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Abstract  

The history of smart homes has its source and roots in building and home automation.  Today 

(2013), the home automation area offers remote and timer control of systems and embedded 

devices such as light, heating, ventilation, entertainment systems, appliances, etc., to improve 

comfort, convenience, energy efficiency, and security. However, the element of autonomous 

behavior is lacking, this is where the smart homes come into play.  

The smart homes era builds on the progressing maturity of these areas and the Internet of 

Things evolution, adding artificial intelligence to the home automation field. Smart homes 

will be based on distributed multi-agent architectures to overcome technological challenges 

such as immature home intelligence, huge network and central server processing load; and 

embedded resource usage. At present, smart homes are still in their infancy, and they only 

exist in the form of laboratory experiments such as living labs.    

To pave the way for future smart homes, more research on distributed system architecture, 

smart objects, and distributed artificial intelligence frameworks in a smart home context is 

needed. State-of-the-art research projects have so far only shown a centralized approach. 

This work contributes to the field by developing a new distributed framework for smart 

homes, which comprises a real-time distributed system with autonomous behavior, parallel 

processing, context awareness, and node communication. The proposed solution takes into 

account significant technological challenges such as real-time learning, detection probability, 

battery lifetime, network communication, and embedded processing power. In particular, it 

introduces a novel approach to adapt and distribute the artificial intelligence to match the 

distributed system architecture in the smart home. 

A multi-agent smart object model is provided to support the artificial intelligence framework 

with a new distributed architecture. This model focuses on the embedded resources, the sensor 

frameworks, and the employed algorithms and leads to considerable savings in battery power 

consumption, processing resources and network load. It is part of the developed hierarchical 

distributed smart home system architecture which consists of a Low-Level and a High-Level 
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Smart Home System (LL-SHS and HJ-SHS). The layout structure and architecture of this 

model are derived and part of it is simulated.  

The methodology used in this work is based on a combination of established theories, i.e., the 

―hybrid imagination‖, the ―truthiness‖, and the theory of induction and deduction. These 

theories are combined with an iterative process model, which is used to support the research 

process. This research process uses: technical and mathematical analysis based on library and 

online searches; objects oriented process modeling; model and code implementation; and test 

by using empiric dataset from other independent researchers. The research results are 

presented in a ―research view‖ and a ―presentation view‖ which covers the research process. 

The proposed framework features a simplified implementation, high flexibility, learning and 

prediction on the fly, advanced temporal prediction, standalone capability, limited processing 

resources, and easy integration with the smart objects. Significant parts of the framework are 

simulated to validate their performance, and it is shown that the performance is comparable to 

state-of-the-art smart home technologies.  

In a larger perspective, the proposed framework supports and facilitates the coming era of 

Internet of Things. The distributed approach and elements of the framework can be applied in 

many related areas, such as ambient-assisted living, e.g., assisting elderly people to stay 

longer at home, intelligent transportation systems, and many other sustainable solutions based 

on ICT. 
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Resume 

Smart homes er en videreudvikling af hjemme- og bygningsautomationsområderne og 

tilbyder avancerede hjemmeautomations-funktionaliteter. Således tilbyder smart homes i dag 

(2013) fjernstyring og timerkontrol af indlejrede systemer såsom: lys, varme, ventilation, 

underholdningssystemer og apparater for at øge komfort, bekvemmelighed, energieffektivitet 

og sikkerhed. Imidlertid mangler dagens automationssystemer det ‖intelligente‖ element, som 

smart homes tilbyder.  

Smart homes udvikles i takt med, at området for hjemmeautomationssystemer modnes og 

gradvis udstyres med kunstig intelligens. Et væsentligt element i denne udvikling er ’Internet 

of Things’-evolutionen. 

Fremtidens ’smart home’-teknologier vil blive baseret på en distribueret multiagentstruktur 

for at kunne håndtere de teknologiske udfordringer. Disse udfordringer omfatter: udvikling af 

intelligent adfærd, bearbejdning af store mængder data i netværk, håndtering af belastning og 

ressourceforbrug på centrale servere. Nutidens smart homes er ikke i stand til at håndtere 

disse teknologier, da smart homes kun eksisterer som laboratorieforsøg.          

Mere forskning er nødvendig for at smart homes kan blive en realitet. Således behøves der 

forskning i distribueret systemarkitektur, intelligente objekter og i distribueret kunstig 

intelligens. Disse forskningsområder dækkes ikke af dagens state-of-the-art 

forskningsprojekter, som anvender centraliserede principper. 

Dette forskningsprojekt bidrager til ’smart home’-forskningsområdet ved at udvikle en ny 

distribueret arkitektur, som tilbyder: et realtids-distribueret system med autonom adfærd, 

parallel databehandling, kontekstbevidsthed og distribueret netværkskommunikation. Den 

udviklede løsning håndterer de teknologiske udfordringer, som er: realtidslæring med øget 

sandsynlighed for detektion, forlængelse af batterilevetid, reduktion af behov for 

netværkskommunikation og regnekraft. Et særligt punkt er introduktion af unikke principper 

for at tilpasse og distribuere den kunstige intelligens, så den matcher den distribuerede 

systemarkitektur. 
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Endvidere udvikles en distribueret multi-agent ’smart objekt’-model, som understøtter den 

distribuerede kunstige intelligens med en ny arkitektur. Denne model fokuserer på indlejrede 

ressourcer, sensorarkitektur og anvendte algoritmer. Modellen medfører betydelige 

besparelser i strømforbrug (batterilevetid), processorressourcer og netværksbelastning. 

Endvidere er den en delmængde af den hierarkiske ’smart home’-arkitektur, som består af en 

lav- og højniveaudel. Arkitekturen og strukturen for denne model er udviklet og simuleret.   

Dette forskningsprojekt anvender en metodisk fremgangsmåde, som er baseret på en 

kombination af etablerede teorier, såsom "hybrid imagination", "truthiness" og teorierne 

omkring induktion og deduktion. Disse teorier er kombineret med en iterativ procesmodel. 

Således anvender forskningsprocessen teknisk og matematisk analyse baseret på 

litteratursøgning, objektorienteret procesmodellering, model- og kodeimplementering og test 

ved hjælp af empiriske data fra uafhængige forskere. Forskningsresultaterne præsenteres i et 

forsknings- og et præsentationsperspektiv. 

Resultaterne fra dette forskningsprojekt omfatter en forenklet fleksibel ’smart home’-

arkitektur og implementering, som tilbyder: læring og forudsigelse i realtid, avancerede 

forudsigelser af komplekse tidsmæssige sekvenser, selvstændige objekter, en reduktion af 

processorressourcer og nem integration med smart-objekter. Væsentlige dele af arkitekturen 

er simuleret for at validere de opnåede resultater og sammenligne disse med state-of-the-art 

’smart home’-teknologier frembragt af uafhængige forskere. 

Set i et større perspektiv understøtter den udviklede arkitektur den kommende ’Internet of 

Things’-evolution. Endvidere er det muligt at anvende den distribuerede tilgang og de 

arkitektoniske strukturer i mange beslægtede områder, såsom: at hjælpe ældre til at blive 

længere hjemme, intelligente transportsystemer og bæredygtige løsninger baseret på IKT, 

m.v.   
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1 INTRODUCTION 

This chapter provides the problem motivation (Section 1.1), which leads to formulation of the 

research questions (Section 1.2). By limiting these, the scope of this work is defined (Section 

1.3). Finally, the thesis outline is presented (Section 1.4)  

1.1 PROBLEM MOTIVATION 

Building automation has been a research field for the last two decades and has contributed 

with many standards, theories and technologies, which have been published and 

commercialized (Wang, 2010). Throughout the years building automation has developed from 

performing simple controlled functions such as regulating the heating, ventilation, and air 

conditioning to handling the changing needs throughout its lifecycle (Sauter & Soucek, 2011). 

Today (2013), building automation covers an umbrella of network and computerized 

technologies that are integrated into commonly available building management systems 

(Wang, 2010), (Sagi & Mijic, 2012).  

From this technological era the home automation systems have developed. Thus, from a 

pragmatic point of view the home automation is a residential expansion of the building 

automation area (Turner, 2011). The purpose of home automation is to ease life for its 

residents by controlling mundane functions such as light, ventilation, heat and appliances to 

improve comfort, convenience, and energy efficiency in the automated homes. This is 

performed in a non-autonomous way by adding simple remote controlled, timer based and 

pre-programmable functions. Examples of remotely controllable domestic activities could be 

heating, lighting, houseplants, entertainment systems, pet feeding, yard watering, and 

controlling different kinds of domestic robots such as vacuum cleaners. This research area is 

in focus today where researchers look into optimizing and maturing the technologies for 

bringing them into general use (Sagi & Mijic, 2012), (Liutkevičius et al., 2011).   
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The smart home area emerges from the technologies researched and developed in the home 

automation area and the building automation areas (Alam et al., 2012), (Sagi & Mijic, 2012). 

Thus, it is considered an extension of these areas where more advanced control features and 

autonomous behavior are added in the form of artificial intelligence (AI). In addition, it is 

stimulated by the Internet of Things (IoT) research area (Bandyopadhyay & Sen, 2011). The 

Internet of Things (IoT) research area provides context awareness, processing capabilities, 

and communication possibilities to physical things in general. Whereas the smart homes area 

is a subset of this dealing with homes only; however, this area can benefits from the research, 

technologies, and functionalities developed in the IoT area.    

It is expected that smart homes will have a huge impact on our future lifestyle.  They will be 

able to act ―intelligently‖ and provide services to its user in almost the same way, as a good 

old-fashioned ―butler‖ would do. Thus, smart homes may communicate about a lot of tasks 

such as adjusting lights and music level; controlling heating; and changing multimedia 

settings according to user preferences and mood (CERP-IoT et al., 2010). However, they will 

also provide services in the form of assisting and supervising areas such as: Ambient Assisted 

Living (AAL), i.e., elderly to stay longer at home; telemedicine; and energy and pollution 

savings (Basu et al., 2013), (Chan et al., 2008). 

Today (2013), many drivers are fueling this area, especially consumer, AAL, entertainment 

industry, and green technologies (Alam et al., 2012), (Fedosseev et al., 2011). However, 

barriers exist in the form of technological limitations, high cost, inflexibility, and poor 

manageability (Brush et al., 2011). The technological limiting barrier comprises a system 

architecture challenge in form of the limitations found in the centralized models researched 

today (2013). They suffer from a huge amount of network traffic, huge processing 

requirements on a centralized server, network interferences, complications with expansion 

and setup functionalities, and lack of real-time learning. Additionally, the employed AI 

frameworks are mainly standard solutions borrowed from the pattern recognition research 

area without adaptation to the specific problem area.     

Research has shown that use of a distributed concept in combination with today’s (2013) 

technology in the form of cheap embedded computers, fast sensors and advanced networks 
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can provide the resources needed to overcome these challenges (Silva et al., 2012), (Alam et 

al., 2012).  

To move the smart home research frontiers a distributed smart home architecture must be 

derived. This architecture needs to deal with the problems and challenges in the centralized 

approach, the agent-based approach, and make it adaptable and compatible with the future of 

IoT (Alam et al., 2012), (Silva et al., 2012), (Uckelmann & Harrison, 2011). Additionally, the 

research carried out in these areas has not adequately addressed how a distributed architecture 

can be combined with AI elements. Hence, in the past researchers have mostly worked with 

centralized systems, why limited research has been done in the area of distributed agent-based 

systems (Alam et al., 2012), (Reinisch et al., 2010), (Section 3.3).  

The agent-based Smart Object
1
 (S.O.) and the IoT research areas contain important distributed 

technologies for deriving a distributed architecture. These technologies have been discussed 

repeatedly among researchers; however, only limited research has been done in the key areas 

such as network load, resource consumption, and ability to support a distributed AI 

framework (Silva et al., 2012), (Liang et al., 2002). Firstly, the battery power usage (i.e., 

battery lifetime) in the wireless smart home devices is a problem (Casilari et al., 2010), (Bleda 

et al., 2012), (Sundmaeker et al., 2010). Secondly, the smart home network interconnecting 

wireless devices is limited by effects such as transmit power, interferences, retransmission, 

and other channel phenomenon’s (Bleda et al., 2012), (Rashid et al., 2012), (Casilari et al., 

2010), (Yao et al., 2010). Finally, the needed processing power for supporting AI systems in 

smart homes is challenging (Rashid et al., 2012), (Wu & Shao, 2012), (Bandyopadhyay & 

Sen, 2011).  

Supporting a distributed AI framework on an agent-based S.O. embedded platform requires 

heavy resources such as network bandwidth, processing power, and storage capacity. Thus, to 

                                                 

1
 The term Smart Object (S.O.) covers an object that is based on a small piece of software, which is installed on 

either an embedded hardware platform or build into an existing product such as a smart TV, a radio, or a 

toaster. This device is able to: communicate; be context aware; capture and process event from the sensors; 

and suggest actions based on AI. 
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overcome these problems research is needed to divide the algorithms into smaller hierarchical 

units, to simplify the employed algorithms, and to run the algorithms in parallel. Additionally, 

simplifications in sensor event information and data exchanged with systems out of context 

need considerations.  

A distributed AI processing framework needs to support an embedded microcontroller 

concept, a mechanism which is able to handle temporal connected activities, and facilitate 

autonomous S.O.s that are spatially distributed and context aware. Nonetheless, distributed 

artificial systems in smart homes have not been an active research area (Alam et al., 2012), 

(Silva et al., 2012), but it is expected that the IoT paradigm provides an AI framework that is 

useable in smart homes (Chen et al., 2011), (Gershenfeld et al., 2004), (Chen et al., 2013). 

Additionally, limited research has been done in the area of real-time learning, prediction and 

adaptation on the fly in smart homes (Cheng et al., 2009).  

Most AI research in smart homes deals with user activity
2
 recognition and prediction in a 

centralized form (Kasteren et al., 2008b), (Cook, 2012), (Alam et al., 2012). However, this 

research provides general useable datasets, which are publicly available (Cook, 2012), 

(Kasteren et al., 2011). These datasets are usable in distributed AI smart home research and 

for making a fair comparison between different smart home approaches, architectures and 

models.  

A distributed architecture that uses small IoT based S.O’s spatially distributed in smart homes 

needs to be resource aware, needs to provide a framework for node cooperation, and it needs 

to cluster the S.O. nodes according to their available resources and their spatial position (Li et 

al., 2011b), (Khan & Aziz, 2009). However, such a concept provides challenges in form of 

organization algorithms and information exchange principles, which need to be researched.   

The S.O. devices need a communication model that connects the devices and provides access 

to out of context devices such as user interface and cloud based services (Pensas & Vanhala, 

2010). This model must be flexible, must support generic device types, and it must facilitate 

                                                 

2
 An activity is what the user do, e.g., turning on the TV. 
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devices that are powered by either a battery or the mains (Shah et al., 2009). A key device 

category is the transmit-only sensors which are a research area in the WSN context (Zhao et 

al., 2013), (Blaszczyszyn & Radunovic, 2008). Using this technology in the smart home area 

provides means for lowering the power consumption in the sensor nodes, which are mainly 

battery powered. Such a combination has not been explored and needs research in different 

areas such as modifying existing technologies (ZigBee, 6LoWPAN) and Software Defined 

Radio (SDR) (Lu & Wu, 2011), (Starsinic, 2010). 

Deriving the content and architecture of a distributed S.O. provides challenges in form of   

software architecture, generic interfaces, and embedded hardware resources (Alam et al., 

2012), (Silva et al., 2012). The software architecture can benefit from the research performed 

in the IoT and WSN areas regarding generic middleware interface frameworks (Arabnia et al., 

2010), (Park et al., 2013), (Eisenhauer et al., 2009). Thus, combining different research areas 

and their technologies moves the limited research performed in the S.O. area forward (Alam 

et al., 2012). The embedded hardware architecture must offer the needed resources such as 

interfaces, control logics, event logics, communication logics, support for AI processing, 

support for small embedded microprocessors, and power resource management (López et al., 

2012), (Trevennor, 2012). However, limited research has been performed to derive a S.O. 

embedded platform concept, whereas some research in the controlled home area has been 

performed(Alam et al., 2012), (Basu et al., 2013).   

The methodology used in this work is based on a combination of established theories. Firstly, 

the modern ―hybrid imagination‖ theory enables the use of an experimental approach and 

thereby guides this scientific work (Christensen et al., 2011), (Normann & Jamison, 2011). 

Secondly, a theory about ―truthiness‖ in research provides the basis for the iterative model 

used in this work (Brodersen, 2008). Thirdly, a used process model arrives by combining an 

iterative process model with the theory of induction and deduction (Brodersen, 2008). Finally, 

this iterative process model is used to support the research phases. Thus, a technical and 

mathematical analysis based on library and online searches in combination with gained 

knowledge starts the process. Output from this analysis is captured in objects oriented process 

models. Vitale selected parts of these models are implemented and tested by using empiric 
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datasets from other independent researchers. A detailed description of each time-step in the 

model and a ―presentation view‖ of the research process are provided in section 2.4. 

1.2 RESEARCH QUESTIONS 

In a nutshell, the challenges are how to derive and combine a distributed system architecture, 

including its subjects, discussed in section 1.1, with a distributed derived smart home AI 

framework. Focus is on the discussed technologies and models (Section 1.1) that deal with the 

main conceptual challenges, i.e., battery lifetime, bandwidth usage, and processing resources. 

Additionally, as described in section 1.1, the challenges include: 

 A dedicated model. This model needs to deal with the problems and challenges in the 

agent-based research areas and the centralized smart home models research areas to 

make the Smart Home Systems (SHS) models adaptable and compatible with the 

future of IoT. In addition it needs to facilitate and support a distributed AI framework. 

 A SHS contained S.O. concept. This concept must be derived in the light of IoT and in 

terms of network load, resource consumption, and its ability to support a distributed 

AI framework. As noted focus is on battery power usage, bandwidth (i.e., channel 

capacity), and utilization of the available processing power. 

 Content and architecture of a distributed S.O. including its challenges such as generic 

interfaces, structured software architecture, and the embedded hardware devices 

ability to offer the needed resources. 

 An embedded hardware S.O. platform architecture which facilitates the structured 

software framework. It must offers the needed resources such as interfaces, control 

logics, event logics, communication logics, support for AI processing, support for 

small embedded microprocessors, and power resource management. 

 An S.O. communication model which is based on known technologies such as ZigBee 

and 6LoWPAN. It includes transmit-only sensors, clustering, and an overview of 

future Software Defined Radio (SDR) technologies. 

 Simplifications in S.O. and sensor event information and the output data exchanged 

with systems out of context. 
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 An AI framework that facilitates the S.O. concept and provides hierarchical layers 

which offer simple processing units and more advanced temporal processing.  

 To overcome the battery power usage, the limited processing power, and the scarce 

bandwidth resources research is needed in dividing, simplifying, and parallel 

processing the AI algorithms. 

A limitation is that it should be based on well proved and existing systems and technologies. 

This restriction ensures that it is possible to simulate models and concepts on existing devices 

and evaluate these against existing comparable research results. However, this limitation does 

not prevent future extensions and changes as discussed in section 10.2.    

The overall research problem can be stated as follows:  

Question 1: How should the distributed system architecture for smart homes be designed in 

order to incorporate AI and the diversity of S.O’s?    

Question 2: How should the AI be distributed to comply with the smart home system 

architecture?       

Research question one is essential because it establishes research and provides knowledge 

about a distributed system architecture which is based on S.O.s (agents
3
). This moves the 

research frontier in these areas further on. Research question two is essential because it deals 

with the possibility of distributing smart home AI systems and add real-time learning so it fits 

with the derived smart home system architecture including its S.O.s. An answer to this 

question will provide beneficial knowledge which will move the smart home and the IoT 

research frontiers.   

1.3 DELIMITATIONS AND SCOPE 

This thesis focuses mainly on smart homes, which cover most of the functionality in the home 

automation area (Chapter 3) with the added capability to learn from the user behavior and 

based on this learning, predict services to the user. This matches the standpoint from which 

                                                 

3
 An agent is defined as a single AI instance that is able to make a simple prediction based on learning. 
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the research has been conducted. Thus, home automation is not covered beyond what is 

needed for exploring and discussing the smart home research. The term smart home is widely 

used for building automation, home automation and in conjunction with IoT. In this thesis the 

term is limited to homes, i.e., flats, houses and places where people live. Nevertheless, the 

outcome from this work supports related areas such as AAL, green energy saving 

technologies and telemedicine. However, to narrow the subject of this work these areas are 

not discussed unless they support or exemplify the main topics.  

In general, smart homes span multiple disciplines why the focus needs to be narrowed down 

to cover smart homes at a conceptual level, a technical level, and an artificial level. Firstly, 

the conceptual level is limited to the two basic principles used in smart homes, i.e., the 

centralized and the distributed one. A combination of these and S.O. technology provides an 

advantageous compromise.  Secondly, at the technical level only available technology is 

explored in the context of the derived system architecture. This cover standard door switches; 

wireless sensor network topology; technology and protocols; transmit-only sensors; and 

routing devices and principles. However, these technologies are used in a new combination 

that is integrated into the distributed smart home system architecture. In addition, the derived 

systems must support distributed AI embedded on small controllers with limited resources 

and other existing devices. It must focus on technologies that deal with the battery, bandwidth 

and processing challenges. Thirdly, regarding the AI level the research is limited to 

probabilistic models and only includes other model types when needed to clarify and 

streamline the research. Nevertheless, these probabilistic algorithms are integrated, modified 

and used in new ways. 

As stated, the primary outcome is limited to a distributed system architecture and an AI 

framework that supports it. These models offer a high-level relationship, i.e., analysis and 

design models are provided; however, manufacturers need to design implementation models 

for supporting their particular products, i.e., fill-in the implementation details such as 

communication protocol contents, interaction with user interfaces, write proprietary device 

dependent software, and design their own factory standards for communication, etc. In 

addition, areas such as user involvement; access rights; usability; market; privacy and trust; 

and security are excluded. Nonetheless, some of these areas are discussed in the thesis when 
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needed for clarification purposes of the main topics. In this context it is noted that this work 

only covers one-user scenarios in the smart home. However, this choice is justified by 

assuming that each user is identified by a human-recognition-based system such as the 

position of a smart phone, Radio-frequency identification (RFID) tags and simple visual based 

sensors.  

The validation of the research outcome is based on simulation by using tools such as Matlab, 

derived Java programs, and microcontroller simulators. But, the research results are based on 

real life collected datasets available for public download from well recognized universities.                     

Finally, the derived models, concepts, and solutions are based on currently existing 

technologies and devices only. I.e., an extrapolation of technological subjects is not 

performed. 

1.4 THESIS OUTLINE 

This thesis research, discusses and derives a distributed system architecture for smart homes 

including its distributed AI framework as stated in the research questions. The dependency 

and structure of the chapters in this thesis are illustrated in Figure 1.1. As illustrated, two 

tracks exist. The leftmost track starts with chapter 4 that provides the background for chapters 

6 and 7, which deal with centralized and agent-based models. The rightmost track starts with 

chapter 5 that provides the background for chapter 8, which deals with the enhanced 

framework that uses AI.   

Chapter 1: Sets the scope of the thesis and defines the research questions.  

Chapter 2: Explains and discusses the used research methodology. 

Chapter 3: Discusses the development from building automation to smart homes. It includes 

the user perspective, the barriers decreasing the smart home deployment, the use of AI in 

smart homes, and it outlines the research frontiers. 

Chapter 4: Provides a background of distributed systems in relation to smart homes and it 

provides an overview of selected research areas involved in this field. 
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Chapter 5: Gives the background of AI with focus on smart homes. It discusses the different 

types of AI algorithms and presents their application in the context of smart homes. 

Chapter 6: Presents an analysis of the state-of-the-art in centralized and agent-based models 

including its AI framework. 

Chapter 7: Covers the derivation of the distributed system architecture including its S.O. 

model. The S.O.s model is discussed in terms of its architecture with focus on software, 

middleware and implementation. In addition, a communication model for the S.O.s is derived 

which supports communication with its outer contexts and integrates the concept of transmit-

only-sensor. 

Chapter 8: Presents the derived distributed AI framework which is hierarchically based. The 

performance of the framework elements is researched, designed, simulated and verified 

against reference material. 

Chapter 9: Presents a high-level overview of the final concept and states the contributions 

from this work. 

Chapter 10: Contains the conclusion, outlook, contributions and the future challenges.       
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Figure 1.1. Provides a sequence and dependency overview of the chapters in this thesis.  

  

1. 
Introduction

2.
Methodology

3.
From building automation  

to smart homes

4.
Distributed systems and

 smart homes

5.
Artificial intelligence: 

Algorithms and models

6.
Centralized and 

agent based models

7.
Distributed system
 architecture for 

smart homes

8.
Enhanced framework using 

artificial intelligence 

9.
Overview of the final

 concept and contributions

10.
Conclusion
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2 RESEARCH METHODOLOGY, APPROACH AND DESIGN 

An overview of the rationale behind the chosen methodology is provided in the following. It 

starts with a presentation of the ―hybrid-Imagination‖ and ―truthiness‖ perspectives (Sections 

2.1 and 2.2). These perspectives are important because the up-to-date interpretation of the 

term ―research‖ deals with the use of modern and future methods; similarly the problematic 

subjectivity of the term ―truthiness‖ is relevant. Both perspectives integrate well with the 

inductive and deductive based iterative process model derived for this work.  

Following these theoretical and general process considerations the used methodology is 

discussed and presented. Firstly, the methodological process model is derived and discussed 

(Subsection 2.4.1). Secondly, the methodology used in the research process is presented and 

explained (Subsection 2.4.2).  Thirdly, the research methodology is viewed from a 

presentation perspective which follows the structure in this thesis.  

2.1 THE ―HYBRID-IMAGINATION‖ PERSPECTIVE 

For today’s researcher it is important to understand and make some reflections about the 

meaning, context and implications of the terms science and research. This makes it possible to 

perform research in a proper manner.  Defining ―proper manner‖ is not a trivial task because it 

has changed through the influence of history and politics that together with funding and 

business potential have affected it in form of controlling values. Thus, this section provides an 

overview and discussion of the important parts filtered by the author’s subjective 

interpretation.  

According to Jamison (2011) producing knowledge is increasingly important, but most of this 

ongoing knowledge making process cannot be referred to as science and the so-called 

―scientific community‖ has simply become a figment of imagination.  This point of view is 

supported in Normann et al. (2011) by a reference to the work of Latour (1998): 

Science is certainty; Research is uncertainty. Science is supposed to be cold, straight 

and detached; Research is warm, involving and risky. Science puts an end to the 
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vagaries of human disputes; Research fuels controversies by more controversies. 

Science produces objectivity by escaping as much as possible from the shackles of 

ideology, passions and emotions; Research feeds on all of those as so many handles 

to render familiar new objects of enquiry (Latour, 1998).  

This deals with the paradigm shift we are seeing from ―science‖ as a certainty provider to a 

more uncertain concept founded in ―research‖. This approach supports a more experimental 

methodology that fits well in the modern world. Thus, this concept offers the degree of 

freedom needed to deviate from the established process models and designing one that fits to 

this specific work.  

This work uses small dynamic cycles that complete a specific research topic, i.e., the results 

grow out of a circular concept as discussed later. Sorting these topics and looking into the 

most difficult and critical ones (critical items) in the beginning of the research is 

advantageous. The rationale behind this is that the cost and risk of changes are much lower in 

the beginning of a project; actually, this cost relationship is exponential (Ambler, 2006). Thus, 

in this work the most difficult and critical parts are planned early in the research process. 

However, a risk is that the prioritization of the parts is based on an incomplete knowledge 

because it is decided early in the project phase. Adding an iterative element means that critical 

parts are revisited, but redoing them is resource consuming anyway.  

The principles of ―hybrid imagination‖ have been used as a guide for this work. As stated in 

(Normann & Jamison, 2011) the ―hybrid imagination‖ approach uses the external changing 

conditions as an empowerment that supports the understanding of an experimenting approach. 

This means that the process of exploring, researching and experimenting should adapt to the 

changing external conditions in the form of adjusting processes and methods used, planning, 

and decisions. In this work these adjustments have been done based on the present knowledge 

level, i.e., as the research progresses more knowledge is provided, and this new knowledge 

then guides the adjustments for the future processes and methods.     

It has been found that the solidly based concepts of ―research versus science‖ and the ―hybrid 

imagination‖ catalyze the used methodology.  
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2.2 THE SCIENTIFIC WORK AND ―TRUTHINESS‖ PERSPECTIVE 

Fundamentally, a methodology is based on a systematic collection of guidelines for solving a 

problem. Because this project is primarily based on research, the outcomes must be anchored 

in commonly accepted scientific research methods, i.e., it needs to be solidly founded in a 

scientific research methodology. As a consequence, the scientific outcome must be considered 

to be the ―truth‖ about the subject in question. A process for approaching the ―truth‖ is going 

through a sequence of research activities that supply statements or claims that converge into 

the ―truth‖. As will be seen in this section this is a non-trivial task. 

Before going into the discussion of methodology it is important to define what scientific work 

actually is. Brodersen (2008) defines it this way:  

The objective is a precise control of one's thinking, which is missing its goal if it is 

not systematic (Brodersen, 2008). 

Also presented is a list dealing with all the necessary phases: 

1. Description of the problem (unsatisfactory versus satisfactory state) 

2. Theory about getting from unsatisfactory state to satisfactory state  

3. Experiments that can falsify/verify each hypothesis   

4. Expected outcome of the experiments  

5. Observed outcome of the experiments  

6. Conclusions to be drawn from the experiment outcome  

A discussion of some of these points in the line of this work is performed in the following.  

Combining the discussed approach with a cyclic process model provides some benefits. By 

embedding the six points list into each cycle in an iterative process it become self-sustaining, 

i.e., each round provides outcomes that are useable for planning the processes and methods 

used in the coming rounds. However, the iterative element also means that critical parts are 

revisited which provide the possibility to add further corrections.   

Choosing the methodology based on a process of self-sustaining iterative steps is in good 

agreement with the basic idea of ―hybrid imagination‖. This is the case as long as the 
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timeframe used for gathering sufficient scientific knowledge and obtaining technical skills in 

each cycle is short compared to the contextual timeframe. 

Normally, choosing a process model solves some problems, but also leaves the problems and 

questions about ―truthiness‖ of the produced knowledge unsolved. In general knowledge and 

statements about reality based on solid theories are accepted if the supporting arguments are 

so convincing that people agree they are true. Thus, science does not provide the only 

objective and absolute truth (Brodersen, 2008): 

Science supplies claims (statements) about reality which approach truth following 

long-term, systematic work. We will never achieve absolute truth – we can only get 

close (Brodersen, 2008). 

From a more philosophical point of view Brodersen (2008) states that: 

 Truth is what each of us perceives to be true based on our own experience; truth is 

private.  

 A claim is true if it corresponds to external reality.  

 The purpose of language is to provide descriptive, precise definitions and an objective 

presentation of reality. 

 A statement is true if it is coherent with and can be united with a broader system of 

statements without giving rise to contradictions; theory construction and logically 

coherent argumentation.  

 Things that everyone agrees about are true (consensus); the concept of truth is anchored 

in a social and historical context, which is subject to constant change 

Relating the term ―truth‖ to this research project is difficult because the expected outcome 

consists of this thesis describing the developed concepts along with simulated results. In 

addition it provides mathematical and some coded algorithms for future research projects. A 

proper way to deal with the ―truth‖ in this context is that the ―truth‖ is provided by comparing 

the developed results with a reference, i.e., reviewed published results from other independent 

researchers. Thus, a review process will ensure that the reference contents are coherent and 
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can be united with a broader system of statements without giving rise to contradictions and it 

will also provide proof that consensus is found to some extent.  

2.3 GENERALIZING THEORIES BY USING INDUCTION AND DEDUCTION 

The principles of induction and deduction help to generalize a theory by removing the special 

attributes, i.e., transforming a subjective theory into a more objective one. Most people find 

this approach increasing the reliability and truth level. 

Using the principle of induction means drawing conclusions based on specific examples and 

hypotheses, i.e., a more general abstraction level is sought. However, induction can lead to a 

wrong conclusion. This is exemplified by the commonly known fact that thousands of 

lemmings jump off a cliff and thereby kill themselves every year (Brodersen, 2008). A way to 

deal with this risk is combining it with common sense. Common sense helps us choose and 

find the right path in the possible choices.   

The induction principle is used in the methodology of this work where it provides a theory 

based on data from simulated smart home components mathematical derivations, library 

researches and Internet explorations.  

Regarding deduction it involves drawing a conclusion about individual cases based on general 

rules. This is kind of a transferring method because it is possible to progress from a general 

level of abstraction to a more specialized one. Reflecting on this in connection with the cyclic 

development process used in this work, it provides the background for succeeding rounds. 

Thus, when a round is finished a new layer of features is added to the unfinished product, but 

this often leads to new ideas and improvements of existing product parts –actually this is what 

―prototyping‖ is about. 

The figure below provides a graphical overview of the just discussed theoretical items 

(Brodersen, 2008): 
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Figure 2.1.  Using induction and deduction to reach a logical conclusion (Brodersen, 2008). 

As illustrated in Figure 2.1 this process involves a hypothesis, which in this work is 

substituted with a draft attempted and simulated solution to the research questions. By 

combining this in a synthetic way with induction, i.e., generalization based on collected 

information, a more general abstraction level can be reached. Filtering this level creates a base 

for using deductive methods to infer new knowledge into the project by generating examples 

and doing experiments with the simulated results.   

2.4 SELECTED METHODICAL APPROACH 

A model for the selected methodological approach is presented. Thus, based on the discussed 

methodical elements in the previous sections focus in this section is set to combine these into 

the used methodology. 

2.4.1 THE METHODOLOGICAL PROCESS MODEL 

A part of the methodology governing this work is based on existing datasets achieved from 

state-of-the-art research in the smart home area. Thus, Cook (2012) and Kasteren et al. (2011) 

have produced several datasets which are based on real-world experiments where people lived 

in smart homes for some period of time (Section 4.3). These datasets are usable in this work 

because they contain raw sensor data arriving from sensors triggered by the residents 

performing their daily tasks. All datasets are annotated by the residents on the fly, by using a 

Bluetooth headset. The other source of data was papers and online sources which deal with 
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smart home experiments and architectures, but also related sources such as IoT, distributed 

technologies, and pattern recognition have been included.  

All datasets points to the use of qualitative methods because the available data are not 

quantitative measurable, they need to be explained, and they need new theories and 

knowledge to be researched. Qualitative research methods are emergent, interpretative and 

require complex reasoning that is multifaceted, iterative, and simultaneous; additionally they 

include inductive and deductive processes. The qualitative method research methodology 

offers iteratively based experimental research strategies. Thus, this work selects a combined 

inductive/deductive cyclic approach that analyzes the datasets in an iterative manner and 

thereby derives algorithms, models and simulations (see the following paragraph). Finally, 

dataset based simulations are used to explore the derived results, which are then validated and 

verified by comparing it with other related research works. Because the validation datasets are 

annotated by the smart home resident they can be characterized as quantitative data, which is 

considered accurate and reliable through validity and reliability.  

The cyclic process used in this work divides a task into a collection of small packets. This is 

beneficial because it lowers the project risk, it enables early presentation, it offers isolated 

review of one research topic at a time, and it revisits packets when more knowledge is 

available (Cockburn, 2008). A downside is that requirements are not steady because they also 

evolve with the produced packages. Nonetheless, in research context processes are guided 

iteratively from the research questions, so these deviations are limited and manageable.  

A risk prioritization approach was used to control the used cyclic process. Thus, by selecting 

high risk items and focusing on these first in each research cycle the risks of being trapped 

late in the process by unsolvable items were reduced. Additionally, this cyclic process was 

combined with a sequence of induction and deduction steps (Section 2.3) as explained later 

and illustrated in Figure 2.2.  
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Figure 2.2. Methodological process model used in this work. 

The process starts at point 1 in Figure 2.2 by collecting specific system knowledge. Using the 

induction step brings the model into point 2 where the established abstract knowledge is 

generalized into a theory. Using this theory to ―clean‖ the results derived from simulations 

and mathematically derivations produces outputs that have more certainty and contents with a 

higher level of truth. This generalized knowledge is then transferred through the deduction 

step (point 3) which produces and generates examples that are useable for simulations. These 

examples are then combined with theoretical knowledge to refine and filter them into the 

focus area where they are compared with reference models. By comparing the achieved 

outcome with similar works, performed by others, an updated general theory is produced by 

using the induction step, i.e., moving from 3 through point 1 to point 2, etc. Thus, moving 

around this circular model produces general outcomes such as a distributed conceptual smart 

home model and it produces more specific outcomes such as the detailed AI framework that 

has been derived in this work.  

The time-structure of the used research methodology is presented in subsection 2.4.2. It 

follows the strategy discussed earlier in this section. However, this research methodology did 

not provide the best way to present, illustrate and explain the results and outcomes from this 

research work. Thus, a presentation methodology view has been derived which organize the 

topics in a logically structured way that is more readable (Subsection 2.4.3). Nonetheless, it is 

noted that the presentation methodology is an alternative view of the research methodology 

which covers the performed research work. 
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The presentation methodology structure is discussed in the following and illustrated in Figure 

2.3. As explained in subsection 2.4.2 the two models have been derived in a separate manner. 

Thus, the distributed system architecture and the AI framework have been derived 

individually based on the background chapters 4 and 5, i.e., they do not depend on each other. 

The reason for decoupling these two main subjects from each other is to provide a loose 

coupling. A loose coupling means that each of them can be changed or substituted in the 

future without affecting the other one. It also means that they can be treated individually 

throughout their lifecycle, i.e., development, test, updates, maintenance, and end-of-life. From 

a presentation point of view (Subsection 2.4.3) the background research has been presented in 

chapters 4 and 5 as illustrated in Figure 2.3. These chapters provide an overview of the used 

and related state-of-the-art research areas. The main contribution of this work is allocated to 

chapters 6, 7, and 8. Where chapters 6 and 7 present and discuss the derived distributed 

system architecture, chapter 8 presents the derived distributed AI framework.  

 

Figure 2.3. Presentation methodology for this work. Please note, the full figure is available in Figure 1.1.   

2.4.2 RESEARCH METHODOLOGY 

A more detailed overview of the research performed to deal with the research questions 

(Section 1.2) is provided and discussed. Thus, by using the methodology discussed in section 

2.1 to section 2.3 some phases have been derived and used in this work: 

4.
Distributed systems and

 smart homes

5.
Artificial intelligence: 

Algorithms and models

6.
Centralized and 

agent based models

7.
Distributed system
 architecture for 

smart homes

8.
Enhanced framework using 

artificial intelligence 
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Phase one:  The critical element was the holistic distributed system architecture including its 

AI. The term ―holistic‖ underlines that this model contains hierarchically based smart devices 

which connect to high-level subjects such as user-interface and more complex systems. In this 

process many small cycles were used to verify and update the model. Thus, a bottom-up 

approach was used to deal with the distributed smart devices and a top-down approach was 

used to interface the high-level elements to these low-level elements.     

Phase two: The low-level model part was iterated by using a bottom-up approach. Focus was 

set on the low-level critical elements such as power savings, network load savings, and 

embedded processor resource savings. Using this focus the distributed system architecture 

was iterated to include an AI framework and combine this with the smart devices (S.O.s). 

Hence, the model was re-designed, the simulation framework was modified, and the simulated 

results were verified – in a repeating bottom-up process.    

Phase three: The critical item in focus was the low-level communication between the smart 

devices. By adding knowledge from related areas such as Internet of Things and wireless 

sensor networks into an iterative process the embedded S.O. concept was derived. 

Phase four: The critical item was integrating advanced processing, data storage and a user-

interface. The research process was based on iterating through different phases such as update 

model, modify simulation model, simulate, verify in a top-down manner.   

Phase five: By using the distributed system architecture as input together with the 

mathematical description of the probabilistic AI models potential mapping structures were 

investigated. This mapping process was considered a critical item because it defined the 

overall layout of the AI framework. Further iterations over the mapping structure in 

combination with derived mathematical probabilistic AI models converged into two 

implementation equations. 

Phase six: The implementation equations and the distributed system architecture were 

modeled, through series of iterations, by two object process models (Dori, 2002). These 

models provide the basis for implementing and integrating the AI framework into the derived 
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distributed system architectures. Finally, some simulations with derived tools were performed 

to validate and compare the simulated results with other researchers work.        

2.4.3 PRESENTATION METHODOLOGY 

The presentation methodology contains the information presented in the research 

methodology viewed from a different perspective, as discussed earlier in section 2.4. It 

follows the thesis structure, i.e., chapters 6, 7 and 8 are presented in the following three tables. 

Please note that the term phase in these tables is different from the phases used in the 

previous section. 

Phase Method  Tools  

Initial theory (inductive) Literature review and investigation of the 

research question one. 

Abstract model construction and 

theory development (library and 

online searches). 

Initial model (deductive) Development of heuristic model of SHS 

types, based on initial theory 

Designing and developing two 

generalisable models. 

Model mapping  (inductive) Analyze if researched SHS structures 

(qualitative data) fit into the models. 

Library and internet SHS model 

search. 

The two developed models.  

Evaluation  Investigate the degree of model matches 

achieved (qualitative data). 

The two developed models. 

Mapping results from the models. 

Modify models (deductive) Modifying heuristic SHS models, based on 

the evaluation. 

Re-designing and developing two 

generalisable models. 

Derive models pros and 

cons (deductive) 

Analyze the models in a distributed and a 

centralized SHS problem context. 

Library and internet SHS model 

search. 

The two developed models.  

Deriving SHS holistic 

model (inductive) 

Interpretation of derived models pros and 

cons. Development of final holistic model. 

Model construction and theory 

development (library and online 

searches). 

Table 2.1. The presentation methodology flow covering the used process in chapter 6. 

The development process used in chapter 6 follows the discussed cyclic development 

approach discussed earlier. As noted (Table 2.1) it bounces between inductive and deductive 

steps (Section 2.3) in an iterative fashion to converge into a final holistic model. 
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Phase Method  Tools  

Initial SHS (inductive) Literature review and development of SHS 

model structure and architecture based on 

qualitative data. 

Theory development (library and 

online searches). 

SHS holistic model.  

SHS model architecture 

(deductive) 

Development of SHS model architecture. Final holistic model, research 

question, and initial theory. 

SHS model investigation 

(inductive) 

Literature review, SHS architectural 

analysis, research of SHS model structure 

and elements. 

SHS model architecture. 

Theory development (library and 

online searches). 

SHS model design 

(deductive) 

Design of SHS model elements. SHS model architecture. 

Theory development (library and 

online searches). 

Initial S.O. (inductive) Literature review of agent-based systems 

and IoT. In addition, development of S.O. 

model structure and architecture based on 

qualitative data. 

Theory development (library and 

online searches). 

SHS model elements.  

S.O. model architecture 

(deductive) 

 

 

Development of S.O. model architecture. Research question and initial S.O. 

model structure. 

Smart home architecture from 

Cook (2012) and Kasteren et al. 

(2008a). 

S.O. model implementation 

(inductive) 

Design and development of S.O. 

implementation model. 

S.O. model architecture and S.O. 

model structure.  

S.O. model evaluation 

(inductive) 

 

S.O. model evaluation based on an 

empirical scenario.  

S.O. implementation model. 

Empirically derived scenario.   

Final SHS  model reflection 

(inductive) 

 

Analysis of model using deductively 

derived research sub-questions and the 

questions derived for the holistic SHS 

model. 

Final SHS model. 

Research sub-questions. 

SHS holistic model pros and cons. 

Table 2.2. The presentation methodology flow covering the used process in chapter 7. 

The flow in chapter 7 is presented in Table 2.2. It follows the cyclic development process, 

discussed earlier, and iterate to the final SHS model by using inductive and deductive steps 

(Section 2.3).  Some notes to the table are: 
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 The phase S.O. model architecture uses smart homes architectures from different 

researchers, and these are detailed in chapter 7 and later in this section (note 1). 

 The phase S.O. model evaluation uses an empirically derived scenario. This scenario 

has been derived from the system architecture problems revealed and discussed in 

chapter 6. Its primary purpose is to provide a platform for comparing the existing 

models with the derived SHS model. Thus, it has been designed from this perspective. 

 The derived sub-questions used in phase Final SHS model reflection are described in 

the chapter 6.  

Similarly, the flow in chapter 8 is presented in Table 2.3. It iterates to the final SHS model by 

using inductive and deductive steps (Section 2.3) and it follows the cyclic development 

process, discussed earlier. Additionally, some of the items have the following notes: 

 Phase Verification of AI framework uses two dataset from WSU CASAS as detailed in 

subsections 8.4.2, 8.4.3 and later in this section (note 1). 

 Phase Interpretation of AI framework analysis is detailed in subsections 8.4.2, 8.4.3, 

8.6.2, 8.6.3 and later in this section (note 2). 

 Phase Verification of AI framework on S.O. model, together with its used dataset, is 

detailed in section 8.8 and later in this section (note 1).       

Note 1: These datasets are sampled and annotated from experiments performed by Cook et al 

and Kasteren et al. who set the research frontiers in the smart home research area today 

(2013). Moreover, as stated in section 1.3 this work is restricted to derived models, concepts, 

and solutions that are based on currently existing technologies and devices only. I.e., an 

extrapolation of technological subjects is not performed. 

Note 2: The choice of candidates for the comparison with others works are the ASBR and 

CBR systems presented by Chen et al (2009), which are also considered state-of-the-art in the 

smart homes research area.    

Additionally, two papers have been derived from this work, which have been published in an 

international journal (Scientific Journal of the University of Szczecin); however, they have 

not been included in this thesis in order to keep it a pure monograph. 
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Phase Method  Tools  

Initial AI framework 

(inductive) 

Literature review and analysis of AI 

framework model structures and 

architecture based on qualitative data. 

Theory development (library and online 

searches). 

Final SHS model.  

Research-question two. 

Derive AI framework 

(deductive) 

Derive AI framework architecture 

using mathematical modeling, cross 

analysis with the final SHS model. 

AI framework architecture. 

Mathematical tools (MATLAB, etc.) 

Investigation (inductive) Mathematical interpretation of 

derived equations. 

Derive AI framework architecture. 

Mathematical tools (MATLAB, etc.) 

Derive AI framework 

components (deductive) 

Modeling derived equations into 

implementation object process 

models.  

Derived equations investigation results. 

Modeling tools.  

AI framework  components 

(deductive) 

Design of implementation models 

based on mathematical analysis and 

object process models. 

Derived equations investigation results. 

Implementation object process models. 

Mathematical tools (MATLAB, etc.). 

Simulation framework 

(inductive) 

Analysis of Simulation tools and 

models. 

Theory development (library and online 

searches). 

Object process models. 

Simulation framework 

(deductive) 

Design of Simulation tools and 

models. Design and implementation 

of simulation programs. 

Java and MATLAB tools. 

Verification of AI 

framework (deductive) 

Analysis of AI framework using 

simulation programs and empiric 

qualitative datasets. 

Empiric dataset from WSU CASAS 

(Cook, 2012). 

Interpretation of AI 

framework analysis 

(inductive)  

Interpretation of verification results 

by comparing with other researchers 

results.  

Output from the verification of AI 

framework phase. 

Other research results (library and online 

searches). 

Verification of  AI 

framework on S.O. model 

(inductive) 

Simulation of implemented AI 

framework on the S.O. model. The 

simulation uses qualitative empiric 

datasets.   

Programming and simulation tools. 

Qualitative empiric datasets from   Cook 

(2012). 

Table 2.3. The presentation methodology flow covering the used process in chapter 8. 
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2.5 SUMMARY  

The first part in this chapter deals with the modern term ―hybrid imagination‖. It was 

concluded that the solidly based concept of hybrid imagination supports the used circular 

based methods, it aligns the research methodology with the future, and it provides a guide for 

using the scientific methodology in this work. For the challenge of providing a ―true‖ research 

(i.e., ―truthiness‖) the important rules and guidelines provided by Brodersen (2008) were 

incorporated into the methodology of this research work. Another important item was the 

discussion of the used iterative process model in the light of a deductive and inductive step 

concept. Finally, the selected methodology was presented and discussed. This methodology 

combines all previously discussed elements into the used strategy, which is presented by 

using a ―presentation view‖ making the employed research methodology more readable 

(Section 2.4). 
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3 FROM BUILDING AUTOMATION TO SMART HOMES 

This chapter is divided into a presentation of the historical development of smart homes and a 

detailed explanation of its predecessors the building automation area (Section 3.1) and home 

automation (Section 3.2) area. The smart homes are presented in section 3.3. Its relation to the 

IoT research area is discussed in section 3.4 and other related research areas and activities are 

discussed in section 3.5.    

The associations and relations between the intelligent buildings, the home automation and the 

smart home areas need some elaboration. Thus, these areas and their relationship are the focus 

of this chapter. 

 

Figure 3.1. Relations between Intelligent Buildings, Home Automation and Smart Homes. 

As illustrated in Figure 3.1 Intelligent Buildings, Home Automation and Smart Homes are not 

simply synonymous of each other even though they have common elements. Intelligent 

Buildings have a Building Automation Systems (BAS) that handles its resources in a planned 

fashion, thus it needs some fixed in-advance programming to be able to behave intelligently 

and it is supervised by some administrative staff. Building automation is discussed in section 

3.1. Home Automation systems contain many resources and technologies that are similar to 

the ones offered by the BAS system. However, they are dedicated to offer systems that 

support functionality such as entertainment, timer and remote control, i.e., they focus on 

―normal homes‖ where people live, i.e., houses, detached-houses and flats, etc. From a 

Intelligent Buildings
Buidling automation

 systems
Fire & lift system 

Home 
Automation

Entertainment system
Remote control
Timer controlled

Smart Homes
Artificial intelligence

Multimodal UI's

Common elements
HVAC

Electrical system
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pragmatic point of view Home Automation is a residential extension of the Intelligent 

Buildings concept. Home Automation is discussed in section 3.2. Smart homes extend the 

Home automation area by adding intelligent behavior as discussed in section 3.3. Finally 

section 3.5 offers overview of the related research areas and activities. 

3.1 BUILDING AUTOMATION  

A higher level understanding of the combined buildings and AI research areas is difficult to 

obtain. People who talk and write about it are often using different terms and from time to 

time they mix it up in an incorrect way, thus a lot of confusion exists. This is probably a 

consequence of the missing standardization and lack of a common technical language that 

normally is provided and developed over time by professionals. So, the field of building 

automation in combination with AI is not different in that perspective. Even though this 

research field has not converged into few mainstreams that are well established in the 

academic world, it has been around for the last two decades. During this period many 

different standards have been suggested and numerous intelligent building theories and 

technologies have been published and developed. 

One of the reasons why this field has not converged into a common standardization is that the 

definition of intelligent buildings has changed over the years. Thus, the concept of intelligent 

buildings started in the early 1980’s is mainly driven by the development of relevant 

technologies and changing environmental needs. In the period from 1980 to 1985 intelligent 

buildings are controlled to do some well-defined functions. After this period until 

approximately 1991 this definition was redefined to deal with buildings that are capable of 

responding to changing needs. Finally, from approximately 1992 to present this definition 

shifts to deal with building features that effectively satisfy the changing needs (Tanasiev & 

Badea, 2012). Historically, the focus has changed to a more operative form, i.e., from respond 

to satisfy based on changing needs.  

Despite the huge amount of work, no general worldwide single definition of the term building 

automation exists today. However, the approaches to define it can be divided into three 

categories (Wang, 2010). First, the term ―performance based definition‖ is used to express 
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different kind of performances in a building. Second group is a ―services based definition‖ 

and the third is a ―system based definition‖.  These are stated in the following. 

 A performance based definition: 

o European Intelligent Building Group: A building created to give its users the 

most efficient environment; at the same time, the building utilizes and manages 

resources efficiently and minimizes the life costs of hardware and facilities.  

o Intelligent Building Institute (IBI): An intelligent building provides a highly 

efficient, comfortable and convenient environment by satisfying four 

fundamental demands: Structure, system, service and management, and 

optimizing their interrelationship. 

 A service based definition: 

o Japanese Intelligent Building Institute (JIBI): An intelligent building is a 

building with the service functions of communication, office automation and 

building automation, and is convenient for intelligent activities. 

 A system based definition:  

o Chinese IB Design Standard (GB/T50314–2000): Intelligent building provide 

building automation, office automation and communication network systems, 

and an optimal composition integrates the structure, system, service and 

management, providing the building with high efficiency, comfort, 

convenience and safety to user. 

These three categories express the definition of intelligent buildings from different 

viewpoints, i.e., performance, service, and systems viewpoints (Wang, 2010). But, simplified 

it can be boiled down to the following assumption: 

Intelligent buildings provide the user with efficient and well integrated services, 

comfort and security by providing effectively managed resources that adapt in an 

intelligent way.  

Based on the interpretation of the intelligent building definition a question raises about what 

an intelligent building provides? To answer this it is beneficial to divide ―intelligent 

buildings‖ into some groups. Thus, from the ―smart home‖ scope of view intelligent buildings 
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can be divided into one group that contains ―smart homes‖ and another group that deals with 

the remaining buildings, i.e., factories, hospitals, schools etc. The last group is not well 

defined and consists of a residual mix, i.e., different kind of buildings beyond group one and 

group two.  

Intelligent buildings can be considered as a collection of concatenated structures, systems and 

technologies that have growth over time (Johnson, 2012). This statement is supported by 

Wang (2010) who states that a building service provides an umbrella of technologies. These 

use a wide range of computerized building control systems such as BAS or Building 

Management Systems (BMS). The BAS comprises several subsystems connected in various 

ways to form a complete intelligent building system. Often these systems are designed and 

engineered to fit the individual requirements for the service that are needed in a particular 

building. However, some general service characteristics can be found within the variety of 

different intelligent buildings. Common services for most of these are discussed by Granzer et 

al. (2010) and they are illustrated in Figure 3.2. 

 

Figure 3.2. Common services offered by most building management systems (Granzer et al., 2010). 

Figure 3.2 shows the services offered by a state-of-the-art BAS which includes functionality 

that keeps the building climate within a specific range by regulating the Heating, Ventilation 

and Air Conditioning (HVAC) systems. In general, it also takes care of other structures such 

as electrical, lighting, security, fire and lift systems. In hospitals and industrial buildings BAS 

also manages steam, compressed air and water systems. Moreover, BAS is often used to 
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monitor, control and manage these services and thereby able to provide corrections to the 

systems; they emit notifications (e.g., emails) to building staff in case of device malfunction 

or failure.  

Looking into the benefits of using a BAS they comprise: Save time / cost, provide comfort 

and sustainability. In addition, it reduces the operation cost and increases the staff efficiency 

because it is possible to control multiple systems from one centralized computer system. In 

addition, it provides cost savings because only one interface is needed as an alternative to 

multiple front-end interfaces. Moreover, it optimizes energy efficiency because it provides 

interoperability between energy storing, load shaping and load shifting technologies. This 

interoperability enables more precise energy management often named micro-management 

(Johnson, 2012). Regarding troubleshooting and maintenance BAS provides many real time 

data from its monitoring behavior which means that more accurate forecasts of failure and 

wear down are provided. This reduces the amount of high cost unscheduled repairs. In some 

building systems BAS also takes care of security and safety, which makes the often complex 

process of building and remote access manageable and easy to use. Thus, it encapsulates the 

complexity and provides simple operations for users and administrators. 

Because many BAS systems are designed in an open and flexible way integration with other 

access systems or human resource database systems can easily be done. However, BAS also 

has downsides in form of increased building wiring and network systems complexity and it 

has relatively high initial installation costs. Another disadvantage is that the building normally 

last longer than the BAS system, meaning that further investment is needed on the fly to 

handle upgrades and maintenance. 

From a sustainability point of view reducing the environmental pollution is one of the top 

priority items of the European Union that adopted the 20-20-20 ―renewable energy directive‖ 

with the target of reducing the greenhouse gas emissions, cut the energy consumption and 

increase the renewable energy use – all by 20% before 2020 (Tanasiev & Badea, 2012). 

Tanasiev et al. (2012) highlights that the highest energy consumption in Romania is consumer 

heating and following that, is water heating. This consumption can be reduced by 

approximately 30% by using a BAS system according to Tanasiev et al.  (2012). 
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Looking into the future for BAS systems reveals that new BAS applications have emerged. 

They are optimized to fulfill the owners demand for a more fine-grained information level 

about building performance so operating costs can be reduced, corporate sustainability goals 

can be met and the occupants can be safe, comfortable and productive. These new systems are 

based on open platforms and they use standardized communication standards like BACnet, 

LonWorks, Modbus, PROFIBUS and EIB (Wang, 2010). They also provide a more intelligent 

behavior, because they can do much more than a simply connect and exchange information 

over a communication network. These modern devices are now able to communicate in a way 

that truly traps into their embedded intelligence and they are able to work together in an ad 

hoc manner, predict trouble and take preventive actions to avoid an upcoming problem 

without human assistance. In the essence, these new BAS systems help owners attain their 

facility related goals by optimizing the capability of all equipment and systems across their 

entire enterprise (JohnsonControl, 2012). In general, the tendency is that these systems add AI 

to obtain a higher degree of behavior that approaches the skills of a human operator and they 

communicate together to optimize the overall system performance. 

3.2 HOME AUTOMATION 

The purpose of Home Automation is to make life easier for its residents by controlling 

mundane functions such as light, heat, ventilation, entertainment systems, appliances etc. to 

improve comfort, convenience, energy efficiency, and security. But it requires the parameters 

to be pre-programmed by the users, i.e., it cannot be done automatically.  

The Home Automation concept is not autonomous in any way. It is simply remote controlled 

by the users to do timer based or pre-programmed functions that can be either simple or more 

complex. Often this requires trained personnel to interact with it as illustrated in Figure 3.3.  

Modern Home Automation homes of today (2013) are wired by power lines, TV outlets and 

they are equipped with Internet that is delivered wireless or by wire. So, these connections 

make it possible to remote control domestic activities and devices such as houseplants, 

entertainment systems, pet feeding, yard watering, and control different kinds of domestic 

robots like vacuum cleaners. Thus, it is possible to remote control these from either a near or a 

more distant place using a personal computer or a modern smart phone (Granzer et al., 2010). 
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Figure 3.3. Services offered by Home Automation are scheduled ahead and user controlled. 

There are many research projects exist in the home automation field. Some researchers use the 

Internet browser in the smart phones to connect to the automated home systems. An example 

is a Bluetooth based home automation gateway (Mehairi et al., 2007). Mingyi et al. (2010) 

introduce a home automation management system that combines devices and the Internet by 

using a microcontroller. The same approach has been used by Xiaojuan et al. (2010) who 

present a home automation gateway that controls home automation devices and take care of 

illegal access or intrusion from the outside world. Other related projects are the ―Keep in 

Touch‖ project that deals with smart devices in combination with near field / radio frequency 

technologies to facilitate tele-monitoring processes for elderly people (Dohr et al., 2010). In 

addition, remote control of automated homes by using smart phones has been presented (Mao 

et al., 2010). Similarly, a slightly different approach using mobile RFID tags has also been 

presented (Darianian & Michael, 2008). 

Looking into the state-of-the-art of available systems (2013) different choices exist. One of 

the most popular ones is the mControl (Top-ten-reviews, 2013). It provides a real-time 

automation and control engine; it supports Windows; it has remote access by both mobile and 

personal computer; and it has multiple user interfaces. In addition, it supports most standards 

and offers energy management, security and surveillance, media management and data 

logging. Other similar systems are HomeSeer, Control4, PowerHome, Vivint and ActiveHome 

Pro. These Home Automation systems offer different variants of the functionality offered by 

mControl. The company HomeSeer base their home automation devices and user interface on 
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the popular Android operating system from Google named Android@Home (Helmke, 2013). 

An illustration of HomeSeer’s Android based user interface is given in Figure 3.4.   

 

Figure 3.4. HomeSeer Android@Home Smart Phone user interface. 

Google announced at their I/O 2011 conference that they are looking into the Home 

Automation market with a concept named Android@Home (Google-I/O, 2011).   

Focus on Home Automation technologies has also been a subject for the European Union, 

especially in their FP7 programs. Looking into their work program for 2013 in the ICT area 

many of the main subjects are related to the Home Automation field. Thus, areas as service 

infrastructures, cognitive systems and robotics, ICT for health, ageing well, low carbon 

emission and future emerging technologies are listed (EU_FP7, 2013). One particular co-

funded program named HYDRA provided a middleware that enables home automation 

developers to incorporate heterogeneous physical devices into their applications together with 

an easy to use web interface. So, the hydra framework enables secure and trustworthy devices 

and services through distributed security and trust middleware components. 

3.3 SMART HOMES OVERVIEW 

Shifting the focus to Smart Homes (sometimes referred to as a smart houses or eHomes) they 

contain common elements that are shared with the intelligent buildings. Some of these 

elements are HVAC, lightning, electrical systems as illustrated in Figure 3.1. They are 
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considered an extension of the home automation field because they add more advanced 

control features and AI.  

It is predicted that our future life will be influenced by the smart homes because they will 

provide services according to our preferences and they will act ―intelligently‖. The concept of 

smart homes has become increasingly popular throughout the last couple of years. I.e., new 

buildings are planned and built according to new sustainability guidelines. Domestic homes 

are becoming more energy efficient throughout the last periods, especially for two reasons. 

The home owner would like to reduce operational costs over the home lifetime and contribute 

to the environmental saving. 

Reinisch et al. (2010) reviewed smart homes under a digital ecosystem perspective. Their 

main goals were to minimize energy consumption and at the same time guarantee user 

comfort by applying AI to the smart homes. A similar rationale has been used by the 

European Union in the broader scope of Internet of Things (IoT).  

Thus, they consider IoT as an umbrella for a new paradigm where smart homes are one of the 

carrying elements (EU_Commission, 2009).  Furthermore, the European commission is 

funding the Ambient Assisted Living Joint Program that works with more than 100 projects 

that have resulted from the first four calls (AAL_Association, 2012). Its aim is to create better 

conditions for elderly and strengthen industrial opportunities in Europe by the use of ICT.  

The EU Commission also looks into the area of green technology where they have set a 

roadmap for moving to a low-carbon economy in 2050. One important element is low-

emission buildings with intelligent heating and cooling systems (European_Commission, 

2013).  

3.3.1 USERS PERSPECTIVE 

One of the main barriers for adopting and disseminating smart home technologies is to design 

a user-friendly AI system that controls the smart home and its objects (Brush et al., 2011). 

This may be realized in the form of an intelligent manager, which encapsulates the complexity 

and presents the user for a simple interface. Thus, one of the most important features is the 

ability to learn and predict user activities in an autonomous way to ease manageability. One 
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approach for managing smart homes is by using an intuitive Graphical User Interface (GUI) 

based 3D virtual reality world (IBM Sales & Distribution, 2010) similar to the one used in 

―Second Life‖. The disadvantage is that it requires a huge amount of processing power and 

large amount of data to be exchanged or stored. 

A more useful concept is to use today’s smart phone camera to detect and identify the S.O.s 

(Lynggaard, 2013d). Such a concept could be based on high-level software objects handled by 

cloud-based services. It offers the benefits of high usability, limiting the amount of stored and 

exchanged data, and it moves the S.O. configuration to the service providers and device 

manufacturers. 

Alternative ways for users to interact could be to use finger gesture in front of the camera or 

still pictures for remote detection, e.g., like the content-based image retrieval concept used by 

Google. These approaches are, however, quite complicated with low usability and poor 

manageability (Silva et al., 2012).  

3.3.2 DISCUSSION OF SMART HOME BARRIERS 

Different barriers exist that reduces the smart home technology acceptance ratio. Brush et al. 

(2011) point out that especially four barriers should be considered. They conducted 14 semi-

structured interviews and household tours for exploring why the household had installed 

home automation; the reason for installing home automation; their long term experience of 

living with it; and how they handled guests and security considerations. The four barriers they 

found are high cost of ownership, inflexibility, poor manageability and difficulty achieving 

security.   

Looking more specifically into the high cost of ownership it should be seen in the light of the 

market potential for smart home / Home automation devices. So, the Broadband Forum 

(Subsection 3.5.3) outlined a value proposition MR-239 (Fedosseev et al., 2011). It brings the 

next generation of value added service like AI controlled devices to connected homes. In the 

area of home monitoring and home control the North American market is estimated to reach 

2.4 billion dollars in 2012. The U.S market for home healthcare technology will reach 5.7 

billion dollars by 2015 and effect 26 million users. Supplementing this are the world markets 
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for energy and media management that are expected to reach 45 and 22.3 billion dollar 

respectively.       

The market is there, but it is a matter of being able to market smart home products, which can 

be produced by different manufacturers, are plug-and-play enabled, offer a level of 

autonomous behavior based on AI, and are cheap.  

Regarding the inflexibility and poor manageability is discussed in subsection 3.3.1 and 

revisited in subsection 7.2.4. The difficulties in achieving security is outside the scope of this 

work (Section 1.3), but the topic is discussed ad hoc when needed for clarify other topics.      

3.3.3 ARTIFICIAL INTELLIGENCE IN SMART HOMES 

Commonly the term smart home creates associations to a home that are able to think on its 

own and act intelligently by using some kind of AI. However, as stated earlier this kind of 

smart homes is not what is available on the market. The services and devices offered today 

(2013) by smart homes are much closer to what are offered by the home automation area. So, 

today real smart homes are not available at a commercial level, they primarily exist at a 

laboratory level e.g., as living labs. One example of such a smart home living lab is the iSpace 

that is resident at the University of Essex. It is fitted with intelligent gadgets that can detect 

and learn from the occupant’s behavior and thereby suggest services that could improve the 

quality of life or suits user’s needs. These gadgets can communicate with each other, 

coordinate their actions and they allow remote access via Internet and GSM 

(UniversityOfEssex, 2013). From a more theoretical point of view the research area dealing 

with adaptive AI in smart homes is in its infancy. Some examples are (Cheng et al., 2009), 

(Medjahed et al., 2009). Cheng et al. (2009) discuss an adaptive scenario-based reasoning 

system based on simple user descriptions and a lightweight learning methodology. This 

system is only partly adaptive, and it uses a non-portable simplified user profile management 

system. Other systems employ ―Case-Based Reasoning‖, but the case-to-case based learning 

approach puts a huge demand on computational resources. Arabnia et al. (2010) predict that 

the partly intelligent smart home area will play an important role in the IoT technologies to 

come. Another approach is an adaptive calendar concept updating users’ calendars based on 

their recognized activity (Yu et al., 2010).  
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3.3.4 THE RESEARCH FRONTIERS OF SMART HOMES  

Even though a lot of methods and knowledge on human reasoning, semantics, rule-based 

system and AI are available, very little has been done on how this could be used to manage 

distributed smart homes and their contained S.O.s.  

Silva et al. (2012) review the smart home state-of-the-art from two viewpoints, where they 

cover the categories technology and service. They conclude that the increasing amount of 

embedded computer power together with the fast sensors development rate will promote the 

use of AI systems based on distributed sensor network. These intelligent network nodes will 

then be able to learn and predict events
4
 in real time or do some off-line processing. They also 

forecast that the architecture probably will be multi agent-based and that these systems will be 

in form of an add-on to existing technologies. 

Another paper that reviews the past, present and future in the light of previous smart home 

research and technologies forecasts a similar prophecy (Alam et al., 2012). Their paper sets 

several directions on the smart home future research. One direction is the use of a middleware 

layer to integrate heterogeneous devices so that multivendor devices can coexists in the 

future. They also predict that the future smart homes will apply distributed devices and 

intelligence in form of smart devices. Regarding the user interface they conclude that it 

probably will be auditorily or visually based. Seen from a service point of view they predict 

that future healthcare service providers will use smart home technologies to provide remote 

healthcare services, especially to elderly who do not require intensive healthcare support. 

From a more global point of view they also predict that the concept of the smart grid 

coordinating the global electricity distribution and load. 

 However, these papers only cover some theoretical considerations and prophecies that have 

not been manifested into systems. This is mainly because the technology is not available in a 

mature functional form yet; only technology fractions exist in form of home automation 

                                                 

4
 An event is a message from a sensor that is sent to S.O.s or devices.  
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devices and some theoretically based laboratory models. Thus, this area still needs to be 

researched and clarified in the future – the research frontiers are not at that level yet.  

Some examples are provided in the following to illustrate the smart home state-of-the-art 

frontiers.  

 

Figure 3.5. CASAS smart home components (Cook et al., 2012). 

The state-of–the-art (2013) CASAS project ―A Smart Home in a Box‖ is illustrated in Figure 

3.5 (Cook et al., 2012). It is a lightweight design that is easy to install and it provides smart 

home capabilities out of the box. This approach implements AI in a centralized form which 

uses sensor data stored in a central database. While they have achieved to reducing the 

infrastructure barrier, their approach still has the centralized system drawbacks. In addition, 

the AI system still needs training in advance, i.e., no real-time learning.         

The ‖ThinkHome‖ project has been carried out by a research group at Vienna University of 

Technology in 2009. Even though it is some years old it is still state-of-the-art in distributed 

agent-based smart home systems (Alam et al., 2012). The ‖ThinkHome‖ project aims to 

design and implement an adaptive control mechanism for maximizing the energy efficiency in 

building. This mechanism uses a concept where an ontology knowledge database processes 

and stores the learning, which has been supplied from a set of highly specialized agents in a 

multi-agent system (Reinisch et al., 2010). Each agent has its own scope such as the AI based 

agent, the user preference agent, and the context inference agent. A user interface interacts 

with the multi-agent system to control its behavior and preferences.  
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3.4 INTERNET OF THINGS 

The Internet of Things (IoT) research area is important in the smart home context because the 

contained devices (S.O.s) share technology and functionality with it. The IoT is considered as 

the next step in the evolution of the Internet. The EU Commission has written an IoT action 

plan for Europe (EC, 2009), stating that IoT will drastically modify the way our societies 

function in the coming 5 to 15 years. A combination of Internet and emerging technologies 

like wireless communications, context awareness and embedded wireless sensor networks 

transforms everyday objects into intelligent and context-aware S.O.s. The technology 

resources are already available, and the development of IoT is more a matter of technology 

structures, market shares, values and earnings. 

A variety of application and technology drivers exists for the IoT area. Some of these are 

presented in the following.        

Valhouli (2010) argues that the intelligent green building and the AAL (Dohr et al., 2010) 

areas are important drivers. In addition, they find that proliferation of intelligent and green 

buildings has the potential to drive adoption of sensors and devices with embedded processing 

power.  

According to Bandyopadhyay et al. (2011) the unquestionable main strength of IoT is its 

impact on every-days life for a potential user. They highlight areas such as AAL, smart 

homes, smart offices, e-health and enhanced learning. Similar they point out that business 

users will benefit from industrial manufacturing, logistics, business process managements, 

intelligent transportation systems of people and goods.   

Jain et al. (2011) highlight a group of application areas for IoT which they predict as the main 

drivers. Thus, they forecast automated warehouses; smart medicine which can monitor the use 

and abuse; origin of food to avoid infections; monitor health by sampling sufficiently often to 

allow early detection and recovery improvement; smart buildings which control HVAC and 

lightning; intelligent transportation which is safe and energy efficient; avoidances of pollution 

and disaster by allowing early warnings and prevention of catastrophes.     
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As noted, the application area of IoT is widespread and includes many subareas. Some of 

these could be beneficial in the smart home area. Today, most of the commonly used objects 

(things) in the home only allow simple user interactions and they do not possess any 

processing capability. Typical examples could be a lamp equipped with a motion sensor or a 

battery indicator in a mobile phone. Most of these things belong to the home automation area.  

In the future it is expected that the Internet as we know it today (2013) will be integrated into 

a multitude of things (EC, 2009), (Liu & Tong, 2010), hence commonly known objects such 

as clothes, food packing, toothbrushes, etc. will be equipped with some level of Internet-

addressable AI. Thus, these S.O.s will offer context awareness and communication features, 

and they will share some level of pseudo-intelligence depending on their processing capability 

and consumed power limitation (Liu & Tong, 2010), (Mao et al., 2010), (Grønbæk, 2008), 

(Castellani et al., 2010), (Darianian & Michael, 2008).  

This development will lead to new forms of communication between people and things and 

between things themselves. So, the challenge is to go beyond today’s state-of-the-art, making 

these S.O.s context-aware, intelligent and able to communicate via IP, and combining them 

into a distributed system for the future smart home. They should be able to not only react to 

changes in the environment, but also perform AI-based reasoning to take into account the 

preferences of the user inhabiting the smart home. A lot of research is needed in this area (EC, 

2009). 

In an S.O. focus, the IoT area shares many common elements with it. Both areas need to be 

context aware, provide AI, have a low form factor, use limited power and memory resources, 

have the ability to communicate, provide a general (standardized) interface for independent 

manufacturing. Thus, the S.O.s are related to and based on the concept provided by the IoT 

research area. This strategy ensures that the S.O. concept developed in this work provides the 

basic knowledge and technologies to facilitate the future change from S.O.s to the coming 

world of IoT, without the need of a smart home revolution. 
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3.5 RELATED AREAS AND RESEARCH ACTIVITIES 

A short overview of: related projects; related technologies and research areas; and related 

industry organizations are presented in this section. 

3.5.1 RELATED PROJECTS 

One of the most important related projects is the EU co-funded HYDRA project. It developed 

middleware for embedded systems including their networks. The primary aim was to offer a 

middleware concept to researchers that facilitate ambient intelligence, wireless devices and 

sensors (Eisenhauer et al., 2009). The project ended in 2010.    

3.5.2 RELATED TECHNOLOGIES AND RESEARCH AREAS 

The Machine-to-machine communication (M2M) is a related area which contributes with 

technology to the smart home research area. It covers communication between embedded 

processors, microcontrollers, smart sensors, actuators, and mobile devices with minimum or 

no human intervention. Researchers look into this area in combination with IoT and smart 

homes (Chen et al., 2011), (Chen, 2013), (Bandyopadhyay & Sen, 2011), (Starsinic, 2010). It 

is assumed that M2M and sensor related communications will be a large part of the 

communication in 2020 (Sørensed & Skouby, 2009). In addition, ETSI has formed a technical 

committee to conduct standardization in the M2M area (Bandyopadhyay & Sen, 2011). 

However, the M2M area has some challenges that need to be dealt with. One of these is the 

privacy issues, i.e., the authorization of access if no human is involved (Alam & Noll, 2010).      

Embedded microprocessor and microcontroller technologies are an important subject for 

researching implementation of small low-power embedded autonomous systems. Thus they 

are in focus for the future IoT and smart home areas. Today (2013) they offer high-level 

processing capabilities for a low resource usage. Many manufacturers exist; however, in this 

work only the PIC18xx devices from Microchip are used and discussed. It is a state-of-the-art 

technological device that in average represents the achievements in the area. Thus some 

researchers use these devices from Microchip in their research projects (Yao et al., 2010), 

(Boegel, 2012), (Casilari et al., 2010).  Similarly, the ZigBee SoC device CC24xx from Texas 

Instruments is a popular choice in smart home and IoT research (Yan & Dan, 2010), (Khan & 

Aziz, 2009), (Chen et al., 2013) .       
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A SDR has the flexibility and characteristics needed for smart homes and M2M architectures 

and networks. Basically, a SDR is a collection of software and hardware that handle all radio 

functions. This approach facilitates updates in form of adding new wireless features and 

capabilities to existing radio systems without changing the hardware (Starsinic, 2010). 

Additionally, it enables construction of multiband and multicarrier gateways which are able to 

communicate simultaneously using different protocols and different frequency bands. In the 

IoT research SDR is believed to provide one of the needed means to integrate and reduce the 

extensive design space required (Sundmaeker et al., 2010). The future trend for the SDR 

technology is reflected in the progressing standardization of the next generation wireless 

systems, which involves SDR technology. Thus, standardization of systems such as Long-

Term Evolution (LTE) advanced, higher data rate WiFi (IEEE802.11ac/ad) and cognitive 

radio are in progress to meet requirements for higher data rates and cheaper services (Araki & 

Morishita, 2012).         

3.5.3 RELATED INDUSTRY ORGANIZATIONS  

One of the important industrial organizations is the broadband forum. It is the leading industry 

organization with more than 180 active members (2011). It manages broadband devices and 

associated services in form of standards. Thus, in the connected home area the organization 

manages services in form of security, control, monitoring, health, and energy management 

(Fedosseev et al., 2011). 

3.6 SUMMARY 

This chapter provided an overview of the development throughout the last decade in the three 

areas intelligent buildings, home automation, and smart homes. It provided a definition of 

intelligent buildings and discussed what building management systems have provided in 

relation to AI now and in the future. The home automation area has provided remote control 

to the homes for controlling mundane functions such as light, heat, ventilation, entertainment 

systems, appliances etc. to improve comfort, convenience, energy efficiency, and security. 

However, this area did not provide any antonymous behavior. 

The smart homes area is an extension of the home automation area. It was discussed in the 

light of autonomous behavior, drivers and barriers for the research area, and its possible user 
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interfaces. It was stated that AI in smart homes was not commercially available; however, 

they exist in living labs.  

Finally, the lack of research in using AI in distributed smart homes was discussed. However, 

some researchers have forecasted that smart devices (agents) will be used in combination with 

AI and some of the driving mechanisms were discussed (Silva et al., 2012), (Alam et al., 

2012). The usage of the IoT area and other related areas was presented and discussed.       
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4 DISTRIBUTED SYSTEMS AND SMART HOMES 

This chapter introduces distributed systems at a general level (Section 4.1) and uses 

knowledge from this context to discuss and compare distributed and centralized smart home 

concepts (Sections 4.2 and 4.3). Following this the focus is set to discuss the challenges and 

use of sensors and actuators in the smart home context (Section 4.4). Finally, the smart home 

network topologies are discussed in the light of state-of-the-art research projects and 

technologies (Section 4.5).   

Considering the first research question in the view of smart home distributed systems, it can 

be divided into some sub-problem areas. These are discussed in the following. For 

convenience the first research question is restated: 

Question 1: How should the distributed system architecture for smart homes be designed in 

order to incorporate AI and the diversity of S.O’s? 

To clarify the design of a distributed system architecture that incorporates AI the term 

distributed system architecture needs to be explored. Viewed from a high abstraction level the 

smart homes are spatially distributed containers where the diversity of S.O.s are included in a 

distributed manner. These S.O.s or devices have processing power and are context aware 

(Shah et al., 2009), (Trevennor, 2012), (López et al., 2012). Thus, smart homes are related to 

the areas of distributed processing, ubiquitous computing and cloud processing, by nature. 

However, research in the distributed smart home area is limited because most research 

performed in the last decade has been done with centralized models (Section 4.3).  

Smart home distributed and centralized models are discussed in section 4.3. The integrated 

S.O.s are small autonomous objects which behave similar to the IoT devices discussed in 

section 3.4. S.O.s sense their context and use actuators to affect it. To obtain this ability they 

either integrate with sensors and actuators or they interface with them. Challenges in this 

approach are discussed in section 4.4. As discussed, S.O.s are spatially distributed why they 

need a network in order to communicate. This challenge is discussed in section 4.5.  
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4.1 DISTRIBUTED SYSTEMS IN GENERAL  

Today, computer networks are widespread in our society and they are important parts in our 

daily lives. A typical example is our mobile phones which use networks in form of Bluetooth, 

WiFi and 3G or 4G. Most of these phones provide connections to the Internet. On a smaller 

scale companies have factory and corporate networks; and universities have Campus-nets. 

Even our cars have a lot of computers and networks such as controller area network and 

vehicle area network bus systems. These enable the computers to communicate, exchange 

information and synchronize actions. All these systems can be included in the term distributed 

systems. 

A distributed system is a group of networked computers that are physically distributed within 

a network area. These computers communicate and coordinate their actions through message 

passing. However, today (2013) this term is overloaded because it is also used for a collection 

of tasks that run on a single computer, where they interact with each other through message 

passing. While there is no single definition of a distributed system some characteristics are 

local synchronization, component concurrency and independent failures of components. 

Moreover, many researchers have tried to define a distributed system. Burns et al. (2001) 

define a distributed computer system this way: 

A distributed computer system is defined to be a system of multiple autonomous 

processing elements cooperating in a common purpose or to achieve a common goal 

(Burns & Wellings, 2001). 

Another more general definition of distributed systems is provided by Coulouris et al. (2011): 

A distributed system is one in which hardware or software components located at 

networked computers communicate and coordinate their actions only by passing 

messages (Coulouris et al., 2011). 

From these definitions it is noted that the range of definitions is quite broad. However, 

similarities are also present because both definitions focus on independent processes or 

components that carry out tasks in common. By coordinating their efforts they are able to 

communicate, even if they are spatially distributed.   
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From the last definition and the distributed system characteristics discussed earlier in this 

chapter the main implications are concurrency, no global clock and independent failures 

(Coulouris et al., 2011). Concurrency means that in theory it is possible to expand a 

distributed system by adding more resources, but the disadvantage is that more resources also 

need to be handled. No global clock means that it is not possible to derive a single global 

correct time, because of the limited accuracy in real implementations. Independent failures 

add new ways a distributed system can fail. Thus, if a connected computer fails it is 

disconnected from the network. However, it could be able to run in a reduced way and offer 

some degraded services. Additionally, other components in the network do not necessarily fail 

as a consequence of this singular failure, i.e., the non-failing part in a distributed system is 

often able to continue its service delivery. 

Examples of distributed services in our daily lives are the Google web search engine that uses 

distributed infrastructure to do web searches. Another driver of distributed services is online 

gaming where many gamers join virtual environments for playing multiplayer games 

(Ericsson, 2011). Moreover, the area of financial trading requires that stock price information 

is processed and provided at different places at exactly the same time to prevent fraud. 

Related areas that are partly adapted in the distributed system contexts are: 

 pervasive networking. It describes the multitude of ways connections can be made from 

computers and smart phones in an online fashion. 

 ubiquitous computing which covers many small computers that are present in the users 

home, often in an invisible way. 

 cloud computing, which is a set of Internet based applications that offer storage 

capacity and computing service. 

The area of distributed systems has a number of challenges. The most important of these are 

heterogeneity, openness, security, scalability and handling of failures (Coulouris et al., 2011). 

Network heterogeneity and transparency deal with the challenges in combining many 

heterogeneous networks and devices into one common system. Different methods are 

available, but often a decoupling middleware layer is used for interfacing S.O.s with each 

other. Openness and scalability express how easy it is to expand a system with new devices. 
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In this work it is assumed that devices can be added seamlessly, nevertheless, some initial 

setup is needed. Security covers the topics availability, integrity and confidentiality, whereas 

handling of failures deals with how to recover after failures. This work does not deal with 

these topics, nonetheless, much of the S.O. technology is highly correlated with the field of 

wireless sensor networks, so security and failure handling are to some extent inherited from 

this field (Section 4.5).  

Distributed system models can be arranged into a few categories (Coulouris et al., 2011). 

These are physical models, architectural models and functional models. The physical model 

captures the hardware layout of a system in terms of computers and their interconnecting 

networks. The architectural model describes the system in terms of aggregated computational 

elements that are interconnected by a network. Finally, the functional model is an abstraction 

that characterizes the functionality of each individual element in a distributed system. This 

work uses a mix of these approaches, because the smart devices and their embedded AI 

systems need to look into the spatial and computational network elements.  

4.2 DISTRIBUTED SYSTEMS IN A SMART HOME CONTEXT 

Narrowing the concept of distributed systems to a smart home context brings forward many of 

the problems found in this area. Most SHS today (2013), which actually only exist in the 

laboratories (Cook et al., 2012), consist of a collection of heterogeneous systems that need to 

cooperate and communicate to perform their task effectively.  

Basically, these systems can be divided into three categories. One category is the 

entertainment network that often is based on WiFi. This network supports devices such as 

computers, Internet enabled TV, and Internet enabled radios. Second category is the smart 

home network (SHN) that can be based on low bit-rate networks such as ZigBee, Bluetooth 

low energy, X10, INSTEON, and Z-Wave.  This network supports sensors and actuators that 

learn from the user’s behavior and offer services accordingly based on AI. These two 

categories are able to communicate by using gateway devices. However, the SHN does not 

provide the needed resources to carry network traffic related to the home network. In contrast, 

the home network devices can be part of both categories, i.e., they can contain separate 

elements from both categories. An example is a smart TV that can stream video from a Wi-Fi 
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based Internet connection and at the same time send simple event based information about the 

TV is turned on or off to the SHN devices. The third category is the body area network that 

relates to devices carried by a person such as a smart phone. It behaves similar to the home 

networking category. The discussed categories are illustrated in Figure 4.1 and discussed by 

Chen et al. (2011) in their work.   

 

Figure 4.1. The different networks in a smart home: Smart home network (SHN), home networking, and 

body area networking (Chen et al., 2011). 

By nature the smart home devices are physically distributed, i.e., they are placed at different 

spatial locations. Most of these systems are developed by different manufacturers who in lack 

of a single standard use known technology and common knowledge. This means that today’s 

available smart home (i.e., home automation) devices use different operating systems, offer 

different services and use different programming platforms (Turner, 2011).  

Researchers have suggested different solutions to these problems. One solution preferred by 

researchers is using a middleware layer. Examples of this approach are Jini (Gupta et al., 

2002) and UPnP (Lee & Kim, 2007). Another solution is the Common Object Request Broker 

(CORBA) architecture (Artemio & Leonardo, 2012) that provides an object oriented way to 

interface devices and thereby obtain interoperability. Nevertheless, CORBA is suboptimal 

because the client needs knowledge about server method names, and the specifications do not 

consider interfaces with systems that are not CORBA enabled. Additionally Microsoft offers 

their variants, which are the COM and .NET frameworks. These solutions are for Microsoft 

Windows and provide almost the same functionality as CORBA. Nonetheless, they only 
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support Windows, which is not suitable for small low-power embedded systems and they 

suffer from the same drawbacks as CORBA.  

Sun Microsystems has developed middleware systems that are based on java remote 

invocation, i.e., objects are activated by calls from the remote end. One example is the 

Remote Method Invocation that allows objects to be called remotely from other applications 

in a heterogeneous network. The Open Service Gateway Initiative (OSGi) framework is 

another example that defines a standardized interface for heterogeneous devices. This has 

been used by researchers in smart home contexts (Cheng et al., 2008), (Wu et al., 2008).  

Nonetheless, the disadvantages are that OSGi requires a java virtual machine to run and it 

needs a few hundreds of kilobytes of memory, which is an unrealistic amount on small low-

power embedded devices (Jain et al., 2011).  

Some researchers use web services that are a standardized collection of methods for 

interaction between applications, devices and services. Some of the popular ones are Simple 

Object Access Protocol and Web Service Description Language. They are based on XML and 

provide generic interfaces that are web based. Using a web based interface in a smart home is 

disadvantageous because it adds overhead in the used ―mark up‖ language and it uses 

processor resources to run the HTTP protocol. This is evident by comparing it to an approach 

that uses a simple token based system such as X10 (Subsection 4.5.3). In addition, these web-

based services need the Internet protocol as a backbone. In addition, it is disadvantageous 

because embedded Internet variants consume a considerably amount of memory for the IP 

stack, etc. and the protocol handling is costly in terms of processing power (Kim et al., 2008). 

Nonetheless, the 6LoWPAN standard offers low resource IP routing in smart homes 

(Subsection 4.5.4) based on the well known Internet architecture.  

As stated in the research question this work offers a distributed system architecture that 

includes a generic framework, which contains S.O.s implemented on small embedded 

processing platforms. These S.O.s provide AI (Chapter 8) in a distributed form. Such a 

generic concept is new and useable in many of the contexts discussed in this section. 

Additionally, it could be used in cars to learn the user habits such as adjusting the seats, turn 

the radio on and control the air condition. In an AAL scenario S.O.s could supervise 

important behavior parameters and issue an alert if a person has fallen, etc. Furthermore, in 
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the area of green technologies S.O.s can control HVAC and electric installations such as light 

and electric appliances. 

4.3 CENTRALIZED AND DISTRIBUTED SMART HOMES 

As discussed, the smart homes area extends the more simple home automation area that is 

based on technology developed for building automation. This means that the home 

automation service and functionality area is dedicated to simple remote control and 

supervisory functions. These systems were mainly implemented on centralized servers 

because the technology and smart home knowhow was limited. Thus, the battery and 

embedded processing technology were not able to build small size communicating, context 

aware nodes that offer AI (López et al., 2012). So, the challenge for the next evolutionary step 

from home automation to real smart homes is to make use of today’s (2013) technology and 

evaluate to what extent it is possible to fulfill the challenges. These are: intelligent behavior, 

context awareness, smart devices and a rich level of connectivity.  

4.3.1 CENTRALIZED, AGENT AND CLOUD BASED SYSTEMS 

Centralized smart homes use architectures with a single home automation server connected to 

the Internet. This server receives all sensor events and it runs the AI algorithms. Based on 

sensor inputs and predictions it schedules services to the user. In this context the main 

difference between the centralized and the distributed concept is in the underlying network 

that supports the devices with communication capabilities.  

The example illustrated in Figure 4.2 covers the wireless sensor and actuator network SHS 

architecture proposed by Lameski et al. (2011).  

As noted, the devices are connected to an automated home network with a server in the 

centre. Many of these devices use a proprietary defined network technology because there is 

no single home automation standard available. Thus, home automation networks often make 

use of a mix of protocols like ZigBee, Z-Wave and WiFi, (Zhao, 2010), (Rathnayaka et al., 

2012), (Mao et al., 2010).  
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Figure 4.2. The wireless sensor and actuator network centralized smart home architecture (Lameski et al., 

2011). 

As stated, most SHS research is based on a centralized approach. This is also the case for 

most multi-agent-based systems. An example is the ―ThinkHome‖ smart home (Subsection 

3.3.4) that contains few high-level specialized agents. Only one agent handles all 

computations, so it is a centralized system (Reinisch et al., 2010). A similar approach has 

been presented by Hanzi et al. (2013) who use a central control agent in a star topology. 

Hannon et al. (2005) present an agent-based system where the agents are specialized to handle 

a high functionality level, such as: kitchen agent, entertainment agent, control system agent, 

and HVAC agent. However, their topology is centralized around a manager placed in the 

network center. 

In the process of moving from automated homes to real smart homes the availability of 

cheaper faster Internet connections and cloud services causes a gradual replacement of 

centralized automated home servers with cloud based solutions. An example of such a 
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concept, provided by the Broadband forum (Fedosseev et al., 2011), (Subsection 3.5.3) is 

shown in Figure 4.3. 

 

Figure 4.3. A general architecture of a home automation concept (Fedosseev et al., 2011). 

A cloud solution provides benefits in the form of increased computer processing power and 

data storage capacity. In addition, it releases the user from the task of installing, updating and 

backing up software on the centralized automated home server. In the near future it is also 

likely that device information can be retrieved online for easy device setup of similar devices. 

However, a downside is that devices may stop working or downgrade their service level 

depending on the different system errors.  Furthermore, the security and the network load also 

need to be addressed.  Examples of architectures with cloud-based automated home devices 

and network elements are the Honeywell Smart Home and the Control4 systems (Ye & 

Huang, 2011). 

4.3.2 SMART HOME DEVICE COMMUNICATION 

The SHNs need to handle data exchange between its connected devices. It also needs to 

communicate with systems outside its own context such as cloud services. Thus, an important 

backbone in this concept is the underlying network that supports the devices with these 
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communication capabilities. These network systems can be divided into different logically 

parts and they can be based on both centralized and distributed topologies. 

In general, the networks can be divided into a topology part and a functionality part as 

illustrated in Figure 4.4. The topology part relates to the physical network, i.e., the way nodes 

are connected and organized. The functionality part refers to the way functions are divided 

among the network devices and it describes how resources are shared. So, functionality looks 

into what function the nodes provide, but not how it is implemented – this is a job for the 

topology part. 

 

Figure 4.4. The smart home node functionality and its physical network topology. 

Elaborating over the node functionality part illustrated in Figure 4.4 some common network 

node functions are given in Table 4.1. A more detailed coverage of this subject can be found 

in (Starsinic, 2010), (Perumal et al., 2011). 

Physical network

Functions

Topology

Functions

Topology

Nodes
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Type Description 

Sensor node A simple sensor node is able to receive information from a sensor and transmit it 

to a central point.  More advanced sensor nodes are able to do a small amount of 

processing on sensor data before passing it on.   

Actuator node An actuator node receives information from a central point and controls an 

actuator based on this information. Some examples are controlling a kitchen 

lamp, TV, etc.        

Gateway node (sometimes 

named bridging node) 

Interface the heterogeneous protocols used by the low-level sensor nodes. An 

example is bridging the two technologies Blue tooth and ZigBee, so they can co-

exist in one SHN. 

It also provides access from the outer Internet-based world to the SHN.  

Routing node (sometimes 

named forwarding node) 

This node only provides routing capability. So it simply receives a message and 

passes it on to the next node(s). 

Table 4.1. The most common node functions found in smart homes. 

These common node functions need to support the SHN devices with communication 

capabilities so they are able to communicate. One of the most important elements that need to 

be addressed, from a smart device point of view, is the low data rate device-to-device 

communication (often named machine-to-machine (M2M) communication), (Subsection 

3.5.2). They are typically battery powered devices and they have very low power 

consumption. In many cases, they autonomously communicate with each other or with the 

central controller. Creating M2M networks in smart homes requires that the different 

protocols interface and elements communicate with each other in an effective and efficient 

manner (Starsinic, 2010). Different principles for this communication exist, but one of the 

most efficient ones is the use of multi-agent-based systems (Reinisch et al., 2010).  

In general, at a high abstraction level, distribution of information in SHNs is needed to 

support the services that are offered to the user. When the user performs scenarios sensors are 

triggered and events are emitted. These events are collected and processed by some system 

placed in the SHN context. Based on its decisions a command can be emitted to the actuators, 

which in turn offer a service to the user. Performing this scenario requires that information 

such as sensor events, actions and actuator commands can be distributed through the SHN.  
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4.3.3 A SIMPLE SCENARIO 

A simple scenario is presented to illustrate the amount of information that needs to be 

exchanged. It contains a living room with four sensors, i.e., ceiling lamp, table lamp, room 

sensor and an armchair sensor. In addition it contains ceiling and table lamp actuators Figure 

4.5. 

 

Figure 4.5. Living room - a simple smart home scenario model. 

Many scenarios can be derived from the smart home scenario model Figure 4.5. However, an 

illustrative one would be to consider a scenario where the user enters the room at a particular 

time window T, turn off the ceiling lamp, sits down in the armchair, turn on the table lamp 

and open a book for reading. By repeating this action
5
 scenario over time the table lamps 

could learn this particular behavioral. That is, the table lamp turns on automatically when the 

user enters the room in the trained time window T, turnoff the ceiling lamp and sits down in 

the armchair. It is noted that the sequences are not important, i.e., the order of the sequences 

can be changed.  

                                                 

5
 An action is a single atomic state in an activity. I.e., an activity consists of many actions. 

Armchair
Room door

sensor

Table 
lamp

Ceiling
lamp

User interacts
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Figure 4.6. Sequence diagram for the living room scenario, centralized server. 

Looking into the event distribution in Figure 4.6 the complexity of such a simple scenario 

becomes visible. Firstly, all sensor events need to be sent to one centralized server. This 

requires network bandwidth and it consumes sensor power. Network bandwidth is used 

because all sensors are allocated in the same network and therefore share its bandwidth 

resources. Power is used by the wireless sensors to transmit and route all the messages, this 

drains the batteries. Some network nodes need to use high transmits power to communicate 

because its adjacent nodes are in a shadow of walls, furniture’s, etc. (Shah et al., 2009). But, 

high transmit power increases the interference level, that in turn requires even higher transmit 

power from the neighbor transceivers. Secondly, the server needs to send commands to the 

actuators. These commands can be complex and be time consuming, because some actuators 

require processing power to e.g., find a certain position or a certain light level. In addition, 

centralized server based SHSs have some challenges as discussed in section 4.3.        

4.4 SENSORS AND ACTUATORS 

In smart homes sensors are the primary source for information of user activity. This 

information is used by the artificial system to get a fragmented picture of the user current 

activity. Sensor technology has evolved through the last decades and today (2013) small 

integrated low-power sensors exist. So, the challenges to find which sensors are the most 

suitable for smart homes, how will the measured data be used, and where should they be 

installed.  
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A lot of different sensor types exist ranging from environmental sensors to biologic and 

medical sensors. Nevertheless, this section only deals with location sensors because they are 

the relevant group for smart homes in this work.  

4.4.1 SENSORS 

Location sensors are normally used to detect a change in context state caused by the user. For 

example, if the user takes a cup from the cupboard a sensor registers this. In general, location 

sensors are members of the groups: Simple switches, pressure mats, passive infrared 

detectors, radar, sound, light, and camera based sensors.  Camera based sensors are not used 

much in smart homes, because users consider them to be too invasive (Cook, 2012). In 

addition they produce a huge amount of data that needs to be processed and transferred to the 

artificial system. However, they offer the possibility to build gesture based user interfaces 

(Kim & Kim, 2006). Sound (including ultrasound) and light sensors are used too, but they 

suffer from considerable costs, high current consumption, using comprehensive processing 

resources, and detection uncertainty compared to simple switches. However, they are able to 

provide high resolution contextual measurements. In general it is possible to transform multi-

valued sensor outputs to binary ones by using programmable thresholds in the sensor. An 

example could be a temperature sensor that is programmed to send events when the 

temperature drops below 0 or rises over 30 degree centigrade.    

Most sensors in smart homes are binary of nature, i.e., they only behave in an on-off manner. 

They offer simplicity and low network loads because only binary values need to be 

transferred. Tapia et al. (2004) argue that the cost of putting a lot of advanced sensors in a 

smart home often restrict its deployment. As a solution they developed a cheap and small 

simple on-off sensor. Brush et al. (2011) supports the view that cost is one of the largest 

barriers that prevents smart homes from being adopted. So, focusing on simple switch sensors 

is beneficial from a cost perspective. A simple sensor framework has been used in a work by 

Orr et al. (2000) they build a pressure sensitive floor to detect the user location. MIT 

researchers use simple switch sensors to detect user activity in form of state changes (Tapia et 

al., 2004). An example of using another approach, which can be quantized into binary data, is 

presented by Cho et al. (2010) it extracts user activities from the power consumptions in the 

smart home.      
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In general, sensors change state when they are triggered. If a sensor has a transmitter, but no 

receiver communication link handshake is not possible. Thus, the communication link needs 

to handle this. One approach that deals with this is the event driven, where the sensor 

transmits an event whenever it is activated. Such an approach uses power only when some 

change in the sensor state is detected. However, if the event is lost, the network consumer is 

not notified again. Another approach, which uses more power, is transmitting sensor status 

periodically e.g., every second. Such an approach increases the likelihood that a sensor state 

change will be detected, for the cost of consumed power and increased network load. A third 

approach is using a polling approach where the consumer asks the sensor if some changes 

have been detected. In this approach events are only transmitted when the consumer needs it. 

But, this requires that the sensor node has a receiver and not only a transmitter. A more 

comprehensive discussion of transmit-only sensors is provided in subsection 4.4.3. 

When the sensors are triggered by some user activity there is a risk that this causes multi 

events. For example, if the user does not close a closet properly the switch could detect 

vibrations from the environments and emit a cascade of on-off events. Obviously, some 

algorithm or filter to prevent this from happening is needed. The question is where to place 

this filter – in the sensor or in the event consumer. This choice is a balance between 

bandwidth and power. Thus, if the filter is placed in the sensor, bandwidth is saved for a cost 

of doing more processing in the sensor node. Placing the filter in the consumer node moves 

the power consumption from the sensor node to the consumer node, but more bandwidth is 

used for the repeating events. Nonetheless, if the consumer node is powered by, e.g., the 

mains and the bandwidth load can be accepted this approach could be beneficial.   

4.4.2 DEVICE POWER CONSUMPTION 

Power consumption in SHNs is a problem if the devices are powered by batteries. Changing 

batteries on sensors and devices is a non trivial task. Often these sensors are hidden in a door 

frame or build into a closet, i.e., they are hard to reach. This problem increases with the 

amount of available sensors that can be more than one hundred in a smart home (Zhao et al., 

2013). Another issue is the physical size of the used batteries because it needs to be small 

enough to fit into the low form-factor sensors and devices. But the dilemma is that, a small 

size battery also has a small battery capacity. It is expected that sensor devices will become 
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smaller in the future so small batteries are needed. Reducing the sensor sizes also provide 

another problem in form of heat. Small integrated circuits have a problem with cooling, 

because they have a small surface area.          

To reduce power consumption in SHNs the amount of information transmitted need to be 

limited. Firstly, it can be limited by sending short atomic messages over a short distance.  

Secondly, organize the communication so it is possible for the sensor node to power sleep. 

Thirdly, use a mix of mains and battery powered devices (Jin & Kunz, 2011).        

So, saving power in smart home devices are of high importance for low bit rate networks and 

battery powered devices (Yao et al., 2010). Further information can be gained by looking into 

a mix of power supply types and processing capabilities for the sensor nodes (Shah et al., 

2009). In their work they mix both processing and power supply types to achieve better 

performance. However, the cost is a complicated concept that uses a broadcast approach. 

Regarding the mains powered nodes they do not have the power limitations found in the 

battery driven ones so they offer a possibility to route messages from battery driven sensor 

nodes (Xu et al., 2013). This principle has been researched by Starsinic (2010).   

A future approach is the concept of energy harvesting. It could be used for powering low-

power sensors and their build in electronic circuits (Drew, 2012), (Boegel, 2012). Energy 

harvesting is a process where energy is harvested from kinetic energy. An example could be 

opening or closing a door. However, this technology is still in its infancy why it is not 

sufficiently mature for use in smart homes.  

With respect to the smart home sensors and devices the main challenge is increasing the 

battery lifetime. Different possible focus points have been discussed earlier in this section. 

They are: Small messages, node power sleep, using a mix of battery and mains powered 

devices. 

4.4.3 TRANSMIT ONLY NODES  

In the discussion of saving battery power a major challenge is the possibility for sensor nodes 

to have a transmitter only, i.e., no receiver. The advantage is that it supports dense and long 

lasting applications deployed at a very low cost and power consumption (Blaszczyszyn & 
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Radunovic, 2008). However, the lack of receivers in the transmit-only nodes renders most 

existing MAC protocols invalid.  

Zhao et al. (2013) address these challenges by developing a new architecture that supports 

transmit only nodes as well as standard nodes with a complete transceiver. The problem with 

having no receiver is that these nodes cannot synchronize with other nodes, e.g., by using a 

carrier sense multiple access scheme. This means that when a large number of nodes use such 

a greedy scheme the network performance will deteriorate fast. To overcome this they 

presented a scheme based on a time division multiplexing scheme without control, where all 

nodes transmit the same message (frame) randomly a number of times. The more number of 

times one node transmits the frame the more likely it will be received without collisions from 

the other frames. This enables the use of prioritization, which is why they defined two groups 

covering low priority (LP) and high priority (HP) frames. Yoon et al. (2007) showed that this 

scheme can achieve 97 % delivery probability in a 100 node Wireless Sensor Network 

(WSN).  

Zhao et al. (2013) also showed that it is able to improve the delivery probability by requiring 

that the HP nodes to have a receiver. The HP node receiver was used to stop further transmit 

trials if an acknowledgement was received from the sink node. This lowers the collision 

probability and thereby increases the data delivering performance. Finally they presented a 

scheme where the pseudo-random generator seeds in the LP nodes were mirrored into the sink 

node. This means that the sink node is able to inform the HP nodes about what time interval to 

avoid because it is used by one of the LP nodes. One of the disadvantages in this scheme is 

the need for clock synchronization in all the nodes without having a receiver in the LP nodes.                  

To support layer 3 in the OSI model a link layer (layer 2) and a physical layer (layer 1) are 

needed. In general, the link layer takes care of contention, channel sharing i.e., MAC 

functionality, timing and signal processing. In general, factors as node power consumption, 

transmission delay, throughput, robustness, scalability, stability, and fairness have influenced 

the design of MAC protocols (Sohrabi & Pottie, 1999). Nonetheless, in transmit-only sensors 

this functionality is reduced and thereby indirectly improves the power savings. 
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In smart home context the ZigBee protocol based on the IEEE 802.15.4 standard is very 

popular. Another protocol that is also based on this standard is the 6LoWPAN. It could 

become popular too in the future because it is IP based and supports direct Internet 

connections. However, today (2013) it is too complex and resource consuming for S.O.s 

based on small, cheap, low-powers microcontrollers. The benefits that make ZigBee popular 

are: the build in encryption in form of Direct Sequence Spread Spectrum (DSSS), it is 

standardized, it enables asynchronous modes, and it offer development support for smart 

homes developers. None of the other standards offer all these benefits. Nevertheless, as 

descried earlier it is expected that a mix of all these protocols will be seen in the future.         

4.4.4 SENSOR CLUSTERING 

Combining smart home sensors and devices in clusters provides benefits as allowing most of 

the nodes to enter power sleep mode and thereby save battery lifetime. Furthermore, the 

interference level is lowered for the wireless clustered nodes. This is achieved by reducing the 

needed transmit power for reaching the nearby cluster head (Lynggaard, 2013c).   

From a communication point of view many devices are often handled by organizing them into 

a cell like structure. This has been used for many mobile phone systems like the GSM and 

LTE systems, where the primary reason is lowering the interference level and mobile terminal 

power consumption. In WSN a similar structure named cluster-tree topology is used (Radi et 

al., 2011), (Sohraby et al., 2007). This WSN technology is often adapted to the SHNs.    

From an algorithm point of view the Low Energy Adaptive Clustering Hierarchy (LEACH) 

algorithm uses clustering techniques to enable node power sleeping. But, it does not optimize 

the choice of the cluster head in relation to save power. However, this problem has been 

solved in the Hybrid-LEACH algorithm (Azim & Islam, 2009).  

The challenge in SHN clustering is founded in the immaturity level these possess. Thus, most 

SHNs are constructed by simply using a non optimized technology such as ZigBee or ZWave. 

They use their own default clustering methods, which do not take smart home conditions into 

consideration and they are designed for general purpose WSN’s. Some researchers look into 

combining different networks into a single one, e.g., by using middleware concepts (Pensas & 

Vanhala, 2010). Most of these systems do not adapt to the special circumstances and 
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conditions that are given in a smart home context. However, ZigBee offers support to other 

cluster structures than the default ones (Khan & Aziz, 2009).     

4.4.4.1 Clustering and Interferences 

Viewing the defined cluster based S.O. and sensor topology in smart homes from an 

interference and power consumption point of view, underlines its usability. In a radio based 

system many types of interferences are in play. One of the most severe interference types is 

the co-channel interference that expresses the wanted signal power divided by the disturbing 

signal power (both at the same frequency). If this co-channel interference ratio is high, the 

wanted signal can be received with an acceptable bit error level. Other interference types are 

fading and adjacent channel power, but they are less severe than co-channel interference in 

smart homes (Lynggaard, 2013a).  

Another major source for interference signals in smart homes is a WiFi router that often 

works at 2.4 GHz. Its frequency is in the Industrial Scientific Medical (ISM) band where most 

of the WSNs are allocated. These WSNs provide the lower layer interface for the S.O.s. Thus, 

WiFi routers will impose interference on the WSN’s and thereby on the S.O.s (Lynggaard, 

2013a). Yao et al. (2010) performed a series of experiments where they have found that the 

common 802.15.4 based WSN network capacity will drop to below 26 percent in some WiFi 

scenarios. A similar work by Hou et al. (2009) confirms this problem. In addition they have 

studied the radiation from a microwave oven and concluded that it would cause packet losses 

of approximately eight percent in a radius of 1.5 meter. 

The consequences of these interferences are that the retransmission rate in the SHN will 

increase and the battery powered nodes are forced to increase their transmit power and 

thereby their power consumption (Subsection 4.5.2). Another factor that increases the node 

transmit power is shading, where the signal is lowered by disrupting furniture and walls (Shah 

et al., 2009).  

Summing up, the challenge is to reduce the interference level in smart homes for saving 

power in the battery driven sensors and S.O.s. Selecting the sensor and S.O. spatial locations 
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is of high importance. This selecting process must take into consideration the 

intercommunication and out-of-context communication needed by the S.O.s.     

4.4.5 SMART OBJECTS / AGENTS 

S.O. is not a standardized exact definition, but merely a term that has different meanings in 

different contexts. Similar often used terms are smart devices, intelligent products and smart 

parts (López et al., 2012). For example the S.O. alliance (2013) has one description that 

associates the S.O. term with 6LoWPAN enabled IoT’s. In another description they state that 

S.O.s are:  

S.O.s are small computers with a sensor or actuator and a communication device, 

embedded in objects such as thermometers, car engines, light switches, and industry 

machinery. S.O.s enable a wide range of applications in areas such as home 

automation, building automation, factory monitoring, smart cities, structural health 

management systems, smart grid and energy management, and transportation 

(Alliance-IPSO, 2013).   

López et al. (2012) define IoT based S.O.s as objects that: Have a unique identity and are able 

to sense and store measurements; transfer data and identification to other objects; and make 

decisions about themselves. Satoh (2009) states that some S.O. types are unable to 

communicate because they are missing the necessary resources. Therefore, S.O.s with limited 

computing and communication capabilities should delegate these with other S.O.s that have 

these resources available; this includes smart home servers (Satoh, 2009). Trying to combine 

the definitions from the different areas into one that can be used for smart homes could be 

beneficial. By looking into the discussed different definitions it is possible to find common 

elements that provide consensus of what an S.O. is. Thus, S.O.s: 

 must be distributed in the smart home  

 must contain computer power to some extent or be able to hand over tasks to other 

systems that have this resource  

 must be able to communicate with each other and the external context  

 must be able to handle sensors and actuators.  
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The state-of-the-art research in the S.O. research field uses a concept based on S.O.s that are 

named agents (Del-Hyo et al., 2012),(Arabnia et al., 2010),(Cook, 2012). An agent covers an 

isolated functionality or a domain in a smart home, e.g., one agent controls the heating and 

another controls the light.  

A collection of agents are named a multi-agent system. Some illustrative examples of these 

systems are presented in the following. In the smart homes area Hannon et al. (2005) present 

an agent-based model, which is based on the biologic area. They suggest an agent-based 

distributed system as described in section 4.3. The agent-based smart home approach is also 

supported by Cook et al. (2012). They have built an experimental smart home in their 

laboratory named ―MavHome‖. This model is based on multi task agents where each agent 

addresses a specialized part and then coordinates with the others. Thus, one agent could 

handle HVAC and another one the power lines. Ling et al. (2002) present a smart agent 

framework for smart homes. They allocate five agents that divide the smart home functions 

into categories such as: Functions, interfaces, preferences, resources and controls. 

Looking into the future the development in processing power and power consumption for 

small embedded processor devices, controllers and wireless transceiver technologies will most 

likely improve considerably. These technologies are the backbone for developing a distributed 

S.O. device that is approaching an IoT device and is able to offer distributed intelligence 

(Chapter 5). Alam et al. (2012) supports this prediction:  

Although smart home research was initiated several decades ago, it still faces 

problems of immature home intelligence because of inadequate algorithms, improper 

activity recognition methods, and low rates of prediction accuracy. Providing 

distributed intelligence to all appliances may be an effective solution because it 

removes the burden of processing huge amounts of information from a central 

intelligent system. Each device will be responsible for its own domain and share only 

important information with the central intelligent system. The system will eventually 

transform into a multi-agent system with distributed intelligence by integrating smart 

appliances (Alam et al., 2012). 
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S.O.s need processing power to be able to offer their services. This processing power needs to 

be provided by small cheap embedded processors that fulfill the S.O. concept. Actually, many 

different processors and wireless platforms have been used by the researchers to perform 

experiments. Trevennor (2012) discusses smart home enablers and demonstrate some wireless 

sensor technology in the form of a homemade processing module based on a low-cost 

microcontroller and a ZigBee module from Sparkfun. The purpose of this work is to 

demonstrate that wireless nodes can be small and cheap. Chong et al. (2011) look into the IoT 

area to implement an SHS. They use a 8051 processor and the CC2530 wireless ZigBee 

module to build a simple system that can be remote controlled from a home page. Their 

conclusions were that the gateways provide some challenges and that the system did not 

provide sufficient processing power to run AI algorithms. Mao et al. (2010) present a 

controlled centralized home system that uses an ARM9 processor. Their works were targeted 

a centralized server concept with an Internet connection. However, none of these works deal 

with the issues of saving power, lower component form factor and provide sufficient 

processing power to support and run AI algorithms. Power consumption for S.O.s can be 

divided into three parts: Sensors, micro processor or controller, network interface. Power 

saving in the network interface is discussed in subsection 4.4.2. 

Sensors as such do normally not use much power unless they need some driving electronics 

and wireless transceivers. However, even then these electronics can be duty-cycled, i.e., using 

an appropriate power sequence alternating between sleep and run. Using this method Lutz et 

al. (2010) have shown that the energy consumption can be lowered with a factor up to . 

Regarding the microprocessor power consumption it can be exemplified by using a modern 

(2013) existing micro processor, which is the PIC18F46J50 from the company Microchip. It 

is able to save power by using different modes that offer different performances depending on 

its programming. In deep sleep mode it offers a current consumption of 13 nA. Wakeup from 

this mode can be done from an external event such as a ZigBee transceiver. In full run mode it 

uses 10 mA and offers approximately 10
6
 instructions per second, which is more than 

sufficient to run the artificial network as explained in section 8.7. The form factor of 

components has decreased through the years, thus the ZigBee module NY2400SC (from the 

company A.N. Solutions) only consumes 3 cm
2
 and the PIC18F46J50 consumes 1 cm

2
. 

610
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However, these numbers need some additional amount of area for the battery and other 

needed components.  

As exemplified, today’s electronic components are sufficiently mature to support an S.O. 

framework that offers: Transceiver functionality, low power consumption and high processing 

power. The challenge is to go beyond today’s state-of-the-art, making these S.O.s context-

aware, intelligent and able to communicate, and combining them into a distributed system for 

the future smart homes. They should be able to not only react to changes in the environment, 

but also perform AI-based reasoning to take into account the preferences of the users 

inhabiting the smart home. Actually, a lot of research is needed in this area.  

4.5 NETWORK TOPOLOGIES 

The smart home topology, i.e., the organization and layout of nodes can be done in many 

ways and are individual for smart homes. However, as discussed earlier at a heuristic level 

two basic types exist. One is this centralized and the other is the distributed approach 

(Sohraby et al., 2007). 

The centralized network (e.g., the star topology) has a central node that receives all 

information from the sensor nodes by using the intermediate routing nodes to pass it on 

(Wang, 2010). The central node does all the processing and based on the results it controls the 

actuators, e.g., turning on the light. This topology reduces the complexity required by the 

nodes together with the network complexity. The central node must have a powerful 

processor to be able to do all the calculations in real time. A drawback is that the system is 

totally dependent on the central node and fails totally if that fails.  

The distributed network (or decentralized network) is a type where each node can 

communicate with its neighbors (Li & Yu, 2011). However, in wireless networks some of the 

nodes may be too far from each other to communicate directly. This means that the distributed 

topology must provide multi-hop capabilities and the nodes must know the node address of 

their neighbors. Some systems add more complexity by proving ad-hoc networking capability 

where, e.g., new nodes can arrive and automatically be integrated into the existing network 

topology. Thus in the distributed topology, sensor nodes use routing nodes to forward the 
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messages until they reach their final destination, i.e., the final node. This means that a 

message may be routed by using different protocols, which is time consuming and resource 

demanding (Starsinic, 2010).  

The challenges are to find the best combination of the basic topology types seen in the light of 

their ability to make inter-device communication and to communicate with systems outside its 

own context such as cloud services. Additionally, the topology of supporting devices with 

different communication capabilities is challenging. 

4.5.1 ROUTING IN SMART HOMES 

Routing in smart homes is a complex matter. It needs to combine many different device types 

into one common network. Additionally, its intelligent gateways must be able to make 

decisions based on device energy resources and processing power. Furthermore, routers are 

needed to connect this common network to the world outside its own context such as cloud 

based services and a portable user interface. 

Many people associate SHNs with broadband streaming of multimedia services, but this not 

the purpose with these networks as discussed in subsection 4.2. However, multimedia and 

entertainment devices are connected to the Internet by cable or wireless technologies by using 

a parallel IP based network. Similarly, the SHN has Internet access in its gateway, so it is 

possible to route between these two networks. But, it should be noted that this connection can 

only be used for smart home events and actions, because the bandwidth in the SHNs are very 

limited (Subsection 4.2).   

In the future SHNs will be an important new class of low bit rate communication (Li et al., 

2011a), (Starsinic, 2010). As discussed, such a concept would require that the smart home 

owner is capable and willing to manage several local networks where each has its own 

gateway. An alternative approach is presented by Starsinic et al. (2010) in Figure 4.7 where 

they have integrated the different network protocol gateways into a centralized one. By using 

this approach the user only needs to interface with one central gateway to manage the smart 

home. The always powered gateway is able to scan for new devices and subnets 

autonomously and thereby enable plug and play. However, the disadvantage in this approach 

is complexity and the implicitly used centralized approach.  
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Figure 4.7. A converged smart home network (Starsinic, 2010). 

A new (2013) useful concept for building distributed gateways is the Software Defined Radio 

(SDR) technology. It is still in its infancy, but it has a huge potential in gateway systems 

where it offers multi-protocol radios by using a fixed and reduced amount of hardware 

(Pucker & Kaiser, 2013). SDRs are able to bridge between two subnets running different 

standards and using different frequency bands. Their architecture handles and simplifies 

network upgrades and protocol updates could be supported via simple software downloads 

(Tribble, 2008), (Subsection 3.5.2).   

The use of combined gateways versus isolated network approaches offers advantages and 

disadvantages that need clarification. An additional challenge in smart home routing is to find 

an advantageous level of integration between an SHN, an entertainment network and 

gateways. In the future, SDR’s are expected to be a useful part in both smart home routing 

and networking. 

4.5.2 FACTORS AFFECTING THE NETWORK CHOICE 

In general, a lot of considerations are needed to guide network choices for smart homes. Many 

factors are important; however, for this work at least three factors need attention, they are: 
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Range, bit-rate and energy consumption (Sundmaeker et al., 2010), (Casilari et al., 2010). 

Actually, these are interdependent and all end up in battery power consumption and network 

load. 

Range in wired networks is limited by the connecting cables, whereas in wireless networks 

the range is limited by interferences and power consumption. This connection can be seen by 

looking into the loss factor in a wireless system, which is the free space loss
6
. This loss is the 

most dominant factor in a link budget. To overcome this loss the wireless network devices 

need transmit power. Similarly, the bit-rate in the channel between the transmitter and the 

receiver is limited by the Shannon channel capacity formula
7
. Moreover, this means that to 

increase the reliability of the receive information more transmit power is needed, which in 

turn requires more (battery) power.  

The energy consumption in the network transceivers is related to the individual transmitter 

and receiver contributions. The transmitter consumes a lot of power when it transmits but 

almost nothing else; whereas the receiver uses power most of the time because it listens for 

incoming messages. Other factors that influence the network choices are (Gershenfeld et al., 

2004), (Starsinic, 2010):  

 cost of components  

 component size, it matters because they often need to be hidden  

 scalability, i.e., how many devices can coexist, this also influences component power 

consumption and delay  

 standardization, which reduces the amount of proprietary networks  

 reliability in wired and wireless networks have different levels; and finally  

 privacy together with security.  

                                                 

6
 It is expressed as: where is wavelength and D is distance between the receiver and the 

transmitter. 

7
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Thus, when an SHN topology, components and concepts need to be chosen many factors need 

to be considered for obtaining the best compromises. In addition, these factors need attention 

when the next generation SHNs are considered.                

4.5.3 WIRED SMART HOME NETWORKS 

Wired SHNs are useable at places where it is possible to hide the wired installation (Kaila & 

Mikkonen, 2008), e.g., in closets and behind shelves, etc. Because they are powered by the 

mains they are able to handle more complex and intensive processing tasks. However, most of 

these wired systems suffer from poor bit-rates that limit their usability (Chen et al., 2011).   

In general, many embedded electronic systems use and provide network communication 

capabilities. Examples of such commonly seen networks are IIC, USB and RS-485. They all 

offer multi-drop connectivity, i.e., point-to-point or point-to-multi-point connectivity. 

Nowadays USB is by far the most used protocol. It is the standard interface for PC’s and 

many small-size and low-cost embedded microcontroller devices also offer USB connectivity. 

However, USB is designed for high speed and not for power saving. In the context of smart 

homes this standard should only be used in connection with devices that are powered by the 

mains grid.  

Existing cabling in smart homes can also be used for communication. An example is power-

line communication that uses the mains cables to communicate without the need of any other 

infrastructure element. Different protocols are available e.g., INSTEON, EHS/KNX, UPB, 

X10 and CEBUS.  INSTEON is used for connecting light switches, thermostats, motion 

sensors, etc. X10 is much alike, but it has become very popular with millions of users 

worldwide due to its simplicity. Other protocols like KNX is a standardized OSI-based 

network communication protocol (EN 50090, ISO/IEC 14543, CEN EN 13321-1). It is able to 

use different physical media like twisted pair, power-line, radio, infrared and Ethernet 

connections. Common for all these wired systems is that their communication takes place 

over the mains grid. They all offer a low data rate channel (normally a few hundreds of bits 

per second) over long distances. However, faster bitrates can be achieved by limiting the 

distance that the signal has to travel.  

http://en.wikipedia.org/wiki/Standardization
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Communications_protocol
http://en.wikipedia.org/wiki/EN_50090
http://en.wikipedia.org/w/index.php?title=ISO/IEC_14543&action=edit&redlink=1
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Name Wired/ 

Wireless 

Data rate Standard 

INSTEON Both 180 bit/s  Smartlab Inc. Patented 

KNX Both 1200 bit/s EN 50090, ISO/IEC 14543, CEN EN 13321-1 

UPB Wired 240 bit/s PCS Powerline Systems of Northridge, California 

X10 Both 20 bit/s. Pico Electronics (Industry standard) 

CEBUS Both 8 kbit/s EIA-600 

Table 4.2. Overview of wired communication standards. 

Overview of some of the most popular wired protocols are given in Table 4.2. An example of 

how these wired protocols can be combined with wireless protocols to form an SHN is 

provided by the work of Jin et al. (2011). They discuss how to combine wired and wireless 

networks by the use of mainstream technologies.  

Using wired network devices as framework for weak resource devices is beneficial because it 

is able to provide a mains-powered core, which can supply the weak resource devices with 

power. However, the low bitrates provided by these wired networks require some focus, i.e., it 

is a challenging research area.       

4.5.4 WIRELESS SMART HOME NETWORKS 

Most SHNs are founded in the world of WSN’s (Pensas & Vanhala, 2010), (Sohraby et al., 

2007). That is, the smart home topology is strongly related to the WSN that often consist of a 

collection of inexpensive and compact-size computational nodes. These nodes are able to 

sense and report their contextual conditions, i.e., they measure parameters that can be 

forwarded to a central point for appropriate processing.  

Mainly two WSN categories are used (Sohraby et al., 2007): 

 Category 1 WSNs: Almost invariably mesh-based systems with multi-hop radio 

connectivity among or between WNs, utilizing dynamic routing in both the wireless 

and wire line portions of the network.  

 Category 2 WSNs: Point-to-point or multipoint-to-point (star-based) systems generally 

with single-hop radio connectivity to WNs, utilizing static routing over the wireless 

http://en.wikipedia.org/wiki/EN_50090
http://en.wikipedia.org/w/index.php?title=ISO/IEC_14543&action=edit&redlink=1
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network; typically, there will be only one route from the WNs to the companion 

terrestrial / wire line forwarding node (WNs are pendent nodes). 

Coupling the WSN topology to the SHN topology it provides a more complete picture of how 

SHNs work. Starting with the Category 2 WSN its most commonly used topology is the star 

network structure.  As discussed earlier, this structure has been used to support early building 

information and home automation systems. However, it still has a potential in the smart home 

area, especially because it provides a simple network structure and an uncomplicated 

behavior. Looking into the Category 1 WSN it contains the structure and dynamic needed by 

future smart homes. Thus, it offers a structure with small islands (clusters) that contain chains 

of end-nodes (devices) linked to a dynamic route wireless router. This cluster based structure 

fits well with a hierarchical based smart home structure and a distributed agent approach. 

The challenge is to use a combination of these established WSN technologies to achieve a 

flexible wireless network that is able to support nodes with different processing capabilities, 

different power supply types and be able to support advantageous clustering topologies.    

4.5.5 ALGORITHMS USED IN SMART HOME NETWORKS 

Node communication provides a mechanism for transporting and exchanging smart home 

sensor and device information. It is carried out by the backbone network and it supports 

different modes. One mode supports direct node access for transporting events, actions and 

identity information between the sensor nodes and to the outer world. Another mode supports 

broadcasts when multi devices need the same information.     

Different established WSN principles are available for node communication (Sohraby et al., 

2007). These will be discussed, in the light of the smart home application area, for clarifying 

their potential use.     

4.5.5.1 Flooding Algorithm 

In this algorithm each node simply transmits copies of a received message to its neighbors. 

Such a concept is simple, scalable and it requires low maintenance. However, if there are ring 

structures in the network, messages can circulate forever. To avoid this each message is 

equipped with a time to live counter. Another disadvantage is its susceptibility to traffic 
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implosion, i.e., one message replicates into many messages and thereby raises the network 

load. In addition, the same message can be routed twice by a given node. Finally, this strategy 

also is resource blind, i.e., battery powered nodes are flooded by the same amount of packets 

as the mains powered nodes.   

The flooding algorithm is not commonly used in SHNs, but it is used in machine-to-machine 

(M2M) communication because of its simplicity (Subsection 3.5.2). Furthermore, it is 

expected to be one of the communication schemes used in the world of Internet-of-things 

(IoT) (Chen et al., 2011). From a smart home context it is reasonable to expect that this will 

be used when the M2M and IoT areas integrate into the smart home context in the future. Jin 

et al. (2011) have found that the flooding algorithm is superior to dedicated routing algorithms 

in the case of broadcasting. Their investigations have focused on power consumption, 

network load and average latency.         

4.5.5.2 Gossiping Algorithm 

This is a variant of the flooding algorithm. Each node forwards the message randomly to each 

of its neighbors until it arrives at its destination or the hop counter is exceeded. The 

disadvantage is that message latency (delay) can be long (Hedetniemi & Liestman, 1988).  

This algorithm is useable for single node broadcasting to many smart home nodes. However, 

if the information only needs to be broadcasted to a subset of these nodes common flooding is 

more useable. 

4.5.5.3 SPIN Algorithm – Sensor Protocols for Information via Negotiation (SPIN)  

The main objective is to disseminate a message from one sensor node to all the other nodes 

(Kulik et al., 2002). By using descriptive metadata the SPIN algorithm notifies all other nodes 

about is available data type and content. Nodes interested in this type of information can then 

subscribe to it (Park & Corson, 1997). The disadvantages are node complexity and that data 

are not always delivered because intermediate nodes may not be interested and therefore drop 

the advertising message. In smart home context this algorithm is useable to distribute 

information to nodes that have a particular interest to it. However, it has not been used much 
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in the smart home research area. Xu et al. (2013) have used it in a modified form to reduce the 

message flooding in the flooding algorithm.  

4.5.5.4 LEACH Algorithm – Low Energy Adaptive Clustering Hierarchy (LEACH)  

This algorithm divides the sensor nodes into clusters where each cluster has a cluster head that 

handles the nodes communication needs. Thus, the cluster head uses a Time Division Multiple 

Access (TDMA) approach to poll (using a round-robin fashion) each node for messages and 

collect these into a packet that is transmits to the data sink. Despite these benefits LEACH 

suffers from a high complexity level (Heinzelman et al., 1999). In the context of SHNs Azim 

et al. (2009) have developed a different version named Hybrid-LEACH. It has considerably 

lower power consumption compared to the original LEACH algorithm.    

Some smart homes state-of-the-art network algorithms use a subset or a mix of the discussed 

category 1 and category 2 network models in combination with variants of the presented 

WSN routing strategy and algorithms. Xu et al. (2013) present their state-of-the-art work, 

which covers a smart home wireless network. Their work is based on the fact that some nodes 

use batteries whereas others have a fixed power supply from the mains grid. The mains grid 

nodes are then assigned the task of being backbone nodes for the data routing whereas the 

battery-powered nodes only transmit data relevant to themselves. Such a concept ensures that 

the battery powered nodes only use battery power for transmitting communication relevant to 

them, and only use power for receiving most of the time. It should be noted that transmitting 

messages uses much more power that receiving them. However, as already discussed, the 

receiver is always listening and thereby using battery power over a much longer time than 

transmitting does.  

Xu et al. (2013) modified the presented LEACH routing algorithm. Thus, this algorithm was 

modified into an algorithm named LEACH-Pi, which restricts the choice of the cluster head to 

be one of the mains powered nodes. Similarly, the SPIN algorithm was modified into an 

algorithm named SPIN-Pi, which pairs the battery powered nodes with a mains powered 

counterpart that takes care of the data subscription. The latter node exchanges data with the 

paired battery nodes. The SPIN-Pi algorithm is mainly for distributing data between nodes, 

whereas the LEACH-Pi algorithm is useable for point-to-point communication. The 
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disadvantage of these schemes is their spatial cluster head placement selection and blind spots 

(Azim & Islam, 2009). A similar work has been done by Takizawa et al. (2012) that combines 

mains powered nodes with battery powered ones in a 6LoWPAN scheme.                           

Summing up, all the discussed node communication algorithms offer different services, 

capabilities and performances. Smart home state-of-the-art technologies that extend the 

existing node communication technologies are discussed. It enables battery and mains 

powered nodes to be part of an SHN in an advantageous way. However, using this technology 

still leaves problems such as node clustering, allocation of cluster masters and node power 

consumption unanswered.         

4.5.6 WIRELESS NETWORK TYPES 

As previously discussed, many well-defined and standardized protocols exist in the WSN 

area. Most of these are used in smart homes often in a mixed fashion because no single 

standard exists, manufacturers use their own favorite, and a combination of the different 

technologies is needed.         

An overview of the wireless network types that are commonly used in smart homes is 

provided in Table 4.3 (Gomez & Paradells, 2010), (Starsinic, 2010). For being able to 

compare these some relevant areas have been selected, they are: Frequency, data rate, device 

range, device security, and the used modulation spreading techniques (Gomez & Paradells, 

2010). The frequency parameter is important because, if the wireless network type supports 

the ISM band, users can deploy these devices without type approval or the need of some 

special license, in most countries. Parameters such as high data rate and device range are 

normally desired, however, increasing these parameters normally also means that more power 

is needed (Subsection 4.5.2). This is a paradigm for battery power devices, i.e., a compromise 

must be found. Modulation and spreading techniques are important for data rate, bit error 

probability, channel robustness, noise resilience, and are vital parameters in wireless multi-

node systems based on multiplexing technologies.        
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Protocol Frequency 

(MHz) 

Data-rate 

(kb/s) 

Security Range 

(m) 

Modulation 

/Spreading 

technique 

Specification 

publicly 

available 

ZigBee 868/915/2400 20/40/250 Yes 10-100 QAM/DSSS Yes 

6LoWPAN 868/915/2400 20/40/250 Yes 30 QAM/DSSS Yes 

Z-Wave 868/915/2400 10/40/200 Yes 30 BFSK/No No 

INSTEON 904 38.4 Yes 45 FSK/No No 

Wavenis 433/868/915 5/19/100 Yes 200 GFSK/FHSS No 

BT-low energy 2400 270 Yes 50 GFSK/FHSS Yes 

Table 4.3. The most commonly used wireless network types in smart homes (QAM is quadrature 

amplitude modulation, FHSS is frequency hopping spread spectrum, FSK is frequency shift keying, BFSK 

is binary FSK, GFSK means Gaussian FSK). 

One of the most usable network technologies for smart homes is ZigBee (Yan & Dan, 2010), 

(Ma et al., 2012), (Trevennor, 2012). It uses the ISM band, offers scalable bitrates, employs 

encryption, has low power consumption, it provides scalable range, and it offers a flexible 

network topology. The ZigBee technology is used later in this work, why it is presented at a 

detailed technical level in the following. In addition, the 6LoWPAN technology is presented 

because it shares many similarities with ZigBee (Lu & Wu, 2011). Alternative technologies 

such as Z-Wave, INSTEON, and Wavenis have been used too, but they have not achieved the 

same popularity as ZigBee in the smart home context (Gomez & Paradells, 2010).    

ZigBee is a WSN technology that has been developed by the ZigBee Alliance for low data 

rate and short range applications. This means it is well suited for the smart home area. The 

ZigBee protocol stack is composed of four main layers. Layer 1 and 2 are defined by the 

IEEE 802.15.4 standard whereas the other layers are defined by the ZigBee specification. 

Actually, the IEEE 802.15.4 standard provides a very efficient communication channel in 

small WSN and smart homes that are small battery powered (Ma et al., 2012). This standard is 

able to form the different network topologies needed in smart homes. ZigBee is capable of 

working in the ISM band that is regulated by the ITU-R in 5.138, 5.150, and 5.280 radio 

regulations. This worldwide regulation means that each WSN node device in the smart home 

does not need to be type approved.  
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ZigBee uses DSSS based modulation scheme, which is noise resistant and implicitly adds  

encryption. This is useful in smart homes where the noise level from WiFi and other wireless 

systems can be high. ZigBee offers data rates from 20 kbit/s to 250 kbit/s which is sufficient 

for most smart home applications, except for entertainment systems. However, most of these 

systems use WiFi today. Basically ZigBee offers two channel access methods one with 

beacon and one without. This is very useful in smart homes where both TDMA synchronous 

and asynchronous devices could be used.  

To support application development ZigBee defines two profiles. The first one is the 

automated public application profile, which defines descriptions, commands, attributes, and 

other practices for applications in the application area of lighting, HVAC, window shades, 

and security. The second profile is the Smart Energy Profile, which focuses on energy 

demand in response and load management applications.  

The 6LoWPAN is an IP based technology (Dunkels, 2008) which is defined by the 

6LoWPAN working group under IETF. It uses a layered model where layer 1 and 2 are 

defined by IEEE 802.15.4. On top of these layers are a 6loWPAN adaptation layer, followed 

by the common Internet layers such as IPv6, TCP/UDP, and HTTP/TFTP. Offering Internet 

comparability on the top layers means that format conversion is not needed in the routers and 

gateways, which saves resources in these. However, the IPv6 datagram does not fit 

6LoWPANs buffer size, meaning processing power is needed to do real time data 

manipulation (Hui, 2008). 

The standard IEEE 802.15.4 used in the 6LoWPAN two lower layers is also used in ZigBee. 

This provides the possibility to use these standards interchangeably seen from a network 

topology point of view. A detailed overview is presented in Table 4.3. Thus, some of the large 

manufacturers such as NXP (Philips), Atmel, and Texas Instruments provide integrated 

circuits that support both ZigBee and 6LoWPAN in a single integrated circuit. In addition, 

some researchers claim this standard will be the future ―backbone‖ in the IoT (Lu & Wu, 

2011).   
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4.6 SUMMARY 

This chapter explored the research frontiers in the relevant research areas. Firstly, the 

distributed system challenges were discussed. Secondly, the research was focused to the 

challenge of handling distributed devices from different manufacturers in the light of IoT 

without any available standard. Thirdly, the challenges of wired and wireless data exchange 

mechanisms and functions needed in an SHN were discussed. Included were network 

topologies and technologies which were researched in the context of power consumption, 

power sleeping, interference, and protocols. Finally, the sensor types and their challenges 

such as network load, cost, and power consumption were explored. In addition, the research 

areas device-power-consumption and transmit-only sensors were explored to find their key 

challenges. In this context the challenges of S.O.s were explored in terms of context-

awareness, intelligent behavior, communication capabilities, and their ability to be combined 

into a distributed system usable for future smart homes. 
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5 ARTIFICIAL INTELLIGENCE: ALGORITHMS AND 

MODELS 

In chapter 4 a distributed conceptual framework and its included problem areas were 

discussed in a smart home context. Furthermore, it has been discussed that a smart home 

implicitly requires Artificial Intelligence (AI) to be context aware and be able to provide 

intelligent services to its user. The background for the AI part is covered in this chapter.  

Looking into the second research question in the view of smart home AI systems, it can be 

divided into some sub-problem areas that are discussed in the following. For convenience the 

second research question is restated: 

Question 2: How should the AI be distributed to comply with the smart home system 

architecture?       

This research question relates to the research area of distributing AI in a smart home system 

architecture. This is discussed in terms of AI definitions, AI applications and the AI 

algorithms in sections 5.1 and 5.2. Additionally, different AI models need to be explored and 

this is found in sections 5.3 and 5.4. Moreover, focusing on AI models that are based on 

currently existing technologies and devices limits the candidate field (Section 1.3). Thus, 

researchers have pointed out that the probabilistic based family provides some good 

candidates for smart home usage (Section 5.5). These selected models are presented and 

discussed in sections 5.5, 5.6 and 5.7. 

5.1 AI DEFINITIONS AND APPLICATIONS 

A working definition and clearness of the AI term are provided in subsection 5.1.1. Some 

examples of the AI application areas are provided in subsection 5.1.2.   

5.1.1 ARTIFICIAL INTELLIGENCE DEFINITIONS 

Initially defining the term artificial intelligence is beneficial, because no precise unique 

definition exists today. Hence, by using a simple description it can be stated that artificial 
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Intelligence (AI) is the intelligence of machines or software. This description covers elements 

such as knowledge management as well as reasoning and learning models; and it includes 

methods such as mathematical optimization, logic and probability. Elaborating over the 

missing definition Luger et al. (2008) attempted to define it this way: 

AI may be defined as the branch of computer science that is concerned with the 

automation of intelligent behaviour (Luger, 2008). 

From this definition, AI is a discipline of computer science and it is based on a theoretical 

framework that covers this field. Such a definition highlights and expresses the lack of 

knowledge that characterises this field. Thus, AI researchers often build particular intelligent 

artefacts that are able to solve one isolated problem. For example, the Bayesian networks are 

often used to visualize patterns and the Markov models are often used to recognize speech.   

Another attempt to defined AI is made by Pole et al. (2010) who claim that:  

AI is the field that studies the synthesis and analysis of computational agents that act 

intelligently (Pole & Mackworth, 2010). 

Their definition covers the term agents, which they define as something that acts intelligently 

in an environment. A refined definition of this term is a computational agent that makes 

decisions which can be expressed in computational terms. These decisions can be broken into 

small primitive operations that are implementable on physical devices. Describing an agent 

from a different angle provides clearness about its concept. An agent acts in environments 

where it is possible to use history and knowledge from prior observations. This means that an 

agent is able to learn from the past and make use of this learning to predict similar learned 

situations in the future.  

Analysing agents from a more general perspective reveals that agent designers concerns 

about: modularity, modelling the world, uncertainty in actions, goals of preference, how to 

learn, and how to limit computational resources. In addition, this discussed agent-based 

concept is in close agreement with the definition attempt provided by Russell et al. (2009).     
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These AI definitions are useful in smart homes where elements to be predicted are of singular 

as well as complex nature. Singular systems rely on local simple event based intelligent 

artefacts to make decisions such as turning on the coffee-brewer. Complex systems needs to 

use the past event based history together with the present events to predict complex actions 

such as the user goes to sleep.  

However, the challenge is to map these general definitions into usable ones that are optimal 

for smart home context, that are standardized and that are implementable with the available 

technology (Alam et al., 2012).   

5.1.2 ARTIFICIAL INTELLIGENCE APPLICATION AREA 

The application area for AI covers a wide range of applications such as toys, scientific 

research tools, medical diagnosis and robot control. In addition, many of today’s services are 

based on embedded AI, examples are self navigating vacuum cleaners, recommender engines, 

gaming engines, cars gearboxes, speech recognition, and industrial robots. Liu et al. (2010) 

use AI to build a mobile learning system which is able to vary the problem and exercise 

difficulty level, so it matches the level of the student. This system varies the explanation and 

learning content based on the student’s weak knowledge areas and change its teaching 

strategies. Chen & Liu et al. (2010) used an AI system to optimize the limited water resources 

from a river basin. They solved a water resource conflict and improved its economic 

efficiency greatly. Kondo et al. (2011) employed AI to improve the diagnostics of lung 

cancer. They used AI in the medical image reorganisation process with a high success rate. 

Thus, the application area of AI is widespread and often it solves the problems in a beneficial 

manner.   

The future challenges and perspective of AI are difficult to predict, however, Turner (2013) 

has suggested some possible candidate areas:  

 Robotics will be able to think for themselves and react to changing conditions by using 

AI. 

 Weather forecasts will be based on AI and thereby save lives in case of big storms. 

 Dangerous and monotonous tasks will be performed by AI systems. Today, robotics 

already does this to some extent. 
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 Swarm robotics that will be able to save the planet in form of cleaning pollution. 

 Intelligent transportation systems and cars will be able to run by themselves i.e., the 

human factor will be eliminated. This will increase safety, because AI reacts much 

more precise and faster than humans. 

 Space exploration with AI robots. NASA already works with this. 

 Protect your finances. AI will be able to spot fraud in the change of credit card use. 

 Staying safe. AI based security are able to distinguish unknown persons, etc. 

 Virtual assistants will help with traditional secretary’s tasks and as a medical assistant.  

However, this is only a limited list of possibilities today’s AI research is covering a huge area 

of applications and technologies. In the area of smart homes the future challenge is how to 

integrate AI based technologies that affect people’s living and housing with smart home 

technologies.         

5.2 AI AND PATTERN RECOGNITION 

To concretize the broad term AI in the light of computational data learning the term Machine 

learning is used. The part of machine learning that assigns categories to input values is named 

pattern recognition. Thus, pattern recognition algorithms aims to classify input values into the 

most likely output values depending on statistical variation. As such, this is the backbone 

algorithms used in machine learning and AI. Thus, the term AI will be used synonymously 

with the term pattern recognition in this work.  

From a high abstraction level pattern recognition methods can be divided into three model 

groups. These groups have been used in the smart home context, why it is informative to 

discuss their usability and usage areas.  

Group 1: The temporal data mining model finds templates in the data arriving from the 

sensors. These templates can be used to detect recurring actions. One approach based on this 

method is presented by Jakkula et al. (2008) who use it for detecting abnormal behaviour 

patterns in smart homes for people with cognitive disabilities. A similar method is the 

temporal-pattern that automatically identifies repeating patterns in a sensor data stream. It 

looks for sensor events that are interdependent, so if event E1 occur event E2 can be expected 
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with some probability within time window T. This method has been used by Jakkula et al. 

(2007) to detect anomaly frequently-occurring events. The advantage is that these methods 

find recurrent patterns automatically without user feedback. However, this also means that it 

is unknown whether the detected patterns are of any use. These techniques are closer to action 

discovery rather than action detection. 

Group 2: This group consists of the logic based methods. They build behaviour rules as a 

function of time that is hardcoded into the system. Using these rules it is possible to check if 

some specific behaviour takes place in a defined time window. This method has been used by 

Chen et al. (2009) in their adaptive scenario based reasoning (ASBR) system, (Section 5.2), 

(Subsection 6.1.1). The disadvantage in this method is the ambiguity that exists in which 

action that has been performed. I.e., it is not possible to get information on which action is the 

most likely one.   

 Group 3: This group is the temporal probabilistic models. They model sequential data, i.e., a 

sequence of sensor event observations.  Based on these, the goal is to infer a matching 

sequence of hidden states that correspond to the performed actions. This is performed by 

searching the sequence of states that maximizes the probability of the actions given the sensor 

readings. Two model types exist. They are the generative and the discriminative probabilistic 

models. Generative models use the joint probability between sensor events and the action 

predicted why they can be used to generate (sample) data. Discriminative models are used for 

inference only and therefore define the conditional probability directly. Examples of these 

different models are the naïve Bayes model (NB), Hidden Markov Model (HMM) and the 

Conditional Random Field (CRF) (Cook, 2012), (Kasteren et al., 2008b), (Fang et al., 2012), 

(Kasteren et al., 2011). An advantage of these models is that efficient algorithms exist that 

perform inference in an optimal manner. The disadvantage is that annotated training data are 

needed to learn the model parameters. 

A smart home challenge is to choose the right combination of models that offers the needed 

properties in terms of learn-ability, inference ability, and its use of implementation resources. 
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5.3 PROBABILISTIC MODELS IN SMART HOMES  

Using AI in smart homes is challenging. Especially, because the recognition model that 

handles the activity monitoring includes some difficulties. It interprets the received sensor 

events and recognizes the actions performed by the user. This is a challenging task because 

sensor data are noisy and the related activity data start and end points are unknown (Cook, 

2012). 

A variety of smart home models exists. One popular group is the category of non-parametric 

supervised classification models that contain decision trees, neural networks, naïve Bayes 

classifier and the supporting vector machine. All these models estimate category labels based 

on supervised training. Another popular group is the supervised categorical sequence labelling 

models that comprises conditional random field, hidden Markov models and variants of the 

hidden Markov models. They are useful to predict a sequence of categorical labels. I.e., they 

are able to use time correlated information (Chua et al., 2011), (Cook, 2012).  

To handle the smart home challenges probabilistic models are beneficial because they 

perform well in this context and they are the first choice for most researchers (Kasteren et al., 

2010), (Alam et al., 2012). Hence, probabilistic models offer robustness in the presence of 

noise, they are able to handle sequential data, and they generate probability distribution over 

the class label (Cook, 2012), (Kasteren et al., 2008a). In addition, efficient algorithms have 

been developed over the years by independent researchers.  

In the group of probabilistic models the most commonly-used ones are the naïve Bayes 

model, the hidden Markov model, and the conditional random field model. The naïve Bayes 

model handles the sensors independently without temporal information (Rashidi et al., 2011). 

This means that it is simple to implement, but lack the time dimension and the 

interdependencies in a sequence of actions. In contrast, the hidden Markov model adds 

temporal information by including a probability element that describes transitions between the 

actions (Kasteren et al., 2010). Thus, the hidden Markov model has temporal 

interdependencies, but it suffers from the complexity of the inference methods.  

These models are generative probabilistic, i.e., they require a model describing the 

dependencies between the observed sensor data and the actions. However, they have problems 
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with modelling long-term dependencies. Another classifier named Conditional Random Fields 

(CRF) can handle this. It is based on a discriminative probabilistic model (Kasteren et al., 

2008b). But it suffers from high computational costs in training.  

A challenge in smart home context is that these models require a large amount of processing, 

memory and power resources. These resources are not available on the distributed small 

cheap S.O.s derived in this work (Chapter 4). So at this level the challenge is to transform 

these AI algorithms into a form that enables distribution to different processing platforms. 

Depending on its available resources it offers a different level of prediction. Another 

challenge is that these algorithms have not been used very much in real-time learning.       

5.4 NON PROBABILISTIC MODELS IN SMART HOMES  

A variety of non probabilistic smart homes models exists. Nevertheless they have not been 

used much in a distributed context for reasons such as: they are resource demanding, they use 

large databases, they do not scale well, and they have difficulties with handling noisy data 

(Chen et al., 2010 ), (Cook, 2012). However, in many other application areas they provide 

good results. Thus, they will have substantial impact on future areas such as: development of 

our society, on ambient assisted living applications, green technologies and comfort related 

aspects.  

Artificial neural networks are some of the non-probabilistic models that researchers have 

looked into. These models are able to model activities of the user’s daily living with an 

acceptable performance (Fang & He, 2012), (Zheng et al., 2008). However, neural networks 

do not always reach the same solution for the same input; they use large amounts of 

resources; and they need a large amount of training data to obtain a reasonable efficiency 

(Chen et al., 2010 ).  

Other non-probabilistic models that have been tried in smart homes without establishing 

themselves in the area are:  

 Spatial-temporal reasoning that models a spatially pattern and understands how pieces 

fit together into that space (Jakkula et al., 2007). 
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 Temporal granularity uses temporal specification of data to qualify them (Nazerfard et 

al., 2010). 

 Causal reasoning is based on the ability to determine the cause given some 

circumstances in the environment (Song et al., 2011). 

 Planning where it is observed if the user follows a certain planned activity (Dominici et 

al., 2010). 

 Case-based reasoning uses the principle of solving a new problem by using the 

knowledge of a similar past problem (Cheng et al., 2009). 

 Decision trees search trees for a correlation to previous activities (Rashidi et al., 2011).  

These non-parametric models offer knowledge in the field of spatial-temporal reasoning and 

temporal granularity. These fields are important in a smart home context because they models 

sequences and temporal information that are related to the user action sequences and duration.  

5.5 DISCUSSION OF SELECTED SMART HOME MODELS  

This section discusses the sensor and actuator principles and their shaping of data types. 

Following this is a presentation and discussion of the most relevant probabilistic classifiers, 

i.e., the naïve Bayes, the hidden Markov model, and the Conditional Random Field. Finally, 

the use of these in a smart home context is discussed.  

5.5.1 SENSOR EVENTS AND ACTIONS, A NOTATION 

As discussed, smart homes are equipped with many sensors of different types. However, for 

this work a simple sensor framework is needed, i.e., the sensors are simple contact switches 

which provide open and close states. These switches can be positioned at doors, inside 

drawers, in closets but also exist as pressure mats, infrared sensors and water sensors. 

Common for all of them is that they provide a binary result (Section 4.4). This means that 

some problems exist in form of finding the proper start and stop time for the sensor events, 

detecting a specific action based on the switch status and finally eliminating noise from 

falsely activated switches that could also emit false signals. Another problem is the sequence 

of the predicted outcomes, i.e., actions. A user can do actions in different ways from one day 

to the other and thereby produce different sequences. An example is that the user enters the 

kitchen, turns on the light, opens the fridge door and sits down to eat. Another day this 
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sequence could be changed to the user enters the kitchen, opens the fridge door, turns on the 

light and sits down to eat. These issues make pattern recognition of the smart home actions a 

very challenging task (Kasteren et al., 2010).  

To transform these challenges into a manageable form a mathematical notation is needed. 

Consequently, a notation that models the sequence of events and actions into a mathematical 

form is illustrated in Figure 5.1.  

 

Figure 5.1. The mathematical notation used in this thesis. Leftmost is the sensors which input events 

X1..XN in time  window t..t+T into a buffer. These buffered events are fed to the classifier algorithm that 

predicts state information Sx for the classifier output y in the time window t..t+T.  

As illustrated leftmost in Figure 5.1 the sensor input events are placed in a time buffer which 

can be expressed by defining a binary observation vector (i.e., the sensor data): 

  (5.1) 

where is the event i arriving at time instance t,  and N is the number of sensors. 

These data are fed to the classifier process located in the center of Figure 5.1. Its output can 

be in one particular state at a time. Thus, the predicted action in time instance t has Q 

possible state values , which in this thesis are written in a short form that leaves out 

the S. Thus, is denoted:  
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Often in smart home applications Q is binary, i.e., the state values can be either zero or one 

(alternatively true and false). Hence, to describe if an action such as eating is ongoing or the 

light is on only two states are needed, i.e., true or false.  

From a time perspective the sensor data arrive at different times. Thus, the time buffer are a 

matrix, i.e., it needs space for N sensor data (the columns) sampled in T instances (the rows) 

in Figure 5.1. A notation that expresses this contains one sensor vector (5.1) in T instances: 

  (5.3) 

And for its corresponding output vector: 

  (5.4) 

5.5.2 NAÏVE BAYES PROBABILISTIC MODEL 

As already discussed, the naïve Bayes classifier is one of the most important probabilistic 

models. It has been used by many researchers in smart home context and in this work (Rish, 

2001), (Brgulja et al., 2010). In addition, it provides benefits in the form of offering a 

structure that allows it to be adapted to a simple sensor concept (Subsection 5.5.1), (Kasteren 

et al., 2008b). 

Looking into the naïve Bayes equations a challenge is how to implement the observed 

probability distribution in agents, i.e., in small low power microcontrollers with very limited 

resources. This means that the mathematics must be simple, i.e., avoid anything else than 

adding and subtracting if this is possible. Furthermore the event types must be simple binary 

based types like Booleans and Characters. To highlight these problem areas and because the 

smart home usage is a highly specialized application area the theory covering this field is 

discussed in the following.   

The smart home variant of the naïve Bayes classifier assumes that data are independent and 

identically distributed (i.i.d.) and that it does not take into account any temporal dependencies 

of data (Kasteren et al., 2011),(Rish, 2001). Often the i.i.d. assumption holds in smart homes 

if the sensors are positioned so that they do not overlap, i.e., they do not emit correlated 
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events. However, in this work the temporal assumption is too restrictive. This means that the 

correlations between the actions are lost. To be able to handle this, more advanced classifier 

types such as the hidden Markov model are needed.  

The naïve Bayes model can be expressed as:  

 
 

(5.5) 

This equation states that the observed distribution represents the probability that

would generate the observation vector . The term is the prior probability. To be able 

to simplify (5.5) in terms of using it in this work, many researchers apply the Bayes 

assumption that sensor data are i.i.d. which means that the sensor data can be modelled 

separately. This reduces the calculation complexity from 2
N
 to simply N if there are N 

sensors. Using this assumption the observation distribution factorizes as:    

 
 

(5.6) 

Equation (5.6) states that the conditional probability for each sensor in input vector can be 

multiplied with each other independently of the other sensors; given its output state is i. In 

addition it is assumed that all priori probabilities are equal. 

By assuming the sensor outputs are binary it is possible to model each sensor input by using a 

Bernoulli distribution (Bishop, 2006) with the probability given by:  

 
 

(5.7) 

A graphical model that represents the use of a naïve Bayes classifier in smart home context is 

given in Figure 5.2. Leftmost it illustrates a node model for the probabilistic outcomes (the 

predicted action) based on the independent sensor input . Rightmost picture illustrates an 
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implementation example of an application in the smart home context. The detected action 

sleep is based on the product of all the sensor inputs multiplied by their respective weights . 

 

Figure 5.2. The naïve Bayes classifier. Leftmost is a node model for the probabilistic outcomes yt (the 

predicted action) based on the independent sensor input xt. Rightmost is an implementation example 

using it in a smart home application context. 

Inference in the naïve Bayes model is simply performed by calculating the probability of all 

outcomes, i.e., states and choosing the one with highest probability as best estimate (Kasteren 

et al., 2008a). In the smart homes context it means that for some given sensor input values the 

classifier calculates the probabilities for each of the possible actions and chooses the one with 

the highest score.  

Learning in a naïve Bayes model can be expressed in a closed form. The model learns the 

values of the parameters by using maximum likelihood and finding the joint maximum 

likelihood parameters. Because of the discussed i.i.d. assumption this task simplifies to 

finding the maximum likelihood parameters of each of the factors instead. Recognizing that 

the observation probability  is a Bernoulli distribution its maximum likelihood 

parameter can be expressed as (Bishop, 2006): 

where the Dirac function (δ) returns one if action at time instant z equals the wanted action (i) 

or else it returns zero. Z is a vector of action event time instances used to estimate μni. Simply 
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put, training is done by adding up the sensor events (represented by binary ones) present in 

the given action event window .  

The challenge is how to use and implement this model in a distributed environment. 

Researchers have used this model in centralized environments where the AI processing tasks 

are performed by a central server with plenty of resources. As discussed, a challenge is to 

modify and enable this model to run on a small, cheap microprocessor with very limited 

processing resources in real time.      

5.5.3 HIDDEN MARKOV PROBABILISTIC MODEL 

The hidden Markov probabilistic model is another very important and often used probabilistic 

smart home model. It is able to handle more complex predictions than the naïve Bayes model, 

because it removes the temporal restriction. Thus, this model is able to look back into the past. 

Even though, it is one of the simpler probabilistic models, it has some complexity challenges 

such as it needs a complex inference process. In addition, its smart home usage is a highly 

specialized application area and that is why its theory in this context is discussed in the 

following.  An example of a Hidden Markov Model (HMM) node model is illustrated in 

Figure 5.3. This example contains M hidden states where it is possible to shift between them 

(the horizontal arrows). Shifting states are covered by the transition probabilities. The vertical 

arrows point to the N visible observation probabilities.    

 

Figure 5.3. A hidden Markov model example. This example contains M hidden states where it is possible 

to shift between them (the horizontal arrows). Shifting states are covered by the transition probabilities. 

The vertical arrows point to the N visible observation probabilities. 

The HMM uses the Markov assumptions that are:  
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 The first order Markov assumption (Rabiner, 1989) assumes that the hidden state at 

time instance t depends only on the previous hidden state .  

 The observable state at time instance t depends only on the hidden state  at that 

specific time slice. 

Based on these assumptions the joint probability for the hidden Markov classifier factorizes 

to: 

 
 

(5.9) 

For simplicity it is assumed that . It is noted that the observation probability 

in (5.9) is similar to the one used in the naïve Bayes section why these assumptions are used 

for the hidden Markov model too. Regarding the transition probability it represents the 

probability for changing state (i.e., action) from one state to the next. The state transitions can 

be modelled as a Q multinomial distribution, i.e., one for each state.  

A graph and an example of an HMM are illustrated in Figure 5.4.  

 

Figure 5.4. An example of using HMM in a smart home context (Cook, 2012). 

The picture in Figure 5.4 illustrates an SHS HMM for an activity recognition task described in 

a paper by Cook et al. (2012). It uses four hidden states (activities) and a set of observable 
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nodes that correspond to possible sensor events. The axx values (x is any integer) represent the 

transition probabilities and the bxx values represent emission probabilities. 

The inference process needs to consider every possible state sequence, why it grows 

exponentially with the length of the sequence. The Viterbi algorithm is very efficient to find 

the best state sequence and thereby reduces the computational complexity to O(TQ
2
), where T 

is the total number of time windows and Q the number of states (Rabiner, 1989). However, 

implementing the Viterbi algorithm is a non trivial task.  

Regarding the learning problem it can be divided into two problems. Firstly finding the 

observation probability the same close form solution (5.8) as described for the naïve Bayes 

model can be used. Secondly, the transition probability can be described as a multinomial 

distribution whose parameters can be calculated by using: 

 

 

(5.10) 

Where the individual transition probabilities are denoted as p(yn = j |yn−1 = i) =aij and the Dirac 

function (δ) returns one if action at time instant z equals the wanted action (i or j) else it 

returns zero. 

Like the naïve Bayes classifier the challenge is how to use and implement this model in a 

distributed environment. However, an important difference is that this model has a far more 

complex inference process often based on the Viterbi algorithm. Running this model in real 

time on a small, cheap microprocessor with very limited processing resources is neither 

useable nor likely to happen. It is not useable because it disrupts the degree of freedom that 

the concept of distributed systems gives, i.e., the S.O.s would be coupled together, which 

creates an unwanted dependency among these. However, the same is not true for the naïve 

Bayes classifier because it is based on non temporal principles, i.e., it does not depend on 

previous predictions. Running the hidden Markov model on limited resource processors will 

probably not happen because the processor resources will be exhausted and its battery lifetime 

will be short. In addition, the challenge is how to integrate this advanced classifier into a 
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distributed smart home context with distributed processing devices offering different resource 

types.  

5.5.4 CONDITIONAL RANDOM FIELD PROBABILISTIC MODEL  

The conditional random field classifier is a member of the important and often used 

probabilistic smart home model group. It is different from the naïve Bayes and the hidden 

Markov Model classifiers because it is based on a discriminative model. This means that it 

does not model the full joint probability, but it simply optimizes the conditional probability

. In addition, the conditional random field classifier is a general model-type. As a 

result, it also exists in different variants such as the linear-chain conditional random field that 

closely resembles the HMM in terms of structure. This model can be described as: 

 
 

(5.11) 

Where K is the number of feature functions that are used to distribution parameterization. 

is a weight parameter and is a feature function that is non zero for one specific  

action (inclusive its predecessor) only. The function is a normalization term so that the 

distribution sums up to one, i.e., it obtains a probabilistic interpretation (Bishop, 2006). As 

noted the linear chain conditional random field is similar to the hidden Markov model except 

that its interpretation is non probabilistic, it is discriminative and the observation functions are 

not conditionally dependent of the states.      

Regarding inference it can be performed by using the same principles as for the hidden 

Markov model. Learning optimizes the parameter by defining the log likelihood of (5.11) 

and finding its gradient. This gradient follows a convex function so the minimum is easily 

found, i.e., the local minimum is also the global minimum. Normally some methods based on 

Quasi-Newton iteration are used (Sutton & McCallum, 2007).   

The linear chain conditional random field has the same graphical picture as the hidden 

Markov model (Figure 5.4) except the arrows that symbolize the conditional probability 

should be substituted by a line. 
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Regarding the challenges they are similar to the ones discussed for the HMM classifier.   

5.6 APPLICATION OF PROBABILISTIC MODELS IN SMART HOMES 

This section looks into the use of the naïve Bayes, the hidden Markov model, and the 

Conditional Random Field in different smart home application areas. Following this, these 

algorithms are compared with respect to the low-level prediction, i.e., they are connected 

directly to the sensors. Finally, examples of existing distributed SHS are presented.   

5.6.1 THE USE OF NB, HMM AND CRF CLASSIFIERS 

By looking into the literature covering the AI algorithms they are used in the smart home 

context to learn and detect human activities. Most papers use these by connecting them 

directly to sensors that emit measured values (Kasteren et al., 2008a), (Cook, 2012). Then 

each individual classifier is trained by running a large annotated dataset through it and 

updates its weights accordingly. Afterwards actions are predicted by the classifier whenever 

the sensors emit values that provide a pattern similar to the one used for the training.  

An example of this procedure is the elderly care system presented by Kasteren et al. (2010), 

where they collect a huge amount of data by instruments in a home with a wireless sensor 

network that has many nodes which monitor the ongoing home activity. A 26 years old male 

lived and annotated actions in the home for a period of four weeks. These data were then 

processed by different classifiers by using all the collected information as training, but leaving 

out one day that was used for testing. Rashidi et al. (2011) introduced an automated approach 

to activity tracking that identifies frequent user activities by using classifiers. Thus, the 

models are trained to recognize these particular activities, and the resulting findings can be 

used to assess the functional well-being of smart environment residents. Similarly, Cook et al. 

(2012) designed the CASAS ―smart home in a box‖ (Subsection 3.3.4). The learning takes 

place by assigning labels based on a set of ―ground labels‖ to the latest sensor events. 

The challenge of today’s (2013) centralized systems is how to train these classifiers in real 

time, i.e., real-time learning. As discussed all experiments performed start by training the AI 

system and when fully trained use some unknown dataset for testing their scores. Such an 
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approach is not very user friendly, because the user needs to produce a large annotated 

training set and then train the AI system. Thus, a concept of real-time learning is needed.    

5.6.2 COMPARISON OF NB, HMM AND CRF CLASSIFIERS 

To highlight the usefulness of the three classifier types Cook (2012) has made an experiment 

across eleven datasets collected from seven experimental smart homes, and these data are 

illustrated in Figure 5.5. The experiments are carried out in different smart homes (left 

column) and uses the NBC, HMM, and CRF classifiers (top row). Input to these classifiers 

comes from sensors spatially placed in the respective smart homes.   

 

Figure 5.5. Recognition accuracies (true positive) for the eleven data set used by Cook (2012). Rows are 

the smart homes used in the experiment and the columns are the classifiers used.  

As seen the naïve Bayes classifier (Figure 5.5-NBC) performs very well compared to the 

other types that are the hidden Markov model (Figure 5.5-HMM) and the conditional random 

fields (Figure 5.5-CRF). It is also noted that the HMM and the CRF models are close to being 

equally good in many smart home types. However, Kasteren et al. (2008a) found that CRFs 

outperform HMMs in all the cases with respect to the time slice accuracy. However, the 

HMMs have the overall highest class accuracy. This result is a consequence of a difference in 

the parameter estimation processes used by these. The HMM uses a Bayesian probabilistic 

model for learning the actions. In contrast to this the CRF uses a single model for all the 

classes and learns by maximizing the conditional likelihood. This means the classes have to 

compete during the maximization. In datasets containing one dominant class, modelling 

everything this way might yield a different result. 
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Another work by Kasteren et al. (2010) uses the hidden Markov model to assist in care-giving 

for elderly people in their homes. They compare the performance of four real world datasets 

consisting of at least 10 days of data. Based on this they concluded that the CRFs are more 

sensitive to over-fitting on a dominant class than HMMs. Fang et al. (2012) did a lot of tests 

to clarify the differences between the recognition performances as a function of feature 

length. They found that the NBC, HMM and the CRF algorithms have a strong relationship 

with the dataset features that have been utilized. Kasteren et al. (2008b) support this finding. 

Conclusively a lot of historical and present activities have taken place in using these 

classifiers in smart homes. Other classifier types have been presented in the literature, but 

none of these have achieved the same popularity as the three just discussed ones (Kasteren et 

al., 2008b), (Cook, 2012).  

As discussed, a lot of parameters need consideration in the choice of the most advantageous 

distributed AI algorithms. Nonetheless, as noted from the presentation and discussion the 

possibilities of a distributed system are limited.   

5.7 DISTRIBUTED INTELLIGENCE IN SMART HOMES 

Distributed intelligence in smart homes has been a very limited research area throughout the 

last decades. Most researchers have looked into using high-level agents and to some extent 

assign AI to these. One of the earliest works in this field is the MavHome project (Cook et al., 

2003). Cook et al. (2003) divided a smart home into four high-level agent layers that handle 

the AI behavior. Mocanu et al. (2013) discuss an SHS with high-level AI agents for elderly 

people to stay longer in their homes. Their system uses agents at a high-level, i.e., emergency 

agent, home center agent, etc.  In the ‖ThinkHome‖ project Reinisch et al. (2010) use agents 

that controls logic functions at a high-level (Subsection 3.3.4). The same pattern can be found 

in the work presented by Choi et al. (2005). 

Changing the focus to low-level agents, i.e., the S.O. definition and terms (Subsection 4.4.5) 

used in this work no research in distributed intelligence has been performed. This is because:  
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 Distributed AI processing requires small, cheap and low power microcontrollers to 

perform the processing and they did not exist (Radi et al., 2011), (Hannon & Brunell, 

2005). 

 The algorithms need to be reduced in complexity to a level that fits the embedded 

processing resource (Basu et al., 2013). 

 These algorithms must be able to do complex prediction, i.e., use temporal information 

(Basu et al., 2013). 

 Battery technology was not sufficient to drive small embedded devices (Boegel, 2012). 

 The area of WSN interfaces was not mature, i.e., poor battery performance and no 

allowance for transmit-only sensors (Zhao et al., 2013). In addition, low power 

integrated circuit especially in the energy harvesting is coming today (2013) and 

(Boegel, 2012).  

However, the world of Internet of Things is an active research areas and it will probably add 

value to the smart home area in the future (Bandyopadhyay & Sen, 2011), (Zhang et al., 

2012). 

5.8 SUMMARY 

This chapter provided an AI definition which comprises automation of intelligent behaviour 

and computational agents. In addition some guidelines for integrating an AI framework into 

the system architecture were provided. To comprehend the AI research field its different 

models were discussed in the light of properties such as learn-ability, inference ability, and its 

use of implementation resources.  

The challenges of using AI in smart homes were discussed with focus on the variety of 

different ability models that exists, the required training in advance, and the sensor data that 

are minimalistic and noisy. Based on this discussion the most used probabilistic models were 

presented and discussed with respect to their suitability for application in smart homes. These 

models are the NB, HMM and the CRF.   
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6 CENTRALIZED AND AGENT-BASED MODELS 

This chapter analyses results from similar research and builds two models that are used to 

generalize information and to base conclusions on. This analysis is performed in section 6.1 

where the centralized model is analyzed in subsection 6.1.1 and the agent-based model in 

subsection 6.1.2. The comparison and elaboration of the results are presented in subsection 

6.1.3. These models are used as a basis for discussing an AI framework that supports these 

(Section 6.2). 

6.1 ANALYSIS OF SYSTEM ARCHITECTURE   

This section looks into analyzing the research questions stated in section 1.2. By using it in 

conjunction with the state-of-the-art research a sub-problem that deals with the smart home 

frameworks arises. In general, a research problem can be interpreted and viewed from many 

different angles depending on the goals of the author. To be able to manage this variety of 

different actor-views a perspective filtering is needed. The used perspective in this work is the 

technology view. This means that the users and market / economy perspectives are only 

discussed to a minor extent when it is needed to clarify subjects. Rejecting perspectives 

provides losses in the generality and it has influence on the selections and choices made in 

this work, but the scope needs to be limited.   

Using the just discussed perspective view in combination with the research question (Section 

1.2) and a top-down approach, it is possible to look into the system architecture candidates of 

the existing system types, which are discussed in section 4.3. This is performed in the 

following sections. The system architecture candidates are discussed and elaborated in 

Lynggaard (2012a).  

6.1.1 CENTRALIZED SMART HOME MODEL 

To be able to perform a system architecture mapping the approaches used by different authors 

are discussed and mapped into a backbone model developed in this work. Most of these 

approaches use a common centralized structure (Section 4.3) that with minor simplifications 
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can be mapped into most of the layers in the derived Centralized Smart Home model (CSH) 

illustrated in Figure 6.1.  

 

Figure 6.1. Centralized Smart Home model (CSH). 

This model defines a physical layer that consists of sensors and other devices. It includes both 

wired and wireless transport of data to the next defined layer the reasoning layer. The 

reasoning layer performs data processing and data pattern extraction, e.g., by employing AI. It 

deals with the prediction of new data patterns, such as a future user activity, based on sensor 

inputs and AI processing of the users past behavior. These learned patterns are saved, so they 

can be used as a reference in the prediction process for future behavior patterns. Thus, if the 

user does an activity that triggers some sensors the output from these sensors including the 

triggering order create a sequential pattern. These patterns enable the use of AI methods for 

future pattern recognition. So, these patterns need to be saved in a data-storage (database). 

Outcome from the reasoning layer are fed to the presentation layer that interact with the user 

either directly by suggestion actions e.g., on a smart phone or indirectly by informing other 

systems about it. It is noted that the reasoning layer in the CSH model can be implemented as 

either a local or a cloud service offered by a third party.          

A clarifying example of this approach can be found in the work performed by Cheng et al. 

(2009). Their work discusses a system they named ASBR, which is illustrated in Figure 6.2. 

This system uses a centralized approach that is divided into three layers. The first layer 

contains the home devices and sensors that send raw data to the second layer that handles the 

Physical layer 
(sensors and devices)

Reasoning (artificial intelligence)
 layer Data storage

Presentation (application)
layer

Local or cloud based
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reasoning, i.e., AI. This second layer is supported by a third layer that includes a huge data 

base containing all the learned patterns. These three layers can easily be mapped into the CSH 

model shown in Figure 6.1.   

 

Figure 6.2. Adaptive Scenario Based Reasoning (Cheng et al., 2009). 

The ―smart home in a box‖ model is illustrated in Figure 6.3 (Cook et al., 2012). It is part of a 

CASAS project described in subsection 3.3.4. 
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Figure 6.3.  "A smart home in a box" model (Cook et al., 2012). 

 

This model uses distributed sensor nodes where each node is equipped with a ZigBee 

transceiver. A ZigBee bridge transfers the sensor data to the middleware layer that interfaces 

the storage devices and the application layer. The application layer then runs the AI algorithm 

on a centralized server. As noted, this model uses a middleware layer that routes the data and 

performs some simple data manipulations such as adding timestamp and identity to the data.  

This model can be mapped into the CSH model. The physical and middleware layers fit into 

the physical layer of the CSH model. In addition, the application layer maps into the 

reasoning and application layers in the CSH model. 

Ye at al. (2011) have suggested a cloud based approach (Section 4.3) as illustrated in Figure 

6.4. 
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Figure 6.4. Cloud based smart home, (Ye & Huang, 2011). 

This approach uses a centralized control system that connects all the sensors and devices to it. 

Because this centralized control system is connected to the Internet it is possible to mirror its 

behavior into a smart home cloud.  

The benefit of this system is that many smart homes are able to create a network that can be 

managed by a smart home cloud service. Such a concept offers AI and high-level user 

interfaces as a service to its users. It is possible to map this model into the CSH model by 

mapping the devices and the central control in the cloud based SHS to the physical layer in 

the CSH model. In addition, the cloud is mapped to the reasoning layer in the CSH model and 

the user application is mapped into the presentation layer.    

Actually, it has been found that most of the centrally based smart home and home automation 

systems can be mapped into the CSH model by using some minor assumptions and 

simplifications. In addition, this is also possible for the systems available on the market such 

as HomeSeer, Control4, PowerHome, Vivint and ActiveHome Pro (Khoo, 2013).  

The centralized CSH concept is popular today (2013) among researchers and ordinary 

customers (Section 4.3) because it is based on the state-of-the-art existing home control 

system technologies, which are available. Ordinary customers use it for remote controlling 
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their homes. Researchers use it as a platform for experimenting with AI and context 

awareness, i.e., they try to transform these home automation based homes into real smart 

homes.  

In relation to smart homes the centralized concept modeled by the CSH model has some 

flaws. These are the subject of the following discussion.  

Analyzing the CSH model interface between the Physical layer and the Reasoning layer 

information is exchanged. This gives rise to the following problems: 

 It loads the internal SHN with a large amount of sensor and actuator data, including the 

added load from overhead in form of protocol headers, etc. This means that real small 

(future) bandwidth SHN protocols cannot be used section 4.5. Furthermore, more 

power is wasted accordingly to the Shannon information theorem (Subsection 4.5.2).  

 If the SHN is (partly) wireless effects such as congestion, noise and fading can destroy 

data or it can block the wireless channel (Subsection 4.4.4). This problem is accelerated 

in many small embedded devices because they often use one of the ISM bands that are 

an unrestricted resource (Subsection 4.4.4).  

 To be able to support a variety of smart home devices and communication standards 

some routing and bridging technologies are needed (Subsection 4.5.1). These can be 

small embedded low power devices that cannot present sufficient data performance as 

e.g., queue sizes, i.e., there is a risk of data losses. Data losses can be handled, but it 

requires bandwidth and processing power which are scarce resources. 

 It uses battery resources in embedded devices for transmitting or from time to time re-

transmitting including the necessary handshaking needed by the particular protocol 

(Subsection 4.4.2).  

Processing of data from the Physical layer are performed in the Reasoning layer by some 

central server that can either be local in the home or based on a distant cloud service. This 

gives rise to the following problems: 

 Using a local centralized server to process all the data means that it can be the 

bottleneck which slows down the response time. Whereas a cloud based server has 
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disadvantages such as cost, added response time, and bottleneck problems if the server 

is overloaded (Section 4.3).   

 A centralized server suffers from the ―single point of failure‖ problem. 

 A centralized server needs to be always running for the smart home to function 

properly. This means that costly uninterruptable power supplies and backup systems 

are needed. Regarding a cloud server these considerations are still valid, because the 

price of renting the server includes it.  

The Reasoning layer provides a data storage for saving data and patterns. This give rise to the 

following problem: 

 The amount of user events and patterns can be huge meaning expensive data storage 

devices are needed over the smart home life time. 

 These devices need to be fast enough to follow the algorithm processing speed so data 

can be fed to it in real time. Such devices take up physical space, they are power 

consuming and they are expensive.  

 The storage device needs a backup storage device such as a Redundant Array of 

Independent Disks (RAID) controller strategy which is expensive. I.e., reliability 

requirements need to be fulfilled.   

As illustrated in Figure 6.1, the Presentation layer interfaces the user to the Reasoning layer. 

The following listed problems are identified: 

 The user interface application runs on the same server as the Reasoning layer. This 

means that delays in the processing of the heavy artificial algorithms will be reflected 

into the user interface, i.e., the prediction of user actions will be delayed. 

 Single point of failure for the centralized server will also cause the user interface to fail. 

This means that the user cannot be informed of the poor system performance, etc. 

 Data exchange from the Reasoning layer to the Presentation layer loads the network 

and its performance.    

 There is no one-to-one direct connection between a hand held smart device (e.g., a 

smart phone) and the related smart home device. 
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To overcome some of these shortcomings an agent-based systems is often used (Alam et al., 

2012). This is the topic of the following. 

A Multi-Agent-based System consists of a collection of smart home agents where each one is 

dedicated to detect a specific activity. To cover the diversity and extent of smart home 

functionalities many agents must be employed. Cook et al. (2006) express it this way: 

The agent seeks to maximize inhabitant comfort and minimize operation cost. In 

order to achieve these goals, the agent must be able to predict the mobility patterns 

and device usages of the inhabitants. Because of the size of the problem, controlling 

a smart environment can be effectively approached as a multi-agent task. Individual 

agents can address a portion of the problem but must coordinate their actions to 

accomplish the overall goals of the system (Cook & Das, 2006). 

Analyzing this statement, it implies that some kind of predictability or AI is needed. They also 

state that by organizing the agents according to some hierarchically based system, problems 

can be subdivided.  In addition, structures to make communication paths are needed.  

6.1.2 AGENT-BASED SMART HOME MODEL 

The methods that were used in subsection 6.1.1 have also been used in the research of the 

agent-based smart homes, which are discussed in the literature (Cook & Das, 2006),(Del-Hyo 

et al., 2012), (Hannon & Brunell, 2005), (Mocanu et al., 2013), (Alam et al., 2012). By using 

the Cook et al. (2006) statement and looking into the literature describing and characterizing 

the agent-based approach, some common factors are extracted. Based on these factors 

including some simplification and generalization considerations an Agent-based Smart Home 

model (ASH) has been derived Figure 6.5. As discussed in the following most of the agent-

based smart homes can be mapped into this model. 
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Figure 6.5. Agent-based Smart Home system (ASH). 

In most papers the informal definition of an agent is interpreted and used at a high abstraction 

level. I.e., the agents handle high abstraction level tasks such as disk manager agent, user 

agent and AI based control agent (Section 4.3).  

One example of this approach is provided in the ‖ThinkHome‖ project (Reinisch et al., 2010), 

which is illustrated in Figure 6.6. 
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Figure 6.6. The ”ThinkHome” smart home project, (Reinisch et al., 2010). 

The ‖ThinkHome‖ project introduces a concept with three layers: Knowledge base, intelligent 

multi-agent system, and the UI settings. These layers fit well into the ASH model. Thus, the 

Knowledge base and Global goals agents map into the Agents and Knowledge base layers in 

the ASH model. Similarly, the Global setting maps into the Presentation layer in the ASH 

model. An overview of this project is provided in subsection 3.3.4.    

Another concept is presented by Wu et al. (2008). They have used the Open Service Gateway 

initiative (OSGi) architecture in the research. Their concept is illustrated in Figure 6.7. 

This concept contains devices that implement an OSGi agent-based architecture. Each device 

is able to support a software component (named a bundle in the OSGi context) that is 

installable from a cloud based service provider. When a bundle is installed it is able to run a 

contained program. This program detects events and sends them to the service providers. In 

addition, it receives actions that shall be performed such as turn on the radio and select a 

particular channel. The service providers also offer a user interface part. 
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Figure 6.7. The OSGi based smart home architecture, (Wu et al., 2008). 

Mapping this model into the ASH model is performed by mapping the OSGi devices to the 

ASH physical layer. The OSGi bundles together with the physical devices create the agents 

layer in the ASH model. Same way, the OSGi service provider maps into the knowledge base 

and presentation layer.        

Das et al. (2012) use a similar approach in a CASAS project as illustrated in Figure 6.8. 

 

Figure 6.8. A smart home architecture in a CASAS project (Das et al., 2012). 
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This project uses the extensible message and presence protocol to communicate between the 

various agents that comprise the smart environment. These agents use a cloud based service to 

store and process the device and sensor data. The user interface is also connected to the cloud 

service. It is possible to map this model into the ASH model by using the same methodology 

as used in the OSGi based SHS.  

6.1.3 COMPARING THE CENTRALIZED AND THE AGENT-BASED SYSTEMS 

Exploring the pros and cons of the ASH based system versus the CSH system is done in the 

following. It is noted that if the agents in the AH system are placed in the cloud or on a 

centralized server there is no difference between this system and the CSH system. 

Table 6.1 compares and discusses the problems related to the interface between the Physical 

layer and the Reasoning layer in the CSH model Figure 6.1 and the similar problems in the 

ASH context.  

CSH 

problem 

Problem in ASH context 

1 Network load. Distributing the agents to a few locally allocated devices, which serve as a 

processing platform, reduces the impact because the distributed agents also distribute the 

network load. 

2 Channel blocking. Using a processing platform that contains agents, which are distributed to 

few locally allocated devices, reduces the impact of interferences because the distributed 

agents shorten the spatial distances between the devices (Subsection 4.5.2). However, more 

agents also mean more wireless devices in the smart home, so e.g., co-channel and adjacent 

channel interferences need to be considered devices (Subsection 4.5.2). 

3 Insufficient device data performance. Because some of the agents are allocated on smart home 

devices, which offer some amount of resources, they are able to act as routers or technology 

bridges for the other devices. Thus, this problem is reduced in the ASH model. 

4 Lack of power resources (battery). The primary factor that uses power in a sensor or device 

node is the transceivers. In the ASH model less power is needed because the spatial distance 

between the devices and agents is lowered. However, the problem still remains. 

Table 6.1. The interface between the physical and the reasoning layers for the CSH and the ASH models 

are compared and discussed. 
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Similar to the previous table the discussion of the problems related to the Reasoning layer in 

the CSH model Figure 6.1 and the same problems seen in the ASH context are presented in 

Table 6.2. Hence, the problems in ASH context are mapped as a function of CSH problem 

number.  

CSH 

problem  

Problem in ASH context 

1 One processing server can be a bottleneck. Since the processing is distributed to the local 

agents with their own processing resources this problem is solved. 

2 Single point of failure if the system is based on only one central server. Same argument as in 

CSH problem 1. However, if one of the agents drop out it means that the smart home services 

either degrade or fails. If e.g., the user interface agent drop out the smart home is still able to 

control the heating by using the heating agent. 

3 Central server needs to be always running. Hibernating features can be implemented at agent 

level because some agents will not be affected by the ongoing device and sensor events 

produced when the user interacts with the smart home. An example is the heating interface 

that will only run when the room temperature changes slowly over time. So this problem is 

reduced, but not completely solved. 

  Table 6.2. The reasoning layer processing for the CSH and the ASH models are compared. 

Regarding data storage for saving data and patterns from either the reasoning layer or the 

agent layer no change exists between the ASH and the CSH approach. However, some of the 

devices in the ASH approach can be equipped with some resources that can be used in a 

distributed approach. An example of this could be a smart TV with Internet connection. 

The discussion of the problems related to the interface between the presentation layer and 

either the reasoning layer or the agents layer in the CSH model Figure 6.1 and the similar 

problem seen in the ASH context is presented in Table 6.3. Mapping the ASH problem as a 

function of CSH problem number yields:  
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CSH 

problem 

Problem in ASH context 

1 

 

The user interface application runs on the same server as the either the  reasoning or the 

agents layers. If the presentation layer is executed on a cloud service the server farms 

available will provide the needed amount of processing power. Whereas if the presentation 

layer is executed locally on the smart home devices the distributed processing from these 

devices provide some degree of processing power. However, some overhead must be expected 

to interface the user interface to the individual agents. 

2 Centralized server single point of failure will cause the user interface to fail. If the user 

interface runs as a cloud service this service is expected to have backup strategies. Whereas, if 

it is executed locally by a user interface agent and it fails the user interface will not work. 

3 Data exchange from either the reasoning layer or the agents layer to the presentation layer 

loads the network and its performance. When the agents layer update the presentation layer it 

loads the network almost the same way as the reasoning layer, so only minor or no change in 

network load. 

4 There is no one-to-one connection between a hand held ―smart‖ device (e.g., a smart phone) 

and the related smart home device. Using the agent-based principle does not provide this 

connection, because only one agent takes care of the overall user interface. So, no change. 

 Table 6.3. The interface between the agent, reasoning and the presentation layers for the CSH and the 

ASH models are compared. 

The pros and cons of the initial problems are summed up in the following.  

In the discussion of using an agent-based system in a smart home (ASH) compared to using a 

centralized system (CSH), it is reasonable to assume that distributing the reasoning layer into 

some agents also distribute the network load. This means that the heterogeneous network 

elements and its transmission channels connecting them to the distributed agents are able to 

work in parallel. This lowers the network load in the bottlenecks as e.g., a centralized server 

would create. Distributed agents also provide some of the benefit given by a lumped network 

such as shorter distances, i.e., less noise sensitivity; lower power consumption subsection 

4.4.2; and the possibility to use different routing and bridging technologies, i.e., an average 

lower network load is expected. 

Regarding single point of failure and power saving issues, the agent approach also benefits 

from its distributed nature. Agents that are not in use can be powered down and failing agents 
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will only have minor influence on the others that still are able to work, but with a reduced 

performance.  

There are downsides and non-affected parameters which the discussed distributed agent 

system does not solve. Firstly, when a specialized agent fails is has impact on the SHS. If e.g., 

a heating agent fails the complete heating system will also fail, because it depends on this 

agent only.  

Secondly, power consumption of the wireless devices and sensors are not affected much by 

using the discussed agent concept. Adding more wireless agents, which communicate in 

parallel, also adds a new radio disturbance problem in form of co-channel and adjacent 

channel interference in the frequency division multiple access area compared to the combined 

TDMA and frequency division multiple access schemes used in a centralized server approach. 

 Thirdly, the user interface does not provide a clear coupling between the smart home devices 

and a portable interface device. Running the user interface as a cloud based service has the 

potential risk of creating a network bottleneck problem between the agents and the cloud 

server farm.  

Dividing a smart home into few functional agent units does not solve all the problems. 

However, taking this approach one step further in the direction of IoT may be beneficial, why 

this work focuses and contributes in that direction. Additionally, this concept is in agreement 

with the conclusion presented by Alam et al. (2012) who discuss the past, present and the 

future of smart homes.  

6.2 AI FRAMEWORKS 

Analyzing the state-of-the-art for a useable AI framework for smart homes takes offset in the 

second research question stated in section 1.2. It states that the distributed AI framework must 

support a distributed system architecture including its S.O. by using existing technologies and 

devices. By combining these challenges with the analysis of the system architecture discussed 

in section 6.1 the focus is set. Hence the CSH and ASH models presented in section 6.1 

provide the needed structures for dealing with the research question.  
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Using a centralized framework in a distributed smart home concept has its challenges as 

discussed in sections 6.1 and 4.3. Nonetheless, placing the high-level AI part in a centralized 

framework offers the needed processing resources, it facilitates access from the low-level 

system, effective backup of data and straightforward software updates. Thus, a centralized 

approach offers the needed resources for complex AI processing. An alternative would be to 

place it in a distributed framework with the needed resources; however, as stated by Alam et 

al. (2012) this is suboptimal.  In addition, it is suboptimal because the device power 

consumption and complexity is a function of the offered resources; and the future related IoT 

research area strives for low resource devices (Section 3.4), (López et al., 2012). 

Another advantage of placing the high-level AI system in a centralized framework is that the 

inputs from multiple devices are readily available for temporal processing. Thus high-level 

temporal devices benefit from a centralized star topology.  

The ASH model (Figure 6.5) is based on a concept where the AI framework is distributed into 

agents. The existing agent-based frameworks discussed in section 5.7 cover high-level agents 

which are functionally oriented, i.e., one agent handles all functionality in a specific area. 

Such a framework is equivalent to a centralized concept with multiple nodes, i.e., one agent 

handles some specific functionality that needs inputs from all the sensors inside this area, 

independent of where they are spatially allocated. Noticeably, this is suboptimal as stated in 

the centralized framework discussion.   

To obtain a distributed AI framework which supports the distributed smart home concept 

stated in the research questions and discussed in the ASH model, a low-level AI framework is 

needed as discussed by Alam et al. (2012) and in section 5.7. Nonetheless, a pure distributed 

AI system has disadvantages such as: They do not share resources, they risk duplicating the 

work, and they need individual software updates. So its lacking ability to share resources 

means that it does not facilitate high-level temporal AI algorithms and it does not support 

concepts such as shared processing, and shared data management. Thus, a low-level agent-

based AI framework needs to interact with a centralized high-level AI system for combining 

and using information. In addition, the cost of duplicating work such as sensor event filtering, 

etc. is present. However, this can be advantageous if the processing cost is low compared to 

the cost of moving data.                   



 
116 

Viewed from a future perspective the low-level AI systems will benefit from the research area 

of IoT. This is mainly because the IoT area provides frameworks and support for agent-based 

approaches such as distributed smart home AI frameworks, and distributed processing 

platforms (Section 3.4), (López et al., 2012), (Chen, 2013).   

6.3 SUMMARY 

This chapter presented an analysis of distributed AI frameworks and it derived two system 

architectures named CSH and ASH. The AI framework was discussed in the view of the two 

system architectures and a hierarchical concept. This hierarchical concept combined the AI 

advantages of these two models. Because the CSH and ASH models are generic by nature 

they primarily capture essential points, i.e., they compare and discuss the centralized versus 

the distributed categories. Mapping some of the models used by researchers today (2013) into 

these models revealed a good match in one of the categories. By using these models it was 

possible to compare strengths and weaknesses in terms of the many factors that have 

influence on these.  

The results from comparing these analytic model outcomes were discussed and it was found 

that the agent-based approach offers numerous benefits in a distributed smart home concept. 

This is in good agreement with conclusions of Alam et al. (2012) based on their research in 

this area.    
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7 DISTRIBUTED SYSTEM ARCHITECTURE FOR SMART 

HOMES 

The distributed system architecture for smart homes is explored and designed in this chapter. 

The derivation starts with the overall system architecture which is designed in section 7.1. 

This system architecture mainly consists of a high and a low-level part. The high-level part 

facilitates advanced AI systems and is allocated on resourceful devices (Section 7.1). In 

contrast, the low-level part consists of distributed devices, named S.O.s, which offer support 

for simple AI systems and are implementable on resource constrained devices (Section 7.2). 

The inter-device communication is explored and discussed in section 7.3.          

An overview of the terms used in this and the following chapters is provided in Figure 7.1 and 

described in the following.  

 

Figure 7.1. Relations between the HL-SHS, LL-SHS, S.O.s and Agents. 

At the outmost level the Smart Home System (SHS) encapsulates the two subsystems named 

High-Level Smart Home System (HL-SHS) and Low-level Smart Home System (LL-SHS). 

The HL-SHS is an add-on to LL-SHS. It adds more advanced AI prediction and learning 

capability to the SHS. It is based on the emitted actions from the LL-SHS, which it uses as 

input. The LL-SHS is a collection of one or more S.O.s, which in turn includes a collection of 
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agents. In addition, it covers instances of the S.O. software that are implemented on some 

processing platform such as a PC or a smart-TV. 

7.1 DERIVING THE SYSTEM ARCHITECTURE 

The smart home concept derived by this work is discussed and presented in the following. It is 

based on the discussion in chapter 4 concerning centralized versus agent-based SHSs, the 

discussion of the state-of-the-art provided in chapter 6; and it is guided by research question 

one. The content in this section is available in elaborated form in Lynggaard (2012a). 

7.1.1 ARCHITECTURE DEVELOPMENT 

Agent-based systems have many benefits compared to centralized systems (Chapter 6). 

However, these agent-based systems use high-level specialized agents, which perform 

dedicated functions (Section 3.3). To decrease this level and transform the smart home 

concept into a distributed world, it is combined with the distributed concept found in the IoT 

area (Section 3.4). Such a concept offers benefits from the centralized area as well as from the 

smart devices (S.O.s) area (Subsection 4.4.5), (Silva et al., 2012), (Alam et al., 2012). 

Some of the conceptual ideas used in this work are related to the work of Alam et al. (2012). 

In their work they discuss the following perspectives concerning agent-based systems:  

 It seems that home intelligence will be employed in a distributed manner. This 

distributed intelligence may be applied in the form of smart devices (Alam et al., 

2012).  

This statement is in agreement with some of the discussed conceptual ideas behind this work 

(Section 1.2). Similar results are also found in section 6.1.3 that compares agent-based 

systems with centralized systems.  

As discussed, to derive the distributed system architecture including its S.O’s, the IoT 

research area needs focus. This is the target for the following discussion.  
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Figure 7.2. Internet of things based smart object (López et al., 2012). 

As stated, the IoT area moves commonly known devices and objects to the Internet in a 

distributed manner (Bandyopadhyay & Sen, 2011), (Sundmaeker et al., 2010), (Section 3.4). 

López et al. (2012) propose an S.O. framework for IoT devices that is able to provide 

encapsulated RFID devices, sensor technologies, embedded object logic and ad-hoc 

networking. Their S.O. framework is illustrated in Figure 7.2. Furthermore, they propose five 

fundamental properties for an S.O. framework: 

 It needs a unique identity. 

 It must be able to measure and store data from sensors. 

 It must provide a mechanism to hand out measurements on request. 

 It must be able to communicate with other S.O.s. 

 It must be able to make decisions. 

These points are important in the architectural design of a distributed independent S.O. which 

provides context awareness. This S.O. needs to be able to communicate with the outer world 

for distributing its measured results and be able to receive input from other similar devices 

and a management interface. López et al. (2012) also list the ability to make decisions as a 

fundamental property. They argue that it reduces latency and the processing complexity does 

not increase with the number of network nodes. However, they do not provide any guidelines 

on how to solve the challenges in implementing the decision making mechanism.    
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The ‖ThinkHome‖ (Subsection 3.3.4) is a smart home project, which uses distributed 

intelligent agents (Reinisch et al., 2010). Reinisch et al. state:   

To realize optimized control strategies that allow maximizing energy efficiency and 

user comfort simultaneously and automatically, methods from AI need to be 

employed. 

An excellent means are multi-agent systems that inherently support distributed 

intelligence and collaboration to act towards defined goals. Different agents are 

brought together by an agent-based framework that also embeds the intelligent 

control strategies… (Reinisch et al., 2010) 

Their approach supports the theory that artificial agents in form of a multi-agent system is the 

most useable approach for future smart homes seen in the light of energy efficiency and user 

comfort. However, their presented approach uses a centralized knowledge base as the AI 

provider. This means that the agent still needs to consult a centralized device with the flaws 

discussed earlier in the CSH concept. Another problem is the high-level tasks assigned to the 

agents as discussed in subsection 6.1.3.       

A system architecture has been derived in this work from the above discussions and 

considerations, the state-of-the-art research (Chapter 6), the centralized versus agent-based 

systems (Chapter 4), the distributed AI framework (Chapter 5), and the research questions. 

This system is based on today’s (2013) technology, i.e., it is a distributed system based on the 

ASH concept and it uses multiple autonomous S.O.s. The model is presented in the next 

section. 

7.1.2 PROPOSED SMART HOME SYSTEM MODEL 

By adding all the observations and discussed items into the ASH model (Figure 6.5), a design 

of the suggested SHS can be derived (Figure 7.3).  

As illustrated in Figure 7.3 the ASH model is modified into the presented and suggested SHS. 

It combines the physical layer (sensors and devices) with a collection of agents, i.e., it is a 

multi-agent-based system. This multi-agent system is contained in a smart object (Subsection 
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4.4.5) together with a simple AI system (the knowledgebase). It is noted that this smart object 

has its roots in the IoT area (Section 3.4).  

 

 

Figure 7.3. The smart home system presented in this work. 

This S.O. model offers: 

 A standalone entity that has a unique identity. 

 Ability to measure and store data from sensors that can be handed out on request. 

 Ability to communicate with other S.O.s. 

 Ability to handout measurements. 

 Ability to make its own decisions. 

This model is in a good agreement with the discussed principles stated by López et al. (2012). 

In addition, the principles described by Alam et al. (2012) are also incorporated.  

As illustrated in Figure 7.3 the S.O.s are able to communicate with the user through a user 

management system allocated on a local server or as a cloud service offered by a third party. 
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The advanced AI system is positioned on a local server or in the cloud. It is able to make 

complex decisions beyond the capability of the simple AI implemented in the S.O.s.  

The illustrated sub-system implements a simple AI system. This system is able to support the 

same AI algorithm, as the one running on the S.O.s. However, the processing platform that 

supports this algorithm is different; it could be a common home router or a Network Attached 

Storage (NAS) device. Thus, the simple AI system symbolizes that the S.O. algorithms (or 

similar algorithms) are able to run on other processing platforms, e.g., implemented in a 

hbbTV by its manufacturer. 

The basic principles behind the SHS concept are to combine the communication, processing 

and most of the AI parts into small embedded units or devices, i.e., the S.O.s. These S.O.s are 

then assigned a simple atomic functionality in form of offering a particular service to the user 

(i.e., an action). A limited functionality provides saved resources and offers small form 

factors, why they can be positioned in a spatial context close to their related sensors. The 

rationale is that when the user performs an action it is bound to the sensor spatial context 

(Subsection 7.3.4). E.g., when the user opens the fridge, takes a plate, sits down and eats 

breakfast all these events are bound to the kitchen context. An S.O. that detects the user is 

eating will be related to this context and therefore be positioned in the kitchen.  

One of the major challenges in this distributed S.O. concept is that it has to do all the AI 

processing. This requires processing, bandwidth, storage and power resources that would limit 

the usability of such an S.O. device (Alam et al., 2012). Thus, to overcome this problem a 

distributed AI approach has been developed. It makes it possible to divide the AI system into 

a simple and an advanced part see chapter 8.         

7.2 SMART OBJECT MODEL 

One of the most important key elements in the derived SHS is the S.O., why the derivation of 

its model, communication architecture, and implementation architecture are discussed. 
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7.2.1 SMART OBJECT LAYERED MODEL 

By using the S.O. part, included in the SHS (Figure 7.3), the five described guidelines 

provided by López et al. (2012), and the model (Figure 7.4) presented by Hannon et al. (2005) 

some common structure can be observed. These are discussed in the following.  

 

Figure 7.4. Layered agent model (Hannon & Brunell, 2005). 

Comparing the elements from the derived S.O.s (Figure 7.3) with the Hannon et al. (2005) 

model (Figure 7.4) starts with the physical layer. This layer simply compares one-to-one 

because they are functionally overlapping. Same observation and argumentation maps the 

communication layer one-to-one. Regarding the agent layer and the knowledgebase it maps to 

the information and decision layers respectively.  

In addition, the derived S.O. model (Figure 7.3) is closely related to the WSN node models 

(Pensas & Vanhala, 2010), (Sohraby et al., 2007). Hence, the well established theoretical 

framework that is available in the WSN context can also be used to model parts of the S.O.s.  

7.2.2 SOFTWARE ARCHITECTURE 

As discussed, the WSN node models and the S.O. model are closely related; that is why the 

theoretical framework that governs these general WSN node models can be used to establish a 

generic framework for the S.O. software architecture. Such a theoretical framework is 

presented by Sohraby et al. (Sohraby et al., 2007) as illustrated in Figure 7.5. 
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Figure 7.5. A general software architecture for WSN (Sohraby et al., 2007). 

The most important component in the WSN software architecture which is usable for S.O.s is 

the middleware layer (Figure 7.5). Its purpose is to establish a coupling between the network 

communication layer and the application layer. This component offers the ability to save 

power by adjusting the communication channel parameters in an optimal way that fits the 

running application. In addition, the WSN middleware layer offers some functional elements 

such as event detection, resource management and an application programming interface. 

In general, middleware layers have been described and researched in many SHSs by different 

authors. Pensas et al. (2010) have presented a centralized middleware approach where one 

node runs the middleware that handles all the device and sensor communication. However, 

such an approach suffers from the disadvantages discussed previously in connection with the 

CSH system. A similar paper is presented by Tu et al. (2009). The popular OSGi framework 

has also been used by many authors (Liutkevičius et al., 2011), but this concept suffers from a 

high complexity level and a high amount of overhead (Cheng et al., 2008).  

Another concept is to distribute the middleware layer to each sensor node, i.e., the S.O.s in the 

smart home context. Only few authors look into this concept (Zoref et al., 2009), (Bregman & 

Korman, 2009). One popular project that supports this view was the EU founded HYDRA 

project (Eisenhauer et al., 2009), (section 3.5.1).  
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The HYDRA middleware is very complex and aimed towards platforms with considerable 

processing power. It is limited to microprocessor devices with considerable resources such as 

32 bits architecture and hundreds of kilobytes of memory (Gugliotta & Guarise, 2009). This 

means that it is not well suited for small simple embedded S.O. systems based on 

microcontroller platforms (Subsection 4.4.5). Another work presented by Pensas et al. (2010) 

is the EPIS middleware concept for WSN. This work offers a framework for context based 

reasoning and automated node positioning with focus on integration, maintenance and 

reliability. However, subjects as performance and minimal memory footprint were not 

considered, i.e., it is not advantageous in an S.O. context. 

Conclusively, none of the existing systems provide a middleware framework that is usable for 

S.O.s. Based on the WSN framework concepts some guidelines for designing it are discussed 

in the following. Looking into the related area of Internet of Things (IoT) it provides some 

abstract but useful guidelines CERP-IoT (Sundmaeker et al., 2010). The most relevant ones in 

an S.O. middleware context are that it must:   

 Be transparent. 

 Be delay tolerant. 

 Provide storage capability. 

 Be able to manage power consumption. 

 Support grid and cloud based networks. 

 Be able to handle hybrid network technology and devices. 

Alkazemi et al. (2012) have a similar list where they outline the middleware content for a 

general WSN. By combining this work with the work by CERP-IoT (Sundmaeker et al., 2010) 

a seven point list of S.O. candidates can be derived: 

1. Interaction Pattern: Defines the mechanism that a middleware component uses to 

interface applications and the underlying network. Thus, transparency from the S.O.s 

public user interface must be offered. It must support hybrid network technology and 

devices. 

2. Data exchange: Middleware must handle the two main data exchange types pull and 

push. These types need to be delay tolerant.   
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3. Software service: The middleware component must offer a set of services to the 

environments. In addition, it must add storage and delay tolerant capability to this.  

4. Proxy pattern: That handles requests coming from the applications and sends them to 

the addressed sensor, S.O.s and management networks. This must include grid and 

cloud based networks. 

5. Parallel Processing: Multi-thread of execution must be offered. 

6. Data conversion: Match data type sent by the application to the expected network data 

type. 

7. Manage lifecycle: Ability to manage power consumption. 

Finally, combining this seven point list with the models presented by Hannon et al. (2005) and 

Sohraby et al. (2007) yields a useable software architecture for an S.O. as illustrated in Figure 

7.6. Lameski et al. (2011) presented a WSN based framework with a similar architecture, but 

this work is missing vital S.O. elements such as managing lifecycle, software service and 

proxy pattern functionalities.      

 

Figure 7.6. Software architecture for the S.O.s used in this work. 

As illustrated in Figure 7.6 the suggested software model for the defined S.O.s consist of four 

layers. Starting with the application layer, it handles: 

 A collection of S.O. applications such as AI algorithms (a multiple agent framework). 

 Calendar and activity schedulers including a system timer unit. 
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 Sensor input processing such as filtering and user action detector. 

 Actuator output processing and general control logic.  

Next layer is the middleware layer that has already been discussed. Third layer is the 

operating system layer. In a WSN context many operating systems exist. They are all 

optimized for embedded processing under the condition that the resources are very limited. In 

general they offer compact small size and small memory usage, i.e., they support small 

embedded controllers that have limited memory from one to a few tens of kilobytes. 

These operating systems offer real time resources for running algorithms such as an AI 

prediction and learning tasks. This resource supports that a predicted service can be offered to 

the user as fast as possible. As commonly known designing parallel tasks for a real time 

operating system is difficult. It is possible to fail from deadlocks and low priority tasks that 

are preempted in a non-voluntary way. The operating system also needs to take care of 

memory scheduling in an efficient and fair way because this resource is limited and must be 

shared between the tasks. Power management is also a task for the operating system because 

of the limited power resources available for most S.O.s. An example of this could be that an 

agent (one instance on an AI network) is inactive, which is actually the case most of the time, 

and therefore can enter sleep mode, i.e., it is preempted by the operating system. When an 

event arrives from a sensor the agent is re-scheduled for running.  

The operating system should also provide support for reliable and efficient code update and 

distribution. In the model Figure 7.6 the operating system should offer a generic low coupled 

interface to the middleware layer and offer good support for the sensors and actuators at the 

physical layer. 

From a summary point of view, the software architecture useable for an S.O. has been 

presented and discussed. It is based on compromises of using the most updated knowledge 

from different research areas in the field in combination with knowledge from related areas 

such as IoT and WSN.  
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7.2.3 SMART OBJECT COMMUNICATION ARCHITECTURE  

Smart devices (S.O.s in this work) are derived from a vision in which these form an integral 

part of the communication structure that connects the smart home devices (Hannon & Brunell, 

2005). Actually, the EU commission forecast that the area of smart system communication is 

a very interesting research area and they therefore have focus on these topics in the FP7 

research and development projects (EU_Commission, 2009).  

The smart home devices need to be interconnected through a communication network to be 

able to sense, share and exchange information with each other. Additionally, they need to 

communicate with other systems such as sensors, actuators and a user management system. It 

is obvious that this communication must be flexible and configurable so that the devices can 

communicate with each other. This offers optimal configuration and service abilities for the 

smart home. However, such an approach involves a complex pattern of communication 

activities that in some way needs to be handled and managed (Section 4.5). Another 

complicating factor is the multi-platform approach that smart homes need to be able to handle 

(Section 4.4). 

 A detailed overview of the communication context related to an S.O. is given in an S.O. 

context diagram (Figure 7.7) based on the work of Hay (2011). 

 

Figure 7.7. Context diagram for a smart object. 

Basically, a context diagram describes the developed system in the middle circle and it shows 

the surrounding terminators (square boxes) that the developed system depends on. Thus, each 

terminator interfaces to the developed systems by flows that contribute to its behavior. Each 

of the terminators are described and explained in the following. 
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The ―Sensor and Actuator‖ terminator is positioned in the upper left corner Figure 7.7. It 

models the sensors and actuators that are connected to the S.O.s. These sensors can measure 

anything from temperature, light and pressure to simple on / off door switches. Some of these 

sensors are hardwired to the S.O., but in some situations and places it is not possible to drill 

holes and mount wires (Subsection 4.5.3). An alternative solution is to use a wireless link 

between a sensor node and the S.O., but for the cost of loading the battery in both the sensor 

and the battery powered S.O. nodes (Section 7.3). Such a wireless link must offer the 

necessary bandwidth (i.e., bit-rate) to transfer the event messages and support simple setup for 

some sensor types. Nonetheless, this event information is limited to simple binary states as 

discussed in subsection 4.4.1, i.e., the most commonly used wireless network types support 

this (Subsection 4.5.6).  

Regarding the actuators they only need to be updated in an asynchronous manner, i.e., 

whenever an S.O. decides to do it based on its predictions and programmed behavior. The 

amount of information is limited (Bhardwaj et al., 2012).  

The S.O. and its peripheral sensors and actuators are illustrated in Figure 7.8 and discussed in 

section 4.4.  

 

Figure 7.8. A smart object with its peripheral sensors and actuators. 

Common for all types of sensors is that they measure some parameters that are relevant in a 

smart home context and quantize these measurements into usable numbers that are transferred 

to the S.O.s. How often these numbers are transferred depends on their measurement 

bandwidth. E.g., a room temperature sensor only needs a low bandwidth i.e., in a fraction of 

hertz. Thus, according to the Nyquist-Shannon sampling theorem the sampling frequency then 
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can be selected twice that bandwidth. In general the sensor sampling frequency is in the 

interval 0.1 - 10 Hz. The amounts of data that are transmitted also depend on the sensor type. 

More details can be found in subsections 8.5.3 and 4.4.1. 

The ―Smart Home System‖ terminator models the AI circuits and their physical positions. 

Thus, as suggested in section 7.1 and illustrated in Figure 7.3 simple AI is allocated in the 

form of agents contained in the S.O.s. Whereas the advanced AI components (HL-SHS) can 

be implemented on available hardware platforms that offer the needed processing power 

(Section 6.2). Alternatively, they can be allocated in the clouds as a service running on cloud 

server farms. Common for these systems is their need for communication. Thus, the HL-SHS 

uses the predicted actions from the S.O.s (LL-SHS) as input for making more advanced 

predictions (Chapter 8).  

The amount of information exchanged between the HL-SHS and the S.O.s is limited because 

it is mainly based on predicted actions that are closely related to the user behavior, i.e., their 

frequency is in average below a few hertz. In addition, the information size is limited. 

However, is should be noted that this communication is based on a communication link that 

requires some amount of protocol overhead and they are often bandwidth limited to save 

current in the nodes (Sohraby et al., 2007), (Section 4.5).   

The ―Other Smart Objects‖ terminator indicates that S.O.s interacts with the other S.O. inside 

its context. A detailed coverage of this subject is presented in section 7.3, why this paragraph 

only provides some overview. 

Interactions between S.O.s are fully analog to the WSN world where nodes are able interact 

and communicate (Sohraby et al., 2007). This approach allows S.O.s to be combined into 

units that can handle distant sensor events. An example that illustrates this concept is a room 

temperature controller. Assume one of the S.O. contained agents control the room heating by 

using information from the room temperature sensor, the user present sensor and information 

learned from the room temperature profile as a function of time. But, it would also be sensible 

to take the windows status into consideration so the heating is turned off when the windows 

are open. For the heating agent to handle this it only needs an event from the sensors that 
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monitors the windows. Such a concept saves a lot of wired and wireless communication load 

compared to a centralized concept. 

The S.O.s need to receive control information useable for controlling connected actuators. 

I.e., they act as a kind of ―hardware driver‖ that is able to control physical objects such as 

controlling the light level from a lamp. Another use of these control possibilities are the user 

interface remote controls. Thus the user should be able to remote control an actuator device, 

as e.g., turning on the light using a smart home interface such as a smart phone. More details 

are provided in section 3.2.   

In general, enabling the variety of S.O.s intercommunication capability some standardization 

and general abstract data models regarding interfaces and protocols must be defined (CERP-

IoT et al., 2010). A suggested general abstract data model in form of a middleware layer has 

been discussed earlier (Subsection 7.2.2).    

The ―User Management‖ terminator indicates that it is possible to communicate with the S.O. 

at a human understandable level. Thus, S.O.s need to be managed on the fly and they need to 

be initialized the first time they run by using a setup menu. In general, the management task 

needs to handle setup of both autonomous and controlled behavior. Controlled behavior 

means that the S.O.s can be remote controlled and its internal timers and calendar can be 

programmed to perform timed actions (Subsection 7.2.4). Setup of autonomous behavior 

needs to provide functionality to erase learned agent AI behavior, connect actuators, and setup 

internally routes. Thus, all the functionality explained in subsection 7.2.4 needs to be handled.     

Many researchers use a concept where a large part of a smart home management system is 

allocated on a server or offered as a cloud service (Dongmei & Zhiguang, 2010), (Pensas & 

Vanhala, 2010) and section 4.3. This approach is used by Kim et al. (2012) who propose a 

home gateway concept where each S.O. is controlled from a centralized application which 

provides an Internet based user interface. As outlined earlier such a centralized approach is 

not useable in this work.  

Another work by Del-Hyo et al. (2012) suggests an advanced self-management home network 

based on neural network virtual agents. This work addresses high-level smart home devices 



 
132 

such as TV, Blue-Ray players and Radios. However, this concept requires a large amount of 

processing power and it uses the home networking (Subsection 4.2) as connection media, so 

this concept is not useable in this work. A distributed multi-agent framework is presented in a 

paper by Hannon et al. (2005), (Section 4.3). The user interaction with these agents takes 

place through a voice recognition interface implemented in each individual agent. Such an 

approach is unsuitable because centralizing the user interface in a few high-level agents 

requires that they are actually present in the smart home which in turn put restrictions on the 

freedom of the smart home device choice. Furthermore, these agents need to communicate 

with the more low-level agents that have limited resources. This means that factors as network 

load, agent software maintainability and smart home cost are not reduced considerably, i.e., 

not enough to justify the increased complexity such an approach adds.  

A paper by Liutkevicius et al. (2011) focuses on important factors in a smart home 

management system. They discuss (1) the cost of devices and maintenance of these, and (2) 

easy expansion by new devices and services. By researching existing SHSs they found that 

these offer a limited set of fixed services. This forces the user to wait until the service is 

deployed and the SHS is updated accordingly. Consequently, the user expenditure for 

purchasing a new service is affected. By researching existing SHSs, they found that these 

have a limited set of fixed services.  

Looking into the cost of the devices, it is proportional to the development investment. So 

using a standardized middleware framework as discussed earlier in this work will bring the 

cost down and allow many manufacturers of common S.O. devices as e.g., lamps, heating 

system elements and entertainment equipment to compete. This will open up the market and 

thereby lower the prices. Regarding maintenance of these S.O. devices it would be beneficial 

to place a unique identity in each device that is addressed by the user interface. So when the 

user wants to interact with a device its identity is used to present GUI elements provided by 

the manufacturer, e.g., available on the manufacturer’s server. This concept will offer easy 

maintenance and also support the possibility for easy expansion by new devices and services.  

Mounting an RFID tag in the smart home devices can be beneficial because it provides an 

easy interface for getting a limited amount of device information. Many papers suggest such a 

concept (Xuenei et al., 2008), (López et al., 2012). An approach that uses RFID tags are 
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presented by Darianian et al. (2008) where IoT devices are tagged. Their approach is to 

identify IoT devices by using a reader device, e.g., a smart phone. When a unique device 

identity is read it is transmitted from the phone using either Wi-Fi or its cellular interface to a 

server. This server then looks the user menu based on the received identity and returns the 

GUI element to the smart phone. Even though this approach has been used for IoT it is 

useable for S.O.s, too.  

7.2.4 SMART OBJECT IMPLEMENTATION  

Defining an S.O. in a contextual universal manner has many benefits such as the possibility to 

standardize it. Standardization provides the possibility to define S.O. interfaces, defining its 

degree of context awareness and defining communication skills in a static manner. These 

benefits mean that it is possible to mass produce the S.O.s and thereby keep the cost low. A 

low cost is one of the major drivers for this technology to be accepted by the common 

consumer market as stated by Brush et al. (2011). They state four factors which are important, 

they are: Cost, flexibility, manageability and security.  

Concerning the flexibility and security the concept of a universal S.O. actually solves these 

implicitly. Thus, it provides flexibility because it can be embedded into many different places 

such as a kitchen or in the living room without changing the S.O. In theory it is possible to 

simply use it in a plug-and-play fashion with some minor setup. Regarding the poor 

manageability the S.O. concept offers the possibility to use a portable user interface (e.g., a 

smart phone) to manage these. This interface offers a direct interaction with the S.O.s by 

using near field communication or it offers a more distant remote control by using its Internet 

connection capabilities. Thus, the S.O. concept facilitates eased manageability by spatial 

relating the controlled object directly to the controller or by allowing remote control from 

Internet based devices.   

Looking into an architectural framework for distributed S.O.s only limited research in this 

area can be found. López et al. (2012) have suggested an S.O. architecture which covers the 

basic functionality as illustrated in Figure 7.2. However, they do not provide any details on 

how to implement the architecture in a single S.O. Trevennor et al. (2012) have presented a 

reduced smart home concept design by using an embedded controller and a radio module. 
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But, his work is missing the needed generality and flexibility, i.e., they solve a specific 

problem by designing a dedicated solution for this. 

Using the basic architecture from López et al. (2012) and some of the embedded principles 

from Trevennor et al. (2012) in combination with the discussed software architecture it is 

possible to derive a general hardware architecture which supports home control and AI. The 

contained elements are: 

 Input and output processing. 

 General control logics. 

 Event logic in the form of timers and a small calendar.          

 Communication logics. 

 Agents for AI processing. 

These are discussed in the following and a block diagram covering this architecture is 

illustrated in Figure 7.9.   

 

Figure 7.9. A general smart object with its interfaces and internal functionality.  

 

Starting with the sensor signals (i.e., events) they are fed to the input processing unit. This 

unit time stamps the events and passes them through a digital filter. This filtering process is 
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able to suppress events coming from the same source in a short time interval relative to the 

system sampling time. Ignoring repeated events saves processing power and network load. It 

should be noted that dropping the repeating events coming in the same sampling interval 

normally does not waste information; however, this particular feature can be disabled. 

Another feature that is also available in the input processing unit is the capture hold function. 

It is able to save an incoming impulse event that is too short for the input sampling process to 

detect it (Section 4.4). Such a feature ensures that important very short time events are 

captured.  

After input processing the events can be routed to three different devices. Firstly, they can be 

fed to the calendar activity scheduler unit that is able to start a pre-programmed user action 

e.g., by using its output processing unit. This unit drives and controls external objects like a 

table lamp. An example could be that the user sits close to the S.O. lamp so it detects the user 

presence by using its build-in activity detector unit. Because the user is present it makes a 

lookup in the calendar to find any pre-programmed matching action. If a match is found the 

action is performed. Next, the timer unit is searched for the same action. If a match is found 

the timer unit will control the action duration. An example could be to switch the lamp off 

after some time. 

Secondly, it is possible to route the predicted action through a gateway in the comm. interface 

and thereby reach any device attached to the network. Examples could be other S.O.s or some 

user interface devices. 

Thirdly, it is possible to route the events to the agents unit. This unit contains a collection of 

trainable agents based on the AI principle. When the trained agents consume the incoming 

events they will emit information in the form of detected actions. These actions can then 

trigger the output processing unit and thereby control external devices. It is also possible to 

route these detected actions through the comm. interface unit to other S.O.s or an HL-SHS for 

high-level processing. Seen in the light of the saving power and bandwidth this concept 

provides it by using agents that consume events so they are not transmitted at all. So, it seems 

reasonable to assume that this approach compared to the alternative approach of transmitting 

all the events will provide some  power and network saving.    
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From an implementation point of view it is expected that some of these distributed S.O.s are 

implemented as small cheap embedded processing units that are powered by small batteries.  

Such a concept offers an easy and cheap installation procedure that positions the units in an 

out of sight manner meaning that the environment intrusion is minimized. This is in 

agreement with the discussed principles from Brush et al. (2011). 

Saving processing power and network bandwidth are very important items to be considered as 

explained in section 4.4. 

Implementing this architecture raises some important questions about designing and 

implementing the different units in a power efficient way. Most of the units can be found as 

optimized standard libraries in embedded processing source developer kits. But the agent 

implementation needs to be considered carefully because it involve complex and expensive 

computations. 

7.3 COMMUNICATION BETWEEN SMART OBJECTS 

The S.O.s and sensors contained in a smart home must be able to communicate with each 

other and the outside world. At the high OSI-layer level S.O.s need to exchange information 

such as setup information and predicted actions (Donninger & Lorenz, 2010). This is 

supported by the middleware layer in this work, as discussed in subsection 7.2.2. The lower 

layers, which are needed to support the higher layer information exchange, take care of the 

actual information transport through the physical media. A transport mechanism for generic 

device types raises some questions about implementation of a useable network topology 

model. Such a model must be flexible, i.e., it must be able to support many generic device 

types that are powered by either a battery or the mains (Shah et al., 2009). This model is 

explored in the following. A detailed description of the network topology model can be found 

in Lynggaard (2013a). 

7.3.1 A SIMPLIFIED SCENARIO 

To explore the network topology model and defining the needs for an S.O. communication 

system the simplified living room scenario model presented in subsection 4.3.2 (Figure 4.5) is 

used and reprinted in Figure 7.10 for convenience. In subsection 4.3.2 this model was used to 
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represent a centralized system with its event sequences given in Figure 4.6. In this context the 

same scenario is used to explore a distributed model which is achieved by transforming it into 

a distributed system that uses S.O.s. 

 

Figure 7.10. Living room - a simple smart home scenario model. 

As discussed (Subsection 4.3.2), a general view could be to consider a scenario where the user 

enters the room, turns off the ceiling lamp, sits down in the armchair, turns on the table lamp 

and opens a book for reading. The S.O. based systems learn from these repeated actions over 

time. To be able to automate this behavior it is required that the ceiling and the table lamps 

are equipped with AI, i.e., they are S.O.s.    

The events needed in this simple scenario are illustrated in Figure 7.11. The door (flow 1-2) 

and armchair sensors (flow 3-4) emit events to the table and ceiling lamps. Based on these 

events and the local time the table lamp (i.e., it’s S.O.) decides to turn on (flow 6). This action 

emits an action (flow 8) to an external based SHS that handles the HL-SHS. Similarly, when 

the ceiling lamp S.O. receives the events (flow 2 and 4) it decides to turn off (flow 5) and 

transmits an action to the external based SHS (flow 7).  

Even the simple scenario in Figure 7.11 produces a lot of events that need to be exchanged 

between the S.O.s. Comparing this sequence diagram with the centralized one shown in 

Figure 4.6 some notable differences are found. 
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Figure 7.11. Sequence diagram for the living room scenario. 

Firstly, in the centralized scenario (CS) sensor events are routed to a server which involves 

and loads many nodes. In the distributed scenario (DS) sensor events are distributed to the 

spatially nearby S.O.s. This approach saves network traffic and node load (i.e., power 

consumption) (Lynggaard, 2013c). Secondly, the CS is hard coupled, i.e., most nodes depend 

on each other and the centralized server. But, in the DS the dependency and coupling between 

the S.O.s are reduced. This means that the S.O.s are more independent of each other so 

rerouting of event messages between the S.O.s is avoided. In addition, it supports the concept 

of plug-and-play, i.e., different manufacturers are able to supply devices with simple sensor 

interfaces. Thirdly, the huge AI processing task allocated in the CS server is divided into 

distributed S.O.s that processes in parallel in the DS concept. This provides benefits in the 

form of reduced latency, reduced network load, and reduced failure severity.  

In the just presented scenario the sensors (door and armchair) are both positioned at places 

where it is difficult and unpractical to provide wired mains power so these devices must be 

powered by other means such as batteries. However, the table and ceiling lamp S.O.s are 

powered by the mains. In fact it is expected that smart homes will have a lot of small easy to 

install battery powered sensors in the future (Alam et al., 2012).  

7.3.2 TOP LEVEL COMMUNICATION MODEL  

By combining domain knowledge with a generalization of the scenario presented in 

subsection 7.3.1 and illustrated in Figure 7.11 it is obvious that different device node types 
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and node capabilities are needed. These types include wired (Subsection 4.5.3) and wireless 

sensors (Subsection 4.5.4), wired actuators, and an S.O. based core network as illustrated in 

Figure 7.12. 

Some research has been performed in the concept area of different device types. At the high 

protocol level Eisenhauer et al. (2009) have suggested the HYDRA middleware platform that 

integrates physical layer standards into one unit (Subsection 7.2.2). But HYDRA does not 

solve the problems on the physical layer such as the power consumption problem. Today’s 

research is mostly focused on concepts which involve a centralized server (Zhao, 2010), 

(Rathnayaka et al., 2012), (Mao et al., 2010), (Section 4.3). Nonetheless, this concept does not 

provide the physical layer benefits found in the suggested distributed system as discussed in 

the following.           

 

Figure 7.12. A top level smart home communication model. 

Wired connections are used to connect specific sensors to specific S.O.s as illustrated in the 

suggested distributed system Figure 7.12. These connections provide power to the sensors and 

they also carry sensor communication. Alternatively, if the S.O.s are powered by batteries the 

connected sensors draw power from these, and consequently the sensors must have a low 

power consumption. However, this is normally the case with wired sensors because they often 

are simple switches and electronic elements such as heat sensitive resistors and 

semiconductors, etc. - see subsection 4.4.2. Another challenge is the limited bit-rate provided 
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by wired connections (Subsection 4.5.3), i.e., wired systems such as X10 provide only 20 

bits/s. Nonetheless, this is a minor problem in this work because the sensors only emit a very 

limited amount of binary information (Subsection 4.4.1).    

The wired actuator in Figure 7.12 symbolizes a device controlled by the connected S.O.s. 

These S.O.s are always powered by the mains grid as are most actuators.     

The wireless sensors Figure 7.12 can be powered by the mains depending on their 

employment in the application, but usually they are battery powered (Subsection 4.4.2). So 

from a usability point of view they have to optimize their battery lifetime. In most sensors the 

major part of the current consumption is from the wireless transceiver interface (Zhao et al., 

2013), (Shi, 2007). When the transmitter is on it consumes much power, but this is only the 

case whenever an event is transmitted. In addition, the receiver is the most complicated and 

expensive device in a transceiver. This means that cost, power and density savings can be 

achieved by leaving out the receiver (Zhao et al., 2013). However, leaving out the receiver 

raises problems about missing protocol handshakes; this issue is discussed later (Section 

7.3.5). 

7.3.3 THE SMART HOME CORE  

As noted, a group of S.O.s are present in the center of Figure 7.12. These S.O.s are able to 

communicate with each other by using a well-defined protocol and together they constitute an 

SHN. Such a network is able to communicate with external systems like user interface devices 

and cloud based services. This S.O. group is the backbone or the core of the presented SHS. 

They are preferably powered by the mains grid, so they have the necessary resources for 

collecting sensor events, perform data processing, control actuators and communicate with 

external systems. However, to provide the flexibility for clustering the S.O.s (Subsection 

7.3.4) these can also be battery powered.  

The challenge with battery power consumption in the S.O.s used in the IoT context is 

discussed by López et al. (2012). They propose an S.O. framework based on a battery 

powered cluster head (i.e., master / slave node) concept. In addition, they suggest a complex 

scheme that uses battery power to rotate the cluster head between the different S.O.s 
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(Subsection 4.4.4). Another work by Starsinic (2010) also discusses the limited battery 

resource problem. He suggests a common S.O. gateway solution for saving battery power.  

To some extent, this smart home core is an extension of work presented by Xu et al. (2013) 

where they present a WSN based mains powered core and battery powered sensors. Their 

concept requires a tree like structure with one final gateway node. This restriction is not found 

in this work because it uses a distributed S.O. approach. Furthermore, their concept requires a 

receiver in all the nodes including all the sensor nodes. As will be discussed later (Section 

7.3.5) this restriction does not imply on this work.  

The presented SHS needs to handle events from the battery powered sensors as discussed 

earlier. These events must be distributed to all the S.O.s so their contained AI circuits can be 

trained (see example in Figure 7.11). Thus, an event distribution mechanism must be defined. 

To elaborate over the event distribution mechanism an example is explored. As illustrated in 

Figure 7.13 a wireless sensor transmits an event to the S.O. core. This event is captured by the 

gateway S.O.s that are able to bridge between the protocol used by the sensor and the one 

used by the S.O.s core network. The gateway S.O. then broadcast the event to all the S.O.s in 

the defined cluster. This method distributed the events between the S.O.s, but it has a 

downside. If more gateway S.O.s are able to perform the bridging they will follow the same 

procedure, i.e., multiple event flooding is likely to occur (Subsection 4.5.5). 

To handle the multi-event flooding situation this work suggests that a random delay is added 

to all the S.O.s before they broadcast events. So, when an S.O. receives an event it waits a 

short random time (less than half a second) before it looks into its own event buffer to see if 

the event is already there, because another S.O. has already broadcasted it (i.e., the other S.O. 

has drawn a shorter time from its random time generator). If it is not available in the event 

buffer the S.O. broadcasts it.  

Actually the principle of waiting a random time before accessing a shared resource is 

commonly known and used in schemes such as Carrier Sense Multiple Access with Collision 

Detection (CSMA-CD), however, in this work it has been applied to reduce event flooding. 

An alternative method would be to use the Gossiping algorithm defined and used in WSN 
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context (Hedetniemi & Liestman, 1988) (Subsection 4.5.5.2 and 4.5.5). It relies on sending 

the event to only one randomly chosen neighbor node. This node then performs the same 

thing iteratively whereby the event is distributed. But, because there are more possible sources 

in the presented system, flooding is not avoided by using this procedure. Other often used 

protocols are SPIN and LEACH which are discussed in subsection 4.5.5, (Kulik et al., 2002), 

(Heinzelman et al., 1999). The SPIN algorithm is not useable because it is based on selective 

distribution of broadcast events. But in this work all core S.O.s need the sensor events, so 

such a mechanism is unnecessary overhead which wastes resources. Similarly the LEACH 

algorithm is a point-to-point algorithm, which is unusable for broadcast.         

 

Figure 7.13. Sensor and S.O. event communication model.  

Event flooding from the wired sensors in Figure 7.13 does not occur, because they are 

connected to one particular S.O. This means that the connected S.O. handles the event 

broadcast from the connected sensor to the other S.O.s and no duality therefore occurs, i.e., 

flooding is avoided in this case. 

7.3.4 SENSOR AND SMART OBJECT CLUSTERING  

The reasons for using spatial cell structures are to cluster common functionality, which 

distributes the load between many nodes; and to enable the use of power control and reduce 

interferences. To visualize its benefits in smart homes the CASAS smart environment test-

bed, used by Cook (2012) in some of her experiments, is illustrated in Figure 7.14.       
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Figure 7.14. Bosch and Cairo test-bed smart environments used by Cook (2012). The encircled sensor 

groups are the opportunities for sensor cluster-tree grouping. The small red dots are the smart home 

sensors. 

The potential sensor groups allocation are presented and highlighted as red circles which 

overlay the CASAS smart homes in Figure 7.14. A similar grouping pattern can be made in 

the test homes settings used by Kasteren et al. (2008a) in their smart home related work 

(Section 5.3), (Subsection 5.6.2). So this work defines an SHS where the sensors and S.O.s in 

each individual room are clustered into one unit as illustrated in Figure 7.14.  

Viewing the defined cluster based S.O. and sensor topology from an interference and power 

consumption point of view underlines its usability. In a radio based system many types of 

interferences are in play. They are described in details in chapter 4.  

The primary reason for clustering the devices in a room based scheme is that these devices 

(i.e., S.O.s) normally are related. So, e.g., kitchen sensors such as cupboard, fridge and table 

sensors do not provide any information on how to control the S.O.s in the living room. 

However, S.O.s in the same room are related so they only need to broadcast a sensor event to 

the members of that particular room cluster. This means that the transmission power can be 

kept at a minimum, i.e., battery power is saved and the amount of generated interferences is 

minimized. Regarding the event routing algorithms inside a cluster it is found that a simple 

flooding scheme works well, because the number of sensors is limited (Subsection 4.5.5). 

Alternatively, the SPIN algorithm could be used (Subsection 4.5.5). It is able to move data 

between S.O. nodes in a structured way, because it uses a handshake based approach. A work 
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performed by Dominici et al. (2010) explores the possibility to use physically based routing 

compared to the logically based approach used in most research projects. They found that the 

physically based approach simplifies information handling and processing. However, they 

only looked into a few dedicated examples and did not discuss this in the broader S.O. 

context.    

A focus on inter-cluster communication is needed. Beside the flooding based S.O. core event 

distribution mechanism a second mechanism is needed to collect and transmit S.O. predicted 

actions to the external systems, such as the HL-SHS. This mechanism needs a cluster head to 

take care of all the interactions between the S.O. core and the external system. 

In this work each cluster is managed by only one cluster head analogue to the WSN LEACH 

algorithm (Heinzelman et al., 1999). This cluster head handles the data collected from cluster 

members and the exchange of data out of the cluster context. Furthermore, it creates a TDMA 

like structure where each node has an assigned time slot. Such a structure is beneficial in the 

case of using transmit only nodes (Subsection 4.4.3).   

Without the presented room based clustering mechanism an unorganized cluster head 

allocation could take place. This normally happens when using standard protocols such as 

ZigBee and 6LoWPAN. Thus, it is possible that the cluster head could be allocated outside 

the room. This means that battery powered sensors must use a high power level to penetrate 

walls with the cost of reduced battery lifetime (Lynggaard, 2013a), (Bleda et al., 2012). In 

addition, a higher power level also means that a higher destructive interference level is 

imposed to the neighbor S.O.s.  

In another scenario more than one cluster head candidate could be available, but some of 

these candidates are blocked by a transmitting WiFi node or a micro oven. If one of these 

blocked nodes is chosen as the cluster head, communicating nodes need to use more power to 

overcome this blocking. So, being able to choose the right cluster head inside a room is 

important.   

To be able to choose a cluster head among the S.O. core candidates, the WSN routing 

framework can be used in an analogue manner. Regarding the SPIN algorithm it is dedicated 
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to disseminate observations between network nodes and thereby do not provide the wanted 

functionality (Heinzelman et al., 1999), (Subsection 4.5.5). Regarding the LEACH algorithm 

it is able to collect and deliver data to an external data sink. The key idea in the LEACH 

algorithm is to choose the cluster head randomly using a cyclic approach (Subsection 4.5.5). 

Xu et al. (2013) modified this algorithm and named it LEACH-PI. Their modified approach 

ensures that the cluster head is always selected in the groups of mains powered nodes. This 

concept fits very well to the discussed S.O. core concept.  

The main disadvantage in a concept where each room needs a cluster head is a lack of 

freedom as to where to place the devices. This means that some manual clusters setup process 

must be expected.                    

Many networking technologies can be used to support the discussed S.O. cluster model. Two 

good candidates are 6LoWPAN and ZigBee (Subsection 4.5.6). They provide similar 

technologies (Gratton, 2007). In the light of technology similarities only the ZigBee 

technology will be discussed; however, a change to Z-Wave or 6LoWPAN technologies is 

straight forward.    

The ZigBee protocol stack uses the IEEE 802.15.4 WPAN standard (Subsection 4.5.6). This 

standard defines three node operating modes: PAN coordinator, Full Function Device (FFD) 

and Reduced Function Device (RFD). In addition, it offers a set of possible network 

topologies, where the cluster-tree is the most suited smart home topology Figure 7.15 as 

discussed earlier.   
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Figure 7.15. ZigBee cluster-tree topology (Kim et al., 2008) . 

 

The PAN coordinator forms the root of the network. There can only be one of these nodes in 

each network. The FFD’s act as coordinators and provide synchronization services to the 

other devices and coordinators.  Any of these nodes can be the PAN coordinator. The RFD’s 

may connect to a cluster-tree network as leave nodes at the end of branches.  

In the context of S.O.s the FFD nodes belong to the S.O. core, i.e., they are mains powered 

nodes whereas the RFD is assigned to the battery powered S.O.s and sensors. This setup 

ensures that only the FFD’s will handle routing, become cluster head and handle other power 

consuming functions. By allocating the RFD’s to the battery powered devices these will be 

able to power sleep, i.e., save battery power.  

Similar ZigBee setups have been used in some centralized smart home topologies, especially 

in remote controlled automated homes. However, a room based cluster topology has not been 

seen in the context of distributed smart homes, which is essential for this work. To ensure that 

the clusters are created using the room based approach, the choice made by the RFD’s to one 

particular cluster head can be locked, i.e., some manual setup is needed when the S.O. node is 

installed.      

7.3.5 THE TRANSMIT-ONLY SENSORS  

A problem in using ZigBee and many other networks suitable for smart homes is that they do 

not incorporate transmit-only sensors (Subsection 4.4.3). As discussed earlier these sensors 
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are very important seen in the light of battery power saving. So, incorporating these into the 

ZigBee framework would be beneficial. 

The main problem with transmit-only sensors is that they do not have a receiver and thereby 

cannot participate in the beacon based TDMA scheme normally used in ZigBee and other 

networks. This means that when these transmit-only sensors transmit at a random time 

(triggered by some user activity) they will destroy the TDMA frame structure. Most likely it 

causes FFD node communication losses and loss of the sensor events therefore incorporation 

of transmit-only sensors in a ZigBee based SHN requires some considerations. 

Firstly, the transmit only sensor cannot sense if a frame collision has occurred, so to increase 

the probability that these frames are received they need to be transmitted a specified number 

of random times. However, this means more power spending, but Sudhaakar et al. (2009) 

have shown that even with this increase the benefits of power saving, lower device costs and 

complexity are still intact. They also showed that a delivery probability of 95 percent can be 

achieved by using four transmission times of the same packet under different test settings. 

These settings were randomly changed in an office with furniture and a WiFi router. 

A second problem is that the TDMA based beacon structure used by ZigBee is sensitive to 

frame collisions because it destroys the synchronization information. This information is used 

by all the nodes to synchronize their particular TDMA time slices. To avoid this loss of 

synchronization information a non-beacon enabled transmission can be used. ZigBee supports 

such a mode where the communication is based on an un-slotted CSMA-CD scheme instead. 

Using this ZigBee mode in combination with transmit-only sensors means that frame 

collisions are likely to occur, but frame synchronization is not lost. In this case the ZigBee 

nodes will simply retransmit, whereas transmit-only sensors will most likely lose their 

transmissions. However, as discussed it will be re-transmitted a number of random times, i.e., 

a high reception probability is achieved.  

In some cases both colliding frames would be lost. But a scheme defined by Blaszczyszyn et 

al. (2008) handles this situation by letting the receiver prioritize, which packet it will receive. 

Thus, the receiver measures the receiver signal strength indication for each node with which it 
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communicates. Using this value a packet with a high receiver signal strength indication value 

is allowed to interrupt a weaker one if the co-channel interference is acceptable.  

From a future perspective the use of transmit-only sensors means that they need to be 

integrated with the WSN nodes (in this work ZigBee nodes). An alternative way to combine 

ZigBee and transmit-only-sensor nodes is by noting that ZigBee uses a Code Division 

Multiple Access (CDMA) based scheme in the physical layer. This means that it uses Direct 

Sequence Spread Spectrum (DSSS) modulated with phase shift keying. Because of the used 

spreading key mechanism the modulated signals are highly uncorrelated, i.e., more users can 

use the same channel resource. So, modulating the transmit-only sensors with the same 

modulation means that it can coexist with the ZigBee signals. The cost for using this scheme 

is a lower signal to noise ratio for the employed receivers, but this is acceptable in most cases. 

However, these nodes need to be able to handle this combined signal. A way to implement 

this is by using some amount of processing power to implement a SDR (Tribble, 2008) that is 

able to handle a ZigBee signal overlaid by a transmit only sensor signal. Most common 

ZigBee hardware nodes seen today (2013) do not provide the needed amount of processing 

power. However, the mains supplied S.O. core that is part of this work has plenty of 

processing power and is able to do this.          

7.4 PROBLEMS EVALUATED 

The evaluation and performance of the developed SHS is discussed in the following. It is 

performed by looking into three refined sub-questions that are derived from the research 

questions:  

1. How does the SHS perform compared with the ASH and CSH systems? 

2. Is the derived S.O. concept advantageous compared to existing agent systems? 

3. Are the models implementable with existing technologies and devices?  

Sub-question one focuses on the performance of the suggested SHS. By relating the suggested 

SHS with the ASH and CSH layers discussed in Table 6.1 to Table 6.3 the advantages and 

disadvantages of the suggested system is revealed. Table 7.1 compares the challenges found 
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in the ASH and CSH systems with the suggested SHS. Thus mapping the SHS context as a 

function of the ASH problem number yields:  

 

ASH 

problem 

Problem in SHS context 

1 Bandwidth usage. The S.O.s contain a collection of intelligent agents that are connected to the 

sensors and home devices either wired or by using a short wireless connection. This means that 

the needed bandwidth for sensor information is reduced. Furthermore, the communication 

between the S.O.s and the management system is lowered considerably because the AI is 

positioned in the S.O.s and only actions are transmitted (Section 5.7). 

2 Channel blocking. Many S.O.s must be expected to coexists, however, they only transmit when 

an action has been predicted. This lowers the co-channel and adjacent channel interference 

considerably (Section 4.5). It is expected that many of the wireless sensors transmit and thereby 

use the channel, but they are positioned close to the S.O. so the transmitting power can be kept 

low. This reduces co-channel and adjacent channel blocking. 

3 Insufficient device data performance. Because the amount of traffic between the S.O. nodes in 

the SHN is lowered this problem is also lowered (see this table point one). 

4 Lack of power resources (battery). The primary factor that uses power in a sensor or device node 

is the transceiver. Because the distance between the sensors and the S.O.s are lowered less 

power is needed for the sensors to transmit. Power is also reduced for the S.O.s because they 

primarily transmit when an action is predicted (Subsection 4.4.2). Additionally, the wired 

sensors draw power from the S.O. which can be mains powered. 

Table 7.1. Suggested SHS system compared with the ASH system (physical layer vs. reasoning layer). 

Summing up the analysis and results presented in Table 7.1 it is found that the SHN load is 

reduced and the power consumption in the sensors and S.O.s also are lowered considerably.     

The position of the reasoning layer is a problem, which was discussed in the comparison of 

the ASH and the CSH systems (Table 6.2). By analyzing this result in the context of the 

developed SHS Table 7.2 has been derived. Hence, mapping the SHS context as a function of 

ASH problem number yields:  
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ASH 

problem 

Problem in SHS context 

1 One processing server can be a bottleneck. Since the processing is distributed to the local agents 

with their own processing resources this problem is solved. 

2 Single point of failure if the system is based on only one central server. The distribution of 

processing resources solves this. However, if the user management system is allocated on a 

cloud server and its connection fails user management is not possible. However, the S.O. learned 

behavior still works and it is possible to manually control the devices. 

3 Central server needs to be always running. Hibernating features can be implemented at S.O. 

level because most of the out of context S.O.s will not be affected by the sensor events 

produced, when the user interacts with the smart home. 

 Table 7.2. The developed SHS system in ASH context (position of the reasoning layer). 

Analyzing the presentation layer in the context of the agents layer in the ASH model against 

the SHS developed model provides Table 7.3. Thus, mapping the SHS as a function of the 

ASH problem number yields:  

CSH 

problem 

Problem in SHS context 

1 The user interface application runs on the same server as the S.O. (agents layer) calculation. In 

the SHS the user management system is executed as a cloud service. This cloud service has the 

needed amount of processing power. However, some overhead must be expected to interface the 

user interface to the individual S.O.s. 

2 Single point of failure on a centralized server will cause the user interface to fail. In the SHS 

system the user interface runs as a cloud service this service is expected to have backup 

strategies. Whereas, if it is executed locally on a server and it fail the user interface will not 

work. 

3 Data exchange from either the S.O. (agents layer) to the user management (presentation layer) 

loads the network and its performance. Because the S.O. is antonymous it only needs the user 

management interface when it is updated. So, the load is proportional with the user management 

activity and only load when this is performed. 

4 There is no one-to-one connection between a hand held ―smart‖ device (e.g., a smart phone) and 

the related smart home device. The SHS concept offers a one-to-one connection because each 

S.O. contains a RFID tag with the needed information. So, by spatial approximate a portable 

user interface device to this RFID tag opens the particular management interface for this S.O. 

Table 7.3. The developed SHS system in an ASH context (user interface vs. S.O. layer).  
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From the discussion included in tables (Table 7.1 to Table 7.3) it is found that almost all the 

problems discussed in the ASH and CSH contexts are solved by the SHS system. However, 

the choice of using a centralized user management system running on a cloud server as a 

service means that problems like ―single point of failure‖ and S.O. management traffic are 

with some drawbacks. However, these drawbacks are manageable by adding redundancy at 

the cloud service. Many cloud services today (2013) use server farms, so if one server fails it 

is preempted and another schedules the job. In case the Internet connection to the smart home 

is interrupted it is still possible to get S.O. based services.       

Second sub-question looks into if the derived S.O. concept is advantageous compared to the 

existing agent systems.  

One of the primary advantages in the suggested SHS is its compatibility with the future 

development of the Internet heading against the Internet of things (IoT) (EU_Commission, 

2009), (Bandyopadhyay & Sen, 2011). Thus, as stated by López et al. (2012):   

…the IoT vision: unique and automatic identification, the sensed condition of 

objects, embedded processing for local intelligence and autonomy, object-to-object 

networking, and an Internet-based information infrastructure (López et al., 2012).  

As presented earlier a similar vision about the future is stated by Alam et al. (2012), which is 

supported by Zhang et al. (2012). The statement by Alam et al. is: 

The trends indicate the increasing popularity of using middleware to integrate 

heterogeneous devices. Because multivendor devices will coexist in future, the use of 

middleware is an efficient solution to create networks that will overcome the 

limitations of diverse device integration. It seems that home intelligence will be 

employed in a distributed manner. This distributed intelligence may be applied in the 

form of smart devices (Alam et al., 2012). 

So, a distributed agent-based system benefits from being able to sense the context, has 

communication ability to other objects and the Internet. In addition, it must be based on a 

middleware concept that offers the possibility to integrate heterogeneous devices and provide 

processing power, i.e., it must be able to handle local processing tasks, such as AI algorithms. 
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Actually, the suggested SHS offers these elements, why it is both IoT ready and fits into the 

future vision stated by these researchers. As stated earlier (Section 4.3) most researched 

agent-based systems are more proprietary and they do not fulfill all of these requirements.  

Furthermore, this S.O. concept is advantageous in its vision of keeping power consumption 

and network bandwidth low. Network bandwidth is important because it indirectly relates to 

power consumption and interferences as discussed in (Subsection 4.4.2). Power consumption 

is important for increasing the S.O. usability, i.e., reduce the change-rate of batteries. It is also 

important because the technology level of today (2013) offers different solutions of power 

supply possibilities such as solar-cells and energy harvesting technologies (Graham et al., 

2011), (Boegel, 2012), (Lee et al., 2011). Thus, various reasons exist for focusing on low 

power consumption. In the SHS system different means have been used for lowering the 

power consumption, such as S.O. clustering and transmit-only sensors, etc. The use of a 

clustering approach provides benefits in the form of lower interference level, lower power 

consumption and it decouples devices by allocating them to a cluster head. This cluster head 

takes care of communication out of the cluster context, which means that the cluster member 

devices can be low resource devices as well as more complex devices such as an S.O.  

In the future it is likely that S.O. like distributed processing units in the form of System on a 

Chip (SoC) will be offered seen in the light of IoT. They will provide a small form factor, 

processing resources and probably incorporate the concept of swarm processing. 

Third sub-question focuses on the possibility to implement the model with existing 

technologies and devices. Because the SHS has been derived with this in focus the 

architectural structure of an S.O. Figure 7.9 adapts what is possible on low-power 

microcontrollers of today (2013). Finding the edge of what is possible resolves into factors 

such as cost, power consumption, processing power, and peripheral interface on the 

microcontrollers and transceivers. Trevennor et al. (2012) implement elements of a smart 

home wireless node on the small embedded processor ATmega328. They control colored leds, 

door switches and wireless transmissions without any real-time problems. Another paper by 

Chong et al. (2011) implements a software layered model with comparable load to a 

middleware layer on a low-power 8051 microcontroller. They also implemented a gateway 

between ZigBee and a wired Serial Parallel Interface (SPI) on the same microcontroller. Their 
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radio system was based on the ZigBee protocol by using a CC2530 module from Texas 

Instruments. This module has been used in many battery powered home control applications. 

However, its power consumption in relation to processor speed needs to be optimized 

(Subsection 4.4.5).        

Beside the S.O.s the SHS consists of the HL-SHS that are allocated on either cloud servers or 

locally in the smart home on processing platforms that offer the needed resources.  Thus, 

these elements are not restricted by today’s technology level. So conclusive, most of the 

needed technology is available for realizing the presented SHS concept.   

In addition, the development is going fast developing Moore’s law that states a doubling of 

processing power each 1.8 year. To perspective this statement, (Kawsar et al., 2009) states 

that: 

One of the consequences of pervasive technologies (e.g., miniaturization of the 

computer technologies and proliferation of wireless Internet, short-range radio 

connectivity, etc.) is the integration of processors and tiny sensors into everyday 

objects. This revolutionized our perception of computing. We are in an era, where we 

communicate directly with our belongings, e.g., watches, umbrella, clothes, furniture 

or shoes and they can also intercommunicate. These everyday objects are designed 

to provide supplementary services beyond the primary purpose, an initiative that has 

been denoted as S.O. (Kawsar et al., 2009). 

Thus S.O. will most likely be integrated into the area of IoT in the future using 

technologies such as energy harvesting, low-power SDR radios, and SoC. 

7.5 SUMMARY 

The derivation of a distributed system architecture was performed and explored in the light of 

centralized and agent-based systems. These systems are combined with knowledge from the 

IoT research area and the design criterions derived by exploring related research in the area. 

The most essential element in the derived distributed system architecture is the S.O. model. Its 

architecture and design were explored in terms of middleware, S.O. communication, and 
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sensors and actuators. Additionally, an implementation model for the S.O.s was suggested and 

presented. It includes elements such as interfaces, internal functionality, and ability to be 

implemented on small low-power (battery) microprocessors. The S.O.s form a smart home 

core model which was derived together with its communication with multiple sensors.   

To deal with wireless interferences and lower power consumption a clustering model based on 

ZigBee was suggested. This model uses a concept with fixed cluster headers and it supports 

both battery and mains powered nodes. In addition, it includes a concept that uses transmit-

only sensors. 
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8 ENHANCED FRAMEWORK USING ARTIFICIAL 

INTELLIGENCE  

The mathematical AI framework for the smart home system architecture is derived in this 

chapter, based on the background presented in chapter 5. The derivation takes the form of a 

mathematical formulation (Section 8.2) and provides two sub-models named High-level-

Smart home System (HL-SHS) (Section 8.3) and Low-level Smart Home System (LL-SHS) 

(Section 8.5), which support and match the derived conceptual sub-models. Both models are 

simulated and their performances evaluated and discussed in sections 8.4 and 8.6. Finally, the 

S.O. (contained in LL-SHS) implementation model is presented (Section 8.7) and its 

performance evaluated and discussed (Section 8.8).     

8.1 RESEARCH QUESTION AND AI FRAMEWORK 

8.1.1 RELATION TO RESEARCH QUESTION  

Research question two can be split into sub-problems that are useful for a detailed analysis 

and discussion, as stated in chapters 4 and 5. In addition, a perspective view is necessary for 

determining the derived sub-problems. As such, the view used in this thesis is the technology 

view, as discussed in chapter 6. This choice has a disadvantage in terms of a loss of 

generality, but this is the accepted cost when limiting a subject. 

In the following, research problem two is used as a guide for subsequent work and thus, for 

convenience, it is restated here. 

Question 2: How should the AI be distributed to comply with the smart home system 

architecture?       

As stated, this research question deals with the distribution of the AI framework to comply 

with the derived smart home system architecture. In addition, it implicitly involves S.O.s and 

the use of existing technologies (Section 1.3). These subjects are the focal points in the 

following section. In addition, background knowledge for these subjects is provided in 

chapters 4 and 5.  
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The goal is to derive an AI framework that is candidate for the distributed system architecture 

and which fulfill the requirements of the subjects discussed above. To accomplish this 

objective, a mathematical model is derived in the beginning of this section (Section 8.2) and 

this model is refined into the final AI model by using model knowledge, architecture, and 

limitations from the derived distributed system architecture (Chapter 7). Because the system 

architecture uses a distributed approach, the AI framework must also be distributed to achieve 

an advantageous match (Alam et al., 2012). In addition, the hierarchical concept used by the 

system architecture, i.e., the LL-SHS and the HL-SHS, has an impact on the possible choices 

for the distributed AI framework architecture. Thus, two hierarchically based AI models will 

be derived; one for the HL-SHS (Section 8.3), and one for the LL-SHS (Section 8.5). Vital 

elements in these models are then simulated on real world datasets published by different 

universities that are researching this area (Sections 8.4 and 8.6). A comparison of the achieved 

learning and prediction results with comparable results from papers within this field reveals 

that the achieved simplified models have similar performance.       

Furthermore, the limitations of the research question, given in section 1.3, state that the 

technology perspective is limited to currently existing technologies and devices. Thus, the 

derived models must have a complexity level that allows them to be executed on the LL-SHS 

and HL-SHS. Regarding the S.O.s contained in the LL-SHS, the AI framework needs to 

support small and cheap low-power microcontrollers that set the state-of-the-art for today 

(2013). In addition, it must support both the low power consumption and the low network 

load that is expected by the system architecture elements. These issues are discussed in 

sections 8.7 and 8.8.   

8.1.2 THE AI FRAMEWORK; AN OVERVIEW 

Smart environments in the smart home area need to implement context-aware services that are 

able to deal with daily activities, such as grooming, eating, drinking, taking medicine and 

cooking. Today (2013), several researchers have designed many approaches and systems for 

modeling and recognizing users’ actions (Rashidi et al., 2011), (Silva et al., 2012), (Chua et 

al., 2011). These systems must be able to interface with hundreds or even thousands of 

sensors (Cook, 2012). In addition, they need to be able to deal with voluminous and rich data, 

which is very challenging for the AI learning and prediction process (Dominici et al., 2010). 



 
157 

Generally, context-aware services are added to smart homes by using AI-based systems. 

These system need to be able to learn activities from users’ behaviors, i.e., when the user 

move around and perform actions within the smart home. When these actions are learned, the 

system must be able to detect the ―learning situation‖ with a high degree of probability and 

suggest it to the user or perform it autonomously. Actually, the ―activity detection‖ part is the 

core problem of using AI in smart homes and many researchers have tackled this area (Silva 

et al., 2012), (Chua et al., 2011).   

The SHS presented in this work is based on a distributed concept that involves a collection of 

S.O.s. These are arranged in a grid where they are able to communicate and to receive data 

from its nearby context, i.e., from connected sensors. This means that the AI processing part 

could be allocated on a centralized server or it could be distributed together with the S.O.s. 

Allocating it on a centralized server means that huge quantities of sensor data must be routed 

to this server and thereby, this loads the network. As discussed in subsection 6.1.1, a single 

point of network failure is likely to cause a breakdown or degrade the functionality. Another 

disadvantage is that the detected user activities normally take place in one room at a time, i.e., 

the sensor events are clustered in this room (Subsection 4.4.4). Dealing with clustered events 

in a centralized solution is suboptimal.  

As discussed in section 4.3, using a distributed AI system has some disadvantages. 

Nonetheless, it is expected that future AI systems for smart homes will be distributed (Alam 

et al., 2012). Therefore, by combining the beneficial features of both the centralized and the 

distributed approaches, a new advantageous AI system will be provided. This system will be 

able to perform light AI calculations on the restricted processing resources offered by the 

S.O.s, while undertaking heavier ones on centralized devices e.g., implemented on PCs, smart 

TVs, or on a cloud server farm. An overview of this projected system is presented in Figure 

8.1. 
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Figure 8.1. Overview of AI components in the smart home system. 

When the user interacts with an S.O. through its sensors, such as tuning on a lamp (Figure 

8.1), this behavior is learned by the lamp (LL-SHS) over time. Based on this learned behavior, 

the lamp works as a standalone device which possesses its own intelligence. However, it 

emits an action each time it detects a user activity. When this action arrives at the HL-SHS, it 

is buffered and processed. The HL-SHS uses these actions to learn and predict more complex 

user activities. Therefore, if a user activity pattern is detected, it emits control information to 

the actuators contained in the S.O.s, e.g., the thermostat could be informed to regulate the 

heat.  

The cloud-based user interface (Figure 8.1) manages the smart home by connecting the user 

terminal to the logics. Thus, the user is able to control the S.O.s remotely and to set up its 

behavior. In addition it can contain the HL-SHS.       

Using this concept offers benefits in the form of providing smart devices that work 

autonomously (like IoT), and it offers services to its users based on local context information. 

However, it also provides the more advanced HL-SHS that uses information from more than 

one S.O. and which is able to provide learning from temporal sequences of actions, i.e., from 
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activities. Because these systems work in a standalone mode and only exchange actions and 

actuator control information, some benefits are noted. Firstly, the network load is reduced 

because the S.O.s process all sensor events, i.e. they are not transmitted. Secondly, from a 

security perspective, no sensor information leaves the smart home. Thirdly, the HL-SHS is 

connected to the Internet, which means that backup and software updates can be managed 

easily from the cloud-based user interface.        

8.2 THE SMART HOME MODEL; A MATHEMATICAL DERIVATION 

Temporal probabilistic models provide a suitable framework that are optimal for dealing with 

the uncertainty of sensor data that reflects user activities, robust in a noisy environment, able 

to handle temporal sequential data, and that are well covered in terms of developed algorithms 

(Cook, 2012), (Naeem & Bigham, 2009),(Kasteren et al., 2008b). As stated in section 5.3, the 

most suited AI algorithms in smart homes are the naïve Bayes (NB) algorithm, the Hidden 

Markov Model (HMM) algorithm and the Conditional Random Field (CRF) algorithm (Cook, 

2012), (Kasteren et al., 2008a). Thus, for this work, the HMM and the NB algorithms are 

explored, analyzed, and reworked to derive a final model that is useable within the distributed 

system architecture. This section is based on the mathematics and the models presented in 

chapter 5.  

The formula covering the HMM has been defined earlier (Subsection 5.5.3), but is repeated 

here in a slightly changed form for convenience (Bishop, 2006): 

  (8.1) 

where is the initial state distribution representing the probability of starting in state . 

The parameter  contains weights that govern the emission and transition conditional 

probability distributions.  

First, the HMM formula (8.1) depends of absolute time, which is transformed into relative 

time because the sensor data event arrival time is only relevant inside one relative time step. 

This is conditioned by the Markov assumption (Kasteren et al., 2011). Removing absolute 

time has been done by rewriting it as a recursive formula (8.2). In addition, the removal of 
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 is performed by assuming all initial probabilities are equal. However, it is noted that 

these assumptions do not restrict the level of generality in smart homes. Applying these 

assumptions yields: 

  (8.2) 

where q is a specific time instance in time vector T. Drawing this equation for Q possible 

states of the latent variable named yields Figure 8.2. 

 

Figure 8.2. Trellis diagram for an HMM. 

As illustrated in Figure 8.2 it is assumed that the HMM is in state at time q+1. Therefore, 

for maximizing its observation vector , given by the observation probability

, it needs the transition probability from all the Q possible states i.e.,

at time instance q. As noted, this optimization process is costly in both 

memory and processing power, while it is not optimal for direct implementation in an 

embedded S.O.  

Implementing an HMM model in each individual S.O. will not improve the recognition 

probability considerably compared to the simpler NB classifier, which performs equally well 

in this context (Subsection 5.6.2), (Fang & He, 2012). However, these NB classifiers cannot 
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be used for high-level prediction because they are not temporal, i.e., they do not include 

history in the form of correlated time steps, as the HMM does. An illustrative example is the 

user going from the bathroom (an action) to the bedroom (an action) in the late evening, 

which could mean that the user is going to get a night’s sleep. In analyzing this with the NB 

classifier the two actions would be treated separately, i.e., they are handled as two 

independent actions only. However, the HMM classifier would use the temporal connections 

between these actions, which adds certainty to detecting the action sequence, i.e., the scenario. 

Thus, the detection probability for the NB classifier compared with the HMM classifier that 

uses both correlated actions is lower in some situations.       

Equipping an S.O. with AI based on the NB and the HMM algorithms are possible by using a 

distributed approach, as explained in the following. Considering the HMM algorithm (8.1), it 

is clear that it can be combined with the NB algorithm as shown in (8.4). For convenience, the 

NB algorithm is reprinted in (8.3) and explained in subsection 5.5.2. 

  (8.3) 

  (8.4) 

For simplicity all the initial probabilities are assumed equal and therefore, they are removed 

from the equations. Parameter  represents weights governing the emission and 

transition conditional probability distributions and K is the number of NB classifiers. The 

other parameters are explained in subsection 5.5.3. 

By choosing to restricts the HMM latent variable in (8.4) to have one state per observation 

variable, transforms it into a usable distributed model. This choice is in good agreement with 

the S.O. agent behavior because it allows the outcome to be binary; i.e., an action has been 

detected or not. In addition, this restriction simplifies the inference process in the HMM 

classifier, as discussed in the following section. From both this restriction and equation (8.4), 

it is noted that the derived HMM is expressed as a chain of separate functions. That is, one 
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NB classifier delivers its emission probability to one HMM state only, as illustrated in Figure 

8.3. 

The inference problem for the derived HMM model (8.4) consists of finding the single best 

state sequence that maximizes . By finding the probability for this best state 

sequence and then thresholding it against a pre-defined limit makes it possible to claim when 

either an action has been detected or not. It is noted that the NB term in (8.4) from an 

inferences point of view can be removed. This is so, because later in this work, the NB 

classifier emission probabilities are thresholded and quantified into the binary values of zero 

and one. These binary values are then user annotated and considered as the observable 

variable in the HMM model.     

Therefore, the inference problem for the derived HMM model (8.4) reduces to the level 

normally found for the HMM’s. Thus, by looking at the trellis diagram in Figure 8.2, the 

probability for being in state  at time instance q+1 depends on the emission probability 

 
and the transmission probability for all the previous states at 

time instance q multiplied by their individual emission probabilities . The trace of 

this path is highlighted (red lines) in Figure 8.2. More details can be found in subsection 5.5.3.  

Based on the discussed assumptions, the derived equation (8.4) can be drawn (in three 

dimensions), as illustrated in Figure 8.3. The blue circles in Figure 8.3 are the NB classifiers 

and the red circles are the HMM classifier elements. It can be noted that the leftmost part 

illustrates the HMM states at time instance q and the rightmost part at time instance q+1, 

where q is a notation defining a particular time instance in the time vector . 

Furthermore, it can be noted that the HMM states at time instance q and q+1 are connected by 

lines that illustrate the possible state transitions and also implicitly, the transmission 

probabilities.  

Thus, using the discussed approaches provides the possibility for transforming the HMM 

equation into a distributed system. The next step is to map the S.O.s to this system, i.e., to 
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find an approach that minimizes the processing requirements for the S.O.s and at the same 

time supports a distributed usability level. Such a system is illustrated in Figure 8.4.  

 

Figure 8.3. A suggested combined Naive Bayes and Hidden Markov model - 3D view. 

 

 

Figure 8.4. A suggested combined Naive Bayes and Hidden Markov model with Smart object allocation - 

3D view. 

Allocating the embedded S.O.s as illustrated in Figure 8.4 (dark grey area), reduces its 

processing load because each S.O. only deals with one or more contained binary NB classifier 

and not the far more complex HMM classifiers. Furthermore, as will be discussed in the 
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following section, these classifiers can be simplified further, i.e., even more processing power 

can be saved. An advantageous distributed usability level is also provided because the S.O.s 

are able to perform standalone processing independently of the HMM model, i.e., they are 

standalone NB classifiers. Hence, by using a binary NB classifier, it is possible to learn and 

predict actions from events in a standalone fashion. An example could be the control of a 

standalone device such as a table lamp based on learning and prediction without any 

connection to the top layer HMM (the red circles in Figure 8.4).  

Describing the NB classifiers (blue circles) in Figure 8.4 from a mathematical point of view 

can be simplified by using prior domain knowledge. Thus, the purpose of the classifiers in an 

S.O. is to detect the presence of actions, but most of these actions are binary in nature, i.e., 

either a kitchen closet is open or closed, etc. This means that detecting one of the binary 

values also reveals the other because they are mutually exclusive. Therefore, using this prior 

knowledge means that a function that simplifies the NB classifier calculation burden can be 

defined. It is noted that by taking advantage of this mutually exclusive behaviour, the 

calculation burden is reduced by approximately 50 % without providing any significant loss in 

the action detection probability compared with comparable systems (Section 8.6).         

The function that implements the simplified NB classifier is expressed in (8.5). This function, 

which is named an H-function, predicts the quantized action probability. This prediction and 

learning is based on a parameter set , the number of elements in vector  (i.e., the number of 

sensors) A, and a pre-defined threshold named .  

  (8.5) 

As noted the H-function returns a binary result depending on the calculated probabilities and 

the threshold .By calculating the final conditional probability over all the sensors in vector

and comparing this value to a threshold, either a one or a zero is returned, i.e., the action is 

predicted or not.  
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Therefore, each NB classifier in the suggested model of Figure 8.4 performs two tasks. First, 

it learns from local sensor events and then predicts actions based on this learning, as discussed 

earlier. Second, it transmit the predicted result (an action) to the top layer HMM classifier, 

which uses it for temporal learning and prediction.   

When these actions arrive at the top layer HMM classifier, they are buffered because they 

cannot be expected to arrive simultaneously. Thus, when the user performs a scenario, sensors 

are triggered at different time instances, which cause delays between the arrived actions. 

These buffered actions are kept in a time-limited buffer, i.e., they are saved for some 

predefined time and thereafter deleted. Hence, if the actions are available within the buffer 

time slice (a window), the HMM classifiers use these to predict high-level actions.  

Summing up, a distributed smart home AI system can be derived by splitting the HMM 

equation into different elements and by noticing how these fit into the derived system 

architecture. Thus, mapping the NB classifier onto the S.O.s agents provides local standalone 

AI. Similarly, it is possible to map the high-level HMM system as the AI part for the HL-SHS 

in the system architecture. These mapping are illustrated in Figure 8.5.  

Another model that is used in smart home context to perform activity detection is the 

Conditional Random Field (CRF) model (Subsection 5.5.4). Even though it belongs to the 

discriminative model group it is similar to the HMM model regarding its mathematical 

structure (Lafferty et al., 2001),(Kasteren et al., 2008b). A rearranged CRF model is given in 

(8.6).      

  (8.6) 

where the feature function is the transition function and the feature function

is the observation function. The partition function normalizes the result into 

a valid probability range and and are the weight factors. Writing out the exponential 

terms yield (8.7). 
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Figure 8.5. The suggested distributed smart home system. Smart Objects contains naïve Bayes classifiers 

connected to the Hidden Markov models. 

  

  (8.7) 

By comparing equations (8.7) and (8.1) which cover the HMM classifier, their similarities are 

noticeable. This means that the distributed-HMM-based SHS can also be derived by using a 

CRF classifier. This derivation is not performed in this work; however, it is a straightforward 

process that can be achieved by following the principles used for the HMM classifier.        

8.3 PROCESS MODEL OF HIGH-LEVEL SMART HOME SYSTEM  

The HL-SHS models are described in this subsection. They comprise a process model 

describing its behavior, an implementation model, and two models that describe its learning 

and prediction principles. The content in this section has been elaborated in Lynggaard 

(2012b) and Lynggaard (2013b).   
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8.3.1 OBJECT PROCESS MODEL 

To provide an overview of the HMM-based AI processing that takes place in the suggested 

HL-SHS and its required support blocks, an object process methodology model (Dori, 2002) 

is presented in Figure 8.6 and discussed in the following.  It is noted that the coupling 

between the HL-SHS and LL-SHS system is described in Lynggaard (2012a).  

 

Figure 8.6 Object process model for the HL-SHS.  

When the user (SH user object) performs scenarios in the form of a normal living pattern 

within a smart home (Scenarios process) sensors emit events (Sensors object). These events 

are consumed by the agents contained in the S.O.s that constitute the LL-SHS. The outcomes 

from these agents are predicted actions that are fed to the HL-SHS. When the actions arrive at 

the HL-SHS, they are annotated with a time stamp (Annotate process) and time buffered in a 

cyclic buffer (Activities process). At this point, the annotated actions are fed to the HMM-

based learning (Act. learning process) and prediction parts (Act. prediction process). The 

activity learning process uses the content in the activity buffer to train the AI whenever the 

user provides a predefined activity. For example, when the user leaves home for a period of 

time, the light is set to the nobody home state. Thus, the activity learning process uses 

predefined activities to train the artificial network model positioned in the activity object 

(Activity object). Based on the trained artificial network, the activity prediction process 

evaluates the action sequences in the activity buffer to predict and suggest activities to the 

user.  
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8.3.2 IMPLEMENTATION MODEL 

In general, from a mathematical point of view (Section 8.2), an SHS can be implemented as a 

collection of HMM classifiers in which the emission probabilities come from a collection of 

NB classifies. However, this work uses a different approach, where the NB classifiers only 

emit the state of the latent variable and not the emission probability (Section 8.2). This 

approach lowers the transmission load on the backbone network, and save processing 

resources and power in the S.O.s because the emission probabilities do not need to be 

calculated and transmitted.  

Equation (8.8) expresses the discussed concept. It has been derived by modifying equation 

(8.4) with equation (8.5).    

  (8.8) 

By comparing equation (8.8) with equation (8.1) it can be noted that the NB emission term in 

(8.8) is a quantized version of the NB emission term in (8.1), i.e., the probability can only be 

one or zero depending on whether an NB classifier emits an action or not. From an entropy 

point of view, discarding information normally has the effect of reducing system 

predictability. However, in this work, the user is expected to either reject or accept the NB-

predicted action and thereby, it provides the necessary ground proof. 

It is noted that the training parameters are a function of time. This approach has been chosen 

because most humans follow the same habits every day; therefore a large amount of 

correlation information can be derived from incorporating time. Fang et al. (2012) found that 

using finely gridded time features increases the recognition rate considerably. Thus, their 

experiment, based on an NB classifier, reveals an improvement rate from 69 % to 82 % by 

changing the time granularity from one-day intervals to one-hour intervals. They found 

approximately the same improvement for the HMM classifier. However, the transition 

probability weights  in equation (8.8) are not a function of time. This choice enables the 

possibility of having a time difference between the latent variable outcomes
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allows two activities to happen at different times, even though they are correlated, which is 

often the case in home scenarios.   

To illustrate the mapping of equation (8.8) into the SHS context, it has been rewritten into a 

recursive form and mapped into Figure 8.3 and the result is illustrated in Figure 8.7. Thus, the 

distributed S.O.s implement simplified versions of the NB equation, i.e., the H function as 

illustrated next to the NB classifier (blue objects, equation #1). Predictions from these NB 

classifiers are transmitted through the SHN as detected actions to the HL-SHS. The HL-SHS 

uses these actions as inputs for the implemented HMM classifiers (red objects). Therefore, the 

HMM equation has been implemented by multiplying it with the two last terms marked #2 

and #3.   

 

Figure 8.7. Implementation model for the derived smart home equation (8.8). 

A model that shows how equation (8.8) has been implemented in the HL-SHS simulation 

model is given in Figure 8.8 (Lynggaard, 2012b). Leftmost is the action buffer that receives 

the actions arriving from the S.O.s. These are placed in the action buffer in the time order of 

arrival. Older actions in the action buffer that are beyond the predefine Look-Back Time 

(LBT) limit are simply discarded in a cyclical manner, such that the newest actions are always 

placed first in the buffer.  
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yHMM(q)=S1

yNB(q)=S1

X(q)

yHMM(q)=SQ

yNB(q)=SQ

X(q)

#1

#2

#3
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These actions are processed as follows. Assuming M actions are available in the action buffer 

and that they can be presented as an action vector At containing all actions that arrive in the 

LBT time window (Subsection 5.5.1) yields (8.9): 

  (8.9) 

where is the action m arriving at time instance t and . 

 

Figure 8.8. Implementation of artificial intelligence in HL-SHS. 

Because a particular action can be present more than once time in the action buffer, the 

following matrix can be defined: 

  (8.10) 
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where the time buffer length (it’s LBT) is defined as N and an action at time instance n as tn, 

given . At this state, a filter that combines repeating actions in the time buffer can 

be deployed. Its purpose is to eliminate multiple actions of the same type so they do not 

exhaust the time buffer. A similar approach has been used by other researchers (Kasteren et 

al., 2008a), (Fang et al., 2012). 

The next step in the processing is traversing the matrix in a column row order. First, the 

action name is used as a key to select the respective action column; for example,  selects 

action column m in the matrix, and so forth. When the action column is selected, the action 

arrival time tx is used as an index that identifies the action row. By using this action 

column/row pair, one specific weight in the weight matrix is identified, see Figure 8.8. Thus, 

each action is related to a weight that expresses its un-scaled probability (the term ―un-scaled 

probability‖ means that it does not sum to one). In this work the time quantization has been 

chosen with a granularity of one hour in the weight matrix. This choice is a good compromise 

between activity resolution and memory/processing usage (Fang et al., 2012). Because these 

weights quantize time into intervals of one hour it means that there are 24 of them, i.e., no 

date or year information is provided.  

The weight matrix (Figure 8.8) is connected to the states (circles) contained in the (hidden) 

latent variables (gray circle), where each state symbolizes one of the received actions. Thus, 

as discussed earlier, this work uses one state per action. These states are connected by 

transition weights named VAij, where footnote i and j are the originating state and the arriving 

state indexes, respectively (Figure 8.8). Therefore, this system offers the preservation of the 

action arrival sequence and its arrival time. 

Looking at Figure 8.8, its relationship with the HMM is noticeable, especially because the 

action buffer is modeled as the observable variable and the states as a hidden variable. The 

fact that the HMM offers a relaxation of the i.i.d. assumption often used to simplify 

classifiers, means that cross correlation between the actions can be handled. Often, a huge 

matrix is required to handle this, but by using the Markov assumption, it can be assumed that 

future predictions are independent of all but the most recent observations.  

 Nn 0

B


m

tx
a
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8.3.3 HL-SHS LEARNING  

The target in the following subsection is to explore the learning and prediction principles for 

the HL-SHS AI system that is illustrated in Figure 8.8. Based on the model relationship and 

the similarity with the HMM model, its theoretical framework together with the well-

established Viterbi theory, is used (Bishop, 2006).  

The HL-SHS activity learning process is based on a predefined activity to be learned, such as 

set home into sleep mode. This activity and its performed action (e.g., setting the home in 

sleep mode) are assigned to one of the agents contained in the HL-SHS. Thus, each time the 

user triggers this predefined action, the HL-SHS runs its learning process and thereby, 

gradually adapts the action sequence enclosed in the activity. Thus, the HMM learning 

process used in this work is iteratively based, i.e., the model learns in the form of real-time 

learning. This is achieved by updating the estimated joint probability  each time the 

user supplies the predefined action. It is assumed that the y-vector contains the predicted 

action and that the x-vector contains the input from the actions in the action buffer 

(Subsection 5.5.1.) Rewriting equation (8.8) into an iterative form using the discrete time 

index q equation (8.11) arrives at: 

  (8.11) 

As discussed, the H function in equation (8.11) can be seen as a distant source that emits 

actions. Using this view, the G function reduces to the two last terms in (8.11). The middle 

term  expresses the observation probability that observes the value of the 

emission variable, i.e., the incoming actions. As noted, it is a conditional probability, which 

depends on the current state in the latent variable. However, as discussed earlier, one action is 

connected to one state only; therefore the latent variable  needs only to be trained in that 

particular state. The learning parameter for this middle term is contained in the

parameter. The final term expresses the transition probability between two states in the latent 
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variable y at time instance q. It uses an A parameter that adapts the learning parameters. In 

Figure 8.8, the A parameter is implemented in the form of the VAij weights. Therefore, from a 

training point of view, these parameters need to be updated in an adaptive way when the 

dedicated action arrives.  

Regarding the observation probability the parameter vector can be described by using a 

Bernoulli distribution. This distribution is suitable because the observation probability 

receives binary values from the NB’s H functions. Therefore, finding the optimal parameter 

set simplifies to optimizing the Bernoulli distribution probability by using the Maximum 

Likelihood parameter Estimation method. For this distribution, the parameters can be solved 

analytically by using the Dirac delta function (Bishop, 2006); a discussion about this 

distribution can be found in subsection 5.5.2. The maximum likelihood solution expresses that 

the optimum estimated parameter set is found by simply using the parameter frequency as 

weights (Rish, 2001).  

Viewing the learning process from an implementation point of view (Figure 8.8), training is 

undertaken by summing the same actions in the appropriate LBT time window and adding 

these results to the respective weights. Actions that occur multiple times in any particular time 

window are counted as separate actions.  

Regarding the right-hand side second factor of (8.11), it expresses the transition probability 

distributions p(yn |yn−1), which represent the probability of going from one state to the next 

state. These probabilities can be found by following the same derivation steps as outlined for 

the observable probabilities. Therefore, training the weights is undertaken simply by summing 

the number of transitions between the state pairs over all the states, i.e., their frequencies. In 

general, these procedures risk overflowing the contained weights, but this can be handled by 

using either relative scaling or a variable saturation scheme. 

8.3.4 HL-SHS PREDICTION 

Regarding the activity prediction part, it is an inference problem where the goal is to find the 

state sequence that maximizes the joint probability . One efficient strategy 

that is often used is the Viterbi algorithm (Bishop, 2006), (Fang et al., 2012), (Kasteren et al., 
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2008a) because it reduces the calculation’s complexity. Combining this with the first order 

Markov assumption and with the knowledge of ending in the dedicated state reduces the 

buffer look-back to one step only. Based on these reductions, the simplified Viterbi 

optimization process can be expressed as: 

  (8.12) 

which states that given yn is the specific predefined action (i.e., the final state ) for the 

particular agent and that the vectors xn-1 and xn are the given observation, the highest 

probability must be searched by varying the choice of the previous state and its transition 

probability to final state i. By using the transition weights defined in Figure 8.8 and the HMM 

mathematical description, this maximization process can be rewritten as: 

  (8.13) 

where it is assumed that the initial probabilities are all equal, i.e., they are left out of the 

equation. This expression can be simplified by assuming that the final state (SF) is the 

predefined agent state. Using these assumptions, equation (8.12) reduces to: 

  (8.14) 

From this expression, the most likely state pairs consisting of the present final state (SF) and 

the previous state, including its transition probabilities, can be found. The complexity of the 

Viterbi algorithm is in general (Bishop, 2006); however, this simplified algorithm 

has a complexity of . This simplification means that the HL-SHS AI system has a 

reduced load on its implementation device.    

The general HMM theory states that a state sequence is the best classification candidate 

(Bishop, 2006). However, in the suggested HL-SHS, a state sequence and its related 

probabilities do not provide the full information. Thus, in this system, a binary decision is 

needed to state whether the SF action is taking place or not. To make this decision, a 

quantization of the probability and a comparative threshold are needed. Such a threshold must 

be a function of the weight matrix in Figure 8.8 because it changes its values each time it is 
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trained, i.e., each time the user accepts the predefined agent state SF. Therefore, the threshold 

must be updated each time the weights are updated. This requires that the calculation of the 

threshold algorithm be simple, i.e., the amount of power needed by an embedded 

implementation is limited.  

A useful concept is to consider each action (i) as a random variable that is 

distributed over a time (j) window from 0 to J where . The problem is that this 

distribution is unknown and it changes slowly as a function of time; therefore, using the finite 

limit theorem to assume that the distribution is normal is not infallible. Thus, finding the mean 

of this distribution by using an estimator based on the expectation theorem is meaningless. 

Given these unknown conditions, the best choice is to assume that the probability is the same 

for all time instances. This means that the time can be marginalized out, or more simply put; 

the mean estimation process degrades to calculate the simple average of the values (8.15). 

  (8.15) 

Using this estimator to find the two largest mean values in the collection of learned action 

probability distributions ensures that the predefined agent state and its most related action are 

found. This principle is in good agreement with the principles in the Viterbi algorithm. 

Finally, combining these mean values with their linking transition probability provides the 

scalable threshold used in this work. 

A summary of the prediction process is as follows. When a new action arrives in the action 

buffer, it is compared to dedicated actions SF for a match. If a match is found, the buffer is 

traversed by processing the actions one at a time. Therefore, based on each action (i) its time-

quantized weights are located, i.e., the un-scaled probability . This weight is then 

multiplied with the transition weight connecting that state to the specific predefined action SF, 

i.e., the un-scaled probability weight VAij. At the end of this process, the highest product value 

is found and multiplied by the weight of the un-scaled probability . After using 

the previously discussed threshold limit, action values that exceed this limit are considered 

likely candidates, i.e., they are emitted. Note that the threshold process controls the 
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importance of the selected activity and thereby, whether it is presented for the user. The 

output of all the agents is predicted using these principles. 

8.4 SIMULATION AND PERFORMANCE OF THE HL-SHS 

This section covers the HL-SHS simulation models, which are part of the larger model 

developed and described in Lynggaard (2011). They have been used for simulating, 

describing and discussing two smart home datasets. Finally, the results of the simulations are 

evaluated and discussed. The content in this section has been further elaborated in Lynggaard 

(2012b).       

8.4.1 SIMULATION MODEL 

The described SHS is modeled using a model developed in Java that runs on a personal 

computer. All the essential algorithms discussed earlier are implemented in this model. 

Similarly, the model is part of a more complex model described in Lynggaard (2011). 

Datasets to feed this model are derived from a real-world setting. This is important for 

reflecting the real-world uncertainties and sensor noise in the datasets. These elements are 

vital in testing algorithms to ensure that they are able to filter out the correlated information 

and are able to converge in the learning process. 

A Unified Modeling Language (UML) based class diagram for the HL-SHS simulator model 

is provided in Figure 8.9.  

The principles of the Object Orientated Method (OMT) are used in the design of this 

simulator. This enables the possibility to encapsulate common functionality, which reduces 

coupling between objects and uses OMT principles, such as generalization and 

polymorphism. The central attributes are allocated in the model class, i.e., the ―HL-SHS 

model parameters‖ class. This class inherits the datasets from the ―Hndl. Dataset‖ class. Using 

this principle ensures that the model context is decoupled from the model itself, but that the 

dataset is still available for the model classes. The model classes are ―PredictModel‖ and 

―TrainModel‖. These classes are tightly coupled to the model parameters by the used 

aggregation. This tight coupling is necessary because it combines the data and the method 
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parts of the HL-SHS model into one unit. Finally, the ―Hndl. score‖ and ―UI‖ objects are 

coupled to the model, such that it is possible to interact with it and receive results. 

 

 

Figure 8.9. HL-SHS implemented model - class diagram. 

Many methods are available in the HL-SHS model. Basically, these methods follow the OMT 

strategy of using getters and setters. Thus, methods are available in each class for getting 

access to the attributes and changing their values in a safe way. Furthermore, the ―UI‖ class 

provides a collection of operations, such as ―Train‖, ―Predict‖, and ―DisplayScore‖ that 

allows the user to interact with the model in a structured way.   

An example of a user-triggered event flow in the simulator is provided in Figure 8.10. Flow 1 

illustrates the setup of the simulation-relevant attributes such as the predefined activity 

―RefAct‖ action, etc. Flows 2,3,4,5 and 6 cover the model training where the aggregated data 
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are updated, i.e., the weight matrix, transition weights etc. Prediction takes place in flows 7, 8, 

and 9. Finally, the result is provided to the user in flows 10 and 11.    

 

 

Figure 8.10. HL-SHS implemented simulation model - sequence diagram. 

8.4.2 SMART HOME SIMULATION EXAMPLE I 

To validate the HL-SHS performance, the Aruba 2010–2011 dataset from the WSU CASAS 

project has been used (Cook, 2012), (Section 4.3). This was recorded in a house with 26 

sensors in which a woman lived for approximately 7 months (Figure 8.11). The woman’s 

children and grandchildren visited on a regular basis. This resulted in 6468 user annotations 

and in 1719558 sensor events. The reason for choosing this dataset is that it reflects a general 

real-life usage situation, i.e., it provides a long time general dataset from universal sensors 

placed at common logical points.     

The previously presented simulator has been used to simulate the HL-SHS with an LBT set at 

120 minutes and where the buffer length was restricted to 100 actions. These choices are in 

good agreement with the temporal resolution used in the HL-SHS model of one hour and they 
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are supported by the work of Fang et al. (2012) which found this temporal resolution size 

advantageous.   

The common way this dataset has been used in many papers is by training a classifier with 

most of the data and omitting a small part of the dataset to be used for testing. This approach 

is not feasible in this work because learning must happen ―on the fly‖, i.e., if the user 

performs a predefined activity, it is used immediately in the probability estimation process to 

update the weights. Therefore, in this work a predefined activity has been assigned as a trigger 

for updating the weights, i.e., activity learning. To be more specific a leaving home scenario 

in presented: 

Leaving home scenario: When the user leaves her home she often sets the home in power 

sleep mode by using her mobile phone. The term power sleep in this context means that the 

heating system setting is set to a predefined minimum and that all unnecessary electric 

installations are turned off, and so forth. A criterion for setting the home to power sleep could 

be that the user does not expect to return within one hour. This leaves some reaction space for 

the inertia in the heating system. 
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Activity: Appearance: 

Meal preparation 1606 

Relax 2910 

Eating 257 

Work 171 

Sleeping 401 

Washing dishes 65 

Bed to toilet 157 

Entering home 431 

Leaving home 431 

Housekeeping 33 

Resperate 6 

Figure 8.11. (Left) a CASAS experimental house (Aruba) equipped with 26 sensors. (Right) annotated 

activities used and their number of appearances in the dataset (Cook, 2012). 

To be able to detect this specific scenario the ―power sleep‖ command must be related to a 

dedicated action type that can be used as a trigger for the SHS learning. Because the power 

sleep command does not exist in the CASAS dataset, it has been associated with a ―leave 

home‖ and ―enter home‖ difference of more than one hour, where the ―leave home‖ is the 

dedicated action (i.e., the triggering action). 

By running the HL-SHS simulation model with the CASAS dataset and by using the 

discussed assumptions, it is possible to train the weight matrix Figure 8.12, which represents 

the actions given in Figure 8.11. Exploring the results of the trained weight matrix provides 

much information about data correlation, i.e., how the data are related. The result is presented 

in Figure 8.12, about which it should be noted that the weights are normalized. 
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Figure 8.12. Weights for the trained HL-SHS model, i.e., when the user leaves form more than one hour. 

The normalized weight values (y-axis) as a function of time quantized into chunks of one hour (x-axis). 

By looking at the ―leave home‖ curve, it can be seen that it has peaks at 8, 11, and 15 hours, 

meaning that the user is most likely to leave home at these times. By focusing on ―meal 

preparation‖, it can be seen that this peaks just before the ―leave home‖ peaks. This suggests 

that a correlation exists between preparing meals and subsequently leaving home. Actually, 

this is what most people would be expected to do, i.e., eat breakfast and then leave home for 

work. The action ―relax‖ also seems to have some correlation with other actions, because it 

has similar peaks. The question is then whether those cases where the user leaves for more 

than one hour can be differentiated from the cases where the user will be back within one 

hour, based only on the weight matrix. To explore this, the three actions ―meal preparation‖, 

―relax‖, and ―leave home‖ are redrawn (Figure 8.13) for those cases when the user does not 

leave home for more than one hour. 
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Figure 8.13. The activities "meal preparation", "relax", and "leave home" when the user does not leave 

the home for more than 1 hour. The y-axis is normalized weights and the x-axis is quantized time in one 

hour chunks. 

By comparing the results when the user leaves for ―more than one hour‖ Figure 8.12 and for 

―less than one hour‖ Figure 8.13, it can be observed that the user does not leave home very 

often at eight o’clock and stay away for more than one hour. Both diagrams have a peak at 12 

o’clock for the ―leave home‖ action, i.e., this information is ambiguous. To use the principles 

from HMM theory to increase the detection probability means involving previous actions. By 

comparing the ―meal preparation‖ activity in both cases, it can be noted that this action is 

close in time to the ―leave home― action in the ―more than one hour‖ case. This means that the 

―leave home‖ for ―more than one hour‖ action has detectable features that can be used by a 

trained HMM model to increase the prediction accuracy. 

As discussed, the presented HL-SHS algorithm (Section 8.3) has been evaluated by using the 

developed java based simulation model (Section 8.4) and the leaving home scenario. Scores 

for this evaluation are presented in Table 8.1. 
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Rating Score (percent) 

True Positive (TP ) in percent  75 

False Negative (FN) in percent 25 

False Positive (FP) in percent 36 

Table 8.1. Score for the fully trained classifier for the leaving home scenario (user leaves home for more 

than one hour). 

The rating method used in Table 8.1 is explained in the following. The term TP means true 

positive, i.e., the annotation is positive and the tested algorithm provides the same result. FN 

is false negative, meaning the annotated action is present, but that the algorithms did not 

detect it. Therefore, the score of TP + FN gives 100%. Finally, FP (false positive) means that 

the annotation provides no action, but the tested algorithm estimates one. The scores 

percentage is found by dividing the counted scores in each category and then dividing them 

with the ground truth user-annotated action event number. The TN does not provide any 

information because it indicates the situation where nothing happens, even though the user 

triggers different sensors and the tested algorithm predicts same the result. 

From the numbers in Table 8.1 it can be seen that the HL-SHS algorithm estimates the leaving 

home activity correctly (TP) approximately 75% of the time after learning from 295 user-

annotated activity events. It is also found that it fails to estimate a user-annotated activity 

(FN) 25% of the time. This is not a serious problem because from the user’s point of view it 

means that an activity is not suggested, to which the user response will probably be that the 

user performs this activity manually. However, because the user performs this action 

manually it produces a dedicated action from which the system learns and thereby improves, 

i.e., it ―bootstraps‖. More serious is the false positive (FP) outcome, because this means that 

the algorithm suggests an action that is not requested by the user’s behavior, which would 

probably be annoying for the user over time. This FP rate can be reduced by either adjusting 

the classifier parameters or by using additional sensors to provide finer granularity of the 

information produced by the user’s actions (Fang et al., 2012). 

A similar simulation (Table 8.2) that is also based on the ―leave home‖ scenario has been 

performed. It uses a changed condition for the training set, i.e., it requires that the user must 
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leave the home for more than a half hour, otherwise the parameters are the same as in the 

previous simulation run. 

Rating Score (percent) 

True Positive (TP ) in percent  86 

False Negative (FN) in percent 14 

False Positive (FP) in percent 33 

Table 8.2. Score for the fully trained classifier for the leaving home scenario (user leaves home for more 

than half an hour. 

It has been found that in this case the algorithm estimates the user behavior correctly 

approximately 86 % of the time. Also notable is that the FP rate stays at almost the same level 

as in Table 8.1. The reason for an increase in the TP rate is that more training sets become 

available because this training set includes values in the window of a one-half to one hour, 

plus the values from the training set used in Table 8.1 (one hour and above). The reason that 

the FP rate is almost the same is because the number of actions that are able to overcome the 

threshold limit is almost constant and because the half-hour scenario includes the one-hour 

scenario.  

A direct comparison with others’ work is not straightforward because, to the author’s 

knowledge, similar distributed SHSs have not been published before. However, it seems 

reasonable to compare the HL-SHS with other systems that predict user activity by using a 

sequence of events. One example is given in the work of Cheng et al. (2009). They designed a 

scenario based on a user-activity prediction system named ASBR, (Section 5.2), (Subsection 

6.1.1). They also compared the performance of their system with a Case-Based Reasoning 

(CBR) approach.  

The results of the comparison between the presented system and the ASBR and CBR systems 

from Cheng et al. (2009) can be found in Table 8.3. It is noteworthy that they all perform 

almost equally well. However, it should be noted that these systems are different both in their 

approach and their design (Section 5.2), (Subsection 6.1.1), even though the results are 

comparable. 
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System Score (percent) 

This work  86 

ASBR (Cheng et al.) 80 

CBR (Cheng et al.) 75 

Table 8.3. The presented work compared with ASBR and CBR from Cheng et al (2009). 

8.4.3 SMART HOME SIMULATION EXAMPLE II  

A second simulation has been performed to explore the HL-SHS performance in another 

context, which is illustrated in Figure 8.14. This uses the Cairo 2009 dataset from the WSU 

CASAS project (Cook, 2012). This was recorded in a house with 31 sensors, in which a 

volunteer adult couple lived for approximately three months. The residents in the home were a 

man (R1), a woman (R2), and a dog. The couple’s children also visited the home on at least 

one occasion. This resulted in 726534 sensor events and 600 annotations by the users. Thus, 

these data are used for the ―go to sleep‖ simulation presented in the following. The reason for 

choosing this dataset is that it supplements the Auruba dataset used in example one, and 

because it is generalizable for many similar settings. Thus, this dataset provides a more 

challenging environment in which two people activate the sensors. All sensors are placed at 

logical positions and they provide generalizable data.  

The simulations performed in this experiment are similar to those used in subsection 8.4.2. 

Hence, the same HL-SHS simulator model has been used with the same settings. The only 

exception was that the dedicated action was set to detecting when the man (R1) goes to sleep 

and sleeps for more than three hours. Such a predefined action is usable for setting the home 

in a ―night mode‖, i.e., the room temperature is lowered, all unnecessary electrical equipment 

is turn off, and the lighting is set to sleep mode. By using these conditions and settings in the 

simulation model produces the results presented in Table 8.4.  
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Activity Appearance 

Bed to toilet  30 

Breakfast 48 

R1 sleep  50 

R1 wake  53 

R1 work, office 46 

Dinner 42 

Laundry 10 

Leave home 69 

Lunch  37 

R2 sleep 52 

R2 medicine 44 

R2 wake 52 

Night wandering 67 

Figure 8.14. (Left) a CASAS experimental house (Cairo) equipped with 31 sensors. (Right) annotated 

activities used and their number of appearances in the dataset. This house is used in the “go to sleep” 

simulation (Cook, 2012). 

As illustrated in Table 8.4, the score for the ―go to sleep‖ activity is 94 % after learning from 

50 user-annotated actions (Figure 8.14). In addition, it can be noted that the FN rate is 6 %, 

i.e., 6 % of the actions are not detected. As discussed earlier, this is not a problem for the user; 

however, the FP rate is generally an annoyance for the user, but in this case it is only 4 %.    

Rating Score (percent) 

True Positive (TP ) in percent  94 

False Negative (FN) in percent 6 

False Positive (FP) in percent 4 

Table 8.4. Score for the fully trained classifier for the “go to sleep” simulation (user R1 sleeps for more 

than three hours). 

Another interesting measure is how fast the learning occurs in this HL-SHS model, i.e., the 

score as a function of training times. This is relevant because the HL-SHS model uses real-

time learning. These results are presented in Table 8.5. 
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Rating Score after training round (percent) 

1 2 10 20 25 

TP 14 86 86 92 94 

FN  86 14 14 8 6 

FP  2 4 4 4 4 

Table 8.5. Score for partly trained classifier for the ”go to sleep” simulation (user R1 sleeps for more than 

three hours). Numbers in x-direction are score after trained the given number of times. 

The rating as a function of training times can be found in Table 8.5. It can be noted that the 

HL-SHS model converge quickly  in the beginning, such that the TP rate increases from 14 % 

to 86 % after the second training round, i.e., when the predefined action is seen a second time. 

In addition, it can be noted that after the second round the ratings only increase slowly and 

asymptotically. This is the case because the actions are correlated to a very high extent, such 

that only a limited amount of new information is provided following each training time. 

Furthermore, the noise level is more significant after additional training times, i.e., a greater 

number of sensor permutations are seen over a longer time. Some of these increase weights 

that are uncorrelated to the predefined action and thereby, they increase the risks for making 

false decisions. Actually, this behavior is normal for most classifiers used in smart homes 

(Kasteren et al., 2008a).             

8.4.4 HL-SHS SUMMARY  

A high-level distributed SHS has been presented. It offers a concept that combines a simple 

low-level activity classifier named LL-SHS with a high-level one named HL-SHS, which has 

been explored in section 8.4. Research and simulations have revealed that the system is able 

to learn and predict user activities based on action time and a sequence of user actions 

provided from a low-level activity classifier. The research started by exploring whether user 

activity information is available as a sequence of user actions within a given time window. It 

was found that this is the case, but that the overlying noise sets the detection lower limit. 

Next, the publically available CASAS dataset was used to evaluate the system algorithms and 

provided good results. Thus, a TP rate of 75% and 86% was found in the ―leave home‖ 

simulations and 94% in the ―go to sleep‖ simulation. 
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Comparing the achieved results with comparable systems shows that their performances are 

similar. Thus, a TP rate of 86% in the described half-hour scenario is at the upper range of 

that normally achieved in comparable systems. 

The future perspective of this work is to investigate the possibility of implementing HL-SHS 

on different hardware platforms. Furthermore, an investigation of the look-back depth in the 

HL-SHS action buffer also needs further investigation. 

8.5 PROCESS MODEL OF LOW-LEVEL SMART HOME SYSTEM  

As discussed earlier, the smart home AI concept can be viewed as a combination of an HL-

SHS and an LL-SHS, i.e., an HMM model and an NB model as illustrated in Figure 8.4 and 

Figure 8.5. It is noted that the LL-SHS actually consists of a collection of S.O.s that in turn 

contain a collection of NB-based agents. Therefore, in this section, the NB model for the LL-

SHS is presented including its use of S.O.s. The LL-SHS including its S.O.s are discussed in 

Lynggaard (2013c) and Lynggaard (2013b).    

8.5.1 OBJECT PROCESS MODEL 

An object process methodology model (Dori, 2002) for the LL-SHS is presented (Figure 8.15) 

and discussed in the following.  

 

Figure 8.15. An object process model for the smart home system part one (LL-SHS). 

As seen in Figure 8.15, the user (SH-user object) carries out scenarios (scenario process) in 

the form of a normal living pattern within a smart home. When the user interacts with the 
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smart home through these scenarios, its sensors are activated, i.e., triggered (Sensor object). 

Each of the triggered sensors emits events that are received by the LL-SHS. When the events 

arrive they are annotated with a time stamp (Annotate process). At this point, the annotated 

events are divided into two streams: one that is fed to the action-learning process (Act. 

learning), and the other that is fed to the action-prediction process (Act. prediction). The 

action-learning process uses the received events to train the AI model (Activity object). Based 

on this trained model, the action-prediction process assesses the annotated events and predicts 

an upcoming user action. If an acceptable action posterior probability level is found, the 

action-prediction process schedules the action to the user (SH-user object) and thereby, offers 

the predicted service to the user. Furthermore, the action is offered to the HL-SHS for high-

level processing.  

8.5.2 LL-SHS DETAILED OVERVIEW 

A simplified overview that covers the agents including their NB classifiers used in the LL-

SHS concept is provided in Figure 8.16 (Lynggaard, 2013b). 

 

Figure 8.16. The naïve Bayes agent concept that is used in the smart objects. These smart objects 

constitute the foundation of the agents in the LL-SHS. 
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The LL-SHS (Figure 8.16) runs in a forever manner, monitoring its input for available events. 

From an implementation point of view, this means that it powers down and waits for wakeup 

interrupts emitted when sensor data arrives. The prediction process is performed every time 

an event arrives. It puts the events into the event buffer ordered by their time of arrival. From 

this buffer, a group of events that is limited by the length of the event buffer time window is 

fed to a process event transformer. This combines the input events and runs a balance system 

that prevents the agent weights from overflowing (i.e., scaling). Output from the transformer 

is multiplied by the weights 
 
and its approximated logarithmic values are summed into one 

value. This value is compared with a dynamic threshold limit and a binary decision is made as 

to whether or not to emit the detected action. 

Similar to the prediction process, the process of activity learning occurs every time a 

predefined action arrives. This action is marked in the event buffer and all events present in 

the event buffer time window are processed in the process event transformer. Output from this 

transformer is used to update the weights. Therefore, this means that the system is adaptive 

and that it offers real-time learning without any user intervention as long as the user supplies 

ground truth actions by performing activities.  

The following section looks into the details of the presented LL-SHS.  

8.5.3 SENSOR OBJECTS FOR LL-SHS 

A smart home is assumed to contain many complexes S.O.s. These can be simple S.O.s, such 

as a collection of binary sensors connected to an S.O., or more advanced embedded device 

objects such as a television. A factor common to them all is their ability to emit an action 

based on sensor information that is processed by a trained AI system. However, as discussed 

previously (Section 4.3), S.O. simplification is important in this work; therefore, the general 

multi-valued sensor concept is transformed into a simpler one that uses binary values (Section 

4.4).  

It is assumed that these sensors are placed in the smart home at optimal positions and that they 

are able to transmit simple events with only a small delay (less than a fraction of a second). 

As stated (Section 4.4), these simple sensor events contain a limited amount of information 

(identity) and they are expected to occupy only a few bytes of payload in the transmission 

0W
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context. It is also assumed that each sensor samples its context every second and that this 

sampling period is fast enough to avoid aliasing (i.e., it obeys the Nyquist-Shannon sampling 

theorem). Therefore, from a transmission point of view, every second, only a limited amount 

of information is sent from each sensor when it is activated; for the wireless sensors, this 

keeps the network load low. Such a simplification comes at a price because a real-time 

continuous event is quantized into an impulse event, which is annotated with a unique time 

stamp. This approach causes losses in the form of time precision. 

 

Figure 8.17. Example of three sensor outputs S1-S3. X-axis is divided into sampling intervals named t1-t6. 

To explore these effects in detail they are illustrated in Figure 8.17. As shown, three sensors 

 are changing between on and off as a function of sample interval time . The 

rising edge for sensor  inside sampling interval  is detected at the beginning of sampling 

interval 
 
where the sampling takes place (vertical dotted lines in Figure 8.17). Therefore, it 

is quantized into a Dirac impulse transmitted at the beginning of time . Only this event is 

transmitted to the SHS, i.e., the off event is simply ignored. From this, it can be noticed that 

the on value for  is delayed by approximately one sampling time step (or 1 second). It can 

also be noticed that the short on-off pulse from sensor 
 
will probably be lost by aliasing 

because its duration is too short for the sampling period. To avoid this loss, the local sensor 

circuit could either sample more frequently and downsample afterwards, or alternatively use 

some peak hold feature. However, this requires additional sensor resources. 
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Thus, it is expected that the worst-case time offset between the real-time and the stamped 

sensor events would be approximately one second (transmission delay is small, so it is 

ignored). As discussed, the off time (falling edge) information is ignored to save sensor 

resources. This choice comes at a price because the event duration information is also lost. 

However, Kasteren et al. (2008a) have shown that such a concept does not degrade the 

recognizability significantly. 

8.5.4 EVENT BUFFER FOR LL-SHS 

When events arrive they are stored in the event buffer. Often it is necessary to sort events 

according to their arrival time and to mark multiple events from the same source in the event 

buffer, as discussed earlier (Subsection 8.5.2). However, in the LL-SHS, the arrival time 

information is not used because the AI part is based on the non-temporal naïve Bayes 

classifier. Hence, this classifier assumes that all data points are i.i.d. and it does not take into 

account any temporal relations between the events. It is noticeable that this simplification 

does not lower the recognition probability considerably compared with predictors that are 

more advanced (Subsection 5.6.2). The multiple event information is also dropped for the 

same reasoning. 

Because the arrival time is not needed, it is marginalized out by combining all rows in the 

event buffer. This combining operation is performed by using a logic ―or‖ process and only 

allowing each event to be present once. This operation gives the sample buffer equation 

(8.16):  

  (8.16) 

where  for all n. Hence, a simple example of the use of the sample buffer (8.16) 

could be: 

  (8.17) 

where a one in the first vector position of the binary sample buffer (8.17) indicates that sensor 

one has been on within the time window T; a one in vector position N indicates the same for 

sensor N, etc.  
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8.5.5 LL-SHS ACTIVITY LEARNING 

The LL-SHS NB classifier learning process is iteratively based, i.e., the model learns in the 

form of real-time learning. This is achieved by updating the estimated joint probability

whenever the user supplies a predefined action as stated in equation (5.5) and 

(5.6) (Subsection 5.5.2).  

It is assumed a y-vector contains the predicted actions and an x-vector contains the inputs 

from the sensors in a given time instance window T. Thus, when a predefined action y=i has 

arrived, the conditional probability for x being the vector with N elements that produces the 

y=i action

 

in the event buffer LBT window, can be expressed as (Subsection 5.5.2): 

  (8.18) 

where are the training parameters, i.e., its trained weights. As can be seen, this is a product 

of the individual sensor conditional probabilities given that y is in evidence (i.e., in state i). 

Because the sensor information is binary-based, its probability distribution can be described 

by a Bernoulli distribution as discussed earlier (Subsection 5.5.2). For convenience this is 

restated in equation (8.19): 

  (8.19) 

where it is assumed that μni is the estimated probability for sensor output x
n
 given y is in 

evidence, i.e., active state is i. With regard to equation (8.19), tree values of μni are interesting 

for this work. First, if μni has a high probability, i.e., it is close to one, then sensor x
n
 must be 

closely correlated to activity y = i. Second, if μni is close to one-half, sensor x
n
 can be 

considered as not contributing. Finally, if μni has a low probability, i.e., it is close to zero, this 

means that it has a high correlation and x
n
 must not be present. For this work, it has been 

chosen that only sensors that are present with a high correlation count. This choice is based on 

the a priori knowledge that a smart home often implements many sensors, but where the user 

only activates a few of them at the same time. By using these assumptions, (8.19) can be 

simplified as: 
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  (8.20) 

where it is noted that probabilities close to  one-half are marginalized out. This is achieved by 

using a plus-minus-one implementation method where the average is zero, as explained in the 

following section. The probability in (8.20) is used in implementing the H function given in 

equation (8.5). 

As stated in subsection 5.5.2 the maximum likelihood estimate for the μni parameter is found 

by simply adding the x-vector values to the weights when the latent state y is in evidence and 

then normalizing it. Thus, training is done by adding up the sensor events (represented by plus 

and minus binary ones) present in a given event buffer LBT. Sensor events that occur multiple 

times within the event buffer are counted only once. In theory, because the values used are 

, the weights can grow infinitely. To eliminate this behavior maximum and minimum 

values are defined such that the weights remain inside these by using a simple scaling 

approach.  Additionally, for facilitating real-time calculations, the division operations needed 

in the probability parameter estimation of μni are ignored, i.e., the un-scaled weight values are 

used. Nonetheless, it is noted that this approach does not reduce the detection likelihood.  

The plus-minus-one implementation method also provides the ability to forget learned 

behavior and to adapt new learning. Thus, if the user changes behavior the new behavior will 

be learned and the old behavior will be cancelled over time.     

8.5.6 LL-SHS ACTIVITY PREDICTION 

Each time an event arrives in the event buffer a prediction is performed. Thus, the event 

buffer content inside the LBT window is fed to the trained NB classifiers, which use these to 

solve the implicit inference problem of finding the maximum observation probability. If this 

probability is beyond a certain threshold limit, the binary latent variable y is in the state with 

value one, which means that the action handled by this particular NB agent is emitted.  

Because the discussed NB behavior is implemented in multiple instances in each embedded 

S.O. and a prediction is performed each time an event arrives, some optimizations are 
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beneficial for efficient implementation, as long as the prediction performance is similar to, or 

even better than comparable systems.     

From the equation (8.18) it can be observed that the predicted outcome of a given activity y is 

based on the product of the individual sensor observed and an estimated conditional 

probability , multiplied together over N sensors. These multiplications are 

demanding of resources to implement in an embedded processor environment
8
 (Kevin et al., 

2000). Therefore, to optimize the product of the observed and estimated probability

 from each individual sensor, it is approximated by a sum to support a simple 

calculation strategy and thereby, to enable real-time prediction. This approach can be 

explored by using the logarithm function on the NB model (8.18) as discussed in the 

following. 

 

(8.21) 

 

Equation (8.21) expresses that a product series of probabilities can be written as a sum of the 

logarithm to these . This method is often used in optimization problems that use 

the log-likelihood method. Taking this one-step further by only using the first element in the 

Taylor expansion
9
, an approximation of the logarithm function can be derived, as shown in 

the second line in (8.21). Because it is possible to scale this equation by an arbitrary constant 

and still have a valid expression for the maximum measure, the substitution of multiplication 

with the summing of the un-scaled probabilities also has a preserved maximum.  

                                                 

8 Even though modern embedded processors have hardwar- accelerated multipliers a multiplication operation 

uses more resources that an adding operation, i.e., more power is consumed and more implementation logic is 

allocated. 

9 It is noted that the requirement that the Taylor expansion restricts the argument to below one is fulfilled 

because the argument is a probability. 
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Thus, the activity prediction algorithm consists simply of adding the estimated probabilities 

(i.e., the weights multiplied by either a zero or a one) for each sensor event in the event buffer 

LBT window. This sum is then compared with a threshold and the predefined action is 

emitted if the value exceeds this. Such a simple procedure is efficient in small low-power 

microcontrollers, especially because multiplication is avoided (Abdelgawad et al., 2009).   

The threshold is calculated by using the same procedure as used in the HL-SHS (Subsection 

8.3.4) except that the mean value is found over all the weights which are then scaled by a 

constant limit to create the threshold. This approach ensures that the threshold is dynamic and 

thereby, that it tracks the values of the weights.  

8.6 SIMULATION AND PERFORMANCE OF THE LL-SHS 

A dedicated S.O. agent is simulated by using the essential NB classifier algorithms discussed 

earlier, i.e., only the binary on-event is used, the event buffer is collapsed into a simple binary 

vector (8.17), only highly probable probabilities are used (8.19) and finally, the sum form 

substitutes the product form (8.21).  

8.6.1 SIMULATION MODEL 

The simulation takes place in a derived Matlab-based LL-SHS simulation model, which are 

part of the larger model developed and described in (Lynggaard, 2011). Parameter settings for 

these algorithms are similar to the ones used by the HL-SHS simulator (Section 8.4).  

The Matlab-based naïve Bayes simulator consists of different modules that handle the 

program functionality in a structured and organized way. Thus, the program initializes by 

loading the dataset (i.e., the dataset to be simulated) and formatting this into a local 

representation. Such a representation ensures that different data formats are supported by 

simply building new loading routines. Then, the data are fed to the learning program module 

that places a multiple window over data that each has a fixed point at its dedicated action. 

These windows have a time length of the same size as the LBT constant. All actions inside 

these windows are used to update the weights by adding a one to these, for each instance of 

the dedicated action. If a particular action is not present in a particular time window, a minus 

one is added instead. It is possible to set this program module to use a fixed amount of 
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training dedicated actions. After all weights are updated, they are thresholded such that all 

negative weights are set to zero, i.e., they are not used as described in equation (8.20). 

The left-hand part of Figure 8.18 provides a descriptive pseudo code that covers the main 

algorithm functionality in this program module. The predicting program module loops 

through all events by placing them in the event buffer if they are inside the LBT window. 

Every time that a new event arrives, its buffer representation is set to a binary one. By 

multiplying this one with their respective weights and then adding gives a score. This score is 

then thresholded; if it is above, the dedicated action is claimed to be evident. A pseudo code 

description of this program module is provided in the right-handed part of Figure 8.18. 

However, it can be noted that this pseudo code illustrates only the main functionality and does 

not include all the necessary handling, such as scaling and presenting the data.            

  

Figure 8.18. Pseudo code for the essential algorithms in the Matlab based naïve Bayes simulator. Left-

handed code is the learning algorithm and right-handed code is the prediction algorithm. 

8.6.2 SMART HOME SIMULATION EXAMPLE I 

As simulation input to the system, the Kasteren et al. (2008a) dataset has been used. This was 

recorded in a house with 14 sensors, in which a 26-year-old man lived for 28 days. The reason 

for choosing this dataset is that it covers a generalizable scenario and because all sensors are 

placed in logical positions that provide generalizable data. The sensor positions are shown in 

Figure 8.19. This experiment resulted in 2120 sensor events and 245 activity events or simple 

instances that are annotated by the user. One of these activities is the ―breakfast‖ scenario, 

loop through all events in data, i.e., move 

eventbuffer one step forward; 

   loop through event buffer B; 

      if event E is inside event buffer; 

         set E in B to 1, i.e., B(E)=1; 

      end if; 

   end loop; 

   score S = S + B(E)*W; 

end loop; 

if S > threshold the dedicated action is 

evident;  

    

loop through all actions and events in data; 

   if dedicated action in data; 

      set all weights W to -1; 

      loop through event buffer; 

         if event E is inside event buffer; 

            set weight for E to 1, i.e., W(E)=1; 

         end if; 

      end loop; 

      add W to final weights FW; 

   end if; 

end loop; 

if weights in FW is negative set them to 0;  
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where the user eats breakfast and annotates this event. This happens 20 times out of the 245 

actions.  

 

Figure 8.19. The Kasteren et al. (2008a) experimental house equipped with 14 sensors (red crosses). 

As described earlier, the common way this dataset has been used in many papers is by training 

some classifier and omitting the data for one day, which is used subsequently for testing. This 

approach is not feasible in this work because learning must happen on the fly. Alternatively, 

the approach of looking at the weight update as a function of time throughout the 28-day 

period has been used. Thus, some selected action events annotated by the user have been fed 

through the algorithms together with the raw sensor events. The resulting weights are 

observed and presented in the following.  

By looking at the weights in Figure 8.20 for the ―breakfast‖ scenario (Kasteren et al., 2008a), 

it can be observed that some sensor weights are negative. This is a purely virtual but 

informative result of using the balance algorithm, i.e., it increments or decrements weights 

depending on the hit or miss rate. Thus, from the ―breakfast‖ scenario example, it can be seen 

that some weights are not carrying any information, which means they are given a large 

negative value (saturated). The most positive weight is number 12 (dark green curve), it hits 

16 times but misses 4 times (out of 20 runs). Thus, the weight for sensor number 12 is 

incremented 16 times, but decremented 4 times; therefore, its total value is 12.  
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Figure 8.20. Left: the breakfast scenario weights update count (y-axis) as a function of seen user-

annotated action events (x-axis). Each color curve refers to a sensor number in the color scheme used. 

Right: sensor identity for color code in left-handed figure.   

From the figure, it is obvious that four weights (one is covered behind the green curve) are 

dominant, i.e., they are above the selected threshold limit. These weights are sensor numbers 

8 and 9 for the highest weights (dark green curve), 5 (dark blue), and 23 (light blue) for the 

next highest, respectively. Translating these numbers into sensor placement shows that 8 is 

the fridge, 9 is the plate cupboard, 5 is the toilet door and 23 is the grocery cupboard (Figure 

8.20). Thus, conclusive good agreement is found, i.e., it is expected that sensors for the fridge, 

cupboard, and grocery cupboard would be activated when the user prepares breakfast. 

Surprisingly, the toilet door sensor is also activated when making breakfast. This most likely 

indicates that human habits are a strong factor and therefore, ignoring connections between 

states wastes correlation information. Actually, this is the main disadvantage in using the NB 

classifier as discussed in subsection 5.5.2. From these four sensors, it can be observed that the 

―breakfast‖ classifier averages out the useable sensors after approximately 10 actions (Figure 
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8.20). It can also be observed that to some extent, these weights saturate. This means that a 

fixed signal-to-noise ratio exists, i.e., random user behavior overlies the human habits 

(Kasteren et al., 2011).  

The score for this scenario is found by using the partly trained NB Matlab-based model, i.e., 

part of the data has been used for training, whereas the full dataset has been used for 

predicting. Because this approach includes the training data in the predicting dataset the 

scores will be slightly higher compared with a method that uses two separate sets. Therefore, 

by letting the model learn from this reduced dataset and afterwards running it through all 20 

annotated ―breakfast‖ actions the results in Table 8.6 are obtained.         

Rating Score after training round  (percent) 

5 10 20 

TP 35 65 70 

FN  65 35 30 

FP  0 30 30 

Table 8.6. Algorithm score as a function of training times for the breakfast scenario. The ratings are 

divided into TP (true positive), FN (false negative) and FP (false positive). 

By looking at the numbers in Table 8.6, it can be seen that the TP rate increases quickly in the 

beginning where few training actions have been seen. Then, it settles in an asymptotic manner 

when further training is provided. This behavior is in good agreement with the progressing of 

the training weights as illustrated in Figure 8.20. It is also noted that the FP rate settles 

quickly as a function of the used amount of training data, i.e., it reaches the noise floor where 

all non-temporal correlated information has been used.    

8.6.3 SMART HOME SIMULATION EXAMPLE II 

This example uses the smart home from subsection 8.6.2, but with a different dataset 

(Kasteren et al., 2008a). The reason for choosing this dataset is that it supplements the dataset 

used in subsection 8.6.2 without being coupled to it directly. Thus, it provides a second 

independent dataset for performing uncorrelated testing in the same environments. In 

addition, this dataset is generalizable for many similar settings.  
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The dataset covers a ―bathroom‖ scenario where it is detected whether the user has been there. 

Hence, if this has been detected a bathroom action is emitted. By learning this action, it is 

possible, for example, to set the hall to a ―night lightning‖ state, which enables the user to 

return to bed safely and afterwards returns it to the ―night sleep‖ state, i.e., all unnecessary 

lighting is turned off and alarm and fire detector systems re-enabled. However, detecting this 

action is general in nature, which is why it is usable in many scenarios.        

 

 

Figure 8.21. Left: the bathroom scenario weights update count (y-axis) as a function of seen user-

annotated action events (x-axis). Each color curve refers to a sensor number in the color scheme used. 

Right: sensor identity for color code in left-handed figure. 

By comparing the ―breakfast‖ scenario in Figure 8.20 and the ―bathroom‖ scenario in Figure 

8.21 scenarios similarities can be noted. Thus, it is noted that some weights stand out when 

the number of user-annotated actions go beyond approximately 10. These are sensor 6 (light 

brown, toilet door), which has the highest value and sensor 14 (dark brown, toilet-flush). 

Correlation is observed between the sensors that stand out and the action ―bathroom‖. The NB 

algorithm estimates the actions correctly (TP) approximately 66% of the time. It failed (FN) 

to estimate the annotated user actions 34% of the time. The user does not see this as a serious 

problem as discussed in subsection 8.4.3. Similarly, FP outcome (21%) is annoying for the 

user (Subsection 8.4.3). The FP rate can be reduced by either adjusting the classifier 

parameters or by using additional sensors to provide finer granularity of information produced 

by the user’s actions (Fang et al., 2012). 
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The same experiment as the previous ones was performed, but with an attempt to detecting a 

―leaving home‖ situation from the sensors by using the same setting as discussed earlier. In 

this scenario, two sensors: 12 (Front door) with the highest score and sensor 5 (Toilet door) 

stand out, and the final scores for this experiment are that the TP rate is 82 %, the FN rate is 

18 % and the FP rate is 21 %. 

Table 8.7 compares the work done by Kasteren et al. (2008a) with the results of this work. 

Algorithm Scenario 

Leaving Breakfast Bathroom 

naïve Bayes (this work) 82 70 66 

HMM (Kasteren et al.) 98 56 73 

CRF (Kasteren et al.) 91 57 55 

Table 8.7, Comparing real-time score between naïve Bayes (this work), HMM (Kasteren el al. (2008a) 

Table V) and CRF (Kasteren et al. (2008a) Table VII). 

Table 8.7 shows that the results for the naïve Bayes simplified approach used in this work are 

comparable with the more advanced classifier technologies. Thus, for the ―breakfast‖ 

scenario, a benefit is actually achieved by truncating the low score weights. This is probably 

the case because it eliminates non-correlated sensors, i.e., it improves the signal-to-noise ratio. 

Regarding the ―Leaving‖ and ―Bathroom‖ scenarios, the HMM benefits from using the 

temporal correlation information contained in the previous action as discussed in section 8.2. 

The CRF classifier scores a little worse than the HMM, which is probably because it uses a 

single model for all activities where each activity competes during maximization, i.e., it is 

possible to maximize around a dominant activity and ignore minor frequent activities.  

Another noteworthy comparison is against an unsupervised approach (Section 5.4), e.g., using 

the k-nearest neighbor classifier. This work has been done by Fahim et al. (2010) who 

achieved an average score of 71% when using their own training set. Thus, the scores of this 

work are comparable. 

8.6.4 LL-SHS SUMMARY 

By using a combination of a naïve Bayes probabilistic framework and sensor inputs provided 

from simple binary switches, a simple and robust SHS model has been developed. This 
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system is able to suggest actions to the user that it has learned from previous user behavior 

patterns in a real-time fashion.  

It has been found that the explored LL-SHS model has a performance close to that of the more 

advanced systems based on the HMM and CRF. Furthermore, the presented system reduces 

the complexity level, sensor events demand and processing load, compared with the more 

advanced systems. This facilitates its implementation in a distributed manner, on simple low-

power microcontroller-based devices.  

It addition, is has been found that in spite of a reduction of the quantity of sensor information 

(fixed sample time and missing off-states) the proposed system still performs very well. A 

consequence of this reduction is that the network load is reduced, which facilitates 

employment of simple low-power network topologies and supports the use of simple low-

power sensors.  

The future perspective of this work is to investigate the possibility of implementing 

probabilistic classifiers that are more complex with simple algorithms and to explore their 

results with simple binary sensor events. Finally, the suggested SHS needs to be integrated 

with a user-friendly interface for interacting with the S.O.s. 

8.7 SMART OBJECT MODEL, REVISITED 

As discussed earlier the LL-SHS consists of a collection of S.O.s in which each S.O. contains 

a collection of interfaces and functionality. From an AI point of view, an S.O. contains a 

collection of agents, where each agent is able to learn one dedicated action that is pre-

assigned to it. An example of such an S.O. could be a table lamp where the dedicated actions 

are light on, light off, and dim light. This requires three agents that are able to learn this 

behavior from the user’s habits. Thus, these three agents are allocated in one S.O. that is 

placed inside the table lamp.  

The naïve-Bayes-based AI system contained in the agents is described in the section 8.3 and 

will not be discussed further. Instead, this section covers the implementation and performance 

of the S.O.s. 
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As stated and discussed earlier, the main problem addressed by this work is the reduction of  

the power consumption, the delay and the network load within a smart home by deploying a 

distributed universal S.O. concept. A suggested solution is given in the form of a distributed 

embedded S.O. architecture that uses general software elements in combination with specific 

agent-related software elements. These agent-related software elements are the most 

complicated and resource demanding part in an S.O., i.e., if these elements can be 

implemented, the other software parts will be manageable. Thus, the agent-related software 

elements are investigated and simulated in a real-world embedded context. 

The recorded dataset, which is publically available from the Milan CASAS experiment, was 

used for the simulations performed in this work (Cook, 2012). A floor plan of their 

experimental smart home is provided in Figure 8.22. This dataset contains sensor data 

collected in a smart home, i which a volunteer adult woman lived for three months. She had a 

dog and she was visited by her children on several occasions. During the period, 2310 

annotated actions and 433656 events were collected.  

 

Figure 8.22. Smart home used in the Milan CASAS experiment, 2009 (Cook, 2012). 

The red circle located in Figure 8.22 encloses all the kitchen binary sensors (M012, M014-

M016, M022, and M023) that are combined and simulated as one S.O. agent in this work. 

Therefore, by looking at the average number of events emitted by these five sensors and 
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comparing this with the number of S.O.-emitted actions it is possible to calculate the power 

and network load savings. A detailed discussion of these savings is provided in Lynggaard 

(2013c). As discussed, the sensor event information is provided from a CASAS smart home 

project dataset.  

8.8 SIMULATED PERFORMANCE OF THE SMART OBJECT MODEL 

An S.O. agent based on a simplified naïve Bayes classifier with five sensor inputs is 

constructed in C-code and simulated using MPLAB v1.51 from Microchip (Figure 8.23).  

 

Figure 8.23. MPLAB simulator (Microchip) screen view. 

This C-code is compiled for the simple state-of-the-art low-power microcontroller 

PIC18F46J50 from Microchip (schematics in Figure 8.25) without code optimization 

(Subsection 4.4.5). The controller uses extreme low power and is state-of-the-art in its field
10

. 

In this work, it is assumed to run with a clock speed of 1 MHz and consume 1.2 mA when it 

runs and nothing else. Using this microcontroller family has the following advantages: it is a 

                                                 

10
 http://www.microchip.com/pagehandler/en-us/technology/xlp/products.html 
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cheap consumer product, it is supported by a comprehensive tool suite, and it offers very low 

power consumption, i.e., it can run from months to years on a small battery depended on the 

processing load. In addition, it includes a variety of sleeping and processing modes together 

with built in hardware elements, such as timers, wakeup on port change interrupts, etc. All 

these features are useable in an S.O. component.  

The software is implemented using C-code compiled by the Microchip XC8 compiler 

without its optimization features enabled. This means that the presented results can be 

improved further. However, the actual implementation of the software uses some optimized 

architectural design. The implemented software including some test scripts, is executed in the 

MPLAB v1.51 simulator. Using this environment makes it possible to predict processing load 

and thereby, to calculate indirectly the consumed power. All tools are available from 

Microchip. 

Implementation of the naïve Bayes based agent Figure 8.16 can be divided into two software 

parts: an event First-In-First-Out (FIFO) buffer, and a summed weight multiplication part 

(Figure 8.24). Regarding the FIFO, it uses a circular buffer approach, which optimizes its 

efficiency.  

 

Figure 8.24, naïve Bayes embedded implementation model. 

The FIFO buffer contains a pointer ―PTR‖ that always points to the oldest value. When a new 

event arrives, the interrupt routine in the microprocessor is activated. The interrupt routine 

handles a sequence of steps: 
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 It fetches the new event and stores it in ―Nval‖. 

 It fetches the oldest event from the circular buffer (pointed to by ―PTR‖) and 

decrements the event counter (contained in ―Acc‖) for that particular event. 

 It then adds the new event ―Nval.‖ to the event counter, i.e., the ―Acc‖. Thus, the 

accumulator keeps track of how many instances for each sensor are present in the FIFO 

buffer. 

 It puts the new value into the circular buffer at the ―PTR‖ position, i.e., it overrides the 

oldest value. 

 It then increments the pointer value to the next field, i.e., the (new) oldest value in the 

circular buffer. 

 It multiplies the accumulator with the weights and sums the products. Actually, it sums 

the weights that are multiplied by a binary one, i.e., no multiplication takes place. This 

provides efficiency. 

 It compares the summed weights with the threshold and emits an action if it is 

exceeded. 

This concept has been optimized for time so instead of traversing the full event buffer which 

takes 38.5 mS for 1800 values (simulated values), it use the accumulator balancing approach 

code discussed earlier. This occurs whenever an event arrives, i.e., it generates an interrupt, 

which runs the discussed code in 0.630 mS. Thus, a saving of approximately 98 % is achieved 

compared with the ―traversing the full event buffer‖ concept. Added to this is the weight 

summing of the five weights (Figure 8.22) that in total uses 0.346 mS. Therefore, in total, the 

processor load for performing one agent prediction calculation based on five sensors is 0.976 

mS. Assuming the sensor sampling frequency is 1 Hz and that they fire asynchronously the 

total processor load is below 0.5 %.  

It is noted that this is the maximum load that happens when the sensors are changing all the 

time, but this is seldom the case in a real-world scenario. As an example this means that 100 

S.O. agents each connected to five sensors will use 10 % of the processing resources. Because 

this is the main activity in an S.O., it also means that the processor will be able to save power 



 
208 

by sleeping for approximately 90 % of the time
11

. As noted, these calculations are performed 

for the S.O. action-prediction process because it is more resource consuming than the learning 

process, which only updates its respective weights (Subsection 5.5.2).   

As discussed earlier (Section 4.4), many SHSs use sensors that transmit wireless events and 

often, these systems are based on a concept that uses low-power ZigBee transceivers (Li et al., 

2011a). Thus, in this section it is assumed that the SHS calculations for the sensors and S.O. 

nodes use the popular CC2420 ZigBee communication unit from Texas instruments (Yan & 

Dan, 2010), (Park et al., 2013).  

In a traditionally centralized setup the five sensors in the CASAS smart home kitchen (Figure 

8.22), (Cook, 2012) must transmit events every time they are triggered. Therefore, finding the 

cost of transmitting one sensor event and multiplying this by the average number of sensor 

events from these five sensors give the total cost per chosen unit time. Thus, an estimate of 

the average number of sensor events can be calculated by using the CASAS dataset and 

looking up the five sensor events over a time unit. It has been found that the average number 

of sensor events from these five sensors on a daily basis, is 1795 events.  

Based on the calculated number of events the energy consumption can be found. It is assumed 

that only a three byte sensor identity is sent in each event and that the ZigBee transmitter uses 

32.5 mA for the carrier sense multiple access sequence of length 2.9 mS, 13mA in 13 mS for 

activating the microcontroller, and 30.5mA in 1 mS for actually transmitting (Casilari et al., 

2010). Adding up these contributions and multiply it with the average number of event and a 

2-volt supply voltage (minimum operation voltage for the PIC18F46J50 controller) gives an 

energy consumption of 1.055 Joule per day. Assuming the sensor nodes are power by a 

standard LR416 battery that offers approximately 43 Joule means that these five sensors in 

total will use approximately 1 battery per 40 days. 

However, using an S.O. to handle the five sensors as discussed earlier results in a power 

consumption of 1.2 mA for the processor running in 0.976 mS, which yields 1.17 uJ per 

                                                 

11
 It is assumed that wired or wireless communication is handled by an external chip connected to the processor. 
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event. Therefore, processing 1795 events costs 4.2 mJ. Assuming that the S.O. sends all the 

average detected kitchen actions (approximately 7 per day in the dataset) to the HL-SHS 

means that the cumulative transmit consumption is 4.1 mJ. The final S.O. consumption is 8.3 

mJ per day.  

Regarding the network load the number of ZigBee frames or Internet packets if the SHS is 

located in the cloud is reduced from 1795 to 7 per day. These results are summarized in Table 

8.8. 

Quantity Average consumption Network packet load 

Energy, traditional solution (transmitting 1795 events per 

day using Texas ZigBee module CC2420). 

1.06 Joule per day 1795 per day 

Energy, this work (using the S.O. concept transmitting 7 

actions per day using Texas ZigBee module CC2420). 

0.0083 Joule per day 

 

7 per day 

Table 8.8. Comparing the traditional sensor framework implemented in the CASAS kitchen smart home 

with the same one that uses S.O.s to provide the savings shown. 

The results in Table 8.8 show that a noticeable saving in both processing power and network 

load has been found. However, using the S.O. concept also has a downside, because 

consuming the events in such a distributed approach means that they will only arrive in the 

more centralized HL-SHS as actions and not as detailed events. This means that the detailed 

granularity and correlated information in the event information is lost. Nevertheless, as 

discussed earlier, this loss of information does not reduce performance noticeably (Section 

8.6). 

Another simplification that needs attention is that this work assumes that only one action is 

detected by the kitchen S.O. agent. However, transmitting all events to a centralized system 

opens up the possibility of detecting further actions based on these. Nevertheless, this does 

not change the overall conclusion, because using the HL-SHS with actions only as discussed 

earlier still provides comparable results when compared with similar systems that use a 

traditional approach (Section 8.4).  

The network load saving will be slightly lower than stated because the distributed S.O.s need 

a centralized management system to collect the suggested actions and to enable the user to 
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update the S.O.s built-in calendars. In contrast, the saving can be much larger because some 

of the routing ZigBee nodes could be battery powered, which means that they need to transmit 

1795 events, as opposed to 7 when using the S.O.-based concept.  

Also noticeable, is that the overall battery saving achieved by using S.O.s is not linearly 

scalable with the used number of S.O.s. This is because some of these will be implemented in 

equipment that is supplied from the mains grid.   

As discussed, some optimizations have been made for facilitating implementation of an S.O. 

on an embedded platform. Firstly, the sensor events are defined to be binary, i.e., their values 

can only be zero or one. Secondly, the weights in the used NB classifier are un-scaled 

probabilities, i.e., they are positive and negative integers only. Thirdly, the multiplication 

required to calculate the final product of the observed and estimated sensor probability

 is approximated by a sum. As discussed these optimizations only have a minor 

impact on the learning and predicting performance (Sections 8.4 and 8.6). Nonetheless, when 

looking into the savings of processing resources in an embedded implementation a significant 

difference is found. By using the MPLAB simulator and running a C-code-based 

implementation of an NB classifier, it is possible to compare the outcome in the two cases, 

i.e., with and without the optimizations. Therefore, these simulations are performed by using 

the same conditions and settings as previously discussed and additionally used to derive Table 

8.8.   

Based on the processing calculation time, it is possible to determine the used energies in the 

two cases. Thus, the non-optimized NB algorithm uses a processing calculation time of 17.53 

mS that should be compared with the earlier discussed results of 0.976 mS for the optimized 

algorithm. By using the previous discussed power consumption numbers, including 1.2 mA 

for the processor, the final energy saving has been found (Table 8.9).    
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Quantity Average consumption 

Energy consumption non optimized NB algorithm and non optimized 

buffer with 1800 places.  

0.243 Joule per day 

 

Energy consumption non optimized NB algorithm, circular optimized 

buffer with 1800 places.  

0.080 Joule per day 

 

Energy consumption optimized NB algorithm, circular optimized buffer 

with 1800 places. 

0.0083 Joule per day 

Table 8.9. Energy consumption for optimized and non-optimized naïve Bayes and buffer algorithms, 

simulated on a PIC18F46J50 device by using the MPLAB simulator from Microchip. It includes 5 sensors, 

1795 events and 7 actions that are transmitted per day using the Texas Zigbee module CC2420. 

As illustrated in Table 8.9 the energy saving for the optimized algorithm and buffer concept 

compared to the non optimized algorithm and buffer concepts is approximately 96 %. In 

addition, it is noted that these savings do not have significant impact on the algorithm 

performance, as shown in Table 8.7. However, for these calculations, it is assumed that the 

microcontroller and the ZigBee module are able to power sleep when they are passive. This is 

a reasonable assumption because the chosen clustering concept (Subsection 4.4.4) enables the 

use of transmit-only sensors, so the battery-powered sensors do not need to run the receiver 

all the time. Regarding the microprocessor it only consumes a few nano-amperes and is able 

to wake up quickly, relative to the sensor sampling rate, based on a timer or input change 

interrupt.  

As discussed in section 7.2 an S.O. contains a collection of smart agents in which each of 

these implements an NB classifier. Thus, an S.O. contains many instances of NB classifiers. 

This is necessary because each agent is able to handle only one action, e.g., a vacuum cleaner 

equipped with an S.O. needs one agent for each logic function it offers, such as ―start cleaning 

living room‖, ―start cleaning hall‖, ―stop cleaning‖, etc. In general it is found that at least one 

agent is needed for each logic state found in the smart home device. Actually, more than one 

agent per state is needed because a particular action covered by a particular state could be 

activated more than once during the same day.  

To obtain a quantitative measure of what is possible, it is assumed that each agent can handle 

up to S sensors and that it offers a time resolution of R. Therefore, to clarify the resources that 

are needed for an embedded implementation it is necessary to look into the processing power 
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and the amount of memory needed. It can be assumed that each weight is limited to a signed 

byte, one byte is used for the action name (allows 256 different actions), two bytes are 

allocated for threshold limit, and that five bytes are used as bit flags, etc. for controlling 

behavior. Then expressing this as an equation gives: 

 

where M is the number 

of bytes needed for A agents. The PIC18F46J50 from Microchip offers 3776 bytes of static 

memory. Allocating 1000 bytes for the agents leave 2776 bytes for the other S.O. software 

items. By using this number and assuming 8 sensors and 24-hours resolution per day, the 

formula yields 5 agents. Hence, an example could be a lamp with an on-state and an off-state, 

i.e., two agents are needed. Another example could be 5 sensors, 1500 bytes of memory, and 

5 agents which provide a time resolution of approximately ten minutes. Regarding the 

processor calculation resources, it was found earlier in this section that 100 agents use 

approximately 10 % of the available processing power; therefore, this is not the primary 

limiting factor.        

 

 

Figure 8.25. Left: the CC2540 integrated Bluetooth chip from Texas instruments. Right: the PIC18F26J50 

schematic. 

Other wireless technology such as the Bluetooth low energy (BT-LE) has approximately the 

same energy consumption as ZigBee. Texas Instrument have a BT-LE device named CC2540 

(Figure 8.25), (Kamath & Lindh, 2013) that uses approximately the same amount of energy in 

the transceiver; however, for the built-in microprocessor no data are available from Texas 

Instruments (Greenja, 2013). Nonetheless, by assuming that the built-in microprocessor 

consumption is almost the same as for their ZigBee variant CC2420, it is concluded that the 

previously presented energy calculations will be similar if this device was used instead. 

ARSM )8( 
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8.9 SUMMARY 

A mathematically based distributed AI framework fitting smart home system architecture was 

derived. This framework is hierarchically distributed, i.e., a low-level part is dedicated to the 

S.O.s and a high-level part fits a server or cloud-based framework. It is mathematically 

founded so learning and prediction behaviors are described in these terms. 

The derived framework was modeled numerically by implementing it in software and 

simulated by using publically available datasets from different researchers. The simulations 

revealed that the derived distributed systems perform similarly to other comparable systems. 

A key part is the S.O. that has been researched and explored by designing and implementing 

its vital software elements on a state-of-the-art embedded microcontroller. Significant savings 

were achieved in the implementation structures by using derived algorithms, structures, and 

strategies.   

In general, the simulated results revealed that huge savings were achievable in both battery 

power consumption and in network load. These saving were calculated by using results from 

comparable state-of-the-art research.            
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9 OVERVIEW OF THE FINAL CONCEPT AND 

CONTRIBUTIONS 

This chapter provides an overview of the suggested system and it lists my original 

contributions to the respective research areas. The overview is divided into two parts where 

the first part (Section 9.1) provides some scenarios that illustrate the system interaction and 

the responding system behavior. Section 9.2 presents a picture of most parts in the system and 

gives a short description of the parts. Following this is my original contribution in section 9.3.        

9.1 A HIGH-LEVEL OVERVIEW 

An overview is presented in the following subsection 9.1.1, and in form of two examples in 

subsection 9.1.2. Other application examples are provided in subsection 9.1.3. The content in 

this section is available in elaborated form in Lynggaard (2012a).   

9.1.1 THE SYSTEM 

This section presents an overview of the suggested SHS, where the presentation level is kept 

at a high abstraction level to prioritize focus on its basic functionality.  
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Figure 9.1. An overview of the presented smart home system. 

 

Figure 9.1 illustrates the components in the presented SHS. Focusing on the S.O.s they are 

combined into the LL-SHS (Section 7.1). This LL-SHS label has been added to indicate that 

this system can exists as a standalone system implemented on embedded S.O.s or on other 

devices equipped with equivalent processing power. An S.O. based standalone system is 

independent of server availability, which means that the network of S.O.s is self-sustaining 

and can be used as a minimalistic SHS.  

Because the LL-SHS is minimalistic in many ways it needs the HL-SHS for more advanced 

data processing (Section 7.1). The HL-SHS cannot be used as a standalone system because it 

requires some preprocessed event based information. This information can be made available 

by either the LL-SHS or by some similar systems as long as the semantics and interfaces are 

compliant. It is noted that the HL-SHS can be allocated either on a local server or as a cloud 

based service.  

Focusing on the system functionality, the user (green figure in Figure 9.1) makes some 

activities in the smart home. These activities are monitored and captured by the sensors 

interfacing the S.O.s. Based on the ―triggered‖ sensor events and its learned behavior the 

S.O.s are able to predict activities and suggest services to the user. In addition, it can pass the 
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predicted actions to the more advanced HL-SHS, which is able to predict and suggest more 

advanced activities (Section 8.5). The feedback to the user can come by two different paths, 

one path from the LL-SHS and another from the HL-SHS. These paths indicate that both 

systems are independent and that they work in a parallel approach.           

9.1.2 APPLICATION EXAMPLES 

To clarify and illustrate these ideas some scenarios are presented in the following. The first 

scenario is the ―Bob scenario‖, which illustrates the LL-SHS behavior. Following this is the 

second scenario named the ―Alice scenario‖, which illustrates the use of a combined system 

including both the LL-SHS and the HL-SHS.   

Bob scenario:       

Bob enters the kitchen because he is hungry, so he fetches a plate from the cupboard 

and sits down at the dinner table. When he does this the kitchen light shifts 

automatically so the dining table light is switched on and set to a colour that 

visualises the food in a nice way...      

Even though this scenario seems simple, a lot of complex processing and communication is 

going on behind the scene. Firstly, the scenario needs to be learned by the AI system that 

adapts and tracks the user behavior in a real-time fashion. Secondly, the artificial system 

needs to be able to predict the user activity pattern and suggest actions based on this.  

To illustrate these parts, i.e., the learning and prediction sequences a sequence diagram 

covering the scenario is shown in Figure 9.2.         
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Figure 9.2. The Bob scenario - sequence diagram for smart object learning and predicting. 

The flows in Figure 9.2 are: 

1. Bob enters the kitchen 

2. Kitchen room sensor detects his presence and notifies the dining table S.O.. 

3. When Bob takes a plate and moves it to the dining table, the cupboard sensor notifies 

the dining table S.O.. 

4. Bob sits down at the dining table; this is notified to the dining table S.O. by the dining 

table sensor. 

5. Bob uses his smart phone to remote control the dining table light. 

6. This action is observed by the dining table S.O. that learns this behavior from the past 

sensor events and this user performed action.   

From this scenario the LL-SHS (it contains only one S.O. in this example) learning and 

prediction processes can be elaborated. Learning takes place when the user performs an 

activity like turning on the room light. This action is captured by the connected S.O. that uses 

this to update one of its contained agents by looking into the events that have arrived in the 

past. The prediction process works the other way around, i.e., the agent monitor the incoming 

events and if some degree of match relative to the learning events can be found the action that 

triggered the learning in the first place is suggested to the user. Flow 7 in Figure 9.2 illustrates 

this, i.e., the table light is set to dim when the events described in flow 1-4 has been 
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performed. If the user disagrees to this activity the suggested activity can either be removed in 

the user interface or unlearned by doing the reverse action, i.e., switch off the table light.   

It is noted that the actual learning and prediction processes are stochasticly based. This adds 

some complexity to the scenario in the form of delaying the learning and prediction process, 

i.e., the system needs some training times to learn (Chapter 5) – just like a human.      

To illustrate and provide an overview of the role that HL-SHS plays in connection with the 

LL-SHS a scenario that involves both systems in a cooperative manner is presented. 

Alice scenario:   

The time is almost 6.00 in the morning and Alice leves the bedroom after a good 

night’s sleep. She goes to the bathroom for a morning shower. After finishing her 

bath she goes to the kitchen for breakfast. She looks at her watch, it is close to 7.15 

so she finishes her breakfast and leaves the kitchen. In the hall she puts on her coat 

and leaves the home for going to work. On her way to the bus she uses her smart 

phone to set the home to hibernating state, but then she remembers that the smart 

home system already has done this.     

Analyzing this is performed by using a sequence diagram as illustrated in Figure 9.3.  
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Figure 9.3. The Alice scenario uses a combination of the LL-SHS and the HL-SHS. 

The flows for the LL-SHS and the HL-SHS interplay, learning and adaptation processes are: 

1. Alice leaves the bedroom. 

2. The bedroom S.O. runs different agents where one of them is agent sleeping. This 

agent emits the action Alice stops sleeping which is captured by the HL-SHS.    

3. The bedroom light is turned on by agent sleeping  

4. Alice goes from the bedroom to the bathroom. 

5. The bathroom S.O. runs the agents shower and grooming. Agent shower emits the 

action Alice showers to the HL-SHS.   

6. Agent shower contained in the bathroom S.O. emits the action Alice grooms to the 

HL-SHS. 

7. Alice leaves the bathroom and goes to the kitchen 

8. The kitchen S.O. contains agent eating that emits this action to the HL-SHS.  

9. Alice leaves the kitchen and enters the hall for leaving the home. 

10. Agent leave home contained in the hall S.O. emits action Alice left the home. 

11. The home enters hibernate state. 

12. Alice sets the home to hibernate using her smart phone. 

As illustrated by this scenario Alice’s behavior pattern is captured by the low-level S.O. 

agents who notify the HL-SHS. This system learns from the user action flow 11 and the 
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previous user action flows 1,2,4-10. Based on this learning it is able to predict when to set the 

home to hibernate state and it offers this as a service to the user - flow 12. From the scenario it 

is noted that flow 3 is an action offered directly from the S.O. agent locally. Hence, Alice’s 

behavior pattern consists of a sequence of actions that Alice performed as a function of time. 

This action sequence is fed to the HL-SHS that runs a higher level of learning and prediction 

algorithms. 

From a logical point of view the prediction probability must be higher if all the information 

like time, sequence and activity type is used in the prediction process. Actually, Shannon’s 

information theorem supports this point of view by stating that the entropy (quantifies the 

uncertainty in predicting the value of a random variable) will be lower, if more is known 

about this pattern sequence. So it can be stated that using all the available uncorrelated 

information provides a better prediction probability. Hence, this fact and the use of temporal 

behavior enables the HL-SHS to predict complicated patterns and sequences relative to the 

more simple LL-SHS.  

To reflect on this statement, imagine that only low-level prediction systems (LL-SHS) are 

used in the just discussed Alice scenario. This means that one of the S.O.s needs to predict 

that Alice left the home. Assuming that the Hall S.O. would be the one in charge, it needs to 

base its decision on available information, i.e., its contained agents must perform the 

prediction, but these agents work locally for the hall and only get information from sensors 

positioned in the hall. So, it is possible to detect that Alice puts her coat on (coat rack sensor) 

and leaves her home (door sensor). However, Alice could leave her home for many other 

reasons than going to work, maybe she went out to empty the trashcan or empty her mailbox 

etc. Letting the home enter hibernating state in these cases would be annoying for the user and 

wasteful from an energy and pollution point of view. So, anchoring the hibernating state 

decision on the sequence presented in the Alice scenario and add factors like time of day and 

today’s date, etc. provides a more reliable decision foundation. 

9.1.3 OTHER APPLICATION EXAMPLES 

Other application examples are listed in Table 9.1. They are provided in a simplified overview 

form. However, the possible usability areas are much broader. 
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Task S.O. activity 

Home appliances E.g., washing machine / dish washer. Monitors when electricity is cheap and the 

machine is ready. Then automatically starts it. Additionally, it offers remote 

control services. 

Green technologies  Monitor and learn user’s behavior which is autonomously replayed. An example 

could be the HVAC system.   

AAL supervisory Learn the status of home appliances as a function of time. Thus, abnormal 

behavior can be reported to the user or to the relatives.   

Telemedicine Add context status to expert systems. An example is a heart-rate monitor which 

can get information from the patient’s environments such as room sensors and 

other activity sensors.        

Security Learn the user’s habits and inform the user (e.g., a smart phone message) if 

abnormal sensor activity is detected.  

Table 9.1. Examples  of other smart object applications. 

In general, it is noted that the S.O.s in combination with the HL-SHS offer a general 

framework which can be integrated into many of the devices found in a home today. This 

concept offers the benefits from the home automation area in the form of timer / calendar 

triggered actions and remote control (Section 3.2). In addition, it offers the smart homes 

features in the form of AI and real-time learning (Section 3.3).    

9.2 A DETAILED OVERVIEW 

This section provides a detailed discussion of each element included in the SHS as illustrated 

in Figure 9.4. 
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Figure 9.4. The presented smart home system at a detailed level. 

9.2.1 USER INTERACTION 

Some user interface ideas and an overview are presented in this section; however, it is noted 

that the user interface is outside scope for the work (Section 1.3).    

Starting with the user (green/red icon) a portable user interface is added to the SHS 

exemplified by the smart phone in Figure 9.4. This enables the user to interact with the system 

in an easy and comfortable way. Most people are familiar with mobile phones and many of 

them are also familiar with the more advanced smart phone concept. From a usability point of 

view the smart phone is a good choice for a smart home user interface platform (Section 3.2). 

However, the presented SHS is not limited to interact with a smart phone only it is also 

possible to use other devices such as Ipads and PC’s. This flexibility is provided by using the 

Internet as a backbone. Thus, connecting the Internet to the SHN means that the user can 

access it from a smart phone. Additionally, many home entertainment devices such as smart 
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TV, music players, and NAS devices are connected to the Internet, which means it is possible 

to control these from the same smart phone device (Subsection 4.2).  

Whenever an S.O. (LL-SHS) or HL-SHS emits an action it can be presented to the user in the 

form of a prompt on the smart phone or put into a smart home calendar located in the HL-

SHS. The user interface could be based on user profile information so the suggested action 

can be either performed automatically without user intervention or it can be held back until 

the user accepts or rejects it. It should also be possible to interact with the calendar system 

where actions can be either accepted or rejected. Other principles for user interaction with the 

SHS are described in subsection 3.3.1.  

Functionality for doing home control based timed actions should be provided. It can be 

implemented by schedule timed action in the smart home calendar and let the user interface 

reflect these to the S.O.s. In addition, the user interface must provide functionality to 

administrate and setup the different smart home devices.  

Other user related items that need to be addressed are: Handling and implementing of user 

identification; user profiles and user policies; system security and user access rights; and 

control based smart homes.     

9.2.2 SMART OBJECTS AND SENSORS 

As illustrated in Figure 9.4 the S.O.s interact with sensors. Based on sensor inputs the S.O.s 

are able to emit actions that indicate a particular user activity has been performed. Descriptive 

example is presented in section 9.1.   

Compatibility with existing devices, which do not have a smart home interface, can be 

obtained by using the flexibility of the S.O. implementation. It is possible to connect a non-

smart device (e.g., a conventional lamp) without a smart home interface to an intelligent S.O. 

based wall power outlet. The artificial part together with the sensor input can then be ignored, 

i.e., the S.O. behaves like a home automation device. Thus, it is possible to remote control the 

non-smart device and provide timer based control to it.             
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9.2.3 LL-SHS 

The LL-SHS contains the S.O.s (Section 8.5) which captures the particular events from the 

sensors (Figure 9.4). Based on these the S.O.s learn and predict the user behavior (Section 

8.5). Thus, an example could be the behavior of the lamp illustrated in Figure 9.4. Whenever 

an action is predicted by an S.O. it sends an action command to the HL-SHS, which uses this 

to predict advanced temporal activities (Section 8.3). 

The S.O.s (LL-SHS) are generic in the way that they can be used in different points and 

positions in the SHS. Hence, it is possible to run the S.O.s as a standalone intelligent 

platform. In general the S.O. based system can exist in many instances and it is 

implementable on many different local platforms such as PCs, hbbTVs, IPads, home network 

routers and NAS devices, smart phones, etc. This is illustrated (Figure 9.4) as a blue cloud 

named ―local processing device‖, which contains an LL-SHS system. 

The LL-SHS offers a simple robust probabilistic framework that is capable of learning and 

predicting user activities. Its main goal is to keep simplicity as a core value, but also achieve 

good reliable results. This simplicity is achieved by using a simplified naïve Bayes 

probabilistic classifier framework (Section 8.2) as AI element. Actually good results are 

achieved compared to related frameworks that do not offer these simplicities as explained in 

section 8.4.  

9.2.4 HL-SHS  

As illustrated in Figure 9.4 another component in the SHS is the HL-SHS. It can be located at 

a local server or on a cloud based service as discussed in section 8.3. This system is used to 

learn and predict more advanced and composite temporal user activities. Thus, most user 

activities are composed as a sequence of temporal actions which leads to a final action that 

needs to be detected.  

The HL-SHS is a probabilistic flexible system that is able to learn and predict complex user 

activities in real time, i.e., real-time learning and predicting (Section 8.3). It uses actions 

detected by other smart home components, such as the S.O.s, as input in combination with 

today’s time.  
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The AI element that has been chosen to model the HL-SHS in this work is the well-known 

Hidden Markov Model (HMM) (Section 5.6). It has been modified in a mathematical way to 

be adapted to a smart home environment. A more detailed and in-depth exploration of this 

component can be found in section 8.3.  

9.3 CONTRIBUTIONS 

This section collects and lists my original contributions derived throughout the research 

period to the different research areas. In the following section an italic notation is used to 

highlight these original contributions. 

As stated in research question one (Section 1.2) the challenge is to find a system architecture 

that includes S.O.s and supports a distributed AI framework. The contribution of this work to 

answer this question is discussed in the following.   

Initially, the state-of-the-art is found in the system architecture areas and analyzed for its 

advantages and disadvantages (Chapter 6). To analyze and be able to concretize these areas 

into manageable subjects two generic Centralized Smart Home (CSH) and Agent-based Smart 

Home (ASH) models have been invented (Section 6.1). These models are a new unique 

contribution to the research area of smart home system architectures which is dominated by a 

diversity of different model types (subsections 6.1.1 and 6.1.2). Additionally, it has been 

shown (Subsection 6.1.3) that these two models support most of the available smart homes 

and provide the complexity needed to capture vital details, but at the same time they keep the 

complexity at a manageable level.   

By analyzing the CSH and ASH models (Chapter 6) these problem areas are explored at a 

detailed level. The combined outcome in the form of gained knowledge has been used to 

construct a new model (Subsection 6.1.3), which is usable for answering research question 

one. Thus the model provides the needed elements: Distributed system architecture, 

distributed AI, and an S.O. concept. This smart home system (SHS) model is illustrated in 

Figure 7.3 and discussed in (Section 7.1). Its distributed behavior is new and removes many 

of the problems found in the CSH research area such as the bottleneck and single point of 

failure. In addition, it takes the agent-based ASH system some steps further into a real 
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distributed system with autonomous, parallel processing, context-aware, and communicating 

nodes (S.O.s) (Section 7.2).  

So the derived CSH, ASH and SHS models contribute to the centralized and distributed 

(agent-based) SHS research areas with generalizable models that are useable to describe most 

smart home systems in a uniform manner. These research areas have been introduced in 

chapter 4. 

As discussed, the state-of-the-art smart home concepts can be modeled by mapping them into 

either the CSH or the ASH model. This means that these research areas do not provide the 

freedom to combine these models. However, such a model offers advantages (Subsection 

6.1.3) and provides the distributed architecture required by research question one. Thus, the 

SHS model offers two components. The first high-level component reuses existing processing 

power that is available in many home devices or processing power that exists on dedicated 

servers such as cloud based servers. This processing power is used to run advanced AI 

processing (Sections 6.2 and 8.3). The second low-level component constitutes the distributed 

part of the SHS model (Section 7.1). The possibility to allocate the high-level SHS part on 

existing devices and distribute the low-level part is new and contributes to the smart home 

research area (Sections 7.1 and 7.2).  

Dividing the model into these two parts is beneficial from a technical perspective with respect 

to sensor, actuators, power, and used bandwidth (Section 7.1). From a user point of view each 

S.O. is uniquely tagged with a RFID tag which means that a server based user interface is able 

to identify it, e.g., when the user touches it with a smart phone or similar devices.   

The low-level distributed part in the suggested SHS needs to be able to provide a distributed 

agent-based S.O. concept in terms of: Network load, resource consumption, and ability to 

support a distributed AI framework (Section 1.2). A candidate for this is the suggested S.O. 

model (Section 7.2). This model is different from the known ASH based models and 

constitutes a unique concept. The derived S.O. model is bound to the sensor context and is 

loosely coupled to the SHS, which means that it behaves autonomously and does not require a 

complex system setup procedure. They are uniquely identifiable, able to communicate, store 

events, and process applications in a distributed manner on embedded low-power devices. 
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Another outcome is that most of the S.O. framework is related to IoT concepts and that the 

presented smart home concept is compatible with upcoming IoT technologies (Section 7.4).            

One of the main challenges in deriving an S.O. model is designing its behavior in a structured 

way and to provide a platform for distributed intelligence. Thus, its software architecture has 

been defined. These challenges and their different solutions have been modeled by a UML 

based context model (Subsection 7.2.2). Moreover, this work invents a four level software 

layered model where the main contributions are the middleware layer, the application layer 

(Subsection 7.2.2) and the communication architecture (Subsection 7.2.3). These 

contributions provide a new general framework that contributes to the ASH as well as the IoT 

research areas (Sections 7.2 and 7.4).  

The application layer runs parallel applications which provide: A timer unit; calendar and 

activity scheduler unit; sensor input filtering and processing unit; and an output processing 

unit. These units provide a high-level of generality in the application areas. The developed 

middleware layer offers general access from external devices by standardizing the interface 

functionality and the communication architecture (Subsection 7.2.3). 

A smart home S.O. device is part of the distributed SHS architecture stated in research 

question one. Further stated is that it must be based on existing technology (Sections 1.2 and 

1.3).  

The software layered model (Subsection 7.2.2) has been mapped to an embedded hardware 

implementation model (Subsection 7.2.4) by adding interface and communication electronic 

circuits. Such a model has not been derived for smart homes and this contributes to the ASH, 

S.O., and IoT research areas (Subsection 7.2.4), (Section 7.4). The final derived S.O. offers a 

high-level of generalities such as programmable timers, filtered event sampling, 

programmable calendar functions, low-power communication, and support for AI 

applications (Section 7.2). In addition, this model offers: Low battery power consumption; 

low cost; support for both wired and wireless sensors; and a low form factor which makes it 

easy to install. 
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The S.O. software and implementation models suggested in this work add features for 

filtering and processing sensor events in an advantageous way so that noise and sporadic 

sensor events are avoided (Subsection 7.2.4). This saves processing power in the S.O.s 

because only necessary processing is performed. Moreover, it adds knowledge about general 

concepts to the agent area because S.O.s are derived from this area and thereby related to 

them. Thus, this S.O. model adds knowledge to the sensor and actuator research areas, which 

is described in section 4.4.   

To support the integration of S.O.s in an SHS, inter-object communication is needed. This 

communication must facilitate S.O. low resource consumption, support wired and wireless 

connections and provide support for multiple devices types and protocols. Such a 

communication model has been derived (Section 7.3). This model is unique and provides 

many benefits compared to related research areas (Section 7.3). Additionally, it adds new 

technology and concepts in form of clustering and transmit-only sensors to the smart home 

communication research area.     

The model contains a mains powered core that handles communication with external devices 

such as a cloud based user interfaces, routes actions predicted by the battery powered S.O.s, 

and processes both wireless and wired sensor events (Subsection 7.3.3). The model is general 

in terms of choice of the communication device types and protocols because it supports the 

use of multiple gateways.  

The suggested SHS needs to handle events from the battery powered sensors as discussed 

earlier (Subsection 4.5.5). These events must be distributed to all the S.O.s without flooding 

the cluster core. Thus, using multiple gateways raises the problem of multi event flooding, 

and a method has been derived which is able to handle this (Subsection 7.3.3). This method is 

not new and it has been used in other networks; however, the usage in a distributed smart 

home context is new and it contributes to this area as well as the IoT research area.  Basically, 

this method is able to suppress the event copies found in common flooding such as the 

Gossiping algorithm (Subsection 7.3.3).  

The communication model defines a concept of a mains powered core (Subsection 7.3.3) that 

handles power consuming tasks on behalf of the battery powered nodes. Moreover, it handles 
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wireless and wired sensors and gateways by defining a protocol concept that is able to deal 

with their challenges. Thus, this work adds to the research area of network technologies 

described in section 4.5.   

To lower the interference level and thereby the S.O. resource consumption a clustering model 

has been employed. This model must support the limited resources available on some devices. 

The clustering model has been derived. It is new and contributes to the low power smart home 

research area.  

The clustering model optimizes the power consumption and lowers the interference level by 

grouping the S.O.s into selected spatial clusters (Subsection 7.3.4). These clusters are 

allocated so that S.O.s in the same room belong to the same cluster and the cluster header is 

chosen among these. This concept lowers the interference and power consumption because 

the spatial distance is small and no obstacles such as walls are present. Locking the choice of 

cluster header ensures it is chosen between the mains powered ones in the available pool of 

S.O.s.  

A method to lower the power consumption and component cost is to eliminate the receiver 

part in the sensors. Thus, battery-power savings are achieved by allowing transmit-only 

sensors to participate in the smart home network (Subsection 7.3.5). This work suggests a 

method that enables such a concept. In the smart home context this research is a new 

contribution to the sensors (Section 4.4) and S.O. power saving research area (Subsection 

7.3.5) .  

Normally, using transmit-only sensors are impossible because they cannot participate in the 

framing used in wireless networks. However, using a CSMA-CD scheme ZigBee devices and 

retransmitting transmit-only sensors are able to co-exist in the same network.  

Another method to enable the use of transmit-only sensors is using SDR. Hence, a future 

perspective about using SDR in combination with transmits-only nodes is discussed and a 

solution is presented (Subsection 7.3.5). This concept is a new research contribution to the 

smart home, the WSN and the IoT research areas. 
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A way to implement this is by using an S.O. to implement an SDR based dual-band 

transceiver which is able to handle a ZigBee solution overlaid by a transmit-only-sensor 

signal (Subsection 7.3.5).  

As stated in research question two a distributed artificial intelligence framework is needed 

which complies with the smart home system architecture. Such a system must support 

distributed AI embedded on small controllers with limited resources and other existing 

devices. Additionally, it must consider technologies that deal with the battery, bandwidth and 

processing challenges (Section 1.2).   

A distributed AI system has been designed (Chapter 8), which fits into the derived 

architecture. This system provides a new unique contribution to the smart homes, the IoT, and 

the hierarchical AI research areas (Chapter 8).  

The system divides the processing load into two subsystems (Subsection 8.1.2), which require 

different processing capabilities. The first subsystem supports devices with low processing 

capability (Section 8.5) such as S.O. agents implemented on embedded devices, i.e., it fits the 

LL-SHS. The second subsystem performs a more complex and resource demanding 

processing (Section 8.3) task and is expected to be run on either a smart home server or a 

cloud based service, i.e., it fits the HL-SHS.    

To provide a distributed AI system in a smart home context a mathematical framework is 

needed, which is based on existing technologies (Section 1.3). Hence, a distributed AI system 

has been designed by delivering a general mathematical model (Section 8.2), which describes 

a combined hidden Markov and naïve Bayes model. By using the combination of models it is 

possible to distribute each model element to different processing contexts. This framework 

contributes to the distributed smart home, distributed AI, and the IoT research areas (Sections 

8.1 and 8.2).  

This framework facilitates a distributed SHS by offering a ―standalone‖ NB agent-based 

subsystem (Section 8.5) and a temporal model, which can be allocated on more resourceful 

devices (Section 8.3). Thus, the standalone NB based agent subsystem offers S.O.s, which can 

be integrated into common home devices, and it supports individual manufacturing.   
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Employing a complex AI framework on small embedded S.O.s requires a simplification of the 

used implementation algorithms (Sections 8.2 and 8.3). Thus, the NB agent subsystem is 

simplified to reduce its resource needs as much as possible without degrading its learned and 

predicted abilities. These simplifications are suggested and validated in this work, i.e., the NB 

agent learning algorithm has been reduced to a simple integer adding operation (Subsection 

8.5.5). Similarly, the prediction algorithm uses an approach where integers are added and 

compared to an adaptive threshold (Subsection 8.5.6). Using these simplifications in smart 

homes without suffering from a predictability loss is a contribution to the smart home 

research area (Sections 8.4 and 8.6). Additionally, it contributes to the IoT research area 

where the employed technologies could be used. Generally, it is expected that some losses are 

seen when algorithms are simplified, but the used approaches do not reduce predictability 

considerably compared to similar works (Sections 8.4 and 8.6). However, the benefits 

achieved from these simplifications have a huge impact on the S.O.s performance and 

resource use, as described in sections 8.6 and 8.8.  

In addition, the sensor interface to the S.O.s has been simplified (Subsection 8.5.3) by using a 

fixed sampling time of one second; a hardware based capture hold circuit; and a binary (on 

/off) concept for the sensor events, where the off events are ignored. These techniques save 

battery power and network resources for the wireless sensors (Section 8.7). Using these 

simplification techniques in a distributed smart home context is a contribution to the smart 

home AI research area (Sections 5.7 and 8.8). 

As stated in section 1.2 resources such as power consumption, used bandwidth and used 

processing power are the main challenges. In this light it is relevant to investigate the 

achieved savings.  Some of the savings are provided by using the distributed NB agent-based 

concept (i.e., the S.O’s). It provides considerable savings in the transmitter power 

consumption and the network load, because local events are consumed locally inside its 

cluster by the connected S.O.(Section 8.7). In addition, this provides benefits such as low 

network utilization, no single point of failure, low prediction delay (Section 8.7). Employing 

distributed AI locally in S.O.s with ability to do local processing is a new contribution to the 

smart home research area and to the IoT research area (Section 8.8).     
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Additionally, the S.O. agent-based concept has been investigated by using the publicly 

available dataset from Kasteren et al. (2008a) where it is found that this system scores 

comparably to similar systems (Section 8.6). 

To perform a validation of the obtained savings the NB agent code has been developed in C-

code and simulated in a state-of-the-art simulator (Section 8.8) from the company Microchip. 

By optimizing this C-code and implementing the discussed S.O. agent simplifications 

extensive savings in processing resource, network load and battery power have been found. 

The optimizations used in the code are a contribution to the smart home research areas that 

deal with implementation techniques and algorithms. In addition, these techniques are useable 

in the IoT research area.       

As discussed, the AI framework developed in this work is hierarchically structured to reflect 

the derived system architecture. Hence, to enable the HL-SHS to interface the LL-SHS (i.e., 

the S.O.s) and similarly increase its efficiency, reliability, and resource savings, some 

techniques and modifications have been performed as discussed in the next paragraph.          

The hidden Markov model based HL-SHS has been modified so that it uses binary inputs from 

the S.O. agents (Section 8.3), i.e., they do not provide any emission probabilities. It also 

employs a concept of only allowing one state in the latent variable, i.e., it is binary 

(Subsection 8.3.3). To provide these binary predictions an adaptive threshold has been 

employed (Subsection 8.3.4). To add temporal behavior the previous actions must be included 

in the prediction process. This is performed by using a simplified Viterbi algorithm 

(Subsection 8.3.4) where the final state is known which limits the trellis search. In addition, a 

time dimension is added to the emission probabilities (Section 8.3), which increases the 

prediction probability. These transformations of a general probabilistic model into a 

specialized HL-SHS framework have not been seen in a smart home context and are a new 

contribution to this research area (Sections 5.7 and 8.4).    

It is noted that these changes do not reduce the system performance compared to comparable 

systems (Section 8.4).  
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An important element in the distributed AI framework is real-time learning (Section 1.2). 

Thus both systems are designed as real-time learning circuits (Subsections 8.3.3 and 8.5.5). 

This means that no priori training is necessary, i.e., the training happens on the fly when the 

system runs. In addition, this adds the ability to update or override old learning with new 

ones (Subsections 8.3.3 and 8.5.5). Real-time learning contributes to the smart home and the 

IoT research areas (Section 5.3). 

9.4 INTERPRETATION OF CONTRIBUTION AND RESULTS 

This section provides an interpretation of selected contribution parts (Section 9.3) in relation 

to the state-of-the-art research. Firstly, a walk-through of this work is presented where some 

of the achieved results are highlighted. Secondly, three selected questions are answered, they 

are: 

1. Model selection for the smart home analysis in relation to the state-of-the-art. 

2. Interpretation of the simulated results in relation to the state-of-the-art. 

3. The general system architecture in respect to the user-support in smart homes, 

including state-of-the-art considerations. 

9.4.1 OVERVIEW OF THIS WORK AND SELECTED CONTRIBUTIONS     

The basic research performed to support this work has been conducted on an exploratory basis 

to establish the state-of-the-art in smart home models. It has been found that most researchers 

and performed scientific experiments have used the centralized smart homes architecture. 

However, research has also been performed in the area of the distributed smart home 

architecture, where it has been found that this architecture is very promising for future smart 

homes (Alam et al., 2012), (Reinisch et al., 2010), (Cook & Das, 2006), (Del-Hyo et al., 

2012), (Hannon & Brunell, 2005), (Mocanu et al., 2013). Alam et al. (2012) and Silva et al. 

(2012) point out that this architecture is the future candidate for smart homes. In addition, this 

architecture has many similarities with the IoT research area, which is beneficial for the future 

integration of these areas. 

This work takes offset in this knowledge and gradually transforms the centralized smart home 

architecture into a distributed one with focus on its high-level and low-level parts. The high-



 
234 

level part covers elements such as enabling the use of cloud processing technology (Section 

7.1), centralization of composite events (combining sensors information), and providing a 

central access-point for the system. The low-level part focuses on the composition of S.O. 

components, the smart home network aspects, and the used S.O. resources. Especially the 

restricted amount of resources was found to be the limiting factor in providing working S.O.s 

with today’s state-of-the-art technology (Section 8.7). Actually, the most resource demanding 

part in the S.O.s is the implementation of an embedded AI real-time framework, why different 

candidates were compared and analyzed (Section 5.5).  

From this analysis in combination with the research performed by Cook et al. (2012) it has 

been found that the probabilistic models are the most beneficial ones for smart home 

environments (Section 5.7). However, the distributed probabilistic framework for use in smart 

home context, based on the well-proven NB and HMM probabilistic classifiers, is a new 

approach. This framework is divided into two parts, a HL-SHS and a LL-SHS (i.e. S.O.s). 

Both systems have been simulated in a real world context by using qualitative data from 

independent researchers. The HL-SHS has been simulated by using a designed and 

implemented model (Section 8.4.1) on datasets available from the WSU CASAS project 

(Cook, 2012). It has been found that the HL-SHS performs similar to other centralized-based 

classifiers (Cheng et al., 2009). Similarly, the S.O. has been modeled (Section 8.5) and 

validated by using datasets from independent researchers. It has been found that its learning 

and predicting capabilities are comparable to similar works (Section 8.6). Its suitability to be 

implemented on an embedded microcontroller has been explored by using a simulator, which 

was provided by the microcontroller manufacturer. It has been found that using the developed 

simplified and optimized NB framework, considerable savings were provided in processor 

resources, smart home network interference level, and battery lifetime (Section 8.8). 

9.4.2 QUESTION 1: MODEL SELECTION 

Model selection for the smart home analysis has been based on different criteria. Firstly, the 

model needs the ability to support a distributed framework in order to go beyond the current 

state-of-the-art (Alam et al., 2012), (Reinisch et al., 2010). Secondly, the model must be 

robust in noisy environments and be able to learn and predict in real-time (Cook, 2012).  
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Fundamentally, pattern recognition methods and models can be divided into three groups as 

presented in Table 9.2 and discussed in section 5.2.  

Model Pros and cons References 

Temporal data mining 

and temporal pattern 

models 

Advantages: these methods find recurrent patterns 

automatically without user feedback.  

Disadvantages: the unknown detected patterns can be 

useless because it is not directly linked to the user 

behavior. These techniques are closer to action discovery 

rather than action detection. 

(Jakkula & Cook, 2008) 

(Jakkula et al., 2007) 

Logic based methods Advantages: build behavior rules as a function of time 

that is hardcoded into the system. Using these rules it is 

possible to check if some specific behavior takes place in 

a defined time window. 

Disadvantages: ambiguity exists in which action that has 

been performed. I.e., it detects action sequences, not 

specific actions. 

(Cheng et al., 2009) 

Temporal probabilistic 

models. 

Advantages: they model sequential data and efficient 

algorithms exist that perform inference in an optimal 

manner. In addition they are robust against noise (i.e. 

uncorrelated sensor events). 

Disadvantages: annotated training data are needed to 

learn the model parameters. 

(Cook, 2012) 

(Kasteren et al., 2008b) 

(Fang et al., 2012) 

(Kasteren et al., 2011) 

(Chua et al., 2011) 

Table 9.2. The three groups of fundamental pattern recognition methods. 

As stated in Table 9.2 the ―temporal data mining models‖ do not relate the user action directly 

to the sensor events. This means that the user needs to be involved in sorting out usable 

actions and events, which is not a user-friendly approach. In addition, temporal logics is 

essentially based on finding sequences of related actions; however, such an approach requires 

centralized processing where all actions are available, i.e. it is not suitable for distributed 

processing. 

The ―logic based methods‖ are based on a priori knowledge in form of pre-coded rules that 

are used to detect the most likely action sequence. However, as discussed in relation to the 
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―temporal data mining models‖ action sequences are not suitable in a distributed system 

context. Furthermore, pre-coded rules do not support real-time learning.  

The ―temporal probabilistic models‖ have been used by many researchers in a smart home 

context. Their main disadvantage is that they need training in advance which loads the user. 

However, in this work the training is performed on the fly (i.e. real-time learning), so the 

trained S.O. learns the user habits over time.            

Conclusively, it has been found that probabilistic models are the most suited ones for 

distributed systems because they offer the ability to classify single actions, they are robust 

against uncorrelated sensor events (noise), and they are able to learn a priori sensor patterns 

when triggered by a single user activity. Regarding the detectability of action sequences, 

probabilistic models handle this by offering temporal behavior. Statements from other 

researchers support the choice of probabilistic models in smart homes, e.g. Cook (2012): 

Some of the most commonly used approaches are naïve Bayes classifiers, decision 

trees, Markov models, and conditional random fields [5][6][7][8]. In our approach 

we initially test three models: a naïve Bayes classifier (NBC), a hidden Markov model 

(HMM), and a conditional random field (CRF) model. These three approaches are 

considered because they traditionally are robust in the presence of a moderate 

amount of noise, are designed to handle sequential data, and generate probability 

distributions over the class labels.    

Their statement is supported by Das et al. (2012), who compared different AI algorithms for 

real-time use on a resource-constrained mobile phone: 

…require a substantial amount of computation, which is difficult to achieve with an 

Android phone that has a 1 GHz processor. Among the less computationally 

expensive classifiers, Naïve Bayes performs better and therefore it is chosen to run on 

the phone. Figure 4 (right) shows the performance accuracy of the five different 

activities separately with Naïve Bayes classifier. We also tested the performance of 

Naïve Bayes for real-time activity recognition and the average accuracy is more than 

85%. 
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Similarly, Kasteren et al. (2008a) state:  

Our objective is to recognize activities from sensor readings in a house. This is a 

formidable task, since the label in question (activity performed) cannot be estimated 

directly from our data (sensor readings). Furthermore, the temporal patterns of our 

data contain valuable information regarding the performed activity. A suitable 

framework for this task is temporal probabilistic models. 

Looking into the state-of-the-art research in the distributed smart home area, only a limited 

amount of research has been performed (Subsection 3.3.4). Thus, the ―ThinkHome‖ project 

(Reinisch et al., 2010), the ―Multi-Agent system‖ (Hamzi et al., 2013), and the ‖gold seekers‖ 

distributed multi-agent framework for intelligent environments (Hannon & Brunell, 2005) are 

representative examples. However, these systems use a centralized approach where each agent 

is allocated to a specific task. 

A detailed overview of the discussed multi-agent systems is provided together with a 

comparative matrix (Table 9.3) which focuses on the important issues discussed in this work 

and which is supported by state-of-the-art research (Alam et al., 2012), (Silva et al., 2012). 

Thus, Table 9.3 compares this work in relation to the following three state-of-the-art systems: 

1. The ―ThinkHome‖ project is based on a centralized knowledge base which provides 

the reasoning and data storage facility to the agents. These agents are allocated to 

handle dedicated tasks such as: user-agent, global-goals-agent, and context inference 

agents. 

2. The ―Multi-Agent system‖ consists of a hierarchical based collection of specialized 

agents.  At the top level the planning and management agents controls the lower level 

agents such as: service-agents, update-agents, mission-agents, etc.  

3. The ‖gold seekers‖ distributed multi-agent framework for intelligent environments 

project offers a collection of agents where these are allocated to different layers and 

tasks such as: physical sensor layer, information layer, decision layer, communication 

layer, etc.  Hence, the agents are specialized and allocated in advance.   
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Challenges in S.O. / agent based systems  
System 

1 

System 

2 

System 

3 
This work 

Sensitive to single point of failure. (Section 6.1.3.). Yes Yes Yes No 

Requires central smart home server / cloud server (Section 6.1.3.). Yes Yes Yes (Yes) 

Reduced network load and channel blocking (Section 6.1.3.). No No No Yes 

Possible to route data in devices (Section 6.1.3.). Yes Yes No Yes 

Simulated vital elements in embedded form No No No (Yes) 

Offer AI capable of running in multiple instances on small low 

power processors  (Section 8.5) 
No No No Yes 

Offer support for high level temporal actions  (Section 8.3) Yes Yes No Yes 

Offer the possibility to save power by hibernating agents  No Yes Yes Yes 

Bridge the gap between controlled homes and smart homes. No No No Yes 

Supports integration with IoT devices. No No (No) Yes 

Offer real-time parallel processing  Yes Yes Yes Yes 

Optimized S.O. clustering strategy and model prolonging battery 

lifetime (Subsection 7.3.4) 
No Yes No Yes 

Optimized embedded AI in S.O.s for saving battery lifetime 

(Section 8.7) 
No No No Yes 

S.O. (agent) offers standardized interfaces (middleware layer, etc.) 

(Subsection 7.2.2). 
No No Yes Yes 

Wired / non wired communication architecture (Subsection 7.2.3) No Yes No Yes 

General hardware model with timers, pulse-width-modulators, 

power outputs, etc. (Subsection 7.2.4) 
No No Yes Yes 

Support for low power transmit-only-sensors (Subsection 7.3.5)   No No No Yes 

Offer ―standalone‖ functionality (enable common home devices 

and support individual manufacturing) (Section 8.3), (Section 8.5)  
No No No Yes 

S.O./agent offer real-time learning and prediction (Subsections 

8.3.3 and 8.5.5). 
No No No Yes 

Table 9.3. Comparative matrix for multi-agent systems.  

In conclusion, this work is research-wise positioned so it moves the research frontiers in the 

distributed smart home area beyond the current state-of-the-art with respect to the discussed 

challenges.    
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9.4.3 QUESTION 2: RESULTS OF THE SIMULATIONS 

Simulations are important tools for validating and extracting knowledge from invented 

models and architectures and identifying challenges that need more research to reach their 

―satisfactory states‖. For this work two simulators have modeled, designed and developed as 

discussed in section 8.4 in order to simulate and validate the performance of the derived HL-

SHS and the distributed S.O.s.  

Usually, smart homes that are based on HMM have their AI implementation directly 

connected to the smart home sensors. However, in this work the HMM is simplified and only 

connected to the S.O.s, i.e. it receives predicted actions instead of sensor events. The S.O.s 

implement a simplified AI system based on the well-known NB classifier, which in turn is 

connected to the sensors. In addition, the algorithms used for the smart home AI system have 

been optimized with respect to their processing and network resource consumptions. Most of 

the algorithms content and structural changes have been performed by using non-linear 

mathematics such as quantization, truncation, integer and Boolean types. Performing such 

dramatic changes has influence on the algorithm performance, which have been considered 

and compensated throughout the design of these, however, from a scientific point of view this 

performance needs to be validated and compared to the non-modified use of these.  

The validation starts by looking into the learning achieved by the HL-SHS algorithm by 

simulating it on a public available dataset and analyzes its learning ability, which is captured 

and stored in its ―weights‖ (Section 8.4). This analysis reveals that the learning has taken 

place (Subsection 8.4.2). In addition, the used dataset contains user annotations, why it was 

possible to compare the predicted output (an activity) from the HL-SHS algorithm with the 

user provided ground truth. Running this simulation twice on different datasets showed that 

the HL-SHS algorithm performed similar to the work performed by others (Subsection 8.4.2), 

(Subsection 8.4.3). 

A representative selection of the state-of-the-art AI systems that learn and predict user 

activities in smart homes is presented in Table 9.4 as the percentage of true positive, where 

the user annotation and the predicted value agrees. 
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Algorithm Score Ref. 

Modified HMM (this work, example 1)  86% Section 8.4.2 

Modified HMM (this work, example 2) 94% Section 8.4.3 

ASBR 80% (Cheng et al., 2009) 

CBR 75% (Cheng et al., 2009) 

HMM 73% (Fang et al., 2012) 

HMM 83% (Kasteren et al., 2011) 

HMM (Cairo) 82% (Cook, 2012) 

          Table 9.4. A representative selection of the state-of-the-art AI systems that learn and predict user 

activities in smart homes, compared to this work. 

As noted from Table 9.4 the HL-SHS algorithm developed in this work performs similarly to 

related works, even though it has been optimized as previously discussed. Especially, the 

HMM (Cairo) experiment performed by Cook et al. (2012) is noteworthy because it uses the 

same dataset as this work, but with a fully equipped HMM based classifier that was connected 

directly to the sensors.  

 

Figure 9.5. HL-SHS real-time learning performance compared to the HMM model used by (Kasteren et 

al., 2008a). X-axis is learning times and y-axis is true-positive outputs in percentage.  

Comparing the real-time learning for the HL-SHS algorithm with the HMM based system 

presented by Kasteren et al. (2008a) reveals that this system offers similar accuracy and its 

learning rate is approximately the same (Figure 9.5). As illustrated, the x-axis is the number 

of training times the algorithms have been trained and the y-axis is the predicting score in 

true-positive percent.     
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The S.O.s have been optimized with a focus on being implemented on a resource restricted 

embedded microcontroller. Thus, non-linear approximations and quantizations have been used 

in form of binary sensor events, using integer mathematics, to avoid expensive 

multiplications, simplify the probability functions, use binary decisions, adding a dynamic 

threshold, and approximating the logarithm functions, etc. (Section 8.5). This optimized S.O. 

algorithm must be validated with respect to its performance. Firstly, it needs to be validated in 

terms of its learning and predicting abilities compared to similar systems. However, a direct 

comparison with similar systems is not possible, because to the author’s knowledge they do 

not exist. So, as an alternative it is compared to the existing centralized systems, where the AI 

algorithm is allocated on a server. Secondly, the S.O.s are implemented on resource restricted 

microcontroller devices, which often are placed at hard-to-reach positions in the smart homes. 

Thus, its resource consumption and performance in terms of battery lifetime need to be found 

by using simulation. 

Validating the S.O. in terms of its learning and predicting abilities has been performed by 

using a designed and implemented simulator (Subsection 8.4) and a publicly available dataset 

and the performance has been compared to the results presented by Kasteren et al. (2008a) 

(Figure 9.6).  

 

Figure 9.6. The SO-NB algorithm developed in this work compared to the results achieved by Kasteren et 

al. (2008a) on a centralized server. 

As illustrated (Figure 9.6), the modified and implemented S.O. algorithm (modified NB) 

performs similar to the centralized server implementation of the traditional NB algorithm with 
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full resolution, no quantization, and using floating-point calculations, i.e. all the needed 

resources were provided.  

Research of the S.O. resource consumption and performance in terms of battery lifetime has 

been performed by using a simulator from Microchip and the public available dataset from the 

Milan CASAS experiment (Cook, 2012), (Section 8.7). The simulated code was implemented 

using the discussed optimizations and has been compared with a non-optimized 

implementation in Figure 9.7 (Section 8.2), (Section 8.5), (Section 8.8).     

 

Figure 9.7. Saving in process-time (ms) achieved by using optimized FIFO buffer and naïve Bayes 

implementations. 

As illustrated considerable savings have been achieved (Figure 9.7) for processing one event 

in an optimized S.O. compared to a non-optimized S.O.  

From Milan CASAS dataset (Cook, 2012) 5 kitchen sensors have been selected and their 

energy consumption of transmitting events in a traditionally centralized system has been 

compared to the energy consumption used in the same system based on S.O.s (Section 8.8). 

Because the S.O.s only transmit predicted actions and not all the sensor events, large savings 

in consumed energy and smart home network load have been found (Figure 9.8) (Section 8.8). 
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Figure 9.8. Left-hand side: A traditional sensor framework (Transmit-all-events) is compared with the 

presented S.O. concept. Five kitchen sensors in a CASAS smart home have been used. Right-hand side: 

Saving in transmitted events. 

Thus, a common centralized state-of-the-art system like ―a smart home in a box‖ (Cook et al., 

2012) or the smart home experiments performed by (Kasteren et al., 2008a) transmit all 

sensor events to a centralized server, which performs the AI processing; such a system is 

named ―tx-all-events‖ in Figure 9.8. In contrast, the S.O.-based concept ―consumes‖ the 

events locally and only transmits the predicted actions (Lynggaard, 2013c). This means that 

the energy is used to process the event locally and to transmit the predicted actions. However, 

as illustrated in Figure 9.8 this amount of energy is much lower. In addition, the amount of 

predicted actions is much lower than the amount of sensor events, why the network load, the 

interference level, and the power consumption are reduced.   

In conclusion, the S.O. concept presented in this work moves the state-of-the-art research 

frontiers beyond the existing agent and centralized based smart home systems, by contributing 

with new algorithms that cover both temporal and non-temporal AI algorithms. These 

algorithms are integrated into the S.O.s, i.e. they are implemented into small embedded 

microcontrollers. By using simulation based on third party datasets the performance of these 

S.O. algorithms compared to agent and centralized systems has been found to be equally good 

with respect to prediction performance, but superior with respect to energy consumption, 

resource usage, and network load. 
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9.4.4 QUESTION 3: GENERAL SYSTEM ARCHITECTURE 

This subsection looks into how the presented HL-SHS and the S.O. architectures support the 

smart home users by offering new intelligent services. These services are beyond what can be 

offered by the state-of-the-art smart homes because they are either centralized or agent based, 

which means that they miss the advantages in combining these systems shown in the present 

work. Furthermore, this work provides a ―true‖ distributed S.O. based system based on IoT in 

contrast to the state-of-the-art research of agent-based systems and a centralized approach 

(Subsection 4.3.1). The following paragraph discusses these services.        

A smart home must comprise services for initial setup, management, and user interaction with 

the smart home devices. The initial setup procedure used in the centralized smart homes 

includes a smart home management system, which often is based on a GUI (Silva et al., 

2012), (Rathnayaka et al., 2012) (Bregman & Korman, 2009). To be able to add new devices 

or communicate with existing devices they need to be identified by the system, which often 

means that the user must traverse through a menu hierarchy and possess the needed identity 

information. However, the SHS architecture presented in this work offer an alternative way. 

Thus, the user can identify a device (S.O.) by physically approximating it with a portable 

device (e.g. a smart phone) that reads the device RFID information. An app on the portable 

device is then able to perform most of the setup procedure and open the dedicated menu for 

the S.O. device, which is located on the centralized system part, i.e. the HL-SHS. From a user 

experience point of view this architecture relates the identity of a physical S.O. device to its 

virtual identity that exists in the centralized management system. Hence, this activity is 

similar to the user experience of remotely controlling a common TV, etc.  

Another advantage in the presented SHS architecture is the standalone ability of the S.O. 

devices. Decoupling the S.O. devices from the smart homes means that they are not part of a 

predefined system where the components depend on each other, such as the ―smart home in a 

box‖(Cook et al., 2012). Using decoupling means that different manufacturers are able to 

manufacture S.O. devices as long as the middleware interfaces are coherent (this requires 

some standardization, which is currently missing). Thus, the free market mechanisms are 

supported, which enables an evolution in the smart home area. From a user perspective this 

means that the S.O. devices like e.g. a table lamp can be manually operated without using its 
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smart features, or it can easily be integrated into the smart home AI-based framework, which 

enables its full functionality. Additionally, by using the Internet, the user is able to remotely 

control S.O. devices and perform programming of these remotely. This means that the user 

can turn S.O. device functionality on/off or program simple built-in timer functionality 

remotely. Thus, users are in control and are able to manage the S.O. device the way they 

prefer. The discussed benefits moves the research frontiers in smart homes beyond the state-

of-the-art and probably will be part of the future smart homes (Alam et al., 2012), (Silva et al., 

2012).        

An architecture that includes an S.O. part offers advantages as previously discussed. 

However, combining this with a HL-SHS part provides advantages in form of synergetic 

services. One of these services is the smart home calendar introduced by Yu et al. (2010), 

which keeps track of the users and makes updates based on previous decisions taken by the 

users. By extending their framework the smart home calendar can capture user activities that 

have been detected by the S.O.s. This approach offers HL-SHS-agent based services (Section 

9.1), offers an overview of the performed user actions, and it offers the possibility to manage 

these, e.g. in relation to defined user profiles. In a future perspective this system can be 

expanded to include coordination with the individual smart home user calendars, which 

enables social or health related services, etc. In addition, smart home calendars can be used in 

a larger perspective such as smart cities, intelligent power grids, and other big-data related 

services.          

The implicit context-based filtering constituted by the S.O.-devices grouping (Section 7.3) 

makes the HL-SHS user management more transparent. Thus, on a common centralized 

system an agent can either use all raw events, or some pre-filtering can be used to sort out the 

relevant ones. In the first case the sensor signal-to-noise ratio (i.e. they ―misfires‖) will affect 

the prediction and demand huge processing resources. In the second case pre-filtering requires 

complex structures and settings that interact with the huge amount of sensor data.  

The similarity between IoT and the S.O.s presented in this work enables new services in the 

areas of ambient assisted living (AAL) and telemedicine. Dohr et al. (2010) state that IoT will 

be an enabler for healthcare services and telemedicine where elderly stay in their homes and 

still are accessible for different groups of care providers. Their vision is shared by the EU-
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commission (2009). However, their works do not deal with the large amount of processing 

resources that are needed in the IoT devices for handling AAL scenarios, etc. However, in 

relation to the framework of HL-SHS and S.O.s this problem is manageable, because the 

S.O.s only perform part of the AI processing and hand over their results to the HL-SHS, 

which finishes the resource demanding part of the processing.  

In conclusion, the framework developed in this work moves the IoT research frontiers by 

offering the benefits of ―standalone‖ IoT devices alias S.O.s, but at the same time provides a 

high level framework (HL-SHS), which offers the beneficial elements found in the centralized 

smart home system research area. These contributions have been positioned research-wise by 

the provided simulations and examples. 
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10 CONCLUSION AND OUTLOOK  

This chapter starts with a discussion of the answer to the research question (Section 10.1). It is 

followed by a reflection of the used process (Section 10.2) and finally, the future challenges 

are explored in section 10.3.    

10.1 ANSWERING THE RESEARCH QUESTION 

This thesis has studied a smart home distributed system architecture and a distributed AI 

framework which can be integrated into it. Hence, the significance of this research is its 

contributions that move the state-of-the-art research forward in the relevant areas which 

constitute today’s (2013) smart homes. The derived distributed system architecture 

contributes with spatial flexibility and in particular with an S.O. framework which moves the 

smart home devices into the coming era of Internet of things. The derived distributed AI 

framework contributes with a hierarchical concept that offers the possibility to provide AI 

with different complexity levels at different spatial locations. In addition, the system offers 

progressive learning on the fly, i.e., the system improves gradually without priori training. 

Similarly, services are offered on the fly.     

To revisit the aim of this thesis the research questions are consulted. These are restated for 

convenience: 

Question 1: How should the distributed system architecture for smart homes be designed in 

order to incorporate AI and the diversity of S.O’s? 

The research objectives are to explore and derive a distributed system architecture, including 

S.O.s, use existing technology such as small embedded controllers, and provide support for 

the derived distributed AI framework. These areas have been researched and a model has been 

derived. Vital parts of the S.O.s, included in this model, have been implemented and 

simulated on a modern microprocessor platform. 

Question 2: How should the AI be distributed to comply with the smart home system 

architecture?       
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The objectives of this research question are to explore the possibility to distribute smart home 

AI systems, add real-time learning, support distributed AI embedded on small controllers with 

limited resources, and consider technologies that deal with the battery, bandwidth and 

processing challenges. These issues have been discussed and researched in this thesis. In 

addition, models have been derived for simulation of critical parts. Simulation outputs from 

these models have shown that the derived systems perform comparable to other systems.         

Additionally, this research provides significance in the form of its contribution to the smart 

home area where it provides context aware services based on AI and facilitates remote 

controls. However, some barriers exist in the form of high cost, inflexibility, and poor 

manageability. By using the derived thesis elements, i.e., the generality of the S.O.s in 

combination with the high-level AI framework these barriers are lowered. This is mainly 

because it facilitates a graduate process where the smart homes can be created on an 

evolutional basis. This means that the manufacturers can provide AI based smart devices 

(S.O.s), which are based on their own technologies as long as the middleware is compatible. 

In addition, the simplifications provided by the AI framework, the optimized battery 

performance, and the network structures enable smart devices to be implemented on small 

cheap embedded platforms. Using these platforms facilitate lower cost and an increased 

flexibility. Regarding the poor manageability AI will automate part of the smart home 

functionality; however, this does not necessarily increase the manageability.     

From an economic, political and strategic perspective this research provides a significant 

difference. Hence, the European Commission highlights the challenge in developing 

semantics and software, which can emulate human reasoning and identify smart devices as a 

potential growth and research area. Looking into the controlling and monitoring feature 

market in North America, a research survey indicates that 50 percent or more of the customers 

would like to control, set scenes and remotely monitor their homes. The forecasted value of 

this market today (2013) is 2.4 billion dollars.  

Thus conclusively, state-of-the-art solutions have been researched and derived. These moves 

the research frontiers forward and contribute to deploy the smart home concepts into real 

world products. 
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10.2 REFLECTIONS 

Basically the research period has progressed as planned, however, minor changes have been 

made to the plan on the fly. This has not been a problem because the used iteratively based 

process model was able to deal with these changes and adapt to the way to go. Thus, using an 

iterative experimenting approach with literature and online search, mathematical derivation, 

implementation, and verification by simulation has worked well, even though it did not 

always converge into a solution in the first few rounds.  

Students, media, friends and guests have often asked when smart homes become commonly 

available. Five years ago, the answer would probably have been five years from now; 

however, today we know this is not the case. Thus, researching the smart home area has 

revealed that it is slow moving and results come on a wide evolutionary basis. Nevertheless, it 

has been found that smart home research has made considerable progress during the author’s 

research period, but it has not been commercialized yet.     

From a summary point of view the performed smart home research has followed the planned 

activities, achieved the expected outcomes, and it has provided interesting learning.           

10.3 DISCUSSION AND FUTURE CHALLENGES 

This thesis has used an explorative approach to investigate distributed smart home models and 

their integrated AI framework. In these focus areas the subjects are explored, researched and 

modeled at a detailed level. However, solving some of the smart home challenges still leaves 

multiple challenges explored at a holistic level only. This section is dedicated to discuss some 

of these. 

10.3.1 SMART HOMES AND USERS  

To obtain user acceptance for adopting smart home technologies solutions with good usability 

are needed. Actually, this is one of the main barriers (Brush et al., 2011). Thus, a question that 

needs to be explored is how to design a distributed management system, which is able to 

handle complex context information and user preferences in a user friendly way. To answer 

this question a multitude of factors needs attention such as: Who are the users? Which smart 

home elements should be managed? How should this management be performed? In addition, 
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research is needed to explore the usability issues where the users are involved. Today (2013) 

experiments are mostly performed in living labs, but using an evolutionary approach instead, 

where the S.O.s gradually enter the homes, will most likely increase the user acceptance ratio 

as seen from the evolution of the Internet. This work supports an evolutionary approach by 

offering S.O.s, which can be integrated into common things and which offer generic support 

for existing smart home network technologies.  

Another challenge is adding multi-user support to the smart homes. This requires that the 

S.O.s have an identity, which is addressable from the users interface. Thus, using RFID is one 

possibility, another is using a picture recognition based scheme. So, by using a smart phone 

camera detection and identification of S.O.s are possible (Lynggaard, 2013d). Alternatively, 

RFID tags could trigger an application on the user’s smart phone which downloads and runs a 

dedicated management interface for the triggering device. Other alternatives are by using an 

intuitive GUI-based 3D virtual reality world (IBM Sales & Distribution, 2010) or finger 

gesture in front of the camera (Silva et al., 2012), etc. 

Issues as personalization, privacy and security also need future exploration. Personalization 

and privacy in smart homes could be based on user profiles which are widely used for 

personalization of services, device settings, etc., in our daily life. However, only limited 

information is available regarding systems that offer portable user profile management with 

support for human reasoning and AI. A portable system has the possibility to carry the user’s 

identity and profile required in different contexts. Designing such a system in the context of 

smart homes is challenging, because only few papers deal with this. Thus, Li et al.  (2010) 

deal with a customizing knowledge-based recommender system based on user behavior 

analysis. Silva et al. (2009) explore conflict solving between context-aware applications. 

Jacob et al. (2009) model dynamic service behavior using context functions. None of these 

papers address a portable user profile management system with human reasoning. The 

security perspective also needs to be addressed because S.O.s can be remote controlled and 

personal information can be revealed from these. Some low-level security is present in this 

work because it uses today’s technologies with built-in security systems (Subsection 4.5.6). 

However, a security framework for the high-level functionalities needs to be researched. 
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Brush et al. (2011) suggest using the unique nature of the smart home domain to design 

simple primitives, e.g., proximity indicates a level of trust.   

10.3.2 PUSHING THE SMART HOMES FORWARD 

As discussed, Brush et al. (2011) state four barriers that prevent smart homes from moving 

forward, they are high cost of ownership, inflexibility, poor manageability and difficulty 

achieving security. These have been discussed in subsection 10.3.1 and 3.3.2. So another 

question is if the market is available, but as discussed earlier (Subsection 3.3.2) the area of 

energy management, home monitoring, home control and home healthcare technology have a 

turnover of billions of dollars in the U.S. market only. Thus, the market is available, but to 

bring down the cost research is needed in the areas of multi manufacturing, i.e., the product 

must be attractive for the consumers, produced by different manufacturers, plug-and-play 

enabled, and the product must offer a level of autonomous behavior based on AI. However, 

the system presented in this work addresses most of these needs. 

The coming era of IoT will promote and broaden the market for smart home technologies. 

Hence, the presented S.O. concept and technologies can be used in other areas such as 

telemedicine, helping disabled persons, ambient assisted livings, reducing pollution, 

intelligent traffic systems, and facilitate green technologies. Further research is needed to 

achieve this. 

10.3.3 FUTURE SMART OBJECT CHALLENGES 

The IoT area shares many common elements a characteristics with the S.O. area as stated in 

section 3.4. However, there are differences because the S.O.s offer a general framework for 

supporting sensors and actuators with the needed resources such as AI, communication, local 

processing, operating system, middleware interface, etc. A future challenge is to what extent it 

is advantageous to integrate the S.O.s approach with the IoT area.  

It is reasonable to assume that the technology will progress according to Moore’s law, which 

means that the amount of processing power will increase and the power consumption will 

drop. Thus, low-power embedded devices together with their peripheral devices will iterate 

against the concept of SoC.  This kind of integration provides possibilities for using other 

technologies such as energy harvesting, integrated sensors with processing and transceiver 
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facilities. So, the future S.O.s have a possibility to be integrated with all its external devices 

and sensors which will reduce the price, the power consumption and the form factor. This area 

needs future research.  

Another area that needs attention is developing a standardized SHN protocol which supports 

simple low power data transfer in combination with a more power consuming high rate data 

transfer. Such a network will support the S.O.s daily action exchange and it will support a 

high-level exchange of setup information. This network needs to support very low-power 

sensor devices that use the transmit-only approach. A beneficial approach would be to use an 

ip-based topology because it will simplify the gateway devices. In addition this network must 

support wired and wireless devices, which are battery and mains powered. 

To handle the routing of different vendors system and protocol choices the S.O.s gateways 

and routers could benefit from the SDR and Cognitive Radio research areas. The aspects of 

SDR’s have been discussed in subsection 4.5.1. Cognitive Radio provides the possibility to 

use shared and unused frequency bands in one device. So, using these technologies in the S.O. 

area could be beneficial; however, research is needed in this area. 

10.3.4 FUTURE ARTIFICIAL INTELLIGENCE CHALLENGES     

With the future presence of embedded devices and SoC that offer more processing power for 

less power consumption it will be possible to allocate more advanced AI algorithms directly 

on the devices. So, it will be possible to use distributing processing where all the devices 

work together to form a powerful single virtual processing device which will be able to handle 

the HL-SHS and the user interface. This needs to be researched. However, the presented work 

has shown that using more advanced intelligence directly on the S.O.s will not improve the 

recognition probabilities (Subsection 5.6.2). 

Another challenge is to research the non-probabilistic algorithms in a distributed smart home 

context. Especially, the real-time learning feature provided by this work constitutes an 

interesting research area.  

Another AI area that could benefit from future research is the noise level embedded in sensor 

data. Thus, as stated (Subsection 8.4.3) the prediction probability normally is in the interval of 
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80 to 90 percent. Future research in this area could provide the driving mechanisms behind 

this limit and maybe suggest ways to improve it.         
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