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INTRODUCTION

K. Schwarzschild’s classical work on absorption and diffusion in
the sun’s atmosphere, and the continuation of these investiga-
tions through A.S. Eddington, J. H. Jeans, E. A. Milne and others,
have rendered the theory of radiative equilibrium a definite
chapter of mathematical astrophysies. The problems connected
with this theory are of the following type. Gaseous material
filling a certain part of space is subject to given incident radia-
tion.* What is the distribution of light and of temperature in the
medium, when in radiative equilibrium? In the outer layers of
a star, where the curvature can be neglected, i.c. where the
material can be considered as stratified in parallel planes, those
problems appear in their simplest mathematical form. The
astrophysicists mostly contented themselves with an approxi-
mate solution of these problems. Owing to a certain inherent
beauty, however, they aroused also the interest of the rigorous
mathematician. It is the purpose of this tract to attempt a
coherent representation of all that has been achieved in the
direction of a rigorous treatment of those standard problems.
The rigorous solution of a physical problem naturally pre-
supposes an exact formulation of the physical assumptions im-
plied in the problem. Has then the rigorous solution more than
merely mathematical significance, when these assumptions prove
right only with a limited degree of approximation? The answer
to this question is not always in the negative. The Schuster-
Schwarzschild model of a purely scattering atmosphere, or the
Schwarzschild model of a purely absorbing gray atmosphere,
both in radiative equilibrium, represent for instance typical
standard models which play a similar role in the theory of the
stellar atmospheres as the ‘intermediate orbits’ in celestial
mechanics. The Milne model, being of special importance as a

* More generally, on the boundary the radiation satisfies given conditions.



viii INTRODUCTION

simple limit case (infinite optical depth) of Schwarzschild’s model,
may well be compared with Hill’s periodic orbit in the lunar
theory. It is well known what the detailed study of an inter-
mediate orbit mecans for the computation of the actual one.
A more detailed and rigorous treatment of the above standard
models of radiative equilibrium should thus deserve more than
mere mathematical interest.

Besides the known results (theory of Milne’s standard model,
infinitely deep slab with no radiation incident on its surface) the
reader will also find more or less detailed discussions of other
models. Milne’s model with radiation incident on the boundary
(insolation of a planetary atmosphere, reflexion cffect in close
binary stars), the Schuster-Schwarzschild model with an
arbitrary law of scattering, narrower limits for the solution of
the Schuster-Schwarzschild standard problem, Milne’s model of
a planetary nebula, and other problems.

From the mathematical point of view, the main feature of the
above models is that they are governed by integral equations,
which are linear in the standard cases (pure absorption and gray
material, pure scattering). Its important property, namely the
positivity of the kernel, has already been recognized by Schwarz-
schild as fundamental for the rigorous discussion. It may be
mentioned that the reading of the book requires no special know-
ledge of the theory of integral equations, since the positivity of
the kernel allows all problems to be treated in an elementary
way. Only Chapter 1v presupposes some knowledge of the
Fourier integral.

It is a pleasure to the author to thank Prof. Milne for many
helpful remarks and the Syndics of the University Press for
accepting this book as a Tract.

E. H.
Nov. 1, 1933



CHAPTER I
FUNDAMENTAL PRINCIPLES AND PROBLEMS

§1. TRANSMISSION OF RADTATION THROUGH
ABSORBING AND SCATTERING MATERIAL

The outer layers of a star are constantly exposed to an enormous
flow of radiant energy coming from the deep interior. In working
itself through the outer layers, a part of the radiation is absorbed
and scattered. The scattered radiation will immediately be re-
distributed in the different directions, the frequency being
unchanged. On the other hand, a particle heated up by the
absorption of radiation re-emits temperature radiation of all
frequencies.

As a first approximation, the state of matter and radiation
may be considered stationary. Therefore we must first find
the conditions for a steady state. The intensity of radiation
changesin a definite way along the ray. A part will be lost through
absorption and scattering. On the other hand, the intensity gains
again since the particles on the ray emit scattered and tempera-
ture radiation in the direction of the ray. This law of transfer holds
separately for each frequency.

Combined with the condition for a steady state the energy prin-
giple yields another equation. The net loss of radiant energy
within an element of volume (radiation of all frequencies) equals
the net gain of heat energy through conduction and convection
plus the radiant energy liberated from other (sub-atomic) sources.
Energy of the latter kind must play a réle in the interior of the
stars in order to maintain their radiation over cosmical ranges of
time.

When energy is transferred by radiation only, the net flow of
radiation through each volume element vanishes. This state of
affairs is usually called radiative equilibrium (in the strict sense).
Modern astrophysics claims the outer layers of a star to be
approximately in radiative equilibrium. In the stellar interior

HMP I



2 FUNDAMENTAL PRINCIPLES AND PROBLEMS

the energy liberated is no more negligible though being small in
comparison to the radiant energy itself. In spite of this fact it
has become customary to speak of radiative equilibrium (in the
wider sense) in this case.

For the determination of the temperature distribution, one
must know the laws relating the temperature of matter to the
radiation. When matter and radiation are in an enclosure,
Kirchhoff’s and Plank’s laws hold. In the stars, however, the
temperature varies from layer to layer, so that those laws cannot
be strictly valid. In the interior, however, the radiation is prac-
tically enclosed, and even in the outer layers those laws have
proved to be a very good approximation.

In the steady state all quantities describing the state are in-
dependent of time. The radiation field is described by the intensity
of radiation 1,(P,7)

as a function of the point £, the direction 7 and the frequency v.*
Its physical meaning is the following. Let do be an element of
surface about P with the (sensed) normal », and let dw be an
infinitesimal bundle of directions containing r (surface element
on the direction sphere). 1f we write

dg=|cos(n,r)|de ... (1)
for the projection of do upon a plane perpendicular to », the
expression I,(P,r)dgdwdv ... (2)

represents the radiant energy of the spectral interval dv which,
per unit time, flows through do and spreads out in the solid angle
dw. Here is meant, the bundle of all rays through all points of do
and in all directions contained in dw. dg is evidently the perpen-
dicular cross-section at P of the bundle. It is convenient to have
a special name for the quantity
I,(P,r)ydgdv. ... (3)

We call it the strength at P of the parallel bundle of the spectral
interval dv, of direction » and with the cross-section dg.

We set  dodv,,,=dodv[I, (P,r)cos(n,r)dw, ..... (4)

* The degree of polarization is not analysed here.
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where the integral is extended through all directions r, and where
n is a given direction. Let do be an orientated surface element
about P and with » as its positive normal. The quantity ¥, , dodv
represents then the net flux of radiant energy (of the spectral
interval dv) through de and per unit time. Energy flowing through
do from its negative towards its positive side (cos > 0) is here
reckoned positive ; negative, however, in the opposite directions
r(cos < 0). Let z, y, z be three orthogonal directions, and let us
write «, 3, y for the three direction cosines of the normal n with
respect to x, y, z. The equation

cos (n,r) =a cos (r,x) + Bcos (r,y) +ycos (r,2)
shows that we have
(&V’ n =Co8 (n7 ‘L') ’—l}v.x + cos (n" y) 81’,1{ + cos (71'7 Z) ‘i}l’,: ’

i.e. that , , is the component in the direction = of a vector ,.
This vector §,(P) is briefly called the net flux at P of the
v-radiation.

In a vector field we have the Gauss integral identity

f F, ndo = f divF,dv, ... (5)
S \ 4

where V is a volume, § its surface, and » the outward normal of
the surface element do.
For the total radiation of all frequencies we set

1=J Ldv, F= f X dv. e (6)
0 0

We now come to the quantities that describe the interaction
between matter and radiation. Let 7, (P) be the mass coefficient
of emission at I’ and within dv. The quantity

n, (PYdmdwdy L (7)

represents then the radiation emitted, per unit time, by the mass
element dm at P, within dv and within the solid angle dw. In
analogy to the above we find it convenient to call

n, (P)dmdv L. (8)



4 FUNDAMENTAL PRINCIPLES AND PROBLEMS

the strength of a parallel bundle emitted by dm within dv. For
the total emission of all frequencies we set

1,(P)=L°°m(1))dv. ...... 9)

Let, furthermore, «, (P) denote the mass coefficient of absorption
for the v-radiation at . Along a short path ds, the amount
pa, I,ds of the intensity I, is absorbed, p being the density of
matter at P. Outside of astrophysics it is more customary to
introduce the linear cocfficient of absorption, pa«, .

The mass cocfficient of scattering o, (P)is defined in an analogous
way. Scattering weakens the intensity I, by the amount po, [, ds
along ds. po, is the linear cocfficient of scattering. The radiation
lost, by scattering at P will immediately be redistributed among
the different direction ' issuing from P. This distribution is
described by a law of scattering

1
oy 7
where r denotes the direction of the incident ray. We have, of
course,

(Psrye’), (10)

fy, (Piryr)de’=d4o, L (11)
The law of scattering is supposed to have the reciprocity property

vy, (Pir, )=y, (P;2',r) ... (119
and vy (Ps—=r, 0" )=y, (LP;r,r), ... (117)

where —r denotes the direction opposite to », i.e. the same
amount of the scattered radiation is sent into r and into —r.
These conditions are fulfilled under very general assumptions
about the material. The simplest case y, =1 (uniform scattering)
has hitherto found the chief attention of the astrophysicists. It is,
however, necessary to consider more general laws too, for instance
Royleighs low o (r,#) = 2 {1+ cos2 (1)},
It is seen to fulfil (11°) and (11”’), as does also every law for which
y, is a function of | cos (r, ') |.

All quantities (except the net flux) are non-negative, I,, 7,,
%y, 0,, 7,2 0.
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§2. ABSORPTION AND SCATTERING OF THE MASS
ELEMENT. THE EQUATION OF TRANSFER

We now compute the v-radiation absorbed and scattered within
a mass element dm at a point P. For this purpose let us first con-
sider the parallel bundle of all rays through dm which have a
given direction ». 1t is convenient to imagine dm subdivided into
many thin columns of direction r. Let ds be the length, dg the
cross-section of such a column. The strength I, (P, r)dqdv of the
parallel bundle of direction r through that column, i.e. through
dg, is, in consequence of absorption within the column, weakened
by the amount pa,I,dgdvds. Since pdgds is the mass of the
column, we infer by summation over all columns that
o, I, dmdv
is the amount that the strength of the bundle considered above
loses on account of absorption within dm. By strength of that
bundle is meant here the sum of the strengths of all the above
partial bundles, once taken when entering dm, the other time
taken when leaving dm. «,I,dmdyv is the difference of these two
sums. Now, energy is obtained by directional integration of the
strength. Integration over all directions r of the above loss of
strength shows thus that the whole dv-radiation travelling
through dm per unit time loses the amount
dmdve, (P)[I,(P,")dew ... (12)
in consequence of absorption.
In the same way it is seen that the amount
dmdvo, (P)[I,(P,7)dw ... (13)
is scattered within dm. We now show how this scattered radiation
is redistributed among the different directions r’. According to
the above considerations, the radiation flowing through dm per
unit time and spreading out within a solid angle dw (containing r)

loses the amount E=dmdva, (P)I,(P,r)

through scattering within dm. This scattered amount E will be
distributed over the other directions r according to the law of
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scattering. The part falling within a cone dw’ about the direction
7’ is therefore E
—y, (Pir,r)do’.
4’”. Yy » 0y

Summation over all cones dw, i.e. integration through all incident
directions r, gives, therefore,

dmdw'dv"vg? f L(P,r)y, (Pir,r)dw ... (14)

as the part of the scattered radiation (13) which is redistributed
within the cone dw’. If we now integrate this over all directions
r’, we obtain, according to (11), again (13) as it should be.

We note for later purposes that the parallel bundle of scattered
radiation emitted by dm into the direction r has the strength (the
notation for incident and scattered ray is interchanged)

d¢,¢¢1vq”f;) f 1P,y (Pt 1) de'. e, (14)

Equation of transfer. Let us consider a light ray of direction r
through P, and let P’ be a nearby point lying in the direction r
from P, ds=PP’. We construct a thin cylinder about ds with the
two bases at P and P’, and with the cross-section dq. The strength
at I”, 1P, r)dqdv, e (15)
of the parallel bundle of direction r through dg consists then of
three different parts. Firstly, the strength at P of the same bundle
weakened by absorption and scattering in the cylinder,

{1-p(a,+0,)ds} I, (P,r)dgdv;
secondly, the strength (8) of the parallel bundle emitted by the
cylinder in direction r, with
dm =pdqds;

thirdly, the strength (14’) of the bundle of scattered radiation
gent by the cylinder into the direction r. On dividing the equation
obtained in this way through pdqdsdv, we get Schwarzschild’s
fundamental equation of transfer

1 dL(P.r) _ | )
p(x,+0,) — s = LB = L(Lr) e (16)
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together with
@t o) 1y (P =, (P)+ ) [1(Pryy, (Pir' ).
...... (167)

The derivative on the left-hand side of (16) is the directional
derivative with respect to P, taken in the direction r of the ray.
On introducing three orthogonal axes @, y, 2, = (z, ¥, z), and on

setting a=cos(r,z), B=cos(r,y), y=cos(r,z)...... (16")

for the direction cosines of », we obtain

ar o oI ol
ds=0(av+,863+‘ya‘£. ...... (l() )

The quantity J,(P,r) introduced by (16’) may, according to
Schwarzschild, be called the Ergiebigkest. 1t is an average of the

two quantities
h, 1 - | Ly, do’
o, 4w ) V' ’

having thus the dimension of an intensity. The Ergiebigkeit
depends, in general, upon the direction r. In the case of uniform
scattering (y,=1) or of isotropic radiation (the intensity is in-
dependent of ), however, it is a function of P only.

The equation of transfer is of great generality. It does not
require that radiation is the only mode of encrgy transfer, it just
refers to the part of energy appearing in the form of radiation.

§3. RADIATIVE KQUILIBRIUM.
RADTATION AND TEMPERATURE
If 47e (P) dm denote the heat energy liberated in dm, i.e. the sum,
net gain within dm of heat energy due to convection and conduc-
tion plus the radiant energy (of all frequencies) coming from sub-
atomic sources within dm per unit time, the conservation of
energy is expressed by the equation

f%,,(lo:%rf pedv, ... (17)
s v

where V is an arbitrary volume, § its surface and n the outward
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normal on 8. According to (5), integrated through the whole
spectrum, this is equivalent to the equation
div=4mpe. ... (17

Tt is of importance to realize that (17) or (17’) refers only to the
total radiation of all frequencies. Scattering has no influence
upon the wave-length; the absorbed radiation is, however,
re-emitted within other parts of the spectrum, implying, in
general, an exchange of cnergy between the different parts of the
spectrum.

Integration through all directions r of the equation of transfer
(after multiplication with p («, + 0,)) yields, according to (11), the

equation divy, =4mpn, —pa, [l ,dw, ... (18)
the scattered radiation having dropped out as it should do. On

integrating (18) through the whole spectrum we obtain, according
to (17), the fundamental relation

n(l’):;‘l?TJ‘dwf:av(P) I,(P,r)dv+e(P). ...(19)

If (19) is multiplied by 47dm, the left-hand side becomes, ac-
cording to (8), the total emission of dm, whilst the first term on
the right becomes the part of the total radiation that is absorbed
by dm. (19) means therefore that the radiation emitted minus the
radiation absorbed equals the energy liberated.

Since (18) is a consequence of the equation of transfer only,
(17") follows, conversely, from (19). (17’) and (19) are therefore
equivalent expressions of the conservation of energy.

In the case e=0, used as a first approximation in the outer
layers of a star, we speak of strict radiative equilibrium. Energy
is transferred by radiation only. It should be noted that € could
be negative as well as positive in the general case. When, for
instance, the element loses heat by convection or conduction,
subatomic energy being missing, € is negative.*

* (17°), (19) possess, of course, genoral validity, as they express the energy
principle. They are, however, of importance only when radiation is the principal

agent of energy transfer. It isin this sense that (19) is spoken of as the equation
of radiative equilibrium.
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Pure absorption. Gray material. We consider the case a,=0.
Furthermore, let us suppose that the absorption coefficient is in-
dependent of the wave-length, «,=a (gray material). This case
is of special importance because of its simplicity. The fundamental
equations (16), (16’) and (19) become, after integration through
the spectrum,

1 dI(P,r)
(P) ds

=J(P)=1(P), ... (20)

(D)
a(P)’

Monochromatic radiative equilibrium. In the case of pure scat-
tering, o,=7,=0, we know that the wave-length remains un-
changed. The scattered radiation is fully re-emitted with the
same frequency and distributed through the different directions.
This state of affairs is often called monochromatic radiative
cquilibrium. The equations of transfer (16). (16’) take. here, the

[+ 4
J(P)=%r fI(P. PNdo+ L (207

form
1 dI,(P.r) . ) >
o, (P) (lsr——r—_.l,,(].7)—1,,(]), ...... (21)
0} — 1 > end ’ B4
J"(P’))—-l—rrjl"(l )y (P r)de’. o (217)
In this case, we have, of course, according to (18),
div,=0. .. (22)

It is physically plain that the case of purely absorbing gray
material in strict radiative equilibrium is formally equivalent to
the case of monochromatic radiative equilibrium and uniform
scattering, y,=1. The absorbed radiation is uniformly re-
emitted in direction, in the same way as the scattered radiation
is uniformly redistributed in direction. The equations (20), (20),
€=0, have accordingly the same form as (21), (21’), y,=1. This
formal equivalence is of importance, since it allows us to develop
the same mathematical theory for the two physically different
cases.

Local thermodynamical equilibrium. In the case of pure
scattering, radiation has no relation to the temperature. As soon,
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however, as absorption and emission play a réle, we should have
information how the radiation is related to the temperature of
the matter.

Let B,=B,(T) be the intensity of the v-radiation of a black

body at temperature 7',

2h 13 /03
B= 2w (23)

v kT _?

where A signifies Planck’s constant, £ Boltzmann’s constant and
¢ the velocity of light. For the total radiation we have

B- [ Bdv="T4 ... (24)
s

Jo
o being Stefan’s constant.
When the radiation is enclosed between black walls, it obeys
. )
Kirchhoff’s law m=xB,. ... (25)

The condition of being enclosed is, of course, not rigorously
fulfilled in the stars, since there is always a radial net flux of
radiation. Eddington’s perfect gas star, however, has such a high
opacity that the radiation is practically enclosed, the degree of
accuracy being higher than in laboratory experiments. Astro-
physics uses the term ‘local thermodynamical equilibrium’ in
order to express that the radiation behaves like an enclosed one,
i.e. that Kirchhoff’s law holds. Even in the outer layers of a star
this state of affairs has proved to be a useful approximation.

§4. THE MAIN PROBLEM

In the physicsof the outside of a star. the following problem plays
an essential role. The radiation field, in particular the radiation
emergent from the surface and its distribution in direction and
wave-length, and the temperature distribution are to be deter-
mined when the coefficients of absorption and of scattering as
well as the law of scattering and e are given.

This problem naturally represents only a part of the general
problem of the determination of the whole physical state. The
quantities regarded as given in the above problem are not strictly
known in the stars. Actually they enter other more or less known
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physical laws (containing of course the conditions of mechanical
equilibrium) which, together with the laws of radiation, should
enable us to determine the total physical state. The excessive
difficulties, however, connected with this problem as it stands
compel us to select partial problems, of which the one formulated
above is one of the most important. Comparison with observa-
tional data of the solution of this problem, taken for different
choices of the given quantities, has led to valuable insight into
the structure of stellar atmospheres. The following compara-
tively simple special cases have hitherto found the chief attention
of astrophysicists. Firstly, the Schuster-Schwarzschild model
of a purely scattering atmosphere. Schwarzschild was the first
to approach this model with rigorous mathematical methods.
Secondly, Schwarzschild’s (formally cquivalent) model of a
purely absorbing gray atmosphere (¢ =0). The important limit
case of infinite optical depth has (by approximate methods)
been extensively treated by Milne, who also studied the spectral
distribution of the emergent light. The explanation of the law of
darkening on the sun’s disk is onc of the main successes due to the
study of those models of radiative equilibrium. Schwarzschild’s
investigations have, furthermore, led to the result that the origin
of the Fraunhofer lines in the solar spectrum is due to scattering
rather than absorption.

So far as concerns the general solution of the above problem,
the following remarks are of importance. The equation of transfer
(16) can be considered as a first order differential equation for the
intensity. On integrating it along a ray, with respect to the
boundary conditions, we obtain the intensity expressed in terms
of the Ergiebigkeit. If this is inserted into (16’), a linear integral
equation (due to Schwarzschild) is obtained for the determina-
tion of the Ergiebigkeit. In the case of pure scattering, «,=7,=0,
this equation completely determines the Ergiebigkeit. In the
photospheric layers of a star, however, absorption processes are
predominant, and the unknown emission n,=«, B, enters. The
solution of Schwarzschild’s integral equation determines, in this
case, the Ergiebigkeit, and therefore the intensity I, as a ‘func-
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tional’ of B,, for every frequency v.* Since B,=B,(B) is a
definite function of B, the intensity appears thus a definite
functional of B= B(P), i.e. of the temperature distribution. If
the intensity thus determined is inserted in the equation of radia-
tive equilibrium (19), the right-hand side becomes a definite
functional of B (P). The left-hand side

n(P)= j ", (P) B, (B (P)dv,

however, represents a definite function of the point P and of
B=B(P). We thus arrive at a definite functional—more pre-
cisely, at a non-linear integral equation for the determination of
B(P), i.e. of the distribution of temperature. Once B(P) is
known, we are able to find , and therefore /, for every frequency.

1t is difficult to solve the integral equation in its full generality,
and the limitation to simpler special cases scems necessary. If
the material is gray, i.e. if «, is independent of v, the equation
of radiative equilibrium simplifies considerably. If, however, «,
varies with v, the integral equation still remains non-linear. In
gray material without scattering we have the simplest case, since
the integral equation then becomes linear, and the determination
of B(P) appears entirely separated from the determination of
the spectral distribution, the latter being a matter of direct
integration. It should be noted, that the mathematically more
general case, where o, and o, are both independent of v, leads to
the same formal integral equation (linear) as in case o, =0. But
the spectral distribution of light must then be determined by the
solution of Schwarzschild’s integral equation.

The greater part of this tract will be devoted to the mathe-
matical problems arising from the two particular cases, pure
scattering, and pure absorption in gray material. The first case
plays, as mentioned before, a chief réle in the outermost layers
of a star, whilst the second case has found chief application to the
photospheric layers.

* This determination of J,, is possible by means of tho Neumann series for

the solution of the integral equation. Convergence and uniqueness of that
solution are treated in § 34.
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So far as concerns the boundary conditions, the radiation in-
cident at the surface of an isolated star is zero, while the radiation
at great depth becomes isotropic. In the case of a close binary
star, the radiation of the other component must be taken account
of. Or, in the case of a ‘ planetary atmosphere’ in radiative equili-
brium, the solar radiation must be eonsidered. In all these cases
the radiation incident at the surface is given. Another type of
boundary condition oecurs in Milne’s spherical model of a
‘ planetary nebula’ in radiative equilibrium. The inner face of the
shell receives not only the radiation of the central star but also
the light coming from other parts of the inner face. The boundary
condition appears here as a relation between incident and
emergent radiation.

§5. SCHWARZSCHILD’S MODELS. MATERIAL
STRATIFIED IN PARALLEL PLANES
In the atmospheres of celestial bodies the material may be con-
sidered stratified in concentric spheres. The radiation ficld having
spherical symmetry too, the intensity 1 (P, r) becomes a function
of the distance @ from the centre and of the angle 6 between the
radius vector and the direction r only, [ =/ (a,0),0 £ 0 < 7. In this
case we obtain dl ol sinf@ol
——=cosl, ——— .
ca a 00

ds
When, instead of a, 6, the variables
¢=acosl, n=asinb
are introduced, we have more simply
dl ol
ds ~o¢
Neglection of curvature. Let us consider a layer a; =2a > a, of
the star. If, the depth a, —a, being kept fixed, the radius a, tends
to infinity, we formally obtain the limit case of a plane slab.
Another way of getting this limit case is the following. We sct
a,—a

=2 -

Zo
=" x
a,—ay’ pla,+0,) al_aof( );

x, being a fixed quantity, while f(x) is a fixed function of z,
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0 <z <xy. On proceeding to the limit ay—>a,, i.e. on making the
shell thinner and thinner and making p («, + 0,) larger and larger
in the same ratio (at homologous points), we obtain, as seen from
(16) and from the above expression of d //ds, again the limit case
of a plane slab. This time the radius has been kept constant. It is
customary to neglect the curvature in the outer layers of a star,
the material being thus stratified in parallel plancs. Let x gener-
ally denote the depth of the point P below a fixed layer,  being
reckoned negative for points above that plane. The direction r is
characterized by two angles 8, ¢ (we retain the second angle ¢ in
view of later applications), 8 being the angle between r and the
direction of negative x (outward normal of the slab), 0<0 < 7.
¢ is the azimuth, i.e. the angle between the plane, containing »
and the x-axis, and a fixed plane through that axis, 0S¢ < 27.
We shall only consider the case where the radiation field is the
same in all points with the same x, [, becoming then a function
of (x, ) alone. We have

ds= —seclde, ... (26)
thus yielding gg = —Cos gg{

The Schwarzschild- Milne model. 'This is the classical case of
purely absorbing and gray material in local thermodynamical
equilibrium. Tt is convenient to introduce, instead of x, the

optical depth -
T= f apdr

below the surface. In the casc of strict radiative equilibrium, the

fundamental equations (20), (20°) take then, according to (25)

and (26), the remarkably simple form

ol (v,r)
or

and J ()= ;ﬂ J [(rr)do, e, (28)

cos I(r.0)—-J() ... (27)

where, in the case of local thermodynamical equilibrium,

>
J:Lf B,dv=B.
a 0
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If convection, conduction or subatomic energy sources are not
negligible, we must add the term e/« on the right-hand side of (28).
An important fact is that the absorption coeflicient appears only
indirectly, namely through the mediation of the new independent
variable 7. Itis to be remarked that (27), (28) determine the total
radiation field, in particular the direction distribution of the
emergent light, without any hypothesis about temperature and
its relation to the radiation. We need it. however, as soon as the
spectral distribution, or the temperature distribution, is wanted.
Let us introduce the notation

f; _f”‘m?, f _f()-n/z

for the integrals over the hemispheres of all outward and all
inward directions. We set

ol (1) =f+ I(7,r)cosbdw, =F_ (1) =f I(r,r)]|cosf|dw.

...... (29)
The equations

f o8 Hzlwzf |cosl|dw=m,
’- —~

dw=sin0dfdé,

show that I, and F_ represent averages of the intensity within
the respective hemispheres. Furthermore, we set

aF=nF,—nF_=[Icosbdw. ... (30)

following from

The flux vector { is, of course, normal to the layers, and we have,
according to (17), e=0),

&=nF=const. ... (31)
Another important relation, due to Eddington, is obtained if (27)

is multiplied by cos 6 and integrated through all directions.
According to (30) and (31) we get

K= ! fIcos‘ZOdw =Fr+const. .. ... (32)
m™

The physical meaning of K is that it equals ¢/ times the radiation
pressure normal to the layer.
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In the absence of strict radiative equilibrium, e # 0, the funda-

mental equations are ol
cosb.—=I-J, ... (33)
or
J=! fldw+-€—. ...... (34)
4 o
Instead of (31) we have ’
e (35)
dr o

and (32) must be replaced by

dK .

P k. L (36)

Another simplification of the model is effected by assuming the
slab to have infinite optical depth,
07 <o00.

This corresponds well to the conditions within a star (large
opacity in the interior). We formulate then the first standard
problem, treated approximately by Milne:

ProBrLeEM I. I(7,7)20 and B(r)=0, <00 are to be deter-
mined from (27) and (28), the radiation incident at the surface,

=0, I(0,7)20; 0>m/2,

being given, as well as the flux constant £

The incident radiation is zero for ordinary stars; positive,
however, for close binaries (or in Milne’s model of a planetary
atmosphere subject to insolation). For an ordinary star, the flux
constant is derived from the observed effective temperature 7’,.
At the surface we have F=F _, this being an average of the in-
tensity of the emergent radiation. If this were due to a black
body, the intensity would be o7'*/m, T being the surface tem-

perature. In general, o
F= x T (37)

defines the effective temperature 7',.

The relations (27) and (28) being linear in 7, J = B, the solution
of Problem I will be the sum of the solutions of two partial
problems:
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ProBLEM Ia. Problem I in the case
I,r)=0, 6>=/2, ... (38)
but for an arbitrary F = 0.

ProBLEM 1). Problem 1 in the case
F=0. ... (39)

In lack of strict radiative equilibrium, e#0, we have an
analogous problem. We confine ourselves to the case (38):

ProBrEM Il. I(7,7)20 and B(r)=0 are to be determined
from (33) and (34), the incident radiation being zero, the net flux
F, at the surface being given, and €/« being given as a function
of .

The Schuster-Schiwarzschild model. This is the case of mono-
chromatic radiative equilibrium, with e=0. The aflix v can be
omitted, the frequency being always the same. On introducing
an analogous optical depth

T.:J . podux,
the fundamental equations (21), (21’) take, according to (26),
the form

cos 6 o 27-, ) =1(r,r)=J(v,7), ... (40)
or
J(7,7) =4177f[ (r )y (m50",r)de’. ... (41)

According to (22), the monochromatic net flux is constant. It is
to be noted that Eddington’s relation (32) holds too. For multi-
plication of (40) by cos @ and integration with respect to » yiclds

K 1

iy J.l (7, r)cos Odw.

dr T

If, here, the integral is cvaluated by means of (41), the integrand

of the thus obtained r'-integral is seen to contain the factor
JeosOy(r;r,r")dw=0.

The vanishing is a consequence of (11”), i.e. of the fact that vy is

an even function on the r-sphere, cos 6 being an odd function.

HMP 2
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ProBrEM III. Case of infinite optical depth. I(r,7)=0 and
J (1,7) 20 are to be determined from (40) and (41), the incident
radiation being zero and the law of scattering y as well as the flux
constant /' being given.

ProBLEM IV. Case of finite optical depth, 0<r<+*. [ and J
are, for a given law of scattering, to be determined, when the
radiation incident at the outer face is zero and when the radiation
incident at the inner face,

I(7*,0), O<=/2,
is given,

In the case of uniform scattering, y =1, Problem I1I is formally
the same as Problem la. The case y=1 and I (7%, 6)=const.,
0 <7/2 (black body as a background), is the classical problem
treated by Schwarzschild in a fundamental memoir. Problems
1 and LV have hitherto not been discussed in full generality.
The existence and uniqueness of the solution will be discussed in
Chapter 1v. Furthermore, limits for the solution will be given
that are independent of the law of scattering. They are the same
limits which were found by Schwarzschild in the case of uniform
scattering. In this classical case, considerably narrower limits
will moreover be found.

§6. FIRST CONSEQUENCES. THE RADIATION
FROM GREAT DEPTH

We first draw some simple conclusions from the positivity of the
intensity and of the Ergiebigkeit, confining ourselves to the two
standard cases formulated in the preceding section. We suppose

that e = 0 for all sufficiently large .

(85) shows then that F () never increases, for = sufficiently large.
From (36), we have

K(T)—K(O)=f F@)yd. ... (42)
0
Since, according to I 20, K is never negative, (42) implies

jTthg —K(0). ceen(43)
0
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This proves that F =0 holds for all large enough 7, i.e. that the
net flux is outward for these 7, for the opposite assumption would,
according to the decreasing of ¥, imply that the left-hand side
of (43) tends to — oo as 7—>00. These considerations show also that

the limit Fo=lim F ()20
T=0
exists. From this fact and from (42) we obtain the important
relation 1
Fo=lim — | cos?0. (v,r)dw.  ...... (44)
7=00 T

The generality of this equation must be emphasized. In strict
radiative equilibrium, e =0, ¥ is of course the flux constant F.
(44) holds in the Schuster-Schwarzschild model too, because
Eddington’s relation was found to hold in that case.

From (35) we now get

nﬁv7=ﬂFm+4wf”2dT; Foz0. ... (45)

The second term, taken for =0,
4#] < (lT=47Tf pedz,
0o« —
represents, as it should do, the energy liberated within a normal
cylinder through the whole slab, having the unit area as its
cross-section. As a special case of (45), we note that

Fo=Fo—4 f TCdr. (45')
0 o

It is thus seen that Problem Il additively decomposes into two
partial problems, the first one being Problem II in the case
F,=0, while the second one is simply Problem Ia, F=F,.
We therefore confine our attention to

ProBLEM I1a. Problem 1I in the case
Fy=4 f <dt,
0 %
i.e. in the case where the net flux at the surface equals the energy
liberated per unit time within a cylinder of cross-section one.
The solution of the general Problem II is obtained in adding

2-2
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to the solution of Problem Ila the solution of Problem Ia with
an arbitrary F=F_,20.
On solving the equation of transfer (40) with respect to the
intensity, we get
"
e"THeel] (7' r)y=e T>c0] (7,r) —sec 0f e~treed J (¢, r)dt.
[ (46)
It may seem surprising that no boundary condition for r—o0
appears in the formulation of Problems I, IT and I11. The sup-

position, however, that / and .J be non-negative quantities,
allows us to dispense with it.

TuroreM I. We have

£
I(7,7)=sec ()f e~t=mseeld Jt p)dt; 0<6 <72,
T

i.c. the radiation coming from the deeper layers (6 <m/2) is
solely due to the Ergicbigkeit of the material within the slab.
Proof. Considering in (46) the case 0 <=/2, T<7', we infer,
according to J = 0, that, for any fixed direction r, 0 < /2,
e~7sed [ (7' r); 0<6<m/2,
decreases with increasing /. According to I 2 0 this implies the
existence of the limit
i(r)=lim e 70 [ (7' r) >0,

for 6 <=/2. We are thus allowed to proceed to the limit ' — 0
in (46),
I(r,r)=¢0 (r) +sec BJ e~U=msced J (¢ r)dw,
T

for § < m/2. The first (non-negative) term on the right-hand side
represents the radiation not due to the Ergiebigkeit of the slab.
Such radiation cannot, however, exist in the steady state. We
have from (48), according to secd = 1,

I(r,r)zemi(r)20,
thus yielding

fI (7,7)cos? fdw ;f Icos?fdw = e’j tcos?fdw.
+ +
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This is, according to the finiteness of ¥, compatible with (44)

only if
f 1cosfdw =0,
4_

i.e. if ¢ (r) vanishes for almost all directions r (in the sense of the
Lebesgue measure). Values different from zero in a set of measure
zero are, however, physically meaningless. It should be noted
that we cannot measure intensities, but only amounts of energy.
Such an amount is always represented by an integral [/dw ex-
tended through a finite cone of directions. The values of [ in a set
of directions of measure zero are here, of course, without influence.

§7. THE INTEGRAL EQUATIONS OF THE PROBLEMS
The reduction to integral equations of boundary value problems
of the theory of radiation goes back to Hilbert and Schwarzschild.

Milne’s integral equations of Problems I. I11. On setting =0
in (46) and writing 7 instead of 7" afterwards we find, for § > /2,
the radiation coming from the upper layers,

1(r,r)=e"TI>cO1 [ (0, r)+ |sect9|f e~ T -O1secOl (1) de,
0
...... (48)

When (48) and (47), J=J (7), arc inscrted into (34), a linear
integral equation for .J (7) is obtained. In order to find its kernel
we introduce, according to Schwarzschild, the functions

1
E,(x)= o f e reclsecn dw ..., (49)
-~ +
=,_1_ e—rlscu@llscc‘.’.»ng!dw_
2w )

On setting s=|secd | they appear, according to dw =sin0dfde,
in the well-known form
E, (x) =f esrgnds. L. (50)
1
Insertion of (47) and (48) into (34} yields two essential terms, the

first one being
€ ‘*“l'j e_—rlaccall(o’ r)dw,

« 47
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due to the energy liberated and to the incident radiation, while
the second term is the sum of two double integrals

l__f f sec e 7)%"’0-1({/)(”(&0
i), )

+ l_f j lsecgle~(‘r—t)lsec0|,](l)(ltdw_
47 J_ Jo
...... (51)

The integrand being measurable and non-negative, we may inter-
change the order of integration, obtaining thus, according to
(49), n=
), = f JOE(|r—t|)dt, ... (52)

for (51). The use of a brief symbol A for the linear integral operator
is convenient for the treatment of the problem. We thus obtain
Milne’s first integral equation for the determination of the
Ergiebigkeit J (t)= B (r),

J(7)=A(J)T+e:+ IAJ‘ c“”“""ll((),r)dw. «.(53)
%

A formal disadvantage of (53) is that it does not contain the net
flux #F (7). An equation containing F is, according to Milne,
obtained by inserting (47) and (48) directly into (30). According
to (49), n=2, we thus get Milne’s second integral equation

F(r)= ! f cosfe~715ect 1 [ (0, 7)dw

+°f J(t) By (t— )(lt—2fTJ(t)E2(~r—t)dt,
0
...... (54)

containing all the data given in Problems I, II. (54) goes, of
course, together with (45).

If (47), (48) are inserted into the integral (32) representing K,
we obtain, according to (49), n =3, the equation

K=:;f cosWe“"“"“I(O,r)dw-}-2wa(t) By (|7 —t])de.
- 0
...... (55)
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Since the first term on the right-hand side is not greater than
, 1
K, =;f cos201 (0,r)dw,

it follows that (44) can also be written in the form

9 o
F,=1lim EJ‘ J@)Ey(|r—t])dt. ... (56)
T ® 0

Fortheactual solution of Problems1, I1, it ismore convenient to
start from the integral equation (53) together with (56) and (45°).

TaeoreEM II. Any non-negative solution B(r) of (53), that
satisfies (56) where F, is determined by (45'), yiclds together
with (47), (48) a solution of Problem 1[I, with given energy
liberated, given incident radiation and a given surface flux
7 Iy 2 47 [pedx (integrated through the slab).

CoroLLARY L. In cascof Problem Le we must, in (53), set e =0
and 1 (0,r)=0, 8> 7,2,

CoroLLARY 2. In case of Problem I'h we must set e=0 in (53)
and F=F,=0in (56).

CoRrOLLARY 3. In case of Problem L[« we must set I(0,r)=0,
0>x/2, and F,=0 in (56).

The proof of the theorem is plain from the above.

The integral equation for Problem III. Since the incident
radiation is supposed to be zero we have from (46)

I(r,r)=]| sec@]JTe"<T"’|“°“0| J(t,r)dt; 0>m/2
0

for the radiation coming from the upper layers. From (11°), (11")
and from (41) we infer that the Ergiebigkeit is always an even
function of direction, .JJ (r, —r)=J (7,r). Let us introduce the
linear integral operator

A ('])T”=SI;TIJ-;DH (r,7;t,7") J (¢, ") dtdw’,

where H is defined by
H(r,7;t,7")=|sec | e~I7—tllsecdly (zop ), ... (59)
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for any two directions r, r’. H /8 is thus the kernel of the operator
A. Tn the simplest case of uniform scattering, y =1, this operator
reduces to the simpler Milne-operator, J being independent of
direction. For an arbitrary law of scattering, however, no
simplification is possible. The meaning of the general operator is,
that, on inserting (47) and (57) into (41), the linear integral

equation J@n)=AC),, e (60)
is obtained for the determination of the Krgiebigkeit. In analogy
to Theorem II we have in the present case

TuroreEM [TI. Any non-negative solution of (61) satisfying
(44), Fo=PF, yields together with (47) and (57) a solution of
Problem TII1.

The integral equation for Problem I'V. Since the incident radia-
tion vanishes, (57) gives the intensity for § > 7/2. The intensity

of the radiation from the deeper layers is, however, given by

>

I(r,r)=e~(*-Dsccl [ (2% 1) | se¢ 0f e -mseed J (g ) dt,

T

We define, in this case, the integral operator
L¢),, .. (62)

by replacing, in the integral in (38), the upper limit oo of integra-
tion by 7*. On inserting (57) and (61) into (41), we obtain the
linear integral equation

J(T,7')=L('I)rr'+‘ l,j a--(r*—r)sccﬁ’yl(T*’7.l)dw1
'. i "

for the determination of the Ergicbigkeit, 0 << 7%,
Schwarzschild’s integral equation for uniform scattering. Since,
in this case, J is independent of direction, the operator L (J),,

simplifies to 1 (7>
L=L(.l)r=.)J~ JOE (|r—t])dt, ...... (64)
=Jo

and the integral equation (63) becomes

J(T)=L(J).‘.+’l'f e~ (r*=msect’ [ (7% 0')du’.
im J |
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The classical case treated by Schwarzschild is

I(r*,r)=I*=const.; f<=m/2. ... (65)
In this case the second term in (64') becomes, according to (49),
n=2, simply I*B, (7% —17). e (66)
For later purposes we add the remark that in the case
I(7*%,r)y=cos0; O<=/2 ... (67)
the second term in (64') becomes, according to (49). n=3.
YHy(e* =7, L (68)

Positivity of the kernel. An obvious as well as important pro-
perty of all the integral operators introduced above is that their
kernels take only positive values. We therefore eall .\, L positive
operators. This positivity occurs in all boundary value problems
of the theory of radiation. An evident consequence of that
property is the

LEmMMA. For any function ®(f,»)20 we have A(D), >0
everywhere, unless ® vanishes identically. The vanishing is,
strictly, to be understood in the sense of the theory of the Lebesgue
measure, i.e. vanishing up to an inessential (r,7)-set of measure
Zero.

We may express the lemma also in the following form. ® >0
and ®#0 implies A(P), >0 for all =, r. Another equivalent
formulation is that R R

implies the strict inequality
AW),,>A@),, ... (69)

for all =, r. The equivalence follows from the linearity of the
operator, in particular from

A(WP)=AD)+A (Y -D).

The same thing is, of course, true for the operator L.
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§8. SOME PROPERTIES OF THE FUNCTIONS E,(x)
For the discussion of the simpler integral equations we need some
simple properties of the functions K, (2), r=0, n=0. We have
E,(x)=e""/x, while E, (x) becomes logarithmically infinite as
x->0. For n>1 all functions £, (x) are, however, continuous at
z=0. By partial integration in (30), the well-known recursion

formula wl, (X)=e"—eK, (¥) ... (70)

is obtained. We have, furthermore,

1&'“ ('l) = [ EIH-L (l) de. . (7 1)
From (50) the inequality o
]'}n -1 (‘I’.) < Igu (‘l") ...... (72)

is obtained. Let us compare the right-hand side of (70) with the
right-hand side of the equation obtained from (70) by replacing
n with n — 1. We then find, according to (72),

(n—=1)E,(x)snE, () ... (73)

for n> 1. the equality sign holding only at x=0. We note that
) 1 i

B,O0)=- "1 e (74)

If the left-hand side of (70) is combined once with (72), another
time with (73), we find
e— —I

I:+n b, (= )“.;:-T-n—l

for n 2 1. On applying Schwartz’s inequality to

o/l 8, _n-1 S, _n+1
IE,,(m):J.1 (e 278 2 )(e 278 2 )ds,

another inequality
En2 (x) < En-—l (.E) En+l (t) """" (76)

is obtained. From (71) and (76) we get

d (E,
dx( E+l)>0 ...... (77)
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For later purposes the formula
d B, (x—a)
dz B, ()
will be useful. For the proof we note that the left-hand side
equals, according to (71),
En (.E—(t) En—-l (.’E) En—l (-L'—(l)
AN {E* @ H,(x—a) } '
By means of (77), the quantity within the parenthesis is seen to
be negative.
Some simple integral formulae will, furthermore, be needed.
From (71) and (74), we have

T T*
f En (T_t)dtZE_.En»H (T)’ f En (t_7)='1'—‘1’11,1+1 (T*_’T)-
0 n n

T

<0; z>a>0 ..., (78)

...... (79)
Partial integration yields, according to (71),
T 1 |
fo LE, () dt= ptl” E,  (r)=7E, (7). ...... (80)

On combining (79) and (80) we get

T . T ’ _ _ lﬁ T
fo tlb,,(-r-—t)dt—fo (r=0) E, t)dt=E, ,(7) n+l+n
...... (81)
and
Tk KT
f tEn(t—'r)dt=f ¢+ E, () dt
T 0
1 7 B * * g *
=7;':i+h_ n+2(7 —T)—T n+1(7 _T)'



CHAPTER 11

SOLUTION OF PROBLEMS I AND II
§9. THE SOLUTION OF PROBLEM Ta

Milne’s integral equation of the Problem Lea is. according to (38)
and (53), e=0and J =B,

B(r)=A(B),. ... (83)
Physical reasoning would lead us to the conjecture that, in strict
radiative equilibrium, the radiation becomes nearly isotropic in
great depth, i.e. according to (28), that [ (7, r)' B (r)—>1as 7 —»>o0.
(44) would then show that B (7) is asymptotically linear,

F= lfcos“é)dw Jlim B (1-—-),
m

T=w T

i.e. that B(r)=3Fr for large 7. We have, indeed, the

TiuroreMm LV. Problem ILa has a solution

J(r)=B@F)=%Ff(=), ... (84)
where fsatisties Milne’s integral equation (83) and the inequalities
f@)=7+q(7); i<q@@)<l. ... (85)
1’100]' From the definition (52) of the operator A and from
(79), 7* =00, we have ; _ A(1),+ 3B, ( Y e (86)
Furthermore, from (81) and (82), n=1, +* =00,
r=A(t),—IE ( ) TS, (87)
On combining (86) and (87) we get
T+e=A(t+c),+ e, ()= Ey(r)}. ... (88)

The smallest value of ¢ that makes the second term =0 is, ac-
cording to ¥,> K, and K, ~ K, for large v. c=1. We thus get,
for all =, fr>AF.; Fa)=r+l. ... (89)
On the other hand, ¢=1} is, according to 2E;= E,, the greatest
value of ¢ making the second term <0 for all 7. We thus have

@) <A(f)ys [E@=7+} ... (90)
for all +>0.
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We now set successively

fn+1 (T)‘:I\ (fu)-r' ------ (91)
The inequality (90) has then the simple form
filr)<[fe(r), T>0. ceenne(92)

According to the positivity of the operator A, we have from (92)

A(f1).<A(fy),, 720,

or, with regard to (91), f, (v) <f;(7), 7 2 0. Successive application
of the operation A generally shows that

fn (T) <fn+1 (T)) T 0; ...... (93)
i.e. each function of the sequence f, lies above the preceding one.
From fi@)<f(@), 720,

we now have, again according to the positivity of A,

L@ =Af).<A(f),, 720
From (89) we get therefore f,(r) <f(r). If the operation A is
applied a second time, we get

fs(@)=A(f). <A (), 720,
whence, according to (89), f; (r) <f(7) follows. In the same way
we obtain the general inequality

fa@ <A <f(r), 7z0. ... (94)
(93) and (94) evidently show that the limit function

f)=1im £, (7

exists and that it lics between the limits f; =7+ and f=7+1,
720. It follows from well-known theorems that, in (91), we can
proceed to the limit » = 0o under the integral sign. f () is therefore
a solution of f=A(f) with the property (85). The smoothing
property of an integral operator shows, finally, that f(r) is a
continuous function.
On setting B (r)=cf (1),

it remains to find the relation between ¢ and the flux constant #
From f=7+q and from (81), (82), n=3, 7* =00, we find

f:f(t)Es(lf—tl)dt=§T+E5(T)+f:q(t)E3(lf—tl)dt-



30 SOLUTION OF PROBLEMS I AND I

The last term being, according to 0<g<1 and to (79), n=3,
7*=00, less than %, we infer from (56), J=cf, F,=F, that F
equals ¢, i.e. that (84) holds, q.e.d.

From f=A(f) and from (87) we infer that the remainder
function ¢ (7) satisfies the integral equation

q(r)=A(g),+3E;(x). ... (95)
Let us, now, insert (84), f=71+¢, into the second integral
equation (54), where e and the incident radiation are to be omitted.
Making use of (81), (82), n=2, 7*=00, we find that ¢ (r) also
satisfies the integral equation
f q(t) K, (t—r)dt—f q() Ey(r—t)ydt= E, (7). ...(96)
T 0
On inserting (84) finally into (55), we obtain by means of similar
computations, and according to (32), the equation

J-ooq(t) Ey(|r—t))dt=a—E (),  ...... (97)

a being a constant, the determination of which will be post-

poned.
From (22), (34) and (87) we find the temperature 7" as function
of the optical depth 7,

T\ _B(7)_.
(7",6‘) = '*1,' = Ef(‘l'). ...... (98)
Formulae (47), (57) for the intensity can be written in the form

I(T,r)=f e J (r+scosb,r)ds; O<m/2, ... (99)
0

7|secl|
I(r,r)=f e*J (r+scosl,r)ds; 60>m/2. ...(99')
0

In the present case we have I=1I(r,0) and J=J (r)=B(r). On
inserting (84), (85) into (99) we get

I(r,0)=3%F r+cosﬂ+f e‘sq(r+scosﬂ)ds:|;
0

0s6<m/2, ... (100)
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for the radiation coming from the deeper layers, in particular,
1(0,0)=21F | cos 0+J e“sq(scosﬂ)ds:] ...... (101)
0

for the radiation emerging at the surface.

It is to be emphasized that the emergent radiation is in-
dependent of the particular behaviour of o within the slab,
provided that the material is gray. Since Problem LLI for uniform
scattering formally coincides with Problem [a, we may also say
that the emergent radiation (for a given frequency) does not
depend on the course of o, (x). 1t should be repeated that (101)
also holds independent of any assumption about temperature.
In the case of the sun, (101) represents the law of darkening on
the solar disk, in good agreement with the observations.

§10. UNIQUENESS OF THE SOLUTION
The uniqueness of the solution of Problem 1 a follows from the
TrrorEM V. A non-negative solution of the integral equation
(83) is necessarily of the form B (7)=const. f(7).
Proof. Let B (1) be a non-negative solution of (83). We set
B(7)
R

b =greatest lower bound of (102)

and B*(7)= B (r)—=bf (7),

J(7) being the solution found in the preceding section. B* is then
also a solution of (83), with the properties

B*(1)20, e (103)
Gr.Lb. of l}’:f)i) —0. e (104)

All we have to prove is that B* (7) identically vanishes.

From (104) and from the definition of the greatest lower bound
we infer the existence of an infinite sequence of numbers 7,
v=1, 2, 3, ..., such that

B*(r,) _ 5
o 0. e (105)

lim
V=w
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Here, we must distinguish between two different cases, (a) the
7, have a finite limit point +*, (b) we have r,—» 0 as v— 0.
Let us first treat case («). It is always possible to pick out of
the =, a subsequence converging to v*. No generality is lost in
assuming that 7,—>7* as v—>o00. From (105) and from f(*)>0
we have lim B*(r,) =0,
V=0

whence, according to the integral equation,
limA (B*), =0
V=0

follows. As a function of =, A (B*), has the property of lower
semicontinuity, the proof of which fact may be postponed,

A (B*), 2 A(B*).

V-2
This shows with respect to (103) and according to the positivity
of A, that B*(7)=0. The lower semicontinuity is proved in the
following way. According to (103), we have, for

T* -3 <7<7*¥+9,
1™ -9 11>
A(B), 2z f B()E (r—0)dt + _;J. B(t) L, (t—7)dt,

T=2) <J7*+8

3 being a positive number less than 7*. (In case 7* =0 the first
term is to be omitted.) The left-hand side is, now, a continuous
function within (7* —3, 7* +3), the logarithmic singularity of K,
being excluded. We have therefore

1 T*—§ n
lim A(B)Tz»)J~ Bly'l(r"'——l)dt+.I)J~ BE,(t—1*)dt.

=Jo ~“JT*+d

TTH ~
Nince this inequality holds with an arbitrary 8, we find for 8§ 0,
IimA(B),2A(B)x,

T>T*
i.e. the lower semicontinuity.
Case (b). Omitting the star in B* we have, according to
f(7) ~ 7, to prove that a solution B (7) of (83) satisfying

. B
B=0, lim 2 _o 7,00, e (108)

V=0 Tv
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vanishes identically. According to B20 and to E;< E,, we

have ®
f BE,(|r—t|)dt 22A(B),=2B(7). ...... (109)
0

B(7), being a non-negative solution of (83), determines a
solution of Problem Ia. The corresponding net flux F is not
known; however, we know from §6, that necessarily # 0.
From (56), J = B, and from (108), (109) we infer that

B
F<4lim —(E) =0
vew Ty
thus yielding F=0. On inserting this value into (54), J =B,
incident radiation = zero, we find for 7=0

meU)Eﬂndh=Q

this being compatible with 8>0 only if B(r)=0, which com-
pletes the proof of the uniqueness.

b

CoroLrLarY. Every soluti(_m of (83) with a finite lower bound
has the form const. f(r
Proof. In the qolutlon B (7) + cf (t) the constant ¢ can be chosen

so large that this solution is everywhere positive. Theorem V
then completes the proof.

§11. A DIFFERENTIATION FORMULA
For*the continuation of the discussion of Problems I and LI, a
study of the more general operator

AU%EI?HQH“T-&U& ...... (110)

and of the related integral equation will be useful. We introduce
the notation =
wn=["s0rwa
0

The kernel of (110) is evidently symmetrical. The symmetry can
also be expressed by the general relation

(mw»m,(=fﬁﬂm4mmwmw
...... (111)

HMP 3
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We start with an important property of the particular operator
(110). For this purpose let us suppose, that H (z) is continuous
for & > 0 and satisfies the conditions

11(w)=0(log:i), x—>0; IH(x)=0(e7T), x—>w0.

Let & (x) be continuous for # = 0 and continuously differentiable
for x> 0. k() is, furthermore, supposed to have the properties

h' (x):()(log;}_), z-,0; kb (x)=0/(), 200,

...... (113)
with a suitable 0 < 1. Under these conditions, the formula
d‘iA (h),=A W), +hOVH () ... (114)

holds,
Proof. We have

A(h), :f H (@) h(r—1t)dt +J Hh(r+t)dt. ...... (115)
0 0
On writing S, (7) for the first integral, we find
y . — 748
Silr+9) T’:éf H(t)h(r+8—1)dt

5
f i) "(Tis"—’)f” =D ... (115)

Here, the first term obviously tends to h (0) I () as §—0. In the
second term, however, limit process and integration may be
interchanged. The proof of this follows the same line as the proof
that a Newtonian potential can be differentiated under the
integral sign, even when the moving point lies within the mass.
That the second integral in (115) may be differentiated under the
integral sign, follows from a well-known theorem, according to
which this is always permitted within a certain r-interval if the
7-derivative of the integrand lies, in absolute value, below a
fixed integrable function of £. This test applies here since, accord-
ing to (112) and (113),
| H (¢) &' (v +1) | < const. ¢f7e-1-0)




SOLUTION OF PROBLEMS I AND II 35

holds for all sufficiently large ¢, the constant being independent
of 7. Within an arbitrary finite r-interval, having =0 as an
outside point, the suppositions of the above theorem are fulfilled
because the absolute value in question is less than const. e~1-01
for large ¢ and less than const. | log¢| for small ¢.

§12. ASYMPTOTICALLY LINEAR SOLUTIONS
OF f=A(f)

Since the formula of § 11 will not be used until § 17 we abandon the
hypothesis (112) about the kernel. Let us consider the integrals

H (@) =1), Ho)= [ H, @)

We now suppose that the kernel is positive,

H@)>0, (116)
and that H@x)zaH,(x) . (117)
holds with suitable « > 0. All these assumptions are fulfilled in
the case (52), with I/ =1F,. (117) implics the existence of H,,
and automatically of all /1, .

The integral equation f@=A), e (118)
will be studied hereafter by means of Fourier integrals. [t is,
however, worth while to consider it first from the same, physically
more natural, point of view as in §10. (118) can have solutions
of various asymptotic behaviour for ~ large. Under the particular
hypothesis =% e (119)
for instance, we have the

TreEOREM VI. Under the suppositions made above about the
kernel, in particular (119), (118) possesses a solution

1
f@=7+q(), 0<q<_,
where « is taken from (117).
Proof. In Milne’s case, H=41E,, (119) is, according to
H,(0)=E,(0)/2=1}, certainly fulfilled. We first note that
f tH, (t)dt=xl, (v)+ H, 5(x). ...... (120)

£
32
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Taking account of (119), we find, after simple calculations, the

relations 1=A(1),+Hy(r) e (121)
and r=A@W),—-H;(x). ... (122)
According to (117), we obtain from (121) and (122) the in-
cqualities AE <A fi=r,

_ - - 1
and FozA@,, F=r+-.

This shows, in the same way as in § 10, that (118) has a solution
between = and 7+ 1/a, q.e.d.
From (118) and (122) we find the integral equation
¢ =A@, +Hy(r) . (123)
for the remainder function ¢ (7). We must now remember that
the above solution f (7) of (118) was found to be the limit function
of a sequence f, (7) defined by the recurrent relations

flLH(T)=A(fn)‘r’ f1=T'
On setting f,,=7+¢q,,, we find

U1 (1) =A(¢,), + Hy(7), ¢,=0,
thus yielding q(r)= T A (Hj),,
0

A" being the nth iterate of the operator A, A°(f)=f. In other
words, ¢ (7) is represented by the Neumann series of the integral
equation (123).

DEerINITION. If the solution of a linear integral equation is
represented by the Neumann series, we call it the N-solution of
that equation.

The function ¢ () of Theorem VI is accordingly the N-solution
of (123).

LeMMA 1. A nowhere negative solution of the inhomogeneous

equation d(r)=A(4),+P(7), =0 ... (124)

is always the sum of the N-solution of (124) and a nowhere nega-
tive solution of the homogeneous equation.
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Proof. From (124) we have, according to the positivity of A,
B =N (@), + A" (9), 2200 (@),.
0 0

Proceeding to the limit n=o00, we see that the existence of a
non-negative solution of (124) implies the convergence of the
N-series of (124), this series consisting of nowhere negative terms.
The lemma follows then from the inequality

¢vg§w@»

LemMa 2. A continuous solution g of (118) with the property
g/f—c, T—> 0, necessarily equals cf.

Proof. From the supposition made in the lemma we readily
infer that the function 7 (7 ()

attains either its maximum or its minimum value for a finite
value of 7, say 7*. Without loss of generality we can confine
ourselves to the case of the maximum value M. In this case we

have Mf(r)—g ()20, Mf(+*)—g(r*)=0.

The left-hand side is here a solution of (118). According to the
positivity of A, however, a non-negative solution of (118) can
only vanish somewhere if it vanishes identically. It follows at
the same time that M =c¢, q.e.d.

Let us now apply these simple results to the equation (121),
having 1 as a solution. All requirements of Lemma 1 are fulfilled
in this case. 1 is therefore nowhere smaller than the N-solution
of (121). The N-solution being continuous everywhere, the
difference is an evidently bounded and continuous solution of the
homogeneous equation (118). If this solution isidentified with the
g () of Lemma 2, f(r) being the solution of Theorem VI, we find
from that lemma that g(r) vanishes identically. 1 is therefore
the N-solution of the equation (121). We collect these facts in the

LeMMA 3. ¢ (7) of Theorem VI is the N-solution of (123). 1 is
the N-solution of (121).



38 SOLUTION OF PROBLEMS I AND II

§13. AN AUXILIARY THEOREM WITH
APPLICATION TO PROBLEM II
Let A, for a moment, be an arbitrary symmetrical operator. For
the solutions of the simultaneous integral equations

$1=A($)+D;, Po=A(dy)+Dy, ...... (125)
we find purely formally

(b1, DPa) = (1, $2) — (b1, A(2)), (e, P1) = (2> 1) — (b2, A (1)),
and according to the symmetry of A,

(1, Dy)=(5,P,).  ..ii. (126)
This formula is, of course, always correct when the integration
interval is finite and when the kernel is continuous. The proof
fails, however, in all of our cases, since here (¢,,¢,) is always
infinite. Nevertheless, formula (126) holds also for certain
singular integral equations, of course under certain restrictions.

AUXILIARY THEOREM. Let A be a positive and symmetrical
integral operator. Furthermore, let us suppose that ®,=0,
®, > 0in (125). Formula (126) then holds, if in (125) ¢, and ¢, be
the N-solutions.

Proof. The iterated operators A” are well known to be sym-
metrical once A has this property. From

Pr=ZA7(P)), $,=TA"(Dy),
we have
(@y,¢,) = E (D, A? (D,)) = L(<D1,A =(Dy, ,).
The termwise integmtlon of an infinite series of functions, applied
here, is readily seen to be justified, all terms being nowhere

negative.
We now return to the special operator (110) and prove the

TreorEM VII. The necessary and sufficient condition that,
under the suppositions (116), (117), (119),

p(r)=A($),+P(r), ®20  ...... (127)
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have a nowhere negative solution ¢, is that

(l,@):fwd)(t)dt
0
be finite.

CoroLLARY. Under the same assumptions, ® however having
any sign, (127) has always a solution if

[C1ewia
be finite. The N-scries converges absolutely.

Proof. According to (117) and to the fact that H,(z) is a
decreasing function, we have

H({t—7)2aH,(t—7)>aH,(t),
thus yielding, with respect to ¢ > 0,

f b (2) H(t—’f)dt>ocf () Hy(t)dt. ...... (128)

Furthermore, we have II (r—t) 2 «H, (r—t) and, since H, (x) lies
between positive limits within (0, 7),

f é(t)H (r—1) dt>constf é (t) H, (t)dt, ...... (129)

the constant being positive and depending continuously upon .
A (¢), must, now, be finite for some values of . Hence, and from
(128), (129), we may infer that (¢, H,) is finite. According to
Lemma 1 this holds a fortiori, if ¢ is replaced by the N-solution
of (127). On applying the auxiliary theorem to the two equations
(121) and (127) and on taking account of Lemma 3, we find that
D)= (¢, H,) < 0.
The condition is sufficient. On setting

¢Aﬂ=%A%®%

we infer from the symmetry of A’ and from (121) that
($n, Hy) =Z (A” (D), Hy) =Z (P, A* (H,))
= (¢, ZA¥ (Hy)) 2(®, 1),



40 SOLUTION OF PROBLEMS I AND II

proving thus that (¢,, H,) lies below a finite limit independent
of n. The fact that ¢, form an increasing set of functions

¢ Zbpi1, n=1,23,...
implies the existence of the limit function ¢ (7)=lim ¢, (), and
we infer that (¢’ HZ) =lim (95,, , 112)
is a finite quantity. At the same time we readily infer that
(¢, Hy)=(®,1).

The corollary simply follows from the theorem, since an
absolutely integrable function ® () can be written in the form
P, —d,, ®, and P, being both non-negative and integrable.

Application to Problem II. Milne’s integral equation (53) is in
the case of Problem II, J = B,

B(-r)-—-A(B),+§. ...... (130)

Supposing that everywhere € 2 0, we find from Theorem VTII that
the necessary and sufficient condition that (130) have a non-
negative solution is, that

Pe
4 -dt, ..
Trfo ad, (131)

i.e. the energy liberated per unit time in a normal column of
cross-section one, be finite. We prove, furthermore, the

TaeoreM VIIL. Suppose that € > 0 everywhere. The necessary
and sufficient condition that Problem ITa has a solution is that
(131) be finite. The uniquely determined solution is given by the
N-solution of (130).

Proof. Only the assertion concerning the N-solution of (130)
needs to be proved. We remember that Problem ITa is the special
case of Problem II where the surface flux 7 F, satisfies

It is therefore to be proved that the N-solution B(r) of (130)
automatically satisfies (132). From (51), 7=0, J=B, taken
without incident radiation, we find

F,=2(B, E,).
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Bbeing the N-solution of (130), we get from the auxiliary theorem,
applied to (121) and (130),

(¢,H2)=A<B,E2)=<1,®)=(1, ;),

which completes the proof of (132). For any other non-negative
solution B of (130), however, the left-hand side of (132) would
be greater than the right-hand side,

F0>4f°°fdt. ...... (133)
0 x

In order to obtain the solution of the general Problem 1I, we must
remember formula (45'). giving Fo, when F is given.

TrEOREM IX. Suppose that € > 0 everywhere. The solution of
Problem II is uniquely determined by

B(r)=B(r)+1Fxf(7),
F, being determined from (45’), B being the N-solution of (130),
and f (=) being the function of Theorem 1V.

The uniqueness of the solution follows easily from the fact that
any non-negative solution of (130) is the sum of the N-solution
of (130) and a non-negative solution of the homogeneous equa-
tion, the latter being characterized by Theorem V. If 7F denotes
the flux in Problem ITa, we have

F.=F +F,, F,=4f ;dt, F,z0....... (134)

If the assumption €= 0 (everywhere) is abandoned, similar
theorems hold. But we have then to formulate the general con-
ditions under which the solution becomes non-negative as
required in the physical problem.

§14. OTHER APPLICATIONS.
THE BOUNDARY TEMPERATURE

flr+8)—f(7)
8 b
where f (7) is the solution of (118) mentioned in Theorem VI, and

1 f7+8
GS(T)=§fT H(@)f(r+5-=t)dt, ...... (136)

We set gs(t)=
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3 being a positive number. From the integral equation (118) and
from the identity (115), we find

Js (T)=A(gs).r+ G,s (. e (137)
Proceeding to the limit 8 - 0 we get, purely formally, the integral
equation for the derivative f’ (7). However, as we do not know if
this derivative exists, we had better use (137) as it stands.
In order to prove that gs is the N-solution of (137), we first

note that n
gs(t)= 203 A (Gs), + A" (gs), . e (138)

Keeping 3 fixed we infer from Theorem VI that g5 (7) is a bounded
function of 7, | g5 | < C, whence

[ ArH(gs), | < CA™H1 (1),
According to Lemma 3, we have
Ar1(1)=} 5 A*(By),
n+1

showing thus that the remainder in (138) tends to zero as n— 0.
¢s () is therefore the N-solution of (137).

TaeorEM X. The value of the solution f(r) of (118), given in
Theorem VI, is determined by a simple formula,

fo=V2I, (V).
Proof. Applying the auxiliary theorem of §13 to (121) and

(123), we obtain (0 gy (1, H)=H,(0). ... (139)
Since, by partial integration, (¢, H,)=H, (0), we find altogether,
according to f=7+q, (¢ jry_2H, 0. ... (139

Since, furthermore, g5 is the N-solution of (137), the auxiliary
theorem can be applied to (123) and (137), yielding thus

(4, Gs) = (g5, Hj). cieenn(140)
On the other hand, we find by means of (135)
1 (? © o Hy(t—8)— Hy(t
st~ [ O mwars [T 10,

The fraction in the second integral lies between the limits
112 (1_8)’ H2 (t)
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because H,= — H,' is a decreasing function. We may therefore
proceed to the limit under the integral sign, finding thus
hm (95, H3)= —foH3 (0)+(f, H,).  ...... (141)

Furthermore, we have from (136)
lnn Gs(7)=fo H (7).

On inserting the right-hfmd integral in (136) into the left-hand
side of (140) it is seen without difficulty that we may proceed to
the limit >0 under the integral sign on the left-hand side of

(140). lim (g, Gs)=fo(@: H). oo (142)
Finally, we have from (123), 7=0, according to go=J;,
fo=(g. ) +1,0). ... (143)
Combination of (140), (141), (142) and (143) leads to
Jo? =/, Hy),

whence, according to (139’), the required formula follows.

LemmA 4. Let H (x)/H,(x) be bounded for x large enough.
Under the condition (112), the solution f(r) of (118) has then a
positive derivative f'(r), being the N- solutlon of the integral

equation F@=Af)+fH ). (144)

Proof. First we note that this applies to Milne’s case, H=1#,,
since H,/l,—1 as x > 0. Since the lemma is only needed for the
proof of Theorem XI we shall content ourselves with brief in-
dications of the rather lengthy proof. The main part of the proof
consists in establishing an inequality for the N-solution of the
integral equation

g(r)=Ag),.+fH(=). ... (145)
The proof is complicated by the possibility of an infinite H (0)
(this is just the case with Milne’s equation). It is therefore con-
venient to split A (+) into two parts

foH=0,+0,, ... (146)

where ¢l_{f0H O<r<a, (147)

TZd.
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®, (7) is zero for small 7 and coincides with fyH () for large .
We consider then the two equations
$1=A($)+ Dy, $y=A(P)+ Dy ...... (148)

separately. According to the supposition made in the lemma we
have ®@, (v) < const. H, (7) for all 7. The N-solution of the second
equation exists therefore as seen by comparing it with the
equation (121). At the same time we find

0 < ¢, (7) < const.
for all 7. As to the first equation, we begin with considering the
expression z
A (@1)T=J0 H(r—-t)H (t)dt, >a.

We note that A (®,) is a continuous function of r. This holds,
according to (112), also at 7=0. For r large we find, according to
the hypothesis made, and since H, decreases,

A (®,), < const,. qu (r—t)H (t)dt < const. I, (r —a), ...(149)
0

the constant being independent of a. Now we have, for = large,

Hz(r—a)—112(7)=fr 1t

T-a

T
< const.f H,dt<a.const. Hy(r—a).
T—Q

Since here the constant is again independent of @, we may choose
once for all @ so small that a.const < 1. For this value of a, we

find then H, (r—a) < 2H, (7),
thus yielding, with respect to (149),
A (D)), <const. H, (1)

for = large. The left-hand side being continuous for all 7, we can
choose here the constant such that the inequality holds for all
72 0. Comparing again with (121), we find that the N-series

A (@),

converges for all . On adding here the term » =0, namely @, , we
obtain the complete N-solution ¢, of the first equation (148).
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Altogether we see that the N-solution g () of (145) satisfies an
inequality g (r) < H () +const.
From (137) and (145) we now find
gs—9=A(gs—9) +(Gs—fo H).
The second term on the right is casily seen to have the following

properties as 0. Itis O (log ;) for all small =, uniformly with

respect to 8, while Gs (r)—foH (r)

Hy(7)
tends to zero uniformly for all r = 74, 7, being an arbitrary number
greater than zero. A similar splitting leads then to the result that
g is the limit of g5, i.e. that g (v) =f’ (r). At the same time we find

an inequality f(r)<H(r)+const. ... (150)
The above considerations show that f’ is the N-solution of (144).

THEOREM XI. Suppose that ®(r) is continuous at 7=0.
Under the hypothesis made in Lemma 4, the N-solution of the
integral equation (127) has, at =0, the value

1

¢o=d)o+‘*f“(f',¢’)- ...... (151)
0

Proof. Since, under the stricter hypothesis about H made in
Lemma 4, the derivative f’(r) exists, we can dispense with the
complicated formulae (135), (136), (137) and apply the auxiliary
theorem of § 13 directly to (127) and (144), getting thus

@.f)=fo (6 H).
From (127), r=0, we find (¢, H) =, —D,, whence (151) follows.
The reader will notice that (151) can also be written in the form
of a Stieltjes-integral

1 n
$o= 7 fo f@edaoe). ... (152)

It is, of course, easy to obtain Theorem X from (152). Applica-
tion to (123) yields, according to g,=f,,

fi== [ ars=(s 1),
which together with (139°) proves the theorem.
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Application to the boundary temperature in Problems I and I1I.
In the case of Problem Ia we have
2H,(0)= E(0)=1},
1

yielding thus Jo= v (153)
for the solution mentioned in Theorem IV. According to (84) we
therefore got B, =\/43 F. Joeen(154)
Under local thermodynamical equilibrium we thus find, according
to (98), the value Te \/_; I

for the surface temperature of model Ia, independent of the
variation of the absorption coefficient within the slab.

Let us, now, find a formula for the boundary temperature of
the model Ila. In order to apply Theorem IX we first suppose
that €20 everywhere We find for the N-solution B () of (130)

By- f b=t f  dt+ - fwe- ‘dt.
o %0 f i «’ f i f 0Jo & 1
According to (132) and (153), the first term on the right equals

35
\/4‘.1'0.

From Theorem IX we therefore obtain, onaccountof ¥ ;= Fo +F,,

B,=S R ﬁ‘0+v3f ‘qdt, .. (155)

10
for the determination of the surface temperature of model II.
It should be noticed that (155) holds also in the general case,

€20, provided that
" el gy
fo 7dt— |e|pdx,

integrated through the slab, is finite. In the next section we shall
prove that q(r) increases with increasing . Anticipating this
result, we infer from (155) that, in the case € 2 0 everywhere, the
boundary temperature is greater than in strict radiative equili-
brium, ¢ =0, the surface flux = F, being prescribed.
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This minimal property of the boundary temperature in the
case of strict radiative equilibrium implies, conversely, the in-
creasing of the remainder function ¢ (). Otherwise the energy
liberated could evidently be distributed in such a way that that
property becomes violated.

§15. PROOF THAT q (r) INCREASES

Let us, for a moment, reconsider the hypotheses made in the
general case treated in §§ 11-14. The hypothesis (112) concerning
the behaviour of H () for small x was only required for the proof
of formula (114), of Lemma 4 and of Theorem XI (existence of
F ().

For the proof of the Theorems VI-X we needed, however, only
the suppositions stated in (116), (117) and (119), the latter being
of particular importance because it is responsible for the asymp-
totically linear character of the solution.

Let us, now, throughout this section, suppose that H (x) is of
the form

H(z)= f eedp(s), ... (156)
1
p (8) increasing with increasing s. (119) is satisfied if and only if
“dp(s)_1 56
fl -8— ——2. ...... (10() )
From H, (x)= f e~3tsl=ndp (),
1

we see that (117) is certainly fulfilled, with « = 1. The last integral
is readily seen to converge also for » < 0, making thus the formula
H,/ = —-1,_, valid for all n Z 0.

On applying Schwartz’s inequality to H,, in the same way as
we have done in deriving (76), we find

2
Hn < Hn—lHn+1

for all n, implying thus

d H,,,(x "
A ‘y“:‘l(“)‘)‘>0' ...... (157)
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The analogue of (78) subsists therefore in the present general
case, the proof being the same,

We now begin with the proof that, under the hypothesis (156),
(156'), the remainder function ¢ (v) of Theorem VI increases with
increasing 7.

Transforming the integral operator A by partial integration,
we find the identity

u(-r)—A(u),zuollz('r)+f1l12(r—t)du (t)—f Hy(t—7)du(t),
0 T

...... (159)
Stieltjes-integrals being employed because we do not wish to

make any use of the differentiability of f(r). (123) can therefore
be written

f;Hm—t)dq(t)—fﬂz(t—ﬂdq(t)=H=,<f)—qu2(v)..-.<160)

Let, in the sequel, u(r) denote any positive and nowhere
decreasing function that satisfies the integral inequality
w(r)ZA@),+Hy(r) e (161)
for all . Continuity of % is not required. An example of afunction
% (7) is furnished by =1, for in (121) we have H,> H,. The set
of values taken by all functions () at a particular point = has
a greatest lower bound U=U (7). =0 and (161) implies
U(r)zH,(7)>0. Furthermore, U(r) is evidently nowhere
decreasing. From (161) and from u = U we see that
wu(r)2A(U),+H,(7)
holds for all functions u, and therefore for their greatest lower
bound U. U (7) is thus itself a function u, in fact, the smallest
function of that class.

LeMMmA. U is continuous for 7 2 0. In the inequality
U(r)zA(u),+Hz(r) ..., (162)
the equality sign takes place at all points not being inner points
of a constancy interval of U. =0 is included herein.
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We postpone the lengthy proof of this main lemma to theend of
the section and show first that U cannot have a constancy in-
terval, thereby proving that U increases and satisfies the same
integral equation as ¢ (7). This would, however, imply U =g,
since a bounded solution of the homogeneous equation vanishes,
according to Lemma 2. Supposing that U have a constancy
interval « <7< 8, we find, according to the lemma, from (159)
and (162)

Hy(7) *H,(r—t) *H,(t—7) =0, r=a,
U°‘H'§?)+fo o) U~ f m “U{zo,wa,

7 lying between o and B. This can, however, be shown to lead to
contradiction. According to (157), the second term decreases
with increasing 7. According to (158), and to dU =0, the third
term certainly never increases. Furthermore, H,(t—7)/Il,(r
increases with increasing 7, the denominator decrea,smg and the
numerator increasing. The fourth term in (163) is therefore also
a nowhere increasing function of 7. Altogether we find that the
whole left-hand side of (163) decreases, « <7< f, in obvious
contradiction to the right-hand side.

Proof of the lemma. For a nowhere decreasing function U the
limits U (r—0) and U (7 + 0) exist always. Since U is the smallest
of all functions u, we find

U(r—0)=U(r),
since otherwise % (1) = U (r—0) £ U (7) would be a smaller func-
tion u.

In order to prove the continuity of U we must show that
7=0, where 2=U(rg+0)=U(rg)20.  weren. (164)
The right-hand side of (162) being a continuous function, we
derive from U (7) 2 U (74 +0), 7 > 7,

UMMzZAWU),+H (1) +n, To<T<Te+3, ...... (165)
with a suitable 8 > 0. On introducing the auxiliary function
_ {1, 7in (79,79 +9),
h(7)~{0, rnotin (rg,7+8), (1686)

HMP 4
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we first find the obvious inequalities
A),+1, 7in (79,79+3),

hi) < {A(h),, 7 not in (7y, 7+ 3).

It is geometrically evident that the function
u(r)=U(r)=nh(r) ... (168)

never decreases and that #=0. Furthermore, the second in-
equality (167) shows that, outside the interval (rq,7o+3), u
satisfies (161). On the other hand, we infer from (165) and from
the first inequality (167) that (161) is also satisfied by » within
that interval. « is therefore a member of the class introduced
above, and u 2 U, which obviously implies n=0.

It is immediately seen that, in (162), the equality sign must
hold at 7= 0. Otherwise we could make the value of U (0) slightly
smaller without affecting (162), in contradiction to the definition
of the smallest u-function.

A point 7 shall be called a ‘proper point’ of U (r) when
U (v)> U (7) holds for every 7' > 7. According to the continuity
of U, an ‘improper point’ is thus either a left end point or an
inner point of a constancy interval of U. A point that does not
lie inside of such an interval is therefore either proper or a left end
pointof such an interval. Inthe latter case,and for = > 0,the point
is certainly a right-hand limit pointof proper points. Accordingto
the continuity of U it is thus sufficient to prove the equality sign in
(162) for all proper points 7,. We define a number 5 > 0 by setting

2=U(ry) —A(U),,—Hs(7g) ... (169)
and show that » > 0 is impossible. As U is continuous, (165) must
hold in a sufficiently small interval (7, 7+ 8). This time we use
another auxiliary function

{U (r)=U (7o), 7in (ry,79+3),

h(r)= .
0, 7 not in (ry, 79+ 98).
According to 0<U =<1 we have n<1. h(r) is again seen to
obey the inequalities (167). The function u, defined by (168),
belongs then again to the above class, since u satisfies (161) and
decreases nowhere (geometrical evidence). This completes the
proof of the lemma.
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§16. OTHER PROPERTIES OF ¢ (1)

The equation (96) can be immediately generalized,

qu(t)llz(t—r)dt—fofq(t) H,(r—t)dt=H, (). ...(170)

This equation can be checked by direct differentiation, taking
account of (123). There should be an additional integration con-
stant on the right. On comparing, for =0, with (139) we see,
however, that it has the value zero. The left-hand side of (170)
can easily be transformed by partial integration, thus yielding

fo Hy(|7—t|)dq @) =H (7)) —qo H3 (7). ...... (170")
From (157) and from H, ,, < H, follows the existence of the limit
1, (x)
A=lim - - =1,
J=00 ]1'11 1 ( )

thus yielding H, () =e"49< where §=58(x)>0 as x—>o0.
According to (156) we have
1+€

1+€
H, (x)> f et dp (8) > e“”‘”f 8~ "dp (s),
1 1

p increasing and e being arbitrary, whence follows A< 1. This
implies A=1.
From (158) we infer, furthermore, the existence of
i 4

From H,~H, ,=—H, we obtain, by differentiation of this
limit relation with respect toy, ¢’ (y) = ¢ (y). Thisimplies, together
with ¢ (0)=1, ¢ (y)=ev. According to (157) and (158), we find
at the same time that

H, (r—t)>eH, (1), T>t.
Since, now, ¢ () increases, we find from (170’)

fe'dq(t)<—4E; go<1—qq,

thus yielding f eddqt)sl—q,. ... (171)
0
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Let us, in (156), make an additional hypothesis concerning the
behaviour of p (s) at s=1. We suppose that

“dp@s) _
1 s—1

When p has a continuous derivative this is certainly true if
p’ (0)>0. This takes place, for instance, in Milne’s case,
p (8)=3%logs. Under this hypothesis we always have

fowe‘dq )=1-=qy. .. (173)

It is remarkable that this general relation does not contain H or
p explicitly.
Proof of (173). We first show that the functions

I, (x) =J:II 2(8)etds ... (174)

have the properties

ln+l(x) . . ,
lll.(x)_>w, 'ln(T)“_}l, >0  ceenen (174;)

According to H,, ,/H, — 1 as s—> 0, the second property is seen
to be a consequence of the first one. Interchanging the order of
integration we find

0 aosl—n
AT )
0

11—8

which is infinite according to (172).
We need the inequality (c=H4(0))

z ef{ly(x)+c}, t<x,
T —_ < = "
Joe Hy(|~ tl)d‘r:{ oet FRUETIRS (174")
For ¢ >« the left-hand side equals, indeed,
£ £
f eTH:,(t—r)d-r<ezf Hg(t—7)dr <ce® < cel.
0 0

For ¢t <z, however, it equals

t T
j 67H3(t-—1‘)d’1'+f e"H,(r—t)dr.
0 t
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The first term is smaller than ce~, while the second term becomes,
on substituting r=¢+s,

r—t
e‘f et Hgy(s)ds,
0

being obviously less than e'l, (x), which proves (174"). According
to (174”) we get, on multiplying (170’) by e” and integrating
through 0 <7<,

Iy (x) — qols () < {l5 () + ¢} f 0 eldq +f eldg.

J
Dividing through by I,(x) and proceeding to the limit 22— oo,
leads, according to (174'), to

1 — %o éf e'd(l,
0

whence, with respect to (171), (173) follows.
By partial integration, (173) can be transformed into

f {—q@)dl=1—qn. ... (173")
0

Numerical remarks on Milne’s case. Let us first find the value
of the constant @ in the formula (97). The limit of the left-hand
side as 7— oo evidently equals the limit of

f:q(t)Ea(h—tl)dt,

w being an arbitrarily fixed quantity. This integral is, now,
included between the limits

q<w>f:Ea(|f—t|)dt, qwj:E;,(lr—tl)dt.

Here, the integral tends to % as 0o, whence

§9(w)Sa < g
and according to the arbitrariness of w,
a=30pn. = eeeens (175)
From (97), =0, and from (175),
(¢, By)=3¢-—% e (176)

Furthermore, from (96), =0, or from (139), H=1}E,,
(0. B)=% ... (177)
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Practical computation of a number means including it between
sufficiently narrow limits. This can sometimes be done by means
of mathematical artifices. The two relations (176), (177), to-
gether with the fact that ¢ increases, suffice to find the value of

q. up to 1 per cent., F<o<d, e (178)

or, in rounding off the second digit, g.,=0-71.
We have, in fact, from (176) and (177),

9o=3(q, B3~ 1 Hy) + 3§,
which, according to 2, > E, for > 0, implies
Qo < 3o (1, iz — 3 Fip) + § =49+,
i.e. the right-hand inequality of (178). On the other hand, from

3E,>2K,, ©
fo (By—3Ey)dg >0,

Since here the integrand vanishes at =0 and at {= 00, we obtain
by partial integration (¢, 2B, — E,) <0

Together with (176) and (177), this implies the second inequality
of (178).

We now consider the law of darkening (101) and notice that the
second term in the parenthesis decrecases with increasing 6,
0 <=/2. Milne’s first approximation consists in replacing ¢ by a
constant such that the emergent radiation gives the required net
flux #F, thus yielding the value % for the constant. F being a
definite average of the emergent radiation, we sece that the
second term lies, for 8 near =/2, below Milne’s approximation 2
and rises, as  decreases, above it. The smallest value of the second
term equals g, = 1/4/3, while the greatest value (g, e~) surpasses %.
We may add that 2 (g oy<069. ... (179)

We have, in fact, from (177) and from E, <e™,

(@ e =(q, '~ Ep)+1 q; +1<069.
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§17. PROBLEM Ib FOR PARALLEL
INCIDENT RADIATION

Parallel radiation carrying finite energy is to be considered as a

limiting case. Let
ks

=(n-0,¢"), 0< 9
be the direction of an incident ray, and let Aw be a solid angle of
directions containing 7’. We set

7S/Aw, 7in Aw,
(0, 7) _{ 0, 7mnotin Aw,
for the incident radiation. When Aw shrinks down to the single

direction ', we speak of parallel radiation of the direction " and
of the flux 78>0

through the unit area normal to r’. On proceeding to the limit
Aw -0, Milne’s fundamental integral equation (53) becomes

J

B(T)=A(B),+§e—”, s=secl’. ... (180)

We define (180) as the integral equation for parallel incident
radiation of direction .

According to Theorem VII, (180) has a positive solution. Let
us, in particular, consider the N-solution, i.e. the smallest
positive solution of (180). We put

B(r)=8g,(r), e (181)
g, being the N-solution of (180) for §=1.

TuEOREM XII. The N-solution of (180) can be explicitly ex-
pressed in terms of the solution f(r) =7+ ¢(7) of Problem Ia,

g, (r) =382 (f, e~*) {f (r) f "t f (1) dt}. ...... (182)
Proof. (182) can also be written in the form

gs (1) =382/, e*“’){ q(’) [Te’(“”q(t) dt} ....... (182")
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First we show that the function
h(r)= f ’ eCnfydt .. (182")
0

golves (180) with a suitable S. From (182"'),
sh+h'=f, h(0)=0. ... (183)
Formula (114) is applicable, & being continuously differentiable
and satisfying &' =0 (7) for = large. On setting
p(r)=h(r)-A(R),,
we find from (114) and from (183),
sp+p'=f—A(f)=0.
Hence p (v) =const. e~*". Now we show that in
gs(r)=A(g,),+ae" ... (184)

a equals }. Tt is obvious from (182') that g, (7) is a bounded func-
tion of 7. The boundedness clearly implies that it is the N-solution
of (184). Applying, now, formula (152) to (184), ® =ae~*7, we find

g,(0)=a s—o (f. e).

If g, (0) is computed from (182), we obtain, according to fo = 1/4/3,
a=}. This completes the proof of our theorem.
We note the special cases =0, oo, in (182),

V3

g, (0)="75(f,e™), g,(c0)=1(f,e™), ......(185)
thus yielding e T (186)

(185) being expressed in terms of the solution f of the Problem I a.
In particular we have the formula
Ty\* sect’
(Lof oL s

for the ratio of the limiting temperatures.

The fundamental limit relation (56), J =B, F,=TF, is easily
seen to remain valid in the case of parallel incident radiation.
According to the boundedness of B(r) the right-hand integral
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represents also a bounded function of 7, whence F =0. We may
collect the above results in the

TaeEorREM XIII. The N-solution B(r)= Sy, (r) of (180) corre-
sponds to vanishing net flux, F =0, i.e. it gives the solution of the
Problem Ib (insolation problem) for parallel incident radiation of
direction ' =(w—6', '), s=sect’.

By partial integration we find from (182’), according to (185),
that g, (v) — g, (c0) equals

A= [ evdg () (1= g+ 13,

up to a positive factor. For s <1, we have, according to (173),
A< 0 for all 7, whereas for s > 1,

1 1 1
- = 1—->0.
A(0) 73 s’ A(o0) > s>0
A(7) being an increasing function, we infer that the equation
A(7)=0 has at most one root. Furthermore, on differentiating
(182’), and using (173), we find that, for s < 1, g, () increases with
increasing 7. Altogether we note the following behaviour of the

solution B (7) of (180):
s=1: B(r) increases.
v/3>8>1: B(7) lies first below the value B, and then rises
above it.

8>4/3: B(7) lies entirely above B, .

8<1(s=1 corresponds to normal incidence) is the only case
where B is monotonic.

Generalization. Model I1b with parallel incident radiation, and
with F'=0, mainly applies to the upper layers of a planetary
atmosphere. The hotter solar radiation will actually have a
smaller absorption coefficient than the cooler radiation of the
atmosphere. The next idealizing step would thus consist in
making the former coefficient a constant fraction » of the latter
coefficient o.
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In order to find the integral equation we must go back to the
fundamental flux equation (54). The first term on the right is the
only one that contains the radiation from outside. In this term,
therefore, 7 must be replaced by nr. Proceeding as before to the
limiting case of parallel radiation, we find, J = B,

F=_8cosf e-mrsect 1 2f BE,(t—7)dt— 2f BE,(r-t)dt,

T 0
F =const. On differentiating this relation and on dividing
through by 4, we find

B(r)=A (B),+ 714*? g-nrecct,
Since this is of the same type as (180), all formulae of this section

remain unchanged, with the only difference that S is to be
replaced bynSand that s is now nsec §’. Wehave, instead of (181)

and (182), B, ce 0’

B (1) =n89nscct (1), B, =n 75—

§18. THE EMERGENT LIGHT

It will be convenient now to introduce the new notation

Ty(o)=0a f:e—"‘gs @) dt, ®(o)=0 f:e_"’f(t) dt....... (188)

The emergent radiation (law of darkening) becomes then

Problem Ia: 1(0,0)=3}F®(sech), ...... (189)
and in the casc of parallel incidence,
Problem 1b: 1(0,0)= 8T gcp (sech).  ...... (189)

From (183) we find, by partial integration,

f Celhdt=o f e-olhd,
0 0

thus yielding, again with respect to (183),

D (c)=0(s+0) f:e“”hdt.
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This gives, together with (182) and (182"'), the formula

3 o

Lol0)= 4516

We have therefore the

DE)P(0). e (190)

THEOREM XIV. In Problem Ib for parallel radiation with the
angle of incidence §’, the emergent radiation can be explicitly
expressed in terms of the same radiation for Problem Iea,
cos 0’0 (sec §) D (sec §’)

cos 6 + cos 6’ )

1(0,0)=38

In the general Problem I, with parallel incident radiation, but
with an arbitrary flux 7 F 2 0, the emergent radiation is, of course,

0090(1) (sec ') :|(D( sec).

cos 0 +cos 0’
This applies to binary stars, where the incident radiation is due
to the other component.

I(O,B):i[F+

§19. PROBLEM Ib FOR ARBITRARY
INCIDENT RADIATION

Since arbitrary incident radiation can be obtained by super-
position of parallel bundles of different directions, we should be
able to express the solution of Problem Ib, for any given incident
radiation, in terms of the solution for parallel incidence. For
given incident radiation I (0,7’) > 0, a solution of (53),e =0, J = B,
is, in fact, obviously given by

B)=1 [ 10.7)g,()dw

2n 2
-1 f J 100,70, ') guog (v) Sin 6'd0"d'. .......(192)
0 0

Let us show that this solution corresponds to vanishing net flux,
F =0. We note that, for any value of 7, g, (v) decreases with in-
creasing 8. This is physically evident, for it means that the
temperature becomes smaller when the incident radiation is more
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oblique. Remember, in fact, that g, (7) is the N-solution of (180),
8=1. The above assertion follows simply from the fact that the
second term on the right of (180)decreases with increasing s,s = 1.
We have, in particular, g, () < g, (7), and from (192)

B(r)=g9,(7). % f_I (0,7")dw’.

The boundedness of B (r) implies, as before, the vanishing of the
net flux.



CHAPTER III
DISCUSSION OF PROBLEMS III AND IV

§20. SOLUTION OF PROBLEM III

Problem III has been analytically set up in § 7. We remember
that the flux 7 F is constant and that the limit relation (44) holds,
in consequence of the hypotheses, that the law of scattering is
symmetric in the directions of the incident and scattered ray
(11'), and that the same amount of radiation is scattered in
opposite directions (11").

THEOREM XV. Problem III always has a solution
J(r,r)=3Ff(r,7r), ... (193)

with the property

flr,r)=r+q(r,r); O<gqg<l, ... (194)
the limits thus being independent of the law of scattering.
Under the hypothesis

y(7;7,7") > const. > 0

the solution is unique.

Proof. The reasoning is essentially the same as in Problem Ia,
i.e. in the special case of uniform scattering, y=1. We put
Jyrr)=7; J(nr)=r+1, ... (195)
and denote by I, (+,7) the respective intensities found from (47)
and (57) in setting J =J,, J=J. On inserting these intensities
into the right-hand side of (41) we obtain the expressions
A (Jl)-r.r’ A (J)‘r.r’
respectively.
Using the more convenient relations (99), (99’), instead of (47)
and (57), we readily find
I,(rr)= {r+cos6, 0<m/2,
AN T+cos0+|cosf|eTisecll G5 /2,
- 7+ 1+cosé, 0<m/2,
and  I(r,r)= {1’+ 1+cosf—(1+cosf)e-Tisectd| 0>7'r;2.
These equations imply, in particular, the important inequalities
I,(r,r)27+cosf, I(r,r)S7+1+cos,
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for all directions r = (6, ¢). Inserting this into (41) and taking into
account the relation
Jcos@y(r;r',r)dw’ =0,
we obtain the important inequalities
A (_Jl)'r,r >T= Jl_('r: 7),
AW),p<t+1=J (7,7).
According to the positivity of the operator A, we can, now, apply
the same reasoning as in §9. On setting
Jn+1 (T’ 7') =A (Jn )‘r,r’ _
we infer that J, ., lies above .J,,, but that all J,, lie below J. The
limit function f(r, r) is seen to satisfy the integral equation

J@)=Af)r,, e (196)
and to lie between the indicated limits » and =+ 1.
We set J (r,7)= Cf(‘r, 7)

for the solution of J of Problem III and determine the constant
c as in §9. The intensity obviously lies between the limits

c(r+cosf)<I(r,r)<c(r+1+4cosb), ...... (197)
for all directions r, whence
lim I(r1) =c
T=0 T

uniformly for all directions r. This gives, according to the
fundamental relation (44),
c=4AF. L (198)
The proof of the uniqueness of the solution follows the same
lines asin § 10. It is sufficient to repeat the main part of the proof,
i.e. to show that a solution J of (196) with the properties

. J(r,,71)
J=0, lim  ~¥2¥
B v=wf("'vr'rv)

7, being a given sequence of numbers tending to infinity, vanishes
identically.

According to the hypothesis made about y, and according to
(41), we have

J = —l— jlydw' > const.fI cos?§dw’.
4

=0, 7,500,  ...... (199)
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On comparing this with (44) and (199) we get F'=F,=0. The
incident radiation (at +=0) being zero we thus have, for =0,

F=F+=H+I(o,1~)cosedw=o,

which is possible only if the emergent radiation vanishes. Thence,
and from (99), =0, we infer that the Ergiebigkeit must vanish
too, q.e.d.

Remarks on the uniqueness. When the hypothesis made about
the law of scattering is abandoned, Problem IlI could have
several solutions. This takes place, for instance, in the easily
integrable limit case, where half the radiation is scattered back-
wards while the other half goes in the original direction. Under
the hypothesis, however, that

holds uniformly for all directions, i.e. that the radiation becomes
isotropic at great depth, the solution is readily found to be unique.
For we find from (41), (44) and (194) that then
. J(rr)
o gen 3
holds uniformly for all directions. As in the proof of Lemma 2,
§ 12, we infer, from the positivity of the operator, that J = } Ff.

§21. DISCUSSION OF PROBLEM IV
IN THE CASE (65)
The optical thickness 7 of the slab being finite, we consider the
case (65) of constant radiation I* incident at the inner face r=7*.
For the radiation coming from above we use again (99’), while
the radiation from below is given by (61), or by the more con-
venient formula

I (7, r)= e—(r*—7)sec 8 [x

(t*—7)sec
+f e*J (r+scosf,r)ds; 0<=/2. ...... (200)
0
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THEOREM XVI. Problem IV, with the boundary condition
(65), has a unique solution. The Ergiebigkeit lies between the
limits 7+1

T *
<J(r,r)<1 T

* + 1
the limits thus being independent of the law of scattering.

I*—

Proof. This theorem has, in the case of uniform scattering,
been proved by Schwarzschild.
The integral equation (63) of Problem IV can be written in

the form J (r,7)= L), +H (x,7),
*
where H(r,7)= iﬂ_ f e~m-mseel'ydyy’. L. (202)
T T+1
We set JI(T’T)=I*T£-F—]—., ('T,I) I*- *+1 ...... (203)

In order to compute the quantities
L(Jl)'r,r+ K(T1T)) L(j)r,r+K(T, 7')5

we first find, from (99’) and (200), the intensities 7; and I corre-
sponding to the Ergiebigkeiten ./, and J, and then insert them
into the right-hand side of (41). After some simple computations
we get

I 7.)__{f~ 74080+ (1 —cos ) e~(*-msecd g < 7/2
D= 30 7+ cos 0+ | cos 0 | emmisecdl 6> m/2,
and
I(r,r)= I*  (v41+cosf—cosfe-(r*—nsech 0<m/2,
A= 74 14cosf—(L+cosf)eTisectdl | G5 /2
These relations imply, for all directions r, the important in-
equalities 7+ cos 0
> Tk
I (7':7) 1 N
j( ) I*T+ 1 +COS_9
T*+1

On inserting the intensities into the right-hand integral of (41),
we obtain, according to

Jeos @'y (r;1',r)dw’ =0,
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the final inequalities

L(Jl)-r r+H (7, T)> I* ‘r_*_—]—.— Jl (T, T), ......(204)
L(F), ,+H (r,r)< I* 1%1-_,](7,;) ...... (205)

According to the positivity of the operator L, we see as before
that there is a solution between the indicated limits. On setting

Jia(mr) =L )+ H(1,7), e (206)

J, being defined by (203), we can write (204) in the form J,> J,.
This implies L (J,) > L(J,) and, according to (206), n=1, 2,
J3>J,, and generally J, ., >.J,. Furthermore, the relation

J— =L (j'— J,)

and the inequality J —J,>0 show that generally J, <J. The
limit function .J of the functions .J, thus exists and has all the
properties indicated in Theorem XVI. J is, moreover, seen to
be the N-solution of (63).

In the present case of a finite 7*, the uniqueness is inferred by
a classical conclusion. First we note that

1 4 1 * < .
L(l)f,rz 1—41:rf e—Tlsect I,ydw/__:tTTJ;e_(,- —~7)secd 'y(lw'

in particular, that L(Q1),,sA<1

holds with a suitable constant A. The difference D (r,r) of two
solutions of (63) satisfies the homogeneous equation D= L (D).
Denoting by M the maximum value of | D |, we find

|ID|SL(|D|)SsML(1)SAM;
in particular M £ AM, which, according to A < 1, gives M =0.

Large optical thickness. In the case of uniform scattering,
Schwarzschild recognized, that for 7* — o0, model IV goes over
into model ITI. This holds, more generally, for any given law of
scattering, of the types (11’) and (11”).

HMP 5
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THEOREM XVII. For I*=c7*, ¢ being fixed, the Ergiebigkeit
J (7,7) tends towards ¢f (r,7) as the optical thickness 7* increases
indefinitely.

The main part of the proof is to show that the Ergiebigkeit
J (7,7) tends towards a limit function as 7* —c0. We may content
ourselves with a brief sketch of the proof. From the integral
equation (63) it can be first recognized that the Ergiebigkeit is
uniformly continuous for all 7*. Arzela’s selection theorem then
guarantees the existence of one or several limit functions. Such
a limit function necessarily lies between ¢r and ¢ (v + 1). From (11)
and (202) we have

H(r,r) < I*e ™" N=cr¥e e >0,
as 7*—>00. On proceeding, in (63), to the limit 7* =00, along any
special sequence of numbers 7*, we find that every limit function
must satisfy the integral equation of Problem III. This equation
having, however, only one solution ¢ for = large, the Ergiebigkeit
can have only one limit function, as 7* - co, namely cf (+, 7).

§22. NARROW LIMITS FOR THE SOLUTION
IN SCHWARZSCHILD’S CASE, y=1

In the case of uniform scattering the integral equation becomes
(64), (64'), the second term on the right being (66). On setting

J (7)=I*u(7),
u becomes the solution of

u(r)=L(u),+ 3B, (v*—7). ... (208)
Let v (7) denote the solution of
v(1)=L(),+}By(r*=7). ... (209)
% is then the Ergiebigkeit in the case
I*=1, ... (208")
while v corresponds to the case
I(+*,0)=cos8; O<m/2. ... (209")

On introducing, for any function, the general notation
D (r) = (r*~7),
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we readily find that the operator L, given by (64), satisfies

L(@®),=L(®)_,=L®)..  ...... (210)
From (207), y=1, we have, according to (49), n=2,
1=L(1),+}E,+3E,, ... (211)

Furthermore, we find by means of (79), (81), (82), n=1,

T=L(t),+gE2+J_;-(E3—E3). ...... (212)
(208), (210), (211) imply
u+T—1=L(u+u—1),
whence, according to the uniqueness property proved in the
preceding section, w+m=1l. (213)
(213) is physically obvious. For % is the Ergiebigkeit when the
radiation incident is zero at r=7* and one at 7=0. % + % is there-
fore the Ergiebigkeit when the radiation incident is one at both
faces, which yields (213).
From (209), (211), (212),
v—O0=7—7. = ... (214)
In the sequel we make use of the
LeMMA. I, (7%,0) < [,(7*,60), 6 <m/2, implies J, () < J,(7) for
the corresponding Ergiebigkeiten.

This follows immediately from the fact that the Ergiebigkeit
is the N-solution of (64’).

Narrow limits for () can be found by comparison with the
solution of Problem Ia. On setting

@1=9(m*), Q2=f0 e8q(t*+38)ds, ...... (215)

we infer that ¢, < g, and that ¢, and ¢, increase with increasing 7*,
having both the limit ¢, as 7* —> co. In the model I, the intensity
of the radiation coming from below is given by (100). Let us in
the case F =$% denote this intensity by I. Since g (r) increases, we
then find from (100)

™*+¢,+cos0< I (v*,0) < 7* +q,+cosl, ...... (216)
for 6 <m/2. Taking I as the radiation incident at the inner face

5-2
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7=17%* of model Ia, we first see that the corresponding Ergiebig-
keit is precisely f(7) =7 +¢(7) (according to the theory of model
Ia). On the other hand, the Ergiebigkeit turns out to be

(t*+4q,)u+v resp. (t*+¢q,)u+v,
when the radiation incident at = 7*is given by the left respective
right-hand term in (216). The lemma shows therefore that, for
all » between 0 and 7%,

(*+)utv<f<(*+g)u+to,
which, for the function

f_f= 2T_T*+q—q-’
implies the inequalities
f=F> @+ q)utv—(m*+) %~

and f=Ff<(@E*+g)u+v—(r*+q)u—0.
When, here, %@ and v —7 are expressed in terms of « by means of
(213) and (214), » is found to lie between the limits

THI—dt 9, (r) < '_rﬁi_qﬂ—_qiqg e e (217)
™+ ¢+ 4, "+ 9 +4
By means of the notation
m=m (-r*)=(—1££—q—2, d=d(f*)=€—h——2:—q—1, ...... (215')

we can give (217) the form

T+g(1)—g (¥ —7) +m (%) <I* d(r*)
7* 4 2m (%) >+ 2m (v%)°

J (r)—I*

The use of (217) requires, of course, a numerical knowledge of the
function ¢ (7) of Problem Ia. The limits given in (217) are much
narrower than Schwarzschild’s limits indicated in Theorem X VI,
since ¢(7) is known to lie between the narrow limits 0-577 and
0-71. The factor d(7*) on the right of (217’) is about 0-05 for
7*=0 and decreases very rapidly as v* —»co.

If, in (217), q is replaced by Milne’s approximate value %, we
obtain Milne’s approximate form of J,

T+ %
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while for 7* large, the true approximate expression is
I* T +9q (T) .
* 429,
In the case of uniform scattering, Theorem XVII is an evident
consequence of (217) or (217’).

§23. THE NET FLUX IN
SCHWARZSCHILD’S PROBLEM
The flux constant F is not given in Schwarzschild’s problem. For
astrophysical purposes it is, however, of importance to know
F[I* as a function of 7*. We shall now include this function
between narrow limits.

First we must find the analogue of the equation (54) in
Schwarzschild’s model. The first term on the right must, of course,
be omitted, since the radiation incident at the outer face is zero.
Instead of this term there is the analogous term for the radiation
incident at the inner face,

Q(7) =7£Tf cosfe~m-nsecd I (7% )y, ..... (218)
+

Furthermore, the upper limit of integration in (54) is to be
replaced by 7*. We thus obtain Milne’s flux equation

%F:JT*J (¢) E, (t—'r)dt—-fTJ(t) Ey(r—t)dt+1Q (7).

...... (219)
For r=0, r*, we have
1P f TEdt+3Q(0), . (220)
[i]
\F=— f TTB,dt4+3Q (%), . (220')
0

whence  F= f " (J =J) E,dt+3Q (0)+ 3Q (+%). ...... (220")
0

Let F resp. F’ denote the flux constant in the case (208’) resp.
(209°). Taking account of (49), n=3, 4, we note the following
combinations in those two cases:

J=u, Q=2E,(+*-7), F=F ... (221)
and J=v, Q=2E,(+*—7), F=F. ... (222)
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In the present case (65) we have

F=I*F
for the net flux.

Let us, first, find the relation between F’ and F'. On applying
(220") to the case (222) we find, according to (214),

F =f tE,dt—7* f wEydt+ %+ B, (r%).
0 0

The first integral is readily computed from (80), n = 2, while the
second one can, by means of (220), taken in the case of (221), be
expressed in terms of F. Altogether, the simple relation

T*

—F . (223)

F=3-%

is obtained.
The following remark will be of use. The inequality
I, (7%,0) <1, (*,0), b6<m/2,

implies the inequality F, < F, for corresponding flux constants.
This follows from the lemma of the preceding section and from
(218), (220).

We now recall the inequality (216), where the incident radia-
tion I gives precisely the net flux # = 4. Taking account of the
above remark and of (221), (222), we find therefore

(*4+q) F+ F <i<(t*+q,) F+ F".

If this is combined with (223), we obtain simple limits for
F=F|I*, 4 I* 4 I

QT*+2(B< <3mé1. ...... (224)
By means of (215’) we can write this

1

7 Frx—gm(v*) (<3 (r*). ... (224")

This approximate expression of 1/F is, even for small 7*, very
accurate. Its value for 7* =0 turns out to be 0-95, differing only
5 per cent. from the true value 1/F=1.

In comparison hereto, we note that the right-hand side of (224')
gives 8 per cent. at 7*=0. For larger 7* the accuracy is extra-
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ordinarily good. According to m—>g¢, as 7*—>o0, we find, in
particular, from (224’),

%_ * e e (225)

If ¢ is replaced by its Milne approximation %, we obtain Milne’s
approximate formula

1

‘ﬁ = %T* + 1.

The accuracy is inferred from the fact that 3m (v*)/2 varies
between the narrow limits 0-95 and 1-06.



CHAPTER IV

EXPLICIT SOLUTION OF CERTAIN
INTEGRAL EQUATIONS

§24. THE CHARACTERISTIC EQUATION

We shall now generally treat the integral equation

@)= f:H(iw—yl)f(y)dy ...... (226)

by means of Fourier integrals. The solution will be obtained in
the form of explicit integral formulae.

Concerning the kernel, we suppose that, for a certain s> 0,
H (z)e* is quadratically integrable within 0 < <oco. Without
limitation of the generality we may suppose that

fw[H(x)e“’]2dx<w; s<l. ... (227)
0

This hypothesis is certainly fulfilled in Milne’s case. Quadratic
integrability is introduced in order to apply the Plancherel
Theory of Fourier Integrals.

The solutions of the analogous equation

r@=["H(e-ytwdy e (226)

are of much simpler form, being aggregates of exponential func-
tions. If u* denote an n-fold root of the ‘ characteristic equation’

1=K(u)sf°°ﬂ(|x|)eudt, ...... (228)

the function Qi () e~
is easily seen to represent a solution of (226"), @,_, being an
arbitrary polynomial of degree not greater than » — 1. We must,
of course, be sure that all integrals involved converge. This is,
according to (227), obviously true when the real part of u lies
between the limits —1<R(@*)<l.

We should expect that the characteristic equation plays also an
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important réle in the theory of (226), and that its solutions show
the same behaviour for large x as certain solutions of (226’).

We first compute the characteristic function « () in the im-
portant case, where H is of the form (156), with p (s) increasing.
This includes Milne’s case with p=4logs. «(u) is readily seen

to equal ©
() = f 1 [g';l‘.ﬁ g‘%&; dp(&). e (229)

In order that (227) be fulfilled, we need only suppose that
k(0)=2H,(0) be finite. In Milne’s case we have
1 1+u
K)=g,log 1
the logarithm being zero for u =0.
Under the hypothesis (227), the complex function «(u) is
certainly holomorphic in the strip
| B(w)| <. ... (231)
Two ohvious properties arc
kW)=« (@), k@)=x(—u), ... (232)

showing that « (u) is real on the imaginary as well as on the real

axis.
(227) implies absolute integrability
JﬂH(x)e“[dx<oo; s<l, ... (233)
0
as seen on applying Schwarz’s inequality to (233), the integrand
being s+1 s-1 i
H(x)e? )e®
By simple substitution z =2’ + 7 /t, x (u) =« (8 + it) can be written
in the form
+co I T 3
2K(u)=f [H(]x[)e"—H( x+7tTJ)es( ‘)]e"”dx,
whence
+o0 |-
2|x(u)|<f H( x+;l)—H(|x|) e =ldx

s +oo
11 [T H( ) ea
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If H is continuous, this inequality shows that

k(s+it)—>0 as |[t|>00 ... (234)
holds uniformly in every partial strip | s| <@ <1. Theorems of
Lebesgue, however, show that this still holds under mere measur-
ability of H. As a consequence we note that the characteristic
equation can have only a finite number of roots within every
partial interval |s|Za<1.

More can only be said about the characteristic roots when H
satisfies special hypotheses. In the important case, for instance,
where H is positive, x(u) is found to increase from x(0) to
k (1) < 0o when u goes from 0 to 1 along the real axis (or from 0 to
—1). On the imaginary axis « () is still real and less than « (0)
in absolute value. The characteristic equation has therefore the

double root =0 when k(0)=1, ... (235)
two real roots of opposite sign, however, when
k(0)<l<k(l), ... (235")
and at least two imaginary roots when
k(O)>1. . (235")

Besides these it could very well have other complex roots in the
strip |s] < 1.

Let us, now, suppose H to be of the form (156) with increasing p.
In this case, there are, within | @ (u) | <1, no other roots than
# =0 in the case of (235), than two opposite real roots in case of
(235’) and than two opposite imaginary roots in the case of (235"').
In Milne’s case, for instance, all characteristic roots are thus
exhausted by the double root u = 0.

K (u)—x (@)= SistJ.I Igzdp (f)lz, u=38+1t,
which, according to (232), shows that « can only be real on the
real or imaginary axis. Furthermore, the equation

[ £

proves that x decreases when u goes from 0 to + %00 or to — 00
along the imaginary axis. The statement about the roots of «=1
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is an immediate consequence of these facts. It may be added that,
under the condition (172), i.e. k (1) =00, the right-hand inequality
of (135') is automatically satisfied.

§25. THE INTEGRAL FORMULAE FOR
THE SOLUTION OF (226)

We shall now construct all solutions of (226) that satisfy the

condition f@)=0(); a<l, ... (236)

for x large, « being an arbitrarily fixed number less than one.
Let Uy gy oony Uy,

denote the complete set of characteristic roots within the strip
| s| < a. If necessary we enlarge o a little such that no roots lic on
the boundaries |s | =a. We set

Pu)=(u—1u)) (0—uy) ... (0—1uy,), ...... (237)
P (u) being even and real on the real axis, and
_(@A=1)" oo
T(W)="7% @ {l—x(u)}, ... (238)

7 being holomorphic and free of zeros in the strip |s| < «. More-
over, 7 (u) is even and real for real . We want 7 (u) in the form
7 (u)=7, (u)/v_ (u), in such a way that 7_(«) is holomorphic in
the half-plane s> —« and that 7, (s+1it)—>1 as s—>+00, while
7_(8+1t) is holomorphic for s <a and satisfies r_(s+1t)—>1 as
s—>—o0. This obviously unique representation is, according to
Cauchy’s formula, explicitly furnished by
7. (u)= expl:______f ﬁ*“"’logf(v dv],......(239)

Bio V—U

+B+in
7_(u) evpl: "mf logl— d] ...(239")

+B-in
where B> a is chosen such that the strip | 8| £ B contains no new
roots. The logarithm logr(s+it) is the one that vanishes as
t—>+o00. Observing that r(u) is never zero, and real on the
imaginary axis, and that 7 (s + 700) = 1, we see that = (u) is neces-
sarily positive along that axis. log (s + it) vanishes therefore too,
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when t—+—oc0. We shall later see that the integrals (239) and
(239’) converge absolutely.
On setting
o (w)y=(u+1)"r,_(u), o_(u)y=(u—-1)"7_(u),

we state the

TureoreM XVIII. The integral equation (226) has precisely n
linearly independent solutions satisfying (236). They can be
expressed by means of the formulae

o_(u)

d(u)=Q,_, (u) Py’ T (241)
Q,,—; being an arbitrary polynomial of degree less than », and
flx)= —-L JHM d(u)e**du; s= —oﬂ.
V2n 2

CoroLLARY. The solutions have, for large z, the form
f()=2@*(x)e'*+ 0 (e~),
u* being a characteristic root within |s|<«, and @* being a
polynomial of degree less than the multiplicity of w*.

It must be emphasized that, while (226’) has precisely 2n
solutions with the property (236), (226) has only half the number
of solutions.

The abscissa of integration s in (242) can be moved without
change of the integral, provided that no pole of ¢ (u)=4¢ (s +1t),
i.e. no characteristic root is met by it. f(x) vanishes for x < 0.

Application to Milne’s case. Here we have, according to (30),

2
—r(u)=?—t—uTl(l—%log;—i-—:—:). ...... (243)
7_(u) is given by (239’), while

é(u)= c~4~—7 (»), . (244)

¢ being an arbitrary constant of proportionality. If (242) is
considered as a Fourier integral, we find by the Fourier theorem

d(s+1it)=




EXPLICIT SOLUTION OF INTEGRAL EQUATIONS 77

This represents ¢ () for all s < 0, since the integral converges and
is holomorphic in the left half-plane. We can obtain herefrom an
explicit formula for the law of darkening in Problem Ia. From
the last formula, {=0, and from (188) and (189) we get

1(0,0)=3FV2nsechd(—sech). ...... (245)

The proportionality constant ¢ in (243) remains to be determined
such that the corresponding solution f (x) is ~x for « large. From

(101), I (0, 727) =\‘/L_3 F, which gives, together with (245),

1
—_ == — lim s¢(s).
V6 §=—w ¢( )
On the other hand, from (239’) and from (244), we find that this
limit equals c. We therefore obtain the law of darkening in the

explicit form
I(o, 0)=}£§F(l+cos6)7_(—sccﬂ), ...... (246)

7_ being determined by means of (239’) and (243). The integral
in (239’) could be found by numerical integration.

Plancherel’s theorem on Fourier integrals. 1t is convenient to
state here the main theorems of the modern theory of Fourier
integrals as far as we need them in the next sections. A complex
valued function a (x) of the real variable x is called quadratically
summable (q.8.) over —c0 <z < + 0 if

4
f | a(x)|2dx

w0

is finite. According to Plancherel, the Fourier transform

A(t)=—= fjme+f”a(x)dx

0

exists then in the sense of mean convergence. 4 (f) is again ¢.s.
over —o0 << +00, and @ () is conversely the Fourier transform

A @)= [ A
a(x)=—= [aad .
vVord -«
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Two q.s. functions a, b and their Fourier transforms A4, B
satisfy the Parseval relation

+
f a(x)b(xdxf A (x) B (z)dx.
In particular, we have
+o
f ]a(x)l%x:f | 4 (@) |2 da.

The integral (242) is to be understood in the same sense of mean
convergence.

§26. PRELIMINARIES

Properties of the function v(u). We know already that = (u) is
holomorphic and different from zero within |s|<B (B>a).
Morcover, we know that 7 (u) converges to one as u goes to infinite
within that strip. 7 (») being real on the real and imaginary axes,
we infer its positivity on these axes. The logarithm of 7 (u) con-
sidered in (139) and (139’) is therefore real on both axes and tends
to zero as u goes to infinity within the strip. logr (u) is, further-
more, an even function of «.

According to (228), « (s + it)/V/ 2 is the Fourier transform of
the q.s. function e*< H (| 2 |), and represents, according to Plan-
cherel’s theorem, a q.s. function of ¢, |s|<1. (237) and (238)
show therefore that log = (s + ¢t) is a q.s. function of ¢ too. We can,
from this fact, infer the absolute convergence of the integrals
(239) and (239°). By means of Schwarz’s inequality we find

B+ixo
47r2llog'r_(u)[2§f | log 7 u)[zldblf ]dv[

- B—iw Ju—v?
This shows, moreover, that log =_ (u), being holomorphic in s < S,
is bounded in every partial half-plane s <8’ < B. Similar facts
are true for log r, (u) within the half-plane s > — B.
The functions ¢, and o_ introduced by (240) have therefore

the properties
a4+ B
2

mlu|"<|o, (w)|<M|u|™"; s2— , -..(247)
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and m|u|t<|o_(u)| <M|u|"; sS?-:B, ......

(247")
with suitable positive constants m, A.
We mention, finally, that the equation r=7_/7_ can, according

to (238) and (240), be written

~ oy (u)
k(u)y=P(u ) @ (248)
§27. PROOF OF THEOREM XVIII
We write (246) in the form
g(x) f(a,)—f H(lx—y|)f(ydy, ...... (249)
where f@)=0, <0; g(x)=0, x2>0. ...... (250)

For x <0, g (x) is understood to be defined by the right-hand side
of (249). We now set

u.rd 1 e
s== [ r@eds yu= [ g@eds,

in other words, we consider the Fourier transforms
d(s+it), y(s+it)
(regarded as functions of t) of f(x)e** and g (z) e%~.
Since f (x) is supposed to satisfy (236), we may state the obvious

Lemma 1. ¢(u) is holomorphic in the half-plane s < —«, and
bounded in every partial half-plane, forinstance,ins £ — (o + 8)/2.
From (249), z <0, and from (250),

+
g@Is [ iHGe-yD 1170 |dy
<const;.f+w[H(|x—y|)|e“”dy.
0

For any A between « and 1, we find

+ o +
[ 1=yl ay< [ H( 2=y D vay

-2
=e"”f | H|eMat,
— 0

whence, for <0, g (x)=0 (e~1=),
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A being an arbitrary number less than one. Consequently, the
Fourier transform has the following property:

Lemma 2. y(u) is holomorphic in the half-plane s> —1 and
boundedinevery partial half-plane, forinstance,in s 2 — («x + B) /2.
It is the chief point of the following considerations that the
regularity half-planes of ¢ and » have a common ordinate,

8= —(x+fB)/2. Along such a common ordinate, we have, from
(249),
1 + + o
v =4-—= [ “ewas[ " H(z-yiw)y
2 J —w —0

b= [ty [ H(a-y e

=4 - [ p@emay [ T H (e

hence y(u)=¢(u){l—K (u)}; s=—(ax+p)/2....... (252)
It is permitted to interchange the order of integration along the

common ordinate, since the double integral converges absolutely
for s= — (e + B8)/2. The identity (248) allows us to write (252) in

the form yw) b

g, (w) T o (u)
8= — (x+ pB)/2. Here, we know that the left-hand side is holo-
morphic for s — (x+ B)/2, while the right-hand side is holo-
morphic within s £ — (x+ 8)/2. Both sides thus define an entire
function of . P (u) being a polynomial of degree 2n, we infer
from (247) and (247’) that this entire function is at most of the
order of u™ for | u | large. According to a well-known theorem of
the theory of complex functions it is therefore a polynomial
Q (u) of degree not greater than n, whence

é (W) =o_ () ?5%.

Pm), e (253)

@ can, according to (247’), not be of degree = since ¢ (s+1t),

being the Fourier transform of a q.s. function, is again a q.s.

function of ¢. It is thus proved that ¢ (u) has the form (241).
We must not forget to prove that (241) and (242) actually
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represent solutions of (228). We now start with (241) and study
the functions f(z) defined by (242). (241) and (247’) show that
¢ (u)=0(|u|™) for |u| large, in particular, that ¢ (s+7t) is a
q.s. function of ¢. Taking account of Lemma 1 and of Cauchy’s
theorem, we see that the abscissa of integration in (242) may
be moved to the left without change of the integral. For any
8<(«x+B)/2, $(s+it) is, conversely, the Fourier transform of
f(x)es=. Hence and from Parseval’s formula, a=b, 4 = B,

+ oo + 0
f_ ]f(x)]zemd:c=f | 6 (s +it) |2dt.

The right-hand side being bounded for s < — («+ 8)/2, we infer,
on proceeding to the limit s——o0, that f(x) vanishes for, at
least, almost all negative z (in the sense of Lebesgue). Otherwise
the left-hand side would increase indefinitely as s > —co.

Let us, now, set y@)=0, (@) Q, (@) ... (254)

8+ i
and 9(1')=\/;’—;.j- Cy(m)erdu; s= -
™ 8--10

According to (247), y (w) isregularand O (| % |~1)ins = — (x + B)/2.
The abscissa of integration can, in (255), be placed arbitrarily
far to the right, whence we infer that g (x) vanishes for almost all
positive z.

It remains to prove that f(z) and ¢ (z), found from (242) and
(255), satisfy (249). In other words, we have to show that, back-
wards, the relation (252), being satisfied by our ¢ and y, implies
(249). We note that the following functions 4, B are the Fourier
transforms of a, b,

a(y)=evf(y), A@)=¢(s+u)=¢(u),

e
by)=e“H(x—y|), B{t)=-" -r(m) ,
) (EE2)) ®) \/27TK(u)
always on the ordinate s= —(x+ B)/2. The Parseval relation
(d, 5) = (A’ B) giVGS then, 8= — (o(-}- B)/2’
® 1 8+1i% )
esrf H(lz—yDfyrdy=_,— b (u)  (u) e~ du.
0 '\/2’”1 8—1iw

HMP 6
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On combining this with (242) and (255), and on taking account
of (252), we see that (249) and (250), i.e. that (226) is satisfied.
The right-hand integral in (256) converges absolutely because ¢
and « are both q.s. functions of ¢. Both sides in (256) represent,
therefore, bounded functions of z. This implies, according to (226),

f(@)=0 (eo%ﬁ”)

The coefficient of the exponent is, here, greater than «. We
remember, however, that « was subjected to the only restriction
that no characteristic roots should lie on s= + «. Our formulae
would, therefore, not change if a slightly smaller « be employed
and if B also be taken smaller than the original «. There is thus
no difficulty in establishing (236).

§28. PROOF OF THE ASYMPTOTIC

FORM OF THE SOLUTIONS
According to (241), ¢ (u) can have its poles only among the char-
acteristic roots. It has, however, at least (nz+ 1) poles within
| 8| < «. When, in (242), the abscissa of integration s = — (x + 8)/2
is moved to 8= (x+ B8)/2, the change of the integral amounts to
—V/27 times the sum of the residues of the integrand, contained
in the strip | 8| <«. Near a characteristic root u* of order £, the
integrand is of the form

e~ (u—-u*)
e~ b (u) @y (u) (=%’ h (u*)#0.
The residue at u =u* has, therefore, the form
Q* (x) e—u*.t’

@* being a polynomial of degree less than k. In the case
@, (u*)#0 the degree equals precisely £—1. Altogether we

obtain F@)=f*@)+r (),

where f* (x) =0 (e*!*') is a solution of (226’), and where

re)= e f b (w) e-vedu,
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the abscissa of integration now being s=(x+pg)/2. For >0,
(226') can be written

rr@-Agn=[ Herlyhrroa,
A being the operator from 0 to + oo, given by (226). This implies,
according to f* =0 (e*'*!) and according to (233),
f* @)= A(f*)=0(e),
for > 0. The same holds, according to f= A (f), for the function
r (@), r@)—A@r),=0(E"). . (257)

On the other hand, » (z) e, s = (« + B)/2, is q.s., being the Fourier
transform of ¢ (u), along s=(x+ B8)/2. On applying Schwarz’s
inequality to A (7)., the integrand being written

[H(|z—y|)e=][r(y)eV],
we infer, therefore, that r(z)= 0 (e~*¢), which completes the
proof of the corollary.

§29. NEW PROOF OF THEOREM X

The essential hypothesis, for the validity of Theorem X, was the
positivity of the kernel, H > 0, and (119), which can be written

k(0)=2H,(0)=1, ... (258)

i.e. =0 is a characteristic root, being at least double. According
to H > 0, we have, however,

K (0) =2 f : 2H (1) dt=4H,(0)> 0, ...... (259)

which shows that # = 0 is precisely double. There are no other real
roots and, according to | « (it) | < k (0), £ 0, no imaginary roots.
Other complex roots could, however, well exist. The polynomial
P (u) of (237) can thus be written in the form

P(u)=u?R(u) S (u),
where R(u)= (u—ul) oo (u—un—l)’

Su)=(u+uy)...(u+wu,_,).
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On making, in (241), the particular choice
@y (w)=cR(u),
we find é(u)= c; S(ZL)) ...... (260)
and, for suitable ¢, f(x)=xz+¢q,+0(1) ... (261)
(concerning the notation see Theorem VI), since the roots of
S (u) =0 all lie in the right half-plane s > 0, giving rise to residues
that vanish exponentially as 0. At the same time it is seen
that no other choice for ¢, _, leads to solutions of the form (261).
From (239’), (240) and (260),
up(u)—>c; 8§—>00, ... (262)

and u?p (u)—>c S(((())))' u—>0. ... (263)

On the other hand, the first formula (251) is a consequence of
(242) and holds, here, for all # with s <0,

¢ 8) = ~?,‘_ J. f x) esrdx. ... (264)
In order to determine ¢, we observe that (264) implies
f(0) .
—_——, —aoC, e 265
s¢ (s)—> Voo 8> (265)
while (261) and (26+4) imply
8% (s)ev%;; s—>0. ... (266)
By combination of (262), (265) and (263), (266),
_8(0)
fo= O (267)
o_(0) can be found from (239’) and (240),
. 1 (A+i=logr (v) ) 4
a_(0)=(-1) exp[—%fﬂ_m ]
...... (268)

The abscissa of integration can, here, be moved to the left and
deformed into another path, consisting of the parts (—¢c0, —ip)
and (ip,%00) of the imaginary axis, and of the right half of the
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circle | v | =p. The integrals along the first two pieces cancel each
other, v-1log 7 (v) being an odd function. The expression inside
of the parenthesis, in (268), equals therefore

1 2
- i
oo f 0B (pei#)d,
-2

whence, on proceeding to the limit p =0, the value
—$log T (0)
_K(0) _2H,(0)
2R(0)S(0)~ 8%(0)°
o_(0)=(=1)" 8 (0)/V2H(0),
and according to (267),
So=(=1)""1V2H,(0).

It is to be noted that n— 1 is always even, since the conjugate of
a characteristic root is again such a root.

follows. From (238),
r(0)=(~ 1+

hence

Remark on q,,. Computations which may be left to the reader
lead to the following value of ¢, in (261),

L2k (at)
o=y Jo i+ )

In Milne’s case this can be transformed into

o ey ik

The evaluation gives 0-710.



CHAPTER V

OTHER PROBLEMS OF
RADIATIVE EQUILIBRIUM

§30. PURE ABSORPTION. NON-GRAY MATERIAL

In this section, a few principal remarks will be made concerning
the fundamental integral equation in the case of purely absorbing
material with an absorption coefficient that varies with the wave-
length. In the case of thermodynamical equilibrium,

n,=%,B,,
where B, is a given function of B,
B,—B,(B), B= f “B(B)dv, ... (269)
with the following properties, ’
%%>O; B,(0)=0; B,»o, B->ow....... (269")

Only these qualitative properties will be used in the sequel. In
order to simplify the considerations we suppose that the absorp-
tion coefficient be of the form

o, (P)=BW)a(P). ... (270)

The material is again supposed to be stratified in parallel
planes. The variable = defined by

T=£wp (@) a (z) do

is no more tho optical depth though being convenient for the
mathematical discussion. We assume the 7-thickness of the slab
to be finite, r <7*. The true optical depth of a point z, corre-
sponding to v, is

Jx£
r= f par,dii= B,
-

writing briefly B, instead of B (v).
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The equation of transfer is

cosfol,
35 =?=I,—B,, .. (271)
while the equation of radiative equilibrium (19) becomes
=] )
f 8, B,dv= f g,dv-t f Ldw. ... (272)
0 0 4w

The net flux = F of the radiation of all frequencies is, of course,
constant. When (271) is multiplied with cos 6 and integrated with
respect to  and v, we find

K = Fr + const.,

K=J‘°°dev, K= fIvcoszﬂdw, ...... (273)
0 ”Bv

which represents a generalization of Eddington’s relation (32),
K having, however, no immediate physical meaning in this case.

ProBLEM V. Find [, (+,6) and B, () from (269), (271) and (272)
when the radiation incident at the surface r= 0 is zero, while the
radiation incident at the inner face 7 =7* has a prescribed value
1,*, independentt of the direction (6 < m/2).

We shall first find the integral equation for B(r). On inte-
grating (271),

flv*e_ﬁ"sec fe*—m) Bv secf f7 e—Bysecli-r) Bvdt; 0< ; s
I, (r,0)= T
T

(ﬁv | sec 6 | J‘Te*ﬁv lsecOlr-D B dt; 0> o
0

and on integrating, now, through all directions,

™ I.*
& [100=B [ BBl -t BB O+ By 8 2,

...... (275)
We introduce the bricef notation
® (z, B)= f “82E,(8,%)B,(B)dv  ...... (276)
0
and ‘F(B):fo B,B,(Bydv. ... (277)

t This is unessential for the subsequent considerations.
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When the coefficient of absorption is a known function of depth
and frequency, ® and ¥ are to be considered definite functions of
their arguments. From (272) and (275), we obtain the funda-
mental integral equation

VB = [ O(r—t] BOd+106*~7)

where G (x)=fw/3,,[,,*ly’2 (B,x)dv,  ...... (278")
0

for the determination of B (7). Once (278) is solved we are able
to determine B, = B, {B(7)} and, from (274), I, (r,0).

§31. DISCUSSION OF THE NON-LINEAR
INTEGRAL EQUATION
The difficulties connected with the Problem V, pointed out
already in § 4, compel us to content ourselves with some qualita-
tive remarks on the solution of (278). Again, it is convenient to
introduce a brief symbol

0(B),= 41*(1){] T—t|,B(t)}dt  ...... (279)

for the non-linear integral operator within (278). (278) becomes
then V{B(r)}=0(B),+}G(+*—7). ... (280)
In the special case of gray material, 8,=1, O becomes the lincar
operator L of Schwarzschild, while & (x) simply becomes I*E, ().

The operator O has a fundamental property which may be
called ‘monotonity’ and which corresponds to positivity in the
linear case. Since (276) represents, according to (269’), an in-
creasing function of B,
By (1) B,(7); B, % B,

0 (Bl)f < 0 (Bz)r

everywhere. We also note that the function ¥ (B) in (277) is an
increasing function of B.

implies

THEOREM XIX. Problem V has a solution. The integral equa-
tion (278) can be solved by successive approximations.
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Proof. We first study O (B), in the case of a constant B ().
For any v, B, () is then constant too. We remember that O (B)
is obtained from the first term on the right of (275) by multiplica-
tion with 8, and by integration through the spectrum. This term

equals, now, B, .. ) ] .
5 2= By (B,7)— B[ B, (*— 7)),

whence O (B), =¥ (B)- éfw B,B,E,(B,7)dv
0

~3[ BB BB, (* = )b, .(28)
0

in the case of a constant B. We might, together with (276),
® =0, introduce the functions

®, (x, B)= J 0/3% E, (8,%) B,(B)dv. ......(276")

(281) then takes the form
W (B)=0(B),+ i@, (7, B)+ 1@y (7* — 7, B). ......(281")
From (269’) we obtain the following property of the functions
®,,, in particular of ®,,
O, (x, B)-»>00; B->oo.
This property shows that, for all large enough constants B,

@, (z, B) > G (),
0 <z <7*, or, according to (281’), B= B, that the inequality
Y(B)>O0(B),+3GE*-7), ... (282)

0 <7< 7*, holds for all sufficiently large constants B. This proves
the convergence of the successive approximations in (278).

Weset  W(B,,(}=0(B,),+3G(* 1), ....(283)
B, (7)=0. ¥ (B) being an increasing function of B, (283) uniquely
defines a series of functions B, (1), n=0, 1, 2, .... We obviously
have B, (r)> By (r).

Supposing the inequality B, (r)> B, _;(r) to be true for one
particular n, we find from (283), according to the monotonity of

the operator O,
lIJ‘{Bn+1 (T)} >0 (Bu—l)'r+ %G (T* - 7) =¥ (Bn (T)):
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whence B, ,,(7)> B, (r). Induction shows thus the genefal

validity of this inequality. On the other hand, from B, (r) < B,
V{B, (1)} < O(B),+ 3G (+*-1),

and according to (282), B, (r)< B. Continuing in this way we

generally find B, (r) < B. The limit function

B(r)=lim B, (7)

is as before seen to satisfy the integral equation (278), q.e.d.
The proof of the uniqueness may be omitted.

§32. REMARKS ON THE CASE OF
INFINITE OPTICAL DEPTH
Theorem I is probably generally true. We shall indicate the proof
in the present case.
According to 1,20, we find as previously

I,(r,7)=ePrsecd5 (r)+ B, sec 0f e~Bysecd-n B dt, ...... (284)
1,(r)2 0, for the radiation from below, 6 <=/2. According to
B,zo0, I(r,r)2eBvmi,(r); O<m/2,
and according to (273),

K,(r)> &BB f i, (r)cos20dw, ... (285)
thus yielding ’
. . . 1 mebvT,
I\(T)>J](T,T)00829dw; J= —— 1, (r)dv
n 0

This is readily seen to imply ¢, (r) = 0 for almost all (v, r), because,
otherwise, K (v) would increase exponentially with increasing ,
in contradiction to (273).

ProsrEM VI. Find B and I,, the incident radiation being
zero, and the flux constant F' = 0 being given.

The integral equation of this problem becomes, according to
the notation introduced in § 31,

Y(B)=3| Ofr—t|, B}t ... (286)
0
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Itis natural to conjecture that this equation has a one-parameter
family of solutions B (7,¢). In the simplest case of gray material,
B,=1, (286) becomes Milne’s linear equation. In the present
general case, the connection between B and F is no longer linear.
In analogy to the linear case, we could also insert (274), 7* =00,
directly into the flux integral, whence, according to (276’),

Fe2 wsz{t—r,B(t)}dt—2f7¢’2{r—t, B(O}dL. ......(287)
T 0

When this equation is differentiated and account is taken of the

relations

%‘Dn+1 (il?, B)= —q)n ('17: B)s kY (B)=(D2 (O’ B):

(286) is again obtained. On inserting (274), 7* =00, into (273), we
find the relation

[[og-1. Bya=
0
thus yielding 7

B

7+ const.,

9
=

2 0
~lim _f O, (| r—t|, B} dt.
1“—507 0

This relation might be used in order to determine the parameter
in B(7,c), when F is given. Differentiation of this relation leads
again to (287).

§33. ABSORPTION AND SCATTERING.
SCHWARZSCHILD’S INTEGRAL EQUATION

When absorption and scattering are simultaneously to be taken
into account, the determination of the radiation field becomes an
exceedingly difficult problem. It was pointed out in § 4 that this
general problem leads to a complicated non-linear integral equa-
tion of B. In order to derive this equation we must first, by means
of (16) and (16’), express the Ergiebigkeit J, in terms of the
emission n, =a«, B,. This present section is devoted to this partial
problem.

We suppose scattering to be uniform, y=1. Since the above
problem concerns only a definite frequency v, we replace, for the
sake of clearness, the affix v by a dash. B,=B', a,=a’, ...
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We introduce the total optical depth

1'=j£ p(a' +0o')dx

— Q0

’ 14

and set /\=~—,a—~,, 1—)\=—,a——,.
a +o a t+o
In the outermost layers of the sun scattering plays the chief réle,
while in the deeper layers absorption predominates,
A=>1, 7=>0; A->0, 7—>00. ... (288)

The incident radiation being zero, we obtain, on integrating
(16) and on inserting the intensity into (16'), n,=a,B,,
Schwarzschild’s integral equation

J'(r)=AT) A ), +{1=A(7)} B’ (7) ...... (289)
for the determination of the Krgiebigkeit, A being Milne’s
operator (52). Milne has shown that an equation of the type of
(289), together with (288), holds under much more general con-
ditions than under local thermodynamical equilibrium. We con-
tent ourselves with a few qualitative remarks on the solution.
In order that (289) have a positive solution, the N-solution must
be finite. We prove that, in general, the Neumann series con-
verges.

TurorEM XX. Under the hypothesis (288), the N-series of
(289) converges if B’ (r)=0 (")
holds for some o < 1.

Proof. First westudy the homogeneous equation corresponding

to (289), but with a constant A=2. Since (230) represents the
characteristic function of Milne’s equation f= A (f),

A 1+u
K (u) = 2—&10g —l_——u

will be the characteristic function of

f@=2A(),. ... (290)
We know that, for A=1, w=0 is the only characteristic root in
the strip | ¢| < 1, and that, for X < 1, there are precisely two roots
in that strip, being real and of opposite sign. When u increases
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from 0 to 1, « () increases from A to +co. For an arbitrarily
given positive 8 < 1, we can, therefore, find a A< 1 such that 8
becomes a characteristic root. According to the theory of Chapter
1v, there exists a solution of (290), satisfying

flr)~efr, L (291)
for + large. The following choice of 8 is convenient for our pur-
poses, a<B<l, . (291')

« referring to the hypothesis of the theorem.
From (290),

fHe—AA (f+c)=(l —§)f+c{1—/\A(1)}, ...(292)

¢ being a constant. We obsecrve that A=A (7) is always less than
one and tends to zero as 7—>00. According to the hypothesis
made about B’ (r), and according to (291) and (291’), the first
term on the right of (292) will, for all large =, be greater than
{1=X(7)} B’ (7). On the other hand we can, according to A (1)< 1,
choose ¢ so large that, in the remaining finite =-range, the right-
hand side of (292) becomes greater than (1 —2) B’. This choice of
¢ leads thus, for all 7, to

J(@)SAEAJ),+{1=AE)} B (7),  ...... (293)
J =f+c. J is, of course, positive when c is sufficiently large.

This proves, in the usual way, the convergence of the N-series.
Denoting the partial sums of that series by J, (), J,=0, we have

Jpa=M(J,)+(1=-2) B'.
On subtracting this from (293),
J=d =M (J =J,).
The positivity of A implies thus J, <J for all n and for all .
From Jy<J;<J,<..., the existence of the limit function J’,
solving (289), is inferred, .e.d.
It may be mentioned that the homogeneous equation resulting

from (289) has no solution (except zero) provided that A (v)—>0
converges sufficiently rapidly as 7 — co.
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§34. MILNE’S MODEL OF A PLANETARY NEBULA
IN RADIATIVE EQUILIBRIUM

There is another problem of radiative equilibrium worth men-
tioning because of different boundary conditions. A spherical
gaseous shell is illuminated by a source of light located in the
centre of the shell. What is the distribution of light in the shell
when in radiative equilibrium? We confine our attention to the
case of purely absorbing gray material, or to the formally equi-
valent case of monochromatic radiative equilibrium. Let, for
the sake of simplicity, the shell be iufinitesimally thin, the
optical thickness 7* being kept finite (see the beginning of §5),
i.e. we neglect curvature.

We introduce the same variables =~ and 6 as in the previous
models of a stellar atmosphere. The boundary conditions are
then as follows:

(@) There is no radiation incident on the outer face, =0,

I1(0,0)=0; 0>x/2.

(b) The inner face receives the normally incident parallel
radiation of the point source O, the net flux, at r=7%*, being = S.

(¢) This, however, does not ex-
haust the radiation incident at the
inner face. It also receives radia-
tion emergent from other points
of the inner face. The radiation
not being weakened while travel-
ling through empty space, the
figure shows that we have

I(+*,0)=1(*,7—0); O<u/2
at the inner face.

This apparently represents a new type of boundary condition.
It might be regarded as a special case of

I(r*,0)=1(r*,m—0)+1i(0); O<m/2,...... (294)
1 (8), the excess of the incident over the emergent radiation, being
given. When the finite size of the central star in O is taken into
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account, () represents a finite function. The case of parallel
radiation normally incident at r=+* must, as in §17, be treated
as a limit case.t
We now derive Milne’s integral equation of the problem,
under the boundary conditions (a) and (294). Schwarzschild’s
fundamental integral equation of the plane model, with the
boundary condition (@), and with any radiation incident at r =%,
was given by (64) and (64’). According to (294), the last term in
(64) splits into the summands
1

— | e—t*-msectd | (r*,m—0)dw + ' j emtrt-mseol () dw.
47T + )+

4

The radiation in the first term comes through the shell from its
outer parts,

I(+*,w—0)=sec Off e~*=hsecl J () dt; O<m/2.
0

Inserting this into (295) and using (49), n=1, we obtain the

integral equation

J(r)=L*(J).+ %r Le—<f*—f)S°°9 i(0)dw, ...... (296)

where L*(J)TE%JT*.](t)[E(IT—t{)+E(21-*—-r—t)]dt.
0

On proceeding, as in the beginning of §17, to the limit case of
normally incident radiation ¢ of net flux 7.8, we obtain Milne’s

equation g
J@)=L*(J)+pe™ (297)

The net flux 7 F, being constant in the shell, is found from (294),
F= !f i (v)cosfdw.
)+
In the present limit case we find F=S.

t For a finite central star, (294) does not precisely represent the condition of
the problem, because the central star covers part of the shell. In the limit case,
the condition is, of course, exact. It will, however, be of advantage in the sequel
to consider the mathematically more general condition (294).
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It might be mentioned that the integral equation can easily
be brought into the simpler form

J(T)=% f:r J(t)E(IT—tl)dt-}-ge—l‘r*—'rl,

J () being defined in the larger interval (0, 27*) by reflection at
7=17*.This shows, as before, that the solution is unique and given
by the convergent N-series. The same is, of course, true in the
more general case (296), since this equation admits of an analogous
transformation.

The radiation emergent from the outer face is given by the
usual formula (47), 7=0. It is of intercst to know how the model,
S (more generally 7 (8)) being given once for all, behaves as the
shell becomes more and more opaque (7*—o0). Milne’s approxi-
mate formulae suggest that the distribution of light, in particular
of the emergent radiation, becomes the same as in model la,
F = 8. The mere fact that the flux # =8, in the shell, remains the
same for all 7*, shows already that the shell cannot become dark
as 7*—o00. The central star is, of course, scen through the shell,
but its light is dimmed by absorption (or scattering). The greater
part of the light of the shell comes, therefore, from the shell
itself. We now give a rigorous proof of the above-mentioned fact.

TurorEM XXI. When 7*—oc0, the solution of (297) ap-
proaches the function 3.8F (),

i.e. the Ergicbigkeit in the case La, F'= 8§, the convergence being
uniform in every finite r-interval.

Proof. It is convenient to split the equation (297) into two
simultaneous integral equations,

- 8 .
jg(r)=L (g),+ZeT‘T s e (298)
L being Schwarzschild’s operator (64), and
h(r)=L* (h),+} f TG () E @c*—r—t)di, ......(208")
0

L* being the present operator (296’). We obviously have
J=g+h; . (299)
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g, h depend, of course, upon 7* too. The physical meaning of (298)
is that § represents the Ergiebigkeit when the radiation received
from the other portions of the inner face is neglected. Finally,
(298’) is the equation of the problem, where the true boundary
condition (294) is taken account of, ¢ (§) being identified with the
radiation emergent in the former case.

According to the symmetry property (210) of Schwarzschild’s
operator, ¢ (1) =¢ (+* —7) becomes the solution of

g(r)=L(g),+ -‘gc-f. ...... (300)

If in the N-series representing g all integrals are extended up to
infinity instead of to 7%, all terms obviously increase, i.c. g (7)
is smaller than the N-solution of the same equation, but with
Milne’s operator A. The latter solution has, however, in § 17 been
shown to be bounded. §(7) is thus uniformly bounded for all *.
Therefore, from (298’),

h(r) < L* (h), + i Ey(t*=7), oo (301)
¢ > 0 being a suitable constant.

We now make a crude comparison with model La. The theory
of model Ia shows that there

I(r*,0)— I (v*,7—0)>c'cos0,
0 <m/2, ¢’ being a suitable positive constant. Inserting this into

296), J being identified with the function f(r) of Problem la,
(296) g ()

we get ¢

f(r)>L*(f),+ 5 Ey(v*—71). ... (302)
(301) implies that A () lies below the N-series corresponding to
the last term in (301). Similarly, f(7) lies above the N-serics
corresponding to the last term in (301). From E, <2KE; we find,
therefore,

c
h (T) < ?f (T),
thus yielding, altogether, an incquality

J(@)<8Sa(r+1), ... (303)
a being independent of 7*.

HMP 7
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(303) will now be used to show the uniform continuity of J (r)
for all 7*. Let us first fix an (otherwise arbitrary) interval
0 <7< k. We choose 7* > £ and express, according to (296) and
(297), the difference

J(@")=J (), 02+ <7<k,
in terms of integrals. Arranging these integrals in a convenient
way, we find

|J(T")_J(T')|<;‘f0 )| B (| —t]) - B (|~ ~e])|de

T*
+3f (C+1)| B @* =" —1)— B (2> —7 —t)|dt
0

T*

+S’g; e —e|.

The second term is readily seen to be smaller than
" , k- (T*+ 1)2
R P A T
The above incquality signifies, therefore, that in an arbitrarily
given 7-interval (0,k), the functions J(r) are uniformly con-
tinuous, for all 7% > k4 1.

According to Arzela’s selection theorem, any sequence of
functions J (,7%), taken for an arbitrary sequence of numbers
7,%¥—>00, possesses a subscquence that converges uniformly in
every finite r-interval. Let J () be the limit function of such a
subsequence. It is on account of the uniform inequality (303),
that, in (297), the integration and limit process can be inter-
changed, thus yielding

J(r)=AJ),, Jzo0,
A being Milne’s operator. Theorem V shows, therefore, that J (r)
is a constant multiple of f (7). The constant of proportionality is
casily determined by means of the fact that the flux constant is
always 8. On applying the auxiliary theorem of § 13 to (297) and
to the relation
1= L* (1), + B, () + } By (2% 1),

we find 2 foJ (7) [By () + By (27% —7)]dt =8 (1 —e~7).
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According to (303), we may again proceed to the limit 7% o0
under the integral sign,

2 f:f(r) Ey(r)=

thus yielding J (r)=38f(r). Since, thus, all converging sub-
sequences of functions J, 7*— o0, have the same limit function,
we infer that J(7,7*) converges towards the mentioned limit
function as 7* - oo, the convergence being uniform in every finite
7-interval, q.e.d.

When the radiation from other portions of the inner face is
neglected, i.e. when (b) is the only boundary condition at = =%,
the integral equation is (298), § () being the Ergicbigkeit. 1t is,
in this case, physically obvious that the shell becomes com-
pletely dark as 7* —>co, i.e. that

g—>0, +*-»>00. ... (304)
This can be rigorously proved as follows. Applying the auxiliary
theorem of §13 to (208) and (300), we obtain

*;J' u(t) "dt:ffg(t)E’z(r*—t)dt=JTg(t)E2(t)dt.
0 0
Knowing from §22 that «<1 and that »—>0 as v*>o0, we
infer that the last integral in this equation tends to zero as
7% —>00.
In (298), the last term tends to zero as 7*—>co. As to the
integral representing L (§), we split the integrand into the two

factors L E(r—t|)
(VGE,) (\/g VI )
By application of Schwarz’s inequahty,
7 7B, Br—thy
@9).2<} g di g (¢ B 2

The first factor has been shown to tend to zero as v* —o0. Ac-
cording to the boundedness of §, the second factor is less than a
constant times B2 (, — tl)

o "85
(298) shows thus that (304) is true.
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It should be emphasized that this bibliography refers only to
mathematical contributions to the problems in question, and to
the original memoirs concerning the astronomical and geophysical
applications. A comprehensive exposition of the theory of radia-
tive equilibrium and of the approximate solution of the problems
is given in Milne (1).

To §§ 1-4. The theoretical foundations of the theory of radi-
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ative equilibrium are due to Schwarzschild (1), (2). He made the
first fundamental applications to the sun’s atmosphere (law of
darkening on the sun’s disk, origin of the Fraunhofer lines in the
spectrum). To the interior of a star, the theory was first applied
by Eddington. The mathematical problems arising from the
stellar interior are, however, not taken up in this tract.

It is necessary to say a few words about the customary intro-
duction of the fundamental quantities of the radiation field. The
use of several differentials ds, do, dw, dm, dr, especially in the
definition of intensity, is rather troublesome. From the point of
view of the mathematician, it lacks both rigour and beauty. The
entirc subject ought to be treated anew, and the fundamental
equations be derived in a rigorous way, the main tool being the
general theory of measure (in the sense of Lebesgue-Radon).

To §5. The purely absorbing gray model was first introduced
by Schwarzschild (1), while the model of a purely scattering
atmosphere is due to Schuster. The radiation field was originally
replaced by two antiparallel streams (Schuster-Schwarzschild-
approximation). The Schuster model was rigorously set up and
treated in Schwarzschild’s fundamental memoir (2) (case of
uniform scattering). Finally, the rigorous equations for the ab-
sorbing gray atmosphere were approximately solved by Milne,
who also studied the spectral distribution of the emergent light
(cf. Milne (1)).

To §7. The reduction to integral equations of boundary value
problems of the elementary theory of radiation is due to Hilbert,
who used it in his attempt to prove Kirchhoff’s laws. The funda-
mental integral equation (289) for the Ergicbigkeit, obtained from
(16) and (16’) in the plane case, is due to Schwarzschild (2).
The integral equations (53) and (54) of Problems I, II have been
given by Milne (1), (2). Milne established (53) originally in a
different form, which is obtained easily by partial integration
of the integral A (J),. On writing

C(r)= f OTJ Odt, e (305)
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we find
A), = fc_(7+t)2t0(7 th_] C(t+7')

The importance of the positivity of the kernels has already
been realized by Hilbert and Schwarzschild.

To §9. This method was first given in the author’s paper (1).
The existence of a solution could, of course, also be obtained from
Schwarzschild’s theorem about the solution of (64'), the last
term being (66). Schwarzschild proved that the solution tends
towards a limit function as 7*->c0. Since (cf. Theorem XVI)
for every 7* the solution lies below =+ 1 and above 7, it could
easily be seen that limit process, r*-> 00, and integration can be
interchanged in Schwarzschild’s integral equation. The limit
function lies thus between 7 and 7+ 1 and satisfies Milne’s
equation (cf. Kostitzin, Hopf (1)). In view of the central
significance of Model Ia, however, a direct treatment seems
preferable. The relation ¢=3}F was independently proved by
Bronstein (1) and by the author (6). The simpler proof given here
is the author’s.

To §10. The uniqueness was proved by the author (2).

To §§11, 12, Concerning the more general equation, treated
there, see also Hopf (3).

To §14. Formula (154) for the boundary temperature was
independently proved by Bronstein (2) and by the author (6).
The common root of both proofs is the general formula (151).
This formula is equivalent with the following fact, proved by
Ambarzumian in the case of Milne’s equation. The resolvent
kernel K (r,t) of the given kernel H (| 7—t|) satisfies the rela-
tion K (0,¢)=f"(t)/fy. Concerning Theorem X see the author’s
paper (8).

To §§15, 16. The increasing of g () was proved by the author
(7). The equation (176) is due to Bronstein (3). The numerical
-esults show that, at least for small and large =, Eddington’s
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approximation of ¢ (r) is the most accurate one (cf. Milne (1),
Table I).

To §17. Model 1b, for parallel incident radiation, was con-
sidered by Milne and Eddington. The case F = 0 applies, according
to Milne (2), to the upper air in the earth’s atmosphere, while the
case F > 0 is realized in the case of close binary stars (reflection
effect). For the approximate solution see Milne (1).

To §21. Concerning Arzela’s selection theorem, used also in
§ (35), see Courant-Hilbert, Methoden der Mathematischen Physik,
Berlin.

To §§21-23. Theorem XVI is, in the case of uniform scat-
tering, due to Schwarzschild (2), as well as the convergence
towards a limit model, expressed in Theorem XVII. The
Schuster-Schwarzschild approximate formula is
T+3

J=1I*
*4+1°

i.e. the mean of Schwarzschild’s limits. Schwarzschild computed
the correction on replacing the integral equation by a system of
linear algebraic equations. The approximate expression for J (7),
given in (217’), can numerically be computed by using a very
good approximation of g (7), for instance Eddington’s (Milne (1)),
which probably differs less than 0-5 per cent. from the true ¢ (7).
A comprehensive account of the Schuster-Schwarzschild pro-
blem is given in Milne (1), § 14.

To §§24-30. The solution by means of Fourier-Laplace in-
tegrals was given by Norbert Wiener and the author. The
explicit, though very complex, formula for the law of darkening,
resulting from this theory, is of main interest in astrophysics. It
must, however, be mentioned that this method, though solving
Problem Ia explicitly, has but a limited applicability, as concerns
many other problems of radiative equilibrium. The comparison
methods, resting on the positivity of the kernel, furnish a simpler
and more general access to a physically satisfactory (though not
explicit) solution.
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The simpler equation (226’),
B(T)=%f+m3(t)E(]r—t[)dt, ...... (307)

can be interpreted as the approximate form at great depth of
Milne’s exact equation. The only characteristic roots being u =0
(double), B (r)=ar+ b is suggested to be the only solutions of the
type (236). On using (305), J = B, the above equation becomes

C' (r)= f : ¢ (-T-i)z_-tﬂf‘—” e-tdt. ... (307")

This equation has been studied by Littlewood and by Hardy

and Titchmarsh. An account of their results is given in Milne

(1). The latter two authors have proved that the only continu-

ously differentiable solutions of type (236) are given by
C(r)=ar?+br+c.

The more general equation, obtained from (307’) on replacing e~

by an arbitrary function vanishing like an exponential function

as ¢ >0, has been treated by the author (4).
The proof of Theorem X, § 29, was given by the author (8).

To §34. About the relation between radiation and tempera-
ture, in absence of local thermodynamical equilibrium, see Milne
(1), §19. Our A is called there 1/1 + 7.

To §35. The ‘planctary nebula’ problem was treated in Milne
(3). Reference to the former work by Jeans and Gerasimovich
is found at the end of this paper.



LIST OF SOME FORMULAE
OF PHYSICAL INTEREST

Pure absorption. Gray material in strict radiative and local
thermodynamical equilibrium. Model Ia:

=Ipai_sp R
ﬁ(T) ﬂ_T‘r 411 {T+Q(T)}’ \/géq(7‘)<(ﬁm
nF being the net flux, 7', being the temperature at the optical
depth . 2
7104 — }./13 Tc4’

T, being the surface, T, the effective temperature.

ud

e N A L

The function

u J‘g log [(1 — ¢ cotan ¢)/sin? ] dé
7Jo u?cos®p +sin?¢

can once for all be tabulated. The law of darkening is (see end of
§25) 1(0,8)=3F® (sec).

This holds also in the absence of local thermodynamical equili-
brium.

Model Ib: Parallel incident radiation of normal net flux =S,
the angle of incidence being 6'. The absorption coefficient for the
incident radiation is supposed to be a constant fraction n of the
general absorption coefficient. The following formulae give the

\/i_%(l)(u)=(l+;b)exp{_

upper and inner limiting temperature 7, 7', ( B =: T‘*) ,

B,= %E nS8® (nsecd'); B,=3Scosd'®(nsect’)

and By/Bo=nsect/V3.
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