


TIGHT BINDING BOOK



1 64972 3 Ffi





OSMANIA UNIVERSITY LIBRARY

Call No. 5A
Author

This book should be returned on or before the date
last marked belotv. / ^T Z>^





Cambridge Tracts in Mathematics

and Mathematical Physics

GKNKIUL EDITORS

(i. H. HARDY, M.A., F.R.S.

E. CUNNINGHAM, M.A.

No. 31

MATHEMATICAL PROBLEMS
OF

RADIATIVE EQUILIBRIUM



LONDON

Cambridge University Press

FETTER LANE

NEW YORK TORONTO
BOMBAY CALCUTTA MADRAS

Macmillan

TOKYO
Maruzen Company Ltd

All ritjhts reserved



MATHEMATICAL PROBLEMS
OF

RADIATIVE EQUILIBRIUM

BY

EBERHAUD HOPF, PH.D.
-Ix^ixtunf Proftt^ot of J/<tt/(i'HHiti<'t <it the

J/riHsm7cM.s ttff Institute of '/'eclntoloi/if

CAMBRIDGE
AT THE UNIVERSITY PRESS

1934





CONTENTS
Introduction qxige vii

CHAPTER I

FUNDAMENTAL PRINCIPLES AND PROBLEMS

1. Transmission of radiation through absorbing and

scattering material 1

2. Absorption and scattering of the mass element. The

equation of transfer 5

3. Radiative equilibrium. Radiation and temperature 7

4. The main problem JO

5. Schwarzschild's models. Material stratified in parallel

planes 1 &

6. First consequences. The radiation from great depth I tf-

7. The integral equations of the problems 21

8. Some properties of the functions En (x) 2f>

CHAPTER II

SOLUTION OF PROBLEMS I AND TI

9. The solution of Problem la ' 28

10. Uniqueness of the solution 31

11. A differentiation formula 33

12. Asymptotically linear solutions of/= A (/) 35

13. An auxiliary theorem with application to Pro-

blem II

*

38

14. Other applications. The boundary temperature 41

15. Proof that q (r) increases 47

16. Other properties of q (r) 51

17. Problem 16 for parallel incident radiation 55

18. The emergent light 58

19. Problem 16 for arbitrary incident radiation 59



vi CONTENTS

CHAPTER III

DISCUSSION OF PROBLEMS III AND IV

20. Solution of Problem III jxige 61

21. Discussion of Problem IV in the case (65) 63

22. Narrow limits for the solution in Schwarzschild's

case, y=l 66

23. The net flux in Schwarzschild's problem 69

CHAPTER IV

EXPLICIT SOLUTION OF CERTAIN
INTEGRAL EQUATIONS

24. The characteristic equation 72

25. The integral formulae for the solution of (226) 75

26. Preliminaries 78

27. Proof of Theorem XVIII 79

28. Proof of the asymptotic form of the solutions 82

29. New pi oof of Theorem X 83

CHAPTER V
OTHER PROBLEMS OF RADIATIVE EQUILIBRIUM
30. Pure absorption. Non-gray material 86

31. Discussion of the non-linear integral equation 88

32. Remarks on the case of infinite optical depth 90

33. Absorption and scattering. Schwarzschild's integral

equation 91

34. Milne's model of a planetary nebula in radiative

equilibrium 94

Bibliography and supplementary remarks 100

List of some formulae of physical interest 105



INTRODUCTION

K. Schwarzschild's classical work on absorption and diffusion in

the sun's atmosphere, and the continuation of these investiga-

tions through A. 8. Eddington, J. H. Jeans, R. A. Milne and others,

have rendered the theory of radiative equilibrium a definite

chapter of mathematical astrophysics. The problems connected

with this theory are of the following type. (iaseous material

filling a certain part of space is subject to given incident radia-

tion.* What is the distribution of light and of temperature in the

medium, when in radiative equilibrium? In the outer layers of

a star, where the curvature can be neglected, i.e. where the

material can be considered as stratified in parallel planes, those

problems appear in their simplest mathematical form. The

astrophysicists mostly contented themselves with an approxi-
mate solution of these problems. Owing to a certain inherent

beauty, however, they aroused also the interest of the rigorous

mathematician. It is the purpose of this tract to attempt a

coherent representation of all that has been achieved in the

direction of a rigorous treatment of those standard problems.

The rigorous solution of a physical problem naturally pre-

supposes an exact formulation of the physical assumptions im-

plied in the problem. Has then the rigorous solution more than

merely mathematical significance, when these assumptions prove

right only with a limited degree of approximation ? The answer

to this question is not always in the negative. The Schuster-

Schwarzschild model of a purely scattering atmosphere, or the

Schwarzschild model of a purely absorbing gray atmosphere,

both in radiative equilibrium, represent for instance typical

standard models which play a similar role in the theory of the

stellar atmospheres as the 'intermediate orbits' in celestial

mechanics. The Milne model, being of special importance as a

* More generally, on the boundary the radiation satisfies given conditions.
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simple limit case (infinite optical depth) ofSchwarzschild's model,

may well be compared with Hill's periodic orbit in the lunar

theory. It is well known what the detailed study of an inter-

mediate orbit means for the computation of the actual one.

A more detailed and rigorous treatment of the above standard

models of radiative equilibrium should thus deserve more than

mere mathematical interest.

Besides the known results (theory of Milne's standard model,

infinitely deep slab with no radiation incident on its surface) the

reader will also find more or less detailed discussions of other

models. Milne's model with radiation incident on the boundary

(insolation of a planetary atmosphere, reflexion effect in close

binary stars), the Schuster-Schwarzschild model with an

arbitrary law of scattering, narrower limits for the solution of

the Schuster-Schwarzschild standard problem, Milne's model of

a planetary nebula, and other problems.
From the mathematical point of view, the main feature of the

above models is that they are governed by integral equations,

which are linear in the standard cases (pure absorption and gray

material, pure scattering). Its important property, namely the

positivity of the kernel, has already been recognized by Schwarz-

schild as fundamental for the rigorous discussion. It may be

mentioned that the reading of the book requires no special know-

ledge of the theory of integral equations, since the positivity of

the kernel allows all problems to be treated in an elementary

way. Only Chapter iv presupposes some knowledge of the

Fourier integral.

It is a pleasure to the author to thank Prof. Milne for many
helpful remarks and the Syndics of the University Press for

accepting this book as a Tract.

E. H.
AT

ot'. 1, 1933



CHAPTER I

FUNDAMENTAL PRINCIPLES AND PROBLEMS

1. TRANSMISSION OF RADIATION THROUGH
ABSORBING AND SCATTERING MATERIAL

The outer layers of a star are constantly exposed to an enormous

flow of radiant energy coming from the deep interior. In working
itself through the outer layers, a part of the radiation is absorbed

and scattered. The scattered radiation will immediately be re-

distributed in the different directions, the frequency being

unchanged. On the other hand, a particle heated up by the

absorption of radiation re-emits temperature radiation of all

frequencies.

As a first approximation, the state of matter and radiation

may be considered stationary. Therefore we must first find

the conditions for a steady state. The intensity of radiation

changes in a definite way along the ray. A part will be lost through

absorption and scattering. On the other hand, the intensity gains

again since the particles on the ray emit scattered and tempera-
ture radiation in the direction ofthe ray. This law oftransfer holds

separately for each frequency.

Combined with the condition for a steady state the energy prin-

iple yields another equation. The net loss of radiant energy
within an element of volume (radiation of all frequencies) equals

the net gain of heat energy through conduction and convection

plus the radiant energy liberated from other (sub-atomic) sources.

Energy of the latter kind must play a role in the interior of the

stars in order to maintain their radiation over cosmical ranges of

time.

When energy is transferred by radiation only, the net flow of

radiation through each volume element vanishes. This state of

affairs is usually called radiative equilibrium (in the strict sense).

Modern astrophysics claims the outer layers of a star to be

approximately in radiative equilibrium. In the stellar interior
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the energy liberated is no more negligible though being small in

comparison to the radiant energy itself. In spite of this fact it

has become customary to speak of radiative equilibrium (in the

wider sense) in this case.

For the determination of the temperature distribution, one

must know the laws relating the temperature of matter to the

radiation. When matter and radiation are in an enclosure,

KirchhofFs and Plank's laws hold. In the stars, however, the

temperature varies from layer to layer, so that those laws cannot

be strictly valid. In the interior, however, the radiation is prac-

tically enclosed, and even in the outer layers those laws have

proved to be a very good approximation.
In the steady state all quantities describing the state are in-

dependent oftime. The radiation field is described by the intensity

of radiation ^ (P r)

as a function of the point P, the direction r and the frequency i/.*

Its physical meaning is the following. Let do be an element of

surface about P with the (sensed) normal n, and let da> be an

infinitesimal bundle of directions containing r (surface element

on the direction sphere). If we write

dq= | cos(w-,r) |

da (1)

for the projection of da upon a plane perpendicular to r, the

expression Iv (P,r)dqdu>dV (2)

represents the radiant energy of the spectral interval dv which,

per unit time, flows through da and spreads out in the solid angle
da>. Here is meant, the bundle of all rays through all points of da

and in all directions contained in dco. dq is evidently the perpen-
dicular cross-section at P of the bundle. It is convenient to have

a special name for the quantity

Iv (P,r)dqdv. (3)

We call it the strength at P of the parallel bundle of the spectral

interval dv, of direction r and with the cross-section dq.

We set dadv%Vtn
= dadvSIv (P,r)cos(n,r)dw, (4)

* The degree of polarization is not analysed here.
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where the integral is extended through all directions r, and where

n is a given direction. Let da be an orientated surface element

about P and with n as its positive normal. The quantity $Vfndcrdv

represents then the net flux of radiant energy (of the spectral

interval dv) through da and per unit time. Energy flowing through
da from its negative towards its positive side (cos > 0) is here

reckoned positive; negative, however, in the opposite directions

r(cos < 0). Let x, y, z be three orthogonal directions, and let us

write a, j8, y for the three direction cosines of the normal n with

respect to x, y, z. The equation

cos (n, r)
= a cos (/', a;) + /? cos (r, y) + y cos (r, z)

shows that we have

i.e. that $ vitt
is the component in the direction n of a vector $ v .

This vector
e

$ v (P) is briefly called the net flux at P of the

v-radiation.

In a vector field we have the Gauss integral identity

to, (5)

where V is a volume, S its surface, and n the outward normal of

the surface element da.

For the total radiation of all frequencies we set

We now come to the quantities that describe the interaction

between matter and radiation. Let
rj v (P) be the mass coefficient

of emission at P and within dv. The quantity

7]v (P)dmdajdv (7)

represents then the radiation emitted, per unit time, by the mass

element dm at P, within dv and within the solid angle doj. In

analogy to the above we find it convenient to call

(8)
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the strength of a parallel bundle emitted by dm within dv. For

the total emission of all frequencies we set

^(P)dv. (9)
o

Let, furthermore, av (P) denote the mass coefficient ofabsorption

for the v-radiatioii at P. Along a short path ds, the amount

pav lvds of the intensity Iv is absorbed, p being the density of

matter at P. Outside of astrophysics it is more customary to

introduce the linear coefficient of absorption, pa, .

The mass coefficient ofscattering av (P) is defined in an analogous

way. Scattering weakens the intensity I
v by the amount pav l vds

along ds. pcrv is the linear coefficient of scattering. The radiation

lost by scattering at P will immediately be redistributed among
the different direction r' issuing from P. This distribution is

described by a law of scattering

-
1

yv (P;-r,r'), (10)

where r denotes the direction of the incident ray. We have, of

course,
J y>> (P;r,r')cfo>'

= 47r. (11)

The law of scattering is supposed to have the reciprocity property

Yv (P;r,r') = 7v (P;r',r) (11')

and Yv (P;-r,r') = y,(P; r,r'), (11")

where r denotes the direction opposite to r, i.e. the same

amount of the scattered radiation is sent into r and into r.

These conditions are fulfilled under very general assumptions
about the material. The simplest case yv

~ 1 (uniform scattering)

has hitherto found the chief attention ofthe astrophysicists. It is,

however, necessary to consider more general laws too, for instance

Rayleigh's law , f 2
.6

7v = y (r, r')
=

-2(14- cos
2
(r, /)}.

It is seen to fulfil (11') and (
1 1"), as does also every law for which

yv is a function of
\

cos (r, r') \

.

All quantities (except the net flux) are non-negative, IV9 rjv ,
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2. ABSORPTION AND SCATTERING OF THE MASS
ELEMENT. THE EQUATION OF TRANSFER

We now compute the v-radiation absorbed and scattered within

a mass element dm at a point P. For this purpose let us first con-

sider the parallel bundle of all rays through dm which have a

given direction r. It is convenient to imagine dm subdivided into

many thin columns of direction r. Let ds be the length, dq the

cross-section of such a column. The strength I
v (P,r)dqdv of the

parallel bundle of direction r through that column, i.e. through

dq, is, in consequence of absorption within the column, weakened

by the amount pv.v lvdqdvds. Since pdqds is the mass of the

column, we infer by summation over all columns that

c/Lv Ivdmdv

is the amount that the strength of the bundle considered above

loses on account of absorption within dm. By strength of that

bundle is meant here the sum of the strengths of all the above

partial bundles, once taken when entering dm, the other time

taken when leaving dm. <x.v lvdmdv is the difference of these two

sums. Now, energy is obtained by directional integration of the

strength. Integration over all directions r of the above loss of

strength shows thus that the whole rfy-radiation travelling

through dm per unit time loses the amount

dmdv.
l,(P)$Iv (P,r)duj (12)

in consequence of absorption.

In the same way it is seen that the amount

dmdvav (P)SIv (P,r)da> (13)

is scattered within dm. We now show how this scattered radiation

is redistributed among the different directions r'. According to

the above considerations, the radiation flowing through dm per

unit time and spreading out within a solid angle da) (containing r)

loses the amount , ,
/ r>\ r / n \E= dmdv<rv (P)Iv (P,r)

through scattering within dm. This scattered amount E will be

distributed over the other directions r' according to the law of
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scattering. The part falling within a cone rfo/ about the direction

r' is therefore

Summation over all cones da), i.e. integration through all incident

directions r, gives, therefore,

f/v (P,r)yv (P;r f /)rfco ...... (14)

as the part of the scattered radiation (13) which is redistributed

within the cone dco'. If we now integrate this over all directions

r', we obtain, according to (11), again (13) as it should be.

We note for later purposes that the parallel bundle of scattered

radiation emitted by dm into the direction r has the strength (the

notation for incident and scattered ray is interchanged)

dmdv V ---' Iv (P,r')yv ([>.r',r)daj' (14')
477 J

Equation of transfer. Let us consider a light ray of direction r

through P, and let P' be a nearby point lying in the direction r

from P, ds = PP'. We construct a thin cylinder about ds with the

two bases at P and P', and with the cross-section dq. The strength

atP/
' Iv (P',r)dydv

, (15)

of the parallel bundle of direction r through dq consists then of

three different parts. Firstly, the strength at P ofthe same bundle

weakened by absorption and scattering in the cylinder,

secondly, the strength (8) of the parallel bundle emitted by the

cylinder in direction r, with

thirdly, the strength (14') of the bundle of scattered radiation

sent by the cylinder into the direction r. On dividing the equation
obtained in this way through pdqdsdv, we get Schwarzschild's

fundamental equation of transfer

^^^ r)
p (ocv + <rv ) ds
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together with

...... (16')

The derivative on the left-hand side of (16) is the directional

derivative with respect to P, taken in the direction r of the ray.

On introducing three orthogonal axes x, y, z, P=(x, //, 2), and on

<x = cos(r, #), j8
=

cos(r,2/), y = cos(r, z) ...... (16")

for the direction cosines of r, we obtain

dl dl O dl SI ,,,
, =a

n + 0-4^--. ...... (16'")
ds ?x

r
dy

r
dz

The quantity J v (P,r) introduced by (16') may, according to

Sellwarxschi Id, be called the ErgiebigIce/it. It is an average of the

two quantities

having thus the dimension of an intensity. The Ergicbigkeit

depends, in general, upon the direction r. In the case of uniform

scattering (yv =l) or of isotropic radiation (the intensity is in-

dependent of r), however, it is a function of P only.

The equation of transfer is of great generality. It does not

require that radiation is the only mode of energy transfer, it just

refers to the part of energy appearing in the form of radiation.

3. IIAD IATI VK EQUILIBRIUM.
RADIATION AND TKMPKRATU HE

If 47re (P)dm denote the heat energy liberated in dm, i.e. the sum,

net gain within dm of heat energy due to convection and conduc-

tion plus the radiant energy (of all frequencies) coming from sub-

atomic sources within dm per unit time, the conservation of

energy is expressed by the equation

f % n da = 47r f p <fo, ...... (17)
Jfi JV

where V is an arbitrary volume, 8 its surface and n the outward
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normal on S. According to (5), integrated through the whole

spectrum, this is equivalent to the equation

divg = 47T/*:. (17')

It is of importance to realize that (17) or (17') refers only to the

total radiation of all frequencies. Scattering has no influence

upon the wave-length; the absorbed radiation is, however,

re-emitted within other parts of the spectrum, implying, in

general, an exchange of energy between the different parts of the

spectrum.

Integration through all directions r of the equation of transfer

(after multiplication with p (av + cr
v )) yields, according to (

1 1
), the

equation divf^^-paj/,,^, (18)

the scattered radiation having dropped out as it should do. On

integrating (1 8) through the whole spectrum we obtain, according
to (17'), the fundamental relation

v (P,r)dV + e (P). ...(19)

If (10) is multiplied by Andm, the left-hand side becomes, ac-

cording to (8), the total emission of dm, whilst the first term on

the right becomes the part of the total radiation that is absorbed

by dm. (19) means therefore that the radiation emitted minus the

radiation absorbed equals the energy liberated.

Since (18) is a consequence of the equation of transfer only,

(17') follows, conversely, from (19). (17') and (19) are therefore

equivalent expressions of the conservation of energy.

In the case 6 = 0, used as a first approximation in the outer

layers of a star, we speak of strict radiative equilibrium. Energy
is transferred by radiation only. It should be noted that e could

be negative as well as positive in the general case. When, for

instance, the element loses heat by convection or conduction,

subatomic energy being missing, is negative.*

*
(17'), (19) possess, of course, general validity, as they express the energy

principle. They are, however, of importance only when radiation is the principal

agent of energy transfer. It is in this sense that (19) is spoken of as the equation
of radiative equilibrium.
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Pure absorption. Gray material. We consider the case av
= 0.

Furthermore, let us suppose that the absorption coefficient is in-

dependent of the wave-length, av
= a (gray material). This case

is ofspecial importance because of its simplicity. The fundamental

equations (16), (16') and (ID) become, after integration through
the spectrum,

Monochromatic radiative equilibrium. In the case of pure scat-

tering, a, = 77,,
= 0, we know that the wave-length remains un-

changed. The scattered radiation is fully re-emitted with the

same frequency and distributed through the different directions.

This state of affairs is often called monochromatic radiative

equilibrium. The equations of transfer (JO), (16') take, here, the

form

ov (P) ds
"^"' -"^/'

,(/V)y.,(^Vda/ (21')

In this case, we have, of course, according to (IS),

0. (22)

It is physically plain that the case of purely absorbing gray
material in strict radiative equilibrium is formally equivalent to

the case of monochromatic radiative equilibrium and uniform

scattering, yv =l. The absorbed radiation is uniformly re-

emitted in direction, in the same way as the scattered radiation

is uniformly redistributed in direction. The equations (20), (20'),

= 0, have accordingly the same form as (21), (21'), yv
= 1. This

formal equivalence is of importance, since it allows us to develop
the same mathematical theory for the two physically different

cases.

Local ihermodynamical equilibrium. In the case of pure

scattering, radiation has no relation to the temperature. As soon,
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however, as absorption and emission play a role, we should have

information how the radiation is related to the temperature of

the matter.

Let Bv
= BV (T) be the intensity of the v-radiation of a black

body at temperature T,

B -
(23)v

~~efiv!kT - T
......

where h signifies Planck's constant, k Boltzmann's constant and

c the velocity of light. For the total radiation we have

Bvdv=T*, ...... (24)
JO TT

a being Stefan's constant.

When the radiation is enclosed between black walls, it obeys
Kirchhoff's law

rjv
=^Bv . ...... (25)

The condition of being enclosed is, of course, not rigorously

fulfilled in the stars, since there is always a radial net flux of

radiation. Eddington's perfect gas star, however, has such a high

opacity that the radiation is practically enclosed, the degree of

accuracy being higher than in laboratory experiments. Astro-

physics uses the term 'local thermodyiiamioal equilibrium' in

order to express that the radiation behaves like an enclosed one,

i.e. that Kirchhoffs law holds. Even in the outer layers of a star

this state of affairs has proved to be a useful approximation.

4. THE MAIN PROBLEM

In the physics of the outside of a star, the following problem plays

an essential role. The radiation field, in particular the radiation

emergent from the surface and its distribution in direction and

wave-length, and the temperature distribution are to be deter-

mined when the coefficients of absorption and of scattering as

well as the law of scattering and e are given.

This problem naturally represents only a part of the general

problem of the determination of the whole physical state. The

quantities regarded as given in the above problem are not strictly

known in the stars. Actually they enter other more or less known
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physical laws (containing of course the conditions of mechanical

equilibrium) which, together with the laws of radiation, should

enable us to determine the total physical state. The excessive

difficulties, however, connected with this problem as it stands

compel us to select partial problems, of which the one formulated

above is one of the most important. Comparison with observa-

tional data of the solution of this problem, taken for different

choices of the given quantities, has led to valuable insight into

the structure of stellar atmospheres. The following compara-

tively simple special cases have hitherto found the chief attention

of astrophysicists. Firstly, the Schuster-Schwarzschild model

of a purely scattering atmosphere. Schwarzschild was the first

to approach this model with rigorous mathematical methods.

Secondly, Schwarzschild's (formally equivalent) model of a

purely absorbing gray atmosphere (e
=

0). The important limit

case of infinite optical depth has (by approximate methods)
been extensively treated by Milne, who also studied the spectral

distribution of the emergent light. The explanation of the law of

darkening on the sun's disk is one of the main successes due to the

study of those models of radiative equilibrium. Schwarzschild's

investigations have, furthermore, led to the result that the origin

of the Fraunhofer lines in the solar spectrum is due to scattering

rather than absorption.

So far as concerns the general solution of the above problem,
the following remarks are ofimportance. The equation oftransfer

(16) can be considered as a first order differential equation for the

intensity. On integrating it along a ray, with respect to the

boundary conditions, we obtain the intensity expressed in terms

of the Ergiebigkeit. If this is inserted into (16'), a linear integral

equation (due to Schwarzschild) is obtained for the determina-

tion of the Ergiebigkeit. In the case ofpure scattering, a,,
=

rj v
= 0,

this equation completely determines the Ergiebigkeit. In the

photospheric layers of a star, however, absorption processes are

predominant, and the unknown emission
7j v
= <x.vBv enters. The

solution of Schwarzschild's integral equation determines, in this

case, the Ergiebigkeit, and therefore the intensity / as a
'

func-
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tional' of Bv , for every frequency i/.* Since BV
= B

V (B) is a

definite function of B, the intensity appears thus a definite

functional of B=B(P), i.e. of the temperature distribution. If

the intensity thus determined is inserted in the equation of radia-

tive equilibrium (19), the right-hand side becomes a definite

functional of B (P). The left-hand side

'0

however, represents a definite function of the point P and of

B = B(P). We thus arrive at a definite functional more pre-

cisely, at a non-linear integral equation for the determination of

B(P), i.e. of the distribution of temperature. Once B(P) is

known, we are able to find
rj v and therefore / for every frequency.

It is difficult to solve the integral equation in its full generality,
and the limitation to simpler special cases seems necessary. If

the material is gray, i.e. if OLV is independent of v, the equation
of radiative equilibrium simplifies considerably. If, however, av

varies with v, the integral equation still remains non-linear. In

gray material without scattering we have the simplest case, since

the integral equation then becomes linear, and the determination

of B(P) appears entirely separated from the determination of

the spectral distribution, the latter being a matter of direct

integration. It should be noted, that the mathematically more

general case, where onv and av are both independent of v, leads to

the same formal integral equation (linear) as in case av
= 0. But

the spectral distribution of light must then be determined by the

solution of Schwarzschild's integral equation.
The greater part of this tract will be devoted to the mathe-

matical problems arising from the two particular cases, pure

scattering, and pure absorption in gray material. The first case

plays, as mentioned before, a chief role in the outermost layers
of a star, whilst the second case has found chief application to the

photospheric layers.

* This determination of Jy is possible by means of the Neumann series for

the solution of the integral equation. Convergence and uniqueness of that
solution are treated in 34.
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So far as concerns the boundary conditions, the radiation in-

cident at the surface ofan isolated star is zero, while the radiation

at great depth becomes isotropic. In the case of a close binary

star, the radiation of the other component must be taken account

of. Or, in the case of a
*

planetary atmosphere
'

in radiative equili-

brium, the solar radiation must be considered. In all these cases

the radiation incident at the surface is given. Another type of

boundary condition occurs in Milne's spherical model of a
4

planetary nebula' in radiative equilibrium. The inner face of the

shell receives not only the radiation of the central star but also

the light coming from other parts of the inner face. The boundary
condition appears here as a relation between incident and

emergent radiation.

5. SCHWAKZSCHILD'S MODELS. MATERIAL
STRATIFIED IN TAHALLEL PLANKS

In the atmospheres of celestial bodies the material may be con-

sidered stratified in concentric spheres. The radiation iicld having

spherical symmetry too, the intensity 1 (P,r) becomes a function

of the distance a from the centre and of the angle 9 between the

radius vector and the direction r only, / = / (a, 6), ^ ^ TT. in this

case we obtain dl a/
-- - -- _,.as ca a vv

When, instead of a, 0, the variables

f = a cos 0, t]
a sin 9

are introduced, we have more simply

Neglection of curvature. Let us consider a layer a1 ^ a ^ of

the star. If, the depth al a being kept fixed, the radius a
t
tends

to infinity, we formally obtain the limit case of a plane slab.

Another way of getting this limit case is the following. We set

* = *o^ "^ PK + <O =~ n f(x^
l
~ a

to
al~~ ^0

xQ being a fixed quantity, while f(x) is a fixed function of x,
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< x < x . On proceeding to the limit a -> a
x ,

i.e. on making the

shell thinner and thinner and making p (av 4- av ) larger and larger

in the same ratio (at homologous points), we obtain, as seen from

(16) and from the above expression ofdl/ds, again the limit case

of a plane slab. This time the radius has been kept constant. It is

customary to neglect the curvature in the outer layers of a star,

the material being thus stratified in parallel planes. Let x gener-

ally denote the depth of the point P below a fixed layer, x being

reckoned negative for points above that plane. The direction r is

characterized by two angles 6, </> (we retain the second angle </>
in

view of later applications), 6 being the angle between r and the

direction of negative x (outward normal of the slab), O^^^TT.

(j>
is the azimuth, i.e. the angle between the plane, containing r

and the .g-axis, and a fixed plane through that axis, ^ </> ^ 2?r.

We shall only consider the case where the radiation field is the

same in all points with the same x, Lv becoming then a function

of (x, r) alone. We have
ds = -aevOdx, (26)

r dl <$Lthus yielding = cos ^ .

(IS CM'

The Schwarzschild- Milne model. This is the classical case of

purely absorbing and gray material in local thermodynamical

equilibrium. Tt is convenient to introduce, instead of a?, the

optical depth *x

T=
J -0

below the surface. In the case of strict radiative equilibrium, the

fundamental equations (20), (20') take then, according to (25)

and (26), the remarkably simple form

cos0
S/
^-'-L/(T.0)-,/(T) (27)
OT

and J(T )
= -

1

f /(T,r)d<o, (28)

where, in the case of local thermodynamical equilibrium,

J = 1= {* Bvdv=B.
a Jo
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If convection, conduction or subatomic energy sources are not

negligible, we must add the term c/a on the right-hand side of (28).

An important fact is that the absorption coefficient appears only

indirectly, namely through the mediation of the new independent
variable r. It is to be remarked that (27), (28) determine the total

radiation field, in particular the direction distribution of the

emergent light, without any hypothesis about temperature and

its relation to the radiation. We need it, however, as soon as the

spectral distribution, or the temperature distribution, is wanted.

Let us introduce the notation

r -r . r-
J I Jrf. 7T/2 J J0-7T/2

for the integrals over the hemispheres of all outward and all

inward directions. We set

7TF+ (T)
= f / (T, >')

cos Bdto, 7rF_ (T)
= f / (T, r) |

COS
\

daj.

...... (20)
The equations / /

I cos Oda) =
|

cos 6
|

dw TT,

following from , .&

show that F+ and F_ rcj)resent averages of the intensity within

the respective hemispheres. Furthermore, we set

7TF = TrF+ -7TF__=$Ico*6da>. ...... (30)

The flux vector <V is, of course, normal to the layers, and we have,

according to (17), e = 0,

5 = 7r/P = const. ...... (31)

Another important relation, due to Eddington, is obtained if (27)

is multiplied by cos and integrated through all directions.

According to (30) and (31) we get

= - f
77 J

- / cos2 0da> = FT + const...... (32)

The physical meaning ofK is that it equals C/TT times the radiation

pressure normal to the layer.
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In the absence of strict radiative equilibrium, e ^ 0, the funda-

mental equations are or
~ = /-J, ...... (33)

= -
]

f
477 J

~. ...... (34)
a

Instead of (31) we have
/

,/--
4
a

> ...... <35 >

and (32) must be replaced by

Another simplification of the model is effected by assuming the

slab to have infinite optical depth,

This corresponds well to the conditions within a star (large

opacity in the interior). We formulate then the first standard

problem, treated approximately by Milne:

PROBLEM I. /(r,r)^0 and fl(r)^0, r<oo are to be deter-

mined from (27) and (28), the radiation incident at the surface,

T = > /(0,r)0; 6>7T/2,

being given, as well as the flux constant F.

The incident radiation is zero for ordinary stars; positive,

however, for close binaries (or in Milne's model of a planetary

atmosphere subject to insolation). For an ordinary star, the flux

constant is derived from the observed effective temperature Te .

At the surface we have F = F+ ,
this being an average of the in-

tensity of the emergent radiation. If this were due to a black

body, the intensity would be aT*/7T, T being the surface tem-

perature. In general,
F= T* ...... (37)

7T

defines the effective temperature Te .

The relations (27) and (28) being linear in 7, J = J3, the solution

of Problem I will be the sum of the solutions of two partial

problems:
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PROBLEM la. Problem I in the case

/(0,r) = 0, 0>77/2, (38)

but for an arbitrary F ^ 0.

PROBLEM lb. Problem 1 in the case

-F = 0. (39)

In lack of strict radiative equilibrium, e^O, we have an

analogous problem. We confine ourselves to the case (38):

PROBLEM II. /(r,r)i>0 and B(r)^0 are to be determined

from (33) and (34), the incident radiation being zero, the net flux

F at the surface being given, and c/a being given as a function

ofr.

The Schuster-Schwarzschild model. This is the case of mono-

chromatic radiative equilibrium, with e = 0. The affix v can be

omitted, the frequency being always the same. On introducing
an analogous optical depth

f
r

I

J -00

the fundamental equations (21), (21') take, according to (2(5),

the form Sf
,

}
'

'V'
/;
=/(T,r)-J(T,r), (40)

r/7"

(41)

According to (22), the monochromatic net flux is constant. It is

to be noted that Kddington's relation (32) holds too. For multi-

plication of (40) by cos and integration with respect to r yields

- - = /''
\
J (r, /) cos Odaj.

dr TTj

If, here, the integral is evaluated by means of (41), the integrand
of the thus obtained r'-integral is seen to contain the factor

J cos 0-y (T; r, r') da) = 0.

The vanishing is a consequence of (11"), i.e. of the fact that y is

an even function on the r-sphere, cos being an odd function.
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PROBLEM III. Case of infinite optical depth. 7 (T, r) ^ and

J (T, r) ^ are to be determined from (40) and (41), the incident

radiation being zero and the law of scattering y as well as the flux

constant F being given.

PROBLEM IV. Case of finite optical depth, < r < T*. / and J

are, for a given law of scattering, to be determined, when the

radiation incident at the outer face is zero and when the radiation

incident at the inner face,

l(r*,0), 0<7r/2,
is given.

In the case of uniform scattering, y = 1, Problem III is formally
the same as Problem la. The case y=l and /(T*, 0) = const.,

0<7T/2 (black body as a background), is the classical problem
treated by Schwarzschild in a fundamental memoir. Problems

111 and IV have hitherto not been discussed in full generality.

The existence and uniqueness of the solution will be discussed in

Chapter iv. Furthermore, limits for the solution will be given
that are independent of the law of scattering. They are the same

limits which were found by Schwarzschild in the case of uniform

scattering. In this classical case, considerably narrower limits

will moreover be found.

6. FIRST CONSEQUENCES. THE RADIATION
FROM GKKAT DEPTH

We first draw some simple conclusions from the positivity of the

intensity and of the Ergiebigkeit, confining ourselves to the two

standard cases formulated in the preceding section. We suppose

thafc
e ^ for all sufficiently large T.

(35) shows then that F (r) never increases, for r sufficiently large.

From (36), we have

K(T)-K(0)= P F(t)dt. (42)
Jo

Since, according to / ^ 0, K is never negative, (42) implies

()
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This proves that F > holds for all large enough T, i.e. that the

net flux is outward for these r, for the opposite assumption would,

according to the decreasing of F, imply that the left-hand side

of (43) tends to oo as T->OO. These considerations show also that

the limit

exists. From this fact and from (42) we obtain the important
relation

}
/

^oo^Iim cos2
0/(T,>')rf"....... (44)

T^oo^T J

The generality of this equation must be emphasized. In strict

radiative equilibrium, e = 0, F^ is of course the flux constant F.

(44) holds in the Schuster-Schwarzschild model too, because

Eddington's relation was found to hold in that case.

From (35) we now get

(45)7

Jr

The second term, taken for r = 0,

477 I
- dr = 477 I pe dx,

Jo a J _oo

represents, as it should do, the energy liberated within a normal

cylinder through the whole slab, having the unit area as its

cross-section. As a special case of (45), we note that

-dr. (45')
r o a

It is thus seen that Problem II additively decomposes into two

partial problems, the first one being Problem II in the case

-Foo = 0, while the second one is simply Problem la, F=F^.
We therefore confine our attention to

PROBLEM II a. Problem II in the case

i.e. in the case where the net flux at the surface equals the energy
liberated per unit time within a cylinder of cross-section one.

The solution of the general Problem II is obtained in adding
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to the solution of Problem IIa the solution of Problem la with

an arbitrary F F
rjQ ^ 0.

On solving the equation of transfer (40) with respect to the

intensity, we get

f
T

...... (46)

It may seem surprising that no boundary condition for T->QQ

appears in the formulation of Problems I, II and III. The sup-

position, however, that / and J be non-negative quantities,

allows us to dispense with it.

THEOREM I. We have

...... (47)

i.e. the radiation coming from the deeper layers (0<7r/2) is

solely due to the Ergiebigkeit of the material within the slab.

Proof. Considering in (46) the case 0<7r/2, T<T', we infer,

according to J ^ (), that, for any fixed direction r, < ir/2 9

decreases with increasing T'. According to /^ this implies the

existence of the limit

for 0<7r/2. We are thus allowed to proceed to the limit r'->oo

in (40),

/
(
T

,
r
)
- c

r^ d
i (r) + sec P e-^ r^cc9 J (t, r)du,

for < 7T/2. The first (non-negative) term on the right-hand side

represents the radiation not due to the Ergiebigkeit of the slab.

Such radiation cannot, however, exist in the steady state. We
have from (48), according to sec 0^1,

thus yielding

f/(T,r)cos
2 0do^ f 7cos2 0do>>eT

J

i
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This is, according to the fmiteness of F^ , compatible with (44)

only if /

i

i.e. if i(r) vanishes for almost all directions / (in the sense of the

Lebesgue measure). Values different from zero in a set of measure

zero are, however, physically meaningless. It should be noted

that we cannot measure intensities, but only amounts of energy.

Such an amount is always represented by an integral ffdaj ex-

tended through a finite cone of directions. The values of / in a set

ofdirections ofmeasure zero are here, ofcourse, without influence.

7. THE IXTE(JKAL EQTATIONS OF THE PROBLEMS

The reduction to integral equations of boundary value problems

of the theory of radiation goes back to Hilbert and Schwarzschild.

Milne's integral equations of Problems /, //. On setting r =

in (46) and writing T instead of r afterwards we find, for > ?r/2,

the radiation coming from the upper layers,

I
(Tj r

)
= e~ T

I
hcc *'

/(<>,/')+ |

seed
|

f
T

Jo

When (48) and (47), J = J(r), are inserted into (34), a linear

integral equation for J (r) is obtained. hi order to find its kernel

we introduce, according to Schwarzschild, the functions

E n (x)
= l

\
c- r^Mv 2 - n

2w J +

= I e

On setting s= \

seed
| they appear, according to da> = uinOddd(f>,

in the well-known form

E n (x)=\ e-*-
r s~ n ds. (50)

Insertion of (47) and (48) into (34) yields two essential terms, the

first one being i /

-+-- e- T
l
a

a 47TJ _



22 FUNDAMENTAL PRINCIPLES AND PROBLEMS

due to the energy liberated and to the incident radiation, while

the second term is the sum of two double integrals

~
f

^J-f

- f f

T

|
'

J - Jo
J(t)dtda>.

The integrand being measurable and non-negative, we may inter-

change the order of integration, obtaining thus, according to

i
.

=-
^ Jo

J(t)S(\r-l\)dt, ...... (52)

for (51). The use ofa briefsymbolA for the linear integral operator

is convenient for the treatment of the problem. We thus obtain

Milne's first integral equation for the determination of the

Ergiebigkeit J (r)
= 7* (r),

A(J)T +
'

-+ /- f e- r

OC 47T J _
...(53)

A formal disadvantage of (53) is that it does not contain the net

flux 7rF(r). An equation containing F is, according to Milne,

obtained by inserting (47) and (48) directly into (30). According
to (49), n = 2, we thus get Milne's second integral equation

F(r)=
l

f
77 J-

+ 2 rj(t)E2 (t-r)dt-2 (

T

J(t)E2 (r-t)dt,
Jr JO

...... (54)

containing all the data given in Problems I, II. (54) goes, of

course, together with (45).

If (47), (48) are inserted into the integral (32) representing K,
we obtain, according to (49), n 3, the equation

= l

f cos2 0e-T
l
8ec

0l/(0,r)do) + 2 (* J(t)E3 (\r-t\)dL* J - Jo
...... (55)
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Since the first term on the right-hand side is not greater than

# = - f cosa
0/(0,r)rfoi,* J-

it follows that (44) can also be written in the form

ff^Mm- rj(t)E3 (\r-t\)dt....... (5(5)
r co T J o

For the actual solution of Problems!, II, it is more convenient to

start from the integral equation (53) together with (56) and (45').

THEOREM II. Any non-negative solution B(r) of (53), that

satisfies (56) where F& is determined by (45'), yields together

with (47), (48) a solution of Problem II, with given energy

liberated, given incident radiation and a given surface flux

7rF ^ 7T$p(lx (integrated through the slab).

COROLLARY I. In case of Problem la we must, in (53), set 6 =

and /(0,r) = 0, 0>7r/2.

COROLLARY 2. In case of Problem \b we must set 6 = in (53)

and JF=Fao
= Oin(5).

COROLLARY 3. In case of Problem Via we must set / (0, r)
= 0,

0>77/2, and 1^ = in (56).

The proof of the theorem is plain from the above.

The integral equation for Problem III. Since the incident

radiation is supposed to be zero we have from (46)

/(T,/-)=|sec0| re-<T-M**> e
lJ(t,r)dt', 0>7r/2

Jo
...... (57)

for the radiation coming from the upper layers. From (11'), (11")

and from (41) we infer that the Ergiebigkeit is always an even

function of direction, J(T, -r) = J(r, r). Let us introduce the

linear integral operator

where H is defined by

(T;r ', r ) j
...... (59)
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for any two directions r, r'. H/8n is thus the kernel ofthe operator

A. Tri the simplest case of uniform scattering, y= 1, this operator

reduces to the simpler Milne-operator, J being independent of

direction. For an arbitrary law of scattering, however, no

simplification is possible. The meaning of the general operator is,

that, on inserting (47) and (57) into (41), the linear integral

equation j/ r)_yw,/) (00)

is obtained for the determination of the Krgiebigkeit. In analogy
to Theorem II we have in the present case

THEOREM [II. Any non-negative solution of ((51) satisfying

(44), F<jz
= F, yields together with (47) and (57) a solution of

Problem 111.

The, integral equation for Problem IV. Since the incident radia-

tion vanishes, (57) gives the intensity for 0>7r/2. The intensity

of the radiation from the deeper layers is, however, given by

0<7T/2 (61)
We define, in this case, the integral operator

L(J) r ^ r (62)

by replacing, in the integral in (58), the upper limit oo of integra-

tion by r*. On inserting (57) and (61) into (41), we obtain the

linear integral equation
i r

(T*_T)8W.0.
r.r 4^ j +

y **

(03)
for the determination of the Ergiebigkeit, ^ r ^ r*.

Schioarzschild's integral equation for uniform scattering. Since,

in this case, J is independent of direction, the operator L(J)Tt ,

simplifies to
1 f T*

)r
= J(t)EL (\T-t\)dt, (64)
-Jo

and the integral equation (63) becomes

1 f
T

47rJ +

(64')



FUNDAMENTAL PRINCIPLES AND PROBLEMS 25

The classical case treated by Schwarzschild is

/(T* r)
= /* = const.; 0<7r/2....... (65)

In this case the second term in (64') becomes, according to (49),

n = 2, simply U*#2 (
T*-r). ...... (00)

For later purposes we add the remark that in the case

7(rV) = cos0; 0<7r/2 ...... (07)

the second term in (04') becomes, according to (49), n = 3,

JA
T

S (T*-T). ...... (08)

Positiuity of the kernel. An obvious as well as important pro-

perty of all the integral operators introduced above is that their

kernels take only positive values. We therefore call A, L positive

operators. This positivity occurs in all boundary value problems

of the theory of radiation. An evident consequence of that

property is the

LEMMA. For any function (f, /') ^ we have A(<I>)Tr >0

everywhere, unless O vanishes identically. The vanishing is,

strictly, to be understood in the sense ofthe theory ofthe Lebesgue

measure, i.e. vanishing up to an inessential (r, r)-set of measure

zero.

We may express the lemma also in the following form. <1>^0

and 0^0 implies A(0)Ti/
.>0 for all r, r. Another equivalent

formulation is that

implies the strict inequality

A(Y)T|f >A()Tpr
...... (09)

for all r, r. The equivalence follows from the linearity of the

operator, in particular from

The same thing is, of course, true for the operator L.
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8. SOME PROPERTIES OF THE FUNCTIONS En (x)

For the discussion of the simpler integral equations we need some

simple properties of the functions E
tl (x), x^.0, n^O. We have

EQ (x) = e~ r
lx, while JSl (x) becomes logarithmically infinite as

x~>0. For n> 1 all functions En (x) are, however, continuous at

x i). By partial integration in (50), the well-known recursion

formula n^ ^ (je)
= e_,_^ {jc} ...... (1Q}

is obtained. We have, furthermore,

E
ll+ ,(x)dx. ...... (71)

From (50) the inequality

A',, ,,(.*)<#(.<<) ...... (72)

is obtained. Let us compare the right-hand side of (70) with the

right-hand side of the equation obtained from (70) by replacing

n with /i 1. We then find, according to (72),

(^\)En (x)^nEn^(x) ...... (73)

for 7i > 1, the equality sign holding only at x 0. We note that

If the left-hand side of (70) is combined once with (72), another

time with (73), we find

/> x px
---- <En (x)<-~--- ...... (75)x + n " v '"x+n-l v '

for w > 1. On applying Schwartz's inequality to

/co
/ 8 n-l\ / s n-fl

En (x) =
J ^ ^-V

r-
) ^-a^-

a
-

another inequality

E*(x)<En_i(x)EM (x) ...... (76)

is obtained. From (71) and (76) we get

.(77)
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For later purposes the formula

^ ->

will be useful. For the proof we note that the left-hand side

equals, according to (71),

Ex-a) ^
En (x) \~EH (x) ~En (x-a)}'

By means of (77), the quantity within the parenthesis is seen to

be negative.

Some simple integral formulae will, furthermore, be needed.

From (71) and (74), we have

E
tl (r-t)dt=

l-~ En+l (T ) f

JJ*
EH (t-r) = *-- En+l (r*

-
r).

"

. .

Partial integration yields, according to (71),

l

T

o
tE,,(t)dt= n

l

+1
-E

ll+2 (r)-rElin (T)....... (80)

On combining (79) and (80) we got

...... (81)
and

T

tEn (t-r)dt=(
7* r

T JO

...... (82)



CHAPTER II

SOLUTION OF PROBLEMS I AND II

0. TICK SOLUTION OF PROBLEM Ta

Milne's integral equation of the Problem la is, according to (38)

and (53), -0 and J- ft,

fi(r) = A()T . (83)

Physical reasoning would lead us to the conjecture that, in strict

radiative equilibrium, the radiation becomes nearly isotropic in

great depth, i.e. according to (28), that / (r, r),7i (r) -> 1 as r->oo.

(44) would then show that B(T) is asymptotically linear,

F= l

fco**6daj.lim
B{r)

,

TT J T,o. r

i.e. that B(T) = %FT for large r. We have, indeed, the

TIEKOREM [V. Problem la has a solution

J(T)=B(T) = ^/(T), (84)

where/ satisfies Milne's integral equation (83) and the inequalities

/(T) = T + JT(T); <?(T)<! (85)

Proof. From the definition (52) of the operator A and from

(79), r* = oo, we have
1 = A(1)r+ ,L#2 (

T). (86 )

Furthermore, from (81) and (82), n= 1, T* = OO,

r= A(0T -i/;3 (r). (87)

On combining (86) and (87) we get

T + c = A(/ + c)T +J(c^(r)-A?3 (T)} (88)

The smallest value of c that makes the second term ^ is, ac-

cording to E2 > EX and J5?
3 ~E3 for large r, c= 1. We thus get,

for all T,
/(T)>A(/)T ; /(r) = r+l (89)

On the other hand, 0= J- is, according to 2E3^E2 , the greatest

value of c making the second term ^ for all r. We thus have

/i(T)<A(A)T ; A(T)-T+ i (90)
for all T > 0.
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We now set successively

L+i(T) = A(/n )T . ...... (91)

The inequality (90) has then the simple form

/i(T)</2 (r), r>0. ...... (92)

According to the positivity of the operator A, wo have from (92)

A(/!)T <A(/2 )T , r^O,

or, with regard to (91), /2 (T) </.} (T), r ^ 0. Successive application

of the operation A generally shows that

/,,M<A+1 (r), r^O, ...... (93)

i.e. each function of the sequence/^ lies above the preceding one.

From /I (T)</(T), rSO,

we now have, again according to the positivity of A,

From (89) wo get therefore /2 (T) </(T). If the operation A is

applied a second time, we get

/3 (r)
= A(/2 )T <A(/)T , rSO,

whence, according to (89), /3 (r) <f(r) follows. In the same way
we obtain the general inequality

/n (r)<A(/)T </(r), r^O....... (94)

(93) and (94) evidently show that the limit function

exists and that it lies between the limits f^ r 4- \ and/=r+ 1,

r^O. It follows from well-known theorems that, in (91), we can

proceed to the limit n = co under the integral sign. /(T) is therefore

a solution of /=A(/) with the property (85). The smoothing

property of an integral operator shows, finally, that /(T) is a

continuous function.

On setting B(r) = cf(r),

it remains to find the relation between c and the flux constant F
From/=r + q and from (81), (82), n = 3, T* = 00, we find

Jo
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The last term being, according to 0<q<l and to (79), n = 3,

r* = oo, less than
,
wo infer from (56), J = c/, F< = F, that F

equals $c, i.e. that (84) holds, q.e.d.

From /=A(/) and from (87) we infer that the remainder

function q (T) satisfies the integral equation

Let us, now, insert (84), f=r+ q, into the second integral

equation (54), where e and the incident radiation are to be omitted.

Making use of (81), (82), r& = 2, r* = oo, we find that q(r) also

satisfies the integral equation

Jr
2 (T-t)dt = Et(r). ...(96)

O

On inserting (84) finally into (55), we obtain by means of similar

computations, and according to (32), the equation
/

q(t) E3 (\
r t \)dt

= a E5 (r), (97)
Jo

a being a constant, the determination of which will be post-

poned.
From (22), (34) and (87) we find the temperature T as function

of the optical depth r,

Formulae (47), (57) for the intensity can be written in the form

/(r,r)= e~* J(r-f scos0, r)ds', 0<7r/2, (99)
Jo

)ds-, 0>77/2. ...(99')
' o

In the present case we have I = / (T, 0) and J = J(r) = B(r). On

inserting (84), (85) into (99) we get

J

...... (100)
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for the radiation coming from the deeper layers, in particular,

...... (101)
j

for the radiation emerging at the surface.

it is to be emphasized that the emergent radiation is in-

dependent of the particular behaviour of a within the slab,

provided that the material is gray. Since Problem I II for uniform

scattering formally coincides with Problem la, we may also say
that the emergent radiation (for a given frequency) does not

depend on the course of vv (x). It should be repeated that (101)

also holds independent of any assumption about temperature.

In the case of the sun, (101) represents the law of darkening on

the solar disk, in good agreement with the observations.

10. UNIQUENESS OF THE SOLUTION

The uniqueness of the solution of Problem L a follows from the

THEOREM V. A non-negative solution of the integral equation

(83) is necessarily of the form B (r)
= const./(r).

Proof. Let B(r) be a non-negative solution of (83). We set

I) = greatest lower bound of - --- ......
( 102)

and B*(r) = B(r)-bf(T),

/(T) being the solution found in the preceding section. B* is then

also a solution of (83), with the properties

...... (103)

= 0. ...... (104)

All we have to prove is that B* (T) identically vanishes.

Prom (104) and from the definition of the greatest lower bound

we infer the existence of an infinite sequence of numbers TV ,

v= 1, 2, 3, ..., such that

limLo. ...... (105)
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Here, we must distinguish between two different cases, (a) the

rv have a finite limit point T*, (b) we have rv -*oo as v->oo.

Let us first treat ease (a). It is always possible to pick out of

the TV a subsequence converging to r*. No generality is lost in

assuming that T
V ->T* as y->oo. From (105) and from/(T*)>0

we have
limJi*(Tv )

= 0,
vvj

whence, according to the integral equation,

follows. As a function of T, A(J3*)T has the property of lower

semicontinuity, the proof of which fact may be postponed,

This shows with respect to (103) and according to the positivity

of A, that B* (r)
~ 0. The lower semicontinuity is proved in the

following way. According to (103), we have, for

T*-S<T<T* + S,

~

...... (106)

8 being a positive number less than T*. (In case r* = the first

term is to be omitted.) The left-hand side is, now, a continuous

function within (T* 8, T* + S), the logarithmic singularity of E^

being excluded. We have therefore

lim A
( B)T \ ^ BE, (

T* - 1) dt +
*

f

"

BE, (t
-
r*) dt.

T_>T * -JO -Jr*+(>
...... (107)

Since this inequality holds with an arbitrary 8, we find for S->0,

i.e. the lower semicontinuity.

Case (b). Omitting the star in B* we have, according to

/(T)
-

r, to prove that a solution B (T) of (83) satisfying

,
lim ^ = 0, T,->OO, ...... (108)
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vanishes identically. According to B ^ and to E3 < El ,
we

have /* ao

BE3 (\T-t\)dt<2A(B)T
= 2B(r) ....... (109)

Jo

B(r), being a non-negative solution of (83), determines a

solution of Problem la. The corresponding net Hux F is not

known; however, we know from 0, that necessarily F^O.
From (56), J= B, and from (108), (109) we infer that

thus yielding F = (). On inserting this value into (54), J=B,
incident radiation = zero, we find for r =

7 o

this being compatible with 13 ^ only if B (r)
=

0, which com-

pletes the proof of the uniqueness.

COROLLARY. Every solution of (83) with a finite lower bound
has the form const. f(r).

Proof. In the solution B (r) + cf(r) the constant c can be chosen

so large that this solution is everywhere positive. Theorem V
then completes the proof.

11. A DIFFERENTIATION FORMULA
For* the continuation of the discussion of Problems I and II, a

study of the more general operator

EE

Jo
(HO)

r o

and of the related integral equation will be useful. We introduce

the notation /*>

(r/,A)= (j(t)h(t)dt.
Jo

The kernel of (110) is evidently symmetrical. The symmetry can

also be expressed by the general relation

(g, A (h))
=

(A, A (,/))
= I" ^ H(\r-t\)y(t)h(r)dtdr.

Jo Jo
(HI)
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We start with an important property of the particular operator

(110). For this purpose let us suppose, that H(x) is continuous

for x > and satisfies the conditions

...... (112)

Let h (x) be continuous for x ^ and continuously differentiable

for x > 0. Ji(x) is, furthermore, supposed to have the properties

...... (113)

with a suitable < I . Under these conditions, the formula

...... (114)

holds.

Proof. We have

A(A)T
=

I* JI(t)Ii(T-t)dt+ ^H(t)/i(r + t)dt....... (115)
Jo Jo

On writing $! (T) for the first integral, we find

r
Joo o

Here, the first term obviously tends to h (0) // (T) as 8 -> 0. In the

second term, however, limit process and integration may be

interchanged. The proof of this follows the same line as the proof
that a Newtonian potential can be differentiated under the

integral sign, even when the moving point lies within the mass.

That the second integral in (115) may be differentiated under the

integral sign, follows from a well-known theorem, according to

which this is always permitted within a certain r-interval if the

r-derivative of the integrand lies, in absolute value, below a

fixed integrable function oft. This test applies here since, accord-

ing to (112) and (113),

|

// (t) h'(r + t)\< const. edre-^-e^
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holds for all sufficiently large t, the constant being independent
of r. Within an arbitrary finite r-interval, having r = as an

outside point, the suppositions of the above theorem are fulfilled

because the absolute value in question is less than const. e~(1~^'

for large t and less than const.
| log |

for small t.

12. ASYMPTOTICALLY LltfRAR SOLUTIONS
OF /=A(/)

Since the formula of 1 1 will not be used until 17 we abandon the

hypothesis (112) about the kernel. Let us consider the integrals

H
l (x)

= // (x), ff,,+1 (x)
= I" // (x) dx.

J .r

We now suppose that the kernel is positive,

H(x)>0, ...... (110)

and that // (.r)
> a//2 (x) ...... (117)

holds with suitable a > 0. All these assumptions are fulfilled in

the case (52), with II\KL
. (117) implies the existence of //2 ,

and automatically of all JI n .

The integral equation f(T )
= \(f)r ...... (118)

will be studied hereafter by means of Fourier integrals. It is,

however, worth while to consider it first from the same, physically

more natural, point of view as in 10. (118) can have solutions

of various asymptotic behaviour for r large. Under the particular

hypothesis //2 (0)=J, ...... (119)
for instance, we have the

THEOREM VI. Under the suppositions made above about the

kernel, in particular (119), (118) possesses a solution

where a is taken from (117).

Proof. In Milne's case, H=^El9 (119) is, according to

#2 (0)
= #2 (0)12 = J, certainly fulfilled. We first note that

fJ X
(120)

32
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Taking account of (119), we find, after simple calculations, the

relations
1 = A(l)T +#2 (r) ...... (121)

and r = A(0T -//3 (r). ...... (122)

According to (117), we obtain from (121) and (122) the in-

equalities /l(r)< A(/I)T) /1 = r,

and /(r)^A(/)T , /=T + ^.

This shows, in the same way as in 10, that (118) has a solution

between r and r+ I/a, q.e.d.

From (118) and (122) we find the integral equation

q(r) = A(q)T + II,(r) ...... (123)

for the remainder function q(r). We must now remember that

the above solution/(r) of (118) was found to be the limit function

of a sequence fn (r) defined by the recurrent relations

On settingfn = r + q tl ,
we find

thus yielding q (r)
= S A" (H3 )T ,

o

A'1

being the nth iterate of the operator A, A (/) =/. In other

words, q (T) is represented by the Neumann series of the integral

equation (123).

DEFINITION. If the solution of a linear integral equation is

represented by the Neumann series, we call it the ^-solution of

that equation.

The function q (r) of Theorem VI is accordingly the ^/"-solution

of (123).

LEMMA 1. A nowhere negative solution of the inhomogeneous

equation
0(T)

= A(flT +O(T), <D^O ...... (124)

is always the sum of the ^-solution of (124) and a nowhere nega-
tive solution of the homogeneous equation.
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Proof. From (124) we have, according to the positivity of A,

Proceeding to the limit n = co, we see that the existence of a

non-negative solution of (124) implies the convergence of the

^-series of (124), this series consisting ofnowhere negative terms.

The lemma follows then from the inequality

LEMMA 2. A continuous solution g of (118) with the property

g/f^>c, r->oo, necessarily equals cf.

Proof. From the supposition made in the lemma we readily

infer that the function Mi fir)

attains either its maximum or its minimum value for a finite

value of r, say r*. Without loss of generality we can confine

ourselves to the case of the maximum value M . In this case we

have
Mf(r)-g(r)^0, Mf(r*)-g(r*) = 0.

The left-hand side is here a solution of (118). According to the

positivity of A, however, a non-negative solution of (118) can

only vanish somewhere if it vanishes identically. It follows at

the same time that M =
c, q.e.d.

Let us now apply these simple results to the equation (121),

having 1 as a solution. All requirements of Lemma 1 are fulfilled

in this case. 1 is therefore nowhere smaller than the ^-solution

of (121). The Absolution being continuous everywhere, the

difference is an evidently bounded and continuous solution of the

homogeneous equation (118). Ifthis solution is identified with the

g (r) of Lemma 2, f(r) being the solution of Theorem VI, we find

from that lemma that g (r) vanishes identically. 1 is therefore

the ^-solution ofthe equation (121). We collect these facts in the

LEMMA 3. q (T) of Theorem VI is the Absolution of (123). 1 is

the ^-solution of (121).
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13. AN AUXILIARY THEOREM WITH
APPLICATION TO PROBLEM II

Let A, for a moment, be an arbitrary symmetrical operator. For

the solutions of the simultaneous integral equations

^A^+O!, <
2
= A(< 2)+02 ,

...... (125)

we find purely formally

(#1 1 *.) = (#1 > &) - (& > A (&)), (< 2 ,OJ = (<f>2 ,h) - (< 2 ,
A (^)),

and according to the symmetry of A,

(^,02 )
= (^2 ,(D 1 ). ...... (126)

This formula is, of course, always correct when the integration

interval is finite and when the kernel is continuous. The proof

fails, however, in all of our cases, since here
(<f>i 9 <f>2 ) is always

infinite. Nevertheless, formula (126) holds also for certain

singular integral equations, of course under certain restrictions.

AUXILIARY THEOREM. Let A be a positive and symmetrical

integral operator. Furthermore, let us suppose that ^
l ^ 0,

O
2
> in (125). Formula (126) then holds, if in (125) ^ and < 2 be

the ^-solutions.

Proof. The iterated operators A" are well known to be sym-
metrical once A has this property. From

we have

)
= S (d>2 , A* (<M = (*! ,

A"

The termwise integration ofan infinite series offunctions, applied

here, is readily seen to be justified, all terms being nowhere

negative.

We now return to the special operator (110) and prove the

THEOREM VII. The necessary and sufficient condition that,

under the suppositions (116), (117), (119),

...... (127)
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have a nowhere negative solution
<f>,

is that

be finite.

COROLLARY. Under the same assumptions, O however having

any sign, (127) has always a solution if

fJo \(<b(t)\dt
10

be finite. The iV-series converges absolutely.

Proof. According to (117) and to the fact that H2 (x) is a

decreasing function, we have

H(t-r)> a#2 (t-r)> atf2 (t),

thus yielding, with respect to
cf> ^ 0,

! t....... (128)

Furthermore, we have // (r t) ;> a//2 (r t) and, since H2 (x) lies

between positive limits within (0,r),

[

T

</>(t)H(T-t)dt^cor&t. r <l>(t)H2 (t)dt, ...... (129)
Jo Jo

the constant being positive and depending continuously upon r.

A
(<f>)r must, now, be finite for some values of T. Hence, and from

(128), (129), we may infer that (<f>,H2 )
is finite. According to

Lemma 1 this holds a fortiori, if is replaced by the JV-solution

of
( 127). On applying the auxiliary theorem to the two equations

(121) and (127) and on taking account of Lemma 3, we find that

The condition is sufficient. On setting

we infer from the symmetry of Av and from (121) that

(f, ,
Ht )

= S (A" (4>), HJ = S (O, A" (HJ)
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proving thus that
(<f>n ,

H2 )
lies below a finite limit independent

of n. The fact that
</) tl

form an increasing set of functions

implies the existence of the limit function ^(r) = lim^^(T), and

we infer that /j u \__\\Tn /j TJ \

(<p,
/z 2 j

= um ((p n ,
11. 2/

is a finite quantity. At the same time we readily infer that

ty,//a )
= (*,!).

The corollary simply follows from the theorem, since an

absolutely integrable function <D (T) can be written in the form

O1
4>2 , Oj and O2 being both non-negative and integrable.

Application to Problem II. Milne's integral equation (53) is in

the case of Problem II, J= B,

h
6

. (130)

Supposing that everywhere e ^ 0, we find from Theorem VII that

the necessary and sufficient condition that (130) have a non-

negative solution is, that

477-
I

-dl, (131)
Jo a

i.e. the energy liberated per unit time in a normal column of

cross-section one, be finite. We prove, furthermore, the

THEOREM VIII. Suppose that >
everywhere. The necessary

and sufficient condition that Problem IIa has a solution is that

(131) be finite. The uniquely determined solution is given by the

^-solution of (130).

Proof. Only the assertion concerning the Absolution of (130)

needs to be proved. We remember that Problem IIa is the special

case of Problem II where the surface flux 7rFn satisfies

= 4
\

dt. (132)
Jo *

It is therefore to be proved that the JV-solution B(r) of (130)

automatically satisfies (132). Prom (54), r = 0, J=B, taken

without incident radiation, we find
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B being the ^-solution of (
1 30), we getfrom the auxiliary theorem,

applied to (121) and (130),

which completes the proof of (132). For any other non-negative
solution B of (130), however, the left-hand side of (132) would

be greater than the right-hand side,

...... (133)
o a

In order to obtain the solution of the general Problem II, we must

remember formula (45'), giving F*> when FQ is given.

THEOREM IX. Suppose that ^ everywhere. The solution of

Problem II is uniquely determined by

B(T)=B(T) + %Ff(T),

F> being determined from (45'), B being the iV-solution of (130),

and/(r) being the function of Theorem IV.

The uniqueness of the solution follows easily from the fact that

any non-negative solution of (130) is the sum of the iV-solution

of (130) and a non-negative solution of the homogeneous equa-

tion, the latter being characterized by Theorem V. IfnF denotes

the flux in Problem FT a, we have

FT=Fr + Fn ,
Fr

= r dt, JF^O ....... (134)
Jr a

If the assumption e ^ (everywhere) is abandoned, similar

theorems hold. But we have then to formulate the general con-

ditions under which the solution becomes non-negative as

required in the physical problem.

14. OTHER APPLICATIONS.
THE BOUNDARY TEMPERATURE

We set ,3(T) ./<T
8

8
>-/<I)....... (135)

where /(T) is the solution of (118) mentioned in Theorem VI, and

...... (136)
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8 being a positive number. Prom the integral equation (118) and

from the identity (115), we find

</s(r)=A(gs )T+Gs (T). ...... (137)

Proceeding to the limit 8 -> we get, purely formally, the integral

equation for the derivative/' (T). However, as we do not know if

this derivative exists, wo had better use (137) as it stands.

In order to prove that g$ is the Absolution of (137), we first

note that n

(138)

Keeping 8 fixed we infer from Theorem VI that g8 (r) is a bounded

function of r,
| g8 \

< C, whence

According to Lemma 3, we have

n+l

showing thus that the remainder in (138) tends to zero as n->co.

g$ (r) is therefore the ^V-solution of (137).

THEOREM X. The value of the solution/(r) of (118), given in

Theorem VI, is determined by a simple formula,

Proof. Applying the auxiliary theorem of 13 to (121) and

(123), we obtain
(q,H2 )

= (l,H3 )
= H4 (V)....... (139)

Since, by partial integration, (,//2 )
=#4 (0), we find altogether,

according to/=T + </,
(/, //2 )

= 2//
4 (0). ...... (139')

Since, furthermore, g$ is the Absolution of (137), the auxiliary

theorem can be applied to (123) and (137), yielding thus

On the other hand, we find by means of (135)

The fraction in the second integral lies between the limits
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because H2
= H3

'

is a decreasing function. We may therefore

proceed to the limit under the integral sign, finding thus

2 )
....... (141)

8=0

Furthermore, we have from (136)

8-0

On inserting the right-hand integral in (136) into the left-hand

side of (140) it is seen without difficulty that we may proceed to

the limit S->0 under the integral sign on the left-hand side of

(140) '

lim(q,Gs)=f (q,H). ...... (142)
8-0

Finally, we have from (123), r = 0, according to
tf
=
/o>

/ = (?,//) + 7/3 (0). ...... (143)

Combination of (140), (141), (142) and (143) leads to

/o
2 = (/,#2 ),

whence, according to (130'), the required formula follows.

LEMMA 4. Let H(x)/H^(x) be bounded for x large enough.

Under the condition (112), the solution /(r) of (118) has then a

positive derivative /' (r), being the ^-solution of the integral

equation
/'(T )

= A(/')T +/O//(T). ...... (144)

Proof. First we note that this applies to Milne's case, H = \E ,

since EJE2 ->1 as #->oo. Since the lemma is only needed for the

proof of Theorem XI we shall content ourselves with brief in-

dications of the rather lengthy proof. The main part of the proof

consists in establishing an inequality for the jV-solution of the

integral equation
(/(r)

= ^(g)T +f H(r). ...... (145)

The proof is complicated by the possibility of an infinite H (0)

(this is just the case with Milne's equation). It is therefore con-

venient to split // (r) into two parts

/off^ + Oa, ...... (146)
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O2 (r) is zero for small r and coincides with/ //(r) for large r.

We consider then the two equations

^-A^J+Oi, <
2
= A(< 2)+02 ...... (148)

separately. According to the supposition made in the lemma we

have O2 (T) < const. 7/2 (r) for all r. The ^-solution of the second

equation exists therefore as seen by comparing it with the

equation (121). At the same time we find

<
(f>2 (T) < const.

for all r. As to the first equation, we begin with considering the

expression f'

A(O!)T
= II(r-t)H(t)dt 9

r>a.
Jo

We note that A(O X ) is a continuous function of r. This holds,

according to (112), also at r 0. For r large we find, according to

the hypothesis made, and since H2 decreases,

A(O^ const. f'W2 (T-0^
r

(0*<const.//2 (T-a),...(149)
Jo

the constant being independent of a. Now we have, for r large,

= f
J

Hdt
r-a

< const. H
2dt<a.const.H2 (T a).

J ra
Since here the constant is again independent of a, we may choose

once for all a so small that a . const < J . For this value of a, we
find then #2 (T-a)<2//2 (r),

thus yielding, with respect to (140),

A(O t )r <const. H2 (r)

for r large. The left-hand side being continuous for all r, we can

choose here the constant such that the inequality holds for all

T ^ 0. Comparing again with (121), we find that the JV-series

converges for all r. On adding here the term v= 0, namely^ , we
obtain the complete ^V-solution fa of the first equation (148).
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Altogether we see that the ^-solution g(r) of (145) satisfies an

inequality g (r) < H (r) + comt.

From (137) and (145) we now find

The second terra on the right is easily seen to have the following

properties as 8 -> 0. It is I log
-

1 for all small T, uniformly with

respect to 8, while
0& (r)_^g (T)

""~U~(rr
tends to zero uniformly for all r ^ TO ,

TO being an arbitrary number

greater than zero. A similar splitting leads then to the result that

g is the limit of </, i.e. that g (r) =/' (T). At the same time we find

an inequality
/' (

T
) <# (

T ) + const. ...... (150)

The above considerations show that/' is the jV-solution of (144).

THEOREM XI. Suppose that O(r) is continuous at r = 0.

Under the hypothesis made in Lemma 4, the Absolution of the

integral equation (127) has, at r = 0, the value

oo-
/o

Proof. Since, under the stricter hypothesis about H made in

Lemma 4, the derivative /' (T) exists, we can dispense with the

complicated formulae (135), (136), (137) and apply the auxiliary

theorem of 13 directly to (127) and (144), getting thus

From (127), r = 0, we find ((,#) = ( -<I> , whence (151) follows.

The reader will notice that (151) can also be written in the form

of a Stieltjes-integral

<o=-r r/(t)dO>(t). ...... (152)
/o Jo

It is, of course, easy to obtain Theorem X from (152). Applica-

tion to (123) yields, according to qQ =fQ)

o

which together with (139') proves the theorem.
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Application to the boundary temperature in Problems I and II .

In the case of Problem la we have

yielding thus /o^-^ ......
( 153 )V a

for the solution mentioned in Theorem IV. According to (84) we
therefore get /

B =
^-F. ......(154)

Under local thermodynamical equilibrium we thus find, according
to (98), the value /o

rp 4 _ V /TT 4
^o --J^e

for the surface temperature of model la, independent of the

variation of the absorption coefficient within the slab.

Let us, now, find a formula for the boundary temperature of

the model II a. In order to apply Theorem IX we first suppose
that e ^ everywhere. We find for the ^-solution B (r) of (130)

i f 30 * i r*f i re
B - =M -f'dt = f\ -dt + f\ -q'dt.a o /oJo a /oJo a /oJo <*

According to (132) and (153), the first term on the right equals

FromTheoremIXwethereforoobtain,onaccountofF = F + F,

(155)a o
-

j o a

for the determination of the surface temperature of model II.

It should be noticed that (155) holds also in the general case,

e<(), provided that

f I e| r
[

-7-dt= \\6\pdx,
J o * J

integrated through the slab, is finite. In the next section we shall

prove that q(r) increases with increasing r. Anticipating this

result, we infer from (155) that, in the case e ^ everywhere, the

boundary temperature is greater than in strict radiative equili-

brium, e = 0, the surface flux 7rF being prescribed.
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This minimal property of the boundary temperature in the

case of strict radiative equilibrium implies, conversely, the in-

creasing of the remainder function q(r). Otherwise the energy
liberated could evidently be distributed in such a way that that

property becomes violated.

15. PROOF THAT q (r) INCREASES

Let us, for a moment, reconsider the hypotheses made in the

general case treated in 11-14. The hypothesis (112) concerning
the behaviour ofH (x) for small x was only required for the proof

of formula (114), of Lemma 4 and of Theorem XI (existence of

f'(r)).

For the proof of the Theorems VI-X we needed, however, only
the suppositions stated in (116), (117) and (119), the latter being
of particular importance because it is responsible for the'asymp-

totically linear character of the solution.

Let us, now, throughout this section, suppose that H (x) is of

the form ^
H(x)=\ e-dp(s), ...... (156)

p (s) increasing with increasing s. (
1 19) is satisfied if and only if

From H
tl (x)

=
J

e-**8l~ n
dp (s),

we see that (
1 17) is certainly fulfilled, with a = 1. The last integral

is readily seen to converge also for n ^ 0, making thus the formula

Hn
' = -

//__! valid for all n ^ 0.

On applying Schwartz's inequality to H
tl ,

in the same way as

we have done in deriving (76), we find

for all n, implying thus

d Hn+l (x)
~j f-f / C~ ** \J9 IJ.tJ/J
dx Hn (x)

v '
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The analogue of (78) subsists therefore in the present general

case, the proof being the same,

We now begin with the proof that, under the hypothesis (156),

(156'), the remainder function q (r) of Theorem VI increases with

increasing r.

Transforming the integral operator A by partial integration,

we find the identity

u(T)-A(u)T ==uQ II2 (r)+ I"
H2 (r-t)du(t)- rH2 (t-T)du(t),

Jo Jr
...... (159)

Stieltjes-integrals being employed because we do not wish to

make any use of the differentiability of/(r). (123) can therefore

be written

Jo
)....(160)

Let, in the sequel, u(r) denote any positive and nowhere

decreasing function that satisfies the integral inequality

u(r)^A(u)T +H3 (r) ...... (161)

for all T. Continuity ofu is not required. An example of a function

u(r) is furnished by u= 1, for in (121) we have H2 > //3 . The set

of values taken by all functions u (r) at a particular point r has

a greatest lower bound UU(r). u^O and (161) implies

U (r) ^ #3 (r) > 0. Furthermore, U (r) is evidently nowhere

decreasing. From (161) and from u ^ U we see that

holds for all functions u, and therefore for their greatest lower

bound U. U (r) is thus itself a function u, in fact, the smallest

function of that class.

LEMMA. U is continuous for r ^ 0. In the inequality

U(r)^A(u)r +H3 (r) ...... (162)

the equality sign takes place at all points not being inner points
of a constancy interval of U. r = is included herein.
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We postpone the lengthyproof of this main lemma to theend of

the section and show first that U cannot have a constancy in-

terval, thereby proving that U increases and satisfies the same

integral equation as q(r). This would, however, imply U = q,

since a bounded solution of the homogeneous equation vanishes,

according to Lemma 2. Supposing that U have a constancy
interval agr^/3, we find, according to the lemma, from (159)

and (162)

HB (r) fga (r-Q f tfa (*-r) f =0, r = a,

"~//7M
+
Jo -H^ dU

-)t -H&)-
dU

\>0 9 r>a,
...... (163)

T lying between a and j8. This can, however, be shown to Lead to

contradiction. According to (157), the second term decreases

with increasing r. According to (158), and to dU^Q, the third

term certainly never increases. Furthermore, H2 (t r)/IIz (r)

increases with increasing T, the denominator decreasing and the

numerator increasing. The fourth term in (163) is therefore also

a nowhere increasing function of T. Altogether we find that the

whole left-hand side of (163) decreases, a<r<j8, in obvious

contradiction to the right-hand side.

Proof of the lemma. For a nowhere decreasing function U the

limits U (r 0) and U (r 4- 0) exist always. Since U is the smallest

of all functions u, we find

C7(T -0)=C7(r),

since otherwise u (r)
= U (r 0) ^ U (r) would be a smaller func-

tion u.

In order to prove the continuity of U we must show that

97
= 0, where

2rj= *7(r + 0)- E7(T )0....... (164)

The right-hand side of (162) being a continuous function, we
derive from U (T) ^ U (TO -f 0), T > TO ,

C7(r)^A(C7)T +^3 (r) + 7
7 ,

T <r<r -f8, ...... (165)

with a suitable 8 > 0. On introducing the auxiliary function

f
0, r notm
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we first find the obvious inequalities

1
'
rin (To> To + 8 )>

Tnotm(T ,T + S).

It is geometrically evident that the function

u(r)=U(r)-7]h(r) ...... (168)

never decreases and that u^O. Furthermore, the second in-

equality (167) shows that, outside the interval (r ,T -h8), u

satisfies (161). On the other hand, we infer from (165) and from

the first inequality (167) that (161) is also satisfied by u within

that interval, u is therefore a member of the class introduced

above, and u ^ f/, which obviously implies 77
= 0.

It is immediately seen that, in (162), the equality sign must

hold at r= 0. Otherwise we could make the value of U (0) slightly

smaller without affecting (162), in contradiction to the definition

of the smallest it-function.

A point T shall be called a 'proper point' of U (T) when

U (T') > U (r) holds for every r >r. According to the continuity

of C7, an 'improper point' is thus either a left end point or an

inner point of a constancy interval of U. A point that does not

lie inside of such an interval is therefore either proper or a left end

point of such an interval. In the latter case, and for r > 0, the point

is certainly a right-hand limit point of proper points. According to

the continuity of U it is thus sufficient to prove the equality sign in

(162) for all proper points TO . We define a number
77 ^ by setting

and show that
77
> is impossible. As U is continuous, (165) must

hold in a sufficiently small interval (TO ,
r -f-8). This time we use

another auxiliary function

T)-Z7(T ), Tin(T ,T
h( v

{)
( 0, r not in (TO ,

T + 8).

According to 0<C7^1 we have
77
< 1. h(r) is again seen to

obey the inequalities (167). The function u, defined by (168),

belongs then again to the above class, since u satisfies (161) and

decreases nowhere (geometrical evidence). This completes the

proof of the lemma.
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16. OTHER PROPERTIES OF q (r)

The equation (96) can be immediately generalized,

Jr '

This equation can be checked by direct differentiation, taking
account of (123). There should be an additional integration con-

stant on the right. On comparing, for r = 0, with (139) we see,

however, that it has the value zero. The left-hand side of (170)

can easily be transformed by partial integration, thus yielding
00

From (157) and from Hn+l < H tl
follows the existence of the limit

I'M a ,

rJ c

thus yielding Hn{ .1 (x) =e^^ x
, where S = 8(a;)->0 as #->oo.

According to (156) we have

fl-fe /!+
Hn+i (#) > e-***- M

dp (s) > e-u+d* 8~ndp (s),

p increasing and being arbitrary, whence follows Agl. This

implies ^ _ j

From (158) we infer, furthermore, the existence of

From II
tl
- ff

/t_i = Hn
' we obtain, by differentiation of this

limit relation with respect to y, <f>' (y)
=

<f>(y). This implies, together
with <(0) = 1, <f>(y)

= ev . According to (157) and (158), we find

at the same time that

HH (r-t)>efHn (r), r>t.

Since, now, q(t) increases, we find from (170')

/oo

thus yielding efdq(t)l-qQ . ...... (171)
Jo

4-2
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Let us, in (156), make an additional hypothesis concerning the

behaviour of p (s) at 5= 1. We suppose that

'dp (s)

,

-

When p has a continuous derivative this is certainly true if

//(0)>0. This takes place, for instance, in Milne's case,

p (s)
= -Hog s. Under this hypothesis we always have

1-ft- (173)
o

It is remarkable that this general relation does not contain H or

p explicitly.

Proof of (17'3). We first show that the functions

...... (174)
o

have the properties

U*)->oo, VTTT-* 1
;

x^ ....... (
* X

)

According to H
tl ^/H tl

-> 1 as s -> oo, the second property is seen

to be a consequence of the first one. Interchanging the order of

integration wo find

/CO /GOol-M.

J5r
jl ()eifa= j dp(s),

Jo Ji l~ 5

which is infinite according to (172).

We need the inequality (c
=H (0))

J o

For t > x the left-hand side equals, indeed,

[x fx
I of J-f // -.\ Hff ^ 0X I J-j //
I o J.J. o \v Tf U/T <>. C I J-J. 3 \l

Jo Jo

For t ^ x, however, it equals

r T f
x

T

Jo
3 T T

}t
3
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The first term is smaller than cer1

,
while the second term becomes,

on substituting r = t

o

being obviously less than ef
l3 (x), which proves (174"). According

to (174") we get, on multiplying (170') by eT and integrating

through < r < x,
/*.r

|*oo

h (
x

)
-

?ok (
x

)
< (

13 (
x

) + c
}\ e'dq+l e'dq.
JO Jr

Dividing through by I3 (x) and proceeding to the limit #->oo,

leads, according to (174'), to
/QO

l-<7o^ e'
rf

<7>

Jo

whence, with respect to (171), (173) follows.

By partial integration, (173) can be transformed into

rJo (173')

Numerical remarks on Milne's case. Let us first find the value

of the constant a in the formula (97). The limit of the left-hand

side as T->OO evidently equals the limit of

"q(t)Ez (\r-t\)dt,
t

a) being an arbitrarily fixed quantity. This integral is, now,
included between the limits

J CD J 0)

Here, the integral tends to f as r->oo, whence

and according to the arbitrariness of co,

=?,.
From (97), r = 0, and from (175),

(fl^sHtooo-i. (
176

)

Furthermore, from (96), r = 0, or from (139), H = $El9
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Practical computation of a number means including it between

sufficiently narrow limits. This can sometimes be done by means

of mathematical artifices. The two relations (176), (177), to-

gether with the fact that q increases, suffice to find the value of

&, up to 1 per cent., #< ?co < r ,
...... (178)

or, in rounding off the second digit, q^ = 0-71.

We have, in fact, from (176) and (177),

fo =tfo^3-W + f>

which, according to 2E$ > E2 for r > 0, implies

q<te(l,E*-W + $ = lq + $,

i.e. the right-hand inequality of (178). On the other hand, from

Jo

Since here the integrand vanishes at t = and at t = oo, we obtain

by partial integration ^^ _ Ej < 0<

Together with (176) and (177), this implies the second inequality

of (178).

We now consider the law of darkening (101) and notice that the

second term in the parenthesis decreases with increasing 0,

< 7T/2. Milne's first approximation consists in replacing q by a

constant such that the emergent radiation gives the required net

flux irF
9
thus yielding the value f for the constant. F being a

definite average of the emergent radiation, we see that the

second term lies, for near 7r/2, below Milne's approximation f

and rises, as 9 decreases, above it. The smallest value ofthe second

term equals q =
l/\/3, while the greatest value (q, e*

1

) surpasses f .

We may add that 2 < ^ e-t) < .69 . ......
(
179

)

We have, in fact, from (177) and from E2 < e~*,

(q, e~0 = (q, er*- E2 ) + < q" + l< 0-69.
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17. PROBLEM Ib FOR PARALLEL
INCIDENT RADIATION

Parallel radiation carrying finite energy is to be considered as a

limiting case. Let

be the direction of an incident ray, and let Ao> be a solid angle of

directions containing r' . We set

O, r in Ao>,
/( ' r)

1 0, rnotinAco,

for the incident radiation. When Ao> shrinks down to the single

direction r', we speak of parallel radiation of the direction r' and

of the flux ^^
through the unit area normal to r'. On proceeding to the limit

Ao)->0, Milne's fundamental integral equation (53) becomes

5(T) = A(JB)T +
^e-"-,

s = sec0'....... (180)

We define (180) as the integral equation for parallel incident

radiation of direction r'.

According to Theorem VII, (180) has a positive solution. Let

us, in particular, consider the iV-solution, i.e. the smallest

positive solution of (180). We put

B(T) = Sga (T), ...... (181)

gs being the JV-solution of (180) for S=l.

THEOREM XII. The JV-solution of (180) can be explicitly ex-

pressed in terms of the solution f(r) = r + q (T) of Problem I a,

^- f
s J

....... (182)
o J

Proof. (182) can also be written in the form

(182')
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First we show that the function

(182")
o

solves (180) with a suitable S. From (182"),

Formula (114) is applicable, h being continuously differentiable

and satisfying h' = (r) for r large. On setting

we find from (114) and from (183),

V +p'=/-A
Hence p (r)

= const. e~*T . Now we show that in

...... (184)

a equals . It is obvious from (182') that ga (T) is a bounded func-

tion of r. The boundedness clearly implies that it is the ^-solution

of (184). Applying, now, formula (152) to (184), O = ae-*r, we find

<7* (OH t (/,e-').
Jo

If
(7, (0) is computed from (182), we obtain, according to/ = l/\/3>

a = }. This completes the proof of our theorem.

We note the special cases r 0, oo, in (182),

&,(0)=^(7,e--), flr. (oo)
= 2(7,6--), ...... (185)

thus yielding >--1, ...... (186)

(185) being expressed in terms ofthe solution7ofthe Problem la.

In particular we have the formula

^
for the ratio of the limiting temperatures.
The fundamental limit relation (56), J= B, F<X)

= F, is easily

seen to remain valid in the case of parallel incident radiation.

According to the boundedness of B (r) the right-hand integral
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represents also a bounded function of r, whence F = 0. We may
collect the above results in the

THEOREM XIII. The ^-solution B(r) = Sgs\r) of (180) corre-

sponds to vanishing net flux, F = 0, i.e. it gives the solution of the

Problem 16 (insolation problem) for parallel incident radiation of

direction r' = (IT
-

0', <'), s = sec 0'.

By partial integration we find from (182'), according to (185),

that gs (r)-gs (oo) equals

up to a positive factor. For s?g 1, we have, according to (173),

A < for all r, whereas for s > I,

"y ~) o

A(T) being an increasing function, we infer that the equation

A(r) = has at most one root. Furthermore, on differentiating

(182'), and using (173), we find that, for s ^ 1, ga (r) increases with

increasing r. Altogether we note the following behaviour of the

solution J3(r)of (180):

s^l: B(r) increases.

\/3 > s > 1 : B (r) lies first below the value B^ and then rises

above it.

s > \/3: B (r) lies entirely above B^ .

s ^ 1 (s
= 1 corresponds to normal incidence) is the only case

where B is monotonic.

Generalization. Model 16 with parallel incident radiation, and

with F = 0, mainly applies to the upper layers of a planetary

atmosphere. The hotter solar radiation will actually have a

smaller absorption coefficient than the cooler radiation of the

atmosphere. The next idealizing step would thus consist in

making the former coefficient a constant fraction n of the latter

coefficient a.
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In order to find the integral equation we must go back to the

fundamental flux equation (54). The first term on the right is the

only one that contains the radiation from outside. In this term,

therefore, r must be replaced by nr. Proceeding as before to the

limiting case of parallel radiation, we find, JB,

'e-n
'rSG<te

'

+ 2 t* BE2 (l-r)dt-2 f

*

BE2 (r-t)dt,
Jr Jo

F = const. On differentiating this relation and on dividing

through by 4, we find

B(T) = A(B)r + ~e-nT e
'.

Since this is of the same type as (180), all formulae of this section

remain unchanged, with the only difference that S is to be

replaced bynS&nd that s is now n sec 0'. We have, instead of ( 181)

and(182) ' B sec0'B (r)
= nSgngoo e> W, ^ = n*- .

18. THE EMERGENT LIGHT

It will be convenient now to introduce the new notation

r = a fV^.W*, 0(a) = or
|"V<*/(Ocft

....... (188)
Jo Jo

The emergent radiation (law of darkening) becomes then

Problem la: 7 (0, 0) = |^O (sec 0), ...... (189)

and in the case of parallel incidence,

Problem 16: /(0,0) = AST 8ee.0'(sec0). ...... (189')

From (183) we find, by partial integration,

foo /oo

e-aih'dt = a\ e-^hdt,
Jo Jo

thus yielding, again with respect to (183),

e-athdt.) \

Jo
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This gives, together with (182) and (182"), the formula

We have therefore the

THEOREM XIV. In Problem 16 for parallel radiation with the

angle of incidence 6'', the emergent radiation can be explicitly

expressed in terms of the same radiation for Problem la,

COS

In the general Problem I, with parallel incident radiation, but

with an arbitrary flux -nF ^ 0, the emergent radiation is, ofcourse,

This applies to binary stars, where the incident radiation is due

to the other component.

19. PROBLEM 16 FOR ARBITRARY
INCIDENT RADIATION

Since arbitrary incident radiation can be obtained by super-

position of parallel bundles of different directions, we should be

able to express the solution of Problem 16, for any given incident

radiation, in terms of the solution for parallel incidence. For

given incident radiation / (0, /) > 0, a solution of (53), e = 0, J= B,

is, in fact, obviously given by

)
= - f I(0,r')ga (T)d*>'

TT J_

1
/*

27T
/

^Jo Jo

27T f'2

0'd<f>' (192)

Let us show that this solution corresponds to vanishing net flux,

F= 0. We note that, for any value of r, gs (r) decreases with in-

creasing s. This is physically evident, for it means that the

temperature becomes smaller when the incident radiation is more
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oblique. Remember, in fact, that ga (r) is the iV-solution of (180),

5=1. The above assertion follows simply from the fact that the

second term on the right of (
1 80) decreases with increasing s, s ^> 1 .

We have, in particular, gs (r) g gl (r), and from (192)

.- f
77 J -

The boundedness of B(r) implies, as before, the vanishing of the

net flux.



CHAPTER III

DISCUSSION OP PROBLEMS III AND IV

20. SOLUTION OF PK013LHM III

Problem III has been analytically set up in 7. We remember

that the flux irF is constant and that the limit relation (44) holds,

in consequence of the hypotheses, that the law of scattering is

symmetric in the directions of the incident and scattered ray

(11'), and that the same amount of radiation is scattered in

opposite directions (11").

THEOREM XV. Problem III always has a solution

J(r,r) = %Ff(T 9 r), ...... (193)
with the property

/(r,r) = T + g(r,r); 0< ? <1, ...... (194)

the limits thus being independent of the law of scattering.

Under the hypothesis

y (r\ r, r') > const. >

the solution is unique.

Proof. The reasoning is essentially the same as in Problem la,

i.e. in the special case of uniform scattering, y = 1. We put

J1 (r,r)
= r; J(r,r) = T+l, ...... (195)

and denote by Il (i-,r) the respective intensities found from (47)

and (57) in setting J = e/
1 ,
J = J. On inserting these intensities

into the right-hand side of (41) we obtain the expressions

A (J^,, A(/)T>r ,

respectively.

Using the more convenient relations (99), (99'), instead of (47)

and (57), we readily find

/ / * (T + COS0, 0<7T/2,
VT>rj

"(T + cos0+|cos0|e^i
8ec

^, 0>7r/2,

, J (
(T+1+COS0, 0<7T/2,ana *

(r >
r)-

>7r/2 .

These equations imply, in particular, the important inequalities
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for all directions r = (6, <f>). Inserting this into (41) and taking into

account the relation

we obtain the important inequalities

A(/)T, r <T+l=J(T,r).

According to the positivity of the operator A, we can, now, apply
the same reasoning as in 9. On setting

we infer that J,l+1 lies above J
tl ,

but that all J
tl

lie below J. The

limit function /(r, r) is seen to satisfy the integral equation

/(r,r) = A(/)Ttr ,
...... (196)

and to lie between the indicated limits r and r-h 1.

We set J(r,r) = c/(r,r)

for the solution of J of Problem III and determine the constant

c as in 9. The intensity obviously lies between the limits

c(T + cos0)</(T,r)<c(T+l + cos0), ...... (197)

for all directions r, whence

,. I(r,r)hm - = c
Tao T

uniformly for all directions r. This gives, according to the

fundamental relation (44),

c=.fJF. ...... (198)

The proof of the uniqueness of the solution follows the same

lines as in 10. It is sufficient to repeat the main part of the proof,

i.e. to show that a solution J of (196) with the properties

JSO, lim^^O, T,^OO....... (199)
l/=oo / \

Tyy 'y)

rv being a given sequence ofnumbers tending to infinity, vanishes

identically.

According to the hypothesis made about y, and according to

(41), we have

J= flydw > const.
|/cos

2 0'dco'.
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On comparing this with (44) and (199) we get ^ = 2^ = 0. The

incident radiation (at r = 0) being zero we thus have, for r = 0,

which is possible only if the emergent radiation vanishes. Thence,

and from (99), r = 0, we infer that the Ergiebigkeit must vanish

too, q.e.d.

Remarks on the uniqueness. When the hypothesis made about

the law of scattering is abandoned, Problem III could have

several solutions. This takes place, for instance, in the easily

integrable limit case, where half the radiation is scattered back-

wards while the other half goes in. the original direction. Under

the hypothesis, however, that

holds uniformly for all directions, i.e. that the radiation becomes

isotropic at great depth, the solution is readilyfound to be unique.

For we find from (41), (44) and (194) that then

holds uniformly for all directions. As in the proof of Lemma 2,

12, we infer, from the positivity of the operator, that J^=

21. DISCUSSION OF PROBLEM IV

IN THE CASE (05)

The optical thickness r of the slab being finite, we consider the

case (65) of constant radiation I* incident at the inner face r = r*.

For the radiation coming from above we use again (99'), while

the radiation from below is given by (61), or by the more con-

venient formula

/(T*-T)SCC0
e~s J(r + acasO,r)dsi 0<7r/2....... (200)

Jo
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THEOREM XVI. Problem IV, with the boundary condition

(65), has a unique solution. The Ergiebigkeit lies between the

limits
, 1

^Tl <J(T ' r)</^r ...... (201)

the limits thus being independent of the law of scattering.

Proof. This theorem has, in the case of uniform scattering,

been proved by Schwarzschild.

The integral equation (63) of Problem IV can be written in

the form

where H(r,r)^~ e-<T
*-T>8eo(

>'yda>'....... (202)
477 J +

We set <MT,r) = /*
T^T , /(T,r) = /*-t?. .......

(
203)

In order to compute the quantities

L (J^, + K (r, r), L (J)T>r +K (r, r),

we first find, from (99') and (200), the intensities /x and / corre-

sponding to the Ergiebigkeiten Jl and */, and then insert them

into the right-hand side of (41). After some simple computations
we get

_/*_ (T + cos0 + (l-cos0)e-<
r*-r>sec

0, 0<7r/2,
y i(T '

r
)--*^-[T + cos0+

|

cos ^| e-Tisec^i
? 0>7r/2,

and

_/*_ jT+l
+ cos0-cos0e-<T*-T> 8ec

0, 0<7r/2,
(T>r) "^r-fT'{TH-l + cos0-(l-fco^0)e-T|8ec ^, 0>7r/2.

These relations imply, for all directions r, the important in-

equalities

On inserting the intensities into the right-hand integral of (41),

we obtain, according to

/cos 0'y(r; >',/) do/ = 0,



DISCUSSION OF PROBLEMS III AND IV 65

the final inequalities

r)>I*--~= J1 (T,r) ....... (204)

r)<I*=J(T,r) ....... (205)

According to the positivity of the operator Z/, we see as before

that there is a solution between the indicated limits. On setting

Jtl+l (T,r)
= L(Jn )T>r + H(r,r), ...... (206)

Jl being denned by (203), we can write (204) in the form 72 > J\
This implies L(J2)>L(Jl ) and, according to (206), n=l, 2,

J3 > J2 ,
and generally Jn+i > Jn . Furthermore, the relation

J-/,m = (/-/)

and the inequality JJ1 >0 show that generally Jn <J. The
limit function J of the functions Jn thus exists and has all the

properties indicated in Theorem XVI. J is, moreover, seen to

be the ^-solution of (63).

In the present case of a finite r*, the uniqueness is inferred by
a classical conclusion. First we note that

)^=1- A f e-TiHeofriydo/!
f

*1T J _ +TT J +
...... (207)

in particular, that

holds with <a suitable constant A. The difference D (r, r) of two

solutions of (63) satisfies the homogeneous equation D = L(D).

Denoting by M the maximum value of
|

D
\

,
we find

in particularM ^\M , which, according to A < 1, gives M = 0.

Large optical thickness. In the case of uniform scattering,

Schwarzschild recognized, that for r*->oo, model IV goes over

into model III. This holds, more generally, for any given law of

scattering, of the types (11') and (II").
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THEOREM XVII. For 7* = cr*, c being fixed, the Ergiebigkeit
J (T, r) tends towards c/(r, r) as the optical thickness r* increases

indefinitely.

The main part of the proof is to show that the Ergiebigkeit

J (T, r) tends towards a limit function as r* -> oo. We may content

ourselves with a brief sketch of the proof. From the integral

equation (63) it can be first recognized that the Ergiebigkeit is

uniformly continuous for all T*. Arzela's selection theorem then

guarantees the existence of one or several limit functions. Such

a limit function necessarily lies between CT and c (r 4- 1
)

. From (11)

and (202) we have

H (T, r) < I*e~(T*-T)= CT*e~T
*
er -> 0,

as T*->OO. On proceeding, in (63), to the limit r* = oo, along any

special sequence of numbers T*, we find that every limit function

must satisfy the integral equation of Problem III. This equation

having, however, only one solution CT for T large, the Ergiebigkeit

can have only one limit function, as r*->oo, namely c/(r, r).

22. NARROW LIMITS FOR THH SOLUTION
IN SCHVVARZSCHILD'S CASE, y=l

In the case of uniform scattering the integral equation becomes

(64), (64'), the second term on the right being (66). On setting

u becomes the solution of

u(T) = L(u)r +\Ei(T*-r)....... (208)

Let v (T) denote the solution of

V(T) = L(V)T +\ES(T*-T)....... (209)

u is then the Ergiebigkeit in the case

/*=!, ...... (208')

while v corresponds to the case

7(r*,0) = cos0; 0<7r/2. ...... (209')

On introducing, for any function, the general notation



DISCUSSION OF PROBLEMS III AND IV 67

we readily find that the operator L, given by (64), satisfies

i(0)T
= L(a))T*_T= Z(0);....... (210)

From (207), y = 1, we have, according to (49), n 2,

l = L(l)T+p;2+P2 . ...... (211)

Furthermore, we find by means of (79), (81), (82), n=l,

(208), (210), (211) imply

whence, according to the uniqueness property proved in the

preceding section, u + V=l. ...... (213)

(213) is physically obvious. For u is the Ergiebigkeit when the

radiation incident is zero at r = T* and one at T= 0. u 4- u is there-

fore the Ergiebigkeit when the radiation incident is one at both

faces, which yields (213).

From (209), (211), (212),

v J) r T*U. ...... (214)

In the sequel we make use of the

LEMMA. Il (T*, 6) < /2 (T*, 9), < ir/2, implies Jl (T) < J2 (r) for

the corresponding Ergiebigkeiten.

This follows immediately from the fact that the Ergiebigkeit
is the ^-solution of (64').

Narrow limits for u (T) can be found by comparison with the

solution of Problem la. On setting

...... (215)
o

we infer that q < q2 and that ql and q2 increase with increasing T*,

having both the limit q^ as T* -> oo. In the model la, the intensity

of the radiation coming from below is given by (100). Let us in

the case F= $ denote this intensity by 7. Since q (T) increases, we
then find from (100)

T* + q1 + cos0<I(r*,0)<T* + q2 + coae, ...... (216)

for < 7T/2. Taking / as the radiation incident at the inner face

5-2
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T= T* of model la, we first see that the corresponding Ergiebig-

keit is precisely /(T)
= T + q (T) (according to the theory of model

la). On the other hand, the Ergiebigkeit turns out to be

(r* + ql)u + v resp. (T* + q2)u+ v,

when the radiation incident at T = T* is given by the left respective

right-hand term in (216). The lemma shows therefore that, for

all r between and T*

which, for the function

/

implies the inequalities

and //< (
T* + #2) u + v "

(
T*

When, here, u and v v are expressed in terms of u by means of

(213) and (214), u is found to lie between the limits

(217 )

By means of the notation

, d = d(r*) =-, ...... (215')

we can give (217) the form

l?.W.TiiT]!zllt!^.(ll^ </*
T* + 2m (T*) 2m

(

(217')

The use of (217) requires, of course, a numerical knowledge of the

function q (r) of Problem la. The limits given in (217) are much
narrower than SchwarzschikVs limits indicated in Theorem XVI,
since q(r) is known to lie between the narrow limits 0-577 and

0-71. The factor d(r*) on the right of (217') is about 0-05 for

T*= and decreases very rapidly as r*->oo.

If, in (217), q is replaced by Milne's approximate value f ,
we

obtain Milne's approximate form of J,
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while for r* large, the true approximate expression is

In the case of uniform scattering, Theorem XVII is an evident

consequence of (217) or (217').

23. THE NET FLUX IN
SCHYVARZSCHILD'S PROBLEM

The flux constant F is not given in Schwarzschild's problem. For

astrophysical purposes it is, however, of importance to know

Ffl* as a function of r*. We shall now include this function

between narrow limits.

First we must find the analogue of the equation (54) in

Schwarzschild's model. The first term on the right must, ofcourse,

be omitted, since the radiation incident at the outer face is zero.

Instead of this term there is the analogous term for the radiation

incident at the inner face,

)
= - f

7r J +
>....... (218)

Furthermore, the upper limit of integration in (54) is to be

replaced by r*. We thus obtain Milne's flux equation

$F = {
T

J(t)Ez (t-r)dt- I* J(t)E2 (T-t)dt+lQ(r).
J T JO

...... (219)
For r= 0, T*, we have

f T
*

...... (220)
f
T

J T7f I

*
Jo

f
T* -

iJF=- JE2dt+1>Q(T*), (220')

whence F=f (J-J) E2dt+ JQ (0) + JQ (T*) (220")
Jo

Let j? resp. J" denote the flux constant in the case (208') resp.

(209'). Taking account^of (49), n = 3, 4, we note the following
combinations in those two cases:

J = u, Q = 2U3 (T*-T), F =P (221)

and J= v, Q = 2jE74 (r* T), F F' (222)
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In the present case (65) we have

F = I*F
for the net flux.

Let us, first, find the relation between F' and P. On applying

(220") to the case (222) we find, according to (214),

t-r* f

T

u
o Jo

The first integral is readily computed from (80), n = 2, while the

second one can, by means of (220), taken in the case of (221), be

expressed in terms of ff. Altogether, the simple relation

f' =l-~$ ...... (223)
is obtained.

The following remark will be of use. The inequality

Il (T* 9 6)<I2 (T*,0), 0<7T/2,

implies the inequality Fl < F2 for corresponding flux constants.

This follows from the lemma of the preceding section and from

(218), (220).

We now recall the inequality (216), where the incident radia-

tion I gives precisely the net flux F= *. Taking account of the

above remark and of (221), (222), we find therefore

If this is combined with (223), we obtain simple limits for

4 7*

By means of (215') we can write this

(224')

This approximate expression of 1/ff is, even for small T*, very
accurate. Its value for T* = turns out to be 0-95, differing only

5 per cent, from the true value !/&= 1.

In comparison hereto,we note that the right-hand side of (224')

gives 8 per cent, at T* = 0. For larger T* the accuracy is extra-
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ordinarily good. According to m-^q^ as T*->OO, we find, in

particular, from (22-4'),

^-*r*->fc-
...... (225)

If q is replaced by its Milne approximation |, we obtain Milne's

approximate formula

The accuracy is inferred from the fact that 3w(r*)/2 varies

between the narrow limits 0-95 and 1-06.



CHAPTER IV

EXPLICIT SOLUTION OF CERTAIN
INTEGRAL EQUATIONS

24. THE CHARACTERISTIC EQUATION
We shall now generally treat the integral equation

f(x)=[

a>

H(\x-y\)f(y)dy (220)
Jo

by means of Fourier integrals. The solution will be obtained in

the form of explicit integral formulae.

Concerning the kernel, we suppose that, for a certain s > 0,

H(x)esx is quadratically integrable within 0<#<oo. Without

limitation of the generality we may suppose that

I,

)
;

<1 (227)

This hypothesis is certainly fulfilled in Milne's case. Quadratic

integrability is introduced in order to apply the Plancherel

Theory of Fourier Integrals.

The solutions of the analogous equation

f+ oo

/(*)= U(\x-y\)f(y)dy ...... (226')
J -00

are of much simpler form, being aggregates of exponential func-

tions. If u* denote an n-fold root of the
'

characteristic equation'

[
J

H(\x\)e*dt, ...... (228)

the function Qn-i (
x

)
e~lt

*x

is easily seen to represent a solution of (226'), Qn_ being an

arbitrary polynomial of degree not greater than n 1. We must,

of course, be sure that all integrals involved converge. This is,

according to (227), obviously true when the real part of u lies

between the limits
i < jR (u*) < 1

We should expect that the characteristic equation plays also an
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important role in the theory of (226), and that its solutions show

the same behaviour for large x as certain solutions of (226').

We first compute the characteristic function K (u) in the im-

portant case, where H is of the form (156), with p (s) increasing.

This includes Milne's case with p = Hogs. K(U) is readily seen

to equal
(229)

In order that (227) be fulfilled, we need only suppose that

K (0)
= 2H2 (0) be finite. In Milne's case we have

K (u )
= lofr---^, (230)

the logarithm being zero for u = 0.

Under the hypothesis (227), the complex function K(U) is

certainly holomorphic in the strip

\B(u)\<l. (231)

Two obvious properties are

... (ni \ ... (7fl\ is fll\ if ( 4i\ ('")
f
l e)\

K\(A/J K yM'/j K.
\(A/J

K
^
~~

wj) \iijtj

showing that K (u) is real on the imaginary as well as on the real

axis.

(227) implies absolute integrability

\H(x)e
sx
\dx<co'} s<l,r

JO
(233)

as seen on applying Schwarz's inequality to (233), the integrand

being

By simple substitution x = x' + ir/t, K(U) = K(S + it) can be written

in the form

f +Qo r / TT \ (''+ 7)1
H(\x\)&*-H\ x+ - e

v u
J-oo L \ * / J

u)|<J^ ^(
x +

j}-H(\x\)

J -GO

whence

* dx.
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IfH is continuous, this inequality shows that

K(s + it)-*Q as |J|->oo ...... (234)

holds uniformly in every partial strip |

s
\
^a< I. Theorems of

Lebesgue, however, show that this still holds under mere measur-

ability of H. As a consequence we note that the characteristic

eqtiation can have only a finite number of roots within every

partial interval
|

s
\
^ a < 1.

More can only be said about the characteristic roots when H
satisfies special hypotheses. In the important case, for instance,

where H is positive, K(U) is found to increase from *(0) to

AC (1) ^ oo when u goes from to 1 along the real axis (or from to

1). On the imaginary axis K (u) is still real and less than K (0)

in absolute value. The characteristic equation has therefore the

double root u = when
/Q\ __ ^ (235)

two real roots of opposite sign, however, when

ic (0)< !<*(!), ...... (235')

and at least two imaginary roots when

*(0)>1. ...... (235")

Besides these it could very well have other complex roots in the

strip |

s
|

< 1 .

Let us, now, supposeH to be of the form (156) with increasing p.

In this case, there are, within
| Q(u) \

< 1, no other roots than

u = in the case of (235), than two opposite real roots in case of

(235') and than two opposite imaginary roots in the case of (235").

In Milne's case, for instance, all characteristic roots are thus

exhausted by the double root u = 0.

=
8ist\

J i
i a| 2
I

u
|

which, according to (232), shows that K can only be real on the

real or imaginary axis. Furthermore, the equation

proves that K decreases when u goes from to -f ico or to ico

along the imaginary axis. The statement about the roots of /c= 1
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is an immediate consequence ofthese facts. It may be added that,

under the condition (172), i.e. K (I)
= 00, the right-hand inequality

of (135') is automatically satisfied.

25. THE INTEGRAL FORMULAE FOR
THE SOLUTION OF (226)

We shall now construct all solutions of (226) that satisfy the

condition
f (x )

= 0(e *). a<1? ...... (236)

for x large, a being an arbitrarily fixed number less than one.

Let ul9 u2 , ..., u 2n

denote the complete set of characteristic roots within the strip

|

s
|
^ a. If necessary we enlarge a a little such that no roots lie on

the boundaries
|

s
\

= a. We set

P(u) = (u-ul)(u-u2)...(u-uin ), ...... (237)

P (u) being even and real on the real axis, and

(238)

r being holomorphic and free of zeros in the strip |

s
\
^ a. More-

over, r (u) is even and real for real u. We want r (u) in the form

T(U) = T+ (U)IT_(U), in such a way that r+ (u) is holomorphic in

the half-plane s^ a and that r+ (s + it)->l as s->-foo, while

r_(s-f it) is holomorphic for s^a and satisfies r_(s + it)-^l as

s-> oo. This obviously unique representation is, according to

Cauchy's formula, explicitly furnished by
. _/,,.\ ~i

, (230)

tl
r+P+iloa TM -i

-
. ---dv\, ...(239')

^^^J+jS-i'X) V ^ J

where /J > a is chosen such that the strip |

s
\
^ /J contains no new

roots. The logarithm logr(s + i) is the one that vanishes as

->-f oo. Observing that r(?^) is never zero, and real on the

imaginary axis, and that r (s iao) = 1, we see that r (u) is neces-

sarily positive along that axis, log r (s -f- it) vanishes therefore too,
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when -> oo. We shall later see that the integrals (239) and

(239') converge absolutely.

On setting

...... (240)
we state the

THEOREM XVIII. The integral equation (226) has precisely n

linearly independent solutions satisfying (236). They can be

expressed by means of the formulae

n-i being an arbitrary polynomial of degree less than n, and

...... (242)

COROLLARY. The solutions have, for large x, the form

f(x) = ZQ* (x) e-*** + (e-),

u* being a characteristic root within
|

s
\

< a, and Q* being a

polynomial of degree less than the multiplicity of u*.

It must be emphasized that, while (226') has precisely 2n

solutions with the property (236), (226) has only half the number

of solutions.

The abscissa of integration s in (242) can be moved without

change of the integral, provided that no pole of
</> (u)

=
(f> (s -f it),

i.e. no characteristic root is met by it. f(x) vanishes for x < 0.

Application to Milne's case. Here we have, according to (30),

,
u*-l I 1 l+*/\ /040X

T(U) = 5- 1-^-log-- ....... (243)u1
\ 2u &

1 u)

T-(U) is given by (239'), while

<(>(u)
= c

U
~^T_(u), ...... (244)u

c being an arbitrary constant of proportionality. If (242) is

considered as a Fourier integral, we find by the Fourier theorem

< (s + it)
= JL f
V27T JO
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This represents <f> (u) for all s < 0, since the integral converges and

is holoinorphic in the left half-plane. We can obtain herefrom an

explicit formula for the law of darkening in Problem la. From
the last formula, t = 0, and from (188) and (189) we get

sec0)....... (245)

The proportionality constant c in (243) remains to be determined

such that the corresponding solution /(.r) is ~x for x large. From

(101), /
(o, |j

= ^~ F, which gives, together with (245),

(s).

On the other hand, from (239') and from (244), we find that this

limit equals c. We therefore obtain the law of darkening in the

explicit form

(-sec0), ...... (246)

r_ being determined by means of (239') and (243). The integral

in (239') could be found by numerical integration.

PlanchereVs theorem on Fourier integrals. It is convenient to

state here the main theorems of the modern theory of Fourier

integrals as far as we need them in the next sections. A complex
valued function a (x) of the real variable x is called quadratically

summable (q.s.) over oo<#< -f oo if

-fee

\a(x)\
2 dx

/-fee

J-co

is finite. According to Plancherel, the Fourier transform

A(t) =~= (

^"
e+iu a(x)dx

exists then in the sense of mean convergence. A (t) is again q.s.

over oo < t < -f oo, and a (x) is conversely the Fourier transform

of A(x), i /+>
a () =-= e~ixt

A(t)dt.
V27TJ -co
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Two q.s. functions a, b and their Fourier transforms A, B
satisfy the Parseval relation

l

+

"a(x)b~(x)dx = I

*

A(x)~B(x)dx.
J 00 J 00

In particular, we have

f
+Q

|

a (x) \*dx = r |

A (x) \*dx.
J 00 J GO

The integral (242) is to be understood in the same sense of mean

convergence.

20. PRELIMINARIES

Properties of the function r(u). We know already that r(u) is

holomorphic and different from zero within |^|^j8 (/?>a).

Moreover, we know that r (u) converges to one as u goes to infinite

within that strip, r (u) being real on the real and imaginary axes,

we infer its positivity on these axes. The logarithm of r(u) con-

sidered in (139) and (139') is therefore real on both axes and tends

to zero as u goes to infinity within the strip, logr (u) is, further-

more, an even function ofu.

According to (228), K (s + it)jV27T is the Fourier transform of

the q.s. function esx H(\x\), and represents, according to Plan-

ckerel's theorem, a q.s. function of t, \s\<l. (237) and (238)

show therefore that logr (s -f it) is a q.s. function of t too. We can,

from this fact, infer the absolute convergence of the integrals

(239) and (239'). By means of Schwarz's inequality we find

cP+ i

S
Jj3-oo

This shows, moreover, that logr_ (u), being holomorphic ms</3,
is bounded in every partial half-plane s ^ /?' < /J. Similar facts

are true for log r+ (u) within the half-plane s > ft.

The functions a+ and a_ introduced by (240) have therefore

the properties

m\u\-<\o+(u)\<M\u\-; *-^+, ...(247)
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m \u\< |<7_ (u)\<M\u |; 5 g -
f
...... (247')

with suitable positive constants m, M.
We mention, finally, that the equation T = T+/T_ can, according

to (238) and (240), be written

l- K (u) = P(u)?$}

....... (248)

27. PROOF OF THEOREM XVIII

We write (246) in the form

?(*)=/(*)- r
n

H(\x-y\)f(y)dy, ...... (249)
J oo

where /(#) = 0, x<0; g(x) = Q, x>0....... (250)

For x < 0, g (x) is understood to be defined by the right-hand side

of (249). We now set

I (>
+ <*>

^ /M-co

</>(u)
= -

7==\ f(x)e**dx, y(tt)
= ^ (j(x)e*dx;

V27TJ-00 V27J-J-c
...... (251)

in other words, we consider the Fourier transforms

(regarded as functions of t) off(x) esx and g (x) e*
x

.

Since/ (x) is supposed to satisfy (236), we may state the obvious

LEMMA 1. <j>(u) is holomorphic in the half-plane s< -a, and

bounded in every partial half-plane, forinstance, ins g (a -f /?)/2.

From (249), x < 0, and from (250),

S r*\H(\x-y\)
Jo

/+
.

Jo
<corist

For any A between a and 1, we find

r
JO

whence, for # < 0, g (x)
= (e~

A
' * '

),
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A being an arbitrary number less than one. Consequently, the

Fourier transform has the following property:

LEMMA 2. y (u) is holomorphic in the half-plane s > 1 and

bounded inevery partial half-plane, for instance, in s ;> (a + /J) /2.

It is the chief point of the following considerations that the

regularity half-planes of
</>

and u have a common ordinate,

s = (a + /J)/2 . Along such a common ordinate, we have, from

(249),

) /L !

+

V %7T J - o

1 f+co /M-co-\ f(y)dy\ H(\x-y\)e"*dx
V2irJ-'*> J-oo

[*" H(\
J-oo

hence y(u) = <l>(u){l-K(u)}i s=-(a + j8)/2 ....... (252)

It is permitted to interchange the order of integration along the

common ordinate, since the double integral converges absolutely

for 5= -
(a-f- j8)/2. The identity (248) allows us to write (252) in

(253)
cr+ (u) cr_(

s = (a -f- j8)/2. Here, we know that the left-hand side is holo-

morphic for sg: (<x4-/J)/2, while the right-hand side is holo-

morphic within s ^ (a + j8)/2. Both sides thus define an entire

function of u. P(u) being a polynomial of degree 2n, we infer

from (247) and (247') that this entire function is at most of the

order of un for
|

u
\ large. According to a well-known theorem of

the theory of complex functions it is therefore a polynomial

Q (u) of degree not greater than n, whence

Q can, according to (247'), not be of degree n since </>(s + it),

being the Fourier transform of a q.s. function, is again a q.s.

function oft. It is thus proved that
<f> (u) has the form (241).

We must not forget to prove that (241) and (242) actually
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represent solutions of (228). We now start with (241) and study
the functions/^) defined by (242). (241) and (247') show that

<f>(u)
= O(\ u\~

l
) for \u\ large, in particular, that <l>(s + it) is a

q.s. function of t. Taking account of Lemma 1 and of Cauchy's

theorem, we see that the abscissa of integration in (242) may
be moved to the left without change of the integral. For any
s ^ (a -f- /J)/2, <f> (s + it) is, conversely, the Fourier transform of

/ (x) e*x . Hence and from Parseval's formula, a = b, A B,

r \f(x) \

2e*dx = f

+C

\4>(8 + it) \*dt.
J 00 J CO

The right-hand side being bounded for s ^ (a 4- /?)/2, we infer,

on proceeding to the limit 5^ 00, that f(x) vanishes for, at

least, almost all negative x (in the sense of Lebesgue). Otherwise

the left-hand side would increase indefinitely as s-> oo.

Let us, now, set
y () = ff+ ()^ () (254)

I rs+in a-f #
and

(j (x)
= _- y (u) e~

uxdu
;

s = -
.

V27TtJ-i ^

(255)

According to (247), y (u) is regular and ( \

u \~
l
)
in s ^ (a + )3)/2.

The abscissa of integration can, in (255), be placed arbitrarily

far to the right, whence we infer that g (x) vanishes for almost all

positive x.

It remains to prove that/(,x) and g(x) 9
found from (242) and

(255), satisfy (249). In other words, we have to show that, back-

wards, the relation (252), being satisfied by our
<f>
and y, implies

(249). We note that the following functions A, B are the Fourier

transforms of a, 6,

always on the ordinate 5= (<x + /?)/2. The Parseval relation

(a, 5) = (A, B) gives then, s = -
(a -f j8)/2,

/oo 1 /s+ iao

e H(\x-y\)f(y)dy= ~\ </>(u) K (u)e-^du.
JO VZTTlJs-iK

(256)



82 EXPLICIT SOLUTION OF INTEGRAL EQUATIONS

On combining this with (242) and (255), and on taking account

of (252), we see that (249) and (250), i.e. that (226) is satisfied.

The right-hand integral in (256) converges absolutely because
<f>

and K are both q.s. functions of t. Both sides in (256) represent,

therefore, bounded functions ofx. This implies, according to (226),

/<*)=<

The coefficient of the exponent is, here, greater than a. We
remember, however, that a was subjected to the only restriction

that no characteristic roots should lie on s = a. Our formulae

would, therefore, not change if a slightly smaller a be employed
and if jS also be taken smaller than the original a. There is thus

no difficulty in establishing (236).

28. PROOF OF THE ASYMPTOTIC
FOKM OF THE SOLUTIONS

According to (241), <j> (u) can have its poles only among the char-

acteristic roots. It has, however, at least (n+l) poles within

|

s
|

< a. When, in (242), the abscissa of integration s = (a 4- ]8)/2

is moved to s (a + )8)/2, the change of the integral amounts to

V27T times the sum of the residues of the integrand, contained

in the strip |

s
\

< a. Near a characteristic root u* of order k, the

integrand is of the form
a X(U~U*)

e-* h (u) Qn_, (u)ftt ! h (u*) * 0.

(U U
)

The residue &tu = u* has, therefore, the form

Q* being a polynomial of degree less than k. In the case

Qn-i(u*)^ the degree equals precisely k 1. Altogether we
obtain

f(x)=f*(*) + r(x),

where/* (x)
=

(e
a|J|

)
is a solution of (226'), and where

z)= _
\<f>(u)e-

ux
du,

V^Tfij
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the abscissa of integration now being s (a + j3)/2. For x > 0,

(226') can be written

/*(*)-A (/*),= f H(x+\y\)f*(y)dy,
J -00

A being the operator from to -f oo, given by (226). This implies,

according tof* = O(e L]xl
) and according to (233),

f*(x)-A(f*)x =0(e-* ),

for x > 0. The same holds, according to /= A (/), for the function

r(x)j
r(x)-A(r)x =0(e-*). ...... (257)

On the other hand, r (x) esx
,
s = (a -f /J)/2, is q.s., being the Fourier

transform of <f>(u), along s = (a-hj3)/2. On applying Schwarz's

inequality to A (r)x ,
the integrand being written

[H(\x-y\)e-*][r(y)ef],

we infer, therefore, that r(x) = O(e"
0ij;

), which completes the

proof of the corollary.

29. NEW PROOF OF THEOREM X

The essential hypothesis, for the validity of Theorem X, was the

positivity of the kernel, H > 0, and (119), which can be written

K(0) = 2Ta (0)
= l, ...... (258)

i.e. u = is a characteristic root, being at least double. According
to H > 0, we have, however,

(
a

Jo
...... (259)

which shows that u = is precisely double. There are no other real

roots and, according to
| K(it) \ <*(0), J^O, no imaginary roots.

Other complex roots could, however, well exist. The polynomial
P (u) of (237) can thus be written in the form

where R (u) (u %) . . . (u ^-i),

6-2
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On making, in (241), the particular choice

we find

and, for suitable c, f(x) = x + q(X> + o(l) ...... (261)

(concerning the notation see Theorem VI), since the roots of

S (u) all lie in the right half-plane s > 0, giving rise to residues

that vanish exponentially as x -> 0. At the same time it is seen

that no other choice for Qn_i leads to solutions of the form (261).

From (239'), (240) and (260),

s->oo, ...... (262)

and u*<l>(u)-+c-~-\ u->(). (263)

On the other hand, the first formula (251) is a consequence of

(242) and holds, here, for all u with s < 0,

1 f
,(5 )

= -_ f(x)e
sx dx. (264)r \ / /.. I i/\/ w ......

y i

V2iT Jo

In order to determine c, we observe that (264) implies

()->- ; ->-oc, (265)

while (261) and (264) imply
1

*
Vfa

By combination of (262), (265) and (263), (266),

. -. (266)

(267)
_

...... (267)

a_ (0) can be found from (239') and (240),

...... (268)

The abscissa of integration can, here, be moved to the left and

deformed into another path, consisting of the parts ( ioo, ip)

and (ip 9 ioo) of the imaginary axis, and of the right half of the
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circle
|

v
\ =p. The integrals along the first two pieces cancel each

other, v~l
logr(v) being an odd function. The expression inside

of the parenthesis, in (268), equals therefore

77

1 f2

2-rr J _TT

whence, on proceeding to the limit p = 0, the value

follows. From (238),

T (0) = ( l)
?l

hence

and according to (267),

It is to be noted that n 1 is always even, since the conjugate of

a characteristic root is again such a root.

Remark on qm . Computations which may be left to the reader

lead to the following value of q^ in (261),

1 f
00

(2 . K
f

(it) } ,.
SOD
=-

i/ + r rx \
dL

^Jo (I l-K(lt)}

In Milne's case this can be transformed into

_I fM-JL_ ^t-\AJkq" ""

T J o jsin
2

^ - tan ^J
^'

The evaluation gives 0-710.



CHAPTER V

OTHER PROBLEMS OF
RADIATIVE EQUILIBRIUM

30. PURE ABSORPTION. NON-GRAY MATERIAL

In this section, a few principal remarks will be made concerning

the fundamental integral equation in the case ofpurely absorbing

material with an absorption coefficient that varies with the wave-

length. In the case of thermodynamical equilibrium,

f]v
= y.vBv ,

where Bv is a given function of B,
*

...... (269)
o

with the following properties,

^>0; J3,(0) = 0; ->*>, ->oo....... (269')

Only these qualitative properties will be used in the sequel. In

order to simplify the considerations we suppose that the absorp-

tion coefficient be of the form

...... (270)

The material is again supposed to be stratified in parallel

planes. The variable r defined by

- = p (x) a (x) dx
J -00

is no more the optical depth though being convenient for the

mathematical discussion. We assume the r-thickness of the slab

to be finite, r < r*. The true optical depth of a point x, corre-

sponding to v, is

rv =\
J

writing briefly /? instead of /? (v).



OTHER PROBLEMS OF RADIATIVE EQUILIBRIUM 87

The equation of transfer is

COB 037

h fr~ lv~*v ' ...... (271)

while the equation of radiative equilibrium (19) becomes

rpvBvdv = r?vdv f Ivdw....... (272)
Jo Jo <*7T J

The net flux nF of the radiation of all frequencies is, of course,

constant. When (271) is multiplied with cos and integrated with

respect to r and v, we find

K = Fr + const.,

A'= f Kvdv ,
Kv

=~
|7 I,cos

a
0cfcu, ...... (273)

J irpv J

which represents a generalization of Eddington's relation (32),

K having, however, no immediate physical meaning in this case.

PROBLEM V. Find 7, (r, 6) and Bv (r) from (269), (271) and (272)
when the radiation incident at the surface T = is zero, while the

radiation incident at the inner face T = T* has a prescribed value

/*, independent! of the direction (0<7r/2).

We shall first find the integral equation for B(r). On inte-

grating (271),

l

f
Jo

O/J^; ^> ...... (274)
o ^

and on integrating, now, through all directions,

...... (275)
We introduce the brief notation

,)= r^E^vx)
Jo

(270)

and V(B)=pv
B

v (B)dv. ...... (277)
Jo

t This is unessential for the subsequent considerations.
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When the coefficient of absorption is a known function of depth
and frequency, O and Y are to be considered definite functions of

their arguments. From (272) and (275), we obtain the funda-

mental integral equation

(278)

where G(x)= t"pv Iv*E2 (pvx)dv, (278')
Jo

for the determination of B(r). Once (278) is solved we are able

to determine Bv
= BV {B (r)} and, from (274), Iv (r, 6).

31. DISCUSSION OF THE NON-LINEAR
INTEGRAL EQUATION

The difficulties connected with the Problem V, pointed out

already in 4, compel us to content ourselves with some qualita-

tive remarks on the solution of (278). Again, it is convenient to

introduce a brief symbol

(279)

for the non-linear integral operator within (278). (278) becomes

then
*-T)....... (280)

In the special case of gray material, /?=!, becomes the linear

operator L of Schwarzschild, while (x) simply becomes I*E% (x).

The operator has a fundamental property which may be

called 'monotonity* and which corresponds to positivity in the

linear case. Since (276) represents, according to (269'), an in-

creasing function of B,

B^r^B^r); B^ B2

imPlie8 0(Bl)T<0(B2 )T

everywhere. We also note that the function *(B) in (277) is an

increasing function of B.

THEOREM XIX. Problem V has a solution. The integral equa-
tion (278) can be solved by successive approximations.
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Proof. We first study 0(B)r in the case of a constant B(T).

For any v, Bv (T) is then constant too. We remember that O (B)

is obtained from the first term on the right of (275) by multiplica-

tion with pv and by integration through the spectrum. This term

equals, now,

^{2- JB,(j8,,T)-A\[j3r (T*-T)]} >

whence O (B)T
=T (B) - 1 {* BvBvEz (pvr)dv

Mo

,Et tfv (T*-T)]dv, ...(281)
f

in the case of a constant B. We might, together with (276),

O=O 1? introduce the functions

(* <fj

<&
fl (x,B)=\ f}y

*-H En (pvx)Bv (B)dv (276')
Jo

(281) then takes the form

From (269') we obtain the following property of the functions

$>n ,
in particular of O2 ,

O
2 (#, 7?) -> oo ;

B-+CQ.

This property shows that, for all large enough constants B,

0<x< T*, or, according to (281'), B = B, that the inequality

< r < r*, holds for all sufficiently large constants B. This proves

the convergence of the successive approximations in (278).

We set u//j? /-M n/o ^ j in.i~*_ T \
(283)

BQ (r) = 0.
VF (B) being an increasing function of B, (283) uniquely

defines a series of functions Bn (r), n 0, 1, 2, .... We obviously

haVe B1 (r)>B (r).

Supposing the inequality Bn (r}> Bn_l (r) to be true for one

particular n, we find from (283), according to the monotonity of

the operator 0,

Y {Bn+i (T)} > O(B^T+W (r*
-

r) =T (Bn (r)),
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whence Bti+1 (r) > Bn (r). Induction shows thus the general

validity of this inequality. On the other hand, from B (r) < 5,

and according to (282), Bj_ (r) < B. Continuing in this way we

generally find BH (r) < B. The limit function

is as before seen to satisfy the integral equation (278), q.e.d.

The proof of the uniqueness may be omitted.

32. REMARKS ON THE CASE OF
INFINITE OPTICAL DEPTH

Theorem I is probably generally true. We shall indicate the proof

in the present case.

According to Iv ^ 0, we find as previously
/00

/ (T 9 r)
= efiv

SQcB iv (r) + fiv secO e-P**** BU-r)Bvdt 9 (284)
Jr

iv (r)^0, for the radiation from below, 0<7r/2. According to

BV = ' / (T, r) ePv r
iv (r) ;

< 7T/2,

and according to (273),

Kv (r)> -5- I iv (r)cos
2
9da), (285)

thus yielding
f 1 f

* e$v T

K(T)> j(r,T)cos
2
0da)', j = ~

Q iv (r)dv.
J + ^ J Pv

This is readily seen to imply iv (r)
= for almost all (v, r), because,

otherwise, A" (r) would increase exponentially with increasing r,

in contradiction to (273).

PROBLEM VI. Find B and /, the incident radiation being

zero, and the flux constant F ^ being given.

The integral equation of this problem becomes, according to

the notation introduced in 31,

(286)
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It is natural to conjecture that this equation has a one-parameter

family of solutions B (T, c). In the simplest case of gray material,

/?=!, (286) becomes Milne's linear equation. In the present

general case, the connection between B and F is no longer linear.

In analogy to the linear case, we could also insert (274), T* = OO,

directly into the flux integral, whence, according to (270'),

tz {T-t, B(t)}dt (287)
o

When this equation is differentiated and account is taken of the

relations
f\

^ n+l (x, B) =-<!> (x, J3); T (B) =<D2 (0, B),

(286) is again obtained. On inserting (274), T* = oo, into (273), we
find the relation

/*

Jo
]T-$|, B(t)}dt= -T + const.,

/ v w

thus yielding _, .. 2 f*6 F =hm- 3 {|T-|,J3(0}*.
T -- 00 T J

This relation might be used in order to determine the parameter
in B (T, c), when F is given. Differentiation of this relation leads

again to (287).

33. ABSORPTION AND SCATTERING.
SCHWARZSCHILD'S INTEGRAL EQUATION

When absorption and scattering are simultaneously to be taken

into account, the determination of the radiation field becomes an

exceedingly difficult problem. It was pointed out in 4 that this

general problem leads to a complicated non-linear integral equa-

tion of B. In order to derive this equationwe must first, by means

of (16) and (16'), express the Ergiebigkeit Jv in terms of the

emission
t\v
= &.VBV . This present section is devoted to this partial

problem.
We suppose scattering to be uniform, y= 1. Since the above

problem concerns only a definite frequency v, we replace, for the

sake of clearness, the affix v by a dash. Bv
= B', <X.V

=
OL', ....
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We introduce the total optical depth

r=f%(a' +

and set A = -, ,
1 - A =

,
-

,
.

a -}-cr a +cr

In the outermost layers of the sun scattering plays the chief role,

while in the deeper layers absorption predominates,

A->1, r->0; A->0, r->oo. ...... (288)

The incident radiation being zero, we obtain, on integrating

(16) and on inserting the intensity into (16'), T) v
= v.v

B
v ,

Schwarzschild's integral equation

J>HA(r)A(J')T+ {l-A(r)}'(T) ...... (289)

for the determination of the Ergiebigkeit, A being Milne's

operator (52). Milne has shown that an equation of the type of

(289), together with (288), holds under much more general con-

ditions than under local thermodynamical equilibrium. We con-

tent ourselves with a few qualitative remarks on the solution.

In order that (289) have a positive solution, the ^-solution must

be finite. We prove that, in general, the Neumann series con-

verges.

THEOREM XX. Under the hypothesis (288), the ^-series of

(289) converges if
fi

,^ = Q ^ar
j

holds for some a < 1 .

Proof. First we study the homogeneous equation corresponding
to (289), but with a constant A = A. Since (230) represents the

characteristic function of Milne's equation/=A (/),

/ \ iK (U) log ---
v ' 2u 6 1-u

will be the characteristic function of

/(r) = AA(/)T . ...... (290)

We know that, for A = 1, ^= is the only characteristic root in

the strip |

s
\

< 1, and that, for A < 1, there are precisely two roots

in that strip, being real and of opposite sign. When u increases
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from to 1, K(U) increases from A to +00. For an arbitrarily

given positive /?< 1, we can, therefore, find a A< 1 such that ft

becomes a characteristic root. According to the theory of Chapter

iv, there exists a solution of (290), satisfying

/(r)~e^, ...... (291)

for r large. The following choice of ft is convenient for our pur-

P ses
'

a<)8<l, ...... (291')

a referring to the hypothesis of the theorem.

From (290),

...(292)

c being a constant. We observe that A = A (r) is always less than

one and tends to zero as r->oo. According to the hypothesis

made about B f

(r), and according to (291) and (291'), the first

term on the right of (292) will, for all large r, be greater than

{1 A (r)} B' (r). On the other hand we can, according to A (1) < 1,

choose c so large that, in the remaining finite r-range, the right-

hand side of (292) becomes greater than (1 A) B
f

. This choice of

c leads thus, for all r, to

/(T)>A(T)A(J)T+ {l-A(r)} JB'(r) J
...... (293)

J=f+c. /is, of course, positive when c is sufficiently large.

This proves, in the usual way, the convergence of the JV-series.

Denoting the partial sums of that series by Jn (r), JQ
= 0, we have

On subtracting this from (293),

The positivity of A implies thus Jn <J for all n and for all r.

From e/ <e/1 < J2 < the existence of the limit function /',

solving (289), is inferred, q.e.d.

It may be mentioned that the homogeneous equation resulting

from (289) has no solution (except zero) provided that A(r)->0

converges sufficiently rapidly as T->OO.
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34. MILNE'S MODEL OF A PLANETARY NEBULA
IN RADIATIVE EQUILIBRIUM

There is another problem of radiative equilibrium worth men-

tioning because of different boundary conditions. A spherical

gaseous shell is illuminated by a source of light located in the

centre of the shell. What is the distribution of light in the shell

when in radiative equilibrium? We confine our attention to the

case of purely absorbing gray material, or to the formally equi-

valent case of monochromatic radiative equilibrium. Let, for

the sake of simplicity, the shell be mfinitesimally thin, the

optical thickness T* being kept finite (see the beginning of 5),

i.e. we neglect curvature.

We introduce the same variables r and 6 as in the previous

models of a stellar atmosphere. The boundary conditions are

then as follows :

(a) There is no radiation incident on the outer face, r 0,

/(0,0) = 0; 0>7r/2.

(6) The inner face receives the normally incident parallel

radiation of the point source 0, the net flux, at T = T*, being uS.

(c) This, however, does not ex-

haust the radiation incident at the

inner face. It also receives radia-

tion emergent from other points

of the inner face. The radiation

not being weakened while travel-

ling through empty space, the

figure shows that we have

/(T*,0) = /(T*,7T-0); 6<7T/2

at the inner face.

This apparently represents a new type of boundary condition.

It might be regarded as a special case of

/(T*,0) = /(T*,7r-0) + i(0); 0<7r/2, (294)

i (0), the excess of the incident over the emergent radiation, being

given. When the finite size of the central star in O is taken into
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account, i (6) represents a finite function. The case of parallel

radiation normally incident at T = T* must, as in 17, be treated

as a limit case.f

We now derive Milne's integral equation of the problem,

under the boundary conditions (a) and (294). Schwarzschild's

fundamental integral equation of the plane model, with the

boundary condition (a), and with any radiation incident at r= r*,

was given by (64) and (64'). According to (294), the last term in

(64') splits into the summands

1 f
e-(^-T)scc0/ (T

*
)7r _0) daj+

l
f e-(T*-^* i(6)da>.^ J + Inj +

...... (295)

The radiation in the first term comes through the shell from its

outer parts,

/ (r*, 77-0) = sec P e-^-*Gce
J(t)dl; 0<77/2.

Jo

Inserting this into (295) and using (49), n=l, we obtain the

integral equation

)r +^- f e-(r*-T) scce i(e)du, ...... (296)
477 J +

...... (296')

On proceeding, as in the beginning of 17, to the limit case of

normally incident radiation i of net flux 77$, we obtain Milne's

equation o

J(r) = L*(J)T+ -e
*....... (297)

The net flux nF, being constant in the shell, is found from (294),

F = -
i(v)cos0doj.

7T J +

In the present limit case we find F = S.

j-
For a finite central star, (294) does not precisely represent the condition of

the problem, because the central star covers part of the shell. In the limit case,

the condition is, of course, exact. It will, however, be of advantage in the sequel
to consider the mathematically more general condition (294).
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It might be mentioned that the integral equation can easily

be brought into the simpler form

_ e-|T*-T|

J (T) being defined in the larger interval (0, 2r*) by reflection at

T = T*. This shows, as before, that the solution is unique and given

by the convergent JV-series. The same is, of course, true in the

more general case (290), since this equation admits ofan analogous
transformation .

The radiation emergent from the outer face is given by the

usual formula (47), r = 0. It is of interest to know how the model,

S (more generally i(6)) being given once for all, behaves as the

shell becomes more and more opaque (T*->OO). Milne's approxi-

mate formulae suggest that the distribution of light, in particular

of the emergent radiation, becomes the same as in model la,

F = 8. The mere fact that the flux F=S, in the shell, remains the

same for all T*, shows already that the shell cannot become dark

as T* -> oo. The central star is, of course, seen through the shell,

but its light is dimmed by absorption (or scattering). The greater

part of the light of the shell comes, therefore, from the shell

itself. We now give a rigorous proof of the above-mentioned fact.

THEOREM XXI. When r*->oo, the solution of (297) ap-

proaches the function 3
/S7'(r)

i.e. the Ergicbigkeit in the case la, F = S, the convergence being
uniform in every finite r-interval.

Proof. It is convenient to split the equation (297) into two

simultaneous integral equations,

(J (r)
= L (g)T + '- 6T

~T
*, (298)

L being Schwarzschild's operator (64), and
.*

(j(t)E(2T*-T-t)dt, (298')
fT

Joo

L* being the present operator (296'). We obviously have

(299)
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<7, h depend, of course, upon r* too. The physical meaning of (298)
is that (j represents the Ergiebigkeit when the radiation received

from the other portions of the inner face is neglected. Finally,

(298') is the equation of the problem, where the true boundary
condition (294) is taken account of, i (6) being identified with the

radiation emergent in the former case.

According to the symmetry property (210) of Schwarzschild's

operator, (j (r)
= g (T* T) becomes the solution of

g(T) = L(</)T+ ?e-T. ...... (300)

If in the ^-series representing g all integrals are extended up to

infinity instead of to T*, all terms obviously increase, i.e. g (T)

is smaller than the JV-solution of the same equation, but with

Milne's operator A. The latter solution has, however, in 17 been

shown to be bounded. y(r) is thus uniformly bounded for all T*.

Therefore, from (298'),

A(T)<*(/0T + *A
T

a (T*-T), ...... (301)

c> being a suitable constant.

We now make a crude comparison with model la. The theory
of model la shows that there

/ (r*, 0)
- / (T*, 77 - ) > c' cos 0,

6 < 77/2, c' being a suitable positive constant. Inserting this into

(296), J being identified with the function /(r) of Problem la,

we get f
f

*-T)....... (302)8

(301) implies that h(r) lies below the JV-series corresponding to

the last term in (301). Similarly, /(T) lies above the jV-series

corresponding to the last term in (301). From E2 < 2E3 we find,

therefore, r

A(r)<-7/(r),
c

thus yielding, altogether, an inequality

J(r)<AS
y

a(T+l), ...... (303)

a being independent of T*.
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(303) will now be used to show the uniform continuity of J (r)

*. Let us first fix an (otherwise arbitrary) interval

k. We choose r*>k and express, according to (290) and

(297), the difference

,/(T")-J(T'), OST'^T"^*,
in terms of integrals. Arranging these integrals in a convenient

way, we find

The second term is readily seen to be smaller than

efc-r* /T*_L 1\2

(T"_ T')_
e

__. VTV-
1 J r*-k 2

'

The above inequality signifies, therefore, that in an arbitrarily

given r-interval (0, k), the functions J (r) are uniformly con-

tinuous, for all r*>k+l.

According to Arzela's selection theorem, any sequence of

functions J (T,T*), taken for an arbitrary sequence of numbers

TV*->CQ, possesses a subsequence that converges uniformly in

every finite r-interval. Let J (r) be the limit function of such a

subsequence. It is on account of the uniform inequality (303),

that, in (297), the integration and limit process can be inter-

changed, thus yielding

A being Milne's operator. Theorem V shows, therefore, that J (r)

is a constant multiple of/(r). The constant of proportionality is

easily determined by means of the fact that the flux constant is

always S. On applying the auxiliary theorem of 13 to (297) and

to the relation

1 = L* (1)T+ J-#2 (r) -f \EI (2T*-r),

find 2 (
T

J (r) [E2 (r) + E2 (2r*
-

r)] dt = S ( 1 - e~^).
Jo

we
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According to (303), we may again proceed to the limit T*->OO
under the integral sign,

2 r/(T)#2 (T)=s,
Jo

thus yielding e7(r) = |/S/(r). Since, thus, all converging sub-

sequences of functions J, T*->OO, have the same limit function,
we infer that J(T,T*) converges towards the mentioned limit

function as r*->oo, the convergence being uniform in every finite

r-interval, q.e.d.

When the radiation from other portions of the inner face is

neglected, i.e. when (6) is the only boundary condition at T = T*,

the integral equation is (298), g(r) being the Ergiebigkeit. It is,

in this case, physically obvious that the shell becomes com-

pletely dark as T*->GO, i.e. that

</^0, r*->oo. ...... (304)

This can be rigorously proved as follows. Applying the auxiliary
theorem of 13 to (208) and (300), we obtain

= f

T

flr(0 2 (T*-0* = ^ <J(t) E2 (t)dt.
Jo Jo

Knowing from 22 that u< 1 and that w->0 as T*-^OO, we
infer that the last integral in this equation tends to zero as

T*->00.

In (298), the last term tends to zero as r*-^oo. As to the

integral representing L(g), we split the integrand into the two
factors

By application of Schwarz's inequality,

Joo o 2

The first factor has been shown to tend to zero as r*-oo. Ac-

cording to the boundedness of g, the second factor is less than a
constant times C

Joo

(298) shows thus that (304) is true.

7-2
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It should be emphasized that this bibliography refers only to

mathematical contributions to the problems in question, and to

the original memoirs concerning the astronomical and geophysical

applications. A comprehensive exposition of the theory of radia-

tive equilibrium and of the approximate solution ofthe problems
is given in Milne (1).

To 14. The theoretical foundations of the theory of radi-
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ative equilibrium are due to Schwarzschild (1), (2). He made the

first fundamental applications to the sun's atmosphere (law of

darkening on the sun's disk, origin of the Fraunhofer lines in the

spectrum). To the interior of a star, the theory was first applied

by Eddington. The mathematical problems arising from the

stellar interior are, however, not taken up in this tract.

It is necessary to say a few words about the customary intro-

duction of the fundamental quantities of the radiation field. The

use of several differentials ds, da, daj, dm, dr, especially in the

definition of intensity, is rather troublesome. From the point of

view of the mathematician, it lacks both rigour and beauty. The

entire subject ought to be treated anew, and the fundamental

equations be derived in a rigorous way, the main tool being the

general theory of measure (in the sense of Lebesgue-Radon).

To 5. The purely absorbing gray model was first introduced

by Schwarzschild (1), while the model of a purely scattering

atmosphere is due to Schuster. The radiation field was originally

replaced by two antiparallel streams (Schuster-Schwarzschild-

approximation). The Schuster model was rigorously set up and

treated in Schwarzschild's fundamental memoir (2) (case of

uniform scattering). Finally, the rigorous equations for the ab-

sorbing gray atmosphere were approximately solved by Milne,

who also studied the spectral distribution of the emergent light

(cf. Milne (1)).

To 7. The reduction to integral equations of boundary value

problems of the elementary theory of radiation is due to Hilbert,

who used it in his attempt to prove Kirchhoff 's laws. The funda-

mental integral equation (289) for the Ergicbigkeit, obtained from

(16) and (16') in the plane case, is due to Schwarzschild (2).

The integral equations (53) and (54) of Problems I, II have been

given by Milne (1), (2). Milne established (53) originally in a

different form, which is obtained easily by partial integration

of the integral A (J)T . On writing

C(r)= {* J(t)dt, (305)
Jo
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we find

-C(T-t) .
J4-1- e dt+ f

) r

...... (306)

The importance of the positivity of the kernels has already

been realized by Hilbert and Schwarzschild.

To 9. This method was first given in the author's paper (1).

The existence ofa solution could, of course, also be obtained from

Schwarzschild's theorem about the solution of (64'), the last

term being (66). Schwarzschild proved that the solution tends

towards a limit function as r*-oo. Since (cf. Theorem XVI)
for every T* the solution lies below r-f 1 and above r, it could

easily be seen that limit process, r*->oo, and integration can be

interchanged in Schwarzschild's integral equation. The limit

function lies thus between r and r+1 and satisfies Milne's

equation (cf. Kostitzin, Hopf (1)). In view of the central

significance of Model la, however, a direct treatment seems

preferable. The relation c = lF was independently proved by
Bronstein (1) and by the author (6). The simpler proofgiven here

is the author's.

To 10. The uniqueness was proved by the author (2).

To 11, 12. Concerning the more general equation, treated

there, see also Hopf (3).

To 14. Formula (154) for the boundary temperature was

independently proved by Bronstein (2) and by the author (6).

The common root of both proofs is the general formula (151).

This formula is equivalent with the following fact, proved by
Ambarzumian in the case of Milne's equation. The resolvent

kernel K (T, t) of the given kernel H
(\
r t

\)
satisfies the rela-

tion #(0,)=/'(J)//o- Concerning Theorem X see the author's

paper (8).

To 15, 16. The increasing of q (r) was proved by the author

;?). The equation (176) is due to Bronstein (3). The numerical

*esults show that, at least for small and large T, Eddington's
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approximation of q(r) is the most accurate one (cf. Milne (1),

Table I).

To 17. Model 16, for parallel incident radiation, was con-

sidered by Milne and Eddington. The case F = applies, according
to Milne (2), to the upper air in the earth's atmosphere, while the

case F > is realized in the case of close binary stars (reflection

effect). For the approximate solution see Milne (1).

To 21. Concerning Arzela's selection theorem, used also in

(35), see Courant-Hilbert, Methoden der Mathematischen Physik,

Berlin.

To 21-23. Theorem XVI is, in the case of uniform scat-

tering, due to Schwarzschild (2), as well as the convergence
towards a limit model, expressed in Theorem XVII. The

Schuster-Schwarzschild approximate formula is

T+l
-r* -L. 1

i.e. the mean of Schwarzschild's limits. Schwarzschild computed
the correction on replacing the integral equation by a system of

linear algebraic equations. The approximate expression for J (r),

given in (217'), can numerically be computed by using a very

good approximation of q (T), for instance Eddington's (Milne (1)),

which probably differs less than 0-5 per cent, from the true q (r).

A comprehensive account of the Schuster-Schwarzschild pro-

blem is given in Milne (1), 14.

To 24-30. The solution by means of Fourier-Laplace in-

tegrals was given by Norbert Wiener and the author. The

explicit, though very complex, formula for the law of darkening,

resulting from this theory, is of main interest in astrophysics. It

must, however, be mentioned that this method, though solving

Problem la explicitly, has but a limited applicability, as concerns

many other problems of radiative equilibrium. The comparison

methods, resting on the positivity of the kernel, furnish a simpler

and more general access to a physically satisfactory (though not

explicit) solution.
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The simpler equation (226'),

/*

= U
J

B(t)E(\r-t\)dt, ...... (307)

can be interpreted as the approximate form at great depth of

Milne's exact equation. The only characteristic roots being u =

(double), B(r) = aT-\-b is suggested to be the only solutions of the

type (236). On using (305), J = B, the above equation becomes

C"(r)= I" ?<I-0^r=4e-<*....... (307')
Jo M

This equation has been studied by Littlewood and by Hardy
and Titchmarsh. An account of their results is given in Milne

(1). The latter two authors have proved that the only continu-

ously differentiable solutions of type (236) are given by

The more general equation, obtained from (307') on replacing e~~

by an arbitrary function vanishing like an exponential function

as ->oo, has been treated by the author (4).

The proof of Theorem X, 20, was given by the author (8).

To 34. About the relation between radiation and tempera-

ture, in absence of local thermodynamical equilibrium, see Milne

(1), 19: Our A is called there 1/1 +77.

To 35. The '

planetary nebula' problem was treated in Milne

(3). Reference to the former work by Jeans and Gerasimovich

is found at the end of this paper.



LIST OF SOME FORMULAE
OF PHYSICAL INTEREST

Pure absorption. Gray material in strict radiative and local

thermodynamical equilibrium. Model In:

(T)
= TT

4=P1

{T + g (r)},
A g q (

T ) <^
77JP being the net flux, TT being the temperature at the optical

depth T.

being the surface, Te
the effective temperature.

The function
7T

< cotan <^)/sin
2

</>]!\ (
M flog[(l~(i-

exp
- -

2
- -

UJ (
77 Jo It

2 COS
- -

2
- -

2
,

- -. ,.
UJ (

77 Jo It
2 COS2

<f> + Sin2
(/>

can once for all be tabulated. The law of darkening is (see end of

25 )
7(0,0) = 1^(8600).

This holds also in the absence of local thermodynamical equili-

brium.

Model Ib: Parallel incident radiation of normal net flux 77$,

the angle of incidence being 6'. The absorption coefficient for the

incident radiation is supposed to be a constant fraction n of the

general absorption coefficient. The following formulae give the

upper and inner limiting temperature T ,
7\ ( B =

a
T* I

,

>
= ! cos 0'4>(tt sec 0')

and
n sec 0'/V3.
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