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Abstract

This paper is a review of our recent work on three notorious problems of non-

relativistic quantum mechanics: realist interpretation, quantum theory of classical

properties and the problem of quantum measurement. A considerable progress has

been achieved, based on four distinct new ideas. First, objective properties are as-

sociated with states rather than with values of observables. Second, all classical

properties are selected properties of certain high entropy quantum states of macro-

scopic systems. Third, registration of a quantum system is strongly disturbed by

systems of the same type in the environment. Fourth, detectors must be distin-

guished from ancillas and the states of registered systems are partially dissipated

and lost in the detectors. The paper has two aims: a clear explanation of all new re-

sults and a coherent and contradiction-free account of the whole quantum mechanics

including all necessary changes of its current textbook version.
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0.1 Introduction

Quantum mechanics was originally developed for the world of atoms and electrons,

where it has been very successful. The understanding of the microscopic world, let

us call it ”quantum world”, that has developed from this success, seems to be very

different or even incompatible with the understanding of the everyday world of our

immediate experience, which we can call ”classical world”. This is unsatisfactory

because one of the strongest feelings of a modern physicist is the belief in the unity

of knowledge. It is even paradoxical because the bodies of the everyday world

are composed of atoms and electrons, which ought to be described by quantum

mechanics.

We can distinguish three problems that are met on the way from quantum to

classical physics. Classical theories such as Newtonian mechanics, Maxwellian elec-

trodynamics or thermodynamics are objective, in the sense that the systems they

are studying can be considered as real objects, and the values of their observables,

such as position, momentum, field strengths, charge current, temperature etc. can

be ascribed to the systems independently of whether they are observed or not. If we

are going to construct quantum models of classical systems, the question naturally

arises how such an objective world can emerge from quantum mechanics.

Indeed, in quantum mechanics, the values obtained by most registrations on mi-

crosystems (technically, they are values of observables) cannot be assumed to exist

before the registrations, that is, to be objective properties of the microsystem on

which the registration is made. An assumption of this kind would lead to contradic-

tions with other assumptions of standard quantum mechanics and, ultimately, with

observable facts (contextuality [9, 55], Bell inequalities [7], Hardy impossibilities

[47], Greenberger–Horne–Zeilinger equality [39]).

This property of quantum mechanical observables has lead to growing popular-

ity of various forms of weakened realism. For example, according to Bohr, realism

applies only to the results of quantum measurements, which can be described by

the relation between objective classical properties of real classical preparation and

registration apparatuses. Various concepts of quantum mechanics itself, such as

electron, wave function, observable, etc., do not possess any direct counterparts in

reality; they are just instruments to keep order in our experience and to make it

ready for application. A rigorous account of this kind of weakened realism is [61].

Similar view is the so-called ”statistical” or ”ensemble” interpretation [4]. This

refuses to attribute any kind of reality to the quantum-mechanical probability am-
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plitudes either at the microscopic or macroscopic level. According to this view,

the amplitudes are simply intermediate symbols in a calculus whose only ultimate

function is to predict the statistical probability of various directly observed macro-

scopic outcomes, and no further significance should be attributed to them. Another

example of even weaker realism is the ”constructive empiricism” by van Fraassen

[30], which proposes to take only empirical adequacy, but not necessarily ”truth”,

as the goal of science. Even the reality of classical systems and their properties

is then only apparent. The focus is on describing ”appearances” rather than how

the world really is [36]. Thus, quantum mechanics does not seem to allow a realist

interpretation. Let us call this Problem of Realist Interpretation.

The second problem for construction of quantum models of classical systems can

be called Problem of Classical Properties. This is the apparent absence of quantum

superpositions, as well as the robustness, of classical properties (for detailed dis-

cussion, see Ref. [57]). Clearly, classical properties such as a position do not allow

linear superposition. Nobody has ever seen a table to be in a linear superposition of

being simultaneously in the kitchen as well as in the bedroom. Also, observing the

table in the kitchen does not shift it to the bedroom, while quantum registration

changes properties of registered systems. That is roughly what is meant when one

says that classical properties are robust (for a better definition, see Ref. [57]).

Finally, there is a serious problem at the quantum–classical boundary. For quan-

tum measurements, evidence suggests the assumption that the registration appara-

tus always is in a well-defined classical state at the end of any quantum measurement

indicating just one value of the registered observable. This is called objectification

requirement [19]. However, if the initial state of the registered system is a lin-

ear superposition of different eigenvectors of the observable, then the linearity of

Schrödinger equation implies that the end state of the apparatus is also a linear su-

perposition of eigenstates of its pointer observable1. Thus, it turns out that realism

in most cases leads to contradictions with the postulate of linear quantum evolution,

see the analysis in [57]. Let us call this Problem of Quantum Measurement.

There is a vast literature dealing with the three problems containing many dif-

ferent proposals from various variants of weakened realism to radical changes of

quantum mechanics (for clear reviews see [28, 19, 82]). One also proposes that

quantum mechanics is based on a kind of approximation that ceases to be valid for

macroscopic systems, see e.g. [57]. An even more radical approach is to look for

the way quantum mechanics could be obtained from a kind of deeper theory with

classical character (see e.g. the proceedings [22]) These or other attempts in the

1This holds, strictly speaking, only if the measured system S and the apparatus A constitute

together an isolated system. But if they are not isolated from their environment E then the

composite S +A+ E can be considered as isolated and the difficulty reappears.
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literature do not seem to lead to a satisfactory solution. We shall not discuss this

work because we shall look for the solution in a different and utterly novel direction.

Our approach starts directly from quantum mechanics as it has been formulated by

Bohr, Born, Dirac, Heisenberg, von Neumann, Pauli and Schrödinger. Our analysis

has shown that they have delivered enough tools to deal with the problems. The

aim of this review is to prove that our proposals of solutions to the three problems

form a logically coherent whole with the rest of quantum mechanics.

Let us briefly describe the ideas from which our approach starts. First, it is true

that values of observables are not objective. However, in [41], we have shown that

there are other observable properties of quantum systems that can be ascribed to the

systems without contradictions and there is a sufficient number of them to describe

the state of the systems completely. We shall introduce and discuss this approach

in Section 0.1.3 in general terms and then, in technical detail, in Section 1.1.2.

Second, many attempts to derive classical theories from quantum mechanics are

based on quantum states of minimal uncertainty (Gaussian wave packets, coherent

states, etc.). But a sharp classical trajectory might be just a figment of imagination

because each measurement of a classical trajectory is much fuzzier than the minimum

quantum uncertainty. Thus, the experimental results of classical physics do not

justify any requirement that we have to approximate absolutely sharp trajectories

as accurately as possible. This was observed as early as 1822 by Exner [27] and

evolved further in 1955 by Born [15]. Taking this as a starting point, one must ask

next what the quantum states that correspond to realistically fuzzy classical ones

are. In [42], a new assumption about such quantum states has been formulated and

studied. We shall discuss it in Chapter 3.

Third, in [43] it is shown that the measurement of observables such as a position,

momentum, spin, angular momentum, energy, etc. on a quantum system must be

strongly disturbed by all existing systems of the same type, at least according to

the standard quantum mechanics. To eliminate the disturbance, and to give an

account of what is in fact done during a quantum measurement process, the standard

theory of observables must be rewritten. We shall do this in Section 2.2 on identical

quantum systems.

Fourth, the current theory of quantum measurement describes a registration ap-

paratus by a microscopic quantum system, the so-called pointer, and assumes that a

reading of the apparatus is an eigenvalue of a pointer observable. For example, Ref.

[68], p. 64, describes a measurement of energy eigenvalues with the help of scattering

process similar to Stern–Gerlach experiment, and it explicitly states:

We can consider the centre of mass [of a microscopic system] as a ’special’

measuring apparatus...

Similarly, Ref. [70], p. 17 describes Stern–Gerlach experiment:
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The microscopic object under investigation is the magnetic moment µ

of an atom.. . . The macroscopic degree of freedom to which it is coupled

in this model is the centre of mass position r.. . . I call this degree of

freedom macroscopic because different final values of r can be directly

distinguished by macroscopic means, such as the detector.. . . From here

on, the situation is simple and unambiguous, because we have entered

the macroscopic world: The type of detectors and the detail of their

functioning are deemed irrelevant.

Paradoxically, this notion of measurement apparatus (mostly called ”meter”) is quite

useful for the very precise modern quantum experiments, such as non-demolition

measurements or weak measurements, see, e.g., Refs. [100, 90]. Quite generally,

these experiments utilise auxiliary microscopic systems called ancillas. If the pointer

is interpreted as an ancilla, then the old theory works well at least for the interaction

of the measured system with the ancilla. However, the fact that ancillas themselves

must be registered by macroscopic detectors is ”deemed irrelevant”. A more detailed

analysis is given in Section 4.1.

In fact, detectors are very special macroscopic systems. We shall show that their

role is to justify the state reduction (collapse of wave function) and to define the

so-called ”preferred basis” (see [82]) that determines the form of state reduction.

Further, the reduction can be assumed as a process within detectors at the time of

the detector’s macroscopic signal. We shall discuss the design and role of detectors

in Section 4.3.

The present paper has grown from review [44] by adding new results, by correcting

many minor errors and by explaining many points in a clearer and more coherent

way. It is a systematic exposition of the non-relativistic quantum mechanics (the

space and time structure is everywhere assumed to be Newtonian).

0.1.1 Examples of quantum systems

To explain what quantum mechanics is about, this section describes some well-known

quantum systems following Ref. [44]. It also introduces some general notions, such

as microsystem, macrosystem, type of system and structural property following Ref.

[41].

Quantum mechanics is a theory that describes certain class of properties of certain

class of objects in a similar way as any other physical theory does. For example,

among others, Newtonian mechanics describes bodies that can be considered as

point-like in a good approximation and studies the motion of the bodies.

Quantum systems that we shall consider are photons2, electrons, neutrons and

2One can ask whether there is a non-relativistic limit of photons. In one such limit, photons

6



nuclei, which we call particles, and systems containing some number of particles,

such as atoms, molecules and macroscopic systems, which are called composite.

Of course, neutrons and nuclei themselves are composed of quarks and gluons, but

non-relativistic quantum mechanics can and does start from some phenomenological

description of neutrons and nuclei.

Let us call particles and quantum systems that are composed of small number

of particles microsystems. They are extremely tiny and they mostly cannot be per-

ceived directly by our senses. We can observe directly only macroscopic quantum

systems that are composed of very many particles3. ”Very many” is not too dif-

ferent from 1023 (the Avogadro number). Let us call these macrosystems. Some

properties of most macroscopic systems obey classical theories. For example, shape

and position of my chair belong to Euclidean geometry, its mass distribution to

Newtonian mechanics, chemical composition of its parts to classical chemistry and

thermodynamic properties of the parts such as phase or temperature to phenomeno-

logical thermodynamics. Such properties are called “classical”. Thus, properties

of microsystems can only be observed via classical properties of macrosystems; if

microsystems interact with them and if this interaction changes their classical prop-

erties.

Microsystems are divided into types, such as electrons, hydrogen atoms, etc. Sys-

tems of one type are not distinguishable from each other in a sense not existing in

classical physics. Systems of the same type are often called identical. Microsys-

tems exist always in a huge number of identical copies. The two properties of

microsystems, viz. 1) their inaccessibility to direct observations and 2) utter lack

of individuality that is connected with the existence of a huge number of identical

copies, make them rather different from classical systems or ”things”. Each classical

system can be observed directly by humans (in principle: for example, the distant

galaxies) and each can be labelled and distinguished from other classical systems,

because it is a quantum system composed of a huge number of particles and hence

it is highly improbable that it has a kin of the same type in the world.

Objective properties that are common to all microsystems of the same type will

be called structural. Thus, each particle has a mass, spin and electric charge. For

example, the mass of electron is about 0.5 MeV, the spin 1/2 and the charge about

10−19 C. In non-relativistic quantum mechanics, any composite system consists of

definite numbers of different particles with their masses, spins and charges4. E.g.,

may move with infinite velocity and therefore their position does not need to be very well defined.

In another, photons may be represented by a classical electromagnetic wave.
3It is true that the eye can recognize signals of just several photons, but it can be viewed as a

quantum registration apparatus with macroscopic parts and only these are observed ”directly”.
4We do not view quasiparticles as particles but as auxiliary entities useful for description of the

spectrum of some composite systems.
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a hydrogen atom contains one electron and one proton (nucleus). The composition

of a system is another structural property. The structural properties influence the

dynamics of quantum systems; the way they do it and what dynamics is will be

explained later. Only then, it will be clear what the meaning of these parameters

is and that the type of each system can be recognized, if its dynamics is observed.

When we shall know more about dynamics, further structural properties will emerge.

Structural properties are objective in the sense that they can be assumed to exist

before and independently of any measurement. Such assumption does not lead to

any contradictions with standard quantum mechanics and is at least tacitly made

by most physicists. In fact, the ultimate goal of practically all experiments is to find

structural properties of quantum systems.

From the formally logical point of view, all possible objective properties of given

kind of objects ought to form a Boolean lattice. The structural properties satisfy

this condition: systems with a given structural property form a subset of all sys-

tems. These subsets are always composed of whole type-classes of quantum systems.

Clearly, the intersection of two such subsets and the complement of any such subset

is again a structural property.

Structural properties characterise a system type completely but they are not

sufficient to determine the dynamics of individual systems.

0.1.2 Examples of quantum experiments

The topic of this section plays an important role in understanding quantum mechan-

ics. Specific examples of typical experiments will be given in some detail following

Ref. [44]. In this way, we gain access to the notions of preparation and registration,

which are assumed by the basic ideas of our realist interpretation of quantum me-

chanics. Describing the experiments, we shall already use some of the language of

the interpretation, which will be introduced and motivated in this way.

Let us first consider experiments with microsystems that are carried out in lab-

oratories. Such an experiment starts at a source of microsystems that are to be

studied. Let us give examples of such sources.

1. Electrons. One possible source (called field emission, see e.g. Ref. [63], p. 38)

consists of a cold cathode in the form of a sharp tip and a flat anode with an

aperture in the middle at some distance from the cathode, in a vacuum tube.

The electrostatic field of, say, few kV will enable electrons to tunnel from the

metal and form an electron beam of about 107 electrons per second through

the aperture, with a relatively well-defined average energy.

2. Neutrons can be obtained through nuclear reaction. This can be initiated by

charged particles or gamma rays that can be furnished by an accelerator or
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a radioactive substance. For example the so-called Ra-Be source consists of

finely divided RaCl2 mixed with powdered Be, contained in a small capsule.

Decaying Ra provides alpha particles that react with Be. The yield for 1 mg

Ra is about 104 neutrons per second with broad energy spectrum from small

energies to about 13 MeV. The emission of neutrons is roughly spherically

symmetric centred at the capsule.

3. Atoms and molecules. A macroscopic specimen of the required substance in

gaseous phase at certain temperature can be produced, e.g., by an oven. The

gas is in a vessel with an aperture from which a beam of the atoms or molecules

emerges.

Each source is defined by an arrangement of macroscopic bodies of different shapes,

chemical compositions, temperatures and by electric or magnetic fields that are

determined by their macroscopic characteristics, such as average field intensities:

that is, by their classical properties. These properties determine uniquely what type

of microsystem is produced. Let us call this description empirical. It is important

that the classical properties defining a source do not include time and position so

that the source can be reproduced later and elsewhere. We call different sources

that are defined by the same classical properties equivalent. Empirical description is

sufficient for reproducibility of experiments but it is not sufficient for understanding

of how the sources work. If a source defined by an empirical description is set into

action, we have an instance of the so-called preparation.

Quantum mechanics assumes that these are general features of all sources, inde-

pendently of whether they are arranged in a laboratory by humans or occur spon-

taneously in nature. For example, classical conditions at the centre of the Sun

(temperature, pressure and plasma composition) lead to emission of neutrinos that

reach the space outside the Sun.

Often, a source yields very many microsystems that are emitted in all possible

directions, a kind of radiation. We stress that the detailed structure of the radiation

as it is understood in classical physics, that is where each individual classical system

exactly is at different times, is not determined for quantum systems and the question

even makes no sense. Still, a fixed source gives the microsystems that originate from

it some properties. In quantum mechanics, these properties are described on the one

hand by the structural properties that define the prepared type, on the other, e.g.,

by the so-called quantum state. The mathematical entity that is used in quantum

mechanics to describe a state (the so-called state operator) will be explained in

Section 1.1. To determine the quantum state that results from a preparation with

a given empirical description in each specific case requires the full formalism of

quantum mechanics. Hence, we postpone this point to Chapter 4.
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After arranging the source, another stage of the experiment can start. Generally,

only a very small part of the radiation from a source has the properties that are

needed for the planned experiment. The next step is, therefore, to select the part

and to block off the rest. This is done by the so-called collimator, mostly a set of

macroscopic screens with apertures and macroscopic electric or magnetic fields. For

example, the electron radiation can go through an electrostatic field that accelerates

the electrons and through electron-microscope ”lenses”, each followed by a suitable

screen. A narrow part of the original radiation, a beam, remains. Another example

is a beam of molecules obtained from an oven. It can also contain parts of broken

molecules including molecules with different degrees of ionisation. The part with

suitable composition can then be selected by a mass spectrometer and the rest

blocked off by a screen. Again, the beam resulting from a raw source and a collimator

consists of individual quantum objects with a well-defined type and quantum state.

The process of obtaining these individual quantum objects can be viewed as a second

stage of the preparation. Again, there is an empirical description that defines an

equivalence class of preparations and equivalent preparations can be reproduced.

The final beam can be characterized not only by the quantum state of individual

objects but also by its approximate current, that is how many individual objects it

yields per second. The beam can be made very thin. For example, in the electron-

diffraction experiment [91], the beam that emerges from the collimator represents

an electric current of about 10−16A, or 103 electrons per second. As the approximate

velocity of the electrons and the distance between the collimator and the detector

are known, one can estimate the average number of electrons that are there simul-

taneously at each time. In the experiment, it is less than one. One can understand

in this way that it is an experiment with individual electrons.

Next, the beam can be lead through further arrangement of macroscopic bodies

and fields. For example, to study the phenomenon of diffraction of electrons, each

electron can be scattered by a thin slab of crystalline graphite or by an electrostatic

biprism interference apparatus. The latter consists of two parallel plates and a

wire in between with a potential difference between the wire on the one hand and

the plates on the other. An electron object runs through between the wire and

both the left and right plate simultaneously and interferes with itself afterwards (for

details see [91]). Again, the beam from the graphite or the biprism can be viewed

as prepared by the whole arrangement of the source, collimator and the interference

apparatus. This is another example of a reproducible preparation procedure.

Finally, what results from the original beam must be made directly perceptible

by its interaction with another system of macroscopic bodies and fields. This pro-

cess is called registration and the system registration apparatus. The division of an

experimental arrangement into preparation and registration parts is not unique. For

10



example, in the electron diffraction experiment, one example of a registration ap-

paratus begins after the biprism interference, another one includes also the biprism

interference apparatus. Similarly to preparations, the registrations are defined by

an empirical description of their relevant classical properties in such a way that

equivalent registrations can be reproduced.

An important, even definition, property of a registration is that it is applicable

to an individual quantum system and that each empirical result of a registration is

caused by just one individual system. In the above experiment, this assumption is

made plausible by the extreme thinning of the beam, but it is adopted in general

even if the beam is not thin.

An empirical description of a registration apparatus can determine a quantum

mechanical observable similarly as preparation determines a quantum state. Again,

more theory is needed for understanding of what are the mathematical entities (the

so-called positive valued operator measures, see Section 1.2) describing observables

and how they are related to registration devices. Each individual registration per-

formed by the apparatus, i.e., registration performed on a single quantum object,

then gives some value of the observable. The registration is not considered to be

finished without the registration apparatus having given a definite, macroscopic and

classical signal. This is the objectification requirement.

A part of registration apparatuses for microsystems are detectors. At the em-

pirical level, a detector is determined by an arrangement of macroscopic fields and

bodies, as well as by the chemical composition of its sensitive matter [58]. For ex-

ample, in the experiment [91] on electron diffraction, the electrons coming from the

biprism interference apparatus are absorbed in a scintillation film placed transver-

sally to the beam. An incoming electron is thus transformed into a light signal. The

photons are guided by parallel system of fibres to a photo-cathode. The resulting

(secondary) electrons are accelerated and lead to a micro-channel plate, which is a

system of parallel thin photo-multipliers. Finally, a system of tiny anodes enables

to record the time and the transversal position of the small flash of light in the

scintillation film.

In this way, each individual electron coming from the biprism is detected at a

position (two transversal coordinates determined by the anodes and one longitu-

dinal coordinate determined by the position of the scintillation film). Such triple

~x of numbers is the result of each registration and the value of the corresponding

observable, which is a coarsened and localised position operator ~q in this case (see

Section 2.2.3). Also the time of the arrival at each anode can be approximately

determined. Thus, each position obtains a certain time.

For our theory, the crucial observation is the following. When an electron that

has been prepared by the source and the collimator hits the scintillation film, it is
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lost as an individual system. Indeed, there is no property that would distinguish it

from other electrons in the scintillation matter. Thus, this particular registration

is a process inverse to preparation: while the preparation has created a quantum

system with certain individuality, the registration entails a loss of the individuality.

Our theory of quantum registration in Chapter 4 will make precise and generalise

this observation.

If we repeat the experiment with individual electrons many times and record the

transversal position coordinates, the gradual formation of the electron interference

pattern can be observed. The pattern can also be described by some numerical

values. For example, the distance of adjacent maxima and the direction of the

interference fringes can be such values. Still, the interference pattern is not a result

of one but of a whole large set of individual registrations.

In some sense, each electron must be spread out over the whole plane of the scin-

tillation detector after coming from the biprism but the excitation of the molecules

in the detector matter happens always only within a tiny well-localized piece of it,

which is different for different electrons5. Thus, one can say that the interference

pattern must be encoded in each individual electron, even if it is not possible to

obtain the property by a single registration. The interference pattern can be con-

sidered as an objective property of the individual electrons prepared by the source,

the collimator and the biprism interference apparatus. The interference pattern is

not a structural property: preparations that differ in the voltage at some stage of

the experiment (e.g., the accelerating field in the collimator or the field between the

wire and the side electrodes in the biprism interference apparatus, etc.) will give

different interference patterns. We call such objective properties dynamical. On the

other hand, the hitting position of each individual electron cannot be considered as

its objective property. Such an assumption would lead to contradictions with results

of other experiments. The position must be regarded as created in the detection

process.

It is a double-slit experiment, a special kind of which is described above, that

provides a strong motivation for considering an individual quantum particle as an

extended object of sorts. Without any mathematical description, it is already clear

that such an extended character of electrons could offer an explanation for the

stability of some states of electrons orbiting atomic nuclei. Indeed, a point-like

electron would necessarily have a time-dependent dipole momentum and lose energy

by radiation. However, an extended electron can define a stationary charge current

around the nucleus.

Some structural properties can be measured directly by a registration (on indi-

vidual quantum systems) and their values are real numbers. For example, mass can

5This is what is sometimes called ”the collapse of wave function”.
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be measured by a mass spectrometer. Such structural properties can be described

by quantum observables (see Section 1.2.5)6. However, there are also structural

properties that cannot be directly measured on individual objects similarly to the

interference pattern, such as cross sections or branching ratios. They cannot be

described by observables.

0.1.3 Realist Model Approach to quantum mechanics

In the previous section, describing specific experiments, we have used certain words

that are avoided in careful textbooks of quantum mechanics such as objective prop-

erties or quantum object or

. . .An electron object runs through between the wire and both the left and

right plate simultaneously and interferes with itself afterwards . . .

The electron is viewed here as a real object that is extended over the whole width

of the biprism apparatus. After this intuitive introduction, we give now a general

and systematic account of our realist interpretation.

A realist interpretation of a physical theory is a more subtle question than whether

the world exists for itself rather than being just a construction of our mind. This

question can always be answered in positive without any danger of falsification.

However, every physical theory introduces some general, abstract concepts. For ex-

ample, Newtonian mechanics works with mass points, their coordinates, momenta

and their dynamical trajectories. The truly difficult question is whether such con-

cepts possess any counterparts in the real world. On the one hand, it seems very

plausible today that mass points and their sharp trajectories cannot exist and are

at most some idealisations. On the other hand, if we are going to understand a

real system, such as a snooker ball moving on a table, then we can work with a

construction that uses these concepts but is more closely related to the reality. For

example, we choose a system of infinitely many mass points forming an elastic body

of a spherical shape and calculate the motion of this composite system using New-

ton’s laws valid for its constituent points. Then, some calculated properties of such

a model can be compared with interesting observable properties of the real system.

Thus, even if the general concepts of the theory do not describe directly anything

existing, a suitable model constructed with the help of the general concepts can

account for some aspects of a real system.

Motivated by this observation, we shall divide any physical theory into two parts.

First, there is a treasure of successful models. Each model gives an approximative

6These observables must commute with all other observables ([61], IV.8), and can be associated

with the so-called superselection rules, see e.g. [19].
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representation of some aspects of a real object [35]. Historically, models form a

primary and open part of the theory. For example, in Newtonian mechanics, the

solar system was carefully observed by Tycho de Brahe and then its model was

constructed by Kepler. Apparently, Newton was able to calculate accelerations and

doing so for Kepler trajectories, he might discover that they pointed towards the

Sun. Perhaps this lead to the Second Law. The hydrogen atom had a similar role

in quantum mechanics.

Second, there is a general language part. It contains the mathematical structure

of state space, conditions on trajectories in the state space, their symmetries and the

form of observables [30]. It is obtained by generalisation from the study of models

and is an instrument of further model construction and of model unification. For

example, in Newtonian mechanics, the state space is a phase space, the conditions

on trajectories is the general structure of Newton’s dynamical equations, symmetries

are Galilean transformations and observables are real functions on the phase space.

A model is constructed as a particular subset of trajectories in a particular state

space as well as a choice of important observables. For example, to describe the

solar system, assumptions such as the number of bodies, their point-like form, their

masses, the form of gravitational force and certain class of their trajectories can be

made if we want to construct a model. The observed positions of the planets would

then match the theoretical trajectories of the model within certain accuracy. Thus, a

model consists of a language component on the one hand, and an identifiable-object

component on the other. The language component always contains simplifying as-

sumptions, always holds only for some aspects of the associated object and only

within some approximation. The approximation that is referred to is bounded from

above by the accuracy of performed measurements. This is measurable and can be

expressed numerically by statistical variances.

Clearly, the models of a given theory are not predetermined by the general part

but obtained in the historical evolution and dependent on observation of real objects.

On the one hand, the general part can also be used to construct language components

of models that do not have any real counterparts. On the other hand, the model part

is steadily evolving and never closed. For example, a satisfactory quantum model

of high temperature superconductivity is not yet known. This is why the treasure

of successful models is an independent and, in fact, the basic part of any theory.

Such philosophy forms a first step of what we call our Realist Model Approach

to quantum mechanics. Thus, the Approach lies somewhat within the recent trend

of the philosophy of science that defines a theory as a class of models (see, e.g.,

[89, 87, 30, 35, 20]). It can be said that it combines ideas of the constructive
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realism by Ronald Giere7 with van Fraassen notions of state space and symmetries

[30] as a basis of the general language part8. It is important that constructive

realism is immune to the usual objections against naive realism. In addition, we

add some further importance to the general part by recognising its unification role.

The effort at unification is without any doubts a salient feature of scientists that

can be observed at any stage of research. For example, Newton was admired for his

unification of such different phenomena as apples falling from trees and the Moon

moving in the sky. Today’s endeavour to unify the theories of quantum fields and

gravity is a very well observable historical fact. From the point of view of Giere,

this bent might, perhaps, be understood as one of cognitive instincts.

The focus on models allows to define the task of quantum-explaining the classi-

cal world in the following way. Instead of trying to find a direct relation between

the general language parts of, say, quantum and Newtonian mechanics or a univer-

sal correspondence between states of Newtonian and quantum mechanics such as

Wigner–Weyl–Moyal map [83], p. 85, one ought to build quantum models of real

macroscopic systems and their aspects for which there are models in Newtonian

mechanics striving for approximate agreement between the two kinds of models on

those aspects for which the Newtonian models are successful. For example, we shall

not attempt to obtain from quantum mechanics the sharp trajectories that is a

concept of general language part of Newtonian mechanics, but rather try to model

the observed fuzzy trajectories of specific classical systems (Chapter 3), or to anal-

yse different specific registration apparatuses first and then try to formulate some

features common to all (Chapter 4).

However, the Realist Model Approach is not so easily applied to quantum me-

chanics as it is to Newtonian mechanics. A question looms large at the very start:

What is a real quantum object? Of course, such objects are met ”empirically” in

preparations and registrations. However, we would like to subscribe to the notion

that the language component of a model must ascribe to its real object a sufficient

number of objective properties. Objective means that the properties can be ascribed

to the object alone. Sufficient means that the dynamics of any object as given by

its model is uniquely determined by initial data defined by values of a minimal

set of its objective properties. For example, in Newtonian mechanics, the values

of coordinates and momenta determine a unique solution of Newton’s dynamical

equations.

7I enthusiastically adopt Giere’s view that philosophy of science is to be removed from the realm

of philosophy and put into the realm of cognitive sciences.
8Van Fraassen also applied his constructive empiricism to quantum mechanics [31] and, adding

some further ideas, arrived at his own, the so-called ”modal interpretation” of it. To prevent

misunderstanding, it must be stressed that the account and interpretation of quantum mechanics

described here is different from van Fraassen’s.
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In Newtonian mechanics, coordinates and momenta are observables, and values of

observables can be viewed as objective without any danger of contradictions. Using

this analogy, one asks: Can values of observables be viewed as objective properties of

quantum systems? As is well known, the answer is negative (see Section 1.2.4). If we

assume that values of observables are the only properties of quantum systems that

are relevant to their reality, then there are no real quantum systems. For rigorous

no-go theorems concerning such objective properties see, e.g., Ref. [61].

Our approach to properties of quantum systems is therefore different from those

that can be found in literature. First, we extend the notion of properties to include

complex ones in the following sense [44]:

1. Their values may be arbitrary mathematical entities (sets, maps between sets,

etc.). For example, the Hamiltonian of a closed quantum system involves

a relation between energy and some other observables of the system. This

relation is an example of such a complex property.

2. Their values do not need to be directly obtained by individual registrations.

For example, to measure a cross-section a whole series of scattering experi-

ments must be done. Thus, their values do not necessarily possess probability

distribution but may be equivalent to, or derivable from, probability distribu-

tions.

Point 2 is usually not clearly understood and we must make it more precise.

A real system of Newton mechanics is sufficiently robust so that we can do many

experiments with it and perform many measurements on it without changing it.

Moreover, any such system is sufficiently different from other systems anywhere in

the world (even two cars from one factory series can be distinguished from each

other). Any physical experiment on a given classical system can then be repeated

many times and only then the results can be considered reliable. The results are

then formulated in statistical terms (e.g., as averages, variances, etc.). One can,

therefore, feel that it might be more precise account of what one does generally

in physics if one spoke of ensembles of equivalent experiments done on equivalent

object systems in terms of equivalent experimental set-ups and of the statistics of

these ensembles.

This is of course a well-known idea. We shall apply it consequently to Newtonian

mechanics in the theory of classical limit in Chapter 3. However, one ought not to

forget that each ensemble must consist of some elements. Indeed, to get a statis-

tics, one has to possess a sufficiently large number of different individual results.

Hence, these individual elements must always be there independently of how large

the ensemble is. Then, we can ask the question: What do the statistical properties

of an ensemble tell us about properties of the individual object systems used in each
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individual experiment? In the classical physics, at least, the answer to this question

is considered quite obvious and one interprets the experimental results as properties

of the individual objects.

Quantum microsystems are never robust in the above sense. After a single reg-

istration, the microsystem is usually lost. Then we can repeat the experiment only

if we do it with another system. Here, we can utilise another property of quantum

microsystems that is different from classical ones: there is always a huge number of

microscopic systems of the same type, which are principally indistinguishable from

each other. Thus, we can apply the same preparation together with the same regis-

tration many times. In quantum mechanics, the thought set of all such experiments

is called ensemble of experiments, and similarly ensembles of prepared systems and

of obtained results. The elements of the ensembles are again called individuals. Sup-

pose that each individual result of an ensemble of measurements is a real number.

Then we can e.g. calculate an average of the results ensemble. The average can then

surely be considered as a property of the ensemble.

However, as in classical physics, one can also understand the average as a prop-

erty of each individual system of the ensemble. In any case, the fact that a given

individual belongs to a given ensemble is a property of the individual. It is a crucial

step in our theory of properties that we consider a property of an ensemble as a

property of each individual element of the ensemble. In fact, this is the only way

of how the logical union or intersection of two properties can be understood. For

example, the logical union, A∨B, of properties A and B of system S is the property,

that S has either property A or B.

In our theory, we shall use both notions, individual object and ensemble. The

notion of system ensemble is defined as usual (see, e.g., [70], p. 25): it is the thought

set of all systems obtained through equivalent preparations.

Returning to objectivity of observables in quantum mechanics, the problem is

that a registration of an eigenvalue a of an observable A of a quantum system S by

an apparatus A disturbs the microsystem and that the result of the registration is

only created during the registration process. The result of the individual registration

cannot thus be assumed to be an objective property of S before the registration.

It can however be assumed, as we shall do, that it is an objective property of the

composite S +A after the registration. This is the objectification requirement [19].

It seems therefore that the objective properties of quantum systems, if there are

any, cannot be directly related to individual registrations, as they can in classical

theories. (Paradoxically, most of the prejudices that hinder construction of quantum

models of classical theories originate in the same classical theories.) However, there

are observable properties in quantum mechanics that are different from values of

observables [44]:
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Basic Ontological Hypothesis of Quantum Mechanics A sufficient condition

for a property to be objective is that its value is uniquely determined by a preparation

according to the rules of standard quantum mechanics. The ”value” is the value of

the mathematical expression that describes the property and it may be more general

than just a real number. To observe an objective property, many registrations of one

or more observables are necessary.

In fact, the Hypothesis just states explicitly the meaning that is tacitly given

to preparation by standard quantum mechanics. More discussion on the meaning

of preparation is in [43, 45]. In any case, prepared properties can be assumed to

be possessed by the prepared system without either violating any rule of standard

quantum mechanics or contradicting possible results of any registration performed

on the prepared system. The relation of registrations to such objective properties is

only indirect: an objective property entails limitations on values of observables that

will be registered. In many cases, we shall use the Hypothesis as a heuristic principle:

it will just help to find some specific properties and then it will be forgotten, that

is, an independent assumption will be made that these properties can be objective

and each of them will be further studied.

We shall divide objective properties into structural (see Section 0.1.1) and dy-

namical and describe the dynamical ones mathematically in Section 1.1.2. Examples

of dynamical properties are a state, the average value and the variance of an ob-

servable. We shall define so-called simple objective properties and show first, that

there is enough simple objective properties to characterise quantum systems com-

pletely (at least from the standpoint of standard quantum mechanics) and second,

that the logic of simple properties satisfies Boolean lattice rules. Thus, a reasonable

definition of a real object in quantum mechanics can be given (see Sec. 1.1.2).

Often, the Hypothesis meets one of the following two questions. First, how can

the Hypothesis be applied to cosmology, when there was nobody there at the Big

Bang to perform any state preparation? Second, a state preparation is an action of

some human subject; how can it result in an objective property? Both objections

result from a too narrow view of preparations (see Section 0.1.2). Moreover, the

second objection is not much more than a pun. It is not logically impossible that

a human manipulation of a system results in an objective property of the system.

For example, pushing a snooker ball imparts it a certain momentum and angular

momentum that can then be assumed to be objective properties of the ball.

One may wonder how the average of an observable in a state can be objective

while the individual registered value of the observable are not because an average

seems to be defined by the individual values. However, the average is a property of

a prepared state and is, therefore, defined also by the preparation. The results of
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a huge number of individual registrations must add to their predetermined average.

This can be seen very well for averages with small variances. In our theory of

classical properties (Chapter 3), the explanation of classical realism will be based

on the objectivity of averages because some important classical observables will

be defined as (quantum) averages of (quantum) observables in a family of specific

(quantum) states that will be called classicality states.

Let us compare our Realist Model Approach with what is usually understood as

the Realism of Classical Theories. This is the philosophy that extends some suc-

cessful features of classical theories, especially Newtonian mechanics, to the whole

real world. There are three aspects of the Realism of Classical Theories that are not

included in our Realist Model Approach. First, classical physics is deterministic, as-

suming that every event has a cause but quantum theory does not tell us the causes

of some of its events. Second, each interaction of classical physics is local in the

sense that the mutual influence of two interacting systems asymptotically vanishes

if the systems are separated by increasing spatial distance (cluster separability).

But, in addition to local interactions, quantum theory contains mutual influence

that is independent of distance (entanglement, mutual influence between particles

of the same type). Third, classical physics requires a causal explanation for every

correlation. This can be rigorously expressed by Reichennbach’s condition of com-

mon cause [79]. The existence of the common cause for some quantum correlation

is incompatible with experiments (for discussion, see [31]).

Our Realist Model Approach just states which ontological hypotheses can reason-

ably be made under the assumption that quantum mechanics is valid. A few words

have to be said on ontological hypotheses. As is well-known, the objective existence

of anything cannot be proved (even that of the chair on which I am now sitting, see,

e.g., Ref. [28], where this old philosophical tenet is explained from the point of view

of a physicist). Thus, all such statements are only hypotheses, called ontological.

It is clear, however, that a sufficiently specific ontological hypothesis may lead to

contradictions with some observations. Exactly that happens if one tries to require

objectivity of quantum observables9. Moreover, hypotheses that do not lead to

contradictions may be useful. For example, the objective existence of the chair nicely

explains why we all agree on its properties. Similarly, the assumption that quantum

systems possess certain objective properties will be useful for the quantum theory

of classical properties or for a solution of the problem of quantum measurement.

The usefulness of ontological hypotheses in the work of experimental physicists has

been analysed by Giere [35], p. 115. The hypothesis in question is the existence of

certain protons and neutrons. It explains, and helps to perform, the production, the

9More precisely, the existence in question is that of systems with sufficient number of properties

defined by values of observables.
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manipulations, the control and the observations of proton and neutron beams in an

experiment at Indiana University Cyclotron Facility. From the point of view of van

Fraassen, the ontological hypotheses of the kind used by this paper might perhaps

be considered as a part of theoretical models: such a hypothesis may or may not be

”empirically adequate”.

The position on ontological hypotheses taken here is, therefore, rather different

from what has been called ”metaphysical realism” by Hillary Putnam [77]: ”There

is exactly one true and complete description of ’the way the world is’ ”.

The Realist Model Approach enables us to characterise the subject of quantum

mechanics as follows:

Quantum mechanics studies objective properties of existing microscopic

objects.

This can be contrasted with the usual cautious characterisation of the subject, as

e.g. [70], p. 13:

. . . quantum theory is a set of rules allowing the computation of prob-

abilities for the outcomes of tests [registrations] which follow specific

preparations.

0.1.4 Probability and information

Let us return to Tonomura experiment. At each individual registration, a definite

value ~x of the observable ~x is obtained. Quantum mechanics cannot predict which

value it will be, but it can give the probability p(~x) that the value ~x will be obtained.

This is a general situation for any registration. In this way, registrations introduce

a specific statistical element into quantum mechanics.

A correct understanding of probability and information is an important part in

the conceptual framework of the theory. The discussion whether probability de-

scribes objective properties that can be observed in nature or subjective states of

the knowledge of some humans has raged since the invention of probability calculus

by Jacob Bernoulli and Pierre-Simon Laplace [50]. The cause of this eternal argu-

ment might be that the dispute cannot be decided: probability has both aspects,

ontological and epistemic [44].

Probability is a function of a proposition A and its value, p(A), is a measure

of the degree of certainty that A is true. As a function on a Boolean lattice of

propositions, it satisfies Cox’s axioms [50]. Then it becomes a real additive measure

on the lattice. Whether a proposition is true or false must be decided by observation,

at least in principle. Hence, the probability always concerns objective events, at least

indirectly.
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As an example, consider the Tonomura experiment. The probability p(~x) con-

cerns the proposition that the value of observable ~x is individually registered on an

electron is ~x. The value of the probability can be verified by studying an ensemble

of such registrations. Indeed, if we perform a huge number of such registrations,

we obtain an interference pattern that approximately reproduces the smooth prob-

ability distribution obtained by calculating the quantum mechanical model of an

electron in Tonomura’s apparatus. It is a real interference pattern shown by the

apparatus.

We have used the term ”ensemble” with the meaning of a statistical ensemble of

real events or objects. Here, the objectification requirement is involved. The value ~x

obtained in each individual registration is considered as a real property of the system

consisting of the electron and the apparatus. Then, the probability concerns both

the lack of knowledge of what objectively happens and properties of real systems.

We emphasise that p(~x) is not the probability that the prepared electron possesses

value ~x of observable ~x but the probability that a registration will give such a value.

Another question is whether the individual outcomes are in principle predictable

from some more detailed initial conditions (the so-called ”hidden variables”) on the

electron that we do not know. Quantum mechanics does not contain information

on any such conditions. It does not deliver these predictions and it would even

be incompatible with any ’deeper’ theory that did (see Section 1.2.4). We shall,

therefore, assume that they are objectively unpredictable.

Let us describe the general framework that is necessary for any application of

probability theory. First, there is a system, denote it by S. Second, certain definite

objective conditions are imposed on the system, e.g., it is prepared as in the example

above and observable ~x is registered. In general, there must always be an analogous

set of conditions, let us denote it by C. To each system S subject to condition C,
possibilities in some range are open. These possibilities are described by a set of

propositions that form a Boolean lattice F. A probability distribution p : F 7→ [0, 1]

is a real additive measure on F.

In quantum mechanics, F is usually constructed with the help of some observable,

E say. If E is a discrete observable, its value set Ω is at most countable, Ω =

{ω1, ω2 · · · }. Then the single-element sets {ωk}, k = 1, 2, · · · , are atoms of F that

generate F and the probability distribution p(X), X ∈ F, can be calculated from

p(ωk) by means of Cox’s axioms. The atoms are called outcomes. If E is a continuous

observable, then there are no atoms but continuous observables can be considered

as idealisations of more realistic discrete observables with well-defined atoms. For

example, in Tonomura’s experiment, observable ~x is defined by the photo-multiplier

cells in the micro-channel plate, and not only is discrete, but also even has a finite

number of values.
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If condition C is reproducible or it obtains spontaneously sufficiently often (which

is mostly the case in physics), anybody can test the value of the probabilities because

probability theory enables us to calculate the frequencies of real events starting from

any theoretical probability distribution and the frequencies are measurable [50]. The

probability distribution p(X) is therefore an objective property of condition C on S.
It is so even in cases when the outcomes can be in principle predicted if occurrence

of more detailed conditions is observable and can in principle be known. More

precisely, this would depend on whether condition C can be decomposed into other

conditions Ci, i = 1, . . . , N in the following sense. Condition C can be viewed as a

logical statement ’S satisfies C’. Let
1. C = C1 ∨ . . . ∨ CN , where ∨ is the logical union (disjunction),

2. each Ci be still recognisable and reproducible,

3. each outcome allowed by C is uniquely determined by one of Ci’s.
It follows that Ci ∧ Ck = ∅ for all k 6= i, where ∧ is logical intersection (conjunc-

tion). Even in such a case, condition C itself leaves the system a definite amount

of freedom that can be described in all detail by the probability distribution p(X)

and it is an objective, verifiable property of C alone. And, if we know only that con-

dition C obtains and that a probability distribution is its objective property, then

this probability distribution describes the state of our knowledge, independently of

whether the conditions Ck do exist and we just do not know which of them obtains

in each case or not. Examples of these two different situations are given by standard

quantum mechanics, which denies the existence of Ck’s, and the Bohm–de Broglie

pilot wave theory, which specifies such Ck’s.
Of course, there are also cases where some condition, C, say, occurs only once so

that a measurement of frequencies is not possible. Then, no probability distribu-

tion associated with C can be verified so that our knowledge about C is even more

incomplete. However, in some such cases, one can still give a rigorous sense to the

question [50], p. 343 (see also the end of this section): ”What is the most probable

probability distribution associated with C?” One can then base one’s bets on such

a probability distribution. Such a probability distribution can be considered as an

objective property of C and again, there is no contradiction between the objective

and subjective aspects of probability.

In quantum mechanics, it is also possible to mix preparations in a random way.

Suppose we have two preparations, P1 and P2, and can mix them randomly by e.g.

mixing the resulting particle beams in certain proportions c1 and c2, c1 + c2 = 1.

Then, each particle in the resulting beam is either prepared by P1, with probability

c1, or by P2, with probability c2. In this way, another kind of statistical element can

be introduced into quantum theory. This element will be discussed in Section 1.1.2.
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Condition C is defined by the two beams and their mixing so that the ensemble

has, say, N particles. Then, C can be decomposed in N1C1 ∨N2C2, where Ck is the

preparation by Pk and ck = Nk/N , k = 1, 2. We can know c1 and c2 because we

know the intensity of the corresponding beams but it is unlikely that we also know

whether a given element of the ensemble has been prepared by P1 or P2.

An important role in probability theory is played by entropy. Entropy is a certain

functional of p(X) that inherits both objective and subjective aspects from prob-

ability. Discussions similar to those about probability spoil the atmosphere about

entropy. The existence of a subjective aspect of entropy—the lack of information—

seduces people to ask confused questions such as: Can a change of our knowledge

about a system change the system energy?

The general definition of entropy as a measure of missing information has been

given by Shannon [85] and its various applications to communication theory are,

e.g., described in the book by Pierce [71]. Our version is:

Definition 1 Let p : F 7→ [0, 1] be a probability distribution and let Xk be the atoms

of F. Then the entropy of p(X) is

S = −
∑

k

p(Xk) ln(p(Xk)) . (1)

Let us return to the quantum-mechanical example in order to explain which

information is concerned. After the choice of preparation and registration devices,

we do not know what will be the outcome of a registration but we just know that

any outcome Xk of the registration has probability p(Xk). After an individual

registration, one particular outcome will be known with certainty. The amount of

information gained by the registration is the value of S given by Eq. (1). For more

detail, see Ref. [70]. Thus, the value of S measures the lack of information before

the registration.

The entropy and the so-called Maximum Entropy Principle10 (MEP) have become

important notions of mathematical probability calculus, see, e.g., Ref. [50]. The

mathematical problem MEP solves can be generally characterised as follows. Let

system S, condition C and lattice F with atoms Xk be given. Let there be more than

one set of p(Xk)’s that appears compatible with C. How the probabilities p(Xk) are

to be assigned so that condition C is properly accounted for without any additional

bias? Such p(Xk)’s yield the maximum of S as given by (1). MEP clearly follows

from the meaning of entropy as a measure of lack of information. We shall use this

kind of MEP in Section 3.2.

10There is also a principle of statistical thermodynamics that carries the same name but ought

not to be confused with the mathematical MEP.
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Part I

Corrected language of quantum

mechanics
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The origin of quantum mechanics can be traced back to the study of a few real

systems: hydrogen atom and black-body radiation. The resulting successful models

used some new concepts and methods that were readily generalised so that they

formed a first version of a new theoretical language. This language was then used

to construct models of some aspects of further real objects, such as atoms and

molecules, solid bodies, etc., and this activity lead in turn to the refinement of the

language.

This evolution does not seem to be finished. A large number of real objects,

the so-called classical world, have as yet no satisfactory quantum models. Our own

attempts [41] and [43] at constructing such models have lead to some changes in the

quantum language. The first part of this review starting here is an attempt at a

systematic formulation of this new language.

The general notions of a theoretical language are imported from some mathemat-

ical theory and satisfy the corresponding relations given by the axioms and theorems

of the mathematical theory. They are rather abstract and by themselves, they do

not possess any direct connection to real physical systems. However, as building

blocks of various models that do possess such connections, some of them acquire

physical meaning. Such a model-mediated physical interpretation can be postulated

for most of the mathematical notions by basic assumptions that will be called rules

to distinguish them from the axioms of the mathematical theory. What can be

derived from these rules and axioms will be called propositions. We shall however

formulate only most important theorems and propositions explicitly as such in order

to keep the text smooth.

A state of a quantum system is determined by a preparation while a value of an

observable is determined by a registration. The notions of preparation and registra-

tion are used in their empirical (see Section 0.1.2) meaning first, just to catch the

model-mediated significance of mathematical notions, and the quantum mechanical

models explaining relevant aspects of preparation and registration processes will be

constructed later. The calculation of a state from classical conditions defined by the

preparation needs a sophisticated model of the mature quantum mechanics. Simi-

larly, to calculate an observable from classical properties of the registration device, a

quantum model must be used. Only in Chapters 3 and 4 shall we be able to find the

way from the empirical description of preparation and registration to a particular

mathematical state or observable.
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Chapter 1

States, observables and

symmetries

This chapter introduces the notions and most important properties of quantum

states, quantum observables and their relation to symmetry transformations. The

states and observables are described by specific mathematical entities. We study

the mathematical aspects first and then discuss the physical interpretation.

1.1 States

Quantum-mechanical states are often described by wave functions. However, this

leads to some confusion of the preparation statistics with the statistics of registered

values, which is a hindrance to understanding quantum measurement (see Chapter

4). Moreover, it is not adequate for studying the states of macroscopic bodies that

we meet in our everyday life (see Chapter 3), which are very different from wave

functions. We start, therefore, with the general notion of quantum states, called

either density matrices [70] or state operators [19].

In the mathematical part of this section, the construction of the space of states

from the Hilbert space of a system is described and the most important general

properties of states are listed. In the interpretation part, the Realist Model Approach

introduced in Section 0.1.3 is described in detail.

1.1.1 Mathematical preliminaries

This subsection lists briefly all necessary definitions and theorems, stating some

explicitly and giving reference to literature for others. Good textbooks are [12, 61,

78].

Let H be a complex separable Hilbert space with inner product 〈·|·〉 satisfying
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〈aφ|bψ〉 = a∗b〈φ|ψ〉, where ’∗’ denotes complex conjugation. An element φ ∈ H is a

unit vector if its norm defined by

‖φ‖ = 〈φ|φ〉

equals one,

‖φ‖ = 1 ,

and the non-zero vectors φ, ψ ∈ H are orthogonal if

〈φ|ψ〉 = 0 .

A set {φk} ⊂ H is orthonormal if the vectors φk are mutually orthogonal unit

vectors. {φk} ⊂ H, k = 1, 2, · · · , is an orthomormal basis of H if any ψ ∈ H can be

expressed as a series

ψ =
∑

k

〈φk|ψ〉φk

with

‖ψ‖2 =
∑

k

|〈φk|ψ〉|2 .

Separability means that there is at least one countable basis.

Let H and H′ be two separable Hilbert spaces, {φk} and {φ′
k} two orthonormal

bases, {φk} ⊂ H and {φ′
k} ⊂ H′. Let us define map U : {φk} 7→ {φ′

k} by

Uφk = φ′
k

for each k. Then, U can be extended by linearity and continuity to the whole of H

and it maps H onto H′. The map U is called unitary. Unitary maps preserve linear

superposition,

U(aψ + bφ) = aUψ + bUφ

and inner product,

〈Uψ|Uφ〉 = 〈ψ|φ〉 . (1.1)

They can be defined by these properties for general Hilbert spaces and used as

equivalence morphisms in the theory of Hilbert spaces. Each two separable Hilbert

spaces are thus unitarily equivalent.

Any unit vector φ ∈ H determines a one-dimensional (orthogonal) projection

operator P[φ] by the formula

P[φ]ψ = 〈φ|ψ〉φ
for all ψ ∈ H. We also use the Dirac notation |φ〉〈φ| for this projection. If {φk} is

an orthonormal basis of H, then the projection operators P[φk] satisfy

P[φk]P[φl] = 0
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for all k 6= l—we say they are mutually orthogonal—and
∑

k

P[φk] = 1 ,

where 1 is the identity operator on H.

An operator A : H 7→ H is called bounded if its norm

‖A‖ = sup
‖ψ‖=1

‖Aψ‖ (1.2)

is finite. The domain of a bounded operator is clearly the whole Hilbert space H.

A linear operator A is defined by the property

A(aφ+ bψ) = aAφ + bAψ

for all φ, ψ ∈ H. Multiplication AB of two linear operators is defined by

ABφ = A(Bφ)

and linear combination aA+ bB by

(aA+ bB)φ = aAφ + bBφ

for all φ ∈ H and for any a, b ∈ C. Let us denote the algebra of all bounded linear

operators on H by L(H).

The adjoint A† of operator A ∈ L(H) is defined by

〈A†φ|ψ〉 = 〈φ|Aψ〉

for all φ, ψ ∈, and A is self-adjoint (s.a.) if

A† = A .

Let us denote the set of all bounded s.a. operators by Lr(H). For self-adjoint

operators, the spectral theorem holds (see Sec. 1.2.1).

Unitary maps U : H 7→ H are bounded operators and we obtain from Eq. (1.1)

U† · U = U · U† = 1 .

Let H and H′ be two separable Hilbert spaces and U : H 7→ H′ be a unitary map.

Then U defines a map of L(H) onto L(H′) by A 7→ UAU†. This map preserves

operator action,

(UAU†)(Uφ) = U(Aφ) ,

linear relation,

U(aA+ bB)U† = aUAU† + bUBU† ,
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operator product

(UAU†)(UBU†) = U(AB)U†

and norm,

‖UA‖ = ‖A‖ .
An operator A ∈ Lr(H) is positive, A ≥ 0, where 0 is the null operator, if

〈φ|Aφ〉 ≥ 0

for all vectors φ ∈ H. The relation A ≥ B is defined by

A− B ≥ 0 .

The order relation is preserved by unitary maps,

UAU† ≥ UBU† if A ≥ B .

Let {φk} be any orthonormal basis of H. For any A ∈ Lr(H), we define the trace

by

tr[A] =
∑

k

〈φk|Aφk〉 .

Trace is independent of basis and invariant with respect to unitary maps,

tr[UAU†] = tr[A] .

.

Theorem 1 Trace defines the norm ‖A‖s on Lr(H) by

‖A‖s = tr
[√

A2
]

(1.3)

satisfying

‖A‖s ≥ ‖A‖
for all A ∈ Lr(H)

For proof, see Ref. [61], Appendix IV.11.

Definition 2 The norm (1.3) is called trace norm and all elements of Lr(H) with

finite trace norm are called trace-class. The set of all trace-class operators is denoted

by T(H).

Trace norm is preserved by unitary maps.
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Theorem 2 T(H) with the operation of linear combination of operators on H, par-

tial ordering ≥ defined above and completed with respect to the norm (1.3) is an

ordered Banach space. A trace-class operator is bounded, its trace is finite and its

spectrum is discrete.

For proof, see Ref. [61], Appendix IV.11.

Let T(H)+1 be the set of all positive elements of Lr(H) with trace 1. As these

operators are positive, their trace is equal to their trace norm and they lie on the unit

sphere in T(H). T(H)+1 is not a linear space but a convex set: let T1,T2 ∈ T(H)+1 ,

then

T = wT1 + (1− w)T2 ∈ T(H)+1

for all 0 < w < 1. The sum is called convex combination and states T1 and T2 are

called convex components of T.

It follows that any convex combination

T =
∑

k

wkTk (1.4)

of at most countable set of Tk ∈ T(H)+1 with weights wk satisfying

0 ≤ wk ≤ 1 ,
∑

wk = 1 (1.5)

and the series converging in the trace-norm topology also lies in T(H)+1 .

In general, elements of T(H)+1 can be written in (infinitely) many ways as a

convex combinations of other elements.

Definition 3 Face W is a (norm) closed subset of T(H)+1 that is invariant with

respect to convex combinations and contains all convex components of any T ∈ W.

Then, T(H)+1 itself is a face. ”Face” is an important notion of the mathematical

theory of convex sets.

Theorem 3 Every face W ⊂ T(H)+1 can be written as W(T) for a suitably chosen

T ∈ W(T) where W(T) is the smallest face that contains T.

For proof, see [61], p. 76. There is a useful relation between faces and projections:

Theorem 4 To each face W of T(H)+1 there is a unique projection P : H 7→ H′,

where H′ is a closed subspace of H, for which T ⊂ W is equivalent to

T = PTP .

The map so defined between the set of faces and the set of projections is an order

isomorphism, i.e., it is invertible and P′ < P is equivalent to W′ ⊂ W.
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For proof, see [61], p. 77. We shall denote the face that corresponds to a projection

P by WP.

Clearly, intersection of two faces, if non-empty, is a face, and a unitary map of a

face is a face. The next theorem shows that W(T) is not necessarily the set of all

convex components of T.

Theorem 5 Let P(H) be infinite-dimensional and let T1,T2 ∈ WP be positive def-

inite on P(H). Then

W(T1) = W(T2) = WP .

Let {|k〉} be an orthonormal basis of P(H) and let

sup
k

〈k|T1|k〉
〈k|T2|k〉

= ∞ . (1.6)

Then T1 is not a convex component of T2.

Proof Suppose that T1 is a component of T2. Then, there is T3 and w ∈ (0, 1) such

that

wT1 + (1− w)T3 = T2 .

Hence T2 − wT1 > 0 and

〈k|T2|k〉 − w〈k|T1|k〉 > 0

for some positive w and all k, which contradicts Eq. (1.6), QED.

Definition 4 An element T is called extremal element of T(H)+1 if W(T) is zero-

dimensional, i.e., if the condition

T = wT1 + (1− w)T2

with T1,T2 ∈ T(H)+1 and 0 ≤ w ≤ 1, implies that T = T1 = T2.

For extremal states, we have:

Theorem 6 T is extremal iff T = |ψ〉〈ψ|, where ψ is a unit vector of H.

For proof, see [61], p. 78. The set of all extremal elements of T(H)+1 generates

T(H)+1 in the sense that any T ∈ T(H)+1 can be expressed as countable convex

combination of some extremal elements,

T =
∑

k

wkP[φk] .

Such a decomposition can be obtained, in particular, from the spectral decomposi-

tion

T =
∑

k

tkPk .
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In that case T is decomposable into mutually orthogonal projectors P[φl] onto el-

ements of a basis, with weights wl = tl/
√
nl, where nl is the degeneracy of the

eigenvalue tl (the degeneracy subspaces of trace-class operators have finite dimen-

sions).

A unit vector φ of H defines a unique extremal element P[φ] ∈ T(H)+1 but P[φ]

determines φ only up to a phase factor eiα. Due to the (complex) linear structure of

H, there is an operation on vectors called linear superposition. Linear superposition

ψ =
∑

ckφk of unit vectors with complex coefficients satisfying
∑

k

|ck|2 = 1

is another unit vector and the resulting projector P[ψ],

P[ψ] =

∣

∣

∣

∣

∣

∑

k

ckφk

〉〈

∑

l

clφl

∣

∣

∣

∣

∣

=
∑

kl

c∗l ck|φk〉〈φl| 6=
∑

k

|ck|2|φk〉〈φk| . (1.7)

is different from the corresponding convex combination,
∑

k

|ck|2|φk〉〈φk| . (1.8)

Observe that P[ψ] is not determined by the projections P[φk] because it depends on

the relative phases of vectors φk.

1.1.2 General rules

The preceding subsection has introduced technical tools that will now be used to

further develop Realist Model Approach (see Section 0.1.3) so that it can serve as a

basis of the general quantum language.

Rule 1 With each quantum system S of type τ , a complex separable Hilbert space

Hτ is associated. Hτ is a representation space of certain group associated with

Galilean group and τ determines the representation (see Section 1.3).

Thus, every system has its own copy of a Hilbert space and the structure of the

space depends only on the type of the system. Starting from the Hilbert space,

all important entities concerning S such as state space or algebra of observables

are constructed. The word ”system” can be used in two different ways: it may

represent a real, i.e., a prepared quantum object, or an idealised entity used in the

construction of a theoretical model of another prepared object. This idealised entity

can be described by, or identified with, the corresponding Hilbert space because the

construction uses only this Hilbert space1. However, we can assume:

1If the model contains more identical subsystems, then none of these subsystems has an indi-

vidual existence and none is in a state of its own (see Section 2.2.1).
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Rule 2 The state space of S is T(Hτ )
+
1 . For each T ∈ T(Hτ )

+
1 , there is a prepara-

tion P that prepares a system S of type τ in state T. T is then an objective property

of S.

If a state is not extremal, then it can always be written as a convex combination

of other states. What is the physical meaning of this mathematical operation?

Definition 5 Let P1 and P2 be two preparation of S and w ∈ [0, 1]. Statistical

mixture

P = {(w,P1), ((1− w),P2)} (1.9)

of the two preparations is a new preparation constructed as follows. Let system S be

prepared either by P1 or by P2 in a random way so that P1 is used with probability

w and P1 with probability 1− w.

This definition can easily be extended to any number of preparations. Examples of

statistical mixture are given in Sections 0.1.4 and 4.3.1. Then, we assume:

Rule 3 Let P1 and P2 be two preparation of S and let the corresponding states be

T1 and T2. Then the statistical mixture (1.9) prepares state

T = wT1 (+)p (1− w)T2 . (1.10)

The purpose of sign ”(+)p” on the right-hand side is to distinguish statistical de-

compositions from convex combinations. This distinction is very important in the

theory of quantum measurement. For example, the theory of quantum decoherence

can achieve that the final state of the apparatus is a convex combination of pointer

states but cannot conclude that it is a statistical decomposition and must, there-

fore, resort to further assumptions such as Everett interpretation [82]. Let us stress

that a statistical decomposition of state T is not determined by the mathematical

structure of state operator T but by the preparation of T.

Sometimes, one meets the objection that the states wT1 (+)p (1 − w)T2 and

wT1 + (1 − w)T2 of system S cannot be distinguished by any measurement. But

this is only true if the measurements are limited to registrations of observables of

S. If observables of arbitrary composite systems containing S are also admitted,

then the difference of the two states can be found by measurements [44]. This is

exactly the argument against the decoherence theory described in [28], p. 171. Let

us also emphasise that quantum state statistics has nothing to do with the statistics

of values of observables.

As a mathematical operation, (+)p is commutative, associative, and state statis-

tics is invariant with respect to state composition and unitary evolution [43]. Thus,

the definitions and assumptions can be generalised to more than two preparations

and states (see Rules 12 and 15).
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Some comment is in order. Rules 2 and 3 imply, on the one hand, that T is

an objective property of S because it has been prepared by P and, on the other

hand, that S is objectively either in state T1 or T2 at the same time because it

has been also prepared either by P1 or P2. There seems to be a contradiction:

a particular copy of S is announced to be in two different states simultaneously.

However, this contradiction is only due to a too narrow understanding of the term

state. To explain this with the help of a simple example, let us consider a large

box filled with small balls, some red and some green, in a random mixture. Each

ball chosen blindly from the box is either red, with probability 1/2, or green, with

probability 1/2, and each of them is also coloured, with certainty. Ball properties

red, green and coloured in this example can be considered as objective. Thus, two

different objective properties concerning the same thing, namely the colour, e.g., red

and coloured, can exist simultaneously.

Definition 6 Let P of the form (1.9) prepare S in state T. Then we write equation

(1.10) and call the right-hand side of equation (1.10) the statistical decomposition

of T. States that have a non-trivial statistical decomposition (w ∈ (0, 1)) will be

called decomposable, otherwise indecomposable.

Observe that the statistical decomposition of quantum states has nothing to do

with the statistical structure of values of observables and that it is usually the latter

that is understood as implying the statistical character of quantum mechanics.

The properties ”decomposable”, ”indecomposable” and statistical decomposition

are determined uniquely by a preparation, hence they are objective according to

Basic Ontological Hypothesis. As explained above, they are in principle observable.

If a preparation is not completely known, it can prepare a state without determining

whether it is decomposable or indecomposable.

State operator T does not, by itself, determine the statistical decomposition of

a prepared state described by it, unless T is extremal so that every convex decom-

position of it is trivial. One works usually with wave functions, which do represent

extremal states. There are also some mathematical properties of statistical decom-

position that can be helpful for deciding if a state is decomposable that will be

introduced later (conservation under unitary time evolution and under system com-

position). However, in many cases, possible statistical decomposition of a state is

not important because sufficiently many properties of the state are independent of

its statistical decomposition so that everything one needs can be obtained from the

state operator.

There are examples of prepared non-extremal states that are indecomposable.

Consider system S prepared in the EPR experiment [70]. S is composite, S =

S1 + S2 so that the spins of the two subsystems are correlated. S is prepared in
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extremal state |ψ〉〈ψ|. Then the state of S1 is trS2
[|ψ〉〈ψ|], which is well-known to

be indecomposable but not extremal.

We observe that a quantum state is conceptually very different from a state in

Newtonian mechanics. It may be helpful to look at some important differences. Let

us define a state of a Newtonian system as a point of the phase space of the system,

Γ. Newtonian state defined in this way is generally assumed to satisfy:

1. objectivity: a state of a system is an objective property of the system,

2. universality: any system is always in some state,

3. exclusivity: a system cannot be in two different states simultaneously,

4. completeness: any state of a system contains maximum information that can

exist about the system.

5. locality the state of a system determines the position of the system.

It follows that incomplete information about the state of a system can be described

by a probability distributions on Γ. Indeed, it is always at a particular point, but

we do not know at which. Such a distribution is sometimes called statistical state.

In any case, we distinguish a state from a statistical state.

A quantum state is an element of T(H)+1 and the comparison with Newtonian

states shows that it satisfies just the objectivity in the form that a prepared state is

an objective property, at least according to our interpretation. However, a quantum

system does not need to be in any state (an example is a particle S in a system S ′

of identical particles and we assume that a state of S ′ has been prepared but that of

S has not [45]). Also, a system can be in several states simultaneously, such as T1

and wT1 (+)p (1 − w)T2 in formula (1.10). Moreover, a state operator alone does

not contain any information on the statistical decomposition of a prepared state.

However, if an indecomposable state of a system is given, no more knowledge on

the system can objectively exist than that given by the state2. Finally, quantum

states are non-local: most states of a single particle do not determine its position,

but simultaneous registrations by two detectors at different positions will give anti-

correlated results (see Chapter 4).

In particular, disregarding all differences, a Newtonian state is, in a sense, anal-

ogous to indecomposable state in quantum mechanics and probability distributions

on Newtonian phase space are, in the same sense, analogous to decomposable states.

The following comparison is amusing. If the knowledge of a state of a Newtonian

system is not complete, then we can describe it by a probability distribution on the

2It follows that a collapse of wave function or analogous processes are not just changes of our

information about the system bur genuine physical processes, see Chapter 4 and [43, 45].
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phase space. If a knowledge of the preparation of a quantum state is incomplete,

then the state is known but its statistical decomposition does not need to be.

At this stage, we can understand a different approach to reality of states [88, 76]

and to compare it to ours. In this approach, the existence of a theory with realist

interpretation is assumed, the states of which have the features 1–4 above and

such that quantum states can be considered as distributions over these real states.

Thus, the information contained in quantum states is never complete. Then, the

question is asked, whether different extremal quantum states can be non-overlapping

distributions, so that each real state defines at most one extremal quantum state.

This is interpreted as reality of quantum states. (Under some reasonable conditions,

one can prove that the answer to the question is positive.) One can then try to

understand the collapse of wave function as the change of information resulting

from a registration together with, or rather than, a physical change in a real state.

Clearly, we do not assume the existence of any further theory and directly consider

all quantum states to be objective properties without being probability distributions

over some different kind of real states. Rather, we say that indecomposable states are

not distributions over any real states (and represent a complete information) while

decomposable states can be considered as distribution over real indecomposable

states. The collapse of wave function is then a physical process.

Any unit vector φ ∈ Hτ defines state P[φ]. Often, such states are called ”pure”

while general state operators are called ”mixed”. In fact, the common use of the

terms ”pure” and ”mixed” states is misleading. From the point of view of statistical

physics, pure ought to be the indecomposable states and mixed the decomposable

ones. The confusion is aggravated by the fact that decomposable states have various

names in literature: direct mixture [61] or proper mixture [28] or Gemenge [19].

In Newtonian mechanics, simple physical properties are constructed from real

functions on the phase space. For example energy is such a function and the propo-

sition ”Energy has value E” is a property. Such propositions form a Boolean lattice

with the logical operation union and intersection. The values of the functions also

define subsets of the phase space: e.g., the set of all points of the phase space where

the energy has value E. The Boolean lattice of the propositions can be isomor-

phically mapped onto the Boolean lattice of the subsets. We can give analogous

definitions in quantum mechanics:

Definition 7 Let S be system of type τ and f : T(Hτ )
+
1 7→ R a function. Then the

proposition ”f = a” is a simple property. Simple properties form a Boolean lattice

with the logical operation union and intersection. Each simple property defines a

subset {T ∈ T(Hτ)
+
1 | f(T) = a}. The Boolean lattice of simple properties is

isomorphic to the Boolean lattice of the subsets.
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According to Basic Ontological Hypothesis, simple properties are objective because

they are uniquely defined by preparations. Indeed, a preparation defines a unique

state T and the state a unique simple property f = f(T).

The statistical decomposition of a state is an example of an objective property

that is not simple. Next section will give important examples of simple properties.

Hence, in both theories, Newtonian and quantum mechanics, the values of simple

properties are real numbers and the logics of the properties are the same.

Let us briefly compare our logic of simple properties with the so-called quantum

logic (for more details, see Section 1.2.4). Properties of quantum logic are described

mathematically by orthogonal projections onto subspaces of Hilbert space Hτ . Any

such projection P is an observable and the corresponding property is the proposition

”Observable P has value η”, where η = 0, 1. The properties are not objective

and do not form a Boolean lattice. The basic difference is that our properties are

associated with preparations while the properties of quantum logic are associated

with registrations.

Extremal states allow another mathematical operation, a linear superposition

(1.7), which is different from a convex combination. The non-diagonal (cross) terms

in sum (1.7) lead to interference phenomena (such as the electron interference in the

Tonomura [91] experiment, see Section 0.1.2) that are purely quantum and unknown

in the Newtonian mechanics.

1.2 Observables

The popular description of observables is by self-adjoint operators. However, this

notion is not adequate for accounts of registrations that use ancillas (see Section 4.1)

and our construction of D-local observables (see Section 2.2.3) also needs a more

general notion of quantum observable. In the present section, the general theory of

observables will be briefly described. First, we give the mathematical construction

of observables from the Hilbert space, then their general relation to registration.

For this purpose, the empirical notion of registration that was explained in the

Introduction is sufficient. Also, some important properties of observable such as

joint measurability, contextuality and superselection rules are discussed

1.2.1 Mathematical preliminaries

This section is a brief review of most important definitions and theorems. More

details and proofs can be found e.g. in [61]. According to Rule 1, every system S is

associated with a Hilbert space H. Starting from H, we can perform the following

constructions.
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The set of all bounded linear operators denoted by L(H) in Section 1.1.1 is closed

with respect to both multiplication and linear combination of its elements. One can

show that L(H) is a Banach algebra with norm (1.2). That is, L(H) is complete

with respect to the norm and its multiplication satisfies

‖AB‖ ≤ ‖A‖ ‖B‖ .

For proof, see [12], p. 75. Moreover, the identity operator 1 defined by 1φ = φ for all

φ satisfies 1A = A for any A ∈ L(H) and ‖1‖ = 1, hence L(H) is a Banach algebra

with unity [12].

Linear combinations of bounded s.a. operators with real coefficients are again s.a.,

but their products are not, in general. Hence, the set of all bounded s.a. operators

forms a real linear space. If completed with respect to the norm (1.2), it is an

ordered Banach space denoted by Lr(H).

Definition 8 Let F be the Boolean lattice of all Borel subsets of Rn. A positive

operator valued (POV) measure

E : F 7→ Lr(H)

is defined by the properties

1. positivity: E(X) ≥ 0 for all X ∈ F ,

2. σ-additivity: if {Xk} is a countable collection of disjoint sets in F then

E(∪kXk) =
∑

k

E(Xk) ,

where the series converges in weak operator topology, i.e., averages in any state

converge to an average in the state.

3. normalisation:

E(Rn) = 1 .

The number n is called dimension of E. Let us denote the support of the measure E

by Ω. The set Ω is called the value space of E. The operators E(X) for X ∈ F are

called effects.

The support Ω of measure E is defined as follows

Ω = {~x ∈ R
n|E({~y | |~x− ~y| < ǫ}) 6= 0 ∀ǫ > 0} .

Let H and H′ be two separable Hilbert spaces and U : H 7→ H′ a unitary map.

Then UEU† : F 7→ L(H′) is a POV measure on H′.

We denote by Lr(H)+≤1 the set of all effects.
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Theorem 7 Lr(H)+≤1 is the set of elements of Lr(H) satisfying the inequality

0 ≤ E(X) ≤ 1 . (1.11)

That effects must satisfy (1.11) follows from the positivity and normalisation of a

POV measure [61]. On the other hand, each element of the set defined in Theorem

7 is an effect. For example, if E is such an element, we can define E({1}) = E and

E({−1}) = 1 − E. The two operators satisfy Eq. (1.11) and they sum to 1, so they

determine a POV measure with the value set Ω = {−1,+1}.
Theorem 7 implies that the spectrum of each effect is a subset of [0, 1]. An effect

is a projection operator (E(X)2 = E(X)) if an only if its spectrum is the two-point

set {0, 1}.

Definition 9 Let E : F 7→ L(H) and E′ : F′ 7→ L(H) be two POV measures that

satisfy

E(X)E′(X ′) = E′(X ′)E(X)

for all X ∈ F and X ′ ∈ F′ . Then we say that the two POV measures commute.

Theorem 8 For any POV measure E : F 7→ L(H) the following two conditions are

equivalent

E(X)2 = E(X)

for all X ∈ F and

E(X ∩ Y ) = E(X)E(Y )

for all X, Y ∈ F .

Thus, a POV measure is a projection valued (PV) measure exactly when it is mul-

tiplicative. In this case, all its effects commute with each other.

PV measures for n = 1 are equivalent to s.a. operators are not necessarily

bounded. Section 1.1.1 dealt only with bounded s.a. operators, but now we need

more general entities.

Let A be an operator on Hilbert space H that is not necessarily bounded. Then

it is not defined on the whole of H but only on linear subspace DA that is dense in

H and is called domain of A. The definition of adjoint has two steps: first, A† is

defined on some domain associated with DA and then possibly extended to a larger

domain. The self-adjoint operator is defined similarly, for details, see e.g. Ref. [78].

To define a sum and product of two unbounded operators A and B, their domains

are used as follows. If

DA = DB
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then we say that A and B have a common domain. If, moreover, the common domain

D is invariant with respect to both operators, i.e.,

AD ⊂ D , BD ⊂ D

then the sum A+B, product AB and commutator [A,B] = AB−BA are well defined

on D and can be possibly extended.

For s.a. operators, bounded or unbounded, the so-called spectral theorem holds,

see Refs. [78], [12], Chap. 10. This says that any s.a. operator A is equivalent to a

PV measure, which is called, in this case, the spectral measure of A. Let E be a PV

measure, then E determines a unique self-adjoint operator
∫

R
ιdE, where ι denotes

the identity function on R. Conversely, each s.a. operator A on H determines a

unique PV measure E : F 7→ L(H) such that

A =

∫

R

ιdE . (1.12)

If PV measure E is equivalent to a s.a. operator A, we shall denote it EA. Thus, POV

measure is a generalisation of a self-adjoint operator. Clearly, two s.a. operators A

and B commute if PV measures EA and EB commute.

Expression tr[T,E] is well-defined for all T ∈ T(H) and E ∈ Lr(H) and it is a

real-valued bilinear form with respect to which the two Banach spaces are dual to

each other [61], p. 413. We even have:

Theorem 9 If T1 and T2 from T(Hτ)
+
1 satisfy

tr[T1E] = tr[T2E]

for all E ∈ Lr(Hτ )
+
≤1 then T1 = T2; if E1 and E2 from Lr(Hτ )

+
≤1 satisfy

tr[TE1] = tr[TE2]

for all T ∈ T(Hτ)
+
1 then E1 = E2.

An important further property of the bilinear form is:

Theorem 10 For each T ∈ T(Hτ )
+
1 and E ∈ Lr(Hτ )

+
≤1, the condition tr[TE] = 1

is equivalent to

ET = T .

In general, we call state T satisfying

ET = aT
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with some real a eigenstate of E to eigenvalue a. If T = P[ψ], then ψ is called

eigenvector.

An example is a discrete POV measure. A POV measure E is discrete if its value

set Ω is an at most countable subset of R. Let E be a discrete POV measure and let

Ω = {ak, k ∈ N}, where N is the set of positive integers. Then E is a PV measure,

E = EA, A =
∑

k akEk, ak are eigenvalues of A and

Ek = E({ak})

are projections on the corresponding eigenspaces of the s.a. operator A that is defined

in this way.

Theorem 11 For any POV measure E : F 7→ L(H) and any T ∈ T(H)+1 , the

mapping

pE
T
: F 7→ [0, 1]

defined by

pE
T
(X) = tr[TE(X)] (1.13)

for all X ∈ F is a real σ-additive probability measure with values in [0, 1].

This follows from the defining properties of E and the continuity and linearity of the

trace, see e.g. [19]. The measure is preserved by unitary maps,

tr[(UTU†)(UE(X)U†)] = tr[TE(X)] .

We note that a convex combination of states induces a convex combination of

measures,

T =
∑

k

wkTk 7→ pE
T
=
∑

k

wkp
E

Tk
. (1.14)

More about mathematical properties of states and effects and the corresponding

spaces T(H)+1 and Lr(H)+≤1 can be found in Ref. [61].

1.2.2 General rules

The physical interpretation of POV measures is given by:

Rule 4 Any quantum mechanical observable for system S of type τ is mathemat-

ically described by some POV measure E : F 7→ Lr(Hτ). Each outcome of an

individual registration of the observable E(X) performed on quantum object S yields

an element of F. Each registration apparatus that interacts with S determines a

unique observable of S.

Definition 10 If a PV measure is an observable, the observable is called sharp.
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Often, a stronger assumption than Rule 4 is made, namely that each s.a. operator

on Hτ is a sharp observable of system S of type τ . Such systems are called proper

quantum systems [19]. In Sections 2.2.2 and 4.2, we shall show that, in strict sense,

there is no proper quantum system. This does not seem to represent any genuine

difficulty. Usually, the construction of a model needs only few observables and, for a

given object, our theory of quantum measurement will itself determine which POV

measures cannot be observables3.

An important assumption of quantum mechanics is the following generalisation

of Born’s rule

Rule 5 The number pE
T
(X) defined by Eq. (1.13) is the probability that a registration

of the observable E(X) performed on object S in the state T leads to a result in the

set X.

Using the same preparationN times results in a set of systems with the same state T.

Performing on each element the registration of E(X) gives a value (or an approximate

value) y ∈ Ω. The relative frequency of finding y ∈ X approaches pE
T
(X) if N → ∞

on the set. This is equal to the probability measure given by equation (1.14). Thus,

the relative frequency of a measurement result for a registration on elements of an

ensemble can be directly calculated from the state operator. The relative frequencies

of a registration result on the so constructed ensemble are approximately measurable

and this gives the physical meaning to the probability distribution pE
T
(X). This does

not mean that we define probability as a frequency, see Section 0.1.4.

Theorem 9 implies that a state T can be determined uniquely, if it is prepared

many times and a sufficient number of different registrations can be performed on

it. On the other hand, the question of what is its statistical decomposition cannot

be decided in this way because tr[ET] is generally independent of the statistical

decomposition of T. There is one exception: extremal states.

Observe that the probability is only meaningful if it concerns really existing (but

maybe unknown) outcomes, see Section 0.1.4. Thus, it can be only associated with

registration. Hence, in Rule 5, the probability pE
T
(X) refers to registrations on an

object and not to the object itself. In general, the property that value x ∈ Ω lies

within subset X ∈ F is not an objective property of objects in the sense that it

could be attributed to an object itself and that the measurement would just reveal

it. Such assumption would lead to contradictions, see Section 1.2.4. Thus, there is

an asymmetry between states and observables: states are objective properties but

3These facts do not invalidate all applications ofC∗-algebras (e.g. [40]) as powerful mathematical

method in quantum mechanics. In particular, C∗-algebras are useful in quantum field theory, where

they are generated by local operators, which are measurable according to our theory. However,

some of the physical interpretations that are sometimes [75] given to C∗-algebras in non-relativistic

quantum mechanics are difficult to maintain.
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observables are not; all elements of T(Hτ )
+
1 can be prepared but not all effects of

the dual space are observables.

Special cases in which the outcome of a registration is predictable are described

as follows. Let E : F 7→ Lr(Hτ ) be an observable and let T ∈ T(Hτ )
+
1 be such that

tr[TE(X)] = 1

for some X ∈ F. Then the probability that the registration of E(X) on T will give

a value in X is 1 and we can say that the prepared object in the state T possesses

the property independently of any measurement. Theorem 10 implies that T is an

eigenstate of E(X) to eigenvalue 1.

Rule 5 implies useful formulae for averages and higher moments of observable E

that generalise the well-known formulae for sharp observables. Let us restrict the

dimension of POV measures to n = 1. For the average 〈E〉T of observable E in the

state T, we have

〈E〉T =

∫

R

ιdpE
T
.

Using Eq. (1.13), we obtain

〈E〉T =

∫

R

ι d (tr[TE]) = tr

[

T

∫

R

ιdE

]

.

For a sharp observable EA, Eq. (1.12) yields the usual relation

〈A〉T = tr[TA] .

In the case of extremal state, T = P[φ], we obtain 〈A〉T = 〈φ|Aφ〉. For higher

moments, we just have to substitute suitable power of ι in the integral and the proof

is analogous.

Definition 11 Let A be a sharp observable and T be a state. Then

∆TA =
√

〈A2〉T − 〈A〉2
T

(1.15)

is called variance of A in T.

Next,

Definition 12 The normalised correlation in a state T of any two commuting sharp

observables A and B is defined by

C(A,B,T) =
〈AB〉T − 〈A〉T〈B〉T

∆TA∆TB
. (1.16)
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The normalised correlation satisfies

−1 ≤ C(A,B,T) ≤ 1

for all commuting sharp observables A and B and for all states T because of Schwarz’

inequality. The proof is based on the facts that Re 〈AB〉T is a positive symmetric

bilinear form on real linear space Lr(Hτ ) and that Re 〈AB〉T = 〈AB〉T if A and B

commute. If C(A,B,T) = 1, the observables are strongly correlated, if C(A,B,T) =

0, they are uncorrelated and if C(A,B,T) = −1, they are strongly anticorrelated

(see [19], p. 50).

The values of an observable are not objective properties of an object but its states

are. As averages and moments of a given observable are uniquely determined by

states, we have

Proposition 1 The average 〈A〉T and variance ∆TA of any sharp observable A and

correlation C(A,B,T) of any two commuting sharp observables A and B in state T

of object S are an objective (dynamical) property of S that has been prepared in state

T.

Proposition 1 gives the most important examples of simple properties (they have

been defined in Section 1.1.2).

Let us consider a discrete observable A (which is always sharp) with spectrum

{ak} that is non-degenerate, Pk = P[ψk] for all k. ψk are eigenvectors of A. If we

prepare the state P[ψk] and then register A, the result must be ak with probability

1. Next suppose that we prepare a linear superposition P[Ψ],

Ψ =
∞
∑

1

ckψk ,

with
∑ |ck|2 = 1. Before the registration, the object in this state does not possess

any of the values ak but one can say that it does possess all those ak simultaneously

for which ck 6= 0. The probability pk that the registration of A will give the result

ak is

pk = tr[P[ψk]P[Ψ]] = |ck|2 . (1.17)

Eq. (1.17) gives the physical meaning to the absolute value of the coefficients in the

linear superposition and is called the Born rule.

There is also some physical meaning of the relative phases of the coefficients of

decomposition (1.17). This can be seen experimentally by means of the interfer-

ence phenomena and correlations. As for interference, the average in state P[Ψ] of

observable B that does not commute with A does depend on matrix elements of B

between different states ψk:

tr[BP[Ψ]] =
∑

kl

c∗kcl〈ψk|B|ψl〉 . (1.18)

44



Registering values of B many times on systems in state P[Ψ] and knowing that they

add to average (1.18), we can see that each individual system must ”know” the

values of c∗kcl〈ψk|B|ψl〉 for all pairs {k, l}. Similarly, the normalised correlations of

a suitable pair of observables can depend on the cross terms in equation (1.7).

Let {ψn} be a basis of Hilbert space Hτ and a(n) a monotonous function of n.

Then, the s.a. operator

A =
∑

n

a(n)|ψn〉〈ψn|

is a discrete non-degenerate observable. The registration of any discrete non-degener-

ate observable is called complete test (see, e.g., [70], p. 29). If state T is prepared,

then the probability distribution of a complete test A is

pn = tr[T|ψn〉〈ψn|]

In quantum mechanics, probability distributions of registration outcomes are gen-

erally associated with both preparations and registrations. This has to do with the

non-objective nature of observables. The amount of information that can be gained

in a complete test is given by the Shannon entropy (1) of the distribution pn and

depends both on state ψ and observable A.

Still, can there be a general measure of information lack associated with a state

alone? Clearly, such a question is meaningful and the answer is the minimum of

entropies, each associated with a complete test. This minimum, S(T) is a well-

defined function of state T and is called von Neumann entropy. One can show (see,

e.g., Ref. [70]) that, up to a constant factor,

S(T) = −tr[T ln(T)]. (1.19)

As each T must have a discrete spectrum with positive eigenvalues tk, we have

S(T) = −
∑

k

tk ln(tk) .

The lack of information S(T) is associated with the state T of object S and

consequently with the (classical) condition C that defines the preparation. Hence,

according to our criterion of objectivity, von Neumann entropy is an objective prop-

erty of object S prepared in state T. The objective property of a state that is given

by a value of von Neumann entropy can be called its fuzziness.

The only states that are not fuzzy are the extremal ones. Indeed, the complete test

on extremal state |ψ〉〈ψ| defined by any basis with ψ1 = ψ has a trivial probability

distribution pn = δn1, for which the entropy is zero, and entropy cannot be negative.

A very important observation is that a quantum mechanical state can be both fuzzy

and indecomposable. An example is given in Section 2.1.2.
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1.2.3 Joint measurability

This section adapts the theory of joint measurability as given, e.g., in [61], p. 84.,

to our changes in general language of quantum mechanics.

Proposition 2 Let A and B be two s.a. operators with a common invariant domain,

let i[A,B] have a s.a. extension and let T be an arbitrary state. Then

∆A∆B ≥ |〈[A,B]〉|
2

. (1.20)

Equation (1.20) is called uncertainty relation.

The interpretation of the uncertainty relation is as follows. If we prepare many

copies of an object in state T and register either A or B or i[A,B] on each, then the

average of [A,B] and variances of A as well as of B will satisfy Eq. (1.20). It is not

necessary to register all observables jointly.

An important notion of quantum mechanics is that of joint measurability. Often,

it is also called simultaneous measurability but the notion has nothing to do with

time. It simply means that there is one registration device that can measure both

quantities.

Definition 13 Two elements E1 and E2 of Lr(H)+≤1 are jointly measurable if there

is a POV measure E : F 7→ Lr(H)+≤1 such that E1 = E(X1) and E2 = E(X2) for some

X1 and X2 in F.

This is a mathematical property that, in fact, is only a necessary condition for

existence of the required registration device. Even if E existed, the question whether

it is an observable is non-trivial.

Proposition 3 Two effects E1 and E2 are jointly measurable if and only if there are

three elements E′
1, E

′
2 and E′

12 in Lr(H)+≤1 such that

E′
1 + E′

2 + E′
12 ∈ Lr(H)+≤1

and

E1 = E′
1 + E′

12 , E2 = E′
2 + E′

12 .

For proof, see [61], p. 89. Proposition 3 has two corollaries: (1) two projections are

jointly measurable if they commute and (2) a sufficient condition for joint measur-

ability of E1 and E2 is that

E1 + E2 ∈ Lr(H)+≤1.

If an observable is sharp then its effects commute, but the effects of a general

observable does not necessarily commute. Thus, even non commuting operators

can be jointly measurable. This is completely compatible with standard quantum

46



mechanics. Indeed, any POV measure that is an observable of an object S can be

measured as a sharp observable of a composite system containing S and another

object called ancilla as subsystems. For proof, see e.g. [70], p. 285. An important

example will be given in Section 3.7.

Two observables E1 : F1 7→ Lr(H) and E2 : F2 7→ Lr(H) with F1 comprising the

Borel subsets of Rn1 and F2 those of Rn2 are called jointly measurable, if each two

effects E1(X1) and E2(X2) are jointly measurable. In this case, there is an effect

E1(X1) ∧ E2(X2) in Lr(H)+≤1 giving the probability that observable E1 has value in

X1 and observable E2 has value in X2. Then, there is a unique observable

E : F 7→ Lr(H) ,

where F is the set of Borel subsets of Rn1+n2 and

E(X1 ×X2) = E1(X1) ∧ E2(X2) .

We call E compound of E1 and E2

An important example are two sharp observables A and B. They are jointly

measurable, if and only if all their effects (which are projections) commute with

each other, i.e., the operators commute. In this case, the wedge is just the ordinary

operator product,

EA(X1) ∧ EB(X2) = EA(X1)E
B(X2) .

The compound EA∧B of EA and EB is an observable that represents registration of a

pair of values, one of A, the other of B.

If two sharp observables A and B do not commute then they can be jointly

measurable at best with the inaccuracy corresponding to their uncertainty relation.

This means that only some effects of A are jointly measurable with only some effects

of B. An example will be given in Section 3.7.

1.2.4 Contextuality

The investigations in the field of contextuality were motivated by the following

problem. In Newton mechanics, a statistical state of any system S is described

by probability distributions ρ : Z 7→ [0, 1], Z ∈ Γ on its phase space Γ. Any such

distribution results from a fixed preparation and describes the ensemble of individual

systems S prepared in this way. Each individual system of the ensemble is, however,

always assumed, at least in Newton mechanics, to be in some state given by a point

Z of Γ. We just do not know which point and the distribution ρ(Z) describes the

state of our incomplete knowledge. Thus, all observables, which are functions on Γ,

have determinate values for each element of the ensemble.
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Can anything analogous be assumed for quantum mechanics making a general

state operator analogous to a statistical state of Newtonian mechanics? Could a

state operator of a quantum object S describe our knowledge of an ensemble defined

by the preparation and could the individual elements of the ensemble each have

determinate values of all observables, which are just not known, or even, be it for

whatever reason, could not be known? To solve this problem, it is sufficient to

restrict the observables to sharp observables, because if the question had negative

answer for a restricted class, it would have negative answer for any class containing

the restricted one.

It is technically advantageous to restrict the problem even further by limiting

oneself to (orthogonal) projection operators to subspaces of Hτ . Let us denote the

set of all such projections by P(Hτ) ⊂ Lr(Hτ ). The problem can then be formulated

as follows. Is there a dispersion-free probability distribution h : P(Hτ ) 7→ {0, 1}?
Dispersion-free means that its values are just zero and one so that such a distribution

determines values of all projections.

The dispersion-free distribution h has to fulfil certain conditions, or else it could

not be interpreted as concerning properties. Let us first describe the structure of

P(Hτ).

Each projection a ∈ P(Hτ) can be mapped on linear subspace a(Hτ) of Hτ and

this bijective map allows to define the lattice relations on P(Hτ ). First, a ≤ b if

a(Hτ ) ⊂ b(Hτ ). This defines a partial ordering on P(Hτ). Second, a = b⊥ if a(Hτ)

contains all vectors orthogonal to b(Hτ). Projection a is called the orthocomplement

of b. Third, c = a∧b if c(Hτ ) is the set-theoretical intersection of a(Hτ) and b(Hτ).

Observe that a∧b = ab (operator product of the projections) only if a and b commute

(are orthogonal). Finally, c = a ∨ b if c(Hτ ) is the linear hull of a(Hτ ) and b(Hτ).

P(Hτ) with these relations forms the so-called orthocomplemented lattice (for

proof, see, e.g., Refs. [11, 18]), but not a Boolean lattice4. It has however Boolean

sublattices, which represent sets of jointly measurable sharp effects, and must, there-

fore contain only mutually commuting projections. On these sublattices, h is, in fact,

an assignment of truth values 0, 1 and it has to satisfy the usual logical conditions

h(a ∨ b) = h(a) ∨ h(b) , h(a ∧ b) = h(a) ∧ h(b) , h(a⊥) = h(a)⊥ .

In these relations, we consider the set {0, 1} as a Boolean lattice of one empty set

4In the so-called quantum logic, properties of S are described by elements of P(Hτ ). They

represent the mathematical counterpart of the so-called YES-NO registrations [72]. If we pre-

tend that the values obtained in the YES-NO experiments are properties of a well-defined single

quantum system, then we are forced to replace the Boolean lattice of ordinary logic by the ortho-

complemented lattice of quantum logic. But this pretence is against all logic because these values

are not properties of one but of many different systems each consisting of S plus some registration

apparatus.
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and one arbitrary non-empty set A with ⊥ the set-theoretical complement in A,

∨ the set-theoretical union and ∧ the set-theoretical intersection. Thus, on each

Boolean sublattice, h must also be a Boolean lattice homomorphism.

The first result relevant to the question of existence of such maps is the Gleason’s

theorem [37]. It states that the set of all probability distributions on P(Hτ) for

Hilbert space Hτ of dimensions greater than 2 is just T(Hτ )
+
1 . Thus, our dispersion-

free distributions are to be found in T(Hτ )
+
1 . It is easy to show that there are none

there.

One can object that P(Hτ) is an idealisation containing an infinity of observables.

This leads to the question whether there is a finite subset of P(Hτ ) that does not

admit such distributions, either. This is the next relevant result, Kochen–Specker

no-go theorem [55], in which an example of such a subset is given. There are more

examples now provided by different physicists (see, e.g., Ref. [18]). The reason why

h does not exist is that the assignment of a truth value to projection a, say, depends

on to which Boolean sublattice a belongs. This can be understood as ”context”: in

one case, a is registered jointly with elements of one Boolean sublattice, in another

case with those of another sublattice.

The definitive result in this field seems to be Bub–Clifton–Goldstein theorem [18],

which lists all maximal sub-lattices of P(Hτ) that admit dispersion-free probability

distributions. They do not need to be Boolean but they are always only proper

sublattices of P(Hτ ). Hence, only a limited number of projections can be assumed to

have determinate values before registration, and this limits possible ”non-collapse”

interpretations and modifications of quantum mechanics such as Bohm–de Broglie

or modal interpretations. In fact, each of these interpretations or modifications is

based on a unique Bub–Clifton–Goldstein sublattice so that these theories can be

classified according to these sublattices [18].

1.2.5 Superselection rules

A preparation that deals only with systems of one and the same type prepares

so-called one-type systems. Not every preparation is such. For example, we can

randomly mix electrons in some states with protons in some states. Such systems,

and some generalisations of them, are called mixed systems5. In this section, the

mathematical description of mixed systems will be explained. We shall mix just two

one-type systems, S1 and S2, but the generalisation to any number is straightfor-

ward.

Let H1 and H2 be the Hilbert spaces of S1 and S2. Then the Hilbert space H of

5This has nothing to do with the term ”mixed state”, which is sometimes used for non-vector

states.
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the system S mixing S1 and S2 is

H = H1 ⊕H2 .

The direct sum on the right-hand side is the space of pairs, (ψ1, ψ2), ψ1 ∈ H1 and

ψ2 ∈ H2 with linear superposition defined by

a(ψ1, ψ2) + b(φ1, φ2) = (aψ1 + bφ1, aψ2 + bφ2)

and the inner product defined by

〈(ψ1, ψ2), (φ1, φ2)〉 = 〈ψ1, φ1〉1 + 〈ψ2, φ2〉2 ,

where 〈·, ·〉i is the inner product of Hi. There are then embeddings ιi : Hi 7→ H

defined by

ι1(ψ1) = (ψ1, 0) , ι2(ψ2) = (0, ψ2)

for any ψi ∈ Hi and i = 1, 2.

Let L(H) be the algebra of bounded linear operators on H and L(Hi) that of Hi.

If two operators Ai ∈ L(Hi), i = 1, 2, are given, then an operator (A1⊕A2) ∈ L(H),

called direct sum of A1 and A2, is defined by

(A1 ⊕ A2)(ψ1, ψ2) = (A1(ψ1),A2(ψ2))

for any (ψ1, ψ2) ∈ H. The special property of the direct-sum operators is that the

subspaces ιi(Hi) ⊂ H are invariant with respect to them. Clearly, not all operators

in L(H) are of this form. Effects of the form A1 ⊕ 02 (01 ⊕ A2) can be interpreted

as representing registrations done on S1 (S2) alone.

The embeddings ιi define maps on projections P[ψi], which can be denoted by

the same symbol, viz.

ιi(P[ψi]) = P[ιi(ψi)]

for all ψi ∈ Hi. ιi can be extended to the whole spaces T(Hi)
+
1 , ιi : T(Hi)

+
1 7→

T(H)+1 as follows. Let Ti ∈ T(Hi)
+
1 , then

ι1(T1) = T1 ⊕ 0 , ι2(T2) = 0⊕ T2 .

The convex combinations of states from T(H1)
+
1 and T(H2)

+
1 are states of mixed

systems defined at the beginning of this section. However, the states T(H)+1 are not

exhausted by convex combinations of states from T(H1)
+
1 and T(H2)

+
1 .

The structural properties in which the systems S1 and S2 differ from each other

can now be viewed as non-trivial operators on H. Let for example the masses µ1 and

µ2 satisfy µ1 6= µ2. Then the s.a. operator µ111 ⊕ µ212 defines the mass operator m

on H with two eigenspaces ιi(Hi) and eigenvalues µi, i = 1, 2. Similarly for charges,
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spins, etc. Now, it is easy to see that all operators of L(H) that commute with m

have the form A1 ⊕ A2 and all operators of this form commute with m. Clearly, s.a.

operators of the form A1 ⊕ A2 are observables of system S. The nature of mixing

systems suggests the basic rule

Rule 6 All effects that can be registered on system S mixing S1 and S2 have the

form A1 ⊕ A2 where A1 ∈ Lr(H1)
+
≤1 and A2 ∈ Lr(H2)

+
≤1.

Hence, the space of all observables of S is not Lr(H)+≤1 but the subset of all observ-

ables that commute with m.

In general, we define

Definition 14 A discrete sharp observable Z of a system S with Hilbert space H is

called superselection observable if Z commutes with all observables of S, sharp or

not sharp. The existence of such an observable is called superselection rule. The

eigenspaces of Z are called superselection sectors. All superselection observables

form the centre Z of the algebra of all sharp observables of S.

A restriction of the set of observables for system S suggests the introduction of

an equivalence relation on the set of states T(Hτ )
+
1 .

Definition 15 Two states T1 and T2 are equivalent with respect to a set O of

observables if these states assign the same probability measures to each observable of

O, that is , pE
T1

= pE
T2

for each E ∈ O. In that case, we write T1
∼=O T2.

For example, linear superposition

Ψ = a(ψ1, 0) + b(0, ψ2)

for any ψi ∈ Hi, i = 1, 2, |a|2 + |b|2 = 1, and convex combination

T = |a|2ι1(|ψ1〉〈ψ1|) + |b|2ι2(|ψ2〉〈ψ2|)

are equivalent with respect to the set of superselection observables O,

|Ψ〉〈Ψ| ∼=O T .

For a given set of observables O, ∼=O is, indeed, an equivalence relation on the

set of states T(H)+1 . Let us denote the set of equivalence classes of states in T(H)+1
with respect to the set of observables O by TO(H)+1 . No two states of the same

class can be distinguished by any registrations. No two different states from T(H)+1
are equivalent with respect to all observables unless the set of effects O is restricted.
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Proposition 4 Given a system S with the sets O and TO(H)+1 of observables and

state classes, respectively. Then the following statements are equivalent:

A Z is a superselection observable.

B Each state is equivalent to a unique convex combination of eigenstates of Z.

See Ref. [19], p. 18.

Rule 7 The states of system S mixing S1 and S2 are the equivalence classes with

respect to the set of observables O of the form A1 ⊕ A2. The unique convex combi-

nation CZ(T) of eigenstates of Z to which each element T of T(H)+1 is equivalent

describes the physical meaning of the class.

Clearly, state CZ(T) does not contain any unmeasurable correlation.

Attempts at a solution of the problem of classical properties and of quantum

measurement [49, 8, 14, 84, 75, 95] utilise properties of superselection rules. For

example, in the theory of measurement, one would like to evolve extremal states

to convex combinations and this can indeed be achieved by suitable superselection

rules. However, the method might work only if a stronger assumption than Rule

7 were made: the words ”convex combination” had to be replaced by ”statistical

decomposition”.

1.3 Galilean group

In quantum mechanics, Galilean relativity principle holds in the following form:

Rule 8 The same experiments performed in two different Newtonian inertial frames

have the same results, i.e., give the frequencies of observable values.

”The same experiment” means that the first experiment has the same empirical

description with respect to the first inertial frame as the second experiment has

with respect to the second frame. In the present section, we restrict ourselves to

the proper Galilean group and work out some consequences of the principle. For

example, the most important PV measures of quantum mechanics will be defined

and the time evolution equation formulated. We keep the exposition brief; for more

detail and references see e.g. Ref. [70, 52].

The group of transformations that leave the geometric structure of Newtonian

spacetime invariant6 (see, e.g., Ref. [64], p. 296) is called Galilean groupG. It is also

6We understand symmetry as transformation that leaves some well-defined structure invariant.

For example, Galilean group contains all transformations that leave Newtonian spacetime geometry

invariant and a symmetry of a quantum system leaves its Hamiltonian invariant.
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the group of transformations between inertial frames. We shall restrict ourselves just

to the component of unity ofG called proper Galilean group, G+ and shall ignore the

improper transformations such as space inversions and time reversal. More about

them can be found in Ref. [98].

Let (x1, x2, x3, t) be a Newtonian inertial frame so that x1, x2, x3 are Cartesian

coordinates. A general element g(λ) of G+ can be written in the form

~x⊤ 7→ O~x⊤ + ~a⊤ + ~v⊤t (1.21)

and

t 7→ t+ λ10 , (1.22)

where O is a proper orthogonal matrix (element of rotation group SO(3)) determined

by three parameters λ1, λ2, λ3, ~a is a vector of space shift with components λ4, λ5, λ6,

~v is a boost velocity with components λ7, λ8, λ9 and λ10 is a time shift. The relations

are written in matrix notation so that, e.g., ~x⊤ is a column matrix with components

of vector ~x.

The group product g(λ3) = g(λ2)g(λ1) is defined as the composition of the trans-

formations g(λ2) and g(λ1) so that g(λ1) is performed first and g(λ2) second. Then,

O3 = O2O1 ,

~a⊤3 = ~a⊤2 + O2~a
⊤
1 + ~v⊤2 λ

1
10 ,

~v⊤3 = ~v⊤2 + O2~v
⊤
1 ,

and

λ103 = λ102 + λ101 .

GroupG+ is not simply connected because its subgroup SO(3) is not. The universal

covering of SO(3) is group SU(2) so that there are always two elements of SU(2),

differing by rotation by 2π, that are homomorphically mapped on one element of

SO(3). Let us denote by Ḡ+ the universal covering group of G+.

Let us first give an intuitive motivation of why Galilean group acts on state opera-

tors and POV measures. Given a quantum system S of type τ , classical apparatuses

that are supposed to prepare and register S have well-defined Galilean transforma-

tions. Often, S is subject to macroscopic influences external to S such as classical

external fields. These also possess non-trivial transformation laws with respect to

Galilean transformations.

Let us consider a measurement that consists of a preparation and a registration

of system S of type τ by apparatuses Ap and Ar, respectively, and let there be some

external fields f . Let Ap prepare object S in state T and let Ar register effect E(X).

Next, we can transport both Ap and Ar by g ∈ G to g(Ap) and g(Ar). Let Tg,f
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be the state prepared by g(Ap) and Eg,f(X) the effect registered by g(Ar). If the

external influences are also transformed by g : f 7→ g(f), we obtain state Tg,g(f) and

effect Eg,g(f)(X). The experiment has then been completely transferred by g and,

therefore, Galilean relativity principle implies

Proposition 5 State Tg,g(f) and effect Eg,g(f)(X) satisfy

tr[TE(X)] = tr[Tg,g(f)Eg,g(f)(X)] (1.23)

for all g ∈ G, T ∈ T(Hτ )
+
1 and E(X) ∈ Lr(Hτ )

+
≤1.

Let us next compare measurable properties of the two states T and Tg,g(f). Propo-

sition 5 implies:

tr[Tg,g(f)E(X)] = tr[TEg−1,g−1(f)(X)] .

Hence, values that can be registered on the state Tg,g(f) are those on T transformed

by g−1.

1.3.1 Closed systems

To keep the description of Galilean group action simple, we restrict ourselves to

systems for which all external macroscopic influences can be assumed to be negligible

and call such systems closed. Then, f = 0, and we shall discard the second index at

transformed states and effects. The first basic assumption is

Rule 9 Let S be an closed system of type τ . Then there is a unique linear map

U(g) : Hτ 7→ Hτ for each element g ∈ Ḡ+ so that

Tg−1 = U(g)TU(g)† , (1.24)

Eg−1(X) = U(g)E(X)U(g)† (1.25)

for all T ∈ T(Hτ)
+
1 , E(X) ∈ Lr(Hτ)

+
≤1 and g ∈ Ḡ+ .

For quantum mechanics, it is important that the universal covering group, rather

than Galilean group itself, acts on Hilbert spaces.

Then, Rules 8 and 9 imply

Proposition 6 g 7→ U(g) is a unitary ray representation of Ḡ+ on Hτ

For proof and references see, e.g., [52], pp. 285–292. The ’ray’ representation means

that

U(g2g1) = exp[iω(g1, g2)]U(g2)U(g1) ,

where ω : Ḡ+ × Ḡ+ 7→ R satisfies

ω(g1, g2) + ω(g1g2, g3) = ω(g1, g2g3) + ω(g2g3) .
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Equations (1.24) and (1.25) and the fact that rotation by 2π is always represented

by 1 or −1 imply that it is indeed the proper Galilean group and not only Ḡ+ acting

on T(Hτ)
+
1 and Lr(Hτ)

+
≤1.

Clearly, the probability is preserved,

tr[(U(g)TU(g)†)(U(g)E(X)U(g)†)] = tr[TE(X)] .

We assume that Borel sets X have a well-defined transformation with respect to

g, γ(g) : F 7→ F and that the two effects E(X) and Eg(X) belong to the same

observable. Then

U(g)E(X)U(g)†) = E(γ(g)−1X) (1.26)

(see Ref. [25] for generalisation of this relation).

Given a one-parameter group of unitary operators U(λ), then according to Stone’s

theorem (see, e.g., [12]), there exists a s.a. operator G satisfying

U(λ) = exp(iGλ) .

It is called generator of group U(λ) and can be calculated with the help of the

formula

iG = U(λ)†
dU(λ)

dλ
.

If the parameter is not specified by any further convention, it is defined only up to

a real multiplier and so is the generator.

A small technical problem for application of Stone’s theorem to our case is that

the set U(g(λ)) for any one-parameter subgroup g(λ) of Ḡ+ does not necessarily

form a group because map U(g) is only a ray representation. This is usually treated

by working with the central extension Ḡ+
c of group Ḡ+ that has elements (g, φ),

g ∈ Ḡ+ and φ ∈ (R mod 2π), multiplication law

(g1, φ1) ◦ (g2, φ2) = (g1 ◦ g2, φ1 + φ2 + ω(g1, g2))

and action on Hτ

Ũ(g, φ)|ψ〉 = eiφg|ψ〉 .
Then, (g, φ) 7→ Ũ(g, φ) is a unitary representation of Ḡ+

c on Hτ .

Group Ḡ+
c has eleven parameters λ1, . . . , λ10, φ and each parameter has its gen-

erator, which can be defined by the following conventions. Each one-parameter

subgroup of space translations can be represented on Hτ by a unitary maps of the

form

exp

(

i

~
~n · ~P a

)

,
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where vector ~n is the unit vector in the direction, a the distance, of translation in a

chosen system of units. The distance a plays also the role of the parameter of the

subgroup.

Each one-parameter subgroup of SU(2) can be represented by

exp

(

i

~
~n ·~J θ

)

,

where ~n is a unit vector along the rotation axis and the parameter is an angle θ of

rotation in the counterclockwise direction around the axis. θ is an angle in radians,

θ ∈ [0, 4π).

Each one-parameter boost subgroup can be represented by

exp

(

i

~
(~n · ~K v

)

,

where ~n is the direction and v the velocity of the boost in the chosen system of

units; v is the parameter of the group.

Each time translation can be represented by

exp

(

− i

~
Ht

)

,

where the parameter t is time in the chosen system of units and the parameter of

the group.

Finally, each phase transformation can be denoted by

exp

(

i

~
Mφ

)

,

where the parameter φ has the dimension 1/[mass].

Definition 16 The three s.a. operators Pk are components of total momentum, Jk

are components of total angular momentum and Qk = (1/M)Kk are components of

position (centre of mass) of S. M is the total mass of S and

M =M1

is the operator of total mass of S. Operator H is Hamiltonian of S.

The self-adjoint operators defined by Definition 16 have a common invariant domain

(see, e.g. [5]), hence their sums and products are well-defined. They are the most

important operators for any system in the sense that most quantum mechanical

observables of the system are constructed from them. For example, an internal

angular momentum or spin s can be defined in terms of these generators by

~s = ~J− ~Q× ~P . (1.27)
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However, not all unitary ray representations Ũ(g, φ) of group G̃+
c are physical. For

example, the choice of phase shift ω(g1, g2) = 0 does not contradict any assumption

above but has wrong physical consequences. There is an additional rule restricting

ω(g1, g2):

Rule 10 The non-zero commutators of the generators are

[Jk, Jl] = i
∑

j

ǫkjlJj , [Jk,Pl] = i
∑

j

ǫkjlPj , (1.28)

[Jk,Kl] = i
∑

j

ǫkjlKj , [Kk,H] = −iPk , [Kk,Pl] = iδklM1 . (1.29)

Thus, we can see why the mass is a generator in a Galilean invariant theory.

We can also observe that the majority of observables dealt with in standard

textbooks of quantum mechanics are obtained from generators of Galilean group

and must, therefore, satisfy commutation relations dictated by the Lie algebra of

the group. But we can also observe that the situation in Newtonian mechanics

is analogous. Galilean group acts on the phase space as a group of symplectic

transformations and its generators are closely related to classical observables. This

explains the fact that the commutation relations of quantum observables resemble

Poisson brackets of classical observables.

Each Hilbert spaceHτ carries a definite representation of Ḡ+
c depending only on τ

(τ can contain more information, e.g., about the electric charge, etc.). Construction

of models can start with the choice of a suitable representation. For example, the

representation is irreducible for particles. Irreducible representations are classified

by three numbers, µ, s and E0, with the meaning of mass, spin and ground state

energy, respectively (see Ref. [59], p. 221). Let us describe this representation.

Consider the Schwartz space (see, e.g., Ref. [78]) S2s+1(R3) of rapidly decreasing

2s + 1-tuples of C∞ functions φ(~x,m), where m ∈ {−s,−s + 1, · · · , s} represents

a set of discrete parameters depending on the system spin. S2s+1(R3) is a common

invariant domains of all generators.

Let Hτ be the completion of S2s+1(R3) with respect to the inner product

〈φ|ψ〉 =
∑

m

∫

R3

d3xφ∗(~x,m)ψ(~x,m) .

The elements of Hτ are called wave functions. To describe the operators, it is

sufficient to define the action of their components on C∞ functions φ(~x,m) because

there is always only one s.a. extension. The result is

Qkφ(~x,m) = xkφ(~x,m) (1.30)
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and

Pkφ(~x,m) = −i~ ∂

∂xk
φ(~x,m) . (1.31)

The three components of spin are (2s+1)× (2s+1) Hermitian matrices skmn that

act on wave functions as follows

skφ(~x,m) =

s
∑

n=−s

skmnφ(~x, n) . (1.32)

For example, the matrices for s = 0 are all equal 1 and those for s = 1/2 are

s1 = ~/2

(

0 1

1 0

)

, s2 = ~/2

(

0 −i
i 0

)

, s3 = ~/2

(

1 0

0 −1

)

. (1.33)

Then, the operator of angular momentum can be constructed from equation (1.27).

Finally, the Hamiltonian is

H =
~P · ~P
2µ

+ E0 . (1.34)

This representation of Ḡ+
c is an example of structure that is labelled by index

τ . The representation of Hilbert space and of operators described above is called

Q-representation7. All operators (not necessarily group generators) on Hτ in Q-

representation can be written in the form of integral operators with kernels

A = A(~x,m; ~x′, m′) ,

the kernel A(~x,m; ~x′, m′) being a generalised function of its arguments acting on

functions φ(~x,m) ∈ S2s+1(R3) as follows

(Aφ)(~x,m) =
∑

m′

∫

R3

d3x′A(~x,m; ~x′, m′)φ(~x′, m′) ,

where the right-hand side represents the action of the generalised function on a test

function. For example,

(Qkφ)(~x,m) =
∑

m′

∫

R3

d3x′xkδ(~x− ~x′)δmm′φ(~x′, m′)

and

(Pkφ)(~x,m) =
∑

m′

∫

R3

d3x′i~
∂

∂xk
δ(~x− ~x′)δmm′φ(~x′, m′) .

7The meaning of the term ”representation” here is different from that of group representation. It

is called Q-representation because operators ~Q are diagonal in it. The same unitary representation

of Ḡ+
c that we are describing in Q-representation can also be described in, say, P -representation,

etc.
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The transformation from abstract notation to a representation can be understood

as expansion in an orthonormal basis. If {|n〉} is a basis, then any vector |ψ〉 can be

represented by the function ψ(n) = 〈n|ψ〉, and any operator A can be represented

by its matrix elements A(n,m) = 〈n|A|m〉. Only, for the Q-representation, we use

a generalised basis [32].

The irreducible representation described above is a basic building block of quan-

tum mechanics. The models for all other systems can be constructed from it. Many

examples of such construction are given in textbooks of quantum mechanics and we

shall see some examples later.

1.3.2 Time translations

In non-relativistic quantum mechanics, time is, unlike position, just a parameter

and time translation defines, unlike space shift, the dynamics of the system. This

is the asymmetry between time and space in non-relativistic quantum mechanics.

In this subsection, we drop the assumption that systems are closed. For general

systems, we assume

Rule 11 Let S be a system of type τ and let external fields f be given. Then,

time translation from t1 to t2 is represented by unitary operator U(f, t2, t1) on Hτ

satisfying

U(f, t3, t1) = U(f, t3, t2)U(f, t2, t1)

and we have

Tg(t2−t1)−1,f = U(f, t2, t1)TU(f, t2, t1)
† ,

where g(t2 − t1) is the group element for λ1 = · · · = λ9 = 0, λ10 = t2?t1 and

T ∈ T(Hτ )
+
1 .

A given time translation element of G does not define a unique map on T(Hτ)
+
1

in this case. U(f, t2, t1) depends not only on t2 − t1 but also on the position of the

system with respect to the external fields (even if the fields are stationary). Time

translations U(f, t2, t1) do not form a group. We shall let out the argument f in

U(f, t2, t1) in agreement with the current practice.

Definition 17 The operator H(t) defined by

H(t) = i~U(t, t0)
†dU(t, t0)

dt
,

is the Hamiltonian of S.

Operators H(t) for different t do not commute in general.
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An important observable in non-relativistic quantum mechanics is energy. The

corresponding operator for system S will be constructed from its Hamiltonian in

Section 2.2.3. On the other hand, any individually prepared quantum system has a

definite Hamiltonian with the form

H = H(operators, external fields) ,

where function H symbolises the construction of the operator from the other s.a.

operators of S. The form of Hamiltonian is a model assumption of quantum me-

chanics. The choice of a Hamiltonian is usually the most important step in model

construction. This Hamiltonian is usually different from the observable called energy

of the system.

For closed systems, the choice of Hamiltonian is included in the choice of the

ray representation of group Ḡ+
c . In fact, for each kind τ , there is also one system

of this kind that is closed and the corresponding representation can be viewed as

a part of τ . Then, for a given system of kind τ that happens not to be closed,

some generators of the representation are not physical. Mostly, this is just the

Hamiltonian, but there are also cases when the physical momentum is different from

that defined by τ . In general, the Hamiltonian of S defined by τ can be decomposed

in the free Hamiltonian of the mass-centre motion and the internal Hamiltonian.

The internal Hamiltonian is invariant with respect of the Galilean group and is an

objective (structural) property of S and some aspects of it, such as the spectrum,

are in principle (indirectly) observable even if it itself, as an operator, is not an

observable.

Dynamics of quantum system S has to do with the time aspect of its preparation

and registration. Any preparation procedure finishes at some time instant tp and

any registration procedure starts at some time instant tr. The times tr and tp can

serve as defining the time aspects because the whole preparation or registration

processes can themselves take some time. The dynamics enables to calculate how

the probabilities depend on the times tr and tp. The dependence can be obtained in

two ways. We can make either state T(t) to a function of t by shifting T(0) forwards

or observable E(t) by shifting E(0) backwards by U(t, 0). The probability pE
T
(X, t)

corresponding to the time t is then

pET(X, t) = tr[T(t)E] = tr[TE(t)] .

The first method is called Schrödinger picture, the second Heisenberg picture.

Rule 11 implies:

Proposition 7 Let quantum system S have a Hamiltonian H(t). Then, the dynam-

ical evolution of S in Schrödinger picture obeys von Neumann–Liouville equation of
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motion

i~
dT(t)

dt
= [H(t),T(t)] (1.35)

and in Heisenberg picture Heisenberg equation of motion

i~
dE(X, t)

dt
= [E(X, t),H(t)] . (1.36)

Proposition 8 Let T be an extremal state |φ〉〈φ|. Then

T(t) = |φ(t)〉〈φ(t)| ,

where φ(t) obeys Schrödinger equation

i~
dφ(t)

dt
= H(t)φ(t) (1.37)

and

φ(t) = U(t, 0)φ(0) .

In particular, extremal states remain extremal states in unitary evolution.

The unitary time evolution of a statistical decomposition must satisfy the follow-

ing rule

Rule 12 Let T be the state with statistical decomposition (1.10) Then, its time

evolution is a state operator with statistical decomposition

T(t) = wT1(t) (+)p (1− w)T2(t) , (1.38)

where Tk(t) is determined by (1.35) for each k = 1, 2 and w is time independent.

Of course, Eq. (1.38) is easily obtained from Eq. (1.10) by multiplying both sides

by U(t, 0) from the left and by U(t, 0)† from the right. The non-trivial assumption

is that the statistical decomposition is conserved by unitary dynamics.

With the help of Hamiltonian, we can define the notion of symmetry of a closed

system.

Definition 18 Each unitary transformation U : Hτ 7→ Hτ that leaves the Hamilto-

nian H of S invariant,

UHU† = H

is called a symmetry of system S.

All symmetries of a system S form a unitary group that is an objective (structural)

property of S. The generators of its one-parameter subgroups are s.a. operators

that commute with the Hamiltonian and, as sharp observables, yield probability

distributions that are independent of time.
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Chapter 2

Composition of quantum systems

This chapter studies composition of two kinds of quantum systems: heterogeneous

and identical. For the identical systems, it introduces a number of new ideas.

Suppose that S1 and S2 are two quantum systems. They can be particles or

composites. Then, one can consider this pair as one quantum system S = S1 + S2.

This is called composition of systems. Clearly, composition is an effective tool of

model building so that any system can be constructed from particles. Also, various

kinds of interaction between quantum systems can be studied.

For the sake of simplicity, we assume that S1 and S2 are disjoint, i.e., they have

no subsystem in common. Composition of systems that are not disjoint can clearly

be reduced to composition of disjoint ones. More important is a stronger condition,

which we call heterogeneity: systems S1 and S2 are heterogeneous if there is no pair

of particles S ′
1 and S ′

2 of the same type such that S ′
1 ∈ S1 and S ′

2 ∈ S2. The rules of

composition are different for systems that are or are not heterogeneous.

2.1 Composition of heterogeneous systems

This section gives a brief account of the composition of heterogeneous systems and

the important non-local effect of entanglement.

2.1.1 Tensor product of Hilbert spaces

First, we describe the mathematical apparatus. The tensor product H = H1 ⊗H2

of H1 and H2 is the Cauchy completion of the linear span of the set of products

φ⊗ ψ, φ ∈ H1, ψ ∈ H2

with respect to the inner product of H, which is determined by

〈φ⊗ ψ|φ′ ⊗ ψ′〉 = 〈φ|φ′〉〈ψ|ψ′〉 .
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Tensor product operation ”⊗” is postulated to be associative and distributive in

both arguments. Hence, if {φk} and {ψk} are bases of H1 and H2, then {φk ⊗ ψl}
is a basis of H. If the bases are orthonormal then any Ψ ∈ H can be expressed as

Ψ =
∑

kl

〈φk ⊗ ψl|Ψ〉φk ⊗ ψl .

Thus, any vector Ψ ∈ H1⊗H2 can be represented by the function of two arguments,

Ψ(k1, k2) = 〈φk1| ⊗ 〈ψk2 |Ψ〉 .

For instance, two-particle state Ψ in Q-representation is described by wave function

Ψ(~x1, ~x2).

If A ∈ L(H1) and B ∈ L(H2), then their tensor product A ⊗ B on H1 ⊗ H2 is

determined via the relation

(A⊗ B)(φ⊗ ψ) = Aφ⊗ Bψ

for all φ ∈ H1 and ψ ∈ H2. It follows that

tr[A⊗ B] = tr[A]tr[B] .

In a basis {φk1 ⊗ ψk2}, operator A⊗ B is described by its kernel

K(k1, k2; k
′
1, k

′
2) = 〈φk1|A|φk′1〉〈ψk2|B|ψk′2〉 .

For instance, a kernel in the Q-representation is K(~xk1 , ~x
l
2; ~x

′k
1 , ~x

′l
2).

An important example is tensor product of group representations. Let (g, φ) 7→
Ũ1(g, φ) be a unitary representation of Ḡ+

c on H1 and (g, φ) 7→ Ũ2(g, φ) on H2.

Then (g, φ) 7→ Ũ(g, φ) = Ũ1(g, φ) ⊗ Ũ2(g, φ) is a unitary representation of Ḡ+
c on

H1 ⊗H2.

Another example is the tensor product of states, T1 ⊗ T2, of T1 ∈ T(H1)
+
1 and

T2 ∈ T(H2)
+
1 . It is a positive trace-class operator with trace 1 and T1 ⊗ T2 ∈

T(H1 ⊗H2)
+
1 . However, T(H1 ⊗H2)

+
1 contains also convex combinations of tensor

products of elements from T(H1)
+
1 and T(H2)

+
1 , which cannot themselves generally

be written as such tensor products.

The partial trace over the Hilbert space H2, say, is the positive linear mapping

Π2 : T(H1 ⊗H2)
+
1 7→ T(H1)

+
1

defined via the relation

tr[Π2(W)A] = tr[W(A⊗ 12)]
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for all A ∈ Lr(H1), W ∈ T(H1 ⊗H2)
+
1 and 12 is the identity operator on H2. State

operator Π2(W) is uniquely defined because of Theorem 9.

If {φk} ⊂ H1 and {ψk} ⊂ H2 are orthonormal bases, then Π2(W) can be written

as

Π2(W) =
∑

ijk

〈φi ⊗ ψk|W(φj ⊗ ψk)〉|φi〉〈φj| .

Here |φi〉〈φj| is the bounded linear operator on H1 given by

|φi〉〈φj|(φ) = 〈φj|φ〉φi

for all φ ∈ H1. The partial trace over H1 is defined similarly.

If W = T1 ⊗ T2, then T1 = Π2(W) and T2 = Π1(W) but, in general,

W 6= Π2(W)⊗ Π1(W) . (2.1)

In particular, if W = P[Ψ], then

P[Ψ] = Π2(P[Ψ])⊗Π1(P[Ψ])

if and only if

Ψ = φ⊗ ψ

for some φ ∈ H1 and ψ ∈ H2. In that case also

Π2(P[Ψ]) = P[φ] , Π1(P[Ψ]) = P[ψ] .

Thus, tensor products of extremal elements of the sets T(H1)
+
1 and T(H2)

+
1 do not

exhaust the set of extremal elements of T(H1 ⊗H2)
+
1 .

Tensor product is also an operation for POV measures. Let E1 : F1 7→ Lr(H1)

with dimension n1 and E2 : F2 7→ Lr(H2) with dimension n2 be two POV measures

on Hilbert spaces H1 and H2 with value sets Ω1 and Ω2. Then POV measure

(E1⊗E2) : (F1 ×F2) 7→ Lr(H1⊗H2) on the tensor product H1⊗H2 has dimension

n1 + n2, values set Ω1 ×Ω2 and is defined by

(E1 ⊗ E2)(X1 ×X2) = E1(X1)⊗ E2(X2)

for all X1 ⊂ Rn1 and X2 ⊂ Rn2 . Tensor product of POV measures is associative but

not commutative.

Tensor products of more Hilbert spaces and the corresponding notions and rela-

tions can be obtained using the above axioms and relations.

Let us now turn to physical interpretation. Then, the Hilbert spaces are associ-

ated with heterogeneous quantum systems and the indices distinguishing the Hilbert

spaces carry the information on the system types.
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Rule 13 Let S1 and S2 be two heterogeneous quantum systems and their Hilbert

spaces be H1 and H2, respectively. Then, the system S composed of S1 and S2 has

the Hilbert space H = H1 ⊗ H2, its states are elements of T(H1 ⊗ H2)
+
1 and its

effects are elements of Lr(H1 ⊗H2)
+
≤1.

An important assumption concerns the states and observables of subsystems:

Rule 14 Let system S composed of heterogeneous systems S1 and S2 be prepared

in state T ∈ T(H1 ⊗H2)
+
1 . Then S1 is simultaneously prepared in state Π2(T) and

S1 in state Π2(T). The observables of S1 and S2 can be identified with observables

E1 ⊗ 12 and 11 ⊗ E2 respectively, of the composite. S1 and S2 are called subsystems

of S.

Hence, in the case that a system is composed of heterogeneous systems, these sys-

tems retain their individuality in the sense that they have well-defined states and

observables of their own.

The theory of composition would not be complete if we did not know how group

Ḡ+
c acts on Hilbert space H1⊗H2 of the composite system. In this way, interaction

between systems can be defined.

Definition 19 Let heterogeneous systems S1 and S2 have Hilbert spaces H1 and

H2. Let the representative of (g, φ) ∈ Ḡ+
c on Hk be denoted by Ũk(g, φ) and that on

H1 ⊗H2 by Ũ(g, φ). If

Ũ(g, φ) = Ũ1(g, φ)⊗ Ũ2(g, φ) , (2.2)

we say that S1 and S2 do not interact.

The consequence for the generators is that they are additive:

Proposition 9 Given a one parameter subgroup of Ḡ+
c with generator G of its rep-

resentation on H1⊗H2, G1 of its representations on H1 and G2 of its representation

on H2. Then, in the case of non-interacting subsystems,

G = G1 ⊗ 12 + 11 ⊗ G2 . (2.3)

As an example, consider two particles S1 and S2 of different types with Hilbert spaces

H1 and H2 and let us composite them so that they do not interact. We can then

construct the representation of the group Ḡ+
c on H1 ⊗H2 from its representations

on H1 and H2 as follows.

Let the representations on Hi have the parameters µi, si, E0i and the correspond-

ing group generators be ~pi,~ji, ~ki = µi~xi and hi = E0i+~pi ·~pi/2µi (see Section 1.3.1).

Let the generators of the group on H1 ⊗H2 that are to be determined be denoted
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by ~P, ~J, ~K =M~Q and H. We use the Q-representation so that elements of H1 ⊗H2

are constructed from rapidly decreasing C∞ functions Ψ(~x1,~x2), which also form the

common invariant domain of all group generators. Then, Proposition 9 implies

~P = ~p1 + ~p2 , ~Q =
µ1~x1 + µ2~x2
µ1 + µ2

, (2.4)

M = µ1 + µ2 , H = E01 + E02 +
~p1 · ~p1
2µ1

+
~p2 · ~p2
2µ2

, (2.5)

where ~P, ~p1 and ~p2 are the differential operators of the form (1.31).

It is advantageous to change variables ~x1, ~x2 to Q, q so that wave functions have

the form Ψ(Q, q) and

[Qk, ql] = [pk,Pl] = 0 , [Qk,Pl] = [qk, pl] = i~δkl .

The transformation is uniquely determined by conditions:

~x1 = ~Q− µ2

µ1 + µ2

~q , ~x2 = ~Q+
µ1

µ1 + µ2

~q ,

~p1 =
µ1

mu1 + µ2

~P−~p , ~p2 =
µ2

mu1 + µ2

~P+ ~p .

The transformed Hamiltonian and the angular momentum are

H = E01 + E02 +
~P · ~P
2M

+
~p · ~p
2µ

, ~J = ~Q× ~P + ~q ×~p+~s1 +~s2 ,

where ~s1 and ~s2 are spin operators of S1 and S2 given by equation (1.33) and

µ =
µ1µ2

µ1 + µ2

is the so-called reduced mass.

To construct models of interacting systems, we modify the above generators in any

way subject only to the condition that the commutation relations (1.28) and (1.29)

are preserved. For example, an arbitrary term can be added to the Hamiltonian if

that term commutes with all other generators, i.e., it is invariant under Galilean

group. For example, ~q · ~q and any functions of it is an invariant. Such a function,

V (~q · ~q), is called potential.

The final assumption of this section concerns decomposable states.

Rule 15 Suppose that the state of the system composed of heterogeneous systems

S1+S2 is T. The necessary and sufficient condition for the statistical decomposition

of the state of S1 to be

Π2(T) =

(

∑

k

)

p

wkT1k
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is that T itself has statistical decomposition

T =

(

∑

k

)

p

wkT1k ⊗ T2k ,

where T1k are some states of S1 and T2k are some states of S2.

One can say that statistical decomposition is invariant with respect to compositions.

By registration of observables of S1 alone, only the state operator Π2(T) can be de-

termined, not its statistical decomposition. However, by registration of observables

pertaining to a composite object S1 + S2, some information about the statistical

decomposition of Π2(T) can be obtained from Rule 15. Suppose, e.g., that S1 + S2

is in an extremal state T = P[Ψ]. Then state operator Π2(P[Ψ]) cannot have a

non-trivial statistical decomposition. This fact is at the root of the objectification

problem in quantum theory of measurement (cf. [19], our Sections 4.1 and 4.2).

Based on the mathematical properties of the tensor products, the description of

systems composed of arbitrary number of sub-systems can be obtained by exten-

sion of the above methods. The only condition is that each two subsystems are

heterogeneous.

2.1.2 Entanglement

Entanglement is a kind of mutual influence between quantum systems that is very

different from any effect known from classical theories. It is not an interaction

according to Definition 19.

Definition 20 If object S composed of two heterogeneous quantum objects S1 and

S2 is in an indecomposable state W that satisfies condition (2.1), one says that S1

and S2 are entangled or that state W is entangled.

Consider a decomposable state

W = pT1 ⊗ T2 (+)p p
′T′

1 ⊗ T′
2 ,

where Ti and T′
i, i = 1, 2, are states of Si. Clearly, neither T1 ⊗ T2 nor T′

1 ⊗ T′
2

is entangled, and W cannot, therefore, be considered as entangled, either. But

W does satisfy condition (2.1). This is the reason for the condition that W be

indecomposable in Definition 201.

1There are different definitions of entanglement, e.g., [54]. Our definition seems to be intu-

itively clearer and mathematically much simpler. The problem is that pure mathematics cannot

distinguish decomposable state operators from indecomposable ones.
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Entanglement is a physical phenomenon that has measurable consequences. One

of these consequences is correlations between outcomes of registrations that are

performed simultaneously on the two (or more) entangled systems.

As an example, consider two heterogeneous objects S1 and S2 and two sharp

observables Ai : Hi 7→ Hi, i = 1, 2. Let |ai〉 ∈ Hi and |bi〉 ∈ Hi be four eigenstates,

Ai|ai〉 = ai|ai〉 , Ai|bi〉 = bi|bi〉 ,

and let bi > ai, i = 1, 2. The state P[Ψ] of the composite object S1 + S2, where

|Ψ〉 = 1√
2
(|a1〉 ⊗ |b2〉+ |b1〉 ⊗ |a2〉)

is entangled. Indeed,

Π2(P[Ψ]) =
1

2
(|a1〉⊗〈a1|+|b1〉⊗〈b1|) , Π1(P[Ψ]) =

1

2
(|a2〉⊗〈a2|+|b2〉⊗〈b2|) (2.6)

and P[Ψ] is not a tensor product of these two states.

Let us calculate the correlations of two sharp observables, A1 ⊗ 1 and 1 ⊗ A2 on

H1 ⊗H2. The observables commute hence Definition 12 is applicable. We need the

first two moments of observables A1 ⊗ 1 and 1⊗ A2 in state P[Ψ]:

〈Ψ|A1 ⊗ 1|Ψ〉 = 1

2
(a1 + b1) , 〈Ψ|1⊗ A2|Ψ〉 = 1

2
(a2 + b2)

and

〈Ψ|(A1 ⊗ 1)2|Ψ〉 = 1

2
(a21 + b21) , 〈Ψ|(1⊗ A2)

2|Ψ〉 = 1

2
(a22 + b22) .

The variances (Definition 11) are

∆(A1 ⊗ 1) =

(

b1 − a1
2

)2

, ∆(1⊗ A2) =

(

b2 − a2
2

)2

.

The average of the product (A1 ⊗ 1)(1⊗ A2) = A1 ⊗ A2 is

〈Φ|(A1 ⊗ A2)Φ〉 =
a1b2 + b1a2

2

so that, finally

C(A1 ⊗ 1, 1⊗ A2,P[Ψ]) = −1 .

The result is that the observables are strongly anticorrelated in state P[Ψ]. What this

means can be seen from the probability distributions for different possible outcomes

by measuring the two observables. The corresponding PV measures define the four

projections

Paa = E1({a1})⊗ E2({a2}) , Pab = E1({a1})⊗ E2({b2}) ,
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Pba = E1({b1})⊗ E2({a2}) , Pbb = E1({b1})⊗ E2({b2}) ,
and we obtain

〈Ψ|Paa|Ψ〉 = 0 , 〈Ψ|Pab|Ψ〉 = 1

2
,

〈Ψ|Pba|Ψ〉 = 1

2
, 〈Ψ|Pbb|Ψ〉 = 0 .

It follows: if the registration of A1 ⊗ 1 gives a1 (b1) then the registration of 1 ⊗ A1

gives b2 (a2) with certainty, and vice versa, the correlation being symmetric with

respect to S1 and S2.

Existence of such correlations has surprising consequences. For example, it allows

to register observable A1 by an apparatus that interacts only with A2: If the ap-

paratus register observable A2 and gives value b2 for it then it simultaneously gives

value a1 for A1. This is an example of indirect registration.

State Π2(P[Ψ]) in equation (2.6) is an example of a non-extremal state that is

indecomposable. This follows from Rule 15 and the fact that Ψ is extremal.

Another aspect of entanglement is the amount of information that the entangled

state and the states of the subsystems carry. This can be studied with the help of

von Neumann entropy (1.19). Von Neumann entropy of composite objects satisfies

a number of interesting inequalities, see, e.g., Ref. [96]. One is the so-called sub-

additivity [1], which is described by the following:

Proposition 10 Let S be composed of heterogeneous systems S1 and S2 of different

types. Let T be the state of S and let

T1 = Π2(T) , T2 = Π1(T) .

Then

S(T) ≤ S(T1) + S(T2)

and the equality sign is valid only if

T = T1 ⊗ T2 .

In the example above,

S(P[Ψ]) = 0 , S(Π2(P[Ψ])) = S(Π2(P[Ψ])) = ln 2 ,

confirming the inequality and showing that an entangled state of two systems can

contain more information than the sum of the information in both subsystems. This

possibility is utilised by quantum computers.

Suppose next that S1 and S2 are far from each other, S1 near point ~x1 and S2

near point ~x2. State Ψ of the composite is independent of the distance between ~x1
and ~x2. Could one use the strong anticorrelation to send signals from ~x1 to ~x2, say?
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There are two reasons why one cannot. First, one has no choice of the value, a1 or

b1, that is obtained at ~x1. As is easily seen from the state Π2(P[Ψ]) of S1, Eq. (2.6),

the probability of each outcome is 1/2. One has, therefore, no control about what

signal will be sent. Second, suppose that the state P[Ψ] is prepared many times and

let the observer at ~x1 register A1 every time in the first ensemble of experiments

and do noting in the second ensemble. Is there any difference between the two cases

that could be recognized at ~x2? In the first case, the state of S2 given by Eq. (2.6)

is the statistical decomposition of the state, whereas, in the second case, the state

operator is the same but the state is indecomposable because the composite system

is in an extremal state. However, by direct registrations of any observable pertinent

to S2, the observer at ~x2 cannot distinguish different statistical decomposition of the

same state operator from each other.

The next interesting question is, how the influence of a registered value at ~x1
on that at ~x2 is to be understood. Even in classical mechanics, one can arrange

strong correlations. For example, if a body with zero angular momentum with

respect to its centre of mass decays into two bodies flying away from each other,

the angular momentum of the first is exactly the opposite to that of the second.

This strong anticorrelation cannot be used to send signals either. It is moreover

clear that a measurement of the first angular momentum giving the value ~L1 is not

a cause of the second angular momentum having the value −~L1. Rather, the decay

is the common cause of the two values being opposite2. The process of creating the

two opposite values at distant points is also completely local: the decay is a local

phenomenon and the movement of each of the debris is governed by a local equation

of motion. Moreover, the values ~L1 and −~L1 are objective, that is, they exist on

the debris independently of any measurement and can be, in this way, transported

from the decay point to the measurements in a local way.

In quantum mechanics, such an explanation of the correlations is not possible.

A value of an observable is created only during its registration. It does not exist

in any form before the registration, except in the special case of state which is an

eigenstate. However, in our example, Ψ is not an eigenstate either of A1 ⊗ 1 or

of 1 ⊗ A2. The registrations performed simultaneously at ~x1 and at ~x2, which can

be very far from each other, are connected by a relation that is utterly non-local.

How can the apparatuses together with parts of the quantum system at two distant

points ~x1 and at ~x2 ”know” what values they are to create so that the correlations

result? Note that the rejection of objectivity of observables leads more directly to

non-locality than assumption of any sort of realism.

2The condition of common cause can be formulated rigorously [79], see also the discussion in

Ref. [31], pp. 83–94.
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The nature of simultaneity with which the correlations take place can be described

in more details. In Ref. [51], the entangled state is created by a decay of one

particle that defines a preferred frame—its rest frame, which, in turn, defines the

simultaneity. Lead by this example, we adopt the following general assumption

about entanglement. First, the entangled state on which the correlations between

remote registrations can be observed must be prepared and the apparatus that

prepares it (or some of its parts) defines a unique preferred frame similarly as in the

case considered in Ref. [51]. Second, the apparatus location and the time interval of

the preparation process defines a spacetime regionD that must lie inside the common

past of the events at which the simultaneous correlations are registered. Region D

can be arbitrarily large (it does not have to be just a small neighbourhood of the

particle-decay event as in Ref. [51]). This assumption is weaker than Reichenbach’s

condition of common cause because it holds, e.g., for EPR effect. The point is that

it does not require the causal independence of the registrations that are correlated

(allowing for non-locality).

The non-local correlation between the registration outcomes can be ascertained

only if both values are known and can be compared. It may therefore be more precise

if we say that the non-local correlations can only be seen if the non-local observable

A1 ⊗ A2 is registered. This non-locality of quantum correlations in entangled states

does not lead to any internal contradictions in quantum mechanics and is compatible

with other successful theories (such as special relativity) as well as with existing

experimental data. Nonetheless it is very surprising and it has been very thoroughly

studied. In this way, various conditions (e.g., Bell inequality) have been found that

had to be satisfied by values of observables if the values were objective and locality

were satisfied. Experiments show that such conditions are violated, and, moreover,

that their violation can even be exploited in quantum communication techniques

[17].

Finally, let us repeat here that non-local correlations and non-objectivity of ob-

servables is accepted by our interpretation of quantum mechanics in the full extent

and that this does not lead to any contradiction with Basic Ontological Hypothesis

of Quantum Mechanics and with the Realist Model Approach (see Section 0.1.3).

2.2 Composition of identical systems

This section gives account of composition of non-heterogeneous systems, explains

why the standard theory is inadequate and introduces all necessary corrections.

An efficient mathematical tool for dealing with such systems are Fock-space meth-

ods (see, e.g., [70], p. 137 and [52]). However, the Fock-space methods are not ad-

vantageous for the presentation of our ideas on general identical systems and we shall
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not use them in this paper. This does not mean that they cannot be utilised and

give an efficient help to solve various mathematical problems that occur in specific

cases.

2.2.1 Identical subsystems

If a prepared object has more than one subsystem of the same type (identical subsys-

tems), then these subsystems are indistinguishable. This idea can be mathematically

expressed as invariance with respect to permutations.

Let SN be the permutation group of N objects, that is, each element g of SN is a

bijective map g : {1, · · · , N} 7→ {1, · · · , N}, the inverse element to g is the inverse

map g−1 and the group product of g1 and g2 is defined by (g1g2)(k) = g1(g2(k)),

k ∈ {1, · · · , N}.
Given a Hilbert space H, let us denote by HN the tensor product of N copies of

H,

HN = H⊗H⊗ · · · ⊗H .

On HN , the permutation group SN acts as follows. Let ψk ∈ H, k = 1, · · · , N , then

ψ1 ⊗ · · · ⊗ ψN ∈ HN

and

g(ψ1 ⊗ · · · ⊗ ψN ) = ψg(1) ⊗ · · · ⊗ ψg(N) . (2.7)

g preserves the inner product of HN and is, therefore, bounded and continuous.

Hence, it can be extended by linearity and continuity to the whole of HN . The

resulting operator on HN is denoted by the same symbol g and is a unitary operator

by construction. The action (2.7) thus defines a unitary representation of the group

SN on HN .

All vectors of HN that transform according to a fixed unitary representation

R of SN form a closed linear subspace of HN that will be denoted by HN
R. The

representations being unitary, the subspaces HN
R are orthogonal to each other. Let

us denote by P
(N)
R the orthogonal projection operator,

P
(N)
R : HN 7→ HN

R .

An important property of the subspaces is their invariance with respect to tensor

products of unitary operators. Let U be a unitary transformation on H, then U ⊗
U⊗ . . .⊗U is a unitary transformation on H⊗H⊗ . . .⊗H and each subspace HN

R is

invariant with respect to it. Hence, U⊗U⊗ . . .⊗U acts as a unitary transformation

on HN
R for each R.

The location order of a given state in a tensor product can be considered as in-

formation about the identity of the corresponding system. Such information has no
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physical meaning and a change of the ordering is just a kind of gauge transforma-

tion3. Motivated by this idea, we look for one-dimensional unitary representations

of SN because only these transform vectors by a phase factor multiplication. SN has

exactly two one-dimensional unitary representations: the symmetric (trivial) one,

g 7→ 1, and the alternating one g 7→ η(g)1 for each g ∈ SN , where η(g) = 1 for

even and η(g) = −1 for odd permutations g. If R is the symmetric (alternating)

representation we use symbol HN
s (HN

a ) for HN
R. Let P

(N)
s (P

(N)
a ) be the orthogo-

nal projection on HN
s (HN

a ). Note that the usual operation of symmetrisation or

antisymmetrisation on a vector Ψ ∈ HN , such as

ψ ⊗ φ 7→ (1/2)(ψ ⊗ φ± φ⊗ ψ)

in H2, is nothing but P
(N)
s Ψ or P

(N)
a Ψ, respectively.

Now, we are ready to formulate the basic assumption concerning identical subsys-

tems. From relativistic quantum field theory [97], we take over the following result.

Rule 16 Let SN be a quantum system composed of N subsystems S, each of type

τ with Hilbert space Hτ . Then, the Hilbert space of SN is HN
τs for subsystems with

integer spin and HN
τa for those with half-integer spin. If systems S are closed and

do not interact, then the representation of group Ḡ+
c on HN

τs or HN
τa is the tensor

product of its N representations on Hτ .

Definition 21 Systems with integer spin are called bosons and those with half-

integer spin are called fermions. The symmetry properties of states lead to Bose–

Einstein statistics for bosons and Fermi–Dirac one for fermions.

We can, therefore, introduce a useful notation, a common symbol HN
R(τ) for the

subspaces of the symmetric and anti-symmetric representations and P
(N)
τ for the

corresponding projections because the representation is determined by the system

type τ .

For the Galilean group, we have:

Proposition 11 Let G be the generator of subgroup g(t) of Ḡ+
c on Hτ . Then, the

generator G̃ of g(t) on HN
R(τ) is given by

G̃ = G⊗ 12 ⊗ . . .⊗ 1N + 11 ⊗ G⊗ 13 ⊗ . . .⊗ 1N + . . .+ 11 ⊗ . . .⊗ 1N−1 ⊗ G . (2.8)

3A different and independent part (ignored here) of the theory of identical particles is that

states of two identical systems can also be swapped in a physical process of continuous evolution,

and can so entail a non-trivial phase factor at the total state (anyons, see, e.g. Ref. [99]).
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Observe that the form of the generator is independent on whether the space is

symmetric or anti-symmetric. Proposition 11 also suggests a way of constructing an

operator on HN
R(τ) from that on Hτ that will be important later. Let us study the

properties of the construction with the help of simple example.

Suppose that S is a bosonic particle with Hilbert spaceHτ and let S2 be composed

of two such bosons with Hilbert space H2
τs. Let A be a bounded s.a. operator on Hτ

with discrete non-degenerate value set {ak} and let the projection on the eigenspace

of ak be Pk = |ψk〉〈ψk| for all k, where ψk is an eigenvector of A, A|ψk〉 = ak|ψk〉.
Consider the operator A⊗ 1+ 1⊗ A on H2

τs. We obtain

A⊗ 1+ 1⊗ A =

∞
∑

k=1

ak(Pk ⊗ 1+ 1⊗ Pk) . (2.9)

However, Pk ⊗ 1+ 1⊗ Pk is not a projection. Indeed,

(Pk ⊗ 1+ 1⊗ Pk)
2 = Pk ⊗ 1+ 1⊗ Pk + 2Pk ⊗ Pk .

The eigenvectors of A⊗ 1+ 1⊗ A are

1√
2
(|ψk〉 ⊗ |ψl〉+ |ψl〉 ⊗ |ψk〉) (2.10)

with eigenvalue ak + al, for all k < l, and

|ψk〉 ⊗ |ψk〉

with eigenvalue 2ak for all k. There can be a degeneracy if there are values k < l

and k′ < l′ such that ak + al = ak′ + al′. The projection on eigenvector (2.10) is

1

2
Pk ⊗ Pl +

1

2
Pl ⊗ Pk +

1

2
(|ψk〉〈ψl| ⊗ |ψl〉〈ψk|+ |ψl〉〈ψk| ⊗ |ψk〉〈ψl|) ,

which cannot be easily expressed in terms of Pk and Pl. We can see from this

example that it is no straightforward business to construct a POV measure for a

system composed of identical particles from that of its subsystems. But we can

still use expression (2.9) and its analogues in calculations. We shall generalise this

construction later.

For states and observables, we have:

Proposition 12 Possible states of system SN composed of N systems of type τ are

elements of T(HN
R(τ))

+
1 and the effects of SN are elements of Lr(H

N
R(τ))

+
≤1.

Proposition 12 follows directly from the definition of a system with a given Hilbert

space. To see its significance, let us make a comparison with the case of subsystems

of different types. Let system S ′ be composed of two particles S1 and S2 of different
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types. Let us prepare S ′ in a state P[Ψ(~x1, ~x2)] ∈ T(H1⊗H2)
+
1 . Then, S1 is in state

T ∈ T(H1)
+
1 given by kernel

T (~x1; ~x
′
1) =

∫

d3x2Ψ
∗(~x1, ~x2)Ψ(~x′1, ~x2)

and sharp observable of S1 with kernel A can be measured in such a way that we

measure sharp observable

A⊗ 12 (2.11)

of S ′. This is an expression of the obvious fact that observing anything on a subsys-

tem is tantamount to observing something on the whole system. Thus, composing

heterogeneous systems does not disturb their individuality and rules valid for each

of them separately (even in the cases they are entangled).

Looking at the composition of identical systems we observe a very different pic-

ture. A simple example of two spin-zero particles will give a sufficient illustration

of the phenomena. Let us consider two experiments.

Experiment I: State P[ψ] of particle S1 of type τ is prepared in our laboratory.

Experiment II: State P[ψ] is prepared as in Experiment I and state P[φ] of particle

S2 of the same type τ is prepared simultaneously in a remote laboratory.

If our laboratory does not know about the second one, it believes that the state of

S1 is P[ψ] ∈ T(Hτ )
+
1 . If it does then it believes that the state of the composite

system S ′ is, according to Proposition 12, P[Ψ] ∈ T(H2
R(τ))

+
1 given by

Ψ(~x1, ~x2) = ν
(

ψ(~x1)φ(~x2) + φ(~x1)ψ(~x2)
)

, (2.12)

where ν = [2(1 + |c|2)]−1/2 is a normalisation factor, c = 〈ψ|φ〉. This is true even if

states ψ and φ are localized (the wave functions have supports) within the respective

laboratories.

Localisation of the states ψ and φ removes at least the following difficulty. Sup-

pose that a fermion is prepared in a remote laboratory in a state φ. Then a fermion

of the same type cannot be prepared in the same state ψ = φ in our laboratory: the

composite state of the two fermions had then to be zero (Pauli exclusion principle).

However, if the wave function of the fermion prepared in our laboratory falls off

rapidly outside our laboratory and that in the remote laboratory does the same out-

side the remote one, then the two wave functions would be different, ψ(x) 6= φ(x),

and their antisymmetric combination would not be zero even if ψ was just a Eu-

clidean group transform of φ. The requirement of the fall-off is very plausible indeed.

It would be technically impossible to prepare a state with the same wave function ψ
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in a laboratory located in Prague, and simultaneously in a laboratory in Bern, say,

even for bosons.

Returning to our original experiments, it seems that the intuitive notions of prepa-

ration reaches its limits and becomes ambiguous. Has this ambiguity any observable

consequences? To answer this question, let us first consider Experiment I supple-

mented by a registration corresponding to the sharp observable A of S1 and let the

registration be made in our laboratory. Measurements of this kind lead to average

value 〈ψ|A|ψ〉. Second, perform Experiment II supplemented by the registration

by the same apparatus in our laboratory as above. Because the apparatus cannot

distinguish between the contributions by the two particles, the correct observable

corresponding to this registration now is:

A⊗ 12 + 11 ⊗ A . (2.13)

We can see a physical motivation for the construction suggested above by the con-

siderations about the Galilean group: here, it is not the additivity as in the case of

heterogeneous systems but the way identical particles contribute to averages. Op-

erator (2.13) acts on H2
R(τ) so that it satisfies Proposition 12 while (2.11) does not.

The proposed measurements lead to the average value defined by Eqs. (2.12) and

(2.13):
〈ψ|Aψ〉+ 〈φ|Aφ〉+ c〈φ|Aψ〉+ c∗〈ψ|Aφ〉

1 + |c|2 . (2.14)

Average (2.14) appreciably differs from 〈ψ|A|ψ〉 for many choices of A, such as all

generators of group Ḡ+
c and most operators constructed from them such as position,

momentum, spin, angular momentum, energy, etc. (the majority of operators dealt

with in any textbook). In particular, if the states are localised inside each laboratory

that prepares them, then c = 0 and average (2.14) is 〈ψ|Aψ〉+ 〈φ|Aφ〉. Consider the
position operator Q. In Q-representation, the difference between the two averages

is
∫

d3x~xφ∗(~x)φ(~x) .

This can be made arbitrarily large by choosing the remote laboratory far enough.

We conclude that system S1 does not seem to be in state P[ψ] prepared in our

laboratory and registration of its observable A in our laboratory seems to give val-

ues influenced by external circumstances that are not under our control. Thus,

Proposition 12 would lead to violation of Rules stated in Chapter 1 if it were not

supplemented by some further assumptions.

2.2.2 Cluster separability

There was a proposal (Ref. [70], p. 128) that the problem described in the previous

section can be avoided by adding some kind of locality to properties of observables.
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Such locality assumptions are quite popular in various branches of quantum theory.

Let us briefly look at them.

The full relativistic theory starts with the requirement that space-time symme-

tries of a closed system be realised by unitary representations of Poincaré group on

the Hilbert space of states, see Refs. [97] and [40]. Then, the cluster decomposition

principle, a locality assumption, states that if multi-particle scattering experiments

are studied in distant laboratories, then the S-matrix element for the overall pro-

cess factorizes into those concerning only the experiments in the single laboratories.

This ensures a factorisation of the corresponding transition probabilities, so that an

experiment in one laboratory cannot influence the results obtained in another one.

Cluster decomposition principle implies non-trivial local properties of the theory

underlying the S-matrix, in particular it plays a crucial part in suggesting that local

field theory is inevitable (cf. Ref. [97], Chap. 4).

In the phenomenological theory of relativistic or non-relativistic many-body sys-

tems, Hilbert space of a closed system must also carry a unitary representation of

Poincaré or Galilei group. Then, the so-called cluster separability is a locality as-

sumption, see, e.g., Refs. [52] or [21] and references therein. It is a condition on

interaction terms in the generators of the space-time symmetry group saying: if

the system is divided into disjoint subsystems (i.e.,clusters) by a sufficiently large

spacelike separation, then each subsystem behaves as a closed system with a suitable

representation of space-time symmetries on its Hilbert space, see Ref. [52], Section

6.1. Let us call this principle Cluster Separability I.

Peres’ proposal contains another special case of locality assumption. Let us re-

formulate it as follows:

Cluster Separability II No quantum experiment with a system in a local labora-

tory is affected by the mere presence of an identical system in remote parts of the

universe.

It is well known (see, e.g., Ref. [70], p. 136) that this principle leads to restrictions

on possible statistics (fermions, bosons). What is less well known is that it also

motivates non-trivial locality conditions on observables.

Some locality condition is already formulated in Ref. [70], p. 128:

... a state w is called remote if ‖Aw‖ is vanishingly small, for any operator

A which corresponds to a quantum test in a nearby location. ... We can

now show that the entanglement of a local quantum system with another

system in a remote state (as defined above) has no observable effect.

This is a condition on A inasmuch as there has to be at least one remote state for

A.
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However, Peres does not warn that most operators of quantum theory do not

satisfy his condition on A [43]. Indeed, observables of quantum field theory and

many-body theories that are constructed from generators of Poincaré or Galilei

groups do not satisfy the locality condition. It follows that Cluster Separability II

is logically independent from the cluster decomposition or from Cluster Separability

I.

The present section reformulates and extends Peres’ ideas. Let us explain ev-

erything on an example of single spin-zero particle, working in Q-representation of

Hilbert space Hτ and of operators on it. A more general theory will be developed

in the next subsection.

We introduce an important locality property of observables [43]. A similar local

condition on observables has been introduced in [94, 95]: Let D ⊂ R3 be open.

Operator with kernel a(~x1; ~x
′
1) is D-local if

∫

d3x′1 a(~x1; ~x
′
1)f(~x

′
1) =

∫

d3x1 a(~x1; ~x
′
1)f(~x1) = 0 ,

for any test function f that vanishes in D.

Now assume for Experiment II that our laboratory is inside open set D ⊂ R3

and that suppφ ∩ D = ∅. Then, the second term in (2.14) vanishes for all D-

local observables and averages 〈ψ|A|ψ〉 and (2.14) agree in this case. Hence, in this

case, the two approaches are compatible: First, system S1 is in state ψ and the

observable that is measured on it is A. Second, system S1+S2 is in state (2.12) and

the observable being measured is (2.13).

This suggests the following idea. Let S be prepared in a state ψ(~x) such that

suppψ∩D 6= ∅ and that registration of any D-local observable A of S lead to average

〈ψ(~x)|Aψ(~x)〉. In such a case, we say that S has separation status D.

This includes the following condition that must be fulfilled by the apparatus A
registering observable A: The states of those subsystems of A that are identical with

S do not disturb the registration of A by A (but may disturb other registrations).

A model of A satisfying the condition is given in Section 4.3.

In the above example, the reason why the registration of A is not disturbed by

other identical systems is that the wave functions of these systems vanish in D. This

could also be weakened to
∫

D

d3xφ∗(~x)φ(~x) ≈ 0 ,

so that the registration apparatuses are not sensitive enough to react to φ. In any

case, the vanishing of the wave functions of all external identical systems provides a

good mathematical model of separation status and we shall assume that the math-

ematical results obtained for such models are approximately valid for more realistic

situations.
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Now, we can introduce a correction to our intuitive notion of preparation. The

separation status must be understood as new condition on preparations and observ-

ables that could be formulated as follows:

Rule 17 Let S be a quantum system of type τ with Hilbert space Hτ . Any prepa-

ration of S must give it separation status D satisfying D 6= ∅. Then the prepared

state of S is an element of T(Hτ )
+
1 and D-local effects of Lr(Hτ )

+
≤1 are individually

registrable on S but only these are.

Thus, any preparation must also provide sufficient isolation of the prepared system

S from influence of particles of the environment that are identical to constituents

of the prepared system. In this way, control about what is prepared and what is

registered might be regained and Cluster Separability II would hold.

What is the nature and aim of the limitation of observables to D-local ones?

A current opinion is that, on the one hand, the states of each quantum system of

type τ with Hilbert space Hτ are all positive normalised s.a. operators on Hτ and

its observables are all s.a. operators on Hτ . On the other, in the everyday mess of

practical conditions of each particular experiment, only some of these states occur

and only some of these effects are registrable. That is all that the current opinion

can say.

In this sense, the current language of quantum mechanics is too abstract and too

far away from real experiments. So far away that it cannot give a detailed account of

experiments without getting entangled in contradictions. This is one of the reasons

why it has problems with realist interpretation, classical properties and theory of

measurement. Our aim is to refine the language so that it becomes more suitable

for description of real experiments.

For example, the concept ”quantum system of type τ” is an ideal theoretical one

that has no real counterpart. It has been abstracted by generalisation from many

particular experiments with real objects. Only objects that have been prepared

are real and we have to study these real objects first to arrive at useful abstract

concepts. We must view each real physical quantum object S as a system with

a modified set of observables. The modification depends on the bounded open set

D that is determined by the preparation of S. Hence, in general, any registrable

observable must be D-local for some bounded open set D. The price is that, strictly

speaking, no quantum system is proper (see Section 1.2.2).

Simple examples of separation status are D = ∅ and D = R3. The first, the

so-called trivial separation status, is the case when S is not separated from a system

composed of N particles of the same kind. Then, S has no individual states and

observables. An example of the second is the case that S is isolated: the whole

space R3 is empty except for S. The standard quantum mechanics works just with
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these two separation statuses, assuming tacitly that systems are approximately iso-

lated. Our definition of general separation status D explains what may be meant by

”approximately” and why quantum mechanics works at all in practical applications.

2.2.3 Mathematical theory of D-local observables

In the two foregoing sections, some raw physical ideas on composition of identical

systems have been put forward. Now, we start to give a general mathematical

formulation of these ideas. In the present section, we extend the definition of D-

local operators, to composite systems containing more than just one kind of particles

and to non-vector states, and we study the question of how D-local POV measures

can be constructed from general ones. We limit ourselves to one-dimensional POV’s,

that is, F is the set of subsets of R.

Let S be a general N -particle system. We shall work in Q representation through-

out, suppress spin indices and consider only those operators A on H that fulfil the

following condition. The kernel A(~x1, · · · , ~xN ; ~x′1, · · · , ~x′N) of A is a distribution on

Schwartz space (its elements are rapidly decreasing C∞ functions, see, e.g., Ref.

[78]) S(R3N ) in variables ~x′1, · · · , ~x′N for any fixed value of ~x1, · · · , ~xN and that

g(~x1, · · · , ~xN) =
∫

d3Nx′A(~x1, · · · , ~xN ; ~x′1, · · · , ~x′N )f(~x′1, · · · , ~x′N ) ∈ S(R3N)

for any f(~x1, · · · , ~xN) ∈ S(R3N ). This is usually satisfied, see Section 1.3.1.

The general and formal definition of D-local operators is the following:

Definition 22 Let D ⊂ R3 be open, let A be an operator on H and let the following

conditions hold:

1. A(~x1, · · · , ~xN ; ~x′1, · · · , ~x′N ) is the zero distribution for any ~x1, · · · , ~xN ∈ R
3N \

DN .

2.
∫

d3Nx′A(~x1, · · · , ~xN ; ~x′1, · · · , ~x′N)f(~x′1, · · · , ~x′N) = 0

for any test function f such that

suppf(~x′1, · · · , ~x′N) ⊂ R
3N \DN .

Then A is called D-local.

Let A be D-local for some open set D, let D′ be open and D ⊂ D′. Then, A is

D′-local. Let A be D-local and also D′-local for two open sets D and D′. Then, A
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is (D ∩D′)-local. Thus, all open sets D such that A is D-local form a filter in the

Boolean lattice of open subsets of R3.

Example 1 N = 1, A(~x; ~x′) = x1δ(~x− ~x′). A is R3-local and the filter is R3.

Example 2 N = 1, ψ(~x) is a wave function with support D. Then |ψ(~x)〉〈ψ(~x)| is
D′-local, where D′ is the interior of D, and the filter is the family of all open sets

containing D′.

Definition 22 can be applied both to state operators and to effects (of a POV

measure, see Section 1.2.1). However, the definition of a D-local POV measure is

more complicated than just the condition that its effects be D-local. Let us denote

by H(D) the Hilbert space obtained by completion of the linear space of rapidly

decreasing C∞-functions with support in DN with respect to the inner product of

H. H(D) is a closed linear subspace of H as is the set H⊥(D) of all vectors in H

orthogonal to H(D). Let P[H(D)] be the orthogonal projection from H onto H(D).

Then 1− P[H(D)] is the projection onto H⊥(D).

Definition 23 A POV measure E(X) of dimension 1 is called D-local if

1. effect E(X) is D-local for all X ∈ F such that 0 /∈ X and

2.

E(X) = 1− P[H(D)] + E′(X)

for all X ∈ F such that 0 ∈ X, where E′(X) is a D-local effect.

In principle, real registrations can register only D-local POV measures for some

bounded D because each registration apparatus takes only a limited region D of

space and is not sensitive to any system localised outside D. But there is no a

priory bound on D.

Next, we shall prove that each one-dimensional POV measure E of a general

system S is associated, for a given open set D, with a unique one-dimensional D-

local POV measure ΛD(E), the so-called D-localisation of E, such that the condition

tr[E(X)T] = tr[ΛD(E)(X))T] (2.15)

is satisfied for all X ∈ F and for all D-local states T. Thus, any standard observable

E, such as position, momentum, etc., can be registered under the condition that the

system is within D by registering ΛD(E) and the probability distribution would be

the same as if we had registered E. We are going to propose that exactly this has

been done if somebody claims he has measured position, momentum, etc.

Let A ∈ Lr(H). Then P[H(D)]AP[H(D)] ∈ Lr(H). Moreover, if A is positive, so

is P[H(D)]AP[H(D)], and we have also

‖P[H(D)]AP[H(D)]‖ ≤ ‖A‖ .
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Hence, if A ∈ Lr(H)+≤1 then P[H(D)]AP[H(D)] ∈ Lr(H)+≤1. Let us call

P[H(D)]AP[H(D)]

D-projection of A. Of course, the D-projection is not a unitary map and it changes

the spectral measure of the operator. For example, the spectral measure of

P[H(D)]AP[H(D)]

must contain P({0}) = 1 − P[H(D)] even if that of A does not because all vectors

in H⊥
τ (D) are eigenvectors of P[H(D)]AP[H(D)] to eigenvalue 0.

Now, we are ready to give the following definition:

Definition 24 Let E be an one-dimensional POV measure on H. Then,

D-localisation ΛD(E) of E is defined by

1.

ΛD(E)(X) = P[H(D)]E(X)P[H(D)]

for all X ∈ F such that 0 6∈ X and

2.

ΛD(E)(X) = P[H(D)]E(X)P[H(D)] + 1− P[H(D)]

for all X ∈ F such that 0 ∈ X.

Clearly,

ΛD(E)(R) = P[H(D)]1P[H(D)] + 1− P[H(D)] = 1 ,

and the normalisation condition holds. Then, all other conditions on POV measures

are also satisfied by ΛD(E) and equation (2.15) is true.

Let us study this definition for a simple example. Let A be a bounded s.a. operator

on H with discrete value set {ak} including a0 = 0 and let the projection on the

eigenspace of ak be Pk for all k. Then

A =
∞
∑

k=1

akPk . (2.16)

The corresponding PV measure is

EA(X) =
∑

k∈K(X)

Pk ,

where k ∈ K(X) if ak ∈ X . Let D be open, H(D) and P[H(D)] be defined as above.

Equation (2.16) and Definition 24 imply that D-projection of A can then be written

as

P[H(D)]AP[H(D)] =

∞
∑

k=0

akΛD(Pk) , (2.17)
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where

ΛD(Pk) = P[H(D)]PkP[H(D)] + δ0k(1− P[H(D)])

and

ΛD(E
A)(X) =

∑

k∈K(X)

ΛD(Pk) .

Clearly, P[H(D)]PkP[H(D)] is a projection only if P and P[H(D)] commute. Pro-

jections onto subspaces H(D) and Hk of H commute only if either H(D)∩Hk = 0,

where 0 is the zero vector of H, or H(D) ⊂ Hk or Hk ⊂ H(D).

Of course, the k = 0 element of the right-hand side of sum (2.17) vanishes and it

is not necessary for the validity of the equation to care how ΛD(P0) is to be defined.

With our definition, however, the normalisation condition on the POV measures is

satisfied.

As A is bounded and s.a., so is P[H(D)]AP[H(D)], hence it also possesses its own

spectral decomposition, which is in general different from equation (2.17). Its value

set will be different from {ak} and its projections different from P[H(D)]PkP[H(D)]

(there does not seem to be any general way calculate EP[H(D)]AP[H(D)] from EA).

Hence, our definition of the D-localisation of an observable is different from D-

projection of the corresponding operator. In particular, our definition preserves the

value set (adding possibly 0 to it) but does not preserve the sharpness. Moreover,

it makes sense for unbounded operators, too.

The above definitions of D-local observables and of D-localisation could be gener-

alised as follows. As yet, D has been an open subset in the spectrum of the position
~Q of S. We can take any sharp observable instead of position and all definitions and

their consequences remain valid. A very important example is the following. As we

shall see in Chapter 4, every registration apparatus A must include detectors. It

seems that any detector can work only if the total energy of the detected system is

higher than certain threshold E(A) > 0. Hence, the observable that is registered by

such an apparatus must be D-local where D is the subset E > E(A) of the energy

spectrum. If the energy of all systems identical with S that are in the environment is

smaller than E(A) then the apparatus cannot be influenced by them similarly as it

is not influenced by wave functions that vanish in a neighbourhood of A. Under such

conditions, S prepared so that its energy lies in D has the generalised separation

status D. Here, the term ”local” loses its purely space-like character.

2.2.4 Separation status

The generalisation of the notion of separation status introduced in Section 2.2.2 to

non-vector states of composite systems and to one-dimensional POV measures is

straightforward:
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Definition 25 Let D ⊂ R3 be an open set and system S be prepared in state T that

satisfies the following conditions:

1. There is at least one D-local POV measure E′ such that its average on T does

not vanish,
∫

R

ιtr[TdE′] 6= 0 .

2. The average of any D-local one-dimensional POV measure E as registered on

T is given by
∫

R

ιtr[TdE] .

Then, open set D is called separation status of S.

The second condition means that the registration of E on T is not disturbed by any

other existing identical system.

Rule 17 then guarantees that control is regained, external influences are removed

and possible ambiguity is harmless. An example of such an ambiguity can be con-

structed from Experiments I and II if the preparations are viewed as hierarchically

nested. More generally, let system S̄ be prepared in state T̄ with separation status

D̄ and have a subsystem S that is simultaneously prepared in state T with separa-

tion status D ⊂ D̄. Suppose further that S̄ contains at least two particles S1 and

S2 of the same type such that S1 ⊂ S and S2 6⊂ S. Then S̄ has more subsystems

that are different from, but contain particles of the same type as, S. Thus, S would

in general be only a mathematical entity because it could not be physically distin-

guished from some other subsystems of S̄. However, in our special case, one of these

subsystems, viz. S, has a separation status D and is, therefore, recognisable and has

state T, on which D-local observables of S can be registered.

Let us set up a mathematical model of such an ambiguity. It concerns composition

of general non-heterogeneous systems S and S ′ and the construction of observables

of S̄ = S + S ′ from those of S analogous to (2.13).

We assume that there is, generally, a fixed number K of fermion particle types

and a and fixed number L of boson particle types in quantum mechanics. Let S be

a general N -particle system composed of numbers F1, . . . , FK of the fermions and

B1, . . . , BL of bosons, where Fk and Bl are non-negative integers so that

K
∑

k=1

Fk +

L
∑

l=1

Bl = N

is the total particle number in S. We call Fk and Bl occupation numbers. Let the

Hilbert space of Fk fermions be HFk
a , k = 1, . . . , K and that of Bl bosons be HBl

s ,

84



l = 1, . . . , L according to Rule 16 so that the Hilbert space of S is

H =

K
∏

k=1

⊗HFk
a ⊗

L
∏

l=1

⊗HBl
s (2.18)

according to Rule 13. The tensor product on the right hand side is to be understood

so that the factor HFk
a is left out if Fk = 0 and similarly for the bosons. Let

the occupation numbers of S ′ be F ′
1, . . . , F

′
K and B′

1, . . . , B
′
L, and those of S̄ be

F̄1, . . . , F̄K and B̄1, . . . , B̄L. We have

N ′ =
K
∑

k=1

F ′
k +

L
∑

l=1

B′
l , Fk + F ′

k = F̄k , Bk +B′
k = B̄k

for all k. The Hilbert spaces Hτ , Hτ ′ and Hττ ′ of S, S ′ and S̄, respectively, are
given by equations analogous to (2.18). Let us write the Hilbert space Hτ ⊗Hτ ′ on

which T⊗ T′ is a state operator, as follows:

Hτ ⊗Hτ ′ =

K
∏

k=1

⊗
(

HFk
a ⊗H

F ′

k
a

)

⊗
L
∏

l=1

⊗
(

HBl
s ⊗H

B′

l
s

)

.

For any factor Hk
ρ ⊗Hk′

ρ in the expression for Hτ ⊗Hτ ′ , there is a factor Hk+k′

ρ in

the expression for Hττ ′, as k̄ = k + k′. Here, ρ is either a or s and k is either Fk or

Bl, etc. Let P
k+k′

ρ be the orthogonal projection,

Pk+k
′

ρ : Hk
ρ ⊗Hk′

ρ 7→ Hk+k′

ρ

consisting of total symmetrisation or anti-symmetrisation depending on ρ. We define

Pττ ′ : Hτ ⊗Hτ ′ 7→ Hττ ′

by

Pττ ′ =

K
∏

k=1

⊗P
Fk+F

′

k
a ⊗

L
∏

l=1

⊗P
Bl+B

′

l
s . (2.19)

From the definition, it follows immediately that Pττ ′ is an orthogonal projection.

Let us define

J : T(Hτ )
+
1 ×T(Hτ ′)

+
1 7→ T(Hττ ′)

+
1

by

J(T,T′) =
Pττ ′(T⊗ T′)Pττ ′

tr[Pττ ′(T⊗ T′)Pττ ′]
. (2.20)

The symmetry properties of states such as J
(

T,T′
)

are stronger than the symme-

try properties of operators that are necessary to ensure that their action does not

85



change the symmetry properties of the states. For example, the kernel of operator

(2.13) or (2.8) are not of the form PAP, where P is a (anti-)symmetrising projection

such as Pττ ′. Rather, they are symmetrised in whole variable pairs (xi; x
′
i). Formulas

(2.13) and (2.8) are examples of a construction of an operator Ā of a system S̄ from

an operator A of its subsystem S. The general form of such an operator is

Ā =
∑

S̃+S′=S̄

AS̃ ⊗ 1S′ , (2.21)

where the sum is over all different pairs of subsystems S̃ and S ′ such that S̃ is of

the same kind as S. We call Ā extension of A to the composite. It is clear that

our definition of extension is also valid for the composition of two heterogeneous

systems. In this case, the extension would be Ā = A⊗ 1.

Now, we can tackle the composition of general systems. The composition of sys-

tems of the same type is determined by Rule 16 and Proposition 12 together with

Rule 17 so that we can choose a state for the system that is prepared from the cor-

responding state space. The generalisation to arbitrary systems can be formulated

as follows.

Definition 26 Let system S be prepared in state T with separation status D 6= ∅
and system S ′ in state T′ with separation status D′ 6= ∅ such that D∩D = ∅. Then,
S and S ′ are called separated.

This is a generalisation of the situation occurring in Experiments I and II.

Rule 18 Let S and S ′ be separated. Then system S + S ′ can be considered as

prepared in state T̄ = J(T,T′) with separation status D ∪D′. The operators of the

form (2.21) for A ∈ AS(D) are observables of S + S ′. Alternatively, S + S ′ can be

considered as prepared in state T⊗T′ and operators of the form A⊗1′ are observables

of S + S ′, where A ∈ AS(D) and 1′ ∈ AS′(D′).

Now, it also ought to be clear why we do not employ Fock-space method to deal

with identical systems: it automatically (anti-)symmetrises over all systems of the

same type.

To show that the ambiguity is innocuous, it may be helpful to consider a simple

example giving the Euclidean space just one dimension. Let S has occupation

numbers F1 = 2, B1 = 1 and S ′ has F ′
1 = 1 and B′

1 = 1, and let the prepared

state of S be ψ1(x1, x2)φ1(x3) and that of S ′ be ψ2(x4)φ2(x5). The wave function

ψ1(x1, x2) = −ψ1(x2, x1) is antisymmetric in its arguments and the normalisation is
∫

dx1dx2ψ
∗
1(x1, x2)ψ1(x1, x2) =

∫

dx3φ
∗
1(x3)φ1(x3)

=

∫

dx4ψ
∗
2(x4)φ1(x4) =

∫

dx5φ
∗
2(x5)φ2(x5) = 1 .
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The state of S̄ then is

ψ̄(x1, x2, x3, x4, x5) = ν
[

ψ1(x1, x2)ψ2(x4) + ψ1(x4, x1)ψ2(x2) + ψ1(x2, x4)ψ2(x1)
]

×
[

φ1(x3)φ2(x5) + φ1(x5)φ2(x3)
]

, (2.22)

where ν is a normalisation factor. Observe that the kernel

ψ̄(x1, x2, x3, x4, x5)ψ̄
∗(x′1, x

′
2, x

′
3, x

′
4, x

′
5)

is antisymmetric in three variables x1, x2, x4 and independently so in further three

variables x′1, x
′
2, x

′
4 and similarly symmetric in two variables x3, x5 and independently

so in further two variables x′3, x
′
5.

Kernels of observables have less symmetry. For example, let A(x1, x2, x3; x
′
1, x

′
2, x

′
3)

be the kernel of an operator for S. It must be an operator on Hilbert space H2
a⊗H

of S. To satisfy this requirement, it is sufficient that

A(x1, x2, x3; x
′
1, x

′
2, x

′
3) = A(x2, x1, x3; x

′
2, x

′
1, x

′
3) ,

as a simple calculation easily shows. The extension of A to S̄ is

Ā(x1, x2, x3, x4, x5; x
′
1, x

′
2, x

′
3, x

′
4, x

′
5) =

A(x1, x2, x3; x
′
1, x

′
2, x

′
3)δ(x4, x

′
4)δ(x5, x

′
5)

+ A(x2, x4, x3; x
′
2, x

′
4, x

′
3)δ(x1, x

′
1)δ(x5, x

′
5)

+ A(x4, x1, x3; x
′
4, x

′
1, x

′
3)δ(x2, x

′
2)δ(x5, x

′
5)

+ A(x1, x2, x5; x
′
1, x

′
2, x

′
5)δ(x4, x

′
4)δ(x3, x

′
3)

+ A(x2, x4, x5; x
′
2, x

′
4, x

′
5)δ(x1, x

′
1)δ(x3, x

′
3)

+ A(x4, x1, x5; x
′
4, x

′
1, x

′
5)δ(x2, x

′
2)δ(x3, x

′
3) . (2.23)

The six terms are obtained by exchanging identical particles only between the dif-

ferent subsystems.

Suppose next that state ψ1(x1, x2)φ1(x3) and operator A(x1, x2, x3; x
′
1, x

′
2, x

′
3) are

both D-local while state ψ2(x4)φ2(x5) is D
′-local so that D∩D′ = ∅. In such a case,

calculations of traces simplifies considerably. To see how it comes about, consider

tr[|ψ̄〉〈ψ̄|] or
∫

dx1dx2dx3dx4dx5ψ̄
∗(x1, x2, x3, x4, x5)ψ̄(x1, x2, x3, x4, x5) .

Taking the product of two arbitrary terms of (2.22), e.g.,

∫

dx1dx2dx3dx4dx5ψ
∗
1(x1, x2)ψ

∗
2(x4)φ

∗
1(x5)φ

∗
2(x3)ψ1(x2, x4)ψ2(x1)φ1(x3)φ2(x5) ,
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we observe that e.g. the integral over x1 must vanish because it connects the functions

ψ∗
1(x1, x2) and ψ2(x1) that are non-zero in two different non-overlapping domains D

and D′ of x1. It is clear that only terms that are obtained by the same permutation

of the original variables in both factors, such as

∫

dx1dx2dx3dx4dx5ψ
∗
1(x1, x2)ψ

∗
2(x4)φ

∗
1(x5)φ

∗
2(x3)ψ1(x1, x2)ψ2(x4)φ1(x5)φ2(x3)

= 〈ψ1|ψ1〉〈φ1|φ1〉〈ψ2|ψ2〉〈φ2|φ2〉 = 1 ,

can give a non-zero result. Hence,
∫

dx1dx2dx3dx4dx5ψ̄
∗(x1, x2, x3, x4, x5)ψ̄(x1, x2, x3, x4, x5) = 6

and ν = 1/
√
6. The same observation holds for the traces containing D-local ob-

servable. For example,

tr[Ā|ψ̄〉〈ψ̄|]
contains 63 terms but only six survive, namely those in which the same permutation

of variables x1, x2, x3, x4, x5 meet each other in Ā and |ψ̄〉〈ψ̄| and the same permu-

tation of variables x′1, x
′
2, x

′
3, x

′
4, x

′
5 meet each other in Ā and |ψ̄〉〈ψ̄|. For instance,

∫

dx1dx2dx3dx4dx5dx
′
1dx

′
2dx

′
3dx

′
4dx

′
5A(x2, x4, x5; x

′
2, x

′
4, x

′
5)

× δ(x1, x
′
1)δ(x3, x

′
3)ψ

∗
1(x2, x4)ψ

∗
2(x1)φ

∗
1(x5)φ

∗
2(x3)ψ1(x

′
2, x

′
4)ψ2(x

′
1)φ1(x

′
5)φ2(x

′
3)

=

∫

dx2dx4dx5dx
′
2dx

′
4dx

′
5A(x2, x4, x5; x

′
2, x

′
4, x

′
5)ψ

∗
1(x2, x4)φ

∗
1(x5)ψ1(x

′
2, x

′
4)φ1(x

′
5) .

Hence,

tr[ĀT̄] = tr[AT]

where

T̄ = |ψ̄〉〈ψ̄|
and

T = |ψ1φ1〉〈ψ1φ1| .
We can state the following general key property of composition of non-heterogeneous

systems:

Theorem 12 Let systems S and S ′ be separated. Then, system S + S ′ is prepared

in state T̄ = J(T,T′) with separation status D ∪D′. Let further A be a D-local s.a.

operator for S and Ā its extension to S + S ′. Then,

tr[ĀT̄] = tr[AT] . (2.24)

88



In fact, this ”Theorem” is only a conjecture because we have not proved it for the

general case stated in it.

Thus, the ambiguity of preparation has no observable consequences. The resulting

methods that use tensor products instead of full (anti-)symmetrised tensor products

are in agreement with the common practice in quantum mechanics. In fact, they

make quantum mechanics viable because the state of the whole environment is never

known. For example, in the theory of the experiment described in Section 0.1.2, the

state is prepared as a state of an individual electron and its entanglement with all

other electrons, which exist, in fact, everywhere in huge amounts, is serenely ignored.

Due to Theorem 12, such method cannot lead to any problems.

2.2.5 Change of separation status

In classical mechanics, the possible states of system S are points of the phase space

Γ and possible observables are real function on Γ. Clearly, all such observables have

definite values on S in a fixed state independently of external circumstances. Γ

is uniquely associated with the system alone and forms the basis of its kinematic

description. Alternatively, we can always consider S as a subsystem of a larger

system S̄ with bigger phase space Γ̄. In Newtonian mechanics, Γ is then a subspace

of Γ̄ and observables of S can be extended to S̄ by defining them to vanish outside

of Γ. Hence, there is an analogous ambiguity in the choice of space of states in

Newtonian mechanics as in quantum mechanics. However, no additional conditions,

such as suitable separation statuses, are needed there. Thus, the quantum theory

of observables is much more complicated than the Newtonian one: not only their

values cannot be ascribed to microsystem S alone but some of them are not even

registrable in principle due to the environment of S.
We assume that the quantum kinematics of a microsystem is defined mathemati-

cally by possible states represented by all positive normalised (trace one) operators,

and possible observables represented by some POV measures, on the Hilbert space

associated with the system. Then the transition from state T⊗ T′ to J(T,T′) as it

occurs in Rule 18 is a change of kinematic description.

Let us study this transition in more detail. We observe that Pττ ′ : Hτ ⊗Hτ ′ 7→
Hττ ′ is a linear but in general non-invertible and non-unitary operator and that the

normalisation is an even non-linear operation on the two states. We can however

show that the maps can be invertible in a special case of separation statuses D and

D′ of T and T′.

Let system S consist of N and S ′ of N ′ particles. Consider first vector states φ

of S and φ′ of S ′. Let

Φas = Pττ ′(φ⊗ φ′) , Φasn = J(φ, φ′) =
Pττ ′(φ⊗ φ′)

√

〈Pττ ′(φ⊗ φ′)|Pττ ′(φ⊗ φ′)〉
.
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If S and S ′ are separated (D ∩D′ = ∅), then φ and φ′ satisfy:

∫

d3xif
′(~xi)φ(~x1, . . . , ~xN) = 0

for any i = 1, . . . , N and for any test function f ′ with suppf ′ ⊂ D′, and

∫

d3xif(~xi)φ
′(~x1, . . . , ~x

′
N) = 0

for any i = 1, . . . , N ′ and for any test function f with suppf ⊂ D.

Let f ′ be a test function such that f ′ ∈ Hτ ′ with suppf ⊂ (D′×)N
′

, where

(D′×)N
′

is an abbreviation for the Cartesian product of N ′ factors D′. Let us define

map R[f ′, D′] : Hττ ′ 7→ Hτ by

(R[f ′, D′]Φas)(~x1, . . . , ~xN )

=

∫

d3xN+1 . . . d
3xN+N ′f ′(~xN+1, . . . , ~xN+N ′)Φas(~x1, . . . , ~xN , ~xN+1, . . . , ~xN+N ′) ,

and similarly, for test function f ∈ Hτ and suppf ⊂ (D×)N , R[f,D] : Hττ ′ 7→ Hτ ′

by

(R[f,D]Φas)(~xN+1, . . . , ~xN+N ′)

=

∫

d3x1 . . . d
3xNf(~x1, . . . , ~xN)Φas(~x1, . . . , ~xN , ~xN+1, . . . , ~xN+N ′) .

Then, we obtain easily:

R[f ′, D′]Φas = ν ′fφ(~x1, . . . , ~xN ) ,

where

ν ′f = νττ ′

∫

d3xN+1 . . . d
3xN+N ′f ′(~xN+1, . . . , ~xN+N ′)φ′(~xN+1, . . . , ~xN+N ′) ,

and νττ ′ is the normalisation factor defined by Pττ ′ . ν
′
f is non-zero for at least some

f ′. Similarly,

R[f,D]Φas = νfφ
′(~xN+1, . . . , ~xN+N ′) ,

where

νf = νττ ′

∫

d3x1 . . . d
3xNf(~x1, . . . , ~xN)φ(~x1, . . . , ~xN) .

Thus, we obtain both functions φ(~x1, . . . , ~xN ) and φ′(~xN+1, . . . , ~xN+N ′) up to nor-

malisation. As the functions are normalised, they can be reconstructed. Analogous

steps work for Φasn.
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For the generalisation of these ideas to state operators, we shall need adjoints of

operators R[f ′, D′] and R[f,D]. The definition of R[f,D′]† : Hτ 7→ Hττ ′ is

(R[f ′, D′]†φ,Φ) = (φ,R[f ′, D′]Φ)

for all φ ∈ Hτ and Φ ∈ Hττ ′. A simple calculation yields

R[f ′, D′]†φ = Pττ ′(φ⊗ f ′∗) .

Similarly,

R[f,D]†φ′ = Pττ ′(f
∗ ⊗ φ′) .

Map T ⊗ T′ 7→ Pττ ′(T ⊗ T′)Pττ ′ is linear in both T and T′ and its result is

an operator on Hτ ⊗ Hτ ′ that leaves Hττ ′ invariant. Operator Pττ ′(T ⊗ T′)Pττ ′ :

Hττ ′ 7→ Hττ ′ is self-adjoint and positive if T and T′ are state operators but it is not

normalised. Let {ψn} be a basis Hτ and {ψ′
α} that of Hτ . We can write

T =
∑

mn

Tmn|ψm〉〈ψn| , T′ =
∑

αβ

T ′
αβ|ψ′

α〉〈ψ′
β| .

Then

Pττ ′(T⊗ T′)Pττ ′ =
∑

mn

∑

αβ

TmnT
′
αβ|Pττ ′(ψm ⊗ ψ′

α)〉〈Pττ ′(ψn ⊗ ψ′
β)| .

Now, the above proof that vector states φ and φ′ can be reconstructed from J(φ, φ′)

can be easily extended to general state operators T and T′ by expanding the state

operators into the bases and acting by R’s from the left and R†’s from the right on

them.

Moreover, for separated systems, the ”individual” observables from A[S]D and

A[S ′]D′ can be recovered from operators on Hττ ′ that are extensions of operators

either of A[S]D or of A[S ′]D′. Let us show it for a simple example.

Example Let S be a fermion particle and S ′ a composite of one fermion of the same

type as S and some particle of a different type. Let φ(~x1) be an arbitrary element

of H and φ′(~x2, ~x3) that of Hτ ′, ~x2 being the coordinate of the fermion. Then

Ψ(~x1, ~x2, ~x3) = Pττ ′
(

φ(~x1)φ
′(~x2, ~x3)

)

=
1

2

(

φ(~x1)φ
′(~x2, ~x3)− φ(~x2)φ

′(~x1, ~x3)
)

.

Let a ∈ A[S]D. Then its extension A is an operator on Hττ ′ defined by its kernel

a(~x1; ~x
′
1)δ(~x2 − ~x′2)δ(~x3 − ~x′3) + a(~x2; ~x

′
2)δ(~x1 − ~x′1)δ(~x3 − ~x′3)
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so that

(AΨ)(~x1, ~x2, ~x3) =
1

2

(

(aφ)(~x1)φ
′(~x2, ~x3)− (aφ)(~x2)φ

′(~x1, ~x3)
)

.

Then,

R[f ′, D′](AΨ) = ν ′f (aφ)(~x1) ,

where

ν ′f =
1

2

∫

d3x2d
3x3f

′(~x2, ~x3)φ
′(~x2, ~x3) .

But φ(~x1), φ
′(~x2, ~x3) and f ′(~x2, ~x3) are known, hence, as φ is arbitrary, a is well-

defined.

To summarise: for separated systems S and S ′, there are two equivalent descrip-

tions: the standard QM description of S + S ′ on the Hilbert space Hττ ′ and the

untangled QM description on Hτ ⊗Hτ ′ explained above.

As yet, the considerations apply to situations at a fixed instant of time. The new

aspect that time evolution can introduce is that separation status of a system in a

state can change in time. Let us define mathematically what this means.

First, we come to the notion of formal evolution.

Definition 27 Let system S be initially (t = t1) prepared in state T, another quan-

tum system S ′ in state T′ and let them be separated at t1. Let the composite have a

time-independent Hamiltonian defining a unitary group U(t− t1) of evolution oper-

ators on Hττ ′. Then, the standard quantum mechanical evolution of S + S ′,

T̄(t) = U(t− t1)J
(

T⊗ T′
)

U(t− t1)
† , (2.25)

is called formal evolution of two interacting systems S and S ′.

The idea is analogous to the well-know time-dependent Hartree–Fock method in

the theory of nuclear fusion [86]. Thus, the formal evolution uses the standard QM

description. It is called ”formal” because the character of the separation statuses

can change during the evolution and it is not clear whether the standard quantum

mechanics is then still applicable. Indeed, this evolution does not agree with obser-

vation of separation status changes that occur during registrations. However, the

formal evolution is our first step in the mathematical analysis of separation status

changes. With its help, we can decide whether a change of separation status has

taken place in a given theoretical model. Let us study an example in some detail.

Let S and S ′ be two quantum systems, S containing N particles and S ′ containing

N ′ particles. Let the systems be prepared, at time t1, in states T and T′ with non-

trivial separation statuses D1 and D
′, respectively, and D1∩D′ = ∅. Thus, S and S ′
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are separated at t1. Let the formal evolution of the composite S + S ′ for the initial

state T̄(t1) = J(T,T′) be described by its kernel in Q-representation:

T̄ (t)(~x1, . . . , ~xN , ~xN+1, . . . , ~xN+N ′ ; ~x′1, . . . , ~x
′
N , ~x

′
N+1, . . . , ~x

′
N+N ′) .

1. Suppose that, for some t2 > t1, supp T̄ (t2) = (D′×)2(N+N ′)4. Then we can

say: at time t2, the separation status of S is ∅, that of S ′ is D′ and that of the

composite S + S ′ is also D′ or, that S is swallowed by S ′.

2. Suppose that, for some t3 > t2, there is an open set D3 ⊂ R3, D3 ∩ D′ = ∅,
such that the kernel TJ(t3) has the properties:

(a) For any test function f ′ ∈ Hτ ′ and

supp f ′ = (D′×)N
′

, R[f ′, D′]TJ(t3)R[f
′, D′]† 6= 0 ,

νR[f ′, D′]T̄ (t3)R[f
′, D′]† is a state operator of S independent of f ′, where

ν is the normalisation factor.

(b) For any test function f ∈ Hτ and

supp f = (D3×)N , R[f,D3]TJ(t3)R[f,D3]
† 6= 0 ,

νR[f,D3]T̄ (t3)R[f,D3]
† is a state operator of S ′ independent of f , where

ν is the normalisation factor.

(c) For any test function g ∈ Hτ and supp g = (D3×)N , we have

R[f ′, D′]TJ(t3)R[f
′, D′]†|g〉 = 0 .

(d) For any test function g′ ∈ Hτ ′ and supp g′ = (D′×)N
′

, we have

R[f,D3]TJ(t3)R[f,D3]
†|g′〉 = 0 .

Then we can say: the systems become separated again at time t3 > t2, sys-

tem S being in state νR[f ′, D′]TJ(t3)R[f
′, D′]† with separation status D3 and

system S ′ in state νR[f,D3]TJ(t3)R[f,D3]
† with separation status D′.

Thus, we judge on separation statuses of the two systems by studying the supports

of the kernels of the Q-representation of their state operators during the formal (i.e.,

ordinary unitary) evolution of their composite. The change from D1 at t1 to ∅ at t2
and to D3 at t3 is a complicated function of the evolution of the whole composite

system. As for the observables, their unitary evolution is, in fact, irrelevant to what

4This can easily be generalised to a more realistic condition, e.g.,
∫

(D′
×)N+N′ d3x1 . . . d

3xN+N ′ T̄ (t2)(~x1, . . . , ~xN+N ′ ; ~x1, . . . , ~xN+N ′) ≈ 1.
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can be registered. Consider, e.g., position of S. The standard position operator Q

can never serve as observable ”position of S”. The D1 localisation of Q is registrable

and its meaning is ”position of S” at t1. But it is not ”position of S” at t2 or t3
because at t2, S does not possess any observable of its own, including position.

At t3, ”position of S” is D3-localisation of Q. At any time, one can construct

the extensions of the corresponding localisations to the whole composite, but the

registrable meaning of these extensions changes with time. Thus, the observables

change with time even if we are working in Schrödinger representation.

Although we have based the time process on a unitary evolution (the formal

evolution), the time evolution of genuinely registrable properties of S does not look

like a unitary evolution. And, although we can find the separation statuses of S
and S ′ by studying the formal evolution of S + S ′, we cannot claim that the formal

evolution gives the physical state of the composite. The question even seems natural,

whether the formal evolution ought to be further corrected in the case that it leads

to separation-status changes.

What has been said up to now shows that standard quantum mechanics is in-

complete in the following sense:

1. It accepts and knows only two separation statuses:

(a) that of isolated systems, D = R3, with the standard operators (position,

momentum, energy, spin, etc.) as observables, and

(b) that of a member of a system of identical particles, D = ∅, with no

observables of its own.

2. It disregards the fact that separation status can change during time evolu-

tion. In particular, it does change during preparations and registrations, and

that makes the measurement a process physically different from most other

processes considered by quantum mechanics. The question naturally arises,

whether the unitary evolution law provides an adequate description to such

changes.

This suggests that quantum mechanics can be supplemented by a theory of general

separation status and by new rules that govern processes in which separation status

changes. The new rules must not contradict the rest of quantum mechanics and

ought to agree with, and to explain, observational facts.

2.3 State reduction

The standard quantum theory of indistinguishable particles as explained in the

foregoing sections leads to an important but as yet insufficiently studied or even
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ignored phenomenon: A prepared state of a quantum system will often be mangled

and degraded during an interaction with a large system such as a macroscopic body.

We consider this to be an objective change of the state similarly as worn boots are

objectively different from new boots. Let us give a simple example.

In many optical experiments, such as [80], polarisers, such as Glan–Thompson

ones, are employed. A polariser is a macroscopic body that decomposes the coming

light into two orthogonal-polarisation parts. One part disappears inside an absorber

and the other is left through practically unchanged. Similarly, in most quantum

experiments, one or more screens are used. A screen is a macroscopic body that

decomposes the incoming state into one part that disappears inside the body and

the other that evolves further.

Disappearance of a quantum system S in a macroscopic body B is the following

process. The body is assumed to be a perfect absorber. First, S enters B and

ditches most of its kinetic energy somewhere inside B. Second, the energy passed

to B is dissipated and distributed homogeneously through B in a process aiming at

thermodynamic equilibrium. In this way, S ceases to be separated from the other

systems of the same type within B by its energy. Moreover, a photon might be

annihilated and a massive particle becomes entangled with all other particles of its

type inside B and its separation status by position becomes trivial. In this way, S
ceases to exist as an individual object and no more registrations can be done on it.

This can be viewed as a complete or partial loss of the system because it becomes

undistinguishable from all subsystems of B that are of the same type as S.
Mathematical description of the initial and the final state of the composite S+B

can be easily given. Let S be a particle of type τ and ψ(~x) the wave function of

its initial state prepared with a separation status D. Let screen B be a macro-

scopic quantum system of type τ ′ with separation status D′ having sufficiently large

common boundary with D. Let

ψ(~x) = cthrψthr(~x) + cswψsw(~x) (2.26)

be the decomposition of the initials state, where ψthr(~x) is a normalised wave function

of the part that will be left through and ψsw(~x) that that will be swallowed by B.
This decomposition is determined by the nature of B: for a polariser, these are the

two orthogonal polarisation states, and for a simple screen, these can be calculated

from the geometry of B and the incoming beam as it is usually done e.g. in accounts

of a double-slit experiment.

The initial state of B is a classical state, which is a high entropy one (see Chapter

3). It is, therefore, described by a state operator T. The initial state of the composite

is then

T̄i = |ψ〉〈ψ| ⊗ T . (2.27)
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Now, the initial state for the formal evolution of the composite is

T̄fei = νPττ ′(|ψ〉〈ψ| ⊗ T)Pττ ′ ,

where ν = tr[Pττ ′(|ψ〉〈ψ| ⊗ T)Pττ ′] and Pττ ′ is defined by Equation (2.19). Using

decomposition (2.26), we can write

Tfei = ν
(

c∗thrcthrPττ ′(|ψthr〉〈ψthr| ⊗ T)Pττ ′ + cthrc
∗
swPττ ′(|ψthr〉〈ψsw| ⊗ T)Pττ ′

+ cswc
∗
thrPττ ′(|ψsw〉〈ψthr| ⊗ T)Pττ ′ + c∗swcswPττ ′(|ψsw〉〈ψsw| ⊗ T)Pττ ′

)

. (2.28)

Let U be the unitary operator that describes the formal evolution on the Hilbert

space Hττ ′ of the composite. After the process is finished, we obtain

T̄fef = ν
(

c∗thrcthrPττ ′(|ψ′
thr〉〈ψ′

thr| ⊗ Tthr)Pττ ′ + cthrc
∗
swUPττ ′(|ψthr〉〈ψsw| ⊗ T)Pττ ′U

†

+ cswc
∗
thrUPττ ′(|ψsw〉〈ψthr| ⊗ T)Pττ ′U

†
)

+ c∗swcswT̄
′ , (2.29)

where

T̄′ = νUPττ ′(|ψsw〉〈ψsw| ⊗ T)Pττ ′U
†

is the end state of the screen with the swallowed part of S and we have assumed

that

UPττ ′(|ψthr〉〈ψthr| ⊗ T)Pττ ′U
† = Pττ ′(|ψ′

thr〉〈ψ′
thr| ⊗ Tthr)Pττ ′ ,

where ψ′
thr is the wave function of S with separation status Dthr describing the part

that went through, Dthr ∩D = ∅, Dthr ∩D′ = ∅, and Tthr is the corresponding state

of the screen with separation status D′.

The crucial step now is that the two terms containing products of the left-through

and the swallowed parts of S are discarded so that the physical final state of the

composite is

T̄f = pthr
|ψ′

thr〉〈ψ′
thr|

pthr
⊗ Tthr (+)p pswT̄

′ , (2.30)

where

pthr = c∗thrcthr , psw = c∗swcsw ,

The change from (2.29) to (2.30) is called state reduction. It is not a unitary trans-

formation: the non-diagonal terms in (2.29) have been erased. The sign ”(+)p” sug-

gests that the convex combination is a statistical decomposition (see Section 1.1.2).

Thus, not only some terms have been erased but also the state of the composite has

been further changed.

What part of the state operator is to be erased must be judged both with the help

of an assessment of the experimental arrangement resulting in a theoretical model
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thereof and calculation of the unitary evolution of an initial state, which had to lead

to decomposition (2.26). Thus, equation (2.30) is a result of a judicious decision

that may but does not necessarily work because it may but does not necessarily

express the reality with sufficient accuracy. It is analogous to the decision of which

state has been prepared by a given experimental setup of a preparation apparatus.

In our previous work [43, 44, 45], we have assumed that transformation analogous

to that from (2.26) to (2.30) result from application of some general alternative

dynamical law and that such a law must be postulated. An extended study of

all empirical cases that came to mind as yet has shown that a number of specific

details must in each case be taken into account so as to make an adequate theoretical

description of what happens. Schrödinger equation gives a physical evolution only in

ideal cases of isolated systems. Under more general conditions, Schrödinger equation

gives only a formal evolution. Then, the results of Schrödinger evolution must be

suitably corrected to express the resulting state degradation. This is the content of

the following rule.

Rule 19 Let S be a microscopic quantum system and A a macroscopic one in a

classical (high entropy) state. Let there be process with an interaction between them

such that the resulting change in the state of A includes a dissipation of a portion

of the state within a macroscopic part of the degree of freedom of A. Then the end

state of the formal evolution of S +A must be corrected by discarding all terms that

express correlation between macroscopically different end states of the composite,

and the resulting convex combination of states is a statistical decomposition.

The state reduction above is formally similar to what is often called the collapse

of wave function or the state reduction or the dynamical state reduction. State

reduction was declared to be a basic new kind of dynamics that sometimes replaces

the unitary dynamics [66] or always corrects a unitary evolution [34, 69] but no cause

for the state reduction has been given (for an extended discussion see Sections 4.1

and 4.2). As explained above, the state reduction runs parallel to, and the reason

for it is provided by, the unitary evolution together with relevant specific empirical

data for each case. Its basic feature is a complete or partial disappearance of the

system due to the dissipation and this is the cause of a state degradation, the result

of which is a state reduction.

Rule 19 formulates only few general features and leaves some freedom in the choice

of exact mathematical details that must be assumed separately for each particular

object studied so that the resulting model corresponds well to its observed properties.

This is, in fact, similar to Schrödinger equation, which is generally restricted only

in its overall general features and its details must also be assumed for each model

separately with the aim to yield a good model of the object.
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The described action of the screen on incoming individual system S is not a

registration: by itself, it does not deliver the value of any observable of S. Hence, it
is either a preparation or a part of a registration. For example, in experiment [80],

the position of photons leaving the polariser is measured by a photodiode. Thus, a

detector is needed to accomplish a registration. We shall study various models of

registration in Chapter 4 and many examples will show how Rule 19 is applied.
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Part II

The models
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The treasure of successful models is the primary part of any physical theory.

Textbooks of quantum mechanics dedicate most of their text to models of atoms

and molecules, to scattering theory of particles on atoms and molecules, to solid

bodies etc. A general method of such constructions has been described in Section

1.3.1. The only part of the textbooks that has to be changed concerns the operators

that are used in the construction and referred by the textbooks as ”observables”.

This name is not correct because we have seen in Section 2.2.1 that the measurement

of all such operators would be disturbed by the environment.

For particles, a D-localisation (see Definition 24) of these operators are already

genuine observables. For composite systems, such as atoms, the construction of

position and momentum observables of their mass centre is analogous, but other

observables may lead to more complications. Real experiments must be carefully

studied and the corresponding observable must be constructed accordingly. For

example, the energy spectrum of hydrogen atom is usually measured indirectly via

the energy of photons scattered off the atoms. The corresponding observable will not

be just a D-localisation of the Hamiltonian operator. How observables describing

indirect registrations are constructed is well known (see, e.g., [70], p. 282). We do

not expect any contradictions to our new rules or difficult mathematical problems

that would hinder such constructions. Hence, we shall skip the whole menagerie

of models of microscopic systems and restrict ourselves only to those models that

are immediately important for our main aim: to deal with the problems of classical

properties (Chapter 3) and of quantum measurement (Chapter 4).

To construct models of classical world will require, in addition to the already

described changes of language, some further new ideas, which are specific to the

particular objects to be modelled.
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Chapter 3

Quantum models of classical

properties

There are many classical aspects of real objects that have been successfully modelled

by quantum mechanics, such as electrical conductivity or specific heats. These are

typically phenomena that occur in systems with very many degrees of freedom so

that statistical methods can be used. The statistical methods were invented already

before quantum mechanics was born and introduced some elements that could be

understood only later by quantum mechanics. For example, the microcanonical or

canonical ensemble is, in fact, methods of preparation of thermodynamic systems.

Or, theoretical results are given in the form of averages and variances. The modern

condensed matter theory around room temperature can, therefore, be included into

our theory of classical properties without much change. We would just utilise the

objectivity of averages and variances in our interpretation of quantum mechanical

results.

However, the Galilean invariance of quantum theory leads to separation of the

overall motion from all other degrees of freedom. The motion of mass centre and

of the total angular momentum with respect to the mass centre comprises only six

degrees of freedom that do not seem to allow statistical methods. Exactly this kind

of motion is studied by Newtonian mechanics. Thus, the situation is that there

are quantum models of classical thermodynamic properties but none of mechanical

properties that would be really satisfactory.

Quantum modelling of non-thermodynamic properties of classical systems en-

counters two main problems. First, a key feature of Newtonian mechanics (and any

other classical theory as well) is that each system objectively has a sharp trajec-

tory. Any fuzziness is just due to incomplete knowledge. In particular, the state of

a Newtonian system is described by a point of its phase space, and the system is

always in a definite state, i.e., it cannot be at two points of the phase space simul-
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taneously (see also the discussion at the end of Section 1.2.2). Second, the system

is robust so that measurements can be done on it without changing its properties.

For example, the state of a system can be determined or confirmed by a suitable set

of measurements on the system.

Thus, any quantum model of a classical system must satisfy the first two condi-

tions of what Leggett has called Principle of Macroscopic Realism [57]:

1. A macroscopic system that has available to it two or more distinct macroscopic

states is at any given time in a definite one of those states.

2. It is possible in principle to determine which of these states the system is in

without any effect on the state itself or on the subsequent system dynamics.

In trying to model the sharpness of classical states and trajectories, one may

be mislead to overestimate the importance of quantum states of minimum uncer-

tainty, which is of coherent states. However, such states are always extremal states,

which can be linearly superposed, and quantum mechanics requires that linear su-

perpositions of available states are also an available state. Moreover, measurements

of the classical parameters of a coherent state necessarily disturb the value of the

parameters.

To solve this problem, one could e.g. assume that some as yet unknown phenom-

ena exist at the macroscopic level that are not compatible with standard quantum

mechanics. For example, they may prevent linear superpositions (see, e.g., [57] and

the references therein). However, no such phenomena have been observed.

Another strategy is to assume that the macroscopic realism is only apparent in the

sense that there are linear superpositions of macroscopic states but the correspond-

ing interference phenomena are difficult or impossible to observe. For example, the

quantum decoherence theory [101, 36] works only if certain observables concerning

both the environment and the quantum system cannot be measured (see the analy-

sis in [28, 18]). Another example is the theories based on coarse-grained operators

[70, 74, 56] being measurable but fine grained being not. The third example is the

Coleman–Hepp theory [49, 8, 14] and its modifications [84, 75, 95]: they are based

on some particular theorems that hold only for infinite systems (see the analysis in

[8]) or for asymptotic regions [95].

However, if we turn from theory to experiment, we may notice that any well-

founded scientific observation of classical properties always has a statistical form.

A measurement or observation is only viewed as well understood if it is given as an

average with a variance. This fact does not by itself contradict the sharp character

of the corresponding theory. The usual excuse is that the observation methods are

beset with inaccuracy but that improvement of techniques can lead to better and

better results approaching the ”objective sharp” values arbitrarily closely. In any
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case, however, the measured classical parameters of real objects are much fuzzier

than the minimal quantum uncertainty requires.

Moreover, that popular excuse is clearly incompatible with the assumption that

the classical world is only an aspect of a deeper quantum world and that each

classical model is nothing but a kind of incomplete description of the underlying

quantum system. If we assume such universality of quantum theory, then the statis-

tical character of classical observational results must not only be due to inaccuracy

of observational methods but also to genuine uncertainty of quantum origin. This

point of view is due to Exner [27], p. 669, and Born [15] and will be adopted here

as a starting point of our theory of classical properties.

We can formulate this idea in terms of the Realist Model Approach as follows. The

language part of classical theories contains the notions of sharp state and trajectory.

These are idealised notions that do not possess any counterpart in the real world,

but they are useful for model construction.

In this chapter, we first formulate some general hypotheses that can be applied to

both thermodynamic and mechanical properties, introducing thus a unified theory of

classical properties: they turn out to be selected objective properties of high-entropy

quantum states of macroscopic systems. Next, we show in detail how these ideas

are to be applied to Newtonian mechanics, introducing states called ME packets.

Then, we construct a quantum model of a classical rigid body. Finally, we modify

the well-known model of a simultaneous measurement of position and momentum

of a Gaussian wave packet to that of position and momentum of a ME packet.

Thus, our project to construct quantum models of observed classical systems

seems to work nicely. What remains open is the question of what is the origin of all

the high-entropy states that are observed in such a great abundance around us.

3.1 Modified correspondence principle

The Born–Exner assumption has quite radical consequences, which is only seldom

realised. First, the exactly sharp states and trajectories of classical theories are not

objective. They do not exist in reality but are only idealisations. What really exist

are fuzzy states and trajectories. The objectivity of fuzzy states of classical models

is a difficult point to accept and understand. Let us explain it in more detail.

In quantum mechanics, the basis of objectivity of dynamical properties is the

objectivity of the conditions that define preparation procedures. In other words, if

a property is uniquely determined by a preparation, then it is an objective property.

If we look closely, one hindrance to try the same idea in classical theories is the

custom always to speak about initial data instead of preparations. An initial datum

can be and mostly is a sharp state. The question on how an exactly sharp state
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can come into being is ignored. This in turn seems justified by the hypothesis that

sharp states are objective, that is, they just exist by themselves.

To come away from this self-deception, we accept that preparation procedures

play the same basic role in classical as in quantum physics. Then, the nature and

form of necessary preparation procedures must be specified and the corresponding

states described. In this way, the Exner–Born idea leads to a rather radical change

of interpretation of classical theories and this will enable us to construct quantum

models of all classical aspects of real objects.

An obvious starting point of such constructions is that all classical systems are

also quantum systems. Let us now make this more precise. Consider a real physical

object (so to speak, independent of any theory). If there is an adequate classical

model Sc of some aspects of this system the system is called classical. Adequate

means that some properties of Sc approximately represent important properties of

the real system. In addition, the same real object must also be understood in terms

of a quantum model Sq. Sq could be richer than Sc so that classical properties

of Sc can be identified with some quantum properties of Sq. In particular, these

quantum properties ought to be objective. This follows from the fact that all classical

properties can be assumed to be objective without any danger of contradictions.

The construction of quantum model Sq consists of the following points. 1) The

composition of Sq must be defined. 2) The observables that can be measured on

Sq are to be determined. On the one hand, this is a non-trivial problem because

there are relatively strong restrictions on what observables of macroscopic systems

can be measured (see Section 2.2.2). On the other, as any quantum observable is

measurable only by a classical apparatus, the existence of such apparatuses is tacitly

assumed from the very beginning. Quantum model Sq will thus always depend on

some classical elements. This does not mean that classicality has been smuggled

in because, in our approach, classical properties are specific quantum ones. 3) A

Hamiltonian operator of the system must be set up. 4) Suitable quantum states

must be chosen. Finally, the known classical properties of Sc must be listed and

each derived as an objective property of Sq from the four sets of assumptions above.

This is a self-consistent framework for a non-trivial problem.

It follows that there must be some at least approximate relation between classical

observables of Sc and quantum observables of Sq as well as between the classical

states of Sc and the quantum states of Sq. The following model assumption on such

a relation might be viewed as a version of Correspondence Principle, let us call it

Modified Correspondence Principle.

Assumption 1 1. The state of classical model Sc in a given classical theory is

described by a set of n numbers {a1, · · · , an} that represent values of some

classical observables. The set is not uniquely determined. Let us call any such
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set state coordinates.

2. We assume that state coordinates {a1, · · · , an} can be chosen so that there is

a subset {a1, · · · , an} of sharp observables of quantum model Sq and a state T

of Sq such that

tr[Tak] = ak . (3.1)

3. All such states form a subset of T(HSq
)+1 . Some of these states satisfy the

condition that all properties of Sc can be (at least approximately) obtained

from Sq if it is in such states. They are called classicality states of quantum

system Sq.

Clearly, Modified Correspondence Principle does not need the assumption that

all observables from {a1, · · · , an} commute with each other. Then, even if they

themselves are not jointly measurable, their fuzzy values can be (see Section 3.7).

Further, it does not follow that each classical property is an average of a quantum

operator. That would be false. We assume only that the classical state coordinates

a1, ..., an can be chosen in such a way.

It is important to realise that Modified Correspondence Principle suggests how

Principle of Macroscopic Realism is to be understood. For example, macroscopic

systems also have extremal states that satisfy equation (3.1). These seem to be

macroscopic states available to the system. However, extremal states are readily

linearly superposed and any quantum registration that ought to find the parameters

of a coherent state (a generalized measurement: positive operator valued measure)

would strongly change the state (for a general argument, see Ref. [19], p. 32). We

assume that the validity of Principle of Macroscopic Realism can be achieved if the

words ”distinct macroscopic states” are replaced with ”distinct classicality states”.

Let us try to motivate a proposal of what such classicality states might be.

An interesting subset of classical properties of macroscopic system is the thermo-

dynamic ones. They are important for us because quantum models of these proper-

ties are available. Existing models based on statistical physics need one non-trivial

assumption: the states of sufficiently small macroscopic systems that we observe

around us are approximately states of maximum entropy. As it has been discussed

in Section 0.1.4, entropy is an objective property of quantum systems because it

is defined by their preparation. Thus, the validity of thermodynamics depends on

the preparation conditions, or the origin, of observed macroscopic systems. The

averages and variances that result from the models based on the maximum-entropy

assumption agree with observations. In particular, they explain why classical states

and properties are relatively sharp. Moreover, high entropy states are very far from

extremal and linear superposition does not make any sense for them.
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The physical foundations of thermodynamics are not yet well-understood but

there are many ideas around about the origin of high-entropy states. Their ex-

istence might follow partially from logic (Bayesian approach, [50]) and partially

from quantum mechanics (thermodynamic limit, [92], Vol. 4). Some very interest-

ing models of how maximum entropy quantum states come into being are based on

entanglement [33, 73, 60, 38]). However, just in order to construct quantum models

of classical properties, they can be used as one of the main assumptions without

really understanding their origin.

We generalise the statistical methods as follows [42].

Assumption 2 All classicality states are states of high entropy.

Assumption 2 is a heuristic one and it is therefore formulated a little vaguely. It

will be made clearer after some examples of its use will be studied in this chapter.

But some brief discussion can be given already now.

Consider first states of macroscopic systems that are at or near absolute zero of

temperature. These are approximately or exactly extremal and maximize entropy

at the same time. Thus, they are not classicality states but the entropy, though

maximal, is not high, either. Second, consider states of macroscopic systems at

room temperature that are not at their thermodynamic equilibrium but are close

to it. There are many such states, and they and the systems can be described

by classical physics to a good approximation. They are not in maximum- but in

high-entropy states.

3.2 Maximum entropy assumption

in classical mechanics

In this Section, we follow loosely Ref. [42]. As explained at the start of this chapter,

the basic notions of the language part of Newtonian mechanics are that of a sharp

state—a point of the phase space—and of a sharp trajectory—a curve in the phase

space of an isolated system. We accept this language without assuming that the

sharp trajectories have any real counterpart in the world because this does no prevent

us from building fuzzy models that have a more direct relation to reality.

However, most physicists take the existence of sharp trajectories seriously and

try to obtain them from quantum mechanics as exactly as possible. Hence, they

focus at quantum states the phase-space picture of which is as sharp as possible.

That are states with minimum uncertainty allowed by quantum mechanics. For one

degree of freedom, described by coordinate q and momentum p, the uncertainty is

given by the quantity

ν =
2∆q∆p

~
, (3.2)
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where ∆a denotes the variance of quantity a, as defined by Eq. (1.15).

The states with minimum uncertainty ν = 1 are, however, very special extremal

states. Such states do exist for macroscopic systems but are very difficult to prepare

unlike the usual states of macroscopic systems described by classical mechanics. As

we explained in Section 1.1.2, they have a number of properties that are very strange

from the point of view of classical theories and they are therefore not what we have

called classicality states.

We feel that there is no point in attempts to derive the language part of New-

tonian mechanics from that of quantum mechanics. Instead, we propose that the

classical limit is to be considered at the level of models. That is, properties of

successful Newtonian models are to be obtained from some quantum models under

suitable conditions. We assume further that a good model of Newtonian mechanics

is necessarily fuzzy and that the fuzziness is determined by the preparation of the

system similarly as in quantum mechanics. Let us give some examples.

Consider a gun in a position that is fixed in a reproducible way and that shoots

bullets using cartridges of a given provenance. All shots made under these condi-

tions form an ensemble with average trajectory (Qk
gun(t), P

k
gun(t)) and the trajectory

variance (∆Qk
gun(t),∆P

k
gun(t)) that describes objective properties of the ensemble.

The Newtonian model of this ensemble is the evolution ρgun(Q
k, P k; t) of a suitable

distribution function on the phase space. According to Newtonian mechanics, each

individual shot has a sharp trajectory (Qk(t), P k(t)). Each individual shot is also

an element of the ensemble and this is a property of the individual that can be

considered also as objective, even in Newtonian mechanics.

The existence of this fuzzy property of an individual shot does not contradict

the fact that some more precise observations (optical, say) of this one shot can give

a different fuzzy structure. Indeed, such an optical measurement method ought

to have been studied on other ensembles and already well established itself, which

will allow to estimate its error (variance) and hence to understand the result of

the measurement as saying that a given, fixed trajectory is an element of a thought

ensemble with an average (Qk
opt(t), P

k
opt(t)) and variance (∆Qk

opt(t),∆P
k
opt(t)), where

Qk
opt(t) ≈ Qk

gun(t) , ∆Qk
opt(t) ≪ ∆Qk

gun(t) ,

and similarly for the momentum part. Still, ∆Qk
opt(t) ·∆P k

opt(t) must be much larger

than the minimum quantum uncertainty ~/2.

The simplest way to construct a fuzzy model is to fix initial averages and variances

of coordinates and momenta, Qk, ∆Qk, P k, ∆P k, and leave everything else as fuzzy

as possible. To calculate the corresponding probability distributions in classical me-

chanics and the state operators in quantum mechanics, we shall, therefore, apply the

maximum entropy principle. The resulting states will be called maximum-entropy
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packets, abbreviated as ME packets. The averages of coordinates and momenta take

over the role of coordinate and momenta in classical mechanics. In any case these

averages represent measurable aspects of these variables. Quantities Qk, ∆Qk, P k,

∆P k will also play the role of classical state coordinates defined by Assumption 1.

To limit ourselves just to given averages and variances of coordinates and momenta

is a great simplification that enables us to obtain interesting results easily. One can

imagine, however, more complicated models, where further moments are fixed, or

moments of different observables (e.g., mass centre, total momentum, angles and

total angular momentum) are fixed.

The variances are not assumed small. How large they are depends on the accuracy

of a preparation or of a measurement, as the gun example shows.

In fact, the dynamical evolution of variances is an important indicator of the

applicability of the model one is working with. It determines the time intervals

within which reasonable predictions are possible. Consider a three-body system

that is to model the Sun, Earth and Jupiter in Newtonian mechanics. It turns out

that generic trajectories starting as near to each other as, say, the dimension of the

irregularities of the Earth surface will diverge from each other by dimensions of the

Earth–Sun distance after the time of only about 107 years. This seems to contradict

the 4 × 1012 years of relatively stable Earth motion around the Sun that is born

out by observations. The only way out is the existence of a few special trajectories

that are much more stable than the generic ones and the fact that bodies following

an unstable trajectory have long ago fallen into the Sun or have been ejected from

the solar system. By the way, this spontaneous evolution can be considered as a

preparation procedure of solar system.

3.3 Classical ME packets

Let us first consider a system S with one degree of freedom and then generalise it

to any number of degrees. Let the coordinate be q and the momentum p. A state is

a distribution function ρ(q, p) on the phase space spanned by q and p. The function

ρ(q, p) is dimensionless and normalized by

∫

dq dp

v
ρ = 1 ,

where v is an auxiliary phase-space volume to make ρ dimensionless. The entropy

of ρ(q, p) can be defined by

S := −
∫

dq dp

v
ρ ln ρ .
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The value of entropy will depend on v but most other results will not. Classical

mechanics does not offer any idea of how to fix v. We shall get its value from

quantum mechanics.

3.3.1 Definition and properties

Definition 28 ME packet is the distribution function ρ that maximizes the entropy

subject to the conditions:

〈q〉 = Q , 〈q2〉 = ∆Q2 +Q2 , (3.3)

and

〈p〉 = P , 〈p2〉 = ∆P 2 + P 2 , (3.4)

where Q, P , ∆Q and ∆P are given values.

We have used the abbreviation

〈x〉 =
∫

dq dp

v
xρ .

The explicit form of ρ can be found using the partition-function method as de-

scribed in Ref. [50]. The variational principle yields

ρ =
1

Z(λ1, λ2, λ3, λ4)
exp(−λ1q − λ2p− λ3q

2 − λ4p
2) , (3.5)

where

Z =

∫

dq dp

v
exp(−λ1q − λ2p− λ3q

2 − λ4p
2) ,

and λ1, λ3, λ2 and λ4 are the four Lagrange multipliers corresponding to the four

conditions (3.3) and (3.4). Hence, the partition function for classical ME packet is

Z =
π

v

1√
λ3λ4

exp

(

λ21
4λ3

+
λ22
4λ4

)

. (3.6)

The expressions for λ1, λ2, λ3 and λ4 in terms of Q, P , ∆Q and ∆P can be obtained

by solving the equations

∂ lnZ

∂λ1
= −Q ,

∂ lnZ

∂λ3
= −∆Q2 −Q2 ,

and
∂ lnZ

∂λ2
= −P ,

∂ lnZ

∂λ4
= −∆P 2 − P 2 .

The result is:

λ1 = − Q

∆Q2
, λ3 =

1

2∆Q2
, (3.7)
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and

λ2 = − P

∆P 2
, λ4 =

1

2∆P 2
. (3.8)

Substituting this into Eq. (3.5), we obtain the distribution function of a one-dimensional

ME packet. The generalization to any number of dimensions is:

Theorem 13 The distribution function of the ME packet for a system with given

averages and variances Q1, · · · , Qn, ∆Q1, · · · ,∆Qn of coordinates and P1, · · · , Pn,
∆P1, · · · ,∆Pn of momenta, is

ρ =
( v

2π

)n
n
∏

k=1

(

1

∆Qk∆Pk
exp

[

−(qk −Qk)
2

2∆Q2
k

− (pk − Pk)
2

2∆P 2
k

])

. (3.9)

We observe that all averages obtained from ρ are independent of v and that the

right-hand side of equation (3.9) is a Gaussian distribution in agreement with Jaynes’

conjecture that the maximum entropy principle gives the Gaussian distribution if

the only conditions are fixed values of the first two moments.

As ∆Q and ∆P approach zero, ρ becomes a δ-function and the state becomes

sharp. For some quantities this limit is sensible, for others it is not. In particular,

the entropy, which can easily be calculated,

S = 1 + ln
2π∆Q∆P

v
,

diverges to −∞. This is due to a general difficulty in giving a definition of entropy

for a continuous system that would be satisfactory in every respect. What one could

do is to divide the phase space into cells of volume v so that ∆Q∆P could not be

chosen smaller than v. Then, the limit ∆Q∆P → v of entropy would make more

sense.

The average of any monomial of the form qkplq2mp2n can be calculated with the

help of partition-function method as follows:

〈qkplq2mp2n〉 = (−1)N

Z

∂NZ

∂λk1∂λ
l
2∂λ

m
3 ∂λ

n
4

, (3.10)

where N = k + l + 2m+ 2n, Z is given by Eq. (3.6) and the values (3.7) and (3.8)

must be substituted for the Lagrange multipliers after the derivatives are taken.

Observe that this enables to calculate the average of a monomial in several differ-

ent ways. Each of these ways, however, leads to the same result due the identities

∂2Z

∂λ21
= − ∂Z

∂λ3
,

∂2Z

∂λ22
= − ∂Z

∂λ4
,

which are satisfied by the partition function.

Assumption 3 ME packet (3.9) is a part of a satisfactory model for many systems

in Newtonian mechanics.
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3.3.2 Classical equations of motion

Let us assume that the Hamiltonian of S has the form

H =
p2

2µ
+ V (q) , (3.11)

where µ is the mass and V (q) the potential function. The equations of motion are

q̇ = {q,H} , ṗ = {p,H} .

Inserting (3.11) for H , we obtain

q̇ =
p

µ
, ṗ = −dV

dq
. (3.12)

The general solution to these equations can be written in the form

q(t) = q(t; q, p) , p(t) = p(t; q, p) , (3.13)

where

q(0; q, p) = q , p(0; q, p) = p , (3.14)

q and p being arbitrary initial values. This implies for the time dependence of the

averages and variances, if the initial state is an ME packet:

Q(t) = 〈q(t; q, p)〉 , ∆Q(t) =
√

〈(q(t; q, p)−Q(t))2〉 (3.15)

and

P (t) = 〈p(t; q, p)〉 , ∆P (t) =
√

〈(p(t; q, p)− P (t))2〉 . (3.16)

In general, Q(t) and P (t) will depend not only on initial Q and P , but also on ∆Q

and ∆P .

Let us consider the special case of at most quadratic potential:

V (q) = V0 + V1q +
1

2
V2q

2 , (3.17)

where Vk are constants with suitable dimensions. If V1 = V2 = 0, we have a free

particle, if V2 = 0, it is a particle in a homogeneous force field and if V2 6= 0, it is a

harmonic or anti-harmonic oscillator.

In this case, general solution (3.13) has the form

q(t) = f0(t) + qf1(t) + pf2(t) , (3.18)

p(t) = g0(t) + qg1(t) + pg2(t) , (3.19)
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where f0(0) = f2(0) = g0(0) = g1(0) = 0 and f1(0) = g2(0) = 1. If V2 6= 0, the

functions are

f0(t) = −V1
V2

(1− cosωt) , f1(t) = cosωt , f2(t) =
1

ξ
sinωt , (3.20)

g0(t) = −ξ V1
V2

sinωt , g1(t) = −ξ sinωt , g2(t) = cosωt , (3.21)

where

ξ =
√

µV2 , ω =

√

V2
µ
.

Only for V2 > 0, the functions remain bounded. If V2 = 0, we obtain

f0(t) = −V1
2µ
t2 , f1(t) = 1 , f2(t) =

t

µ
, (3.22)

g0(t) = −V1t , g1(t) = 0 , g2(t) = 1 . (3.23)

The resulting time dependence of averages and variances resulting from Eqs.

(3.13), (3.3) and (3.4) are [42]

Q(t) = f0(t) +Qf1(t) + Pf2(t) (3.24)

and

∆Q2(t) +Q2(t) = f 2
0 (t) + (∆Q2 +Q2)f 2

1 (t) + (∆P 2 + P 2)f 2
2 (t)

+ 2Qf0(t)f1(t) + 2Pf0(t)f2(t) + 2〈qp〉f1(t)f2(t) . (3.25)

For the last term, we have from Eq. (3.10)

〈qp〉 = 1

Z

∂2Z

∂λ1∂λ2
.

Using Eqs. (3.6), (3.7) and (3.8), we obtain from Eq. (3.25)

∆Q(t) =
√

f 2
1 (t)∆Q

2 + f 2
2 (t)∆P

2 . (3.26)

Similarly,

P (t) = g0(t) +Qg1(t) + Pg2(t) , (3.27)

∆P (t) =
√

f 2
g (t)∆Q

2 + g22(t)∆P
2 . (3.28)

We observe that, if functions f1(t), f2(t), g1(t) and g2(t) remain bounded, the vari-

ances also remain bounded and the predictions are possible in arbitrary long intervals
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of time. Otherwise, there will always be only limited time intervals in which the

theory can make predictions.

In the case of general potential, the functions (3.13) can be expanded in products

of powers of q and p, and the averages of these products will contain powers of the

variances. However, as one easily sees form formula (3.10) and (3.6),

〈qkpl〉 = QkP l +X∆Q + Y∆P ,

where X and Y are bounded functions. It follows that the dynamical equations

for averages coincide, in the limit ∆Q → 0,∆P → 0, with the exact dynamical

equations for q and p. It is an idealisation that we consider as not realistic, even in

principle, but it may still be useful for calculations.

Let us expand a general potential function in powers of q,

V (q) =
∞
∑

k=0

1

k!
Vkq

k , (3.29)

where Vk are constants of appropriate dimensions. The Hamilton equations can be

used to calculate all time derivatives at t = 0. First, we have

dq

dt
= {q,H} =

p

µ
.

This equation can be used to calculate all derivatives of q in terms of those of p:

dnq

dtn
=

1

µ

dn−1p

dtn−1
. (3.30)

A simple iterative procedure gives:

dp

dt
= −V1 − V2q −

V3
2
q2 − V4

6
q3 + r5 , (3.31)

d2p

dt2
= −V2

µ
p− V3

µ
qp− V4

2µ
q2p+ r5 , (3.32)

d3p

dt3
= −V3

µ2
p2 − V4

µ2
qp2 +

V1V2
µ

+
V1V3 + V 2

2

µ
q +

3V2V3 + V1V4
2µ

q2

+
4V2V4 + 3V 2

3

6µ
q3 +

5V3V4
12µ

q4 +
V 2
4

12µ
q5 + r5 , (3.33)

and

d4p

dt4
= −V4

µ3
p3 +

3V1V3 + V 2
2

µ2
p+

3V1V4 + 5V2V3
µ2

qp+
5V 2

3 + 8V2V4
2µ2

q2p

+ 3
V3V4
µ2

q3p+
3V 2

4

4µ2
q4p+ r5 , (3.34)
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where rk is the rest term that is due to all powers in (3.29) that are not smaller than

k (the rests symbolize different expressions in different equations). The purpose

of having time derivatives up to the fourth order is to see better the difference to

quantum corrections that will be calculated in Section 3.4.3.

Taking the average of both sides of Eqs. (3.31)–(3.34), and using Eq. (3.10),

(3.6)–(3.8), we obtain

dP

dt
= −V1 − V2Q− V3

2
Q2 − V4

6
Q3 − V3 + V4Q

2
∆Q2 + r5 , (3.35)

d2P

dt2
= −V2

µ
P +

V3
µ
QP +

V4
2µ
Q2P +

V4
2µ
P∆Q2 + r5 , (3.36)

d3P

dt3
= −V3

µ2
P 2 − V4

µ2
QP 2 +

V1V2
µ

+
V1V3 + V 2

2

µ
Q+

3V2V3 + V1V4
2µ

Q2

+
4V2V4 + 3V 2

3

6µ
Q3 +

5V3V4
12µ

Q4 +
V 2
4

12µ
Q5 −

(

V3
µ2

+
V4
µ2
Q

)

∆P 2

+

(

3V2V3 + V1V4
2µ

+
4V2V4 + 3V 2

3

2µ
Q +

5V3V4
2µ

Q2 +
5V3V4
4µ

∆Q2

+
5V 2

4

6µ
Q3 +

5V 2
4

4µ
Q∆Q2

)

∆Q2 + r5 , (3.37)

and

d4P

dt4
= −V4

µ3
P 3 +

3V1V3 + V 2
2

µ2
P +

3V1V4 + 5V2V3
µ2

QP

+
5V 2

3 + 8V2V4
2µ2

Q2P + 3
V3V4
µ2

Q3P +
3V 2

4

4µ2
Q4P − 3V4

µ3
P∆P 2

+

(

5V 2
3 + 8V2V4
2µ2

P +
9V3V4
µ2

QP +
9V 2

4

2µ2
Q2P +

9V 2
4

4µ2
P∆Q2

)

∆Q2 + r5 . (3.38)

We can see, that the limit ∆Q → 0,∆P → 0 in Eqs. (3.35)–(3.38) lead to

equations that coincide with Eqs. (3.31)–(3.34) if Q→ q, P → p as promised.

3.4 Quantum ME packets

Let us now turn to quantum mechanics and try to solve an analogous problem.

Definition 29 Let the quantum model Sq of system S has spin 0, position q and

momentum p. State T that maximizes von Neumann entropy (see Section 1.2.2)

S = −tr(T lnT) (3.39)
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under the conditions

tr[Tq] = Q , tr[Tq2] = Q2 +∆Q2 , (3.40)

tr[Tp] = P , tr[Tp2] = P 2 +∆P 2 , (3.41)

where Q, P , ∆Q and ∆P are given numbers, is called quantum ME packet.

3.4.1 Calculation of the state operator

To solve the mathematical problem, we use the method of Lagrange multipliers as

in the classical case. Thus, the following equation results:

(dS − λ0d tr[T]− λ1d tr[Tq]− λ2d tr[Tp]− λ3d tr[Tq
2]− λ4d tr[Tp

2] = 0 . (3.42)

The differentials of the terms that are linear in ρ are simple to calculate:

d tr[Tx] =
∑

mn

xnmdTmn.

Although not all elements of the matrix dTmn are independent (it is a Hermitian ma-

trix), we can proceed as if they were because the matrix xnm is to be also Hermitian.

The only problem is to calculate dS. We have the following

Lemma 1

dS = −
∑

mn

[δmn + (lnT )mn]dTmn . (3.43)

Proof Let M be a unitary matrix that diagonalizes T,

M†TM = R ,

where R is a diagonal matrix with elements Rn. Then S = −∑nRn lnRn. Cor-

rection to Rn if T 7→ T + dT can be calculated by the first-order formula of the

stationary perturbation theory. This theory is usually applied to Hamiltonians but

it holds for any perturbed Hermitian operator. Moreover, the formula is exact for

infinitesimal perturbations. Thus,

Rn 7→ Rn +
∑

kl

M †
knMlndTkl .
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In this way, we obtain

dS = −
∑

n

(

Rn +
∑

kl

M †
knMlndTkl

)

× ln

[

Rn

(

1 +
1

Rn

∑

rs

M †
rnMsndTrs

)]

−
∑

n

Rn lnRn

= −
∑

n

[

lnRn

∑

kl

M †
knMlndTkl +

∑

kl

M †
knMlndρkl

]

= −
∑

kl

[δkl + (lnT)kl]] dTkl ,

QED.

With the help of Lemma 1, Eq. (3.42) becomes

tr
[

(1 + lnT− λ0 − λ1q− λ2p− λ3q
2 − λ4p

2)dT
]

= 0

so that we have

T = exp(−λ0 − 1− λ1q− λ2p− λ3q
2 − λ4p

2) . (3.44)

The first two terms in the exponent determine the normalization constant

e−λ0−1

because they commute with the rest of the exponent and are independent of the

dynamical variables. Taking the trace of Eq. (3.44), we obtain

e−λ0−1 =
1

Z(λ1, λ2, λ3, λ4)
,

where Z is the partition function,

Z(λ1, λ2, λ3, λ4) = tr[exp(−λ1q− λ2p− λ3q
2 − λ4p

2)] . (3.45)

Thus, the state operator has the form

T =
1

Z(λ1, λ2, λ3, λ4)
exp(−λ1q− λ2p− λ3q

2 − λ4p
2) . (3.46)

At this stage, the quantum theory begins to differ from the classical one. It turns

out that, for the case of non-commuting operators in the exponent of the partition

function, formula (3.10) is not valid in general. We can only show that it holds for

the first derivatives. To this aim, we prove the following
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Lemma 2 Let A and B be Hermitian matrices. Then

d

dλ
tr[exp(A+ Bλ)] = tr[B exp(A+ Bλ)] . (3.47)

Proof We express the exponential function as a series and then use the invariance

of trace with respect to any cyclic permutation of its argument.

d tr[exp(A+ Bλ)] =
∞
∑

n=0

1

n!
tr[d(A+ Bλ)n]

=
∞
∑

n=0

1

n!
tr

[

n
∑

k=1

(A+ Bλ)k−1B(A+ Bλ)n−k

]

dλ

=

∞
∑

n=0

1

n!

n
∑

k=1

tr
[

B(A+ Bλ)n−1
]

dλ = tr[B exp(A+ Bλ)]dλ ,

QED.

The proof of Lemma 2 shows why formula (3.10) is not valid for higher derivatives

than the first in the quantum case: the operator B does not commute with A+ Bλ

and cannot be shifted from its position to the first position in product

(A+ Bλ)kB(A+ Bλ)l .

For the first derivative, it can be brought there by a suitable cyclic permutation.

However, each commutator [B, (A+Bλ)] is proportional to ~. Hence, formula (3.10)

with higher derivatives is the leading term in the expansion of averages in powers of

~.

Together with Eq. (3.45), Lemma 2 implies the formulae:

∂ lnZ

∂λ1
= −Q ,

∂ lnZ

∂λ3
= −Q2 −∆Q2 (3.48)

and
∂ lnZ

∂λ2
= −P ,

∂ lnZ

∂λ4
= −P 2 −∆P 2 . (3.49)

The values of the multipliers can be calculated from Eqs. (3.48) and (3.49), if the

form of the partition function is known.

Variational methods can find locally extremal values that are not necessarily

maxima. We can however prove that our state operator maximizes entropy. The

proof is based on the generalized Gibbs’ inequality,

tr[T lnT− T lnS] ≥ 0

for all pairs {T, S} of state operators (for proof of the inequality, see [70], p. 264).

The proof of maximality is then analogous to the ”classical” proof (see, e.g., [50], p.

117



357). The first proof of maximality in the quantum case was given by von Neumann

[66].

The state operator (3.46) can be inserted in the formula (3.39) to give the value

of the maximum entropy,

S = lnZ + λ1〈q〉+ λ2〈p〉+ λ3〈q2〉+ λ4〈p2〉 . (3.50)

This, together with Eqs. (3.48) and(3.49), can be considered as the Legendre trans-

formation from the function lnZ(λ1, λ2, λ3, λ4) to the function S(〈q〉, 〈p〉, 〈q2〉, 〈p2〉).

3.4.2 Diagonal representation

The exponent in Eq. (3.46) can be written in the form

λ21
4λ3

+
λ22
4λ4

− 2
√

λ3λ4K , (3.51)

where

K =
1

2

√

λ3
λ4

(

q+
λ1
2λ3

)2

+
1

2

√

λ4
λ3

(

p +
λ2
2λ4

)2

. (3.52)

This is an operator acting on the Hilbert space of our system. K has the form of the

Hamiltonian1 of a harmonic oscillator with the coordinate u and momentum w

u = q+
λ1
2λ3

, w = p+
λ2
2λ4

, (3.53)

that satisfy the commutation relation [u,w] = i~. The oscillator has mass M and

frequency Ω,

M =

√

λ3
λ4

, Ω = 1 . (3.54)

The normalized eigenstates |k〉 of the operator form a basis in the Hilbert space

of our system defining the so-called diagonal representation and its eigenvalues are

~/2 + ~k. As usual, we introduce operator A such that

u =

√

~

2M
(A+ A†) , (3.55)

w = −i
√

~M

2
(A− A†) , (3.56)

K =
~

2
(A†A+ AA†)) , (3.57)

A|k〉 =
√
k|k − 1〉 , (3.58)

A†|k〉 =
√
k + 1|k + 1〉 . (3.59)

1The operator K must not be confused with the Hamiltonian H of our system, which can be

arbitrary.
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To calculate Z in the diagonal representation is easy:

Z = tr

[

exp

(

λ21
4λ3

+
λ22
4λ4

− 2
√

λ3λ4K

)]

=
∞
∑

k=0

〈k| exp
(

λ21
4λ3

+
λ22
4λ4

− 2
√

λ3λ4K

)

|k〉

= exp

(

λ21
4λ3

+
λ22
4λ4

− ~

√

λ3λ4

) ∞
∑

k=0

exp(−2~
√

λ3λ4k) .

Hence, the partition function for the quantum ME-packets is

Z =
exp

(

λ2
1

4λ3
+

λ2
2

4λ4

)

2 sinh(~
√
λ3λ4)

. (3.60)

Now, we can express the Lagrange multipliers in terms of the averages and vari-

ances. Eqs. (3.48) and (3.49) yield

λ1 = − Q

∆Q2

ν

2
ln
ν + 1

ν − 1
, λ2 = − P

∆P 2

ν

2
ln
ν + 1

ν − 1
, (3.61)

and

λ3 =
1

2∆Q2

ν

2
ln
ν + 1

ν − 1
, λ4 =

1

2∆P 2

ν

2
ln
ν + 1

ν − 1
, (3.62)

where ν is defined by Eq. (3.2).

From Eqs. (3.50), (3.61) and (3.62), we obtain the entropy:

S = − ln 2 +
ν + 1

2
ln(ν + 1)− ν − 1

2
ln(ν − 1) . (3.63)

Thus, S depends on Q, P , ∆Q, ∆P only via ν. We have

dS

dν
=

1

2
ln
ν + 1

ν − 1
> 0 ,

so that S is an increasing function of ν. Near ν = 1,

S ≈ −ν − 1

2
ln(ν − 1) .

Asymptotically (ν → ∞),

S ≈ ln ν + 1− ln 2 .

In the classical region, ν ≫ 1, S ≈ ln ν.

It is clear that the choice of Q and P cannot influence the entropy. The in-

dependence of S from Q and P does not contradict the Legendre transformation

properties. Indeed, usually, one would have

∂S

∂Q
= λ1 ,
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but here
∂S

∂Q
= λ1 + 2λ3Q ,

which is zero.

The resulting state operator, generalised to n degrees of freedom, is described by

the following

Theorem 14 The state operator of the ME packet of a system with given averages

and variances Q1, · · · , Qn, ∆Q1, · · · ,∆Qn of coordinates and P1, · · · , Pn, ∆P1, · · · ,
∆Pn of momenta, is

T =
n
∏

k=1

[

2

ν2k − 1
exp

(

−1

~
ln
νk + 1

νk − 1
Kk

)]

, (3.64)

where

Kk =
1

2

∆Pk
∆Qk

(qk −Qk)
2 +

1

2

∆Qk

∆Pk
(pk − Pk)

2 (3.65)

and

νk =
2∆Pk∆Qk

~
. (3.66)

Strictly speaking, the state operator (3.64) is not a Gaussian distribution. Thus,

it seems to be either a counterexample to, or a generalization of, Jaynes’ hypothesis.

Assumption 4 The quantum model Sq corresponding to the classical model Sc de-
scribed by Assumption 3 is the ME packet (3.64).

Let us study the properties of quantum ME packets. In the diagonal representa-

tion, we have for n = 1:

K =

∞
∑

k=0

Rm|m〉〈m| . (3.67)

We easily obtain for Rm that

Rm = 2
(ν − 1)m

(ν + 1)m+1
. (3.68)

Hence,

lim
ν→1

Rm = δm0 ,

and the state T becomes |0〉〈0|. In general, states |m〉 depend on ν. The state vector

|0〉 expressed as a function of Q, P , ∆Q and ν is given, for any ν, by

ψ(q) =

(

1

π

ν

2∆Q2

)1/4

exp

[

− ν

4∆Q2
(q −Q)2 +

iP q

~

]

. (3.69)
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This is a Gaussian wave packet that corresponds to other values of variances than

the original ME packet but has the minimum uncertainty. For ν → 1, it remains

regular and the projection |0〉〈0| becomes the state operator of the original ME

packet. Hence, Gaussian wave packets are special cases of quantum ME packets.

The diagonal representation offers a method for calculating averages of coordi-

nates and momenta products that replaces the partition function way. Let us denote

such a product X. We have

〈X〉 =
∞
∑

k=0

Rk〈k|X|k〉 . (3.70)

To calculate 〈k|X|k〉, we use Eqs. (3.55), (3.56), (3.53), (3.54), (3.61) and (3.62) to

obtain

q = Q +
∆Q√
ν
(A+ A†) , p = P − i

∆P√
ν
(A− A†) .

By substituting these relations into X and using the commutation relations [A,A†] =

1, we obtain

X = P(N) +Q(A,A†) ,

where N = A†A and where, in each monomial of the polynomial Q, the number of

A-factors is different from the number of A†-factors. Thus,

〈k|X|k〉 = P(k) .

In Eq. (3.70), there are, therefore, sums

∞
∑

k=0

knRk .

With Eq. (3.68), this becomes

∞
∑

k=0

knRk =
2

ν + 1
In ,

where

In(ν) =
∞
∑

k=0

kn
(

ν − 1

ν + 1

)k

.

We easily obtain

In =

(

ν2 − 1

2

d

dν

)n
ν + 1

2
.

The desired average value is then given by

〈X〉 = 2

ν + 1
P
(

ν2 − 1

2

d

dν

)

ν + 1

2
. (3.71)

The calculation of the polynomial P for a given X and the evaluation of the right-

hand side of Eq. (3.71) are the two steps of the promised method.
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3.4.3 Quantum equations of motion

Let the Hamiltonian of Sq be H and the unitary evolution group be U(t). The

dynamics in the Schrödinger picture leads to the time dependence of T:

T(t) = U(t)TU(t)† .

Substituting for T from Eq. (3.64) and using a well-known property of exponential

functions, we obtain

T(t) =
2

ν2 − 1
exp

(

−1

~
ln
ν + 1

ν − 1
U(t)KU(t)†

)

. (3.72)

In the Heisenberg picture, T remains constant, while q and p are time dependent

and satisfy the equations

i~
dq

dt
= [q,H] , i~

dp

dt
= [p,H] . (3.73)

They are solved by

q(t) = U(t)†qU(t) , p(t) = U(t)†pU(t) ,

where q and p are the initial operators, q = q(0) and p = p(0). The resulting

operators can be written in the form of operator functions analogous to classical

expressions (3.13) so that Eqs. (3.15) and (3.16) can again be used.

The example with potential function (3.17) is solvable in quantum theory, too,

and we can use it for comparison with the classical dynamics as well as for a better

understanding of the ME packet dynamics. Eqs. (3.73) have then the solutions

given by (3.18) and (3.19) with functions fn(t) and gn(t) given by (3.20) and (3.21)

or (3.22) and (3.23). The calculation of the averages and variances is analogous to

the classical one and we obtain Eqs. (3.24) and Eq. (3.26) again with the difference

that the term 2〈qp〉 on the right hand side of (3.25) is now replaced by 〈qp+ pq〉.
To calculate 〈qp+pq〉, we use the method introduced in the previous section. We

have

qp+ pq = 2QP + 2
P∆Q√

ν
(A+ A†)− 2i

Q∆P√
ν

(A− A†)− 2i
∆Q∆P

ν
(A2 − A†2) .

hence, P = 2QP , and

〈qp+ pq〉 = 2QP .

The result is again Eq. (3.26). Similarly for p, the results are given by Eqs. (3.27)

and (3.28).

We have shown that the averages and variances of quantum ME packets have

exactly the same time evolution as those of classical ME packets in the special case
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of at-most-quadratic potentials. From Eqs. (3.26) and (3.28) we can also see an

interesting fact. On the one hand, both variances must increase near t = 0. On the

other hand, the entropy must stay constant because the evolution of the quantum

state is unitary. As the relation between entropy and ν is fixed for ME packets,

the ME packet form is not preserved by the evolution (the entropy ceases to be

maximal). This is similar for Gaussian-packet form or for coherent-state form.

For general potentials, there are two types of corrections to the dynamics of the

averages: terms containing the variances and terms containing ~. To obtain these

corrections, let us calculate time derivatives for the quantum analogue of Hamilto-

nian (3.11) with potential (3.29). The Heisenberg-picture equations of motion give

again
dq

dt
=

1

µ
p ,

so that Eq. (3.30) is valid. The other equation,

i~
dp

dt
= [p,H] ,

can be applied iteratively as in the classical case so that all time derivatives of p can

be obtained. Thus,

dp

dt
= −V1 − V2q−

V3
2
q2 − V4

6
q3 + r5 , (3.74)

and
d2p

dt2
= −V2

µ
p− V3

2µ
(qp+ pq)− V4

6µ
(q2p + qpq+ pq2) + r5 .

This differs from the classical equation only by factor ordering. We can use the

commutator [q, p] = i~ to simplify the last term,

d2p

dt2
= −V2

µ
p− V3

2µ
(qp+ pq)− V4

2µ
qpq+ r5 . (3.75)

Similarly,

d3p

dt3
= −V3

µ2
p2 − V4

µ2
pqp+

V1V2
µ

+
V1V3 + V 2

2

µ
q+

3V2V3 + V1V4
2µ

q2

+
4V2V4 + 3V 2

3

6µ
q3 +

5V3V4
12µ

q4 +
V 2
4

12µ
q5 + r5 , (3.76)

and

d4p

dt4
= −V4

µ3
p3 +

3V1V3 + V 2
2

µ2
p+

3V1V4 + 5V2V3
2µ2

(qp+ pq) +
5V 2

3 + 8V2V4
2µ2

qpq

+
3V3V4
2µ2

(q3p+ pq3) +
3V 2

4

4µ2
q2pq2 + r5 . (3.77)
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Next, we calculate quantum averages with the help of Eq. (3.71). The quantum

averages of the monomials that are linear in one of the variables q or p can differ

from their classical counterparts only by terms that are of the first order in 1/ν and

purely imaginary. For example,

〈qp〉 = QP +
i~

2
,

or

〈q3p〉 = Q3P + 3QP∆Q2 + 3i
Q2∆Q∆P

ν
+ 3i

∆Q3∆P

ν
.

These corrections clearly cancel for all symmetric factor orderings. The first term

in which a second-order correction occurs is q2p2 and we obtain for it:

〈pq2p〉 = 〈q2p2〉class + 2
∆Q2∆P 2

ν2
.

The equations (3.74)–(3.77) do not contain any such terms and so their averages

coincide exactly with the classical equations (3.35)–(3.38). The terms q2p2 with

different factor orderings occur in the fifth time derivative of p and have the form

3V3V4
2µ2

[

q3p + pq3,
p2

2µ

]

+
V3V4
2µ3

[

1

3
q3, p3

]

= i~
V3V4
2µ3

(21pq2p− 11~2) .

The average of the resulting term in the fifth time derivative of p is

V3V4
2µ3

(

21Q2P 2 + 21P 2∆Q2 + 21Q2∆P 2 + 21∆Q2∆P 2 − ~2

2

)

.

If we express ~ as 2∆Q∆P/ν, we can write the last two terms in the parentheses as

∆Q2∆P 2

(

21− 2

ν2

)

.

A similar term appears in the third time derivative of p, if we allow V5 6= 0 in the

expansion (3.29):

[

− V5
12µ

(q3p+ pq3),
p2

2µ

]

= i~

[

− V5
4µ2

(2pq2p+ ~
2)

]

,

which contributes to d3P/dt3 by

− V5
2µ2

(

〈q2p2〉class +
4∆Q2∆P 2

ν2

)

.

Again, the correction is of the second order in ν−1.

We can conclude. The quantum equations begin to differ from the classical ones

only for the higher order terms in V or in the higher time derivatives and the
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correction is of the second order in 1/ν. This seems to be very satisfactory: our

quantum model reproduces the classical dynamic very well. Moreover, Eq. (3.69)

shows that Gaussian wave packets are special cases of ME packets with ν = 1.

Thus, they approximate classical trajectories less accurately than ME packets with

large ν. Of course, these results have as yet been shown only for the first four time

derivatives. It would be nice if a general theorem could be proved.

3.5 Classical limit

Let us now look to see if our equations give some support to the statement that

ν ≫ 1 is the classical regime.

The quantum partition function (3.60) differs from its classical counterpart (3.6)

by the denominator sinh(~
√
λ3λ4). If

~

√

λ3λ4 ≪ 1 , (3.78)

we can write

sinh(~
√

λ3λ4) = ~

√

λ3λ4[1 +O((~
√

λ3λ4)
2)]

The leading term in the partition function then is

Z =
π

h

1√
λ3λ4

exp

(

λ21
4λ3

+
λ22
4λ4

)

,

where h = 2π~. Comparing this with Eq. (3.6) shows that the two expressions are

identical if we set

v = h .

We can interpret this by saying that quantum mechanics gives us the value of v.

Next, we have to express condition (3.78) in terms of the averages and variances.

Equations (3.61) and (3.62) imply

~

√

λ3λ4 =
1

2
ln
ν + 1

ν − 1
.

Hence, condition (3.78) is equivalent to

ν ≫ 1 . (3.79)

The result can be formulated as follows. Classical mechanics allows not only

sharp, but also fuzzy trajectories and the comparison of some classical and quantum

fuzzy trajectories shows a very good match. The fuzzy states chosen here are the

so-called ME packets. Their fuzziness is described by the quantity ν = 2∆Q∆P/~.

The entropy of an ME packet depends only on ν and is an increasing function of
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it. The time evolution of classical and quantum ME packets with the same initial

values of averages and variances defines the averages as time functions. The larger ν

is, the better the quantum and the classical evolutions of average values have been

shown to agree for the first four terms in the expansion in powers of time. Thus, the

classical regime is neither ∆Q = ∆P = 0 (absolutely sharp trajectory) nor ν = 1

(minimum quantum uncertainty). This is the most important result of Ref. [42].

The time functions coincide for the two theories in the limit ν → ∞. Hence, in our

approach, this is the classical limit. This is just the opposite to the usual assumption

that the classical limit must yield the variances as small as possible. Of course, ν

can be very large and still compatible with classically negligible variances.

One also often requires that commutators of observables vanish in classical limit.

This is however only motivated by the assumption that all basic quantum prop-

erties are single values of observables. Within our interpretation, this assumption

is replaced by the following claim: If classical observables are related to quantum

operators then only in such a way that they are average values of the operators in

classicality states. Then, first, all such averages are defined by a preparation and do

exist simultaneously, independently of whether the operators commute or not. For

example, Q and P are such simultaneously existing variables for ME packets. Sec-

ond, a joint measurement of fuzzy values of non-commuting observables is possible.

This will be explained in Section 3.7.

It might be helpful to emphasise that construction of models of Newtonian me-

chanics and the so-called semi-classical or WKB approximation to quantum me-

chanics are two different things. Indeed, the semi-classical approximation is a math-

ematical method, usually defined as the expansion in powers of h in some quantum

expressions [70], to calculate approximately correct values of quantum expressions

in suitable applications. Equations resulting from h → 0 may be similar to the

corresponding classical equations. In fact, limit ν → ∞ also results from h → 0 if

the variances are kept constant. The suitable applications can be more general than

the above construction of models in that they, e.g., do not necessarily concern fuzzy

trajectories and macroscopic systems.

3.6 A model of classical rigid body

To show how the above theory of classical properties works, we construct a one

dimensional model of a free solid body. The restrictions to one dimension and

absence of external forces enable us to calculate everything explicitly—the model is

completely solvable. The real object is a thin solid rod of mass M and length L.

Its classical model Sc is a one-dimensional continuum of the same mass and length,

with mass density M/L, internal energy E, centre of mass X and total momentum
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P . The classical state coordinates (see Section 3.1) are M , L, X , P and E.

The construction of its quantum model Sq entails that, first, the structural prop-
erties of the system must be defined, second, some assumptions on the state of the

system must be done; third, the objective properties must be found that correspond

to the classical properties M , L, E, X and P . Large parts of this section follow

reference [41].

3.6.1 Composition, Hamiltonian and spectrum

Assumption 5 Sq is an isolated linear chain of N identical particles of mass µ

distributed along the x-axis with the quantum Hamiltonian

H =
1

2µ

N
∑

n=1

p2n +
κ2

2

N
∑

n=2

(xn − xn−1 − ξ)2, (3.80)

involving only nearest-neighbour elastic forces. Here operator xn is the position,

operator pn the momentum of the n-th particle, κ the oscillator strength and ξ the

equilibrium interparticle distance.

The parameters N , µ, κ and ξ are structural properties (determining the Hamilto-

nian of a closed system, see Section 1.3.2).

This kind of chain seems to be different from most chains that are studied in

literature: the positions of the chain particles are dynamical variables so that the

chain can move as a whole and the invariance with respect to Galilean group is

achieved. However, the chain can still be solved by methods that are described in

[53, 81].

First, we find the variables un and qn that diagonalize the Hamiltonian and thus

define the so-called normal modes. The transformation is

xn =

N−1
∑

m=0

Y m
n um +

(

n− N + 1

2

)

ξ, (3.81)

and

pn =
N−1
∑

m=0

Y m
n qm, (3.82)

where the mode index m runs through 0, 1, · · · , N − 1 and Y m
n is an orthogonal

matrix; for even m,

Y m
n = A(m) cos

[

πm

N

(

n− N + 1

2

)]

, (3.83)

while for odd m,

Y m
n = A(m) sin

[

πm

N

(

n− N + 1

2

)]

, (3.84)
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and the normalization factors are given by

A(0) =
1√
N
, A(m) =

√

2

N
, m > 0. (3.85)

To show that un and qn do represent normal modes, we substitute Eqs. (3.81)

and (3.82) into (3.80) and obtain, after some calculation,

H =
1

2µ

N−1
∑

m=0

q2m +
µ

2

N−1
∑

m=0

ω2
mu

2
m,

which is indeed diagonal. The mode frequencies are

ωm =
2κ√
µ
sin

m

N

π

2
. (3.86)

Consider the terms with m = 0. We have ω0 = 0, and Y 0
n = 1/

√
N . Hence,

u0 =
N
∑

n=1

1√
N
xn, q0 =

N
∑

n=1

1√
N
pn,

so that

u0 =
√
NX, q0 =

1√
N
P,

where X is the centre-of-mass coordinate of the chain and P is its total momentum.

The ”zero” terms in the Hamiltonian then reduce to

1

2M0
P2 (3.87)

with M0 = Nµ. Thus, the ”zero mode” describes a straight, uniform motion of the

chain as a whole. The fact that the centre of mass degrees of freedom decouple from

other (internal) ones is a consequence of Galilean invariance.

The other modes are harmonic oscillators called ”phonons” with eigenfrequencies

ωm, m = 1, 2, . . . , N − 1. The energy of the phonons,

E = H− 1

2M0
P2 , (3.88)

is the internal energy of our system and its spectrum is built from the mode fre-

quencies by the formula

E =

N−1
∑

m=1

νm~ωm, (3.89)

where {νm} is an (N − 1)-tuple of non-negative integers—phonon occupation num-

bers.
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Let us define the operator describing the mass by

M =M0 +
E

c2

and the length of the body by

L = xN − x1. (3.90)

We assume that the second term in the expression for the mass can be safely ne-

glected in the non-relativistic regime in which we are working. The length can be

expressed in terms of modes um using Eq. (3.81),

L = (N − 1)ξ +
N−1
∑

m=0

(Y m
N − Y m

1 )um.

The differences on the right-hand side are non-zero only for odd values of m, and

equal then to −2Y m
1 . We easily find, using Eqs. (3.84) and (3.85):

L = (N − 1)ξ −
√

8

N

[N/2]
∑

m=1

(−1)m cos

(

2m− 1

N

π

2

)

u2m−1. (3.91)

3.6.2 Maximum-entropy assumption

The next point is the choice of classicality states. We write the Hilbert space of Sq
as

H = HCM ⊗Hint ,

where HCM is constructed from the wave functions Ψ(X) (see Section 1.3.1) and

Hint has the phonon eigenstates as a basis.

Assumption 6 The classicality states have the form

TCM ⊗ Tint .

Internal state Tint maximises the entropy under the condition of fixed average of the

internal energy,

Tr

[

Tint

(

H− 1

2M0

P2

)]

= E .

The external state TCM is the ME packet for given averages 〈X〉, 〈P 〉, 〈∆X〉 and

〈∆P 〉.

Let us first focus on Tint. It is the state of thermodynamic equilibrium or the Gibbs

state, which we denote by TE (see, e.g., [50]).

The maximum of entropy does not represent an additional condition but rather

the absence of any, see Section 0.1.4. This is, of course, also a condition, and its
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validity in overwhelming number of real cases is an interesting problem. For Tint, it

must have to do with the preparation (not by physicists but by nature). Physically,

the thermodynamic equilibrium can settle down spontaneously starting from an

arbitrary state only if some weak but non-zero interaction exists both between the

phonons and between the rod and the environment. We assume that this can be

arranged so that the interaction can be neglected in the calculations of the present

section.

The internal energy has itself a very small relative variance in the Gibbs state if

N is large. This explains why it appears to be sharp. All other classical internal

properties will turn out to be functions of the classical internal energy. Hence, for

the internal degrees of freedom, E forms itself a complete set of state coordinates

introduced in Assumption 1. The properties of internal energy are well known and

we shall not repeat the calculations here.

3.6.3 The length of the body

The mathematics associated with the maximum entropy principle is variational cal-

culus. The condition of fixed average energy is included with the help of Lagrange

multiplier denoted by λ. It becomes a function λ(E) for the resulting state. As it

is well known, λ(E) has to do with temperature.

The phonons of one species are excitation levels of a harmonic oscillator, so we

have

um =

√

~

2µωm
(am + a†m),

where am is the annihilation operator for the m-th species. The diagonal matrix

elements between the energy eigenstates | νm〉 that we shall need then are

〈νm|um|νm〉 = 0, 〈νm|u2m|νm〉 =
~

2µωm
(2νm + 1). (3.92)

For our system, the phonons of each species form statistically independent sub-

systems, hence the average of an operator concerning only one species in the Gibbs

state TE of the total system equals the average in the Gibbs state for the one species.

Such a Gibbs state operator for the m-th species has the form

Tm =

∞
∑

νm=0

|νm〉p(m)
νm 〈νm|,

where

p(m)
νm = Z−1

m exp (−~λωmνm)
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and Zm is the partition function for the m-th species

Zm(λ) =
∞
∑

νm=0

e−λ~ωmνm =
1

1− e−λ~ωm
. (3.93)

The average length is obtained using Eq. (3.91),

〈L〉E = (N − 1)ξ. (3.94)

It is a function of objective properties N , ξ and E.

Eq. (3.91) is an important result. It shows that contributions to the length are

more or less evenly distributed over all odd modes. Such a distribution leads to a

very small variance of L in Gibbs states. A lengthy calculation [41] gives for large

N
∆L

〈L〉E
≈ 2

√
3

πκξ
√
λ

1√
N
. (3.95)

Thus, the small relative variance for large N does not need to be assumed from

the start. The only assumptions are values of some structural properties and that an

average value of energy is fixed. We have obtained even more information, viz. the

internal-energy dependence of the length (in this model, the dependence is trivial).

This is an objective relation that can be in principle tested by measurements.

Similar results can be obtained for further thermodynamic properties such as

specific heat, elasticity coefficient2 etc. All these quantities are well known to have

small variances in Gibbs states. The reason is that the contributions to these quan-

tities are evenly distributed over the normal modes and the modes are mechanically

and statistically independent.

3.6.4 The bulk motion

The mechanical properties of the system are the centre of mass and the total momen-

tum. The contributions to them are evenly distributed over all atoms, not modes:

the bulk motion is mechanically and statistically independent of all other modes and

so its variances will not be small in Gibbs states defined by a fixed average of the

total energy. Still, generalized statistical methods of Sections 3.2–3.4 can be applied

to it. This is done in the present subsection.

First, we assume that the real rod we are modelling cannot possess a sharp

trajectory. Thus, satisfactory models of it can be ME packets in both Newtonian

2If we extend the classical model so that it contains the elasticity coefficient, we could calculate

the coefficient for an extended quantum model, in which the rod would be placed into a non-

homogeneous ”gravitational” field described by, say, a quadratic potential. This would again give

a solvable model.
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and quantum mechanics. Then, according to Assumption 6 and Theorem 13, the

external state of the classical model can be chosen as

ρ =
v

2π

1

〈∆X〉〈∆P 〉 exp
[

−(X − 〈X〉)2
2〈∆X〉2 − (P − 〈P 〉)2

2〈∆P 〉2
]

. (3.96)

(For the definition of v, see Section 3.3.) Similarly, Theorem 14 implies that the

external state of the quantum model can be chosen as

TCM =
2

ν2 − 1
exp

(

−1

~
ln
ν + 1

ν − 1
K

)

, (3.97)

where

K =
1

2

〈∆P 〉
〈∆X〉(X− 〈X〉)2 + 1

2

〈∆X〉
〈∆P 〉 (P− 〈P 〉)2

and

ν =
2〈∆P 〉〈∆X〉

~
.

The Hamiltonian for the bulk motion of both models is given by equation (3.87).

Thus, as explained in Section 3.4.3, the quantum trajectory coincides with the clas-

sical one exactly. (Recall that trajectory has been defined as the time dependence

of averages and variances.)

Hopefully, this simple rod example has sufficiently illustrated how our idea of

model construction works in the case of classical properties and we can finish the

comparison of classical and quantum models here.

3.7 Joint measurement of position

and momentum

The existence of an observable that represents a joint measurement of position and

momentum plays some role in the theory of classical properties. To show it, we

generalise the construction of such an observable for a simplified model that was

first proposed in Ref. [3]. We follow Ref. [44]. The model system S is a free one-

dimensional spin-zero particle with position q and momentum p. The Hilbert space

is L2(R) and the operators are defined by equations analogous to (1.30) and (1.31).

Operators q and p have an invariant common domain and their commutator is

easily calculated to be

[q, p] = i~ .

Hence, the joint measurement may be a problem.

The general construction of a non-trivial POV measure for system S introduces

another system, ancilla, that forms a composite system with S. Let our ancilla A be
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a similar particle with position Q and momentum P. We work in Q-representation

so that the Hilbert space of the composite system S + A is L2(R) ⊗ L2(R), which

can be identified with L2(R2). Then, we have wave functions Ψ(q, Q) and integral

operators with kernels of the form K(q, Q; q′, Q′).

The dynamical variables A = q−Q and B = p+P of the composite system S+A
commute and can therefore be measured jointly. The value space of PV observable

EA∧B is R2 with coordinates a and b (see end of Section 1.2.3).

The next step is to smear EA∧B to obtain a realistic POV measure Ekl, where

k and l are integers. Let us divide the ab plane into disjoint rectangular cells

Xkl = [ak, ak+1]× [bl, bl+1] covering the entire plane. Each cell is centred at (ak, bl),

ak = (ak+1 + ak)/2, bl = (bl+1 + bl)/2 and Skl = (ak+1 − ak)(bl+1 − bl) is its area.

Then,

Ekl = EA∧B(Xkl) = EA([ak, ak+1])E
B([bl, bl+1]) . (3.98)

The cells can be arbitrarily small.

The probability to obtain the outcome {k, l} in state T of the composite system

is

tr[EklT] =

∫

dq dQdq′ dQ′Ekl(q, Q; q
′, Q′)T (q′, Q′; q, Q) . (3.99)

We assume that the composite system S +A is prepared in a factorised state

T = TS ⊗ TA (3.100)

and express the probability (3.99) in terms of the state TS . The action of the

projections EA([ak, ak+1]) and EB([bl, bl+1]) on vector states of the form Ψ(q, Q) is

EA([ak, ak+1])Ψ(q, Q) = χ[ak, ak+1](q −Q)Ψ(q, Q) ,

where

χ[ak, ak+1](x) = 1 ∀ x ∈ [ak, ak+1] ,

χ[ak, ak+1](x) = 0 ∀ x 6∈ [ak, ak+1]

and

EB([bl, bl+1])Ψ(q, Q) = (2π~)−2

∫

dp dP dq′ dQ′

exp
i

~
[p(q − q′) + P (Q−Q′)]χ[bl, bl+1](p+ P )Ψ(q′, Q′) ,

where

χ[bl, bl+1](x) = 1 ∀ x ∈ [bl, bl+1] ,

χ[bl, bl+1](x) = 0 ∀ x 6∈ [bl, bl+1] .
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The trace (3.99) can be calculated in several steps as follows. First,

tr[EklT] = tr[EA([ak, ak+1])E
B([bl, bl+1])T] = tr[EB([bl, bl+1])TE

A([ak, ak+1])]

= (2π~)−2

∫

dq dQdp dP dq′ dQ′ exp
i

~
[p(q − q′) + P (Q−Q′)]

χ[bl, bl+1](p+ P )χ[ak, ak+1](q −Q)T (q′, Q′; q, Q) .

Second, introduce new integration variables q, a, p, b, q′, a′,

tr[EklT] = (2π~)−2

∫

dq da dp db dq′ da′ exp
i

~
[p(q − q′) + (b− p)(q − a− q′ + a′)]

× χ[bl, bl+1](b)χ[ak, ak+1](a) T (q
′, q′ − a′; q, q − a) .

Third, if the cells are sufficiently small, the integrands do not change appreciably

inside the integration intervals of a and b so that they can be approximated as

follows:
∫

da db χ[ak, ak+1](a)χ[bl, bl+1](b)f(a, b) ≈ Sklf(ak, bl) .

In this way, we obtain

tr[EklT] ≈
Skl

(2π~)2

∫

dq dp dq′ da′

exp
i

~
[(p(ak − a′) + bl(q − q′ − ak + a′)] T (q′, q′ − a′; q, q − ak) .

But, fourth, the factor containing the integral over p is a δ-function,
∫

dp exp
i

~
p(ak − a′) = 2π~δ(a′ − ak) .

Thus, we obtain,

tr[EklT] ≈
Skl

(2π~)2

∫

dq dq′ exp
i

~
bl(q − q′) T (q′, q′ − ak; q, q − ak) .

Fifth, we use Eq. (3.100),

T(q′, Q′; q, Q) = TS(q
′, q)TA(Q

′, Q) ,

with the result:

Proposition 13 The probability of the outcome {k, l} to be found in the factorised

state (3.100) is given approximately by

tr[EklT] ≈ tr

[

TS
Skl

(2π~)2
TA[ak, bl]

]

, (3.101)
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where

TA[ak, bl] = exp
i

~
bl(q − q′) T (q′, q′ − ak; q, q − ak)

is the state TA first shifted by ak and then boosted by −bl. The approximation

improves if the cells are smaller.

If the cells are sufficiently small, we have q ≈ Q+ ak and p ≈ bl−P . In this way,

the coordinate of S is shifted by ak while the inverted momentum is shifted by −bl
with respect to those of A.

Eq. (3.101) shows that there is an ’effective’ POV measure ESkl for system S
defined by

ESkl =
Skl

(2π~)2
TA[ak, bl]

that yields the probability of the outcome k of the above registration considered as

a registration performed on S.
The state TA is completely arbitrary. To construct a useful quantity, one usually

chooses a vector state in the form of a Gaussian wave packet (see, e.g., Ref. [70], p.

418),

Ψσ = (πσ2)−1/4 exp

(

− Q2

2σ2

)

.

Easy calculation yields

〈Q〉 = 〈P 〉 = 0 , ∆Q =
σ√
2
, ∆P =

~

σ
√
2

so that Ψσ is a state of minimum uncertainty. If we shift Ψσ by ak and then boost

it by −bl, we obtain

Ψσ[ak, bl] = (πσ2)−1/4 exp

(

−(Q− ak)
2

2σ2
− i

~
blQ

)

,

which is the Gaussian packet concentrated at (ak,−bl),

〈Q〉 = ak , 〈P 〉 = −bl , (3.102)

and

∆Q =
σ√
2
, ∆P =

~

σ
√
2
. (3.103)

As the Gaussian wave packet is uniquely determined by its averages and variances,

we can interpret the observable Ekl as giving the probability that the corresponding

registration applied to state TS detects the state of S with the averages and variances

given by Eqs. (3.102) and (3.103).

Equation (3.101) is a general formula valid for an arbitrary state TA of the ancilla.

We have chosen TA to be a Gaussian wave packet, which has ν = 1. However, TA

135



can also be chosen as a quantum ME packet with Q = 0, P = 0 and ∆Q and ∆P

allowing arbitrary large ν. The resulting observable represents the detection of a

shifted and boosted ME packet.

136



Chapter 4

Quantum models of preparation

and registration

Discussions about the nature of quantum measurement were started already by

founding fathers of quantum theory, persisted throughout and seem even to amplify

at the present time.

This chapter begins by a short survey of the so-called old theory of quantum

measurement and its criticisms and then describes the theory that has evolved from

papers [43, 45].

4.1 Old theory of measurement

Let us first briefly describe the quantum theory of measurement that is generally

found in textbooks, such as [19] or [100]. We call this theory ”old”, in spite of the

fact that it is in frequent use today [100], in order to distinguish it from the theory

introduced in [43] and to show what is the difference between the two.

The theory considers two quantum systems: object system S with Hilbert space

H on which the measurement is to be done, and meter or apparatus A with Hilbert

space HA that performs the registration and can be microscopic or macroscopic.

In quantum mechanics, the fact that an arbitrary large number of identical copies

of S is available enables to carry out a whole ensemble of equivalent individual

measurements as explained in the Introduction. The equivalence of the individual

measurements is defined by the classical devices that are used to prepare the initial

states, to manipulate the states and to read the meter.

The first step of an individual measurement is to prepare S in state T and A
independently in state TA so that the initial state of S +A is T ⊗ TA. This is the

preparation stage of the measurement.

The second step is to bring both systems into interaction that leads to their
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entanglement. The interaction is mathematically represented by unitary transfor-

mation U on H⊗HA. At the end of this step, the state of the composite S +A is

UT⊗ TAU
†. This step is sometimes called premeassurement.

The third step is reading the meter. The requirement that each individual reading

gives a definite result r from value set Ω is called objectification requirement [19].

For the sake of simplicity, we assume Ω to be a discrete subset of R. Generalisations

to a vector of numbers and to a continuous value set Ω are easy and do not lead to

any conceptually new problems.

The reading is a rather mysterious procedure in the old theory. To find the state

of the meter, another apparatus is needed, and this apparatus is also a quantum

system; hence, to find what is the result of its reading, another apparatus would be

necessary, etc. This is the so-called von Neumann chain [66]. At some stage before

reaching the mind of the observer, the chain must be cut by applying the so-called

projection postulate. At this cut, known as Heisenberg cut [48], the result r becomes

well-defined and the reading is considered as having been made.

After performing many equivalent individual measurements, we obtain the statis-

tic of the results that can be described by probability distribution pr, normalised by
∑

r pr = 1.

The old theory avoids discussion of von Neumann series and concentrates on

quantities that describe the measurement more or less phenomenologically (oper-

ational approach). This is done by two important quantities. The first is POV

measure Er representing the observable of S that has been measured, so that

pr = tr[TEr] .

The second is an operation Or that maps initial state T of S to its final state Tr

after value r has been read i.e., after an individual registration has been made:

Tr =
Or(T)

tr[TEr]
.

An operation is a map O : Lr(H) 7→ Lr(H) that brings positive operators to positive

operators, and must satisfy some further mathematical conditions which will not be

important for us (for details, see [100, 19]). State Tr of the object system is called

conditional state or state conditioned on the readout, or also selective state. The

state of the object system obtained by averaging the conditional states after the

registrations,
∑

r

prTr ,

is called unconditional or non-selective. An important property of the conditional

or unconditional states is that they are not determined by unitary transformation
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U so that we have in general, for an unconditional state,

∑

r

prTr 6= ΠA[UT⊗ TAU
†]

or, for a conditional state,

Tr 6= ΠA[UT⊗ TAU
†] ,

where ΠA is the partial trace over states of A (Section 2.1.1). The additional change

of the state of the object system in comparison with state ΠA[UT⊗ TAU
†] is called

state reduction or collapse of wave function.

Experiments can be classified by mathematical properties of E and O (see, e.g.,

[100]). All the beautiful modern experiments such as weak measurements [90], non-

demolition measurements [16], experiments with photons such as ”seing a photon

without destroying it” [67] can be analysed in this way [100, 90].

4.1.1 Example: Beltrametti–Cassinelli–Lahti model

The general discussion above can be explained in terms of a simple example such

as Beltrametti–Cassinelli–Lahti (BCL) model [10] described in Ref. [19], p. 38. Let

a discrete observable O of object system S of type τ with Hilbert space Hτ be

measured. Let ok be eigenvalues and {φkj} be the complete orthonormal set of

eigenvectors of O,

Oφkj = okφkj .

We assume that k = 1, · · · , N so that there is only a finite number of different

eigenvalues ok. This is justified either by the nature of the whole measurement if

only few initial states of the systems are prepared at all and one can work with a finite

Hilbert space, or by the fact that no real registration apparatus can distinguish all

elements of an infinite set from each other. It can therefore measure only a function

of an observable that maps its spectrum onto a finite set of real numbers. Our

observable O is then such a function. The projection EO

k on the eigenspace of ok is

then EO

k =
∑

j |φkj〉〈φkj|. Variable ok will play the role of r.

Let the meter be a quantum system A with Hilbert space HA and an observable

A. Let A be a non-degenerate, discrete observable with the same eigenvalues ok and

with orthonormal set of eigenvectors ψk,

Aψk = okψk

with possible further eigenstates (such as ψ of Proposition 14) and eigenvalues.

The projection on an eigenspace is EA

k = |ψk〉〈ψk|. A is sometimes called pointer

observable [19].
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The measurement starts with the preparation of S in state T and the indepen-

dent preparation of A in state TA. Let the measurement coupling be U, a unitary

transformation on Hτ ⊗HA. Thus, the state of the meter after the premeasurement

is ΠS

[

U(T⊗ TA)U
†
]

.

Let us require that state ΠS

[

U(T ⊗ TA)U
†
]

gives the same probability measure

for the pointer observable as the initial state T predicted for the observable O:

tr[TEO

k ] = tr
[

ΠS [U(T⊗ TA)U
†]EA

k

]

.

This is called probability reproducibility condition. Now, there is a theorem [10]:

Proposition 14 Let a measurement fulfil all assumptions and conditions listed

above, in particular the probability reproducibility. Then, for any initial vector state

ψ of A, there is a set {ϕkl} of unit vectors in Hτ satisfying the orthogonality condi-

tions

〈ϕkl|ϕkj〉 = δlj (4.1)

for all k such that U is a unitary extension of the map

φkl ⊗ ψ 7→ ϕkl ⊗ ψk (4.2)

for all k, l.

Suppose that the initial state of S is an eigenstate of O, T = |φkl〉〈φkl|, with the

eigenvalue ok. Then, Eq. (4.2) implies that the final state of meter A is |ψk〉〈ψk|. In
this case, the registration of the pointer observable A on the meter yields a definite

result.

Suppose next that the initial state is an arbitrary vector state, T = |φ〉〈φ|. De-

composing φ into the eigenstates,

φ =
∑

kl

cklφkl , (4.3)

we obtain from Eq. (4.2)

Φend = U(φ⊗ ψ) =
∑

k

√
pkϕ

1
k ⊗ ψk , (4.4)

where

ϕ1
k =

∑

l cklϕkl
√

〈∑l cklϕkl|
∑

j ckjϕkj〉
(4.5)

and

pk =

〈

∑

l

cklϕkl

∣

∣

∣

∣

∣

∑

j

ckjϕkj

〉
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is the probability that a registration of O performed on vector state φ gives the value

ok. The final state of apparatus A then is

ΠS [U(T⊗ TA)U
†] =

∑

kl

√
pk
√
pl〈ϕ1

k|ϕ1
l 〉|ψk〉〈ψl| . (4.6)

Because of the orthonormality of |ψk〉’s, the probability that the result is ok if A is

registered on A in this final state is pk, which is what the probability reproducibility

requires.

Independently of how long the von Neumann series of registration apparatuses is

and of where the Heisenberg cut is performed, we can assume that the reading of

value ok causes the conditional state of the composite to be

ϕ1
k ⊗ ψk (4.7)

instead of the right-hand side of Eq. (4.4). In this way, the old theory leads to

definitive and useful results.

From Eq. (4.7), we find that the operation Ok describing this registration is

defined by

Ok(|φ〉〈φ|) = pk|ϕk〉〈ϕk|
and that the observable being registered is EO.

The state of S conditional on reading ok is then

|ϕk〉〈ϕk|

and the non-conditional state of S after the measurement is the convex combination

∑

k

pk|ϕk〉〈ϕk| .

Clearly, each individual registration can be considered as a preparation of the object

system in the corresponding conditional state. Hence, the non-conditional state is

obtained by a statistical mixture of preparations and the state average represents

its statistical decomposition according to Section 1.1.2. Thus, we can write it as

(

∑

k

)

p

pk|ϕk〉〈ϕk| . (4.8)

Similarly, the conditional state of the meter after the reading of value ok is |ψk〉〈ψk|
and its non-conditional state is (

∑

k)p pk|ψk〉〈ψk|, which is different from the state

(4.6) of the meter before reading in two respects: first, the non-conditional state

contains only the diagonal terms of the state operator defined by vector (4.6) and

second, it is a statistical decomposition.
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The model can be varied in a great number of ways [100]. For example, one can

give up the requirement of probability reproducibility. One can also abandon any di-

rect relation between pointer observable A and observable O as well as the condition

that the states of the meter obtained by the evolution defined by the measurement

coupling that occur in formula (4.2) are eigenstates of the pointer observable A, or

that they are orthogonal to each other (this is vital for weak measurements, see

[90]).

4.1.2 Attempts at improvement of the old theory

The old theory is conceptually not satisfactory even if it is sufficient for all practical

purposes (abbreviation FAPP introduced by John Bell). The problem is the objec-

tification requirement. Indeed, it is impossible to evolve right-hand side of Eq. (4.4)

to that of Eq. (4.8) in terms of a unitary transformation. Some attempts to solve

this difficulty start from the assumption that the difference between (4.4) and (4.8)

is not observable because the registration of the observables that would reveal the

difference is either very difficult or that such observables do not exist. One can then

deny that the transition from (4.4) to (4.8) really takes place and so assume that the

objectification is only apparent (no-collapse scenario). Other attempts do assume

that the reduction is a real process and postulate a new dynamics that leads directly

to (4.8) taking into account that some measurement could disprove this assumption.

There are three most important no-collapse approaches:

1. Quantum decoherence theory [36, 101, 82]. The idea is that system S + A
composed of a quantum object and an apparatus cannot be isolated from

environment E . Then the unitary evolution of S+A+E leads to a non-unitary

evolution of S+A that can erase all correlations and interferences from S+A
that hinder the objectification [36, 101, 82]. This leads to the necessary convex

combination of the end states but not to the statistical decomposition needed

for objectification (see discussion in Refs. [28, 6, 18, 19, 41, 42]).

2. Superselection sectors approach [49, 75, 95]. Here, classical properties are

described by superselection observables of A that commute with each other

and with all other observables of A (see Section 1.2.5). Then, the state of

A after the measurement is equivalent to a suitable convex combination but

again it is not the required statistical decomposition.

3. Modal interpretation [18]. One assumes that there is a subset of projections

that, first, can have determinate values in the state of S + A before the reg-

istration in the sense that the assumption does not violate contextuality (see

Section 1.2.4), and second, that one can reproduce all important results of

142



ordinary quantum mechanics with the help of these limited set of observables.

Thus, one must postulate that other observables are not registered.

The second kind of approach is known as dynamical reduction program [34, 69].

It postulates new universal dynamics that is non-linear and stochastic. The main

idea is that of spontaneous localisation. That is, linear superpositions of different

positions spontaneously decay, either by jumps [34] or by continuous transitions [69].

The form of this decay is chosen judiciously to take very long time for microsystems

so that the unitary evolution is a good approximation, and take very short time for

macrosystems so that the evolution between Eqs. (4.4) and (4.8) is granted. In this

way, a simple explanation of the definite positions of macroscopic systems and of the

pointers of registration apparatuses is achieved. Moreover, it is a realist approach

to quantum mechanics.

4.2 New theory of measurement

What we have called ”new theory” assumes that the state reduction satisfying Rule

19 really takes place, that it happens at a well-defined time and place, namely in a

detector (see below), and that it seems to contradict quantum mechanics only be-

cause quantum mechanics and registration process are not well understood. Indeed,

Section 2.2 has shown that quantum mechanics is not well understood because the

disturbance of registration by identical particles and the necessity of changes of sep-

aration status is disregarded, as in the old theory. As we are going to explain in the

present section, registration process is not well understood because the old-theory

notion of ”meter” does not distinguish between microscopic ancilla and macroscopic

detector.

To explain the second point, let us describe what a detector is (for more details

see e.g. [58, 93]). The first important part of a detector is the so-called sensitive

matter forming a macroscopic active volume. The second important part is a kind

of signal collector. For example, the sensitive matter of an ionisation detector is a

gas. When detected microscopic system S interacts with the molecules of the gas,

it turns them into electron-ion pairs if its energy is higher than the energy of one

ionisation. If it is much higher than this threshold, many pairs are produced. Then,

the signal collector is the electrodes with sufficient voltage difference that attract

and collect the resulting negative and positive charges.

In the so-called cryogenic detectors [93], S interacts, e.g., with superheated su-

perconducting granules by scattering off a nucleus in a granule and the resulting

phonons induce the phase transition from the superconducting into the normally

conducting phase. An active volume can contain very many granules (typically 109)

in order to enhance the probability of such scattering if the interaction between S
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and the nuclei is very weak (weakly interacting massive particles, neutrino). Then,

there is signal collector: a solenoid around the active volume and an independent

strong magnetic field. The phase transition of only one granule leads to a change in

magnetic current through the solenoid giving a perceptible electronic signal.

Modern detectors are constructed so that their signal is electronic. For example,

to a scintillating matter, a photomultiplier is attached, see Section 0.1.2. We as-

sume that there is a signal collected immediately after the sensitive matter changes

its phase, which we call primary signal. Primary signal may still be amplified and

filtered by other electronic apparatuses to transform it into the final signal of the

detector. For example, the light signal of a scintillation film in Tonomura exper-

iment described in Section 0.1.2 is a primary signal. It is then transformed into

an electronic signal by a photocathode and the resulting electronic signal is further

amplified by a photomultiplier, but this is already a transformation of the primary

signal.

In order to make a detector respond S must lose some of its energy to the sensitive

matter of the detector. The larger the loss, the better the signal. Thus, most

detectors are built in such a way that S loses all its kinetic energy and is absorbed

by the detector (in this way, also its total momentum can be measured). Let us call

such detectors absorbing. If the bulk of the sensitive matter is not large enough, S
can leave the detector after the interaction with it, in which case we call the detector

non-absorbing.

Observe that a detector is absorbing even if most copies of S leave the detector

without causing a response but cannot leave if there is a response (some neutrino

detectors). Suppose that S is prepared in such a way that it must cross a detector.

Then, the probability of the detector response is generally η < 1. We call a detector

ideal, if η = 1.

The main idea of detectors seems to be that the sensitive matter together with the

signal collector is in a classical state of metastable equilibrium (in thermodynamic

sense) and that the interaction with the detected system disturbs the equilibrium.

The detector then relaxes to a new equilibrium and this leads to the signal on the

one hand and to the dissipation of the state on the other. Clearly, such high-entropy

states cannot be described by wave functions unlike the states of an ancilla.

An important observation is that a real detector gives a definite signal (remaining

silent is also a kind of signal) in each individual registration. The main assumption

of the new theory is that the stage of registration at which the state reduction occurs

is the interaction of a detected system with a detector:

Assumption 7 Any registration apparatus for microsystems must contain at least

one detector. Every von Neumann series contains an interaction of the detected

microsystem with sensitive matter of the detector and the Heisenberg cut is this
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interaction. Every ”reading of a pointer value” is a signal from the detector.

We call Assumption 7 Pointer Hypothesis.

We also propose a reason why unitary evolution may be distorted by the detection

process. The sensitive matter contains many particles of the same type as, or that

are subsystems of, the detected system and this lead to a change of separation status

of the system. The change can be a complete loss—the status becomes trivial—or

a partial loss of the status. This is why the states of the system composed of the

registered system and the detector become degraded (see Section 2.3).

Now, we can specify how the old theory of measurement is corrected by the new

theory. First, the Heisenberg cut is a definite stage of the von Neumann series, viz. an

interaction with a detector or a screen (see Section 2.3). Second, the meter of the old

theory is a microscopic quantum system that can itself interact with a detector, and

which we prefer to be called ancilla. An ancilla can be described by wave functions

and the equations of the old theory are applicable to the interaction of an object

system with an ancilla. After this interaction, one can use detectors either to detect

the ancilla, or the object system, or both. In fact, all scattering experiments and

most modern quantum experiments (such as non-demolition or weak measurements)

are indirect measurements in the sense that the object system first interact with

an ancilla and the ancilla is then registered directly, being manipulated by fields

and screens and finally exciting a detector. Thus, the old theory does not become

obsolete: it gives a valid account of the interaction of the object system with the

ancilla and of its conditional state resulting after a registration of the ancilla by a

detector.

However, the old theory is not applicable to processes running in detectors because

it completely disregards changes of separation status. In particular, individual states

of the object system after an interaction with a detector such as ϕ1
k do not necessarily

exist and quantities such as Ok are not necessarily well-defined. That is the reason

why the meter cannot be a detector. We shall study many examples of direct

registration in the next section.

4.3 Models of direct registrations

As explained in previous section, the old theory of measurement is not applicable

to direct registrations. It is the purpose of the present section to supply the missing

part of the theory. We shall modify the BCL model of Section 4.1.1 by intro-

ducing detectors, describing the formal evolution and specifying Rule 19 by model

assumptions valid for several different cases of registration. These will be our model

assumptions for each detection process. We shall also observe that the overall design

of the detector determines what is sometimes (see, e.g., [82]) called preferred basis:
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the basis in which the reduced state becomes diagonal. The exposition follows, more

or less, Ref. [45].

4.3.1 Ideal detectors

First, we simplify things by assumption that the detectors are ideal. For an ideal

detector, the number of events registered by the detector equals the number of events

impinging on it (intrinsic efficiency equal to 1). We also restrict ourselves to the

active volume1 of the detector, denote it by D and speak of it as of the detector.

It is a macroscopic quantum system (not just a space volume) with Hilbert space

Hτ ′. Object system S (which can be the ancilla of some registration) has Hilbert

space Hτ . Initially, S and D are separated. We can, therefore, speak of initial states

φmk of S as in Section 4.1.1 and T of D, where T is assumed to be a stationary,

high-entropy state.

Eq. (4.2) has now to be replaced by the formal evolution of S + D on Hττ ′ =

Pττ ′(Hτ ⊗ Hτ ′), where Pττ ′ is defined by Eq. (2.19). Let us write a suitable initial

state as follows:

Tinit(c) = J

(

∑

kl

ckc
∗
l |φmk〉〈φml| ⊗ T

)

= ν

(

∑

kl

ckc
∗
lPττ ′(|φmk〉〈φml| ⊗ T)Pττ ′

)

,

(4.9)

where ck are components of a unit complex vector c, J is defined by Eq. (2.20) and

ν is a normalisation factor. For any unitary map U holds

UTinit(c)U
† = ν

(

∑

kl

ckc
∗
lUPττ ′(|φmk〉〈φml| ⊗ T)Pττ ′U

†

)

. (4.10)

It is, therefore, sufficient to consider operators Pττ ′(|φmk〉〈φml| ⊗ T)Pττ ′ and their

evolution for different possible values of m, k and l.

Let the formal evolution on Hττ ′ between the initial and an end state be given

by unitary map U. Now, we use the strategy of Ref. [10] and describe U by suitable

initial and final states so that probability reproducibility is satisfied. Thus, U defines

operators T′
mkl on Hττ ′ :

UPττ ′(|φmk〉〈φml| ⊗ T)Pττ ′U
† = NT′

mkl (4.11)

where N is a normalisation constant due to map Pττ ′ not preserving norms. It is

chosen so that

tr[T′
mkl] = δkl .

Let us formulate our model assumptions in terms of operators T′
mkl.

1An active volume is a quantum system, not just a volume of space.
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A For any complex unit vector c, state
∑

kl ckc
∗
lT

′
mkl includes a direct signal of the

detector.

B For any pair of complex unit vectors c and c′, the states
∑

kl ckc
∗
lT

′
mkl and

∑

kl c
′
kc

′∗
l T

′
mkl are not macroscopically different. That is, the signal of the

detector depends only on m so that the detector registers O.

C For any complex unit vector c, state
∑

kl ckc
∗
lT

′
mkl describes system S being swal-

lowed by D, that is, the separation status of S changes. Hence, we cannot

reproduce any particular state operator on Hτ as an end state of S and on

Hτ ′ as an end state of D. In general, it is not true that S and D are each in

a well-defined state at the end.

If the formal evolution were applied to general initial state φ of S with decom-

position (4.3) then the end state of the composite S + D would contain linear su-

perposition of different detector signals and the objectification requirement would

be violated. We shall therefore apply Rule 19 next to weaken the assumption of

unitarity.

Flexible-signal detectors

Detectors can be divided in fixed-signal and flexible-signal ones. For a fixed-signal

detector, the amplification erases differences of states
∑

kl ckc
∗
lT

′
mkl so that the signal

is independent not only of c but also of m. An example is a Geiger–Mueller counter.

A flexible-signal detector, such as a proportional counter, gives different signals for

different m.

The minimal change of the unitarity assumption results from the consequence of

assumptions A and B that the formal evolution of initial states φ constructed from

all eigenstates of S with one fixed eigenvalue,

φ =
∑

k

ckφmk ,

does not lead to violation of objectification requirement.

Let us call this part of formal evolution a channel or m-th channel. For a general

initial state φ, decomposition (4.3) can be written as

φ =
∑

mk

√
pm

cmk√
pm

φmk

and (
√
pm)

−1cmk is a complex unit vector for each m. Thus, φ is now a linear

superposition of different channels and we have to put all channels together so that
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the result agrees with the objectification requirement. The unique possibility is:

Tflex =

(

N
∑

m=1

)

p

pm
∑

kl

cmkc
∗
ml

pm
T′
mkl . (4.12)

End state (4.12) has the form of a convex combination of states of the composite

S + D, each of which includes only one detector signal, and the combination is the

statistical decomposition of the end state. In general, such an additional reduction

of the end state to a non-trivial statistical decomposition cannot be the result of

a unitary evolution. The formal evolution defines the channels but remains valid

only within each channel. Observe that this is sufficient to recognise whether the

separation status has changed or not. Moreover, we can accept the validity of

Eq. (4.11) and all properties A–C of operators T′
mkl as model assumptions without

requiring full unitarity.

Fixed-signal detectors

This is the case considered in Ref. [43]. Let state φ of particle S be prepared with

separation status D. Let S be manipulated by fields and screens in D so that beams

corresponding to different eigenvalues of O become spatially separated.

Let the detector D be an array of N fixed-signal sub-detectors D(m) prepared in

initial states T(m) with separation statuses D(m) where D(n)∩D(m) = ∅ for all n 6= m

and D(m)∩D = ∅ for all m. We assume further that the sub-detectors are placed at

the boundary of D in such a way that the beam corresponding to eigenvalue om will

impinge on sub-detector D(m) for each m. Each sub-detector D(m) interacts with

S as a whole and processes running in different sub-detectors do not influence each

other.

It has been shown that every observable can in principle be registered by this kind

of measurement (see [95], Section 3.6). The definition feature of it is that different

eigenvalues of the observable are associated with disjoint regions of space and its

registration can then be reduced to that of position. However, even if the objecti-

fication problem could be solved for such registrations, it still remains unsolved for

other kinds of registration (such as that described in the previous section), which

undoubtedly exist and exhibit the objectification effect.

In general, S hits all sub-detectors simultaneously because it is present in all

beams simultaneously. However, S in initial state
∑

kl ckc
∗
l |φmk〉〈φml| for any com-

plex unit vector c interacts only with sub-detector D(m). The formal evolution of

S +D(m) can then be decomposed into

UPττ ′(|φmk〉〈φml| ⊗ T(m))Pττ ′U
† = NT

(m)′
kl

and we adopt assumptions A–C for operators T
(m)′
kl .
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Again, we have to put all channels together in the correct way. The end state of

S +D for any initial state φ of S then is

Tfix =

(

N
∑

m=1

)

p

pm
∑

kl

cmkc
∗
ml

pm
T

(m)′
kl ⊗

N\m
∏

r=1

⊗T(r) , (4.13)

where
∏N\m

r=1 denotes the product of all terms except for that with r = m and

coefficients cmk are defined by Eq. (4.3). Again, Eq. (4.13) represents a non-trivial

reduction, where only the channels evolve unitarily.

Some comments and generalisations

To discuss Eqs. (4.12) and (4.13), let us distinguish absorbing and non-absorbing de-

tectors [43]. An absorbing detector never releases a particle that it detects, whereas

a non-absorbing detector always releases it. We can consider only Eq. (4.13), which

will be needed later, the other case is similar. If the detectors are absorbing, then

state Tfix evolves with S staying inside D. S is not manipulable and can be consid-

ered as lost in the detector.

The case of non-absorbing detectors is more interesting. Extension of the formal

evolution in each channel then leads to separation of the two systems at some later

time (see Section 2.2.5). Further evolution of operator Pττ ′(|φmk〉〈φml| ⊗ T)Pττ ′

depends on the Hamiltonian. The simplest imaginable end result is Pττ ′(|ϕmk〉〈ϕml|⊗
T(m)′′)Pττ ′ , where ϕmk is a state of a system identical to S with separation status

Dm, Dm ∩ D(n) = ∅ for all m and n, and T(m)′′ is a state of D(m) with separation

status D(m). Thus, end state Trelease that can be reconstructed from the formal

evolution is

Trelease =

(

N
∑

m=1

)

p

pm
∑

kl

cmkc
∗
ml

pm
|ϕmk〉〈ϕml| ⊗ T(m)′′ ⊗

N\m
∏

r=1

⊗T(r) . (4.14)

As a result, there is a random mixture of states

∑

kl

cmkc
∗
ml

pm
|ϕmk〉〈ϕml|

of a system S ′ of the same type as S and each of these states is correlated with a

macroscopic state T(m)′′ of detector D(m) including a macroscopic signal. System S ′

has a non-trivial separation status again (Dm) so that the release in each channel

can be understood as an instance of preparation for S ′ and the whole evolution

as a statistical mixture (Definition 5) of these single preparations. The different

individual preparations are distinguished by the different macroscopic states D(m)
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of different sub-detectors and accompanied by partial dissipation of the original state

within the detector. The formula (4.14) preserves the state reduction, which is due

to the loss of separation status of the original system S inside detector D. One

could even define the conditional state Tr and operation Or (see Section 4.1) for

this special case of direct registration.

The new rules that have been proposed as yet always correct the unitary formal

evolution determined by standard quantum mechanics by a reduction of the state

operator. The reduced state occurs in the formulas as the so-called ”end state”. We

assume that the time instant at which each end state formula is valid is the time

at which the detector gives its macroscopic signal. No detail of the time evolution

to this end state is given. The end state itself as well as any time evolution to

it cannot be derived from quantum mechanics but must simply be guessed and

subjected to experimental checks. The question of detailed time evolution is left

open. An example of such a more detailed evolution may be given by some scenario

of the dynamical reduction program. Of course, the motivation for the reduction

would then be very different.

An interesting case, which has some relevance to the end-time question and which

is a hybrid of the registration by non-absorbing and absorbing detector, is the Ein-

stein, Podolsky and Rosen (EPR) experiment [26]. We consider Bohm’s form of it

[13]. A spin-zero particle decays into two spin-1/2 ones, S1 and S2, that run in two

opposite directions. The state of composite S1 ⊗ S2 is then

1√
2
(|1+〉 ⊗ |2−〉 − |1−〉 ⊗ |2+〉) , (4.15)

where |1+〉 is the spin-up state of S1, etc. Finally, the spin of S1 is registered after

some time at which the particles S1 and S2 may be far away from each other. Let the

detector be a special case of fixed-signal one, as described in Section 4.3.1. Hence,

there are two sub-detectors, D(+)
1 and D(−)

1 so that spin up of S1 is associated with

a signal from D(+)
1 and spin down with that from D(−)

1 . Let the state of S1 + D(+)
1

containing the signal be T
(+)′
1 and that of S1 + D(−)

1 be T
(−)′
1 . Although S1 will be

swallowed by the detector (see Section 4.3.1), the left particle may remain accessible

to registration. Thus, our new rule is analogous to Eq. (4.14):

TEPR =
1

2
|2+〉〈2+| ⊗ T

(+)
1 ⊗ T

(−)′
1 (+)p

1

2
|2−〉〈2−| ⊗ T

(+)′
1 ⊗ T

(−)
1 , (4.16)

where T
(+)
1 and T

(−)
1 are the non-excited states of the corresponding sub-detectors.

The state reduction takes place at the time of the detector signal and has a non-

local character. We do not see any paradox in it. The only problem comes with the

generalisation to a relativistic theory: what is the correct simultaneity plane? This

problem has been solved by Keyser and Stodolsky [51], see also the discussion in

Section 2.1.2.

150



Eqs. (4.12), (4.13) and (4.14) can readily be generalised to registration on a non-

extremal state S of S. First, we have to decompose S into eigenstates of O,

S =
∑

nkml

Snkml|φnk〉〈φml| ; (4.17)

the probability to register eigenvalue ok on S is

pm =
∑

k

Smkmk .

Second, because of the linearity of U, everything we must do is to replace the ex-

pressions in Eqs. (4.12), (4.13) and (4.14) as follows:

cmkc
∗
ml

pm
7→ Smkml

pm
. (4.18)

The last case of direct registration to consider in this section is that the registered

particle can miss the detectors and enter into environment. We can use Eq. (4.13)

again by modelling the part of the environment that the particle must join if it

misses the detector by one of the sub-detectors, D(N), say.

This also explains the fact that the Schrödinger’s cat is never observed in the

linear superposition of life and death states. Indeed, in the case of Schrödinger’s

cat, there is a radioactive substance releasing alpha-particles and a detector of alpha-

particles, the signal of which leads to the death of the cat. Then, we can decompose

the state of an alpha-particle into that of it being in the nucleus or of being released

and missing the detector and that of hitting the detector, so that the above analysis

is applicable.

Registration of composite systems

Eqs. (4.12)–(4.14) were obtained for registrations of one-particle systems. This sec-

tion will generalise them to many-particle ones. Composite systems can be classified

into bound and unbound. Bound systems such as atoms and molecules can be dealt

with in an analogous way as particles. The only change is that map Pττ ′ is more

complicated. Then, Eqs. (4.12)–(4.14) are valid for bounded composite systems.

Unbounded composite systems are different. A system S that contains K unbound

particles can excite more detectors simultaneously, at most K detectors.

Generalisation to such systems is not completely straightforward because it must

achieve, on the one hand, that there can be some non-trivial correlations between the

signals from different detectors and, on the other, that the detectors are never in a

linear superposition of their different signals, which in turn erases some correlations

between different detectors. Of course, for one-particle systems, signals of different
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detectors are always anti-correlated in a trivial way. Non-trivial correlations that

can emerge for unbounded many-particle systems are, e.g., Hanbury–Brown–Twiss

(HBT) ones [46] or Eistein–Podolski–Rosen (EPR) ones. Let us start with HBT

effect.

In the original experiment by Hanbury Brown and Twiss, two photomultiplier

tubes separated by about 6 m distance, were aimed at the star Sirius. An interfer-

ence effect was observed between the two intensities, revealing a positive correlation

between the two signals. Hanbury Brown and Twiss used the interference signal to

determine the angular size of Sirius. The theory of the effect [29] studies a model

in which the signal consists of two photons that impinge simultaneously on two

detectors. Our strategy will be to construct a non-relativistic model of Hanbury

Brown and Twiss effect following closely Fano’s ideas [29] and try then to modify it

similarly as the BCL model has been modified for the case of one-particle systems

in Section 4.3.1.

Let us limit ourselves to S = S1 + S2 consisting of two bosons, K = 2, with

Hilbert spaces H1 and H2. To simplify further, let the registered observable be

O1+O2, Ok having only two eigenvalues +1 and −1 and eigenvectors |k+〉 and |k−〉,
k = 1, 2 satisfying

Ok|k+〉 = +|k+〉 , Ok|k−〉 = −|k−〉 .
Let, moreover, the one-particle Hilbert spaces be two-dimensional, i.e., vectors |k+〉
and |k−〉 form a basis of Hk. Let the projections onto these states be denoted by

Pk+ and Pk− so that we have:

Pk+Pk+ = Pk+ , Pk−Pk− = Pk− , Pk+Pk− = 0 . (4.19)

The generalisation to more particles of arbitrary kinds, general observables and

general Hilbert spaces is straightforward.

The Hilbert spaceH of the composite system has then basis {|++〉, |−−〉, |+−〉},
where

|++〉 = |1+〉|2+〉 ,
| − −〉 = |1−〉|2−〉 ,
|+−〉 =

1√
2
(|1+〉|2−〉+ |1−〉|2+〉) .

It is the basis formed by eigenvectors of O1 + O2 with eigenvalues 2, −2 and 0,

respectively. The corresponding projections are

P++ = P1+P2+ ,

P−− = P1−P2− ,

P+− = P1+P2− + P1−P2+ .
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It follows from Eq. (4.19) that these are indeed projections.

To calculate the correlation in a state S of system S between the values ±1 of any

subsystem S1 or S2, which is intended to model the correlation measured by Hanbury

Brown and Twiss, we need probability p+ that eigenvalue +1 will be registered at

least on one subsystem and similarly p− for −1. These are given by

p+ = tr[S(P++ + P+−)] ,

p− = tr[S(P−− + P+−)] ,

respectively. If we define

P+ = P++ + P+− , P− = P−− + P+− ,

we have

P+− = P+P− .

The normalised correlation (see Section 1.2.2) is then given by

C(S) =
tr[SP+P−]− tr[SP+]tr[SP−]

√

tr[SP+]− (tr[SP+])2
√

tr[SP−]− (tr[SP−])2
. (4.20)

For example, let |Φ〉 be a general vector state in H:

|Φ〉 = a|++〉+ b| − −〉 + c|+−〉 ,

where a, b and c are complex numbers satisfying

|a|2 + |b|2 + |c|2 = 1 .

Then,

C(Φ) = − |a|2|b|2
√

(|a|2 − |a|4)(|b|2 − |b|4)
.

The correlation lies, in general, between 0 and −1. The value −1 occurs for c = 0,

means the strong anti-correlation and is the standard (trivial) case for one-particle

systems.

Next, we construct a suitable detector. System S can be prepared in vector state

|Φ〉 with separation status D where then fields and screens split the beam B of single

particles corresponding to |Φ〉 into two beams, B+ and B−, each associated with an

eigenvalue ±1 of observable O1 or O2. Let detector D consist of two sub-detectors,

D(+) placed in the way of the beam B+ and D(−) placed in the way of B− so that

the signal of D(+) registers eigenvalue +1 and that of D(+) eigenvalue −1 on the

registered particle similarly as in our model of fixed signal detector (Eq. (4.13)).

Let the Hilbert spaces of the sub-detectors be H+ and H−.
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Let the sub-detectors be prepared in initial states |D(+)0〉 and |D(−)0〉 with sepa-

ration statuses D(+) and D(−), D(+)∩D(−) = ∅, D∩D(±) = ∅. After the interaction
between S and D, the following states are relevant: |D(+)1〉 ∈ P1+(H1 ⊗ H+),

|D(−)1〉 ∈ P1−(H1 ⊗ H−), |D(+)2〉 ∈ P2+(H2 ⊗ H+), |D(−)2〉 ∈ P2−(H2 ⊗ H−),

|D(+)12〉 ∈ P12+(H1⊗H2⊗H+) and |D(−)12〉 ∈ P12−(H1⊗H2⊗H−). These states

describe one or two of the particles being swallowed by one of the sub-detectors

and they are associated with changes of their separation status and include detector

signals. Here, (symmetrising) projection P1+ is defined by Eq. (2.19) for Hilbert

spaces H1 and H+ and analogously for the other projections.

Finally, to register O1 + O2, the measurement coupling U must satisfy

UP12+−(|++〉 ⊗ |D(+)0〉 ⊗ |D(−)0〉) = P12+−(|D(+)12〉 ⊗ |D(−)0〉) , (4.21)

UP12+−(| − −〉 ⊗ |D(+)0〉 ⊗ |D(−)0〉) = P12+−(|D(+)0〉 ⊗ |D(−)12〉) , (4.22)

UP12+−(|+−〉 ⊗ |D(+)0〉 ⊗ |D(−)0〉) = P12+−(|D(+)1〉 ⊗ |D(−)2〉) . (4.23)

Observe that operator P12+− also exchanges particles 1 and 2, which is a non-trivial

operation on the right-hand side of Eq. (4.23).

Eqs. (4.21), (4.22) and (4.23) describe the formal evolution defining the three

channels of the measurement. Each channel leads to the composite signal due to

a registration of one copy of two-particle system S. Thus, it can include signals of

two detectors (Eq. (4.23)).

The formal evolution of state Φ would yield for the end state of the system S+D:

UJ(|Φ〉 ⊗ |D(+)0〉 ⊗ |D(−)0〉) = aJ(|D(+)12〉 ⊗ |D(−)0〉)
+ bJ(|D(+)0〉 ⊗ |D(−)12〉) + cJ(|D(+)1〉 ⊗ |D(−)2〉) , (4.24)

where map J is defined by Eq. (2.20). According to our theory, this state must be

reduced to a decomposable state with component states, each of them corresponding

to a single channel. Thus, the correct end state Tcomp of the whole system S + D
after the measurement process described above is

Tcomp = |a|2J(|D(+)12〉〈D(+)12|)⊗ |D(−)0〉〈D(−)0|
(+)p|b|2|D(+)0〉〈D(+)0| ⊗ J(|D(−)12〉〈D(−)12|)

(+)p|c|2J
(

|D(+)1〉〈D(+)1| ⊗ |D(−)2〉〈D(−)2|
)

. (4.25)

We assume that Eq. (4.25) describes a special case of the registration of many-

particle systems by many detectors and that it illustrates a method that can be used

for more general cases. State Tcomp is an operator onH⊗H+⊗H− and it is a convex

combination of three states each on a different subspace of it. These three states

are obtained by reconstruction from the corresponding results of formal evolution
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in accordance with the separation statuses. For example, the formal evolution gives

for the first state

J(|D(+)12〉〈D(+)12| ⊗ |D(−)0〉〈D(−)0|) ,
but both particles are inside D(+) and are, together with D(+), separated from D(−).

One can see that the pair of sub-detectors is in a well-defined signal state after

each individual registration on S and, at the same time, the correlation contained

in state |Φ〉 that models the HTB correlation is preserved and can be read off the

signals of the sub-detectors. This is of course due to the fact that HTB correlation

is a function of the absolute values |a|, |b| and |c|, none of which is erased by

reduction of Eq. (4.24) to Eq. (4.25), while the extra correlations due to the linear

superposition depend on mixed products such as ab∗, etc.

A different but analogous case is the EPR experiment. The composite system

of two fermions S1 and S2 is in initial state (4.15). The detector consists of four

sub-detectors, D(+)
1 , D(−)

1 , D(+)
2 and D(−)

2 , where the first pair interacts only with S1

and the second only with S2. The initial states of the sub-detectors are T
(±)
k . The

symbol T
(±)′
k denotes the state of system D(±)

k + Sk in which the sub-detector D(±)
k

swallows particle Sk and sends its signal. Procedure analogous to that leading to

formula (4.25) will now give for the end state

1

2
T

(+)
1 ⊗ T

(−)′
1 ⊗ T

(−)′
2 ⊗ T

(+)′
2 (+)p

1

2
T

(+)′
1 ⊗ T

(−)′
1 ⊗ T

(−)
2 ⊗ T

(+)′
2 . (4.26)

Again, EPR anti-correlation of the sub-detector signals is preserved even if the

quadruple of the sub-detectors is always in a well-defined signal state at the end.

4.3.2 Non-ideal detectors

Non-ideal detectors may be the natural and dominating case, from the experimental

point of view. If a non-ideal detector D is hit by a system S, there is only probability

0 < η < 1, the intrinsic efficiency, that it will give a signal. From the theoretical

point of view, they are important because our simple method of channels does not

work for them.

We restrict ourselves to flexible-signal detectors with possible signals enumerated

by m = 1, . . . , N and suppose that, in general, ηm depends on m. The other cases

can be dealt with in an analogous way. Let the separation status of D be DD. If S is

prepared in an eigenstate of O with eigenvalue om which formally evolves to S being

inside DD with certainty, then the probability that D signals is ηm and not 1. Thus,

the condition of probability reproducibility is not satisfied in this case. Instead, we

introduce the notion of approximate probability reproducibility. Its meaning is that

the detector does register eigenvalue om on S if it gives m-th signal, but we do not

know anything, if it remains silent.
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To construct a model of this situation, we must first modify Eq. (4.2) that ex-

presses the idea of probability reproducibility into what expresses the approximate

probability reproducibility (within standard quantum mechanics):

U(φmk ⊗ ψ) = C1
mϕmk ⊗ ψ1

m + C0
mφ

′
mk ⊗ ψ0

m , (4.27)

where φ′
mk is a suitable time evolution of φmk into DD and ϕmk are states of S while

ψ is the initial state, ψ1
m the signal state and ψ0

m a no-signal state of D. These states

satisfy orthogonality relations

〈ψ|ψ1
m〉 = 0 , 〈ψ1

m|ψ1
n〉 = δmn , 〈ψ0

m|ψ1
n〉 = 0 , 〈ϕmk|ϕml〉 = 〈φ′

mk|φ′
ml〉 = δkl .

The coefficients C1
m and C0

m are related by

|C1
m|2 + |C0

m|2 = 1 , |C1
m|2 = ηm .

Measurement coupling U commutes with Pττ ′ because the Hamiltonian leaves

Hττ ′ invariant and with normalisation because it is a unitary map (see Section

2.2.5). We can, therefore, replace Eq. (4.27) by the corresponding formal evolution:

UJ(φmk ⊗ ψ) = C1
mJ(ϕmk ⊗ ψ1

m) + C0
mJ(φ

′
mk ⊗ ψ0

m) . (4.28)

This is not a channel because it is not the formal evolution of an initial state into an

end state with a single detector signal. Indeed, no signal is also a macroscopically

discernible detector state. We have to return to the formal evolution that starts

with general state φ of S:

UJ(|φ〉〈φ| ⊗ |ψ〉〈ψ|)U† =
∑

mn

∑

kl

cmkc
∗
nl

(

C1
mC

1∗
n |J(ϕmk ⊗ ψ1

m)〉〈J(ϕnl ⊗ ψ1
n)|

+ C1
mC

0∗
n |J(ϕmk ⊗ ψ1

m)〉〈J(φ′
nl ⊗ ψ0

n)|+ C0
mC

1∗
n |J(φ′

mk ⊗ ψ0
m)〉〈J(ϕnl ⊗ ψ′

n)|
+ C0

mC
0∗
n |J(φ′

mk ⊗ ψ0
m)〉〈J(φ′

nl ⊗ ψ0
n)|
)

, (4.29)

To obtain a correct end state of a non-ideal detector, we have to discard the

cross-terms between ψ1
m and ψ1

n and between ψ1
m and ψ0

n. This is a general method

that works also in the case that there are channels. The result is

Tnonid1 =

(

N
∑

m=1

)

p

pmηm
∑

kl

cmkc
∗
ml

pm
|J(ϕmk ⊗ ψ1

m)〉〈J(ϕml ⊗ ψ1
m)|

(+)p
∑

mn

∑

kl

cmkc
∗
nlC

0
mC

0∗
n |J(φ′

mk ⊗ ψ0
m)〉〈J(φ′

nl ⊗ ψ0
n)| . (4.30)
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This is not yet a practical formula because the detector is always in a state with

high entropy, which is not a vector state. Hence, the initial state is |φ〉〈φ| ⊗ T, and

the end state is

Tnonid2 =

(

N
∑

m=1

)

p

pmηm
∑

kl

cmkc
∗
ml

pm
T1
mkl(+)p

∑

mn

∑

kl

cmkc
∗
nlT

0
mnkl , (4.31)

where we have made the replacements

|J(ϕmk ⊗ ψ1
m)〉〈J(ϕml ⊗ ψ1

m)| 7→ T1
mkl

and

C0
mC

0∗
n |J(φ′

mk ⊗ ψ0
m)〉〈J(φ′

nl ⊗ ψ0
n)| 7→ T0

mnkl .

Operators T1
mkl and T0

mnkl are determined by the initial state and the formal evolu-

tion and satisfy the conditions:

A’

tr[T1
mkl] = δkl , tr[T0

mnkl] = (1− ηm)δmnδkl .

B’ For any unit complex vector with components ck,

∑

kl

ckc
∗
lT

1
mkl

is a state operator on Hττ ′ and the state includes direct m-th signal from the

detector.

C’ For any unit complex vector with components cmk (for all m and k)

(

∑

m

pm(1− ηm)

)−1
∑

mn

∑

kl

cmkc
∗
nlT

0
mnkl

is a state operator on Hττ ′ and the state includes no detector signal from the

detector.

4.3.3 Particle tracks in detectors

Particle tracks in a Wilson chamber look suspiciously similar to classical trajectories

and have been an interesting problem for quantum mechanics since the end of 1920s.

There is the classical paper by Mott [65] (see also [48]), which shows by applying

Schrödinger equation that there is an overwhelming probability of getting a second

scattering event very close to the ray pointing away from the decay centre through

the location of the first scattering event. A more rigorous calculation is given in [24],
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which uses the same idea for a one-dimensional model. The initial situation in Ref.

[65] is spherically symmetric and the interaction between the alpha particle and the

detector also is. Thus, the resulting state must also be spherically symmetric and

not just one radial track. A consequence of the linearity of Schrödinger equation

then is that the end state is a linear superposition of all possible radial tracks. A way

to save one single radial track is the state reduction at least for the first ionisation,

which is apparently assumed tacitly. This separation of state reduction and unitary

evolution does not exactly correspond to what is going on because we have in fact

a chain of state reductions with a unitary evolution in between.

In this section, we apply our theory to the problem, but we simplify it by as-

suming, instead of the spherical symmetry, that the particle momentum has a large

average value 〈~p〉 and the detector has the plane symmetry with the plane being

perpendicular to 〈~p〉.
The registration model obeying formula (4.14) can be characterised as a single

transversal layer of detectors: each beam is registered once. What we now have can

be viewed as an arrangement of many transversal detector layers: one beam passes

through all layers successively causing a multiple registration. Examples of such

arrangements are cloud chambers or MWPC telescopes for particle tracking [58].

The latter is a stack of the so-called multiwire proportional chambers (MWPC)

so that the resulting system of electronic signals contains the information about a

particle track. Here, we restrict ourselves to cloud chambers, but the generalisation

needed to describe MWPC telescopes does not seem difficult.

Then, a model of a Wilson chamber is a system of sub-detectors D(nk), where n

distinguishes different transversal layers and k different sub-detectors in each such

layer. Let the space occupied by D(nk) be D(nk) and let it be at the same time

its separation status. We shall assume that D(nk) are small cubes with edge d

that is approximately equal to the diameter of the resulting clouds in the Wilson

chamber. We denote the n-th layer by D(n) so thatD(n) = ∪Nk=1D(nk). To simplify the

subsequent analysis, we assume that coordinates can be chosen in a neighbourhood

of D(n) so that each D(nk) in the neighbourhood can be described by

x1 ∈ (u1k, u
1
k + d) , x2 ∈ (u2k, u

2
k + d) , x3 ∈ (u3n, u

3
n + d) .

The observable O(n) that is registered by each layer D(n) is equivalent to the

position within the cubes. The eigenfunctions and eigenvalues are

O(n)φ
(nk)
l1l2l3

(~x) = kφ
(nk)
l1l2l3

(~x) ,

where {l1, l2, l3} is a triple of integers that replaces the degeneration index l,

φ
(nk)
l1l2l3

(~x) = d−3/2 exp

(

2πl1i

d
(x1 − u1k) +

2πl2i

d
(x2 − u2k) +

2πl3i

d
(x3 − u3n)

)
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for ~x ∈ D(nk) and φ
(nk)
l1l2l3

(~x) = 0 elsewhere.

The state Sn of S impinging on D(n) can be defined as the state S would have

after being released by the layer D(n−1). The interaction of S with D(n) can then

be described by formula (4.14) with replacement (4.18). The decomposition (4.17)

must, of course, use functions φ
(nk)
l1l2l3

instead of φ
(n)
k and the support of ϕ

(nk)
l1l2l3

is D(nk).

The procedure can be repeated for all n.

The first layer ”chooses” one particular ϕ
(1k)
l1l2l3

with the support D(1k) in each

individual act of registration even in the case that the state arriving at it is a plane

wave. Hence, the ”choice” in the next layer is already strongly limited. In this way, a

straight particle track of width d results during each individual multiple registration.

Formally, of course, the resulting state of S is a state decomposable in such straight

tracks, which would have the plane symmetry if the original wave arriving at the

detector stack were a plane wave.

4.3.4 General assumption for models of direct registration

We have discussed different models of direct registration. A case by case analysis

trying to take into account the idiosyncrasy of each experiment and to isolate the

relevant features of its results has lead to Eqs. (4.12), (4.13), (4.25), (4.26) and

(4.31). We can now try to formulate a general model assumption specifying Rule 19

for direct registrations:

State Reduction in Direct Registration Let microscopic system S be prepared

in state TS with separation status DS and detector D in state TD with separation

status DD, where DS ∩ DD = ∅. The initial state is then TS ⊗ TD according to

Rule 18. Let the formal evolution describing the interaction between S and D lead

to separation status change of S. Then the state of the composite S + D given by

the formal evolution must be corrected by state reduction to decomposable state

Tend =

(

∑

m

)

p

pmT
′
m , (4.32)

where each state T′
m includes only one (possibly composite) direct signal from the

whole detector. States T′
m of S + D are determined by the formal evolution. The

state Tend refers then to any time after the signals.

Hence, the evolution during a separation status change brings three changes: first,

the change of kinematic description TS ⊗ TD 7→ J(TS ⊗ TD), second, the standard

unitary evolution of state J(TS ⊗TD), and third, the state reduction of the evolved

state into (4.32). Afterwards, the state evolves unitarily with a possible change of
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kinematics if S and D become separated again. Its form (the statistical decompo-

sition) is then uniquely determined by detector signals. It is interesting to observe

that the signals result in a process of relaxation, in which the sensitive matter of

the detector approach its thermal equilibrium. This seems to be in accordance with

our theory of classical states in Chapter 3 and grants the dissipation of the state

obtained by the formal evolution.

A tenet adopted for the search of the assumption State Reduction in Direct Reg-

istration has been that corrections to standard quantum mechanics ought to be the

smallest possible changes required just by the experiments. The assumption is of

course guessed and not derived and could yet be falsified in confrontation with fur-

ther observational evidence concerning different cases of direct registration. It could

also be further extended, e.g., to describe how the postulated end states evolved

in more detail (for example, in analogy to a scenario of the dynamical reduction

program). However, for such an evolution, there does not seem to exist as yet any

experimental evidence to lead us. Let us emphasise that the clean decomposition

of a separation status change into three steps, viz. change of kinematics, unitary

evolution and state reduction, is just a method enabling a mathematically well de-

fined application of State Reduction in Direct Registration, but it is definitely not

a description of the time dependence of the real process.

4.4 Comparison with other changes of separation

status

It is the existence of separation-status change that allows us to choose the statistical

decomposition, such as Eq. (4.12), of the end states so that the theory agrees with

the observational fact of objectification. However, separation status changes can also

occur in processes that have nothing to do with registrations. Must there be any

reduction to decomposable states in such processes, too? We have already studied

the case of screen in Section 2.3. Here, we analyse scattering on a macroscopic body

and the question of linear superposition of large quantum systems.

4.4.1 Scattering on macroscopic bodies

Let us restrict ourselves to a scattering of a microsystem by a macroscopic target

and observe that there can then be separation status changes, one when the system

enters the target and other when it is released. First, let us consider no-entanglement

processes such as the scattering of electrons on a crystal of graphite with a resulting

interference pattern [23] or the splitting of a laser beam by a down-conversion process

in a crystal of KNbO3 (see, e.g., Ref. [62]). No-entanglement processes can be
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described by the following model. Let the initial state of the target D be T with

separation status DD and that of the microsystem S be φ with separation status D1,

D1∩DD = ∅. Let the formal evolution lead to two subsequent changes of separation

status of S: first, it is swallowed by D in DD and, second, it is released by D in

state ϕ with separation status D2, D2 ∩DD = ∅. We assume that the end state of

the target, T′, is independent of φ and that we have a unitary evolution:

|φ〉〈φ| ⊗ T 7→ |ϕ〉〈ϕ| ⊗ T′ ,

which can be reconstructed from the formal evolution because the systems are sep-

arated initially and finally. The two systems are not entangled by their interaction,

hence there is no necessity to divide the resulting correlations between S and D in

what survives and what is erased. The dissipation at any stage of the process can

be neglected. The end state is in fact of the form (4.14): it is a trivial statistical

decomposition.

Another example of this situation is a particle prepared in a cavity D with imper-

fect vacuum. We can model this situation in the above way and so in effect suppose

that the particle has separation status D.

A more interesting case is an entanglement scattering during which two subse-

quent changes of separation status of the scattered particle also occur. Examples

include the scattering of neutrons on spin waves in ferromagnets or ionising an atom

of an ideal gas in a vessel. Let microsystem S in initial state φ with separation

status D be scattered by a macrosystem A in initial state T with separation sta-

tus DA, D ∩DA = ∅. For simplicity, we assume that the formal evolution leads to

suppφ ⊂ DA at some time tscatt. Such tscatt does not need to be uniquely determined

but the subsequent calculations are valid for any possible choice of it. A more gen-

eral situation can be dealt with by the method applied in the case of a microsystem

that can miss a detector (see the discussion after Eq. (4.18)).

The experimental setup determines two Hilbert spaces H and HA and unitary

map

U : H⊗HA 7→ H⊗HA (4.33)

describing the interaction according to standard quantum mechanics.

The experimental setup studied in the previous section also determined a basis

{φmk} of H, namely the eigenvectors of registered observable O as well as sets of

states {ϕmk} in H and {ψm} of HA. This together with the assumption that A
measures O (with exact or approximate probability reproducibility) restricted the

possible U. These particular properties enabled us to choose a unique statistical

decomposition for the end state. The question is how any statistical decomposition

of the end result can be even formally well-defined for processes described by Eq.
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(4.33), where the physical situation does not determine any such special sets of

states. This is analogous to the well-known Problem of Preferred Basis [82].

To be able to give an account of the situation, let us first introduce the formal

evolution Uf on Pττ ′(H ⊗ HA), from which U can be reconstructed. Second, we

decompose map Uf into two steps, Uf = Uf2 ◦ Uf1, where Uf1 develops up to tscatt
and Uf2 further from tscatt.

Then, the correct intermediate state Tinterm at tscatt is

Tinterm = N(Uf1Pττ ′(|φ〉〈φ| ⊗ T)Pττ ′Uf1) .

Indeed, there is no macroscopic signal from A, only some microscopic degrees of

freedom of A change due to the interaction Uf1. The overwhelming part of the

degrees of freedom of A remain intact, just serve as a backdrop of the process and

we can assume that any dissipation can be neglected. Thus, even if there is a

separation status change, there is no necessity for reduction: one can say that there

is only one channel.

Further evolution is given by Uf2 supplemented by reconstruction of the states in

H and HA as S is released by A, and we simply obtain: the formula

Tend = U(|φ〉〈φ| ⊗ T0)U
† (4.34)

of standard quantum mechanics remains valid. Formula (4.34) makes clear that a

separation status change alone does not necessarily cause any reduction.

4.4.2 Linear superposition of large quantum systems

In the present subsection, we shall consider possible linear superpositions of states

for large quantum systems and try to compare the corresponding conclusions of our

theory with those of dynamical state reduction program.

To explain the point, diffraction effects of a beam of molecules C60 described

in Ref. [2] can be used. The experiment is conceptually a simple generalisation of

the classic Young’s double slit experiment with slits spaced by 100 nm. Despite

the rather large velocity spread in the incoming beam, the diffracted intensity as a

function of angle clearly shows a central peak flanked by two first-order satellites.

Thus, states of relatively large quantum systems can be superposed and the

superposition can be confirmed by observation. The superposition must not be

destroyed by any state reduction during the whole motion of the molecules from

the source to the detector in order that the diffraction pattern can appear. Our

explanation is that there is no relevant2 separation status change in the studied

system state during this motion independently of the number of particles from which

2There is the separation status change due to the double slit screen, see Section 2.3.
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the system is composed. According to our theory, such a change can occur only at

the end of the motion in a detector, when the system is registered.

The dynamical state reduction program [34, 69] postulates the existence of a

kind of noise. The effect of this noise on all physical objects is to add to the

standard linear time-dependent Schrödinger equation an extra stochastic term that

preserves neither linearity nor unitarity. This term leads to reduction of the linear

superposition of different position eigenstates to particular position eigenstates at

random time instants during any evolution. The term is specified by two adjustable

parameters: a length scale a, which determines the minimum difference in positions

necessary to trigger the reduction process and a quantity λ that determines the

rate of the reduction process for a single particle. A very fundamental aspect of

the theory is that a superposition state of a complex body containing N correlated

micro-objects is reduced at a rate of the order of Nλ.

Thus the dynamical reduction scenario leads to reductions occurring during the

whole motion history of the molecule and can explain the absence of any observa-

tional consequences only by a judicious choice of the parameters a and λ so that

the resulting effect will be very small for sufficiently small molecules such as C60.

Of course, the effects must be very strong, if truly macroscopic systems N = 1023

would be used instead of C60.

Today, there are many different large (but not yet macroscopic) quantum systems

that can be observed in superposition states, and the analysis above can be extended

to them without much change. Thus, in principle, there is a difference in observable

consequences between our theory and the dynamical reduction program.
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Chapter 5

Conclusion

Our careful study of difficulties that are met along the way from quantum mechanics

to classical world has lead to a new understanding of quantum mechanics in a number

of aspects. The main points might be summarised as follows.

A value of an observable of system S cannot be considered as a property of S
but only as an indirect piece of information on such properties. It is well known

that each such value is only formed in the process of interaction between system S
and a suitable registration apparatus. We have looked, therefore, for another kind

of observable properties that could be ascribed to quantum systems and we have

found them among those that are uniquely determined by preparations. This simple

observation has been developed into a systematic realist interpretation, the so-called

Realist Model Approach to quantum mechanics. Thus, the myth of quantum me-

chanics disproving realism has been shown to be unfounded.

There are two kinds of objective properties: structural, which are common to

the whole class of indistinguishable systems such as mass, charge and spin, and

dynamical, which are different for different dynamical situations such as states and

averages of observables. The space of quantum states is convex and exhibits a rich

face structure. Two kinds of states are distinguished: the indecomposable ones,

which are analogous to points in phase space in Newtonian mechanics, and the

decomposable ones, which are analogous to probability distributions in Newtonian

mechanics. The opposites ”decomposable–indecomposable” is different from ”pure–

mixed”.

We have also attempted to make our interpretation compatible with a full-fledged

and self-consistent realist philosophy, namely the so-called Constructive Realism as

introduced by Ronald Giere. This is not a naive realism1 so that it is immune to

usual arguments against realism. A practical aspect of the realist interpretation is

not only that the emergence of an objective classical world from quantum mechanics

1Naive realism is the view that the world is as we perceive it.

164



is not hindered by possible non-objective character of the latter, but also that it

provides explicit help and guidance in constructing models of classical world.

The aim of our theory of classical properties is a unified approach to all classical

theories, such as Newtonian mechanics, thermodynamics or Maxwellian electrody-

namics. The starting point is that the main assumption of classical theories, viz.

the existence of absolutely sharp trajectories, does not correspond to reality but is

only a practical and productive idealisation. Indeed, any classical measurement is

much fuzzier than the minimum quantum uncertainty. Thus, we can change the

whole aim of semi-classical approximation: what is to be approximated by quantum

models are reasonably fuzzy classical trajectories, not sharp ones.

This allows to formulate a so-called Modified Correspondence Principle, which

specifies which quantum observables can correspond to important classical ones

for a general classical system as well as what is the form of the correspondence:

the classical property is the average of the corresponding quantum observable in a

particular kind of state, the so-called classicality one.

The second main hypothesis of our theory is that classicality states are some

quantum states of high entropy. (It follows, in particular, that coherent states are

not classicality states.) This principle is already in use in thermodynamics. We

have shown how it can be applied to classical mechanics by introducing a new class

of states, the so-called ME packets. They maximise von Neumann entropy for fixed

averages and variances of positions and momenta. Gaussian wave packets are a

special case of ME packets for the value of maximum entropy equal to zero. ME

packets approximate classical trajectories better when their entropy is higher. As

yet, only thermodynamics and Newtonian mechanics could be unified in this way,

but Maxwellian electrodynamics is hoped to allow an analogous approach. In this

way, we arrive at the natural conclusion that quantum mechanics can be much less

fuzzy than any part of classical reality ever is.

We also stress that macrosystems, as well as generally large composite systems,

have much smaller number of observables than one would expect according to stan-

dard quantum mechanics. There are two reasons why observables concerning single

constituents of such a system can be measured only in exceptional cases. On the one

hand, the constituents may be elements of a large family of identical systems within

the macroscopic system from which they are not separated by preparation and do

not, therefore, possess any really measurable observables of their own. On the other

hand, they are not individually manipulable by fields and shields and registrable

by detectors and can only be measured by those measurements that use ancillas.

The differences between macroscopic and microscopic systems are thus not due to

inapplicability of quantum mechanics to macroscopic systems. Just the opposite is

true: they result from strict and careful application of standard quantum mechanics
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to macroscopic systems.

One of our most important observations is that none of the quantum observables

that are introduced in textbooks is measurable because the form of the corresponding

operators implies that their measurement must be disturbed by all other systems of

the same type in the environment. Only some sufficiently local kind of observables

could could be registered and only if the microsystems to be measured are sufficiently

separated from the set of identical microsystems. Starting form this point, a new

quantum theory of observables has been constructed and it is rather different from

the standard one.

These considerations also lead to an important condition on preparation proce-

dures: they must give the prepared microsystem a non-trivial separation status.

Only then, it can be viewed as an individual system that can be dealt with as if

its entanglement with other identical particles does not exist. This explains why

quantum mechanics is viable at all. In particular, the standard rule for compo-

sition of identical microsystems must be weakened. This is justified by the idea

of cluster separability. In addition, a preparation must separate the microsystem

from all other microsystems, even of a different kind, so that it can be individually

manipulated by external fields or matter screens and registered by detectors.

Not only the notion of preparation has been changed, but also registrations have

been given a more specific form than is usually assumed. The necessity to distinguish

systematically between ancillas and detectors has been justified. The interaction of

the registered system with an ancilla is not considered as the whole registration.

The system or the ancilla, or both, has to be further registered by a detector. Any

apparatus that is to register a microsystem must therefore contain a detector and

what is read off the apparatus is a classical signal from the detector rather than a

value of the observable that is usually called ”pointer”. Thus, our theory of classical

properties finds an application here. We assume that each detector contains an

active volume of sensitive matter with which the registered microsystem becomes

unified and in which it looses its separation status.

The next important assumption is that standard quantum mechanics does not

provide true information about processes, in which the separation status of mi-

crosystems changes. Preparations and registrations belong to such processes. Blind

application of standard rules to such processes leads to contradictions with experi-

mental evidence. This justifies adding new rules to quantum mechanics that govern

changes of separation status. We have formulated such rules and shown that they

form a logically coherent whole with the other rules of quantum mechanics.

A substantial progress has been achieved in the theory of wave function collapse,

more precisely, of the state reduction. This is considered to be a real physical

process. A reason, or justification, for why the state reduction takes place has
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been found in the loss of separation status of the registered quantum microsystem.

Our theory replaces the collapse by a more radical transformation, a change in

microsystem kinematic description. The loss of separation status accompanied by

a dissipation can be considered as a kind of disappearance of a registered object

during its registration. The state is degraded, because the system is more or less

lost. This justification comes, so to speak, from outside of the measurement theory.

Moreover, our theory leads to sharper specification of where and when the re-

duction occurs than that given by the von Neumann theory of the collapse. The

place is the sensitive volume of the detector and the time is that of the detector

signal. However, our theory gives only the final change from the state |unitary〉
at some suitable time resulting from the standard unitary evolution to the reduced

state |reduce〉 and the question of the detailed time evolution |unitary〉 7→ |reduce〉,
or even the existence of such evolution, is left open. This can be compared with

the quantum decoherence theories or with the dynamical reduction theories. If the

exact state of the environment and the exact Hamiltonian of its interaction with the

registered system plus apparatus are known, the decoherence theory would give the

evolution in all detail (of course, the desired end of the evolution, a decomposable

state, cannot be obtained by the decoherence theory alone). Similarly, if the two

parameters of the dynamical collapse theory are chosen, again such an evolution can

be calculated. We hope that future improvements in experimental techniques will

allow to address the question of detailed evolution.
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[41] Háj́ıček, P.; Tolar, J., Found. Phys. 2009, 39, 411.
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