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PREFACE

present volume has its origin in the manuscript notes

which I have prepared from time to time for the use of

the students attending my class in practical physics at the

Cavendish Laboratory. When, in 1890, I was appointed to my
present post of Demonstrator in Experimental Physics, I found

that the then existing text-books of practical physics did not

entirely meet the needs of the students, partly because they did

not, as a rule, show how the formulae required in the experi-

mental work are derived from the principles of the subject. The

students themselves added to the difficulty, for their ideas as to

those principles were often indistinct. I was thus led to devise

some experiments intended to illustrate principles as simply and

directly as possible. I also wrote notes explaining how the

necessary formulae are obtained from the principles involved in

those experiments and describing in detail how the practical work

is to be conducted. The students showed very kind appreciation

of these earlier notes and thus I was encouraged to prepare

others
;
this work has proved so interesting that I have continued

it, as opportunities have occurred, with the result that at the

present time the students attending my practical class rely mainly

upon these manuscript notes for the necessary instructions.

Many of the students have made almost complete copies of

some hundreds of pages of manuscript and have perhaps learned



vi PREFACE

more in that way than by merely reading a printed book con-

taining the same matter. But the plan of using manuscript notes

has numerous disadvantages. For instance, the limited number

of copies of any one manuscript makes it difficult to arrange for

more than two or three students to do the same experiment at

one time and often prevents the students from preparing them-

selves beforehand for the experiments assigned to them. There is,

besides, the risk of the loss or the destruction of the manuscripts

themselves. For the safety of the manuscripts I have relied on

the consideration of the students and this has hardly ever failed.

To throw together into a small volume the manuscripts dealing

with one branch of physics would seem an easy task. But the result

would hardly be satisfactory, for some of the earlier manuscripts

require revision in the light of later experience, while many of the

manuscripts contain mathematical arguments which are repeated

in others of the series. This repetition was necessary for the

practical working of the class but would be intolerable in a book.

For these and other reasons I decided that it would be more

satisfactory to rewrite the whole of the manuscripts, and to arrange

the material, with additions, in the form of a series of small text-

books, in which a fairly full account of the mathematical treatment

should accompany a detailed description of the experimental

work.

To make a beginning, the present volume is published and

this, I hope, will be followed in a few months by a similar volume

on Experimental Optics. I hope, if life and health be given me,

to complete the scheme by writing volumes on Mechanics, on

Electricity and Magnetism and on Heat and Sound.

The present volume cannot lay claim to any sort of com-

pleteness. Its purpose is simply to give the substance of my
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course of instruction in the subject in a form which may be useful

to students at the Cavendish Laboratory and elsewhere.

The first chapter contains an account of the elements of the

mathematical theory of elasticity, with one or two necessary

propositions in thermodynamics. In the second chapter will be

found the mathematical solutions of some problems which make

their appearance in several experiments. The uniform bending
of rods and blades is discussed rather fully, but I was anxious to

make the arguments apply to small finite curvatures as distin-

guished from merely infinitesimal curvatures. To the preparation

and revision of this chapter, Dr L. N. G. Filon has contributed

so much from his store of expert knowledge of the mathematical

theory of elasticity that the chapter is almost more his work

than mine.

The third chapter contains descriptions of a number of ex-

periments together with such necessary mathematical discussions

as are not given in the first two chapters. Each description is

followed by a practical example giving detailed arithmetical

results taken from an actual experiment ;
these examples may

perhaps assist students in recording their own observations.

Some notes bring the book to a close. The last of these con-

tains hints on practical work in physics ;
the rest deal mainly with

a few dynamical theorems which experience suggests may be

useful to students who have not received a mathematical training.

Most of the apparatus required for the experiments is of a

simple description. Though in some cases accuracy would be

gained if the apparatus had less of the " home made "
character

and more of the engineers workmanship, this roughness of the

appliances is not a serious disadvantage to the students who use

the apparatus at the Cavendish Laboratory. Those who after-
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wards make physics a part of their work, either as teachers or as

investigators, will probably have to struggle on with a good deal

of " home made "
apparatus. To the rest, who distribute them-

selves over very wide fields of human activity, a knowledge of

principles is of greater value than an acquaintance with the

details of highly finished instruments.

In the design of the apparatus I have often been aided by

Mr W. G. Pye and by Mr F. Lincoln, the past and present instru-

ment makers at the Cavendish Laboratory, and by their assistants.

To assist those teachers who may not be able to construct the

apparatus for themselves, I have authorised Messrs W. G. Pye

and Co., of Cambridge, to supply apparatus made to my designs.

I have done this because, in some cases, instrument makers, without

consulting me, have connected my name with apparatus in which

they have made "
improvements

"
of doubtful value.

I owe much to the many generations of students who have

attended my class. Their never failing enthusiasm has been a

source of much encouragement to me, and the honest work and the

satisfactory progress of the great majority has been a real reward.

I also owe much to the kindness of those who have assisted

me as demonstrators during eighteen years, and especially to the

unwearying help which my oldest colleague, Mr T. G. Bedford, has

given in many ways for many years.

This volume owes much to the generous help rendered me by

friends. The proofs have been read and criticised by Mr Bedford
;

his knowledge of physical principles, of the work of teaching

the experimental methods described in this book and of the

difficulties of students makes his aid of great value. Dr Alexander

Russell, who has had a long experience of students' work, has

made many helpful criticisms upon the proofs. Dr L. N. G. Filon
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has spent much labour upon the first and second chapters, and

Mr W. C. D. Whetham, F.R.S., a former colleague, has given

editorial assistance.

Mr D. C. Jones of Pembroke College, Mr P. D. Innes of

Trinity College and my wife have assisted in preparing the

manuscript for the press, while Mr A. J. Bamford of Emmanuel

College has helped in the revision of the proofs. To all these,

as well as to those who have aided in minor ways, my thanks are

given.

The following words, from Psalm cxi (y. 2), which are carved on

the gates of the Cavendish Laboratory, shall end this preface :

Magna opera Domini : exquisita in omnes voluntates ejus.

G. F. C. S.

Augmt, 1908.
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CHAPTER I.

ELEMENTARY THEORY OF ELASTICITY.

1. Introduction. The application of a system of forces to

a solid body causes a deformation corresponding to the character of

the system of forces; for example, a pull causes an extension

while a couple causes a twist in a wire. But the simplest obser-

vations on the stretching or bending of a piece of copper wire are

sufficient to show that, even though the forces are not so great as

to break the body, they may still be great enough to produce

changes of form, which do not entirely pass away when the forces

are removed. The effects of forces of this character are of great

importance in many industries. The moulding of clay in pottery

work, and the forging, stamping, wire drawing and cutting of

metals are familiar instances of such effects.

When the forces are less intense, the body may so nearly recover

its original form, on the removal of the forces, that careful observa-

tions are required to show that the recovery is imperfect.

It is, therefore, natural to assume that, if the forces be small

enough, the body will completely recover its original form on their

removal. This is equivalent to saying that the form of a body

depends only on the forces which act on it at the time, and not

upon those which have ceased to act. The assumption that the

forces have no after-effects is of great importance, because it renders

the mathematical treatment of the subject comparatively simple.

The assumption is probably not strictly true for any substance, but

for many substances it is so near the truth that, for practical pur-

poses, it may be regarded as exactly true.

s. E. E. 1
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2. Hooke's law. Though Robert Hooke was the first to

publish a definite statement as to the relation between small forces

and the changes of form due to them, yet it is probable that most

of the persons who had made any practical use of springs had at

least a working knowledge of that relation.

In 1676 Hooke published the statement :

" The true Theory of Elasticity or Springiness, and a particular

Explication thereof in several Subjects in which it is to be found :

And the way of computing the velocity of Bodies moved by them,

ceiiinosssttuu."

In 1678 he gave the key to this anagram in the words :

"About two years since I printed this Theory in an Anagram
at the end of my Book of the Descriptions of Helioscopes, viz.

ceiiinosssttuu, id est, Ut tensio sic vis
;
That is, The Power of any

Spring is in the same proportion with the tension thereof: That

is, if one power stretch or bend it one space, two will bend it two,

and three will bend it three, and so forward."

The proportionality between the applied forces and their effects

is known as Hooke's law and forms the basis of the mathematical

theory of the subject. In this theory it is further assumed that

when two or more sets of small forces act on a body, each set pro-
duces the same effect as if the other set or sets were not acting.

This assumption is, however, only a natural extension of Hooke's

law.

Within the range where Hooke's law holds, we may speak of

the body as being perfectly elastic.

If the forces acting on the body be increased, a more or less

definite point is reached where Hooke's law begins to fail. When
Hooke's law fails, we may say that the elastic limit of the body
has been passed.

3. Necessity for a theory of elasticity. In 1 and 2 we
have taken an elastic body as a whole and have not considered the
actions between its parts. The results which can be obtained in

this way are sufficient for some purposes. Thus, if we make a
helical spring of steel wire, we can use it as a spring balance and
can, by experiments with known masses, graduate a scale so that
the balanr. sh.,11 indicate the mass of any body suspended from it,
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and this can be done without any reference to the complex actions

which occur within the steel itself.

The process here indicated may be considerably extended, for,

if we take a series of bodies of similar form and of the same

material, and subject them to similar sets of forces, we can, from

these experiments, deduce laws which would enable us to predict

the behaviour of another body, if of similar form and of the same

material, when subjected to a similar set of forces. Thus, we should

find by experiment that, when a wire pf length I and cross section A
is subjected to a pull F, the increase of length X is given by

plF
~r>

where p is a constant depending upon the material. From this

equation the increase of length produced in any given wire of that

material by any given pull could be calculated. Similarly, we

could find by experiment that the total twist 0, produced by a

couple G in a circular rod of radius r and length I, is given by

,r 4

where q is a constant depending on the material.

Though the results obtained in this way would be of great

practical utility, they would fail to provide a means of calculating

the effect of any given set of forces on any given body. Thus,

experiments on the torsion of a rod of circular section would give

no information as to the twist which a given couple would produce

in a rod of the same material but of rectangular section.

It thus becomes evident that we need a theory of elasticity,

by which we can calculate mathematically, if we have sufficient

skill, the effect of any given set of forces on any given body, when

we have found the "elastic constants" of the material by experi-

ments made upon specimens of the material. We shall, therefore,

devote this chapter to the elements of such a theory.

The material will be supposed to be isotropic, i.e. to have the

same properties in all directions, and to be homogeneous, i.e. to

have the same properties at all points.

4. Action and reaction between two parts of a body.

Let the body be divided into two parts A and B by a mathematical

12 "
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surface. Each part will in general exert a set of forces on the

other, and the whole action of A on B and of B on A is due to

forces acting between the molecules of A and those of B. These

forces may be divided into two classes. In the first class are those

that are sensible at more than molecular distances; this class

includes gravitational, electric, and magnetic actions. In the

second class are those forces which are sensible only within

molecular distances. We shall speak of these last forces as due

to molecular actions.

Now, it is only those molecules which lie on one side of the

dividing surface within a distance of about 10~8 cm. from the sur-

face, which have any appreciable effect, by molecular action, on

those on the other side. But, in the layer corresponding to one

square centimetre of the surface, there are, in the case of a solid or

a liquid, about 1016 molecules and thus an element of the layer of

only one millionth of a square millimetre in area contains about

108 molecules. It is evident, therefore, that, if the elements of area,

which we consider, are not very small compared with a millionth

of a square millimetre, the multitude of small forces arising

from molecular actions may be considered as blending together

into a force continuously distributed over the element of area.

In other words, the forces which act on the part of the body on

either side of the surface, and are due to molecular action, may
for all practical purposes be replaced by a force continuously
distributed over the surface, the forces on the two parts being

everywhere equal and opposite. What we have done here is

equivalent to replacing the molecularly- built body by one of

absolutely continuous structure.

In general, the part A is acted on not only by the molecular

actions due to B, which are included in the second class, but also

by those forces due to B which are included in the first class. In

addition, the part A experiences forces due to the action of other

bodies, as when it is pulled by a string or is attracted to the earth

through gravitation.

If we apply Newton's laws of motion, we find that the rate of

increase of the momentum of A in any direction is equal to the

resultant in the same direction of all the forces acting on A and

that the rate of increase of the angular momentum of A about any
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fixed axis is equal to the moment about the same axis of all the

forces acting on A *.

In many cases the part A is at rest and then it follows (1) that

the resultant force arising from the molecular actions of B is in

equilibrium with the resultant of the remaining forces which act

on A, and (2) that the moment about any axis of the molecular

actions of B is in equilibrium with the moment about the same

axis of the remaining forces which act on A. These results are

frequently used in experimental work.

5. Stress. The word stress is often used in a general sense

in connexion with the action of forces, but in this book it will

be used only in a definite mathematical sense. Thus : If any

elementary area be drawn in the body, the parts of the body on

either side of the area exert equal and opposite forces on each other

by molecular actions arising from molecules in the immediate

neighbourhood of the area. The ratio of either of these forces

to the area is called the stress. The stress may be normal or

tangential to the area, or may be inclined at any angle to a

line normal to the area.

When the stress is normal to the area, it is called a pressure or

a tension according to its direction, and when it is tangential to

the area, it is called a shearing stress.

It is shown in 7 that, in the case of a hydrostatic pressure,

where the stress at any point is normal to every elementary area

containing that point, the magnitude of the stress at that point is

independent of the direction of the normal to the area, but, in the

general case, the magnitude of the stress and its inclination to the

normal will both depend upon the direction of that normal.

6. Measurement of stresses. The numerical value of a

given stress depends upon the units of force and of area which we

employ. To avoid errors, the student should be careful to state

correctly the unit of force employed and to specify the unit adopted
for the measurement of areas. In the C.G.S. system, which is used

in this book, the stresses are measured in terms of a unit stress of

one dyne per square centimetre.

* See Note II.
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As a simple example, suppose that a vertical wire T32 milli-

metres in diameter supports a mass of 3'5 kilogrammes in a

locality where g = 981 cm. see."2
,
and that the stress is required

for a plane cutting the axis of the wire at right angles. The total

force acting across the plane is 3'5 x 1000 x 981 or 3'434 x 106

dynes, while the area of section is 7r(0'066)
2 or 1'368 x 10~2

square cm. Hence the stress (assumed uniform) is a normal one

and its magnitude is

3-434 x 106

^ Y7^z:2
= 2'510 x 108

dynes per square cm.
I OUo X J.U

If the normal to the plane be inclined at an angle to the axis

of the wire, the area of section is T368 x 10~ 2 x sec 6. But the

total force is still 3'434 x 106

dynes in a vertical direction. Hence,
in this case, the stress makes an angle 6 with the normal to the

plane and its magnitude is 2 '510 x 108 x cos dynes per square cm.

7. Hydrostatic pressure. When the stress at a given point
is normal to every element of area containing that point, there is

said to be a hydrostatic pressure at the point. Now consider the

matter contained in an elementary tetra-

hedron OABC (Fig. 1). Let the edges OA,

OB, OC be mutually perpendicular and let

X, Y, Z be the stresses on the faces OBC,

OCA, OAB. Let S be the area of ABC
and a, /9, 7 be the angles between this

plane and the planes OBC, OCA, OAB.
The force required to give the enclosed

matter any acceleration it may have is

proportional to the cube of the linear di-

mensions of the tetrahedron, as is also any Fig. i.

force arising from gravity. But the forces

due to the stresses on the bounding planes are proportional to the

square of the linear dimensions and hence, by taking the tetra-

hedron small enough, the forces due to the stresses may be made
as great as we please compared with the other forces. Thus, in

the limit, we need only consider the stresses.

Let P be the stress on ABC. Then, since the only forces

which have components parallel to OA are a force P . S, acting
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normally to A EG, and a force X . OBC or X . S cos a, acting

normally to OBC, we have

PS cos a = Jf$ cos a,

with two similar equations. Hence

p =X=Y = Z,

so that the stress is independent of the direction of the normal to

the area.

8. Strain. Suppose that, before the forces are applied to an

elastic body, three series of planes are drawn in the body so as to

divide it into infinitesimal cubes. When the forces are applied,

the portions of matter originally in these cubes will, in general, be

changed in shape so that they are no longer of cubical form
;

they will also be changed in volume. The change of form, includ-

ing the change of volume, which occurs in any elementary cube

may be called, in general terms, the strain at that part of the

body. But it is evident, from this description, that, in the general

case, no single quantity is sufficient to measure the change of form

which occurs in any elementary cube, and thus we see that, in

general, more than one quantity is required to specify the strain.

For the mathematical treatment of strains in general the reader is

referred to treatises on the mathematical theory of elasticity.

For our purpose it will be sufficient to consider two funda-

mental strains and some simple strains which can be built up from

them.

9. Expansion and compression. When the strain is such

that any elementary cubical portion of the body remains cubical,

although changed in volume, the strain is called an expansion or a

compression, according as the volume of the cube is increased or

diminished by the strain. In either case the strain is measured

by the change of volume per unit volume.

Thus, if the application of pressure to the surface of a piece of

steel reduce the volume of each cubic cm. by 2 x 10~12 cubic cm.

without otherwise changing its form, the strain is a uniform com-

pression amounting to 2 x 10~12
c.c. per c.c. It will be noticed that

the numerical value of the compression is independent of the unit

of volume employed. But care must be taken to measure both
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the original volume and the diminution of volume in terms of the

same unit.

10. Shear. In the case of compression there is a change of

volume without any further change of shape. We now go on to

examine the simplest case of change of shape without change of

volume.

Consider two parallel planes A, B drawn in a body at the

distance h apart and suppose that all the particles in the plane A
remain fixed in position. If, now, every particle in the plane B
be moved in that plane through the same distance and in the same

direction, the part of the body between the planes is said to be

sheared. If the displacement of any particle between A and B be

parallel to that of the particles in B and proportional to the

distance of the particle.from the plane A, the strain is called a

uniform shear. If we take a rectangular block having one face

in each of the planes A and B, this block will be strained into a

parallelepiped of equal volume, since both the area of the base

and the height of the block remain unchanged. Thus a uniform

shear does not change the volume of the body.
A plane through any point P between the planes A and B and

parallel to them is called the plane of the shear at P.

To measure the magnitude of the shear, we take a cubical

block having one face in each of the planes A and B and four

edges parallel to the direction of the

displacement of the particles in B. Thus Bi c^ B2 c?

the faces in the planes A, B remain

squares, the faces normal to the direction

of displacement are strained into rect-

angles, and the remaining faces are dis-

torted into parallelograms. If the angles
of a distorted face -4 1-4 2(72C'i (Fig. 2) are

no longer all equal to \TT but are \TT + Fig. 2.

and \TT 6 radians, as indicated in the

figure, the strain is said to be a shear of radians.

11. Maximum shear in actual experiments. For all

metals Hooke's law only holds for small shears and ceases to apply
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when the shear exceeds ^fa radian or one third of a degree,

either because the metal breaks before this shear is reached

(e.g. hard steel) or because it flows (e.g. lead). In ordinary experi-

ments for finding the elastic constants the shear need never

exceed radian.

12. Results for infinitesimal shears. We shall now

obtain some useful results, which are approximately true for

small shears and accurately true for infinitesimal shears. From

Fig. 2

B& = B,A, tan = ft tan 6.

But, when 6 is less than y^ radian, we may put tan 6 = 6 with

an error of less than one in three millions and thus may write

&*&
Since A& = (A^ + Eftf = h (1 + tan2

0)
4

,

we find, on expanding by the binomial theorem and replacing

tan 6 by 6, that

Hence the shear does not alter the length of the edges A^, AJ$.2

by more than |0
2 cm. per cm. If = TOIJO>

the change does not

amount to one part in 2,000,000.

In technical mathematical language we may say that 0, the

shear, is a small quantity of the first order and that J0
2
,
the

elongation, i.e. the increase of length per unit length, of the edges

A^Bl} A ZBZ) is a small quantity of the second order.

In the mathematical theory the strains are supposed to be

infinitesimal. In this case the difference between A lCl and A^
is to be neglected, and then we may say that the edges of the

cube are unchanged by the strain. We have already seen in 10

that the volume of the cube is unchanged. The two statements

are inconsistent when the shear is finite, but they become con-

sistent when the shear becomes infinitesimal.

If B2N be drawn perpendicular to A 1C2 ,
we may take NC* as

the increase in length of the diagonal A^. Now the angle

NCZB2 is ultimately equal to ?r/4 and thus, in this case,

NCa
= J92<72 cos 7T/4

= he
/V2 = \Q . h V2.

Similarly, the length of the diagonal A^ is diminished by

\6 . h V2. But h \/2 is the length of the original diagonals, and
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thus we see that the shear 8 has lengthened one diagonal and

shortened the other by \6 cm. per cm.

The lengths A&, A^A^ only differ by a small quantity of the

second order, and hence the diagonals A^ and A^C-^ may be

considered as intersecting at right angles. The strain has there-

fore not changed the angle between the diagonals, though it has

turned each diagonal through an angle equal to B2N/A 1B2 in the

same direction. Since BJf= NC^ = ^8 . h \/2 and since -4A = h \/2,

it follows that this angle is \Q.

Since the strain is uniform, all lines in the block parallel to

the diagonal A^ will be lengthened by \0 cm. per cm., and

similarly all the lines parallel to A ZB1 will be shortened by the

same amount. Each set of lines will intersect the other at right

angles after as well as before the straining, though each set will

be turned through \6 in the same direction.

Hence, a uniform shear of 8 radians is equivalent to a uniform

contraction of \Q cm. per cm. in a direction inclined at 45 to the

plane of the shear ( 10), superposed on a uniform extension of

\Q cm. per cm. at right angles to the contraction.

13. Bulk modulus or volume elasticity. Suppose that,

at every point within a body of homogeneous and isotropic matter,

the stress is a uniform hydrostatic pressure of p dynes per square
cm. This will evidently compress each elementary cube of the

body in the same proportion, and hence the strain will be a uniform

compression. If we take the triangle ABC (Fig. 1) to be an

element of the surface of the body, we see that, to secure the equi-
librium of the elementary tetrahedron OABC, a uniform pressure p
must be applied to the surface. Conversely, we may conclude that

a uniform pressure p applied to the surface of a body of homo-

geneous and isotropic matter gives rise to a hydrostatic pressure p
throughout the body and produces a uniform compression.

This result does not apply when the body contains a cavity,

unless a pressure p be applied to the walls of the cavity as well as

to the outer surface of the body.
It is found by experiment that, so long as the pressure is not

too great, the compression is proportional to the pressure, and
thus the ratio of the pressure to the compression may be regarded
as an "

elastic constant
"
of the material.
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The ratio of the pressure to the compression is called the bulk

modulus or volume elasticity of the substance and is denoted by k.

Since the compression is a pure number, the bulk modulus is

measured in the same units as the pressure, i.e. in dynes per

square cm.

If a pressure p cause the volume of the body to diminish from

v to v w, the compression is w/v, and hence the bulk modulus is

given by
stress pressure pvK =

,
-.
=

-.
= (1)

strain compresssion w
As an example of the use of this formula, suppose that a

pressure of 108

dynes per square cm. diminishes the volume of

a piece of steel by 5*55 x 10~5 cubic cm. per cubic cm. The

compression is therefore 5*55 x 10~5
,
and hence the bulk modulus is

k = 108

/(5'55 x 10-5

)
= 1-802 x 1012

dynes per square cm.

The only stress a liquid or a gas can permanently sustain is a

hydrostatic pressure, which in the case of liquids under certain

conditions may be negative*, and hence the bulk modulus is the

only elastic constant for a liquid or a gas. For this reason it is

often spoken of as the elasticity of the liquid or the gas.

If the compression be not proportional to the pressure, we can

still speak of the bulk modulus, but we then define it as the ratio

of an infinitesimal increment of pressure from p to p + dp to

dv/v, the corresponding diminution of volume per unit volume,

the volume v being that which the body has under the pressure p.

Hence we have, in the general case,

? dp dpk= f =-v~r (2)
dv/v dv

The negative sign occurs since dv stands for the increment of

volume corresponding to dp.

14. Rigidity. To produce a shear in a solid substance an

appropriate stress is required. Let ABA'B' (Fig. 3) be a cube

of edge h, formed of elastic material, and let a uniform tangential
stress ofp dynes per square cm. be applied to the face A in a direction

perpendicular to the line of intersection of A and B. The force

ph? acting on A would cause a longitudinal acceleration of the
* See Poynting and Thomson, Properties of Matter, Chapter XI.
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block unless resisted by an equal and opposite force. If the

balancing force were applied to A the block would not be strained.

We therefore suppose that a uniform tangential stress of p dynes

per square cm. is applied to the face A' in a direction opposite to

---/- -A'

Fig. 3.

the stress on A. The two forces, each equal to ph-, which act on

A and A', constitute a couple of moment ph
3 and would give the

block an angular accleration about an axis parallel to the line of

intersection of A and B, unless opposed by an equal and opposite

couple. This couple is supplied by uniform tangential stresses of

p dynes per square cm. applied to the faces B and B' in the manner

indicated in Fig. 3. The remaining faces of the cube are not

subjected to any forces.

The forces applied to the faces A, A', B, B' are in equilibrium
and will cause no longitudinal or angular
acceleration of the block. But the forces

will strain the block and will change the

faces perpendicular to both A and B from

squares into parallelograms with equal sides,

as shown in Fig. 4. Let the angles of each

of these faces, when the block is strained, be

J-TT + 6 and JTT 6 radians.

When the stress is small enough, it may [^7.

be expected to be proportional to the shear F
-

4

0, and experiment shows that Hooke's law

does express the relation between the stress and the shear when
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they are small. Thus, the ratio of the tangential stress on each

of the faces A, B, A', B' to the resulting shear may be regarded

as an "
elastic constant

"
of the substance.

The ratio of the tangential stress to the shear is called the

rigidity of the substance and is denoted by n. Since the shear is

a pure number, the rigidity is measured in the same units as the

stress, i.e. in dynes per square cm. Thus,

stress p= =! 3

The rigidity is evidently the tangential stress which would produce
a unit shear, i.e. a shear of one radian or 57 18', if Hooke's law

held for so great a strain.

As an example of the use of this formula, suppose that a

tangential stress of 108

dynes per square cm. causes a shear of

1'22 x 10~4 radians in steel. Then the rigidity is given by

108

n -~~ -_- 8*2 x 1011

dynes per square cm.

The quantity n is often called the modulus of torsion*, because

it makes its appearance in calculations respecting the torsion of a

wire. But the term modulus of torsion is sometimes also used to

denote the couple required to give a wire a twist of one radian

per cm. of length. To avoid confusion, the term will not be used

in this book.

If the shear be not proportional to the shearing stress, we

can still speak of the rigidity of the substance, but we then

define it as the ratio of an infinitesimal increase of shearing
stress to the corresponding increase of the angle of shear. Hence

in the general case,

15. Stresses on the diagonal planes of a sheared cube.

If we take a plane cutting the cube ABA'B' (Fig. 3) and parallel

either to the face A or to the face B, the stress is tangential to

this plane and of amount p dynes per square cm., since the

* This term is used in Kohlrausch's Introduction to Physical Measurements,
Third English Edition, p. 137.
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uniformity of the strain demands that the stress on any plane

parallel to A should be equal to that on A and that the stress on

any plane parallel to B should be equal to that on B.

But now take a diagonal plane passing through the line of

intersection of the faces A and B' and dividing the cube into two

parts. The force on each of the faces A and B is ph?, and thus

the resultant of these two forces is 2ph? . cos Tr/4 or ph
2
*J2 at right

angles to the diagonal plane in a direction tending to separate one

part of the cube from the other. The area of the diagonal plane

is AV2, and hence the stress across this plane is a tension at right

angles to the plane amounting to p dynes per square cm. Since

the strain is uniform, there is an equal stress across every plane

parallel to this diagonal plane.

In a similar way it follows that the stress across the diagonal

plane, which passes through the line of intersection of the faces

A and B, is a pressure at right angles to this plane amounting to

p dynes per square cm. Since the strain is uniform, there is an

equal stress across every plane parallel to this diagonal plane.

The effect of these stresses will be to stretch the cube in the

direction of the tension and to compress it by an equal amount in

the direction of the pressure. Since the shear is p/n radians, we

see, by 12, that the elongation in the direction of the tension

and the contraction in the direction of the pressure are each

p/2n cm. per cm.

There will be no change of length in the direction perpendi-

cular to both the pressure and the tension, since, if the pressure

produce an elongation in that direction, the tension will produce
an equal contraction. Since the stretching and compression due

to the stresses on the diagonal planes are equal, it follows that,

for small strains, the volume of the cube is unchanged by the

strain.

16. Alternative method of producing a shear. It may
be inferred, from the results of 15, that a uniform shear can be

produced in a cubical block by a normal pressure of p dynes per

square cm. applied to one pair of faces a, a' while a normal tension

of p dynes per square cm. is applied to another pair 6, b', the

remaining pair of faces being free from force. This distribution
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of forces is shown in Fig. 5, where the arrow through the centre

of any face represents the direction of the forces applied to that

face. If each edge of the cube be h cm., the resultant of the forces

acting on the faces a, b is 2ph? . cos 7r/4, or ph
2
\/2, parallel to the

diagonal plane indicated in the figure. The area of this plane is

/&V2, and hence the stress on this plane is a shearing stress of

p dynes per square cm.
;

a similar result holds for the other

diagonal plane.

The material will, therefore, suffer a shear of p/n radians and

it follows from 12 that the lines in the cube, which are normal to

the faces a, a', receive a contraction ofp/2n cm. per cm., and those

which are normal to b, b' receive an elongation of equal amount,
while those which are parallel to the line of intersection of the

faces a and b are unchanged in length.

It will be noticed that the faces a, b of the cube of Fig. 5

correspond to the diagonal planes of the cube of Fig. 3, the stress

in each case being a normal one. Further the faces A, B of Fig. 3

correspond to the diagonal planes of Fig. 5, the stresses being now

tangential.

17. Young's modulus. When an evenly distributed pull

of T dynes per square cm. is applied to each end of a straight

uniform rod, the stress across any plane perpendicular to the

axis of the rod is a uniform tension of T dynes per square cm.
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The increase in the length
'

of the rod, caused by this stress, is

found by experiment to be proportional to the length of the rod,

and, for small strains, to the tension, as Hooke's law leads us

to expect.

The ratio of the longitudinal stress to the elongation, i.e. the

increase of length per unit length, is called Young s modulus of

the substance and is denoted by E; the longitudinal stress is to

be calculated by dividing the total pull by the cross-section of the

stretched rod. Since the elongation is a pure number, Young's
modulus is measured in the same units as the stress, i.e. in dynes

per square cm.

If a longitudinal stress of T dynes per square cm. increase the

length of a rod from / cm. to I + \ cm., the elongation, e, is \/l cm.

per cm. and hence

stress T T TlE = Young s modulus = -. : = - = - =
. . . .(o)

elongation e \/l A,

As an example of the use of this formula, suppose that a total

pull of 4 x 106

dynes applied to a steel wire 500 cm. in length
and 5 x 10

~ 2 cm. in radius, increases its length by 0'12 cm. The

cross-section is TT x 25 x 10~4 or 7'85 x 10~3

square cm. and thus

the stress is T = 4 x 109

/7'85
or 510 x 108

dynes per square cm.

The elongation is e = 0*12/500 or 2*4 x 10~4 cm. per cm. Thus,

E=Tle = 5-1 x 1012

/2-4
= 212 x 10 12

dynes per square cm.

If the elongation be not proportional to the longitudinal

stress, we can still speak of Young's modulus, but we then define

it as the ratio of an infinitesimal increase of longitudinal stress

dT to the corresponding elongation dl/l, where I is the length of

the rod under the stress T. Hence, in the general case,

Young's modulus, E, is not, in reality, a new elastic constant,

since, in the case of an isotropic substance, we can show, as in 19,

that E is connected with the bulk modulus k and the rigidity n

by the equation

1=1 + 1E 9k
*
Sn
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In the case of metals, Hooke's law fails, if the elongation much
exceed y^ cm. per cm., because the rod receives a "

permanent
set

"
and does not return to its original length on the removal of

the forces, and hence the greatest strains which can be employed
in experiments are very small. When the rod is stretched, its

cross section A becomes slightly less than A Q ,
the cross section of

the unstretched rod, but the difference is so small that for practical

purposes it is sufficient to calculate the stress by dividing the

pull P by A Q . In fact, the experimental difficulties are such that

it would be almost impossible to decide whether A\ or ^1 X is the

more nearly proportional to the pull P.

18. Poisson's ratio. When a rod or wire is stretched by
forces applied to its ends, while its sides are free from force, it

is found that its cross-section diminishes, and hence the strain is

not a simple elongation but an elongation accompanied by a con-

traction in every direction perpendicular to the elongation. For

small elongations the ratio of the contraction to the elongation

is constant for a given specimen, but the ratio varies from

substance to substance.

Let the elongation of the rod, i.e. the increase of length per
unit length, parallel to its axis be e cm. per cm., and let the lateral

contraction, i.e. the diminution of length per unit length, of lines

at right angles to the axis be /cm. per cm. Then the ratio off
to e is called Poissons ratio and is denoted by a. Thus

^ . . Lateral contraction /a = roisson s ratio = ^ -.
= -. ...(7)

Elongation e

Since both the elongation and the contraction are pure numbers,
Poisson's ratio is a pure number and is independent both of the

unit of length and of the unit of force.

As an example of the use of this formula, suppose that, when a

steel wire 1000 cm. in length and 0*1 cm. in diameter is stretched

by 0'4 cm., its diameter diminishes by 1'12 x 10~5 cm. Then the

elongation is 0'4/1000 or 4 x 10~4
,
and the lateral contraction is

1-12 x 10-YO-l or 112 x 10~4
. Hence

-P.
. , Lateral contraction 1*12 x 10~4 ~

cr = Foisson s ratio = ^ .
- = - T^T = '28.

Elongation 4 x 10~4

s. E. E. 2
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If a rod of length /, having for its section a square of side a,

receive the elongation e, each side suffers the contraction /, and

thus after the strain the length is I (1 + e) and the cross-section

is aa
(l /)

2 or a*(l 2/), because/ is very small. Since/= ecr,

we see that the elongation e is accompanied by a diminution of

cross-section of 2<re square cm. per square cm., and by an increase

of volume of (1 + e) (1 2&e) 1 c.c. per c.c. or e (1 2cr) c.c. per

c.c., when er is neglected.

In an actual experiment on a metal wire it would be difficult,

by any simple means, to make a direct measurement of the con-

traction, and hence a- is generally found by some indirect method.

Poisson's ratio a is not an independent elastic constant, since,

in the case of an isotropic substance, we can show, as in 19, that

a- is connected with the bulk modulus k and the rigidity n by the

equation
3k -2n

(7 =
6k -f

19. Relations between elastic constants. In the case

of an isotropic substance, two mathematical relations connect the

bulk modulus k, the rigidity n, Young's modulus E, and Poisson's

ratio a, and thus only two out of these four quantities are in-

dependent. The two relations may be found in the following
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ianner : Let A, A', B, B
f

, C, C
f

(Fig. 6) denote the six faces of

a cube of edge h, and let a uniform normal tension ofp dynes per

square cm. be applied to the faces A and A'. By 17, these

forces, will produce an elongation of p/E cm. per cm. parallel to

the tension, and, by 18, a contraction at right angles to B of

ap/E cm. per cm. and an equal contraction at right angles to C.

But the same effect can be produced in another way. Replace
the tension p on the faces A, A' by three superposed tensions

each equal to ^p. and apply to each of the faces B, B', C, C' a

tension of %p and a pressure of ^p, as indicated in Fig. 6, where

each arrow head stands for ^p. To avoid confusion, the forces

acting on the faces C, C' are not shown in Fig. 6. The pressure
then exactly neutralises the tension on each of these four faces.

The tensions of ^p on the six faces are equivalent to a hydro-
static pressure of J/>, and hence, by 13, cause a uniform

expansion of p/3k c.c. per c.c., increasing the volume of the cube

from h* to h?(l+p/3k) and the edges of the cube from h to

h (1 -f p/3k)z. Expanding by the binomial theorem and rejecting

p
2

/k* and higher powers of p/k, we find that the edges are increased

to A(l +p/9k). Hence the tensions of %p on the six faces cause

an elongation of p/9k in every direction.

We must now take account of the pressures ^p on the faces

B, B', C, C", and we begin by considering the pressures on B and

B' in conjunction with one pair of the three partial tensions ^p on

the faces A and A'. By 16, this set of forces will cause an

elongation %p/%n or p/6n cm. per cm. at right angles to A, a,

contraction p/6n cm. per cm. at right angles to B, but no change
of length at right angles to C. In the same way, the pressures %p
on the faces G', C', taken in conjunction with the remaining pair

of partial tensions on the faces A, A', will cause an elongation

p/6n at right angles to A, a contraction p/6n at right angles to C,

and no change of length at right angles to B.

Collecting these results, we find that the resultant elongation

in the direction of the original tension is

p /I 1 \

a =P n7 + o~6n r
\9k 3nJ9k Qn

But we have seen in 17 that the elongation, when expressed in

22
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terms of Young's modulus, is p/E crn. per cm. Thus, by equating

the two expressions for the elongation, we have

The resultant contraction at right angles to either B or C or in

any direction at right angles to the original tension is

P P
f ^7 cm. per cm.
6?i 9k

But, by 18, this contraction, when expressed in terms of

Poisson's ratio and Young's modulus, is ere or apjE cm. per crn.

Equating the two expressions for the contraction, we have

_...
E
~
6n

Hence, by (8),

3k -

By equations (8) and (9), when we know the values of any two of

the four quantities k, n, E and cr, we can calculate the values

of the other two. The two which are usually found by experiment
are Young's modulus and the rigidity.

If we add (8) to (9), we easily find

If we eliminate n between (8) and (9), we have

1 E
"-2~6P

From (10) we find

3k (1
-

2<r)
= 2n (1 + a)........ . ....... (12)

Hence, if 2<r were greater than 1 or if a were less than 1, either

k or n would be negative. It therefore follows that, for an iso-

tropic solid, Poisson's ratio cannot exceed J and cannot be less

than -1.

20. Isothermal and adiabatic elasticities. When the

form of a body is changed by the application of forces, there

is, as a rule, a rise or fall of temperature. This effect is very
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conspicuous in gases ;
it may also be easily observed in the case of

india-rubber. Thus, if an india-rubber band be suddenly stretched,

there will be a rise of temperature which may be easily detected

by bringing the stretched band into contact with the lips.

If the temperature of each part of the body be maintained

constant while the forces do their work upon the body, there will

be a definite relation between the forces and the changes of form

which they produce. The elastic constants corresponding to this

isothermal condition, will be denoted by kt ,
Et and nt ,

the sub-

script t denoting that the temperature is constant.

On the other hand, if no heat be allowed to enter or leave any

part of the body, the temperature will change in a definite manner

corresponding to the action of the forces, and, since the relation

between the forces and the changes of form depends upon the

temperature, this relation, though still definite, will differ from

that which holds when the isothermal condition is satisfied. When
no heat enters or leaves any part of the body, the change of form

is said to take place under the adiabatic condition. Now if dQ
be the heat which enters a perfectly elastic body under any con-

ditions when the forces receive any given small increments, an

equal amount of heat will be given out under the same conditions

when the forces return to their initial values. Thus the change
is a reversible one and hence, by the principles of thermo-

dynamics*, we can write

dQ =
td<f>, (13)

where d<f> is the increase of entropy corresponding to the increase

of heat dQ and t is the temperature measured from the absolute

zero. Hence the elastic constants corresponding to the adiabatic

condition will be denoted by k^, E^ and n^, the subscript <

denoting that the entropy is constant. We may also denote the

adiabatic elastic constants by kQ ,
EQ and nQ when it is convenient

to do so, the subscript Q denoting that no heat enters or leaves

any part of the body.
In some of the experiments described below, statical effects are

observed, as when a wire is stretched by a load. Here we may
suppose that any change of temperature, due to the application

* See Maxwell, Theory of Heat, Chapter VIII, or Poynting and Thomson, Heat,

Chapter XVII.
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of the load, has disappeared by radiation and by conduction to

the surrounding air before the extension is observed. In other

experiments dynamical methods are employed and the vibrations

of the system are observed. If the vibrations were infinitely rapid,

adiabatic conditions would prevail, since there would be no time

for radiation or conduction to cause any appreciable transfer of

heat. In practice the time of vibration is finite, and thus there

will be some departure from adiabatic conditions. We shall be

able to estimate how close an agreement may be expected between

the results of statical methods and those of dynamical methods,

if we know the relation between the isothermal and the adiabatic

elasticities, for it is easily seen that the value of any modulus

found by a dynamical method, when the time of vibration is finite,

will lie between the isothermal and the adiabatic values of that

modulus.

21. Ratio of adiabatic to isothermal elasticity. In

discussing the applications of thermodynamics to elasticity, it

is convenient to express the moduli of elasticity in terms of

differential coefficients. In the case of the bulk modulus we

have, by equation (2), 13,

The subscript Q denotes that the variations p and v are so related

that Q does not change, i.e. so that no heat enters or leaves the

substance. Similarly the subscript t denotes that the temperature
is constant.

Now, if z be a function of two independent variables x and y,

we have

idz\ , fdz\ .

"'z hj~ dx + -j- ) dy.
\dxjy \dy)x

*

If the variations in x and y cause no resultant change in z, there

must be a definite relation between dx and dy. Putting dz = 0,

we find the relation to be

(dy\_ _(dz_\ l(dz\ _ (dz\
fd,/\

\dx)z \dxly I \dy
>
x Ur/y ( dz) x

'
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Since the state of a perfectly elastic homogeneous body, which

is subjected to a uniform hydrostatic pressure p, is completely

defined when p and v are known, t is a function of the two

independent variables p and v, and hence, if p and v be so related

that t does not vary,

#P\ -f^\
dvJt \dvjp dt v \dt v \dt p

If, however, p and v be so related that Q does not vary,

,dv) Q \dv)p \dQJv \dv)p/\dp) v
'

and hence, by (14) and (15),

dp\ (dQ\ fdv\ (dQ
dv/o \dvjn \dtjp __ \ dt /p

/dO\
'

kt fdp\ (dQ\ fdp\ fdQ\
\dv/t \dp' v \dt)v \dt)

If the mass of the body be m,

fdQ\- mUn .p>
\dtj

where Cp arid Cv are the specific heats at constant pressure and at

constant volume respectively. Hence

The reader must bear in mind that the specific heat of a

substance, under any given condition, is the amount o|
heat which

is absorbed when one gramme of the substance rises from t to

(t + 1) under the given condition, and must remember that, in

estimating the specific heat, we entirely leave out of account any

energy which may be supplied mechanically, as by the action of a

pressure when the volume diminishes.

In the case of Young's modulus, the state of a given wire is

defined when we know its length and the tension, i.e. the force

per unit area acting across a transverse section, and thus a process

similar to that adopted for k will give
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where CT is the specific heat for constant tension and Ci the specific

heat for constant length.

In the case of the rigidity, we have in like manner

n t i

where Cp is the specific heat when p, the shearing stress, is con-

stant, and (70 is the specific heat for constant angle of shear. If

the shear have the constant value zero, the shearing stress remains

zero in spite of a change of temperature, for no shearing stress is

required to maintain the cubical form of a cubical block when its

temperature is changed. Hence the heat absorbed while the

temperature rises 1 when the shearing stress is zero is equal to

that absorbed during the same rise of temperature when the shear

is zero, for the two conditions are identical. Thus Cp for zero

stress is identical with C9 for zero shear. Hence for infinitesimal

shears we may write

n<t>
= n t .

In practical determinations of the rigidity, we take care that

the shear is always very small (perhaps not exceeding y^Vo"

radian) in order to keep within the limits of Hooke's law. We
may therefore conclude that, in such determinations, the same

value of the rigidity will be obtained whether n be found by a

statical method, where the conditions are isothermal, or by a

dynamical method, where the conditions are more or less nearly

adiabatic.

Returning to the bulk modulus, we may expect that Gp will

differ from CV) and that, in consequence, k+ will differ from kt .

When the pressure remains constant while the temperature rises

from t to t + dt, the volume will generally change, and then

external work will be done. On the other hand, when the volume

remains constant while the temperature rises from t to t + dt, the

pressure will generally change, but no external work will be done,

and thus the final conditions of the body are different in the two

cases. Hence we cannot say that equal amounts of heat are

absorbed in the two cases, even though, as may be the case with

an elastic solid, the initial pressure be zero.

Similar considerations apply to Young's modulus, and thus we
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may expect that CT ,
the specific heat for constant tension, will

generally differ from GI, the specific heat for constant length.

In the exceptional case where the substance, when subjected

to a constant pressure p, has a point of maximum density at the

temperature t, an infinitesimal change of temperature from t to

t + dt will cause no change of volume, provided the pressure

remain constant, and thus the two conditions of constant volume

and constant pressure become indistinguishable, and Cp becomes

identical with Cv .

The experimental comparison of Cp with Cv or of CT with C
t

would probably be more difficult than the direct experimental

comparison of k$ with kt or of E$ with Et ,
and thus we must look

for some other method of finding a relation between the adiabatic

and the isothermal values for each of these two moduli.

22. Difference between reciprocals of isothermal and

adiabatic elasticities. Though it is impracticable to calculate

the ratio of the adiabatic to the isothermal value of k or of E from

the ratio of the specific heat for constant stress to that for constant

strain, yet we can find the difference between the reciprocals of

these values in terms of quantities which can be determined.

We shall now find the difference in the case of the bulk

modulus. On the p-v diagram for unit

mass of a substance let AB (Fig. 7) be an

isothermal line and AC an adiabatic line

or line of constant entropy. Let the

pressure and the volume of the unit mass

at A be p, v and let the corresponding

temperature be t. Let the line of con-

stant pressure p dp cut the isothermal p~ dP

and adiabatic lines through A in B and C
Fig. 7.

and the line of constant volume v in D,

and let the temperature at C be t dt. Now DB is the increase

of volume which occurs when the pressure falls by dp while the

temperature remains constant, and DC corresponds in a similar

way to constant entropy. Hence

DB = - (dv/dp) t dp, DC=- (dv/dp)^ dp.

Further, CB is the increase of volume which occurs when the
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temperature rises by dt while the pressure remains constant, and

thus

CB = (dv/dt)p dt.

But DB-DC=CB,
and hence, by (14) and (15), we have

/I 1 \ , /dv\
v \r -J- )'dp= ji <&
\kt k+J \dtjp

Here dt is the rise of temperature which occurs when the pressure

rises by dp, while the entropy remains constant, and hence

dt = (dtjdp\ dp.

But, by Maxwell's second thermodynamic relation*,

(16)
and thus, since

(
dl\ -/_

,dtJp \d<t>Jp
'

dv\ (dv\ (dt\-_ I =1-^-1 I -= i

/V
we have

kt k^ v \dt)p \d(f>Jp v \dtjp \d<f>Jp

'

But, by (13), since we have unit mass,

and hence, finally,

n 7^1

From this equation we can find the difference kt

~l

k$~
l

,
when we

know the absolute temperature (t), the volume (v) of unit mass,

the specific heat at constant pressure (Cp), expressed in mechanical

units, and (v~
l

dv/dt)p ,
the coefficient of cubical expansion under

the constant pressure p.

Since the right side of (17) cannot be negative, it follows that

kj is greater than kt unless the substance be at a point of maxi-

mum or minimum density, like water at 4 C., when the coefficient

of cubical expansion under constant pressure, (v~
l

dv/dt)p ,
vanishes.

When this is the case, k+ is equal to kt .

* See Maxwell, Theory of Heat, Chapter IX, or Tait, Heat, Chapter XXI, or

Preston, Theory of Heat, Chapter VIII, Section iv.
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In the case of copper at C., when t 273 on the absolute

scale, we have approximately
v = 0-11 c.c., (v~

l

dv/dt)p
= 5 x 10~5

degree-
1
,

Cp = 0*095 x 4'2 x 107 = 4 x 106

ergs per grm. per deg.

kt
= 1-7 x 1012

dyne cm.-2
.

Hence, by (17),

kt tvk t /I dv\* 273 x 0-11 x 1-7 x 1013

,.
T~ = 1 7T~ T!

= L A T7^ (O X 1U )

k$ Cp \v dtjp 4 x 10b

= 1 - 0'032.

Thus k$ is about 3 per cent, greater than kt .

The process employed for the bulk modulus can be applied,

with slight changes, to give the difference between the reciprocals

of the adiabatic and the isothermal values of Young's modulus.

If the length of a rod of unit mass and of unit cross-section be

I cm., the work which the rod does when I increases by dl cm.,

is Tdl ergs, where T dyne cm."2
is the tensile stress in the rod.

Comparing this with pdv, the work done by a body in expanding

against a pressure p }
we see that, if we write dT for dp and dl

for dv, in Maxwell's equation (16), the resulting equation

(dt/dT)+=-(dl/d<l>)T (18)

will apply to the stretching of a rod of unit mass and unit section

by a tensile stress T.

We can apply Fig. 7 to this case by measuring T in the

direction DA and I in the direction DB. Using the definition of

Young's modulus given by equation (6), 17, we then obtain,

DB = - (dl/dT)t dT=- (l/Et) dT,

DC=- (dl/dT)+ dT=- (IIE^) dT,

CB = (dljdt)T dt.

But DB-DC= CB, and hence

l (w~w) dT=-(S) dt
\Hit -></>/ \(lil / ji

Here dt is the rise of temperature which occurs when the tension

rises by dT, while the entropy remains constant. Hence, by (18),

dt = (dt/dT)+ dT=- (dl/d<f>)T dT,
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and thus, since

fdl\ =
/dl\ /dt\

\d<f>/ T \dtjrp \d<f>JT'
we have

JL JL -l(dL\ (^L\ -l/^YV ^\Et E*~~l \dt) T \d4)T
~

1 \dt)T \d4>) T
'

But, by (13), since we have unit mass,

t(d(f>/dt) T
=

(dQ/dt)T = CT ,

the specific heat under constant tension, and hence finally

Et E^ ICT \dt) T CT \l dt.

Hence E$ is greater than Et unless (l~
l

dl/dt)Tl the coefficient of

linear expansion under constant tension, be zero.

When there is zero stress, the coefficient of linear expansion is

one-third of that of cubical expansion and also CT is equal to Gp ,

and thus, since I in (19) is numerically equal to v in (17), it follows

that, when the stresses are infinitesimal, the right side of (19) is

one-ninth of the right side of (17). Thus

1 1 1/1 1

or i--*_*fi_-V

But, by 19, Etjkt
= 3 - 60-, and thus

When, as in the case of metals, a- is about

E*
~

6 k

and thus Et/E^ is much more nearly unity than

In the case of copper at C., when t 273, we have approxi

mately
I = O'll cm. (/-

1

dl/dt)T
= 1'7 x 1Q-5

degree-
1

,

CT = 0-095 x 4-2 x 107 = 4 x 106

ergs per grm. per deg.

^ = T2 x 1012

dyne cm.-2
.
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Hence, by (19),

E tlE
t(ldl\*_

273 x Oil x 1-2x10"

E+- CT (ldt) T

~ ~

4 x 10"

= 1 - 0-0026.

Thus, E$ is only about three parts in a thousand greater than Et .

In most cases the experimental difficulties make it impossible

to measure either Et or E$ to within one per cent., and hence

for most purposes we may disregard the distinction between Et

and E+.
We could find the difference between the reciprocals of the

adiabatic and the isothermal values of the rigidity by a process

similar to that employed for k and E, but it will be more in-

teresting to deduce the result for n from those obtained for k

and E by aid of the relation connecting n with k and E. Thus,

by equation (8), 19,

1 = 3_ _JL
n~ E 3k'

and hence, by (17) and (19),

-
n t n^ TT 3Cp \vdt p

"

If we consider only infinitesimal strains in a substance initially

free from strain, we may put

CT = Cp , (tr
1

dv/dt)p
= 3 (l~

l

dl/dt)T)

since the coefficient of cubical expansion is three times that of

linear expansion. Since I is the length of a rod of unit mass and

unit cross-section, it is numerically equal to v, the volume of unit

mass. Hence the right side of (20) is zero, and thus

??</>

=
ft*,

the same result as that found in 8 21.



CHAPTER II,

SOLUTIONS OF SOME SIMPLE ELASTIC PROBLEMS.

23. Practical applications of the theory of elasticity.

In Chapter I the elementary principles of elasticity have been

explained, and in Chapter III some experimental methods of

determining the elastic constants will be given. Before we pass

on to those applications of the theory of elasticity, it will be

convenient to give, in the present chapter, the mathematical

solutions of some important problems, since these solutions are

required in connexion with several experiments. The remaining

problems will be considered as they arise in the course of the

experimental work.

Theoretical elasticity suffers from the disadvantage that exact

mathematical solutions for finite strains have been obtained in

very few problems, most of the investigations given in text books

on the subject depending upon the assumption that the strains

are infinitesimal. In most cases it is further assumed that the

stresses which act on the faces of any element of volume, when
an elastic body is strained, produce the same effects as if the

element had continued to occupy its original position. This

assumption is justifiable in many instances, but it sometimes leads

to results which become erroneous when the strains cease to be

infinitesimal, though they may remain very small so small, in

fact, that there is no question as to the possible failure of Hooke's

law.

In this chapter we shall endeavour to indicate the points at

which assumptions are made and to consider the difficulties which

arise. The investigations will perhaps appear rather lengthy, but

it is hoped that this will not be thought a serious disadvantage.
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In practical work in elasticity, additional difficulties make
their appearance. Thus, it is seldom, if ever, possible to apply to

the surface of the body the distribution of stress corresponding to

the mathematical solutions given in this chapter, and hence it

often becomes necessary to rely more on the light of instinct,

instructed and guided by quantitative experiments, than on strict

mathematical analysis. In addition, there is the practical difficulty

that we have no means of ascertaining to what extent a given rod

or wire is non-isotropic. In some cases, indeed, the experimental
results show that the theory of isotropic elastic solids, which is

given in Chapter I, entirely fails to account for the experimental

facts*.

24. Principle of Saint-Venant. In many practical cases

it is impossible to produce exactly that distribution of stress over

the surface of an elastic body, which is assumed for the purpose of

obtaining a problem capable of solution by comparatively simple

mathematics. In these cases we fall back on a principle stated by
Barre de Saint-Venant in 1855.

"
According to this principle, the

strains that are produced in a body by the application, to a small

part of its surface, of a system of forces statically equivalent to

zero force arid zero couple, are of negligible magnitude at distances

which are large compared with the linear dimensions of the partf."

In any given case, much depends upon what is meant by "strains

of negligible magnitude
"
and by

"
distances which are large com-

pared with the linear dimensions of the part." But, when the

body takes the form of a rod, there is mathematical evidence to

the effect that if 8l and $2 denote two different systems of forces,

which, taken together, are statically equivalent to zero force and

zero couple, and if Si and $2 be simultaneously applied to the rod

near one of its ends, the resulting strain at any point diminishes

very rapidly as the distance of the point from the end increases

and is much less than one hundredth of the strain due to either

Si or $2 acting alone, provided the distance of the point from the

end exceeds twice the greatest width of the transverse section of

the rod.

*
See, for example, EXPERIMENT 8, Chapter III.

f A. E. H. Love, Treatise on the Mathematical Theory of Elasticity, Second

Edition, p. 129.
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The distribution of force over the ends of a rod, which the

simple theory demands in any given case, cannot, as a rule, be

produced in an actual experiment. But Saint-Venant's principle
assures us that, if we apply to the rod, in the neighbourhood of an

end, any distribution of force statically equivalent to the system
which the simple theory assigns to the end of the rod, the state

of stress and strain set up in the interior of the rod is practically

the same as in the simple theory, except, of course, in the immediate

neighbourhood of the end. An example of the application of

Saint-Venant's principle is noticed in 41.

In any particular problem, the principle may be tested by

varying the length of the rod and comparing the results obtained

for different lengths. Thus, in the Practical Example of EX-

PERIMENT 4, Chapter III, it was found that, within the error of

experiment, the angle through which the pointer turned, when a

given couple was applied to the rod, was proportional to the

distance of the pointer from the face of the block into which the

fixed end of the rod is soldered. In this experiment the rod is

held by forces applied to the curved surface of the rod, while in

the theory of 39 the forces are applied to the plane end of the

rod. We may conclude that, in the experiment, the strains at

distances from the face of the block exceeding one centimetre did

not differ appreciably from those which would have existed if the

rod had ended in a plane at the face of the block and the forces

discussed in 39 had been applied to that plane.

25. Dr Filon's results for tension. Dr L. N. G. Filon* has

obtained the necessary mathematical formulae and from them has

deduced numerical results which enable us to gain some idea of

the character of the strain in a circular cylinder under tension,

when the pull is not applied evenly over the ends of the cylinder,

but is produced by tangential forces acting on the sides of the

cylinder. These results show that the strain at a point near the

surface of the cylinder is practically independent of the manner in

which the pull is applied, provided that the distance of the point

* "On the elastic equilibrium of circular cylinders under certain practical

systems of load." Phil. Trans. Royal Society, Vol. 198, A, pp. 147233.
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from the nearest point of application of the pull exceeds half the

radius of the cylinder.

Dr Filon considers the case of a cylinder AA' (Fig. 8) of length

2c and radius a. He takes

A'

and supposes that tangential stresses parallel to the axis of the

cylinder of amount p dynes per square cm. are applied to the

bands BC and B'C'. The total pull is thus f Tracp. The re-

mainder of the surface of the cylinder is free from stress.

On account of symmetry, the molecules in the central transverse

plane through will not be displaced parallel to the axis of the

cylinder when the pull is applied.

Denoting by w the increase of distance of a particle from the

central plane, Dr Filon has calculated the ratio of w to w0) where

w is the displacement which the end of the cylinder would have

had if the pull f Tracp had been uniformly distributed over the

plane ends of the cylinder. The original distance of the particle

from the central plane is z and its original distance from the axis

is r. The results in the table * have been calculated for the case in

which Poisson's ratio (cr) is and the total length of the cylinder

is half its circumference, so that TTCL = 2c.

All the particles originally at a distance of c/10 or ?ra/20 from

the central plane would have had the displacement w /10 if the

pull had been applied to the ends of the cylinder. From the

table we see that at the surface, where r = a, w is 0'1097w or

Phil. Trans. Vol. 198, A, p. 172.

S. E. B.
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about 10 per cent, greater than w /10, and this approximation to

uniform stretching has been reached in a distance as small as

about a/3 from the nearest point of application of the tangential

force. If the distances GO and C'O had been greater in proportion

to the diameter of the rod than in Dr Filon's calculations, the

displacements of points near the central plane would have differed

still less from those occurring when the rod is uniformly stretched

by a force 7racp evenly applied to its plane ends.

Values of w/w .

z
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core and the outer layer is not of much consequence in experi-

ments, since our observations are restricted to the surface of the

cylinder.

The student will find it instructive to plot a curve for each

value of z showing how w depends upon r.

In another paper*, Dr Filon has considered the case of an

infinitely long rod XX' (Fig. 9) of rectangular section with sides

2a and 26 centimetres, the side 26 being either very great or very

small compared with the side 2a. To the end X a longitudinal

force of 4<abF dynes is evenly applied so that the tension at the

X'

f~
/ 2abF*-
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has been calculated for the case where Poisson's ratio is \, gives

the ratio of e to FjE for a series of values of x.

X
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By symmetry, the particles in the central transverse plane

through 0, where z 0, suffer no rotation round the axis.

If couples + TrcPcT, were applied to the plane ends of the

cylinder in the manner described in 39, they would produce
uniform torsion and would cause the point A, for which 2, the

distance of a point from the central plane, is equal to c, and

r is equal to a, to move round the circumference of the cylinder

through a distance v
,
where

and n is the rigidity*. Under this uniform torsion, a point, for

which zpc and r = qa, would move through a distance pqvQ at

right angles to the plane containing the axis and the radius r. In

the actual case, when the torsion is caused by stresses applied to

the bands AB and A'B', this particle will move through a dis-

tance v at right angles to the plane containing the axis and the

radius.

Values of V/VQ .

z
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Dr Filon has calculated* the values of v/v for the case in which

the total length of the cylinder is half its circumference, so that

7T(l = 2C.

It will be seen from the table that, as long as z or pc is less than

c, the value of v at r = qa is very nearly equal to pqv . Hence

between the transverse planes B and B f

the particles move round

the axis in very nearly the same way as if the cylinder were

uniformly twisted by couples applied to the plane ends in the

manner described in 39.

UNIFORM BENDING OF A ROD.

27. Introduction. When a rod is bent, some of the longi-

tudinal filaments are lengthened and some are shortened, and thus

it may be expected that the resistance, which the rod offers to

bending, will depend upon Young's modulus for the material. In

the following sections we shall show how to calculate approximately,
in terms of Young's modulus, the system of forces required to

bend a rod, when the bending is uniform and small. The exact

solution for finite bending has not yet been found by any mathe-

matician. An approximate treatment of non-uniform bending is

given in Chapter III (EXPERIMENT 10).

We shall consider the case of a straight rod of uniform section

and shall suppose that the rod has a plane of symmetry parallel

to its length. Then this plane intersects every transverse section

in a straight line, which is an axis of symmetry for that section.

Bars of rectangular or circular section are examples of such rods.

Let the reader take a steel rule about 0*1 cm. in thickness and

two or three cm. in width and let him bend it. He will then

observe that the transverse section does not remain a rectangle.

The long sides of that section become curved, their centres of

curvature and the centres of curvature of the longitudinal filaments

of the rule lying on opposite sides of the rule. Rough observations

made with the aid of a straight-edge will show that the radius of

curvature of a long side of the transverse section is not more than

three or four times as great as the radius of any longitudinal
filament. Hence, if we take two sections passing through a

normal to the face of the steel rule, one transverse and the other

* Phil. Trans. Vol. 198, A, p. 229.



II] UNIFORM BENDING OF A ROD 39

longitudinal, the deformation of the transverse section is of the

same order of magnitude as the deformation of the longitudinal

section, and consequently must be taken into account.

But this curvature of the transverse fibres does not occur to

any appreciable extent when the rod takes the form of a thin

strip of metal and the radii of curvature of the longitudinal

filaments are small compared with a?/b, where 2 is the width of

the strip and 26 is its thickness. This case therefore requires

special investigation, and will be considered in 35 to 37.

28. Strain and stress in a uniformly bent rod. We
shall now investigate the system of forces which must be applied

to a uniform rod to bend it so that all the longitudinal filaments

are bent into circular arcs in planes parallel to a plane of symmetry
of the rod. This plane may now be called the plane of bending.

In order that the bending may be uniform along the length
of the rod, it is necessary that the centres of curvature of all the

longitudinal filaments should lie on a straight line perpendicular

to the plane of bending. This straight line may be called the

axis of bending. The uniformity of bending also requires that all

the particles, which lay in transverse planes before the rod was

bent, lie, after the bending, in corresponding planes passing through
the axis of bending. These planes therefore cut the filaments at

right angles.

We shall examine the strains and the stresses which exist,

when the conditions are such that the sides of any longitudinal

filament are entirely free from stress. On account of this condition,

each filament will be free to contract or expand in a transverse

direction when its length is increased or diminished, exactly as if

it were isolated from the rest of the rod. We shall show later

that the solution obtained in this way is a good approximation to

what occurs when a rod is bent by couples applied at its ends,

provided that the radii of curvature of the longitudinal filaments

are great compared with a*/b, where 2 is the width of the rod,

measured in a direction parallel to the axis of bending, and 26 is

its thickness*.

* The method we shall employ is a modification of that used by Thomson

(Lord Kelvin) and Tait. (Natural Philosophy, Vol. I. Part n. 711, New Edition.)
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Though we have specified that the sides of the longitudinal

filaments are free from stress, we do not exclude the possibility

that, to produce equilibrium, it may be necessary to apply to each

element of volume of the rod a force like that due to gravity,

which may be regarded as acting at a distance. Such an action

will be called a "body force" and will be measured in dynes per c.c.

Since the rod is uniformly bent, it follows that the stress on a

transverse section of any longitudinal filament is normal to that

section, and thus the stress is a positive or negative tension.

If the cross-section of any filament be a square cm. and if the

stress be a positive tension of T dynes per square cm., the force

acting across the section is To. dynes. If the radius of curvature

of the filament be r cm. and if the angle between the transverse

planes at the ends of a small portion of the filament of length

s cm. be radians, we have 6 s/r. The resultant of the two

forces which are applied to the ends of this portion is a force

2Ta.sm^0 dynes at right angles to the filament and parallel to

the plane of bending. When 6 is infinitesimal, the force becomes

TaO or Tas/r, a force proportional to the volume, as, of the portion

of the filament.

To maintain equilibrium a radial "body force" of T/r dynes

per c.c. must, therefore, be supplied by some agent acting
"
at a

distance." As such a force does not exist in nature, we shall

consider, in 32 to 34, what effects are produced when this force

is not supplied. For the present it will be supposed to act.

29. Change of cross-section due to bending. One of

the filaments in the plane of bending will be unchanged in length

when the rod is bent. This filament will be called the neutral

filament. Let the radius of curvature of the circular arc into

which it is bent be p. In Fig. 11* is shown a section of the rod,

when bent, made by a plane containing RH, the axis of bending,

and here is the point where the neutral filament cuts this plane.

Take rectangular axes OX, OY parallel and perpendicular to RH,
let PN =x and PMy be the coordinates of any point P of the

strained section and let PM meet RH in A". Then MK =
p. The

* For the sake of clearness, the dimensions of the section have been greatly

increased relatively to the distances OR, OS.
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longitudinal filament through M is unstretched, since it is at the

same distance from RH as the longitudinal filament through 0,

Axis OF BENDING

Fig. 11.

and hence s', the length, when stretched, of any portion of the

filament through P, is to s, its length, when unstretched, as PK
is to MK or as p + y is to p. Hence, if the elongation of the

longitudinal filament through P be e, we have

e = ~

~
p = y-

p p

If / be the lateral contraction of the filament and & be

Poisson's ratio, we have, by 18, Chapter I,

f=(re = '<ry/p......................... (2)

We can obtain a general idea of how the cross-section is

distorted when the rod is bent, if we remember that, since the

sides of every longitudinal filament are free from stress, the

geometrical form of the cross-section of the filament remains

unchanged. Thus, if the cross-section be square, it remains
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square, though changed in area. Hence any two transverse

fibres which intersected at any angle in the unstrained section

intersect at the same angle in the strained section, and thus the

two sets of fibres which were originally parallel to OX and F
are changed by the strain into two sets of curves, such that the

curves of one set intersect the curves of the other set at right

angles, like lines of force and equipotential lines.

Now those longitudinal filaments, which cut the plane XOY
(Fig. 11) above OX when the rod is bent, have suffered a lateral

contraction and those below OX have suffered a lateral expansion,
and hence the transverse fibres in the plane XOY which were

originally parallel to OF are no longer parallel to OF. Further,

since the angles of intersection remain unchanged, the transverse

fibres which were parallel to OX are bent so that they become

curves convex to RH, the axis of bending.

Now, by (2), the lateral contraction of all the longitudinal

filaments which are finally at the same height above OX is the

same, and thus, if the curved arc P ^V represent that fibre in the

straight rod which is represented by the straight line PN in the

bent rod, we have, since PN = x,

arcP,,lVo~ ~~p'
x cry

arc P iV 7
"

Hence, all the points in the section of the straight rod, whose

distances from OF, measured along curves of the same character

as PO^VQ, were constant and equal to I, now lie upon the straight
line

Any fibre such as P N in the straight rod will have a definite

radius of curvature q in the neighbourhood of N . If we treat

P Ar as part of a circle of radius q and denote by # the per-

pendicular distance of P from OF, we have

x, = q sin (l/q),

. /a?\
; = sln-.
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Thus approximately, when x /q is small,

^f = (3)

Hence, if XQ
=

q/lO, the difference between I and XQ is approximately
# /600 and thus, when XQ does not exceed <?/10, we may neglect

the difference. In this case we may consider that the transverse

fibre in the unbent rod which is straight and has the equation

# = constant

is transformed by the bending of the rod into the straight fibre

having the equation

This straight line is represented by SQ in Fig. 11. It cuts

OX in Q, where OQ = ^
,
and OF in S, where OS = p/o: Thus,

to our degree of approximation, OQ is equal to the original length

of the fibre which is represented by PN in the bent rod. Since

p/cr is independent of #
,
the point S is fixed, and hence all the

straight lines which are parallel to OF in the unstrained section

are changed into straight lines passing through S. If we denote

the distance OS by p, we have

OS = p'
=

p/<r (5)

Since the lines originally parallel to OX are strained so as to

cut at right angles the lines which were originally parallel to OF,
it follows that the former are changed by the strain into arcs of

circles having S as a common centre.

Hence the transverse fibre passing through and originally

perpendicular to F is strained into the form of a circle of radius

p
=

pia.

When y is small compared with p, the radius of curvature q

of any transverse fibre in the straight rod (such as P ^Vo), which

becomes parallel to OX in the bent rod, is approximately equal

to p, and hence (3) may be written

V ~~~
WQ lX/Q

#o 6//
2

'

Thus the above investigation applies with great accuracy so long

as p is not less than 10 times the greatest value of a? .
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The longitudinal filaments which lay in the plane through

perpendicular to OF, when the rod was unstrained, are strained so

as to lie upon an anticlastic surface having radii of curvature p

and p' in the principal sections at 0, the two centres of curvature,

R and S, lying on opposite sides of the surface*.

To complete the investigation of the change of form of the

transverse section, we will find how the distance 77 between and

any point N on the axis Y in the strained section depends on the

distance y between the corresponding points in the unstrained

section. If on Y we take a neighbouring point defined by rj + drj,

its distance from the first point is changed by the strain from

dyQ to drj, and hence the lateral contraction / is

dy.-drj
J ~

dy
Hence by (2) and (5)

. ...

dy p p'

Now, in the case of metals, Hooke's law begins to fail when the

elongation e exceeds about y^ and thus we see from (1) that, in

practical measurements, p should be so large in comparison with

the thickness of the rod in the plane of bending that the maxi-

mum value of
7)Ip does not exceed y^- Thus since, by 19,

Chapter I, a- cannot be greater than \ in an isotropic elastic solid,

o-rj/p will not exceed -^-fa and thus it will suffice to write y for rj

on the right side of (6). Then, since rj
= when y = 0, we obtain,

on integration,

The exact solution is easily found to be

which is nearly the same as (7) when y /p is small.

We can now construct a diagram to show the distortion of the

transverse section of a rectangular rod. In Fig. 12, is the point

*
Fig. 18 may assist the reader to realise the character of an anticlastic surface.
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where the neutral filament cuts the plane of the paper, and S is

the centre of curvature of those transverse filaments which are

initially parallel to the axis of bending. The sides AB, CD,

which were initially parallel to 0$, become straight lines A'B',

C'D' passing through S, the distance OS being equal to p or p/o;

while the sides BC, AD become circular arcs with S as centre.

Fig. 12.

Two sets of straight lines parallel to AB and to BC and dividing
the section into equal infinitesimal squares is transformed by the

strain into a set of radii and a set of circular arcs which divide the

strained section into infinitesimal squares. The area enclosed by
a mesh of the strained net-work increases as we pass from B'C' to

A'D', as appears from (6).

The distortion of the cross-section of a rod of any section can
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be found by the aid of Fig. 12. On the net-work of straight lines

drawn on the section of the unstrained rod we mark a set of

points lying on the boundary of the unstrained section, and then

mark on the net-work of radii and circular arcs a second set of

points corresponding to the first set. The curve drawn through
the second set is the boundary of the strained section.

30. Position of the neutral filament. The resultant effect

of the normal stresses across any transverse section may be reduced

to (a) a force F which acts at right angles to the section and will

be taken as acting along the tangent to the neutral filament, and

(6) a couple G, having its axis perpendicular to the plane of

bending*.
Under the assumed conditions, the sides of a longitudinal

filament are free from stress and thus, by (5), 17, Chapter I,

if T be the tension in a longitudinal filament, T'= Ee. Hence,

by(1)

If a be an element of the strained section at a distance y from OX,
we have

E "
.-(9)

The resultant of the two forces which act at the ends of a

portion of the bent rod comprised between two transverse planes
inclined at an infinitesimal angle 6 is F0, and hence, since this

portion corresponds to a length pO of the neutral axis, we see that

the resultant of the body forces per unit of length of the neutral

axis is F/p.

Now any distribution of normal stress over the transverse

section such that T=Eyjp, together with the body force T/r or

T/(y + p) per unit volume will bend the rod in such a way that

the sides of the longitudinal filaments are free from stress, but

to different distributions there will correspond different neutral

filaments.

The most important distribution of stress is that for which

the force F vanishes, for then F/p, the resultant of the body forces

* See Note I.
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per unit length of the neutral axis, vanishes also. In this case

the body forces could be supposed to arise from mutual actions

occurring within the rod and would not require the operation of

any external agent.

The force F will vanish provided that

22/ = (10)

But Say = Ah, where A is the area of the strained section and

h is the distance of the "centre of gravity" or centroid of the

section above X. Hence h = 0, or, in other words, the neutral

filament passes through the centre of gravity of the strained

section. When the deformation of the transverse section is very

small, we may consider that the longitudinal filament through the

centre of gravity of the unstrained section remains unchanged in

length and is therefore the neutral filament.

Since the force F vanishes, the stresses acting across any trans-

verse section are equivalent to a couple.

31. Bending moment. By 4, Chapter I, the sum of the

moments about the axis OX (Fig. 11) of the forces exerted on

the part of the rod on one side of the transverse section by the

tensions in the longitudinal filaments is equal and opposite to the
"
bending moment," i.e. the moment about the same axis of the

forces applied to the same part of the rod. The force due to the

tension T in a filament of section a is To. and this force acts at a

distance y from OX. Hence, by (8), if G be the bending moment,

-

But Say
2
is the

" moment of inertia
"

of the area of the strained

section about the axis OX. If Say
2 be denoted by /, we have*

G = ^. ,..(11)
P

When the rod is bent by couples applied to its ends, the neutral

filament passes through the centre of gravity of the strained

section ( 30) and then / is the " moment of inertia
"

of the

strained section about an axis through its centre of gravity per-

pendicular to the plane of bending.
* The values of 7 for some simple forms of area are given in Note IV, 12.
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Since the deformation of the transverse section is very small

in practical work, we may take / as equal to / the "moment of

inertia
"
of the unstrained section about an axis through its centre

of gravity at right angles to the plane of bending, unless the rod

takes the form of a blade. In this case (11) no longer gives the

couple when l/p becomes at all large compared with b/a, where

'2<i is the width of the blade parallel to OX and 26 is its thickness.

\\V shall see in 37 that we must now write

Equation (11) is of fundamental importance in the theory

of the bending of rods and is frequently required in practical

work.

32. Removal of the "body-forces." We must now

examine the effects which would follow the removal of the
"
body

forces
"
which were introduced in 28 .to ensure that the sides of

the longitudinal filaments should be free from stress. The removal

may be effected by superposing a second set of body forces equal
in magnitude to those already applied, but with opposite directions.

We may regard the results of 29, 30 and 31 as good approximations
to the results corresponding to the natural case in which a rod is

bent by couples applied to its ends and is not acted on by any

body forces, provided that the form found for the strained section

in 29 is not perceptibly changed when the second set of body
forces is applied.

In Fig. 11, the coordinates of P are x, y and hence, by 28, if Y
be the body force at P,

Y= T/(p + y) dynes per c.c.

But, by (8), T=Eyjp

and hence Y = -

Now the volume of a portion of a longitudinal filament which

has the cross-section dxdy and is terminated by a pair of trans-

verse planes inclined at a small angle 6 is (p + y)6 dx dy, and hence

the force acting on this element is

Y(p } y) 6dxdy dynes,

or EOydxdylp..........................(12)
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Thus the force is proportional to y and acts upwards or downwards

according as P is above or below OX. When the rod is bent by

couples, the resultant of the "
body forces

"
on any portion bounded

by a pair of transverse planes is zero, and hence, since Y is a

line of symmetry for this section, the "
body forces

"
which act on

the part of the wedge of angle 6 which lies on one side of Y must
themselves have a zero resultant arid are thus equivalent to a

couple.

If we consider the total force acting on an elementary wedge of

angle 6 and width dx, extending from V to V (Fig. 11), we see

that it vanishes when MV=MV and that it will nearly vanish

when JlfFand MV are nearly equal.

When the cross-section is initially symmetrical with respect to

OX, we see, by 29, that in the neighbourhood of OF, MV is

less than MV and hence, since is the centre of gravity of the

strained section, MV is greater than MV when PN exceeds some

definite value *. Hence the reversed forces which correspond to the

part of the section to the right of OF will give rise to a couple

tending to destroy the curvature of the transverse fibres which had

been bent into circular arcs, and will cause new stresses in these

transverse fibres. It would be difficult to determine the precise

values of these new stresses, but it is clear that there will be a

positive tension in the transverse fibres near U (Fig. 11) and a

negative tension in the transverse fibres near U'.

To make the discussion as definite as possible we shall consider

the case of a bar of rectangular section, having a width 2a

parallel to OX, i.e. parallel to the axis of bending, and a thickness

26 parallel to OF.

33. Case of a rod. If a straight line be drawn between the

ends of the circular arc passing through the point (Fig. 12), the

greatest distance of the arc from the chord is approximately a2

/2p' ;

when this is small MV and MV (Fig. 11) will be nearly equal,

since is the centre of gravity of the strained section. In this

case the bending moment due to the reversed "
body forces

"
will

be small. If, at the same time, b be large compared with a*/2p',

we may expect that the change of section due to the reversed

* These statements are illustrated in Fig. 12.

S. E. E. 4
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"
body forces" will be small, in which case the distortion represented

by Fig. 12 will be a good approximation to that which actually

occurs when a rod is bent by couples and no "body force" is

supplied.

In the Practical Example of EXPERIMENT 9, Chapter III, the

rod was such that a = T24, b - 0'15 cm. and thus a2

/26 = 5'13 cm.

The least value of p' in the experiments was 485 cm., or nearly

100 times a2
/26. In such a case the effect of the reversed

"
body

forces
"
may be safely neglected.

34. Case of a blade. When a/6 is great, a quite moderate

bending of the rod is sufficient to cause p' to be small compared
with a2

/26, although p' may be great compared with a as well as

with 6. Thus, it is quite easy to bend a blade or strip of thin

metal, for which b = 0*01 cm., so that p, the radius of curvature of

the longitudinal fibres, is 10 cm. The value of p' deduced from

the formula p'
=

p/a- is then about 30 or 40 cm. according to the

value of a. But a need be no greater than 2 cm. to make

a?/'2b
= 200 cm., and then a2

/26 much exceeds p', and a2
/2p' much

exceeds 6.

The case in which p is small compared with a2

/26 is of some

interest, since, under these conditions, the actual distortion of the

Fig. 13.
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cross-section, when the blade is bent, differs entirely from that

discussed in 29 and represented in Fig. 12. We shall therefore

consider this case in some detail.

Let AB (Fig. 13) represent the section of the bent blade and

let C be the point on OF which is midway between the curved

sides of the section. By 29, we see that, when a/p' is small, we

may take the dotted curve ACE, which is midway between the

sides of the section, to be an arc of a circle of radius p.

We must first find the distance of C from 0, the centre of

gravity of the strained section. If OC = p, the curve AGE may
be represented approximately by

To find p we express the fact that the centre of gravity coincides

with 0. Thus approximately, if h be the ordinate of the centre

of gravity of the section A CB,

4<abh = 2 [y . 2bdx = 46 fO2

/2o'
-
p) dx

Jo Jo

But h = 0, and hence

p = a'

so that the equation to ACE is

Let M be the moment about an axis through C, perpendicular to

the plane of Fig. 13, of the "
body forces

"
which act on the half

(corresponding to AC) of a portion of the blade bounded by two

transverse planes inclined at a small angle 6. Then if we write

26 for dy in (12), we find

M=
P Jo

c

pp

The section of this portion of the blade in a plane through OF
perpendicular to the plane of Fig. 13 is approximately a rectangle

42
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with sides pB and 26, and thus, if J be the moment of inertia of

this rectangle about an axis through C perpendicular to the plane

of the figure*,

In finding l/JR, the change of transverse curvature which the

reversed
"
body forces

"
would produce in the portion of the blade

under consideration, we must remember that the fibres at right

angles to the plane of Fig. 13 are unable to change in length

owing to their connexion with the neighbouring parts of the blade,

and we must make allowance for this in the manner described in

35, 36, 37. We can then make a rough estimate of R by

applying the formula (22) of 37 to this case and writing

EJ -M
(T-<T*)R-

Hence

~
(1
- <r

2
)M (1

- <r
2
) a

4
' *

If <j = J, R will equal p when p
2 = 15a4

/1286
2 or p = 0'34a2

/&.

Hence we may expect that, when p is less than a?/3b, the section

of the blade, instead of being bounded by radii and arcs of con-

centric circles will be practically a rectangle A'OR with a slight

distortion at each end as shown by the dotted lines in Fig. 18.

The reader may easily confirm this expectation by bending a thin

strip of metal so that p is less than a2
/36. It will be seen that

the anticlastic curvature of Fig. 12 no longer exists.

UNIFORM BENDING OF A BLADE.

35. Introduction. In 28 to 33 we have investigated the

bending of a rod when the sides of the longitudinal filaments are

free from stress and have found that the cross-section will be

distorted as in Fig. 12. But experiment shows that when a blade,

i.e. a long and wide strip of thin metal, is uniformly bent, it does not

differ appreciably from part of a circular cylinder, however great the

curvature may be, and thus the transverse fibres originally parallel

* See Note IV, 12.



II] UNIFORM BENDING OF A BLADE 53

to the axis of bending are not appreciably bent. Since, for the

reasons given in 34, the theory of 29 entirely fails in this case,

a fresh investigation is required.

We shall now consider the bending of a blade when the

conditions are such that the transverse fibres originally parallel

and perpendicular to the axis of bending remain parallel and

perpendicular to that axis after bending. As in 28, we shall

introduce a "body force" to counterbalance the radial force due to

the tensions on the ends of any element of a longitudinal filament.

The blade before it is bent is a rectangular block of length 2/
,

of width 2a and of thickness 26
,
and a is great compared with 6 .

When it is bent, the filaments parallel to the length Z1 lie along

circular arcs.

Let ABCD (Fig. 14) be a section of the blade when bent, the

side AD being parallel to RH, the axis of bending. Let AD= 2a

and AB = 26. Since all the transverse fibres perpendicular to RH
remain straight and perpendicular to RH, the lateral expansion
of every part of each of these fibres parallel to RH is the same.

This expansion will be denoted by u cm. per cm.

Axis OF BENDING

Fig. 14.

Let OX be the straight line intersected by all the unstretched

longitudinal filaments and let the small rectangle P represent an

element of area of unit length OQ and width dy, where PO =
y.
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Since the element P retains its rectangular form, the stresses

on the sides of the longitudinal filament of which P is a section

must be normal to those sides. The introduction of the "
body

force
"
relieves the sides parallel to OX of stress and there only

remains a normal stress on the sides parallel to OF. This we

shall suppose is a tension of 8 dynes per square cm. The longitu-

dinal tension of the filament is T dynes per square cm.

Just as in 29, if the elongation of the longitudinal filament

through P be e,

* = y/p>

where OR p. This elongation is due to the stresses T and S

alone, since there is no pressure or tension in a direction at right

angles to both T and 8. The stress T causes an elongation T/E
and the stress S a contraction cS/E, both in the direction of T.

Thus

T-<rS = Ee=Ey/p................... (13)

Similarly, the tension S causes an elongation S/E and the tension T
a contraction aTjE parallel to OX, and thus

-aT+S**Eu...................... (14)

From (13) and (14) we obtain

(15)

(16)

If we could assume that the width of the blade remains un-

changed, so that u 0, we could at once find T and 8 in terms

of y. But there do not appear to be any grounds for this

assumption and hence the value of u must be found. The
calculation shows, however, that u is negligible, being of the

second order of small quantities.

36. Position of neutral filaments. If h be the height
of the centre of gravity of the area ABCD above OX, and if BO
and AD cut OF in K and L respectively, we have OKb + h

and OL b-h, and thus

i'h + b rh+

dy = 2b,
J h-b J h-
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Further, if / be the moment of inertia of the section about OX,

fh + b

I=2a fdy = 4a6 (h
2 + 62

).
J h-b

When the blade is bent by couples, the resultant of the stress T
over the area ABCD is zero. Using the first two of the above

integrals, we find by (15) that

(1
- <r

2

) f T. 2ady = + 2<rJEbu 2o.
J h-b ( p )

But the integral on the left side is zero, since the resultant force

is zero, and hence
u = -h/o-p.........................(17)

When the blade is bent by couples, the total force across a section

of the blade made by a plane perpendicular to the axis of bending
is zero, and thus, since the area of the curved strip of this section

corresponding to dy is proportional to p + y, we have

"h + b

...................(18)
h-b

Multiplying (16) by p + y and integrating, we find

h-b

so that

Substituting the value of u given by (17), we obtain a quadratic

equation for h. Thus

Hence

Since h is very small in comparison with p, we select the positive

sign for the square root. Now the second term under the square
root is small compared with unity, and thus, by expanding, we
obtain the approximate value
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When the bending is slight, h is very small. Thus, if <r = J,

we have

h/b = 6/45p.

By (17), the lateral expansion, u, is given by

h a-b
2-'-' ................(2

When the bending is so slight that b/p is a small quantity of

the first order, u is a small quantity of the second order and may
be neglected. Hence, to this order of accuracy, we may say that

the width of the blade parallel to the axis of bending remains

unchanged.

37. Bending moment. If the bending moment about the

axis OX be G dyne-cm., we have, since, by (17), cru = h/p,

This is the accurate value of G in terms of 2a and 26, the sides

of the section of the bent blade. When p is great compared
with 6, we may replace a and b by and 6

,
the values for the

unbent blade, and may neglect h? in comparison with J6
2

. Then
1 takes the value 7 = Ja 6 8

. Hence, when 6
//o

is small,

Thus G is greater than the value EI /p given by the theory of

31 in the proportion of 1 to 1 <r
2

. The difference is, however,

never great, since <r is about J for metals and cannot exceed in

isotropic solids.

When the bending is so slight that b/p is small, we may
neglect the effects of the "body force," since this is equal to

T/(p + y) or approximately to Ey(\cr*)-
l

p-~, and can be made
as small as we please compared with T and S by sufficiently

increasing p.
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But when we bend a blade by couples applied to its ends, the

tensions S indicated by the arrows (Fig. 14) are not applied to

the edges AB and CD. We can however correct our solution by

applying to AB and CD a set of tensions equal to $ but with

their directions reversed, as shown by the dotted arrows. These

reversed tensions will tend to change the section of the blade,

but as soon as the section is changed the changed tension in the

longitudinal filaments near the edge of the blade will give rise

to radial forces tending to counteract the effects of the reversed

tensions. Experiment shows that any distortion which the section

may suffer near the edges AB and CD is exceedingly small and

that it cannot be made appreciable by increasing the curvature

of the longitudinal filaments. We therefore conclude, that, when

the width of the blade is great compared with its thickness, a

pair of couples applied to the ends of the blade will bend it so

that its surfaces do not differ appreciably from the cylindrical

form, provided that the radius of curvature be small enough to

make the product of the radius and the thickness of the blade

small compared with the square of the width of the blade. In

this case we may regard (22) as giving a nearly accurate value for

the bending moment.

38. Change of type of bending. When the bending is

very slight, so that a?/p is very small compared with b, the section

of the blade will be changed in the manner described in 29. The

bending moment will then be connected with the curvature by
the equation

*-S.
p

But, when the bending is increased so that a?/p becomes large

compared with 6, there will be no appreciable change of section,

and the bending moment will now be

The blade is consequently a little less stiff for small curvatures

than for large ones. As the curvature is increased from zero to a

large value, the product Gp will gradually change from EI^ to
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It would be interesting to endeavour to detect experimentally

the change in the product Gp as the bending proceeds. If the

method of EXPERIMENT 12, Chapter III, be employed, success will

largely depend upon a proper choice of the section of the blade

and upon the use of a sensitive and accurate instrument for

measuring the displacement of the centre of the blade. The

bending of the blade under its own weight should be made as

small as possible by the use of a short blade and by a proper

choice of the distance between the knife edges.

The blade used in the Practical Example of EXPERIMENT 12

is not suitable for the suggested experiment. For this blade,

a = 2-521 cm., b = 0'02406 cm.

and hence a/b
= 105 and a?jb

= 264 cm.
;

thus p must exceed 2000 cm. if it is to be considered great

compared with a?/b. The unavoidable curvature due to the

weight of the blade is of the same order of magnitude as

1/2000 cm." 1

,
and thus it will be understood that an attempt to

detect the change of type of bending led to no result. A blade

with a larger value of a/b should be used.

UNIFORM TORSION OF A ROUND ROD.

39. Relation between torsional couple and twist.

Consider a round rod or wire of length I cm. and radius a cm.,

having plane ends A, B, at right angles to the axis, and let us

enquire if it be possible to apply such a distribution of forces to

the rod that it shall suffer a uniform torsion, in which the distances

of every particle from the axis and from the plane A remain

unchanged and all the particles in any one normal section describe

equal angles about the axis. If the particles at A be fixed and

those at B describe angles of
<f>

radians about the axis, the twist

per unit length is </ radians per cm.

Consider a portion AC (Fig. 15) of the rod in the form of a thin

tube of length h cm. and' radii r and r + dr cm., the end A being
fixed. A point Q on the end C describes the angle QOQ' or h(f>/l

radians about the axis and therefore moves through hr<f)/l cm.

relative to the fixed end. Thus the thin prism PQ, which is cut
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out by a pair of radial planes, is strained into the figure PQ'.

Since for strains within the elastic limit the angle QPQ' is very

small, we may treat its tangent and its circular measure as identical.

Thus QPQ' = QQ'IQP = r^>ll radians. In other words, the prism
has suffered a shear rfyjl in the plane QPQ'. There is no change

Fig. 15.

of volume, for the radial width, the width measured round the

circumference of the cylinder and the height all remain unchanged.
There is no shear in a plane containing the axis and no shear in a

plane normal to the axis. Hence the shear r(f>/l
in the plane QPQ'

is the whole strain.

By Chapter I, 14, this strain can be produced in the prism PQ
by tangential stresses nr^/l dynes cm.~2

acting on the ends P, Q
parallel to the plane QPQ', together with tangential stresses of

equal amounts parallel to the axis acting on the radial faces.

The latter stresses are provided by the action of the neighbouring

prisms in the tube. Thus, the only stress on the ends of the

prism is the tangential stress nr<f)/l dynes cm.~2
. If the cross

section of the prism be a square cm., the tangential force is

a.nr<f)ll dynes, and the moment of this about the axis is ar'
2

. nfyjl

dyne-cm. If the total moment of all the forces which act across

the whole section of the rod be 6r, we have

G = (n(j)/l) 2ar
2

dyne-cni.

It is important to notice that the given strain does not imply the

action of any forces on the cylindrical surface of the rod.
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The quantity Sa?-2
is the " moment of inertia

"
of the area of

cross-section of the rod about the axis. Its value can be found at

once by the integral calculus. For, if we take 27rrdr as the

element of area, we have, for a circle of radius a cm.,

r

=
J

. Zirrdr = J?ra
4 cm.4

A method of calculating the value of 2otr 2 without the use of the

calculus is given in Note IV, 12. Hence

~ , /oo\G = r
dyne-cm...................(23)

Thus, if we can find by experiment the couple corresponding to

the twist <, the value of n can be deduced from (23).

The quantity 2ar2
is sometimes called the

" second moment
"

of the area about the axis.

Since there is no stress on the cylindrical surfaces of an

elementary tube, such as that shown in Fig. 15, it follows that

the investigation applies to any tube bounded by two circular

and coaxal cylinders. If a, b be the radii of the cylinders, we

have
~ TTT? (a

4
,G =

iSj dyne-cm.

In this calculation it has been assumed that the material is

homogeneous and isotropic, a condition improbable in the case of

a wire, where the material has been made to
"
flow

"
in the wire-

drawing process. When the material is not isotropic and homo-

geneous, there is no such thing as the rigidity of the material

and, hence, the application of (23) to the experimental value of

the ratio of the couple to the twist only leads to a sort of average
value of the rigidity, such that an isotropic and homogeneous rod

of length I and radius a, formed of material with this rigidity,

would offer the same resistance to torsion as the rod used in the

experiment.

40. Rods of non-circular section. We have seen that,

for a rod of circular section, the couple G and the twist
<f>

are

connected by the equation

Gl -- = lar'.
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Here 2ar2
is the " moment of inertia

"
of the section of the rod

about the axis of the rod. But it does not follow and it is not

true that, for a rod of any other section, Gl/n<f> is equal to the
" moment of inertia

"
of the section. It can be shown that, in the

general case, the surfaces, which are initially perpendicular to

the axis of the rod, cease to be plane when the rod is twisted,

and thus the investigation of 39 does not apply to the general

case. Complete solutions have been obtained for several forms of

section, and the following values of Gl/n<f> have been found. For

comparison we give in each case the value of /, the " moment of

inertia" of the area of the section about an axis through its centre

of gravity and perpendicular to its plane (see Note IV, 12).

It will be seen that in every case, except that of a circular

section, Gljn<$> is less than /, the " moment of inertia
"

of the

section.

Circular area, radius a.

= i-Tra
4
,

/ = i-rra
4

.

Elliptical area, axes 2a, 26.

GL 7Ttt
363

-

Rectangular area, sides 2a, 26.

Gl 16a63

-,-

- ^rv.-
n$ 3 W U= (2m + l)

5 26

where m has the values 0, 1, 2, 3 ...,

, 7r
tanh- -4, ...(25)'

For a square, this gives

Gl/n<j>
= 2-2492a4

,
7= fa

4 = 2'6666...a4
.......(26)

When a is greater than 36, the sum of the infinite series of

hyperbolic tangents, which is contained within the brackets in

(25), differs by less than two parts in 10,000 from

its value when a/b is infinite. Thus, when a > 36, we may put

Gl/n(f>
= a (J#

-
3'3616/a)................ (27)

* See Dale, Five-Figure Tables, p. 92.
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41. Practical approximation. In practical
cases it

i|

impossible to apply to the plane ends of the rod the ideal

trilmti..n of tangential force, in which the force per unit area a

I'.u-h point is proportional to the distance of the point from th<

axis. But it is easily understood that any distribution of force

over the cylindrical surface of the rod near one end will produce

at some distance from that end the same
r-

strain as the ideal distribution provided

that the couples due to the two are equal.

Thus, suppose that the ends of the rod

AB (Fig. 16) are soldered into two stout

blocks, C, D. Then, if the rod be twisted

by means of these blocks, forces are ap-

plied over the curved surface of the rod

between the planes A and E, and the

strain at any point P between A and B
will not be quite the same as if the ideal

distribution had been applied to the section

A
y
even though the two distributions have

the same moment G. But, when AP exceeds two or three

diameters, the difference between the strains at P will be

inappreciable. For suppose that a couple G is applied to the

cylindrical surface of AE by means of the block G and that

simultaneously a couple
- G is applied to the section A, the

force being distributed in the ideal manner. Since these couples
are in equilibrium, no couple is required to hold the block D at

rest, and, without calculation, we may infer that the strain due to

the two opposing couples will be insensible when the distance AP
eds a few diameters. In other words, the strain at P, due to a

couple G applied by the block C, is practically identical with that

produced by an equal couple applied in the ideal manner over the

section A, provided that PA exceed a few diameters. This result

furnishes an illustration of Saint-Venant's principle ( 24). In

practical cases the length of the rod is very many times its

diameter and hence, in these cases, it is sufficiently accurate to

; i nine that the uniform torsion extends up to the sections A, B.

F

Fig. 16.
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UNIFORM TORSION OF A BLADE.

42. Introduction. In treatises on the mathematical theory
of elasticity, the couple required to produce a given twist in a rod

of rectangular section is deduced from the general equations of

elasticity by the aid of Fourier analysis, the result being expressed
in the form of an infinite series, as in equation (25) of 40. The
use of the Fourier mathematics is unavoidable unless one side of

the section is very small compared with an adjacent side. In this

case the couple can be calculated by simple methods.

tWe
shall consider a blade of length I, of width 2a and of very

all thickness 26 cm. and shall find the couple (G dyne-cm.)

required to twist one end of the blade through an angle of < radians

relative to the other end. The twist per centimetre will be denoted

by r
;
thus

r =
(f>/l

radians per cm (28)

43. Geometry of a helicoid. We shall first consider the

uniform torsion of a strip of a mathematical

plane. Let ABCDA'D'B' (Fig. 17) be a

rectangular portion of a plane, and let rect-

angular axes OX, OF, OZ be drawn through
the centre 0, the axes OX, OZ being per-

pendicular to the edges of the strip, while

the axis OF is perpendicular to the paper
and is directed away from the reader. Let

the strip be now deformed in such a way
that a line on the strip initially parallel to

OA and at a distance z from OA is turned

about the axis of z through an angle rz,

the positive direction of rotation being con-

nected with the direction OZ in the same

way as the rotation and translation of a

right-handed screw working in a fixed nut. Fig. 17.

The edges of the strip which were initially

parallel to OZ thus become uniform right-handed helices making
one turn about the axis in a length of 27r/r cm. The new surface

is called a helicoid.

c
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If the initial coordinates of a point on the strip are
, 0, f,

they will be changed by the twisting to x, y, z, where

# = ?COS(T?), y = fsin(Tf), z = f. .........(29)

On eliminating f and f from these equations, we obtain for

the equation to the helicoid

y = #tan(T$).................... (30)

When TZ is very small compared with a radian, we may write

TZ instead of tan (TZ), and thus, in the neighbourhood of OA, the

surface may be represented by the equation

y = rxz............................ (31)

We shall now find the curvature of the helicoid at any point P
on OX, where OP=p. If we move the origin to P by writing
x' + p for x in (31), the equation to the surface becomes

y = T(x'+p)z............................... (32)

Now take a plane containing the new axis of y and cutting the

plane OXZ in a straight line PQ inclined at an angle to OX.

Then, if x', y, z
t
be the coordinates of a point on the curve of inter-

section of the plane and the helicoid at a distance r from the new

axis of y, we have
x

e

r cos 0, z = r sin 6,

and thus, by (32),

y = T (r cos 6 +p)r sin 0.

For a given value of 6, this equation shows the form of the

curve of intersection. By 79, Chapter III, the curvature, l/p, of

this curve at the point P is given by

dr

Since we desire the curvature at P, we must put r = in this

result after the differentiations have been performed. We thus

obtain

l/p= 2r sin cos B {1 + T2

jo
2 sin2

0}

~
% ....... (33)

If Tp be so small that rz

p* is negligible in comparison with unity,

the curvature is independent of the position of P and has the

value

(34)
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It will be seen* that the convexity of the curve of intersection

is turned towards the reader when lies between and \TT or

between TT and fTT. On the other hand the convexity is turned

away from the reader when lies between TT and TT or between

f?r and 2?r.

For the physical applications we require the curvature of the

section of the helicoid made by a plane which contains the normal

to the helicoid at P and is inclined at an angle 9 to OX. But,

when rp is very small compared with unity, the angle between this

normal and the new axis of y is very small, and then (34) will give
an approximate value for the curvature of the section of the

helicoid made by a plane containing the normal.

By the methods of Solid Geometry we can show, from the exact

equation (30), that the accurate expression for the curvature is

l = rsin_20

/3~l+T 2

p
2 '

which agrees with (34) when rp is infinitesimal.

From (34) we see that the curvature vanishes when 6 = and

when # = ITT and that it has the extreme values T when
= J TT. Thus, straight lines initially parallel to OA or 00

remain straight, while straight lines initially inclined at J TT to A
are bent to the radius I/T, the convexity being towards the reader,

and those initially inclined at ^TT are bent to the same radius

but with their convexity turned away from the reader. Thus the

helicoid has anticlastic curvature, and at every point the principal

radii of curvature have the constant values I/T.

If we take any two neighbouring points on the rectangular

strip, the distance between them remains unchanged when the

strip is deformed into a helicoid, provided that the distance of

either point from the axis be small compared with I/T. For, if

the two points (f, 0, J), (f + d%, 0, %+d) move to the positions-

(x, y, z), (x + dx,y + dy, z + dz), we have, by (29),

dx = cos (T) d% T sin (rf) d%

dy= sin (T?) d% + T cos (rf) d%

dz = d$
* See p. 70.

S. E. E. 5
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Hence, if do- and ds be the initial and final distances between the

points,

(df)
2 + (dff

Thus ds = d<r{l + T**

ds
and i -^ I

- ... .

do-J

Since (d/d<r)* is not greater than unity, we see that, if rf be a

small quantity of the first order, (ds
-

da-) Ido- is a small quantity

of the second order, for it is proportional to r 2
f

2
. Thus, when I/T

is treated as infinite in comparison with the width of the strip, we

may consider that the distance between any two neighbouring

points remains unchanged when the plane strip is twisted into a

helicoid.

44. Stresses in a twisted blade. Let ACA'C' (Fig. 17)

represent the central plane of the blade before it is twisted, the

faces of the blade being at a distance b on either side of this plane.

When the blade is twisted, the line AOA' will, by symmetry,
remain straight, and, since the twisting is uniform, every straight

line initially in the plane AOG and parallel to OA will also remain

straight. Thus the central plane of the blade will become a helicoid.

We have seen in 43 that, when a strip of a mathematical

plane is infinitesimally twisted into a helicoid, the distance between

any two neighbouring points remains unchanged^ Hence all the

filaments in the central plane of the untwisted blade remain

unchanged in length when the blade is twisted.

Let HKLM (Fig. 18) be a small portion of the blade such that

either face was a square before the blade was twisted, and suppose
that MH and HK were initially inclined at |TT to OA, as is

indicated by the small square in Fig. 17.

Let / be the particle at the centre of HKLM before it was

twisted, so that / was midway between the faces, and let straight

lines IU, IV be drawn through I parallel to the sides of the initial

squares. Then the filaments which initially coincided with /[/and

IV are bent by the torsion of the blade into arcs of circles of

radius I/T, the centres of curvature lying on opposite sides of the

blade.
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By the method employed for obtaining equation (1) of 29,

we can show that, when the blade is twisted, the filaments

initially parallel to IU and at a distance h cm. from the plane
IUV

t
measured in the positive direction of y, receive an elongation

K

M
Fig. 18.

rh, while those parallel to IV receive an elongation rh cm. per
cm. Hence, if we take an infinitesimal cube of edge q cm. with

its centre at a distance h from the plane Jt/"Fand with two edges

parallel to IU and IV, these edges will become q (1 + rh) and

q (1 rh) respectively.

Since the faces of the blade are free from stress, there will be

no pressure on those faces of the cube

which are parallel to the plane IUV.
If the stresses on the other faces be a

tension of R dynes per square cm.

and a pressure S, as is indicated in

Fig. 19, we see, by 17, 18, Chapter I,

that the elongations are connected

with the stresses by the equations

R o-S

Hence
rhE

But, by equation (11) of 19, Chapter I,

E/(l + a) = 2n,

and thus R = 8 = 2^rAdyne cm-2
(35)

Since R = S, there will be no change in those edges of the cube

which are perpendicular to the plane IUV.

We shall now determine the stresses which must be applied

to the edges of the blade to maintain the equilibrium of the

52
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Fig. 20.

elements in the immediate neighbourhood of the edges. Let

PQT (Fig. 20) be a triangular lamina of thickness

dh at a distance + h from the central plane of the

blade and let the side QT lie along the edge BE'

(Fig. 17) of the blade. Let PQ=PT=r and let

QPT be a right angle. Then PQ is acted on by a

force R . rdh at right angles to PQ and PT is acted

on by a force S.rdh at right angles to PT, as

shown in Fig. 20. These forces have a resultant

(R + S)rdh/>J2 parallel to QT; by (35) this is equal
to 2 \/2 . nrhrdh. Since the faces of the lamina are free from

stress, a force 2 \/2 . nrhrdh must be applied to the vertical edge
of the lamina in the direction QT to maintain equilibrium. This

force is distributed over an area r \/2 . dh and hence, if F be the

required tangential stress,

F=2nrhdyne cm.- 2

(36)

Corresponding results hold good for the remaining edges of

the blade.

45. Determination of the torsional couple. Let

represent the blade seen in perspec-

tive, the thickness (26) being greatly

magnified. LetKL andMN be two /

straight lines drawn on the edge
BB' perpendicular to the plane of

the blade, the distance between the 2T

lines being dz. Then the couple
exerted on the rectangle KLMN
by the tangential stress is

Fig. 21

2T,

r+b

dz\ Fhdh.
J -b

But, by (36),

dz [
J -b

B'

T

M

A couple equal to this could be

produced by two horizontal forces,

IT /̂2T
Fig. 21.
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each equal to T, acting along LK and NM in opposite directions

as shown in Fig. 21, if I7
be given by

T=nrb3

dynes. .....................(37)

By Saint-Venant's principle ( 24), this couple would produce
the same effects as the couple arising from the vertical tangential
stress F, except, of course, in the immediate neighbourhood of the

edge. Since the blade is of infinitesimal thickness, the region
where the effects of the two couples are appreciably different is

also infinitesimal.

If we take the next element (of length dz) above MN and

apply the same process to it, we shall have another pair of forces

each equal to T. The lower force of this pair will act along MN
in the opposite direction to the upper force of the pair corre-

sponding to KLMN, and will therefore neutralise it. Proceeding
in this way, we see that the forces acting on the edge BB' are

equivalent to one force T applied at B in the direction away
from the reader and a second force T applied at B' in the opposite

direction, as is indicated in Fig. 21.

Similarly, we may replace the forces on the edge BD by one

force T applied at B in the same direction as that arising from

the edge BB' and another force T applied at D in the opposite

direction. The total force at B is therefore 2T.

Thus we see that the forces distributed over the four edges of

the blade may be replaced by two forces each equal to 2T applied

at B and D' away from the reader, together with two other forces of

equal magnitude applied at B' and D in the opposite direction, as

shewn in Fig. 21.

If the couple formed by the forces applied at B and D be

dyne-cm., we have G=2T.BD = 2T. 2a, and thus by (37),

If one end of the blade be twisted through < radians relative to

the other and if the length of the blade be / cm., we have, by (28),

T=<t>/l,
and thus we find

This result agrees with that given by equation (27) in 40, when

b/a is so small that 3'3616/a is negligible compared with 16/3
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In experimental work it will not generally be possible to apply
forces at B, B', D and D' in the manner shown in Fig. 21. But a

second application of Saint-Venant's principle leads to the con-

clusion that, provided they be equivalent to a couple 6r, the

manner in which the forces are distributed along BD or along
B'D' is of no consequence except at points near the ends of the

blade. Any uncertainty due to this cause is small when the

length of the blade is great compared with its width.

A model of a helicoid may be made of a strip of paper about

one centimetre in width, which is kept tight while it is twisted.

If the lines in the diagrams be drawn upon the strip the reader

will be aided in following the discussion above.



CHAPTER III.

EXPERIMENTAL WORK IN ELASTICITY.

46. Introduction. In this chapter descriptions are given

of a number of experimental methods of studying the elastic

properties of solid bodies. Most of the experiments are directed

towards obtaining values of Young's modulus or of the rigidity, or

the ratio of one of these moduli to the other, and here the strains

are assumed to be so small that Hooke's law is obeyed accurately.

In other experiments, the deviations from Hooke's law and their

effects are studied.

Though, in nearly every case, the apparatus is so simple that

it may be constructed by any person who is moderately skilled in

the use of tools, yet the experimental methods, when carried

out with care, are capable of yielding definite results. The

word definite is used here to imply that, when a determi-

nation of an elastic quantity has been made, a repetition of

the experiment upon the same specimen and under the same

conditions will lead to a result which does not differ by more

than one or two per cent, from that of the first determination.

The impossibility, in most cases, of securing truly homogeneous

and isotropic material makes it useless to expect that the value

of the elastic quantity deduced from the experiment will be

anything more than a rough sort of average value*. In some

cases the observations are taken on scales divided to millimetres,

and the necessity of keeping within Hooke's law often limits the

measured displacement to one or two centimetres. It is clear

that, in these cases, very careful readings are required if the result

is to be accurate to within two or three per cent.

* See the last paragraph of 39.
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When the result depends upon the fourth power of the radius

of a wire, particular attention should be given to measuring the

diameter of the wire with a screw-gauge, since an error of one per
cent, in the radius involves an error of four per cent, in the result*.

The work will gain considerably in interest if the student is

able to test the same specimen by different methods. Thus, for

a given piece of wire, Young's modulus may be found as in

EXPERIMENT 2 or 3, the rigidity may be found as in EXPERI-

MENT 4 or 5, while Young's modulus may be found for a portion

of the wire as in EXPERIMENT 7 or even as in EXPERIMENT 6

or 10, if the distance between the knife edges be small and the

loads light. Similarly, the same rod may be used for EXPERIMENTS

6 and 10.

EXPERIMENT 1. Experimental Investigation of Hooke's

Law for Copper.

47. Introduction. The mathematical theory of elasticity is

based upon the assumption that, for a given stress the strain is

independent of the time and that, for small strains, stress and

strain are proportional so that, in Hooke's words, Ut tensio sic vis.

We shall therefore begin the experimental part of the subject by

describing a sensitive method of investigating the relation between

stress and strain in a wire subject to small elongations. Young's

modulus, if it exist, i.e. if Hooke's law hold, can be found with

sufficient accuracy by the apparatus described in 52. The object

of the present experiments is not so much to obtain a very accurate

value for Young's modulus as to gain a working knowledge of the

natural habits of the material under test.

The simplest method of magnifying the effects to be observed

consists in using a wire of considerable length, hung from a beam

or other support, the extension being produced by hanging weights

to the lower end of the wire; but this method is liable to two

serious errors. These arise from the yielding of the support and

from the change of length of the wire due to rise of temperature.

*
Many screw-gauges have the defect that the pitch of the screw, i.e. the

distance it advances for one revolution, is not clearly marked on the instrument.

Tn such cases the student should ascertain the pitch from the teacher, or, in a

practical examination, from the examiner.
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The latter cause may introduce a comparatively large error, for

a rise of 2 C. will produce an increase of length of -fa mm. in a

copper wire 3 metres long.

The first error is eliminated if, instead of finding the displace-

ment of the lower end of the wire relative to a fixed mark, we

observe the displacement of the end of the wire relative to the

lower end of a second wire of the same material, hanging from the

same support, stretched by a constant weight and serving as a

standard for comparison.

The use of a comparison wire practically eliminates the second

error also, for it is found that the coefficient of linear expansion of

a wire is but little affected by variations in the load carried by
the wire. Thus, Dr J. T. Bottomley (Phil. Mag. 1889, Vol. 28,

p. 94) made experiments on a pair of copper wires 3*8 x 10~4 cm.2

in section, one being stretched by a load of 375 grammes and the

other by a load of 75 grammes. Dr Bottomley measured directly,

by means of a sensitive mirror method, the excess of the extension

of the first over that of the second wire, when they were heated

simultaneously, and found the coefficient of relative expansion to be

314 x 10~7

degree"
1
. Since the difference of tension was

300 x 981/(3'8 x 10~ 4
) or 7'74 x 108

dyne cm.~2
,

we find that, if the coefficient of linear expansion of a copper wire

be a degree"
1 and if the tension of the wire be T dyne cm.~2

,
then

d* 314 x 10~7

dT~ T^ T08~
= x 10 degree"

1

dyne"
1 cm.2

.

The value of a for copper is about T72 x 10~5

degree"
1

,
so that the

extra load of 300 grammes increased the coefficient of expansion

by one part in 55.

If two copper wires, each one square mm. in section, carry loads

differing by one kilogramme, the difference of tension will be about

108

dynes cm.~2
,
and hence if the wires be 3 metres long, a rise

of 1 C. will cause the wire with the greater load to extend by
4-05 x 10"8 x 300 or by T22 x 10~5 cm. more than the other wire.

This difference of extension is too small to be measurable with the

apparatus described in 48.

The value of da/dT may also be deduced from the temperature
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coefficient of Young's modulus (E) for a wire with a constant

tension.

If Z be the length of a wire at C. and under zero tension,

and if I be its length when the temperature is 6 and the tension

is T, 1/1 is a function of T and 6, and thus we have

da d 1 dE

Mr G. A. Shakespear has found (Phil. Mag. 1889, Vol. 47,

p. 551) the values of E~l dE/dd given in the first column of the

table. Assuming that E had the values given in the second

column, we obtain, by the last equation, the values of da/dT given

in the third column.

Metal
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each other about vertical axes, but freely allow vertical relative

motion. When these links are horizontal, the two wires are

parallel to each other. From the lower ends of the frames CD,
C'D ', hang a mass M and a pan P represented diagrammatically
in the figure. The weights of M and P are sufficient to ensure

that the wires are straight. The connexions between the wires

and the frames are made by the swivels F into which the ends of

the wires are soldered. The swivels enable the observer to set the

wires free from torsion and thus to ensure that the two wires hang
in a vertical plane. Two other swivels connect M and P to the

frames.
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The head of the screw is divided, and a scale R engraved on

the side of the frame serves to determine the number of complete

revolutions made by the screw. In the instrument in use at the

Cavendish Laboratory the pitch of the screw is J mm., while the

head is divided into 100 parts. Each division on the head thus

corresponds to -^ mm. A pitch of 1 mm. would be more con-

venient*.

The instrument is used in the following manner. Suppose that

the screw has been adjusted so that one end of the bubble of the

level is at its fiducial markf. A fine wire passing round the level

and held tight by an indiarubber band may be used as a fiducial

mark. If the wire be arranged to be in the plane of two of the

vertical sides of one of the frames, errors of parallax can be avoided

by taking observations with the eye in this plane. If a mass be

placed in the pan P, the wire A' is stretched and the bubble moves

towards H. The bubble is then brought back to its fiducial mark

by turning the screw so as to raise the end of the level resting

upon it. The distance through which the screw is moved is clearly

equal to the increase of length of the wire A' and is determined at

once by the difference of the readings of the screw in the two

positions. In the Cavendish Laboratory instrument, the level is

sensitive enough to enable the screw to be adjusted to ^ of a

division on its head, i.e. to y^ mm.
To steady the instrument, it is convenient to allow the two

wires to press lightly against a rod fixed horizontally at a small

distance above the frames CD, C'D'.

A brief discussion of the kinematics of the instrument may be

added. In order to secure that there shall be only one possible

displacement of one frame relative to the other, five out of the six

degrees of relative freedom must be destroyed. Since only relative

motion is in question, we may imagine one frame, say CD, to be

fixed. The other frame C'D' is kept vertical by the tensions of the

* The chief dimensions of the apparatus are as follows: CD= 11 cm. Length
of links 5 cm. Diameter of screw head =4 cm.

f If the glass tube of a level be not well secured in the metal tube which

protects it, an attendant, in cleaning the apparatus, may cause a rotation of the

glass tube about its axis. If this cause the ends of the tube to be higher than the

centre, it will be impossible to adjust the supports of the .level so as to bring the

bubble to the centre ;
the bubble will always go to one end or the other.
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wires above and below it. If the links were absent, it would be

free to move horizontally East and West, or North and South, or

vertically (when the wire is stretched) and to turn about a vertical

axis. It would thus possess four degrees of freedom. The two links

destroy three degrees of freedom by preventing the frame from

(1) rotating about its own wire A', (2) moving horizontally at right

angles to the links, (3) moving towards or away from the frame

CD. The frame G'D' has thus but one degree of freedom

remaining, viz. that which enables it to follow the stretching

of the suspending wire.

49. Experiments on loading and unloading a copper
wire. One of the most interesting uses of the instrument is to

find the changes of length of a copper wire, which occur when the

load in the pan is increased step by step from zero to any value W
and is then diminished to zero again. When the load is changed,

the wire only gradually assumes the length corresponding to the

new load, and thus the readings will gain in regularity if the

changes of load be made at approximately equal intervals say of

two minutes. The observations may be made in the following

manner. Starting with the pan empty, a reading of the micro-

meter is taken and is recorded. A mass is then placed in the pan
and after two minutes (or whatever interval is chosen) the reading

of the micrometer is again recorded, and the process is continued

with equal steps in the load till the maximum load W is reached
;

the load is then reduced step by step to zero. The masses should

be put in and taken out of the pan as gently as possible.

When the initial micrometer reading for zero load is subtracted

from the other readings the differences are the extensions of the

wire. The results are plotted on squared paper, the abscissae

representing loads and the ordinates extensions.

When the wire has been unloaded for a comparatively long

time before the initial reading for zero load is taken, a curve

similar to that in Fig. 23 will be obtained. In this case the wire

has been loaded during the whole cycle of observations and, in

consequence, at the end of the cycle the wire is longer by
a few thousandths of a millimetre than it was at the beginning.

If, on the other hand, a load W
,
at least as great as W, be
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placed in the pan for a comparatively long time and if the load be

removed only a short time before the initial reading for zero load

is taken, the curve representing the results of loading and unload-

ing will be similar to that in Fig. 24, the wire being slightly shorter

at the end than at the beginning of the cycle. The explanation
lies in the fact that during the later stages of the second half of

the cycle the load is less than W
,
and thus the wire has had

opportunity and time to contract a little.

EXTENSION

LOAD

Fig. 23.

EXTENSION

LOAD

EXTENSION

LOAD

Fig. 24. Fig. 25.

If, by repeatedly loading and unloading it, the wire could be

brought to a thoroughly cyclic state, the curve would be as in Fig. 25,

the final and initial readings being identical. But the establish-

ment of the cyclic state would occupy much time, since each cycle

of loading and unloading would have to be made at the same rate

as the cycle during which the readings are taken. If the pre-

liminary cycles are made comparatively rapidly the curve will be as

in Fig. 24.

50. Graphical representation of deviations from Hooke's
law. Hooke's- law is so nearly true for stresses, which are small

compared with the breaking stress, that it is impossible to exhibit

in a satisfactory manner both the whole extension and also any
deviation from Hooke's law on the same diagram. We may,

however, adopt a device which is useful whenever small deviations

disturb the strict proportionality between cause and effect. If the

maximum load W produce an extension Z, and if z be the extension

due to any smaller load w, we subtract wZ/W from z and denote

z wZjW by d. We then plot the difference d against the load w.

If Hooke's law were exactly fulfilled, the difference would vanish

for every value of w, and thus these differences show the depar-
tures from Hooke's law. This method has been adopted in the

diagram given in 51.
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51. Practical example. The observations may be entered as in the

following record of an experiment by Mr Field upon a copper wire 285 '7 cm.

in length and about 0-0119 cm. 2 in cross section. To save space, only the

extensions are entered below
; but the student should record the reading of

JF=6kilo.
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The results for JP=6 and for TF=4 kilogrammes are shown in Fig. 26.

An attempt was made to reduce the wire to a cyclic state, but the curves show

that the attempt failed, the curves resembling that of Fig. 24. Very careful

work is necessary to obtain curves as regular as those obtained by Mr Field.

EXPERIMENT 2. Determination of Young's modulus by
stretching a vertical wire.

52. Apparatus. The simplest method of determining Young's
modulus depends upon observations of the increase of length of a

long vertical wire when the load carried by it is increased. Since

Hooke's law begins to fail when the elongation is much more than

l0^ cm. per cm., the wire should be of considerable length, so that,

without going beyond the elastic limit, the increase of length may
be large enough for satisfactory observation. When the changes of

length are observed by means of a millimetre scale fitted with a

vernier reading to ^ mm., errors of one per cent, will probably
occur in the measurements unless the changes exceed one cm.

Hence, if the elongation is not to exceed y^u cm - Per cm ' the

wire should be at least 10 metres long. When a more sensitive

appliance, such as that described in 48, is available for measuring
the change of length, satisfactory results can be obtained with

comparatively short wires.

Since the elongation is small, it is necessary to take special

precautions against two sources of error. These arise from the

yielding of the support and the change of length of the wire due

to a change of temperature during the experiment. Both errors are

practically eliminated if, instead of finding the displacement of the

lower end of the wire relative to a fixed mark, we observe its dis-

placement relative to the lower end of a second wire of the same

material, hanging from the same support and carrying a constant

load. This measurement is easily made if a scale be attached to

the end of one wire and a vernier to the end of the other. Any
yielding of the support affects both wires equally, and any change
of temperature causes very nearly the same expansion in both

wires in spite of the difference between the loads, since, as is shown

in 47, the coefficient of expansion depends only very slightly upon
the load carried by the wire.

The two wires are secured to a block of metal attached to
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a beam or other firm support in the manner shown in Fig. 27. A
millimetre scale is clamped to the comparison wire, which carries

the constant load, and a vernier reading to -^ or ^j mm. is clamped
to the wire which is to be stretched. The vernier is kept in the

proper position against the scale by a V-slide or by simple guides
attached to the vernier. A scale pan, not shown in the figure, is

hung from the wire below the vernier and a constant load is hung
from the comparison wire below the scale. The scale pan and the

constant load must be heavy enough to ensure that the wires are

straight.

Fig. 27.

53. Determination of Young's modulus. In taking the

observations the vernier is first read with no additional mass in the

scale pan. The load is then increased by steps of 1 kilogramme

up to, say, 6 or 8 kilogrammes and the vernier is read at each

stage. The load is then diminished step by step and the vernier

is again read at each stage. The masses must be put into the

pan carefully, so as to avoid the great increase of stress which

s. E. E. 6
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occurs when a mass is allowed to drop into the pan *. If the read-

ing of the vernier at the end of this cycle of operations differ

appreciably from the reading at the beginning, the wire has been

permanently stretched, and the observations cannot be used for

finding Young's modulus. In this case a new set of observations

must be made with a smaller maximum load, not great enough to

give any appreciable permanent setf.

Trouble due to overloading the wire will be practically avoided

if the maximum load be not allowed to exceed half the break-

ing load. If the cross-section of the wire be A cm.2
,
and J/max

grammes be the maximum load, then Mm&x may be calculated by
the formula

where B dyne cm.~2
is the breaking stress or the tenacity. Rough

values of B are given in the table.

Material
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The readings may be recorded as in 54, and should be expressed
in centimetres.

The mass of the pan does not cause any difficulty as long as

Hooke's law holds. For suppose that the mass of the pan is

M grammes 'and that it produces an extension 1 cm., and that

an additional load M grammes increases the extension by I cm.

Then we have, by Hooke's law,

Hence ~r = C-
i

Thus the ratio of the added load to the increase of extension due

to that load is the same as the ratio of the whole load to the

whole extension, and therefore, in finding Young's modulus, we

may neglect entirely the mass of the pan and the extension due

to it.

If the values of l/M prove to be nearly constant for different

loads, the mean value of l/M may be used in finding Young's
modulus. When the irregularities are serious, the results should

be shown graphically on squared paper, the ordinate representing
the mean extension due to each added load, while the abscissa

represents the added load. Since Hooke's law is assumed to hold,

a straight line should be drawn, by the aid of a stretched thread,

so as to lie as evenly as possible among the points plotted on the

diagram. When the best position of the thread has been found,

it is recorded by two marks made on the paper, one near each end

of the thread. These marks are then joined by a line drawn by
the aid of a straight ruler; many wooden scales are far from

straight. The difference between the ordinates of two points on

this line corresponding to M = and to some definite mass M (say

5 kilogrammes) is taken as the value of I for that mass. The

corresponding value of M/l is used in calculating Young's modulus.

The length of the wire from the point of support to the clamp,

which fixes the vernier to the wire, may be determined by a tape

measure or by the aid of a long rod which is afterwards measured

by one or more metre scales. This length should be expressed in

centimetres. During these measurements the wire should be kept

62
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straight by the weight of the pan. Strictly speaking, the initial

length should be measured when the wire carries no load, but,

since the increase in the length of the wire due to the pan
alone will perhaps not exceed one part in 10,000, the length of

the wire when carrying the pan alone may be taken as equal to

L centimetres, the initial length of the wire.

It should be noted that L and I are obtained by two distinct

sets of measurements. In finding the length by the tape measure

we are not concerned with the extension, and in finding the ex-

tension by the vernier we are not concerned with the length of the

wire. It would be difficult to measure a length of, say, 5 metres

to within 2 mm. by a tape measure, but, in view of other un-

certainties, an error of 2 mm. in the length of the wire may fairly

be neglected. Yet an error of 2 mm. in the determination of the

extension would render the results worthless.

To complete the measurements, the cross section of the wire

must be obtained. If the wire be permanently fixed to the support,

the diameter is found by a screw-gauge. Readings are taken at

4 or 5 points on the wire between the support and the vernier,

and two diameters at right angles are measured at each point,

care being taken not to compress the wire in taking the readings.

The zero reading of the screw-gauge is observed, and the cor-

responding correction is applied to the readings, which should be

expressed in centimetres. The mean radius*, a, is found by halving

the mean diameter and then the cross section A is calculated in

square cm. from the expression A = Tra2
^.

If the wire can be removed from the support, the volume of

the part between the support and the vernier can be found

b/ the hydrostatic balance. If this be V c.c., then A = V/L

square cm.

When the load is M grammes, the longitudinal stress T is

Mg/A dyne cm.~ 2
. If this load correspond to an increase of

length of I cm. in a total length of L cm. the elongation e, i.e. the

* The quantity we are really concerned with is not the mean radius but the

square root of the reciprocal of the mean value of (radius)"
2

. The appropriate
correction is calculated in Note VI, 1.

t The neglect of the distinction between the radius and the diameter of a wire

is a frequent cause of disaster in students' work.
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increase of length per unit length, is l/L cm. per cm. Hence, by
Chapter I, 17, Young's modulus is given by

E = stress _T _MgjA _MgL
elongation

~~

e
~

l/L IA square cm.

54. Practical example. The observations may be entered as in the

following record of an experiment made on a brass wire.

Length of wire from support to clamp of vernier=L= 745 cm.

Readings of screw-gauge on wire

0-0944 0-0943

0-0943 0-0943

0-0947

0-0945

0-0945

0-0945
mean reading 0'0944cm.

Correction for zero 0*0002 cm., to be added.

Hence diameter = 2a=0'0946cm.
Cross section =--A = 7ra2= 7r x(0*0473)

2= 0*00703 square cm.

Readings of vernier for increasing and diminishing loads :
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The mean, T050 x 10
~ 4

,
now agrees closely with the value derived from the

diagram. Using the value T054x 10
~ 4 for IfJf, we have, by 53,

MqL 981 x 745^- =Young's modulus^-
= 9'86xlOn dynes per square cm.

EXPERIMENT 3. Determination of Young's modulus by
stretching a horizontal wire.

55. Apparatus. One end of a wire, 1 to 2 metres in length,

is soldered or otherwise secured to a block of metal B (Fig. 28)

Fig. 28.

which is firmly clamped to a table. The wire passes over a

pulley A and is stretched by weights placed in a pan. This pan
must be made heavy enough, by the use of permanent weights,

to prevent the wire from sagging appreciably when no additional

weights are in the pan (see 57). Two scratches, C and D, are

made on the wire near the pulley A and the block B, and the

movements of these scratches are observed^by means of two

travelling microscopes, which are focussed on the wire.

If travelling microscopes are not available, microscopes with

micrometer scales in their eyepieces must be used. The value

of one division of the micrometer scale of each microscope is

deduced from the number of micrometer divisions covered by the

image of one division of a millimetre scale. The dividing lines of

this millimetre scale must be fine ;
if they are coarse, it will be

impossible to obtain an accurate value for the micrometer divisions.

It is, however, not necessary to use two microscopes if it is

found, on examination by a microscope, that the block B does not

move appreciably when the pan is loaded. In this case we may
regard D as coinciding with the end of the block B.
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56. Determination of Young's modulus. The load in

the pan is increased by equal steps of 500 or 1000 grammes from

zero up to some maximum value, and is then diminished by equal

steps, and at each stage the readings of the scratches G and D are

taken by the microscopes. If a load of M grammes placed in the

pan cause C and D to move through x cm. and y cm. from their

positions for zero load in the pan, the increase in the length of

CD due to M is as y cm.

If the value of (x y)/M prove to be nearly constant for

different loads, the mean value may be used in finding Young's
modulus. If there are serious irregularities, the results should be

shown on squared paper, the abscissa representing M, while the

ordinate represents the mean of the corresponding values of x y
for increasing and diminishing loads. A straight line is drawn

by the aid of a stretched thread, as in 53, so as to pass as

evenly as possible among the points on the diagram, and from this

straight line the values of x y for M = and for some definite

load M (say 5 kilogrammes) are read off. The value of M/(x y),

corrected in this way, is used in calculating Young's modulus.

The length of CD for zero load in the pan is denoted by L cm.

and is obtained by means of metre scales placed end to end, and

the diameter of the wire is found with a screw-gauge, corrected

for zero error, at 4 or 5 points between C and D, two perpendicular

diameters being measured at each point. If the mean radius,

i.e. half the mean diameter, be a cm. and if the cross-section be

A square cm., then 'A = Tra2
*.

The stress T due to a load of M grammes is MgjA dynes per

square cm., and this produces an increase of x y cm. in a length

of L cm.; thus the elongation e is (x y}jL cm. per cm. Hence,

by Chapter I, 17, Young's modulus is given by

stress T Mg/A MgL ,E = -! : = =
-,

'

IT , , 7 dynes per square cm.
elongation e (x y)\L A (x y)

'

The observations may be tabulated as in 58, the readings of

the microscopes and the two values of # y being recorded for

each value of M.

* See the first Footnote on page 84.
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57. Notes on the method. In this experiment any error

due to a possible motion of the block B is eliminated by using a

microscope to observe the motion of the scratch D. There is,

however, no temperature compensation, as in EXPERIMENT 2, and

therefore a thermometer should be placed near the wire to give

warning of any serious changes of temperature.

By the microscopes the changes of length can easily be found

to within y^y cm., and thus the wire may be much shorter than

in EXPERIMENT 2, where a vernier, reading to y^ or -^ cm.

is used.

It is essential in this experiment that the stretching force

should be always great enough to ensure that S, the length of the

wire from C to D, measured along the wire, should not differ

appreciably from L, the distance from to D measured along a

straight line. An approximate estimate of S L is easily made.

Let the tangents to the wire at G and D (Fig. 29) make angles Ol

Fig. 29.

and 2 with the plane of the horizon, and let ra be the mass of CD.

If F be the stretching force when the pan is empty, we may
take F as constant at all points of CD. Since the weight of CD
is supported by the forces at C and D, we have

F (sin l + sin 2)
= mg.

If
<f>

be the mean of 6l and 62 ,
we have, since 6l and 2 are very

small,

2.F,, </>
= mg.

Now, when S is small compared with the radius of curvature

of the arc at its lowest point, we may treat the curve as an arc of

a circle subtending an angle 2</>
at its centre. Then, if p be the

radius of curvature,

L _ 2/o sin
<f> _ sin

s"
~
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and thus, approximately,

S-L
S

Hence, if the mass of the pan be 2 kilogrammes, so that F is

2000# dynes, and if the mass of CD be 10 grammes,

(S-L)/S = 1/960,000.

The elongation due to the stretching of the wire in the determina-

tion of Young's modulus may be as great as y^ cm. per cm.,

and thus, since the apparent elongation due to changes of sagging
when additional masses are placed in the pan does not exceed

about
^ QO

*

OQO
cm. per cm., any error due to sagging may be

neglected.

58. Practical example. The observations may be entered as in the

following record of an experiment made by Mr T. G. Bedford upon a brass

wire.

Length of wire between scratches= L= 124*4 cm.

Readings of screw-gauge for pairs of diameters at right angles,

mean reading 0*0695 cm.

Correction for zero error 0*0005 cm., to be added.

Diameter of wire =2a= 0*0700 cm.

Cross section of wire =A = Tra?= ir (0*035)
2= 3*849 x 10~3 cm.2

.

By means of permanent weights the mass of the pan was made about

5*5 kilogrammes, which was sufficient to prevent any appreciable sagging of

the wire.

0692

0698
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Two microscopes were used, each reading to ^fa mm. ; they formed a

"pair" and the scales were numbered in opposite directions. In the above

table the readings have been reduced to centimetres, but Mr Bedford recorded

the actual readings on the micrometer heads in each case. Thus the two

readings, which appear in the table as '07282 and 0*9732 cm., were recorded

as 7-0 + 56-4/200 mm. and 9'5+ 46-3/200mm.
From this table we obtain the following values of x, the displacement of

the scratch observed by the left-hand microscope, and of y, the displacement

of the other scratch.

u
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be gripped by a self-centering three-jawed chuck attached to the

axle, the latter plan being convenient when more than one rod is

to be tested.

Fig. 30.

The twist of the rod is measured by means of a pointer F,

which can be clamped to the rod at any point. The pointer

should be adjusted so as to be approximately horizontal when half

the greatest load is in the pan. A vertical millimetre scale S is

used for measuring the displacement of the tip of the pointer*.

If the rod be not quite straight, it will bend slightly when it is

twisted. Errors due to this cause may be eliminated by using a

clamp fitted with two pointers of equal length so arranged that

the line joining their tips passes approximately through the axis

of the rod. The mean of the displacements of the tips of the two

pointers will be free from any error due to bending of the rod.

60. Determination of rigidity. When a mass M grms. is

placed in the pan, the wheel will revolve till the couple due to the

* The twist of the rod may also be observed by means of a mirror attached to

the rod by a small clamp, the angle through which the mirror turns being observed

by means of a vertical scale and a telescope with cross wires. If the distance of

the scale from the mirror be d cm. and if the image of the scale move past the cross

wire through z cm., when the mirror turns through < radians, then
<t>
= zj2d. The

results obtained with the mirror are free from any error due to bending.
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elasticity of the rod balances the couple due to the mass

where M grms. is the mass of the pan. If the radius of the wheel

be R cm., this couple is (M 4- M ) Rg dyne-cm., where g cm. see."2

is the acceleration due to gravity.

Let the pointer be clamped at a distance of I cm. from the

fixed end of the rod, and let < and
</> + </>

radians be the angles

through which it turns when the masses Mn and M+ M are hung
from the wheel. Then, if the rigidity of the material be n dynes

per square cm. and the radius of the rod be a cm., we have, by

Chapter II, 39, equation (23),

\ma*

or, by subtraction,

%7rna*<f>/l
= MgR.

Let the length of the pointer, measured from the axis of the

rod, be p cm., and let y cm. be the vertical distance through which

the tip moves, when a load M is placed in the pan. Then, if the

angle between the pointer and a horizontal plane be never greater

than about -fa
radian or 6, we may write

</>
=

VlP-

2qpR Ml ,

Hence, n = ~-
. dynes per square cm.............(1)

The quantity 2gpR/7ra* is a constant for the given system; its

value can be calculated once for all as soon as p, R and a have

been measured*.

The diameter, 2R cm., of that part of the wheel on which the

tape is wound is measured with calipers, and the mean diameter

of the rod, 2a cm., is obtained from the readings of a screw-gauge,

two perpendicular diameters being measured at several points on

the rod. The proper zero correction must be applied to the mean

* The rod is here supposed to be truly cylindrical. When the radius is not

quite constant, it will generally suffice to treat the rod as a cylinder whose radius is

equal to the mean radius of the rod. The quantity we are really concerned with is

not, however, the mean radius, but the fourth root of the reciprocal of the mean

value of (radius)-
4

. The appropriate correction is calculated in Note VI, 2.
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of the readings. The diameter of the rod must be measured

carefully since the fourth power of the radius appears in the

formula for n.

The deflexion y depends upon the two variable quantities M
and I. If both M and I be varied, the observations may be com-

bined in the following manner :

Some value of I, say llt is chosen and the pointer is clamped so

that the distance of the centre of the clamp from the nearer face

of the block D is l^ cm. The mass in the pan is then increased from

zero to some maximum load by equal steps and is then diminished

to zero by equal steps ;
the reading of the tip of the pointer is taken

at each stage. The greatest mass used should not be sufficient

to give the rod any permanent twist. All these readings are

recorded and the corresponding values of y are deduced from them

by subtracting the mean of the two readings for any load from the

mean of the two readings for zero load. The observations are then

repeated with other lengths 12 ,
ls .... If four values of I are used,

they may be approximately ^L, \L, \L and L, where L is the

whole length of the rod. If, for a given value of I, y/M prove to

be nearly constant for different loads, the mean may be taken as

the best value of y/M for that value of I. When the irregularities

are serious, the values of M and y for each value of I should be

shown on a diagram as in Fig. 31. Since the representative points

M

Fig. 31.

should lie, ideally, on straight lines through the origin 0, a

straight line is drawn by the aid of a stretched thread ( 53) for

each value of I so that the corresponding points (including the

origin) are distributed as fairly as possible about it. The difference
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between the ordinates of two points on this line corresponding to

M= and to some definite load M (say 500 grms.) is taken as the

value of y for that load. In this way the best value of y/M for

each value of / is found.

If the best values of y/M make IM/y nearly constant for

different values of I, the mean may be taken as the best value of

IM/y. If the irregularities be serious, a second diagram should be

made, as in Fig. 32, showing how y/M depends upon I. Here

Fig. 32.

again the points should lie on a straight line through the origin,

and the best value of IM/y is found from a straight line drawn

in the same way as those in the first diagram. The best value of

IM/y is used in calculating n by equation (1).

If the apparatus has been skilfully constructed, the torsion

wheel may be assumed to be truly centred on the axis. The
effect of any small error of centering could be eliminated by

twisting the rod in both directions and taking the mean of the

results.

61. Practical example. The results may be entered as in the

following record of experiments made by Messrs G. F. C. Searle and W. Burton

upon a brass rod.

Diameter of wheel =2R= 12'0 cm. Hence R= 6'0 cm.

Readings of screw-gauge for pairs of diameters of rod at right angles,

mean reading 0-4060 cm.4085

4038
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decreasing loads are given, but the student must record all the readings

and deduce the displacements from them.
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into two pieces of rod C, D about ^ cm. in diameter. The rod G
is held in a suitable firm clamp so that the wire is vertical, and

the rod D passes through an inertia bar E, being secured by a set

screw S.

Fig. 33.

The ends of the wire itself are sometimes secured by means

of set screws. If this inferior plan be

adopted, care should be taken to note the

exact position of each set screw relative

to the corresponding end of the wire, so

that the system can be taken to pieces

and put together again without changing
the effective length of the wire.

The compound stand shown in Fig. 34

forms a convenient support for the brass

rod soldered to the upper end of the

torsion wire. The stand is fitted with a

moveable block which can be clamped to

the upright in three different positions,

and this block can be used to hold a

stout rod in a vertical or a horizontal

position. The small rod soldered to the

torsion wire may be secured by a set screw

in a hole drilled along the axis of a vertical Fig. 34.
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rod held in the block as shown at the top of the stand. The

compound stand is very convenient for many purposes.

63. Determination of rigidity. Let the length of the

wire AB, measured between the ends of the rods C, D, be

I cm., let the radius of the wire be a cm. and let the moment
of inertia of the inertia bar about the axis of the wire be

K grm. cm. 2
. When the bar is displaced from its equilibrium

position through $ radians, the twist of the wire per unit length
is

<j)/l
radians per cm. By Chapter II, 39, equation (23), if Gr

be the couple which the wire exerts upon the bar,

n ,

G = ^- dyne-cm.

When the bar vibrates, the angular acceleration of the bar

towards its equilibrium position at any time is GjK or 7rna4
(j)/2lK

radians per sec. per sec. (Note III, 2), and thus the angular
acceleration is proportional to the angular displacement. Hence

the motion is harmonic, and by Note V, 2, the time of a complete
vibration is given by

angular acceleration for one radian

Deducing the rigidity, n, from this equation, we have

SirKl

The length of the wire, I cm., is found with a centimetre scale,

and its mean diameter, 2a cm., is obtained from the readings of

a screw-gauge, two perpendicular diameters being measured at

several points on the wire. The proper zero correction must be

applied to the mean of the readings. The diameter of the wire

must be measured carefully since the fourth power of the radius

appears in formula (1)*.

The moment of inertia of the inertia bar is calculated from its

* See Footnote on page 92.

S. E. E. 7
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mass and its dimensions by the methods of Note IV. If the bar

be rectangular, and if its length be 2L cm., its width 2A cm.

and its mass M grms., and ifK be its moment of inertia about an

axis through its centre at right angles to 2L and to 2A,

* + A*) grm. cm.2
.

If the bar be a solid circular cylinder, of length 2L and radius R,

with its axis at right angles to the axis of the wire,

K =M (JZ
2 + \RZ

) grm. cm.2
.

For rough purposes it is sufficient to take M as the mass of the

system which is detached from the torsion wire when the set

screw is slackened. For more accurate work, M should be the

mass of the bar before any holes are bored in it. (See Note VII.)

If the length of the inertia bar be large compared with its

width or its diameter, the term ^ML* is the chief term in the

expression for K, and the terms involving A* or H2 are com-

paratively very small Hence it is quite unnecessary to measure A
or R with a screw-gauge ;

it is sufficient to use a millimetre scale.

On the other hand, 2L should be measured as accurately as

possible.

The time occupied by a large number of complete vibrations is

found at least twice, the observation in each case extending over

at least three minutes. The mean time of a complete vibration

(T sec.) is then deduced. Unless the time-piece used be known
to be keeping good time, it should be compared with a good clock

to find the necessary correction.

A stop-watch is generally used in observing the time of

vibration. But very good results can be obtained by the following
method with an ordinary watch or clock fitted with a seconds

hand. At every fifth transit, from left to right, of one end of the

bar past a fixed mark, the time indicated by the watch is observed.

After a sufficient number of these times have been recorded, the

time of the Oth transit is subtracted from that of the 50th and the

time of the 5th transit is subtracted from that of the 55th, and
so on. In this way we obtain a number of intervals, each corre-

sponding to 50 complete vibrations. With careful work these

intervals will agree closely and their mean will furnish a reliable
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value of the time of 50 complete vibrations. The following

experimental results will illustrate the working of the method.

Transit
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The value of the diameter of the wire is subject to an uncertainty of

about 2 parts in 1000. Due to this cause, there is an uncertainty in the

value of n of about 8 parts in 1000, since n is inversely proportional to the

fourth power of the radius. The number 3'49 is therefore uncertain to the

amount 0'03.

EXPERIMENT 6. Determination of Young's modulus by
uniform bending of a rod. Statical method.

65. Apparatus. In order to produce uniform bending in a

rod it is necessary that the "
bending moment "

(Chapter II, 31)

should have a constant value at every point of the rod. This

condition is easily secured if the rod be bent in the manner

indicated in Fig. 35. The rod AB rests symmetrically on two

knife edges C, D, which are fixed to a stout bed XY.

s
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distance HG being equal to KD. To determine the vertical dis-

placement of the middle point 0, a pin is fixed by wax to the

rod at 0, the pin being bent so that the part near the tip is

horizontal, and a vertical scale S is set up near in such a posi-

tion that the tip of the pin is close to the scale.

Errors of parallax may be avoided and the accuracy of the

readings may be increased by taking the scale readings of the

pin by means of a fixed telescope. The distance of the telescope

from the scale should be as small as the focussing of the telescope

will allow, in order that the magnification may be as great as

possible.

When a circular rod is used, a cross-bar about 4 cm. long and

1 cm. wide should be soldered or otherwise fixed to the rod. If

the cross-bar rest on one of the knife edges, it prevents the rod

from rolling.

A scale holder convenient for many purposes is shown in

Fig. 36. It consists of a rectangular block of brass about 5 cm.

Fig. 36.

in length, and 2'5 cm. in width and depth. A steel scale, divided in

millimetres*, is secured to the block by a screw passing through a

hole at one end of the scale. The scale can be used in a number
of different positions. The screw may conveniently have a milled

head so that it can be tightened by hand.

*
Steel scales divided to half millimetres should be avoided, unless the dividing

lines are very fine.
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66. Determination of Young's modulus. Let the mass

of each pan be M grammes and let the mass in each pan be

M grammes. Let each of the distances HC and KD (Fig. 35),

when measured horizontally, be p cm. Since the system is

symmetrical about 0, the middle point of the rod, the force on

each knife edge is the same and thus the part of this force which

is due to the pans and the loads is (Jf 4- M) g dynes.

If P be any point of the rod between G and D, and if G be the

part of the bending moment at P which is due to the pans and

the loads,

G = (M, + M) (PK - PD)g = (M + M)pg dyne-cm. . . .(1)

Hence the bending moment due to the pans and the loads has the

same value at all points of the rod between (7 and D.

In addition to G, there is the bending moment due to the weight
of the part of the rod between P and B acting at a point mid-

way between P and B, as well as the bending moment due to a

vertical force at D equal to half the weight of the rod. When
the effects due to these moments are small, it follows from Hooke's

law, Chapter I, 2, that, at each point of the rod, any small change
of curvature of the axis of the rod due to the pans and the loads is

the same as if the rod were without weight. The curvature is

measured by l//o, the reciprocal of the radius of curvature of the

axis, and is zero when the axis is straight. Since G is constant at

all points between C and D, this change of curvature is constant.

Hence, when the rod does not bend appreciably under its own

weight, we may treat it as if it were weightless, when we discuss

the effects of small loads applied to it. In what follows, we shall

neglect the weight of the rod.

If the "moment of inertia" of the transverse section of the

rod, about an axis passing through the centre of gravity of that

section and at right angles to the plane of bending, be / cm.4
,
we

have, by Chapter II, 31,
PIT

G = dyne-cm., (2)

where p cm. is the radius of curvature of the neutral filament of

the rod. Inserting the value of G given by (1), we have

Go (M, + M) qpp ,

-o = -F- = ,.
-
dynes per square cm (3)
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The curvature l/p is easily deduced from the vertical displace-
ment of the middle point due to the two loads. Suppose that

the point of the pin fixed to the rod at moves through the

vertical distance h cm., when the pans alone are hung from the

rod, and that it rises through a further distance h when a mass of

M grammes is placed in each pan. Then, if the distance CD
between the knife edges be 21 cm., we have, by the geometry of

the circle,

In most cases hQ + h will be negligible in comparison with 2p and

then we may write

From (3) and (4) we find

(M* + M)=
or/z,*>* ^"'0 i

Since, by (5), the elevation is proportional to the load,

* A=
or/z, n^T v nes Per sc

l
uare cm..........

*>* "'0 i fl

h -+- h hy h

and thus E =
07-1. dynes per square cm................ (6)
ZiJ. fi

When the rod is of circular section, with diameter 2a cm., the
" moment of inertia," /, of the area of the section about the axis

in the plane of the section which passes the centre, is given by*

7 = j7ra
4 cm.4

......................... (7)

Hence, by (6), for a circular rod

,

dynes per square cm.............(8)

When the rod is of rectangular section with sides 2a and

26 cm., the side 26 being vertical when the rod is in position for

bending, the " moment of inertia
"

of the area about an axis

through its centre parallel to the side 2a is given by

.

4 ......................... (9)

* See Note IV, 12.
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Hence, by (6) for a rectangular rod

3Mpl*g ,E = -

jjiT^ dynes per square cm (10)

A series of observations for k is made. The masses in the

pans are increased by four or five equal steps from zero to some

maximum value which does not strain the rod beyond the elastic

limit, and the masses are then diminished to zero by the same

steps, a reading of the pin being taken at each stage. The masses

should be placed gently in the pans to avoid the extra stresses

which occur when the masses are dropped into the pans*. The

difference between the mean of the two readings for given masses

and the mean of the two readings, when the pans are empty, is

taken as the elevation due to these masses.

Care must be taken not to load one pan so much more than

the other that the greater overbalances the smaller load.

If h/M prove to be nearly constant for different loads, the

mean value may be taken as the best value of h/M to use in

calculating E. When there are serious irregularities, the values of

M and of h should be shown on squared paper, and a straight line

should be drawn by aid of a stretched thread, as in 53, so as to

pass as evenly as possible among the plotted points. The differ-

ence between the values of h as shown by this line for M= and

for some definite mass M is taken as the value of h for that mass.

These values of M and h are used in (8) or (10).

If we are to keep within the elastic limit, the maximum

elongation of the most highly strained longitudinal filaments

should not exceed about y^
1^ cm. per cm. It follows, by Chapter II,

30, that p must not be less than lOOOc?, where 2d stands either

for the diameter of a circular rod or for the vertical thickness of a

rectangular one. Hence, by (4), we see that h + h should not

exceed l
2

/(2QOOd). Thus, if 2d = 1 cm. and if 21 = 80 cm., h + h

should not exceed 1*6 cm.

67. Mirror method of determining curvature. We have

just seen that the elevation of the middle point of the rod must

be comparatively small, if the strains are not to pass the elastic

* See the first Footnote on page 82.
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limit, and thus, if a millimetre scale, read by eye, is the only
available means of measuring the elevation, it is clear that no

great accuracy is possible. The distance to be measured is, how-

ever, easily increased by using a mirror. A plane mirror R (Fig. 37)

Fig. 37.

is attached to the rod with wax immediately over the knife edge D
and is adjusted so that the normal to the mirror is approximately

parallel to the rod when the rod is not loaded. A vertical scale S
is placed over the other knife edge C and a telescope T, fitted

with cross wires, is placed so that the observer can view a point Q
on the scale by reflexion at the mirror. In this method we rely
on the axis of the telescope remaining in a fixed direction. Care

should, therefore, be taken that the telescope is firmly mounted.

It will be difficult to obtain satisfactory readings if the apparatus
be much disturbed by vibration.

Since the tangent to the rod at the middle point remains

horizontal and since CD = 21, it follows that, if the tangent at D
turn through an angle 6 when the load M + M is hung at each

end,

But, if the scale appear to move past the cross wire of the telescope

through # cm., when the scale-pans are hung on, and through an

additional z cm., when a mass M is placed in each pan, we have,

for small angles,

^0+2 Q/)^r = 2 ^'

since the angle turned through by RQ is twice the angle turned

through by the mirror. Hence,

I ^
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Comparing this result with (4), we have

[CH.

or, since this holds for all corresponding values of h and z,

z=8h.

Thus the apparent movement of the scale past the cross wire is

eight times the corresponding motion of the middle point of

the rod.

Substituting for h in (8) and (10) we have for a round rod

,

dynes per square cm.......... (11)E-

and for a rectangular rod

7^ SMpPqE = ^
do z

,

dynes per square cm.............(12)

The readings obtained by aid of the mirror may be treated as

those obtained by aid of the pin are treated in 66.

68. Practical example. The observations may be entered as in

the following record of an experiment made by Mr D. L. H. Baynes upon
a circular rod of steel.

Readings of screw-gauge for pairs of diameters at right angles,

Mean reading '9590 cm.

Correction for zero error O0006 cm. ;
to be added.

Mean diameter =2a= -9596 cm. Radius = a= '4798 cm.

Distance between knife edges 21=80 cm.

Distance between knife edge and point of suspension of load =p= 35 cm.

9562

9620
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When the mean elevation h was plotted against the load J/, the straight

line lying most evenly among the points cut the line J/=0 at 0'02 cm. and
the line M=40QO at 1'30 cm., the difference being 1-28 cm. Hence, for

calculation, we use h/M= 1-28/4000= 3 '20 x 10
~ 4 cm. grm."

1
. The values of

A/M given in the table are somewhat irregular. If the value 3*60 xlO~ 4 be

excluded, the mean of the remainder is 3'27xlO" 4
, slightly higher than the

number obtained from the diagram. Using A/J/=3'20xlO~4
,
we find, by (8),

for Young's modulus

2x35x402 x981

EXPERIMENT 7. Determination of Young's modulus by
uniform bending of a rod. Dynamical method.

69. Determination of Young's modulus. The ends of

the wire or rod are soldered into two clamping-screws which are

secured to two equal inertia bars AB, CD (Fig. 38). Two light

Fig. 38.

hooks about 4 cm. long are screwed into the bars at G, G', so that

the hooks are perpendicular to the wire?, as in Fig. 39, which

shows a section of the arrangement by a plane through G per-

pendicular to the axis of the bar AS. The cylindrical recess in

the inertia bar allows the end of the clamping-screw to lie on the

axis of the bar. By means of the hooks, the system is suspended

by two parallel strings at least 50 cm. long. Since the centres of
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gravity of the bars are below the hooks, the system can rest in

stable equilibrium with the plane ABCD horizontal.

Fig. 39.

If the two bars be now turned through equal angles < in

opposite directions and be then set free, the system will vibrate,

each bar executing harmonic vibrations in a horizontal plane.

When the vibrations are small, the rod or wire is only slightly

bent, and hence the distance GG', measured along the straight

line, differs very little from the length of the wire itself. If P, P f

be two neighbouring points on the wire and Q, Q' be their pro-

jections on the straight line GG', we have QQ' = PP f

cos-v/r, where

T/T
is the angle between GG' and the tangent at P. Thus, since

i/r
is small,

PP' - QQ' = PP> (1
- cos VT)

= \PP' . t2
-

Now, the maximum value of ty occurs at the ends of the wire, and

there -^
= <. Hence, if the length of the wire be I cm.,

so that, when
<f>

is of the first order of small quantities, the

displacements of G and G' towards each other are of the second

order. For small vibrations we may, therefore, treat the distance

GG' as invariable.

When the mass of the wire is negligible compared with that of

the bars, the motion of G and G' at right angles to GG' may be

neglected.

Since the horizontal displacements of G and G' are very small

compared with the length of the supporting strings, the vertical

motion of G and G '

is negligible.
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Now, whatever be the forces acting on either bar, they may, by
Note I, be reduced to a force and a couple. By Note III, 1,

the force is Mf, where M is the mass of the bar and / is the

acceleration of the centre of gravity of the bar. But, to our

order of accuracy, the centres of gravity of the bars are at rest, and

hence the action of the wire on either bar is simply a couple

which, by symmetry, must have a vertical axis. Conversely, each

bar exerts a couple on the wire. Hence, the "
bending moment "

(Chapter II, 31) is the same at every point of the wire, and thus

the neutral filament of the wire is bent into a circular .arc.

It is shown in Chapter II, 31, that the bending moment is

Eljp }
where p cm. is the radius of the arc, E is Young's modulus,

and / cm.4
is the " moment of inertia

"
of the area of cross section

of the wire about an axis through the "
centre of gravity

"
of that

area perpendicular to the plane of bending. This axis is per-

pendicular to the plane of Fig. 38. If $ be the angle turned

through by either bar from its equilibrium position, we see from

Fig. 38 that p = /2</>,
since the length of the wire is I cm.

Let the moment of inertia of either bar about a vertical axis

through its centre of gravity be K gramme cm.2 and let the

angular acceleration of the bar towards its equilibrium position be

a radian sec.~2 when the displacement is
</>

radians. Then, since

the couple on the bar is EI/p, we have, by Note III, 2,

couple El 2EI
.

g
-_i.__- -_ -_

(fj

moment of inertia Kp Kl

The angular acceleration per radian of displacement is 2EI/KI
radian sec.~2 towards the equilibrium position, and thus, if T be

the periodic time, we have, by Note V, 2,

T!= 2-7T (angular acceleration for one radian) ""2

If the radius of the circular section of the wire be a cm., we have,

by Note IV, 12,

O 171

Hence, by (1), E = -mTT dynes Per S(
l
uare cm............. (2)

JL i Ct
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In (2) the mass of the wire has been entirely neglected. It

may be shown* that, when ra, the mass of the wire, is small

compared with the mass of either bar,

Strl

70. Experimental details. In order that the most highly
strained portions of the wire should not be strained beyond the

elastic limit, it is necessary that the amplitude of the vibrations of

the bars should be small. As it is impossible to observe the time

of vibration of the bars satisfactorily unless the motion we are

considering is undisturbed by any other motion of the system, the

vibration must be started without giving the bars any motion of

translation. The two ends B, D (Fig. 38) are drawn slightly together

by a loop of cotton thread, and the system, thus constrained, is

brought carefully to rest. The desired vibration is then started by

burning the thread. A pointer should be set up close to the end of

one of the bars, and the transits past the pointer of a mark on the

bar should be observed in finding the time of vibration. Some care

is necessary in this part of the work, for it is found that with large

arcs of vibration the periodic time is appreciably greater than for

small arcs. If the arcs are large the result may be considerably in

error.

The relation between the amplitude of the vibration and the

maximum elongation of the material of the wire is easily found.

For, by Chapter II, 30 and equation (1) of 29, if e be the

maximum elongation, e = a/p cm. per cm. But p
=

//2</> and hence

(f>
=

el/'2a. Errors will be avoided if e never exceeds -5^. If

the wire be 25 cm. long and O'l cm. in diameter, e will not exceed

33\5T7,
if

(f>
does not exceed ^ radian or about 3.

The time of vibration may be found by a stop-watch or in other

ways (see 63), but unless the time-piece is known to be keeping
correct time, it should be compared with a standard clock.

Readings for the diameter of the wire should be made by a

screw-gauge at four or five places equally spaced along the wire,

two perpendicular diameters being measured at each place. The

* G. F. C. Searle, Philosophical Magazine, Feb. 1900, p. 197.
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mean reading, when corrected for the zero error of the gauge, is

taken as the diameter, 2a, of the wire*.

If the readings show that the diameter of the wire is sensibly

elliptical, a mark should be made on one of the clamping-screws,
and the periodic time should be observed when the clamping-
screws are adjusted so that the mark is vertical. The screws should

then be loosened and the wire turned about its axis until the mark

is horizontal, the screws being then tightened and the periodic time

again observed. The mean of the two periodic times is used in (2).

The mass of each bar is found before the hole is bored in it

and before the hook is fixed to it, and the value of this mass is

stamped on the barf. If the mass of the bar be M grms., if its

length be 2L cm. and if the sides of the square section be 2A cm.,

we have, by Note IV, 6,

K = \M(L? + A 2
) gramme cm.2

.

The simple theory supposes that KA and Kc ,
the moments of

inertia of the bars AB, CD (Fig. 38), are exactly equal. This will

not generally be the case in practice, but it follows from the

principles employed in obtaining equation (3) that, when KA and

Kc are nearly equal, the observed time of vibration will not differ

appreciably from that which would be found if the moment of

inertia of each bar were ^ (KA +Kc). We may therefore take K
in equation (2) as equal to the mean of the moments of inertia of

the two bars.

71. Practical example. The observations may be entered as in the

following record of an experiment made by Mr D. L. H. Baynes on a wire of

German-silver.

Length of bars= 2Z= 32 10 cm. Breadth of bars= 2A = I -29 cm.

Mass of each bar= Jf=441 grammes.
Moment of inertia of each bar= jr= JM (Z

2+^ 2
)
= i441 (16*05

2+ -642
)

= 3793 x!04
grm. cm. 2

.

Length of wire = = 31 '15 cm.

Readings of screw-gauge for pairs of diameters at right angles,

mean -1189 cm.
1189

1189
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Correction for zero error -0005cm. ;
to be added.

Mean diameter = 2 = -1189+ "0005= '1194 cm. Radius = = -0597 cm.

The mean readings for the two diameters, viz. -1188 and -1190 cm. were

so nearly equal that it was considered unnecessary to change the positions of

the clamping-screws in the bars.

Time of 50 complete vibrations 71'0, 70'8. Mean 70'9 sees.

Periodic time 7
T

1
= 1-418 sees.

Hence, by (2), we find for Young's modulus

8vKl 8x3-142x3-793 X104X3M5 . 1C 1AE=
Tfr*

=
1-4182x0-0597*

= 116 X dyn6S per SqUar6 Cm '

EXPERIMENT 8. Comparison of elastic constants. Dyna-
mical method.

72. Method. By the apparatus used for EXPERIMENT 7 we

can compare Young's modulus E and the rigidity n of the material

of the wire by simply observing two times of vibration. The

inertia bars are unhooked from the strings and one bar is clamped
to a shelf or other suitable support so that the wire is vertical.

The other bar is then caused to vibrate about a vertical axis.

exactly as in EXPERIMENT 5 for finding the rigidity. Since the

vibrating bar is of square section, its moment of inertia about the

wire is equal to K, its moment of inertia about the axis of the hook,

provided that the effects of the hook, the clamping screw, and the

recess, be negligible. If T2 be the periodic time of the torsional

vibrations, we have, by equation (1), 63,

T?tf

The periodic time, Tlt of the vibrations discussed in 69 is then

observed. By equation (2), 69,

.(2)

and hence, by (1),

E
n .(3)

Thus we can compare E and n without knowing the length or

diameter of the wire or the dimensions of the inertia bars.

IfKA and Kc ,
the moments of inertia of the two bars, be not

exactly equal, each bar should be caused to vibrate in turn. The
mean of the two periodic times will be very nearly equal to that
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which would be found if the moment of inertia of each bar were

77 KA +Kc). We may therefore take T2 in equation (1) as equal
to the mean of the two periodic times. On page 111 it is shown
that in equation (2) we may take K as equal to \ (KA + Kc).

When E/n has been found, Poisson's ratio, a, is easily calculated

by formula (11) of 19, Chapter I, viz.

^ =^-1 W
The following table * gives some values of E/n obtained by this

method when applied to wires about O'l cm. in diameter. To make
the results more complete, the values of E and n were calculated

by (2) and (1), the unit for each modulus being one dyne per

square cm. In each case the value of E has been corrected for

the mass of the wire, the correction being about ^ per cent.

Material
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solids does not furnish a working approximation. Considering h

violent is the process of wire-drawing, this result is hare

surprising.

73. Practical example. The results may be entered as in

following record of an experiment by Mr D. L. H. Baynes on the wire

German-silver used in the experiment of 71.

Time of 50 complete vibrations (Young's modulus) 71 '0, 7O8. Me

70-9 sees.

Hence T = 1-418 sees.

Time of 50 complete vibrations (Rigidity) 153'4, 153'4. Mean 153'4 se<

Hence 7*2=3-068 sees.

E T** 3 '0682

Hence, by (4), Poisson's ratio =a= (E/2ri)- 1=1'34.

Since the maximum value of a- for an isotropic solid is J, this res

shows that the German-silver wire is far from being isotropic.

EXPERIMENT 9. Determination of Poisson's ratio by tl

bending of a rectangular rod.

74. Introduction. It is shown in Chapter II, 29, th

when a rod of rectangular section is bent into a circular arc, tl.

transverse section is distorted*. The sides BC, AD (Fig. 12) of t

section, which are initially parallel to the axis of bending, becoi

circular arcs having a common centre S, while the sides AB, C

which are initially perpendicular to the axis of bending becoi

straight lines A'B', C'D' passing through S. If the distance of

from 0, the point where the neutral filament cuts the plane of t
'

diagram, be p' cm. and if the radius of curvature of the neut

filament be p cm., then we have, by formula (5) of 29,

a:

Hence we can find Poisson's ratio cr, if we measure the longi

dinal curvature 1/p, viz. the curvature of the neutral filament, a

determine the point S through which the sides A'ff
t
C'D' w>

pass, if continued. Instead of finding S, we may deduce 1/p' fr

* See Chapter II, 33, 34, for the difference between a rod and a blade i

respect to the distortion of the section.
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the angle 9 between the sides A 'B' and C'D' when the rod is bent.

For, if the width (BC) of the bar be 2a cm., we have

1 - -

..-(2)TT- cm."

We shall call \fp the transverse curvature.

The apparatus is arranged as in Fig. 40. The rod rests upon
two knife edges N, N' and can be bent by means of two equal masses

placed in the pans which hang from the stirrups L, L
r

near the ends

of the rod, the distances LN and L'N' being equal. The rod should

be 0*2 to 0*3 cm. in thickness and 2 to 4 cm. in width. The general

Fig. 40.

arrangement of the apparatus is the same as that in EXPERI-

MENT 6, to which the reader should refer. At U, V, midway

between the knife edges, are fixed two steel needles about 3 mm.

in diameter and 40 to 50 cm. in length. The needle fixed at U
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carries a horizontal scale Tand the point P of the other needle

moves along this scale when the rod is bent, the relative motion

indicating the extent of the distortion of the transverse section.

The tip of the needle VP should be ground to a fine point so that

the readings may be taken with certainty to T̂ mm.
An efficient method of attaching the needles to the rod is shown

in Fig. 41. Two connectors, each fitted with two set screws, such

Fig. 41.

as are used for electrical connexions, are soldered to the sides of

the rod at U and V and the needles are secured in the connectors

by the set screws.

It would be difficult, without some special device, to solder the

connectors to the rod one at a time, for the act of soldering the

second connector to the rod would probably cause the solder holding
the first one to melt. To avoid this trouble, the connectors may
be fixed to the two needles as in Fig. 41, and the needles may
then be secured in a suitable clamp so as to hold the connectors in

position against the sides of the rod. The soldering may then be

accomplished by aid of a soldering bit or blowpipe.
Since the motion of the pointer VP along the scale T is only

small, a telescope should be used to magnify the scale and to avoid

errors of parallax.

The two long needles are very sensitive to vibration, and thus

it is impossible to obtain accurate readings if the apparatus be set

up in a part of the laboratory which is subject to much vibration.
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Since the distances LN, L'N' (Fig. 40) are equal, and since the

masses suspended from L and L' are equal, it follows, as in 66,

that the bending moment is constant for all points of the rod

between N and N'. Hence the neutral filament is bent into a

circular arc.

The value of 1/p', the transverse curvature, is deduced from the

motion of the pointer VP relative to the scale T. On VS, US

(Fig. 42) take P, P
f

such that VP = UP'=p, where p cm. is the

Fig. 42.

length of the steel pointer measured from the tip to the centre of

the edge of the rod, and let the straight line PP f

cut the vertical

lines through V and U in K and K'. Then, since the angle VSU
or is the sum of the very small angles PVK, P'UK', we may take

If the displacement of the tip of the pointer along the scale

be x cm., we may write

(3)

Hence, by (2), we find for the transverse curvature

1 6 x
-,= -=r- = s cm."1

p 2a 2ap

We have here supposed the axes of the steel needles to coincide

with the faces of the rod, but it is easily seen that the result is

the same when the axes of the needles are at small distances from

the edges of the rod, as in Fig. 41. Further, there is no need for

the needles to be absolutely straight.
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The curvature l/p of the neutral filament is deduced from the

vertical motion of Q, the point midway between U and F. A pin
is attached by wax to the rod at Q and a vertical scale (not shown

in Fig. 40) is placed so that the tip of the pin moves along it when
the rod is bent (see Fig. 35). If preferred, the mirror method

described in 67 may be used for finding p.

If the distance between the knife edges be 21 cm. and if h cm.

be the distance through which Q rises when a mass M is placed in

each pan, we have I
2 = h(2p h), or approximately, since h is small

compared with p,

1 2h

75. Determination of Poisson's ratio. A series of obser-

vations is made. The masses in the pans are varied by equal steps

from zero to some maximum value which does not strain the

rod too much. In putting the masses into the pans care must be

taken that one pan is not so heavily loaded that the heavier

load overbalances the other. To avoid this disaster, equal masses

may be put into the two pans simultaneously, using both hands.

The masses must be put into the pans as gently as possible so as

to avoid any chance of disturbing the clamping of the long steel

needles.

For each value of the load, beginning with the pans empty,
the reading of the needle VP on the scale T is taken as well as

the reading on the vertical scale of the pin attached to the centre

of the rod. If the pans be light, we may take the readings when
the pans are empty as the zero readings.

To determine Poisson's ratio from the observed quantities we
use the values of l/p' and l/p given by (3) and (4), and thus we
find

(5)

The results of the observations may be shown graphically,

h being taken as abscissa and X as ordinate
;
a straight line is then

drawn by the aid of a thread (page 83) so as to pass as evenly as

possible among the plotted points. The difference in the values
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of x, as shown by this line, for h = and for some definite elevation

h is taken as the best value of x for that value of h. These values

of h and x are used in calculating cr by the formula (5).

76. Practical example. The observations may be entered as in

the following record of an experiment made by G. F. C. Searle upon a steel

rod about 0*3 cm. (| inch) in thickness.

Width of bar at centre = 2a=2'48 cm. Hence a=T24 cm.

Thickness of bar= 26= 0'3 cm. Hence 6= 0-15 cm.

Distance between knife edges =2Z=40 cm. Hence 1=20 cm.

Distance from knife edge to point of support of corresponding pan=30 cm.

Distance from tip of pointer to centre of edge of rod =p=43'0 cm.

To give a clear idea of the magnitudes of the two radii of curvature, the

values of p and p' have been calculated by (4) and (3). Thus,

_^_202

_200 ,_2ap_ 2*48x43 _ 106'6~~~ ~ = ~ ~~~

Load in
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uniform bending presented by a rod supported at its ends and

loaded at its centre. The general mathematical theory of this

case is beyond the scope of the present book, but it so happens
that the conditions under which it is easy to make experiments
with a rod loaded at its centre are those which must be satisfied

in order that the results of the partial mathematical treatment,

which is given below, may be good approximations to the truth.

To obtain a working knowledge of these conditions, we shall

consider a weightless rod of length I, fixed horizontally at one

end B, and bent by a downward vertical force F applied to the

other end G in the manner indicated in Fig. 43. Let P be a

nFAB P[

CH

l-x

Fig. 43.

point on the rod at a distance x from the end B, let a transverse

plane PO be drawn through P and let us consider the equilibrium

of the portion PC. If we apply equal and opposite vertical forces,

each equal to F, to the end of PC nearest to B, we see that the

downward force F applied at C is equivalent to a downward force F
applied at P together with a clockwise couple. Since the equili-

brium of PC is maintained, the action of BP on PC is equivalent

to an upward vertical force F together with a couple G in a

direction tending to turn PC in a counter-clockwise direction,

where

Cf-F(l-x) (1)

The force F is supplied by the tangential stresses over the

section, and hence, if Fav be the average vertical tangential stress,

AVn -F, (2)

where A is the area of the section.

The resultant of the normal stresses across the section vanishes,

since the only force applied to PC is F, and F is vertical. Hence

there is some point in the section where the normal stress (T)
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changes sign. Through take rectangular axes OZ, perpendi-
cular to the plane of the paper, and OF, perpendicular to the

length of the rod, and take moments about OZ. Then, if (Ty\v be
the average value of Ty, we have

A(Ty\v=G=F(l-x) (3)

From (2) and (3) we have

_F_(Ty\v
y&v ~A~~ l-x'

We may conclude from this result that, when the greatest
value of y is small compared with I x, the average value of V
is small compared with the values of T at the top and bottom

of the rod, where the normal stress is greatest. Thus, we may
expect the effects of the vertical shearing stress V, as shown in

the deflexion of the end (7, to be small compared with those of the

normal stress T, provided the length of the rod be great compared
with its depth*.

78. Approximate results for non-uniform bending.
When the vertical shearing stresses are neglected, we may neglect

any changes in the angles of a square with horizontal and vertical

sides in a plane parallel to that of the paper in Fig. 43, and hence

a transverse section of the straight rod is strained into a surface

cutting all the longitudinal filaments at right angles. If G be the

point in the strained section which corresponds with the " centre

of gravity" or centroid of the unstrained section, the plane touching

the strained section at G will nowhere deviate appreciably from

the strained section itself, provided the rod be thin, and conse-

quently the assumption that the strained section is accurately

plane will not lead to any appreciable error.

We suppose that the bending takes place parallel to a plane

of symmetry of the rod, and, as in Chapter II, 28, we call that

plane the plane of bending. Corresponding to any transverse

section, there is one longitudinal filament in the plane of bending

which, in the neighbourhood of that section, remains unchanged

* Horizontal shearing stresses will act across the section through (Fig. 43) as

well as vertical shearing stresses. The effects of the former on the deflexion of C

will be much less than that of the latter and are neglected in the investigation.
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in length, and this filament is called the neutral filament cor-

responding to that section, while the straight line, which passes

through the centre of curvature of the neutral filament at any

point and is perpendicular to the plane of bending, is called the

axis of bending for that point.

From the investigation of the uniform bending of a rod given
in Chapter II, 28 to 33, we may expect that, when the radius of

curvature of the neutral filament is large enough compared with a

quantity depending upon the form and magnitude of the transverse

section, the tension of any longitudinal filament, at a point where

the elongation is e cm. per cm., will not differ appreciably from

that which would give the elongation e in a filament of equal

unstrained section if the sides of this filament were free from

stress. We shall therefore calculate the tension T in terms of

Young's modulus E by the formula

.(4)

which, by Chapter I, 17, applies to the case where the sides of

the filament are free from stress.

If (Fig. 44) be the point where the neutral filament cuts

the plane of the transverse section, and if, in that plane, we take

rectangular axes* OX, OY, parallel and perpendicular to the axis

Axis OF BENDING

Fig. 44.

* The axis of x is now taken at right angles to the plane of Fig. 43. In

79, 81, 82 the axis of x is in the same direction as in Fig. 43.
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of bending RH, it follows, as in Chapter II, 29, that, if e be the

elongation of the longitudinal filament through the point P, which

has the coordinates x, y, then

where p is the radius of curvature OR of the neutral filament.

If T dyne cm.~2 be the tension of the longitudinal filament, we

have, by (4),

T = Ee=Eyjp.
We can now find the position of the neutral filament. For,

ifN be the total force acting across the transverse section and at

right angles to it, and if a be an element of area, we have

N = ZTa = E'Zcty/p (5)

But Say = Ah, where h is the ordinate of the "centre of gravity"

of the section, and A is the area of the section
;
thus

Hence, when N is known, the position of the neutral filament

relative to the "centre of gravity" of the transverse section is

known.

In many cases the forces are applied to the rod in such a way
that N is zero. In these cases h vanishes, and then the neutral

filament passes through the " centre of gravity
"
of the section.

In the EXPERIMENT now under discussion the rod slides slightly

over the knife-edges (Fig. 46) when the load is changed, and this

motion is opposed by friction which therefore gives rise to a

horizontal force. Since the depression of the centre of the rod

due to a given load is found in practice to be nearly the same

whether this load be reached by increasing a smaller load or

decreasing a larger one (see 68, 84), we may conclude that the

effects of the horizontal force due to friction are small ;
in the

present EXPERIMENT these effects will be neglected.

The sum of the moments, about the axis OX (Fig. 44), of the

tensions in the longitudinal filaments is equal to the "bending

moment," i.e. the moment about the same axis of the forces ap-

plied to the rod on either side of the transverse section. Hence,

if the bending moment be G dyne-cm.,

E^ 2
El m-.-^af = -, (7)

P P
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where / is the " moment of inertia
"

of the section about the

axis OX.

When N is zero or negligible, may be taken to coincide with

the centre of gravity of the strained section and when, in addition,

the bending is slight, / may be taken as equal to 7
,
the moment

of inertia of the unstrained section about an axis through its

centre of gravity parallel to the axis of bending.
From (6) and (7) we have

IN

and thus the distance of the neutral filament from the " centre

of gravity" of the section will vary as we pass along the rod,

unless N/G or pN be constant. This condition is not generally

satisfied, and hence, in general, there is no one longitudinal filament

in the straight rod which suffers no elongation at every point of

its length, when the rod is bent.

When a horizontal rod is bent by vertical forces, as in Fig. 46,

the force N is negligible, but when a rod which is fixed at one

end with its axis slightly inclined to the vertical is loaded at the

other end, N will be large at all points of the rod, while G will be

zero at the loaded end and will increase as the fixed end is

approached. In this case h may be so large near the loaded end

that the neutral filament does not lie within the rod; in other

words, every longitudinal filament is either extended or shortened

.according to the direction of N. The moment of inertia / can

then no longer be taken as equal to J but must be found from

the expression

I = IQ + Ah\ ........................... (9)

which is obtained in Note IV, 12.

79. Cartesian expression for curvature. When a rod is

bent by the application of known forces, the bending moment G
is known at every point of the rod. When the effects of the force

N are negligible, / may be taken as equal to / and then equation

(7) gives the curvature 1/p, and from this information we have to

determine the form of the rod. When, as in practical cases, the

bending is slight, we can obtain a simple differential equation from
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which the form of the rod can be found, if we express l/p in terms

of Cartesian coordinates.

Let x, y be the coordinates of any point P (Fig. 45) on the

curve AB. Let the radius of curvature at P be p, and let

the tangent at P make an angle ty with the axis of x. Then

tan
-<Ir
= dy/dx (10)

Fig. 45.

If the tangent at the neighbouring point Q make an angle ty + d\fr

with OX, then d-^r is the angle between the normals at P and Q,

and hence, if the length of the element of arc PQ be ds, we find

dx/ds = cos
>/r, (11)

^ _ ^ r _ V~ T v~~ _ ^^^
, ^J^

^

p ds dx
'

ds r dx
'and thus

By differentiating (10), we obtain

S =se<

dx
.(12)

,

dx

and hence, by (12),

d*y d*y
-j

= -^dx2 dx2

But sec2

i/r
= 1 + tan2

-/r,
and hence

1- = co
p

sec3

^. .(13)

.(14)
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When the curve is nearly parallel to OX, so that

very small, we may replace cos3
^r by unity and write

dx2
'

[CH.

is always

...(15)

80. Apparatus. The rod, of circular or rectangular section,

rests upon two knife edges A, B (Fig. 46) carried by a stout

bed XY such as is described in 65. A light pan is suspended
from (7, the point of the rod midway between A and B. A pin

is fixed to the rod by wax at G and a vertical scale is set up close

S'
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Instead of observing the depression of the central point C, we

may observe the slope of the rod at B. A plane mirror R is

attached to the rod immediately over the knife edge B and a

vertical scale S' is set up over the knife edge A. By a telescope T
fitted with cross-wires and held in & firm stand ( 67), the scale

8' can be viewed by reflexion at R
;
the slope of the rod at B

can be deduced from the apparent motion of the scale past the

horizontal cross-wire of the telescope.

81. Depression at centre of rod. Let P (Fig. 49) be any

point on the rod and let the coordinates of P relative to the

axes CX, CY through the central point G be x, y cm. Let

M

Fig. 49.

the distance between the knife edges A, B be 21 cm. For the

sake of clearness, the curvature of the rod is greatly exaggerated
in the figure. Let a load ofM grammes be suspended at C. If

the rod be so stiff that it is only slightly bent by its own weight,

the additional depression due to M may be taken to be equal
to the depression which M would cause if the rod were without

weight.

In the case of a weightless rod, the upward force due to each

knife edge is \Mg dynes. Hence, if G be the bending moment

at P, we have
G = ^Mg(l x) dyne-cm (16)

Thus, by (7) and (16),

*) = . -(17)

or, by (15), .(18)
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the differential equation from which the form of the rod is to be

deduced.

Integrating (18) with respect to x, we have

where K is a constant. At C the rod is horizontal, and hence

dyjdx = 0, when x = 0. Thus K = 0.

Integrating a second time, we find

where N is another constant whose value is zero, since the axes

have been chosen so that y = when x = 0. Hence the form of

the rod is given by

It should be noticed that this equation holds good only over the

part CB of the rod. For points on AC, the bending moment is

not \Mg (I x) but \Mg (I + x), which leads to

<21 >

For values of x which are numerically equal but of opposite signs,

equations (20) and (21) give identical values of y.

If the depression of the mid-point be h cm., we see that h

is equal to the v elevation of B above the axis OX. But at B,

x = l and hence, by (20),

and E = -r- dynes per square cm.............(23)

When the rod is circular with diameter 2a cm. or radius a cm.,

we have, by Note IV, 12,

I = J-Tra
4 cm. 4

,

and for a rectangular rod of width 2a and thickness 26 cm., the

side whose length is 26 being vertical in the experiment,

I = |a6
3 cm.4

.
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If p be the radius of curvature at the mid-point, where x =
we have, by (18),

..-(24)

Comparing (22) with (24), we find

(25)

If the rod had been uniformly bent into an arc of radius p', the

geometry of the circle would lead to the approximate result

82. Slope at end of rod. Since K =

that, if
ijr

be the slope at B, where x = I,

in (19), we find

(&.-.
If z be the distance through which the scale S' (Fig. 46) appears
to move past the cross-wire of the telescope when the load M is

placed in the pan, we have, as in 67,

Thus, by (26),

and

z = (27)

ET jE =
-y- dynes per square cm. .(28)

We see from (22) and (27) that the distance through which

the scale appears to move past the cross-wire is six times the

distance through which the mid-point descends.

Equation (28) has been obtained on the usual assumption that

the slope of the rod is everywhere so small that cos ^r may be

replaced by unity in (13). But an exact expression for sin ty is

easily found. Since, by (12)

COS

we have, by (17),

-- = -,
dx p

d^lr Mq

S. E. E.
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On integrating this equation from x = to x x and noting that

sin
yfr
= when x = 0, we find

Bin*=3J|f(fcr-i'),
.................. (29)

and thus
* **

+ .......... (30)

When tyB is small, the value given by (26) does not differ

appreciably from that given by (30).

83. Determination of Young's modulus. Young's modu-

lus may be deduced either from the depression of the mid-point or

from the apparent motion of the scale past the cross-wire of the

telescope. In either case a series of observations is made. The

mass in the pan is increased by equal steps from zero to some

maximum value which does not strain the rod beyond the elastic

limit, and the mass is then diminished to zero by the same steps.

If the elongation of the most highly strained filament is not to

exceed y^ cm. per cm., it follows, by Chapter II, 29, that p
must not be less than lOOOa, where 2a is the diameter of the rod

if circular, or its thickness (measured vertically) if rectangular.

Hence, by (25), h should not exceed 2
/(3000a).

At each stage of the loading and unloading a reading of the pin

(or of the cross-wire) is taken. The difference between the mean of

the two readings for a given mass M and the mean reading when
the pan is empty is taken as the value of h (or of z) which

corresponds to M. As in 66, we may leave the mass of the

pan out of account.

If the values of h/M or of z/M prove to be nearly constant for

different loads, the mean value of h/M or of z/M may be used for

finding Young's modulus. When the irregularities are serious, the

graphical method should be used. In this case, the values of M
and of h or of z are plotted and a straight line is drawn as evenly
as possible among the plotted points. The difference between the

values of h (or of z), as shown by this line, for M = and for some
definite mass M, is taken as the best value of h (or z) for that mass.

These values of M and of h or z are used in (23) or in (28).
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EXPERIMENT 11. Determination of rigidity by the torsion

of a blade.

85. Introduction. The uniform torsion of a blade, i.e. a

strip of metal whose thickness is very small compared with its

width, is considered in 42 to 45, Chapter II. In 45 it is

shown that, if G1 be the torsional couple required to twist one end

of a blade of length I cm. through <f>
radians relative to the other

end, and if n be the rigidity,

n ,

,= -

3 j
^dyne-cm., ................... (1)

where 2a cm. is the width and 26 cm. the thickness of the blade.

From this equation n can be calculated, when the relation of GI to

<f>
has been determined. In the following experiment the deter-

mination is made by a dynamical method.

Polished strips of tempered steel form suitable specimens for

this experiment and for EXPERIMENT 12. Since they are fairly

uniform in thickness, reasonably good measurements can be made

upon them. They have the further great advantage that they

may be subjected to considerable strains without sustaining any

permanent set. Steel strips can be obtained from the manu-

facturers in a great variety of widths and thicknesses, down to a

thickness of -gfo inch (0'00508 cm.). When not in use they should

be coated with vaseline to prevent rusting.

86. Determination of rigidity. The dynamical method of

EXPERIMENT 5 may be employed with a slight alteration in the

form of the inertia bar. The blade is clamped between two inertia

bars of rectangular section by the aid of three screws in the

manner indicated in Fig. 50. The central screw passes through
a hole in the blade but the other screws are sufficiently far apart
to allow the blade to pass between them. A similar method of

clamping may be employed for the upper end of the bar
;
in this

case the bars between which the upper end of the blade is clamped
must be secured to a firm support. The edges of the blade must
be vertical and the axes of the inertia bars and of the clamping
bars must be horizontal.

For the reasons given in Note VII, the mass of each inertia bar
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should be determined before the screw holes are bored in it
;
for

convenience the masses should be stamped or engraved on the bars.

The length of the blade, I cm., between the clamping bars at

its upper end and the inertia bars at its lower end is measured by
aid of a centimetre scale, and the average width, 2a cm., of the

Fig. 50.

blade is found from a number of readings taken with a pair of

sliding calipers. In measuring the thickness, 26 cm., at least 10

readings, at points fairly distributed over the blade, are taken with

a screw-gauge and the correction for the zero error of the gauge is

applied, with its proper sign, to the mean of the readings.

The lengths 2ZX and 2Z 2 cm. of the two inertia bars are then

found
;
their widths

<2A l and 2.4 2 cm., measured at right angles to

the plane of the blade, are also determined. Let the masses of the

bars be M1 and if2 grammes. Then, if Ml; LI and A l be nearly

equal to M2 ,
L.2 and A 2 ,

we may treat the inertia system as if it

were built up of two equal bars, each having the constants M, L

and A, where

The moment of inertia of one of these bars about an axis

through its centre of gravity parallel to the axis of the blade is, by
Note IV, 6, J M(L* + A 2

). The distance between these two axes

is A + b and hence, by the theorem of parallel axes (Note IV, 3),

the moment of inertia of each bar about the axis of the blade is
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Taking account of both bars, we see that, if the moment of inertia

of the inertia system be /fgrm. cm. 2

K= 2J/QZ2 + |^.
2 + 2^16 + b-).

In practice the last two terms in the bracket will be negligible

in comparison with \ L- and thus we may write

To complete the observations, the periodic time of the vibrations

of the inertia system about the vertical axis of the blade must be

determined
;
the arc of vibration should be small, since the theory

of Chapter II, 42 to 45, is only applicable to very small values

of the twist per cm. At least two observations of the periodic

time are made exactly as in EXPERIMENT 5, to which the reader is

referred. Let the periodic time be T seconds.

By Note III, 2, the angular acceleration of the inertia system
is equal to Gl/K and hence, by (1), has the value

radians per sec. per sec.

Hence, by Note V, 2, the periodic time is given by

m _ "^

Vangular acceleration for one radian

/ 31K= 2?rV ^ TO seconds.v 16 nab 3

Hence we obtain

Q-j-27 TT

n = dynes per square cm (3)

From this equation the rigidity is determined.

87. Practical example. The observations may be entered as in the

following record of an experiment on a blade of tempered steel.

Length of blade under torsion = 1= 58'07 cm.

The thickness was measured by a screw-gauge at 11 equidistant points

along each of two lines parallel to the edges of the blade, the distance

between each line and the nearer edge being about one-third the width of

the blade. The following pairs of readings were obtained
; they are expressed

in hundredths of a centimetre.

4-66 I 470 I 4-68 I 4'67

4-80 4-78 | 4-79 4'75

4-66 I 4-70

4-74 I 478

4-70 I 4-66

4-81 4' , ,

4-71 I 4-68 I 4-66

4-80 4-81 4-80

mean 4*680 x 10
~ 2 cm.

mean 4'784xlO~ 2 cm.
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The mean of the two means is 4*732 xlO" 2
cm.; the zero correction

0-08 x 10
~ 2 cm. is to be added.

Hence thickness= 2b= 4-812 x 10- 2 cm. Thus 6= 2-406 x 1Q- 2 cm.

Readings of sliding calipers on blade

5-06, 5-05, 5-06, 5*05, 5'02, 5*02

5-01, 5-02, 5-05, 5-06, 5-06. Mean 5*042 cm.

Zero error negligible.

Hence width= 2a= 5*042 cm. Thus a= 2-521 cm.

Masses of inertia bars : M
l
= 796, J/2= 796. Hence J/ = 796 grammes.

Lengths of inertia bars : 2^= 60*00, 2Z2
= 60*00. Hence L= 30-00 cm.

Widths of inertia bars: 2^ = 2*52, 2^ 2 =2'52. Hence 24 = 2-52 cm.
Moment of inertia of system=K= fM(L2+ 4A'2}

=
| x 796 (900+ 6-4)= 4-810 x 105 grm. cm.2

Time of 50 complete vibrations : 128*6, 128*8, 1287. Mean 128-7 sees.

Hence ^=2-574 sees.

Thus, by (3)

R' 'd'i _3v 2lK 3?r 2 x 58-07 x 4-810 xlO5

~4ab*T2
~

4 x 2-521 x 0*024063 x 2*5742

=8*887 x 1011
dynes per square centimetre.

On account of the uncertainty as to the thickness of the blade, this result

is uncertain to the extent of 4 or 5 per cent. The figures yielded by the

logarithmic computation are, however, retained for use in connexion with

EXPERIMENT 12.

EXPERIMENT 12. Determination of E/(l - er
2

) by the uni-

form bending of a blade.

88. Introduction. The uniform bending of a blade has been

discussed in Chapter II and in 37 of that chapter it is shown

that, unless the bending be very slight, the bending moment, G2 ,

required to bend the blade so that the longitudinal filaments have

a radius p cm., is given by

where 2a cm. is the width and 26 cm. is the thickness of the blade.

Further, E is Young's modulus and cr is Poisson's ratio.

Equation (1) is not sufficient by itself to determine either E
or cr, but if we use it in connexion with the equation (1) of

85, viz.

,

dyne-cm.,
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which refers to the torsion of the blade and with the equation (11)

of 19, Chapter I, viz.

J0=2n(l + a), (2)

which expresses the relation between Poisson's ratio and the two

elastic constants E and n, we have sufficient equations to deter-

mine the three quantities E, n and a.

89. Apparatus. The relation between 6r2 ,
the bending

moment, and p, the radius of curvature of the longitudinal fila-

ments, may be investigated by the method of EXPERIMENT 6, if we

introduce slight modifications rendered necessary by the flexibility

of the blade.

Fig. 51.

The blade AB (Fig. 51) rests symmetrically upon the knife-

edges C, D, which are set at right angles to the length of the bed

XY. The distance between the knife-edges should be adjusted so

that the part of the blade between them is as nearly as possible

straight when the blade is unloaded. When this adjustment is

secured, it will be found that the distance between the knife-edges
is approximately half the whole length of the blade*.

*
It is easily seen that the bending moment at the centre of the unloaded blade

is zero when the distance between the knife-edges is half the whole length of the

blade. It can be shown that the centre of the blade is then raised above the level

of the knife-edges by /</80, where h is the depression at the centre when the blade is

supported at its ends. If the adjustment be such that the centre of the unloaded
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The deflexions of the central point are observed by aid of the

scale S, the point of a bent needle serving as an index. A telescope

may be used to magnify the scale and to avoid parallax.

The curvature may also be determined by the mirror method

(EXPERIMENT 6, 67). In this case the curvatures employed may
be smaller than when a needle-point and scale are used.

The pans for carrying the weights may be hung from threads

which pass, at H and K, through the holes drilled in the blade to

accommodate the central clamping screws (Fig. 50) used in EX-

PERIMENT 11. The threads may be secured to the blade by small

pieces of wax W, W (Fig. 51) and should be provided with light

hooks to carry the pans. It is convenient to adjust the mass of

each pan to some definite value, say 10 grammes.
The length AB is limited by the condition that the blade

should not bend much under its own weight and hence the curva-

ture must be considerable if the deflexion of the central point is

to be large enough for accurate observation with simple apparatus.

But, when the blade is bent, the horizontal distance between the

threads is less than when the blade is straight and thus a correction

becomes necessary. To determine this correction, two horizontal

scales T, T are placed close to the threads and the scale-readings

of the threads are taken for each load. The zero readings should,

strictly, be taken when the threads carry no loads, but the threads

would not be straight under those conditions, and thus the readings

obtained when only the pans hang from the threads are treated as

the zero readings ;
the horizontal displacements of the threads due

to the pans alone are negligible.

On account of the bending, the blade must slide slightly on

the knife-edges, and small differences in the friction between the

blade and the knife-edges will be sufficient to cause the horizontal

movement of one thread to differ from the horizontal movement of

the other. The difference may be reduced, if necessary, by moving

the blade through a small distance parallel to its length.

blade is at the same level as the knife-edges, the theory shows that the distance

between the knife-edges is 6 - ^/30 or -5228 times the whole length of the blade.

The radius of curvature at the centre of the blade is then ^Rf (0-5228- )
or 21-9fl,

where E is the radius of curvature at the centre when the blade is supported at its

ends. It is impossible to secure entire freedom from bending.
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90. Determination of Ej(\
- a2

).
It follows from 66, equa-

tion (1) (EXPERIMENT 6), that, when the horizontal distance of each

thread from the nearer knife-edge is p cm., the bending moment,
Gz ,

due to equal loads of M grammes hung from the threads is

given by
Go = Mpg dyne-cm......................... (3)

On account of the unequal sliding of the blade on the knife-edges,

the horizontal distances of the threads from the corresponding

knife-edges are not quite equal. But, since the difference of

distance is small, it will be sufficient to treat the system as

symmetrical and to use for p in equation (3) the average distance

of a thread from the corresponding knife-edge. If the distance,

measured on the straight blade, between the points from which the

threads are hung, be 2q cm., and if the displacements of the threads

from their zero positions towards the knife-edges, as measured by
the scales T, T, be t^ and 2 cm., the value of p is given by

p = q-l-(tl + t.\ ............. . .......(4)

where 21 is the distance between the knife-edges. It is supposed, of

course, that the system is symmetrical when the pans are unloaded.

The zero reading on the scale S is taken when only the threads

and hooks hang from the blade. The pans are then hung on and

a reading is again taken. The observations are continued for a

series of loads in the pan, and readings are taken and recorded

both for increasing and for decreasing loads. The difference

between the mean of the two readings for a given load and the

mean reading when only the threads and hooks hang from the

blade is taken as the elevation of the central point due to that

load. The readings of the threads on the horizontal scales are

taken for each load, and the value of ^ for a given load is calculated

from the mean of the two readings of the corresponding thread for

that load, and similarly for t.2 .

The equation connecting p, the radius of curvature, with /*, the

elevation of the central point, is

p-+'
where 21 is the distance between the knife-edges.
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In EXPERIMENT 6, we could neglect \h in comparison with

l
2

/2/i, but in the present experiment the student should examine

the relative magnitudes of the quantities so as to be able to decide

whether the term ^h may be neglected or whether it must be

retained.

The thickness and the width of the blade are measured exactly

as in EXPERIMENT 11. If that experiment has been already per-

formed upon the same blade, it will not be necessary to re-measure

the blade.

From (1) and (3) we have

E ZMppg
_

:,

=
.

r
[g dynes per square cm., (6)

and thus the values of Mpp found by experiment may be expected
to be nearly constant. The mean of the values obtained for the

series of loads is calculated and from it the value of E'/(I cr
2
) is

found by equation (6). If there be serious irregularities, the

graphical method described in 66 (EXPERIMENT 6) should be

employed.

91. Calculation of E and of a. Let the value of E/(l
- o-

2
)

obtained from (6) be denoted by J, so that

E
1-CT2

~

Substituting for E from (2), we have

2n

l-<7~

or <7=1 -T (7)

Using this value of cr in (2), we obtain

...(8)

On comparing equation (3) of 86 with equation (6) of 90, it

will be seen that njJ and, therefore also, cr are independent of the

values adopted for the width and thickness of the blade.

92. Practical example. The observations may be entered as in the

following record of an experiment made upon the blade of tempered steel

used in the experiment of 87.
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Mean width of blade= 2 = 5-042 cm. Thus a = 2*521 cm.

Mean thickness of blade= 26 = 4*81 2 x lQ- 2 cm. Thus 6 = 2'406xlO- 2 cm.

These values are those used in 87.

Distance between knife-edges = 2^= 33*0 cm. Thus = 16'5 cm.

Distance between the points of support of the threads when the blade is

straight= 27= 59'40 cm. Hence <?=29'7 cm.

Hence, by (4),j0
= 29-7-16-5-A(*, + *2)

= 13-2-( 1 + 2 ).

The readings for the elevation, h, for increasing and decreasing loads

were taken on a scale divided to half-millimetres. The masses of the pans

(10 grammes each) are included in the loads. The student must record the

two readings for each load and also the readings of the threads on the

horizontal scales.

Load

grms.
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Finally, by (8), we find for Young's modulus

E=4n (1
-^= 4 x 8-887 x 1011

(1-0-4220)
\ J)

= 2'055xl012
dynes per square cm.

The value of E depends on the thickness of the blade and is uncertain to

the extent of 4 or 5 per cent, (see 87).

EXPERIMENT 13. Test of Lord Rayleigh's reciprocal
relations.

93. Introduction. Let forces be applied to any number of

points of a system formed of one or more rigid or elastic or fluid

bodies. The change of form of the system will, as a rule, be

accompanied by changes of temperature, according to the prin-.

ciples of thermodynamics, and hence the work done by the forces

will be represented partly by potential energy due to the change of

height of the centre of gravity of the system, partly by the energy
of elastic strain and partly by the thermal energy corresponding to

the changes of temperature. Since the elastic constants depend
to some extent upon the temperature, the final change of form will

depend upon the manner in which the thermal energy is dealt with.

But there will be a definite relation between the forces and the

change of form in two cases, which we shall call adiabatic and

isothermal.

In the adiabatic case, the heat which appears in each part of

the system is supposed to remain there and not to escape to other

parts of the system or to the surrounding bodies by conduction or

radiation. It is obvious that it is impossible to secure these con-

ditions in practice when we wish to study the change of form of

the system due to the steady application of the forces.

In the isothermal case, the temperature is supposed to be main-

tained constant at every part of the system while the form of the

system is changing. This condition can be approximately secured

in practice by applying the forces so gradually that conduction and

radiation prevent any appreciable changes of temperature.

In the adiabatic case, the changes of form will depend upon the

adiabatic values of the elastic constants, but in the isothermal case

upon the isothermal values. The results of Chapter I, 22, show

that, for given forces, the changes of form will be nearly the same
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in the two cases, if we are dealing with metals, but in the

theoretical discussion the distinction between the two cases will

be maintained.

We now pass on to consider the action of two sets of forces.

We shall suppose that one set is first applied and that the other

set is afterwards superposed.

In the adiabatic case, the changes of form which the second set

produces, and also the accompanying changes of temperature, will

be independent of the effects already produced by the first set of

forces, provided these latter effects be small enough. Hence we

may say that the final change of form is the resultant of those due

to the two sets of forces acting separately, and that the change of

temperature at any point of the system is the resultant of the

changes which occur there when each set of forces acts separately.

In the isothermal case, the change of form, which the second

set of forces produces, will be independent of the change already

produced by the first set, provided that the latter change be small

enough, and thus the final change of form is the resultant of those

due to each set of forces acting separately. Further, the heat

which must be given to any elementary volume of the system to

keep the temperature constant, while the strain is changed, is

proportional to the change of strain and is independent of any
small strain already existing. Hence, the total amount of heat

given to the system to keep the temperature constant, while both

sets of forces are brought into operation, is the resultant of the

amounts required when each set acts separately.

Similarly, if the forces of the first and second sets are very

small, the effects due to a third set of small forces are independent

of the first and second sets.

In the following investigation the system is supposed to be

supported at a definite number of points by fixed supports, and

we shall study the effects due to a force X applied at a point A of

the system and a force Y applied at a point B. In addition

to these forces, gravity will act upon the whole system. The

forces X and Y and also the earth's attraction will call into play

corresponding reactions at the points of support. When the

changes of form due to gravity are small and the forces X and Y
are small, the chang- <>f t'nnn du- to A' will he proportional to X
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and will be the same as if neither gravity nor Y acted. Similarly,

the change of form due to F will be proportional to Y and the

same as if neither gravity nor X acted.

94. Work done by forces. Let the forces X and F, which

act at A and B, have definite directions, and let x and y be the dis-

placements of A and B measured in the directions ofX and F from

the positions of those points when X and F are both zero and

gravity continues to act. Then, by the generalised form of Hooke's

law, by which the effects of each force are proportional to the force

and independent of the other force and of gravity,

(1)

(2)

Here a, b, GI ,
C2 are four constants which have one set of values in

the adiabatic case and another set in the isothermal case.

We shall now consider two methods of applying the forces X
and F and shall calculate the work done by them in each method.

In the first method, the force at A is applied gradually, starting

from zero and reaching its full value X, while the force at J? is

zero. At the end of this operation, the displacement of A is aX
and that of B is c.2X. The work done by the force at A during

this stage is the product of the average force and the final

displacement of A and thus is \aX-\ no work is done at B fof

the force there is zero. The force at B is now gradually applied,

starting from zero and reaching its full value F, while the

constant force X continues to act at A. The displacement

of A now increases from aX to aX + cxF and that of B from

c.2X to c^X+bY. The additional work done in this stage by the

constant force X is CiYX, and the work done by the increasing force

applied at B is the product of the average value of that force and

the displacement 6F, and is, therefore, ^6F
2
. If the application of

the forces X and F causes the centre of gravity of the system to

descend through a distance hl} the work done by gravity is Mghlt

where M is the mass of the system. Hence, if W1 be the total work

done by the forces and by gravity, we have

(3)
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In the second method of applying the forces, the order of the

application of the forces is simply reversed. If the work done be

W2 ,
we find in a similar manner

(4)

where A 2 is the distance through which the centre of gravity has

descended.

These relations hold good in both the adiabatic and the iso-

thermal cases, though the four constants a, 6, GI , C2 have different

values in the two cases.

When the adiabatic condition prevails, no heat enters or leaves

any part of the system, and therefore Wi and W2 are the amounts

of energy gained by the system when the forces X and F are

applied in the two methods. But, by 93, the strain and the

temperature at every point of the system are independent of the

order of application of the forces, and thus the final state, and there-

fore the final energy, of the system, must be the same in the two

cases. Since the strain is the same, the centre of gravity descends

through the same distance, and thus h^ = A2 ,
and then, since the

energy is the same, it follows, from (3) and (4), that c
3
= C2 .

When the isothermal condition prevails and every part of .the

system is always at a constant temperature, heat must enter or

leave the system in order to keep the temperature constant, and

hence we cannot now say that Wl and W2 are the amounts of energy

gained by the system when the forces X and F are applied in the

two methods. But, if Ql and Q2 be the amounts of heat given to

the system and E^ and E2 be the energy gained by the system,.

when the forces are applied in the two* methods, we have

E, = W, + ft = \aX"- + ClXY + J6F
2 + Mgh, + ft, .. .(5)

Q,. ...(6)

Now, by 93, the final strain at every point of the system is inde

pendent of the order of application of the forces, and thus th

order of application does not affect either the energy of elasti

strain or the motion of the centre of gravity. Hence h l
= h t . Again

by 93, the heat given to the system to keep the temperatun
constant is independent of the order of application of the forces

and thus ft Q2 - Since both the energy of elastic strain anc
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the heat given to the system are independent of the order of

application, so is also the total gain of energy. Hence El
= E2 .

But h l
= hz and Qi = Qz and thus, by (5) and (6) C!=c2 ..

Since, in both the adiabatic and the isothermal cases, Cj = c2 ,

we may write

Ci
= c2 = c, ...........................(7)

and thus the work done by the forces (not including gravity) is

W = aX* + cXY+bY2
,

.................. (8)

and is independent of the order of the application of the forces.

We can now write the relations connecting the forces with

the displacements in the forms

x = aX+cY, ........................... (9)

y = cX + bY. ........................ (10)

If we solve these equations for X and Y, we find

From the equations connecting X and Y with x and y
Lord Rayleigh* has deduced three reciprocal relations.

95. Lord Rayleigh's reciprocal relations. The displace-

ment of B produced by a force X applied at A is, by (10),

yY= = cX, ........................... (13)

the suffix r=0 indicating that no force is applied at B.

Similarly, the displacement of A produced by a force Y applied
at B is, by (9),

ax=o = cF. ........................... (14)

Hence, when X in (13) is equal to Y in (14), we have #x=o =
The result may be stated in words as follows :

*
Philosophical Magazine, XLVIII, p. 452 (1874), or Scientific Papers, Vol. i,

Art. 32.

S. E. E. 10
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First reciprocal relation. The displacement of B due to a

force applied at A is equal to the displacement of A due to an

equal force applied at B.

A second relation follows from (11) and (12). If a displace-

ment x be given to A, the force required to hold B at rest, so that

y = 0,is,by(12),

and similarly, if a displacement y be given to B, the force required

to hold A at rest, so that #=0, is, by (11),

Thus, when x in (15) is equal to y in (16), we have Xx=0 = Fj/=0 -

The result may be stated in words as follows :

Second reciprocal relation. If the point A be held fixed, while

B receives a displacement, the force required at A is equal to that

required to hold B fixed when A receives an equal displacement.

A third relation may be deduced from (9) and (10). Let Fy=0
be the force which must be applied to B to keep it at rest, so that

y = 0, or, in other words, let Yy=0 be the reaction at B when X
is applied at A. Then, putting y = in (10), we have

F =0 c

X,,=n b

Now let X be removed and let a force Y act at B. Then, putting
X = in (9) and (10), we see that the displacements of A and B
are connected by the relation

^~ =
l (18)

yx=o o

and thus, by (17), ~Jy=Q = ^-
. , ,..(19)

^2/=o 2/JT=0

The result may be expressed in words as follows :

Third reciprocal relation. When a force is applied at A, and
B is held fixed, the ratio which the reaction at B bears to the force

at A is equal to the ratio which the displacement of A bears to

the displacement of B, when a force acts at B while A is free from

force.
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It must be remembered that, as was specified in 94, the

displacements x and y are measured in the directions of X and Y
respectively. They do not necessarily represent the total displace-

ments of A and B.

96. Apparatus. The first and third reciprocal relations may
be tested by experiments made on a long steel rod. It is im-

portant that the rod should be long, in order that fairly large

displacements may be obtained without straining the rod beyond
the elastic limit. The rod rests on two knife-edges C and D
(Fig. 52) fastened to a stout bed. If the rod be round, it may be

E c D F

M u
Fig. 52.

prevented from rolling by the device described in 65. To make

the arrangement available for testing the third reciprocal relation,

masses M and N, each of two or three kilogrammes, are suspended

from two points E and F on the rod close to the knife-edges.

Pans are attached to the rod at A and B by hooks and strings.

For testing the first relation both pans hang below the rod. For

testing the third relation, the string carrying one pan passes over

a pulley, care being taken that the part of the string between

the hook and the pulley is vertical. To avoid errors due to friction,

the pulley should be fitted with ball bearings, and the string

should be flexible; plaited silk fishing line is suitable for the

purpose. Pins are attached by wax to the hooks at A and B,

and the displacements of these pins are found by means of two

102
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finely divided scales, which may conveniently be read by the aid

of telescopes arranged to magnify them.

The apparatus is not well adapted for testing the second

relation. When the 5-pan is empty, a load of (say) a kilogramme
at A will give that point a displacement large enough to be

measured with some accuracy. But, if B be now brought back to

its zero position by loads placed in the 5-pan, the string passing

over the pulley, it will be found that the displacement of A is

greatly diminished. In the experiments described in 99 the

residual displacement was too small for accurate measurement.

Each pan produces a small displacement of A and B, but, if

the pans remain in position during the experiment, these displace-

ments are constant and the displacements due to the loads placed
in the pans are simply added to these constant displacements.

Hence we may neglect entirely the weights of the pans, provided
the displacements due to the added loads be reckoned relatively to

zero positions found when both the empty pans hang from the rod.

The positive directions of the forces X and Y will be taken to

be vertically downwards
; by 94 the positive directions of x and

y are also vertically downwards.

97. Test of first reciprocal relation. When the first

relation is to be tested, both pans hang directly from the rod.

The mass in the J.-pan is increased from zero by equal steps, the

5-pan being empty throughout, and the scale readings of A and

B are taken at each stage. The .B-pan is then loaded by equal

steps, while the J.-pan remains empty and the scale readings of

A and B are again taken.

It will be found that the displacement of B due to any load at

A is very nearly equal to the displacement of A due to an equal

load at B, and thus the first reciprocal relation is verified.

From the first set of observations we obtain XY=O ,
and yY=o,

the displacements of A and B due to the force X at A, and from

the second set of observations we obtain xx=Q and yx=o >
the dis-

placements of A and B due to the force Y at B. From these

quantities we can find a, b, Cj and c2 . For, by (1) and (2),

(20)
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Each value of XY=O in the first set of observations is divided by
the corresponding force X and the mean value of (xY=o)/X is used

for finding a. Similarly the mean value of (yx=0)/Y gives b. The

mean value of (xx=^jY gives cx and the mean value of (y Y=o)/X

gives c2 . The agreement between cx and c2 furnishes a test of the

principles of energy employed in 94. The mean of Cj and c2 may
be taken as the value of c.

98. Test of third reciprocal relation. When the third

relation is to be tested, the J.-pan hangs directly from A but the

string supporting the J5-pan passes over the pulley. The mass in

the Ji-pan is increased by equal steps and at each stage the load

in the 5-pan is adjusted until the scale reading of B is identical

with the zero reading obtained when both pans are empty. Instead

of attempting to make an exact adjustment of the load, we may
take readings for two loads, one a little too great and the other a

little too small, and may obtain the required load by interpolation.

The force due to the load in the J.-pan is Xy=0 ',
since the

string supporting the 5-pan pulls the rod upwards, the weight of

.the load in that pan is -Yy=0 . The value of -Yy=0/Xy=0 is found for

each load in the A-pan and the mean value is used for calculating

cjb by the equation

cJb Y^Xr*, (21)

which is derived from (2).

The experiments of 97 give corresponding values of xx=0 and

yx=o- From these the value of ^'=o/2/jr=o is found for each load in

the -pan and the mean value is used for calculating cjb by the

equation
0^ = ^=0/^=0, (22)

which is derived from (1) and (2).

The agreement between the values of c.2/b and c,/b furnishes a

test of the principles employed in 94.

The pulley is now moved and the string supporting the 4 -pan

is made to pass over it, while the 5-pan is hung directly from B.

A second set of observations is then made in which A is kept at

rest. The mean value of - XX= Q/YX= derived from these observa-

tions is used to find cja by the equation

ca^-XY^ (23)
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and this value is compared with the mean value of cja derived

from the experiments of 97 by the equation

(24)

99. Practical example. The observations may be entered as in

the following record of experiments made by G. F. C. Searle upon a steel rod

0*96 cm. in diameter and 160 cm. in length. The rod was supported on two

knife-edges 140 cm. apart, and a mass of two kilogrammes was hung from

each end of the rod as in Fig. 52. The point A was midway between the

knife-edges, while B was 23'3 cm. from A. Scales divided to ^ cm., on the

sliders of two slide rules, were used in measuring the displacements and the

readings were taken to gthj cm - by a*d of two telescopes. To avoid unnecessary

complication, the forces were not measured in dynes but in terms of the weight
of a kilogramme.

Test of first reciprocal relation. In the following tables, only the displace-

ments, expressed in centimetres, are given, but the student must record

all the readings and deduce the displacements from them.

Table 1. Table 2.

3
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The constancy of the ratios ^=o/yx=o and #r= /#y=o
in tables 3 and 4 which are derived from tables 2 and 1.

Table 3.

151

examined

Y
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Table 5. Table 6.

kilo, weight
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for the second time, differs from the couple when + was reached

for the first time. But if we subject the wire to many cycles of

twisting and untwisting between the limits 4- # and 6
,
we shall

find that it settles down to a condition in which the couples called

into play by the twists + and have definite values, and that

the couple called into play by any intermediate twist 0, has two

definite values, one corresponding to the passage from + to

and the other to the passage from to -f # . When this con-

dition is reached we say that the wire is in a cyclic state.

When the angle of torsion is large, there is a viscous yielding
of the wire. Thus, if one end of the wire be suddenly twisted

through a large angle relative to the other end, the torsional

couple will not retain the value it has on the completion of the

twist, but will diminish, at first rapidly and then more slowly, until,

after some minutes, it has reached a steady value.

The viscous yielding of the wire makes it impossible to reach

a steady state with cycles of torsion unless each cycle is performed

in exactly the same manner, so that the time of passage from one

angle to any other is the same for every cycle. Further, the work

spent in taking the wire through a cycle with the given limits

+ # and -
#o will depend upon the speed at which cycles are

performed.
When the cyclic state has been established, the twist will be

related to the couple in the manner indicated in Fig. 53, where it

Couple

C'/
NN

Twist

Fig. 53.

will be seen that the twist lags behind the couple. Thus, as we

pass from B to B' the couple vanishes at C, but the twist does not

vanish till we reach D. This lagging of the effect (the twist)

behind the cause (the couple) has been called hysteresis by Ewing.
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The phenomenon of hysteresis occurs in many other instances, one

of the most important being the cyclical magnetisation of the

magnetic metals. In the case of soft iron the resemblance is

made specially close by the existence of magnetic viscosity.

101. Energy dissipated per cycle. We shall now show

how to calculate the work spent in taking the wire through a

cycle of torsion. At any time, when the twist is 6 radians, let the

couple be G dyne-cm. Then, when the twist increases by d0, the

couple does GdO ergs of work*. If P, P' (Fig. 53) be two points
on B'D'B corresponding to 6 and to + dO, this work is represented

by the number of units of area in the strip PP'N'N, provided
that unit length along OX represents one radian and that unit

length along OY represents a couple of one dyne-cm. If Q, Q
f

be

the points on BDB' corresponding to the same angles, the angle
diminishes by dd as we pass from Q' to Q, and hence the wire gives

out work represented by QQ'N'N. The resultant qufmtity of

work spent upon the wire during the two changes is therefore

represented by the area of the strip PP'Q'Q, and hence, if the

work spent upon the wire during the complete cycle be W ergs,

W is represented by the whole area BDB'D'.

In practice it would be inconvenient to plot the couple

(measured in dyne-cm.) and the angle (measured in radians) upon
the same scale. We shall therefore suppose that the scales are so

chosen that one cm. (or one inch, if the squared paper be ruled in

inches) along OX represents p radians, and that one cm. (or one

inch) along OF represents q dyne-cm. Then the angle dO is

represented by d0/p cm. (or inches) and hence the distance NN' is

dO/p cm. (or inches). Similarly, a couple G dyne-cm, is represented

by G/q cm. (or inches) and thus the distance PN is G/q cm. (or

inches). The area of the strip PP'N'N is GdO/pq square cm.

(or square inches) and hence the work GdO is pq times the area of

the strip. Thus the work done during the cycle is now pq times

the area of the whole curve or, in symbols,

W =pqA ergs, (1)

where A square cm. (or square inches) is the area of the curve as

drawn on the paper.
* See Note VIII, equation (2).
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102. Apparatus. A diagram of the apparatus is shown in

Fig. 54. The copper wire A, about O'l cm. in diameter and 30 to

40 cm. in length, is soldered into a vertical rod B, which carries a

torsion head H moving past an index P. The lower end of the

wire is soldered into one end of a short rod C. Into the other end

of C is soldered a steel or brass wire I) about 0'2 cm. in diameter

!Q
t

Fig. 54.

and about 10 cm. in length. The lower end of D is soldered into

a rod E, which is secured in the block F by a clamping-screw R.

The block F and the bearing of the torsion head are fixed to an

upright T attached to a solid base. The rod E is pulled down-

wards while the screw R is tightened so that the wire may be in a

state of tension.
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The resistance to torsion of the wire D is so much greater than

that of the copper wire that the couple exerted by the copper wire

is unable to twist D beyond the elastic limit, and hence the angle
turned through by the rod C is proportional to the torsional couple.

Thus, if we measure the angle turned through by C and know the

couple required to give D a twist of one radian, we can at once

calculate the torsional couple.

The angle turned through by C is negligible compared with

that turned through by the torsion head, and thus we may regard
the latter angle as measuring the twist for the copper wire.

The angles turned through by C may be observed by aid of a

mirror M attached to C and of a lamp and scale, or of a telescope

and scale. If the distance of the scale from the mirror be d cm.

and if the spot of light or the cross-wire of the telescope move

over x cm. along the scale, when C turns through (f>
radians from

the position corresponding to zero couple, then, for small angles,

<
=
x/2d radians (2)

In some cases it may be more convenient to measure the

angles by means of a long pointer attached to C and moving over

a horizontal scale. If the length of the pointer, measured from

the axis of the wire, be h cm. and if the angle </> correspond to a

displacement of x cm. along the scale, then, for small angles,

(f)
= xjh radians.

The couple required to give D a twist of one radian is easily

found by a dynamical method. An auxiliary wire 40 to 50 cm. in

length is cut from the same specimen as D and its ends are soldered

into two short rods. One of these rods is held in a suitable firm

clamp so that the wire is vertical and the other rod is secured to

an inertia bar, exactly as in Fig. 33. The periodic time, T seconds,

of the torsional vibrations of the bar is observed, and the moment

of inertia, K gramme cm.2
,
of the inertia bar is calculated from

its mass and its dimensions exactly as in EXPERIMENT 5, 63.

Let the free length of the auxiliary wire be I cm. and let that

of the wire D be a cm., and suppose that the couple required to

give D a twist of one radian is
yu, dyne-cm. Then the couple

required to give the auxiliary wire a twist of one radian is

dyne-cm, and hence, by Note III, 2, the angular accelera-
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tion of the inertia bar when its displacement is one radian is

pa/lK radian see."2
. Hence, by Note V, 2,

T 2?r (angular acceleration for one radian)
~ = 2?r (pa/IK) ~$ .

Hence, if G dyne-cm, be the torsional couple corresponding to a

deflexion of x cm., when a lamp and scale is used, we find, by (2)

and (3),

103. Experimental details. Since simultaneous readings
of the torsion head and of the spot of light are required, two

observers are necessary. The torsion head is first turned into its

zero position and the clamping screw R is slackened to free the

wire from any torsional couple, and the screw is then tightened.

The mirror, the lamp and scale and the focussing lens are then

adjusted so that a sharp image of a cross-wire is formed on the

scale near its centre. One observer, who may conveniently sit on

a stool placed on the table, manipulates the torsion head while

the other observes and records the scale reading of one edge of the

image of the cross-wire. If a cycle with the limits + 200 and

200 is to be studied, the torsion head is turned to + 200 and the

scale reading of the cross-wire is taken. The head is then turned

back to + 160 and the scale reading is again taken, and this

process is continued by steps of 40 till - 200 is reached. The

motion is then reversed and readings are taken at intervals of 40

till + 200 is reached. This constitutes the first cycle. But, to

eliminate initial effects, a second and a third cycle are performed

without any break in the process of observing. The cyclic state

will be more quickly reached if the wire be put through a few

cycles of twisting between + 200 and - 200 before the obser-

vations are taken.

To avoid confusion during the observations, the observers

should prepare beforehand a blank table in which the readings

may be entered. The table, when completed, should be similar

to the table given in 104.

When the wire is strained beyond the elastic limit, the couple
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it exerts is easily changed by vibration. The apparatus should

therefore be kept as free as possible from vibration while the

observations are in progress.

When the torsion of the wire is being increased in either

direction, viscous effects will be observed, and hence the obser-

vations should be made at roughly equal intervals of time, and the

readings should be taken immediately after the torsion head has

been moved.

It will probably be found that the readings obtained in the

third cycle are practically identical with those obtained in the

second cycle. If this be the case, we may consider that the cyclic

state has been established, and may use the readings in the third

cycle to determine the work spent per cycle. Since the area of a

hysteresis loop, such as is shown in Fig. 55, does not depend upon
the position of the origin, it will be sufficient to plot the sxiale

readings of the cross-wire against the readings of the torsion head,

without working out the actual deflexion for each reading.

Smooth curves are drawn through the points corresponding to

the two sides of the hysteresis loop and the area of the loop in

square cm. (or in square inches, if the squared paper be ruled in

inches) is then determined by the trapezoidal rule explained in

Note IX.

Since the scale readings of the cross-wire are taken at equal
intervals of angle, they may be employed directly in calculating

the area by the trapezoidal rule. The distance on the squared

paper corresponding to the difference of the two scale readings for

each reading of the head is found, and these distances are added

together and their sum is multiplied by the distance on the

squared paper corresponding to the step in angle. The result is

the area of the loop. A practical illustration is given in 104.

If one cm. (or one inch) along the axis of angle correspond to

m degrees, it corresponds also to p radians, where

(5)

and if one cm. (or one inch) along the axis of couple correspond to

a motion of the spot of light through n cm., it also corresponds to

a couple q dyne-cm, where, by (4),

(6)
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Hence, by (1), the work spent per cycle is given by

159

W=pqA =
OA /̂12 ergs. 00

On account of the twisting of the stout wire by which the

couples are measured, the angle of twist of the copper wire is not

quite equal to the angle shown on the torsion head. The work

spent upon the two wires is correctly given by the area of the

loop if Hooke's law holds good for the stout wire. But since the

stout wire is not strained beyond its elastic limit, the work spent

upon it during a complete cycle is zero, and thus the area

represents the work spent on the copper wire in each cycle.

The student who wishes to pursue the subject should obtain

the hysteresis loops for a series of values for
,
such as 50, 100...

and should then draw a curve showing how W depends upon -

104. Practical example. The observations may be entered as in

the following record of an experiment made by Messrs G. F. C. Searle and

W. Burton upon a copper wire about 0'09 cm. in diameter and 36'5 cm.

in length. The wire, by which the couple was measured, was of brass and

about 0'18 cm. in diameter.

Head
Eeading
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Mass of inertia bar =Jf=820 grammes.

Length of inertia bar =2Z=37'92 cm.

Width of inertia bar =2A = 1 '6 cm.

Moment of inertia of bar =K=\M (Z
2 +4 2)=820 (18'96

2+ 0'82
)

= 9'84xl04
grrn. cm. 2

.

Time of 50 complete vibrations 126'2, 126'0. Mean 126*1 sees.

Periodic time =7T= 126*1/50= 2-522 sees.

Length of auxiliary wire =1=51 cm.

Length of wire measuring couple =a=9'8 cm.

Distance of scale from mirror =c?=65'5 cm.

The torsional couple G is, by (4), connected with the deflexion x by the

equation

x9'84x!04

^
adT2

X
9-8 x 65-5 x2-5222

= 2'43 xl04 x# dyne-cm.

After the torsion head had been turned through two or three cycles with

the limits + 200 and 200, the readings in the above table were taken.

The readings for the third cycle agreed so closely with those for the second

cycle that the third cycle was taken as closely representing the cyclic state of

the wire. In the third cycle there was a slight discrepancy between the two-

Scale reading

28-5

26-0

23-5

21-0

18-5
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readings for +200. The reading 27'3 was used in plotting the hysteresis

loop. The differences corresponding to the two sides of the loop are given in

the last column
;
thus 26 '9 -25 '2=17.

The loop shown in Fig. 55 was plotted on paper ruled in inches, and 2 cm.

of deflexion and 80 of angle were each represented by one inch. The distances

on the paper corresponding to the differences shown in the last column were

therefore 0, 0'85, 1'5... inches, the sum being 16*0 inches. The step of 40 is

represented by ^ inch and hence A, the area, is xl6'0=8'0 square inches.

Since one inch corresponds to 80,/=807r/180=r396 by (5), and since one inch

corresponds to 2 cm. of deflexion, it also corresponds, by (8), to 2x2'43xlO*

dyne-cm, and thus
<?,

the couple corresponding to one inch on the diagram, is

4-86 xlO4
dyne-cm. Hence, by (7), we find for the work spent per cycle

W=pqA = 1 -396 x 4'86 x 104 x 8'0=543 x 105
ergs.

S. E. E. 11



NOTE I.

REDUCTION OF A GROUP OF FORCES TO A SINGLE FORCE

AND A COUPLE.

Let any point be taken as origin, let P be any other point, and let

a force .Z^act at P. Then apply to (i) a force equal in magnitude to F and

in the same direction, and (ii) an equal force in the opposite direction. The

two forces of this pair are themselves in equilibrium and so have no resultant

effect. The three forces can be replaced by a single force F acting at in

the same direction as the force at P together with a couple formed by the

force at P and the remaining force at 0. Treating all the other forces of the

group in the same way, we see that the whole group is equivalent to a

number of forces acting at and to a number of couples. The forces may
be combined into a single resultant force acting at and the couples into a

single resultant couple. The resultant force is clearly the same as if all the

forces had acted at in the first instance, but the magnitude of the couple
will in general depend upon the position chosen for 0.

NOTE II.

D'ALEMBERT'S PRINCIPLE.

Suppose that any particle of a solid or fluid body has an acceleration

of /cm. sec.~ 2 and that the mass of the particle is m grammes. Then the

resultant of all the forces which act on the particle is the single force

mf dynes in the direction of/. This force is called the "effective force."

The forces acting on the particle may be divided into two classes. The
first class comprises the forces due to external bodies, whether they be trans-

mitted by gravitational or electromagnetic action or are caused by the direct

contact of some external body. The second class contains all those forces

which act on the particle and are due to other particles of the body itself.

These forces may arise from gravitational or electromagnetic action or from

the direct contact with neighbouring particles. The resultant of these internal

forces is a single force R dynes acting on the particle m.
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But, by Newton's third law, the forces on any two particles due to their
mutual action form a system in equilibrium* and thus, when taken together,
they have no component in any direction and no moment about any axis.

Hence, for any given body, the whole group of internal forces forms a
system in equilibrium and gives rise to no force in any direction and no
couple about any axis.

Now, if the force on the particle m due to external bodies be P dynes, the
resultant of P and R is the "effective force" mf. Hence the system of
applied forces and the system of internal forces are together exactly
equivalent to the system of effective forces. But the internal force

by themselves a system in equilibrium and therefore may be left out of
account. We thus arrive at the result known as D'Alembert's Principle,
which may be stated as follows :

The system of
"
effective forces" is exactly equivalent to the system of applied

forces, the resultants of the two systems having equal components in any
direction and equal moments about any axis. (See Note I.)

Since the force mf dynes generates momentum in the direction of / at

the rate of mf dyne-sec, per second, it follows that the rate at which the

momentum of the whole body in any direction is increased is equal to the

component in that direction of the system of applied forces. The C.G.S.

unit of momentum is called a dyne-second because a dyne generates a unit

of momentum in one second.

Again, since the rate of generation of momentum in the particle m is

exactly represented by the force mf, the rate of increase of the moment of

momentum or of the angular momentum of the particle about any fixed axis

is exactly represented by the moment of the force mf about the same axis.

Since the whole group of internal forces has no moment about any axis,

it follows that the rate of increase of the angular momentum of the whole

body about any fixed axis is equal to the moment about the same axis of the

system of applied forces.

NOTE III.

MOTION OF A RIGID BODY.

1. ACCELERATION OF THE CENTRE OF GRAVITY. Let us take a set of

rectangular axes fixed anywhere in space and let xlt ylf Zi cm., x^ y-.< :_< i-m. ...

be the coordinates at time t of particles of masses mit Wa ... grammes. Then,

if
, ?,

be the coordinates of the centre of gravity and M be the mass of the

system of particles,

* This statement is no longer true when one or both of the particles is the

source of electromagnetic radiation. In this case we have to consider forces acting

on the ether itself.

11 L>
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If we denote by x^ the rate at which x\ increases with the time, then xi is the

velocity of the particle MI in the positive direction of the axis of x. And if

Xi stand for the rate of increase of x\ ,
then x\ is the acceleration of ra : in the

same direction. Since, in the c.G.s. system, time is measured in seconds, the

velocity is x\ cm. sec."1 and the acceleration is x\ cm. sec." 2
. We shall

extend this notation to the other coordinates. We then have, at once, for

the velocities

J/=2w#, J//;
= 2wy, J/f=2ws, (2)

and for the accelerations

J/ =2m, J/j/
= 2my, M=2mz (3)

Now, by Note II, m\Xi is the ^-component of the effective force acting on

the particle m^. Since the whole group of internal forces has no component
in any direction, it follows that 2m is equal to the ^-component of the whole

group of applied forces. If the three components of the resultant of this

group be A', J
7

, Z, we have ^mx = X and similarly for Y and Z. Hence,

by (3),

J/$ = X, Mrj=Y, MC= Z. (4)

Thus
, i/,

have exactly the same values as if the resultant of the applied
forces acted on the whole mass collected into a single particle at the centre of

gravity of the system. In other words :

The acceleration of the centre of gravity of any system is the same as if the

resultant of the applied forces acted on the whole mass collected into a single

particle at the centre of gravity.
If F dynes be the resultant force, / cm. sec." 2 the acceleration of the

centre of gravity, and M grammes the mass of the system,

F=Mf.
This result is true for all systems of particles and is therefore true in the

case of a rigid body.

2. ANGULAR ACCELERATION OF A RIGID BODY TURNING ABOUT A FIXED

AXIS. By Note II, the rate of increase of the angular momentum of any

system about a fixed axis is equal to the moment about the same axis of the

applied forces. When the system is a rigid body, the angular momentum

(Note IV, 13) is Kv>, where K grm. cm.2 is the moment of inertia of the

body about the axis and o> radians per sec. is its angular velocity. If the

rate of increase of o> be a radians per sec. per sec., then a is called the angular

acceleration of the body. If the moment of the applied forces about the axis

be G dyne-cm., it follows that

G= Ka,

since the quantity on the right side is the rate of increase of the angular

momentum A"o>.
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NOTE IV.

MOMENTS OF INERTIA.

1. DEFINITION. As a knowledge of the moments of inertia of bodies of

some simple forms is essential in practical work in elasticity, we give a sketch

of the necessary propositions.

Let raj, m2 ... grammes be the masses of the particles of a rigid body and

let r1} r2 ... centimetres be their perpendicular distances from a straight line

or axis. Then the sum

mi ri
2

-}- m%r2
2+ . . .

= 2wr2

is called the moment of inertia of the body about the axis. We shall denote

2??ir2 by K.

A system with unit moment of inertia is formed by a particle one gramme
in mass placed at a distance of one centimetre from the axis, and the moment

of inertia of this unit system is said to be one gramme-centimetre
2 or one

grm. cm2
. If the moment of inertia of a body about any axis be K c.o.s.

units or K grm. cm2
.,

it has a moment of inertia K times as great as that of

the unit system.

2. SOME PROPERTIES OF MOMENTS OF INERTIA. Take a set of rectangular

axes OX, 07", OZ and let K^ K2 ,
Kz be the moments of inertia of the body

about the three axes. If x, y, z be the coordinates of a particle of mass w,

the square of its distance from OX is y
2+z2

,
and similarly for the other axes.

Hence, by 1, we have

Jf1 = 2m(y2+ z2
),

A"2=2m(02+#2
),

JT3= 2ro (x
z+f] .......... (1)

If the distance of m from be R, and ifH denote the sum 2m /2*,

By adding together the three equations (1) we find

K^Ki+K^ff. .............................. (
2

)

In some cases, such as that of a sphere with the origin at its centre, the

three moments of inertia are equal ;
then

K^K^K^IH. .............................. (3)

If the body be an infinitely thin plane lamina lying in the plane OXY,

z is zero for every particle ;
then

JfiT1=2my2
,
Kz
= -2mx\ /f3= 2wi(^

2+y2
)
= A"1 + A'2.......... (4)

If the lamina be such that Kl and A"2 are equal,

K, = K.= \K^ .................................. (5)
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3. THEOREM OF PARALLEL AXES. Let an

centre of gravity of the body cut the plane of the

paper at right angles at G (Fig. 56) and let any
other parallel axis cut the paper at 0. Let P be

the projection of any particle (of mass m) on the

plane of the paper and let PN be the perpendi-
cular from P on OG. Let the mass of the body
be M and let the moment of inertia of the body
about the axis through G be Ar

,
and let that

about the axis through be K. Then

K

axis passing through the

. ON,
where GN is counted positive when N and are on opposite sides of G.

Since G is the projection of the centre of gravity, 2m . GN=0 and hence

Thus, when the moment of inertia, 7f
,
about any axis through the centre of

gravity is known, the moment of inertia, K, about any parallel axis can be

found at once by adding to KQ the product of M and the square of the

perpendicular distance between the two axes.

4. MOMENTS OF INERTIA OF A THIN UNIFORM ROD ABOUT ITS AXES OF

SYMMETRY. Let the mass of the rod AB
(Fig. 57) be M grammes and its length
21 centimetres. Let be its middle

point and let the axis of x coincide with

OA. Since the rod is infinitely thin, g g-
;/
= and z= for every particle and thus,

by (1), ^ = 0. The moment of inertia

about OF is proportional to I
2 when M

O C

Fig. 57.

is given, for, if we uniformly stretch the rod to n times its original length,

each particle will be n times as far from OF as it was originally, and there-

fore the new moment of inertia of each particle will be n2 times its original

value. Further, for a given length, K2 is proportional to M. Thus we may put

K*=qMP, .................................... (7)

where q is a numerical constant to be determined.

Now, by (7), the moment of inertia of the half rod OA about an axis

through its centre of gravity C parallel to OF is q(%M)(%l)* or

Hence, by 3, the moment of inertia of the part OA about Y is

and this is equal to K2 ,
since the moment of inertia of OA about OF is half

that of AB about the same axis. Hence, since OC=ty,

or

Thus, by (7), (8)
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5. MOMENTS OF INERTIA OF A UNIFORM RECTANGULAR LAMINA ABOUT
ITS AXES OF SYMMETRY. Let the sides of the lamina be 2a and 26, and let

its mass be M. Let (Fig. 58) be its centre and let the axes OX, OY be

parallel to the sides 2a and 26 respectively. Since K\ is unchanged when
the lamina is compressed into a uniform rod BD' lying along OY, we have,

by (8),

A'

Fig. 58.

Similarly

By (4)

K2 =\Ma*

(9)

(10)

(11)

6. MOMENTS OF INERTIA OF A UNIFORM RECTANGULAR BLOCK ABOUT ITS

AXES OF SYMMETRY. Take the origin at the centre of the block and let

OX, OY, OZ be parallel to the edges 2a, 26, 2c. Then K is unchanged when

the block is compressed into a uniform lamina in the plane OYZ and simi-

larly for the other axes, and hence, by (11),

(12)

7. MOMENTS OF

AXES OF SYMMETRY.

INERTIA OF A UNIFORM CIRCULAR

Let the radius be a

LAMINA ABOUT ITS

and the mass M, and let the axes OX, OY
(Fig. 59) be in the plane of the lamina.

Take a narrow strip PQF parallel to OX,
the points P, P' being on the circumference

of the lamina and the point Q on OY, and

let the mass of the strip be m. The moment

of inertia of the strip about OX is m . OQZ and

hence, by summation,

Ki-lm.Qft
By (8), the moment of inertia of the same

strip PQP' about OY is $m. QP2 and hence,

by addition,

Fig. 59.
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But, by symmetry, K\ =K2 and hence

4^ =^ +3^= 2m (OQ
2+ QP2

)

Thus #!=AV=iJ/a2
.................................. (13)

Then, by (4), K^K^K^Md*............................... (14)

8. MOMENTS OF INERTIA OF A UNIFORM ELLIPTICAL LAMINA ABOUT ITS

AXES OF SYMMETRY. Let the diameters of the ellipse, parallel to OX, OF be

2a, 26. If, without change of mass, the circular lamina of 7 be uniformly
strained so that the point #, y is brought to the position , TJ

where =#,

7;
=

6y/a, the boundary will be an ellipse with diameters 2a, 26. Further,

if m be the mass of an element of the lamina,

KI= 2mr;
2= (6

2
/a

2
) 2my2

,
K2
= 2m 2=

But 2mx2 and 2m?/2 are the same as K% and K^ for the circular lamina, and

hence, by (13), each is equal to %Ma2
. Thus, for the elliptical lamina

K!=MP, K2=%Ma2......................... (15)

By (4), K3
=K1 +K2=^M(a2+ b2

)......................... (16)

9. MOMENT OF INERTIA OF A UNIFORM SOLID SPHERE ABOUT A DIAMETER.

Let M be the mass and a the radius, and let the axes OX, OF, OZ pass

through the centre 0. Consider an element of the sphere in the form of a

thin disk of radius r and of mass m with its plane parallel to the plane OXZ
and at a distance y from it. Fig. 59 shows the section of the sphere and disk

by the plane OXY. By 7, the moment of inertia of the disk about that

diameter of the disk which is parallel to OX is %mr
2 and hence, by the

theorem of parallel axes
( 3), its moment of inertia about OX is

Thus, by summation,

Since y
2= a2 - r2

,
we have

KI=2mr2+ 2ma2 - 2mr2= J/a2 -
f2wr

2
.

By 7, the moment of inertia of the same disk about OF is \mr
2 and hence

and thus K

Since, by symmetry, Kl
=K2

=Kz ^
we find that

Hence K^K^K^lMa*............................ (17)

10. MOMENTS or INERTIA OF A UNIFORM SOLID ELLIPSOID ABOUT ITS AXES

OF SYMMETRY. Let the diameters parallel to OX, OY, OZbe 2a, 26, 2c. If,

without change of mass, the sphere of 9 be uniformly strained so that the

point x, y, z is brought to
, 77, ,

where = #, rj
=

by/a, =cz/a, the sphere
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will become the ellipsoid under consideration. If m be the mass of an
element of volume,

=
(c

2
/

2
) 2i22

.

But, by symmetry, 2m#2= 2wy2=2m22
and, by 2, each is equal to half the

moment of inertia of the sphere about a diameter. Hence 2w#2= J!/a2

Thus

..................... (18)

(20)

11. MOMENTS OF INERTIA OF A UNIFORM SOLID CIRCULAR CYLINDER ABOUT
ITS AXES OF SYMMETRY. Let the mass of the cylinder be M, its length 21 and
its radius a. Take the axis OX to coincide with the axis of the cylinder,
and let be the centre of the cylinder. Then the value of AT, remains the
same if the cylinder be compressed into a uniform circular lamina of radius a
in the plane OYZ. Hence, by (14),

K^ = \M<#.................................. (21)

Now divide the cylinder into a series of infinitely thin disks by planes

perpendicular to OX and let m be the mass of the disk which is at a distance

x from the plane OYZ. The moment of inertia of this disk about a diameter
is %ma2

, by (13), and hence, by the theorem of parallel axes
( 3), its moment

of inertia about Y is |ma2+ mx*. Thus, by summation,

K2
=K3

=%2ma2+2mx2= JMa2+ Imx*.

But 2m#2 is the moment of inertia about OY of a thin uniform rod lying

along the axis of x and having the same mass and the same length as the

cylinder ; hence, by 4, 2m#2= ^J/7
2

. Thus

K2
=K3=M(%a* + $P)............................ (22)

12. "MOMENTS OF INERTIA" OF AREAS. If a be an element of any area

and r be the perpendicular distance of a from a given axis, the quantity 2a>'2

is called the " moment of inertia
" or the second moment of the area about

the axis
;
we shall denote it by /. The " moment of inertia

"
of the area

is clearly equal to the moment of inertia of a uniform lamina of the same

dimensions and of unit mass per unit area. The moment of inertia of the area

may therefore be found by substituting A ,
the magnitude of the area, for J/

t

the mass of the lamina. In the c.G.s. system, / will be expressed as a

multiple of one cm4
.

Theorem of parallel axes. If we apply the result of 3 to an area, we

see that if 7 be the moment of inertia of an area A about an axis through

its "centre of gravity," and / be the moment of inertia about a parallel axis,

where h is the perpendicular distance between the two axes.

From the results proved for laminas we obtain the following expressions :
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Rectangular area of sides 2a, 26. Here A = 4ab. Hence, by 5, we find :

About a diameter parallel to the side 2a, I1

About a diameter parallel to the side 26, 72

About the normal through the centre, 73
= /! -f 72= ^ ab (a

2+ 62
).

Circular area of radius a. Here A = na2 and thus, by 7, we have :

About a diameter, J
l
=I2= %A a2= | ?ra4

About the normal through the centre, I^=\Aa2=
\ira^.

Elliptical area of diameters 2cr, 26. Here A = rrab and thus, by 8,

we have:

About the diameter 2, 7j
=\A b2= | nab

3

About the diameter 26, I2=%Aa2=%na3 b

About the normal through the centre, 73
=/: + /2

= j irab (a
2+ 62

).

13. ANGULAR MOMENTUM OF A RIGID BODY TURNING ABOUT A FIXED

AXIS. When a rigid body turns about a fixed axis, the velocity, and there-

fore also the momentum, of any particle is at right angles to the perpendicular,

of length r cm., drawn from the particle to the axis. If the mass of the

particle be'??i grammes and if the angular velocity of the body be w radians

per second, the velocity of the particle is ro> cm. sec." 1 and its momentum is

mra> grm. cm. sec." 1 or mra> dyne-sec., a dyne-sec, being the amount of

momentum which a dyne generates in one second. The moment of this

momentum about the axis, i.e. the product of the momentum and the

distance r, is mr2
a> grm. cm.2 sec." 1 or mr'2 a> dyne cm. sec. This is also

called the angular momentum of the particle m about the axis. The angular
momentum of the whole body is thus 2wr2

o> or o>2mr2
,
since o> is the same

for every particle because the body is rigid. The quantity 2m r2 is K, the

moment of inertia of the body about the axis. Hence :

The angular momentum of a rigid body rotating with angular velocity o>

radians per sec. about a fixed axis is K& grm. cm. 2 sec' 1
,
inhere K grm. cm. 2 is

the moment of inertia of the body about the axis.

14. KINETIC ENERGY OF A RIGID BODY TURNING ABOUT A FIXED AXIS.

The kinetic energy of the particle in 13 is \
<m (velocity)

2 or mr2
o>

2
ergs,

and thus, since o> is the same for every particle, the kinetic energy of the

whole body is o>
2 2w>'2 or \KaP ergs, where K grm. cm. 2 is the moment of

inertia about the axis.
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NOTE V.

HARMONIC MOTION.

1. RECTILINEAR MOTION. On a circle with (Fig. 60) for its centre

take a point P and draw a perpendicular PM
upon any diameter AOA'. Then, if P move

round the circle with uniform speed, the point M
moves along AOA'. The length OA is called

the amplitude of the oscillation and the time

occupied by M in going from A to A' and back

to A is called the time of a complete vibration

or the periodic time.

Let the radius of the circle be r cm. and let ^i. 60.

the speed of P along the arc of the circle be

v cm. sec." 1
. If the angular velocity of OP be a radians per second, the arc

described in one second is ar cm. in length. Hence

v=ar (1)

Let the abscissa OM be x cm. and let the time t sees, be counted from the

instant when P passes through A. Then the angle AOP is cot radians, and

hence
x r cos at --(2)

If the velocity of M along AOA' in the direction OA be u cm. sec." 1
,
" is

equal to the component, parallel to the same direction, of the velocity of P.

Since the latter is at right angles to OP, we have

u= v sin POA ar sin at (3)

Since u is the rate at which x increases with the time, we see that the rate

of increase of r cos at is - ar sin at. Writing at +^TT for at in these expressions

and multiplying by w, we see that the rate of increase of ar cos(at+ $ir) is

-<02
rsin(co + |7r). But cos (at+ %ir}

= -sino>* and sm(at+ %ir)
= cosat, and

thus the rate of increase of - ar sin at is - o?r cos at or - azx. Hence, if

the rate of increase of the velocity of J/, i.e. the acceleration of M, be

/cm. sec.~ 2
,
we have

/--* (4)

When x is positive, / is negative and vice versa, and thus/ is always directed

towards 0.

As P goes round the circle, the point M oscillates along AOA', and the

time of a complete vibration of M is equal to that of a complete revolution

of P. Thus, if the periodic time be T seconds, the radius OP describes

2?r radians in T seconds, and hence a = %ir\T, or

T^. ...(5)
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Since &>
2 is equal to the acceleration which J/ has towards when M has

unit displacement, i.e. when #=1, this result can be written

T=-. -*? -
(6)

^/acceleration for unit displacement

If the acceleration of a given point moving along a straight line be

proportional to its displacement from a fixed point on that line and be

always directed towards that point, we can always find an auxiliary circle

and an angular velocity such that the displacement, velocity and acceleration

ofM are equal to those of the given point, and hence the periodic time of the

given point has the value stated in (6).

The motion of a point which vibrates so that its acceleration is pro-

portional to its displacement from its mean position, is called harmonic. The

radius of the auxiliary circle does not appear in the formula for the periodic

time, and hence T is independent of the amplitude of the vibration. The

vibrations are therefore called isochronous.

2. MOTION ABOUT A FIXED AXIS. In many cases of oscillation, the

body, instead of moving along a straight line, turns about a fixed axis in such

a way that its angular acceleration a is equal to p,6 radians per sec. per sec.,

where 6 radians is its angular displacement from its mean position and /*
is a

constant. If we now take a pointM moving along A OA', as in Fig. 60, in such

a way that OM is equal to c6, where c is a constant length, -the acceleration

of M will be equal to ca or to cp.6, i.e. to
p. . c6, and thus the acceleration of

M is p.. OM. Hence, by 1, the motion ofM is harmonic, and T, the periodic

time of its vibrations, is given by

.

-I-
The angular motion of the body is said to be harmonic. Since V/* i-s

equal to the angular acceleration of the body towards its mean position when

its angular displacement is one radian, the last result can be written

27TT=
\/angular acceleration for one radian

NOTE VI.

CORRECTIONS FOR VARIATIONS IN THE RADIUS OF A WIRE.

1. YOUNG'S MODULUS. In finding Young's modulus by experiments on

a wire of circular section it is usual to treat the wire as a circular cylinder

with a radius equal to the mean radius of the wire, the latter being deter-

mined by observations at a number of points equally spaced along the wire.

It may be useful to show how a closer approximation may be reached.
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Suppose that the length L is divided up into <, equal portions and that
the radii measured at the centres of the first, second... portions are i, . ....

Let OQ be the mean radius and let

Then, by the definition of mean radius,

To a close approximation we may treat the actual wire as if it were made up
of m cylinders of length Ljm arid of radii a it a2 ____ If I be the increase of

length of the whole due to a longitudinal force F and if E be Young's
modulus, we have, by equation (5), 17, Chapter I,

FL/m FLjm
~7ral*E

+
^aJE

+ '"

=
FL (

~mK\(a
Expanding the m denominators by the binomial theorem, we have

,FL_(_ _2&i ,3V, 1 1
'

m7rE\a<?
3

o
4

o
2

")
FL (

mirE (a
2

The second term within the brackets vanishes since 26 = 0. Hence, as far as

the first correcting term,

and

Thus the value of E obtained by treating the wire as a cylinder of radius

o is slightly too small.

2. RIGIDITY. If we apply to equation (23), 39, Chapter II, an argument
similar to that employed in 1, we see that if be the angle turned through

by one end of the wire under the action of a couple (r, and if n be the rigidity,

Trna^ trna

The method of 1 then leads to the equation

The student who desires to obtain an intimate knowledge of all the

circumstances of the experimental work may profitably determine from his

observations the values of the correcting factors in (1) and (2).
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NOTE VII.

ON INERTIA BARS.

The simplest way of attaching an inertia bar to a wire is to solder the

wire into a small hole drilled in the bar, but it is generally more convenient

to employ some method which allows the wire to be easily detached from the

bar. A good plan is to solder each end of the wire into a hole drilled along

the axis of a metal cylinder 2 or 3 cm. in length and 0'4 or 0'5 cm. in

diameter. One of these cylinders fits easily into a hole drilled at the centre

of the inertia bar at right angles to its length, and the cylinder is secured

there by a small set screw, while the other cylinder is secured in the same

manner in a hole drilled in a piece of metal held in a fixed support. The

arrangement is illustrated in Fig. 33, Chapter III, 62.

Since both ends of the wire are soldered into cylinders, the length of wire

under torsion is quite definite, and since the torsional stiffness of the cylinders

is very great compared with that of the wire, the couple due to a given

angular displacement of the bar is practically independent of the positions of

the cylinders in the bar and in the support, and thus no exact adjustment of

the cylinders in the two holes is necessary.

The mass of the inertia bar should be determined before the hole is bored

in it and, for convenience, the mass should be stamped or engraved on the

bar. For a bar not less than 30 cm. in length the moments of inertia of the

bar before and after the hole has been drilled in it do not differ appreciably
from each other since the distance from the axis of the hole of every part of

the metal which initially filled the hole was v6ry small, while large parts of

the bar are at considerable distances from that axis.

In the case of a rod of square section, 40 cm. in length and 1 cm. in

breadth and depth, formed of metal of density*8 grammes per c.c., the mass

of the bar is 8 x 1 x 1 x 40 or 320 grammes. If the moment of inertia about

an axis through the centre at right angles to one of the larger faces be

KQ grm. cm.2
,
we have by 6, Note IV,

K = x 320 (20
2+ (i)

2
}
= 42693-33...grm. cm.2

Suppose, now, a hole 0'4 cm. in diameter is drilled in the bar, the axis of the

hole coinciding with the axis just mentioned. The mass of metal removed is

8x7rxlxO-22= l'005 grms. and by 11, Note IV, the moment of inertia of

the metal removed is

= xl'005xO-22= 0-0201 grm. cm.2

If the moment of inertia of the bar after the hole has been drilled be A, then

K=K -k, and this, it will be seen, differs from K by less than one part in

two millions.
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Though boring the hole has not appreciably affected the moment of

inertia of the bar, it has changed the mass of the bar from 320 grins, to

320-1-005 grms. i.e. by one part in 320. If we had taken 320- T005 grow.
as the mass of the bar and had treated the bar as a uniform rectangular

block, the moment of inertia would be

x (320 -1-005} {202+ (|)
2
},

,nd this would be less than K by one part in 320.

Sometimes a small stud is screwed into the inertia bar and the \vi.

secured by a set screw in a hole drilled in this stud. It will be seen, from

what has been said above, that in this case, also, the mass to be employed
in the calculation of the moment of inertia is the mass of the bar before any

les are drilled in it and before the stud is attached to it.

NOTE VIII.

WORK DONE BY A COUPLE.

When a couple G dyne-cm, acts upon a body and the body turns through

an infinitesimal angle dB radians, an amount

of work dW ergs will be done by the couple.

We require to know how dW depends upon
G and upon d6. We may suppose that the

couple is applied by means of two strings

A, B (Fig. 61) wrapped round a wheel of

radius r cm. If the tension of each string

be F dynes, we have

2Fr=G................ (1)

If, now, the wheel turn through dB radians, the points A, B will move

through rd6 cm. and each force will do FxrdO ergs. The total work done

is 2Frd6, and this is equal to dW. Hence, by (1), we have

dW=GdBet&. ................................. (2)

Thus the work done by a couple in turning a body through an infinitesimal

angle is the product of the couple and the angle.

When the couple is constant, we have

Fig. 61.

where W is the work done by the couple while the body turns through the

angle 6 radians.

When the couple is proportional to the angle already turned through by

the body from an initial position, we may write G=p0, and then the work



176 NOTES

done while 6 increases from zero to < radians will be the product of $ and the

average value of the couple. The latter is /*$, and thus the work done is

TF=0x^=^mas x^) ergs,

where #max dyne-cm, is the maximum value of G, i.e. the value of the couple
when = .

NOTE IX.

TRAPEZOIDAL RULE FOR THE MEASUREMENT OF AREAS.

When an area is enclosed by a line of some simple geometrical form, such

as a triangle or an ellipse, the area can be calculated with any required degree
of exactness by the integral calculus or other mathematical methods when
the necessary dimensions are accurately known. But in practical work it is

often necessary to determine approximately the area enclosed by a line drawn

on paper, of which the whole or a part passes as evenly as possible among the

points representing a number of observations. In such a case much labour

would be involved in the attempt to determine, even approximately, the

equation to the line, and then the calculation of the area by aid of the

equation would still remain to be made. This method is, therefore, seldom

used.

The area can be measured mechanically by means of a planimeter, but

the accuracy of the result depends upon the correct adjustment of the

instrument and upon the skill with which the tracing point is made to move

along the line.

The trapezoidal rule for the measurement of areas is easily applied and

requires no special instrument. In one respect it has an advantage over the

planimeter method, for, when the observations are properly spaced, it is not

necessary to draw the curve on paper.

A . SL-- 1
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on the curve AiA n ,
we may replace the arcs A^A^ A 2A 3 ... by the corre-

sponding chords, and treat each of the vertical strips as a trapezoid. The area

of the trapezoid AIMiM2 A 2 is the product of M1M2 and of (Ai Mi + A 2 Af2),
the mean height of the chord AiA 2 ,

and thus the area is (\CL\-\-\O^) d square
cm. The area of the next trapezoid is

( 2+ ia) d and so on. On addition,

we find that, if the area AI MIMn A n be A square cm.,

(1)

The rule implied in (1) may be expressed as follows :

Draw a series of equally spaced ordinates, add half the first and half the

last ordinates to the sum of the intermediate ordinates and multiply the whole

by the distance between successive ordinates. The result is the area required.

If we have a second area enclosed by the curve B...Bn ,
the ordinates

BiMi and BnMn and the base M\MW and if the n- 1 equidistant ordinates be

bi, b2 ...bn cm., the enclosed aTea B is given by

-(J&i+ &2+...+&-i+i&)d...................... (2)

If we denote a1 -bi by c and so on, and if C be the area A 1BlBnA n ,
we

have, by (1) and (2),

C=( Cl+ c2+ ... + ck_ 1+K)d......................... (3)

In many instances (e.g. Fig. 55) the point BI coincides with AI and Bn

coincides with An . Then c1 ==0 and cn=0 and the formula (3) becomes

By taking d small enough, the accuracy can be made as great as may be

desired, provided that the values of the a's, the 6's or the c's are exactly

known.

If the observations be taken at equal intervals with respect to the variable

quantity represented along the axis OX, it is unnecessary to draw the curve

on paper, for it is only the values of the a's, 6's or o's which we require and

these are given by the observations.

When the observations are not taken at equal intervals with respect to

the quantity represented along OX, we can either find the sum of the areas

of the separate trapezoids corresponding to successive intervals (if the

intervals be not too great), or we may draw the curve as evenly as we can

among the plotted points and then find its area by the trapezoidal rule.

S. E. E. 12
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NOTE X.

HINTS ON PRACTICAL WORK IN PHYSICS.

1. FAILURES. A demonstrator in practical physics spends a large part

of his time in correcting students' mistakes. He has to discover, for instance,

why it is that a student obtains 537 '86402 [no units mentioned] for Young's
modulus by an experiment on a brass wire instead of 9*86 x 10 11

dynes per

square centimetre. It is then found, perhaps, that the student has confused

the radius of the wire with its diameter, that, having got hold of a screw-

gauge in which one turn is equivalent to -^ inch, he has treated one turn

as equivalent to | millimetre either because it looked about ^ millimetre

when tested with a millimetre scale or because he did not care to ask those

who knew, that he has measured the extension in millimetres and has then

treated the millimetres as if they were centimetres and that he has used

32 for "gravity" instead of 981. When the crumpled sheet of paper has

been unearthed from the rubbish box, the arithmetic on it is found to be

faulty. The student has omitted (perhaps through caution) all reference to

the units in which the result is expressed. In some cases the student adds

the letters c. G. s. in much the same way as grocers add "
ESQ." to customers'

names. If his courage allows him to name the units, he often uses the wrong
names

;
the chances are that he puts down "

dynes."

The student may have learned something of the physical principles in-

volved in the experiment and may have gained some practice in manipulation,

but the result of his work, viz. that Young's modulus for brass is 537 '86402,
is worthless, and is entirely useless to any human being.

The following hints may perhaps assist the student to avoid errors in

his work and may help him to discover where they have occurred when,

in spite of all his care, his result is obviously wrong.

2. OBSERVATIONS. After the necessary adjustments have been made,
the observer reads off a number from the graduations of the instrument

or in other ways. The result of the experiment cannot possibly be correct

if this number be not correctly read and correctly recorded. After the reading

has been entered, the student should, when possible, look at the instrument

again in order to detect any discrepancy between the written entry and the

instrumental reading. What he actually wrote is not always what he intended

to write.

The work of observing is liable to a great variety of errors. Some of the

most frequent are the following :

Wrong values are assigned to the divisions of a scale. Thus the student

sees a 10 and counts on 5 more divisions, and enters the reading as 10'5

instead of 15. Or, when the main divisions are subdivided into 5 sub-
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divisions, one of the latter is taken as a tenth instead of a fifth of a main

division.

The numbered divisions are read from left to right, but the tenths are

read from right to left. Thus 25*4 is wrongly read as 25 '6, the 6 tenths

in the latter number being reckoned from the "
26."

The student does not understand the graduation of the instrument, either

because he has not given sufficient attention to the matter or because the

unit of measurement is not marked on the instrument
;

in the latter case

he cannot be expected to know the unit of measurement and he should

ascertain it from those who have put the instrument into his hands, be

they instrument makers, teachers, or examiners.

In most cases the determination of a physical quantity involves two obser-

vations. Thus, when the diameter of a wire is measured by a screw-gauge, the

reading of the gauge when the jaws are in contact is required as well as the

reading when the gauge is adjusted to the wire. But students frequently omit

to take the zero reading. They should remember that "
every length has two

ends." The attempt to measure a length by a single reading sometimes leads

to totally erroneous results, as when a distance of 30 cm. is put down as

70 cm. because the "
wrong end " of the scale is used and so the distance

to be measured lies between the " 100 " and the " 70 " on the scale, and not

between the "0" and the "30." If, in addition to the reading "70," the

reading
" 100 " had been taken and recorded, the error would not have occurred.

Similar remarks apply to the measurement of many other quantities, e.g.

masses, angles, and resistances.

In finding the periodic time of a vibrating system, a student sometimes

calls
" one " when he starts the stop-watch ;

he stops the watch as he calls

"
fifty

" and though he imagines that he has found the time of 50 vibrations,

he has really found the time of only 49. He should call
"
nought

" when he

starts the watch.

When the periodic time exceeds about two seconds, the mind has time to

ramble off to other interests between one count and the next, and therefore a

special effort must be made to concentrate the attention on the work in

hand. It is of assistance to count out loud. On account of the difficulty

of counting correctly, the student should make at least two independent

observations of any periodic time.

A steady hand, a keen eye, and a good general command of the body are

ntial in accurate physical determinations ;
mere intellectual power avails

nothing by itself. Any rule of life which deviates from temperance in all

things (including work) may be expected to render the hand less steady and

the eye less keen, and so to lead to inferior work. University students whose

fingers are deeply stained with tobacco do not, as a rule, become skilful

observers, though they may show considerable ability in other ways.

3. THE RECORDING OF OBSERVATIONS. As soon as an observation has

been made, enter the result in a note book, not on a scrap of paper. Do not

esse
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wait to see the result of a second adjustment before recording the result of

the first one. Take the figures as they come without any attempt to force

them into agreement with any preconceived value.

Enter observations and not merely deductions. Thus, if two readings of

a vernier be 15*85 cm. and 17*32 cm., these are observations. The distance

1*47 cm., through which the vernier has been moved, is a deduction from the

two observations. If the student, without entering the numbers 15 '85 and

17 '32, does the arithmetic in his head and puts down 1*57 through error,

he has no chance of detecting the mistake afterwards. If he had entered

15*85 and 17*32, he might have found the mistake in revising his calculation.

The neglect of the simple rule of always entering observations before

making any deductions from them is a very frequent source of error. No

one, whatever his private opinion as to his own powers, is likely to do reliable

work if he neglects this rule.

Enter the observations in an orderly manner without crowding, and do

not write in three or four different directions on the paper.

Write all the numbers very plainly. The letters in a badly written word

can often be guessed, but the neighbouring figures do not help the reader

to decide whether the mark on the paper is meant to be a 5 or an 8. The

position of the decimal point is the most important feature of any collection

of figures ;
be careful, therefore, to mark the decimal point firmly and clearly.

Be careful to state clearly what it is that you have measured, and also

the units in which the measurement is expressed.
If you have reason to reject any of your observations, cancel the entries

by bold lines drawn through them, so that there may be no mistake as

to what is rejected and what is retained. Neatness is here of secondary

importance.

A beginner naturally believes that he is capable of making a correct copy
of the results of a series of observations

;
he will learn by experience that,

in spite of his most strenuous efforts, mistakes will occur. It is therefore

essential that the student should cultivate the habit of making the original

record of the observations good and clear, and that he should preserve it for

reference. If any practical use is to be made of the results of an experiment,
it is obviously important that the chances of error should be as small as

possible. The power of entering observations in a clear manner will be of

value in a practical examination, for the student will then be able to send in

his original record and will not feel compelled to waste time by copying out

his "
rough

" notes.

4. ARITHMETICAL REDUCTION OF OBSERVATIONS. From the observations

the result is deduced by arithmetical work. Without this work the result

cannot be obtained, and the accuracy of the result depends upon that of the

arithmetical work. This work should therefore be carried out with quite
as much care as that given to the taking and recording of the observations.

The arithmetic should be done in the book containing the observations, and
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the work should be arranged in an orderly manner so that it will bear

inspection. It is wise to verify each step before pr< << ling to the next.

Many students have the bad habit of doing the arithmetic on

which they immediately destroy, as if they were ashamed of the work
; yet

no one expects them to obtain the results without doing the arithmetic.

For most purposes four-figure mathematical tables may be used; Bottornley'
tables are convenient. The student should make himself acquainted with the

contents of the book of tables so that he may know where to look for (say)
the reciprocal of a number; and he will then not waste time in working
it out by the aid of logarithms.

The slide rule is so convenient in those cases where moderate accuracy

suffices, that the student should endeavour to become proficient in its use.

But it must be recognised that its accuracy is limited.

Care should be taken to carry the arithmetic to a sufficient number of

significant figures. The final result depends, of course, upon the data used

in the calculations, but the arithmetic should be carried so far that no error

is introduced into the result greater than (say) one tenth of that arising from

the errors of observation. An example will make this clear. The value of

the product 1-6736x2-7628 is 4-62382208, or to 5 significant figures 4'6238.

But if we perform the multiplications, we find that

1-7 X2-8 =4-8 to 2 figures

1-67 X2-76 =4-61 to 3 figures

1-674x2-763= 4-625 to 4 figures.

Hence the rough 2 figure arithmetic has introduced an error of about one

in 25. With 3 figure arithmetic the error is reduced to about one in 330,

and with 4 figures the error is only about one in 4000.

On the other hand, it is useless to retain many significant figures in the

arithmetic when the data are only correct to a few significant figures.

When the number of significant figures is to be reduced by rejecting the

last digit Z, the last but one is left unchanged when L is less than 5, and is

increased by unity when L is greater than 5. When L is equal to 5, the last

digit but one is left unchanged if it is even, but is increased by unity if it

is odd. Thus 3'485 is shortened to 3'48, but 6*235 is shortened to 6'24 ;

in each case the number adopted after the rejection of the " 5 " has its last

digit even.

When the numbers are very great or very small, it is best to write them

thus: 4"19xl07 or 5-89 x 10
~ 6

, keeping one significant figure only on the

left of the decimal point. There is less chance of error in copying 5-89 x 10~6

than in copying 0-0000589. This plan has the advantage that, when the

logarithms of the numbers are to be found, there is no need to count the

number of figures between the decimal point and the first significant figure.

The power to which the 10 is raised is equal to the characteristic of the

logarithm. Thus

log (4-19 X 107
)
= 7-6222, log (5'89x 10~6

)
= 5-7701.

123
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The value of TT is 3-14159265.... It is quicker to use log 3-141... than to

use log 22 and log 7, as is necessary when the rough value 22/7 is employed.
Gross errors in arithmetic can often be detected by the exercise of a little

common sense. Thus a moment's thought shows that the cross-section of a

wire one-tenth of a centimetre in diameter is not 2'345 square centimetres.

The student should make a practice of looking at the result of each step
to see if it is reasonable or absurd.

5. DIAGRAMS. When series of observations are plotted on squared paper,
the student .should express very clearly upon the diagram the two physical

quantities which are represented along the horizontal and vertical axes.

When this information is not given, the diagram is generally worthless.

The points plotted on the diagram should be clearly marked by small circles

drawn round them or in other ways.
In every case when a series of observations is made, one quantity X is

varied and the consequent variations of a second quantity Y are observed.

The quantity X should be varied over the whole of the available range and

the separate values of X say Xl5 JT2 ...should be fairly distributed over

that range. Many students are inclined to take X\, X2 ... so close together
that they are unable, for lack of time, to cover more than a small part of the

whole range. In such cases, it often happens that the errors of observation

cause the points plotted on the X- Y diagram to be suggestive rather of a con-

stellation than of any regular curve. If the intervals X% X^ Xz X%, etc.,

had been large, the errors of observation would not have completely obscured

the law which the experiment was designed to investigate.

6. NOTE BOOKS. The student should, if possible, keep a note book in

which to write fuller accounts of the experiments than is possible in the

laboratory. He will thus find out how much he has understood of what

he has done in the laboratory, and will also gain practice in describing

experimental work in his own words. The note book should have large

pages, and ample space should be left for future notes and additions. But

however great the labour spent upon this book, it can never take the place of

the laboratory note book in which the original records are written.

The student should write his name and address in his note books as

a safeguard against their loss.

7. GENERAL REMARKS. The student should not leave an experiment
while there is anything connected with it which he does not understand.

Every experiment involves many principles, and thus a single experiment

thoroughly grasped in all its details puts the student in possession of much

knowledge which will help him in future experiments. Hence, one experi-

ment well understood is of far more educational value than a dozen in

which the student has gained only hazy notions.

There is no such thing as the ANSWER to any experimental investigation,

for no two persons would obtain precisely the same result, however carefully



NOTES 183

they worked. The student should have confidence in his results until he

discovers an error in his work. But he should not pretend to do im-

possibilities. It is easy to make some measurement, such as weighing,
with a great show of precision, but the precision is only apparent and not

real unless the proper precautions have been taken and the proper cor-

rections have been applied.

As the degree of exactness to be reached in any measurement is increased,

the practical difficulties increase enormously. Thus with a household balance

and household weights a cook could weigh a mass of aluminium of about

100 grammes to one gramme. A junior student with a cheap laboratory
balance and common weights could weigh it to ^ gramme. To be certain

of the mass to ^^ gramme, it would be necessary to use double weighing
and to allow for the buoyancy of the air. To Breach an accuracy of

ToW gramme, it would be necessary to have a table of corrections for the

weights employed, while to come within 100*<^o gramme would require an

accurate knowledge of the pressure, the temperature and the hygrometric
state of the air, and would require the refined appliances of a national

physical laboratory and the skill of an expert.

The student should have an eye to proportion. It is useless to make

some observations (e.g. of mass) to one part in ten thousand when other

observations in the same experiment can only be made to one part in a

hundred (e.g. rise of temperature).

The formula which expresses the result in terms of the quantities to be

observed should be carefully examined to see which quantities are of primary

and which are of secondary importance. Thus the formula

for the moment of inertia of a cylindrical rod of mass M, of length 2Z and of

radius A, shows that, when L is great compared with A, the quantities M
and L are of primary importance, while A is of only secondary importance,

It is useless to spend time in measuring 2A accurately by means of a screw-

gauge when 2Z is only measured to the nearest millimetre, for it is, at the

outside, only the first two significant figures in %A
2 which are of any con-

sequence compared with ^L
2

.
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Students who require an introduction to modern scientific electricity. The
research atmosphere of Cambridge is here brought before us, and the student
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years."

CAMBRIDGE UNIVERSITY PRESS WAREHOUSE,
C. F. CLAY, MANAGER,

Honlron: FETTER LANE,
Glaagoto: 50, WELLINGTON STREET.

ALSO

ILonfcon: H. K. LEWIS, 136, GOWER STREET, W.C.



\\

l<





r FL
7,

M ;

UNIVERSITY OF TORONTO

LIBRARY

Acme Library Card Pocket

Under Pat. "Ref. Index File."

Made by LIBEAEY BUKEAU, Boston

CD ET

o

3 Q
3 3
rt- ^-J



BBBMHOBBBi


