [7, [14]. For the zero temperature dynamics the average domain size D

increases in time t as

D(t) ~ tY/7,

where z is the dynamical exponent associated with the growth. A typical picture

of domain coarsening following a quench to zero temperature is shown in figure
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Figure 2.1: Domain growth with time for two dimensional Ising spin system, after
a quench to zero temperature. Here t; <ty < t3 < ;. ty is the time counted after
the system has reached the equilibrium(all up or all down state for 7" = 0.

2.3.3 Persistence

Apart from the domain growth phenomenon, another important dynamical be-

havior that has attracted considerable interest recently is persistence. Persis-
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tence is simply the probability that the fluctuating nonequilibrium field does not
change sign upto time ¢ [I5]. The problem of persistence in spatially extended
nonequilibrium systems has recently generated a lot of interest both theoretically
[16], 17, 18], 19] and experimentally [21], 22].

Single spin persistence provides a natural counterpart to the survival proba-
bility in the realm of many-particle systems. In the context of reaction processes,
persistence is equivalent to the survival of immobile impurities and therefore does
not provide information about collective properties of the bulk [20]. In Ising
model, in a zero temperature quench, persistence is simply the probability that a

spin has not flipped till time ¢ and is given by

P(t) ~t7?,

where 6 is called the persistence exponent and is unrelated to any other previously
known static or dynamic exponents. Persistence probability is in general non-
Markovian time evolution of a local fluctuating variable, such as a spin from its
initial state.

The persistence probability is hard to measure in simulations, at nonzero tem-
perature, because one needs to distinguish spin flips due to thermal fluctuations
from those due to the motion of interfaces. The prescription for measuring the
persistence probability for single spin flip at a finite temperature is given in [23].

Apart from such ‘local’ persistence, one can also study the ‘global” persistence
behaviour by measuring the probability Pg(t) that the order parameter does not
change its sign till time ¢ [24]. At the critical temperature, the probability that

the individual spins will not be flipped till time ¢ has an exponential decay, while
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the global persistence shows an algebraic decay:

Pg(t) ~t7%,

2.4 Quenching of nearest neighbour Ising model

The Hamiltonian of the Ising spin model we have considered here is given by
equation 2.6 where S; = 41 and the sum is over all nearest-neighbor pairs of
sites (1j). Now we ask the question, what is the fate of the Ising system after
a zero temperature quench. In one dimension, a zero temperature quench of
the Ising model (with nearest neighbour interactions only) ultimately leads to
the equilibrium configuration (Figure 2.2]). Here the domain walls approach each
other and annihilate, the system goes to its stable state (all up or all down) at

very large times.

RERRERRREN

Figure 2.2: Schematic picture of the zero temperature quenching dynamics of one
dimensional nearest neighbour Ising model. The red colour domain is shrinking
with time and the domain walls between the red and blue colour spin will anni-
hilate each other to form all up state (with blue colour spins only) after few time
steps.

In higher dimensions, the system cannot reach the ground state for all initial

configurations. In two dimensions, the system can find out the ground state

for about 70% cases [25]. In two dimension, on the square lattice, there exist a

21



huge number of metastable states that consists of alternating vertical or horizontal
stripes whose widths are all > 2. These arise because in zero-temperature Glauber

dynamics, a straight boundary between up and down phases is stable (Figurd2.3)).

Figure 2.3: Schematic picture to show freezing at the zero temperature Glauber
dynamics of two dimensional nearest neighbour Ising model.

From the schematic picture 2.3] it is very clear that any spin at the boundary
is supported by three neighbouring spins and a reversal of any spin along the
boundary increases the energy. However, a stripe of width one is unstable, as
there will not be any change of energy due to the flipping of one of the spins in
the stripe.

In three dimensions the Ising spin system (with nearest neighbour interac-
tion), never reaches the ground state by zero temperature single spin flip Glauber

dynamics.

2.4.1 Finite size scaling

It is not possible to reach the thermodynamic limit (means L — oco) numerically,

when we are doing the simulations in computer. We always do our simulations in
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finite system size, no matter how large. So we need the finite size corrections for
getting the results at the thermodynamic limit (L — oo). In this subsection we
shall discuss the theory of finite size scaling of the dynamical exponent z and the
persistence exponent 6 for the zero temperature quenching dynamics.

It is already discussed that domain size D increases in time t as D(t) ~ tV/%,

Now as magnetization m ~ v/ D, so magnetization grows with time as

m(t) ~ t/%.

Let us consider a Ising spin system of d-dimensional geometry of linear size L with
nearest neighbour interaction. The system of spins evolve in time following the
Glauber dynamics, lowering the total energy of the configuration in the process.
the persistence probability shows a power law form in time, P(t) ~ t=?, as long as
t << t*. For t >> t* | the domain cannot grow any further because of the finite

system size and persistence probability stops decaying, attaining a limiting value

P(oo, L) ~ L7,

From the above behaviour of the persistence probability one can write down the

dynamical scaling relation [20]

P(t,L) ~ t79f(L/tY?), (2.8)

where the scaling function f(z) ~ x~* with a = 26 for << 1. For large z, f(x)

is a constant. The equation can also be written as

P(t,L) ~ L™ f(t/L?) (2.9)
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with o = z6. The scaling function f(z) ~ 7% for # << 1 and f(z) is a constant
for large x. Similar finite size scaling ideas also have been used in the context of
global persistence exponent for nonequilibrium critical dynamics [24].

The spatial correlation among the persistent sites can be quantified by the
two point correlation function C'(r,t) defined as the probability that site (z+7) is
persistent, given that the site x is persistent (averaged over x). For a d-dimensional

system, C(r,t) satisfies the normalization condition
L
/ O(r,t)d%r = LP(t, L). (2.10)
0

To calculate the integral we have to put the form of P(t, L) (equation [2Z9) in
equation 2.0 The calculation and argument ultimately leads to the dynamical
scaling form for C(r,t) :

C(r,t) =r=“g(t/r?), (2.11)

with & = z6. The nature of the function g(z) is same as that of the function f(z).
For large t (as t — 00)

C(r,t) ~r 2.

So the exponent « gives the spatial correlations of the persistent spins for the
dynamics. This scaling description was introduced in the context of A+ A — ()
model [27]. Tt has been shown that the exponent « is related to the fractal
dimension dy = d — 26 of the fractal formed by the persistent spins [26]. The

entire picture stated above is true as long as

20
— <1
d <

For 26 > d, persistence probability will decay to zero for any lattice size L.
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The finite size size scaling form of the correlation functions for quenches to
final temperatures 7' = 0 and T = T, for nearest neighbour Ising model in two

dimensions has been proposed and discussed in [2§].

2.4.2 Known results

Glauber found the first exact solution for the nearest neighbour kinetic Ising chain
and it is proved that the dynamical exponent z = 2 for the simplest Glauber
dynamics of the Ising chain [I1I]. The dynamical exponent z is equal to 2 also in
the higher dimensions [§].

There have been many attempts in recent years to determine the persistence
exponent 6 analytically for various systems and processes [15]. Persistence expo-
nents belong to a new class of exponents and it cannot be derived, in general,
from other static and dynamic exponents. Exact expression for  is known only

in one-dimensional Potts model for any Potts state ¢ [29)]:
0(q) = —5 + —leos™ (=) (2.12)

Putting ¢ = 2 in equation 2. 12 we get 0(2) = 3/8, the persistence exponent for one-
dimensional nearest neighbour Ising model. Exact value of the global persistence
exponent for the nearest-neighbour Ising chain is also known (65 = 0.25) [24].
For the higher dimensions the persistence exponent is determined numerically
and by some approximation methods. The persistence and dynamical exponents
for one, two and three dimensions, for the nearest neighbour Ising model are listed

below in the following table :
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Ising model | 6 |z

1-D 3/8 | 2
2.D 0.22 | 2
3-D 0.16 | 2

Further in the next chapters we shall compare these values of the exponents (¢

and z) with the newly obtained values, for different types of Ising spin systems.
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Chapter 3

Zero Temperature Dynamics of
Ising models with competating

interactions

3.1 Introduction

In one dimension, a zero temperature quench of the Ising model as mentioned
earlier ultimately leads to the equilibrium configuration, i.e., all spins point up
(or down). The average domain size D increases in time t as D(t) ~ t/* where z is
the dynamical exponent associated with the growth [1, [2]. As the system coarsens,
the magnetization also grows in time as m(t) ~ t'/?* (discussed in chapter 2)). In
two or higher dimensions, however, the system does not always reach equilibrium
[3] although these scaling relations still hold good.

Apart from the domain growth phenomenon [1I 2], another important dynam-
ical behavior commonly studied is persistence. In Ising model, in a zero temper-
ature quench, persistence is simply the probability that a spin has not flipped

till time ¢ and is given by P(t) ~ t=%. 0 is called the persistence exponent and is
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unrelated to any other known static or dynamic exponents [3], 4, (5] 6] [7] (discussed
in chapter [2]).

Drastic changes in the dynamical behaviour of the Ising model in presence of a
competing next nearest neighbor interaction have been observed earlier [, O, [10].
The one dimensional ANNNI (Axial next nearest neighbour Ising) model with L

spins is described by the Hamiltonian

L
H=-J Z(SZSH-l — KSZ'SH_Q). (31)

1=1

Here it was found that for k < 1, under a zero temperature quench with single
spin flip Glauber dynamics, the system does not reach its true ground state. (The
ground state is ferromagnetic for x < 0.5, antiphase for x > 0.5, and highly
degenerate at xk = 0.5 [I1]). On the contrary, after an initial short time, domain
walls become fixed in number but remain mobile at all times thereby making the
persistence probability go to zero in a stretched exponential manner. For x > 1 on
the other hand, although the system reaches the ground state at long times, the
dynamical exponent and the persistence exponent are both different from those
of the Ising model with only nearest neighbour interaction [9].

The above observations and the additional fact that even in the two dimen-
sional nearest neighbour Ising model, frozen-in striped states appear in a zero
temperature quench [3], suggest that the two dimensional Ising model in presence
of competing interactions could show novel dynamical behaviour. In the present
work, we have introduced such an interaction (along one direction) in the two
dimensional Ising model, thus making it equivalent to the ANNNI model in two

dimensions precisely. The Hamiltonian for the two dimensional ANNNI model on
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a L x L lattice is given by

L
H= —J() Z Si,jSi—i-l,j - Jl Z [Si,jSi,jH - /{Si,jSi7j+2]- (32)

1,7=1 i,j=1

Henceforth, we will assume the competing interaction to be along the = (hori-
zontal) direction, while in the y (vertical) direction, there is only ferromagnetic
interaction.

Although the thermal phase diagram of the two dimensional ANNNI model
is not known exactly, the ground state is known and simple. If one calculates
the magnetization along the horizontal direction only, then for x < 0.5, there is
ferromagnetic order and antiphase order for x > 0.5. Again, x = 0.5 is the fully
frustrated point where the ground state is highly degenerate. On the other hand,
there is always ferromagnetic order along the vertical direction. In Fig. B.Il we
have shown the ground state spin configurations along the = direction for different
values of k.

Highly degenerate

Ferro Antiphase
++++++ ++ ——++ ——
o L
0 0.5 K
T=0

Figure 3.1: The ground state (temperature 7' = 0) spin configurations along the
x direction are shown for different values of k. In the ferromagnetic phase, there
is a two fold degeneracy and in the antiphase the degeneracy is four fold. The
ground state is infinitely degenerate at the fully frustrated point k = 0.5.

In section 3.2, we have given a list of the quantities calculated. In section 3.3,
we discuss the dynamic behaviour in detail. In order to compare the results with

those of a model without competition, we have also studied the dynamical fea-
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tures of a two dimensional Ising model with ferromagnetic next nearest neighbour
interaction, i.e., the model given by eq. ([.2) in which k£ < 0. These results are
also presented in section 3.3. Discussions and concluding statements are made in

the last section of this chapter.

3.2 Quantities calculated

We have estimated the following quantities in the present work:

1. Persistence probability P(t): As already mentioned, this is the probability

that a spin does not flip till time t.

In case the persistence probability shows a power law form, P(t) ~t~% one

can use the finite size scaling relation [12]
P(t, L) ~ t~ 0 f(L/tY%). (3.3)

For finite systems, the persistence probability saturates at a value L™ at
large times. Therefore, for z << 1, f(z) ~ 2= with a = 20. For large z,

f(z) is a constant.

It has been shown that the exponent « is related to the fractal dimension of
the fractal formed by the persistent spins [26]. Here we obtain an estimate

of a using the above analysis.

2. Number of domain walls Np: Taking a single strip of L spins at a time,
one can calculate the number of domain walls for each strip and determine
the average. In the L x L lattice, we consider the fraction fp = Np/L
and study the behaviour of fp as a function of time. One can take strips

along both the x and y directions (see Fig. where the calculation of

33



(@ (b)

Figure 3.2: The schematic pictures of configurations with flat interfaces separating
domains of type I and II are shown: (a) when the interface lies parallel to y axis,
we have nonzero fp, (= 2/L in this particular case) and (b) with interfaces parallel
to the = axis we have nonzero fp, (= 4/L here)

fp in simple cases has been illustrated). As the system is anisotropic, it is
expected that the two measures, fp, along the x direction and fp, along the
y direction, will show different dynamical behaviour in general. The domain
size D increases as t'/% as already mentioned and it has been observed earlier
that the dynamic exponent occurring in coarsening dynamics is the same as
that occurring in the finite size scaling of P(t) (eq. (83)) [12]. Although we
do not calculate the domain sizes, the average number of domain walls per
strip is shown to follow a dynamics given by the same exponent z, at least

for kK > 1.

3. Distribution P(fp) (or P(Np)) of the fraction (or number) of domain walls

at steady state: this is also done for both x and y directions.

4. Distribution P(m) of the total magnetization at steady state for x < 0 only.

We have taken lattices of size L x L with L = 40, 100, 200 and 300 to
study the persistence behaviour and dynamics of the domain walls of the
system and averaging over at least 50 configurations for each size have been

made. For estimating the distribution Np we have averaged over much
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larger number of configurations (typically 4000) and restricted to system
sizes 40 x 40, 60 x 60, 80 x 80 and 100 x 100. Periodic boundary condition
has been used in both x and y directions. J; = J; = 1 has been used in the

numerical simulations.

3.3 Detailed dynamical behaviour

Before going in to the details of the dynamical behaviour let us discuss the stability
of simple configurations or structures of spins which will help us in appreciating

the fact that the dynamical behaviour is strongly dependent on k.

3.3.1 Stability of simple structures

An important question that arises in dynamics is the stability of spin configu-
rations - it may happen that configurations which do not correspond to global
minimum of energy still remain stable dynamically. This has been termed “dy-
namic frustration” [13] earlier. A known example is of course a striped state
occurring in the two or higher dimensional Ising models which is stable but not a
configuration which has minimum energy.

In ANNNI model, the stability of the configurations depend very much on the
value of k. It has been previously analysed for the one dimensional ANNNI model
that kK = 1 is a special point above and below which the dynamical behaviour
changes completely because of the stability of certain structures in the system.

Let us consider the simple configuration of a single up spin in a sea of down
spins. Obviously, it will be unstable as long as k < 2. For k > 2, although this
spin is stable, all the neighbouring spins are unstable. However, for x < 2, only
the up spin is unstable and the dynamics will stop once it flips. When x = 2 the

spin may or may not flip, i.e., the dynamics is stochastic.
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Next we consider a domain of two up spins in a sea of down spin. These two
may be oriented either along horizontal or vertical direction. These spins will be
stable for k > 1 only while all the neighouring spins are unstable. For x < 1,
all spins except the up spins are stable. When x = 1, the dynamics is again

stochastic.

(€)

Figure 3.3: Analysis of stability of simple structures: (a) single up spin in sea of
down spins; here for k < 2 all the spins except the up spin is stable (b) two up
spins in a sea of down spins, all spins except the two up spins are stable for k < 1
(c) a two by two structure of up spins - here all the spins are stable for k < 1
while neighbouring spins are not (see text for details).

A two by two structure of up spins in a sea of down spins on the other hand
will be stable for any value of kK > 0. But the neighbouring spins along the
vertical direction will be unstable for x > 1. This shows that for k < 1, one can
expect that the dynamics will affect the minimum number of spin and therefore
the dynamics will be slowest here. A picture of the structures described above are
shown in Fig 3.3l

One can take more complicated structures but the analysis of these simple
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ones is sufficient to expect that there will be different dynamical behaviour in the
regions kK < 1,k = 1,k > 1,k = 2 and Kk > 2. However, we find that as far
as persistence behaviour is concerned, there are only three regions with different
behaviour: K < 1,k =1 and k > 1. On the other hand, when the distribution of
the number of domain walls in the steady state is considered, the three regions

1<k <2,k=2and k > 2 have clearly distinct behaviour.

332 0O0<k<l

We find that as in [9], in the region 0 < x < 1, the system has identical dynamical
behaviour for all k. Also, like the one dimensional case, here the system does
not go to its equilibrium ground state. However, the dynamics continues for a
long time, albeit very slowly for reasons mentioned above. In Figs. 3.4l - 3.7 we
show the snapshots of the system at different times for a typical quench to zero
temperature. As already mentioned, here domains of size one and two will vanish
very fast and certain structures, the smallest of which is a two by two domain
of up/down spins in a sea of oppositely oriented spins can survive till very long
times. These structures we call quasi-frozen as the spins inside these structures
(together with the neighbourhood spins) are locally stable; they can be disturbed
only when the effect of a spin flip occurring at a distance propagates to its vicinity
which usually takes a long time.

The pictures at the later stages also show that the system tends to attain a
configuration in which the domains have straight vertical edges, it can be easily
checked that structures with kinks are not stable. We find a tendency to form
strips of width two (“ladders”) along the vertical direction - this is due to the
second neighbour interaction - however, these strips do not span the entire lattice

in general. The domain structure is obviously not symmetric, e.g., ladders along
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the horizontal direction will not form stable structures. The dynamics stops once

the entire lattice is spanned by only ladders of height NV < L.

MITIRCTRIE | L TTHREE B
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Figure 3.4: Snap shot of a 40 x 40 system at time t = 10 for kK < 1 A few simplest
quasi frozen structures are highlighted.

Figure 3.5: Same as Fig. B.4] with ¢t = 100.

The persistence probability for x < 1 shows a very slow decay with time which
can be approximated by log for an appreciable range of time. At later times, it
approaches a saturation value in an even slower manner. The slow dynamics of
the system accounts for this slow decay.

The fraction of domain walls fp, and fp, along the x direction and y directions
show remarkable difference as functions of time. While that in the x direction

saturates quite fast, in the y direction, it shows a gradual decay till very long times
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Figure 3.6: Same as Fig. B4 with ¢ = 500. One of the two by two structures
has melted while another one has formed. The ladder like structures which have
formed are perfectly stable.
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Figure 3.7: Same as Fig. B4 with t = 75000. This snapshot is taken after a very
long time to show that the system has undergone nominal changes compared to
the length of the time interval. The whole configuration now consists of ladders
and the dynamics stops once the system reaches such a state.
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Time

Figure 3.8: Persistence P(t) and average number of domain walls per site, fp
are shown for k < 1.

(see Fig. B.8). This indicates that the dynamics essentially keeps the number of
domains unchanged along x direction while that in the other direction changes
slowly in time. The behaviour of fp_ is similar to what happens in one dimension.
In fact, the average number of domain walls Np_ at large times is also very close
to that obtained for the ANNNI chain, it is about 0.27L. However, in contrast to
the one dimensional case where the domain walls remain mobile, here the mobility
of the domain walls are impeded by the presence of the ferromagnetic interaction
along the vertical direction causing a kind of pinning of the domain walls.

The distribution of the fraction of domain walls in the steady state shown
in Fig. also reveals some important features. The distribution for fp and
fp, are both quite narrow with the most probable values being fp, ~ 0.27 and
fp, =~ 0.04 (these values are very close to the average values). With the increase
in system size, the distributions tend to become narrower, indicating that they

approach a delta function like behaviour in the thermodynamic limit.
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Figure 3.9: Steady state distributions of fraction of domain walls at x < 1 for
different system sizes. The distributions become narrower as the system size is
increased.

3.33 kwk>1

It was already observed that x = 1 is the value at which the dynamical behaviour
of the ANNNI model changes drastically in one dimension. In two dimensions,
this is also true, however, we find that the additional ferromagnetic interaction
along the vertical direction is able to affect the dynamics to a large extent. Again,
similar to the one dimensional case, we have different dynamical behaviour for
k=1 and k > 1. In this subsection we discuss the behaviour for x > 1 while the
k =1 case is discussed in the next subsection.

The persistence probability follows a power law decay with 6 = 0.2354+0.001 for
all k > 1, while the finite size scaling analysis made according to (3.3]) suggests a z
value 2.0840.01. This is checked for different values of x (k = 1.3, 1.5, 2.0, 20, 100)
and the values of § and z have negligible variations with £ which do not show any
systematics. Hence we conclude that the exponents are independent of k for k > 1.

A typical behaviour of the raw data as well as the data collapse is shown in Fig.
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B.10

The dynamics of the average fraction of domain walls along the horizontal
direction, fp, again shows a fast saturation while that in the y direction has a
power law decay with an exponent ~ 0.48 (Fig. BIIl). This exponent is also
independent of k. As mentioned in section II, we find that there is a good agree-
ment of the value of this exponent with that of 1/z obtained from the finite size
scaling behaviour of P(t) implying that the average domain size D is inversely
proportional fp,. This is quite remarkable, as the fraction of domain walls cal-
culated in this manner is not exactly equivalent to the inverse of domain sizes in
a two dimensional lattice; the fact that fp_ remains constant may be the reason
behind the good agreement (essentially the two dimensional behaviour is getting
captured along the dimension where the number of domain walls show significant
change in time).

Although the persistence and dynamic exponents are x independent, we find
that the distribution of the number of domain walls has some nontrivial £ depen-
dence.

Though the system, for all k > 1, evolves to a state with antiphase order along
the horizontal direction, the ferromagnetic order along vertical chains is in some
cases separated by one or more domain walls. A typical snapshot is shown in
Fig. displaying that one essentially gets a striped state here like in the two
dimensional Ising model.

Interfaces which occur parallel to the y axis, separating two regions of antiphase
and keeping the ferromagnetic ordering along the vertical direction intact, are
extremely rare, the probability vanishing for larger sizes. Quantitatively this
means we should get fp, = 0.5 at long times which is confirmed by the data (Fig.
[B.I1). Hence in the following our discussions on striped state will always imply

flat horizontal interfaces, i.e., antiphase ordering along each horizontal row but
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the ordering can be of different types (e.g., a + + — — + + — — -+ - type and a
— —++4+ — —++--- type, which one can call a ‘shifted’ antiphase ordering with
respect to the first type).

It is of interest to investigate whether these striped states survive in the infinite
systems. To study this, we consider the distribution of the number of domain walls
rather than the fraction for different system sizes. The probability that there are
no domain walls, or a perfect ferromagnetic phase along the vertical direction,
turns out to be weakly dependent on the system sizes but having different values
for different ranges of values of k. For 1 < k < 2, it is ~ 0.632, for k = 2.0, it is
~ 0.544 while for any higher value of k, this probability is about 0.445. Thus it
increases for x although not in a continuous manner and like the two dimensional
case, we find that there is indeed a finite probability to get a striped state.

While we look at the full distribution of the number of domain walls at steady
state (Fig. B.12)), we find that there are dominant peaks at Np, = 0 (corresponding
to the unstripped state) and at Np, = 2 (which means there are two interfaces).
However, we find that the distribution shows that there could be odd values of
Np, as well. This is because the antiphase has a four fold degeneracy and the
and a ‘shifted” ordering can occur in several ways such that odd values of Np,
are possible. In any case, the number of interfaces never exceeds Np, = 6 for the

system sizes considered.

3.34 k=1

Here we find that the persistence probability follows a power law decay with

6 = 0.263 + 0.001. The finite size scaling analysis suggests a z value 1.84 4+ 0.01
(Fig. B.14).

We have again studied the dynamics of fp, and fp,; the former shows a fast
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Figure 3.10: The collapse of scaled persistence data versus scaled time using
6 = 0.235 and z = 2.08 is shown for different system sizes for x > 1. Inset shows
the unscaled data.
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Figure 3.11: Decay of the fraction of domain walls with time at x > 1 are shown
along horizontal and vertical directions. The dashed line has slope equal to 0.48.
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Figure 3.14: The collapse of scaled persistence data versus scaled time using
6 = 0.263 and z = 1.84 is shown for different system sizes at x = 1. Inset shows
the unscaled data.

saturation at 0.5 while the latter shows a rapid decay to zero after an initial power
law behaviour with an exponent ~ 0.515 (Fig. B.I5). This value, unlike in the
case k > 1, does not show very good agreement with 1/z obtained from the finite
size scaling analysis. We will get back to this point in the next section.

The results for fp, and fp, imply that the system reaches a perfect antiphase
configuration as there are no interfaces left in the system with fp, = 0.5 and

fp, = 0 at later times.

3.3.5 <00

In order to make a comparison with the purely ferromagnetic case, we have also
studied the Hamiltonian (3.2)) with negative values of k which essentially corre-
sponds to the two dimensional Ising model with anisotropic next nearest neighbour
ferromagnetic interaction.

k = 0 corresponds to the pure two dimensional Ising model for which the

numerically calculated value of  ~ 0.22 is verified. We find a new result when «

46



10-6 [ ol Lol Lol N L
10° 10t 10° 10° 10* 10°
Time

Figure 3.15: Decay of the fraction of domain walls with time at x = 1 are shown
along horizontal and vertical directions. The dashed line has slope equal to 0.515.
is allowed to assume negative values, the persistence exponent  has a value ~ 0.20
for |k| > 1 while for 0 < || < 1, the value of 6 has an apparent dependence on x,
varying between 0.22 to 0.20. However, it is difficult to numerically confirm the
nature of the dependence in such a range and we have refrained from doing it. At
least for |k| >> 1, the persistence exponent is definitely different from that of at
k = 0. The growth exponent z however, appears to be constant and ~ 2.0 for all
values of kK < 0. A data collapse for large negative x is shown in Fig. using
6 = 0.20 and z = 2.0.

The effect of the anisotropy shows up clearly in the behaviour of fp, and fp,
as functions of time (Fig. B.IT). For x = 0, they have identical behaviour, both
reaching a finite saturation value showing that there may be interfaces generated
in either of the directions (corresponding to the striped states which are known
to occur here). As the absolute value of k is increased, fp, shows a fast decay
to zero while fp, attains a constant value. The saturation value attained by fp,
increases markedly with || while for fp, the decay to zero becomes faster. One

can conduct a stability analysis for striped states to show that such states become
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Figure 3.16: The collapse of scaled persistence data versus scaled time using
6 = 0.20 and z = 2.0 is shown for different system sizes for k < —1. Inset shows
the unscaled data.

unstable when the interfaces are vertical and x increases beyond 1, leading to the
result fp, — 0.

Extracting the z value from the variations of fp, or fp, is not very simple
here as the quantities do not show smooth power law behaviour over a sufficient
interval of time.

The fact that fp, and/or fp, reach a finite saturation value indicates that
striped states occur here as well. The behaviour of fp, and fp, suggests that
in contrast to the isotropic case where interfaces can appear either horizontally
or vertically, here the interfaces appear dominantly along the x direction as s
is increased. Thus the normalized distribution of the number of domain walls
along y is shown in Fig. B.I8 We find that as & is increased in magnitude, more
and more interfaces appear. However, the number of interfaces is always even
consistent with the fact that interfaces occur between ferromagnetic domains of
all up and all down spins.

Lastly in this section, we discuss the behaviour of the magnetization which is
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the order parameter in a ferromagnetic system. As striped states are formed, the
magnetization will assume values less than unity. The probability of configura-
tions with magnetization equal to unity shows a stepped behaviour, with values

changing at |x| = 1 and 2 and assuming constant values at 1 < |k| < 2 and above

k| = 2 (Fig. B10).
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Figure 3.19: Probability that the magnetization takes a steady state value equal
to unity is shown against k when x < 0.

3.4 Discussions and Conclusions

We have investigated some dynamical features of the ANNNI model in two di-
mensions following a quench to zero temperature. We have obtained the results
that the dynamics is very much dependent on the value of k, the ratio of the an-
tiferromagnetic interaction to the ferromagnetic interaction along one direction.
This is similar to the dynamics of the one dimensional model studied earlier, but
here we have more intricate features, e.g., that of the occurrence of quasi frozen-in
structures for k < 1 where the persistence probability shows a very slow decay
with time. Persistence probability is algebraic for k > 1, but exactly at k = 1, the

exponents 6 and z are different from those at x > 1. The exponents for k > 1 are
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in fact very close to those of the two dimensional Ising model with nearest neigh-
bour ferromagnetic interaction. (This was not at all true for the one dimensional
ANNNI chain, where the persistence exponent at x > 1 was found to be apprecia-
bly different from that of the one dimensional Ising chain with nearest neighbour
ferromagnetic interaction.) This shows that the ferromagnetic interaction along
the vertical direction is able to negate the effect of the antiferromagnetic interac-
tion to a great extent. This is apparently a counter intuitive phenomenon, x = 0
and xk > 1 having very similar dynamic behaviour while in the intermediate val-
ues, the dynamics is qualitatively and quantitatively different. At far as dynamics
is concerned, the ANNNI model in two dimensions cannot be therefore treated
perturbatively.

Although the values of # and z are individually quite close for k = 0 and k > 1,
the product 26 = « are quite different. For k = 0, a ~ 0.44 while for x > 1, it
is 0.486 + 0.002. This shows that the spatial correlations of the persistent spins
are quite different for the two and one can safely say that the dynamical class
for k = 0 and k > 1 are not the same. xk = 1 is the special point where the
dynamic behaviour changes radically. Here there appears to be some ambiguity
regarding the value of z; estimating a from the finite size scaling analysis gives
a =~ 0.484+0.005 while using the z value from the domain dynamics, the estimate
is approximately equal to 0.51. However, the dynamics of the domain sizes may
not be very accurately reflected by the dynamics of fp, in which case o ~ 0.48 is
a more reliable result. Thus we find that although the values of 6 and z are quite
different for kK = 1 and k > 1, the a values are close.

We would like to add here that when there is a power law decay of a quantity
related to the domain dynamics, it is highly unlikely that it will be accompanied
by an exponent which is different from the growth exponent. Thus, even though

we get slightly different values of z for kK = 1 from the two analyses, it is more
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likely that this is an artifact of the numerical simulations.

Another feature present in the two dimensional Ising model is the finite prob-
ability with which it ends up in a striped state. The same happens for x > 1, but
here the probabilities are quite different and also dependent on k. We find that
there is a significant role of the point k = 2 here as this probability has different
values at k =2, Kk > 2 and Kk < 2.

Comparison of the ANNNI dynamics with that of the ferromagnetic anisotropic
Ising model shows some interesting features. In the latter, one gets a new value
of persistence exponent for Kk < —1 while in the former a new value is obtained
for kK > 1.The new values (except for k = 1) are in fact very close to that of
the two dimensional Ising model, but simulations done for identical system sizes
averaged over the same number of initial configurations are able to confirm the
difference. The qualitative behaviour of the domain dynamics is again strongly
dependent when  is negative. Another point to note is that the probability that
the system evolves to a pure state is k dependent in both the ANNNI model and
the Ising model. In both cases in fact, this probability decreases in a step like
manner with increasing magnitude of k. We also find the interesting result that
while the distribution of the number of domain walls can have non-zero values
at odd values of Np in the ANNNI model because of the four fold degeneracy of
the antiphase, for the Ising model, odd values of Np are not permissible as the
ferromagnetic phase is two fold degenerate.

Finally we comment on the fact that although the dynamical behaviour, as far
as domains are concerned, reflects the inherent anisotropy of the system (in both
the ferromagnetic and antiferromagnetic models), the persistence probability is
unaffected by it. In order to verify this, we estimated P(t) along an isolated chain
of spins along = and y directions separately and found that the two estimates gave

identical results for all values of k.
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In conclusion, it is found that except for the region 0 < |x| < 1, the dynamical
behaviour of the Hamiltonian (B.2]) is remarkably similar for negative and positive
k; the persistence and growth exponents get only marginally affected compared to
the values of the two dimensional Ising case (k = 0) and the domain distributions
have similar nature. However, the region 0 < k < 1 is extraordinary, where
algebraic decay of persistence is absent. There is dynamic frustration as the
system gets locked in a metastable state consisting of ladder-like domains and the
dynamics is very slow because of the presence of quasi-frozen structures. There
is in fact dynamic frustration at other s values also in the sense that except for
k = 1, the system has a tendency to get locked in a “striped state”. However,
even in that case, the algebraic decay of the persistence probability is observed.
Thus algebraic decay of persistence probability seems to be valid only when the
metastable state is a striped state. Although there is no dynamic frustration at
x = 1 in the sense that it always evolves to a state with perfect antiphase structure,
it happens to be a very special point where the persistence exponent and growth
exponents are unique and appreciably different from those of the k = 0 case.

In this chapter, the behaviour of the two dimensional ANNNI model under
a zero temperature has been discussed; the dynamics at finite temperature can
be in fact quite different. At finite temperatures, the spin flipping probabilities
are stochastic, and the dynamical frustration may be overcome by the thermal
fluctuations. It has been observed earlier [13] that in a thermal annealing scheme
of the one dimensional ANNNI model, the x = 0.5 point becomes significant. A
similar effect can occur for the two dimensional case as well. The definition of
persistence being quite different at finite temperatures [14], it is also not easy to
guess its behaviour (for either the one or two dimensional model) simply from the
results of the zero temperature quench. Indeed, the ANNNI model under a finite

temperature quench is an open problem which could be addressed in the future.

53



Bibliography

[1] J. D. Gunton, M. San Miguel and P. S. Sahni, Phase Transitions and critical
phenomena, Vol 8, eds. C. Domb and J. L. Lebowitz (Academic, NY 1983).

[2] A. J. Bray, Adv. Phys. 43 357 (1994) and the references therein.

[3] V. Spirin, P. L. Krapivsky and S. Redner, Phys. Rev.E 63 036118 (2001).
[4] For a review, see S. N. Majumdar, Curr. Sci. 77 370 (1999).

[5] B. Derrida, A. J.Bray and C. Godreche, J.Phys. A 27 L357 (1994)

[6] D. Stauffer, J. Phys. A 27 5029 (1994).

[7] P. L. Krapivsky, E.Ben-Naim and S. Redner, Phys. Rev.E 50 2474 (1994).
[8] S. Redner and P. L. Krapivsky, J.Phys. A 31 9229 (1998)

[9] P. Sen and S. Dasgupta, J. Phys. A 37 11949 (2004).

[10] D. Das and M.S. Barma, Physica A 270 245 (1999); Phys. Rev. E 60, 2577
(1999).

[11] W. Selke, Phys. Rep. 170, 213 (1988).
[12] G. Manoj and P. Ray, Phys. Rev. E 62 7755 (2000);

G. Manoj and P. Ray, J. Phys A 33 5489 (2000).

o4



[13] P. Sen and P. K. Das in Quantum Annealing and other optimization problems

eds. A. Das and B. K. Chakrabarti, Springer Verlag (2005).

[14] B. Derrida, Phys. Rev. E 55 3705 (1997)

)



Chapter 4

Quenching Dynamics: Effect of
the nature of randomness of

complex networks

4.1 Introduction

The dynamical behaviour of Ising models may change drastically when random-
ness is introduced in the system. Randomness can occur in many ways and its
effect on dynamics can depend on its precise nature. For example, randomness in
the Ising model can be incorporated by introducing dilution in the site or bond
occupancy in regular lattices and consequently the percolation transition plays an
important role [1, 2]. Here the scaling behaviours are completely different from
power laws. One can also consider the interactions to be randomly distributed,
either all ferromagnetic type or mixed type (e.g., as in a spin glass) [3]; the sys-
tem goes to a frozen state following a zero temperature quenching in both cases.
Another way to introduce randomness is to consider a random field in which case

the scaling behaviour is also completely different from power laws [4].
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Here we consider Ising models on random graphs or networks where the nearest
neighbour connections exist. In addition, the spins have random long range inter-
actions which are quenched in nature. In general, here, the dynamics, instead of
leading the system towards its equilibrium state, makes it freeze into a metastable
state such that the dynamical quantities attain saturation values different from
their equilibrium values.

Moreover, rather than showing a conventional power law decay or growth, the
dynamical quantities exhibit completely different behaviour in time.

A point to be noted here is, when long range links are introduced, the domains
are no longer well-defined as interacting neighbours could be well separated in
space. This results in freezing of Ising spins on random graphs as well as on small
world networks [5, 6]. The phase ordering dynamics of the Ising model on a Watts-
Strogatz network [7], after a quench to zero temperature, produces dynamically
frozen configurations, disordered at large length scales [§,[6]. Even on small world
networks, the dynamics can depend on the nature of the randomness; it was
observed that while in a sparse network there is freezing, in a densely connected
network freezing disappears in the thermodynamic limit [9].

In this chapter, we shall present our investigation on the dynamical behaviour
of an Ising system on two different networks following a zero temperature quench.
In these two networks, both of which are sparsely connected, the nature of ran-
domness is subtly different and we study whether this difference has any effect
on the dynamics. Both these networks are embedded in a one dimensional lattice
and the nearest neighbour connections always exist and the nodes have degree
four on an average. They differ as in one of the networks, the random long range
interactions have a spatial dependence. It may be mentioned here that quenching
dynamics on such Euclidean networks has not been considered earlier to the best

of our knowledge.
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It is also quite well known that many dynamical social phenomena can be
appropriately mapped to dynamics of spin systems. At the same time, social sys-
tems have been shown to behave like complex networks (having small world and/or
scale free features etc.). So the present study may be particularly interesting in
the context of studying social phenomena described by Ising-type models.

In section 4.2.1 we have discussed some basic network properties and network
models. In section we have described the two different networks which we
call random model A (RMA) and random model B (RMB). In Section 4.3 we have
given a list of the quantities calculated. In section 4.4 and 4.5 we have discussed
the detailed dynamical behaviour of Ising spin systems on random model A and
random model B respectively. The comparison of the results of the quenching
dynamics between the two models are discussed in section 4.6. In addition, a
qualitative analysis of the quenching dynamics is also presented. Summary and

concluding statements are made in the last section.

4.2 Description of the network models

In this section we shall first discuss some basic network properties and network

models as well as the models we have considered for our investigation.

4.2.1 Classification of network models

A network is a set of vertices (nodes) connected via edges (links). Networks
with directed edges are called directed networks and those with undirected edges
are undirected networks. One may classify the networks studying three basic
network properties which are average shortest paths, clustering coefficient and
degree distribution. The total number of connections of a vertex is called its

degree (k). In a directed network the number of incoming edges of a vertex is
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called its in-degree k; and the number of outgoing edges is called its out-degree
k,.
k=k+k,

The clustering coefficient characterize the density of connections in the environ-
ment close to a vertex. The clustering coefficient C' of a vertex is the ratio between
the total number of the edges connecting its nearest neighbours and the total num-
ber of all possible edges between all this nearest neighbours. The shortest path
length is the shortest distance S between any two nodes (say, A and B ) is the
number of edges on the shortest path from A to B through connected nodes.

Networks are the same as graphs. In graph theory nodes are termed as vertices
and links as edges. Mathematicians had already classified graphs into two groups
: 1. Regular graph : In which each vertex is linked to its k& nearest neighbours.
For regular graph the shortest path distance S ~ [, where [ is the linear dimension
of the graph/lattice and clustering coefficient C' ~ 1 (finite).

2. Random graph : In which any two vertices have a finite probability to get
linked [I0, TI]. So in general in a random graph/network each vertex get linked to
k arbitrary vertices. In this network or graph, both D, the diameter of the network
(the largest of the shortest distances S) and (S) were found to vary as log(N). It
may be mentioned here that in the random graph the degree distribution function
P(k) is given by :

P(k; = k) =N"" Cpp"(1 —p)V 1, (4.1)

which is basically Binomial distribution, where N = total number of nodes, k£ =
degree of a node. For large N the above equation can be replaced by Poisson

distribution :
V(PN ) (k)
k! - k!

Pk) = (4.2)
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where average degree of graph (k) = p(N — 1) ~ pN The significance of (k) lies
in the fact of forming cluster in random graphs.

Now we would like to introduce two types of network namely (1) small world
network and (2) scale free network.

1. Small world Network : It is basically intermediate between the previous
two networks. In simple terms this describe the fact that despite huge physical
size of real networks, any two nodes are connected by relatively short paths,
hence the network is named as ‘small world. These networks are characterized
by large clustering coefficient compared to the corresponding random graph and
logarithmic dependence of shortest path [10, [1T].

Sgw ~ log(l) — similar to random graph.

Csy ~ 1 — similar to regular graph.

2. Scale free network : For this type of network, the probability that a node
was connected to k£ other nodes is proportional to k~". This means their degree
distribution follows a power law for large k. In general but not necessarily, scale
free networks have small world properties. However the clustering coefficient of the
SF model decreases with the network size following approximately a power-law.
The decay is slower than the decay observed for random graphs (C = (k)N~1)
and is also different from the behavior of the small-world models, where C' is

independent of N [10, [11].

4.2.2 Network models of our interest

The two network models under consideration were introduced in reference [12].
The random model A (RMA) is in fact very similar to the Watts-Strogatz network
[7]. Here initially a spin is connected to its four nearest neighbours and then only

the second nearest neighbour links are rewired with probability p (Fig. ET)). In
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the RMB, each spin is connected to its two nearest neighbour and then two extra
bonds (on an average) are attached randomly to each spin. The extra bonds
are attached to spins located at a distance [ > 1 with probability P(l) oc [7¢
(Fig. E.1)). We keep the first neighbours intact in both cases to ensure that the
networks are connected. Average degree per node is four in both the networks.
The dynamical evolution is considered on the static networks after the process of

rewiring/addition of links is completed (for a review on spatial networks see [13]).

REGULAR  NETWORK

T ANNNTA

- o

RANDOM MODEL A
; ; ; : ; p v ;

- —

RANDOM MODEL B

@

=
N AV W

I

Figure 4.1: (Color online) Schematic diagram for different network models. Av-
erage degree is 2K = 4 in each network. In the regular network both the first and
second nearest neighbours are present. In random model A only second neigh-
bours are rewired with probability p. In random model B first nearest neighbours
are always linked while other nodes are linked with the probability (7 with [ > 2.

The general form of the Hamiltonian in a one dimensional Ising spin system

for RMA and RMB can be written as

H=-Y"17J;55;, (4.3)

i<j

where S; = £1 and J;; = J when sites ¢ and j are connected and zero otherwise.

(We take J = 1 in this work.) The ground state (minimum energy state at zero
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temperature) of the Ising spin system in both RMA and RMB is a state with all
spins up or all spins down.

RMA is a variant of WS model with identical static properties. It is regular for
p = 0, random for p = 1, and for any p > 0, the nature of RMA is small world like
[7,12]. Euclidean models of RMB type have been studied in a few earlier works
[14, 15, 16, 12]. While it is more or less agreed that for a < 1, the network is
random and for a > 2, it behaves as a regular network, the nature of the network
for intermediate values of « is not very well understood. According to the earlier
studies [I4] 15 [16, 12], it may either have a small world characteristic or behave
like a finite dimensional lattice. In the present work, we assume that RMB has
random nature for @ < 1 and for 1 < o < 2, it is small world like (at least for the
system sizes considered here) following the results of [12], which is based on exact
numerical evaluation of shortest distance and clustering coefficients. This is also
because the Euclidean model considered in [12] is exactly identical to RMB with
average degree four, while the average degree of the Euclidean models considered
in the other earlier studies is not necessarily equal to four.

In case of RMA, the network is regular and random for only two extreme
values p = 0 and p = 1 respectively, whereas for RMB, the random and regular
behaviour of the network are observed over an extended region. The regular
network corresponding to these two models is the one dimensional Ising spin
system with nearest neighbour and next nearest neighbour interactions. We have
studied the zero temperature quenching dynamics for this model also, and the
results for the dynamics are identical to that of the nearest neighbour Ising spin
model. So it will be interesting to note how the dynamics is affected by the
introduction of randomness in the Ising spin system and also how the difference
in the nature of randomness of the two models RMA and RMB shows up in the

dynamics.
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In the simulations, single spin flip Glauber dynamics is used in both cases, the
spins are oriented randomly in the initial state. We have taken one dimensional
lattices of size L with 100 < L < 1500 to study the dynamics. The results
are averaged over (a) different initial configurations and (b) different network
configurations. For each system size the number of networks considered is fifty
and for each network the number of initial configuration is also fifty. Periodic

boundary condition has been used.

4.3 Quantities Calculated
We have estimated the following quantities in the present work.

1. Magnetization m(t): For a Ising spin system with regular connections and

having only the ferromagnetic interaction, the order parameter is usually

‘Zisﬂ

the magnetization, m = ~=f—. L is the size of the system. Magnetization

can be considered as the order parameter, even when the connections are
random. We have calculated the growth of magnetization with time and

also the variation of the saturation value of the magnetization, m,;, with p

and o for RMA and RMB respectively.

2. Persistence probability P(t): As already mentioned, this is the probability

that a spin does not flip till time t.

3. Energy E(t): In these networks, domain wall measurement is not very sig-
nificant, as domains are ill-defined. The presence of domain walls in regular
lattices causes an energy cost [§]. So instead of the number of domain
walls, the appropriate measure for disorder is the residual energy per spin

e=FE— FEy=FE+4, where Ey = —4 is the known ground state energy per
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spin and F is the energy of the dynamically evolving state. In fact, the mag-
netization is not a good measure of the disorder either, since even when the
energy is close to the ground state, magnetization may be very close to zero
(this is also true for the models without randomness). So residual energy
measurement is the best way to find out whether the system has reached
the equilibrium ground state or it is stuck in a higher energy nonequilibrium
steady state. We have measured the decay of residual energy ¢ with time
and the variation of its saturation value, 4., with p and « for RMA and

RMB respectively.

4. Freezing probability: The probability with which any configuration freezes,
i.e., does not reach the ground state (the state with magnetization m = 1

or the state with zero residual energy) is defined as the freezing probability.

5. Saturation time : It is the time taken by the system to reach the steady
state. It has been observed in some earlier studies [I7] that it also shows a
scaling behaviour with the system size with the dynamical exponent z. This
in fact provides an alternative method to estimate z when straight forward

methods fail.

Both magnetization and energy are regarded as dimensionless quantities (e

and E scaled by J) in this work.

4.4 Detailed results of quenching dynamics on

RMA

The results of a zero temperature quench for the Ising model on the RMA are

presented in this section. Starting from a initial random configuration following a
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quench to zero temperature the system cannot reach the ground state (the state
with zero residual energy) always for any p # 0. The magnetization, energy,
persistence all attain a saturation value in time. The saturation values of all the
quantities show nonmonotonic behaviour as a function of p.

Figure shows the decay of residual energy per spin and the growth of

magnetization with time for different values of the rewiring probability.
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1r p=0.099,L=1000 b
p=0.612,L=1000
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Figure 4.2: (Color online) Decay of residual energy per spin and the growth of
magnetization with time for RMA for different probabilities.

It is to be noted that the dynamic quantities do not show any obvious power
law behaviour beyond a few time steps. For small p, there is apparently a power
law behaviour for a larger range of time which we believe is the effect of the p =0
point where such a scaling definitely exists.

The saturation value of the residual energy per spin &4, increases with the
rewiring probability p (for small p), reaches a maximum for an intermediate value
of p (p < 1) and then decreases again. This implies that the disorder of the spin
system is maximum for a non trivial value of p = pPyazais, Which can be termed

as the point of maximum disorder. The saturation value of magnetization on
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the other hand decreases for small p and takes its minimum value for another

intermediate value of p (p < 1), and then increases again (Fig. E.3)).
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Figure 4.3: (Color online) Saturation value of residual energy per spin €4, and the
saturation value of magnetization mg, is plotted with the probability of rewiring
p for Random Model A.

Pmazdis iNCreases with the system size L for small L and then appears to sat-
urate for larger system sizes. The value of the residual energy at pyazais also
increases with the system size (Fig. [£.4]). This establishes the existence of the
point of maximum disorder at an intermediate value of p (p ~ 0.62) even in the
thermodynamic limit.

Magnetization reaches a minimum at a value of p which is less than p,,azdis-
This implies that there exists a region where both magnetization and energy in-
crease as p increases. This is also apparent from Fig[4.3l The physical phenomena
responsible for this intriguing feature is conjectured and discussed in detail in sec-
tion 4.6.2.

The saturation time decreases very fast with the rewiring probability p for
small p and remains almost constant as p increases (Fig. [L.H]). It is known that

for p = 0 the saturation time varies as L?, here it appears that for any p > 0,
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Figure 4.4: (Color online) Rewiring probability at the point of maximum disorder
is plotted with the system size. Inset shows the increase of residual energy at the
point of maximum disorder with the increment of the system size.

there is no noticeable size dependence.

For RMA, the freezing probability is almost unity for small p. However, when
the disorder is increased beyond p ~ 0.5, the freezing probability shows a rapid
decrease (Fig: .0 inset). In one dimension, we checked that the freezing proba-
bility is zero for the regular network (p = 0), but here we find that even for very
small values of p, the freezing probability is unity. So there is a discontinuity in
the freezing probability at p = 0. This also supports the fact that any finite p can
make the dynamics different from a conventional coarsening process.

An interesting observation may be made about the behaviour of the saturation
value of the residual energy in the region p < 0.5. If one allows p to decrease from
0.5 to 0, the saturation value of the residual energy also decreases although the
freezing probability is unity in the entire region. This implies that in this range of
the parameter, although the system does not reach the real ground state in any
realization of the network (or initial configuration), such that € # 0 in each case,
the system has a tendency to approach the the actual ground state monotonically

with p for p < 0.5 (Fig. E3).
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Figure 4.5: (Color online) Time of saturation with the probability of rewiring is
plotted for two different sizes for Random Model A. Inset shows the variation of
freezing probability with the probability of rewiring for RMA.
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Figure 4.6: (Color online) Decay of P(t) — Py, with time ¢ alongwith the stretched
exponential function found to fit its form are shown. The inset in the bottom left
shows the variation of the saturation value of persistence P, with p. The other
inset on the top right shows the variation of b and ¢ with p.
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The persistence probability follows a stretched exponential behaviour with

time for any non zero p, fitting quite well to the form
P(t) — Pyt =~ aexp(—bt°). (4.4)

The saturation value of the persistence is P,,, and it does not depend on the
system size. P, changes with the rewiring probability p and there also exists
an intermediate value of p where the value of P, is maximum. b and ¢ vary

nonmonotonically with p (Fig. E6).

4.5 Detailed results of quenching dynamics on

RMB

In this section we will present the results of the zero temperature quenching dy-
namics of Ising model on RMB. Here also the system does not reach the ground
state always for any finite value of a. The magnetization, energy, persistence all
attain a saturation value in time as in RMA. Figure 4.7 shows the decay of resid-
ual energy per spin and the growth of magnetization with time for different values
of a.. It is to be noted that the dynamical quantities do not show any obvious
power law behaviour also for RMB.

The saturation values of all the quantities show nonmonotonic behaviour as a
function of a. The saturation value of residual energy per spin e, increases with
a for small a, reaches a maximum for a finite value of a and then decreases again.
This implies that for the RMB also, the disorder of the spin system is maximum
for a finite value of a;, which is the point of maximum disorder here. On the other
hand, the saturation value of the magnetization decreases for small a and takes

its minimum value for another finite value of o and then slowly increases (Fig.
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Figure 4.7: (Color online) Decay of residual energy per spin and the growth of
magnetization with time for RMB for different probabilities.

1.8).

The value of & = aynezdis, at which the maximum disorder occurs, decreases
with the system size L for small L and then saturates for larger system sizes.
The value of the residual energy at qu,q.4is also increases with the system size
(Fig. [4.9). This establishes the existence of the point of maximum disorder, for
the RMB, at a finite value of o (o ~ 1.2) even in the thermodynamic limit.
Similar to the RMA, here is a region beyond a = 1.2 where the energy and the
magnetization both decrease, until the magnetization starts growing again. As
already mentioned, this issue is addressed in section 4.6.2.

Saturation time for RMB in the random network in the region 0 < a < 1
shows too large fluctuations to let one conclude whether it is a constant in this
region or has a variation with a. Beyond o = 1 and upto a = 3.0, it is almost
independent of a. For o > 3 the saturation time increases with «. There is no
remarkable finite size effect in the saturation time for the RMB for any finite

value of a. The saturation time varies as L? for a regular lattice corresponding to
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Figure 4.8: (Color online) Saturation value of residual energy per spin ey, and
the saturation value of magnetization my,,; is plotted with « for Random Model

B.
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Figure 4.9: (Color online) The value of « at the point of maximum disorder is
plotted with the system size. Inset shows the increase of residual energy at the
point of maximum disorder with the increment of the system size.
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a — 00, here it appears that for any finite o, however large, there is no remarkable
size dependence.

The freezing probability is small for &« = 0 (~ 0.2) and increases rapidly
with « for small a. Freezing probability becomes almost unity beyond a ~ 1.2
and remains the same for large . It seems that for any finite o > 1.2 freezing
probability remains unity and it will be zero only at @ — oo (Fig. A.10), as in one
dimension, the freezing probability is zero for the regular network. So for RMB
there is a discontinuity of freezing probability at @ = oo which corresponds to the

p = 0 point of RMA.
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Figure 4.10: (Color online) Time of saturation with the value of « is plotted for
two different sizes for Random Model B. Inset shows the variation of freezing
probability with a for RMB.

Beyond « ~ 1.2, the energy decreases with o though the freezing probability
remains unity. This implies that although the system definitely reaches a frozen
state, it approaches the real ground state monotonically as a — oo (Fig. 8.

The above results indicate that, though for o > 2 the network behaves as a
regular one, dynamically the network is regular only at its extreme value o — oo.

We find that the persistence probability follows roughly a stretched exponential

form with time (given by equation (2)) for any finite ov. The saturation value of
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the persistence, P,,;, does not depend on the system size. P, changes with «
and there exists an intermediate value of o where the value of P,,; is maximum.

For RMB also b and ¢ vary nonmonotonically with « (Fig: ELTT]).
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Figure 4.11: (Color online) Decay of P(t) — Py, with time ¢ along with the
stretched exponential function found to fit it approximately are shown. The inset
in the top right shows the variation of the saturation value of persistence P;,; with
«. The other inset on the bottom left shows the variation of b and ¢ with a.

4.6 Discussions on the results

4.6.1 Comparison of the results for RMA and RMB

In the last two sections the results of a quench at zero temperature for the Ising
model on RMA and RMB have been presented separately. In this subsection
we will compare the results to understand how the difference in the nature of
randomness affects the dynamics of Ising spin system.

The gross features of the results are similar: in both models we have a freezing
effect which makes the system get stuck in a higher energy state compared to

the static equilibrium state in which all spins are parallel. No power law scaling
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behaviour with time is observed in the dynamic quantities in either model. There
exists a point in the parameter space where the deviation from the static ground
state is maximum. The behaviour of the saturation times and freezing probability
as functions of the disorder parameters are also quite similar qualitatively.

The saturation values of magnetization and persistence attain a minimum and
maximum value respectively at an intermediate value of the relevant parameters
in both models. The decay of the persistence probability also follows the same
functional form in the entire parameter space. The saturation values of the persis-
tence has no size dependence for both the models. This indicates that as a whole
the dynamics is not much affected due to the change in the nature of randomness
of the Ising spin system.

Let us consider the parameter values at which the RMA and RMB are equiv-
alent as a network: RMA and RMB behave as random networks at p = 1 and
a = 0 respectively. So one can expect that the saturation values of residual energy
per spin, magnetization and the numerical value of the saturation time would be
same at these values. However, the numerical values of these quantities are quite
different. For RMA, at p = 1 the saturation value of the residual energy per
spin g4 ~ 0.415 whereas for RMB at a = 0 g4, ~ 0.224 for L = 1000. Simi-
larly we found numerically that for RMA the value of saturation magnetization
Mgqr =~ 0.735 for RMA and my, ~ 0.855 for RMB for the same system size. This
is because even though the networks are both random here, the connections have
a subtle difference. For RMA, the number of second nearest neighbour is exactly
zero at p = 1 and all the other long range neighbour connections are equally prob-
able. On the other hand, for RMB, second nearest neighbours can be still present
in the network and the probability is same for this and any other longer range con-
nection. This difference in the nature of randomness affects the dynamics of the

Ising spin system sufficiently to make the saturation values different. This means
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that the systems are locked at different nonequilibrium steady states. For RMB,
it is closer to the actual ground state as it is more short ranged in comparison.

The other values at which the two networks are equivalent are p = 0 and
a > 2 where regular network behaviour is found as far as the network properties
are concerned. Interestingly, the behaviour of RMB even when « is finite and
greater than 2, is not quite like the dynamics of a regular one dimensional lattice
with nearest and next nearest neighbour links only. In fact, the point at which
the magnetization becomes minimum is well inside the region o > 2 and not
within the small world region as in RMA. Actually there is an extended region of
regular and random network behaviour for the RMB, and as a result, a few more
interesting points are possible to observe here. Only at the extreme point a = oo,
the one dimensional Ising exponents z = 2.0 and § = 0.375 can be recovered as
the frozen states continue to exist even for finite values of a > 2 for RMB. For the
regular network with nearest and next nearest neighbour model, we have checked
that there is no freezing at all. So discontinuities of the freezing probabilities
occur at p = 0 and @ = oo on RMA and RMA respectively.

Though the nature of randomness is different for RMA and RMB, for both the
models there exists a point of maximum disorder where the saturation value of the
residual energy per spin attains a maximum value. For RMB, maximum disorder
of the Ising spin system occurs near the static phase transition point (small world
to random phase) whereas for RMA, the point of maximum disorder is well within
the small world region.

We try to explain this considering the deviation from the point p = 1 (for
RMA) and a = 0 (for RMB). T'wo processes occur simultaneously here: (a) Num-
ber of connections with further neighbours decreases and (b) clustering becomes
more probable. As a result of these two processes, freezing occurs. For RMA,

the effect is less as there is less clustering [12]. But for RMB, the effect is more
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and spans the entire parameter space a > 1 and therefore the point of maximum
disorder of Ising spin system is very close to the random - small world phase
transition point o = 1.

The question may arise whether this difference prevails when the models are
made even more similar. In RMB, the probability ps(«) that [ > 3 can be ex-
pressed as a function of a:

Yy

ps(@) = == — (4.5)
= 17

A further correspondence between the two networks can be established by impos-
ing p = p3(«), which makes the number of second neighbour links in RMA and
RMB also same (but the rest of the extra links are connected differently).

Using equation (3) we can obtain the value of p corresponding to a given value
of a and vice versa. But it is immediately seen that the two networks are not
equivalent even after making them similar upto the second neighbour connections.
For example, for a = 2.0, the corresponding value of p = 0.612 in this scheme.
But we have already seen that while the point of maximum disorder occurs close
to this value of p in RMA, the point of maximum disorder for RMB is considerably
away from a = 2.0. So the nature of randomness continues to affect the dynamics

at least quantitatively.

4.6.2 Analysis of some general features of the quenching

phenomena on networks

We find several interesting features in the quenching phenomena of Ising spin
systems on both the networks and in this subsection we attempt to provide an

understanding of the same.
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It is intriguing that the results indicate that the minimum amount of ran-
domness can make the system freeze. What happens for small randomness? The
interactions are still dominantly nearest neighbour type and domains in the con-
ventional sense should grow which will be of both plus and minus signs. The
system will freeze as there will be some stable domain walls due to the few long
range interactions present. The domains, as the system attains saturation, will
be small in number and large in size irrespective of their signs. As a result, the
magnetization attains a small value while the residual energy is still small.

This effect continues for some time till something more interesting happens.
Take for example the case of quenching on RMA. There is a distinct region 0.4 <
p < 0.6 where the energy and magnetization grow simultaneously, an apparently
counterintuitive result. Similar behaviour can be noted for the quenching on RMB
in a certain region in its parameter space. A problem to analyse the situation for
different p (or «) values is that the final frozen states are not related in any way
in principle. This is because the energy landscapes change as p is changed and
the initial configurations which undergo evolution are completely uncorrelated. In
fact, in such a situation, even if the energy landscape is same with a number of local
minima, different initial configurations will end up in different final nonequilibrium
steady states. Nevertheless, one can attempt to explain this counterintuitive result
assuming that the final states are not largely different when p is changed slightly in
the following way. This assumption and explanation are supported by the actual
final states obtained for small system sizes.

Let us for example consider the RMA and take two values of p, p, > p1, and for
which the magnetization and residual energy of the final state corresponding py are
both larger than those for p;. Now this can be possible due to the fragmentation of
a larger domain into several domains such that the magnetization increases. This

can be demonstrated with a simple example: let us imagine a situation where one
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has only two domains of size N (of up spins) and N~ (of down spins) for p;
with magnetization equal to m; = |(Nt — N7)|/L and assume that for ps, the
domain with NT up spins remains same while the domain with N~ down spins
gets fragmented into three domains of size N~;, N*; and N5 in the final state.
For p,, therefore, the magnetization is mg = [(NT+2NT; —N7)|/L which is larger
than m;. Here in this hypothetical case, we have assumed that N* > N, and
ps is very close to p;. One can also assume that the energy increases for py as the
system is still sufficiently short ranged and the new domain walls cause an extra
energy compared to the state obtained for p;. Of course this is an oversimplified
picture where we have assumed that the final states for p; and p, are identical
except for the fragmentation of one domain. However, we find that the final
configurations obtained for small systems for different values of p as shown in Fig.
are consistent with our conjecture. These snapshots are representative of
the real situation in the sense that they give a typical picture and are not just
rare cases; we have obtained a similar picture from almost all such configurations
generated for small systems.

As p further increases, should the domains get fragmented into even smaller
pieces? Answer is no, as the increasing number of long range interactions again
help in the growth of so called domains, of one particular sign only such that the
magnetization grows and the energy decreases. However, domains of both signs
still survive, although the sizes are no longer comparable. It can therefore be
expected that the region for which both magnetization and energy increase as a
function of p or a would continue till the short range interactions are dominating

and our results are consistent with this expectation.
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Figure 4.12: (Color online) Snap shots of the final spin configurations for different
values of the disorder parameter p for quenching on RMA. The + and e signs
indicate up and down spins respectively. The domains in the conventional sense
are clearly visible.

4.7 Summary and concluding remarks

In this chapter, we addressed the question how the quenching dynamics of Ising
spins depend on the nature of randomness of the underlying network by consid-
ering two networks in which the randomness is realized differently. The networks
are same upto the first neighbour links and have same average degree per node.
While the qualitative features are same, there are intricate differences occurring
in the behaviour of the saturation values of the dynamical quantities.

Overall, we find some interesting features: the saturation values of the dy-
namical quantities do not have monotonic behaviour as a function of the disorder
parameters. Especially, we find that increasing randomness does not necessarily
make the system get locked in a higher energy state. The dynamics takes the
system to a steady state very fast, and the saturation times are not dependent
on the system size. No scaling behaviour is obtained from the studies either

with time or with system size for any of the dynamic quantities. The most sur-
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prising result is perhaps the existence of a region in the parameter space where
both the residual energy and the magnetization increase which can be explained
phenomenologically.

The Euclidean model, on which the study of the quenching of Ising spins is done
for the first time to the best of our knowledge, shows some surprising behaviour
both in the random and regular regions. We find that decreasing randomness
makes the system end up in a higher energy state in the random region while
in the regular region, familiar behaviour of the Ising dynamics with short range
interactions are not obtained; in fact the probability of freezing is unity here
indicating that in none of the realization, the system could end up in the static
ground state. The saturation time also does not show scaling with time.

As already mentioned, the present study is relevant for dynamical social phe-
nomena on complex networks. For example, the evolution of binary opinions on a
complex network (where the initial states are randomly +1 and —1) is analogous
to the dynamical study reported in the present chapter. Of course, in case of
the opinion dynamics, the interactions could be more complex compared to the
the simple Ising model. Our result indicates that the qualitative features of the
results will not be much different for different complex networks.

Dynamic frustration [1§] is responsible for freezing in many Ising systems where
there is no frustration in the conventional sense. One interesting observation is
that the nature of dynamic frustration in regular lattices of dimension greater
than one and that in systems with random interaction (but no frustration) are in
general quite different as in the latter one does not encounter the familiar scaling

laws.
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Chapter 5

Opinion formation : A newly

proposed dynamics

5.1 Introduction

Sociophysics has emerged as one of the important areas of research during recent
times. The concepts of statistical physics find application to many situations that
occur in a social system with the assumption that individual free will or feelings
do not take crucial role in these situations [I, 2]. One of the major issues that
has attracted a lot of attention is how opinions evolve in a social system. Starting
from random initial opinions, dynamics often leads to a consensus which means
a major fraction of the population support a certain cause, for example a motion
or a candidate in an election etc.

Simulating human behaviour by models effectively implies quantifying the out-
come of the behavior by suitable variables having continuous or discrete values.
Different dynamical rules are proposed for the evolution of these variables, de-
pending on how these variables change with time following social interactions.

Thus, a social system can be treated like a physical system. For example, in case
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of opinion dynamics, if the opinions have only discrete binary values, the social
system can be regarded as a magnetic system of Ising spins.

In this context, Schelling model [3], proposed in 1971, seems to be the very
first model of opinion dynamics. Since then, a number of models describing the
formation of opinions in a social system have been proposed [4]. While on one
hand these models attempt an understanding of how a society behaves and social
viewpoints evolve, on the other hand, these provide rich complex dynamical physi-
cal systems suitable for theoretical studies. Many of these show a close connection
to familiar models of statistical physics, e.g., the Ising and the Potts models.

Dynamics of complex systems has become a subject of extensive research from
several aspects. For many such systems, e.g., traffic or agent based models, one
cannot define a conventional Hamiltonian or energy function. The only method
by which one can study the steady state behaviour of such systems is by looking
at the long time dynamics. Nonequilibrium dynamics involves the evolution of a
system from a completely random initial configuration and associated with this
evolution are several phenomena of interest like domain growth or persistence
that have been studied, for example, in spin systems. Since in many sociophysics
model, one can have variables analogous to spin variables, these phenomena can be
readily studied here. An important objective is to identify dynamical universality
classes by estimating the relevant dynamical exponents.

Another point of interest in studying dynamics is that many systems may
have identical equilibrium behaviour but behave differently as far as dynamics is
concerned. For example, Ising spin dynamics with or without conservation belong
to different dynamic universality class although their equilibrium behaviour is
identical.

Apart from the dynamical behaviour, different kinds of phase transitions have

also been observed in these models by introducing suitable parameters. One such

84



phase transition can be from a homogeneous society where everyone has the same
opinion to a heterogeneous one with mixed opinions [5].

Change in the opinion of an individual takes place in different ways in different
models. For example in the Voter model [6], an individual simply follows the
opinion of a randomly chosen neighbour while in the Sznajd model [7], the opinion

of one or more individuals are changed following more complicated rules.

5.2 Description of the proposed model

In a model of opinion dynamics, the key feature is the interaction of the individu-
als. Usually, in all the models, it is assumed that an individual is influenced by its
nearest neighbours. In this chapter we propose a one dimensional model of binary
opinion in which the dynamics is dependent on the size of the neighbouring do-
mains as well. Here an individual changes his/her opinion in two situations: first
when the two neighbouring domains have opposite polarity, and in this case the
individual simply follows the opinion of the neighbouring domain with the larger
size. This case may arise only when the individual is at the boundary of the two
domains. An individual also changes his/her opinion when both the neighbouring
domains have an opinion which opposes his/her original opinion, i.e., the individ-
ual is sandwiched between two domains of same polarity. It may be noted that
for the second case, the size of the neighbouring domains is irrelevant.

This model, henceforth referred to as Model I, can be represented by a sys-
tem of Ising spins where the up and down states correspond to the two possible
opinions. The two rules followed in the dynamical evolution in the equivalent spin
model are shown schematically in Fig. (.l as case I and II. In the first case the
spins representing individuals at the boundary between two domains will choose

the opinion of the left side domain (as it is larger in size). For the second case the
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down spin flanked by two neighbouring up spins will flip.

RN (IERWRE

Case-|

O RN

Case-ll

Figure 5.1: Dynamical rules for Model I: in both cases the encircled spins may
change state; in case I, the boundary spins will follow the opinion of the left
domain of up spins which will grow. For case II, the down spin between the two
up spins will flip irrespective of the size of the neigbouring domains.

The main idea in Model I is that the size of a domain represents a quantity
analogous to ‘social pressure’ which is expected to be proportional to the number
of people supporting a cause. An individual, sitting at the domain boundary, is
most exposed to the competition between opposing pressures and gives in to the
larger one. This is what happens in case I shown in Fig[5.1l The interaction in
case II on the other hand implies that it is difficult to stick to one’s opinion if the
entire neighbourhood opposes it.

Defining the dynamics in this way, one immediately notices that case II cor-
responds to what would happen for spins in a nearest neighbour ferromagnetic
Ising model (FIM) in which the dynamics at zero temperature is simply an energy
minimisation scheme. However, the boundary spin in the FIM behaves differently
in case I; it may or may not flip as the energy remains same. In the present
model, the dynamics is deterministic even for the boundary spins (barring the
rare instance when the two neighbourhoods have the same size in which case the
individual changes state with fifty percent probability).

In this model, the important condition of changing one’s opinion is the size

of the neighbouring domains which is not fixed either in time or space. This
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is the unique feature of this model, and to the best of our knowledge such a
condition has not been considered earlier. In the most familiar models of opinion
dynamics like the Sznajd model [7] or the voter model [6], one takes the effect of
nearest neighbours within a given radius and even in the case of models defined
on networks [8], the influencing neighbours may be nonlocal but always fixed in

identity.

5.3 Model I : Detailed dynamics

We have done Monte Carlo simulations to study the dynamical evolution of the
proposed model from a given initial state. With a system of N spins representing
individuals, at each step, one spin is selected at random and its state updated.
After N such steps, one Monte Carlo time step is said to be completed.

If N, is the number of people of a particular opinion (up spin) and N_ is the
number of people of opposite opinion (down spin), the order parameter is defined
as m = [N, — N_|/N. This is identical to the (absolute value of) magnetization
in the Ising model.

Starting from a random initial configuration, the dynamics in Model I leads
to a final state with m = 1, i.e., a homogeneous state where all individuals have
the same opinion. It is not difficult to understand this result; in absence of
any fluctuation, the dominating neighbourhood (domain) simply grows in size
ultimately spanning the entire system.

We have studied the dynamical behaviour of the fraction of domain walls D
and the order parameter m as the system evolves to the homogeneous state. We
observe that the behaviour of D(t) and m(t) are consistent with the usual scaling
behaviour found in coarsening phenomena; D(t) oc t~'/# with z = 1.00 4 0.01 and

m(t) o< t4/2% with z = 0.99 £ 0.01. These variations are shown in Fig. [5.2]
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Figure 5.2:  (Color online) Growth of order parameter m with time for two
different system sizes along with a straight line (slope 0.51) shown in a log-log
plot. Inset shows the decay of fraction of domain wall D with time.

We have also calculated the persistence probability that a person has not
change his/her opinion up to time t. Persistence, which in general is the probabil-
ity that a fluctuating nonequilibrium field does not change sign upto time ¢, shows
a power law decay behaviour in many physical phenomena, i.e., P(t)  t~%, where
0 is the persistence exponent. In that case, one can use the finite size scaling
relation [9] [10]

P(t, L) oc t 9 f(L/tY?). (5.1)

For finite systems, the persistence probability saturates at a value o« L™% at large
times. Therefore, for x << 1, f(x) o< x=* with @ = 20. For large x, f(z) is
a constant (discussed in detail in chapter 2). Thus one can obtain estimates for
both 2z and 6 using the above scaling form.

In the present model the persistence probability does show a power law decay
with 8 = 0.235 4 0.003, while the finite size scaling analysis made according to
(5.1)) suggests a z value 1.04 £ 0.01 (Fig. B5.3]). Thus we find that the values of z

from the three different calculations are consistent and conclude that the dynamic
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exponent z = 1.02 + 0.02.

It is important to note that both the exponents z and € are novel in the sense
that they are quite different from those of the one dimensional Ising model [11]
and other opinion/voter dynamics models [12] 13|, [14]. Specifically in the Ising
model, z = 2 and 6 = 0.375 and for the Sznajd model the persistence exponent is

equal to that of the Ising model. This shows that the present model belongs to

an entirely new dynamical class.
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Figure 5.3:  The collapse of scaled persistence probability versus scaled time
using # = 0.235 and z = 1.04 is shown for different system sizes. Inset shows the
unscaled data.

5.4 Effect of disorder : Rigidity parameter

The Model I described so far has no fluctuation. Fluctuations or disorder can be
introduced in several ways. We adopt a realistic outlook: since every individual
is not expected to succumb to social pressure, we modify Model I by introducing
a parameter p called rigidity coefficient which denotes the probability that people

are completely rigid and never change their opinions. Such rigid individuals had
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been considered earlier in [I5]. The modified model will be called Model II in
which there are pN rigid individuals (chosen randomly at time ¢ = 0), who retain
their initial state throughout the time evolution. Thus the disorder is quenched in
nature. The limit p = 1 corresponds to the unrealistic noninteracting case when
no time evolution takes place; p = 1 is in fact a trivial fixed point. For other
values of p, the system evolves to a equilibrium state.

The time evolution changes drastically in nature with the introduction of p.
All the dynamical variables like order parameter, fraction of domain wall and
persistence attain a saturation value at a rate which increases with p. Power law
variation with time can only be observed for p < 0.01 with the exponent values
same as those for p = 0. The saturation or equilibrium values on the other hand

show the following behaviour:

M X N—alp—ﬁl
D, x p—ﬁQ

P, =a+bp P (5.2)

where in the last equation a is a constant ~ 0.06 independent of p. The values
of the exponents are a; = 0.500 £ 0.002, 5; = 0.513 £ 0.010, B = 0.96 £ 0.01
and f3 = 0.430 + 0.01. (Figs 5.4l and 5.51) The variation of mg with p is strictly
speaking not valid for extremely small values of p. However, at such small values
of p, it is difficult to obtain the exact form of the variation numerically.

It can be naively assumed that the Np rigid individuals will dominantly appear
at the domain boundaries such that in the first order approximation (for a fixed
population), D o< 1/p. This would give m o 1/,/p indicating 3; = 0.5 and 3, = 1.
The numerically obtained values are in fact quite close to these estimates.

The results obtained for Model II can be explained in the following way: with
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Figure 5.4: Saturation values of fraction of domain walls Dy and persistence
probability P, (shown in inset) increase with rigidity coefficient p in a power law
manner. There is no system size dependence for both the quantities.
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Figure 5.5: Scaled saturation value of mg decays with the rigidity coefficient p.
nset shows the unscaled data.
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p # 0, the domains cannot grow freely and domains with both kinds of opinions
survive making the equilibrium mg less than unity. Thus the society becomes
heterogeneous for any p > 0 when people do not follow the same opinion any
longer. The variation of mg with N shows that ms — 0 in the thermodynamic
limit for p > 0. Thus not only does the society become heterogeneous at the
onset of p, it goes to a completely disordered state analogous to the paramagnetic
state in magnetic systems. Thus one may conclude that a phase transition from
a ordered state with m =1 to a disordered state (m = 0) takes place for p = 07.
It may be recalled here that m = 0 at the trivial fixed point p = 1 and therefore
the system flows to the p = 1 fixed point for any nonzero value of p indicating
that p = 1 is a stable fixed point.

That the saturation values of the fraction of domain walls do not show system
size dependence for p = 0T further supports the fact that the phase transition
occurs at p = 0.

The effect of the parameter p is therefore very similar to thermal fluctuations
in the Ising chain, which drives the latter to a disordered state for any non-zero
temperature, p = 1 being comparable to infinite temperature. However, the role of
the rigid individuals is more similar to domain walls which are pinned rather than
thermal fluctuations. In fact, the Ising model will have dynamical evolution even
at very high temperatures while in Model II, the dynamical evolution becomes
slower with p, ultimately stopping altogether at p = 1. This is reflected in the
scaling of the various thermodynamical quantities with p, e.g., the order parameter
shows a power law scaling above the transition point.

Since the role of p is similar to domain wall pinning, one can introduce a
depinning probability factor u which in this system represents the probability for
rigid individuals to become non-rigid during each Monte Carlo step. pu relaxes

the rigidity criterion in an annealed manner in the sense that the identity of
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p= p:l

Figure 5.6: The flow lines in the p — p plane: Any non-zero value of p with =0
drives the system to the disordered fixed point p = 1. Any nonzero value of y
drives it to the ordered state (= 1, which is a line of fixed points) for all values
of p.

the individuals who become non-rigid is not fixed (in time). If p = 1, one gets
back Model I (identical to Model II with p=0) whatever be the value of p, and
therefore u = 1 signifies a line of (Model I) fixed points, where the dynamics leads
the system to a homogeneous state.

With the introduction of pu, one has effectively a lesser fraction p’ of rigid

people in the society, where

p=p(l—p). (5.3)

The difference from Model II is, of course, that this effective fraction of rigid
individuals is not fixed in identity (over time). Thus when p # 0, u # 0, we have
a system in which there are both quenched and annealed disorder. It is observed
that for any nonzero value of i, the system once again evolves to a homogeneous
state (m = 1) for all values of p. Moreover, the dynamic behaviour is also same
as Model I with the exponent z and 6 having identical values. This shows that
the nature of randomness is crucial as one cannot simply replace a system with

parameters {p # 0,1 # 0} by one with only quenched randomness {p’ # 0,
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i =0} as in the latter case one would end up with a heterogeneous society. We
therefore conclude that the annealed disorder wins over the quenched disorder;
effectively drives the system to the p = 1 fixed point for any value of p. This is
shown schematically in a flow diagram (Fig. [B.0]). It is worth remarking that it
looks very similar to the flow diagram of the one dimensional Ising model with

nearest neighbour interactions in a longitudinal field and finite temperature.

5.5 Mapping of the opinion dynamics model to
reaction diffusion system

The opinion dynamics model discussed so far are models where the dynamics is
described in terms of the Ising spins that mimic the binary opinions an individual
can have. In this model, a spin deep inside a domain does not flip. The dynamics
is governed by the flipping of the spins only at the domain walls. The dynamics,
in this respect, is reminiscent of the zero temperature Glauber dynamics of the
kinetic Ising model. The motions of the domain walls can be viewed as the motions
of the particles A with the reaction A + A — (). This means the particles are
walkers and when two particles come on top of each other they are annihilated.
The annihilation reaction ensures domain coalescence and coarsening. Unlike that
in Glauber Ising model, the walkers A corresponding to Model I do not perform
random walks. These walkers move ballistically towards their nearest neighbours.
This bias, as we have seen before, gives rise to a new universality class than that
of conventional reaction diffusion system [16].

We have also studied A + A — () model with the particles A performing
random walk with a bias € towards their nearest neighbors. We have taken € as

the probability that a walker walks towards its nearest neighbour. Clearly, ¢ =
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0.5 corresponds to usual reaction diffusion system with the particles performing
random walk. On the other hand, ¢ = 1 is equivalent to our Model I as has been
described above. We have studied the dynamics of the reaction diffusion system
for different values of € in the range [0, 1.0].

In reaction diffusion systems, the growth of domains is given by the number
of surviving walkers. Persistence P(t) in these systems is defined as the fraction
of sites unvisited by any of the walkers A till time t. Figures 5.7 and B.8 show

the decay of persistence and fraction of walkers with time for different values of

e > 0.5.
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Figure 5.7: Decay of persistence with time for € = 0.7 and € = 0.55

We find that for e > 0.5, the Model I behaviour is observed, namely: z ~ 1.0
and 6 ~ 0.235, with some possible correction to the scaling which becomes weaker
as € is increased. For example, there is a logarithmic correction to scaling for the
decay of the fraction of domain walls which takes the form ¢t=1(1 + a(e) log(t))
where a(e) — 0 as ¢ — 1. One can compare the above model with the cases

discussed in section 2.2.3, where the introduction of stochastic dynamics also
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occurred with a bias towards the larger domain.

In case of thermal disorder,

the parameter comparable to € is 5. In the present case, the exact sizes of the

domains do not matter (which is important for the case with ) but the results

are consistent in the sense that any bias towards the larger domain (or nearest

walker) makes the system behave like Model 1.
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Figure 5.8: Decay of number of walkers with time for ¢ = 0.7 and € = 0.55. There
is a logarithmic correction to scaling for the value of € = 0.55. The form of f(t)

is t71(1 + alog(t)) with a = 3.92

In this model, we have also studied the e

< 0.5 region where the opposite

happens, the walker has a bias towards the further neighbour. Obviously domain

annihilations take place very slowly now, even

slower than 1/log(t) and the dy-

namics continues for very long times. Consequently, the persistence probability

no longer shows a power law variation now but falls exponentially to zero (Fig

B£.9).
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Figure 5.9: Decay of persistence and number of walkers with time for ¢ = 0.3 and
€ = 0.45. The form of g(t) is a(1/log(t)) where a is any constant.

5.6 Summary and concluding remarks

In summary, we have proposed a model of opinion dynamics in which the social
pressure is quantified in terms of the size of domains having same opinion. In the
simplest form, the model has no disorder and self organises to a homogeneous state
in which the entire population has the same opinion. This simple model exhibits
novel coarsening exponents. This model (Model I) in one dimension belongs to a
new dynamical universality class with novel dynamical features not encountered
in any previous models of dynamic spin system or opinion dynamics. In the corre-
sponding reaction diffusion system A+ A — (), we have introduced a probability €
of random walkers A moving towards their nearest neighbors. € = 0.5 corresponds
to the particles A performing unbiased random walks and the system belongs to
the dynamical universality class of zero temperature Glauber Ising model. We
find that for € > 0.5, the system still shows power law behavior of domain growth

and persistence but with a universality class of that of Model I. For € < 0.5, the
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domain grows logarithmically and the persistence decays exponentially in time.
With disorder, the model undergoes a phase transition from a homogeneous
society (with order parameter equal to one) to a heterogeneous one which is fully
disordered in the sense that no consensus can be reached as the order parameter
goes to zero in the thermodynamic limit. With both quenched and annealed
randomness present in the system, the annealed randomness is observed to drive
the system to a homogeneous state for any amount of the quenched randomness.
Many open questions still remain regarding Models I and II, the behaviour
in higher dimensions being one of them. In fact, full understanding of the phase
transition occurring in Model II reported here is an important issue: although the
phase transition has similarities with the one dimensional Ising model, there are
some distinctive features which should be studied in more detail. All the models
discussed in the present article can easily be extended to higher dimensions and its
universality class determined. Phase transitions occurring at non-extreme values

of suitably defined parameters may also be expected in higher dimensions.
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Chapter 6

Dynamical crossover : Model

with variable range of interaction

6.1 Introduction

Dynamical phenomena is an important topic in statistical physics. Physical quan-
tities in self organized and/or driven systems show rich time dependent behaviour
in many cases. Some of the dynamical phenomena which have attracted a lot
of attention are critical dynamics, quenching and coarsening, reaction diffusion
systems, random walks etc.

In most of these phenomena, we find there is a single timescale leading to
uniform time dependent behaviour which in many cases is a power law decay or
growth [I]. However, in some complex systems, it has been observed that the
dynamics is governed by a distinct short time behaviour followed by a different
behavior at long times. For example, in spin systems, at criticality, the order
parameter is observed to grow for a macroscopically short time [2] while at longer
times it decays in an expected power law manner. For correlated random walks,

e.g., the persistent random walk on the other hand, one finds a ballistic (i.e., when
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the root mean square (rms) displacement scales linearly with time) to diffusive
(rms displacement varying as the square root of time) crossover in the dynamics
[3]. Random walks on small world networks show a completely opposite behaviour,
the number of distinct sites visited by the walker has an initial diffusive scaling
followed by a ballistic variation with time [4]. This is also true for a biased random
walker.

In this chapter, we shall present our study on a dynamical model of Ising
spins in one dimension which is governed by a single parameter. The system is a
generalized version of a recently proposed model in [5] (which we refer to as model
I henceforth) where the state of the spins (S = £1) may change in two situations:
first when its two neighbouring domains have opposite polarity, and in this case
the spin orients itself along the spins of the neighbouring domain with the larger
size. This case may arise only when the spin is at the boundary of the two domains.
The neighbouring domain sizes are calculated excluding the spin itself, however,
even if it is included, there is no change in the results. A spin is also flipped when
it is sandwiched between two domains of spins with same sign. When the two
neighbouring domains of the spin are of the same size but have opposite polarity,
the spin will change its orientation with fifty percent probability. Except for this
rare event the dynamics in the above model is deterministic. This dynamics leads
to a homogeneous state of either all spins up or all spins down. Such evolution to
absorbing homogeneous states are known to occur in systems belonging to directed
percolation (DP) processes, zero temperature Ising model, voter model etc. [6} [7].

Model I was introduced in the context of a social system where the binary
opinions of individuals are represented by up and down spin states. In opinion
dynamics models, such representation of opinions by Ising or Potts spins is quite
common [§]. The key feature is the interaction of the individuals which may lead

to phase transitions between a homogeneous state to a heterogeneous state in
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many cases [9].

Model I showed the existence of novel dynamical behaviour in a coarsening pro-
cess when compared to the dynamical behaviour of DP processes, voter model,
Ising models ete. [10) [IT], 12, 13| 14]. The domain sizes were observed to grow as
t1/% with the exponent z very close to unity. It may be noted that the dynamics
of a domain wall can be visualized as the movement of a walker and therefore
the value z ~ 1 indicated that the effective walks are ballistic. When stochas-
ticity is introduced in this model, such that spin flips are dictated by a so called
“temperature” factor, it shows a robust behaviour in the sense that only for the
temperature going to infinity there is conventional Ising model like behaviour with
z = 2, i.e., the domain wall dynamics becomes diffusive in nature [15].

In this work, we have introduced the parameter p, which we call the cutoff
factor, such that the maximum size of the neighbouring domains a spin can sense
is given by R = pL/2 in a one dimensional system of L spins with periodic
boundary condition. It may be noted that for p = 1, we recover the original
model I where there is effectively no restriction on the size sensitivity of the spins.
R = 1 corresponds to the nearest neighbour Ising model where p — 0 in the
thermodynamic limit.

By the introduction of the parameter p we have essentially defined a restricted
neighbourhood of influence on a spin. Thus here we have a finite neighbourhood to
be considered, which is like having a model with finite long range interaction. In
addition, here we impose the condition that within this restricted neighbourhood,
the domain structure is also important in the same way it was in model I. If one
considers opinion dynamics systems (by which model I was originally inspired), the
domain sizes represent some kind of social pressure. A finite cutoff (i.e., p < 1)
puts a restriction on the domain sizes which may correspond to geographical,

political, cultural boundaries etc. The case with uniform cutoff signifies that all
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the individuals have same kind of restriction; we have also considered the case
with random cutoffs which is perhaps closer to reality.

In the next section, we describe the dynamical rule and quantities estimated.
We present the results for the case when p is same for all spins in section 6.3 and
6.4 and in section 6.5 we consider the case when the values of p for each spin is
random, lying between zero and unity and constant over time for each spin. In

the last section, we end with concluding remarks.

6.2 Dynamical rule and quantities calculated

As mentioned before, only the spins at the boundary of a domain wall can change
its state. When sandwiched between two domains of same sign, it will be always
flipped. On the other hand, for other boundary spins (termed the target spins
henceforth), there will be two neighbouring domains of opposite signs. For such
spins, we have the following dynamical scheme: let d,, and dgo,, be the sizes of
the two neighbouring domains of type up and down of a target spin (excluding
itself). In model I, the dynamical rule was like this: if d,, is greater (less) than
ddown, the target spin will be up (down) and if d,, = dgow, the target spin is
flipped with probability 0.5. Now, with the introduction of p, the definition of d,,
and dgow, are modified: d,, = min{R, d,,} and similarly dgow, = min{ R, dgown }
while the same dynamical rule applies.

As far as dynamics is concerned, we investigate primarily the time dependent
behaviour of the order parameter, fraction of domain walls and the persistence
probability. The order parameter is given by m = W where Ly, (Ldown)
is the number of up (down) spins in the system and L = Ly, + Lgown, the total
number of spins. This is identical to the (absolute value of) magnetization in the

Ising model.
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The average fraction of domain walls D,,, which is the average number of
domain walls divided by the system size L is identical to the inverse of average
domain size. Hence the dynamical evolution of the order parameter and fraction of
domain walls is expected to be governed by the dynamical exponent z; m oc t1/(32)
and D,, ~ ¢t~/ [I].

The persistence probability P(t) of a spin is the probability that it remains in
its original state up to time ¢ [I4] is also estimated. P(t) has been shown to have a
power law decay in many systems with an associated exponent 6. The persistence
probability, in finite systems has been shown to obey the following scaling form
[16, [17]

P(t,L) oc L™*f(t/L?). (6.1)

The exponent a = 6z is associated with the saturation value of the persistence
probability at ¢ — oo when Py, (L) = P(t — oo, L) o< L= [16].

In the simulations, we have generated systems of size L < 6000 with a mini-
mum of 2000 initial configurations for the maximum size in general. Depending
on the system size and time to equilibriate, maximum iteration times have been
set. Random updating process has been used to control the spin flips. In general,
the error bars in the data are less than the size of the data points in the figures

and therefore not shown.

6.3 Case with finite R (p — 0)

In this section, we discuss the case when R is finite. Effectively this means that R
does not scale with L and is kept a constant for all system sizes. Since R is kept
finite, expressing R = pL/2 implies p — 0 in the the thermodynamic limit. For

R =1, the model is same as the Ising model as the dynamical rule is identical to
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the zero temperature Glauber dynamics. But it may be noted that making R > 1
will make the dynamical rules different from the case of R = 1; as an example we

show in Fig. how making R = 2 or 3 changes the dynamical rule compared to

()

Figure 6.1: A schematic picture to show the dynamics in the present model for
a finite value of R. Both the encircled spins will change their state with fifty
percent probability for the nearest neighbour Ising model (R = 1). For R = 2,
the encircled spin on the left will flip with probability 1/2 while the one on the
right will flip with probability 1. For R = 3, the left one will not flip but the right
one will.

R=1

We have simulated systems with R = 2 and R = 3 which show that the
dynamics leads to the equilibrium configuration of all spins up/down. Not only
that, the dynamic exponents also turn out to be identical to those corresponding to
the nearest neighbour Ising values (i.e., # = 0.375 and z = 2). As R is increased,
the finite size effects become stronger, however, it is indicated that the Ising
exponents will prevail as the system size becomes larger. In an indirect way, we
have shown later that z = 2 as p — 0 using a general scaling argument. The
behaviour of the different dynamic quantities for R = 3 are shown in Figs and

0.9

6.4 Case with p >0

In this section, we discuss the case when p is finite. We also assume that p is

uniform, which means each spin experiences the same cutoff.
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Figure 6.2: Decay of the fraction of domain walls D,,(t) with time for R = 3
and two different system sizes shown in a log-log plot. The dashed line has slope
equal to 0.5. Inset shows growth of magnetization m(t) with time for R = 3; the
dashed line here has slope equal to 0.25.
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Figure 6.3: Decay of persistence probability P(t) with time for three different
sizes shown in a log-log plot. The straight line has slope 0.375.

107



The equilibrium behavior is same for all p, i.e., starting from a random initial
configuration, the dynamics again leads to a final state with m = 1, i.e., all spins
up or all spins down. For p = 1, that is in model I, it was numerically obtained that
6 ~ 0.235 and z ~ 1.0 giving o ~ 0.235, while in the one dimensional Ising model
0 = 0.375 and z = 2.0 (exact results) giving a = 0.75. It is clearly indicated that
though model T and the Ising model have identical equilibrium behaviour, they
belong to two different dynamical classes which correspond to p =1 and p — 0
limit respectively of the present model. It is therefore of interest to investigate

the dynamics in the intermediate range of p.

6.4.1 Results for 0 <p<1

102
10

Figure 6.4: The collapse of scaled order parameter versus scaled time for different

values of p, shows z = 1 for ¢t < t; . Inset shows unscaled data. System size
L = 3000.

Drastic changes in the dynamics are noted for finite values of p < 1. The
behaviour of all the three quantities, m(t), D,, and P(t) shows the common feature
of a power law growth or decay with time up to an initial time ¢; which increases

with p. The power law behaviour is followed by a very slow variation of the
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quantities over a much longer interval of time, before they attain the equilibrium
values. The power law behaviour in the early time occur with exponents consistent
with model I, i.e., 2z ~ 1 and 6 ~ 0.235. This early time behaviour accompanied
by model I exponents is easy to explain: it occurs while the domain sizes are
less than pL /2 such that the size sensitivity does not matter and the dynamics is
identical to that in model I. As the domain size increase beyond this value, the
sizes of the neighbouring domains as sensed by the boundary spin become equal
making the dynamics stochastic rather than deterministic as a result of which the

dynamics becomes much slower.

5

10 10 10

t/p

10 10

Figure 6.5: The collapse of scaled fraction of domain walls versus scaled time for
different values of p; shows z = 1 for ¢ < t;. Inset shows unscaled data. System
size L = 3000.

We thus argue that since domain size ~ t/?, the time up to which model I
behaviour will be observed is t; = (pL/2)*. Since z for model I is 1 we expect
that t; = pL/2. For a fixed size L one can then consider the scaled time variable
t' = t/p, and plot the relevant scaled quantities against ¢’ for different values of p
to get a data collapse up to t| = t;/p, independent of p. We indeed observe this,

in Figures [6.4] and [6.0] the scaling plots as well as the raw data are shown.
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From the raw data, t; is clearly seen to be different for different p.

0
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Figure 6.6:  Persistence probability versus time for different values of p; the
straight line with slope 0.375 shown for comparison. Power law behaviour can be
observed only at the initial time. System size L = 3000. Inset shows the collapse
of scaled persistence probability versus scaled time indicating z = 1 for t < t;.

Although the model I behaviour is confirmed up to #; and explained easily,
beyond ¢, the raw data do not give any information about the dynamical expo-
nents z and 0 as no straight forward power law fittings are possible. While an
alternative method to calculate 6 is not known, one may have an estimate of z
using an indirect method. It has been shown recently that for various dynamical
Ising models, the time ¢4, to reach saturation varies as L” where x is identical to
the dynamical exponent z [15] [18]. One may attempt to do the same here.

Actually it is possible to find out theoretically the form of t,,; from the qual-
itative behaviour of the dynamical quantities described above and the snapshot
of the system (Fig. [61) at times beyond ;. At t > t;, the domain sizes of the
neighbours of any spin at the boundary appear equal such that the domain walls
perform random walks slowing down the annihilation process. Domain walls anni-

hilate only after one of the neighbouring domains shrinks to a size < pL/2 again.
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Figure 6.7: Snapshot for p < 1.0 (p = 0.4) for system size L = 100.

In a small system, one can see that the slow process continues with only two do-
main walls separating two domains remaining in the system at later times (Fig.
[67). Even in larger systems, there will be only a few domain walls remaining
making D,, o« 1/N at t > t; as we note from the inset of Fig D,, remains
close to O(1/N) for a long time before going to zero.

Thus t4,; will have two components, ¢, already defined and t5, the time during
which there is a slow variation of quantities over time and the last two domains
remain. While ¢; o< pL, one can argue that ¢, oc (1 — p)3L?. The argument runs
as follows: Let us for convenience consider the open boundary case. Here, the size
sensitivity of the spins is RP" = qL where 0 < ¢ < 1 with the system assuming
the model I behaviour for ¢ > 0.5. At very late times, there will remain only one
domain boundary in the system separating two domains of size, say, vL and SL,
such that v + 8 = 1. With both v, > ¢ the domain wall will perform random
walk until either of the domains shrinks to a size ¢L. (This picture is valid for
q < 0.5 and otherwise the dynamics will be simple model I type). Let us suppose

that the domain with initial size SL shrinks to ¢L in time t5’" such that the
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domain wall performs a random walk over a distance s where L — s = gL. This
gives

5 (8) o (8 - o)L,
Or, the average value of 57" is given by

(1—2¢)°L

open 1=q 212
R A R

The result for the periodic boundary condition is obtained by putting ¢ = p/2
such that

to X (1 — p)3L2

and therefore

tsat = apL + b(1 — p)>L? (6.2)

The above form is also consistent with the fact that ¢, oc L? for p = 0 and

teat ¢ L for p = 1.
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Figure 6.8: Scaled saturation time (t,;/L?) against (1 — p) for different L shows
collapse with t,4;/L* oc (1 — p)3.
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For large L, the second term in the above equation will dominate making
tear o< (1 —p)3L2. In order to verify this, we have numerically obtained ¢, and
plotted t,,/L? against (1 — p) for different L and found a nice collapse and a fit
compatible with eq (62) (Fig. B8) with a ~ 1 and b ~ O(1072?). We conclude
therefore that in the thermodynamic limit at later times, for any p # 1, z = 2,
i.e., the dynamics is diffusive. This argument, in fact holds for p — 0 as well
showing that for R finite, z = 2, as discussed in the preceding section.
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Figure 6.9: Persistence probability as a function of time for p = 0.4 for different
sizes. Inset shows that the saturation values of the persistence probability shows a
variation L~ for values of p = 0.8,0.4,0.2 (from top to bottom) with « ~ 0.230.

We have discussed so far the time dependent behaviour and exponents only.
But another exponent o which appears at ¢ — oo for the persistence probability
can also be extracted here. The persistence probabilities show the conventional
saturation at large times, with the saturation values depending on L. The log-log
plot of P(L,t — o0) against L shows that power law behaviour is obeyed here
with the exponent « once again coinciding with the model I value, ~ 0.23 for any
value of p # 0 (Fig. 6.9)).

Having obtained «, we use eq (6.1]) with trial values of z to obtain a collapse of
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the data PL* versus t/L? for any value of nonzero p < 1. As expected, an unique
value of z does not exist for which the data will collapse over all t/L*. However,
we find that using z = 1, one has a nice collapse for initial times up to ¢; while
with z = 2, the data collapses over later times (Fig. [6.10). The significance of the
result is, an unique value of « is good for collapse for both time regimes. However,
it is not possible to extract any value of 6 for later times as 6 is extracted from

eq (6.1)) in the limit ¢/L* < 1 only.
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p (L,t)LO'233
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Figure 6.10: PL“ versus t/L* for p = 0.4, shows a nice collapse for initial times
up to t; using z = 1 and o = 0.233 (a) while using z = 2 and the same value of
«, the data collapses over later times (b).

0.6

6.4.2 Discussions on the results

At this juncture, several comments and discussions are necessary. We have ob-
tained a crossover behaviour in this model where an initial ballistic behaviour for
macroscopic time scales is followed by a diffusive late time behaviour. However,
the diffusive behaviour at later times is not apparent in the simple log-log plots
of the variables and can be extracted only from the study of the total time to
equilibriate. This is due to the fact that the initial ballistic dynamics leaves the

system into a non-typical configuration which is evidently far from those on diffu-
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sion paths. In fact in the diffusive regime, the coarsening process hardly continues
in terms of domain growth as only few domain walls remain at ¢ > ¢;.

A consequence of this is evident in the behaviour of the persistence at later
times. One may expect that the persistence exponent 3/8 may be obtained at
very late times as here one has independent random walkers, few in number,
which annihilate each other as they meet much like in a reaction diffusion process.
However, such an exponent is not observed from the data (Fig. [6.0]). Although
with z = 2 we can obtain a collapse at later times, it is not possible to obtain a
value of 6. Since persistence is a non-Markovian phenomena and it depends on
the history, the exponent may not be apparent even if the phenomena is reaction
diffusion like. Therefore to analyse the dynamical scenario further, we study the
persistence in a different way. In order to study the persistence dynamics beyond
t = t1, we reset the zero of time at t = t;. In case the number of domain walls
left in the system at ¢ is of the order of the system size (O(L)), the behaviour of
persistence should be as in the case of Ising model, i.e., a power law decay with
exponent 3/8. On the other hand, if the number of independent random walkers
is finite (i.e., vanishes in the L — oo limit) which can not annihilate each other,

the persistence probability is approximately

Prana(t, L) =1 — ct'?/L, (6.3)

where we have assumed that number of distinct sites visited by the walker is
proportional to the distance traveled, which is O(#!/2).

We find that in the present case, resetting the zero of time at ¢, the persistence
probability shows a decay before attaining a constant value. The decay for a large
initial time interval can be fitted to a form P(t) = 1 — ct¥ where the exponent

y increases with L and clearly tends to saturate at 0.5 as the system size is
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Figure 6.11: Persistence probability shows a decay as a function of time when ¢,
is set as the initial time. The L = 6000 curve is fitted to the form Pg,q(t, L) =
1 —ctV/L with y = 0.5 (shown with the broken line). Inset shows the variation of
y with system size. p = 0.4 here.

increased. This shows that the persistence probability is identical to (6.3) in form
(Fig. [6.10)). This signifies that at ¢t > ¢, the dynamics only involves the motions of
random walkers which do not meet and annihilate each other for a long time and
explains the fact that domain walls remain a constant over this interval. Only at
very large times close to equilibriation the domain walls meet and the persistence
probability starts deviating from the behaviour given by (6.3). Actually once one
of the neighbouring domains becomes less than pL/2 in size, the random walk will
cease to take place and will become ballistic, which finally leads to annihilation
within a very short time. Therefore although we have at later times independent
walkers performing random walk, the power law behaviour with exponent 3/8 will
never be observed (even when the origin of the time is shifted) as the annihilation
here is not taking place as in a usual reaction diffusion system but determined by
the model I like dynamics. It may also be noted that beyond ¢ = ¢, annihilations

occur only when the system is very close to equilibriation unlike in a reaction
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diffusion system where annihilations occur over all time scales.

The reason why a single value of « is valid for both ¢ > ¢; and ¢ < ¢; is also
clear from the above study. We expect that at ¢ = t;, the number of persistent
sites o« L™ with the value of o ~ 0.235 as in model I. The additional number
of sites which become non-persistent beyond ¢; is proportional to (¢ —t1)¥/L and

therefore at t = t,,; expected number of persistent site is
ClL_a — Cg(tsat — tl)y/L = ClL_a — Cgtg/L s

where ¢q, ¢ are proportionality constants. Since in the thermodynamic limit y —
1/2 and ty oc L?, the number of persistence sites remains o L™. Here we have

assumed ¢y to be independent of L, the assumption is justified by the result.

6.5 The case with quenched randomness

In this section, we briefly report the behaviour of the system when each spin is
assigned a value of p (0 < p < 1) randomly from a uniform distribution. The
randomness is quenched as the value of p assumed by a spin is fixed for all times.

Here we note that the equilibrium behaviour, all spins up or down is once
again achieved in the system. However the time to reach equilibrium values are
larger than the p = 1 case.

The entire dynamics of the system, once again, can be regarded as walks
performed by the domain walls. For p = 1 for all sites, the walks are ballistic
with the tendency of a domain wall being to move towards its nearest one. For
0 < p <1 but same for all sites, as discussed in the previous section, the walk is
either ballistic (at initial times) or diffusive (at later times) but identical for all

the walkers. When p is different for each site, one expects that when a site with
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Figure 6.12:  Saturation time () against system size L shows z = 1. Inset
on the top left shows the persistence probability P(¢) with time which follows a
power law decay with exponent ~ 0.235 initially. The other inset on the bottom
right shows the growth of magnetization m(t) with time where the initial variation
is like m(t) ~ t'/2.

a relatively large p is hit, the corresponding domain wall will move towards its
nearest domain wall while when a site with relatively small p is hit, the dynamics
of the domain wall will be diffusive.

It has been previously noted that model I with noise (of a different kind) which
induces similar mixture of diffusive and ballistic motions shows an overall ballistic
behaviour (for finite noise) with the value of the dynamic exponent equal to unity
[15]. In the present model with quenched randomness also, we find, by analyzing
the saturation times that z = 1. However, the variation of the magnetization, do-
main walls and persistence show power law scalings with exponents corresponding

to model I only for an initial range of time (Fig [6.12]).
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6.6 Summary and concluding remarks

In summary, we have proposed a model in which a cutoff is introduced in the size
of the neighbouring domains as sensed by the spins. The cutoff R is expressed in
terms of a parameter p. At p — 0 (finite R) and p = 1 it shows pure diffusive
and ballistic behavior respectively. In the uniform case where p is same for all
spins, a ballistic to diffusive crossover occurs in time for any nonzero p # 1.
Usually in a crossover phenomenon, where a power law behaviour occurs with two
different exponents, the crossover is evident from a simple log-log plot. In this
case, however, the crossover phenomena is not apparent as a change in exponents
in simple log-log plots does not appear. The crossover occurs between two different
types of phenomena, the first is pure coarsening in which domain walls prefer to
move towards their nearest neighbours as in model I and one gets the expected
power law behaviour. At ¢;, as mentioned before, some special configurations are
generated and therefore the second phenomena involves pure diffusion of a few
domain walls (density of domain walls going to zero in the thermodynamic limit)
which remain non-interacting up to large times. Naturally, the only dynamic
exponent in the diffusive regime is the diffusion exponent z = 2 which is distinct
from the growth exponent z = 1. So the two dynamic exponents not only differ
in magnitude, they are connected to distinct phenomena as well. This crossover
behaviour is therefore a striking feature for the model. For R finite (p — 0),
there is no crossover effect, as the time ¢; is too small to generate these special
configurations and usual reaction diffusion type of behaviour prevails.

Persistence probability, in whichever way one sets the zero of time, does not
show any power law behaviour in the second time regime. At the same time, a
single value of « is required for the collapse in the two regimes.

Another point of interest is that while z = 2 is expected for nonzero p # 1
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values at later times, the behaviour of the total time to equilibriate as a function
of p is not obvious. Our calculation shows that it is proportional to (1—p)?, which
is another important result of the present work.

We also found that making p a quenched random variable taken from an uni-
form distribution, one gets back model I like behaviour to a large extent. However,
choosing a different distribution might lead to different results. The fact that the
model has different behaviour with uniform p and with quenched random value
of p is reminiscent of the different behaviour observed in agent based models with

savings in econophysics [19].
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