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Foreword

The field of computer vision is both intellectually stimulating and full of im-
portant applications. As the field approaches maturity and commercial prod-
ucts start to appear, one of the most challenging problems is: How to make
algorithms robust? Computer vision algorithms are notoriously brittle. This
timely book presents a Maximum Likelihood framework to deal with robust-
ness. To paraphrase Kendall and Buckland: "An algorithm is robust if it is not
very sensitive to departure from the assumptions on which it depends."

During the past decade, researchers in computer vision have found that
probabilistic machine learning methods are extremely powerful. This book
describes some of these methods. In addition to the Maximum Likelihood
framework, Bayesian Networks, and Hidden Markov models are also used.
Three aspects are stressed: features, similarity metric, and models. Many in-
teresting and important new results, based on research by the authors and their
collaborators, are presented. To single out one result: Experiments after ex-
periments have shown that in many applications the empirical noise/error can
be fitted better with a Cauchy rather than a Gaussian model. This reminds me
of an analytical result I derived many years ago when I was working on the
compression of two-tone images: The differences between corresponding run-
lengths of two successive scan lines obey a Cauchy distribution if we assume
the directions of the boundaries between black and white is uniformly dis-
tributed. Why does the Cauchy distribution pop up so often in real-life data?
Are there theoretical results for the Cauchy distribution, akin to the Central
Limit Theorem for Gaussian?

Although this book contains many new results, it is written in a style that
suits both experts and novices in computer vision. To quote one of my more
junior graduate students, who carefully read the manuscript of the book, "It is
very clear and easy to understand even for a non-computer vision expert like
me."
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Finally, a personal note. Michael Lew was my Ph.D. student at Illinois.
Nicu Sebe was Michael’s Ph.D. student at Leiden, and thus my grand-student.
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Thomas S. Huang
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Preface

Computer vision is the enterprise of automating and integrating a wide range
of processes and representations used for vision perception. It includes many
techniques that are useful by themselves, such as image processing (transform-
ing, encoding, and transmitting images) and statistical pattern classification
(statistical decision theory applied to general patterns, visual or otherwise).
Moreover, it also includes techniques for geometric modeling and cognitive
processing. The field of computer vision may be best understood by consid-
ering different types of applications. Many of these applications involve tasks
that require either work in a hostile environment, a high rate of processing,
access and use of large databases of information, or are tedious for people to
perform. Computer vision systems are used in many and various types of en-
vironments - from manufacturing plants, to hospital surgical suits, and to the
surface of Mars. For example, in manufacturing systems, computer vision is
often used for quality control. In this application, the computer vision sys-
tem scans manufactured items for defects and provides control signals to a
robotic manipulator to remove defective parts automatically. Current exam-
ples of medical systems being developed include: systems to diagnose skin
tumors automatically, systems to aid neurosurgeons during brain surgery, sys-
tems to perform clinical tests automatically, etc. The field of law enforcement
and security is also an active area for computer vision system development
with applications ranging from automatic identification of fingerprints to DNA
analysis.

In a standard approach, statistical techniques in computer vision applica-
tions must estimate accurate model parameters despite small-scale noise in the
data, occasional large-scale measurement errors (outliers), and measurements
from multiple populations in the same data set. Increasingly, robust estimation
techniques from statistics are being used to solve these parameter estimation
problems. Ideally, these techniques should effectively ignore the outliers when
estimating the parameters of a single population. In our approach, we consider
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applications that involve similarity where the ground truth is provided. The
goal is to find the probability density function which maximizes the similarity
probability. Furthermore, we derive the corresponding metric from the proba-
bility density function by using the maximum likelihood paradigm and we use
it in the experiments.

The goal of this book is to describe and illuminate some fundamental prin-
ciples of robust approaches. Consequently, the intention is to introduce basic
concepts and techniques of a robust approach and to develop a foundation,
which can be used in a wide variety of computer vision algorithms. Chapter
1 introduces the reader to the paradigms, issues, and important applications
involving visual similarity, followed by an in-depth chapter (Chapter 2) which
discusses the most influential robust framework - maximum likelihood.

In recent years, the vision community has generalized beyond grayscale
algorithms toward color techniques which prompts the third chapter on color
based retrieval of images and objects. The other primary features which are
frequently discussed in the vision literature are texture and shape which are
covered in the fourth chapter and in the fifth chapter, respectively.

Beyond classification algorithms, the computer vision area has been inter-
ested in finding correspondences between pairs of images which have been
taken from different spatial positions (stereo matching) or different moments
in time (motion tracking). Our analysis extends to both of these with respect
to recent developments in robust techniques in Chapter 5.

Images containing faces are essential to intelligent vision-based human
computer interaction. The rapidly expanding research in face processing is
based on the premise that information about the user’s identity, state, and intent
can be extracted from images and that computers can then react accordingly,
e.g., by observing a person’s facial expression. The area of facial emotion
recognition is covered in Chapter 7.

In each of the chapters we show how the literature has introduced robust
techniques into the particular topic area, discuss comparative experiments
made by us, and conclude with comments and recommendations. Furthermore,
we survey the topic area and describe the representative work done.
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Chapter 1

INTRODUCTION

Computer vision has grown rapidly within the past decade, producing tools
that enable the understanding of visual information, especially for scenes with
no accompanying structural, administrative, or descriptive text information.
The Internet, more specifically the Web, has become a common channel for
the transmission of graphical information, thus moving visual information re-
trieval rapidly from stand-alone workstations and databases into a networked
environment. Practicality has begun to dictate that the indexing of huge col-
lections of images by hand is a task that is both labor intensive and expensive
- in many cases more than can be afforded to provide some method of intel-
lectual access to digital image collections. In the world of text retrieval, text
“speaks for itself" whereas image analysis requires a combination of high-level
concept creation as well as the processing and interpretation of inherent visual
features. Examples of visual features include color, texture, shape, motion, etc.
In the area of intellectual access to visual information, the interplay between
human and machine image indexing methods has begun to influence the de-
velopment of computer vision systems. Research and application by the image
understanding (IU) community suggests that the most fruitful approaches to IU
involve analysis of the type of information being sought, the domain in which
it will be used, and systematic testing to identify optimal methods.

The field of computer vision may be best understood by considering differ-
ent types of applications. Many of these applications involve tasks that either
are tedious for people to perform, require work in a hostile environment, re-
quire a high rate of processing, or require access and use of large databases
of information. Computer vision systems are used in many and various types
of environments - from manufacturing plants, to hospital surgical suits, and to
the surface of Mars. For example, in manufacturing systems, computer vision
is often used for quality control. There, the computer vision system will scan
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manufactured items for defects and provide control signals to a robotic manip-
ulator to remove defective parts automatically. Current examples of medical
systems being developed include: systems to diagnose skin tumors automati-
cally, systems to aid neurosurgeons during brain surgery, systems to perform
clinical tests automatically, etc. The field of law enforcement and security is
also an active area for computer vision system development with applications
ranging from automatic identification of fingerprints to DNA analysis.

1. Visual Similarity
Similarity has been a research topic in the psychology field for decades, for

example, early researchers were Wallach [Wallach, 1958], and Tversky and
Krantz [Tversky and Krantz, 1977]. Recently there has been a huge resurgence
in the topic. Similarity judgments are considered to be a valuable tool in the
study of human perception and cognition, and play a central role in theories
of human knowledge representation, behavior, and problem solving. Tversky
[Tversky, 1977] describes the similarity concept as “an organizing principle by
which individuals classify objects, form concepts, and make generalizations."

Retrieval of images by similarity, i.e. retrieving images which are similar
to an already retrieved image (retrieval by example) or to a model or schema,
is a relatively old idea. Some might date it to antiquity, but more seriously
it appeared in specialized geographical information systems databases around
1980, in particular in the Query by Pictorial Example system of IMAID [Chang
and Fu, 1980]. From the start it was clear that retrieval by similarity called for
specific definitions of what it means to be similar. In the mapping system, a
satellite image was matched to existing map images from the point of view of
similarity of road and river networks, easily extracted from images by edge
detection. Apart from theoretical models [Aigrain, 1987], it was only in the
beginning of the 90s that researchers started to look at retrieval by similarity
in large sets of heterogeneous images with no specific model of their seman-
tic contents. The prototype systems of Kato [Kato, 1992], followed by the
availability of the QBIC commercial system using several types of similarities
[Flicker et al., 1995], contributed to making this idea more and more popular.

Typically, a system for retrieval by similarity rest on three components:

Extraction of features or image signatures from the images, and an efficient
representation and storage strategy for this precomputed data.

A set of similarity measures, each of which captures some perceptively
meaningful definition of similarity, and which should be efficiently com-
putable when matching an example with the whole database.

A user interface for the choice of which definition of similarity should be
applied for retrieval, presentation of retrieved images, and for supporting
relevance feedback.
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The research in the area has made evident that:

A large number of meaningful types of similarity can be defined. Only part
of these definitions are associated with efficient feature extraction mecha-
nisms and (dis)similarity measures.

Since there are many definitions of similarity and the discriminating power
of each of the measures is likely to degrade significantly for large image
databases, the user interaction and the feature storage strategy components
of the systems will play an important role.

Visual content based retrieval is best used when combined with the tra-
ditional search, both at user interface and at the system level. The basic
reason for this is that content based retrieval is not seen as a replacement of
parametric (SQL), text, and keywords search. The key is to apply content
based retrieval where appropriate, which is typically where the use of text
and keywords is suboptimal. Examples of such applications are where vi-
sual appearance (e.g. color, texture, motion) is the primary attribute as in
stock photo/video, art, etc.

A concept of similarity is inherently present in stereo matching. In a stereo
matching setup, shots of a given static scene are captured from different view-
points and the resulting images differ slightly due to the effect of perspective
projection. Features that distinguish stereo matching from image matching in
general are the following:

The important differences in the stereo images result from the different
viewpoints, and not, for example from changes in the scene. We therefore
seek a match between two images, as opposed to a match between an im-
age and an abstract model (although the latter may be an important step in
determining the former).

Most of the significant changes will occur in the appearance of nearby ob-
jects and in occlusions. Additional changes in both geometry and photom-
etry can be introduced in the film development and scanning steps, but can
usually be avoided by careful processing. If the images are recorded at very
different times, there may by significant lighting effects.

Modeling based on stereo matching generally requires that, ultimately,
dense grids of points are matched.

Ideally, we would like to find the correspondences (i.e., matched locations)
of every individual pixel in both images of a stereo pair. However, it is obvious
that the information content in the intensity value of a single pixel is too low for
unambiguous matching. In practice, therefore, coherent collections of pixels
are matched.
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Matching is complicated by several factors related to the geometry of the
stereo images. Some areas that are visible in one image may be occluded in the
other, for instance, and this can lead to incorrect matches. Periodic structures
in the scene can cause a stereo matcher to confuse a feature in one image with
features from nearby parts of the structure in the other image, especially if the
image features generated by these structures are close together compared with
the disparity of the features. If there is a large amount of relief in the scene
(e.g., a vertical obstruction that projects above the ground plane in an aerial
view), the corresponding features may be reversed in their positions in the two
stereo images.

Similarity is also present in a video sequence where motion is the main
characterizing element. Here the frames differ slightly due to a change in
the relative position of spatial entities in the sequence or to a camera move-
ment. Methods that compute an approximate estimation of motion follow two
approaches. One method takes into account temporal changes of gray level
primitives, from one frame to the following one, and computes a dense flow
usually at every pixel of the image. The other one is based on the extraction of
a set of sparse characteristic features of the objects, such as corners or salient
points, and their tracking in subsequent frames. Once interframe correspon-
dence is established, and constraints are formulated on object rigidity, motion
components are obtained by solving a set of non-linear equations [Aggarwal
and Nandhakumar, 1988].

Gudivada [Gudivada and Raghavan, 1995] has listed different possible types
of similarity for retrieval: color similarity, texture similarity, shape similarity,
spatial similarity, etc. Some of these types can be considered in all or only
part of one image, can be considered independently of scale or angle or not,
depending on whether one is interested in the scene represented by the image
or in the image itself.

Representation of features of images - like color, texture, shape, motion,
etc. - is a fundamental problem in visual information retrieval. Image anal-
ysis and pattern recognition algorithms provide the means to extract numeric
descriptors which give a quantitative measure of these features. Computer vi-
sion enables object and motion identification by comparing extracted patterns
with predefined models. In this section we discuss specific issues regarding
the representation of the visual content in applications involving color, texture,
shape, stereo matching, motion tracking, and facial emotion recognition. A
more elaborate discussion is presented in Chapters 3, 4, 5, 6, and 7.

1.1 Color
Color is an important attribute of visual information. Not only does color

add beauty to objects but it also gives information about objects as well. Fur-
thermore, color information facilitates our daily life, e.g. in traffic when read-
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ing a stop light or in identification of a favorite team in a sport event. Color
is related to chromatic attributes of images. Human color perception is con-
cerned with physical phenomena, neurophysiological effects, and psychologi-
cal behavior [Boynton, 1990].

Color distribution similarity has been one of the first choices for retrieval
because if one chooses a proper representation and measure, it can be reliable
even in the presence of changes in lighting, view angle, and scale. However,
the recorded color varies considerably with the surface orientation, position
and spectrum of the illuminant, the viewpoint of the camera. Moreover, the
human perception of color is an intricate problem and many attempts have
been made to capture color perceptual similarity.

From the physical point of view, color perception derives from the spectral
energy distribution of the electromagnetic radiation that strikes the retina. This
is usually expressed as a function of wavelengthE(λ) in the visible range of
380-780nm. Spectral energy distribution can be expressed as:

E(λ) = S(λ)R(λ) (1.1)

whereS(λ) is the spectral distribution of the light source when light strikes
the observed object andR(λ) is the spectral reflectance characteristics of the
object surface.

The response of the human visual system to differences inE(λ) originates
from three distinct types of photoreceptor cells in the retina, called cones,
which have long, medium, and short wavelength sensitivitySi(λ).

Spectral energy distribution of a colored lightC(λ) produces signals which
are described by a spectral responseαi(C)

αi(C) =

∫ λmax

λmin

Si(λ)C(λ)dλ i = 1, 2, 3 (1.2)

These signals are transformed in order to produce output signals that pro-
voke color sensation in the brain.

On the other hand, from the psychological point of view, perception of a
color is related to several factors including color attributes (brightness, chro-
maticity, and saturation), surrounding colors, color spatial organization, the
observer’s memory, knowledge, or experience.

Color indexing is one of the most prevalent retrieval methods in content
based image retrieval. Given a query image, the goal is to retrieve all the
images whose color compositions are similar to the color composition of the
query image. Typically, the color content is described using a histogram
[Swain and Ballard, 1991]. A color histogram is obtained by discretizing im-
age colors and counting how many pixels belong to each color. The fundamen-
tal elements of the color histogram based approach include the selection of a
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color feature space [Sebe and Lew, 2000a] together with the associated quanti-
zation scheme [Sebe and Lew, 2000b], and the histogram distance metric [Sebe
and Lew, 2001a].

There has been no consensus about which color feature space is most suit-
able for color histogram based image retrieval. The problem is a result of
the fact that there does not exist a universally accepted color space, and color
perception is significantly subjective [Wyszecki and Stiles, 1982]. As a conse-
quence, a large variety of color spaces is used in practice.

RGB representations are widely used [Flicker et al., 1995][Jain and
Vailaya, 1996], however, theRGB color representation is a good choice only
when there is no variation in recording or in the perception because this rep-
resentation was designed to match the input channel of the eye. An image
expressed inRGB makes most sense when it is recorded in frontal view under
standard conditions.

A significant improvement over theRGB can be obtained if the bright-
ness information is separated from the chrominance. A solution is to use the
opponent color representation which uses the opponent color axesR − G,
2B − R − G, R + G + B [Swain and Ballard, 1991]. With this solution, the
first two chromaticity axes can be down-sampled as humans are more sensitive
to brightness than they are to chroma. This color representation is invariant to
changes in illumination intensity and shadows.

TheHSV representation is also often selected for its invariant properties
[Stricker and Orengo, 1995]. The hue is invariant under the orientation of the
object with respect to the illumination and camera direction and hence is more
suited for object retrieval [Gevers and Smeulders, 1999].

Other approaches use the Munsell or theL∗a∗b∗ color spaces [Sebe and
Lew, 1999a] because of their relative perceptual uniformity. TheL∗a∗b∗ rep-
resentation is designed so that the Euclidean distance between two colors mod-
els the human perception of color differences. A wide variety of photometric
color invariants for object retrieval were derived in [Gevers and Smeulders,
2000] from an analysis of Schafer’s model of object reflection.

Typically a histogram intersection criterion is used to compare color his-
tograms. Different approaches introduced sophisticated methods of compar-
ing histograms which more correspond to human judgment of color similarity
[Sawhney and Hafner, 1994][Hafner et al., 1995]. Hafner et al. [Hafner et al.,
1995] suggest the usage of a quadratic form of distance measure which tries
to capture the perceptual similarity between any two colors. Observing the
fact that the color histograms lack information about how color is spatially dis-
tributed, Huang et al. [Huang et al., 1997] introduced the color correlogram as
a color feature for image retrieval. This feature characterizes how the spatial
correlation of pairs of color changes with distance in an image.
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In all of these works, most of the attention has been focused on the color
models as well as on finding better features. However, little or no consideration
was paid for investigating the noise models and finding better metrics. Even
when different metrics were presented as in [Kelly et al., 1995] and [Kelly
et al., 1996], there was no discussion how and why these metrics influence the
retrieval results.

Color representations and color based retrieval are addressed in detail in
Chapter 3.

1.2 Texture
Texture is a broad term used in pattern recognition to identify image patches

(of any size) that are characterized by differences in brightness. Generally
speaking, a texture has to do with repeated patterns in the image. Smoothed
images are usually not considered as textured images. The size of the im-
age patch, the number of distinguishable gray levels primitives, and the spatial
relationship between these primitives, are all interrelated elements which char-
acterize a texture [Brodatz, 1966]. A scale of reference must be decided in
order to analyze a texture. It is conventional in the texture analysis literature
to investigate texture at the pixel resolution scale; that is, the texture which
has significant variation at the pixel level of resolution, but which is homoge-
neous at a level of resolution about an order of magnitude coarser. From the
psychological point of view, texture features that strike the human observer
are granularity, directionality, and repetitiveness [Tamura et al., 1978][Liu and
Picard, 1996].

Interest in visual texture was triggered by the phenomenon of texture dis-
crimination which occurs when a shape is defined purely by its texture, with
no associated change in color or brightness: color alone cannot distinguish be-
tween tigers and cheetahs! This phenomenon gives clear justification for tex-
ture features to be used in content based retrieval together with color and shape.
Several systems have been developed to search through image databases using
a combination of texture, color, and shape attributes (QBIC [Flicker et al.,
1995], Photobook [Pentland et al., 1996], Chabot [Ogle and Stonebracker,
1995], VisualSEEk [Smith and Chang, 1996], etc.). However, texture alone
can be used for content based retrieval [Ma and Manjunath, 1998][Ramsey
et al., 1999][Smith and Chang, 1994].

In practice, there are two different approaches in which texture is used as the
main feature for content based retrieval. In the first approach, texture features
are extracted from the images and then are used for finding similar images
in the database [Ma and Manjunath, 1998][Gorkani and Picard, 1994] [Smith
and Chang, 1994]. Texture queries can be formulated in a similar manner to
color queries by selecting examples of desired textures from a palette, or by
supplying an example query image. The system then retrieves images with
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texture measures most similar in value to the query. The systems using this
approach may use previously segmented textures as in the applications with
Brodatz database [Picard et al., 1993], or they first have a segmentation stage
after which the extracted features in different regions are used as queries [Ma
and Manjunath, 1998]. The segmentation algorithm used in this case may
be crucial for the content based retrieval. In the second approach, texture is
used for annotating the image [Picard and Minka, 1995]. Here, vision based
annotation assists the user in attaching descriptions to large sets of images. The
user is asked to label a piece of an image and a texture model can be used to
propagate this label to other visually similar regions.

The method of texture analysis chosen for feature extraction is critical to the
success of the texture classification. However, the metric used in comparing
the feature vectors is also clearly critical. Many methods have been proposed
to extract texture features either directly from the image statistics, e.g. co-
occurrence matrix [Haralick et al., 1973], or from the spatial frequency domain
[Van Gool et al., 1985]. Ohanian and Dubes [Ohanian and Dubes, 1992] stud-
ied the performance of four types of features: Markov Random Fields param-
eters, Gabor multi-channel features, fractal based features, and co-occurrence
features. Comparative studies to evaluate the performance of some texture fea-
tures were made in [Reed and Du Buf, 1993], [Ojala et al., 1996], [Sebe and
Lew, 2000d], and [Sebe and Lew, 2000c].

Recently multiscale approaches applied to the texture problem have received
wide attention. Wavelets have often been considered for their locality and
compression efficiency. Smith and Chang [Smith and Chang, 1994] used the
statistics (mean and variance) extracted from the wavelet subbands as the tex-
ture representation. To explore the middle-band characteristics, tree-structured
wavelet transform was used by Chang and Kuo [Chang and Kuo, 1993]. Ma
and Manjunath [Ma and Manjunath, 1995] evaluated the texture image anno-
tation by various wavelet transform representations, including the orthogonal
and bi-orthogonal wavelet transforms, the tree-structured wavelet transform,
and the Gabor wavelet transform (GWT). They found out that the Gabor trans-
form was the best among the tested candidates, which matched the human
vision study results [Beck et al., 1987].

A texture is usually represented through a numerical vector, holding mea-
sures of texture features. Image processing operators, operating in either the
space or frequency domain, are used to derive measures of texture features
[Sebe and Lew, 2001b][Tuceryan and Jain, 1998]. A texture is therefore mod-
eled as a point in a suitable multidimensional feature space. Standard mathe-
matical distances likeL2 or L1 are used to measure the distance between two
points in the texture feature space. Most of the previous studies have focused
on the features, but not on the metric, nor on modeling the similarity distribu-
tion.
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Texture modeling and retrieval by texture similarity are discussed in detail
in Chapter 4.

1.3 Shape
Shape is a concept which is widely understood yet difficult to define for-

mally. For human beings perception of shape is a high-level concept whereas
mathematical definitions tend to describe shape with low-level attributes.
Therefore, there exists no uniform theory of shape. However, the word shape
can be defined in some specific frameworks. For object recognition purposes
Marshall [Marshall, 1989] defined shape as a function of position and direc-
tion of a simply connected curve within a two-dimensional field. Clearly, this
definition is not general, nor even sufficient for general pattern recognition.

In pattern recognition, the definition suggested by Marshall [Marshall,
1989] is suitable for two dimensional image objects whose boundaries or pix-
els inside the boundaries can be identified. It must be pointed out that this kind
of definition requires that there are some objects in the image and, in order
to code or describe the shape, the objects must be identified by segmentation.
Therefore, either manual or automatic segmentation is usually performed be-
fore shape description.

To humans, a few selected signs are not only sufficient for identification but
also determine the impression of a complete and real representation of the ob-
ject. On the other hand, computer vision research has provided many different
solutions for shape representation and measurement of the difference of two
shapes. For the purposes of retrieval by shape similarity, representations are
preferred such that the salient perceptual aspects of a shape are captured and
the human notion of closeness between shapes corresponds to the topological
closeness in the representation space.

A proper definition of shape similarity calls for the distinctions between
shape similarity in images (similarity between actual geometrical shapes ap-
pearing in the images) and shape similarity between the objects depicted by
the images, i.e. similarity modulo a number of geometrical transformations
corresponding to changes in view angle, optical parameters, and scale. In some
cases, one wants to include even deformation of non-rigid bodies. The first type
of similarity has attracted research work only for calibrated image databases
of special types of objects, such as ceramic plates. Even, in this case, the
researchers have tried to define shape representations which are scale indepen-
dent, resting on curvature, angle statistics, and contour complexity. Systems
such as QBIC [Flicker et al., 1995] use circularity, eccentricity, major axis ori-
entation (not angle-independent), and algebraic moment. It should be noted
that in some cases the user of a retrieval system will want a definition of shape
similarity which is dependent on view angle (for instance will want to retrieve
trapezoids with an horizontal basis and not the other trapezoids).
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In the general case, a promising approach has been proposed by Sclaroff
and Pentland [Sclaroff and Pentland, 1995] in which shapes are represented
as canonical deformations of prototype objects. In this approach, a “physical"
model of the 2D-shape is built using a new form of Galerkin’s interpolation
method (finite-element discretization). The possible deformation modes are
analyzed using the Karhunen-Loeve transform. This yields an ordered list of
deformation modes corresponding to rigid body modes (translation, rotation),
low-frequency non-rigid modes associated to global deformations, and higher-
frequency modes associated to localized deformations.

As for color and texture, the present schemes for shape similarity model-
ing are faced with serious difficulties when images include several objects or
background. A preliminary segmentation as well as modeling of spatial rela-
tionships between shapes is then necessary (are we interested in finding images
where one region represent a shape similar to a given prototype or to some spa-
tial organization of several shapes?).

A promising approach toward shape segmentation is using active contours.
Active contours were first introduced by Kass et al. [Kass et al., 1988], and
were termed snakes by the nature of their movement. They are a sophisticated
approach to contour extraction and image interpretation. Active contours are
defined as energy-minimizing splines under the influence of internal and ex-
ternal forces. The internal forces of the active contour serve as a smoothness
constraint designed to hold the active contour together (elasticity forces) and
to keep it from bending too much (bending forces). The external forces guide
the active contour towards image features such as high intensity gradients. The
optimal contour position is computed such that the total energy is minimized.
The contour can hence be viewed as a reasonable balance between geometrical
smoothness properties and local correspondence with the intensity function of
the reference image. The principal advantage of using an active contour ap-
proach is that the image data, the initial estimate, the desired contour proper-
ties, and the knowledge-based constraints are integrated into a single extraction
process.

Perhaps the most popular method for shape description is the use of invari-
ant moments [Hu, 1962] which are invariant to affine transformations. When
gross structural features are characterized by the invariant moments, the global
(region) properties provide a firm common base for similarity measure between
shapes silhouettes. In the cases where there is no occlusion, the invariance to
position, size, and orientation, and the low dimensionality of the feature vector
represent good reasons for using the invariant moments in matching shapes.

Shape based retrieval issues are discussed in detail in Chapter 5.
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1.4 Stereo
Because our eyes are placed some distance apart, they do not see the exact

same image. However, the two different impressions on the retina are united
in one single image representation in the brain. Although the eyes actually
record two images, we have the sensation of viewing the scene from one spot,
as if we had only one eye in the center of the forehead. The process is called
stereopsis, and we talk of the stereoscopic or cyclopean image. Recognition of
this surprising fact is the starting point in stereoscopy.

More generally, stereopsis refers to the capability of determining the depth
of a three-dimensional point by observing the point on two perspective pro-
jection images taken from different positions. The common area appearing in
both images of the stereo pair is usually 40% to 80% of the total image area.

Stereo imaging offers an intuitive way to reconstruct the lost depth informa-
tion. It relies on one fundamental finding: if two shots of a given scene are
captured from two different viewpoints, then the resulting images will differ
slightly due to the effect of perspective projection. Stereo matching implies
finding correspondences between these images. If the correspondences can be
found accurately and the camera geometry is known, then a 3D model of the
environment can be reconstructed [Marr and Poggio, 1979][Barnard and Fis-
chler, 1982]. Stated more simply, stereo matching is the process of finding a
pair of image points produced by the same object point in a stereo arrange-
ment. The distance that one of the points has shifted with respect to the second
one - relative to its local coordinate system - is termed disparity and is the
fundamental measure required to reconstruct a scene.

Several algorithms have been developed to compute the disparity between
images, e.g. the correlation based methods [Luo and Maitre, 1990] or feature
based methods [Grimson, 1985].

In correlation based stereo [Luo and Maitre, 1990][Mori et al., 1973]
[Kanade and Okutomi, 1994] disparity is computed by fixing a small win-
dow around a pixel in the left image, then measuring the Sum-of-Squared-
difference (SSD) error between intensities in that window and those in similar
windows placed at different locations in the right image. The placement that
yields the lowest error gives the disparity estimate. However, as Barnard and
Fischler [Barnard and Fischler, 1987] pointed out, “a problem with correla-
tion (or SSD) matching is that the patch (window) size should be large enough
to include enough intensity variation for matching but small enough to avoid
the effects of projective distortion." If the window is too small and does not
cover enough intensity variation, it gives poor disparity estimate, because the
signal (intensity variation) to noise ratio is low. If, on the other hand, the win-
dow is too large and covers a region in which the depth of scene points (i.e.,
disparity) varies, then the position of maximum correlation or minimum SSD
may not represent correct matching due to different projective distortions in
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the left and right images. For this reason, a window size should be selected
adaptively depending on local variations of intensity and disparity. For do-
ing this a statistical model of the disparity distribution within the window is
proposed by Kanade and Okutomi [Kanade and Okutomi, 1994]. Another so-
lution is given by Fusiello et al. [Fusiello et al., 1997]. They implemented an
algorithm that is the extension of the simple SSD match in the sense that nine
windows were used instead of one. The reference and matching image points
were placed at pre-defined locations within the windows in order to find the
best area-correlation amongst them.

In feature based stereo [Grimson, 1985][Matthies, 1989] semantic features
(with known physical properties and/or spatial geometry) or intensity anomaly
features (isolated anomalous intensity patterns not necessarily having any
physical significance) are the basic units that are matched. Semantic features
of the generic types include occlusion edges, vertices of linear structures, and
prominent surface markings; domain specific semantic features may include
such features as the corner or peak of a building, or a road surface marking.
Intensity anomaly features include zero crossings or salient points [Sebe et al.,
2000b]. Methods used for feature matching often include symbolic classifica-
tion techniques, as well as correlation.

Cox et al. [Cox et al., 1996] presented a stereo algorithm that performs
matching on the individual pixel intensity, instead of using an adaptive win-
dow as in the correlation based methods. Their algorithm optimizes a max-
imum likelihood cost function which assumes that corresponding features in
the left and right images are normally distributed about a common true value.
However, the authors [Cox et al., 1996] noticed that the normal distribution as-
sumption used to compare corresponding intensity values is violated for some
of their test sets and therefore they decided to alter the stereo pair so that the
noise distribution would be closer to a Gaussian.

Most of the efforts mentioned above were concentrated on finding a better
algorithm or feature that can provide a more accurate and dense disparity map.
Some of them use a simple SSD (L2) or SAD (L1) metric in matching corre-
spondences or make assumptions about the corresponding features in the left
and right stereo images. Recent research by Bhat and Nayar [Bhat and Nayar,
1998] concluded that the SSD used in a stereo matching procedure is sensitive
to outliers and therefore robust M-estimators should be used for stereo match-
ing. However, the authors [Bhat and Nayar, 1998] did not consider metrics
based on similarity distributions. They considered ordinal metrics, where an
ordinal metric is based on relative ordering of intensity values in windows -
rank permutations.
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1.5 Motion
Motion is the main characterizing element in a sequence of frames. It is

directly related to a change in the relative position of spatial entities or to a
camera movement. The measurement of object or camera motion from video
sequences is an important component in many applications. For example, in
computer vision systems it enables the identification and tracking of the objects
that make up a scene; while in video data compression it provides a means of
reducing redundancy - knowing the motion of an object allows its position
in successive frames to be predicted, removing the need to retransmit identi-
cal frame data and leading to a reduction in the bit rate required to transmit
the video. Other applications include the generation of high resolution and
panoramic images from video and the automated building of virtual reality
environments. In the case of video sequences the differences in two images
result mainly from the changes in scene and not from the different viewpoint
positions as in stereo matching.

An important issue is to track moving feature points on human faces in order
to analyze human facial movement. The motion parameters of these feature
points can be used to reconstruct the original motion (e.g., human expression
synthesis [Tang and Huang, 1994]) or for further analysis (e.g., computerized
lipreading [Bregler et al., 1993] and expression recognition [Black and Yacoob,
1995; Cohen et al., 2003]).

There are two classical methods for tracking feature points, namely opti-
cal flow and block correlation (template matching). The former method tries
to find the correspondence between two images by calculating the velocity
(displacement vector) at which a point in the first image has moved in the sec-
ond image [Barron et al., 1994]. The latter tracks a specific point by finding
the maximum similarity between two pixel patterns of images containing this
point [Tang et al., 1994]. This approach is very similar to the correlation based
approach in stereo matching.

Stereo matching and motion tracking issues are addressed in detail in Chap-
ter 6.

1.6 Facial expression
Human face-to-face communication is an ideal model for designing a multi-

modal/media human-computer interface. The terms “face-to-face” and “inter-
face” indicate that the face plays an essential role in interpersonal communi-
cation. The face is used to identify other people, to interpret what has been
said by the means of lipreading, and to understand someone’s emotional state
and intentions on the basis of the shown facial expression. Personality, attrac-
tiveness, age, and gender can also be seen from someone’s face. Considerable
research in social psychology has also shown that facial expressions help co-
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ordinate conversation [Boyle et al., 1994; Stephenson et al., 1976] and have
considerably more effect on whether a listener feels liked or disliked than the
speaker’s spoken words [Mehrabian, 1968]. Mehrabian [Mehrabian, 1968] in-
dicated that the verbal part (i.e., spoken words) of a message contributes only
for 7 percent to the effect of the message as a whole, the vocal part (e.g., voice
intonation) contributes for 38 percent, while facial expression of the speaker
contributes for 55 percent to the effect of the spoken message. This implies
that the facial expressions form the major modality in human communication.

Recent advances in image analysis and pattern recognition open up the pos-
sibility of automatic detection and classification of emotional and conversa-
tional facial signals. Automatic facial expression analysis could bring facial
expressions into man-machine interaction as a new modality and could make
the interaction tighter and more efficient. Such a system could also make clas-
sification of facial expressions widely accessible as a tool for research in be-
havioral science and medicine.

Ekman and Friesen [Ekman and Friesen, 1978] developed the Facial Action
Coding System (FACS) to code facial expressions where movements on the
face are described by a set of action units (AUs) (each AU has some related
muscular basis). This system has been developed to facilitate objective mea-
surement of facial activity for behavioral science investigations of the face.
Most of the studies on automated expression analysis perform an emotional
classification. The most commonly used study on emotional classification of
facial expressions is the cross-cultural study on existence of “universal cate-
gories of emotional expressions." Ekman [Ekman, 1994] defined six such cat-
egories, referred to as thebasic emotions: happiness, sadness, surprise, fear,
anger, and disgust. He described each basic emotion in terms of a facial expres-
sion that uniquely characterizes that emotion. In the past years, many questions
arose around this study. Are the basic emotional expressions indeed univer-
sal [Ekman, 1982; Ekman, 1994], or are they merely a stressing of the verbal
communication and have no relation with an actual emotional state [Fridlund,
1991; Russell, 1994]? Also, it is not at all certain that each facial expression
that is displayed on the face can be classified under the six basic emotion cat-
egories. Nevertheless, most of the studies on vision-based facial expression
analysis rely on Ekman’s emotional characterization of facial expressions.

An important step in facial expression analysis is to classify (interpret, iden-
tify) the facial display conveyed by the face. Therefore, the design of the classi-
fiers used for emotion recognition is of crucial importance. There are basically,
two types of settings for emotion classification from video sequences: dynamic
and static classification.

The ’static’ classifiers classify a frame in the video to one of the facial
expression categories based on the tracking results of that frame. The most
commonly used classifiers for this approach are the Bayesian network clas-
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sifiers [Sebe et al., 2002; Cohen et al., 2002]. Typically, Bayesian network
classifiers are learned with a fixed structure – the paradigmatic example is the
Naive Bayes classifier. More flexible learning methods allow Bayesian net-
work classifiers to be selected from a small subset of possible structures – for
example, the Tree-Augmented-Naive-Bayes structures [Friedman et al., 1997].
After a structure is selected, the parameters of the classifier are usually learned
using maximum likelihood estimation.

Dynamic classifiers take into account the temporal pattern in displaying
facial expression. Hidden Markov model (HMM) based classifiers are com-
monly used in this case [Otsuka and Ohya, 1997a; Oliver et al., 1997; Lien,
1998]. One possibility is to use a multi-level HMM classifier [Cohen et al.,
2003]. In this case, combining the temporal information allows not only to
perform the classification of a video segment to the corresponding facial ex-
pression, as in the previous works on HMM based classifiers, but also to auto-
matically segment an arbitrary long video sequence to the different expressions
segments without resorting to heuristic methods of segmentation.

An important aspect is that while the static classifiers are easier to train and
implement, the dynamic classifiers require more training samples and many
more parameters to learn.

Details on facial expression recognition studies and experiments are given
in Chapter 7.

1.7 Summary
In conclusion, several major problems need to be addressed for the visual

similarity techniques:

Study of the distribution of measures for various feature spaces on large
real-world sets of image. In particular, how well is the perceptive similarity
order preserved by the measure when the number of images/videos grows?

Study of ranking visual items that correspond to human perception.

Definition of methods for the segmentation of images in homogeneous re-
gions for various feature spaces, and definition of models of this spatial
organization which could be robustly combined with the similarity of the
local features.

Detection of salient features to a type of images or objects, so that to free
the user from specifying a particular set of features in query process.

Combination of multiple visual features in image query and search.

Developing efficient indexing schemes based on image similarity features
for managing large databases. It has been shown that traditional database
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indexing techniques such as using R-trees fail in the context of content
based image search. Therefore, ideas from statistical clustering, multi-
dimensional indexing, and dimensionality reduction are extremely useful
in this area.

Apart from these issues, extraction and matching of higher (semantic) level
image/video attributes (such as recognition of object, human faces, and ac-
tions) are perhaps the most challenging tasks. Only when the features extracted
at both these levels are combined, can similarity-based indexes be built.

In addition, to the success of the field, formalization of the whole paradigm
of visual similarity is essential. Without this formalism it will be hard to de-
velop sufficient reliable and mission critical applications that are easy to pro-
gram and evaluate. Some early applications may be implemented without such
a rigorous formalism, but the progress in the field will require full understand-
ing of the basic requirements in visual similarity.

2. Evaluation of Computer Vision Algorithms
Most of the research in the computer vision and pattern recognition com-

munity is focussed on developing solutions to vision problems. With three
decades of research behind current efforts and the availability of powerful and
inexpensive computers, there is a common belief that computer vision is poised
to deliver reliable solutions. Unfortunately, for some applications there are no
methods available to test whether computer vision algorithms can live up to
their claims. Nor is there any way to measure performance among algorithms,
or to reliably determine the state-of-the-art of solutions to a particular problem.

How do you evaluate the work of others when you do not have their pro-
grams? What does it mean when a reimplementation does not work? Who
failed, the algorithm or the implementation? How do you compare results?
These problems are nicely presented by Price in his article “Anything You Can
Do, I Can Do Better (No You Can’t)..." [Price, 1986]: “A graduate student
determines that an operator, called the Homer Operator (HO for short), can
be used to determine stereo disparities. She writes her thesis and publishes
several papers with all the details that seem relevant ... A professor tells a
new graduate student to reimplement the algorithm described in the original
thesis and papers. Disparities which seem reasonable, are generated by the
program, and the student proceeds with research in motion, forgetting stereo.
Eventually, another student tries the programs on completely new data and the
programs fail to produce meaningful results. This student, being adept of sym-
bolic computation, discovers that the original algorithm works properly only
under extremely specific conditions, which were never explicitly discussed, but
which often occur in practice."
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The evaluation work can be divided in three basic categories. As is the risk
with any classification, the categories will not necessarily be clean divisions.
Evaluation work could fit into more than one category, or not neatly fit into any
category.

The first category is evaluations that are independently administered. In the
prototypical independent evaluation, one group collects a set of images, de-
signs the evaluation protocol, provides images to the users, and evaluates the
test results. This method allows for a high degree of standardization in the
evaluation, since all algorithms are tested on the same images and scored by
the same method. Thus, independent evaluations usually allow for a direct
comparison between competing approaches to a problem. The competing ap-
proaches are usually state-of-the-art algorithms and the individual competitors
are often the original developers of the algorithms. Independent evaluation by
a non-competitor gives a greater sense of impartiality and objectivity to the
results. The major drawback to this form of evaluation is the level of ongoing
effort required by the group administering the evaluation. Ideally, the evalua-
tion mechanism needs to evolve and be refined over time.

The second category is evaluations of a set of classification algorithms by
one group. The group wanting to do the evaluation will often not be able to
get access to original implementations of all of the algorithms of interest, and
so will have to implement some of the algorithms based on information in
the literature. This introduces the possibility that the version of the algorithm
evaluated will not be identical to that used by the original developers of the
algorithm. However, implementation and evaluation of a set algorithms by one
group can at least establish performance for baseline algorithms.

An important theoretical aspect of the first two categories is that ground
truth is not fuzzy and can be determined accurately. Classification problems
often exhibit this property. For example, the identity of a person in a face image
is not fuzzy, and the particular character that is written in a certain location
is known. As long as provision for recording ground truth is made at data
collection time, it should be possible to get reliable and accurate ground truth.
However, in practice things are sometimes not so simple.

The third category is problems where the ground truth is not self evident
and a major component of the evaluation process is to develop a method of
obtaining the ground truth.

Our effort fits best in the second category. We implemented several so-
phisticated algorithms from the computer vision literature and evaluated their
results in the presence of ground truth [Sebe et al., 1998][Sebe et al., 2000a]
[Lew et al., 2000]. For some of the algorithms we used the original source
code (when it was available) and we modified only the part of the code where
the information given by the ground truth was used. For our image retrieval
experiments we considered the applications of printer-scanner copy location
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and object recognition by color invariance. In the printer-scanner application,
an image was printed to paper and then scanned back into the computer. This
task involved noise due to the dithering patterns of the printer and scanner
noise. In object recognition, multiple pictures were taken of a single object at
different orientations. In these applications, the correct match (ground truth)
for an image was known at the moment of the creation of the database. In our
texture classification experiments the ground truth was implicitly given from
the procedure the texture database was created. We considered the Brodatz
texture database [Brodatz, 1966] and random samples from the original tex-
tures were extracted and stored in the database. When presenting a texture
sample as query, the goal was to retrieve as many as possible samples from the
same original texture. Also, in the case of shape retrieval the ground truth was
obtained from the procedure the database was created. We used the Coil-20
database [Murase and Nayar, 1995] which consists of 1,440 images of common
household objects. Each object was placed on a turntable and photographed
every5◦ for a total of 72 views per object. In stereo matching and motion
tracking, the ground truth is typically generated manually. A set of reference
points are defined in the images and then a person finds the correspondences
for the stereo pair or video sequence. In our experiments the ground truth was
provided by the laboratories where the images were taken. For the facial ex-
pression recognition experiments we used two databases of subjects that were
instructed to display facial expressions corresponding to different emotions. In
this case, the ground truth was consisted of the known labeled emotions.

As noted before, the presence of ground truth is very important in the eval-
uation and comparison of different algorithms. Additionally, the ground truth
may also provide some extra information for improving the results of an algo-
rithm. How can one use the information provided by the ground truth? This
is exactly one of the questions we try to answer in this book. Typically, in a
computer vision application involving similarity, feature vectors are extracted
from the images and a comparison metric is used to compare these feature vec-
tors. The ground truth contains the definition of similarity for that particular
application. In an ideal case, the similar images (or features) would be iden-
tical and then the retrieval or matching would be an easy problem to solve.
However, in real cases, the similar images are not identical and therefore when
comparing these images a certain distortion between them, called similarity
noise, will be present. If one can accurately model the similarity noise dis-
tribution, then the retrieval or matching results can be significantly improved
by using a suitable metric. The link between the similarity noise distribution
and the comparison metric is given by the maximum likelihood theory. For
example, according to the maximum likelihood theory, if the similarity noise
distribution is Gaussian then the corresponding comparison metric isL2. In
summary, having the ground truth in an application involving similarity, our
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goal is to find the probability density function which maximizes the similar-
ity probability. Furthermore, applying the maximum likelihood procedure we
determine the corresponding metric and use it in the experiments.

There were some efforts in the literature to model the noise that appears
in the images. Boie and Cox [Boie and Cox, 1992] model the noise that ap-
pears in the images due to the cameras used to record the images. Machine
vision cameras rely on the correspondence between the optical intensity dis-
tribution that is imaged on a sensor surface and the photoionization distribu-
tion produced in the sensor. Photoelectric effect devices were used, but the
majority of modern cameras are based on internal ionization sensors such as
silicon target vidicons and charge coupled devices (CCD’s). The conversion
of optical photons to electrical signal charge is a Poisson process in all cases,
and, hence, introduces a probabilistic measurement error due to the statistics
of the process. Second, these sensors are capacitive sources of signal charge
and, hence, are limited by two important electronic noise sources. Third, the
serial method of sensor “readout" produces direction-dependent correlations
in the electronic noises. Summarizing, camera noise is comprised of station-
ary direction-dependent electronic noises combined with fluctuations due to
signal statistics. These fluctuations enter as a multiplicative noise and are non-
stationary and vary over the scene. The authors [Boie and Cox, 1992] show
that a substantial simplification appears if the noise is modeled as Gaussian
distributed and stationary.

This work is complementary to ours. They try to model the imaging noise.
We try to model the noise between two images which are different due to vary-
ing orientation, random sampling, motion, or printer noise.

3. Overview of the Book
We introduce and expose a maximum likelihood framework to be used in

computer vision applications when ground truth is available. Chapter 2 de-
scribes the mathematical support for the maximum likelihood approach, to-
gether with the setup of our experiments. In Chapter 3 we apply the theoretical
results from Chapter 2 to determine the influence of the similarity noise model
on the accuracy of retrieval methods in color image databases. Maximum like-
lihood framework in texture classification and retrieval is addressed in Chap-
ter 4. Shape-based retrieval issues are presented in Chapter 5. In Chapter 6
we study the similarity noise model to be chosen in stereo matching appli-
cations. The same approach is then applied on a video sequence. Finally, a
classification-based framework for facial expression recognition is discussed
in detail in Chapter 7.

Chapter 2 formulates a framework for a maximum likelihood approach in
computer vision applications. It begins by introducing the robust estimation
procedure together with some historical examples where this procedure was
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applied (Section 2.1). In Section 2.2, we provide basic information regard-
ing the statistical distributions that are used across the book. We consider the
Gaussian distribution (Section 2.2.1), the exponential and the double expo-
nential distributions (Section 2.2.2), and finally the Cauchy distribution (Sec-
tion 2.2.3). Further, we introduce the basic concepts from robust statistics
including the outliers generation mechanisms (Section 2.3) and the classical
robust estimation procedure (Section 2.4) with an emphasis on Hampel’s ap-
proach [Hampel et al., 1986] based on influence functions. The maximum
likelihood relation with other approaches is investigated in Section 2.5. We
draw on the ideas of robust estimation and influence functions in formulat-
ing problems in which similarity is provided by a ground truth. Furthermore,
in Section 2.6 we illustrate our approach based on maximum likelihood which
consists of finding the best metric to be used in an application when the ground
truth is provided. The experimental setup is presented in Section 2.7.

Color based retrieval issues are discussed in Chapter 3. The chapter starts
with a historical introduction regarding the first color experiments, including
the famous debate between Newton and Goethe about the physical and per-
ceptual color analysis (Section 3.1). Physical aspects of light and color forma-
tion are presented in Section 3.2. Color models are discussed in Section 3.3,
with details regarding two of the most commonly used color models in con-
tent based retrieval (RGB andHSV ) and a color model introduced by Gevers
and Smeulders [Gevers and Smeulders, 1999] suitable for object retrieval and
recognition applications. Color based retrieval principles and applications are
investigated in Section 3.4. Color histograms and the metrics used in color in-
dexing are presented in Section 3.4.1. We examine two applications from com-
puter vision which involve distortions derived from changes in viewpoint and
the process of printing and scanning. The first application was finding copies
of images which had been printed and then scanned. For this application we
used the Corel stock photo database and a color histogram method for finding
the copies (Section 3.5). The second application (Section 3.6) dealt with find-
ing all images of an object in a database where the images were taken from
different viewpoints. Both the ground truth and the algorithm came from the
work by Gevers and Smeulders [Gevers and Smeulders, 1999]. Furthermore,
for both applications, we implemented Hafner’s quadratic perceptual similarity
measure [Hafner et al., 1995] and Huang’s correlogram [Huang et al., 1997] as
benchmarks (introduced in Section 3.4.1).

Texture classification and retrieval from a maximum likelihood perspective
are presented in Chapter 4. Section 4.1 suggests some of the possible defini-
tions that can be applied for texture. It emphasizes the fact that texture should
always be defined relative to a scale of reference. Human perception of texture
is investigated in Section 4.2. It presents the pioneering work of Julesz [Julesz
et al., 1973; Julesz, 1975] regarding the texture perception in the context of
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texture discrimination. We also present some psychophysical experiments that
suggest the brain performs a multi-channel, frequency, and orientation analysis
of the visual image formed on the retina. The approaches in which texture is
used as a main feature for content based retrieval are presented in Section 4.3.
Additionally, different texture features presented in the literature are discussed.
We focus on texture distribution models (Section 4.3.1) and on multi-scale tex-
ture representations using Gabor and Wavelet texture models (Section 4.3.2).
In the first experiments (Section 4.4) nine classes of texture taken from the
Brodatz’s album [Brodatz, 1966] were used. There were random samples ex-
tracted from each original texture (class) and the classification of a sample
was based on comparing the sample distribution of feature values to several
pre-defined model distributions of feature values with known true-class labels.
The samples were assigned the label of the model that was found to be more
similar. In the last experiments (Section 4.5) all the 112 Brodatz textures were
used in a texture retrieval application. Random samples were extracted from
the original textures and the goal was to retrieve as many samples as possible
from the same original texture as the query sample.

Shape based retrieval issues are addressed in Chapter 5. Section 5.1 covers
the basic aspects regarding shape characterization and analysis. Research in
shape analysis have been motivated by studies on human perception of visual
form. These are briefly presented in Section 5.2. In this chapter the problem of
image retrieval using shape is approached by active contours for shape segmen-
tation (Section 5.3) and invariant moments for shape measure (Section 5.4).
We discuss the traditional active contours and mention their fundamental lim-
itations in Section 5.3.1. Based on the generalized force balance equations
(Section 5.3.2) we present a method introduced by Xu and Prince [Xu and
Prince, 1997] which uses the gradient vector flow (Section 5.3.3). In our ex-
periments (Section 5.5) we compare the traditional active contour results with
the ones obtained with the method proposed by Xu and Prince [Xu and Prince,
1997] using the COIL-20 database [Murase and Nayar, 1995].

Stereo matching and motion tracking applications are presented in Chap-
ter 6. Early stereo attempts including the experiments conducted by Wheat-
stone and Brewster are discussed in Section 6.1. Stereo matching basic prin-
ciples and problems are presented in Section 6.2. Different stereo match-
ing algorithms from the literature are reviewed in Section 6.2.1. The stereo
matching algorithms that were used in the experiments are presented in Sec-
tion 6.3. We implemented a template matching algorithm (Section 6.3.1), an
adaptive, multi-window algorithm by Fusiello et al. [Fusiello et al., 1997]
(Section 6.3.2), and a maximum likelihood method using pixel intensities by
Cox et al. [Cox et al., 1996] (Section 6.3.3). In our experiments (Section 6.4),
we used international stereo data sets from Carnegie Mellon University (Castle
and Tower), University of Illinois at Urbana-Champaign (Robots), and Univer-
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sity of Stuttgart (Flat and Suburb). For the stereo pairs and the algorithms in
our experiments, the maximum likelihood approach allowed us to consistently
improve the accuracy of finding the correspondences in the stereo images. We
also discuss about the two possible approaches of applying maximum likeli-
hood toward improving the accuracy of matching algorithms in stereo match-
ing. The first method recommends altering the images so that the measured
noise distribution is closer to the Gaussian and then using the SSD. The sec-
ond method proposed by us is to find a metric which has a distribution which
is close to the real noise distribution. Motion tracking issues and experiments
are presented in Section 6.5. We implemented a template matching algorithm
to track pixels on a moving object in a video sequence. The idea is to trace
moving facial expressions such as lips and eyes which are moving through the
video sequence. In our experiments we also examine adjacent and nonadjacent
frames from the video sequence.

Facial expression recognition application is presented in Chapter 7. We first
discuss the importance of facial expressions in everyday interactions with oth-
ers and the desire to augment the computer with the ability to interact naturally
with the human, similar to the way human-human interactions take place (Sec-
tion 7.1). Further, we present the emotion recognition studies (Section 7.2)
with an emphasis on the studies on human facial expressions performed by
Ekman and his colleagues [Ekman, 1982; Ekman, 1994]. We introduce the
Facial Action Coding System and we present the six “universal categories
of emotional expressions" referred to as thebasic emotions: happiness, sad-
ness, surprise, fear, anger, and disgust. We also present the facial expres-
sion recognition state-of-the-art (Section 7.2.2). In Section 7.3 we briefly de-
scribe a real-time face tracking system developed at University of Illinois at
Urbana-Champaign and the features extracted for classification of facial ex-
pressions. The design of the classifiers is of crucial importance. We present
two types of settings: dynamic and static classification. Section 7.4 describes
the static setting in which Bayesian network classifiers are used for classifying
frames in the video sequence to the different expressions. We focus on dis-
tribution assumptions and feature dependency structures. In particular we use
Naive Bayes classifiers (Section 7.4.1) and change the distribution from Gaus-
sian to Cauchy. Observing that the features independence assumption used
by the Naive Bayes classifiers may be inappropriate we use Gaussian Tree-
Augmented Naive Bayes (TAN) classifiers to learn the dependencies among
different facial motion features (Section 7.4.2). In Section 7.5 we describe
HMM based classifiers for facial expression recognition from presegmented
video sequences (Section 7.5.1) and introduce the multi-level HMM classifier
for both recognizing facial expression sequences (Section 7.5.2) and automati-
cally segmenting the video sequence (Section 7.5.3). In our experiments (Sec-
tion 7.6), we explore both person-dependent and person-independent recogni-
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tion of expressions and compare the different methods using two databases.
The first is a database of subjects displaying facial expressions collected by
Chen [Chen, 2000]. The second is the Cohn-Kanade database [Kanade et al.,
2000].





Chapter 2

MAXIMUM LIKELIHOOD FRAMEWORK

This chapter formulates a framework for a maximum likelihood approach
in computer vision applications. It begins by introducing basic concepts from
robust statistics including the outliers generation mechanisms. Further, we
present the classical robust estimation procedure with an emphasis on Ham-
pel’s approach [Hampel et al., 1986] based on influence functions. The max-
imum likelihood relation with other approaches is also investigated. We draw
on the ideas of robust estimation and influence functions in formulating prob-
lems in which similarity is provided by a ground truth. Our goal is to find
the probability density function which maximizes the similarity probability.
Furthermore, we illustrate our approach based on maximum likelihood which
consists of finding the best metric to be used in an application when the ground
truth is provided.

1. Introduction
The term "robustness" does not lend itself to a clear-cut statistical definition.

It seems to have been introduced by G.E.P. Box in 1953 [Box, 1953] to cover a
rather vague concept described in the following way by Kendall and Buckland
[Kendall and Buckland, 1981]. Their dictionary states:

Robustness. Many test procedures involving probability levels depend for their
exactitude on assumptions concerning the generating mechanism, e.g. that the parent
variation is Normal (Gaussian). If the inferences are little affected by departure from
those assumptions, e.g. if the significance points of a test vary little if the population
departs quite substantially from the Normality, the test on the inferences is said to be
robust. In a rather more general sense, a statistical procedure is described as robust if it
is not very sensitive to departure from the assumptions on which it depends.

This quotation clearly associates robustness with applicability of the various
statistical procedures. The two complementary questions that come to mind
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can be expressed as follows: first, how should we design a statistical procedure
to be robust or, in other terms, to remain reliable in spite of possible uncertainty
in the available information? Second, how wide is the field of application of
a given statistical procedure or, equivalently, is it robust against some small
departures from the assumptions? The word "small" can have two different
interpretations, both important: either fractionally small departures for all data
points, or else fractionally large departures for a small number of data points.
It is the latter interpretation, leading to the notion ofoutliers, that is generally
the most challenging for statistical procedures.

With the appearance of involved analytical as well as computational facil-
ities, the field of robustness has received increased attention in the past fifty
years. Mainly, progresses in non-linear mathematics and in iterative algorithms
have permitted new developments. However, robustness has roots in many old
studies. For instance, a mode can be looked upon as a robust estimate of loca-
tion, as it also was some twenty four centuries ago. Thucydides [Thucydides,
1972] relates:

During the same winter (428 B.C.) the Plataeans... and the Athenians, who were be-
sieged with them, planned to leave the city and climb over the enemy’s walls in the
hope that they might be able to force a passage...
They made ladders equal in height to the enemy’s wall, getting the measure by counting
the layers of bricks at a point where the enemy’s wall on the side facing Plataea hap-
pened to have been whitewashed. Many counted the layers at the same time, andwhile
some were sure to make a mistake, the majority were likely to hit the true count, espe-
cially since they counted time and again, and, besides, were at no great distance, and
the part of the wall they wished to see was easily visible. In this way, the measurement
of the ladders was reckoned from the thickness of the bricks.

Similar behavior can be met when fitting a line to data in the presence of
outliers as is illustrated in Figure 2.1. One can see that the average effect of
all points (least-squares fit) (Figure 2.1(a)) is skewed in the direction of the
outliers (the points on the right). The fit recovered in Figure 2.1(b) is robust in
the sense that it rejects the outliers and recovers a "better" fit to the majority of
data.

2. Statistical Distributions
The aim of this section is to provide the basic information regarding the sta-

tistical distributions that are going to be used later in this chapter. We consider
here the Gaussian distribution, the exponential and the double exponential dis-
tributions, and finally the Cauchy distribution. We present their probability dis-
tributions together with the corresponding cumulative distribution functions,
their characteristic functions, and where applicable the way their moments are
calculated. We also show the relation between the Gaussian distribution and
the Cauchy distribution.
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y

Are these points special ?

x
(a) Least-squares fit: average opinion of all points.

What story do these
points tell ?

y

x
(b) Highly robust fit: clear opinion of majority of points.

Figure 2.1. Which fit do we want? When all points are used in estimation, using a least-square
fit as in (a), the line fitting the data is skewed in the direction of the outliers (the points on the
right). The points from above (marked as "special") suggest that a "better" fit can be recovered
so that the outliers are rejected (b).

2.1 Gaussian Distribution
The Gaussian probability distribution with meanµ and standard deviationσ

is a normalized Gaussian function of the form:

P (x) =
1

σ
√

2π
exp

[

−(x− µ)2

2σ2

]

(2.1)

whereP (x)dx gives the probability that a variate with a Gaussian distribution
takes on a value in the range[x, x + dx]. Statisticians commonly call this
distribution the normal distribution and, because of its curved flaring shape,
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P(x)
D(x)

Figure 2.2. The Gaussian probability distribution and its cumulative distribution function

social scientists refer to it as the "bell curve." The distributionP (x) is properly
normalized forx ∈ (−∞,∞) since

∫ ∞

−∞
P (x)dx = 1. (2.2)

The cumulative distribution function, which gives the probability that a variate
will assume a value≤ x, is then the integral of the Gaussian function,

D(x) =

∫ x

−∞
P (x)dx

=
1

σ
√

2π

∫ x

−∞
exp

[

−(x′ − µ)2

2σ2

]

dx′

=
1

2

[

1 + erf

(

x− µ

σ
√

2

)]

(2.3)

where erf(·) is the so-called error function.
The Gaussian distribution and its cumulative distribution function are plot-

ted in Figure 2.2.
Gaussian distributions have many convenient properties, hence, random

variates with unknown distributions are often assumed to be Gaussian, espe-
cially in physics and astronomy. Although this can be a dangerous assumption,
it is often a good approximation due to a surprising result known as the cen-
tral limit theorem (see Box 2.1). This theorem states that the mean of any set
of variates with any distribution having a finite mean and variance approaches
the Gaussian distribution. Many common attributes such as test scores, height,
etc., follow roughly Gaussian distributions, with few members at the high and
low ends and many in the middle.

Because they occur so frequently, there is an unfortunate tendency to in-
voke Gaussian distributions in situations where they may not be applicable.
As Lippmann stated [Whittaker and Robinson, 1967]: "Everybody believes in
the exponential law of errors: the experimenters, because they think it can be
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proved by mathematics; and the mathematicians, because they believe it has
been established by observation."

Making the transformation

z ≡ x− µ

σ
, (2.4)

so thatdz = dx/σ, gives a variate with varianceσ2 = 1 and meanµ = 0,
transformingP (x)dx into

P (z)dz =
1√
2π
e−z2/2dz (2.5)

The distribution having this probability function is known as astandard normal
distribution, andz defined in this way is known as az-score.

The normal distribution functionΦ(z) gives the probability that a standard
normal variate assumes a value in the interval[0, z],

Φ(z) ≡ 1√
2π

∫ z

0
e−x2/2dx =

1

2
erf

(

z√
2

)

(2.6)

where erf(·) is the error function. NeitherΦ(z) nor erf(·) can be expressed
in terms of finite additions, subtractions, multiplications, and root extractions,
and so both must be either computed numerically or otherwise approximated.
The value ofa for which P (x) falls within the interval[−a, a] with a given
probabilityP is called theP confidence interval.

The Gaussian distribution is also a special case of the Chi-squared distribu-
tion, since making the substitution

1

2
z ≡ (x− µ)2

2σ2
(2.16)

gives

d

(

1

2
z

)

=
(x− µ)2

2σ2
dx =

√
z

σ
dx. (2.17)

Now, the real linex ∈ (−∞,∞) is mapped onto the half-infinite interval
z ∈ [0,∞) by this transformation, so an extra factor of 2 must be added to
d(z/2), transformingP (x)dx into:

P (z)dz =
1

σ
√

2π
e−z/2 σ√

z
2

(

1

2
dz

)

=
e−z/2z−1/2

21/2Γ
(

1
2

) dz (2.18)

where we used the identityΓ(1/2) =
√
π.

Taking into account that the probability density function of the Chi-squared
distribution withr degrees of freedom is

Pr(z) =
e−z/2zr/2−1

2r/2Γ
(

r
2

) (2.19)
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Box 2.1 (Central Limit Theorem)

Letx1, x2, . . . , xN be a set ofN independent random variates and eachxi

have an arbitrary probability distributionP (x1, x2, . . . , xN ) with meanµi

and a finite varianceσ2
i . Then the normal form variate

Xnorm≡
∑N

i=1(xi − µi)
√

∑N
i=1 σ

2
i

(2.7)

has a limiting cumulative distribution function which approaches a normal
distribution. Under additional conditions on the distribution of the
addend, the probability density itself is also normal with meanµ = 0 and
varianceσ2 = 1. If conversion to normal form is not performed, then the
variateX ≡ 1

N

∑N
i=1 xi is normally distributed withµX = µx and

σX = σ/
√
N .

Consider the inverse Fourier transform ofPX(f):

F−1[PX(f)] ≡
∫ ∞

−∞

e
2πifX

P (X)dX =

∫ ∞

−∞

∞
∑

n=0

(2πifX)n

n!
P (X)dX

=

∞
∑

n=0

(2πif)n

n!

∫ ∞

−∞

X
n
P (X)dX =

∞
∑

n=0

(2πif)n

n!
〈Xn〉 (2.8)

Now write

〈Xn〉 = 〈N−n(x1+· · ·+xN )n〉 =

∫ ∞

−∞

N
−n(x1+· · ·+xN )n

P (x1) · · ·P (xN )dx1 · · · dxN ,

hence, we have

F−1[PX(f)] =

∞
∑

n=0

(2πif)n

n!

∫ ∞

−∞

N
−n(x1 + · · · + xN )n

P (x1) · · ·P (xN )dx1 · · · dxN

=

∞
∑

n=0

∫ ∞

−∞

[

2πif(x1 + · · · + xN )

N

]n
1

n!
P (x1) · · ·P (xN )dx1 · · · dxN

=

∫ ∞

−∞

e
2πif(x1+···+xN )/N

P (x1) · · ·P (xN )dx1 · · · dxN

=

[
∫ ∞

−∞

e
2πifx/N

P (x)dx

]N

=

{

∫ ∞

−∞

[

1 +

(

2πif

N

)

x+
1

2

(

2πif

N

)2

x
2 + · · ·

]

P (x)dx

}N
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=

[
∫ ∞

−∞

P (x)dx+
2πif

N

∫ ∞

−∞

xP (x)dx− (2πf)2

2N2

∫ ∞

−∞

x
2
P (x)dx+ O(N−3)

]N

=

[

1 +
2πif

N
〈x〉 − (2πf)2

2N2
〈x2〉 + O(N−3)

]N

= exp

{

N ln

[

1 +
2πif

N
〈x〉 − (2πf)2

2N2
〈x2〉 + O(N−3)

]}

(2.9)

Now expand
ln(1 + x) = x− 1

2
x

2 +
1

3
x

3 + · · · , (2.10)

hence,

F−1[PX(f)] ≈ exp

{

N

[

2πif

N
〈x〉 − (2πf)2

2N2
〈x2〉 +

1

2

(2πf)2

N2
〈x〉2 + O(N−3)

]}

= exp

[

2πif〈x〉 − (2πf)2(〈x2〉 − 〈x〉2)
2N

+ O(N−2)

]

≈ exp

[

2πifµx − (2πf)2σ2
x

2N

]

(2.11)

sinceµx = 〈x〉, andσ2
x = 〈x2〉 − 〈x〉2.

Taking the Fourier transform,

PX ≡
∫ ∞

−∞

e
−2πifxF−1[PX(f)]df =

∫ ∞

−∞

e
2πif(µx−x)−(2πf)2σ2

x/(2N)
df (2.12)

But, from Abramowitz and Stegun [Abramowitz and Stegun, 1972],
∫ ∞

−∞

e
iaf−bf2

df =

√

π

b
e
−a2/(4b) (2.13)

Therefore, ifa ≡ 2π(µx − x) andb ≡ (2πσx)2/(2N), then:

PX =

√

π
(2πσx)2

2N

exp

{

−[2π(µx − x)]2

4 (2πσx)2

2N

}

=

√
N

σx

√
2π
e
−(x−µx)2N/(2σ2

x) (2.14)

But σX = σx/
√
N andµX = µx , hence

PX =
1

σX

√
2π
e
−(µX−x)2/(2σ2

X ) (2.15)

The "fuzzy" central limit theorem says that data which are influenced by
many small and unrelated random effects are approximately normally
distributed.
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then, Equation (2.18) is a Chi-squared distribution withr = 1.
The ratio of independent Gaussian-distributed variates with zero mean is

distributed with a Cauchy distribution. This can be seen as follows. LetX and
Y both have mean 0 and standard deviations ofσx andσy, respectively, then
the joint probability density function is the bivariate normal distribution (see
Box 2.2) withρ = 0,

f(x, y) =
1

2πσxσy
e−[x2/(2σ2

x)+y2/(2σ2
y)] (2.20)

From ratio distribution (see Box 2.3), the distribution ofU = Y/X is

P (u) =

∫ ∞

−∞
|x|f(x, ux)dx =

1

2πσxσy

∫ ∞

−∞
|x|e−[x2/(2σ2

x)+u2x2/(2σ2
y)]dx

=
1

πσxσy

∫ ∞

0
x exp

[

−x2

(

1

2σ2
x

+
u2

2σ2
y

)]

dx (2.29)

But
∫ ∞

0
xe−ax2

dx =

[

− 1

2a
e−ax2

]∞

0

=
1

2a
(2.30)

hence,

P (u) =
1

πσxσy

1

2
(

1
2σ2

x
+ u2

2σ2
y

) =
1

π

σy

σx

u2 +
(

σy

σx

)2 (2.31)

which is a Cauchy distribution with medianµ = 0 and full widtha = σy/σx.
The characteristic function (defined as the Fourier transform of the proba-

bility density function) for the Gaussian distribution is

φ(t) = eiµt−σ2t2/2 (2.32)

and the moment-generating function is

M(t) = 〈etx〉 =

∫ ∞

−∞

etx

σ
√

2π
e−(x−µ)2/(2σ2)dx

=
1

σ
√

2π

∫ ∞

−∞
exp

{

− 1

2σ2
[x2 − 2(µ+ σ2t)x+ µ2]

}

dx (2.33)

Completing the square in the exponent,

1

2σ2
[x2−2(µ+σ2t)x+µ2] =

1

2σ2
{[x−(µ+σ2t)]2+[µ2−(µ+σ2t)2]} (2.34)
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Box 2.2 (Bivariate Normal Distribution)
The bivariate normal distribution is given by

P (x1, x2) =
1

2πσ1σ2

√

1 − ρ2
exp

[

− z

2(1 − ρ2)

]

(2.21)

where
z ≡ (x1 − µ1)

2

σ2
1

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2
+

(x2 − µ2)
2

σ2
2

(2.22)

and
ρ ≡ cor(x1, x2) =

σ12

σ1σ2
(2.23)

is the correlation ofx1 andx2.
The marginal probabilities are then

p(xi) =

∫ ∞

−∞

P (xi, xj)dxj =
1

σi

√
2π
e
−(xi−µi)

2/(2σ2

i ) with i, j ∈ {1, 2}, i 6= j (2.24)

Box 2.3 (Ratio Distribution)
Given two distributionsY andX with joint probability density function
f(x, y), letU = Y/X be the ratio distribution. Then the distribution
function ofu is

D(u) = P (U ≤ u) = P (Y ≤ uX|X > 0) + P (Y ≥ uX|X < 0)

=

∫ ∞

0

∫ ux

0

f(x, y)dydx+

∫ 0

−∞

∫ 0

ux

f(x, y)dydx (2.25)

The probability function is then

P (u) = D
′(u) =

∫ ∞

0

xf(x, ux)dx−
∫ 0

−∞

xf(x, ux)dx =

∫ ∞

−∞

|x|f(x, ux)dx (2.26)

For variates with a standard normal distribution, the ratio distribution is a
Cauchy distribution. For a uniform distribution

f(x, y) =

{

1 for x, y ∈ [0, 1]
0 otherwise

(2.27)

the probability function is

P (u) =







0 for u < 0
∫ 1

0
xdx = 1

2
for 0 ≤ u ≤ 1

∫ 1/u

0
xdx = 1

2u2 for u > 1

(2.28)
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and consideringy ≡ x− (µ+ σ2t) anda ≡ 1/(2σ2), the integral becomes

M(t) =
1

σ
√

2π

∫ ∞

−∞
exp

[

−ay2 +
2µσ2t+ σ4t2

2σ2

]

dy

=
1

σ
√

2π
eµt+σ2t2/2

∫ ∞

−∞
e−ay2

dy

=
1

σ
√

2π

√

π

a
eµt+σ2t2/2 = eµt+σ2t2/2 (2.35)

hence,

M ′(t) = (µ+ σ2t)eµt+σ2t2/2 (2.36)

M ′′(t) = σ2eµt+σ2t2/2 + eµt+σ2t2/2(µ+ tσ2)2 (2.37)

and

µ = M ′(0) = µ (2.38)

σ2 = M ′′(0) − [M ′(0)]2 = (σ2 + µ2) − µ2 = σ2 (2.39)

These can also be computed using

R(t) = ln[M(t)] = µt+
1

2
σ2t2 (2.40)

R′(t) = µ+ σ2t (2.41)

R′′(t) = σ2 (2.42)

yielding as before,

µ = R′(0) = µ (2.43)

σ2 = R′′(0) = σ2 (2.44)

The raw moments can also be computed directly by computing the moments
about the originµ′n ≡ 〈xn〉,

µ′n =
1

σ
√

2π

∫ ∞

−∞
xne−(x−µ)2/(2σ2)dx (2.45)

Now let
u ≡ x− µ√

2σ
, (2.46)

hence

du =
dx√
2σ

(2.47)

x = σu
√

2 + µ. (2.48)
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Giving the raw moments in terms of Gaussian integrals yields,

µ′n =

√
2σ

σ
√

2π

∫ ∞

−∞
xne−u2

du =
1√
π

∫ ∞

−∞
xne−u2

du (2.49)

Evaluating these integrals gives

µ′0 = 1 (2.50)

µ′1 = µ (2.51)

µ′2 = µ2 + σ2 (2.52)

µ′3 = µ(µ2 + 3σ2) (2.53)

µ′4 = µ4 + 6µ2σ2 + 3σ4 (2.54)

Now find the moments about the mean (the central moments)µn ≡ 〈(x−µ)n〉,
µ1 = 0 (2.55)

µ2 = σ2 (2.56)

µ3 = 0 (2.57)

µ4 = 3σ4 (2.58)

so the variance, skewness, and kurtosis are given by

var(x) = σ2 (2.59)

γ1 =
µ3

σ3
= 0 (2.60)

γ2 =
µ4

σ4
− 3 = 0 (2.61)

Cramer showed in 1936 that ifX andY are independent variates andX + Y
has a Gaussian distribution, then bothX andY must be Gaussian (Cramer’s
theorem). An easier result states that the sum ofn variates each with is Gaus-
sian distribution also has a Gaussian distribution. This follows from the result

Pn(x) = F−1{[φ(t)]n} =
e−(x−nµ)2/(2nσ2)

σ
√

2πn
(2.62)

whereφ(t) is the characteristic function andF−1[f ] is the inverse Fourier
transform.

If P(x) is a Gaussian distribution, then

D(x) =
1

2

[

1 + erf

(

x− µ

σ
√

2

)]

(2.63)

hence variatesxi with a Gaussian distribution can be generated from variates
yi having a uniform distribution in(0, 1) via

xi = σ
√

2erf−1(2yi − 1) + µ (2.64)
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However, a simpler way to obtain numbers with a Gaussian distribution is to
use the Box-Muller transformation (see Box 2.4).

Box 2.4 (Box-Muller Transformation)
A transformation which transforms from a two-dimensional continuous
uniform distribution to a two-dimensional bivariate normal distribution. If
x1 andx2 are uniformly and independently distributed between 0 and 1,
thenz1 andz2 as defined below have a normal distribution with mean
µ = 0 and varianceσ2 = 1.

z1 =
√
−2 lnx1 cos(2πx2) (2.65)

z2 =
√
−2 lnx1 sin(2πx2) (2.66)

This can be verified by solving forx1 andx2,

x1 = e
−(z2

1
+z2

2
)/2 (2.67)

x2 =
1

2π
tan−1

(

z2

z1

)

(2.68)

Taking the Jacobian yields,

∂(x1, x2)

∂(z1, z2)
=

∣

∣

∣

∣

∣

∂x1
∂z1

∂x1
∂z2

∂x2
∂z1

∂x2
∂z2

∣

∣

∣

∣

∣

= −
[

1√
2π
e−z2

1/2

] [

1√
2π
e−z2

2/2

]

(2.69)

The differential equation having a Gaussian distribution as its solution is

dy

dx
=
y(µ− x)

σ2
(2.70)

since

dy

y
=

µ− x

σ2
dx

ln

(

y

y0

)

= − 1

2σ2
(µ− x)2

y = y0e
−(x−µ)2/(2σ2) (2.71)

This equation has been generalized to yield more complicated distributions
which are named using the so-called Pearson system (see Box 2.5).
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Box 2.5 (Pearson System)
A system of equation types obtained by generalizing the differential
equation for the normal distribution

dy

dx
=
y(m− x)

a
(2.72)

which has solution
y = Ce

(2m−x)x/(2a) (2.73)

to
dy

dx
=

y(m− x)

a+ bx+ cx2
(2.74)

which has solution

y = C(a+ bx+ cx
2)−1/(2c) exp









(b+ 2cm) tan−1

(

b+2cx√
4ac−b2

)

c
√

4ac− b2









(2.75)

Let c1, c2 be the roots ofa+ bx+ cx2. Then the possible types of curves
are

0. b = c = 0, a > 0. E.g., normal distribution.

I. b2/4ac < 0, c1 ≤ x ≤ c2. E.g., beta distribution.

II. b2/4ac = 0, c < 0, −c1 ≤ x ≤ c1 wherec1 ≡
√

−c/a.

III. b2/4ac = ∞, c = 0, c1 ≤ x <∞ wherec1 ≡ −a/b. E.g., gamma
distribution. This case is intermediate to cases I and VI.

IV. 0 < b2/4ac < 1, −∞ < x <∞.

V. b2/4ac = 1, c1 ≤ x <∞ wherec1 ≡ −b/2a. Intermediate to cases IV
and VI.

VI. b2/4ac > 1, c1 ≤ x <∞ wherec1 is the larger root. E.g., beta prime
distribution.

VII. b2/4ac = 0, c > 0, −∞ < x <∞. E.g., Student’st-distribution.
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2.2 Exponential Distribution
Given a Poisson distribution with rate of changeλ, the distribution of wait-

ing times between successive changes (withk = 0) is

D(x) ≡ P (X ≤ x) = 1−P (X > x) = 1− (λx)0e−λx

0!
= 1− e−λx (2.76)

and
P (x) = D′(x) = λe−λx (2.77)

which is normalized since
∫ ∞

0
P (x)dx = λ

∫ ∞

0
e−λxdx = −

[

e−λx
]∞

0
= 1 (2.78)

This is the only memoryless random distribution. A variablex is memory-
less with respect tot if, for all s with t 6= 0,

P (x > s+ t|x > t) = P (x > s) (2.79)

Equivalently,

P (x > s+ t, x > t)

P (x > t)
= P (x > s)

P (x > s+ t) = P (x > s)P (x > t) (2.80)

The exponential distribution satisfies

P (x > t) = e−λt

P (x > s+ t) = e−λ(s+t) (2.81)

and therefore

P (x > s+ t) = e−λ(s+t) = P (x > s)P (x > t). (2.82)

Define the mean waiting time between successive changes asθ ≡ λ−1.
Then

P (x) =

{

1
θe

−x/θ x ≥ 0
0 x < 0

(2.83)

The moment-generating function is

M(t)=

∫ ∞

0
etx
(

1

θ

)

e−x/θdx =
1

θ

∫ ∞

0
e−(1−θt)x/θdx =

1

1 − θt
(2.84)

M ′(t)=
θ

(1 − θt)2
(2.85)

M ′′(t)=
2θ2

(1 − θt)3
(2.86)
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hence,

R(t) ≡ lnM(t) = − ln(1 − θt) (2.87)

R′(t) =
θ

1 − θt
(2.88)

R′′(t) =
θ2

(1 − θt)2
(2.89)

µ = R′(0) = θ (2.90)

σ2 = R′′(0) = θ2 (2.91)

The characteristic function is

φ(t) = F
{

λe−λx

[

1

2
(1 + sgnx)

]}

=
iλ

t+ iλ
(2.92)

whereF [f ] is the Fourier transform.
The skewness and kurtosis are given by

γ1 = 2 (2.93)

γ2 = 6 (2.94)

The mean and variance can also be computed directly

〈x〉 ≡
∫ ∞

0
xP (x)dx =

1

θ

∫ ∞

0
xe−x/θdx (2.95)

Use the integral
∫

xeaxdx =
eax

a2
(ax− 1) (2.96)

to obtain
〈x〉 = −θ

[

e−x/θ
(

1 +
x

θ

)]∞

0
= θ (2.97)

Now, to find

〈x2〉 =
1

θ

∫ ∞

0
x2e−x/θdx (2.98)

use the integral
∫

x2eaxdx =
eax

a3
(2 − 2ax+ a2x2) (2.99)

to obtain
〈x2〉 = 2θ2 (2.100)

giving
σ2 ≡ 〈x2〉 − 〈x〉2 = θ2 (2.101)
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P(x)
D(x)

Figure 2.3. The double exponential probability distribution and its cumulative distribution
function

If a generalized exponential probability function is defined by

P(α,β)(x) =
1

β
e−(x−α)/β (2.102)

for x ≥ α, then the characteristic function is

φ(t) =
eiαt

1 − iβt
(2.103)

and the mean, variance, skewness, and kurtosis are

µ = α+ β (2.104)

σ2 = β2 (2.105)

γ1 = 2 (2.106)

γ2 = 6 (2.107)

Consider now the distribution of differences between two independent variates
with identical exponential distributions. This will yield the double exponential
distribution:

P (x) =
1

2b
e−|x−µ|/b (2.108)

D(x) =
1

2

[

1 + sgn(x− µ)
(

1 − e−|x−µ|/b
)]

(2.109)

The double exponential distribution and its cumulative distribution function
are plotted in Figure 2.3.

The moments can be computed using the characteristic function,

φ(t) ≡
∫ ∞

−∞
eitxP (x)dx =

1

2b

∫ ∞

−∞
eitxe−|x−µ|/bdx (2.110)

Using the Fourier transform of the exponential function

F
[

e2πk0|x|
]

=
1

π

k0

k2 + k2
0

(2.111)
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a

x

θ

Figure 2.4. The Cauchy distribution describes the distribution of horizontal distances at which
a line segment tilted at a random angleθ cuts thex-axis.

gives

φ(t) =
eiµt

1 + b2t2
(2.112)

The moments are therefore

µn = (−i)nφ(0) = (−i)n

[

dnφ

dtn

]

t

= 0 (2.113)

The mean, variance, skewness, and kurtosis are

µ = µ (2.114)

σ2 = 2b2 (2.115)

γ1 = 0 (2.116)

γ2 = 3 (2.117)

2.3 Cauchy Distribution
The Cauchy distribution, also called the Lorentzian distribution, is a con-

tinuous distribution describing resonance behavior. It also describes the dis-
tribution of horizontal distances at which a line segment tilted at a random
angle cuts thex-axis. Letθ represent the angle that a line, with fixed point of
rotation, makes with the vertical axis, as shown in Figure 2.4. Then
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P(x)
D(x)

Figure 2.5. The Cauchy probability distribution and its cumulative distribution function

tan θ =
x

a
(2.118)

θ = tan−1
(x

a

)

(2.119)

dθ = − 1

1 + x2

a2

dx

a
= − a dx

a2 + x2
(2.120)

so the distribution of angleθ is given by

dθ

π
= − 1

π

a dx

a2 + x2
(2.121)

This is normalized over all angles, since

∫ π/2

−π/2

dθ

π
= 1 (2.122)

and

−
∫ ∞

−∞

1

π

a dx

a2 + x2
=

1

π

[

tan−1
(x

a

)]∞

−∞
= 1 (2.123)

The general Cauchy distribution and its cumulative distribution function (see
Figure 2.5) can be written as

P (x) =
1

π

a

a2 + (x− µ)2
(2.124)

D(x) =
1

2
+

1

π
arctan

(

x− µ

a

)

(2.125)

wherea is the full width andµ is the median (µ = 0 in the above example).
The characteristic function is

φ(t) =
1

π

∫ ∞

−∞
eitx

a

a2 + (x− µ)2
dx = eimt−a|t| (2.126)
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The momentsµn of the distribution are undefined since the integrals

µn =

∫ ∞

−∞

a

π

xn

a2 + (x− µ)2
dx (2.127)

diverge forn ≥ 1.
If X andY are variates with a normal distribution, thenZ ≡ X/Y has a

Cauchy distribution with medianµ = 0 and full widtha = σy/σx.
The sum ofn variates each from a Cauchy distribution has itself a Cauchy

distribution, as can be seen from

Pn(x) = F−1{[φ(t)]n} =
1

π

an

(an)2 + (x− nµ)2
(2.128)

whereφ(t) is the characteristic function andF−1[f ] is the inverse Fourier
transform.

3. Robust Statistics
Statistical inferences are based in part upon the observations. An equally

important base is formed by prior assumptions about the underlying situations.
Even in the simplest cases, there are explicit or implicit assumptions about
randomness and independence, about distributional models, perhaps prior dis-
tributions for some unknown parameters, and so on. In this context, robust
statistics, in a loose, nontechnical sense, is concerned with the fact that many
assumptions (such as normality, linearity, independence) are, at most, approx-
imations to reality.

These assumptions are not supposed to be exactly true – they are mathemat-
ically convenient rationalizations of an often fuzzy knowledge or belief. As in
every other branch of applied mathematics, such rationalizations or simplifica-
tions are vital, and one justifies their use by appealing to a vague continuity or
stability principle: a minor error in the mathematical model should cause only
a small error in the final conclusions.

Unfortunately, this does not always hold. During the past decades people
have become increasingly aware that some of the common statistical proce-
dures (in particular, those optimized for an underlying normal distribution) are
excessively sensitive to seemingly minor deviations from the assumptions, and
a number of alternative "robust" procedures have been proposed [Hampel et al.,
1986][Rey, 1983].

The field of robust statistics [Huber, 1981] [Hampel et al., 1986]
[Rousseeuw and Leroy, 1987] has developed to address the fact that the para-
metric models of classical statistics are often approximations of the phenom-
ena being modeled. In particular, the field addresses how to handleoutliers,
or gross errors, which do not conform to the assumptions. While most of the
work in computer vision has focused on developing optimal strategies for exact
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parametric models, there is a growing realization that we must be able to cope
with situations for which our models were not designed.1

As identified by Hampel [Hampel et al., 1986] the main goals of robust
statistics are:

(i) To describe the structure best fitting the bulk of data.

(ii) To identify deviating data points (outliers) or deviating substructures for
further treatment, if desired.

3.1 Outliers
The intuitive definition of an outlier would be "an observation which devi-

ates so much from other observations as to arouse suspicion that it was gener-
ated by a different mechanism" [Hawkins, 1980]. An inspection of a sample
containing outliers would show up such characteristics as large gaps between
"outlying" and "inlying" observations and the deviation between the outliers
and the group of inliers, as measured on some suitably standardized scale.

There are two basic mechanisms which give rise to samples that appear to
have outliers. It is a matter of some importance which of the mechanisms
generated any particular set of observations, since this consideration certainly
affects, or should affect, the subsequent analysis of the data.

Mechanism (i) The data arise from two distributions. One of these, the "basic
distribution," generates "good" observations, while another, the "contami-
nating distribution," generates "contaminants." If the contaminating distri-
bution has tails which are heavier than those of the basic distribution, then
there will be a tendency for the contaminants to be outliers – that is, to
separate visibly from the good observations, which will then constitute the
inliers.

Mechanism (ii) The data come from some heavy tailed distributions such as
Student’st. There is no question that any observation is in any way erro-
neous.

Formalizing the latter model, Green [Green, 1976] has introduced a clas-
sification of families of statistical distributions into those that are "outlier-
prone" and those that are "outlier-resistant." The outlier-prone families have
tails which go to zero slowly: a distribution is said to be absolutely outlier-
prone if (lettingXn,i be theith order statistic based on a sample of sizen)
there existsε > 0, δ > 0, and an integern0 such that

P [Xn,n −Xn,n−1 > ε] ≥ δ for all n > n0 (2.129)

1As Einstein noted: "So far as mathematics is exact, it does not apply to nature; so far as it applies to nature,
it is not exact."
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and is relatively outlier-prone if there existc > 1, δ > 0 andn0 such that

P [Xn,n/Xn,n−1 > c] ≥ δ for all n > n0 (2.130)

Clearly if either of these situations holds, then there will be a tendency for
the larger order statistic to be suspiciously large relative to its predecessor, and
so samples generated by outlier-prone distributions will tend to contain visual
outliers.

Absolutely and relatively outlier-resistant distributions are those which are
not absolutely and relatively outlier-prone, respectively.

The effect of outliers on the analysis of a set of data depends strongly on the
mechanism by which the outliers are believed to be generated. If mechanism
(ii) is assumed, then the outliers, despite appearances, are valid observations
from the distribution under study. Usually, the major objective of the analysis
will be to estimate a parameter - for example location - of this distribution. For
doing this, a maximum likelihood estimation procedure is typically used.

4. Maximum Likelihood Estimators
Suppose that we are fittingN data points(xi, yi), i = 1, . . . , N to a model

that hasM adjustable parametersa = [a1 . . . aM ]. The model predicts a func-
tional relationship between the measured independent and dependent variables,

y(x) = y(x; a) (2.131)

where the dependence on the parameters is indicated explicitly on the right-
hand side.

What exactly do we want to minimize to get the fitted values for theaj ’s?
The first thing that comes in mind is the familiar least-squares fit,

min
a

N
∑

i=1

(yi − y(xi; a))2 (2.132)

But where does this come from? What general principles is it based on? The
answer to these questions takes us into the subject of maximum likelihood
estimators.

Given a particular data set ofxi’s andyi’s we have the intuitive feeling that
some parameter setsa1 . . . aM are very unlikely – those for which the model
functiony(x) looks nothing like the data – while others may be very likely –
those that closely resemble the data. How can we quantify this intuitive feel-
ing? How can we select fitted parameters that are "most likely" to be correct?
In order to answer these questions we have to compute the probability that the
data set could have occurred when a particular set of parameters was given. If
the probability of obtaining the data set is infinitesimally small, then we can
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conclude that the parameters under consideration are "unlikely" to be right.
Conversely, the intuition tells that the data set should not be too improbable for
the correct choice of parameters. In other words, we identify the probability
of the data given the parameters (which is a mathematically computable num-
ber), as thelikelihood of the parameters given the data. Once we make this
intuitive identification, however, it is only a small further step to decide to fit
for the parametersa1 . . . aM precisely by finding those values thatmaximize
the likelihood defined in the above way. This form of parameter estimation is
maximum likelihood estimation.

In order to make a connection to (2.132), suppose that each data pointyi has
a measurement error that is independently random and distributed as a normal
distribution around the "true" modely(x). And suppose that the standard de-
viationsσ of these normal distributions are the same for all points. Then the
probability of the data set is the product of the probabilities of each point,

P ∼
N
∏

i=1

exp

[

−1

2

(

yi − y(xi; a)

σ

)2
]

(2.133)

Maximizing (2.133) is equivalent to maximizing its logarithm, or minimizing
the negative of its logarithm, namely,

N
∑

i=1

(yi − y(xi; a))2

2σ2
(2.134)

Since σ is constant, minimizing this equation is equivalent to minimiz-
ing (2.132).

What we see is that least-squares fittingis a maximum likelihood estimation
of the fitted parametersif the measurement errors are independent and normally
distributed with constant standard deviation. If the normal distribution model is
a bad approximation, or outliers are important, robust estimators are employed.

In a general case, suppose we know that our measurement errors are not
normally distributed. Then, in deriving a maximum likelihood formula for the
estimated parametersa in a modely(x; a), we would write instead of equa-
tion (2.133)

P ∼
N
∏

i=1

exp[−ρ(yi, y(xi; a))] (2.135)

where the functionρ is the negative logarithm of the probability density. Tak-
ing the logarithm of (2.135), analogously with (2.134), we find that we want to
minimize the expression

N
∑

i=1

ρ(yi, y(xi; a)) (2.136)
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Very often, it is the case that the functionρ depends not independently on its
two arguments, measuredyi and predictedy(xi), but only on their difference.
In this case the estimate is said to be local, and we can replace (2.136) by

min
a

N
∑

i=1

ρ(yi − y(xi; a)) (2.137)

where the functionρ(z) is a function of a single variablez ≡ yi − y(xi).

5. Maximum Likelihood in Relation to Other Approaches
The goal of a content based retrieval system can be defined to be the mini-

mization of the probability of retrieval error. In this way, the problem of retriev-
ing images from a database is formulated as a classification problem. Consider
a feature spaceF for the entries in the database. The retrieval system will find
a map

g : F → M = {1, . . . ,K} (2.138)

from F to the setM of classes identified as useful for the retrieval operation
[Vasconcelos and Lippman, 2000].K, the cardinality ofM, can be as large
as the number of items in the database (in which case each item is a class by
itself) or smaller. The probability of error that should be minimized is given
by P (g(x) 6= y). This is the probability of having a set of feature vectorsx
drawn from the classy retrieved by the system from a classg(x) different from
y. Once the problem is formulated in this way, the optimal map is given by the
Bayes classifier [Devroye et al., 1996]

g∗(x) = max
i
P (y = i|x) (2.139)

It is, however, known that the posterior probabilities required by the Bayes
classifier are in general difficult to compute, making the classifier of limited
practical use. To cope with this difficulty, there are two important approaches
proposed in the pattern recognition literature: one using discriminant classi-
fiers and the other one using classifiers based on generative models.

Discriminant classifiers try to find the surfaces inF that better separate the
regions associated with the different classes in the sense of Equation (2.139),
classifying each point according to its position relative to those surfaces. Ex-
amples are linear discriminant classifiers, neural networks, and decision trees.
The problem with these classifiers is that they must be completely retrained
every time a new class is added or deleted from the database, making this ap-
proach difficult to be applied in a retrieval scenario.

Instead of dealing directly with Equation (2.139), classifiers based on gen-
erative models take the alternative provided by the Bayes rule,

g∗(x) = max
i
P (x|y = i)P (y = i) (2.140)
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whereP (x|y = i) is the likelihood function for theith class andP (y = i) is
the prior probability for this class. The smallest achievable probability of error
is the Bayes error [Fukunaga, 1972]

L∗ = 1 − Ex[max
i
P (x|y = i)P (y = i)] (2.141)

Whenever there is no prior reason to believe that one class is more likely
than the others, thenP (y = i) = 1/K, in which case we obtain the maximum
likelihood (ML) classifier

g(x) = max
i
P (x|y = i) (2.142)

Under the assumption that the query consists of a collection ofN indepen-
dent query featuresx = {xi, . . . , xN} this equation can also be written as

g(x) = max
i

1

N

N
∑

j=1

logP (xj |y = i) (2.143)

which closely resembles Equation (2.136).
If there are only two classesa andb in the classification problem then, Equa-

tion (2.141) can be written as [Young and Calvert, 1974]

L∗ = Ex[min(P (y = a|x), P (y = b|x))]

=

∫

min[P (x|y = a)P (y = a), P (x|y = b)P (y = b)] dx

≤
√

P (y = a)P (y = b)

∫

√

P (x|y = a)P (x|y = b) dx

≤ 1

2

∫

√

P (x|y = a)P (x|y = b) dx (2.144)

In determination of Equation (2.143) we used the following bounds
min[p, q] ≤ √

pq, for arbitrary p ≥ 0 and q ≥ 0, and
√

P (x|y = a)P (x|y = b) ≤ 1/2, taking into account thatP (x|y = a) =
1 − P (x|y = b).

The relation (resembled by Equation (2.144))

d2
B = − log

∫

√

P1(x)P2(x) dx (2.145)

represents the Bhattacharyya distance between two arbitrary distributions
{Pi(x)}i=1,2. From here we can see that the Bhattacharyya distance is an up-
per bound on the Bayes error probability. Note that the Bhattacharyya distance
is not a metric (it does not obey the triangle inequality).
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The Bhattacharyya distance was used for image retrieval in [Comaniciu
et al., 1999], where it took the form

g(x) = min
i

∫

√

P (x|q)P (x|y = i) dx (2.146)

whereP (x|q) is the density of the query. The resulting classifier can thus be
seen as the one which finds the lowest upper-bound of the Bayes error for the
collection of two-class problems involving the query and each of the database
classes.

Consider now that the distribution of features of interest is Gaussian, char-
acterized by its mean vectorµ and covariance matrixΣ

P (x|y = i) =
1

√

(2π)n|Σi|
exp

(

−1

2
(x − µi)

T Σ−1
i (x − µi)

)

(2.147)

the Bhattacharyya distance becomes

d2
B =

1

4
(µa − µb)

T (Σa + Σb)
−1(µa − µb) +

1

2
log

∣

∣

∣

Σa+Σb
2

∣

∣

∣

√

|Σa||Σb|
(2.148)

where | · | is the determinant. The first term in Equation (2.148) gives the
class separability due to mean-difference, while the second term gives the class
separability due to the covariance-difference.

The Mahalanobis distance is proportional to a particular case of Bhat-
tacharyya distance when the covariances are the sameΣa = Σb = Σ,

d2
B = (µa − µb)

T Σ−1(µa − µb) (2.149)

A dissimilarity measure using Mahalanobis distance is unable to distinguish
among distributions with the same mean but different covariance matrices.

Finally, if the covariance matrix is the identity matrixΣ = I, we obtain the
Euclidean distance

L2 = (µa − µb)
T (µa − µb) (2.150)

Other dissimilarity measures such as Fisher linear discriminant function
yield useful results only for distributions that are separated by the mean-
difference [Fukunaga, 1972], whereas the Kullback discriminant [Kullback,
1968] provides in various instances lower performance than the Bhattacharyya
distance, as shown in [Kailath, 1967]. The Chernoff distance [Fukunaga, 1972]
is in general closer to the error probability than the Bhattacharyya distance (in
fact the latter is a special case of Chernoff distance), but it is difficult to evalu-
ate.

Exposing the assumptions behind each similarity function enables a critical
analysis of their usefulness and the determination of the retrieval scenarios for
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which they may be appropriate. While the choice between the Bayesian and the
maximum likelihood criterion is a function only of the amount of prior knowl-
edge about class probabilities, there is in general no strong justification to rely
on any of the remaining measures. In this context, there is a small justification
to replace the minimization of the error probability on the multi-class retrieval
problem (as in maximum likelihood) by the search for the two class problem
with the smallest error bound (Bhattacharyya distance). Moreover, the Maha-
lanobis and the Euclidean distances only make sense if the image features are
Gaussian distributed for all classes.

6. Our Maximum Likelihood Approach
In the previous sections, the standard maximum likelihood procedure was

presented together with its relation with other approaches. There, the goal was
to find the particular set of parameters that would maximize the probability
that the data set under observation could have occurred. In our case, we con-
sider applications that involve similarity where the ground truth is provided.
The goal is to find the probability density function which maximizes the sim-
ilarity probability. Furthermore, applying the maximum likelihood procedure
described above, we determine the corresponding metric and use it in the ex-
periments. By doing this we expect to obtain better retrieval/matching results.

To state the issue more concretely, considerN pairs ofM -dimensional fea-
ture vectors (Xi, Yi), i = 1, . . . , N , extracted from images in a databaseD,
which according to the ground truthG are similar:Xi ≡ Yi. Further, consider
that allN feature vectorsXi are concatenated in a singleB-dimensional vec-
tor,x, whereB = N×M . The same procedure applies to theN feature vectors
Yi concatenated in aB-dimensional vectory. Applying Equation (2.135) the
similarity probability can be calculated as

P (G) ∼
B
∏

i=1

exp[−ρ(ni)] (2.151)

wheren = [n1 . . . nB] is the "noise" vector obtained as the difference between
the vectorsx andy, andρ is the negative logarithm of the probability density
of the noise. We used the notationP (G) to explicitly show that the similarity
probability was calculated in the presence of a particular ground truthG.

The additive noise model in Equation (2.151) is the dominant model used
in computer vision regarding maximum likelihood estimation. Haralick and
Shapiro [Haralick and Shapiro, 1993] consider this model in defining the M-
estimate: "any estimateTk defined by a minimization problem of the form
min

∑

i
ρ(xi−Tk) is called an M-estimate." Note that the operation "-" between

the estimate and the real data implies an additive model.
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Figure 2.6. Gaussian, Exponential, and Cauchy distributions. The tails of the Gaussian and of
the Exponential drop off quickly. The tails of the Cauchy distribution are more prominent.

According to Equation (2.151), we have to find the probability density func-
tion of the noise that maximizes the similarity probability: the maximum like-
lihood estimate for the noise distribution [Huber, 1981].

Taking the logarithm of (2.151) we find that we have to minimize the ex-
pression

B
∑

i=1

ρ(ni) (2.152)

To analyze the behavior of the estimate we take the approach described in
[Hampel et al., 1986] and [Rousseeuw and Leroy, 1987] based on the influ-
ence function. The influence function characterizes the bias that a particular
measurement has on the solution and is proportional to the derivative,ψ, of the
estimate [Black, 1992]

ψ(z) ≡ dρ(z)

dz
(2.153)

In the case where the noise is Gaussian distributed (Figure 2.6(a)):

P (ni) ∼ exp(−ni
2) (2.154)

then,
ρ(z) = z2 and ψ(z) = z (2.155)
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If the errors are distributed as a double or two-sided exponential (Fig-
ure 2.6(b)), namely,

P (ni) ∼ exp(−|ni|) (2.156)

then,
ρ(z) = |z| and ψ(z) = sgn(z) (2.157)

In this case, using Equation (2.152), we minimize the mean absolute devi-
ation, rather than the mean square deviation. Here the tails of the distribution,
although exponentially decreasing, are asymptotically much larger than any
corresponding Gaussian.

A distribution with even more extensive tails is the Cauchy distribution (Fig-
ure 2.6(c)),

P (ni) ∼
a

a2 + ni
2

(2.158)

where thescaleparametera determines the height and the tails of the distribu-
tion.

This implies

ρ(z) = log

(

1 +
(z

a

)2
)

and ψ(z) =
z

a2 + z2
(2.159)

For normally distributed errors, Equation (2.155) says that the more deviant
the points, the greater the weight (Figure 2.7). By contrast, when tails are
somewhat more prominent, as in (2.156), then (2.157) says that all deviant
points get the same relative weight, with only the sign information used (Fig-
ure 2.8). Finally, when the tails are even larger, (2.159) says thatψ increases
with deviation, then starts decreasing, so that very deviant points - the true
outliers - are not counted at all (Figure 2.9).

Maximum likelihood gives a direct connection between the noise distribu-
tions and the comparison metrics. Consideringρ as the negative logarithm of
the probability density of the noise, then the corresponding metric is given by
Equation (2.152).

Consider the Minkowski-form distanceLp between two vectorsx and y
defined by

Lp(x, y) =

(

∑

i

|xi − yi|p
) 1

p

(2.160)

If the noise is Gaussian distributed, soρ(z) = z2, then Equation (2.152) is
equivalent to Equation (2.160) withp = 2. Therefore, in this case the corre-
sponding metric isL2. Equivalently, if the noise is Exponential, soρ(z) = |z|,
then the corresponding metric isL1 (Equation (2.160) withp = 1). In the
case the noise is distributed as a Cauchy distribution with scale parametera,
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Figure 2.7. Quadratic estimator. (a) Estimate, (b)ψ-function
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Figure 2.8. Exponential estimator. (a) Estimate, (b)ψ-function
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then the corresponding metric is no longer a Minkovski metric. However, for
convenience we denote it asLc and it is given by

Lc(x, y) =
∑

i

log

(

1 +

(

xi − yi

a

)2
)

(2.161)

In practice, the probability density of the noise can be approximated as the
normalized histogram of the differences between the corresponding feature
vectors elements. For convenience, the histogram is made symmetric around
zero by considering pairs of differences (e.g.,x − y andy − x). Using this
normalized histogram, we extract a metric, calledmaximum likelihood(ML)
metric. TheML metric is a discrete metric extracted from a discrete normal-
ized histogram having a finite number of bins.

TheML metric is given by Equation (2.152) whereρ(ni) is the negative
logarithm ofP (ni):

ρ(ni) = − log(P (ni)). (2.162)

Whenni does not exactly match any of the bins, for calculatingP (ni) we
perform linear interpolation betweenP (ninf ) (the histogram value at binninf )
andP (nsup) (the histogram value at binnsup), whereninf andnsup are the
closest inferior and closest superior bins toni, respectively (see Figure 2.10)

P (ni) =
(nsup − ni)P (ninf ) + (ni − ninf )P (nsup)

nsup − ninf
(2.163)

6.1 Scale Parameter Estimation in a Cauchy Distribution
An interesting property of the Cauchy distribution is that the scale parame-

tera can be found in the expression of the corresponding metricLc (see Equa-
tion (2.161)). Although, a scale parameterσ can also be employed in a Gaus-
sian or Exponential distribution (e.g. Equation (2.133)), the corresponding
metric does not exhibit the parameter. Therefore, for all Gaussian or Expo-
nential distributions having different scale parameters, there will be only one
corresponding metric,L2 or L1, respectively. By contrast, when a family of
Cauchy distributions having different scale parameters is considered, the result
will be a family of corresponding metricsLc. How can we estimate the value
of the scale parameter in this case? Is the corresponding Cauchy distribution a
good approximation for the real noise distribution?

One solution would be to use a maximum likelihood procedure. For do-
ing this one prior assumption is that the noise distribution is Cauchy and ran-
dom samples are obtained from it. Letx1, . . . , xn be a random sample from a
Cauchy distribution with densitya/[π{a2 +(x−µ)2}], whereµ is the location
parameter anda > 0 is the scale parameter, both unknown. A Cauchy random
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sample generator can be obtained from the cumulative distribution [Haas et al.,
1970] using the expression

F (x;µ, a) =
1

2
+

1

π
arctan

(

x− µ

a

)

(2.164)

where−∞ < x <∞, −∞ < µ <∞, anda > 0.
Let µ̂ andâ be the maximum likelihood estimators forµ anda. The likeli-

hood function,L(x1, . . . , xn;µ, a) is given by

L(x1, . . . , xn;µ, a) =
n
∏

i=1

[

a

π(a2 + (xi − µ)2

]

(2.165)

and the logarithm of the likelihood is

logL = −n log π + n log a−
n
∑

i=1

log(a2 + (xi − µ)2) (2.166)

Hence, the maximum likelihood equations are

∂ logL

∂µ
=

n
∑

i=1

2(xi − µ̂)

â2 + (xi − µ̂)2
= 0 (2.167)

∂ logL

∂a
=

n

â
−

n
∑

i=1

2â

â2 + (xi − µ̂)2
= 0 (2.168)
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A numerical procedure must be used in order to solve (2.167) and (2.168) for
µ̂ and â. For solving these equations we used a Newton-Raphson iterative
method with the starting points given by the mean and the variance of the data.
We were always able to find unique positive solutions forâ andb̂ which is in
accordance with the conjecture stated by Hass et al. [Haas et al., 1970]. In
certain cases, however, the Newton-Raphson iteration diverged, in which cases
we selected new starting points.

As noted previously, the noise distribution is symmetric and centered around
zero, thereforeµ = 0. In this case, the maximum likelihood equation that
should be solved is

n
∑

i=1

â2

â2 + xi
2

=
1

2
n (2.169)

The problem with this approach comes mainly from the assumption that
the real noise distribution is Cauchy, which does not always hold. Moreover,
a solution for Equation (2.169) highly depends on the sizen of the sample
extracted from the distribution. A reliable value for the parametera can only
be obtained when sufficient ground truth is available, which is not always the
case.

Another way to estimate the scale parameter is by selecting that value that
assures the best fit between a Cauchy model distribution and the noise dis-
tribution. A question that comes in mind is: What distance measure do we
use when comparing two distributions? One solution is to use the Prokhorov
distance measure [Yukich, 1989] which permits the comparison of a discrete
empirical distribution with a continuous one through the association of each
observation of the former with a subset of the sample space; the comparison is
then performed with the help of the probability of the latter distribution over
this subset.

Another solution, adopted here, is to use a Chi-square goodness-of-fit test
[Watson, 1958]. The Chi-square test is frequently used in literature for com-
paring two binned distributions. Additionally, we can use the test not only for
estimating the scale parameter but also as a goodness-of-fit indicator between
the noise distribution and a model distribution (see next section). LetM be a
binned Cauchy distribution used as a model for the noise distributionR. The
number and the location of bins forM are identical with the ones forR. The
Chi-square test is given by

χ2 =
∑

i

(Ri −Mi)
2

Mi
(2.170)

where the sum is over all bins.
Using this simple procedure we estimate the value of the scale parametera

as that value that minimizes theχ2.
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7. Experimental Setup
In the previous section, our maximum likelihood approach was introduced

for a similarity application in the presence of ground truth. An important is-
sue is how to design a framework so that the noise distribution can be reliably
constructed from the ground truth and in the same time, the performances of
matching algorithms can be computed. In order to achieve the latter require-
ment we should also have ground truth information, so we can compare the
obtained results of a matching algorithm with the ideal ones provided by the
ground truth. Concretely, the setup of our experiments was the following.

We assume that representative ground truth is provided. The ground truth is
split into two non-overlapping sets: the training set and the test set, as shown
in Figure 2.11. Note thatLk is a notation for all possible metrics that can
be used, e.g.L1, L2, Lc. First, for each image in the training set a feature
vector is extracted. Second, the real noise distribution is computed as the nor-
malized histogram of differences from the corresponding elements in feature
vectors taken from similar images according to the ground truth. The Gaus-
sian, Exponential, and Cauchy distributions are fitted to the real distribution.
The Chi-square test is used to find the fit between each of the model distribu-
tions and the real distribution. We select the model distribution which has the
best fit and its corresponding metric (Lk) is used in ranking. The ranking is
done using only the test set.

Ground
truth

distribution
Training

set
Features Real noise

distribution
Model L k

Test

Ranking

set

Figure 2.11. An overview of a similarity matching algorithm

It is important to note that for real applications, the parameter in the Cauchy
distribution is found when fitting this distribution to the real distribution. This
parameter setting would be used for the test set and any future comparisons in
that application. The parameter setting can be generalized beyond the ground
truth if the ground truth is representative.

For benchmarking purposes we also investigate the performance of other
distance measures in matching. In all of the experiments we compare our re-
sults with the ones obtained using the Kullback relative information (K) [Kull-
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back, 1968]. Letu andv be two discrete distributions then

K =
∑

i

ui log
ui

vi
(2.171)

where the sum is over all bins.
Note that the Kullback relative information is an asymmetric similarity mea-

sure between normalized probability density functions. In the applications
where normalized histograms are used as feature vectors,K was computed
using (2.171) whereu was the feature vector corresponding to the query and
v was the feature vector corresponding to a candidate match. When template
matching was performed, suppose we are searching for a match for an intensity
vectorU from the left image. In the right image there will be many possible
matching vectors and letV be one of them. Each of the intensity vectors is
normalized to have the sum equal to 1 by dividing each component by the total
intensity within the vector, i.e.,ui = Ui/

∑

i
Ui. This results in two normalized

vectorsu andv and (2.171) can be applied for computingK.
We chose the Kullback relative information as a benchmark because it is

the most frequently used similarity measure in information theory. Further-
more, Rissanen [Rissanen, 1978] showed that it serves as the foundation for
other minimum description length measures such as the Akaike’s information
criterion [Akaike, 1973]. Regarding the relationship between the Kullback
relative information and the maximum likelihood approach, Akaike [Akaike,
1973] showed that maximizing the expected log likelihood ratio in maximum
likelihood estimation is equivalent to maximizing the Kullback relative infor-
mation. Another interesting aspect of using the Kullback relative information
as a benchmark is that it gives an example of using a logarithmically weighted
function: instead ofu − v a weighted version oflog u − log v = log(u/v) is
computed.

In summary, our algorithm can be described as follows:

Step 1 Compute the feature vectors from the training set

Step 2 Compute the real noise distribution from the differences between cor-
responding elements of the feature vectors

Step 3 Compare each of the model distributionsM to the real noise distribu-
tionR using the Chi-square test

χ2 =
∑

i

(Ri −Mi)
2

Mi
(2.172)

where the sum is over all bins.
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Step 3.1 For a parameterized metric such asLc, compute the valuea of
the parameter that minimizes the Chi-square test

Step 4 Select the correspondingLk of the best fit model distribution

Step 4.1 Use the valuea found fromStep 3.1in the parameterized metrics

Step 5 Apply theLk metric in ranking

Step 6 Compare the results with the ones obtained using the maximum likeli-
hood (ML) metric extracted directly from the real noise distribution

8. Concluding Remarks
In this chapter we formulated a framework for a maximum likelihood ap-

proach in computer vision applications involving similarity. The basic con-
cepts from robust statistics were introduced and we illustrated our approach
based on maximum likelihood. In the case where representative ground truth
can be obtained for an application, we provided a method for selecting the
appropriate metric, and proposedLc as an alternative for bothL2 andL1. Fur-
thermore, we showed how to create a maximum likelihood metric (ML) based
on the real noise distribution. Minimizing theML metric is optimal with re-
spect to maximizing the likelihood of the differences between feature vector
elements when the noise distribution is representative. Therefore, the breaking
points occur when there is no ground truth, or when the ground truth is not
representative.





Chapter 3

COLOR BASED RETRIEVAL

In content based retrieval, color indexing is one of the most prevalent re-
trieval methods. The key problems in color indexing are: (1) the choice of color
space, (2) color features, and (3) finding the best distance metric. In our color
experiments we examine two applications from computer vision which involve
distortions derived from changes in viewpoint and the process of printing and
scanning. In the first experiments we use the Corel stock photo database and a
color histogram method to find copies of images which were printed and sub-
sequently scanned in. The second application deals with object based retrieval.
The goal is to find all images of an object in a database where the images
depicting the object were taken from different viewpoints. Both the ground
truth and the algorithm come from the work by Gevers and Smeulders [Gev-
ers and Smeulders, 1999]. Furthermore, for both applications, we implement
the quadratic perceptual similarity measure proposed by Hafner et al. [Hafner
et al., 1995] and the correlogram introduced by Huang et al. [Huang et al.,
1997] as benchmarks.

1. Introduction
Color is an important attribute of visual information. Not only does color

add beauty to objects but also gives information about objects as well. Further-
more, color information facilitates our daily life, e.g. reading a traffic light or
identifying a favorite team in a sport event.

Color, in and of itself, does not exist. The color of an object is determined
solely by which wavelengths of light are absorbed by the object and which
ones filter back to our eyes. For instance, if we are in a forest on a sunny day,
the leaves on the trees appear green. However, when we return to the same spot
in the evening, the leaves now look gray. The leaves themselves are obviously
unchanged, but the lighting is different, and thus our color perception is altered.
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This phenomenon, along with many of its wider implications, was first noted
in 1666 by 23-year-old Isaac Newton. Newton split, or refracted, a beam of
sunlight by passing it through a rectangular glass prism. The colored rays of
light that emerged from the other end of the prism were what Newton termed
the “spectrum" of color: red, orange, yellow, green, blue, and violet (the colors
of the rainbow). Later, Newton passed these colors through a second glass
prism and discovered that they recombined to produce white light. Newton
proved that there really are no “colors" in nature - just different wavelengths of
light that were bent in different ways by the glass prism.

After Newton established the fundamentals of color in his “Optics" [New-
ton, 1704], color has been involved in many fields ranging from art to psy-
chology and science. The emotional and psychological influence of color on
humans was studied by Goethe in his famous book “Farbenlehre" [Goethe,
1840]. Goethe fiercely contested Newton’s optics theory and its focus on phys-
ical properties. He said that colors arise in the eye and based his description of
their properties on optical phenomena he himself observed. For Goethe, colors
were analogous to perspective and proportions, i.e. formal categories that we
process to make the observed world conform to the internal order of our brain.
Light is needed to see colors because they are not part of nature but a product
of our mind and eyes. Goethe’s original proposal was to “marvel at color’s oc-
currences and meanings, to admire and, if possible, to uncover color’s secrets."
To Goethe it was most important to understand human reaction to color, and
his research marks the beginning of modern color psychology. To accomplish
his goals, he created a color triangle where three primary colors red, yellow,
and blue were arranged at the vertices of the triangle. The other subdivisions
of the triangle were grouped into secondary and tertiary triangles, where the
secondary triangle colors represented the mix of the two primary triangles to
either side of it, and the tertiary triangle colors represented the mix of the pri-
mary triangle adjacent to it and the secondary triangle directly across from
it. Goethe believed that his triangle was a diagram of the human mind and
he linked each color with certain emotions. For example, Goethe associated
blue with understanding and believed it evoked a quiet mood, while for him
red evoked a festive mood and was suggestive of imagination. He chose the
primaries red, yellow, and blue based on their emotional content, as well as
on physical grounds, and he grouped the different subsections of the triangle
by “elements" of emotion as well as by mixing level. This emotional aspect
of the arrangement of the triangle reflects Goethe’s concern that the emotional
content of each color be taken into account by artists.

Heisenberg [Heisenberg, 1967] tried to reconcile Goethe’s and and New-
ton’s views. He suggested that the Cartesian dichotomy between an objective
and subjective world - each within its own validity - would be resolved by the
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study of the neurological system which would ultimately be described in terms
of mathematical structures.

Whoever should compare Goethe’s theory of colors with Newton’s preferred
approach will soon become aware of two completely different attitudes to the
one, single theme. These attitudes do not oppose each other, however, they
complement each other - alone, neither of the systems can cover all aspects of
color completely. Newton’s analysis of colors is to be seen as complementary
to Goethe’s. Neither of the theories is wrong; each independently reproduces
a valid aspect of our world, and substantiates the other.

In order to bring life to this idea of complementarity, we can compare the
English scientist’s and the German poet’s beliefs: what for Newton is simple
- pure blue, for example, being light with one wavelength (“monochromatic
light") - is complicated for Goethe, since pure blue must first of all be prepared
by extravagant means and is therefore artificial. In contrast, white light is sim-
ple for Goethe, since it exists completely naturally and without effort; Newton,
on the other hand, sees in white light a mixture of all colors. White light is not
simple for Newton; it is a combination. The essential complementarity of both
color theories becomes evident when we consider the role of the subject - the
human being. While Goethe, as a matter of course, views the human being as
central, Newton omits him totally.

Maxwell’s work in color vision is acknowledged as being the origin of quan-
titative color measurement (colorimetry). He developed a chart in the form of
an equilateral triangle from his studies on the electromagnetic theory of light.
His triangle is very similar to Goethe’s, both are equilateral and both choose
three primaries which are combined to produce the inner colors. Maxwell,
however, believed that he could produce all the known colors within his tri-
angle and he chose red (R), green (abbreviated to V [verde]), and blue (B) as
primaries.

In painting, Munsell provided the theoretical basis in his “A Color Notation"
[Munsell, 1905] on which most painters derive their notations about color or-
dering. His color space is based on pigment, not light. He began from two
observations that he has made as painter. The first is that pure hues vary in
their degree of lightness, and therefore all the pure hues (red, yellow, green,
blue, violet) should not be on the same horizontal plane. The second observa-
tion is that some colors (red) are more vivid than others (green), and therefore,
they should be further away from the axis. These observations pointed Munsell
toward a color space whose shape is very irregular and asymmetric.

In 1931, an attempt was made to establish a world standard for measure-
ment of color by the Commission Internationale de l’Eclairage (CIE). They
generated a version of Maxwell’s triangle, choosing a particular red, green,
and blue from which to generate all the colors. The result became known as
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the CIE chromaticity chart, the updated version of which is used to measure
and quantify the light produced by computer phosphor guns today.

2. Colorimetry
All color is light. The visible spectrum of light, however, is only a small

portion of the entire wavelength spectrum, which includes the ultraviolet por-
tion that cannot be detected by the naked eye. The visible spectrum consists of
three wavelength bands of light: red, green, and blue. The red is the longest
wavelength, followed by the green, and then the blue. The various combina-
tions of these three light wavelengths are interpreted by the human brain as a
particular color.

Any color that we see represents those portions of the three bands of light
that are not absorbed by the observed object and instead filter back to our eyes.
An apple, therefore, appears red because all light bands except red are absorbed
by the object, while the red is reflected back to us.

These three colors of light - red, green, and blue - are known as theprimary
colors (or the additive colors, or simply the primaries). They are colors that
are used in video, and appear on a desktop computer screen. When combined,
they produce white light; when mixed in varying intensities, they can form
every other color that our eyes are capable of seeing.

To be more specific, electromagnetic radiationF (λ) in the range of visi-
ble light (λ ∈ {380nm, . . . , 780nm}) is perceived as color or colored light.
As noticed above, it has been verified experimentally that color is perceived
through three independent color receptors which have peak response at ap-
proximately red, green, and blue wavelengths,λr = 700nm, λg = 546.1nm,
andλb = 435.8nm, respectively. By assigning each primary color receptor,
k ∈ {r, g, b}, a response functionck(λ), visible light of any colorF (λ) is rep-
resented by a linear superposition of theck(λ)’s [Nieman, 1990], as follows:
by normalizingck(λ)’s to reference white lightW (λ) such that

W (λ) = cr(λ) + cg(λ) + cb(λ). (3.1)

F (λ) produces the tristimulus responses(R,G,B) such that

F (λ) = Rcr(λ) +Gcg(λ) +B cb(λ). (3.2)

As such, any color can be represented by a linear combination of the three
primary colors(R,G,B).

3. Color Models
There has been no consensus about which color space is most suitable for

color based image retrieval. The problem is a result of the fact that there does
not exist a universally accepted color space, and color perception is signifi-
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cantly subjective [Wyszecki and Stiles, 1982]. As a consequence, a large vari-
ety of color spaces is used in practice.

Color systems have been developed for different purposes [Smeulders et al.,
2000]:

(1) display and printing process:RGB, CMY ;

(2) television and video transmission efficiency:Y IQ, Y UV ;

(3) color standardization:XY Z;

(4) color uncorrelation:I1I2I3;

(5) color normalization and representation:rgb, xyz;

(6) perceptual uniformity:U∗V ∗W ∗, L∗a∗b∗, L∗u∗v∗;

(7) intuitive description:HSI,HSV .

With this large variety of color systems, the inevitable question arises which
color system to use for different image retrieval applications. An important cri-
terion is that the color system should be independent of the underlying imaging
device. This is required when the images in the database are recorded by dif-
ferent imaging devices such as cameras and scanners. Additionally, the color
system should exhibit perceptual uniformity meaning that the distances within
the color space can be related to human perceptual differences. This is impor-
tant when visually similar images are to be retrieved. Also, the transformation
needed to compute the color system should be linear. A non-linear transfor-
mation may introduce instabilities with respect to noise, causing poor retrieval
results. Moreover, to achieve robust and discriminative image retrieval, color
invariance is an important criterion.

For our experiments, we chose two of the most frequently used color spaces,
namely,RGB andHSV , together with thel1l2l3 color model introduced by
Gevers and Smeulders [Gevers and Smeulders, 1999].

3.1 RGB Color System
RGB refers to the intensity of 3 additive color primaries, red, green, and

blue. TheRGB space is not perceptually uniform. As such, the proximity
of colors inRGB color space does not indicate color similarity. The space
spanned by theR, G, andB values (see Equation 3.2) is complete in that all
colors are represented as vectors in the 3DRGB space. Since it corresponds
directly to the hardware, it is the easiest to be implemented and is in wide
use. Typically, each primary is quantized into 256 levels and then combined to
create256 × 256 × 256 possible colors.
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3.2 HSV Color System
TheHSV color model, introduced by Smith [Smith, 1978], approximates

the perceptual properties of “hue," “saturation," and “value." Hue and satu-
ration are taken from common speech about color, while the term value was
introduced by Munsell [Munsell, 1905], although it was defined differently.
The concept of value as a perceptually uniform quantity akin to brightness was
created by Munsell. Roughly speaking:

(1) hue associates a color with some position in the color spectrum - red,
green, and yellow are hue names;

(2) saturationdescribes the “vividness" of a color, pure spectral colors being
“fully saturated colors" and grays being “desaturated colors";

(3) valuecorresponds to the “lightness" of a color.

A hue-saturation slice ofHSV space is derived by projecting the surface of
anRGB color cube onto theR+G+B = 1 plane: the saturation and hue of
a point on the projection are its polar coordinatesr andθ with respect to the
center of the projected surface, while the valueV of all points on the projection
is simply the length of the diagonal of the color cube projected.

The transformationTc from RGB to HSV is accomplished through the
following equations [Hunt, 1989]. Letvc = (r, g, b) be the color triple of a
point in normalizedRGB space and letwc = (h, s, v) be the color triple of
the transformed color point inHSV color space, such thatwc = Tc(vc).

For r, g, b ∈ [0 . . . 1], Tc givesh, s, v ∈ [0 . . . 1] as follows:

v = max(r, g, b), s =
v − min(r, g, b)

v

Let

r′ =
v − r

v − min(r, g, b)
, g′ =

v − g

v − min(r, g, b)
, b′ =

v − b

v − min(r, g, b)

then,

6h =







































5 + b′ if r = max(r, g, b) andg = min(r, g, b)

1 − g′ if r = max(r, g, b) andg 6= min(r, g, b)

1 + r′ if g = max(r, g, b) andb = min(r, g, b)

3 − b′ if g = max(r, g, b) andb 6= min(r, g, b)

3 + g′ if b = max(r, g, b) andr = min(r, g, b)

5 − r′ otherwise

Similarly, forh, s, v ∈ [0 . . . 1], T−1
c givesr, g, b ∈ [0 . . . 1] as follows. Let,

α = 6h− round(6h)
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and,

ω1 = (1 − s)v, ω2 = (1 − sα)v, ω3 = (1 − s(1 − α))v

then,

r =



















v if α = 0 or α = 5

ω1 if α = 2 or α = 3

ω2 if α = 1

ω3 if α = 4

g =



















v if α = 1 or α = 2

ω1 if α = 4 or α = 5

ω2 if α = 3

ω3 if α = 0

b =



















v if α = 3 or α = 4

ω1 if α = 0 or α = 1

ω2 if α = 5

ω3 if α = 2

TheHSV andRGB color systems are typically used in generic content
based retrieval applications.

3.3 l1l2l3 Color System
Gevers and Smeulders [Gevers and Smeulders, 1999] analyzed and eval-

uated various color features for the purpose of image retrieval by color his-
togram matching under varying illumination environments. They introduced
thel1l2l3 color model as follows:

l1(R,G,B) =
(R−G)2

(R−G)2 + (R−B)2 + (G−B)2
(3.3)

l2(R,G,B) =
(R−B)2

(R−G)2 + (R−B)2 + (G−B)2
(3.4)

l3(R,G,B) =
(G−B)2

(R−G)2 + (R−B)2 + (G−B)2
(3.5)

whereR, G, andB are the color values in theRGB color space,0 ≤ li ≤ 1,
andl1 + l2 + l3 = 1. They showed that thel1l2l3 color model is invariant to a
substantial change in viewpoint (when the viewpoint is changed, photometric
changes may occur, yielding different shadows, shading, and highlighting cues
for the same object), object geometry, highlights, and illumination. These in-
variant properties make thel1l2l3 color system suitable for object recognition
and retrieval applications. In their object recognition experiments, Gevers and
Smeulders [Gevers and Smeulders, 1999] showed that thel1l2l3 color model
achieved the highest recognition rate.
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4. Color Based Retrieval
As the world enters the digital age, visual media is becoming prevalent and

easily accessible. Factors such as the explosive growth of the World Wide Web,
terabyte disk servers, and the digital versatile disk, reveal the growing amount
of visual media which is available to society. With the availability of visual
media comes the associated problem of searching for it and consequently, the
focus of researchers toward providing automatic content based retrieval sys-
tems. With this new application area, color has returned to the center of interest
of a growing number of scientists and artists. Aside from decorating and ad-
vertising potentials for Web-design, color information has already been used as
a powerful tool in content based image and video retrieval. Different measures
on the color features such as color histograms, color correlograms, prominent
colors, and salient colors, have proven to be efficient in discriminating between
relevant and non-relevant images. In particular, retrieval based on histograms
has been widely studied in [Swain and Ballard, 1991], [Flicker et al., 1995],
[Smith, 1997], [Hafner et al., 1995] and is now considered to be an effective
measure for color based retrieval.

Color based retrieval may concern [Del Bimbo, 1999]:

Finding images containing a specified color in an assigned proportion.
This is the simplest type of color based query. The most efficient way to
resolve it is to use histogram based representation of chromatic content and
count the relative number of pixels that are in the histogram bin closest to
the color in a query.

Finding images containing similar color regions as specified in a query.
A simple but generally ineffective solution to find images with color re-
gions similar to a query, is to partition images into number of regions with
fixed absolute location. Chromatic features extracted from each region are
compared with those of the corresponding regions in the query. Different
weights can be assigned to each region according to its relative importance
[Stricker and Dimai, 1997]. However, this approach does not permit to
specify arbitrary shaped regions nor their spatial relationships. To make
this possible, images should be segmented into homogeneous color regions.
However, size, shape, and color of regions of database images, resulting
from color segmentation, in general do not fit size, shape, and color of re-
gions specified in the query. Therefore, retrieval by color region similarity
is a very complex operation.

Finding images containing a known object based on its color proper-
ties. This application is similar to the previous one. Here, the object his-
togram is matched against parts of the database images and regions of po-
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tential interest are extracted. Histogram intersection method is suited for
detecting whether an object is present in an image using its color informa-
tion when objects have surfaces with fairy large homogeneous regions of
color.

Finding image whose colors are similar to those of an example image.
When a user wants to find an image similar to a query image its interest
lies on the global image chromatic content. For example, in the case of
a database of paintings, this kind of query may help to find paintings of
the same artist, or perceptually similar paintings, with no regard to what is
represented in the picture. Image chromatic contents is usually represented
through color histograms.

Queries can be expressed either through text of through visual examples.
Textual specification of colors is a simple way to express queries about the
presence of a color. However, it needs a commonly accepted correspondence
between color names and color stimuli. Eventually, the color associated with
the name selected can be visualized and the user can directly perceive the color
stimuli, increasing his confidence in the color choice. Querying through visual
examples is a more effective way of querying color distributions or color re-
gions. In this approach, given a query image, the goal is to retrieve all the
images whose color compositions are similar to the color composition of the
query image (have colors in the same/similar proportion or location). Visual
examples are also helpful for finding images containing a known object with
certain color properties. Examples are expressed either by using icons [Lew
and Sebe, 2000], or by extracting a sample image or a subimage from an im-
age set [Sebe and Lew, 1999a]. In querying by example, color can be combined
with other features like texture, structure, and composition.

4.1 Color Indexing
Color indexing is based on the observation that often color is used to encode

functionality: grass is green, sky is blue, etc.
Color histogram is the most traditional way of describing low-level color

properties of images. It can be represented as three independent color distri-
butions, in each primary, or as two independent distributions (for color spaces
which separate chromatic information from luminance) or - more frequently
- as one distribution over the three primaries, obtained by discretizing image
colors and counting how many pixels belong to each color.

In the last case, if we map the colors in the imageI into a discrete color
space containingn colors, then the color histogram [Swain and Ballard, 1991]
[Sawhney and Hafner, 1994]H(I) is a vector (hc1 , hc2 , · · · , hcn), where each
elementhcj represents the probability of having the colorcj in the imageI.
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The fundamental elements of the color histogram based approach include
the selection of the color space together with the associated quantization
scheme and the histogram distance metric. Color histograms are quite an ef-
ficient representation of color content; a positive aspect is that their computa-
tion is trivial. Moreover, histograms are fairly insensitive to variations origi-
nated by small camera rotations or zooming. Also they are fairly insensitive
to changes in image resolution (when images have quite large homogeneous
regions), and partial occlusions. However, where there are changes in light-
ing and large changes in view angle, histogram based representation of color
may vary greatly. Moreover, histograms, by themselves, do not include spatial
information so that images with very different layouts can have similar repre-
sentations.

Two widely used distance metrics in color indexing areL2 [Berman and
Sapiro, 1997] andL1 [Swain and Ballard, 1991][Gupta et al., 1997]. TheL2

distance applied to two color histogramsI andM is defined as

L2(I,M) =

√

√

√

√

n
∑

i=1

(ici −mci)
2 (3.6)

Similarly, theL1 distance will be

L1(I,M) =
n
∑

i=1

|ici −mci | (3.7)

Swain and Ballard [Swain and Ballard, 1991] introduced a color matching
method, known as histogram intersection. Specifically, given a pair of his-
togramsI andM , each containingn bins, the histogram intersection measure
is defined as follows:

H(I,M) =

n
∑

i=1
min(Ii,Mi)

n
∑

i=1
Mi

(3.8)

Moreover, if
n
∑

i=1
Mi =

n
∑

i=1
Ii = k, as will be the case for normalized his-

tograms, then the histogram intersection measure is equivalent toL1, thus

1 −H(I,M) =
1

2k

n
∑

i=1

|Ii −Mi| (3.9)

For a proof consider initially the relations:

Ii =

{

min(Ii,Mi) + |Ii −Mi| if Ii > Mi

min(Ii,Mi) otherwise
(3.10)
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and

Mi =

{

min(Ii,Mi) if Ii > Mi

min(Ii,Mi) + |Ii −Mi| otherwise
(3.11)

In either case

Ii +Mi = 2min(Ii,Mi) + |Ii −Mi| (3.12)

Then, using Equation (3.12)

k =
1

2

n
∑

i=1

(Ii +Mi) =
n
∑

i=1

min(Ii,Mi) +
1

2

n
∑

i=1

|Ii −Mi| (3.13)

By definition,

1 −H(I,M) =

k −
n
∑

i=1
min(Ii,Mi)

k
(3.14)

Replacingk in the numerator by the expression in Equation (3.13) we have

1 −H(I,M) =
1

2k

n
∑

i=1

|Ii −Mi| (3.15)

and relation (3.9) is proven.
When we create a color histogram, we must quantize each component of

the color model using a number of bits. We define quantizationX:Y :Z for
color modelABC as quantizing color componentA usingX bits, B using
Y bits, andC usingZ bits. In the case ofHSV , a 4:2:2 quantization refers
to quantizingH using 4 bits,S using 2 bits, andV using 2 bits. When not
otherwise specifiedRGB refers to a 3:3:2 quantization andHSV refers to a
4:2:2 quantization.

We applied the theoretical results described in Chapter 2 in two experiments.
We determined the influence of the similarity noise model on finding similar
images which differ due to either printer-scanner noise or change of viewpoint.
We used two color image databases. The first one was the Corel Photo database
and the second one consisted of 500 reference images of domestic objects,
tools, art artifacts, etc.

For benchmarking purposes we compared our results with the ones obtained
using Hafner’s quadratic distance measure (Lq) [Hafner et al., 1995] and the
color auto-correlogram (Cg) [Huang et al., 1997].

Hafner et al. [Hafner et al., 1995] introduced a sophisticated method of
comparing histograms. They used a quadratic distance measureLq which al-
lows for similarity matching between different colors (represented by the color
histograms bins)

Lq(x, y) = (x− y)tA(x− y) (3.16)
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wherex andy are two color histograms,A = [aij ] is a symmetric matrix,
and the weightsaij denote similarity between bins (colors)i and j. These
weights can be normalized so that0 ≤ aij ≤ 1, with aii = 1, and largeaij

denoting similarity between binsi andj, and smallaij denoting dissimilarity.
In their implementation [Hafner et al., 1995], the weightsaij are calculated
usingdij , the Euclidean distance (L2) between colorsi andj in a color space,
for instance, [R(ed),G(reen),B(lue)]. Letdmax = max

ij
(dij) then

aij = 1 − dij

dmax
(3.17)

The authors state that the quadratic distance measure more closely corre-
sponds to human judgment of color similarity than the Euclidean distance (L2).
For simplicity, consider a histogram distribution of three colors, say red, or-
ange, and blue, with

Ared, orange, blue=





1.0 0.9 0.0
0.9 1.0 0.0
0.0 0.0 1.0



 (3.18)

where red and orange are considered highly similar. Consider a pure red im-
age,x = [1.0, 0.0, 0.0]T , and a pure orange image,x = [0.0, 1.0, 0.0]T . The
(squared) histogram distance given by Equation (3.16) is 0.2. This low distance
reflects the perceptual similarity of the two images although their distribution
populate distinct bins of the histogram so their squared Euclidean distance is
2.0.

Observing the fact that the color histograms lack information about how
color is spatially distributed, Huang et al. [Huang et al., 1997], introduced
a new color feature for image retrieval called color correlogram. This feature
characterizes how the spatial correlation of pairs of color changes with distance
in an image. A color correlogram of an image is a table indexed by color pairs,
where thek-th entry for〈ci, cj〉 specifies the probability of finding a pixel of
color cj at distancek from a pixel of colorci in the image:

Cgk
ci,cj

(I) = Pp1∈Ici
[p2 ∈ Icj ||p1 − p2| = k] (3.19)

wherep1 and p2 are pixels in the image andIc = {p|I(p) = c} with I(p)
denoting the pixel color. Usually, because the size of color correlogram is
quite large, the color auto-correlogram (simply denoted asCg) is often used
instead. This feature only captures spatial correlation between identical colors

Cg = Cgk
ci,ci

(I) (3.20)

Local correlation between colors are more significant than global correla-
tions in an image and therefore, a small subset of distancesk is sufficient to
capture the spatial correlation.
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Since bothLq andCg were meant to be benchmarks, they were implemented
as described in the original papers. ForLq, Hafner used a 256 bin histogram
in RGB color space. In computing the auto-correlograms, there were used 64
colors in RGB color space and{1, 3, 5, 7} for spatial distances, resulting in a
256 feature vector. The comparison was made usingL1.

Clearly, the maximum likelihood approach described in Section 2.6 can also
be applied to these features in the same way as it is applied to color histograms.
However, in order to have a fair benchmark we consider only the implementa-
tion from the original papers.

In a typical image retrieval application the result of a query is a ranked list
of images that are hopefully interesting to the user (a group of images similar
to the query image). From this list only a limited number of the retrieval results
are showed to the user. This is because in general a user will not want to browse
through a large number of retrieval results to find the image(s) he is looking
for. In this context, we consider in our experiments the bests retrieval results,
where we defines as thescope.

The problem is formulated as follows: LetQ1, · · · ,Qn be the query images
and for theith queryQi, and letI(i)

1 , · · · , I(i)
m be the images similar with

Qi according to the ground truth. The retrieval method will return this set of
answers with various ranks. As an evaluation measure of the performance of
the retrieval method we usedprecisionversusrecall at different scopes: For a
queryQi and a scopes > 0, the recallr is defined as

r =
|{I(i)

j |rank(I(i)
j ) ≤ s}|

m
(3.21)

and the precisionp is defined as

p =
|{I(i)

j |rank(I(i)
j ) ≤ s}|

s
(3.22)

Another interesting performance evaluation measure is theretrieval accu-
racydefined as the percentage of correct copies found within the topsmatches.

5. Experiments with the Corel Database
The first experiments were done using 8,200 images from the Corel

database. We used this database because it represents a widely used set of
photos by both amateur and professional graphical designers. Furthermore,
it is available on the Web at http://www.corel.com. In these experiments we
chose two of the most frequently used color spaces, namely,RGB andHSV .

5.1 Early Experiments
Before we can measure the accuracy of particular methods, we first had

to find a challenging and objective ground truth for our tests [Sebe and Lew,
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1999b]. We perused the typical image alterations and categorized various kinds
of noise with respect to finding image copies. Copies of images were often
made with images at varying JPEG qualities, in different aspect ratio preserved
scales, and in the printed media. We defined these as JPEG noise, Scaling
noise, and Printer-Scanner noise.

JPEG noise was created by coding and then decoding a JPEG image using
varying JPEG-quality values. UsingHSV 4:2:2, JPEG quality 30, andL1

metric, we were able to recover the exact image copy as the top rank with
100% retrieval accuracy from our large image database.

In Scale noise, we made the copy by reducing the image in size so that the
image was aspect ratio preserved with maximum size32 × 32. UsingHSV
4:2:2 andL1 metric, the copy was found within the top 10 ranks with 100%
retrieval accuracy. We concluded that JPEG noise and Scaling noise were not
sufficiently challenging to discriminate the different color indexing methods.

In Printer-Scanner noise, the idea was to measure the effectiveness of a re-
trieval method when trying to find a copy of an image in a magazine or news-
paper. In order to create the ground truth we printed 82 images using an Epson
Stylus 800 color printer at 720 dots/inch and then scanned each of them at 400
pixels/inch using an HP IIci color scanner. The noise from this copy process
was the most significant in that the copy was found in the top 10 ranks using
HSV 4:2:2 andL1 metric with less than 45% accuracy. From these primary
investigations in Printer-Scanner noise we concluded that this application is
challenging and therefore we investigated it further.

Examples of copy pairs from the Printer-Scanner noise experiments are
shown in Figure 3.1. The query image is typically very different from the tar-
get image. In the copy pair containing the child, the textures on the sleeve and
on the hair are missing. Also, the cup and water jug are barely discernible. In
the other copy pair, note the loss of details in the background mountainside and
windows on the lower-right house wall. In conclusion, note that we purposely
chose a hard ground truth in order to have a good discrimination between the
retrieval methods.

5.2 Usability Issues
In creating a system for users, it is important to take into account the way in

which users will interact with the system. Two important issues are: the total
response time of the system and the number of results pages which the user
must look at before finding the image copy. We made the following assump-
tions. First, in order to have an interactive experience, the total system response
time should be less than 2 seconds. Furthermore, the number of results pages
which are looked at by the user should reflect the usage of real professionals.
Graphical artists typically flip through stock photo albums containing tens of
pages, which amounts to a few hundred images for relevant material. For this
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(a) (b)

(c) (d)

Figure 3.1. Two examples of copy pairs used in Printer-Scanner noise experiments: (a)-(c) the
original image; (b)-(d) copy image. The copy image is very different from the original image.

reason we show the results regarding the top 1 to 100 ranks. We also avoid
methods which require more than a few seconds of response time.

5.3 Printer-Scanner Noise Experiments
As we stated in Section 3.5.1, JPEG noise and Scaling noise were not suffi-

ciently challenging to separate the different color indexing methods therefore,
we focused on Printer-Scanner noise application. Our ground truth consists of
82 copy-pairs: the original images along with their copies obtained by printing
and then scanning. The training set (see Section 2.7) was obtained by ran-
domly choosing 50 copy-pairs from the ground truth. The test set consisted of
the remaining pairs from the ground truth.

As it was noted in Section 3.3 there are various color models proposed in
the literature and there has been no consensus about which one is most suit-
able for color based image retrieval. In our experiments with Corel database
we considered the two most frequently used color modelsRGB andHSV .
Initially, we compared the results obtained with each of these color models
using theL2 andL1 distance measures introduced above. Further, we investi-
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gated the influence of the quantization scheme on the retrieval results. Finally,
based on the previous results, we used the color model that provided the best
retrieval results and investigated the influence of the similarity noise model on
the retrieval results applying the theoretical framework described in Chapter 2.

5.4 Color Model
The first question we asked was: Which color model gives better retrieval

accuracy? As shown in Figure 3.2, we obtained better retrieval accuracy when
using theHSV color model, regardless of usingL1 or L2 distance measures.
The results are also summarized in Table 3.1. One can also notice thatL1

consistently provided better retrieval results compared toL2.
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Figure 3.2. Retrieval accuracy for the top 100 usingHSV andRGB: (a)L1; (b)L2

Table 3.1. Retrieval accuracy (%) forHSV andRGB usingL1 andL2

Top 20 40 100

L2 48.78 54.87 67.07
HSV L1 62.19 68.29 84.14

L2 40.17 48.66 61.24
RGB L1 50.15 57.72 69.09

5.5 Quantization
Based upon the improvement in the retrieval accuracy it is clear that the

best choice is to use theHSV color model with theL1 metric. So, the next
question is: How does the quantization scheme affect the retrieval accuracy?
In Figure 3.3(a) it appears that increased resolution inH may be the cause of
increased accuracy. This leads us to ask whether furtherH resolution will give
even better results. Figure 3.3(b) shows that this is not the case.
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Figure 3.3. Retrieval accuracy forHSV using different quantization models (a) 4:2:2 - 3:3:2
and (b) 4:2:2 - 5:2:1

In summary, the choice of the color model and quantization can affect the
accuracy by up to 15% and 7%, respectively. Our first experiments showed
that the best retrieval results are obtained when using theHSV color model
with a 4:2:2 quantization scheme. Consequently, we use this color model in
our next experiments.

5.6 Distribution Analysis
The next question we asked was: Which distribution is a good approxima-

tion for the real color model noise? To answer this, we need to measure the
noise with respect to the color model. The real noise distribution (Figure 3.4)
was obtained as the normalized histogram of differences between the elements
of color histograms corresponding to copy-pair images from the training set
(50 image pairs).

Note that the Chi-square test was used to calculate the approximation error
which measures the fit between each of the model distributions and the real
distribution. The best fit Exponential had a better fit to the noise distribution
than the Gaussian. Consequently, this implies thatL1 should have better re-
trieval results thanL2. The Cauchy distribution is the best fit overall, and the
results obtained withLc reflect this (see Figure 3.5).

If it is necessary to perform analytic computations, then the usage of one of
the analytic metrics like,L1, L2, or Lc metrics is required. The main advan-
tage of these metrics is the ease in implementation and analytic manipulation.
However, neither corresponding distribution models the real noise distribution
accurately, so we expect that we can lower the misdetection rates even further.
As was shown in Section 2.6, a metric, called maximum likelihood (ML) met-
ric can be extracted directly from the real noise distribution. We expect this
metric to provide the best retrieval results.

Figure 3.5 shows the precision/recall graphs.Lc gave a significant improve-
ment in accuracy as compared toL2, L1, andLq. The Kullback relative infor-
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Figure 3.4. Noise distribution in Corel database compared with (a) the best fit Gaussian (ap-
proximation error is 0.106), (b) best fit Exponential (approximation error is 0.082) and (c) best
fit Cauchy (approximation error is 0.068)
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Figure 3.5. Precision/Recall in Corel database; forLc, a=1.32

mation (K) (see Equation (2.171)),Lq, and the correlogramsCg performed
better thanL2 andL1. Overall, theML metric gave the best accuracy.

The retrieval accuracy results are presented in Table 3.2. Note that the
choice of the noise model can significantly affect the retrieval accuracy. The
usage ofLq andCg also produce improvement in retrieval accuracy compared
with L2 andL1, since they use some extra information regarding color similar-
ity or spatial correlation between colors. However, when the noise is modeled
best, so thereforeML is used, we obtained the best retrieval results.
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Table 3.2. Retrieval accuracy (%) in the Corel database

Top 20 40 100

L2 48.78 54.87 67.07
L1 62.19 68.29 84.14
Lq 66.34 73.66 88.29
K 68.29 75.60 86.58

Lc a=1.32 71.95 79.26 92.68
ML 75.60 82.92 96.34
Cg 71.09 79.63 88.17

6. Experiments with the Objects Database
In the next experiments we used a database [Gevers and Smeulders, 2000]

consisting of 500 images of color objects such as domestic objects, tools, toys,
food cans, etc. The objects were recorded in isolation (one per image) against
a white cardboard background. The digitization was done in 8 bits per color.
Two light sources of average day-light color were used to illuminate the ob-
jects in the scene. There was no attempt to individually control the focus of
the camera or the illumination. Objects were recorded at a pace of a few shots
a minute. They show a considerable amount of noise, shadows, shading, spec-
ularities, and self occlusion resulting in a good representation of views from
everyday life.

As ground truth we used 48 images of 8 objects taken from different camera
viewpoints (6 images for a single object). The objects were put perpendicularly
in front of the camera and recordings were generated by varying the angle
between the camera fors = {30, 45, 60, 75, 80} degrees with respect to the
object’s surface normal. An example is shown in Figure 3.6.

For this experiment we chose to implement a method proposed in [Gevers
and Smeulders, 1999] designed for indexing by color invariants. Our goal was
to study the influence of the similarity noise on the retrieval results.

Using 24 images with varying viewpoint as the training set, we calculated
the real noise distribution and studied the influence of different distance mea-
sures on the retrieval results. We used thel1l2l3 color model introduced pre-
viously and we quantized each color component with 3 bits resulting in color
histograms with 512 bins.

The Cauchy distribution was the best match for the measured noise distri-
bution. The Exponential distribution was a better match than the Gaussian
(Figure 3.7). Table 3.3 shows the precision and recall values at various scopes.
The results obtained withLc were consistently better than the ones obtained
with L2 orL1.
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Figure 3.6. Example of images of one object taken from different camera viewpoints

Table 3.3. Recall/Precision versus Scope; forLc, a=2.88

Precision Recall
Scope 5 10 25 5 10 25

L2 0.425 0.258 0.128 0.425 0.517 0.642
L1 0.45 0.271 0.135 0.45 0.542 0.675
Lq 0.46 0.280 0.143 0.46 0.561 0.707
K 0.466 0.279 0.138 0.466 0.558 0.692
Lc 0.525 0.296 0.146 0.525 0.592 0.733
ML 0.533 0.304 0.149 0.533 0.618 0.758
Cg 0.5 0.291 0.145 0.5 0.576 0.725

Figure 3.8 shows the precision-recall graphs. The curve corresponding toLc

is above the curves corresponding toL1 or L2 showing that the method using
Lc is more effective. Note that the Kullback relative information performed
better thanL1 orL2.

In summary,Lc performed better than the analytic distance measures, and
theML metric performed best overall. It is interesting that the Kullback rela-
tive information performed consistently better than the well-known histogram
intersection (L1), and roughly the same asLq. The correlogram (Cg) per-
formed better thanL1, L2, Lq, andK.
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Figure 3.7. Noise distribution in color objects database compared with (a) the best fit Gaussian
(approximation error is 0.123), (b) best fit Exponential (approximation error is 0.088) and (c)
best fit Cauchy (approximation error is 0.077)
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Figure 3.8. Precision/Recall for color objects database; forLc, a=2.88

7. Concluding Remarks
We examined two applications from computer vision which involve distor-

tions derived either from changes in viewpoint or from the process of printing
and scanning. The first application was finding copies of images which had
been printed and then scanned. For this application we used the Corel stock
photo database and a color histogram method for finding the copies. The sec-
ond application dealt with finding all images of an object in a database where
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the images were taken from different viewpoints. The database consisted of
color images taken from multicolored man-made objects composed of vari-
ety of materials including plastic, textile, paper, wood, rubber, painted metal,
and ceramic. Both the ground truth and the algorithm came from the work
by Gevers and Smeulders [Gevers and Smeulders, 1999]. Note that in their
work, they used theL1 metric. Furthermore, for both applications, we imple-
mented Hafner’s quadratic perceptual similarity measure [Hafner et al., 1995]
and Huang’s correlogram [Huang et al., 1997] as benchmarks.

For both applications in our experiments, the Cauchy distribution was the
best match for the similarity noise distribution and consequently the results
obtained withLc were better than the ones obtained withL2 andL1. Overall,
theMLmetric consistently outperformed all of the other metrics including the
algorithms by Hafner et al. [Hafner et al., 1995] and Huang et al. [Huang et al.,
1997].



Chapter 4

ROBUST TEXTURE ANALYSIS

Textures are one of the basic features in visual searching and computer vi-
sion. In the research literature, most of the attention has been focussed on the
texture features with minimal consideration of the noise models. In this chapter
we investigate the problem of texture classification from a maximum likelihood
perspective. We take into account the texture models (e.g., Gabor and wavelet
models and texture distribution models such as gray-level differences, Laws’
models, covariance models, and local binary patterns), the noise distribution,
and the inter-dependence of the texture features. We use the Brodatz’s texture
database [Brodatz, 1966] in two experiments. Firstly, we use a subset of nine
textures from the database in a texture classification experiment. The goal is to
classify correctly random samples extracted from the original textures. In these
experiments we use the texture distribution models for extracting features as
in the work by Ojala et al. [Ojala et al., 1996]. Secondly, we consider a tex-
ture retrieval application where we extract random samples from all the 112
original Brodatz’s textures and the goal is to retrieve samples extracted from
the same original texture as the query sample. As texture models we use the
wavelet model as in the work by Smith and Chang [Smith and Chang, 1994]
and the Gabor texture model as in the work by Ma and Manjunath [Ma and
Manjunath, 1996].

1. Introduction
Texture is an intuitive concept. Every child knows that leopards have spots

but tigers have stripes, that curly hair looks different from straight hair, etc. In
all these examples there are variations of intensity and color which form cer-
tain repeated patterns calledvisual texture. The patterns can be the result of
physical surface properties such as roughness or oriented strands which often
have a tactile quality, or they could be the result of reflectance differences such



as the color on a surface. Even though the concept of texture is intuitive (we
recognize texture when we see it), a precise definition of texture has proven
difficult to formulate. This difficulty is demonstrated by the number of differ-
ent texture definitions attempted in the literature [Bovik et al., 1990][Richards
and Polit, 1974][Haralick, 1979][Chaudhuri et al., 1993][Tamura et al., 1978].

Despite the lack of a universally accepted definition of texture, all re-
searchers agree on two points:

(1) within a texture there is significant variation in intensity levels between
nearby pixels; that is, at the limit of resolution, there is non-homogeneity

(2) texture is a homogeneous property at some spatial scale larger than the
resolution of the image.

It is implicit in these properties of texture that an image has a given resolu-
tion. A single physical scene may contain different textures at varying scales.
For example, at a large scale the dominant pattern in a floral cloth may be a
pattern of flowers against a white background, yet at a finer scale the dominant
pattern may be the weave of the cloth. The process of photographing a scene,
and digitally recording it, creates an image in which the pixel resolution im-
plicitly defines a finest scale. It is conventional in the texture analysis literature
to investigate texture at the pixel resolution scale; that is, the texture which has
significant variation at the pixel level of resolution, but which is homogeneous
at a level of resolution about an order of magnitude coarser.

Some researchers finesse the problem of formally defining texture by de-
scribing it in terms of the human visual system: textures do not have uniform
intensity, but are nonetheless perceived as homogeneous regions by a human
observer. Other researchers are completely driven in defining texture by the
application in which the definition is used. Some examples are given here:

“An image texture may be defined as a local arrangement of image irradi-
ances projected from a surface patch of perceptually homogeneous irradi-
ances." [Bovik et al., 1990]

“Texture is defined for our purposes as an attribute of a field having no
components that appear enumerable. The phase relations between the com-
ponents are thus not apparent enumerable. The phase relations between
the components are thus not apparent. Nor should the field contain an ob-
vious gradient. The intent of this definition is to direct attention of the
observer to the global properties of the display, i.e., its overall “coarse-
ness," “bumpiness," or “fineness." Physically, nonenumerable (aperiodic)
patterns are generated by stochastic as opposed to deterministic processes.
Perceptually, however, the set of all patterns without obvious enumerable
components will include many deterministic (and even periodic) textures."
[Richards and Polit, 1974]
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“An image texture is described by the number and types of its (tonal) primi-
tives and the spatial organization or layout of its (tonal) primitives ... A fun-
damental characteristic of texture: it cannot be analyzed without a frame of
reference of tonal primitive being stated or implied. For any smooth gray
tone surface, there exists a scale such that when the surface is examined, it
has no texture. Then as resolution increases, it takes on a fine texture and
then a coarse texture." [Haralick, 1979]

“Texture regions give different interpretations at different distances and at
different degrees of visual attention. At a standard distance with normal
attention, it gives the notion of macroregularity that is characteristic of the
particular texture." [Chaudhuri et al., 1993]

A definition of texture based on human perception is suitable for psychome-
tric studies and for discussion on the nature of texture. However, such a defi-
nition poses problems when used as the theoretical basis for a texture analysis
algorithm. Consider the three images in Figure 4.1. All three images are con-
structed by the same method, differing in only one parameter. Figures 4.1(a)
and (b) contain perceptually different textures, whereas Figures 4.1(b) and (c)
are perceptually similar. Any definition of texture, intended as the theoretical
foundation for an algorithm and based on human perception, has to address the
problem that a family of textures, as generated by a parameterized method, can
vary smoothly between perceptually distinct and perceptually similar pairs of
textures.

(a) (b) (c)

Figure 4.1. Visibility of texture distinctions; Each of the images is composed of lines of the
same length having their intensity drawn from the same distribution and their orientations drawn
from different distributions. The lines in (a) are drawn from the uniform distribution, with a
maximum deviation from the vertical of 45◦. The orientation of lines in (b) is at most 30◦ from
the vertical and in (c) at most 28◦ from the vertical.
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2. Human Perception of Texture
Julesz has studied texture perception extensively in the context of texture

discrimination [Julesz et al., 1973][Julesz, 1975]. The question he posed was:
“When is a texture pair discriminable, given that the textures have the same
brightness, contrast, and color?" His approach was to embed one texture in the
other. If the embedded patch of texture visually stood out from the surrounding
texture, then the two textures were considered to be dissimilar. In order to
analyze if two textures are discriminable, he compared their first and second
order statistics.

First order statistics measure the likelihood of observing a gray value at a
randomly chosen location in the image. These statistics can be computed from
the histogram of pixel intensities in the image. These depend only on indi-
vidual pixel values and not on the interaction or co-occurrence of neighboring
pixel values. The average intensity in an image is an example of a first order
statistic. Second order statistics are defined as the likelihood of observing a
pair of gray values occurring at the endpoints of a dipole of random length
placed in the image at a random location and orientation. These are properties
of pairs of pixel values.

Julesz found that textures with similar first order statistics, but different sec-
ond order statistics were easily discriminated. However, he could not find any
textures with the same first and second order statistics that could be discrimi-
nated. This led him to the conjecture that “iso-second-order textures are indis-
tinguishable." [Julesz et al., 1973]

Later Caelli et al. [Caelli et al., 1978] did produce iso-second-order tex-
tures that could be discriminated with pre-attentive human visual perception.
Further work by Julesz [Julesz, 1981a][Julesz, 1981b] revealed that his origi-
nal conjecture was wrong. Instead, he found that the human visual perception
mechanism did not necessarily use third order statistics for the discrimination
of these iso-second-order textures, but rather use the second order statistics of
features he calledtextons. These textons are described as being the fundamen-
tals of texture. Three classes of textons were found:color, elongated blobs,
and theterminators(end points) of these elongated blobs. The original con-
jecture was revised to state that “the pre-attentive human visual system cannot
compute statistical parameters higher than second order." Furthermore, Julesz
stated that the pre-attentive human visual system actually uses only the first
order statistics of these textons.

Since these pre-attentive studies into the human visual perception, psy-
chophysical research has focused on developing physiologically plausible
models of texture discrimination. These models involved determining which
measurements of textural variations humans are most sensitive to. Textons
were not found to be the plausible textural discriminating measures as envis-
aged by Julesz [Bergen and Adelson, 1988][Voorhees and Poggio, 1988]. Beck
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et al. [Beck et al., 1987] argued that the perception of texture segmentation in
certain types of patterns is primarily a function of spatial frequency analysis
and not the result of a higher level symbolic grouping process. Psychophysi-
cal research suggested that the brain performs a multi-channel, frequency, and
orientation analysis of the visual image formed on the retina [Campbell and
Robson, 1968][De Valois et al., 1982]. Campbell and Robson [Campbell and
Robson, 1968] conducted psychophysical experiments using various grating
patterns. They suggested that the visual system decomposes the image into fil-
tered images of various frequencies and orientations. De Valois et al. [De Val-
ois et al., 1982] have studied the brain of the macaque monkey which is as-
sumed to be close to the human brain in its visual processing. They recorded
the response of the simple cells in the visual cortex of the monkey to sinu-
soidal gratings of various frequencies and orientations and concluded that these
cells are tuned to narrow ranges of frequency and orientation. These studies
have motivated vision researchers to apply multi-channel filtering approaches
to texture analysis. Tamura et al. [Tamura et al., 1978] and Laws [Laws, 1980]
identified the following properties as playing an important role in describing
texture: uniformity, density, coarseness, roughness, regularity, linearity, direc-
tionality, direction, frequency, and phase. Some of these perceived qualities
are not independent. For example, frequency is not independent of density,
and the property of direction only applies to directional textures. The fact that
the perception of texture has so many different dimensions is an important rea-
son why there is no single method of texture representation which is adequate
for a variety of textures.

3. Texture Features
Interest in visual texture was triggered by the phenomenon of texture dis-

crimination which occurs when a shape is defined purely by its texture, with
no associated change in color or brightness: color alone cannot distinguish be-
tween tigers and cheetahs! This phenomenon gives clear justification for tex-
ture features to be used in content based retrieval together with color and shape.
Several systems have been developed to search through image databases using
combination of texture, color, and shape attributes (QBIC [Flicker et al., 1995],
Photobook [Pentland et al., 1996], Chabot [Ogle and Stonebracker, 1995], Vi-
sualSEEk [Smith and Chang, 1996], etc.). Although, in these systems texture
features are used in combination with color and shape features, texture alone
can also be used for content based retrieval.

In practice, there are two different approaches in which texture is used as the
main feature for content based retrieval. In the first approach, texture features
are extracted from the images and then are used for finding similar images in
the database [Ma and Manjunath, 1998] [Gorkani and Picard, 1994] [Smith
and Chang, 1994]. Texture queries can be formulated in a similar manner to
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color queries, by selecting examples of desired textures from a palette, or by
supplying an example query image. The system then retrieves images with
texture measures most similar in value to the query. The systems using this
approach may use already segmented textures as in the applications with Bro-
datz database [Picard et al., 1993], or they first have a segmentation stage after
which the extracted features in different regions are used as queries [Ma and
Manjunath, 1998]. The segmentation algorithm used in this case may be cru-
cial for the content based retrieval. In the second approach, texture is used
for annotating the image [Picard and Minka, 1995]. Vision based annotation
assists the user in attaching descriptions to large sets of images and video. If
a user labels a piece of an image as “water," a texture model can be used to
propagate this label to other visually similar regions.

The method of texture analysis chosen for feature extraction is critical to
the success of texture classification. However, the metric used in compar-
ing the feature vectors is also clearly critical. Many methods have been pro-
posed to extract texture features either directly from the image statistics, e.g.
co-occurrence matrix [Haralick et al., 1973], or from the spatial frequency
domain [Van Gool et al., 1985]. Ohanian and Dubes [Ohanian and Dubes,
1992] studied the performance of four types of features: Markov Random
Fields parameters, Gabor multi-channel features, fractal based features, and
co-occurrence features. Comparative studies to evaluate the performance of
some texture measures were made in [Reed and Du Buf, 1993][Ojala et al.,
1996]. Recently there has been a strong push to develop multiscale approaches
to the texture problem. Smith and Chang [Smith and Chang, 1994] used the
statistics (mean and variance) extracted from the wavelet subbands as the tex-
ture representation. To explore the middle-band characteristics, tree-structured
wavelet transform was used by Chang and Kuo [Chang and Kuo, 1993]. Ma
and Manjunath [Ma and Manjunath, 1995] evaluated the texture image anno-
tation by various wavelet transform representations, including orthogonal and
bi-orthogonal wavelet transforms, tree-structured wavelet transform, and the
Gabor wavelet transform (GWT). They found out that the Gabor transform
was the best among the tested candidates, which matched the human vision
study results [Beck et al., 1987].

Most of these previous studies have focussed on the features, but not on the
metric, nor on modeling the noise distribution. Here, we study the effect of the
similarity noise, the metric, and their interrelationship within the maximum
likelihood paradigm, using texture distribution models, Gabor, and wavelet
features.

3.1 Texture Distribution Models
Texture distribution methods use probability density function (PDF) models

which are sensitive to high order interactions. Typically, these methods use a
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histogram model in which the partitioning of the intensity space is sensitive
to high order interactions between pixels. This sensitivity is made feasible by
quantizing the intensity values to a small number of levels, which consider-
ably reduces the size of the space. The largest number of levels used is four,
but two levels, or thresholding, is more common. These methods can be cate-
gorized into the following classes: gray-level differences, Laws’ texture mea-
sures, center-symmetric covariance measures, and local binary patterns. We
briefly describe them and give references to the original papers.

3.1.1 Gray-level differences

The class of gray-level differences were used by Unser [Unser, 1986]. These
methods capture the distribution of local contrast in different directions. Since
they rely on the differences, they provide reduced dependence on intensity. In
our implementation, we used four measures based on the gray-level difference
method. By accumulating the differences of the adjacent gray levels in the
horizontal and vertical directions, we create histograms DIFFX and DIFFY.
When we accumulate the absolute differences in both horizontal and vertical
directions, we arrive at DIFF2, and in DIFF4, we accumulate the absolute dif-
ferences in all four principal directions, which also gives rotational invariance.

3.1.2 Laws’ texture energy measures

Beyond gray-level differences, we examine larger convolution masks which
measure the energy of local patterns. From Laws’ work [Laws, 1980] on tex-
ture energy measures, we used four Laws’3×3 operators (see Figure 4.2): two
perform edge detection in vertical (L3E3) and horizontal directions (E3L3) and
the other ones are line detectors in these two orthogonal directions (L3S3 and
S3L3).

-1 0 1
-2 0 2
-1 0 1

-1 -2 -1
0 0 0
1 2 1

-1 2 -1
-2 4 -2
-1 2 -1

-1 -2 -1
2 4 2

-1 -2 -1
L3E3 E3L3 L3S3 S3L3

Figure 4.2. Four 3×3 Laws’ masks used in the experiments

3.1.3 Center-symmetric covariance measures

We also consider statistical concepts of symmetry and covariance. Harwood
et al. [Harwood et al., 1995] introduced measures for gray-level symmetry
(positive) and anti-symmetry (negative) by computing local auto-covariances
or auto-correlations of center-symmetric pixel values of suitably sized neigh-
borhoods. We implemented a local center-symmetric auto-correlation measure
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based on neighborhood rank-order (SRAC) and a related covariance measure
(SCOV).

SCOV is a measure of the pattern correlation as well as the local pattern
contrast.

SCOV=
1

4

4
∑

i=1

(gi − µ)(g′i − µ) (4.1)

wheregi refers to the gray level of pixeli (see Figure 4.3) andµ denotes the
local mean.
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Figure 4.3. A 3×3 neighborhood with 4 center-symmetric pairs of pixels

SRAC is a gray-scale invariant measure which ignores the local means and
variances but preserves local linear and ranked ordering.

SRAC = 1 −
12

{

4
∑

i=1
(ri − r′i)

2 + Tx

}

m3 −m
(4.2)

Tx =
1

12

l
∑

i=1

(t3i − ti) (4.3)

wherem is n2 (considering an × n neighborhood), eachti is the number of
ties at rankri, ri refers to the rank of the gray level pixeli, andl defines the
number of different ranks. The values of SRAC are bounded between -1 and
1.

Since SCOV it is not normalized with respect to local gray scale variation,
it provides more texture information than SRAC. However, there is a tradeoff
here: since the unnormalized SCOV is more sensitive to local sample variation,
it is not so invariant as SRAC which is very robust in the presence of local gray
scale variability or noise.
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3.1.4 Local binary patterns and trigrams

Another way of analyzing local patterns is to binarize the local pattern in-
formation and measure the distribution of these patterns in the texture. Ojala et
al. [Ojala et al., 1996] proposed a texture unit represented by eight elements,
each of which has two possible values{0, 1} obtained from a neighborhood of
3 × 3 pixels. These textures units are called local binary patterns (LBP) and
their occurrence of distribution over a region forms the texture spectrum. The
LBP is computed by thresholding each of the noncenter pixels by the value of
the center pixel, resulting in 256 binary patterns. The LBP method is gray-
scale invariant and can be easily combined with a simple contrast measure by
computing for each neighborhood the difference of the average gray-level of
those pixels which after thresholding have the value 1, and those which have
the value 0, respectively. The algorithm is detailed below:

For each3 × 3 neighborhood, considerPi the intensities of the component
pixels withP0 the intensity of the center pixel. Then,

1 Threshold pixelsPi by the value of the center pixel:P ′
i =

{

0 if Pi < P0

1 otherwise

2 Count the numbern of resulting non-zero pixels:n =
8
∑

i=1
P ′

i

3 Calculate the local binary pattern: LBP=
8
∑

i=1
P ′

i2
i−1

4 Calculate the local contrast:

C =







0 if n = 0 or n = 8

1
n

8
∑

i=1
P ′

iPi − 1
8−n

8
∑

i=1
(1 − P ′

i )Pi otherwise

A numerical example is given in Figure 4.4.
Another texture unit calledtrigram was introduced by Huijsmans et al.

[Huijsmans et al., 1996]. This texture unit is represented by 9 elements each of
which has two possible values{0, 1} obtained from a neighborhood of3 × 3
pixels. The value 0 or 1 associated with each element is calculated by applying
a threshold in gradient space. If the pixel value is greater than the threshold
then, the assigned value of the corresponding trigram element is 1, otherwise
0. This results in 512 trigrams which are accumulated in a histogram. Note
that for the trigrams it is important to select the threshold properly.

3.1.5 Complementary feature pairs

In many cases a single texture measure cannot provide sufficient information
about the spatial and frequency oriented structure of the local texture. Better
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Figure 4.4. Computation of Local Binary Pattern (LBP) and contrast measure (C).

discrimination of textures can be obtained considering joint occurrences of
two or more features. Therefore, we consider pairs of features which provide
complementary information.

The center-symmetric covariance measures provide robust information
about the local texture, but little about the exact local spatial pattern. This sug-
gests that as complementary features we should consider measures that provide
spatial patterns such as LBP, trigrams, or any difference measure. We consider
two different features combined with LBP. LBP/C is based on the contrast mea-
sure already introduced and the other pair is LBP/SCOV. Laws’ masks perform
edge and line detections in horizontal and vertical directions. Since these pat-
terns can be in arbitrary directions, the joint use of edge and line detectors in
the orthogonal directions should be considered. Similarly, the joint use of his-
tograms of differences between neighboring pixels computed in the horizontal
and vertical directions should provide useful information for texture discrimi-
nation. The pair L3E3/E3L3 corresponds to edge detection, L3S3/S3L3 to line
detection, DIFFX/DIFFY to absolute gray-level in the horizontal and vertical
direction, respectively, and DIFFY/SCOV combines absolute gray-scale differ-
ences in the vertical direction with the center-symmetric covariance measure.

3.2 Gabor and Wavelet Models
The Fourier transform is an analysis of the global frequency content in the

signal. Many applications require the analysis to be localized in the spatial
domain. This is usually handled by introducing spatial dependency into the
Fourier analysis. The classical way of doing this is through what is called the
window Fourier transform. Considering a one dimensional signalf(x), the
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window Fourier transform is defined as:

Fw(u, ψ) =

∫ ∞

−∞
f(x)w(x− ψ)e−j2πuxdx (4.4)

When the window functionw(x) is Gaussian, the transform becomes a Ga-
bor transform. The limits of the resolution in the time and frequency domain of
the window Fourier transform are determined by thetime-bandwidth product
or theHeisenberg uncertainty inequalitygiven by∆t∆u ≥ 1

4π . Once a win-
dow is chosen for the window Fourier transform, the time-frequency resolution
is fixed over the entire time-frequency plane. To overcome the resolution lim-
itation of the window Fourier transform, one lets the∆t and∆u vary in the
time-frequency domain. Intuitively, the time resolution must increase as the
central frequency of the analyzing filter is increased. That is, the relative band-
width is kept constant in a logarithmic scale. This is accomplished by using
a window whose width changes as the frequency changes. Recall that when a
functionf(t) is scaled in time bya, which is expressed asf(at), the function
is contracted ifa > 1 and it is expanded whena < 1. Using this fact, the
Wavelet transform can be written as:

Wf,a(u, ψ) =
1√
a

∫ ∞

−∞
f(t)h

(

t− ψ

a

)

dt (4.5)

Setting in Equation (4.5),

h(t) = w(t)e−j2πut (4.6)

we obtain the wavelet model for texture analysis. Usually the scaling factor
will be based on the frequency of the filter.

Daugman [Daugman, 1980] proposed the use of Gabor filters in the mod-
eling of receptive fields of simple cells in the visual cortex of some mam-
mals. The proposal to use the Gabor filters in texture analysis was made by
Turner [Turner, 1986] and Clark and Bovik [Clark and Bovik, 1987]. Gabor
filters produce spatial-frequency decompositions that achieve the theoretical
lower bound of the uncertainty principle [Daugman, 1985]. They attain maxi-
mum joint resolution in space and spatial-frequency bounded by the relations
∆x∆u ≥ 1

4π and∆y∆v ≥ 1
4π , where[∆x,∆y] gives the resolution in space

and[∆u,∆v] gives the resolution in spatial-frequency.
A two-dimensional Gabor function consists of a sinusoidal plane wave of

a certainfrequencyandorientationmodulated by a Gaussian envelope. It is
given by:

g(x, y) = exp

(

−1

2

(

x2

σ2
x

+
y2

σ2
y

))

cos(2πu0(x cos θ + y sin θ)) (4.7)
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whereu0 andθ are the frequency and phase of the sinusoidal wave, respec-
tively. The valuesσx andσy are the sizes of the Gaussian envelope in thex
andy directions, respectively. The Gabor function at an arbitrary orientation
θ0 can be obtained from (4.7) by a rigid rotation of thexy plane byθ0.

The Gabor filter is a frequency and orientation selective filter. This can be
seen from the Fourier domain analysis of the function. When the phaseθ is 0,
the Fourier transform of the resulting even-symmetric Gabor functiong(x, y)
is given by:

G(u, v) = A

(

exp

(

−1

2

(

(u− u0)
2

σ2
u

+
v2

σ2
v

))

+

exp

(

−1

2

(

(u+ u0)
2

σ2
u

+
v2

σ2
v

)))

(4.8)

whereσu = 1/(2πσx), σv = 1/(2πσy), andA = 2πσxσy. This function is
real-valued and has two lobes in the spatial frequency domain, one centered
aroundu0, and another centered around−u0. For a Gabor filter of a particular
orientation, the lobes in the frequency domain are also appropriately rotated.
An example of a 1D Gabor function in spatial and frequency domains is given
in Figure 4.5.
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Figure 4.5. 1D Gabor function in (a) spatial domain and (b) frequency domain

The Gabor filter masks can be considered as orientation and scale tunable
edge and line detectors. The statistics of these microfeatures in a given region
can be used to characterize the underlying texture information. A class of
such self similar functions referred to as Gabor wavelets is discussed in [Ma
and Manjunath, 1996]. This self-similar filter dictionary can be obtained by
appropriate dilations and rotations ofg(x, y) through the generating function,

gmn(x, y) = a−mg(x′, y′), m = 0, 1, · · · , S − 1 (4.9)

x′ = a−m(x cos θ + y sin θ), y′ = a−m(−x sin θ + y cos θ)



Texture Classification Experiments 95

whereθ = nπ/K,K the number of orientations,S the number of scales in the
multiresolution decomposition, anda = (Uh/Ul)

−1/(S−1) with Ul andUh the
lower and the upper center frequencies of interest, respectively.

Another approach which uses the trade-off between space and spatial-
frequency resolution without using Gabor functions is using a wavelet fil-
ter bank. The wavelet filter bank produces octave bandwidth segmentation
in spatial-frequency. It allows simultaneously for high spatial resolutions at
high spatial-frequencies and high spatial-frequency resolution at low spatial-
frequencies. Furthermore, the wavelet tiling is supported by evidence that
visual spatial-frequency receptors are spaced at octave distances [Daugman,
1989]. A quadrature mirror filter (QMF) bank was used for texture classifica-
tion by Kundu and Chen [Kundu and Chen, 1992]. A two band QMF bank
utilizes orthogonal analysis filters to decompose data into low-pass and high-
pass frequency bands. Applying the filters recursively to the lower frequency
bands produces wavelet decomposition as illustrated in Figure 4.6.
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Figure 4.6. Texture classifier for Brodatz textures samples using QMF-wavelets based features

4. Texture Classification Experiments
In our first experiments, nine classes of textures - herringbone, wool, calf,

sand, waves, wood, raffia, pigskin, and plastic - taken from Brodatz’s album
[Brodatz, 1966] were used (Figure 4.7). The texture images were normalized
to have the same gray-level mean and standard deviation in order to avoid gray-
level bias which is unrelated to the image texture. The test samples were ob-
tained by randomly subsampling the original texture images. 1000 subsamples
each consisted of rectangular blocks of32 × 32 or 16 × 16 pixels in size were
extracted from every texture class, resulting in a classification of 9000 random
samples in total. Regarding implementation, we used the same number of bins
for the texture classification methods as in the survey by Ojala [Ojala et al.,
1996]. In the case of Trigrams, 512 bins were used.

As feature vectors we used the texture distribution features introduced in
Section 4.3.1. In order to obtain better texture discrimination we also consid-
ered joint occurrences of two features, as described in Section 4.3.1.
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herringbone (D15) wool (D19) calf (D24)

sand (D29) waves (D38) wood (D68)

raffia (D84) pigskin (D92) plastic (D112)

Figure 4.7. Brodatz textures
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class labels. The sample was assigned the label of the model that was found to
be more similar, using a certain similarity measure.

Consider thats andm are the sample and the model distributions,n is the
number of bins, andsi, mi are respective sample and model probabilities at
bin i. In this context, theL1 metric will have the expression:

L1(s,m) =

n
∑

i=1

|mi − si| (4.10)

The other metrics, such asL2 andLc, can be defined similarly. As benchmark
we use the Kullback discriminant (see Equation (2.171)). In this case, the Kull-
back discriminant measures likelihoods that samples are from an alternative
texture class, based on exact probabilities of feature values of pre-classified
texture prototypes:

K(s,m) =
n
∑

i=1

si log
si

mi
(4.11)

The model distribution for each class was obtained by scanning the origi-
nal gray-scale256 × 256 texture image with the local texture operator. The
number of bins used in quantization of feature space is important. Histograms
with small number of bins will not provide enough discriminative information
about the distributions. Furthermore, if histograms have too many bins and the
average number of entries per bin is small, then the histograms become sparse
and unstable.

4.2 Distribution Analysis
From the maximum likelihood paradigm, the first critical step is to deter-

mine the real noise distribution. Consideringm the feature vector correspond-
ing to a texture classM andxi the feature vector corresponding to the sample
block i extracted fromM then the real noise distribution is seen as the normal-
ized histogram of differences between the elements of the two vectorsxi and
m.

The next step is to determine the distortion between the real noise distri-
bution and the distributions associated with theL1, L2, andLc distance mea-
sures, namely, the Exponential, the Gaussian, and the Cauchy distributions. We
present the quantitative results in Table 4.1. For all the features considered,L1

has a lower modeling error thanL2 and therefore,L1 is a more appropriate dis-
tance measure thanL2 regarding modeling the noise distribution. The Cauchy
distribution is the best match for the noise distribution so, consequently, the
results obtained withLc will outperform the results obtained withL1 andL2.

Furthermore, we visually display in Figure 4.8 the similarity noise distribu-
tion for LBP matched by the best fit Exponential, best fit Gaussian, and the best
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Figure 4.8. Noise distribution for LBP compared with the best fit Gaussian (a) (approximation
error is 0.065), best fit Exponential (b)(approximation error is 0.052), and best fit Cauchy (c)
(approximation error is 0.05)
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Figure 4.9. Trigrams error rate (%) for different threshold values usingL1 and 32× 32 sam-
ples

fit Cauchy, respectively. We can further conclude that the noise distribution is
not Gaussian as assumed with regard to theL2 measure.

For the feature pairs, we show the numerical modeling errors in Table 4.2.
The results are consistent with the single feature tests.
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Table 4.1. The approximation error for the corresponding noise distribution using single fea-
tures

LBP Trig DIFFX DIFFY DIFF2 DIFF4

L2 0.065 0.06 0.041 0.042 0.068 0.09
L1 0.052 0.051 0.029 0.032 0.05 0.078
Lc 0.05 0.047 0.025 0.027 0.048 0.073

L3E3 E3L3 L3S3 S3L3 SCOV SRAC

L2 0.03 0.035 0.039 0.042 0.03 0.037
L1 0.023 0.026 0.029 0.027 0.021 0.031
Lc 0.019 0.017 0.024 0.021 0.018 0.029

Table 4.2. The approximation error for the corresponding noise distribution using pairs of
features

LBP/C LBP/SCOV DIFFX/DIFFY DIFFY/SCOV L3E3/E3L3 L3S3/S3L3

L2 0.05 0.064 0.041 0.037 0.031 0.039
L1 0.045 0.044 0.026 0.019 0.015 0.028
Lc 0.041 0.039 0.025 0.017 0.012 0.022

4.3 Misdetection Rates
The next step is to determine the misdetection rates from Brodatz’s test

database. We compute the misdetection rate as the percentage of misclassi-
fied texture blocks.

Since the Trigrams require a threshold, this parameter affects the perfor-
mance of the method. For the tests, we used the optimal threshold which pro-
vided the best accuracy. In Figure 4.9 is presented the trigrams misdetection
error as a function of the threshold whenL1 was used and the sample size was
32× 32. The optimal value for the threshold in this case is 23.

In Figure 4.10, we display the misdetection rates for various distance mea-
sures versus the sample size for each of the texture distribution features. Note
that Lc consistently yields lower misdetection rates, which agrees with the
maximum likelihood paradigm. Note thatML consistently has lower misde-
tection rates for all sample sizes. As expected, the misdetection rate is getting
smaller when the sample size increases.

In order to have an overall measure of the performance of a particular feature
we calculated the average error rate when the sample size varied from 16× 16
to 48× 48 pixels (Table 4.3). LBP has the lowest average misdetection rate
followed by DIFF4, DIFF2, and Trigrams.
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Figure 4.10. Error rates (%) for single features as function of sample size usingL1, L2, Lc,
the Kullback discriminant (K), and ML.
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Regarding the feature pairs, the misdetection rates are shown in Figure 4.11.
These results are consistent with the single feature tests. Moreover, the use of
joint occurrences of features produces a much lower misdetection rate compar-
ing with the case when only one feature is considered.
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Figure 4.11. Error rates (%) for pairs of features as function of sample size usingL1, L2,
Lc, the Kullback discriminant (K), and ML: (a) LBP/C, (b) LBP/SCOV, (c) DIFFX/DIFFY, (d)
DIFFY/SCOV, (e) L3E3/E3L3, (f) L3S3/S3L3.

The average error rate for pairs of features when the sample size varied from
16× 16 to 48× 48 pixels is presented in Table 4.4. LBP/C and LBP/SCOV
have the lowest average misdetection rates.

When looking at the results one can ask if there really is a significant gain
in accuracy when usingML comparing with the other metrics. This question
is even more legitimate when pairs of features are considered. Consider for
example the case whereLBP/C pair is used in classification (Figure 4.11(a)).
When the sample size is greater than 32 the misdetection rates for all metrics
are getting very close to zero, so the absolute improvement is very small. How-
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ever, if one would compute the improvement relative to theML result, the gain
will be significant. In this context, in order to give a quantitative value for the
improvement in accuracy introduced by theML distortion measure we define
therelative gainas being:

RG =

(

1 − errML

errMIN

)

× 100 (4.12)

whereerrML denote the error rate obtained using theML distortion measure
anderrMIN is the minimum error obtained using all the other distortion mea-
sures.

Table 4.3. Average error rates (%) for single features when the sample size varied from16×16
to 48 × 48 pixels

L2 L1 Lc K ML

LBP 4.62 3.68 3.47 4.1 2.84
DIFFX 13.44 8.89 7.87 10.5 5.84
DIFFY 13.22 8.07 7.42 10.53 6.11
DIFF2 11.86 7.46 6.86 8.78 5.09
DIFF4 11.56 7.15 6.54 8.66 4.72
L3E3 11.67 7.63 6.57 8.89 5.14
E3L3 23.09 19.57 18.27 21.33 16.98
L3S3 14.98 10.53 9.85 12.11 9.17
S3L3 18.85 16.68 15.4 17.5 14.48
SCOV 12.48 9.64 9.25 11.77 8.79
SRAC 14.97 13.02 12.21 13.82 11.35
Trig 13.64 7.93 7.18 9.4 5.7

Table 4.4. Average error rates (%) for pairs of features when the sample size varied from
16 × 16 to 48 × 48 pixels

L2 L1 Lc K ML

LBP/C 1.24 0.7 0.63 0.93 0.49
LBP/SCOV 1.53 0.51 0.43 0.79 0.26

DIFFX/DIFFY 5.61 2.97 2.68 3.41 2.11
DIFFY/SCOV 3.94 2.4 2.17 2.81 1.72
L3E3/E3L3 2.74 1.84 1.67 2.24 1.16
L3S3/S3L3 2.61 1.42 1.29 1.95 0.98

Tables 4.5 and 4.6 summarize the results for single and feature pairs across
theL2, L1, Lc, K, andML distortion measures when 32× 32 samples were
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considered. Note that using the maximum likelihood approach one can lower
the misdetection rate by significant percentages.

Table 4.5. Error rates (%) for single features considering 32× 32 samples. The last column
represent therelative gain(RG) in % obtained using theML distortion measure in comparison
with the best of the other measures (Lc)

L2 L1 Lc K ML RG

LBP 2.42 1.98 1.86 3.05 1.51 18.81
DIFFX 12.71 7.14 6.1 8.37 4.04 33.77
DIFFY 12.40 8.47 7.2 10.05 4.67 35.13
DIFF2 10.73 6.03 5.34 7.56 4.91 8.05
DIFF4 10.87 6.57 5.9 7.12 3.62 38.64
L3E3 13.73 9.95 9.35 10.62 8.75 6.41
E3L3 22.12 18.47 17.35 19.33 15.24 12.16
L3S3 13.93 9.65 9.06 10.66 8.48 6.4
S3L3 17.77 15.49 14.54 15.64 13.12 9.76
SCOV 11.26 8.71 7.9 10.38 7.29 7.72
SRAC 13.38 11.18 10.5 11.85 9.83 6.38
Trig 13.02 5.94 5.05 7.30 3.27 35.24

Table 4.6. Error rates for pairs of features considering 32× 32 samples. The last column
represent therelative gain(RG) in % obtained using theML distortion measure in comparison
with the best of the other measures (Lc)

L2 L1 Lc K ML RG

LBP/C 0.66 0.12 0.09 0.28 0.04 55.55
LBP/SCOV 1.27 0.35 0.27 0.88 0.12 55.55

DIFFX/DIFFY 4.91 1.91 1.62 2.32 1.05 35.18
DIFFY/SCOV 2.24 1.12 1.02 1.48 0.83 18.62
L3E3/E3L3 1.33 0.92 0.83 1.12 0.58 30.12
L3S3/S3L3 1.56 0.42 0.38 1.03 0.31 18.42

Overall, for the single features LBP had the least error rate and for the fea-
ture pairs LBP/C and LBP/SCOV provide the best results. Therelative gain
obtained by using theML distortion measure has significant values. More-
over, for pairs of features the relative gain is in general greater than in the case
of single features.
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Figure 4.12. Average error rates (%) over all features for single feature (a) and for pairs of
features (b) using:L1, L2, Lc, the Kullback discriminant (K), and ML

4.3.1 Summary

Most of the pattern recognition literature uses the Kullback discriminant or
the sum of squared differences (L2). By linking the distributions with the met-
rics, we can directly show why a particular metric would outperform another
metric. Specifically, the metric which will have the least misdetection rate
should be the metric whose distribution best matches the real noise distribu-
tion from the test set.

Given that the modeling of the real noise distribution is linked with the mis-
detection rate, the next logical question is, What is the misdetection rate when
we directly model the real noise distribution? It is also validated that the low-
est misdetection rate occurs when we use an approximate, quantized model
for the real noise distribution. The corresponding distortion measure clearly
outperforms the rest of the distortion measures as shown in Figures 4.10 and
4.11.

Regarding completeness we have given the absolute error rates. We have
also provided one of the possible measures of improvement denoted asrelative
gain. This measure reflects the significance of theML distortion measure in
comparison with the best of the other measures. It should be noted that the
real significance of a change in error rate can only be made with regard to a
particular application - whether the acceptable error rate is 1 in a hundred or a
thousand.

In the summary Figure 4.12 we show the average comparative results over
all features forL1, L2, Lc, K, andML for single and complementary feature
pairs. Note thatML consistently provided lower misdetection rate comparing
with all the other measures.

5. Texture Retrieval Experiments
What distinguishes image search for database related applications from tra-

ditional pattern classification methods is the fact that there is a human in the
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loop (the user), and in general there is a need to retrieve more than just the
best match. In typical applications, a number of top matches with rank ordered
similarities to the query pattern will be retrieved. Comparison in the feature
space should preserve visual similarities between patterns. In this context, the
next experiments dealt with a texture database retrieval application.

The textures used in these experiments are the 112 Brodatz textures. We
extract random samples from the textures and store them in a texture database.
The goal here is to retrieve as many as possible similar samples in topn re-
trieved samples. The similar samples, by definition, are the ones previously
extracted from the same original texture as the query sample. The database
was formed by randomly subsampling 20 samples of128 × 128 pixels in size
from the 112 original textures, resulting in a number of 2240 texture samples.

5.1 Texture Features
As noted before, there has recently been a strong push to develop multiscale

approaches to the texture problem. These methods were found to be the best
choices for texture retrieval applications. Moreover, they match the human
vision study results. In our study we consider the Gabor and wavelet models
introduced in Section 4.3.2.

As shown before, the wavelet transformation involves filtering and subsam-
pling. A compact representation needs to be derived in the transform domain
for classification and retrieval. The mean and the variance of the energy dis-
tribution of the transform coefficients for each subband at each decomposition
level are used to construct the feature vector (Figure 4.6). Let the image sub-
band beWn(x, y), with n denoting the specific subband. The resulting feature
vector isf = {µn, σn} with,

µn =

∫

|Wn(x, y)|dx dy (4.13)

σn =

√

∫

(|Wn(x, y)| − µn)2dx dy (4.14)

Consider two image patternsi andj and letf (i) andf (j) represent the corre-
sponding feature vectors. The distance between the two patterns in the features
space is:

d(f (i), f (j)) =
∑

n





∣

∣

∣

∣

∣

µ
(i)
n − µ

(j)
n

α(µn)

∣

∣

∣

∣

∣

Lk

+

∣

∣

∣

∣

∣

σ
(i)
n − σ

(j)
n

α(σn)

∣

∣

∣

∣

∣

Lk



 (4.15)

whereα(µn) andα(σn) are the standard deviations of the respective features
over the entire database andLk is a notation for all possible metrics that can
be used, e.g.L1, L2, Lc.
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Note that in the case of Gabor wavelet transform (GWT) there are two in-
dexesm andn, withm indicating a certain scale andn a certain orientation.

5.2 Experiments Setup

First the ground truth was known since the samples were extracted from the
original textures. The ground truth was split into two non-overlapping sets:
the training set and the test set. In our experiments the training set consisted of
1000 samples from the ground truth. Second, for each sample in the training set
a feature vector was extracted using the scheme in Figure 4.6. Note that in these
experiments, the feature vector was composed from two features: the mean
and the variance. For each of them the real noise distribution was estimated as
the normalized histogram of the absolute difference of corresponding elements
from the feature vectors in the training set. The Gaussian, Exponential, and
Cauchy distributions were fitted to each real noise distributions using the Chi-
square test. We selected the model distribution which had the best fit and its
corresponding metric (Lk) was used in ranking. The ranking was done using
only the test set. It is important to note that for real applications, the parameter
in the Cauchy distribution was found by fitting this distribution to the real
distribution from the training set. This parameter setting was used for the test
set and any further comparisons in the application.

Note that there were twoML metrics calculated, one from the mean distri-
bution and the other one from the variance distribution. It is also interesting to
note that metric values were already normalized through the histogram so the
normalization factors (the standard deviations) in this case were not necessary.

Recall that our database was composed by randomly extracting 20 subsam-
ples from the 112 original textures. When doing retrieval, in the ideal case all
the top 19 retrievals should be from the same original texture as the query sam-
ple. The performance was measured in term of the average retrieval rate de-
fined as the percentage of retrieving the 19 correct patterns when topnmatches
were considered.

5.3 Similarity Noise for QMF-Wavelet Transform

A QMF wavelet filter bank was used for texture classification by Kundu and
Chen [Kundu and Chen, 1992]. The authors identified several properties of
the QMF filter bank as being relevant to texture analysis: orthogonality and
completeness of basic functions, filter outputs that are spatially localized, and
the reduction of complexity afforded by decimation of filter outputs. In our
implementation we used five levels of decomposition of the wavelet transform.
We extracted the mean and the variance of each subband in a 32 (16 subbands
× 2) dimensional feature vector.
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As noted before, we had to compute two similarity noise distributions corre-
sponding to mean and variance features. The similarity noise distributions are
displayed in Figure 4.13 and 4.14. The similarity noise distribution was ob-
tained as the normalized histogram of differences between the corresponding
feature elements from the training set.
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Figure 4.13. Noise distribution for mean feature in QMF-wavelets compared with the best fit
Gaussian (a) (approximation error is 0.279), best fit Exponential (b) (approximation error is
0.207), and best fit Cauchy (c) (approximation error is 0.174)

For both features, the Exponential had a better fit to the noise distribution
than the Gaussian. Consequently, this implies thatL1 should have a better
retrieval rate thanL2. The Cauchy distribution was the best fit overall and the
results obtained withLc reflect this. Figure 4.15 presents the average retrieval
rate for the correct patterns when topn matches are considered. This results
are also contained in Table 4.7. Note that usingML we obtained the best
average retrieval.

Table 4.7. Comparison of retrieval performances using QMF-wavelets for different metrics

Top 5 10 25 50

L2 62.43 68.86 78.83 85.14
L1 72.36 76.34 81.41 89.62
Lc 76.32 79.15 83.67 90.18
ML 80.06 83.58 88.66 94.24
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Figure 4.14. Noise distribution for variance feature in QMF-wavelets compared with the best
fit Gaussian (a) (approximation error is 0.036), best fit Exponential (b) (approximation error is
0.0255), and best fit Cauchy (c) (approximation error is 0.023)
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Figure 4.15. Average retrieval rate using QMF-wavelets

5.4 Similarity Noise for Gabor Wavelet Transform
A Gabor wavelet transform (GWT) enables us to obtain image represen-

tations which are locally normalized in intensity and decomposed in spatial
frequency and orientation. It thus provides a mechanism for obtaining (1) in-
variance under intensity transformations, (2) selectivity in scale by providing
a pyramid representation, and (3) it permits investigation of the local oriented
features. In this paper, for the non-orthogonal Gabor wavelet transform we
used 4 scales (S=4) and 6 orientations/scale (K = 6).

The mean and the variance of the energy distribution of the transform coef-
ficients for each subband at each decomposition level were used to construct a
48 (6×4×2) dimensional feature vector. We calculated the similarity noise dis-
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tribution for both features and fitted them with the model distributions. As seen
from Table 4.8, the Cauchy distribution was the best match for the measured
noise distribution. The Exponential was a better match than the Gaussian.

Table 4.8. The approximation error for the noise distribution using GWT

Feature Gauss Exponential Cauchy

Mean 0.186 0.128 0.114
Variance 0.049 0.035 0.027

Figure 4.16 presents the average retrieval rate when different metrics were
used. Note thatLc had better retrieval rate thanL1 andL2. ML provided the
best results.
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Figure 4.16. Average retrieval rate using GWT

In summary,Lc performed better than the analytic distance measures, and
theML metric performed best overall. Note that the results obtained with
GWT were superior to the ones obtained using QMF-wavelet transform.

6. Concluding Remarks
This research is differentiated from the previous works in texture analysis in

that we had investigated the role of the underlying noise distribution and corre-
sponding metric in the paradigm of maximum likelihood. Our experiments on
both the noise distribution and the retrieval rates from using a particular distor-
tion measure provided strong evidence of the maximum likelihood theory.

We considered two kind of applications involving texture and we used the
well-known Brodatz’s textures. First, we investigated the influence of the noise
distribution in a typical texture classification application using a nearest neigh-
bor classifier. The classification of a sample was based on comparing the sam-
ple distribution of feature values to several pre-defined model distributions of
feature values with known true-class labels. The second application was a typ-
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ical database retrieval application. The textures in the database were obtained
by randomly subsampling the original textures. The goal was to retrieve as
many samples as possible among the topn retrieved samples, which were ex-
tracted from the same texture as the query texture.

In both experiments, we have found that the noise distribution is modeled
better by the Cauchy distribution than the Exponential or Gaussian distribu-
tions. Consequently, among the analytic distortion measures,Lc consistently
had a better misdetection/retrieval rate thanL1 orL2.

Given that the modeling of the real noise distribution is linked with the re-
trieval rate, the next logical question was, What is the misdetection/retrieval
rate when we directly model the real noise distribution? It was also validated
that the best misdetection/retrieval rate occurs when we used an approximate,
quantized model for the real noise distribution. The corresponding distortion
measure (ML) clearly outperformed the rest of the distortion measures.



Chapter 5

SHAPE BASED RETRIEVAL

Together with color and texture, shape is one of the basic features in com-
puter vision. Shape analysis methods play an important role in systems for
object recognition, matching, registration, and analysis. Research in shape
analysis has been motivated, in part, by studies of human visual form percep-
tion systems. Several theories of visual form are briefly mentioned here. A
proper definition of shape similarity calls for the distinctions between shape
similarity in images (similarity between actual geometrical shapes appearing
in the images) and shape similarity between the objects depicted by the images,
i.e. similarity modulo a number of geometrical transformations corresponding
to changes in view angle, optical parameters, and scale. In our shape-based
retrieval experiments we concentrate on active contour methods for shape seg-
mentation and invariant moments for shape measures. We implemented two
algorithms from the research literature and we applied them on a standard ob-
ject database.

1. Introduction
Shape is a concept which is widely understood yet difficult to define for-

mally. For human beings perception of shape is a high-level concept whereas
mathematical definitions tend to describe shape with low-level attributes.
Therefore, there exists no uniform theory of shape. However, the word shape
can be defined in some specific frameworks. For object recognition purposes
Marshall [Marshall, 1989] defined shape as a function of position and direc-
tion of a simply connected curve within a two-dimensional field. Clearly, this
definition is not general, nor even sufficient for general pattern recognition.

In pattern recognition, the definition suggested by Marshall [Marshall,
1989] is suitable for two dimensional image objects whose boundaries or pix-
els inside the boundaries can be identified. It must be pointed out that this kind



of definition requires that there are some objects in the image and, in order
to code or describe the shape, the objects must be identified by segmentation.
Therefore, either manual or automatic segmentation is usually performed be-
fore shape description.

How can we separate the objects from the background? Difficulties come
from discretization, occlusions, poor contrast, viewing conditions, noise, com-
plicated objects, complicated background etc. In the cases where the segmen-
tation is less difficult and possible to overcome, the object shape is a charac-
teristic which can contribute enormously in further analysis. If segmentation
is not an option, a global search in the form of template matching is a pos-
sibility [Jain et al., 1996]. Here, the template represents the desired object
to be found. However, performing template matching over a dense structure
of scales and rotations of an image is not an interactive solution regarding
searches in large image databases.

We are interested in using shape descriptors in content-based retrieval. Our
problem is as follows: assume that we have a large number of images in the
database. Given a query image, we would like to obtain a list of images from
the database which are most similar (here we consider the shape aspect) to the
query image. For solving this problem, we need two things - first, a measure
which represents the shape information of the image, and second a similar-
ity measure to compute the similarity between corresponding features of two
images.

We addressed the problem of choosing a similarity metric in Chapter 2.
There we showed that in the case where representative ground truth is avail-
able, there is a way to select the appropriate metric, and we proposedLc as
an alternative for bothL2 andL1. Furthermore, we showed how to create a
maximum likelihood metric (ML) based on the real noise distribution.

In this chapter, the problem of image retrieval using shape was approached
by active contours for segmentation and invariant moments for shape measure.
Active contours were first introduced by Kass et al. [Kass et al., 1988], and
were termed snakes by the nature of their movement. Active contours are a
sophisticated approach to contour extraction and image interpretation. They
are based on the idea of minimizing energy of a continuous spline contour
subject to constraints on both its autonomous shape and external forces derived
from a superposed image that pull the active contour toward image features
such as lines and edges.

Moments describe a shape in terms of its area, position, orientation, and
other parameters. The set of invariant moments [Hu, 1962] makes a useful fea-
ture vector for the recognition of objects which must be detected regardless of
position, size, or orientation. Matching of the invariant moments feature vec-
tors is computationally inexpensive and is a promising candidate for interactive
applications.
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2. Human Perception of Visual Form
The goal of this section is to emphasize the role and the importance of re-

search in interdisciplinary fields like visual perception, cognition, psychology,
and physiology towards the development of new shape analysis techniques.

From the broad field of cognitive science, the areas of visual cognition and
perception are of particular interest for the study of shape description. If the
structure of the human shape analysis system were known, it would be pos-
sible to develop analog artificial systems. For this reason the study of shape
analysis methods is often motivated by and utilizes the results of research in
the area of human visual perception. An exhaustive survey of human visual
perception research is beyond the scope of this chapter. Some introductory and
more advanced books and articles dealing with visual perception and cognition
include [Zusne, 1970; Cornsweet, 1970; Granrath, 1981; Lowe, 1985; Posner,
1989; Loncaric, 1998]. In this section, a brief overview of visual perception
research related to shape description is presented.

The Gestalt school of psychology [Zusne, 1970] has played a revolution-
ary role with its novel approach to visual form. The Gestalt theory is a non-
computational theory of visual form, and thus a disadvantage for practical en-
gineering applications. However, according to Zusne “it is still the only theory
to deal with form in a comprehensive fashion" ([Zusne, 1970], p. 108). There
have been many books on Gestalt laws presenting various lists of principles.
These lists range from six to more than one hundred. Here, we provide a list
of laws for visual forms as proposed by Zusne [Zusne, 1970]:

Visual form is the most important property of a configuration.

Visual form is either dynamic or the outcome of dynamic processes which
underlie them.

All visual forms possess at least two aspects, a figured portion called figure
and a background called ground.

Visual forms may possess one or several centers of gravity about which the
form is organized.

Visual forms are transposable (with respect to translation, size, orientation,
and color) without loss of identity.

Visual forms resist change. They tend to maintain their structure against
disturbing forces.

Visual forms will always be as good (regular, symmetric, simple, uniform,
exhibiting the minimum amount of stress) as the conditions (pattern stimu-
lus) allow.
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Forms may fuse to produce new ones.

A change in one part of form affects other parts of the form (law of com-
pensation).

Visual forms tend to appear and disappear as wholes.

Visual forms leave an aftereffect that make them easier to remember (law
of reproduction).

Space is anisotropic, it has different properties in different directions.

Another approach to the theory of visual form is found in Hebb’s work. Hebb
presented a neuropsychological theory of behavior in his book “The Organi-
zation of Behavior" [Hebb, 1949]. In his theory, Hebb emphasized the role of
neural structures in the mechanism of visual perception. His work influenced
a number of researchers in the field of artificial neural networks. As opposed
to the Gestalt school, Hebb argues that form is not perceived as a whole but
consists of parts. The organization and mutual spatial relation of parts must
be learned for successful recognition. This learning aspect of perception is the
central point in Hebb’s theory.

Gibson [Gibson, 1950] developed another comprehensive theory of visual
perception. The first principle of his theory is that space is not a geometric or
abstract entity, but a real visual one characterized by the forms that are in it.
Gibson’s theory is centered around perceiving real three-dimensional objects,
not their two-dimensional projections. The second principle is that a real world
stimulus exists behind any simple or complex visual perception. This stimu-
lus is in the form of a gradient which is a property of the surface. Examples
of physical gradients are the change in size of texture elements (depth dimen-
sion), degree of convergence of parallel edges (perspective), hue and saturation
of colors, and shading. Gibson points out that the Gestalt school has been oc-
cupied with the study of two-dimensional projections of the three-dimensional
world and that its dynamism is no more than the ambiguity of the interpretation
of projected images. In his classification there are ten different kinds of form:

Solid form. (Seeing an object means seeing a solid form.)

Surface form. (Slanted forms and forms with edges.)

Outline form. (A drawing of edges of a solid form.)

Pictorial form. (Representations which are drawn, photographs, paintings,
etc.)

Plan form. (A drawing of edges of a surface projected on a flat surface.)

Perspective form. (A perspective drawing of a form.)



Human Perception of Visual Form 115

Nonsense form. ( Drawings which do not represent a real object.)

Plane geometric form. (An abstract geometric form not derived from or
attempting to make a solid form visible.)

Solid geometric form. (An abstract part of a three-dimensional space
bounded with imaginary surfaces.)

Projected form. (A plane geometric form which is a projection of a form.)

These forms are grouped into three classes as follows:

Real objects: solid and surface forms.

Representations of real objects: outline, pictorial, plan, perspective, and
nonsense forms.

Abstract (non-real) objects: Plane geometric forms, solid geometric forms,
and projected forms.

The first class is the “real" class consisting of objects from the real world. The
second class are representations of real objects. The third class are abstractions
that can be represented using symbols but do not correspond to real objects
(because they have no corresponding stimulus in the real world).

Marr et al. [Marr, 1976; Marr and Poggio, 1979; Marr, 1982] made sig-
nificant contributions to the study of the human visual perception system. In
Marr’s paradigm [Marr, 1982], the focus of research is shifted from applica-
tions to topics corresponding to modules of the human visual system. An illus-
tration of this point is the so-calledshape from xresearch which represents an
important part of the total research in computer vision [Aloimonos, 1988]. Pa-
pers dealing withshape from xtechniques include: shape from shading [Zhang
et al., 1999], shape from contour [Horaud and Brady, 1988], shape from tex-
ture [Malik and Rosenholtz, 1997], shape from stereo [Hoff and Ahuja, 1989],
and shape from fractal geometry [Chen et al., 1990].

In [Marr, 1976] Marr developed a primal sketch paradigm for early process-
ing of visual information. In his method, a set of masks is used to measure
discontinuities in first and second derivatives of the original image. This infor-
mation is then processed by subsequent procedures to create a primal sketch
of the scene. The primal sketch contains locations of edges in the image and
is used by subsequent stages of the shape analysis procedure. Marr and Hil-
dreth [Marr and Hildreth, 1980] further developed the concept of the primal
sketch and proposed a new edge detection filter based on the zero crossings of
the Laplacian of the two-dimensional Gaussian distribution function. In this
approach, zeros of Laplacian indicate the inflection point in the edge to detect
edge positions.
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Koenderink [Koenderink, 1984] and Koenderink and van Doorn [Koen-
derink and Van Doorn, 1986] have studied the psychological aspects of vi-
sual perception and proposed several interesting paradigms. Conventional ap-
proaches to shape are often static in the sense that they treat all shape details
equally as global shape features [Koenderink and Van Doorn, 1986]. A dy-
namic shape model was developed where visual perception is performed on
several scales of resolution. Such notions of order and relatedness are present
in visual psychology and are absent in conventional geometrical theories of
shape. It has been argued in [Koenderink and Van Doorn, 1986] that there ex-
ist manuals of art theory (such as [Gombrich, 1960]) which have not been given
the attention they deserve and which contain practical knowledge accumulated
over centuries. In art as well as in perception, a shape is viewed as a hierar-
chical structure. A procedure for morphogenesis based on multiple levels of
resolution has been developed [Koenderink and Van Doorn, 1986]. Any shape
can be embedded in a “morphogenetic sequence" based on the solution of the
partial differential equation that describes the evolution of the shape through
multiple resolutions.

Many authors agree on the significance of high curvature points for visual
perception. Attneave [Attneave, 1954] performed psychological experiments
to investigate the significance of corners for perception. In the famous At-
tneave’s cat experiment a drawing of a cat was used to locate points of high
curvature which were then connected to create a simplified drawing of the cat.
After a brief presentation the cat could be reliably recognized in the drawing. It
has been suggested that such points have high information content. Attneave’s
work has initiated further research on the topic of curve partitioning [Wuescher
and Boyer, 1991; Fischler and Wolf, 1994; Katzir et al., 1994]. To approximate
curves by straight lines, high curvature points are the best place to break the
lines, thereby the resulting image retains the maximal amount of information
necessary for successful shape recognition. For the purpose of shape descrip-
tion, corners are used as points of high curvature and the shape can be approx-
imated by a polygon. Davis [Davis, 1977] combined the use of high curvature
points and line segment approximations for polygonal shape approximations.
Stokely and Wu [Stokely and Wu, 1992] investigated methods for measure-
ment of the curvature of 3-D surfaces that evolve in many applications (e.g.
tomographic medical images).

Hoffman and Richards [Hoffman and Richards, 1984] argue that when the
visual system decomposes objects it does so at points of high negative curva-
ture. This agrees with the principle of transversality [Guillemin and Pollack,
1974] found in nature. This principle contends that when two arbitrarily shaped
convex objects interpenetrate each other, the meeting point is a boundary point
of concave discontinuity of their tangent planes.
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Leyton [Leyton, 1987] demonstrated the Symmetry-Curvature theorem
which claims that any curve section that has only one curvature extremum
has one and only one symmetric axis which terminates at the extremum itself.
This is an important result because it establishes the connection between two
important notions in visual perception. In [Leyton, 1989], Leyton developed a
theory which claims that all shapes are basically circles which changed form as
a result of various deformations caused by external forces like pushing, pulling,
stretching, etc. Two problems were considered: the first was the inference of
the shape history from a single shape, and the second was the inference of
shape evolution between two shapes. The concept of symmetry-curvature was
used to explain the process that deformed the object. Symmetric axes show the
directions along which a deformation process most likely took place. In [Ley-
ton, 1987], Leyton proposed a theory of nested structures of control which, he
argues, governs the functioning of the human perceptual system. It is a hier-
archical system where at each level of control all levels bellow any given level
are also included in information processing.

Pentland [Pentland, 1984; Pentland, 1986] investigated methods for repre-
sentation of natural forms by means of fractal geometry. He argued that fractal
functions are appropriate for natural shape representation because many physi-
cal processes produce fractal surface shapes. This is due to the fact that natural
forms repeat whenever possible and non-animal objects have a limited number
of possible forms [Stevens, 1974]. Most existing schemes for shape represen-
tation were developed for engineering purposes and not necessarily to study
perception. Fractal representations produce objects which correspond much
better to the human model of visual perception and cognition.

Lowe [Lowe, 1987] proposed a computer vision system that can recog-
nize three-dimensional objects from unknown viewpoints and single two-
dimensional images. The procedure is non-typical and uses three mechanisms
of perceptual grouping to determine three-dimensional knowledge about the
object as opposed to a standard bottom-up approach. The disadvantage of
bottom-up approaches is that they require an extensive amount of information
to perform recognition of an object. Instead, the human visual system is able to
perform recognition even with very sparse data or partially occluded objects.
The conditions that must be satisfied by perceptual grouping operations are the
following.

The viewpoint invariance condition. This means that observed primitive
features must remain stable over a range of viewpoints.

The detection condition. There must be enough information available to
avoid accidental mis-interpretations.

The grouping operations used by Lowe are the following. Grouping on the
basis of proximity of line end points was used as one viewpoint invariant op-
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eration. The second operation was grouping on the basis of parallelism, which
is also viewpoint independent. The third operation was grouping based on
collinearity. The preprocessing operation consisted of edge detection using
Marr’s zero crossings in the image convolved with a Laplacian of Gaussian
filter. In the next step a line segmentation was performed. Grouping opera-
tions on line-segmented data were performed to determine possible locations
of objects.

3. Active Contours

Active contours challenge the widely held view of bottom-up vision pro-
cesses. The principal disadvantage with the bottom-up approach is its serial
nature; errors generated at a low-level are passed on through the system with-
out the possibility of correction. The principal advantage of active contours is
that the image data, the initial estimate, the desired contour properties, and the
knowledge-based constraints are integrated into a single extraction process.

Snakes [Kass et al., 1988], or active contours, are curves defined within an
image domain which can move under the influence of internal forces coming
from within the curve itself and external forces computed from the image data.
The internal and external forces are defined so that the snake will conform to
the boundary of an object or other desired features within an image. Snakes are
widely used in many applications, including edge detection [Kass et al., 1988],
shape modeling [Terzopoulos and Fleischer, 1988; McInerney and Terzopou-
los, 1995], segmentation [Leymarie and Levine, 1993; Durikovic et al., 1995],
and motion tracking [Leymarie and Levine, 1993; Terzopoulos and Szeliski,
1992].

In the literature, del Bimbo et al. [Del Bimbo and Pala, 1997] deformed
active contours over a shape in an image and measured the similarity between
the two based on the degree of overlap and on how much energy the active
contour had to spend in the deformation. Jain et al. [Jain et al., 1996] used
a matching scheme with deformable templates. The approach taken here is
different in that we use a Gradient Vector Flow (GVF) based method [Xu and
Prince, 1997] to improve the automatic fit of the snakes to the object contours.

Active contours are defined as energy-minimizing splines under the influ-
ence of internal and external forces. The internal forces of the active contour
serve as a smoothness constraint designed to hold the active contour together
(elasticity forces) and to keep it from bending too much (bending forces). The
external forces guide the active contour towards image features such as high
intensity gradients. The optimal contour position is computed such that the
total energy is minimized. The contour can hence be viewed as a reasonable
balance between geometrical smoothness properties and local correspondence
with the intensity function of the reference image.
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Let the active contour be given by a parametric representationx(s) =
[x(s), y(s)], with s the normalized arc length of the contour. The expression
for the total energy can then be decomposed as follows:

Etotal=

1
∫

0

E(x(s))ds =

1
∫

0

[Eint(x(s)) + Eext(x(s)) + Econ(x(s))] ds (5.1)

whereEint represents the internal forces (or energy) which encourage smooth
curves,Eext represents the local correspondence with the image function, and
Econ represents a constraint force that can be included to attract the contour
to specific points in the image plane. In the following discussions theEcon

will be ignored.Eext is typically defined such that locations with high image
gradients or short distances to image gradients are assigned low energy values.

Internal Energy
Eint is the internal energy term which controls the natural behavior of the
active contour. It is designed to minimize the curvature of the active contour
and to make the active contour behave in an elastic manner. According to Kass
et al. [Kass et al., 1988], the internal energy is defined as

Eint(x(s)) = α(s)
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(5.2)

The first order continuity term, weighted byα(s), makes the contour behave
elastically, while the second order curvature term, weighted byβ(s), makes it
resistant to bending. Settingβ(s) = 0 at a points allows the active contour to
become second order discontinuous at that point and to develop a corner. Set-
ting α(s) = 0 at a points allows the active contour to become discontinuous.
Active contours can interpolate gaps in edges phenomena known as subjective
contours due to the use of the internal energy. It should be noted thatα(s)
andβ(s) are defined to be functions of the curve parameters, and hence seg-
ments of the active contour may have different natural behavior. Minimizing
the energy of the derivatives gives a smooth function.

External Energy
Eext is the image energy term derived from the image data over which the
active contour lies and is constructed to attract the active contour to desired
feature points in the image, such as edges and lines. Given a gray-level im-
ageI(x, y), viewed as a function of continuous position variables(x, y), typ-
ical external energies designed to lead an active contour toward step edges
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are [Kass et al., 1988]:

E
(1)
ext(x, y) = − |∇I(x, y)|2 (5.3)

E
(2)
ext(x, y) = − |∇(Gσ(x, y) ∗ I(x, y))|2 (5.4)

whereGσ(x, y) is a two-dimensional Gaussian function with standard devia-
tion σ and∇ is the gradient operator. If the image is a line drawing (black on
white), then appropriate external energies include [Cohen, 1991]:

E
(3)
ext(x, y) = I(x, y) (5.5)

E
(4)
ext(x, y) = Gσ(x, y) ∗ I(x, y) (5.6)

It is easy to see from these definitions that largerσ will cause the boundaries to
become blurry. Such largeσ are often necessary, however, in order to increase
the capture range of the active contour.

A snake that minimizesEtotal (see Eq 5.1) must satisfy the Euler equation:

αx
′′(s) − βx′′′′(s) −∇Eext = 0 (5.7)

This can be viewed as a force balance equation:

Fint + F
(p)
ext = 0 (5.8)

whereFint = αx
′′(s)−βx′′′′(s) andF (p)

ext = −∇Eext. The internal forceFint

discourages stretching and bending while the external potential forceF
(p)
ext pulls

the snake towards the desired image edge.
To find a solution to Eq. (5.7), the snake is made dynamic by treatingx as

function of timet as well ass i.e., x(s, t). The partial derivative ofx with
respect tot is then set equal to the left hand side of Eq. (5.7) as follows:

xt(s, t) = αx
′′(s, t) − βx′′′′(s, t) −∇Eext (5.9)

When the solutionx(s, t) stabilizes, the termxt(s, t) vanishes and we achieve
a solution of Eq. (5.7). A numerical solution to Eq. (5.9) can be found by
discretizing the equation and solving the discrete system iteratively (cf. [Kass
et al., 1988]). Note that most snake implementations use either a parameter
which multipliesxt in order to control the temporal step-size, or a parameter to
multiply ∇Eext which permits separate control of the external force strength.

3.1 Behavior of Traditional Active Contours
An example of the behavior of a traditional snake is shown in Figure 5.1.

Figure 5.1(a) shows a64 × 64-pixel linedrawing of a U-shaped object (shown
in gray) having a boundary concavity at the top. It also shows a sequence of
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(a) (b)

(c)

Figure 5.1. (a) The convergence of an active contour using (b) traditional potential forces. (c)
Close-up within the boundary concavity.

curves (in black) depicting the iterative progression of a traditional snake (α =
0.6, β = 0.0) initialized outside the object but within the capture range of the
potential force field. The potential force fieldF (p)

ext = −∇E(4)
ext whereσ = 1.0

pixel is shown in Figure 5.1(b). Note that the final solution in Figure 5.1(a)
solves the Euler equations of the snake formulation, but remains split across
the concave region.

The reason for the poor convergence of this snake is revealed in Fig-
ure 5.1(c) where a close-up of the external force field within the boundary
concavity is shown. Although the external forces correctly point toward the
object boundary, within the boundary concavity the forces point horizontally
in opposite directions. Therefore, the active contour is pulled apart toward each
of the “fingers" of the U-shape, but not made to progress downward into the
concavity. There is no choice ofα andβ that will correct this problem.
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Another key problem with traditional snake formulations, the problem of
limited capture range, can be understood by examining Figure 5.1(b). In this
figure, we see that the magnitude of the external forces die out quite rapidly
away from the object boundary. Increasingσ in Equation (5.6) will increase
this range, but the boundary localization will become less accurate and distinct,
ultimately obliterating the concavity itself whenσ becomes too large.

(a) (b)

(c)

Figure 5.2. (a) The convergence of an active contour using (b) distance potential forces. (c)
Close-up within the boundary concavity.

Cohen and Cohen [Cohen and Cohen, 1993] proposed an external force
model that significantly increases the capture range of a traditional snake.
These external forces are the negative gradient of a potential function that is
computed using a Euclidean (or chamfer) distance map. We refer to these
forces asdistance potential forcesto distinguish them from thetraditional po-
tential forcesdefined above. Figure 5.2 shows the performance of a snake
using distance potential forces. Figure 5.2(a) shows both the U-shaped object
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(in gray) and a sequence of contours (in black) depicting the progression of the
snake from its initialization far from the object to its final configuration. The
distance potential forces shown in Figure 5.2(b) have vectors with large mag-
nitudes far away from the object, explaining why the capture range is large for
this external force model.

As shown in Figure 5.2(a), this snake also fails to converge to the boundary
concavity. This can be explained by inspecting the magnified portion of the
distance potential forces shown in Figure 5.2(c). We see that, like traditional
potential forces, these forces also point horizontally in opposite directions,
which pulls the snake apart but not downward into the boundary concavity.
We note that Cohen and Cohen’s modification to the basic distance potential
forces, which applies a nonlinear transformation to the distance map [Cohen
and Cohen, 1993], does not change the direction of the forces, only their mag-
nitudes. Therefore, the problem of convergence to boundary concavities is not
solved by distance potential forces.

In summary, several fundamental problems exist with active contours. Fur-
thermore, solutions to these problems may create problems in other compo-
nents of the active contour model.

Initialization - The final extracted contour is highly dependent on the po-
sition and shape of the initial contour due to the presence of many local
minima in the energy function. The initial contour must be placed near the
required feature otherwise the contour can become obstructed by unwanted
features like JPEG compression artifacts, closeness of a nearby object, and
different other noises.

Non-convex shapes- How do we extract non-convex shapes without com-
pensating the importance of the internal forces, or without a corruption of
the image data? For example pressure forces [Cohen, 1991] (addition to
the external force) can push an active contour into boundary concavities,
but cannot be too strong or otherwise weak edges will be ignored. Pres-
sure forces must also be initialized to push out or push in, a condition that
mandates careful initialization.

The original method of Kass et al. [Kass et al., 1988] suffered from three
main problems: dependence on the initial contour, numerical instability, and
lack of guaranteed convergence to the global energy minimum. Amini et
al. [Amini et al., 1988] improved the numerical instability by minimizing the
energy functional using dynamic programming, which allows inclusion of hard
constraints into the energy functional. However, memory requirements are
large, beingO(nm2), and the method is slow, beingO(nm3) wheren is the
number of contour points andm is the neighborhood size to which a contour
point is allowed to move in a single iteration. Seeing the difficulties with both
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previous methods Williams and Shah [Williams and Shah, 1992] developed
the greedy algorithmwhich combines speed, flexibility, and simplicity. The
greedy algorithm is fasterO(nm) than the dynamic programming and is more
stable and flexible for including constraints than the variational approach of
Kass et al. [Kass et al., 1988]. During each iteration, a neighborhood of each
point is examined and a point in the neighborhood with the smallest energy
value provides the new location of the point. Iterations continue till the num-
ber of points in the active contour that moved to a new location in one iteration
is below a specified threshold.

3.2 Generalized Force Balance Equations
The snake solutions shown in Figures 5.1(a) and 5.2(a) both satisfy the Eu-

ler equation (5.7) for their respective energy model. Accordingly, the poor
final configurations can be attributed to convergence to a local minimum of
the objective function (5.1). Several researchers have sought solutions to this
problem by formulating snakes directly from a force balance equation in which
the standard external forceF (p)

ext is replaced by a more general external force

F
(g)
ext as follows

Fint + F
(g)
ext = 0 (5.10)

The choice ofF (g)
ext can have a profound impact on both the implementation

and the behavior of a snake. Broadly speaking, the external forcesF
(g)
ext can

be divided into two classes: static and dynamic. Static forces are those that
are computed from the image data, and do not change as the snake progresses.
Standard snake potential forces are static external forces. Dynamic forces are
those that change as the snake deforms.

Several types of dynamic external forces have been invented to try to im-
prove upon the standard snake potential forces. For example, the forces used
in multiresolution snakes [Leroy et al., 1996] and the pressure forces used in
balloons [Cohen, 1991] are dynamic external forces. The use of multiresolu-
tion schemes and pressure forces, however, adds complexity to a snake’s im-
plementation and unpredictability to its performance. For example, pressure
forces must be initialized to either push out or push in, and may overwhelm
weak boundaries if they act too strongly [Tek and Kimia, 1995]. Conversely,
they may not move into boundary concavities if they are pushing in the wrong
direction or act too weakly.

Here, we discuss the type of static external force proposed by Xu and
Prince [Xu and Prince, 1997]. This force does not change with time or de-
pend on the position of the snake itself. The underlying mathematical premise
for this force comes from the Helmholtz theorem (cf. [Morse and Feshbach,
1953]), which states that the most general static vector field can be decomposed
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into two components: an irrotational (curl-free) component and a solenoidal
(divergence-free) component. Irrotational fields are sometimes called conser-
vative fields; they can be represented as the gradient of a scalar potential func-
tion. An external potential force generated from the variational formulation
of a traditional snake must enter the force balance equation (5.7) as a static
irrotational field, since it is the gradient of a potential function. Therefore, a
more general static fieldF (g)

ext can be obtained by allowing the possibility that it
comprises both an irrotational component and a solenoidal component. In the
following section, a more natural approach in which the external force field is
designed to have the desired properties of both a large capture range and the
presence of forces that point into boundary concavities is presented. The re-
sulting formulation produces external force fields that can be expected to have
both irrotational and solenoidal components.

3.3 Gradient Vector Flow
Since the greedy algorithm easily accommodates new changes, there are

three things we would like to add to it: the ability to inflate the contour as well
as deflate it, the ability to deform to concavities, and to increase the capture
range of the external forces. These three additions reduce the sensitivity to ini-
tialization of the active contour and allow deformation inside concavities. This
can be done by replacing the existing external force with the gradient vector
flow (GVF) [Xu and Prince, 1997]. The GVF is an external force computed
as a diffusion of the gradient vectors of an image, without blurring the edges.
The idea of the diffusion equation is taken from physics. An example of the
effect of the GVF external force can be seen in Figure 5.3. Figures 5.3(b) and
(c) show the differences between the deformation with the gradient magnitude
(the greedy algorithm) and the deformation with the gradient vector flow in the
presence of a concavity.

The overall approach taken by Xu and Prince [Xu and Prince, 1997] is to
use the force balance condition (5.8) as a starting point for designing a snake.
The gradient vector flow(GVF) field is defined as new static external force
field F (g)

ext = v(x, y). To obtain the corresponding dynamic snake equation,
we replace the potential force−∇Eext in (5.9) withv(x, y), yielding

xt(s, t) = αx
′′(s, t) − βx′′′′(s, t) + v (5.11)

The parametric curve solving the above dynamic equation is called aGVF
snake. It is solved numerically by discretization and iteration, in identical fash-
ion to the traditional snake.

Although the final configuration of a GVF snake will satisfy the force-
balance equation (5.8), this equation does not, in general, represent the Euler
equations of the energy minimization problem in (5.1). This is becausev(x, y)
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(a) (b) (c)

Figure 5.3. Initialization across the shape: (a) initial position, (b) deformation with the gradi-
ent magnitude, (c) deformation with the GVF.

will not, in general, be an irrotational field. The loss of this optimality prop-
erty, however, is well-compensated by the significantly improved performance
of the GVF snake.

Consider an edge mapf(x, y) derived from the imageI(x, y) having the
property that it is larger near the image edges. We can use any gray-level or
binary edge map defined in the image processing literature (cf. [Jain, 1989]);
for example, we could use

f(x, y) = −E(i)
ext(x, y) i = 1, 2, 3, or 4 (5.12)

Three general properties of edge maps are important in the present context.
First, the gradient of an edge map∇f has vectors pointing toward the edges,
which are normal to the edges at the edges. Second, these vectors generally
have large magnitudes only in the immediate vicinity of the edges. Third, in
homogeneous regions, whereI(x, y) is nearly constant,∇f is nearly zero.

Now consider how these properties affect the behavior of a traditional snake
when the gradient of an edge map is used as an external force. Because of
the first property, a snake initialized close to the edge will converge to a sta-
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ble configuration near the edge. This is a highly desirable property. Because
of the second property, however, the capture range will be very small, in gen-
eral. Because of the third property, homogeneous regions will have no external
forces whatsoever. These last two properties are undesirable. The approach
is to keep the highly desirable property of the gradients near the edges, but to
extend the gradient map farther away from the edges and into homogeneous
regions using a computational diffusion process. As an important benefit, the
inherent competition of the diffusion process will also create vectors that point
into boundary concavities.

Consider the gradient vector flow field to be the vector fieldv(x, y) =
(u(x, y), v(x, y)) that minimizes the energy functional

E =

∫ ∫

µ(u2
x + u2

y + v2
x + v2

y) + |∇f |2|v −∇f |2dxdy (5.13)

This variational formulation follows a standard principle, that of making the
result smooth when there is no data. In particular, we see that when|∇f | is
small, the energy is dominated by sum of the squares of the partial derivatives
of the vector field, yielding a slowly-varying field. On the other hand, when
|∇f | is large, the second term dominates the integrand, and is minimized by
settingv = ∇f . This produces the desired effect of keepingv nearly equal
to the gradient of the edge map when it is large, but forcing the field to be
slowly-varying in homogeneous regions. The parameterµ is a regularization
parameter governing the tradeoff between the first term and the second term in
the integrand. This parameter should be set according to the amount of noise
present in the image (more noise, increaseµ).

Note that the smoothing term – the first term within the integrand of (5.13)
– is the same term used by Horn and Schunck in their classical formulation of
optical flow [Horn and Schunck, 1981]. Gupta and Prince [Gupta and Prince,
1996] also showed that this term corresponds to an equal penalty on the di-
vergence and curl of the vector field. Therefore, the vector field resulting from
this minimization can be expected to be neither entirely irrotational nor entirely
solenoidal.

Using the calculus of variations, it can be shown that the GVF field can be
found by solving the following Euler equations

µ∇2u− (u− fx)(f2
x + f2

y ) = 0 (5.14)

µ∇2v − (v − fy)(f
2
x + f2

y ) = 0 (5.15)

where∇2 is the Laplacian operator. These equations provide further intu-
ition behind the GVF formulation. Note that in a homogeneous region (where
I(x, y) is constant), the second term in each equation is zero because the gra-
dient of f(x, y) is zero. Therefore, within such a region,u andv are each
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determined by Laplace’s equation, and the resulting GVF field is interpolated
from the region’s boundary, reflecting a kind of competition among the bound-
ary vectors. This explains why GVF yields vectors that point into boundary
concavities.

Equations (5.14) and (5.15) can be solved by treatingu andv as functions
of time and solving

ut(x, y, t) = µ∇2
u(x, y, t) − (u(x, y, t) − fx(x, y))(f2

x(x, y) + f
2
y (x, y)) (5.16)

vt(x, y, t) = µ∇2
v(x, y, t) − (v(x, y, t) − fy(x, y))(f2

x(x, y) + f
2
y (x, y)) (5.17)

The steady-state solution of these linear parabolic equations is the desired
solution of the Euler equations (5.14) and (5.15). Note that these equations are
decoupled, and therefore can be solved as separate scalar partial differential
equations inu andv. The equations in (5.16) and (5.17) are known as gener-
alized diffusion equations. They have appeared here from the description of
desirable properties of snake external force fields as represented in the energy
functional of (5.13).

For convenience, we rewrite the equations as follows

ut(x, y, t) = µ∇2u(x, y, t) − b(x, y)u(x, y, t) + c1(x, y) (5.18)

vt(x, y, t) = µ∇2v(x, y, t) − b(x, y)v(x, y, t) + c2(x, y) (5.19)

where

b(x, y) = f2
x(x, y) + f2

y (x, y)

c1(x, y) = b(x, y)fx(x, y)

c2(x, y) = b(x, y)fy(x, y)

Any digital image gradient operator can be used to calculatefx andfy. In
the examples shown in this chapter, we used simple central differences. The
coefficientsb(x, y), c1(x, y), andc2(x, y), can then be computed and fixed for
the entire iterative process.

To set up the iterative solution, let the indicesi, j, andn correspond tox, y,
andt, respectively. Then the required partial derivatives can be approximated
as

ut = un+1
i,j − un

i,j

vt = vn+1
i,j − vn

i,j

∇2u = ui+1,j + ui,j+1 + ui−1,j + ui,j−1 − 4ui,j

∇2u = vi+1,j + vi,j+1 + vi−1,j + vi,j−1 − 4vi,j

Substituting these approximations into (5.18) and (5.19) gives the iterative so-
lution to GVF:

u
n+1
i,j = (1 − bi,j)u

n
i,j + (un

i+1,j + u
n
i,j+1 + u

n
i−1,j + u

n
i,j−1 − 4un

i,j) + c
1
i,j (5.20)

v
n+1
i,j = (1 − bi,j)v

n
i,j + (vn

i+1,j + v
n
i,j+1 + v

n
i−1,j + v

n
i,j−1 − 4vn

i,j) + c
2
i,j (5.21)
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The intuition behind the diffusion equations is that in homogeneous regions,
the first and third terms are zeros since the gradient is zero, and within those
regions,u andv are each determined by Laplace’s equation. This results in a
type of “filling-in" of information taken from the boundaries of the region. In
regions of high gradientv is kept nearly equal to the gradient.

Creating GVF field yields streamlines to a strong edge. In the presence of
these streamlines, blobs and thin lines in the way to strong edges do not form
any impediments to the movement of the active contour. It can be considered
as an advantage if the blobs are in front of the shape, nevertheless it can be
considered as a disadvantage if the active contour enters the shape’s silhouette.

(a) (b)

(c)

Figure 5.4. (a) The convergence of an active contour using (b) GVF external forces. (c) Close-
up within the boundary concavity.

In Figure 5.4 we computed the GVF field for the same U-shaped object used
in Figures 5.1 and 5.2. Comparing the GVF field, shown in Figure 5.4(b), to the
traditional potential force field of Figure 5.1(b), reveals several key differences.



130 Shape Based Retrieval

First, like the distance potential force field (Figure 5.2(b)), the GVF field has a
much larger capture range than traditional potential forces. A second observa-
tion, which can be seen in the closeup of Figure 5.4(c), is that the GVF vectors
within the boundary concavity at the top of the U-shape have a downward com-
ponent. This stands in stark contrast to both the traditional potential forces of
Figure 5.1(c) and the distance potential forces of Figure 5.2(c). Finally, it can
be seen from Figure 5.4(b) that the GVF field behaves in an analogous fashion
when viewed from the inside of the object. In particular, the GVF vectors are
pointing upward into the “fingers" of the U shape, which represent concavities
from this perspective.

Figure 5.4(a) shows the initialization, progression, and final configuration
of a GVF snake. The initialization is the same as that of Figure 5.2(a), and
the snake parameters are the same as those in Figures 5.1 and 5.2. Clearly, the
GVF snake has a broad capture range and superior convergence properties. The
final snake configuration closely approximates the true boundary, arriving at a
sub-pixel interpolation through bilinear interpolation of the GVF force field.

4. Invariant Moments
Perhaps the most popular method for shape description is the use of invariant

moments [Hu, 1962] which are invariant to affine transformations. For a 2-D
continuous functionf(x, y), the moments of order(p + q) are defined for
p, q ∈ N as

mpq =

∞
∫

−∞

∞
∫

−∞

xpyqf(x, y)dxdy (5.22)

A uniqueness theorem states that iff(x, y) is piecewise continuous and has
non-zero values in a finite part of thexy plane, moments of all orders exist
and the set of moments{mpq, p, q ∈ N} is uniquely determined byf(x, y).
Conversely,{mpq} is uniquely determined byf(x, y).

In the case of a digital image, the moments are approximated by

mpq =
∑

x

∑

y

xpyqf(x, y) (5.23)

where the order of the moment is(p+ q) as in the above formulation,x andy
are the pixel coordinates relative to some arbitrary standard origin, andf(x, y)
represents the pixel brightness.

To have moments that are invariant to translation, scale, and rotation, first
the central momentsµ are calculated

µpq =
∑

x

∑

y

(x− x)p(y − y)qf(x, y) (5.24)
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wherex = m10
m00

andx = m01
m00

.
Further, the normalized central momentsηpq are calculated as

ηpq =
µpq

µλ
00

(5.25)

whereλ = (p+q)
2 + 1, andp+ q ≥ 2.

From these normalized parameters a set of invariant moments{φ} found by
Hu [Hu, 1962], may then be calculated. The seven equations of the invariant
moments contain terms up to order 3:

φ1 = η20 + η02

φ2 = (η20 − η02)
2 + 4η2

11

φ3 = (η30 − 3η12)
2 + (3η21 − η03)

2

φ4 = (η30 − η12)
2 + (η21 − η03)

2

φ5 = (η30 − 3η12)(η30 + η12)
(

(η30 + η12)
2 − 3(η21 + η03)

2
)

+

(3η21 − η03)(η21 + η03)
(

3(η30 + η12)
2 − (η21 + η03)

2
)

φ6 = (η20 − η02)
(

(η30 + η12)
2 − (η21 + η03)

2
)

+

4η11(η30 + η12)(η21 + η03)

φ7 = (3η21 − η30)(η30 + η12)
(

(η30 + η12)
2 − 3(η21 + η03)

2
)

+

(3η12 − η03)(η21 + η03)
(

3(η30 + η12)
2 − (η21 + η03)

2
)

Global (region) properties provide a firm common base for similarity mea-
sure between shapes silhouettes where gross structural features can be charac-
terized by these moments. Since we do not deal with occlusion, the invariance
to position, size, and orientation, and the low dimensionality of the feature vec-
tor represent good reasons for using the invariant moments in matching shapes.
The logarithm of the invariant moments is taken to reduce the dynamic range.

5. Experiments
In our experiments we used a database of 1,440 images of 20 common house

hold objects from the COIL-20 database [Murase and Nayar, 1995]. Each
object was placed on a turntable and photographed every5◦ for a total of 72
views per object. Examples are shown in Figure 5.5.

In creating the ground truth we had to take into account the fact that the
images of one object may look very different when an important rotation is
considered. Therefore, for a particular instance (image) of an object we con-
sider as similar the images taken for the same object when it was rotated within
±r× 5◦. In this context, we consider two images to ber-similar if the rotation
angle of the object depicted in the images is smaller thanr× 5◦. In our exper-
iments we usedr = 3 so that one particular image is considered to be similar
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Figure 5.5. Example of images of one object rotated with60◦

with 6 other images of the same object rotated within±15◦. We prepared our
training set by selecting 18 equally spaced views for each object and using the
remaining views for testing.

The first question we asked was, “Which distribution is a good approxima-
tion for the similarity noise distribution?" To answer this we needed to mea-
sure the similarity noise caused by the object rotation and depending on the
feature extraction algorithm (greedy or GVF). The real noise distribution was
obtained as the normalized histogram of differences between the elements of
feature vectors corresponding to similar images from the training set.

Figure 5.6 presents the real noise distribution obtained for the greedy algo-
rithm. The best fit Exponential had a better fit to the noise distribution than the
Gaussian. Consequently, this implies thatL1 should provide better retrieval
results thanL2. The Cauchy distribution is the best fit overall, and the results
obtained withLc should reflect this. However, when the maximum likelihood
metric (ML) extracted directly from the similarity noise distribution is used
we expect to obtain the best retrieval results.

In the case of GVF algorithm the approximation errors for matching the
similarity noise distribution with a model distribution are given in Table 5.1.
Note that the Gaussian is the worst approximation. Moreover, the difference
between the Gaussian fit and fit obtained with the other two distributions is
larger than in the previous case and therefore the results obtained withL2 will
be much worse. Again the best fit by far is provided by the Cauchy distribution.

The results are presented in Figure 5.7 and Table 5.2. In the precision-recall
graphs the curves corresponding toLc is above the curves corresponding to
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Figure 5.6. Similarity noise distribution for the greedy algorithm compared with (a) the best
fit Gaussian (approximation error is 0.156), (b) the best fit Exponential (approximation error is
0.102), and (c) the best fit Cauchy (approximation error is 0.073)

Table 5.1. The approximation error for matching the similarity noise distribution with one of
the model distributions in the case of GVF algorithm (for Cauchya=3.27)

Gauss Exponential Cauchy

0.0486 0.0286 0.0146

L1 andL2 showing that the method usingLc is more effective. Note that the
choice of the noise model significantly affects the retrieval results. The Cauchy
distribution was the best match for the measured similarity noise distribution
and the results in Table 5.2 show that the Cauchy model is more appropriate
for the similarity noise than the Gaussian and Exponential models. However,
the best results are obtained when the metric extracted directly from the noise
distribution is used. One can also note that the results obtained with the GVF
method are significantly better than the ones obtained with the greedy method.

In summary,Lc performed better than the analytic distance measures, and
theML metric performed best overall.
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Figure 5.7. Precision/Recall for COIL-20 database using (a) the greedy algorithm (forLc

a=2.43) and (b) the GVF algorithm (forLc a=3.27)

Table 5.2. Precision and Recall for different Scope values

Precision Recall
Scope 6 10 25 5 10 25

L2 0.425 0.258 0.128 0.425 0.517 0.642
L1 0.45 0.271 0.135 0.45 0.542 0.675

Lc a=2.43 0.466 0.279 0.138 0.466 0.558 0.692
greedy

ML 0.525 0.296 0.146 0.525 0.592 0.733

L2 0.46 0.280 0.143 0.46 0.561 0.707
L1 0.5 0.291 0.145 0.5 0.576 0.725

Lc (a=3.27) 0.533 0.304 0.149 0.533 0.618 0.758
GVF

ML 0.566 0.324 0.167 0.566 0.635 0.777

6. Conclusions
We showed that the GVF based snakes give better retrieval results than the

traditional snakes. In particular, the GVF snakes have the advantage over tradi-
tional snakes in that it is not necessary to know apriori whether the snake must
be expanded or contracted to fit the object contour. Furthermore, the GVF
snakes have the ability to fit into concavities of the object, which traditional
snakes cannot do. Both of these factors resulted in significant improvement in
the retrieval results.

We also considered the choice of the similarity metric in a shape based re-
trieval application. From our experiments,L2 is typically not justified because
the similarity noise distribution is not Gaussian. We showed that better ac-
curacy was obtained when the Cauchy metric was substituted for theL2 and
L1.



Chapter 6

ROBUST STEREO MATCHING AND MOTION
TRACKING

Despite the wealth of information contained in a photograph, the depth of
a scene point along the corresponding projection ray is not directly accessible
in a single image. With at least two pictures, depth can be measured through
triangulation. This is of course one of the reasons that most animals have at
least two eyes and/or move their head when looking for friend or foe, as well
as the motivation for equipping an autonomous robot with a stereo and motion
analysis system.

In the human visual system, two of the fundamental methods of obtaining
information about the world are stereo matching and motion tracking. Stereo
matching refers to finding correspondences between a pair of binocular images
of a scene. When the correspondences to all of the pixels in the image pair are
found, a three dimensional model of the world can be mathematically derived.
Stereo matching is typically performed at a single instant in time. However,
the world changes and evolves over time which is where motion tracking be-
comes important. Motion tracking describes how the world changes over time.
Instead of matching pixels between images at a single instant in time, we trace
the movement of a pixel over a sequence of images taken at different instants
in time. In this chapter we explore several promising stereo matching methods
from the research literature which include pixel and template based algorithms.
For the motion tracking, we examine the topic of tracking facial expressions
through a video sequence.

1. Introduction
It is a well known fact that for the visual perception of depth in humans

stereoscopic vision has an important contribution. Evidence of this must have
been known to the Greek geometer Euclid, who around the year 280 BC
demonstrated that the right and left eyes see a slightly different version of the



same scene. Leonardo da Vinci studied and sketched human anatomy quite
extensively in the 1500’s, but his drawings of the eye, while showing the op-
tic nerve stretching into the brain, did not reveal the true anatomical arrange-
ment of binocular vision. However, his artistic observations on the problem
of representing space were far ahead of his time. Leonardo wrote that the art
of painting can never reproduce space because painting lacks the quality he
called “relievo," the relief of objects in space [Layer, 1979]. Yet, however easy
it is to link the perception of depth to stereoscopic vision, it still took more
than two millenniums for scientists to be in a position to guess at the complex
mechanism by which objects are perceived as 3D structures in space.

Though some experiments in stereo viewing were conducted earlier (most
notably pairs of “stereo" drawings made by the sixteenth century Florentine
painter Jacopo Chimenti [Slama (ed.), 1980]), the advent of photography re-
ally made widespread 3D viewing possible. Chimenti made a drawing of a
man from two slightly different viewpoints (and on a slightly different scale).
The small differences give the impression of 3D depth effects, when one fuses
the pair binocularly. However, von Helmholtz [Helmholtz, d ed] said: “... it
seems to me very unlikely that Chimenti intended them [the drawings] for a
stereoscopic experiment ... It seems more probable to me that the artist was
not satisfied with the first figure and did it over again ..."

One of the fundamental milestones in the science of stereo vision was laid
in 1838 by Sir Charles Wheatstone when addressing the Royal Society in Lon-
don [Ferwerda, 1987]. Wheatstone came across a peculiar effect: when two
hand-drawn images of an object depicted from two different perspectives were
viewed by means of a special apparatus, the result was a full 3D experience.
The key factor behind this perception relied on isolating the two images so that
each eye would only see one drawing. In order to ensure this, Wheatstone built
a complex viewing device that made use of mirrors. The small experiment
proved that the perception of depth was a psychological effect that took place
entirely in the human brain.

No other scientists before him were so close to a theory of stereo vision.
Naturally, it was not until Niepce discovered a means of retaining the physi-
cally transformed lattice of silver-halide crystals exposed to light, that stereo
images were really feasible to be produced. A major contribution in this re-
spect came from Daguerre, who published in 1839 the foundations of the pho-
tographic process: the Daguerreotype. The first stereoscope, was built in 1849
by Brewster. His stereoscope resembled greatly the binocular lens, whereby a
stereo pair of images would be placed on a support frame just in front of the op-
tics. Stereography soon became a very popular form of art and entertainment,
particularly after the 1851 World Fair in London. Legend says that Queen
Victoria was so attracted by the stereoscopes on display that she initiated an
enthusiasm for stereo photography that lasts to these days.
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1.1 Stereoscopic Vision
In retrospect, it is difficult to understand why the basic cause for stereo-

scopic vision and the revelation that 3D drawings could be created and viewed
stereoscopically were not discovered until Wheatstone’s magnificent break-
through in 1838. Since 3D drawings can be easily made and viewed with-
out instruments or optical devices of any kind, there is no technical reason
why these discoveries could not have occurred 2000 years ago. Wheatstone’s
demonstration of his 3D drawings required his mirror stereoscope, which was
called by Sir John Herschel, “one of the most curious and beautiful for its
simplicity in the entire range of experimental optics." [Layer, 1979]

Since Wheatstone, the overwhelming conclusion of more than one hundred
years of perception research is that retinal image disparities, alone, determine
the quality and nature of the stereoscopic experience. Of course the cues of
accommodation and convergence play an important role in assisting the eyes
to “lock on" objects at various distances, but do not seem to affect seriously
our psychic reconstruction of space.

Another aspect of this issue lies in a perceptual phenomenon that is unique
to 3D, the separation of accommodation and convergence planes. In natural
viewing, these planes always coincide; that is, we automatically converge our
eyes for the same distance that we focus. This is also true in viewing a holo-
gram. However, a stereoscopic image cannot be viewed without a separation
of these two functions - a fact that is quite important in 3D projection systems,
especially large theaters.

Stereoscopic vision has been called a primary factor in spatial orientation. It
exists in babies at the earliest ages that can be measured, and thereby seems to
be an innate quality of vision. Most other depth cues of vision are considered
secondary in the sense that they are learned cues, derived from our previous
experiences with objects.

Also, stereoscopic vision is considered a perception of relative depth rather
than absolute distance. The eyes do not work like a camera rangefinder for the
purpose of determining a specific distance. It is nearly impossible to gauge
the distance from one point of light in a totally dark room, although it is quite
easy to tell which of two adjacent lights is closer. Our stereoscopic acuity for
small differences in depth comparisons is quite high - as little as ten seconds of
arc. And, since stereoscopic acuity is measured by parallax angle - a numerical
constant regardless of object distance - the minimum distances between objects
with a perceived change of relief vary dramatically.

Note that just as monoscopic illusions can be ambiguous, so can perceptual
conflicts be created between monocular and binocular depth cues. Ittelson and
other psychologists [Ittelson, 1960] have studied the dynamics of cue conflicts
in order to evaluate their relative importance, the underlying factors, the ef-
fect of learning, and the influence of cross-sensory conflicts, such as between
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vision and hearing. The classic subject for a stereo cue conflict is the human
face. If the right-eye view of a face is displayed only to the left eye and the
left-eye view to the right eye, the physical shape of the face should appear in-
verted, with the result that it will look like the inside of a mask, but it does not.
Monocular depth cues in the picture conflict with the stereo disparity cues, as
well as with our previous knowledge of a human face, and suppress the inver-
sion. On the other hand, abstract subjects invert easily. There are little or no
monocular cues to counter the stereo cues. A general rule should be remem-
bered: the more familiar a subject is, the more its monocular depth cues will
suppress any contradictory stereo depth cues in the final spatial perception.

An agreed upon theory of stereoscopic vision has yet to be found. Artists are
familiar with the wealth of known visual illusions, such as used so ingeniously
by the artist M.C. Escher, but almost no visual illusions centering on the stereo-
scopic experience have been discovered. Julesz [Julesz, 1971][Julesz, 1995]
introduced the random dot stereograms (RDS) technique. Briefly, in an RDS,
each of two pictures presents a random pattern of dots or other elements with
no apparent meaning. Only when fused into one image does the impression of a
recognizable object in 3D emerge. The use of Julesz stereograms in perception
experiments, described as “incredible" by Harvard psychologists, indicates the
brain’s ability to extract depth cues from the integration of disparate images
and establishes that this process enhances our ability to recognize objects that
are otherwise obscure or even invisible. In this, the RDS effect provides a pow-
erful metaphor concerning our ability to gain insights from the integration of
competing perspectives.

Based on this power of stereoscopic vision to aid the accuracy of recognition
and the clarity of perception, Julesz refers to stereo 3D effects as “breaking
camouflage." By analogy, this is the process at work when aerial reconnais-
sance experts take two photographs of the ground while flying overhead and
then fuse these images with the help of a stereoscope to locate hidden enemy
weapons. It is also the process at work when a hunter sees a white rabbit
standing in the snow. In these ways, stereoscopic vision confers considerable
survival value. This beneficial effect may help to explain the deep sense of
satisfaction that often accompanies the stereo 3D experience.

2. Stereo Matching
The projection of light rays onto the retina presents our visual system with

an image of the world that is inherently two-dimensional, and yet we are able
to interact with the three-dimensional world, even in situations new to us, or
with unknown objects. That we accomplish this task easily implies that one of
the functions of the human visual system is to reconstruct a 3D representation
of the world from its 2D projection onto our eyes. The quest to depict reality as
seen by our naked eyes has been pursued by countless individuals throughout
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the history of human kind. Beginning with the early cave painters, people have
attempted to capture the reality. Photography - or in more general, imaging -
is a natural extension of this will.

The problem with conventional images is that they have an inherent limi-
tation: they do not retain the psychological perception of depth. Objects de-
picted in images are flat. It is the observer who - via accumulated knowledge
of shapes and forms - perceives their true volume. It could be argued that
photographs are accepted amongst us simply because we are used to them;
we have learned to deal with their inherent limitation. However, a means to
retain depth alongside shape, color, and other features is clearly a significant
increase in information content. An image that captures shapes and volumes
equally, enables navigation through space and thus a higher degree of realism.
Furthermore, since these types of images stand in 3D space, measurements un-
available before can readily be made for them. Depths of interiors, separation
distance between objects and backgrounds, height of terrain seen from satellite
imagery, are all examples of its applications.

Stereo imaging offers an intuitive way to reconstruct the lost depth informa-
tion. It relies on one fundamental finding: if two shots of a given static (e.g.,
without egomotion) scene are captured from two different viewpoints, then the
resulting images will differ slightly due to the effect of perspective projection.
The correspondences of the stereo pair can be used effectively to reconstruct
the three-dimensions of the scene depicted, via a procedure known asstereo
matching.

Stereo matching stated simply is the process of finding a pair of corre-
sponding image elements produced by a unique object in a stereo arrangement.
These elements can be decomposed into sets of corresponding points. The dis-
tance that one of the points has shifted with respect to the second one - relative
to its local coordinate system - is termeddisparity, and is the fundamental
measure required to reconstruct a scene.

The minimum system requirements for stereo vision are a pair of cameras
positioned with overlapping fields of view (Figure 6.1). These cameras could
be arranged in any number of ways, but to simplify the forthcoming discussion
we will restrict our attention to a simple case: both cameras on a horizontal
plane with optical and vertical axes parallel, and known baseline (distance be-
tween them). A constraint that is often applied to stereo systems is theepipolar
constraint. The main idea is that given a pixel in the left image, one does not
need to search through the entire right image looking for a correspondent. In-
stead, attention may be limited to a straight line, the so-calledepipolar line.
Why is it a line instead of some 2D region? The object represented by a pixel
in the left image must lie on a ray that extends in the world from the left focal
point through that pixel on the left image plane. The epipolar line is the image
on the right image plane of that ray in the world; the projection of a straight line
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is still a straight line. An introduction to epipolar analysis can be found in [Bo-
ufama and Mohr, 1995], and a very detailed description in [Faugeras, 1993].
When the optical axes are parallel, as we have assumed here, we enjoy the fur-
ther property that epipolar lines are guaranteed to be horizontal, and therefore
all correspondents will lie on the same-numbered scanline in the other image.

At first finding correspondences in a stereo pair seems to be a simple task,
but there are several sources of errors that makes it very difficult to locate the
correct pairs. There are systematic errors that appear due to the way the stereo
system is constructed. Changes in intensity of the same 3D point in the stereo
pair may appear due to the different viewing position. Moreover, some points
in the left image simply have no match in the right image, because projec-
tion takes place from two different viewpoints (Figure 6.1). This is known as
theocclusionproblem. Another source of errors is related to the symmetries
present in the stereo pair. When two or more parts of an image pair are similar
in appearance, as can happen when a repetitive pattern like a checkerboard or
a brick wall is present, a part of the pattern in one image might seem to match
several parts in the other. When this happens, when there are multiple potential
correspondents for a given pixel, anambiguousmatch is said to exist.
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point
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image
plane
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Figure 6.1. Stereo arrangement with a pair of cameras positioned with overlapping fields of
view. Some points in the left image simply have no match in the right image, because projection
takes place from two different viewpoints.

Consider the case in which the position of the principal point in the left
camera is located at distanceb from the principal point in the right camera.
Assume that the image plane is at distancef in front of each camera lens and
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that both cameras are oriented identically, with their optical axes parallel and
their image planes aligned (Figure 6.2). LetO(x, y, z) be a 3D point and let
L(xL, yL) andR(xR, yR) be its perspective projections on the left and right
images, respectively. Note that in this situationyL = yR, so that they dispar-
ity is zero. From Figure 6.2 by means of similar triangles we can derive the
relations:

xL

f
=

x

z
(6.1)

−xR

f
=

b− x

z
(6.2)
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Figure 6.2. Top view of a stereo arrangement

The solution for(x, y, z), given the(xL, yL) and(xR, yR), can be obtained
from the differencexL − xR, which is referred to asdisparity. Now

xL − xR =
f · b
z
. (6.3)

Hence,

z =
f · b

xL − xR
. (6.4)
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Once the depthz is determined, the(x, y) coordinates are easily determined
from the perspective projection equations.

(

x
y

)

=
z

f

(

xL

yL

)

(6.5)

Generally thebaselinedistanceb between the two cameras’ optical axes
and thefocal lengthf are known parameters of the geometry. Thedisparity
however, is unknown and needs to be estimated in order to recover the depth
information. Current stereo matching algorithms estimate disparity by making
use of a metric function that is minimized.

2.1 Related Work
Many types of stereo algorithms have been published in the literature.

Overviews of the then-strongest techniques can be found in Barnard and Fis-
chler [Barnard and Fischler, 1982] and Dhond and Aggarwal [Dhond and Ag-
garwal, 1989]. Existing stereo algorithms from the computer vision litera-
ture can be loosely classified under one of the headings: traditional correlation
based stereo (template based stereo) and feature based stereo.

In correlation based stereo [Luo and Maitre, 1990][Mori et al., 1973]
[Kanade and Okutomi, 1994] disparity is computed by fixing a small win-
dow around a pixel in the left image, then measuring the Sum-of-Squared-
Differences (SSD) error between intensities in that window and those in sim-
ilar windows placed at different locations in the right image. The placement
that yields the lowest error gives the disparity estimate. Fusiello et al. [Fusiello
et al., 1997] implemented an algorithm that is an extension of the simple SSD
match in the sense that nine windows were used instead of one. The refer-
ence and matching image points were placed at pre-defined locations within
the windows in order to find the best area-correlation amongst them.

In feature based stereo [Grimson, 1985][Matthies, 1989], a dense image is
converted into a spatially sparse set of features which are then matched. This
results into a sparse disparity map which must be interpolated to yield dispar-
ities at every pixel. Semantic features (with known physical properties and/or
spatial geometry) or intensity anomaly features (isolated anomalous intensity
patterns not necessarily having any physical significance) are the basic units
that are matched. Semantic features of the generic types include occlusion
edges, vertices of linear structures, and prominent surface markings; domain
specific semantic features may include such features as the corner or peak of
a building, or a road surface marking. Intensity anomaly features include zero
crossings or salient points [Loupias et al., 2000]. Methods used for feature
matching often include symbolic classification techniques, as well as correla-
tion.
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Obviously, feature matching alone cannot provide a depth map of the de-
sired density, and so it must be augmented by a model based interpretation
step (e.g., we recognize the edges of a building and assume that the interme-
diate space is occupied by planar walls and roofs), or by template matching.
When used in conjunction with template matching, the feature matches are
generally considered to be more reliable than the template matching alone, and
can constrain the search for correlation matches.

Jones and Malik [Jones and Malik, 1992] applied 2D oriented derivative-of-
Gaussian filters to a stereo pair and used the magnitude of the filter responses
at each pixel as matching features. The original signal may also be transformed
to Fourier space, and some part of the transformed signal is used to compute
the disparity [Sanger, 1988]. Often the phase of the transformed signal is used
[Jenkin and Jepson, 1994], [Maimone, 1996].

A post-processing refinement technique of the template based stereo algo-
rithm is the Kanade/Okutomi variable-window method [Kanade and Okutomi,
1994]. This method addresses the occlusion and foreshortening problems by
dynamically adjusting the size of the matching windows according to con-
straints on the local variations of both intensity and disparity. The difficulty of
a locally adaptive window lies in a difficulty in evaluating and using disparity
variances. While the intensity variation is directly measurable from the image,
evaluation of the disparity variation is not easy, since the disparity is what we
intend to calculate as the end product of stereo. To resolve the dilemma, the
authors employ a statistical model of the disparity distribution within the win-
dow: the difference of disparity at a point in the window from that of the center
point has a zero-mean Gaussian distribution with variance proportional to the
distance between these points. This modeling enables the computation of the
uncertainty of the disparity estimate by taking into account both intensity and
disparity variances. As a result, their method searches for a window that pro-
duces the estimate of disparity with the least uncertainty for each pixel of an
image: the method controls not only the size but also the shape (rectangle) of
the window. Finally, this adaptive-window method is embedded in an itera-
tive stereo matching algorithm: starting with an initial estimate of the disparity
map, the algorithm iteratively updates the disparity estimate for each point by
choosing the size and shape of a window until it converges. In this way the
authors attempt to avoid the boundary problems that arise when the correlation
window encompasses two objects at different depths.

The use of multiple cameras for stereo was described by Kanade et al.
[Kanade et al., 1992]. Their approach, known as multibaseline stereo, ad-
vocates using a simple Sum-of-Absolute-Differences (SAD) stereo matching
algorithm over several image pairs. By incorporating multiple views of the
world using known camera calibration, many of the shortcomings of the direct
yet simple SAD method are eliminated: e.g., specular highlights are ignored,
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noisy disparity maps become smoother, and some occluded surfaces become
visible.

An interesting approach using a maximum likelihood cost function opti-
mization was proposed by Cox et al. [Cox et al., 1996]. This function assumes
that corresponding features in the left and right images are normally distributed
about a common true value. However, the authors [Cox et al., 1996] noticed
that the normal distribution assumption used to compare corresponding inten-
sity values is violated for some of their test sets. They altered the stereo pair
so that the noise distribution would be closer to a Gaussian.

Recent research by [Bhat and Nayar, 1998] concluded that the SSD is sen-
sitive to outliers and therefore robust M-estimators should be used regarding
stereo matching. However, the authors [Bhat and Nayar, 1998] did not con-
sider metrics based on similarity distributions. They considered ordinal met-
rics, where an ordinal metric is based on relative ordering of intensity values
in windows - rank permutations.

Most of the efforts mentioned above were concentrated on finding a bet-
ter algorithm or feature that can provide a more accurate and dense disparity
map. Some of them use a simple SSD or SAD metric in matching correspon-
dences or make assumptions about the corresponding features in the left and
right stereo images. Our goal is to use the maximum likelihood framework
introduced in Chapter 2 and to find a better model for the noise distribution
in a stereo pair. We implemented a template based matching algorithm, the
multi-window algorithm by Fusiello et al. [Fusiello et al., 1997], and the max-
imum likelihood method by Cox et al. [Cox et al., 1996]. Note that for the last
two algorithms in order to have a good benchmark we used the original source
codes provided by the authors and only the line of code where the metric was
involved was modified.

3. Stereo Matching Algorithms
Several algorithms have been proposed to estimate the disparity map of a

stereo arrangement. They all agree to a large extent in their form: some sort
of metric function SSD (L2) or SAD (L1) is minimized to yield the best match
for a given reference point. The choice of the metric function is the subject
of our investigations. We implemented the algorithms mentioned before and
investigated the influence of the metric function on the matching accuracy.

3.1 Template Based Algorithm
A template based algorithm makes minimal assumptions (e.g., constant

depth inside the template) about the underlying geometry of the stereo pair and
uses a simple translational model to estimate the disparity. An implementation
of this technique gives good disparity estimates for points located at constant
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depths, but it is less robust with receding features - i.e. image facets that recede
in depth - that can become severely distorted due to perspective projection.

Considering the stereo arrangement illustrated in Figure 6.2, pixels of a left
and right image of a stereo pair are matched using a simple pair of equations
of the form

SSD(x, y, d) =
∑

wx,wy∈W

(R(x+ wx, y + wy) − L(x+ wx + d, y + wy))2 (6.6)

disparity(x, y) = min
m≤d≤M

SSD(x, y, d) (6.7)

or

SAD(x, y, d) =
∑

wx,wy∈W

|R(x+ wx, y + wy) − L(x+ wx + d, y + wy)| (6.8)

disparity(x, y) = min
m≤d≤M

SAD(x, y, d) (6.9)

These equations are employed to estimate the disparity by placing a window
W of a predefined size(wx, wy), centered around a reference point in the right
image. A second window of identical size (see Figure 6.3) would be placed in
the left image and moved around itsx axis (the epipolar constraint is assumed).
Generally the matching window would be moved from a minimum disparity
m to a maximum disparityM which in turn determines the disparity search
range. The position at which the minimum error occurs for each candidate
point, is chosen as the best disparity estimate for a given reference point. Sub-
pixel precision can be obtained by fitting a curve through the chosen values,
yielding more accurate disparity estimates [Fusiello et al., 2000].

r� eference windowmatching window
match reference

Figure 6.3. Example of a template matching procedure
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An important problem that has to be considered is the occlusion. Some
points in the left image simply have no match in the right image, because
projection takes place from two different viewpoints (see Figure 6.1). The
algorithm will still try to match these occluded points, and will even produce
an incorrect disparity estimation for them. The situation can be detected in a
post-processing stage whereby two disparity maps -dRtoL (right to left), and
dLtoR (left to right) - are checked for consistency, using equation (6.10). For
example, if the disparity of a pointx in the right image isd, then the match of
x is located atx+ d in the right image, and vice versa.

dRtoL(x) = dLtoR(x+ dRtoL(x)) (6.10)

Points that satisfy this expression are retained while the others are signaled
as occluded pixels and disparity is assigned heuristically. Following [Little and
Gillet, 1990], we assumed that occluded areas, occurring between two planes
at different depth, take the disparity of the deeper plane.

3.2 Multiple Windows Algorithm
As observed by Kanade and Okutomi [Kanade and Okutomi, 1994], when

the correlation window covers a region with non-constant disparity, template
based matching is likely to fail, and the error in the depth estimates grows with
the window size. Reducing the latter, on the other hand, makes the estimated
disparities more sensitive to noise.

To overcome such difficulties, Kanade and Okutomi [Kanade and Okutomi,
1994] proposed a statistically adaptive technique which selects at each pixel
the window size that minimizes the uncertainty in the disparity estimates. As
an alternative, Fusiello et al. [Fusiello et al., 1997] proposed a multiple window
algorithm (SMW) to outperform the standard template based stereo matching
procedure described in 6.3.1. The concept behind their algorithm was very
simple - they proposed the use of nine windows (see Figure 6.4) instead of
one to compute the standard SSD error. This simple procedure proved to be
very effective at disambiguating the various candidate disparity matches of a
reference point.

It was reasoned by the authors that comparing with the template based algo-
rithm it is better to obtain an estimate of any given point by matching it against
multiple windows, in which the point to match would be located at different
strategic positions within them. The point with the smallest disparity amongst
the nine windows, and amongst the various search candidates would then be
chosen as the best estimate for the given point. The idea is that a window
yielding a smaller SSD error is more likely to cover a constant depth region;
in this way, the disparity profile itself drives the selection of the appropriate
window. Consider the case of a piecewise-constant surface: points within a
window close to surface discontinuities come from two different planes, there-
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Figure 6.4. The nine asymmetric correlation windows in Fusiello’s algorithm. The black pixel
in the array denotes the position where the reference image-point is located in each matching
window. The template based algorithm would use only the top window where the matching
pixel is at center.

fore a single “average" disparity cannot be assigned to the whole window with-
out making a gross error. The multiple window approach can be regarded as
a robust technique able to fit a constant disparity model to data consisting of
piecewise-constant surface, that is, capable of “drawing the line" between two
different populations (see Figure 6.5).

While this is nothing else than a more involved form of the conventional
template matching strategy, it was shown in their paper that computation of the
disparity estimate was more accurate compared with the adaptive algorithm
proposed by Kanade and Okutomi [Kanade and Okutomi, 1994].

A left-right consistency test (see equation 6.10) was also employed for de-
tecting the occluded points.

3.3 Cox’ Maximum Likelihood Algorithm
A different approach was proposed by Cox et al. [Cox et al., 1996]. Their

interesting idea was to perform matching on the individual pixel intensity, in-
stead of using an adaptive window as in the area based correlation methods.
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Figure 6.5. Multiple windows approach. If one use windows of fixed size with different cen-
ters, it is likely that one of them will cover a constant depth area.

Although there is a commonly held belief that since “stereo projections do not
preserve photometric invariance," pixel based stereo is “in general doomed to
failure" [Frisby and Pollard, 1991], their experimental results show that pixel
based stereo can be considered as a practical alternative.

Their algorithm assumed that any two corresponding features (pixels) in the
left and right images are normally distributed about their true value. This leads
to a local matching cost that is the weighted SSD error between the features.
The global cost function that is eventually minimized is the sum of the local
costs of matching pixels plus the sum of occlusion costs for unmatched pixels.
The global optimization is efficiently performed in 1D along each epipolar line.

Initially, the local cost of matching two pointszi1 and zi2 is calculated.
The condition that measurementzi1 from camera 1, and measurementzi2 from
camera 2 originate from the same location,X, in space, i.e. thatzi1 andzi2
correspond to each other, is denoted byZi1,i2 . The likelihood that the measure-
ment pairZi1,i2 originated from the same pointX is denoted byΛ(Zi1,i2 |X)
and is given by

Λ(Zi1,i2 |X) =

(

1 − PD

φ

)δi1,i2

[PD p(zi1 |X)×PD p(zi2 |X)]1−δi1,i2 (6.11)

whereδi1,i2 is an indicator variable that is unity if a measurement is not as-
signed a corresponding point, i.e. is occluded, and zero otherwise,φ is the
field of view of the camera, and the termp(z|X) is a probability density distri-
bution that represents the likelihood of measurementz assuming it originated
from a pointX in the scene. The parameterPD represents the probability of
detecting a measurement originating fromX at sensors and is a function of
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the number of occlusions, noise, etc. Conversely,(1 − PD) may be viewed as
the probability of occlusion.

As mentioned before, the authors assume that the measurement vectorszis ,
s = {1, 2}, are normally distributed about their ideal valuez, so

p(zis |X) = |(2π)dSs|−
1
2 exp

{

−1

2
(z − zis)

′S−1
s (z − zis)

}

(6.12)

whered is the dimension of the measurement vectorszis andSs is the co-
variance matrix associated with the error(z − zis). Since the true valuez is
unknown, it is approximated by maximum likelihood estimateẑ obtained from
the measurement pairZi1,i2 and given by

z ≈ ẑ =
S−1

i1
zi1 + S−1

i2
zi2

S−1
i1

+ S−1
i2

(6.13)

whereSis is the covariance associated with measurementzis .
The cost of the individual pairingsZi1,i2 was established and now it is nec-

essary to determine the total cost of all pairs. LetΓ be the set of all feasible
partitions, i.e. Γ = {γ}. The idea is to find the pairings or partitionγ that
maximizesL(γ)/L(γ0), where the likelihoodL(γ) of a partition is defined as

L(γ) = p(Z1, Z2|γ) =
∏

Zi1,i2
∈γ

Λ(Zi1,i2 |X) (6.14)

The maximization ofL(γ)/L(γ0) is equivalent to

min
γ∈Γ

J(γ) = min
γ∈Γ

[− ln(L(γ))] (6.15)

which leads to

min
γ∈Γ

J(γ) = min
γ∈Γ

∑

Zi1,i2
∈γ







δi1,i2 ln

(

P 2
Dφ

(1 − PD)|(2π)dS| 12

)

+

(1 − δi1,i2)

[

1

4
(zi1 − zi2)

′S−1(zi1 − zi2)

]







(6.16)

assuming that the covariancesSis are equal toS.
The first term of the summation represents the cost of an occlusion in the

left or right views, while the latter term is the cost of matching two features.
Clearly, as the probability of occlusion(1−PD) becomes small the cost of not
matching a feature increases, as expected.
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The problem with this approach is that it relies on the assumption that any
two corresponding features (pixels) in the left and right images are normally
distributed about their true value. The authors noted that changes in illumina-
tion conditions and differences in camera responses were the principal source
of errors to their normal assumption. The changes in illumination and/or cam-
era responses were modeled by constant multiplicative and additive factors,
i.e.

IL(x, y) = AIR(x, y) +B (6.17)

In their model, the intensity histograms for the left and right images are
approximatively the same except for the fixed offsetB and the scaling term
A (considering that the number of occluded points is small compared to the
overall number of pixels). Estimation of the constantsA andB was performed
by first calculating the intensity histograms for both left and right image and
then plotting the ten percentile points. A linear regression can be performed on
these points, the slope and offset providing estimates forA andB, respectively.
Applying this model they alter the intensities of the stereo pair and compen-
sate these effects prior to the stereo matching. Instead of altering the original
data, our solution proposes to model the noise distribution and to estimate the
corresponding metric to be used in matching.

4. Stereo Matching Experiments
The best way to measure the success of a stereo matching method is to com-

pare the results against the ground truth, or range information measured using
means other than stereo. Typically, the ground truth in stereo matching is gen-
erated manually. A set of reference points are defined in the images and then a
person finds the correspondences for the stereo pair. Unfortunately, relatively
little ground truth data is publicly available. Despite this fact, many attempts
were made in the literature to create standard stereo sets and to compare dif-
ferent stereo algorithms using the stereo sets as benchmarks. One such study,
the ARPA JISCT stereo evaluation [Bolles et al., 1993], compared the results
of four stereo methods. However, since ground truth was not available, most
of their statistics dealt with agreement between the results; not “method A is
80% accurate," but “methods A and B agree on 80% of the images." Thus they
could neither evaluate stereo methods independently nor quantitatively charac-
terize their performance. The study conclusion states in part that the “ground
truth is expensive, but there is no substitute for assessing quantitative issues."
In our experiments we used different standard stereo sets from the literature
with ground truth provided by the authors.
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4.1 Stereo Sets
The first stereo data sets we used in our experiments (Castle set and Tower

set) were provided by the Calibrated Imaging Laboratory, Robotics Institute,
Carnegie Mellon University. These datasets contain multiple images of static
scenes with accurate information about object locations in 3D. The 3D loca-
tions are given in X-Y-Z coordinates with a simple text description (at best ac-
curate to 0.3 mm) and the corresponding image coordinates (the ground truth)
are provided for all eleven images taken for each scene. For each image there
are 28 ground truth points in the Castle set and 18 points in the Tower set. An
example of two stereo images from the Castle data set is given in Figure 6.6.
Note that on the left image the ground truth points were superimposed on the
image.

Figure 6.6. A stereo image pair from the Castle data set

In order to evaluate the performance of the stereo matching algorithms under
difficult matching conditions we also used the Robots stereo pair [Lew et al.,
1994] from University of Illinois at Urbana-Champaign. This stereo pair is
more difficult due to varying levels of depth and occlusions (Figure 6.7). For
this stereo pair, the ground truth consists of 1276 point pairs, given with one
pixel accuracy.

In addition, we also used two stereo datasets, Flat and Suburb (Figure 6.8),
which contain aerial views of a suburban region. These were taken from
Stuttgart ISPRS Image Understanding datasets [Guelch, 1988]. These stereo
sets were selected because they show the potential of a stereo matcher to per-
form automated terrain mapping. Moreover, a substantial number of ground
truth points were given (53020 points for the Flat stereo pair and 52470 for the
Suburb stereo pair).

4.2 Stereo Matching Results
The first experiments were done using the template based stereo algorithm

introduced in Section 6.3.1. In each image we considered the templates around
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Figure 6.7. Robots stereo pair

(a) (b)

Figure 6.8. Left images from the Flat and Suburb stereo pairs; (a) Flat, (b) Suburb

points which were given by the ground truth. We wanted to find the model for
the real noise distribution which gave the best accuracy in finding the corre-
sponding templates in the other image. As a measure of performance we com-
puted the accuracy of finding the corresponding points in the neighborhood of
one pixel around the points provided by the test set. In searching for the corre-
sponding pixel, we examined a band of height 7 pixels and width equal to the
image dimension centered at the row coordinate of the pixel provided by the
test set.

In this application we used a template size ofn = 25, i.e. a 5× 5 window
around the central point. For all the stereo images we divided the ground truth
points in two equal sized non-overlapping sets: the training set and the test
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set. The assignment of a particular point from the ground truth to one of these
sets was done randomly. In order to compute the real noise distribution we
placed templates around the training set points, and we created the normalized
histogram of the differences between pixels in corresponding templates.

We present the real noise distribution corresponding to the Castle dataset in
Figure 6.9. As one can see from Table 6.1 the Cauchy distribution had the best
fit to the measured noise distribution relative toL1 andL2 for both Castle and
Tower stereo sets.
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Figure 6.9. Noise distribution in the stereo matcher using Castle data set

Table 6.1. The approximation error for the corresponding point noise distribution in stereo
matching using Castle and Tower stereo sets

Set Gauss Exponential Cauchy

Castle 0.0486 0.0286 0.0246
Tower 0.049 0.045 0.043

As mentioned before, the Robots stereo pair is more difficult due to varying
levels of depth and occlusions. This fact is illustrated in the shape of the real
noise distribution (Figure 6.10). Note that the distribution in this case has wider
spread and is less smooth. The Cauchy distribution is the best fit, followed by
the Exponential and the Gaussian.
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Figure 6.10. Noise distribution for the Robots stereo pair compared with the best fit Gaussian
(a) (approximation error is 0.0267), best fit Exponential (b) (approximation error is 0.0156), and
best fit Cauchy (c) (approximation error is 0.0147)

A different behavior can be noted for the real noise distribution in the case of
Flat and Suburb stereo pairs. In this case, the shape of the real noise distribution
clearly resembles a Gaussian distribution. The tails are less prominent (Figure
6.11) and as a consequence the Exponential and the Cauchy distributions are
worse approximations (see Table 6.2). In these conditions, one expectsL2 to
have greater matching accuracy comparing withL1 andLc.

Table 6.2. The approximation error for the corresponding point noise distribution in stereo
matching using Flat and Suburb stereo pairs

Set Gauss Exponential Cauchy

Flat 0.0356 0.0412 0.0446
Suburb 0.0217 0.0273 0.0312

The complete results for the template based matching are presented in Table
6.3. Note that the results are consistent with the matching between the real
noise distribution and the model distributions. In the case where Cauchy dis-
tribution was the best fit (Castle, Tower, and Robots stereo sets), the results
obtained withLc are better than the ones obtained withL1 andL2. For all
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Figure 6.11. Noise distribution for the Suburb stereo pair compared with the best fit Gaussian
(a) (approximation error is 0.0217), best fit Exponential (b) (approximation error is 0.0273), and
best fit Cauchy (c) (approximation error is 0.0312)

these stereo sets, the Gaussian was the worst fit and consequently the results
obtained withL2 were the worst. On the other hand, in the case of Flat and
Suburb stereo pairs, the Gaussian was the best fit and consequently the results
obtained withL2 were the best. Now, the worst results were obtained withLc

because the Cauchy distribution was the worst fit to the real noise distribution.
For all the stereo sets, significant improvement in accuracy was obtained when
theML metric (see Section 2.6) was used.

Table 6.3. The accuracy of the stereo matcher (%) using template matching

Set L2 L1 K Lc ML

Castle 91.05 92.43 92.12 93.71a=7.47 94.52
Tower 91.11 93.32 92.84 94.26a=5.23 95.07
Robots 71.19 73.35 75.34 76.79a=26.2 78.54

Flat 78.39 77.50 77.22 75.92a=17.17 83.67
Suburb 80.08 79.24 78.59 77.36a=15.66 85.11

Note also the range in the accuracy values for all stereo sets. The best results
were obtained for Castle and Tower stereo sets. For the other stereo pairs,
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there were more difficult matching conditions due to occlusions and complex
background and therefore the matching accuracy is lower. However, for these
stereo pairs (especially for Robots) the improvement in accuracy given by the
ML metric is more significant.

In the next experiments, we investigated the influence of similarity noise
using Fusiello’s multiple windows stereo algorithm [Fusiello et al., 1997] (see
Section 6.3.2) and the maximum likelihood stereo algorithm by Cox et al. [Cox
et al., 1996] (see Section 6.3.3).

In the maximum likelihood algorithm, matching was done on the individual
pixel intensity, instead of using an adaptive window as in the template based
methods. In this case the disparity map gives the location of the corresponding
pixels. The accuracy is given by the percentage of pixels in the test set which
are matched correctly by the algorithm.

In Tables 6.4 and 6.5, the results using different distance measures are pre-
sented. The accuracy values are better than in the case of template based al-
gorithm. This is an expected result since both algorithms use more sophisti-
cated procedures in matching, instead of a simple template centered around the
matching points.

Table 6.4. The accuracy of the stereo matcher using Fusiello’s multiple window stereo algo-
rithm

Set L2 L1 K Lc ML

Castle 92.27 92.92 92.76 94.82a=7.47 95.73
Tower 91.79 93.67 93.14 95.28a=5.23 96.05
Robots 72.15 73.74 75.87 77.69a=26.2 79.54

Flat 79.43 77.92 77.76 76.82a=17.17 84.69
Suburb 81.14 79.67 79.14 78.28a=15.66 86.15

The results are also consistent with the fitting between the real noise dis-
tribution and the model distributions. For all of the stereo sets,ML had the

Table 6.5. The accuracy of the stereo matcher using maximum likelihood stereo algorithm

Set L2 L1 K Lc ML

Castle 93.45 94.72 94.53 95.72a=7.47 96.37
Tower 93.18 95.07 94.74 96.18a=5.23 97.04
Robots 74.81 76.76 78.15 82.51a=26.2 84.38

Flat 81.19 80.67 80.15 79.23a=17.17 86.07
Suburb 82.07 81.53 80.97 80.01a=15.66 87.18
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highest accuracy. Note the improvement in accuracy comparing withL2 (SSD)
which was used in the original algorithms. For the multiple window stereo
algorithm, theML beatL2 by 3 to 7 percent. For the maximum likelihood al-
gorithm theML metric had improved accuracy over theL2 of approximately
3 to 9 percent.

4.3 Summary
We implemented a template matching algorithm, an adaptive, multi-window

algorithm by Fusiello et al. [Fusiello et al., 1997], and a maximum likelihood
method using pixel intensities by Cox et al. [Cox et al., 1996]. Note that the
SSD was used in the paper by Fusiello et al. [Fusiello et al., 1997] and in the
work by Cox et al. [Cox et al., 1996]. Furthermore, we used international
stereo data sets from Carnegie Mellon University(Castle and Tower), Univer-
sity of Illinois at Urbana-Champaign (Robots) and University of Stuttgart (Flat
and Suburb).

From our experiments, it was clear that choosing the correct metric had
significant impact on the accuracy. Specifically, among theL2, L1, Cauchy,
and Kullback metrics, the accuracy varied up to 7%.

For the stereo pairs and the algorithms in our experiments, the maximum
likelihood metric consistently outperformed all of the other metrics. Further-
more, it is optimal with respect to maximizing the probability of similarity.
The breaking points occur when there is no ground truth, or when the ground
truth is not representative.

There appear to be two methods of applying maximum likelihood toward
improving the accuracy of matching algorithms in stereo matching. The first
method recommends altering the images so that the measured noise distribu-
tion is closer to the Gaussian and then using the SSD. The second method is to
find a metric which has a distribution which is close to the real noise distribu-
tion.

5. Motion Tracking Experiments
Automatic motion tracking has long been an important topic in computer

vision. Recently facial motion analysis has captured the attention of many
researchers as the interests for model based video compression and human-
computer interaction grow [Tao and Huang, 1999][Black and Yacoob, 1995].
One important aspect in analyzing human facial movement is to automatically
track moving feature points on human faces. The motion parameters of these
feature points can be used to reconstruct the original motion (e.g., human ex-
pression synthesis [Tang and Huang, 1994]) or for further analysis (e.g., com-
puterized lipreading [Bregler et al., 1993] and expression recognition [Black
and Yacoob, 1995]).
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There are two classical methods for tracking feature points, namely optical
flow and block correlation (template matching). Optical flow tries to find the
correspondence between two images by calculating the velocity (displacement
vector) at which a point on the first image moves in the second image. Block
correlation tracks a specific point by finding the maximum similarity between
two pixel patterns of images containing this point. There are many different al-
gorithms available for computing optical flow [Barron et al., 1994]. However,
since the assumptions to calculate optical flow are not usually satisfied in real
situations, particularly for human facial movements [Mase, 1991], the results
of optical flow are often unreliable. Problems also occur with the block corre-
lation method [Tang et al., 1994]. This method identifies an image pattern as a
template and moves it over a specific search area in a second image. Correla-
tions between the template and the second image are then calculated. The point
at which the maximum correlation occurs is the tracking result. Obviously, the
accuracy of this method is affected by the size of both the template and the
search area. If the search area is too small, the points with bigger motion will
be lost. In contrast, if the search area is too large search, the computation will
be expensive and possibly an erroneous estimation of the position of the point
will be found. When the small template is used, the local details are captured.
On the other hand, when the template is large you lose all the local details and
concentrate on more coarse (global) details.

We used a video sequence containing 19 images on a talking head in a static
background [Tang et al., 1994]. An example of three images from this video
sequence is given in Figure 6.12. For each image in this video sequence there
are 14 points given as ground truth.

The motion tracking algorithm between the test frame and another frame
performed template matching to find the best match in a 5× 5 template around
a central pixel. In searching for the corresponding pixel, we examined a region
of width and height of 7 pixels centered at the position of the pixel in the test
frame.

The idea of this experiment was to trace moving facial expressions. There-
fore, the ground truth points were provided around the lips and eyes which are
moving through the sequence. This movement causes the templates around the
ground truth points to differ more when far-off frames are considered. This is
illustrated in Figure 6.13.

Between the first frame and a later frame, the tracking error represents the
average displacement (in pixels) between the ground truth and the correspond-
ing pixels found by the matching algorithm. When consecutive frames are
considered (frame difference = 1), the average displacement is low, however,
when far-off frames are compared (frame difference = 3) the displacement er-
ror is significantly increased. Note that regardless of the frame difference,Lc

had the least error andL2 had the greatest error.
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Figure 6.12. Video sequence of a talking head

In Figure 6.14 we display the fit between the real noise distribution and
the three model distributions. The real noise distribution was calculated using
templates around points in the training set (6 points for each frame) considering
sequential frames. The best fit is the Cauchy distribution, and the Exponential
distribution is a better match than the Gaussian distribution.

Since the Cauchy distribution was the best fit overall, it is expected that the
accuracy is greater when usingLc than when usingL1 andL2 (Table 6.6). For
Lc, the greatest accuracy was obtained around the values of the parametera
which gave the best fit between the Cauchy distribution and the real distribution
(Figure 6.15). TheML metric gave the best results overall.

In addition, we considered the situation of motion tracking between non-
adjacent frames. In Table 6.6, the results are shown for tracking pixels between
frames located at interframe distances of 1, 3, and 5.

Note that as the interframe distance increases, the accuracy decreases and
the error increases. TheMLmetric had improved accuracy over theL2 (which
is typically used in matching) of approximately 5 to 9 percent.
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Figure 6.13. Average tracking error (displacement) of corresponding points in successive
frames; forLc a=2.03
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Figure 6.14. Noise distribution in the video sequence using sequential frames compared with
the best fit Gaussian (a) (approximation error is 0.083), best fit Exponential (b) (approximation
error is 0.069), and best fit Cauchy (c) (approximation error is 0.063)

6. Concluding Remarks
We examined two topic areas from computer vision which were stereo

matching and motion tracking. In stereo matching we implemented a template
based matching algorithm, an adaptive, multi-window algorithm by Fusiello et
al. [Fusiello et al., 1997], and a maximum likelihood method using pixel in-
tensities by Cox et al. [Cox et al., 1996]. In motion tracking, we implemented
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Figure 6.15. The accuracy of the matching process in the video sequence using sequential
frames

Table 6.6. The accuracy (%) of the matching process in the video sequence

Interframe Distance L2 L1 K Lc ML

1 84.11 84.91 85.74 87.43 (a=2.03) 89.67
3 74.23 75.36 76.03 78.15 (a=13.45) 81.25
5 65.98 67.79 68.56 70.14 (a=21.15) 74.19

a template based matching algorithm to track pixels on a moving object in a
video sequence. We examined the tracking error and accuracy between adja-
cent and non-adjacent frames.

For most of our experiments, better accuracy was obtained when the Cauchy
metric was substituted for the SSD, SAD, or Kullback relative information.
The only exception occurred in stereo matching when the Flat and Suburb
stereo pairs were used. In this case the similarity noise distribution exhibited
a Gaussian shape. One of the possible explanation for this relies on the par-
ticularity of these stereo pairs. They consist of aerial images and therefore,
the depth values in the scene are much lower than the distance from where
the images were taken. In this conditions, the noise in the camera may be
the main source of errors. As was shown in the work by Boie and Cox [Boie
and Cox, 1992] the camera noise can be appropriately modeled as a Gaussian
noise. However, also in this case the accuracy results were consistent with the
fitting of the real noise distribution and the model distribution, in the sense that
when a model distribution was the best fit then, the accuracy obtained with the
corresponding metric was the best.

An important aspect was to use the original source code as was the case
for the multi-window algorithm by Fusiello et al. [Fusiello et al., 1997] and
for Cox’ maximum likelihood stereo algorithm [Cox et al., 1996]. In order
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to have a reliable evaluation of our method we modified only the part of the
code where the comparison metric was employed. In these conditions, using
theML metric estimated from the ground truth information we significantly
improved the accuracy of the original methods. Note that the SSD (L2) was
used in both original algorithms.



Chapter 7

FACIAL EXPRESSION RECOGNITION

The most expressive way humans display emotions is through facial expres-
sions. Humans detect and interpret faces and facial expressions in a scene with
little or no effort. Still, development of an automated system that accomplishes
this task is rather difficult. There are several related problems: detection of an
image segment as a face, extraction of the facial expression information, and
classification of the expression (e.g., in emotion categories). A system that
performs these operations accurately and in real time would be a major step
forward in achieving a human-like interaction between the man and machine.

In this chapter we present a system for classification of facial expressions
from continuous video input. We introduce and test different Bayesian net-
work classifiers for classifying expressions from video, focusing on changes
in distribution assumptions and feature dependency structures. In particu-
lar we use Naive Bayes classifiers and change the distribution from Gaus-
sian to Cauchy. Observing that the features independence assumption used
by the Naive Bayes classifiers may be inappropriate we use Gaussian Tree-
Augmented Naive Bayes (TAN) classifiers to learn the dependencies among
different facial motion features. We also introduce a facial expression recogni-
tion from live video input using temporal cues. We exploit the existing meth-
ods and present an architecture of hidden Markov models (HMMs) for au-
tomatically segmenting and recognizing human facial expression from video
sequences. The architecture automatically performs both segmentation and
recognition of the facial expressions using a multi-level architecture com-
posed of an HMM layer and a Markov model layer. We explore both person-
dependent and person-independent recognition of expressions and compare the
different methods using two databases.



1. Introduction
In recent years there has been a growing interest in improving all aspects of

the interaction between humans and computers. This emerging field has been
a research interest for scientists from several different scholastic tracks, i.e.,
computer science, engineering, psychology, and neuroscience. These studies
focus not only on improving computer interfaces, but also on improving the
actions the computer takes based on feedback from the user. Feedback from
the user has traditionally been given through the keyboard and mouse. Other
devices have also been developed for more application specific interfaces, such
as joysticks, trackballs, datagloves, and touch screens. The rapid advance of
technology in recent years has made computers cheaper and more powerful,
and has made the use of microphones and PC-cameras affordable and easily
available. The microphones and cameras enable the computer to “see" and
“hear," and to use this information to act. A good example of this is the “Smart-
Kiosk" [Garg et al., 2000].

It is argued that to truly achieve effective human-computer intelligent inter-
action (HCII), there is a need for the computer to be able to interact naturally
with the user, similar to the way human-human interaction takes place.

Human beings possess and express emotions in everyday interactions with
others. Emotions are often reflected on the face, in hand and body gestures,
and in the voice, to express our feelings or likings. While a precise, generally
agreed upon definition of emotion does not exist, it is undeniable that emotions
are an integral part of our existence. Facial expressions and vocal emotions are
commonly used in everyday human-to-human communication, as one smiles
to show greeting, frowns when confused, or raises one’s voice when enraged.
People do a great deal of inference from perceived facial expressions: “You
look tired,” or “You seemhappy.” The fact that we understand emotions and
know how to react to other people’s expressions greatly enriches the interac-
tion. There is a growing amount of evidence showing that emotional skills
are part of what is called “intelligence" [Salovey and Mayer, 1990; Goleman,
1995]. Computers today, on the other hand, are still quite “emotionally chal-
lenged.” They neither recognize the user’s emotions nor possess emotions of
their own.

Psychologists and engineers alike have tried to analyze facial expressions
in an attempt to understand and categorize these expressions. This knowledge
can be for example used to teach computers to recognize human emotions from
video images acquired from built-in cameras. In some applications, it may not
be necessary for computers to recognize emotions. For example, the com-
puter inside an automatic teller machine or an airplane probably does not need
to recognize emotions. However, in applications where computers take on a
social role such as an “instructor,” “helper,” or even “companion,” it may en-
hance their functionality to be able to recognize users’ emotions. In her book,
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Picard [Picard, 1997] suggested several applications where it is beneficial for
computers to recognize human emotions. For example, knowing the user’s
emotions, the computer can become a more effective tutor. Synthetic speech
with emotions in the voice would sound more pleasing than a monotonous
voice. Computer “agents” could learn the user’s preferences through the users’
emotions. Another application is to help the human users monitor their stress
level. In clinical settings, recognizing a person’s inability to express certain
facial expressions may help diagnose early psychological disorders.

This chapter presents a real time automatic facial expression recogni-
tion system using video input developed at University of Illinois at Urbana-
Champaign. We focus on the design of the classifiers used for performing the
recognition following extraction of features using a real time face tracking sys-
tem. We describe classification schemes in two types of settings: dynamic and
’static’ classification.

The ’static’ classifiers classify a frame in the video to one of the facial ex-
pression categories based on the tracking results of that frame. More specifi-
cally, we use Bayesian network classifiers and compare two different models:
(1) Naive Bayes classifiers where the features are assumed to be either Gaus-
sian or Cauchy distributed, and (2) Gaussian Tree-Augmented Naive (TAN)
Bayes classifiers. The Gaussian Naive Bayes classifier is a standard classifier
which has been used extensively in many classification problems. We propose
changing the assumed distribution of the features from Gaussian to Cauchy
because of the ability of Cauchy to account for heavy tail distributions. While
Naive Bayes classifiers are often successful in practice, they use a very strict
and often unrealistic assumption, that the features are independent given the
class. We propose using the Gaussian TAN classifiers which have the ad-
vantage of modeling dependencies between the features without much added
complexity compared to the Naive Bayes classifiers. TAN classifiers have an
additional advantage in that the dependencies between the features, modeled as
a tree structure, are efficiently learnt from data and the resultant tree structure
is assured to maximize the likelihood function.

Dynamic classifiers take into account the temporal pattern in displaying fa-
cial expression. We first describe the hidden Markov model (HMM) based
classifiers for facial expression recognition which have been previously used
in recent works [Otsuka and Ohya, 1997a; Oliver et al., 1997; Lien, 1998]. We
further advance this line of research and present a multi-level HMM classifier,
combining the temporal information which allows not only to perform the clas-
sification of a video segment to the corresponding facial expression, as in the
previous works on HMM based classifiers, but also to automatically segment
an arbitrary long video sequence to the different expressions segments without
resorting to heuristic methods of segmentation.
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An important aspect is that while the static classifiers are easier to train and
implement, the dynamic classifiers require more training samples and many
more parameters to learn.

The rest of the chapter is organized as follows. Section 7.2 introduces
the emotion recognition studies and presents the facial expression recognition
state-of-the-art. In Section 7.3 we briefly describe the real-time face tracking
system and the features extracted for classification of facial expressions. Sec-
tion 7.4 describes the Bayesian network classifiers used for classifying frames
in the video sequence to the different expressions. In Section 7.5 we describe
HMM based classifiers for facial expression recognition from presegmented
video sequences and introduce the multi-level HMM classifier for both rec-
ognizing facial expression sequences and automatically segmenting the video
sequence. We perform experiments for all the described methods using two
databases in Section 7.6. The first is a database of subjects displaying facial
expressions collected by Chen [Chen, 2000]. The second is the Cohn-Kanade
database [Kanade et al., 2000]. We have concluding remarks in Section 7.7.

2. Emotion Recognition
There is little agreement about a definition of emotion and many theories

of emotion have been proposed. Some of these could not be verified until re-
cently when measurement of some physiological signals became available. In
general, emotions are short-term, whereas moods are long-term, and tempera-
ments or personalities are very long-term [Jenkins et al., 1998]. A particular
mood may sustain for several days, and a temperament for months or years.
Finally, emotional disorders can be so disabling that people affected are no
longer able to lead normal lives.

Darwin [Darwin, 1890] held an ethological view of emotional expressions,
arguing that the expressions from infancy and lower life forms exist in adult
humans. Following theOrigin of Specieshe wroteThe Expression of the
Emotions in Man and Animals. According to him, emotional expressions are
closely related to survival. Thus in human interactions, these nonverbal expres-
sion are as important as the verbal interaction. James [James, 1890] viewed
emotions not ascausesbut aseffects. Situations arise around us which cause
changes in physiological signals. According to James, “the bodily changes
follow directly the perception of the exciting fact, and that our feeling of the
same changes as they occuris the emotion.” Carl Lange proposed a similar
theory independently at around the same time. This is often referred to as the
“James-Lange” theory of emotion. Cannon [Cannon, 1927], contrary to James,
believed that emotions are first felt, then exhibited outwardly causing certain
behaviors.
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2.1 Judgment Studies
Despite these diverse theories, it is evident that people display expressions

to various degrees. One frequently studied task is the judgment of emotions—
how well can human observers tell the emotional expressions of others, in the
voice, on the face, etc? Related questions are: Do these represent their true
emotions? Can they be convincingly portrayed? How well can people conceal
their emotions? In such tasks, researchers often use two different methods to
describe the emotions.

One approach is to label the emotions in discrete categories, i.e., human
judges must choose from a prescribed list of word labels, such asjoy, fear, love,
surprise, sadness, etc. One problem with this approach is that the stimuli may
contain blended emotions. Also the choice of words may be too restrictive, or
culturally dependent.

Another way is to have multiple dimensions or scales to describe emotions.
Instead of choosing discrete labels, observers can indicate their impression of
each stimulus on several continuous scales, for example, pleasant–unpleasant,
attention–rejection, simple–complicated, etc. Two common scales are valence
and arousal. Valence describes the pleasantness of the stimuli, with positive
(or pleasant) on one end, and negative (or unpleasant) on the other. For ex-
ample,happinesshas a positive valence, whiledisgusthas a negative valence.
The other dimension is arousal or activation. For example,sadnesshas low
arousal, whereassurprisehas high arousal level. The different emotional la-
bels could be plotted at various positions on a two-dimensional plane spanned
by these two axes to construct a 2D emotion model [Lang, 1995]. Schols-
berg [Schlosberg, 1954] suggested a three-dimensional model in which he had
attention–rejectionin addition to the above two.

Another interesting topic is how the researchers managed to obtain data for
observation. Some people used posers, including professional actors and non-
actors. Others attempted to induce emotional reactions by some clever means.
For example, Ekman showed stress-inducing film of nasal surgery in order to
get the disgusted look on the viewers’ faces. Some experimenter even dumped
water on the subjects or fired blank shots to induce surprise, while others used
clumsy technicians who made rude remarks to arouse fear and anger [Hilgard
et al., 1971]. Obviously, some of these are not practical ways of acquiring
data. After studying acted and natural expressions, Ekman concluded that ex-
pressions can be convincingly portrayed [Ekman, 1982].

2.2 Review of Facial Expression Recognition
Since the early 1970s, Paul Ekman and his colleagues have performed exten-

sive studies of human facial expressions [Ekman, 1994]. They found evidence
to support universality in facial expressions. These “universal facial expres-
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sions” are those representing happiness, sadness, anger, fear, surprise, and dis-
gust. They studied facial expressions in different cultures, including preliterate
cultures, and found much commonality in the expression and recognition of
emotions on the face. However, they observed differences in expressions as
well, and proposed that facial expressions are governed by “display rules” in
different social contexts. For example, Japanese subjects and American sub-
jects showed similar facial expressions while viewing the same stimulus film.
However, in the presence of authorities, the Japanese viewers were more re-
luctant to show their real expressions. Babies seem to exhibit a wide range of
facial expressions without being taught, thus suggesting that these expressions
are innate [Izard, 1994].

Ekman and Friesen [Ekman and Friesen, 1978] developed the Facial Ac-
tion Coding System (FACS) to code facial expressions where movements on
the face are described by a set of action units (AUs). Each AU has some re-
lated muscular basis. Figure 7.1 shows some of the key facial muscles on
the face [Faigin, 1990]. The muscle movements (contractions) produce facial
expressions. For example, thecorrugatoris also known as the “frowning mus-
cle,” zygomatic majoris responsible for smiling, andlavator labii superioris
produces “sneering.” Table 7.1 lists some example action units. Each facial
expression may be described by a combination of AUs. This system of coding
facial expressions is done manually by following a set prescribed rules. The
inputs are still images of facial expressions, often at the peak of the expression.
This process is very time-consuming.

Table 7.1. Some example action units [Ekman and Friesen, 1978].

AU number FACS name Muscular basis

1 Inner brow raiser Frontalis, pars medialis
2 Outer brow raiser Frontalis, pars lateralis
5 Upper lid raiser Levator palpebrae superioris
11 Nasolabial furrow Zygomatic minor
12 Lip corner puller Zygomatic major
20 Lip stretcher Risorious

Ekman’s work inspired many researchers to analyze facial expressions by
means of image and video processing. By tracking facial features and measur-
ing the amount of facial movement, they attempt to categorize different facial
expressions. Recent work on facial expression analysis and recognition [Mase,
1991; Ueki et al., 1994; Lanitis et al., 1995; Black and Yacoob, 1995; Rosen-
blum et al., 1996; Essa and Pentland, 1997; Otsuka and Ohya, 1997a; Donato
et al., 1999; Lien, 1998; Nefian and Hayes, 1999; Martinez, 1999; Oliver et al.,
2000] has used these “basic expressions” or a subset of them. In [Pantic and
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Figure 7.1. Some key facial muscles (adapted from [Faigin, 1990]).

Rothkrantz, 2000], Pantic and Rothkrantz provide an in depth review of many
of the research done in automatic facial expression recognition in recent years.

The work in computer-assisted quantification of facial expressions did not
start until the 1990s. Mase [Mase, 1991] used optical flow (OF) to recognize
facial expressions. He was one of the first to use image processing techniques
to recognize facial expressions. Lanitis et al. [Lanitis et al., 1995] used a flexi-
ble shape and appearance model for image coding, person identification, pose
recovery, gender recognition, and facial expression recognition. Black and
Yacoob [Black and Yacoob, 1995] used local parameterized models of image
motion to recover non-rigid motion. Once recovered, these parameters were
used as inputs to a rule-based classifier to recognize the six basic facial expres-
sions. Yacoob and Davis [Yacoob and Davis, 1996] computed optical flow and
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used similar rules to classify the six facial expressions. Rosenblum, Yacoob,
and Davis [Rosenblum et al., 1996] also computed optical flow of regions on
the face, then applied a radial basis function network to classify expressions.
Essa and Pentland [Essa and Pentland, 1997] used an optical flow region-based
method to recognize expressions. Donato et al. [Donato et al., 1999] tested dif-
ferent features for recognizing facial AUs and inferring the facial expression in
the frame. Otsuka and Ohya [Otsuka and Ohya, 1997a] first computed optical
flow, then computed the 2D Fourier transform coefficients, which were used
as feature vectors for a hidden Markov model (HMM) to classify expressions.
The trained system was able to recognize one of the six expressions near real-
time (about 10 Hz). Furthermore, they used the tracked motions to control the
facial expression of an animated Kabuki system [Otsuka and Ohya, 1997b].
A similar approach, using different features, was used by Lien [Lien, 1998].
Nefian and Hayes [Nefian and Hayes, 1999] proposed an embedded HMM
approach for face recognition that uses an efficient set of observation vectors
based on the DCT coefficients. Martinez [Martinez, 1999] introduced an in-
dexing approach based on the identification of frontal face images under dif-
ferent illumination conditions, facial expressions, and occlusions. A Bayesian
approach was used to find the best match between the local observations and
the learned local features model and an HMM was employed to achieve good
recognition even when the new conditions did not correspond to the conditions
previously encountered during the learning phase. Oliver et al. [Oliver et al.,
2000] used lower face tracking to extract mouth shape features and used them
as inputs to an HMM based facial expression recognition system (recognizing
neutral, happy, sad, and an open mouth).

These methods are similar in that they first extract some features from the
images, then these features are used as inputs into a classification system, and
the outcome is one of the preselected emotion categories. They differ mainly
in the features extracted from the video images and in the classifiers used to
distinguish between the different emotions.

Another interesting aspect to point out is commonly confused categories in
the six basic expressions. As reported by Ekman,angeranddisgustare com-
monly confused in judgment studies. Also,fear andsurpriseare commonly
confused. The reason why these confusions occur is because they share many
similar facial actions [Ekman and Friesen, 1978].Surpriseis sometimes mis-
taken forinterest, but not the other way around. In the computer recognition
studies, some of these are observed [Black and Yacoob, 1995; Yacoob and
Davis, 1996].

As mentioned in the Section 7.1, the classifiers used can either be ’static’
classifiers or dynamic ones. Static classifiers use feature vectors related to a
single frame to perform classification (e.g., Neural networks, Bayesian net-
works, linear discriminant analysis). Temporal classifiers try to capture the



Face Tracking and Feature Extraction 171

temporal pattern in the sequence of feature vectors related to each frame such
as the HMM based methods of [Otsuka and Ohya, 1997a; Lien, 1998; Oliver
et al., 2000].

3. Face Tracking and Feature Extraction
The real time facial expression recognition system (see Figure 7.2) is com-

posed of a face tracking algorithm which outputs a vector of motion features of
certain regions of the face. The features are used as inputs to a classifier. The
face tracker is based on a system developed by Tao and Huang [Tao and Huang,
1998] called the Piecewise Bezier Volume Deformation (PBVD) tracker.

Figure 7.2. A snap shot of the realtime facial expression recognition system. On the right side
is a wireframe model overlayed on a face being tracked. On the left side the correct expres-
sion, Angry, is detected (the bars show the relative probability of Angry compared to the other
expressions). The example is from Cohn-Kanade database [Kanade et al., 2000].

This face tracker uses a model-based approach where an explicit 3D wire-
frame model of the face is constructed. In the first frame of the image sequence,
landmark facial features such as the eye corners and mouth corners are selected
interactively. The generic face model is then warped to fit the selected facial
features. The face model consists of 16 surface patches embedded in Bezier
volumes. The surface patches defined this way are guaranteed to be continuous
and smooth. The shape of the mesh can be changed by changing the locations
of the control points in the Bezier volume. Before describing the Bezier vol-
ume, we begin with the Bezier curve.
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Given a set ofn+1 control pointsb0,b1, . . . ,bn, the corresponding Bezier
curve (or Bernstein-Bezier curve) is given by

x(u) =

n
∑

i=0

biB
n
i (u) =

n
∑

i=0

bi

(

n
i

)

ui(1 − u)n−i (7.1)

where the shape of the curve is controlled by the control pointsbi andu ∈
[0, 1]. As the control points are moved, a new shape is obtained according to the
Bernstein polynomialsBn

i (u) in Equation (7.1). The displacement of a point
on the curve can be described in terms of linear combinations of displacements
of the control points.

The Bezier volume is a straight-forward extension of the Bezier curve and
is defined by the next equation written in matrix form

V = BD, (7.2)

whereV is the displacement of the mesh nodes,D is a matrix whose columns
are the control point displacement vectors of the Bezier volume, andB is the
mapping in terms of Bernstein polynomials. In other words, the change in the
shape of the face model can be described in terms of the deformations inD.

Once the model is constructed and fitted, head motion and local deforma-
tions of the facial features such as the eyebrows, eyelids, and mouth can be
tracked. First the 2D image motions are measured using template matching
between frames at different resolutions. Image templates from the previous
frame and from the very first frame are both used for more robust tracking.
The measured 2D image motions are modeled as projections of the true 3D
motions onto the image plane. From the 2D motions of many points on the
mesh, the 3D motion can be estimated by solving an overdetermined system
of equations of the projective motions in the least squared sense. Figure 7.3
shows four frames of tracking result with the meshes overlaid on the face.

The recovered motions are represented in terms of magnitudes of some pre-
defined motion of various facial features. Each feature motion corresponds to
a simple deformation on the face, defined in terms of the Bezier volume con-
trol parameters. We refer to these motions vectors as Motion-Units (MU’s).
Note that they are similar but not equivalent to Ekman’s AU’s and are numeric
in nature, representing not only the activation of a facial region, but also the
direction and intensity of the motion. The MU’s used in the face tracker are
shown in Figure 7.4 and are described in Table 7.2.

Each facial expression is modeled as a linear combination of the MU’s:

V = B [D0D1 . . .Dm]
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...
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= BDP (7.3)
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Figure 7.3. The wireframe model overlaid on a face being tracked

where each of theDi corresponds to an MU, and thepi are the corresponding
magnitudes (or coefficients) of each deformation. The overall motion of the
head and face is

R(V0 + BDP) + T (7.4)

whereR is the 3D rotation matrix,T is the 3D translation matrix, andV0 is
the initial face model.

The MU’s are used as the basic features for the classification scheme de-
scribed in the next sections.

4. The Static Approach: Bayesian Network Classifiers
Bayesian networks can represent joint distributions in an intuitive and effi-

cient way; as such, Bayesian networks are naturally suited for classification.
We can use a Bayesian network to compute the posterior probability of a set of
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Figure 7.4. The facial motion measurements

Table 7.2. Motion units used in the face tracker.

MU Description

1 vertical movement of the center of upper lip
2 vertical movement of the center of lower lip
3 horizontal movement of left mouth corner
4 vertical movement of left mouth corner
5 horizontal movement of right mouth corner
6 vertical movement of right mouth corner
7 vertical movement of right brow
8 vertical movement of left brow
9 lifting of right cheek
10 lifting of left cheek
11 blinking of right eye
12 blinking of left eye

labelsgiven the observablefeatures, and then we classify the features with the
most probable label.

A few conventions are adopted throughout. The goal here is to label an
incoming vector offeatures(MUs) X. Each instantiation ofX is a record.
We assume that there exists aclass variableC; the values ofC are thelabels,
one of the facial expressions. The classifier receives a recordx and generates
a label ĉ(x). An optimal classification rule can be obtained from the exact
distributionp(C,X). However, if we do not know this distribution, we have to
learn it from expert knowledge or data.

For recognizing facial expression using the features extracted from the
face tracking system, we consider probabilistic classifiers that represent the a-
posteriori probability of the class given the features,p(C,X), using Bayesian
networks [Pearl, 1988]. A Bayesian network is composed of a directed acyclic
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graph in which every node is associated with a variableXi and with a condi-
tional distributionp(Xi|Πi), whereΠi denotes the parents ofXi in the graph.
The directed acyclic graph is thestructure, and the distributionsp(Xi|Πi) rep-
resent theparametersof the network.

Typically, Bayesian network classifiers are learned with a fixed structure –
the paradigmatic example is the Naive Bayes classifier. More flexible learning
methods allow Bayesian network classifiers to be selected from a small subset
of possible structures – for example, the Tree-Augmented-Naive-Bayes struc-
tures [Friedman et al., 1997]. After a structure is selected, the parameters of
the classifier are usually learned using maximum likelihood estimation.

Given a Bayesian network classifier with parameter setΘ, the optimal clas-
sification rule under the maximum likelihood (ML) framework to classify an
observed feature vector ofn dimensions,X ∈ Rn, to one of|C| class labels,
c ∈ {1, ..., |C|}, is given as:

ĉ = argmax
c

P (X|c; Θ) (7.5)

There are two design decisions when building Bayesian network classifiers.
The first is to choose the structure of the network, which will determine the
dependencies among the variables in the graph. The second is to determine the
distribution of the features. The features can be discrete, in which case the dis-
tributions are probability mass functions. The features can also be continuous,
in which case one typically has to choose a distribution, with the most com-
mon being the Gaussian distribution. Both these design decisions determine
the parameter setΘ which defines the distribution needed to compute the de-
cision function in Equation (7.5)). Designing the Bayesian network classifiers
for facial expression recognition is the focus of this section.

4.1 Continuous Naive-Bayes: Gaussian and Cauchy Naive
Bayes Classifiers

Naive Bayes classifier is a probabilistic classifier in which the features are
assumed independent given the class. Naive-Bayes classifiers have a very good
record in many classification problems, although the independence assump-
tion is usually violated in practice. The reason for the Naive-Bayes success as
a classifier is attributed to the small number of parameters needed to be esti-
mated. Recently, Garg and Roth [Garg and Roth, 2001] showed using infor-
mation theoretic arguments additional reasons for the success of Naive-Bayes
classifiers. An example of a Naive Bayes classifier is given in Figure 7.5.

If the features inX are assumed to be independent of each other conditioned
upon the class labelc (the Naive Bayes framework), Eq. (7.5) reduces to:

ĉ = argmax
c

n
∏

i=1

P (xi|c; Θ) (7.6)
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Figure 7.5. An example of a Naive Bayes classifier.

Now the problem is how to modelP (xi|c; Θ), which is the probability of fea-
turexi given the class label. In practice, the common assumption is that we
have a Gaussian distribution and the ML can be used to obtain the estimate
of the parameters (mean and variance). However, we showed that the Gaus-
sian assumption is often invalid and we proposed the Cauchy distribution as an
alternative model. This model is referred to asCauchy Naive Bayes.

The difficulty of this model is in estimating the parameters of the Cauchy
distribution. For this we used the procedure presented in Section 2.6.1.

The Naive-Bayes classifier was successful in many applications mainly due
to its simplicity. Also, this type of classifier is working well even if there is not
too much training data. However, the strong independence assumption may
seem unreasonable in some cases. Therefore, when sufficient training data is
available we want to learn and to use the dependencies present in the data.

4.2 Beyond the Naive-Bayes Assumption: Finding
Dependencies among Features Using a Gaussian TAN
Classifier

The goal of this section is to provide a way to search for a structure that
captures the dependencies among the features. Of course, to attempt to find
all the dependencies is an NP-complete problem. So, we restrict ourselves to
a smaller class of structures called the Tree-Augmented-Naive Bayes (TAN)
classifiers. TAN classifiers have been introduced by Friedman et al. [Friedman
et al., 1997] and are represented as Bayesian networks. The joint probability
distribution is factored to a collection of conditional probability distributions
of each node in the graph.

In the TAN classifier structure the class node has no parents and each feature
has as parents the class node and at most one other feature, such that the result
is a tree structure for the features (see Figure 7.6). Friedman et al. [Friedman
et al., 1997] proposed using the TAN model as a classifier, to enhance the
performance over the simple Naive-Bayes classifier. TAN models are more
complicated than the Naive-Bayes, but are not fully connected graphs. The
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existence of an efficient algorithm to compute the best TAN model makes it a
good candidate in the search for a better structure over the simple NB.

Figure 7.6. An example of a TAN classifier.

Learning the TAN classifier is more complicated. In this case, we do not fix
the structure of the Bayesian network, but we try to find the TAN structure that
maximizes the likelihood function given the training data out of all possible
TAN structures.

In general, searching for the best structure has no efficient solution, how-
ever, searching for the best TAN structure does have one. The method is using
the modified Chow-Liu algorithm [Chow and Liu, 1968] for constructing tree
augmented Bayesian networks [Friedman et al., 1997]. The algorithm finds
the tree structure among the features that maximizes the likelihood of the data
by computation of the pairwise class conditional mutual information among
the features and building a maximum weighted spanning tree using the pair-
wise mutual information as the weights of the arcs in the tree. The problem
of finding a maximum weighted spanning is defined as finding the set of arcs
connecting the features such that the resultant graph is a tree and the sum of
the weights of the arcs is maximized. There have been several algorithms pro-
posed for building a maximum weighted spanning tree [Cormen et al., 1990]
and in our implementation we use the Kruskal algorithm described in Box 7.1.

The five steps of the TAN algorithm are described in Box 7.2. This proce-
dure ensures to find the TAN model that maximizes the likelihood of the data
we have. The algorithm is computed in polynomial time (O(n2logN), withN
being the number of instances andn the number of features).

The learning algorithm for the TAN classifier as proposed by Friedman et
al. [Friedman et al., 1997] relies on computations of the class conditional mu-
tual information of discrete features. In our problem the features are contin-
uous, and computation of the mutual information for a general distribution is
very complicated. However, if we assume that the features are Gaussian, com-
putation of the conditional mutual information is feasible and is given by (see
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Box 7.1 (Kruskal’s Maximum Weighted Spanning Tree
Algorithm)
Consider an undirected graph withn vertices andm edges, where each
edge(u, v) connecting the verticesu andv, has an associated positive
weightw(u,v). To construct the maximum weighted spanning tree graph
follow the following steps:

1 Create an empty set of edges calledspanningTree.

2 For each vertexv in the graph, create a set containingv.

3 Sort all edges in the graph using the weights in the edges from highest
to lowest.

4 In order of the sorted edges, for each edge(u, v) if the set that contains
u is different from the set that containsv:

Put the edge(u, v) in spanningTree

Makeu andv belong to the same set (union of sets).

5 spanningTreecontains all the edges in the maximum weighted
spanning tree.

Box 7.2 (TAN learning algorithm)

1 Compute the class conditional pair-wise mutual information between
each pair of features,(Xi, Xj) for all i, j ∈ {1, ..., n},

IP (Xi, Xj |C) =
∑

Xi,Xj ,C

P (xi, xj , c) log
P (xi, xj |c)

P (xi|c)P (xj |c)
, i 6= j.

2 Build a complete undirected graph in which each vertex is a variable,
and the weight of each edge is the mutual information computed in
Step 1.

3 Build a maximum weighted spanning tree (MWST) (see Box 7.1).

4 Transform the undirected MWST of Step 3 to a directed graph by
choosing a root node and pointing the arrows of all edges away from
the root.

5 Make the class node the parent of all the feature nodes in the directed
graph of Step 4.
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Box 7.3 for details):

I(Xi, Xj |C) = −1

2

|C|
∑

c=1

P (C = c) log(1 − ρ2
(ij)|c), (7.7)

whereρ(ij)|c is the correlation coefficient betweenXi andXj given the class
labelc. We replace the expression for the mutual information in Step 1 of the
TAN algorithm with the expression in Equation (7.7), to find the maximum
likelihood Gaussian-TAN classifier.

The full joint distribution of the Gaussian-TAN model can be written as:

p(c, x1, x2, ..., xn) = p(c)

n
∏

i=1

p(xi|Πi, c), (7.8)

whereΠi is the feature that is the additional parent of featurexi. Πi is empty
for the root feature in the directed tree graph of Step 4 in the Kruskal’s algo-
rithm.

Using the Gaussian assumption, the probability density functions (pdf’s) of
the distribution in the product above are:

p(Xi = xi|Πi, C = c) = Nc(µxi + a · Πi, σ
2
xi
· (1 − ρ2)), (7.9)

whereNc(µ, σ
2) refers to the Gaussian distribution with mean and variance

given that the class isc, µxi , σ
2
xi

are the mean and variance of the featurexi,

ρ =
COV (xi,Πi)

σxiσΠi

is the correlation coefficient betweenxi andΠi, and

a =
COV (xi,Πi)

σ2
Πi

.

For further details on the derivation of the parameters see Box 7.3.
After learning the structure, the Gaussian-TAN classifier’s added complex-

ity compared to the Naive Bayes classifier is small; there are|C| · (n−1) extra
parameters to estimate (the covariances between features and their parents).
For learning the structure, all pairwise mutual information are estimated using
the estimates for the covariances.

5. The Dynamic Approach: Expression Recognition Using
Multi-level HMMs

As discussed in Section 7.1, the second approach to perform classification
of video sequences to facial expression is the dynamic approach. The dynamic



180 Facial Expression Recognition

Box 7.3 (Gaussian-TAN Parameters Computation)
The mutual information between continuous random variables,X,Y is
given as:

I(X,Y ) =

∫ ∫

p(x, y) log

(

p(x, y)

p(x)p(y)

)

dxdy = H(x)+H(y)−H(x, y)

whereH(·) is the differential entropy, analogous to the entropy of discrete
variables, defined as:

H(Z) = −
∫

p(z) log p(z)dz. (7.10)

Herep(z) is the probability density function ofZ and the integral is over
all dimensions inz.
For a Gaussian random vectorZ of N dimensions with covariance matrix
Σ, by inserting the Gaussian pdf to Eq. (7.10) and taking the integral, we
get that the differential entropy ofZ is:

H(Z) =
1

2
log
(

(2πe)N |Σ|
)

(7.11)

where|Σ| is the determinant ofΣ.
Suppose now thatX andY are jointly Gaussian. Then,

p(X,Y ) ∼ N

([

µX

µY

]

,ΣXY

)

(7.12)

whereΣXY is the covariance matrix given as:

ΣXY =

[

σ2
X COV (X,Y )

COV (X,Y ) σ2
Y

]

. (7.13)

Using Eqs. (7.11) and (7.10) we get that the mutual information ofX and
Y is given by:

I(X,Y ) = −1

2
log

(

σ2
Xσ

2
Y

σ2
Xσ

2
Y − COV (X,Y )2

)

= −1

2
log





1

1 − COV (X,Y )2

σ2
Xσ2

Y



=−1

2
log

(

1

1 − ρ2
XY

)

(7.14)

whereρXY = COV (X,Y )2

σ2
Xσ2

Y
is the correlation coefficient betweenX andY .
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In the TAN classifiers, the class is the parent of all features, and the
features are Gaussian given a class label. Thus all the results above apply
with an understanding that the distributions are conditioned on the class
label (which is omitted for clarity). The class conditional mutual
information between the pairX andY is derived as follows:

I(X,Y |C) =

|C|
∑

c=1

∫ ∫

p(x, y, c) log

(

p(x, y|c)
p(x|c)p(y|c)

)

dxdy

=

|C|
∑

c=1

∫ ∫

p(c)p(x, y|c) log

(

p(x, y|c)
p(x|c)p(y|c)

)

=

|C|
∑

c=1

p(c)I(X,Y |C = c)

= −1

2

|C|
∑

c=1

p(c) log

(

1

1 − ρ2
XY |c

)

(7.15)

After finding the TAN structure, suppose that we find that featureX is the
parent ofY . Given the class label,X andY are jointly Gaussian with
mean vector and covariance as defined in Eqs. (7.12) and (7.13) (again
omitting the conditioning on the class variable for clarity). SinceX is the
parent ofY , we are interested in finding the parameters of the conditional
distributionp(Y |X) as a function of the parameters of the joint
distribution. BecauseX andY are jointly Gaussian,Y |X is also
Gaussian. Usingp(X,Y ) = p(X)p(Y |X) and the Gaussian pdf, after
some manipulations we get:

p(Y |X) =
p(X,Y )

p(X)

=
1

(2πσ2
Y (1 − ρ2

XY ))1/2
exp

(

−(y − µY − ax)2

2σ2
Y (1 − ρ2

XY )

)

= N
(

µY + ax, σ2
Y (1 − ρ2

XY )
)

(7.16)

wherea = COV (X,Y )
σ2

X
.
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approach uses classifiers that can use temporal information to discriminate dif-
ferent expressions. The logic behind using the temporal information is that
expressions have a unique temporal pattern. When recognizing expressions
from video, using the temporal information can lead to more robust and accu-
rate classification results compared to methods that are ’static’.

The method we present automatically segments the video to the different fa-
cial expression sequences, using a multi-level HMM structure. The first level
of the architecture is comprised of independent HMMs related to the different
emotions. This level of HMMs is very similar to the one used in [Lien, 1998],
[Oliver et al., 1997], and [Otsuka and Ohya, 1997a] who used the likelihood
of a given sequence in a ML classifier to classify a given video sequence. In-
stead of classifying using the output of each HMM, we use the state sequence
of the HMMs as the input of the higher level Markov model. This is meant
to segment the video sequence, which is the main problem facing the previous
works using HMM’s for expression recognition. Moreover, this also increases
the discrimination between the classes since it tries to find not only the proba-
bility of each the sequence displaying one emotion, but also the probability of
the sequence displaying one emotion and not displaying all the other emotions
at the same time.

5.1 Hidden Markov Models
Hidden Markov models have been widely used for many classification and

modeling problems. Perhaps the most common application of HMM is in
speech recognition [Rabiner and Juang, 1983]. One of the main advantages
of HMMs is their ability to model nonstationary signals or events. Dynamic
programming methods allow one to align the signals so as to account for the
non stationarity. However, the main disadvantage of this approach is that it is
very time-consuming since all of the stored sequences are used to find the best
match. The HMM finds an implicit time warping in a probabilistic paramet-
ric fashion. It uses the transition probabilities between the hidden states and
learns the conditional probabilities of the observations given the state of the
model. In the case of emotion expression, the signal is the measurements of
the facial motion. This signal is non stationary in nature, since an expression
can be displayed at varying rates, with varying intensities even for the same
individual.

An HMM is given by the following set of parameters:

λ = (A,B, π)

aij = P (qt+1 = Sj |qt = Si), 1 ≤ i, j ≤ N

B = {bj(Ot)} = P (Ot|qt = Sj), 1 ≤ j ≤ N

πj = P (q1 = Sj)
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whereA is the state transition probability matrix,B is the observation proba-
bility distribution, andπ is the initial state distribution. The number of states
of the HMM is given byN . It should be noted that the observations (Ot) can
be either discrete or continuous, and can be vectors. In the discrete case,B
becomes a matrix of probability entries (Conditional Probability Table), and
in the continuous case,B will be given by the parameters of the probability
distribution function of the observations (normally chosen to be the Gaussian
distribution or a mixture of Gaussians). Given an HMM there are three ba-
sic problems that are of interest. The first is how to efficiently compute the
probability of the observations given the model. This problem is related to
classification in the sense that it gives a measure of how well a certain model
describes an observation sequence. The second is how to find the correspond-
ing state sequence in some optimal way, given a set of observations and the
model. This will become an important part of the algorithm to recognize the
expressions from live input and will be described later in this paper. The third
is how to learn the parameters of the modelλ given the set of observations so as
to maximize the probability of observations given the model. This problem re-
lates to the learning phase of the HMMs which describe each facial expression
sequence. A comprehensive tutorial on HMMs is given by Rabiner [Rabiner,
1989].

5.2 Expression Recognition Using Emotion-Specific HMMs
Since the display of a certain facial expression in video is represented by

a temporal sequence of facial motions it is natural to model each expression
using an HMM trained for that particular type of expression. There will be
six such HMMs, one for each expression:{happy(1), angry(2), surprise(3),
disgust(4), fear(5), sad(6)}. There are several choices of model structure that
can be used. The two main models are the left-to-right model and the ergodic
model. In the left-to-right model, the probability of going back to the previous
state is set to zero, and therefore the model will always start from a certain
state and end up in an ‘exiting’ state. In the ergodic model every state can be
reached from any other state in a finite number of time steps. In [Otsuka and
Ohya, 1997a], Otsuka and Ohya used left-to-right models with three states to
model each type of facial expression. The advantage of using this model lies
in the fact that it seems natural to model a sequential event with a model that
also starts from a fixed starting state and always reaches an end state. It also
involves fewer parameters and therefore is easier to train. However, it reduces
the degrees of freedom the model has to try to account for the observation se-
quence. There has been no study to indicate that the facial expression sequence
is indeed modeled well by the left-to-right model. On the other hand, using the
ergodic HMM allows more freedom for the model to account for the obser-
vation sequences, and in fact, for an infinite amount of training data it can be



184 Facial Expression Recognition

shown that the ergodic model will reduce to the left-to-right model, if that is
indeed the true model. In this work both types of models were tested with var-
ious numbers of states in an attempt to study the best structure that can model
facial expressions.

The observation vectorOt for the HMM represents continuous motion of
the facial action units. Therefore,B is represented by the probability density
functions (pdf) of the observation vector at timet given the state of the model.
The Gaussian distribution is chosen to represent these pdf’s, i.e.,

B = {bi(Ot)} ∼ N(µj ,Σj), 1 ≤ j ≤ N (7.17)

whereµj andΣj are the mean vector and full covariance matrix, respectively.
The parameters of the model of emotion-expression specific HMM are

learned using the well-known Baum-Welch reestimation formulas (see [Levin-
son et al., 1983] for details of the algorithm). For learning, hand labeled se-
quences of each of the facial expressions are used as ground truth sequences,
and the Baum algorithm is used to derive the maximum likelihood (ML) esti-
mation of the model parameters (λ).

Parameter learning is followed by the construction of a ML classifier. Given
an observation sequenceOt, wheret ∈ (1, T ), the probability of the obser-
vation given each of the six modelsP (Ot|λj) is computed using the forward-
backward procedure [Rabiner, 1989]. The sequence is classified as the emotion
corresponding to the model that yielded the highest probability, i.e.,

c∗ = argmax
1≤c≤6

[P (O|λc)] (7.18)

5.3 Automatic Segmentation and Recognition of Emotions
Using Multi-level HMM.

The main problem with the approach taken in the previous section is that it
works on isolated facial expression sequences or on pre-segmented sequences
of the expressions from the video. In reality, this segmentation is not avail-
able, and therefore there is a need to find an automatic way of segmenting the
sequences. Concatenation of the HMMs representing phonemes in conjunc-
tion with the use of grammar has been used in many systems for continuous
speech recognition. Dynamic programming for continuous speech has also
been proposed in different researches. It is not very straightforward to try
and apply these methods to the emotion recognition problem since there is no
clear notion of language in displaying emotions. Otsuka and Ohya [Otsuka
and Ohya, 1997a] used a heuristic method based on changes in the motion of
several regions of the face to decide that an expression sequence is beginning
and ending. After detecting the boundaries, the sequence is classified to one of
the emotions using the emotion-specific HMM. This method is prone to errors
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because of the sensitivity of the classifier to the segmentation result. Although
the result of the HMMs are independent of each other, if we assume that they
model realistically the motion of the facial features related to each emotion,
the combination of the state sequence of the six HMMs together can provide
very useful information and enhance the discrimination between the different
classes. Since we will use a left-to-right model (with return), the changing of
the state sequence can have a physical attribute attached to it (such as opening
and closing of mouth when smiling), and therefore there we can gain useful
information from looking at the state sequence and using it to discriminate
between the emotions at each point in time.

To solve the segmentation problem and enhance the discrimination between
the classes, a different kind of architecture is needed. Figure (7.7) shows the
architecture for automatic segmentation and recognition of the displayed ex-
pression at each time instance. The motion features are continuously used
as input to the six emotion-specific HMMs. The state sequence of each of
the HMMs is decoded and used as the observation vector for the high level
Markov model. The high-level Markov model consists of seven states, one for
each of the six emotions and one forneutral. Theneutral state is necessary
as for the large portion of time, there is no display of emotion on a person’s
face. In this implementation of the system, the transitions between emotions
are imposed to pass through theneutral state since our training data consists
of facial expression sequences that always go through theneutralstate.

It is possible (although less likely) for a person to go from one expression
to another without passing through a neutral expression, as has been reported
in [Otsuka and Ohya, 1997a]. Handling such cases is done by slightly modi-
fying the high level HMM of Figure 7.7. We simply have to set the transition
probabilities of passing from all states to all states to values higher than zero
(which appears as arcs between the different states of the expressions in the
high-level HMM).

The recognition of the expression is done by decoding the state that the
high-level Markov model is in at each point in time since the state represents
the displayed emotion.

The training procedure of the system is as follows:

Train the emotion-specific HMMs using a hand segmented sequence as de-
scribed in the previous section.

Feed all six HMMs with the continuous (labeled) facial expression se-
quence. Each expression sequence contains several instances of each facial
expression withneutral instances separating the emotions.

Obtain the state sequence of each HMM to form the six-dimensional obser-
vation vector of the higher-level Markov model, i.e.,Oh

t = [q
(1)
t ,...,q(6)

t ]T ,
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Figure 7.7. Multilevel HMM architecture for automatic segmentation and recognition of emo-
tion.

whereq(i)t is the state of theith emotion-specific HMM. The decoding of
the state sequence is done using the Viterbi algorithm [Rabiner, 1989].

Learn the probability observation matrix for each state of the high-level
Markov model usingP (q

(i)
j |Sk) = {expected frequency of modeli being

in statej given that the true state wask}, and

B(h) = {bk(Oh
t )} =

{

6
∏

i=1

(P (q
(i)
j |Sk)

}

(7.19)

wherej ∈ (1,Number of States for Lower Level HMM).

Compute the transition probabilityA = {akl} of the high-level HMM us-
ing the frequency of transiting from each of the six emotion classes to the
neutralstate in the training sequences and from theneutralstate to the other
emotion states. For notation, theneutralstate is numbered7 and the other
states are numbered as in the previous section. All the transition probabil-
ities could also be set using expert knowledge, and not necessarily from
training data.

Set the initial probability of the high level Markov model to be 1 for the
neutral state and 0 for all other states. This forces the model to always
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start at theneutral state and assumes that a person will display aneutral
expression in the beginning of any video sequence. This assumption is
made just for simplicity of the testing.

The steps followed during the testing phase are very similar to the ones fol-
lowed during training. The face tracking sequence is used as input into the
lower-level HMMs and a decoded state sequence is obtained using the Viterbi
algorithm. The decoded lower-level state sequenceOh

t is used as input to
the higher-level HMM and the observation probabilities are computed using
Eq. (7.19). Note that in this way of computing the probability, it is assumed
that the state sequences of the lower-level HMMs are independent given the
true labeling of the sequence. This assumption is reasonable since the HMMs
are trained independently and on different training sequences. In addition,
without this assumption, the size ofB will be enormous, since it will have to
account for all possible combinations of states of the six lower-level HMMs,
and it would require a huge amount of training data.

Using the Viterbi algorithm again for the high level Markov model, a most
likely state sequence is produced. The state that the HMM was in at time
t corresponds to the expressed emotion in the video sequence at timet. To
make the classification result robust to undesired fast changes, a smoothing of
the state sequence is done by preserving the actual classification result if the
HMM did not stay in a particular state for more thanT times, whereT can vary
between 1 and 15 samples (assuming a 30-Hz sampling rate). The introduction
of the smoothing factorT will cause a delay in the decision of the system, but
of no more thanT sample times.

6. Experiments
In order to test the algorithms described in the previous sections we use

two different databases, a database collected by Chen [Chen, 2000] and the
Cohn-Kanade [Kanade et al., 2000] AU code facial expression database.

The first is a database of subjects that were instructed to display facial
expressions corresponding to the six types of emotions. The data collection
method is described in detail in [Chen, 2000]. All the tests of the algorithms
are performed on a set of five people, each one displaying six sequences of
each one of the six emotions, and always coming back to a neutral state be-
tween each emotion sequence. The restriction of coming back to the neutral
state after each emotion was imposed for the sake of simplicity in labeling the
sequence. However, as mentioned in the previous section the system is also
able to deal with the situation where a person can go from one expression to
another without passing through a neutral expression.

Each video sequence was used as the input to the face tracking algorithm
described in Section 7.3. The sampling rate was 30 Hz, and a typical emotion
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sequence is about 70 samples long (∼2s). Figure 7.8 shows one frame of each
emotion for each subject.

The data was collected in an open recording scenario, where the person was
asked to display the expression corresponding to the emotion being induced.
This is of course not the ideal way of collecting emotion data. The ideal way
would be using a hidden recording, inducing the emotion through events in the
normal environment of the subject, not in a studio. The main problem with
collecting the data this way is the impracticality of it and the ethical issue of
hidden recording.

We use this database in two types of experiments. First we performed person
dependent experiments, in which part of the data for each subject was used
as training data, and another part as test data. Second, we performed person
independent experiments, in which we used the data of all but one person as
training data, and tested on the person that was left out.

For the TAN classifiers we used the dependencies shown in Figure 7.9,
learned using the algorithm described in Section 7.4.2. The arrows are from
parents to children MUs. From the tree structure we see that the TAN learning
algorithm produced a structure in which the bottom half of the face is almost
disjoint from the top portion, except for a weak link between MU 4 and MU
11.

For the HMM-based models, several states were tried (3-12) and both the
ergodic and left-to-right with return were tested. The results presented below
are of the best configuration (an ergodic model using 11 states), determined
using cross-validation over the training set.

The Cohn-Kanade database [Kanade et al., 2000] consists of expression se-
quences of subjects, starting from a Neutral expression and ending in the peak
of the facial expression. There are 104 subjects in the database. Because for
some of the subjects, not all of the six facial expressions sequences were avail-
able to us, we used a subset of 53 subjects, for which at least four of the se-
quences were available. For each person there are on average 8 frames for each
expression, which makes insufficient data to perform person dependent tests.
Also, the fact that each sequence ends in the peak of the facial expression
makes the use of our dynamic multi-level HMM classifier impractical since
in this case each sequence counts for an incomplete temporal pattern. In these
conditions, we only used this database for performing person independent tests
using the static Bayesian network classifiers.

A summary of both databases is presented in Table 7.3.
For the frame based methods (NB-Gaussian, NB-Cauchy, and TAN), we

measure the accuracy with respect to the classification result of each frame,
where each frame in the video sequence was manually labeled to one of the ex-
pressions (including neutral). This manual labeling can introduce some ’noise’
in the classification because the boundary between Neutral and the expression



Experiments 189

(a) Anger (b) Disgust (c) Fear

(d) Happiness (e) Sadness (f) Surprise

(a) Anger (b) Disgust (c) Fear

(d) Happiness (e) Sadness (f) Surprise

(a) Anger (b) Disgust (c) Fear

(d) Happiness (e) Sadness (f) Surprise

Figure 7.8. Examples of images from the video sequences.
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(a) Anger (b) Disgust (c) Fear

(d) Happiness (e) Sadness (f) Surprise

(a) Anger (b) Disgust (c) Fear

(d) Happiness (e) Sadness (f) Surprise

Figure 7.8 (continued). Examples of images from the video sequences.
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Figure 7.9. The learned TAN structure for the facial features. Dashed lines represent links that
are relatively weaker than the others.

of a sequence is not necessarily optimal, and frames near this boundary might
cause confusion between the expression and the Neutral. A different label-
ing scheme is to label only some of the frames that are around the peak of
the expression leaving many frames in between unlabeled. We did not take
this approach because a real-time classification system would not have this
information available to it. The accuracy for the temporal based methods is
measured with respect to the misclassification rate of an expression sequence,
not with respect to each frame.

6.1 Results Using the Chen Database
6.1.1 Person-Dependent Tests

A person-dependent test is first tried. Tables 7.4 and 7.5 show the recog-
nition rate of each subject and the average recognition rate of the classifiers.
The fact that subject 5 was poorly classified can be attributed to the inaccurate
tracking result and lack of sufficient variability in displaying the emotions. It
can also be seen that the multilevel HMM achieves similar recognition rate
(and improves it in some cases) compared to the emotion-specific HMM, even
though the input is unsegmented continuous video.

Table 7.3. Summary of the databases

Sequences Sequences per subjectaverage frames
Database Subjects per expression per expression per expression

Chen DB 5 30 6 70
Cohn-Kanade DB 53 53 1 8
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Table 7.4. Person-dependent facial expression recognition accuracies using frame based meth-
ods.

Subject NB-Gaussian NB-Cauchy TAN

1 80.97% 81.69% 85.94%
2 87.09% 84.54% 89.39%
3 82.5% 83.05% 86.58%
4 77.18% 79.25% 82.84%
5 69.06% 71.74% 71.78%

Average 79.36% 80.05% 83.31%

Table 7.5. Person-dependent facial expression recognition rates using the emotion-specific
HMM and multilevel HMM.

Subject Single HMM Multilevel HMM

1 82.86% 80%
2 91.43% 85.71%
3 80.56% 80.56%
4 83.33% 88.89%
5 54.29% 77.14%

Average 78.49% 82.46%

The NB-Cauchy assumption does not give a significant improvement in
recognition rate comparing with the NB-Gaussian assumption mainly due to
the fact that in this case there are not many outliers in the data (we train and test
with sequences of the same person in the same environment). This may not be
the case in a natural setting experiment. Note that only in the case of subject 2
the Gaussian assumption gave better results than the Cauchy assumption. This
result can be attributed to the fact that this subject shows the expressions in a
more consistent way over time and this counts fewer outliers in the recorded
data. It is also important to observe that taking into account the dependencies
in the features (the TAN model) gives significantly improved results. In av-
erage the best results are obtained by TAN followed by the NB-Cauchy and
NB-Gaussian.

The confusion matrix for the TAN classifier is presented in Table 7.6. The
analysis of the confusion between different emotions shows that most of the
confusion of the classes is with the Neutral class. This can be attributed to the
arbitrary labeling of each frame in the expression sequence. The first and last
few frames of each sequence are very close to the Neutral expression and thus
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are more prone to become confused with it. We also see that most expression
do not confuse with Happy.

Table 7.6. Person-dependent confusion matrix using the TAN classifier

Emotion Neutral Happy Anger Disgust Fear Sad Surprise
Neutral 79.58 1.21 3.88 2.71 3.68 5.61 3.29
Happy 1.06 87.55 0.71 3.99 2.21 1.71 2.74
Anger 5.18 0 85.92 4.14 3.27 1.17 0.30

Disgust 2.48 0.19 1.50 83.23 3.68 7.13 1.77
Fear 4.66 0 4.21 2.28 83.68 2.13 3.00
Sad 13.61 0.23 1.85 2.61 0.70 80.97 0

Surprise 5.17 0.80 0.52 2.45 7.73 1.08 82.22

The confusion matrices for the HMM based classifiers (described in details
in [Cohen, 2000]) show similar results, withhappinessachieving near 100%,
andsurpriseapproximately 90%.

6.1.2 Person-Independent Tests

In the previous section it was seen that a good recognition rate was achieved
when the training sequences were taken from the same subject as the test se-
quences. A more challenging application is to create a system which is person-
independent. In this case the variation of the data is more significant and we
expect that using a Cauchy-based classifier we will obtain significantly better
results.

For this test all of the sequences of one subject are used as the test se-
quences and the sequences of the remaining four subjects are used as training
sequences. This test is repeated five times, each time leaving a different person
out (leave one out cross validation). Table 7.7 shows the recognition rate of
the test for all classifiers. In this case the recognition rates are lower compared
with the person-dependent results. This means that the confusions between
subjects are larger than those within the same subject.

Table 7.7. Recognition rate for person-independent test.

Classifier NB-GaussianNB-Cauchy TAN Single HMM Multilevel HMM
Recognition rate 60.23% 64.77% 66.53% 55.71% 58.63%

In this case the TAN classifier provides the best results. It is important to ob-
serve that the Cauchy assumption also yields a larger improvement compared
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to the Gaussian classifier, due to the capability of the Cauchy distribution to
handle outliers. One of the reasons for the misclassifications is the fact that
the subjects are very different from each other (three females, two males, and
different ethnic backgrounds); hence, they display their emotion differently.
Although it appears to contradict the universality of the facial expressions as
studied by Ekman and Friesen [Ekman and Friesen, 1978], the results show
that for practical automatic emotion recognition, consideration of gender and
race play a role in the training of the system.

Table 7.8 shows the confusion matrix for the the TAN classifier. We see
that Happy, Fear, and Surprise are detected with high accuracy, and other ex-
pressions are greatly confused mostly with Neutral. Here the differences in the
intensity of the expressions among the different subjects played a significant
role in the confusion among the different expressions.

Table 7.8. Person-independent average confusion matrix using the TAN classifier

Emotion Neutral Happy Anger Disgust Fear Sad Surprise
Neutral 76.95 0.46 3.39 3.78 7.35 6.53 1.50
Happy 3.21 77.34 2.77 9.94 0 2.75 3.97
Anger 14.33 0.89 62.98 10.60 1.51 9.51 0.14

Disgust 6.63 8.99 7.44 52.48 2.20 10.90 11.32
Fear 10.06 0 3.53 0.52 73.67 3.41 8.77
Sad 13.98 7.93 5.47 10.66 13.98 41.26 6.69

Surprise 4.97 6.83 0.32 7.41 3.95 5.38 71.11

6.2 Results Using the Cohn-Kanade Database
For this test we first divided the database in 5 sets which contain the se-

quences corresponding to 10 or 11 subjects (three sets with 11 subjects, two
sets with 10 subjects). We used the sequences from a set as test sequences
and the remaining sequences were used as training sequences. This test was
repeated five times, each time leaving a different set out (leave one out cross
validation). Table 7.9 shows the recognition rate of the test for all classifiers.
Note that the results obtained with this database are much better than the ones
obtained with the Chen database. This is because in this case we have more
training data. For training we had available the data from more than 40 dif-
ferent persons. Therefore, the learnt model is more accurate and can achieve
better classification rates when using the test data.

In average the best results were obtained using the TAN followed by NB-
Cauchy and NB-Gaussian which is consistent with the results obtained with
the Chen database.
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Table 7.9. Recognition rate for Cohn-Kanade database.

Classifier NB-Gaussian NB-Cauchy TAN
Recognition rate 67.03% 68.14% 73.22%

The confusion matrix for the TAN classifier is presented in Table 7.10. In
this case, Surprise was detected with over 93% accuracy and Happy with over
86% accuracy. The other expressions are greatly confused with each other.

Emotion Neutral Happy Anger Disgust Fear Sad Surprise
Neutral 78.59 1.03 3.51 8.18 1.85 5.78 1.03
Happy 0 86.22 4.91 5.65 3.19 0 0
Anger 2.04 4.76 66.46 14.28 5.21 6.09 1.14

Disgust 3.40 1.13 10.90 62.27 10.90 9.09 2.27
Fear 1.19 13.57 7.38 7.61 63.80 3.80 1.90
Sad 5.55 1.58 13.25 11.19 3.96 61.26 3.17

Surprise 0 0 0 0 2.02 4.04 93.93

Table 7.10. Person-independent average confusion matrix using the TAN classifier

7. Summary and Discussion
In this chapter we presented several methods for expression recognition

from video. The intention was to perform an extensive evaluation of differ-
ent methods using static and dynamic classification.

In the case of static classifiers the idea was to classify each frame of a video
to one of the facial expressions categories based on the tracking results of that
frame. The classification in this case was done using Bayesian networks clas-
sifiers. We showed that there are two design decisions for building such clas-
sifiers: (1) determining the distribution of the features and (2) choosing the
structure of the network which determines the dependencies among the fea-
tures.

We first presented Naive Bayes classifiers which assumed that the features
are independent given the class. The common assumption is that we have
Gaussian distribution for the features but we showed that in practice using the
Cauchy distribution we obtained improved classification results. The problem
with the Naive Bayes approach is that the independence assumption is not jus-
tified in this case because the facial motion measurements are highly correlated
when humans display emotions. Therefore, the next effort was in developing
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another classifier that took into account these dependencies among features.
We used the TAN classifier and showed a method to search for the optimal
TAN structure when the features were assumed to be Gaussian. We showed
that after learning the structure from data, the Gaussian-TAN classifier added
only small complexity to the Naive Bayes approach and improved significantly
the classification results.

A legitimate question here is, “Is it always possible to learn the TAN struc-
ture from the data and use it in classification?" Provided that there is sufficient
training data, the TAN structure indeed can be extracted and used in classifi-
cation. However, when the data is insufficient the learnt structure is unreliable
and the use of the Naive Bayes classifier is recommended. Note also that in
the Naive Bayes approach one can use a better distribution assumption than the
Gaussian (e.g. Cauchy) while in TAN this would be extremely difficult.

In the case of dynamic classifiers the temporal information was used to dis-
criminate different expressions. The idea is that expressions have a unique
temporal pattern and recognizing these patterns can lead to improved classifi-
cation results. We introduced the multi-level HMM architecture and compared
it to the straight forward Emotion-specific HMM. We showed that comparable
results can be achieved with this architecture, although it does not rely on any
pre-segmentation of the video stream.

When one should use a dynamic classifier versus a static classifier? This is
a difficult question to ask. It seems, both from intuition and from the results,
that dynamic classifiers are more suited for systems that are person dependent
due to their higher sensitivity not only to changes in appearance of expressions
among different individuals, but also to the differences in temporal patterns.
Static classifiers are easier to train and implement, but when used on a con-
tinuous video sequence, they can be unreliable especially for frames that are
not at the peak of an expression. Another important aspect is that the dynamic
classifiers are more complex, therefore they require more training samples and
many more parameters to learn compared with the static approach. A hybrid
of classifiers using expression dynamics and static classification is the topic of
future research.

An important problem in the facial expression analysis field is the lack of
agreed upon benchmark datasets and methods for evaluating performance. A
well-defined and commonly used database is a necessary prerequisite to com-
pare the performances of different methods in an objective manner. The Cohn-
Kanade database is a step in this direction, although there is still a need for
an agreement on how to measure performance: frame based classification, se-
quence based classification and even the number and names of the classes. The
large deviations in the reported performance of different methods surveyed by
Pantic and Rothkrantz [Pantic and Rothkrantz, 2000] demonstrate the need to
resolve these issues. As a consequence, it is hard to compare our results with
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the one reported in the literature and assert superiority or inferiority of our
methods over others.

Are these recognition rates sufficient for real world use? We think that it
depends upon the particular application. In the case of image and video re-
trieval from large databases, the current recognition rates could aid in finding
the right image or video by giving additional options for the queries. More-
over, the integration of multiple modalities such as voice analysis and context
would be expected to improve the recognition rates and eventually improve the
computer’s understanding of human emotional states. Voice and gestures are
widely believed to play an important role as well [Chen, 2000; De Silva et al.,
1997], and physiological states such as heart beat and skin conductivity are
being suggested [Cacioppo and Tassinary, 1990]. People also use context as
an indicator of the emotional state of a person.
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