

Undergraduate Topics in Computer Science

Undergraduate Topics in Computer Science’ (UTiCS) delivers high-quality instructional content for
undergraduates studying in all areas of computing and information science. From core foundational
and theoretical material to final-year topics and applications, UTiCS books take a fresh, concise, and
modern approach and are ideal for self-study or for a one- or two-semester course. The texts are all
authored by established experts in their fields, reviewed by an international advisory board, and contain
numerous examples and problems. Many include fully worked solutions.

For other volumes:
http://www.springer.com/series/7592

and Design
Object-Oriented Analysis

Universities Press

Sarnath amnath nd rahma athan R a B D

Ian Mackie

Advisory board
Samson Abramsky, University of Oxford, UK
Chris Hankin, Imperial College London, UK

Andrew Pitts, University of Cambridge, UK
Hanne Riis Nielson, Technical University of Denmark, Denmark

Department of Computer Science
Sarnath Ramnath

USA
rsarnath@stcloudstate.edu

Brahma Dathan

and Computer Science

700 7th Street East

Metropolitan State University
L118 New Main

Department of Information

USA
Brahma.Dathan@metrostate.edu

ISBN 978-1-84996-521-7

Steven Skiena, Stony Brook University, USA
Iain Stewart, University of Durham, UK

Dexter Kozen, Cornell University, USA

e-ISBN 978-1-84996-522-4

Library of Congress Control Number: 2010934228

Printed on acid-free paper

St. Cloud State University

Series editor

ECC 139

55106 St. Paul, Minnesota

56303 St. Cloud, Minnesota

Undergraduate Topics in Computer Science ISSN 1863-7310

DOI 10.1007/978-1-84996-522-4

© Universities Press (India) Pvt. Ltd

Springer is part of Spr Science+Business Media (www.springer.com)

Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

A co-publication with the Universities Press (India) Pvt. Ltd, licensed for sale in all countries

Universities Press (India) Private Ltd.

outside of India, Pakistan, Bhutan, Bangladesh, Sri Lanka, Nepal, The Maldives, Middle East,
Malaysia, Indonesia and Singapore. Sold and distributed within these territories by the

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licences issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the
publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

inger

Contents

Preface xi

Part I Basic Object-Oriented Concepts 1

1 Introduction 3

1.1 What is Object-Oriented Development? 4

1.2 Key Concepts of Object-Oriented Design 5

1.3 Other Related Concepts 7

1.3.1 Modular design and encapsulation 7

1.3.2 Cohesion and coupling 7

1.3.3 Modifiability and testability 8

1.4 Benefits and Drawbacks of the Paradigm 9

1.5 History 10

1.6 Discussion and Further Reading 11

Exercises 11

2 Basics of Object-Oriented Programming 12

2.1 The Basics 12

2.2 Implementing Classes 15

2.2.1 Constructors 19

2.2.2 Printing an object 22

2.2.3 Static members 23

2.3 Programming with Multiple Classes 24

2.4 Interfaces 28

2.4.1 Implementation of StudentLinkedList 30

2.4.2 Array implementation of lists 33

2.5 Abstract Classes 36

2.6 Comparing Objects for Equality 37

2.7 A Notation for Describing Object-Oriented Systems 39

2.7.1 Class diagrams 42

2.7.2 Use cases and use case diagrams 43

2.7.3 Sequence diagrams 44

2.8 Discussion and Further Reading 47

Exercises 50

vi Object-Oriented Analysis, Design and Implementation: An Integrated Approach

3 Relationships between Classes 52

3.1 Association 53

3.1.1 Characteristics of associations 54

3.2 Inheritance 56

3.2.1 An example of a hierarchy 57

3.2.2 Inheriting from an interface 62

3.2.3 Polymorphism and dynamic binding 62

3.2.4 Protected fields and methods 69

3.2.5 The object class 71

3.3 Genericity 71

3.4 Discussion and Further Reading 73

3.4.1 A generalised notion of conformance 75

Exercises 78

4 Language Features for Object-Oriented Implementation 80

4.1 Organising the Classes 80

4.1.1 Creating the files 81

4.1.2 Packages 81

4.1.3 Protected access and package access 82

4.2 Collection Classes 83

4.3 Exceptions 84

4.4 Run-Time Type Identification 86

4.4.1 Reflection: Using the Class object 87

4.4.2 Using the instanceof operator 88

4.4.3 Downcasting 89

4.5 Graphical User Interfaces: Programming Support 90

4.5.1 The basics 90

4.5.2 Event handling 93

4.5.3 More on widgets and layouts 95

4.5.4 Drawing shapes 97

4.5.5 Displaying a piece of text 98

4.6 Long-Term Storage of Objects 98

4.6.1 Storing and retrieving objects 100

4.6.2 Issues in storing and retrieving objects 101

4.6.3 The Java serialization mechanism 104

4.7 Discussion and Further Reading 106

Exercises 109

Contents vii

Part II Introduction to Object-Oriented Analysis, Design,
Implementation and Refactoring 111

5 Elementary Design Patterns 113

5.1 Iterator 114

5.1.1 Iterator implementation 118

5.2 Singleton 121

5.2.1 Subclassing singletons 122

5.3 Adapter 125

5.4 Discussion and Further Reading 130

Exercises 132

6 Analysing a System 134

6.1 Overview of the Analysis Phase 135

6.2 Stage 1: Gathering the Requirements 136

6.2.1 Case study introduction 137

6.3 Functional Requirements Specification 139

6.3.1 Use case analysis 139

6.4 Defining Conceptual Classes and Relationships 150

6.5 Using the Knowledge of the Domain 158

6.6 Discussion and Further Reading 160

Exercises 163

7 Design and Implementation 167

7.1 Design 167

7.1.1 Major subsystems 168

7.1.2 Creating the software classes 169

7.1.3 Assigning responsibilities to the classes 171

7.1.4 Class diagrams 182

7.1.5 User interface 188

7.1.6 Data storage 188

7.2 Implementing Our Design 189

7.2.1 Setting up the interface 189

7.2.2 Adding new books 190

7.2.3 Issuing books 191

7.2.4 Printing transactions 194

7.2.5 Placing and processing holds 195

7.2.6 Storing and retrieving the library object 198

viii Object-Oriented Analysis, Design and Implementation: An Integrated Approach

7.3 Discussion and Further Reading 202

7.3.1 Conceptual, software and implementation classes 203

7.3.2 Building a commercially acceptable system 204

7.3.3 The facade pattern 205

7.3.4 Implementing singletons 207

7.3.5 Further reading 207

Exercises 208

8 How ‘Object-Oriented’ is Our Design? 210

8.1 Introduction 210

8.2 A First Example of Refactoring 211

8.2.1 A library that charges fines: Initial solution 211

8.2.2 Refactoring the solution 215

8.3 A Second Look at Remove Books 219

8.4 Using Generics to Refactor Duplicated Code 222

8.4.1 A closer look at the collection classes 222

8.4.2 Instantiating Catalog and MemberList 227

8.5 Discussion and Further Reading 229

Exercises 229

Part III Advanced Concepts in Object-Oriented Design 231

9 Exploring Inheritance 233

9.1 Introduction 233

9.2 Applications of Inheritance 234

9.2.1 Restricting behaviours and properties 234

9.2.2 Abstract superclass 234

9.2.3 Adding features 235

9.2.4 Hiding features of the superclass 236

9.2.5 Combining structural and type inheritance 237

9.3 Inheritance: Some Limitations and Caveats 237

9.3.1 Deep hierarchies 238

9.3.2 Lack of multiple inheritance 238

9.3.3 Changes in the superclass 238

9.3.4 Typing issues: The Liskov substitution principle 239

9.3.5 Addressing the limitations 242

9.4 Type Inheritance 243

9.4.1 A simple example 243

9.4.2 The cloneable interface 244

Contents ix

9.4.3 The runnable interface 248

9.5 Making Enhancements to the Library Class 250

9.5.1 A first attempt 250

9.5.2 Drawbacks of the above approach 254

9.6 Improving the Design 255

9.6.1 Designing the hierarchy 256

9.6.2 Invoking the constructors 258

9.6.3 Distributing the responsibilities 262

9.6.4 Factoring responsibilities across the hierarchy 264

9.7 Consequences of Introducing Inheritance 266

9.7.1 Exception handling 268

9.7.2 Adding new functionality to a hierarchy 269

9.8 Multiple Inheritance 273

9.8.1 Mechanisms for resolving conflicts 276

9.8.2 Repeated inheritance 277

9.8.3 Multiple inheritance in Java 281

9.9 Discussion and Further Reading 282

9.9.1 Design patterns that facilitate inheritance 283

9.9.2 Performance of object-oriented systems 284

Exercises 285

10 Modelling with Finite State Machines 287

10.1 Introduction 287

10.2 A Simple Example 287

10.3 Finite State Modelling 289

10.4 A First Solution to the Microwave Problem 291

10.4.1 Completing the analysis 291

10.4.2 Designing the system 293

10.4.3 The implementation classes 295

10.4.4 A critique of the above design 299

10.5 Using the State Pattern 301

10.5.1 Creating the state hierarchy 302

10.5.2 Implementation 307

10.6 Improving Communication between Objects 310

10.6.1 Loosely coupled communication 310

10.7 Redesign Using the Observer Pattern 312

10.7.1 Communication with the user 313

10.7.2 The improved design 315

10.8 Eliminating the Conditionals 315

x Object-Oriented Analysis, Design and Implementation: An Integrated Approach

10.8.1 Using the Java event mechanism 317

10.8.2 Using the context as a `switchboard' 320

10.8.3 Implementation 322

10.9 Designing GUI Programs Using the State Pattern 326

10.9.1 Design of a GUI system for the library 326

10.9.2 The context 330

10.10 Discussion and Further Reading 330

10.10.1 Implementing the state pattern 330

10.10.2 Features of the state pattern 331

10.10.3 Consequences of observer 332

10.10.4 Recognising and processing external events 333

10.10.5 Handling the events 334

Exercises 337

11 Interactive Systems and the MVC Architecture 339

11.1 Introduction 339

11.2 The MVC Architectural Pattern 340

11.2.1 Examples 342

11.2.2 Implementation 342

11.2.3 Benefits of the MVC pattern 344

11.3 Analysing a Simple Drawing Program 344

11.3.1 Specifying the requirements 345

11.3.2 Defining the use cases 345

11.4 Designing the System 348

11.4.1 Defining the model 348

11.4.2 Defining the controller 349

11.4.3 Selection and deletion 355

11.4.4 Saving and retrieving the drawing 355

11.5 Design of the Subsystems 356

11.5.1 Design of the model subsystem 356

11.5.2 Design of item and its subclasses 358

11.5.3 Design of the controller subsystem 365

11.5.4 Design of the view subsystem 367

11.6 Getting into the Implementation 370

11.6.1 Item and its subclasses 370

11.6.2 Implementation of the model class 372

11.6.3 Implementation of the controller class 373

11.6.4 Implementation of the view class 375

11.6.5 The driver program 378

Contents xi

11.6.6 A critique of our design 378

11.7 Implementing the Undo Operation 379

11.7.1 Employing the command pattern 383

11.7.2 Implementation 388

11.8 Drawing Incomplete Items 391

11.9 Adding a New Feature 394

11.10 Pattern-Based Solutions 399

11.10.1 Examples of architectural patterns 400

11.11 Discussion and Further Reading 402

11.11.1 Separating the view and the controller 402

11.11.2 The space overhead for the command pattern 403

11.11.3 How to store the items 403

11.11.4 Exercising caution when allowing undo 403

11.11.5 Synchronising updates 404

Exercises 405

12 Designing with Distributed Objects 408

12.1 Client/Server Systems 409

12.1.1 Basic architecture of client/server systems 409

12.2 Java Remote Method Invocation 411

12.2.1 Remote interfaces 413

12.2.2 Implementing a remote interface 413

12.2.3 Creating the server 415

12.2.4 The client 416

12.2.5 Setting up the system 417

12.3 Implementing an Object-Oriented System on the Web 418

12.3.1 HTML and Java servlets 418

12.3.2 Deploying the library system on the world-wide web 424

12.4 Discussion and Further Reading 446

Exercises 448

Appendix A: Java Essentials 449

A.1 Language Basics 449

A.2 A Simple Java Program 449

A.3 Primitive Data Types 452

A.4 Relational Operators 453

A.5 A Note on Input and Output 454

A.6 Selection Statements 455

A.7 Loops 457

xii Object-Oriented Analysis, Design and Implementation: An Integrated Approach

A.8 Methods 460

A.9 Arrays 460

Bibliography 463

Index 466

Preface

At least some people reading the title of this book may wonder why there should be

one more book on the topic of Object Oriented Analysis and Design (OOAD). The short

answer to this question is that in our teaching of the subject for over a decade, we have

not been able to find a suitable textbook on this topic at our respective universities.

We wrote up a long answer to the above question in a paper published in the 2008

SIGCSE conference. (So, if you are not satisfied with this preface, we hope you will

consider reading our paper.) To summarise some of the observations and experiences in

that paper, we note that our approach has always been to find ways to give a comprehensive

introduction to the field of OOAD. Over the years the field has become quite vast,

comprising diverse topics such as design process and principles, documentation tools

(Unified Modelling Language), refactoring and, design and architectural patterns. In our

experience, for most students the experience is incomplete without implementation, so,

that is one more addition to the laundry list of topics to be covered in the course.

It was impossible to find a single book that gave a balanced coverage of all these

topics in a manner that is understandable to the average college student. There are, of

course, a number of books, some of them profound, that cover one or more of the above

topics quite well. Besides their specialised nature, these books are primarily not meant

to be textbooks. Expecting our students to read parts of these books and assimilate the

material was not a realistic option for us.

This text is the result of our efforts over several years and provides the following:

1. A sound footing on object-oriented concepts such as classes, objects, interfaces,

inheritance, polymorphism, dynamic linking, etc.

2. A good introduction to the stage of requirements analysis.

3. Use of UML to document user requirements and design.

4. An extensive treatment of the design process. The design step is, arguably, the most

demanding activity (from an intellectual perspective) in the OOAD process. It is

thus imperative that the student go through the design of complete systems. For

pedagogical reasons we have kept the systems simple, yet sufficiently interesting to

offer design choices. Going through these design exercises should help the student

gain confidence to undertake reasonably complex designs.

5. Coverage of implementation issues. The reader will find critical excerpts from the

implementation in Java. But he/she would be well advised to remember that this is

not a book on Java. (More on this later.)

6. Appropriate use of design and architectural patterns.

7. Introduction to the art and craft of refactoring.

xiv Object-Oriented Analysis, Design and Implementation: An Integrated Approach

8. Pointers to resources that further the reader's knowledge.

It is important to remember what this book is not about.

1. It is not a book on Java. While the appendix has a short tutorial on the language and

most of the code in the book is in Java, we do not cover constructs for the sake of

teaching the language. Coverage is limited to the extent needed for understanding

the implementation and for highlighting object-oriented concepts.

2. It does not cover software engineering concepts such as project management, agile

technology, etc.

3. It does not treat UML extensively. Although we mention the various types of UML

diagrams, many of them are not expanded because an occasion does not arise for

such an undertaking.

4. It is not a catalog of design patterns or refactoring techniques. We cover only those

patterns that arise naturally in our case studies. It has been our experience that

design pattern discussions without a meaningful context are not well received by

students.

Who will find this book useful?

Although the material in this text has primarily evolved out of a course taught for computer

science senior undergraduates, others without a formal computer science background may

also find this handy. In our program, students taking this are expected to have completed

a course in data structures, but the material in this text does not require an intimate

knowledge of the intricacies of any of these. A programmer who has used and is familiar

with the APIs for some of the data structures could easily handle the material in the text.

However, a certain amount of maturity with the programming process is needed, and for

a typical undergraduate student this is usually obtained through a data structures course.

All the main case studies used for this book have been implemented by the authors

using Java. The text is liberally peppered with snippets of code wherever we felt that a

more `concrete' feel for the design would be helpful. Most of these snippets are short

and should be fairly self-explanatory and easy to read. Familiarity with a Java-like syntax

and a broad understanding of the structure of Java would certainly be extremely helpful.

The reader not familiar with Java but having significant software experience, need not,

however, be deterred by this and can get a good feel of the entire OOAD process even

without examining the code.

How to use this as computer science text

There clearly are several ways of structuring a computer science program, and the way

in which this text could be used would depend on that structure.

Preface xv

The text is divided into three parts:

• Part I provides a thorough coverage of object-oriented ideas.

• Part II introduces the concepts of object-oriented analysis, design, implementation

and, refactoring.

• Part III deals with more advanced design issues and approaches.

Part I, which comprises Chapters 1 through 4, gives a broad and solid foundation in

concepts that are central to OOAD. The amount of time spent on covering these materials

would vary considerably, depending on the program structure.

Part II begins in Chapter 5 with three useful design patterns. This part also includes

Chapters 6 through 8, which introduces the first case study involving the analysis, design,

and implementation of a simple library system. This is a critical choice since the entire

process of design is being introduced through this case study. We chose this application

because it met the following three major goals we had in selecting the case study: (i) the

system should be simple so that it can be covered from analysis to implementation in a

reasonable amount of time; (ii) students have an intuitive understanding of the application;

(iii) several areas can be `naturally' touched upon within the scope of the case study.

Several areas are touched upon in this case study and it would be pedagogically useful

to emphasise these in the classroom.

• The importance of (and the quirks associated with) precisely specifying requirements

and creating use case model.

• The design process. We naturally progress from the use case model to the the process

of identifying classes and assigning responsibilities and coming up with sequence

diagrams to implement use cases. The case study explores options in the design,

which can result in lively discussions and contribute to student learning.

• The data is stored on stable storage so as to give students a sense of completeness.

In this process, the student can see how the language quirks are affecting the

implementation.

• The case study incorporates several design patterns in the code: Facade, Iterator,

Adapter, Singleton, and Factory.

• Chapter 8 introduces refactoring and applies it to the completed design. This is

done to underscore the fact that an awareness of refactoring is integral to the design

process.

Covering this case study and assigning a similar project for students would be, in our

opinion, essential. The amount of time spent on discussing these materials would depend

on the background of the students.

Part III covers more advanced topics and spans Chapters 9 through 12.

Chapter 9 introduces the use of inheritance in design, and also extends the case study. The

xvi Object-Oriented Analysis, Design and Implementation: An Integrated Approach

use of inheritance was deliberately avoided in the main case study, not only to keep the

case study simple, but also to ensure that the issues associated with the use of inheritance

can be dealt with in context. The extension involves some inheritance hierarchies that

allow us to illustrate sound object-oriented principles including the Liskov Substitution

Principle and the Open–Closed Principle. A natural extension to the library system case

study leads to a discussion of the Visitor pattern.

Chapter 10 deals with the second case study, which is from the domain of electronic

devices that are controlled by software. Our example concerns a microwave oven that

allows the user to perform the most common functions. To keep the case study manageable

we have restricted the microwave functionality, but the model is enough for our purpose.

Here we introduce the concept of states, finite state machines and state transition diagrams

and compare and contrast it with the use case model. In this context, we introduce the

State and Observer patterns.

The third case study, in Chapter 11, is an interactive program that can be used for

creating figures. The objective here is to also examine the creation of larger systems that

may require decomposition into subsystems. Before presenting the case study, the student

is familiarised with the Model{View{Controller architecture. During the course of the

case study, the student learns the Bridge, Command, and Composite patterns.

Chapter 12 shows how to design an object-oriented system for a distributed environ-

ment. As more and more applications become available remotely, we believe it is important

for students to learn how to design and implement a distributed, object-oriented system.

We have focused on Java Remote Method Invocation and the implementation of web-

based systems using Java Servlets. To keep the discussion within reasonable size, we have

left out other technologies such as ASP.NET and some important topics such as CORBA

and distributed garbage collection.

Normally, while each case study is being discussed, we expect students to work on

similar projects. This may be adapted as necessary to suit each situation. Presenting the

topics in this integrated manner using case studies has been very helpful in giving students

a complete picture of the OOAD process. We hope that by writing this textboot we have,

in some small way, contribute to the advancement of the discipline.

Acknowledgments

The following individuals at Universities Press and Springer deserve special thanks:

Madhu Reddy, Manoj Karthikeyan and Beverley Ford for help with the negotiations

and the contract, and Sreelatha Menon for her efficient editorial work.

Brahma Dathan would like to thank his wife, Asha, and children, Anupama and Alok,

for their support during the several years it took to complete this project.

Sarnath would like to thank his family, friends and colleagues for their encouragement

and support during the years he worked on the project.

Preface xvii

The authors would like to thank Dr Bina Ramamurhty for her helpful suggestions on

an early draft of the book.

As we mentioned earlier, the book was shaped by our experience in teaching the subject

over a fairly long period of time. Although the courses have stabilised now, the current

form does not resemble much the original version taught a decade, or even four years

ago. We experimented with the topics (adding, deleting, emphasising, de-emphasising and

rearranging) and changed the pedagogical approach, moving from a theory-first-practice-

later approach to a more case-study-based approach. Needless to say, we did all this at

the expense of our students, but they took it all in good spirit. Many of our students also

provided valuable, creative criticisms on different versions of the manuscript of the book.

We cannot thank our students, past and present, enough!

Brahma Dathan

Sarnath Ramnath

Basic Object-Oriented Concepts

1

Introduction

The object-oriented paradigm is currently the most popularway of analysing, designing,
and developing application systems, especially large ones. To obtain an understanding

of this paradigm, we could begin by asking: What exactly does the phrase ‘object-oriented’
mean? Looking at it quite literally, labelling something as ‘object-oriented’ implies that
objects play a central role, and we elaborate this further as a perspective that views the
elements of a given situation by decomposing them into objects and object relationships.
In a broad sense, this idea could apply to any setting and examples of its application can
in fact be found in business, chemistry, engineering and, even philosophy. Our business is
with creating software and therefore this book concentrates on the object-oriented analysis,
design, and implementation of software systems. Our situations are therefore problems that
are amenable to software solutions, and the software systems that are created in response
to these problems.

Designing is a complex activity in any context simply because there are competing
interests and we have to make critical choices at each step with incomplete information. As
a result, decisions are often made using some combination of rules of thumb derived from
past experience. Software design is no exception to this, and in the process of designing a
system, there are several points where such decisions have to be made. Making informed
choices in any field of activity requires an understanding of the underlying philosophy and
the forces that have shaped it. It is therefore appropriate to start our study of object-oriented
software analysis and design by outlining its philosophy and the developments in this field
up to the present time. Throughout the case studies used in this text, the reader will find
examples of how this guiding philosophy is helping us make choices at all stages.

This chapter, therefore, intends to give the reader a broad introduction to the complex
topic of object-oriented software development. We start with an overview of the circum-
stances that motivated its development and why it came to be the desired approach for
software development. In the course of this discussion, we present the central concepts that

3

4 Introduction

characterise the methodology, how this development has influenced our view of software,
and some of its pros and cons. We conclude by presenting a brief history of the evolution
of the object-oriented approach.

1.1 What is Object-Oriented Development?

The traditional view of a computer program is that of a process that has been encoded in a
form that can be executed on a computer. This view originated from the fact that the first
computers were developed mainly to automate a well-defined process (i.e., an algorithm)
for numerical computation, and dates back to the first stored-program computers. Accord-
ingly, the software creation process was seen as a translation from a description in some
‘natural’ language to a sequence of operations that could be executed on a computer. As
many would argue, this paradigm is still the best way to introduce the notion of program-
ming to a beginner, but as systems became more complex, its effectiveness in developing
solutions became suspect. This change of perspective on part of the software developers
happened over a period of time and was fuelled by several factors including the high cost
of development and the constant efforts to find uses for software in new domains. One could
safely argue that the software applications developed in later years had two differentiating
characteristics:

• Behaviour that was hard to characterise as a process

• Requirements of reliability, performance, and cost that the original developers did
not face

The ‘process-centred’ approach to software development used what is called top-down func-
tional decomposition. The first step in such a design was to recognise what the process had
to deliver (in terms of input and output of the program), which was followed by decom-
position of the process into functional modules. Structures to store data were defined and
the computation was carried out by invoking the modules, which performed some compu-
tation on the stored data elements. The life of a process-centred design was short because
changes to the process specification (something relatively uncommon with numerical algo-
rithms when compared with business applications) required a change in the entire program.
This in turn resulted in an inability to reuse existing code without considerable overhead.
As a result, software designers began to scrutinise their own approaches and also study de-
sign processes and principles that were being employed by engineers in other disciplines.
Cross-pollination of ideas from other engineering disciplines started soon after, and the
disciplines of ‘software design’ and ‘software engineering’ came into existence.

In this connection, it is interesting to note the process used for designing simple elec-
tromechanical systems. For several decades now, it has been fairly easy for people with

Key Concepts of Object-Oriented Design 5

limited knowledge of engineering principles to design and put together simple systems in
their backyards and garages. So much so, it has become a hobby that even a ten-year old
could pursue. The reasons for this success are easy to see: easily understandable designs,
similar (standard) solutions for a host of problems, an easily accessible and well-defined
‘library’ of ‘building-blocks’, interchangeability of components across systems, and so on.
Some of the pioneers in the field of software design began to ask whether they could not
also design software using such ‘off-the-shelf’ components. The object-oriented paradigm,
one could argue, has really evolved in response to this outlook. There are, of course, several
differences with the hardware design process (inevitable, because the nature of software is
fundamentally different from hardware), but parallels can be drawn between many of the
defining characteristics of hardware design and what today’s advocates of good software
design recommend. This methodology, as we shall see in the chapters to follow, provides us
with a step-by-step process for software design, a language to specify the output from each
step of the process so that we can transition smoothly from one stage to the next, the ability
to reuse earlier designs, standard solutions that adhere to well-reasoned design principles
and, even the ability to incrementally fix a poor design without breaking the system.

The overall philosophy here is to define a software system as a collection of objects of
various types that interact with each other through well-defined interfaces. Unlike a hard-
ware component, a software object can be designed to handle multiple functions and can
therefore participate in several processes. A software component is also capable of storing
data, which adds another dimension of complexity to the process. The manner in which all
of this has departed from the traditional process-oriented view is that instead of implement-
ing an entire process end-to-end and defining the needed data structures along the way, we
first analyse the entire set of processes and from this identify the necessary software com-
ponents. Each component represents a data abstraction and is designed to store information
along with procedures to manipulate the same. The execution of the original processes is
then broken down into several steps, each of which can be logically assigned to one of the
software components. The components can also communicate with each other as needed to
complete the process.

1.2 Key Concepts of Object-Oriented Design

During the development of this paradigm, as one would expect, several ideas and ap-
proaches were tried and discarded. Over the years the field has stabilised so that we can
safely present the key ideas whose soundness has stood the test of time.

The central role of objects
Object-orientation, as the name implies, makes objects the centrepiece of software design.
The design of earlier systems was centred around processes, which were susceptible to

6 Introduction

change, and when this change came about, very little of the old system was ‘re-usable’.
The notion of an object is centred around a piece of data and the operations (or methods)
that could be used to modify it. This makes possible the creation of an abstraction that is
very stable since it is not dependent on the changing requirements of the application. The
execution of each process relies heavily on the objects to store the data and provide the
necessary operations; with some additional work, the entire system is ‘assembled’ from the
objects.

The notion of a class
Classes allow a software designer to look at objects as different types of entities. Viewing
objects this way allows us to use the mechanisms of classification to categorise these types,
define hierarchies and engage with the ideas of specialisation and generalisation of objects.

Abstract specification of functionality
In the course of the design process, the software engineer specifies the properties of objects
(and by implication the classes) that are needed by a system. This specification is abstract
in that it does not place any restrictions on how the functionality is achieved. This spec-
ification, called an interface or an abstract class, is like a contract for the implementer
which also facilitates formal verification of the entire system.

A language to define the system
The Unified Modelling Language (UML) has been chosen by consensus as the standard
tool for describing the end products of the design activities. The documents generated in
this language can be universally understood and are thus analogous to the ‘blueprints’ used
in other engineering disciplines.

Standard solutions
The existence of an object structure facilitates the documenting of standard solutions, called
design patterns. Standard solutions are found at all stages of software development, but
design patterns are perhaps the most common form of reuse of solutions.

An analysis process to model a system
Object-orientation provides us with a systematic way to translate a functional specification
to a conceptual design. This design describes the system in terms of conceptual classes from
which the subsequent steps of the development process generate the implementation classes
that constitute the finished software.

Other Related Concepts 7

The notions of extendability and adaptability
Software has a flexibility that is not typically found in hardware, and this allows us to mod-
ify existing entities in small ways to create new ones. Inheritance, which creates a new
descendant class that modifies the features of an existing (ancestor) class, and composi-
tion, which uses objects belonging to existing classes as elements to constitute a new class,
are mechanisms that enable such modifications with classes and objects.

1.3 Other Related Concepts

As the object-oriented methodology developed, the science of software design progressed
too, and several desirable software properties were identified. Not central enough to be
called object-oriented concepts, these ideas are nonetheless closely linked to them and are
perhaps better understood because of these developments.

1.3.1 Modular design and encapsulation

Modularity refers to the idea of putting together a large system by developing a number
of distinct components independently and then integrating these to provide the required
functionality. This approach, when used properly, usually makes the individual modules
relatively simple and thus the system easier to understand than one that is designed as a
monolithic structure. In other words, such a design must be modular. The system’s func-
tionality must be provided by a number of well-designed, cooperating modules. Each mod-
ule must obviously provide certain functionality that is clearly specified by an interface.
The interface also defines how other components may interact or communicate with the
module.

We would like that a module clearly specify what it does, but not expose its implemen-
tation. This separation of concerns gives rise to the notion of encapsulation, which means
that the module hides details of its implementation from external agents. The abstract data
type (ADT), the generalisation of primitive data types such as integers and characters, is an
example of applying encapsulation. The programmer specifies the collection of operations
on the data type and the data structures that are needed for data storage. Users of the ADT
perform the operations without concerning themselves with the implementation.

1.3.2 Cohesion and coupling

Each module provides certain functionality; cohesion of a module tells us how well the
entities within a module work together to provide this functionality. Cohesion is a measure
of how focused the responsibilities of a module are. If the responsibilities of a module are
unrelated or varied and use different sets of data, cohesion is reduced. Highly cohesive

8 Introduction

modules tend to be more reliable, reusable, and understandable than less cohesive ones. To
increase cohesion, we would like that all the constituents contribute to some well-defined
responsibility of the module. This may be quite a challenging task. In contrast, the worst
approach would be to arbitrarily assign entities to modules, resulting in a module whose
constituents have no obvious relationship.

Coupling refers to how dependent modules are on each other. The very fact that we
split a program into multiple modules introduces some coupling into the system. Cou-
pling could result because of several factors: a module may refer to variables defined in
another module or a module may call methods of another module and use the return val-
ues. The amount of coupling between modules can vary. In general, if modules do not
depend on each others implementation, i.e., modules depend only on the published in-
terfaces of other modules and not on their internals, we say that the coupling is low. In
such cases, changes in one module will not necessitate changes in other modules as long
as the interfaces themselves do not change. Low coupling allows us to modify a mod-
ule without worrying about the ramifications of the changes on the rest of the system. By
contrast, high coupling means that changes in one module would necessitate changes in
other modules, which may have a domino effect and also make it harder to understand
the code.

1.3.3 Modifiability and testability

A software component, unlike its hardware counterpart, can be easily modified in small
ways. This modification can be done to change both functionality and design. The ability
to change the functionality of a component allows for systems to be more adaptable; the
advances in object-orientation have set higher standards for adaptability. Improving the
design through incremental change is accomplished by refactoring, again a concept that
owes its origin to the development of the object-oriented approach. There is some risk
associated with activities of both kinds; and in both cases, the organisation of the system
in terms of objects and classes has helped develop systematic procedures that mitigate the
risk.

Testability of a concept, in general, refers to both falsifiability, i.e., the ease with which we
can find counterexamples, and the practical feasibility of reproducing such counterexam-
ples. In the context of software systems, it can simply be stated as the ease with which we
can find bugs in a software and the extent to which the structure of the system facilitates
the detection of bugs. Several concepts in software testing (e.g., the idea of unit testing)
owe their prominence to concepts that came out of the development of the object-oriented
paradigm.

Benefits and Drawbacks of the Paradigm 9

1.4 Benefits and Drawbacks of the Paradigm

From a practical standpoint, it is useful to examine how object-oriented methodology has
modified the landscape of software development. As with any development, we do have
pros and cons. The advantages listed below are largely consequences of the ideas presented
in the previous sections.

1. Objects often reflect entities in application systems. This makes it easier for a de-
signer to come up with classes in the design. In a process-oriented design, it is much
harder to find such a connection that can simplify the initial design.

2. Object-orientation helps increase productivity through reuse of existing software. In-
heritance makes it relatively easy to extend and modify functionality provided by a
class. Language designers often supply extensive libraries that users can extend.

3. It is easier to accommodate changes. One of the difficulties with application devel-
opment is changing requirements. With some care taken during design, it is possible
to isolate the varying parts of a system into classes.

4. The ability to isolate changes, encapsulate data, and employ modularity reduces the
risks involved in system development.

The above advantages do not come without a price tag. Perhaps the number one casualty
of the paradigm is efficiency. The object-oriented development process introduces many
layers of software, and this certainly increases overheads. In addition, object creation and
destruction is expensive. Modern applications tend to feature a large number of objects
that interact with each other in complex ways and at the same time support a visual user
interface. This is true whether it is a banking application with numerous account objects
or a video game that has often a large number of objects. Objects tend to have complex
associations, which can result in non-locality, leading to poor memory access times.

Programmers and designers schooled in other paradigms, usually in the imperative
paradigm, find it difficult to learn and use object-oriented principles. In coming up with
classes, inexperienced designers may rely too heavily on the entities in the application
system, ending up with systems that are ill-suited for reuse. Programmers also need accli-
matisation; some people estimate that it takes as much as a year for a programmer to start
feeling comfortable with these concepts. Some researchers are of the opinion that the pro-
gramming environments also have not kept up with research in language capabilities. They
feel that many of the editors and testing and debugging facilities are still fundamentally
geared to the imperative paradigm and do not directly support many of the advances such
as design patterns.

10 Introduction

1.5 History

History of the object-oriented programming approach could be traced to the idea of ADTs
and the concept of objects in Simula 67 programming language, which was developed in
the 1960s for performing simulations. The first true object-oriented programming language
that appeared before the larger software development community was Smalltalk in 1980,
developed at Xerox PARC. Smalltalk used objects and messages as the basis for com-
putation. Classes could be created and modified dynamically. Most of the vocabulary in
object-oriented paradigm has originated from this language.

Toward the end of the 1970s, Bjarne Stroustrup, who was doing doctoral work in Eng-
land, needed a language for doing simulation of distributed systems. He developed a lan-
guage based on the class concept in Simula, but this language was not particularly effi-
cient. However, he pursued his attempt and developed an object-oriented language at Bell
Laboratories as a derivative of C, which would blossom into one of the most successful
programming languages, C++. The language was standardised in 1997 by the American
National Standards Institute (ANSI).

The 1980s saw the development of several other languages such as ObjectLisp, Com-
monLisp, Common Lisp Object System (CLOS), and Eiffel. The rising popularity of the
object-oriented model also propelled changes to the language Ada, originally sponsored by
the U.S. Department of Defense in 1983. This resulted in Ada 9x, an extension to Ada 83,
with object-oriented concepts including inheritance, polymorphism, and dynamic binding.

The 1990s saw two major events. One was the development of the Java programming
language in 1996. Java appeared to be a derivative of C++, but many of the controversial
and troublesome concepts in C++ were deleted in it. Although it was a relatively simple
language when it was originally proposed, Java has undergone substantial additions in later
versions making it a moderately difficult language. Java also comes with an impressive
collection of libraries (called packages) to support application development. A second wa-
tershed event was the publication of the book Design Patterns by Gamma et al. in 1994. The
book considered specific design questions (23 of them) and provided general approaches to
solving them using object-oriented constructs. The book (as also the approach it advocated)
was a huge success as both practitioners and academicians soon recognised its significance.

The last few years saw the acceptance of some dynamic object-oriented languages that
were developed in the 1990s. Dynamic languages allow users more flexibility, for example
the ability to dynamically add a method to an object at execution time. One such language
is Python, which can be used for solving a variety of applications including web program-
ming, databases, scientific and numeric computations and networking. Another dynamic
language, Ruby, is even more object-oriented in that everything in the language, including
numbers and primitive types, is an object.

Discussion and Further Reading 11

1.6 Discussion and Further Reading

In this chapter, we have given an introduction to object-oriented paradigm. The central
object-oriented concepts such as classes, objects, and interfaces will be elaborated in the
next three chapters. Cohesion and coupling, which are major software design issues, will
be recurring themes for most of the text.

The reader would be well-advised to learn or refresh the non-object-oriented concepts
of the Java language by reading Appendix A before moving onto the next chapter. It is
worthwhile and enjoyable to read a short history of programming languages from a standard
text on the subject such as Sebesta [33]. The reader might also find it helpful to get the
perspectives of the designers of object-oriented languages (such as the one given on C++
by Stroustrup [37]).

Exercises

1. Identify the players who would have a stake in software development process. What
are the concerns of each? How would they benefit from the object-oriented model?

2. Think of some common businesses and the activities software developers are involved
in. What are the sets of processes they would like to automate? Are there any that need
software just for one process?

3. How does the object-oriented model support the notion of ADTs and encapsulation?

4. Consider an application that you are familiar with, such as a university system. Divide
the entities of this application into groups, thus identifying the classes.

5. In Question 4, suppose we put all the code (corresponding to all of the classes) into
one single class. What happens to cohesion and coupling?

6. What are the benefits of learning design patterns?

2

Basics of Object-Oriented Programming

In the last chapter, we saw that the fundamental program structure in an object-oriented
program is the object. We also outlined the concept of a class, which is similar to ADTs

in that it can be used to create objects of types that are not directly supported by language.
In this chapter, we describe in detail how to construct a class. We will use the pro-

gramming language Java (as we will do throughout the book). We will introduce the Uni-
fied Modelling Language (UML), which is a notation for describing the design of object-
oriented systems. We also discuss interfaces, a concept that helps us specify program re-
quirements and demonstrate its uses.

2.1 The Basics

To understand the notion of objects and classes, we start with an analogy. When a car
manufacturer decides to build a new car, considerable effort is expended in a variety of
activities before the first car is rolled out of the assembly lines. These include:

• Identification of the user community for the car and assessment of the user’s needs.
For this, the manufacturer may form a team.

• After assessing the requirements, the team may be expanded to include automobile
engineers and other specialists who come up with a preliminary design.

• A variety of methods may be used to assess and refine the initial design (the team may
have experience in building a similar vehicle): prototypes may be built, simulations
and mathematical analysis may be performed.

Perhaps after months of such activity, the design process is completed. Another step that
needs to be performed is the building of the plant where the car will be produced. The
assembly line has to be set up and people hired.

12

The Basics 13

After such steps, the company is ready to produce cars. The design is now reused many
times in manufacture. Of course, the design may have to be fine-tuned during the process
based on the company’s observations and user feedback.

The development of software systems often follows a similar pattern. User needs have
to be assessed, a design has to be made, and then the product has to be built.

From the standpoint of object-oriented systems, a different aspect of the car manufac-
turing process is important. The design of a certain type of car will call for specific types
of engine, transmission, brake system, and so on, and each of these parts in itself has its
own design (blue print), production plants, etc. In other words, the company follows the
same philosophy in the manufacture of the individual parts as it does in the production of
the car. Of course, some parts may be bought from manufacturers, but they in turn follow
the same approach. Since the design activity is costly, a manufacturer reuses the design to
manufacture the parts or the cars.

The above approach can be compared with the design of object-oriented systems which
are composed of many objects that interact with each other. Often, these objects represent
real-life players and their interactions represent real-life interactions. Just as design of a car
is a collection of the individual designs of its parts and a design of the interaction of these
parts, the design of an object-oriented system consists of designs of its constituent parts
and their interactions.

For instance, a banking system could have a set of objects that represent customers,
another set of objects that stand for accounts, and a third set of objects that correspond to
loans. When a customer actually makes a deposit into her account in real life, the system
acts on the corresponding account object to mimic the deposit in software. When a customer
takes out a loan, a new loan object is created and connected to the customer object; when a
payment is made on the loan, the system acts on the corresponding loan object.

Obviously, these objects have to be somehow created. When a new customer enters the
system, we should be able to create a new customer object in software. This software entity,
the customer object, should have all of the relevant features of the real-life customer. For
example, it should be possible to associate the name and address of the customer with
this object; however, customer’s attributes that are not relevant to the bank will not be
represented in software. As an example, it is difficult to imagine a bank being interested
in whether a customer is right-handed; therefore, the software system will not have this
attribute.

Definition 2.1.1 An attribute is a property that we associate with an object; it serves to
describe the object and holds some value that is required for processing.

The class mechanism in object-oriented languages provides a way to create such objects.
A class is a design that can be reused any number of times to create objects. For example,
consider an object-oriented system for a university. There are student objects, instructor

14 Basics of Object-Oriented Programming

objects, staff member objects, and so on. Before such objects are created, we create classes
that serve as blue-prints for students, instructors, staff members, and courses as follows:

public class Student {
// code to implement a single student

}

public class Instructor {
// code to implement a single instructor

}

public class StaffMember {
// code to implement a single staff member

}

public class Course {
// code to implement a single course

}

The above definitions show how to create four classes, without giving any details. (We
should put in the details where we have given comments.) The token class is a key-
word that says that we are creating a class and that the following token is the name of the
class. We have thus created four classes Student, Instructor, StaffMember, and
Course. The left-curly bracket ({) signifies the beginning of the definition of the class and
the corresponding right-curly bracket (}) ends the definition. The token public is another
keyword that makes the corresponding class available throughout the file system.

Before we see how to put in the details of the class, let us see how to create objects
using these classes. The process of creating an object is also called instantiation. Each
class introduces a new type name. Thus Student, Instructor, StaffMember and
Course are types that we have introduced.

The following code instantiates a new object of type Student.

new Student();

The new operator causes the system to allocate an object of type Student with enough
storage for storing information about one student. The operator returns the address of the
location that contains this object. This address is termed a reference.

The above statement may be executed when we have a new student admitted to the
university. Once we instantiate a new object, we must store its reference somewhere, so
that we can use it later in some appropriate way. For this, we create a variable of type
Student.

Student harry;

Notice that the above definition simply says that harry is a variable that can store refer-
ences to objects of type Student. Thus, we can write

Implementing Classes 15

harry = new Student();

We cannot write

harry = new Instructor();

because harry is of type Student, which has no relationship (as far as the class dec-
larations are concerned) to Instructor, which is the type of the object created on the
right-hand side of the assignment.

Whenever we instantiate a new object, we must remember the reference to that object
somewhere. However, it is not necessary that for every object that we instantiate,we declare
a different variable to store its reference. If that were the case, programming would be
tedious.

Let us illustrate by giving an analogy. When a student drives to school to take a class, she
deals with only a relatively small number of objects: the controls of the car, the road, the
nearby vehicles (and sometimes their occupants, although not always politely), and traffic
signals and signs. (Some may also deal with a cell phone, which is not a good idea!) There
are many other objects that the driver (student) knows about, but is not dealing with them
at this time.

Similarly, we keep references to a relatively small number of objects in our programs.
When a need arises to access other objects, we use the references we already have to dis-
cover them. For instance, suppose we have a reference to a Student object. That object
may have an attribute that remembers the student’s adviser, an Instructor object. If
it is necessary to find out the adviser of a given student, we can query the corresponding
Student object to get the Instructor object. A single Instructor object may have
attributes that remember all the advisees of the corresponding instructor.

2.2 Implementing Classes

In this section we give some of the basics of creating classes. Let us focus on the Student
class that we initially coded as

public class Student {
// code to implement a single student

}

We certainly would like the ability to give a student a name: given a student object, we
should be able to specify that the student’s name is "Tom" or "Jane", or, in general,
some string. This is sometimes referred to as a behaviour of the object. We can think of
student objects having the behaviour that they respond to assigning a name.

For this purpose, we modify the code as below.

16 Basics of Object-Oriented Programming

public class Student {
// code for doing other things
public void setName(String studentName) {

// code to remember the name
}

}

The code that we added is called a method. The method’s name is setName. A method is
like a procedure or function in imperative programming in that it is a unit of code that is
not activated until it is invoked. Again, as in the case of procedures and functions, methods
accept parameters (separated by commas in Java). Each parameter states the type of the
parameter expected. A method may return nothing (as is the case here) or return an object
or a value of a primitive type. Here we have put void in front of the method name meaning
that the method returns nothing. The left and right curly brackets begin and end the code
that defines the method.

Unlike functions and procedures, methods are usually invoked through objects. The
setName method is defined within the class Student and is invoked on objects of type
Student.

Student aStudent = new Student();
aStudent.setName("Ron");

The method setName() is invoked on that object referred to by aStudent. Intuitively,
the code within that method must store the name somewhere. Remember that every object
is allocated its own storage. This piece of storage must include space for remembering the
name of the student.

We embellish the code as below.

public class Student {
private String name;
public void setName(String studentName) {

name = studentName;
}
public String getName() {

return name;
}

}

Inside the class we have defined the variable name of type String. It is called a field.

Definition 2.2.1 A field is a variable defined directly within a class and corresponds to
an attribute. Every instance of the object will have storage for the field.

Let us examine the code within the method setName. It takes in one parameter,
studentName, and assigns the value in that String object to the field name.

Implementing Classes 17

It is important to understand how Java uses the name field. Every object of type
Student has a field called name. We invoked the method setName() on the object re-
ferred to by aStudent. Since aStudent has the field name and we invoked the method
on aStudent, the reference to name within the method will act on the name field of
aStudent.

The getName()method retrieves the contents of the name field and returns it.
To illustrate this further, consider two objects of type Student.

Student student1 = new Student();
Student student2 = new Student();
student1.setName("John");
student2.setName("Mary");
System.out.println(student1.getName());
System.out.println(student2.getName());

Members (fields and methods for now) of a class can be accessed by writing

<object-reference>.<member-name>

The object referred to by student1 has its name field set to “John,” whereas the object
referred to by student2 has its name field set to “Mary.” The field name in the code

name = studentName;

refers to different objects in different instantiations and thus different instances of fields.
Let us write a complete program using the above code.

public class Student {
// code
private String name;
public void setName(String studentName) {

name = studentName;
}
public String getName() {

return name;
}
public static void main(String[] s) {

Student student1 = new Student();
Student student2 = new Student();
student1.setName("John");
student2.setName("Mary");
System.out.println(student1.getName());
System.out.println(student2.getName());

}
}

18 Basics of Object-Oriented Programming

The keyword public in front of the method setName() makes the method available
wherever the object is available. But what about the keyword private in front of the
field name? It signifies that this variable can be accessed only from code within the class
Student. Since the line

name = studentName;

is within the class, the compiler allows it. However, if we write

Student someStudent = new Student();
someStudent.name = "Mary";

outside the class, the compiler will generate a syntax error.
As a general rule, fields are often defined with the private access specifier and meth-

ods are usually made public. The general idea is that fields denote the state of the object
and that the state can be changed only by interacting through pre-defined methods which
denote the behaviour of the object. Usually, this helps preserve data integrity.

In the current example though, it is hard to argue that data integrity consideration plays
a role in making name private because all that the method setName does is change the
name field. However, if we wanted to do some checks before actually changing a student’s
name (which should not happen that often), this gives us a way to do it. If we had kept
name public and others coded to directly access the field, making the field private later
would break their code.

For a more justified use of private, consider the grade point average (GPA) of a student.
Clearly, we need to keep track of the GPA and need a field for it. GPA is not something
that is changed arbitrarily: it changes when a student gets a grade for a course. So making
it public could lead to integrity problems because the field can be inadvertently changed by
bad code written outside. Thus, we code as follows.

public class Student {
// fields to store the classes the student has registered for.
private String name;
private double gpa;
public void setName(String studentName) {

name = studentName;
}
public void addCourse(Course newCourse) {

// code to store a ref to newCourse in the Student object.
}
private void computeGPA() {

// code to access the stored courses, compute and set the gpa
}
public double getGPA() {

return gpa;

Implementing Classes 19

}
public void assignGrade(Course aCourse, char newGrade) {

// code to assign newGrade to aCourse
computeGPA();

}
}

We now write code to utilise the above idea.

Student aStudent = new Student();
Course aCourse = new Course();
aStudent.addCourse(aCourse);
aStudent.assignGrade(aCourse, ’B’);
System.out.println(aStudent.getGPA());

The above code creates a Student object and a Course object. It calls the addCourse
method on the student, to add the course to the collection of courses taken by the student,
and then calls assignGrade. Note the two parameters: aCourse and ’B’. The implied
meaning is that the student has completed the course (aCourse) with a grade of ’B’. The
code in the method should then compute the new GPA for the student using the information
presumably in the course (such as number of credits) and the number of points for a grade
of ‘B’.

2.2.1 Constructors

The Student class has a method for setting the name of a student. Here we set the name
of the student after creating the object. This is somewhat unnatural. Since every student has
a name, when we create a student object, we probably know the student’s name as well.
It would be convenient to store the student’s name in the object as we create the student
object.

To see where we are headed, consider the following declarations of variables of primitive
data types.

int counter = 0;
double final PI = 3.14;

Both declarations store values into the variables as the variables are created. On the other
hand, the Student object, when created, has a zero in every bit of every field.

Java and other object-oriented languages allow the initialisation of fields by using what
are called constructors.

Definition 2.2.2 A constructor is like a method in that it can have an access specifier
(like public or private), a name, parameters, and executable code. However, constructors
have the following differences or special features.

20 Basics of Object-Oriented Programming

1. Constructors cannot have a return type: not even void.

2. Constructors have the same name as the class in which they are defined.

3. Constructors are called when the object is created.

For the class Student we can write the following constructor.

public Student(String studentName) {
name = studentName;

}

The syntax is similar to that of methods, but there is no return type. However, it has a
parameter, an access specifier of public, and a body with executable code. If needed, one
could put local variables as well inside constructors.

Let us rewrite the Student class with this constructor and a few other modifications.

public class Student {
private String name;
private String address;
private double gpa;
public Student(String studentName) {

name = studentName;
}
public void setName(String studentName) {

name = studentName;
}
public void setAddress(String studentAddress) {

address = studentAddress;
}
public String getName() {

return name;
}
public String getAddress() {

return address;
}
public double getGpa() {

return gpa;
}
public void computeGPA(Course newCourse, char grade) {

// use the grade and course to update gpa
}

}

We now maintain the address of the student and provide methods to set and get the name
and the address.

With the above constructor, an object is created as below.

Implementing Classes 21

Student aStudent = new Student("John");

When the above statement is executed, the constructor is called with the given parameter,
“John.” This gets stored in the name field of the object.

In previous versions of the Student class, we did not have a constructor. In such cases
where we do not have an explicit constructor, the system inserts a constructor with no argu-
ments. Once we insert our own constructor, the system removes this default, no-argument
constructor.

As a result, it is important to note that the following is no longer legal because there is
no constructor with no arguments.

Student aStudent = new Student();

A class can have any number of constructors. They should all have different signatures:
that is, they should differ in the way they expect parameters. The following adds two more
constructors to the Student class.

public class Student {
private String name;
private String address;
private double gpa;
public Student(String studentName) {

name = studentName;
}
public Student(String studentName, String studentAddress) {

name = studentName;
address = studentAddress;

}
public Student() {
}
public void setName(String studentName) {

name = studentName;
}
public void setAddress(String studentAddress) {

address = studentAddress;
}
public String getName() {

return name;
}
public String getAddress() {

return address;
}
public double getGpa() {

return gpa;
}
public void computeGPA(Course newCourse, char grade) {

22 Basics of Object-Oriented Programming

// use the grade and course to update gpa
}

}

Notice that all constructors have the same name, which is the name of the class. One of the
new constructors accepts the name and address of the student and stores it in the appropriate
fields of the object. The other constructor accepts no arguments and does nothing: as a
result, the name and address fields of the object are null.

2.2.2 Printing an object

Suppose we want to print an object. We might try

System.out.println(student);

where student is a reference of type Student.
The statement, however, will not produce anything very useful for someone expecting to

see the name and address of the student. For objects, unless the programmer has provided
specific code, Java always prints the name of the class of which the object is an instance,
followed by the @ symbol and a value, which is the unsigned hexadecimal representation
of the hash code of the object. It does not make any assumptions on the fields to be printed;
it prints none of them!

This problem is solved by putting a method called toString() in the class. This
method contains code that tells Java how to convert the object to a String.

public String toString() {
// return a string

}

Whenever an object is to be converted to a String, Java calls the toString method on the
object just as any other method. The method call System.out.println() attempts to
convert its arguments to the string form. So it calls the toString() method.

We can complete the toString method for the Student class as below.

public String toString() {
return "Name " + name + " Address " + address + " GPA " + gpa;

}

It is good practice to put the toString method in every class and return an appropriate
string. Sometimes, the method may get slightly more involved than the simple method we
have above; for instance, we may wish to print the elements of an array that the object
maintains, in which case a loop to concatenate the elements is in order.

Implementing Classes 23

2.2.3 Static members

So far, all members of a class were accessed using the syntax

<object_reference>.<member_name>

This is quite logical because we wanted to act on specific objects. Every Student object,
for example, has its own name, gpa, and address fields. If we did not specify the object
and merely specified the field/method, the specification would be incomplete.

Sometimes, we need fields that are common to all instances of an object. In other words,
such fields have exactly one instance and this instance is shared by all instances of the class.
Such fields are called static fields. In contrast, fields maintained separately for each object
are called instance fields.

Let us turn to an example. Most universities usually have the rule that students not main-
taining a certain minimum GPA will be put on academic probation. Let us assume that this
minimum standard is the same for all students. Once in a while, a university may decide
that this minimum standard be raised or lowered. (Grade inflation can be a problem!)

We would like to introduce a field for keeping track of this minimum GPA. Since the
value has to be the same for all students, it is unnecessary to maintain a separate field for
each student object. In fact, it is risky to keep a separate field for each object: since every
instance of the field has to be given the same value, special effort will have to be made to
update all copies of the field whenever we decide to change its value. This can give rise to
integrity problems. It is also quite inefficient.

Suppose we decide to call this new field, minimumGPA, and make its type double.
We define the variable as below.

private static double minimumGPA;

The specifier static means that there will be just one instance of the field minimumGPA;
The field will be created as soon as the class is loaded by the system. Note that there does
not have to be any objects for this field to exist. This instance will be shared by all instances
of the class.

Suppose we need to modify this field occasionally and that we also want a method that
tells us what its value is. We typically write what are called static methods for doing the
job.

public static void setMinimumGPA(double newMinimum) {
minimumGPA = newMinimum;

}
public static double getMinimumGPA() {

return minimumGPA;
}

24 Basics of Object-Oriented Programming

The keyword static specifies that the method can be executed without using an object.
The method is called as below.

<class_Name>.<method_name>

For example,

Student.setMinimumGPA(2.0);
System.out.println("Minimum GPA requirement is "
+ Student.getMinimumGPA());

Methods and fields with the keyword static in front of them are usually called static
methods and static fields respectively.

It is instructive to see, in the above case, why we want the two methods to be static.
Suppose they were instance methods. Then they have to be called using an object as in the
following example.

Student student1 = new Student("John");
student1.setMinimumGPA(2.0);

While this is technically correct, it has the following disadvantages:

1. It requires that we create an object and use that object to modify a static field. This
goes against the spirit of static members; they should be accessible even if there are
no objects.

2. Someone reading the above fragment may be lead to believe that
setMinimumGPA() is used to modify an instance field.

On the other hand, a static method cannot access any instance fields or methods. It is easy
to see why. A static method may be accessed without using any objects at all. Therefore,
what object should the method use to access the member? In fact, there may not be any
objects created yet when the static method is in use.

2.3 Programming with Multiple Classes

Even the simplest object-oriented application system will have multiple classes that are re-
lated. For the university system we discussed earlier in this chapter, we identified and wrote
the skeletons of four classes: Student, Instructor, StaffMember, and Course.
In this section, we look at how to structure the classes for such cases.

Let us consider the Course class.A course exists in the school catalog, with a name,
course id, brief description and number of credits.Here is a possible definition.

Programming with Multiple Classes 25

public class Course {
private String id;
private String name;
private int numberofCredits;
private String description;
public Course(String courseId, courseName) {

id = courseId;
name = courseName;

}
public void setNumberOfCredits(int credits) {

numberOfCredits = credits;
}
public void setDescription(String courseDescription) {

description = courseDescription;
}
public String getId() {

return id;
}
public String getName() {

return name;
}
public int getNumberOfCredits() {

return numberOfCredits;
}
public String getDescription() {

return description;
}

}

A department selects from the catalog a number of courses to offer every semester. A
section is a course offered in a certain semester, held in a certain place on certain days at
certain times. (We will not worry about the instructor for the class, capacity, etc.) Let us
create a class for this.

We will use String objects for storing the place, days, time, and semester. Thus, we
have three fields named place, daysAndTimes, and semester with the obvious se-
mantics.

Clearly, this is inadequate: the class does not hold the name and other details of the
course. But it is redundant to have fields for these because the information is available in
the corresponding Course object. What is required is a field that remembers the corre-
sponding course. We can do this by having the following field declaration.

private Course course;

When the Section instance is created, this field can be initialised.

public class Section {

26 Basics of Object-Oriented Programming

private String semester;
private String place;
private String daysAndTimes;
private Course course;
public Section(Course theCourse, String theSemester,

String thePlace, String theDaysAndTimes) {
course = theCourse;
place = thePlace;
daysAndTimes = theDaysAndTimes;
semester = theSemester;

}
public String getPlace() {

return place;
}
public String getDaysAndTimes() {

return daysAndTimes;
}
public String getSemester() {

return semester;
}
public Course getCourse() {

return course;
}
public void setPlace(String newPlace) {

place = newPlace;
}
public void setDaysAndTimes(String newDaysAndTimes) {

daysAndTimes = newDaysAndTimes;
}

}

Where do we create an instance of Section? One possibility is to do this in Course.
Let us assume that we add a new method named createSection in Course, which
accepts the semester, the place, days, and time as parameters and returns an instance of a
new Section object for the course. We will then use it as follows.

Course cs350 = new Course("CS 350", "Data Structures");
Section cs350Section1 = cs350.createSection("Fall 2004",

"Lecture Hall 12", "T H 1-2:15");
Section cs350Section2 = cs350.createSection("Fall 2004",

"Lecture Hall 25", "‘M W F 10-10:50");

Let us get to the task of coding the createSection method. It looks like the following:

public Section createSection(String semester, String place, String time) {
return new Section(/* parameters */);

}

27

How do we invoke the constructor of Section from the createSection method? The
problem is that although we do have references to the semester, place, and days and times
available in the parameters of this method, we need a reference to the Course object
itself. This is not an explicit parameter to the method, but the Course object on which the
createSection method is invoked is indeed the reference we need! Here the language
comes to our aid. In the createSection method, the reference to the object that was
used in its invocation is available via a special keyword called this.

In general, assume that we have a class C with a method m in it as shown below. Also
shown is another class C2, which has a method named m2 that requires an object of type C
as its only parameter.

public class C {
public void m() {

// this refers to the object on whom m is being invoked
}

}

public class C2 {
public void m2(C aC) {

// code
}

}

Suppose that we create an instance of C from the outside and invoke m as below.

C c1 = new C();
c1.m();

c1

this

An instance of C

Figure 2.1 this

This is depicted in Figure 2.1. The reference c1 points to an instance of C. Suppose the
method m contained the following code:

public void m(){

28 Basics of Object-Oriented Programming

C2 c2 = new C2();
c2.m2(this);

}

In the above, this is a reference that points to the same object as c1. In summary, an
object can refer to itself by using the keyword this.

Continuing with the example of courses and their sections, we can code the
createSection method as below.

public Section createSection(String semester, String place, String time) {
return new Section(this, semester, place, time);

}

The keyword this obtains the reference to the course object and is passed to the construc-
tor of Section.

In addition to passing a reference to itself to methods, we can use this to obtain the
fields of the object, which come in handy for resolving conflicts. For example,

class Section {
private String place;
public void setPlace(String place) {

this.place = place;
}

}

The identifier place on right hand side of the assignment refers to the formal parameter;
on the left hand side it is prefixed by this and is therefore a reference to the private field.

2.4 Interfaces

We design classes based on specifications. These specifications could be written in English
and augmented with diagrams, but a compiler cannot read such documents and ensure that
the class meets the specifications.

An interface is one way of partially specifying our requirements. Suppose we need to
create a list of all students in our university. Let us say that we should be able to add a
student, remove a student, and print all students in the list. We can specify the syntax for
the methods by creating an interface as given below.

public interface StudentList {
public void add(Student student);
public void delete(String name);
public void print();

}

Interfaces 29

Notice that the syntax of the first line resembles the syntax for a class with the keyword
class replaced by the keyword interface. We have specified three methods: add with
a single parameter of type Student; delete with the name of the student as a parameter,
and print with no parameters. Notice that we haven’t given a body for the methods; there
is a semicolon immediately after the right parenthesis that ends the parameters.

Let us see how to utilise the above entity. We can now create a class that implements the
above three operations as below.

public class StudentLinkedList implements StudentList {
// fields for maintaining a linked list
public void add(Student student) {

// code for adding a student to the list
}
public void delete(String name) {

// code for deleting a student from the list
}
public void print() {

// code for printing the list
}
// other methods

}

The first line states that we are creating a new class named StudentLinkedList. The
words implements StudentList mean that this class will have all of the methods of
the interface StudentList. It is a syntax error if the class did not implement the three
methods because it has claimed that it implements them.

Just as a class introduces a new type, an interface also creates a new type. In the above
example, StudentList and StudentLinkedList are both types. All instances of
the StudentLinkedList class are also of type StudentList.

We can thus write

StudentList students;
students = new StudentLinkedList();
// example of code that uses StudentList;
Student s1 = new Student(/* parameters */);
students.add(s1);
s1 = new Student(/* parameters */);
students.add(s1);
students.print();

We created an instance of the StudentLinkedList class and stored a reference to it
in students, which is of type StudentList. We can invoke the three methods of the
interface (and of the class) via this variable.

Part of these probably seems like wasted effort. Although at this time we cannot discuss
all the benefits of using interfaces, let us discuss one: In the above, pay special attention to
the following facts:

30 Basics of Object-Oriented Programming

1. The class StudentLinkedList implements the interface StudentList. So
variables of type StudentLinkedList are also of type StudentList.

2. We declared students as of type StudentList and not
StudentLinkedList.

3. We restricted ourselves to using the methods of the interface StudentList.

Next, assume that we find that the class StudentLinkedList is not satisfaca-
tory: perhaps it is not efficient enough. We would like to try and create a new class
StudentArrayList which uses arrays rather than a linked implementation.

public class StudentArrayList implements StudentList {
// fields for maintaining an array-based list
public void add(Student student) {

// code for adding a student to the list
}
public void delete(String name) {

// code for deleting a student from the list
}
public void print() {

// code for printing the list
}

}

Now, we can rewrite the code that manipulates StudentList as below.

StudentList students;
students = new StudentArrayList();
// code that uses StudentList;

The only change that we need to make in our code for using the list is the one that cre-
ates the StudentList object. Since we restricted ourselves to using the methods of
StudentList in the rest of the code (as opposed to using methods or fields unique to
the class StudentLinkedList), we do not need to change anything else. This makes
maintenance easier.

It is instructive to complete the code for StudentLinkedList and
StudentArrayList.

2.4.1 Implementation of StudentLinkedList

A linked list consists of nodes each of which stores the address of the next. We thus write
the following class.

Interfaces 31

public class StudentNode {
private Student data;
private StudentNode next;
public StudentNode(Student student, StudentNode initialLink) {

this.data = student;
next = initialLink;

}
public Student getData() {

return data;
}
public void setData(Student student) {

this.data = student;
}
public StudentNode getNext() {

return next;
}
public void setNext(StudentNode node) {

next = node;
}

}

This class will be needed in StudentLinkedList only. Therefore, we can use what are
called inner classes in Java. An inner class is a class enclosed within another class. Thus,
we write

public class StudentLinkedList implements StudentList {
private StudentNode head;
private class StudentNode {

private Student data;
private StudentNode next;
public StudentNode(Student student, StudentNode initialLink) {

this.data = student;
next = initialLink;

}
public Student getData() {

return data;
}
public void setData(Student student) {

this.data = student;
}
public StudentNode getNext() {

return next;
}
public void setNext(StudentNode node) {

next = node;
}

}
public void add(Student student) {

32 Basics of Object-Oriented Programming

// code for adding a student to the list
}
public void delete(String name) {

// code for deleting a student from the list
}
public void print() {

// code for printing the list
}

}

The inner class StudentNode is now declared as private, so that it cannot be used from
code outside of the class.

Let us code the add method.

public void add(Student student) {
head = new StudentNode(student, head);

}

The code creates a new StudentNode and puts it at the front of the list.
Next, we code the print method.

public void print() {
System.out.print("List: ");
for (StudentNode temp = head; temp != null; temp = temp.getNext()) {

System.out.print(temp.getData() + " ");
}
System.out.println();

}

The code starts at the front of the list, extracts the data in the corresponding node and
prints that data. Printing ends when the node it points to is null; that is, it doesn’t exist.
Assuming that the Student class has a proper toString() method, we will get the
name, address and GPA of each student printed.

Finally, we code the method to delete a student. We will need to look at each Student
object and see if the name field matches the given name. How do we do this comparison?
Suppose temp is a variable that refers to a Student object. The call temp.getData()
retrieves the Student object, and temp.getData().getName() gets the name of
the student. Consider the following comparison:

temp.getData().getName() == studentName

Both sides of the equality comparison generate a reference. The system simply compares
these references and the expression is true if and only if the two are the same. In general,
this is not a correct comparison.

When we need to compare two objects, say, object1 and object2, we should write

Interfaces 33

object1.equals(object2)

which returns a logical value which is true if the two objects are equal and false otherwise.
The code for the delete method is given below.

public void delete(String studentName) {
if (head == null) {

return;
}
if (head.getData().getName().equals(studentName)) {

head = head.getNext();
} else {

for (StudentNode temp = head.getNext(), previous = head;
temp != null; temp = temp.getNext()) {

if (temp.getData().getName().equals(studentName)) {
previous.setNext(temp.getNext());
return;

}
}

}
}

The code first checks if the list is empty; if so, there is nothing to do. With an non-empty
list, it checks if the name of the student at the front of the list is the same as the name
supplied in the parameter. If they match, the Student object at the front of the list is
deleted from the list by moving the head to the next object (which may not exist, in which
case we have a null). If the element at the front of the list is not what we want, execution
proceeds to a loop that examines all elements starting at the second position until the end of
the list is reached or the student with the given name is located. The variable previous
always refers to the object preceding the object referred to by temp. Once it is located, the
object can be deleted using previous.

2.4.2 Array implementation of lists

We need to set up an array of Student objects. This is done as follows.

1. Declare a field in the class StudentArrayList, which is an array of type Stu-
dent.

2. Allocate an array of the required size. We will allocate storage for as many students
as the user wishes; if the user does not specify a number, we will allocate space for
a small number, say, 10, of objects. In any case, when this array fills up, we will
allocate more.

34 Basics of Object-Oriented Programming

Therefore, we need two constructors: one that accepts the initial capacity and the other that
accepts nothing. The code for the array field and the constructor is given below.

public class StudentArrayList implements StudentList {
private Student[] students;
private int initialCapacity;
public StudentArrayList() {

students = new Student[10];
initialCapacity = 10;

}
public StudentArrayList(int capacity) {

students = new Student[capacity];
initialCapacity = capacity;

}
// other methods

}

Note that the code for the first constructor is a special case of the second constructor. This is
undesirable. We should try to reuse the code in the second constructor because it is general
enough. Thus, when the user does not supply an initial capacity, we should somehow invoke
the second constructor with a value of 10. This reuse can be achieved by rewriting the first
constructor as follows:

public StudentArrayList() {
this(10);

}

In this case, this refers to another constructor of the class. We are specifying a constructor
that has a single int parameter and invoking it with a parameter value of 10. The net effect
would be the same as that of the user writing new StudentArrayList(10).

The use of this in the above context should not be confused with the one that is used
to refer to the object used in instance methods. Also, note the following aspects.

1. There can be no code before the statement this(). In other words, this call should
be the very first statement in the constructor.

2. You can have code in the constructor after the call to another constructor.

3. You can call at most one other constructor from a constructor.

We will use the following approach to manage the list. We will have two variables, first
that gives the index of the first occupied cell, and count, the number of objects in the list.
When the list is empty, both are 0. When we add an object to the list, we will insert it at
(first + count) % array size and increment count.

Interfaces 35

public class StudentArrayList implements StudentList {
private Student[] students;
private int first;
private int count;
private int initialCapacity;
public StudentArrayList() {

students = new Student[10];
initialCapacity = 10;

}
public StudentArrayList(int capacity) {

students = new Student[capacity];
initialCapacity = capacity;

}
public void add(Student student) {

if (count == students.length) {
reallocate(count * 2);

}
int last = (first + count) % students.length;
students[last] = student;
count++;

}
public void delete(String name) {

for (int index = first, counter = 0; counter < count;
counter++, index = (index + 1) % students.length) {

if (students[index].getName().equals(name)) {
students[index] = students[(first + count - 1) % students.length];
students[(first + count - 1) % students.length] = null;
count--;
return;

}
}

}
public Student get(int index) {

if (index >= 0 && index < count) {
return students[index];

}
return null;

}
public int size() {

return count;
}
public void print() {

for (int index = first, counter = 0; counter < count;
counter++, index = (index + 1)
% students.length) {

System.out.println(students[index]);
}

}

36 Basics of Object-Oriented Programming

public void reallocate(int size) {
Student[] temp = new Student[size];
if (first + count >= students.length) {

int count1 = students.length - first;
int count2 = count - count1;
System.arraycopy(students, first, temp, 0, count1);
System.arraycopy(students, first + count1, temp, count1, count2);

} else {
System.arraycopy(students, first, temp, 0, count);

}
students = temp;
first = 0;

}
}

2.5 Abstract Classes

In a way, classes and interfaces represent the extreme ends of a spectrum of possible im-
plementations. When we write a class, we code every field and method; in other words, the
code is complete in a sense. Interfaces are merely specifications.

Sometimes, we might know the specifications for a class, but might not have the infor-
mation needed to implement the class completely. For example, consider the set of possible
shapes that can be drawn on a computer screen. While the set is infinite, let us consider
only three possibilities: triangles, rectangles, and circles. We know that the set of fields
needed to represent each object is different, but there are some commonalities as well. For
example, all shapes have an area.

In such cases, we can implement a class partially using what are called abstract classes.
In the case of a shape, we may code

public abstract class Shape {
private double area;
public abstract void computeArea();
public double getArea() {

return area;
}
// more fields and methods

}

The class is declared as abstract (using the keyword abstract prior to the keyword
class), which means that the class is incomplete. Since we know that every shape has
an area, we have defined the double field area and the method getArea() to return
the area of the shape. We require that there be a method to compute the area of a shape,
so we have written the method getArea(). But since the formula to compute the area is

Comparing Objects for Equality 37

different for the three possible shapes, we have left out the implementation and declared
the method itself as abstract.

Any class that contains an abstract method must be declared abstract. We cannot create
an instance of an abstract class. The utility of an abstract class comes from the fact that
it provides a basic implementation that other classes can “extend”. This is done using the
technique of inheritance, covered in Chapter 3.

2.6 Comparing Objects for Equality

We have seen the need to use the equals method to compare two objects. In this section
we explore this issue a little more.

Given any two variables of the same primitive type, it is easy for Java to decide whether
they are equal: the variables are equal if they have the same value. However, consider a
class such as Student. It is a user defined class. When do you say that two Student
objects are equal? Here are some possibilities.

1. The language specifies that two objects are equal if they occupy the same physical
storage.

2. The language provides a facility to check whether the corresponding fields of the ob-
jects are equal. This is a recursive definition. For example, in the Student class, the
fields are name, address and gpa. For the name field of two objects to be equal,
we have to know when two String objects are equal. Since gpa is a double, that
field presents no problems.

3. The language leaves the responsibility to the class itself; that is, it lets the class spec-
ify when two of its objects are equal.

Java supports both (1) and (3) above. Since a class can specify when another object is equal
to an object of its type, we can implement (2) as a special case.

To specify how objects should be compared for equality, we need to write a special
method called equals which has the following format:

public boolean equals(Object someObject) {
// implement the policy for comparison in this method.
// return true if and only if this object is equal to someObject

}

We are given two objects: this, the one on which we invoke equals(), and someObject,
an arbitrary object, which can be of any type. It is enough at this stage to know that Object

is a special class in Java and every object can be thought of as an instance of this class. The
method is free to decide whether someObject is equal to this in any way it pleases.

38 Basics of Object-Oriented Programming

For example, let us say that a Student object is equal to another object only if that
object is a Student object, the names are equal and they have the same address. One
could definitely argue that the policy is flawed, but that is not our focus. Here is how to
implement the equals method.

public boolean equals(Object anObject) {
Student student = (Student) anObject;
return student.name.equals(name) && student.address.equals(address);

}

As explained earlier, the method is placed inside the Student class and is invoked as
below.

Student student1 = new Student("Tom");
student1.setAddress("1 Main Street");
// some other code
Student student2 = new Student("Tom");
student2.setAddress("1 Main Street");
// more code
if (student1.equals(student2)) {

System.out.println("student1 is the same as student2");
} else {

System.out.println("student1 is not the same as student2");
}

After creating the two Student objects with the same name and address, we invoked
the equals method on student1 with student2 as the actual parameter. The first
thing that the equals method does is cast the incoming object as a Student object. The
resulting reference can be used to access all of the members of the correspondingStudent
object and, in particular, the name and address fields.

After the cast, we check if the name field of the cast object is equal to the name field
of this, which in our example is student1. Note that we are doing this by invoking
the equals method on the object student.name, which is a String; thus, we are
invoking the equals method of the String class. It turns out that the equals method
of the String class returns true if and only if every character in one string is equal to
the corresponding character of the other string.

The address fields are compared in a similar way. The method returns true if and only if
the two fields match.

What happens when you pass an object other than a Student, for instance, a Course
object? This is valid because a Course object can also be viewed as of type Object.
The cast in the equals method will fail and the program may crash if this problem is not
addressed.

A Notation for Describing Object-Oriented Systems 39

2.7 A Notation for Describing Object-Oriented Systems

We all know that it is important to document systems and programs. In this section, we
introduce a notation called Unified Modeling Language (UML), which is the standard for
documenting object-oriented systems. Many different ideas had been suggested to docu-
ment object-oriented systems in the past and the term “Unified” reflects the fact that UML
was an attempt to unify these different approaches. Among the ones who contributed to the
development of this notation, the efforts of Grady Booch, James Rumbaugh, and Ivor Ja-
cobson deserve special mention. After the initial notation was developed around 1995, the
Object Management Group (OMG) took over the task of developing the notation further in
1997. As the years went by, the language became richer and, naturally, more complex. The
current version is UML 2.0.

UML provides a pictorial or graphical notation for documenting the artefacts such as
classes, objects and packages that make up an object-oriented system. UML diagrams can
be divided into three categories.

1. Structure diagrams that show the static architecture of the system irrespective of
time. For example, structure diagrams for a university system may include diagrams
that depict the design of classes such as Student, Faculty, etc.

2. Behaviour diagrams that depict the behaviour of a system or business process.

3. Interaction diagrams that show the methods, interactions and activities of the ob-
jects. For a university system, a possible behaviour diagram would show how a stu-
dent registers for a course.

Structure diagrams could be one of the following.

1. Class diagrams: They show the classes, their methods and fields.

2. Composite structure diagrams: They provide a means for presenting the details of
a structural element such as a class. As an example, consider a class that represents
a microcomputer system. Each object contains other objects such as CPU, memory,
motherboard, etc, which would be shown as parts that make up the microcomputer
system itself. The composite structure diagram for such a system would show these
parts and exhibit the relationships between them helping the reader understand the
details.

3. Component diagrams: Components are software entities that satisfy certain func-
tional requirements specified by interfaces. These diagrams show the details of com-
ponents.

40 Basics of Object-Oriented Programming

4. Deployment diagrams: An object-oriented system consists of a number of exe-
cutable files sometimes distributed across multiple computing elements. These di-
agrams show the assignment of executable files on the computing elements and the
communication that involves between these entities.

5. Object diagrams: They are used to show how objects are related and used at run-
time. For instance, in a university system we may show the object corresponding to a
specific course and show other objects that represent students who have registered for
the course. Since this shows an actual scenario that involves students and a course,
it is far less abstract than class diagrams and contributes to a better understanding of
the system.

6. Package diagrams: Classes may be grouped into packages and packages may reside
in other packages. These diagrams show packages and dependencies among them:
whether a change in one package may affect other packages.

Figure 2.2 Types of UML structure diagrams

Each of the six diagrams is a structure diagram. This hierarchy is illustrated in Figure 2.2
as a tree with nodes representing these six diagrams as children of the Structure diagram
node. It turns out that this method of showing a hierarchy is used in UML; so we are using
UML notation itself to describe UML!

Behaviour diagrams can be any of the following (see Figure 2.3).

1. Activity diagrams: This is somewhat like a flowchart in that it shows the sequence
of events in an activity. Just as a flowchart, it uses several types of nodes such as

A Notation for Describing Object-Oriented Systems 41

Figure 2.3 Types of UML behaviour diagrams

actions, decisions, merge points, etc. It accommodates objects with suitable types
that depict objects, object flows, etc.

2. Use case diagrams: A use case is a single unit of some useful work. It involves a user
(called an actor) and the system. An example of a use case in a university environ-
ment is a student registering for a course. A use case diagram shows the interaction
involved in a use case.

3. State machine diagrams: It shows the sequence of states that an object goes through
during its lifetime, e.g., the software that controls a washer for clothes. Initially, the
washer is in the off state. After the soap is put in, the clothes are loaded and the on
button pressed, the system goes to a state where it takes in water. In this state the
system waits for a signal from the water sensor to indicate that the water has reached
the required level. Then the system goes into the wash state where washing takes
place. After this the system may go through further states such as rinse and spin and
eventually reaches the washed state.

There are four types of interaction diagrams as shown in Figure 2.4.

Figure 2.4 Types of UML interaction diagrams

42 Basics of Object-Oriented Programming

1. Sequence diagrams: A sequence diagram is an interaction diagram that details how
operations are carried out – what messages are sent and when. Sequence diagrams are
organised according to time. Time progresses as you go down the page. The objects
involved in the operation are listed from left to right according to when they take part
in the message sequence.

2. Timing diagrams: It shows the change in state of an object over time as the object
reacts to events. The horizontal axis shows time and the state changes are noted on
the vertical axis. Contrast this with sequence diagrams in which time is in the vertical
axis.

3. Communication diagrams: A communication diagram essentially serves the same
purpose as a sequence diagram. Just as in a sequence diagram, this diagram also
has nodes for objects and uses directed lines between objects to indicate message
flow and direction. However, unlike sequence diagrams, vertical direction has no
relationship with time and message order is shown by numbering the directed lines
that represent messages.

Interactions that involve a large number of objects can be somewhat inconvenient
to show using sequence diagrams because they must be arranged horizontally. Since
no such restrictions are placed on communication diagrams, they are easier to draw.
However, the order of messages can be harder to see in communication diagrams.

4. Interaction overview diagrams: An interaction overview diagram shows the high-
level control flow in a system. It shows the interactions between interaction diagrams
such as sequence diagrams and communication diagrams. Each node in the diagram
can be an interaction diagram.

We will see examples of many of these diagrams as we develop concepts in this book. At
this time, we show an example of a class diagram.

2.7.1 Class diagrams

Figure 2.5 is an example of a class diagram. Each class is represented by a box, which
is divided into three rectangles. The name of the class is given in the top rectangle. The
attributes are shown with their names and their types in the second box. The third box
shows the methods with their return types and parameters (names and types). The access
specifier for each field and method is given just in front of the field name or method name. A
− sign indicates private access, + stands for public access and # (not shown in this example)
is used for protected access which we will discuss in Chapter 3.

A Notation for Describing Object-Oriented Systems 43

Figure 2.5 Example of a class diagram

2.7.2 Use cases and use case diagrams

A use case describes a certain piece of desired functionality of an application system. It
is constructed during the analysis stage. It shows the interaction between an actor, which
could be a human or a piece of software or hardware and the system. It does not specify
how the system carries out the task.

As an example of a simple use case, let us describe what a simple ATM machine will
do. A user may withdraw or deposit money into his bank account using this machine. This
functionality is shown in the use case diagram in Figure 2.6.

Figure 2.6 Example of a use case diagram

Use cases may be verbally described in a table with two columns: The first column shows
what the actor does and the second column depicts the system’s behaviour.

44 Basics of Object-Oriented Programming

We give below the use case for withdrawing money.

Action performed by the actor Responses from the system

Inserts debit card into the `Insert
card' slot

Asks for the PIN number

Enters the PIN number

Verifies the PIN. If the PIN is invalid,
displays an error and goes to Step 8.
Otherwise, asks for the amount

Enters the amount

Verifies that the amount can be with-
drawn
If not, display an error and goes to
Step 8
Otherwise, dispenses the amount and
updates the balance

Takes the cash

Takes the card

Ejects the card

1.

3.

5.

7.

9.

2.

4.

6.

8.

Notice that the use case specifies the responsibilities of the two entities but does not show
how the system processes the request. Throughout the book, we express use cases in a
two-column format as above.

The use case as specified above does not say what the system is supposed to do in all
situations. For example, what should the system do if something other than a valid ATM
card is inserted? Such considerations may result in a more involved specification. What is
specified above is sometimes called the main flow.

2.7.3 Sequence diagrams

One of the major goals of design is to determine the classes and their responsibilities and
one way of progressing toward the above goal is to create sequence diagrams for each use
case we identify in the analysis stage. In such a diagram we break down the system into a
number of objects and decide what each object should accomplish in the corresponding use
case. That is, we delegate responsibilities.

We have one column for each entity that plays a role in the use case. The ver-
tical direction represents the flow of time. Horizontal arrows represent functionalities
being invoked; the entity at the tail of the arrow invokes the named method on the
entity at the head of the arrow.

For example, Figure 2.7 shows the sequence diagram corresponding to the use case
we gave above for withdrawing from an ATM. The rectangles at the top of the diagram

A Notation for Describing Object-Oriented Systems 45

represent the customer, the ATM, and two objects that reside in the bank database:
Accounts, which stores all the account objects and BankAccount, which stores
account-related information for a single account. For each object, we draw a dashed vertical
line, called a lifeline, for showing the actions of the object. The long and thin rectangular
boxes within these lifelines show when that object is active.

Figure 2.7 Example of a simple sequence diagram

In many use cases, the actor interacts only with the left most entity, which usually rep-
resents some kind of interface. These interactions mirror the functionality described in the
use case. The first arrow denotes the customer (actor) inserting the debit card into the ATM,
which, in turn, asks for the PIN, as shown by the arrow from the ATM to the customer. No-
tice that the latter line is lower than the line that stands for the card insertion. This is because
time increases as we go down in the diagram. The events in the sequence diagram that hap-
pen after the customer enters the PIN depend on how the system has been implemented. In
our hypothetical example, we assume that the ATM has to access a central repository (viz.,
Accounts) and attempt to retrieve the user’s information.1 If successful, the repository

1This may not reflect a real ATM’s behaviour, but bear in mind that this is a pedagogical exercise in UML,
not banking.

46 Basics of Object-Oriented Programming

returns a reference to an object (BankAccount) representing the user’s account, and the
ATM then interacts with this object to complete the transaction.

The sequence diagram gives us the specifics of the implementation: the ATM calls
the method getAccount on the Accounts object with the card number as parame-
ter. The Accounts object either returns the reference to the appropriate BankAccount
object corresponding to the card number, or null if such an account does not exist.
When the getAccount method is invoked, the Accounts object calls the method
retrieveAccount to get the BankAccount object to which the card number cor-
responds. Note the self-directed arc on the lifeline of the Accounts object, indicating that
this computation is carried out locally within Accounts. The getAccount method
invocation and its return are on separate lines, with the return shown by a dotted line.

The ATM then invokes the verifyPIN method on the BankAccount object to en-
sure that the PIN is valid. If for some reason the card is not valid, Accounts would
have returned a null reference, in which case further processing is impossible. Therefore,
the call to verify the PIN is conditional on reference being non-null. This is indicated in
the sequence diagram by writing [account not null] along with the method call
verifyPIN. Such a conditional is called a guard.

Just as Accounts called a method on itself, BankAccount calls the method
verifyPIN to see if the PIN entered by the user is valid. The result, a boolean, is re-
turned and shown on a separate dotted line in the diagram. If the PIN is valid, the ATM
asks the user for the amount to be withdrawn. Once again, note the guard associated with
this action. After receiving the value (the amount to be withdrawn), the machine sends the
message withdraw with the amount as parameter to the BankAccount object, which
verifies whether the amount can be withdrawn by calling the method debit on itself. The
result is then returned to the ATM, which dispenses cash provided the result is acceptable.

Association
In our example that involved the ATM, Accounts and BankAccount, the Accounts
instance contained all of the BankAcount objects, each of which could be retrieved by
supplying a card number. This relationship can be shown using an association as in Figure
2.8. Notice the number 1 above the line near the rectangle that represents Accounts and
0...* at the right end of the line near BankAccount. They mean that one Accounts object
may hold references to zero or more BankAccount objects.

Figure 2.8 An example of association

Discussion and Further Reading 47

Interfaces and their implementation
Interfaces and their implementation can be depicted in UML as in Figure 2.9. With the
StudentList interface and the class StudentLinkedList class that implements it,
we draw one box to represent the interface and another to stand for the class. The methods
are shown in both. The dotted line from the class to the interface shows that the class
implements the interface.

Figure 2.9 Depicting interfaces and their implementation

2.8 Discussion and Further Reading

The concept of a class is fundamental to the object-oriented paradigm. As we have dis-
cussed, it is based on the notion of an abstract data type and one can trace its origins to
the Simula programming language. This chapter also discussed some of the UML notation
used for describing classes. In the next chapter we look at how classes interconnect to form
a system, and the use of UML to denote these relationships.

The Java syntax and concepts that we have described in this chapter are quite similar
to the ones in C++; so the reader should have little difficulty getting introduced to that
language. A fundamental difference between Java and C++ is in the availability of pointers
in C++, which can be manipulated using pointer arithmetic in ways that add considerable
flexibility and power to the language. However, pointer arithmetic and other features in the
language also make C++ more challenging to someone new to this concept.

Since our intention is to cover just enough language features to complete the implemen-
tations, some readers may wish to explore other features of the language. For those who
want an exposure to the numerous features of Java, we suggest Core Java by Cornell and

48 Basics of Object-Oriented Programming

Horstmann [25]. A more gentle and slow exposure to programming in Java can be found
in Liang [27]. If syntax and semantics of Java come fairly easy to you but you wish to get
more insights into Java usage, you could take a look at Eckel [11].

It is important to realise that the concepts of object-oriented programming we have dis-
cussed are based on the Java language. The ideas are somewhat different in languages such
as Ruby, which abandons static type checking and allows much more dynamic changes to
class structure during execution time. For an introduction to Ruby, see [9].

Projects

1. A consumer group tests products. Create a class named Product with the following
fields:

(a) Model name,

(b) Manufacturer’s name,

(c) Retail price,

(d) An overall rating (‘A’, ‘B’, ‘C’, ‘D’, ‘F’),

(e) A reliability rating (based on consumer survey) that is a double number between
0 and 5,

(f) The number of customers who contributed to the survey on reliability rating.

Remember that names must hold a sequence of characters and the retail price may
have a fractional part.

The class must have two constructors:

(a) The first constructor accepts the model name, the manufacturer name, and the
retail price in that order.

(b) The second constructor accepts the model name and the manufacturer name in
that order, and this constructor must effectively use the first constructor.

Have methods to get every field. Have methods to set the retail price and the overall
rating.

Reliability rating is the average of the reliability ratings by all customers who rated
this product. A method called rateReliability should be written to input the
reliability rating of a customer. This method has a single parameter that takes in the
reliability of the product as viewed by a customer. The method must then increment
the number of customers who rated the product and update the reliability rating using
the following formula.

Discussion and Further Reading 49

New value of reliability rating = (Old value of reliability rating * Old value of num-
ber of customers + Reliability rating by this customer) / New value of number of
customers.

For example, suppose that the old value of reliability was 4.5 based on the input from
100 customers. If a new customer gives a reliability rating of 1.0, then the new value
of reliability would be

(4.5 * 100 + 1.0) / 101

which is 4.465347.

Override the toString method appropriately.

2. Write a Java class called LongInteger as per the following specifications.

Objects of this class store integers that can be as long as 50 digits. The class must
have the following constructors and methods.

(a) public LongInteger(): Sets the integer to 0.

(b) public LongInteger(int[] otherDigits): Sets the integer to the
given integer represented by the parameter. A copy of otherDigits must be
made to prevent accidental changes.

(c) public LongInteger(int number) Sets the integer to the value given
in the parameter.

(d) public void readIn(): reads in the integer from the keyboard. You can
assume that only digits will be entered.

(e) public LongInteger add(int number) Adds number to the inte-
ger represented by this object and returns the result.

(f) public LongInteger add(LongInteger number) Adds number
to the integer represented by this object and returns the result.

(g) public String toString() returns a String representation of the in-
teger.

Use an array of 50 ints to store the digits of the number.

3. Study the interface Extendable given below.

public interface Extendable {
public boolean append(char c);
public boolean append(char[] sequence);

}

50 Basics of Object-Oriented Programming

The method append(char c) appends a character to the object (or, more pre-
cisely the object’s class) that implements this interface. The second version of the
method appends all characters in the array to this object. If there is no space in the
object to append, the methods return false; otherwise they return true. Write
code for the class SimpleBuffer that implements the above interface which has a
constructor of the following signature.

public SimpleBuffer(int size)

The initial size of the array is passed as a parameter.

The class must have two fields: one which stores the char array and the other which
stores the number of elements actually filled in the array.

This class must also implement the toString method to bring back correctly a
String representation of the char array. It should also implement the equals
method such that two buffers are equal if and only if they contain the same set of
characters.

Exercises

1. Given the following class, write a constructor that has no parameters but uses the
given constructor so that x and y are initialised at construction time to 1 and 2 respec-
tively.

public class SomeClass {
private int x;
private int y;
public SomeClass(int a, int b) {

x = a;
y = b;

}
// write a no-argument (no parameters)
// constructor here, so that x and y are
// initialised to 1 and 2 respectively.
// You MUST Utilise the given constructor.

}

2. In Section 2.3, we had a class called Course, which had a method that creates
Section objects. Modify the two classes so that

(a) Course class maintains the list of all sections.

(b) Section stores the capacity and the number of students enrolled in the class.

Discussion and Further Reading 51

(c) Course has a search facility that returns a list of sections that are not full.

3. In Section 2.7, we had a discussion on two possible use cases for using an ATM.
Develop the use case for depositing money using an ATM machine.

4. Draw the sequence diagram for the use case you developed for Exercise 3.

5. Take a look at the use case and sequence diagram we developed for withdraw-
ing money through an ATM. Design the method getAccount() in the class
Accounts. Does this need interaction between the two classes, Accounts and
BankAccount? If so, what additional methods do you need in BankAccount?

3

Relationships between Classes

In the previous chapter we studied classes and objects as the two building blocks of object-
oriented systems. The structure of a software system is defined by the way in which these

building blocks relate with one another and the behaviour of the system is defined by the
manner in which the objects interact with one another. Therefore, in order to construct
a software system, we need mechanisms that create connections between these building
blocks. In this chapter we introduce the basic types of relationships between classes (and
objects) that make the connections.

The simplest and most general kind of relationships is association, which simply indi-
cates that the objects of the two classes are related in some non-hierarchical way. There
are almost no other restrictions on how an association can be formed, although we shall
see throughout this text the good design practices that ought to be followed when creating
associations.

When two or more classes have a hierarchical relationship based on generalisation, it
is referred to as inheritance. Classes connected by inheritance share some commonalities
and therefore, this kind of relationship is more restrictive than association.

The third kind of relationship we see is genericity. This is more restrictive than inheri-
tance due to the fact that the only variations permitted across related classes are those that
can be captured by type parametrisation, i.e., providing parameters of differing types
when creating an instance of the generic entity.

In the rest of this chapter we elaborate on each of these, discussing the basic principles
and examining situations where they can be applied. Since these mechanisms are basic to
OOAD, they will all be revisited in later chapters when dealing with real examples of more
complex systems.

.

52

Association 53

3.1 Association

An association is formally defined as a relation among two or more classes describing a
group of links with common structure and semantics. An association implies that an object
of one class is making use of an object of another class and is indicated simply by a solid
line connecting the two class icons. In the previous chapter we defined a class Student
that keeps track of information about the courses that the student has registered for. This
information is represented as shown in Figure 3.1. In our example, Student objects may
make use of Course objects when transcripts are generated, when tuition is computed
or when a course is dropped. The link to the course provides the student object with the
necessary information.

Student
registers for

Course
* *

Figure 3.1 Association between classes

An association does not imply that there is always a link between all objects of one class
and all objects of the other. As one would expect, in our example, a link is formed be-
tween a Student object and a Course object only when the operation that links them is
completed, i.e., the student represented by the Student object registers for that particular
course. However, an association does imply that there is a persistent, identifiable connec-
tion between two classes. If class A is associated with class B, it means that given an object
of class A, you can always find an object of class B, or you can find that no B object has
been assigned to the association yet. But in either case there is always an identifiable path
from A to B. Associations thus represent conceptual relationships between classes as well
as physical relationships between the objects of these classes.

In terms of implementation, what the above implies is that class A must provide a mech-
anism using the constructs of the chosen programming language to form a link. This could
take several forms, for example,

• Class A stores a key (or several keys) that uniquely identifies an object of class B.

• Class A stores a reference(s) to object(s) of class B.

• Class A has a reference to an object of class C, which, in turn is associated with a
unique instance of class B.

The first two of these create a direct association, whereas the third one is an indirect as-
sociation. The mechanism chosen may depend on the requirements that the system has to
satisfy (for instance, the kinds of queries that need to be answered) and also on how the

54 Relationships between Classes

rest of system is designed. In our example, when a student registers for a course, he/she
actually enrolls in a specific section of the course. The mechanism to make this connection
may simply be that the Student object stores a reference to the Section object. Each
section is associated with a unique course, completing the picture (see Figure 3.2).

Student
enrolls in

Section
belongs to

Course* **
1

Figure 3.2 Association involving three classes

An association is assumed to be bi-directional unless we place a directional arrow on
the connecting line to indicate otherwise. The association usually has a descriptive name.
The name often implies a direction, but in most cases this can be inverted. Our figure
says student enrolls in a section, which belongs to a course, but this could be stated as a
course has sections that enroll students. The diagram is usually drawn to read the link or
association from left to right or top to bottom.

The entities at the ends of the association usually have assigned roles, which may have
names. We could have an association named ‘employs’ that connects a class representing a
Business to a class representing a Person employed by the business. Here Business
plays the role of of the employer and Person has the role of employee.

3.1.1 Characteristics of associations

Since associations represent very general relationships, they allow for variation in the na-
ture of the connection. The common variation is the arity of the connection, i.e., how many
objects of class A can be linked to one object of class B and vice-versa. Another varia-
tion involves whether there is some form of containment involved in the relationship. In
other cases there is some specific kind of information that is added to the system whenever
a link is made between objects. These characteristics are usually represented in UML by
annotating the connection between classes. Some of these are discussed below.

Arity of relationships
The arity of a relationship could be one–one, one–many, or many–many. An ex-
ample of a one–one relationship could be between a User-Interface class ac-
cepting user input and a Display-Window class displaying information. A multi-
user system, however, can interact with several users in parallel. Each interac-
tion has a dedicated Display-Window object and all these objects are deployed
through the common User-Interface. This is an example of a one–many rela-
tionship. From our example, a course may have several sections but each section is

Association 55

associated with only one course, thus creating a one(course)–many(section) connection. A
student can enroll in several sections and each section can have several students enrolled.
This would be an example of a many–many relationship.

Containment relationships
Aggregation is a kind of association where the object of class A is ‘made up of’ objects
of class B. This suggests some kind of a whole–part relationship between A and B. Most
experts have downplayed the importance of this kind of association as not something that
deserves to be embellished in any way. However, composite aggregation, also known
as composition, has been recognised as being significant. Composition implies that each
instance of the part belongs to only one instance of the whole, and that the part cannot
exist except as part of the whole. Composition is indicated with a filled-in diamond and is
usually not named since some form of whole–part relationship is assumed. In Figure 3.3, a
vertex cannot exist unless it is a part of a triangle. If the triangle object is destroyed, so are
the individual vertices.

VertexTriangle

Figure 3.3 Composition across classes

Association classes
An association usually results in some information being added to the system since it adds
a path connecting two objects. In some situations we add some information that qualifies
the nature and describes the properties of the relationship. Outside the context of the asso-
ciation, this information does not have any relevance to either of the objects involved. In
such cases we treat the association itself as a class. An example of this is shown in Figure
3.4. When a student enrolls in a section, a registration record is created to store the date of
registration and a grade. Such a record does not make sense if a particular student does not
enroll in a given section.

Figure 3.4 Using an association class

56 Relationships between Classes

FAQs about forming associations

What does an association represent?
An association normally represents something that will be stored as part of the data and re-
flects all links between objects of two classes that may ever exist. It describes a relationship
that will exist between instances at run time and has an example.

When can we call a relationship an association?
In UML class diagrams, associations should be shown if a class possesses, controls, is
connected to, is related to, is a part of, has as parts, is a member of, or has as members some
other class in the system. As association should not be used to denote relationships that:
(i) can be drawn as a hierarchy, (ii) stems from a dependency alone, (iii) or relationships
whose links will not survive beyond the execution of any particular operation.

How is an association represented?
An association shows how two classes are related to each other and this relationship should
be made clear. It is denoted by a line connecting the two classes, with sufficient annota-
tion to make the relationship clear and unambiguous. This annotation includes a name, the
arity, roles and any association classes. In particular, if the annotation includes neither an
association name nor a role name, the default name ‘has’ is applied.

3.2 Inheritance

There are situations when two classes have not only a great deal of similarity, but also sig-
nificant differences. The classes may be similar enough that association does not capture
the similarity, and differ too much so that the idea of genericity cannot be profitably em-
ployed. Suppose that C1 and C2 are two such classes. We then extract the common aspects
of C1 and C2 and create a class, say, B, to implement that functionality. The classes C1

and C2 could then be smaller, containing only properties and methods that are unique to
them. This idea is called inheritance—C1 and C2 are said to inherit from B. B is said to be
the baseclass or superclass, and C1 and C2 are termed derived classes or subclasses. The
superclasses are generalisations or abstractions: we move toward a more general type, an
‘upward’ movement, and subclasses denote specialisation toward a more specific class—a
‘downward’ movement. The class structure then provides a hierarchy.

Inheritance can be defined as the mechanism provided in programming languages to
achieve the idea of vertical generalisation outlined above. Formally, an inheritance is a
relationship characterised by an ancestor and a descendant represented using UML no-
tation as in Figure 3.5. Here, the baseclass is the ancestor and the derived classes are the
descendants. We draw one box per class and draw an arrow from the derived classes to the
baseclass.

Inheritance 57

Base class

Derived class 1 Derived class 2

–common attributes

–attributes unique to this class –attributes unique to this class

+common methods()

+method unique to this class() +method unique to this class()

Figure 3.5 Basic idea of inheritance

3.2.1 An example of a hierarchy

Consider a company that sells various products such as television sets and books. Obvious
differences between the products imply that they have different attributes to be tracked
and that we need two classes, Television and Book. One way to accomplish this task
is to create a class for television sets, say, Television, and a second class, for books,
say, Book. However, in many situations the company would like to think of books and
televisions as simply products. For instance, the company needs to keep track of sales,
profits (or losses), etc., for all products. Now, add to the above situation more products,
say, CDs, DVDs, cassette players, pens, etc. Each may warrant a separate class, but, as just
discussed, they all have common properties and behaviours and to the company, they are
all products.

What we see is an example of a situation where two classes have a great deal of similar-
ities, but also substantial differences. The need to view different entities such as televisions
and books as products suggests that we may benefit by having a new type, Product, in-
troduced into the system. Since there is a fair amount of common functionality between
the two products, we would like Product to be a class that implements the commonality
found in Television and Book.

In Java, we do this as follows. We start off with a class that captures the essential prop-
erties and methods common to all products.

public class Product {
// functionality for a product

}

The above class may have attributes such as number of units sold and unit price. It also will
have constructors and methods for recording sales, computing profits, and so on.

58 Relationships between Classes

We are now ready to create a class that represents a single TV set. For this, we note
that a television is a product and that we would like to utilise the functionality that we just
implemented for products. In Java, we do this as below:

public class Television extends Product {
// functionality that is unique for televisions
// modifications

}

Informally speaking, the Television class inherits all of the properties and methods
from the class Product. All we have done is add properties and methods unique to tele-
visions, which will not, for obvious reasons, be implemented in Product.

In a similar manner, we implement the class Book.

public class Book extends Product {
// functionality that is unique for books
// modifications

}

The relationships between the three classes is depicted in Figure 3.6.

Product

Television Book

Figure 3.6 Inheriting from product

Class structure
Our purpose in this section is to describe how inheritance works. We do not worry about
the details of the functionality, and so we do not describe the use cases. Moreover, due to
necessity, we give a simplistic view of the application.

First, let us consider the two entities, television and book, in isolation without worry-
ing about the relationships between them. The functionalities required of the two classes,
Television and Book, are given in Figure 3.7.

Now, notice the similarities and differences between the two classes: both classes, since
they represent products, carry the fields quantitySold and price with their obvious
meanings. The method sale() in both classes is invoked whenever one unit (a book or a
TV set) is sold. The meaning of the setPrice() method should be obvious.

Inheritance 59

Figure 3.7 An example of similar classes

The two classes are somewhat different in other respects: Book has attributes title
and author whereas Television class has the attribute brand. The manufacturer
attribute is named differently from, but not dissimilar to, publisher.

Here is where the power of the object-oriented paradigm comes into play. It allows the
development of a baseclass or superclass that reflects the commonalities of the two classes
and then extends or sub classes this base class to arrive at the functionalities we discussed
before. A UML diagram that shows the arrangement is shown in Figure 3.8. The class
Product keeps track of the common attributes of Book and Television and im-
plements the methods necessary to act on these attributes. Television and Book are
now constructed as subclasses of Product; they will both inherit the functionalities of
Product so that they are now capable of keeping track of sales of these two products.

The code for Product, given below, is fairly simple. The variable company stores the
manufacturer of the product. Otherwise, there are no special features to be discussed.

public class Product {
private String company;
private double price;
private int quantitySold;

public Product(String company, double price) {
this.company = company;
this.price = price;

}
public void sell() {

quantitySold++;
}
public void setPrice(double newPrice) {

price = newPrice;
}
public String toString() {

return "Company: " + company + " price: " +
price + " quantity sold " + quantitySold;

}
}

60 Relationships between Classes

Figure 3.8 Inheriting from product

Let us now construct Television, which extends Product. Any object of type
Television, the subclass, can be thought of as having two parts: one that is formed
from Television itself and the other from Product, the superclass. Thus, this object
has four fields in it, model, quantitySold, price, and company. Often, the code
within the subclass is responsible for managing the fields within it and the code in the
superclass deals with the fields in the superclass.

Recall that objects are initialised via code in the constructor. When inheritance is in-
volved, the part of the object represented by the superclass must be initialised before the
fields of the subclass are given values; this is so because the subclass is built from the su-
perclass and thus the former may have fields that depend on the fact that the superclass’s
attributes are initialised. An analogy may help: when a house is built, the roof is put in only
after the walls have been erected, which happens only after the foundation has been laid.

To create a Television object, we to invoke a constructor of that class as below,
where we pass the brand name, manufacturer name, and price.

Television set = new Television("RX3032", "Modern Electronics", 230.0);

Thus the constructor of Television must be defined as below.

public Television(String model, String manufacturer, double price) {
// code to initialise the Product part of a television
// code to initialise the television part of the object

}

We already have a piece of code that initialisesfields of a Product object: the constructor
of Product. So all we need to do is call that constructor! This is accomplished by the
statement

Inheritance 61

super(/* appropriate parameters go here*/)

The call super with proper parameters always invokes the superclass’s constructor. The
superclass’ constructor call can be invoked only as the very first statement from the code
within a constructor of a subclass; it cannot be placed after some code or placed in methods.

In this example, the parameters to be passed would be the manufacturer’s name and
price. The code for the constructor is then

public Television(String model, String manufacturer, double price) {
super(manufacturer, price);
// store the model name

}

super is a keyword in Java which denotes superclass. Invocation of the superclass’s con-
structor is done using this keyword followed by the required parameters in parentheses.

The fields of the superclass are initialised before fields in the subclass. What this means
in the context of object creation is that the constructor of Television can begin its
work only after the constructor of the superclass, Product, has completed execution. Of
course, when you wish to create a Television object you need to invoke that class’s
constructor, but the first thing the constructor Television does (and must do) is invoke
the constructor of Product with the appropriate parameters: the name of the company
that manufactured the set and the price.

The result of super(manufacturer, price) is, therefore, to invoke Product’s
constructor, which initialises company and price and then returns. The Television
class then gives a value to the model field and returns to the invoker.

As is to be expected, the class Television needs a field for storing the model name.
We thus have a more complete piece of code for this class as given below.

public class Television extends Product {
private String model;
public Television(String model, String manufacturer, double price) {

super(manufacturer, price);
this.model = model;

}
public String toString() {

return super.toString() + " model: " + model;
}

}

The toString() method of Television works by first calling the toString()
method of Product, which returns a string representation of Product and concatenates
to it the model name.

62 Relationships between Classes

3.2.2 Inheriting from an interface

A specialised kind of inheritance is one where a class inherits from an interface. Recol-
lect that in Chapter 2 we had defined an interface as a collection of methods that can be
implemented by a class. An interface has been likened to a contract signed by the class
implementing the interface. In the context of this chapter, it should be pointed out that
implementing the interface can also be viewed as a form of inheritance, where the imple-
menting class inherits an abstract set of properties from the interface.

Java recognises an interface as a type (as do several other object-oriented languages),
which means that objects that belong to classes that implement a given interface also belong
to the type represented by the interface. Likewise, we can declare an identifier as belonging
to the type of the interface and we can then use it to access the objects of any class that
implements the interface.
public interface I {

// details of I
}

public class A implements I {
//code for A

}

public class B implements I {
//code for B

}

I i1 = new A(); // i1 holds an A

I i2 = new B(); // i2 holds a B

In the UML notation, this kind of a relationship between the interface and the implementing
class is termed realisation and is represented by a dotted line with a large open arrowhead
that points to the interface as shown in Figure 3.8.

3.2.3 Polymorphism and dynamic binding

Consider a university application that contains, among others, three classes that form a
hierarchy as shown in Figure 3.9.A student can be either an undergraduate student or
a graduate student. Just as in real life where we would think of an undergraduate or
a graduate student as a student, in the object-oriented paradigm also, we consider an
UndergraduateStudent object or a GraduateStudent object to be of the type
Student. Therefore, we can write
Student student1 = new UndergraduateStudent();
Student student2 = new GraduateStudent();

Inheritance 63

Student

–name: string

–qpa: double

+isInGoodStanding(): boolean

+getGPACutoff(): double

UndergraduateStudent GraduateStudent

Figure 3.9 Student hierarchy

This is a powerful idea. We can now write methods that accept a Student and pass either
an UndergraduateStudent or a GraduateStudent object to it as below.

public void storeStudent(Student student) {
// code to store the Student object

}

We can then create UndergraduateStudent and GraduateStudent objects and
pass them to the above method.

storeStudent(new UndergraduateStudent());
storeStudent(new GraduateStudent());

Once again, in real life, we usually do not think of a graduate student as an undergraduate
student or vice-versa. In the same way, we cannot write the following code in Java.

UndergraduateStudent student1 = new GraduateStudent(); // wrong
GraduateStudent student2 = new UndergraduateStudent(); // wrong

Since we allow Student references to point to both UndergraduateStudent and
GraduateStudent objects, we can see that some, but not all Student references may
point to objects of type UndergraduateStudent; similarly, some Student refer-
ences may refer to objects of type GraduateStudent. Thus, we cannot write,

Student student1;
student1 = new UndergraduateStudent();
GraduateStudent student2 = student1; // wrong!

The compiler will flag that the code is incorrect.
But, the following code, intuitively correct, is flagged by the compiler as incorrect.

64 Relationships between Classes

Student student1;
student1 = new GraduateStudent();
GraduateStudent student2 = student1; // compiler generates a syntax error.

The reason for this error is that the compiler does not execute the code to realise that
student1 is actually referring to an object of type GraduateStudent. It is trying
to protect the programmer from the absurd situation that could occur if student1 held
a reference to an UndergraduateStudent object. It is the responsibility of the pro-
grammer to tell the compiler that student1 actually points to a GraduateStudent
object. This is done through a cast as shown below.

Student student1;
student1 = new GraduateStudent();
GraduateStudent student2 = (GraduateStudent) student1; // O.K. Code works.

To reiterate, while casting a reference to a specialised type, the programmer must ensure
that the cast will work correctly; the compiler will happily allow the code to pass syntax
check, but a carelessly-written code will crash when executed. See the following code.

Student student1;
student1 = new UndergraduateStudent();
GraduateStudent student2 = (GraduateStudent) student1; // crashes

Student1 does not point to a GraduateStudent object in the last line, so the
system’s attempt to cast the instance of UndergraduateStudent to an instance of
GraduateStudent will fail and the code will crash1.

The general rules are as follows. Refer to Figure 3.10.

1. Any object of type SubClass1 or SubClass2 can be stored in a reference of type
SuperClass.

2. No object of type SubClass1 (SubClass2) can be stored in a reference of type
SubClass2 (SubClass1).

3. A reference of type SuperClass can be cast as a reference of type SubClass1
or SubClass2.

Assignments of the above kind are termed polymorphic. A reference is able to point to
objects of different types as long as the actual types of these objects conform to the type of
reference. The above rules informally give the notion of conformance.

It is instructive to compare assignments and casts given above with the rules for assign-
ments and casts of variables of primitive types. Some type conversions, for example, from

1Technically, the system throws an exception, a topic that will be covered in detail in Chapter 4. In this
case, an instance of the class ClassCastException is thrown open.

Inheritance 65

Superclass

SubClass1 SubClass2

Figure 3.10

int to float, do not need any casting; float variables have a wider range than int
variables. Some others, double to int being an instance, are fine with casting; however,
the programmer must be prepared for loss of precision. And the rest—any casts from (to)
boolean to (from) any other type—are always disallowed.

We have so far seen examples of polymorphic assignments. In one of these, we store a
reference to an object of the class GraduateStudent in an entity whose declared type
is Student. This is equivalent to taking a bunch of bananas and storing them in a box
labelled ‘fruit’. The declared contents of the box (as given by the label) is fruit, just as the
declared type of entity student1 in the LHS of the assignment is Student. By doing
this, we have lost some information since we can no longer find out what kind of fruit we
have in the box without examining its contents. Likewise, when we operate on the entity
student1, all we can assume is that it contains a reference to a Student object. Thus
there is a loss of information in this kind of assignment.

The second kind of polymorphic assignment is one where we moved a reference from
an entity whose declared type is Student to an entity whose declared type is Graduat-
eStudent. (This would amount to taking the bananas out of the box labelled ‘fruit’ and
putting them in the box labelled ‘bananas’; we do this only if we are sure that box did have
bananas.) As we saw with our cast and exception, this can only be done after ensuring that
the entity being used is of type GraduateStudent. This is therefore an operation that
‘recovers’ information lost in assignments of the previous kind.

What we conclude from this is that using polymorphism does result in a loss of infor-
mation at run time. Why, then, do we use this? The answer lies in dynamic binding. This
ability allows us to invoke methods on members of a class hierarchy without knowing what
kind of specific object we are dealing with. To make a rough analogy with the real world,
this would be like a manager in a supermarket asking an assistant to put the fruits on dis-
play (this is analogous to applying the ‘display’ method to the ‘fruit’ object). The assistant
looks at the fruit and applies the correct display technique (assuming he wants to keep his
job). Here the manager is like a client class invoking the ‘display’ method and the assistant
plays the role of the system and applies dynamic binding.

To get a concrete understanding of how dynamic binding works, let us revisit the exam-
ple of the Student hierarchy. The code for Student may be written as follows.

66 Relationships between Classes

public abstract class Student {
private String name;
private double gpa;
// more fields
public Student(String name) {

this.name = name;
}
public String getName() {

return name;
}
public boolean isInGoodStanding() {

return (gpa >= getGPACutoff());
}
public abstract double getGPACutoff();
// more methods

}

In practice, a Student class will be far more complicated; we have omitted a large body of
code that would otherwise be present there. The String field name is, as may be guessed,
for remembering the name of the student. As you can see, the name of the Student gets
initialised in the constructor. The grade point average (GPA) is stored in the double field
gpa. As students take classes and complete them, they will get grades, which will be used
in computing the GPA. None of that code is shown in this class.

We assume that periodically, perhaps at the end of each semester or quarter, the uni-
versity will check students to see if they are in ‘good standing’. Typically, it would mean
ensuring that the student is progressing in a satisfactory manner. We assume that for a stu-
dent good standing means that the student’s GPA meets a certain minimum requirement.
The minimum GPA expected of students may change depending on whether the student is
an undergraduate or a graduate student. The method getGPACutoff() returns the min-
imum GPA a student must have to be in good standing. We will assume that this value is
2.0 and 3.0 for undergraduate and graduate students respectively. Note that the method is
declared abstract in the Student class.

Let us now focus on the code for UndergraduateStudent, which is given below.
public class UndergraduateStudent extends Student {

public UndergraduateStudent(String name) {
super(name);

}
public double getGPACutoff() {

return 2.0;
}

}

The constructor gets the name of the student as its only parameter and calls the superclass’s
constructor to store it. Since this is a non-abstract class, the getGPACutoff method
which returns the minimum GPA is implemented.

Inheritance 67

All of the public and protected2 methods of a superclass are inherited in the two sub-
classes. So, the method isInGoodStanding can be instantiated on an instance of
UndergraduateStudent as well. Thus the following code is valid.

UndergraduateStudent student = new UndergraduateStudent("Tom");
// code to manipulate student
if (student.isInGoodStanding()) {

// code
} else {

// code
}

When the method is called, the isInGoodStanding method in the superclass Student
will be invoked.

Finally, we have the code for the class graduate students. The constructor for the class
is quite similar to the one for the UndergraduateStudent class. To make the class
non-abstract, this class, too, should have an implementation of getGPACutoff. In addi-
tion, we assume that to be in good standing graduate students must meet the requirements
imposed on all students and, in addition, they cannot have more than a certain number of
courses in which they get a grade below, say, B.

What we would like is a redefinition or overriding of the method isInGoodStand-
ing. Overriding is done by defining a method in a subclass with the same name, return
type, and parameters as a method in the superclass so that the subclass’s definition takes
precedence over the superclass’s method. Thus the code for the isInGoodStanding
method is now different. See below.

public class GraduateStudent extends Student {
public GraduateStudent(String name) {

super(name);
}
public double getGPACutoff() {

return 3.0;
}
public boolean isInGoodStanding() {

return super.isInGoodStanding() && checkOutCourses();
}
public boolean checkOutCourses() {

// implementation not shown
}

}

Now, suppose we have the following code.

2Protected access will be explained shortly.

68 Relationships between Classes

GraduateStudent student = new GraduateStudent("Dick");
// code to manipulate student
if (student.isInGoodStanding()) {

// code
} else {

// code
}

In this case, the call to isInGoodStanding results in a call to the code defined in
the GraduateStudent class. This in turn invokes the code in the Student class and
makes further checks using the locally declared method checkOutCourses to arrive at
a decision.

Recall the StudentArrayList class we defined in Section 2.4 which stores
Student objects. The method to add a Student in this class looked as follows:

public void add(Student student) {
// code

}

Since a Student reference may point to a UndergraduateStudent or a
GraduateStudent object, we can pass objects of either type to the add method and
have them stored in the list. For example, the code

StudentArrayList students = new StudentArrayList();
UndergraduateStudent student1 = new UndergraduateStudent("Tom");
GraduateStudent student2 = new GraduateStudent("Dick");
students.add(student1);
students.add(student2);

stores both objects in the list students.
Suppose the class also had a method to get a Student object stored at a certain index

as below.

public Student getStudentAt(int index) {
// Return the Student object at position index.
// If index is invalid, return null.

}

Let us focus on the following code that traverses the list and checks whether the students
are in good standing.

for (int index = 0; index < students.size(); index++) {
if (students.getStudentAt(index).isInGoodStanding()) {

System.out.println(students.get(index).getName()
+ " is in good standing");

Inheritance 69

} else {
System.out.println(students.getStudentAt(index).getName()

+ " is not in good standing");
}

}

We assume that students Tom, an undergraduate student, and Dick, a graduate student, are
in the list as per the code given a little earlier. The loop will iterate twice, first accessing
the object corresponding to Tom and then getting the object for Dick. In both cases, the
isInGoodStanding method will be called.

What is interesting about the execution is that the system will determine at run time the
method to call, and this decision is based on the actual type of the object. In the case of
the first object, we have an instance of UndergraduateStudent, and since there is no
definition of the isInGoodStanding method in that class, the system will search for
the method in the superclass, Student, and execute that. But when the loop iterates next,
the system gets an instance of GraduateStudent, and since there is a definition of the
isInGoodStanding method in that class, the overriding definition will be called.

This is a general rule: whenever a method call is encountered, the system will find out
the actual type of object referred to by the reference and see if there is a definition for the
method in the corresponding class. If so, it will call that method. Otherwise, the search
proceeds to the superclass and the process gets repeated. The actual code to be executed is
bound dynamically; hence this process is called dynamic binding.

The above code shows the power of dynamic binding. In our calls to
isInGoodStanding, we were unaware of the type of objects. Simply by examining the
code that calls the method, we cannot tell which definition of the isInGoodStanding
method will be invoked, i.e., dynamic binding gives us the ability to hide this detail in the
inheritance hierarchy.

3.2.4 Protected fields and methods

Consider the hierarchy as shown in Figure 3.11. ClosedFigure has an attribute area
which stores the area of a ClosedFigure object. Since the classes Polygon and
ClosedCurve are kinds of ClosedFigure, we would like to make this attribute avail-
able to them. This implies that the attribute cannot be private; on the other hand making it
public could lead to inappropriate usage by other clients. The solution to this is found in
the protected access specifier. Loosely speaking, what this means is that this field can
be accessed by ClosedFigure and its descendants as shown below.

public class ClosedFigure extends Figure {
protected double area;
//other fields and methods

}

70 Relationships between Classes

Figure

ClosedFigure

#area: double

ClosedCurve Polygon

Figure 3.11 Figure hierarchy

public class Polygon extends ClosedFigure {
public void InsertVertex(Point p, int i) {

// code to insert vertex at position i
area = computeArea();

}
private double computeArea() {

//code to compute the area
}

}

Declaring it protected ensures that the field is available to the descendants but cannot be
accessed by code that resides outside the hierarchy rooted at ClosedFigure.

The above example is a simple one since the class Polygon is modifying the field of a
Polygon object. Consider the following situation.

public class ClosedCurve {
// other fields and methods
public void areaManipulator(Polygon p) {

p.area = 0.0;
}

}

Here the class ClosedCurve is modifying the area of a polygon.Our loose definition says
that area is visible to ClosedCurve which would make this valid. However, Closed-
Curve, is a sibling of Polygon and is therefore not a party to the design constraints of

Genericity 71

Polygon, and providing such access could compromise the integrity of our code. In fact,
an unscrupulous client could easily do the following:

class BackDoor extends ClosedFigure {
public void setArea(double area, ClosedFigure someClosedFigure) {

someClosedFigure.area = area;
}

}

We therefore need the following stricter definition of protected access.

The code residing in a class A may access a protected attribute of an object of class B only
if B is at least of type A, i.e., B belongs to the hierarchy rooted at A.

With this definition, methods such as setArea in BackDoor would violate the protected
access (since ClosedFigure is not a subclass of BackDoor) and can be caught at
compile time. The compiler will not raise an objection if someClosedFigure is cast as
BackDoor as shown below.

((BackDoor) someClosedFigure).area = area;

If someClosedFigure contained a reference to a Polygon object, the cast would fail
at runtime preventing the access to the protected field.

3.2.5 The object class

Java has a special class called Object from which every class inherits. In other words,
Object is a superclass of every class in Java and is at the root of class hierarchy. From
our knowledge of polymorphic assignments, we can see that a variable of type Object
can store the reference to an object of any other type. The following code is thus legal.

Object anyObject;
anyObject = new Student();
anyObject = new Integer(4);
anyObject = "Some string";

In the above, the variable anyObject first stores a Student object, then an Integer
object, and finally a String object.

3.3 Genericity

Genericity is a mechanism for creating entities that vary only in the types of their param-
eters, and this notion can be associated with any entity (class or method) that requires pa-
rameters of some specific types. As we have seen before, in the definition of any entity, the

72 Relationships between Classes

types of involved parameters are specified. In case of a method, we specify the types of ar-
guments and the return type. In case of a class, the types of arguments to the constructor(s),
the return types and argument types of the methods are all specified. In any instance of
the entity, the actual types of all these parameters must conform to the corresponding types
specified in the definition. When we specify a generic entity, the types of the parameters are
replaced by placeholders, which are called generic parameters. The entity is therefore not
fully specified and cannot be used as such to instantiate any concrete objects. At the time
of creating artifacts (objects, if our generic entity was a class), these placeholders must be
replaced by actual types.

To understand the usefulness of genericity, consider the following implementation of a
stack:

public class Stack {
private class StackNode {

Object data;
StackNode next;
// rest of the class not shown

}
public void push(Object data) {

// implementation not shown
}
public Object pop() {

// implementation not shown
}
// rest of the class not shown

}

Elements of the stack are stored in the data field of StackNode. Notice that data is of
type Object, which means that any type of data can be stored in it.

We create a stack and store an Integer object in it.

Stack myIntStack = new Stack(); // line 1
myIntStack.push(new Integer(5)); // line 2
Integer x = (Integer) myIntStack.pop(); //line 3

This implementation has some drawbacks. In line 2, there is nothing that prevents us
from pushing arbitrary objects into the stack. The following code, for instance, is perfectly
valid.

Stack myIntStack = new Stack();
myIntStack.push("A string");

The reason for this is that the Stack class creates a stack of Object and will, therefore,
accept any object as an argument for push. The second drawback follows from the same
cause; the following code will generate an error.

Discussion and Further Reading 73

Stack myIntStack = new Stack();
myIntStack.push("A string");
Integer x = (Integer) myIntStack.pop(); // erroneous cast

We could write extra code that handles the errors due to the erroneous cast, but it does not
make for readable code. On the other hand, we could write a separate Stack class for
every kind of stack that we need, but then we are unable to reuse our code.

Generics provides us with a way out of this dilemma. A generic Stack class would be
defined something like this:

public class Stack<E> {
//code for fields and constructors
public void push(E item) {

// code to push item into stack
}
public E pop() {

// code to push item into stack
}

}

A Stack that stores only Integer objects can now be defined as

Stack<Integer> myIntStack = new Stack<Integer>();

The statement

myIntStack.push("A string");

will trigger an error message from the compiler, which expects that the parameter to the
push method of myIntStack will be a subtype of Integer.

3.4 Discussion and Further Reading

In this chapter we have discussed how classes in an object-oriented system relate to one an-
other. Association is the simplest and most general of these. Although this chapter touches
on several aspects of associations, a more detailed study of UML notation and some of the
finer points of using associations would be needed before embarking on a serious project.
UML notation provides a mechanism for another kind of relationship between classes,
called a dependency. A dependency occurs when a client class has knowledge of some as-
pect of a supplier class and a change in the supplier class could affect the client. A detailed
treatment of class relationships and other related issues can be found in [26].

A thorough knowledge of inheritance is vital to anyone engaging in OOAD. While the
notion of a class helps us implement abstract data types, it is inheritance that makes the
object-oriented paradigm so powerful. Inheriting from a superclass makes it possible not
only to reuse existing code in the superclass, but also to view instances of all subclasses as

74 Relationships between Classes

members of the superclass type. Polymorphic assignments combined with dynamic binding
of methods makes it possible to allow uniform processing of objects without having to
worry about their exact types.

Dynamic binding is implemented using a table of method pointers that give the address
of the methods in the class. When a method is overridden, the table in the extending class
points to the new definition of the method. For an easily understandable treatment of this
approach, the reader may consult Eckel [10].

There is some overhead associated with dynamic binding. In C++, the programmer can
specify that a method is virtual, which means that dynamic binding will be used during
method invocation. Methods not defined as virtual will be called using the declared type
of the reference used in the call. This helps the programmer avoid the overhead associated
with dynamic binding in method calls that do not really need the power of dynamic binding.
In C++ parlance, all Java methods are virtual.

In Java, it is important to note that dynamic binding is not tied to subclassing. It is also
applicable in the context of interfaces. For instance, consider the situationwhere Student
is not a class, but an interface.

public interface Student {
public boolean isInGoodStanding();
public abstract double getGPACutoff();
public String getName();
// more methods

}

Let us assume that the above interface is implemented by the classes
UndergraduateStudent and GraduateStudent. The implementation is simple
enough, so we do not show the code for it; the only major difference now is that since there
is no subclassing, the isInGoodStanding() of GraduateStudent cannot issue the
call super.isInGoodStanding() but must compute it locally.

Now, the code given earlier and reproduced below, works via dynamic binding.

for (int index = 0; index < students.size(); index++) {
if (students.getStudentAt(index).isInGoodStanding()) {

System.out.println(students.get(index).getName()
+ " is in good standing");

} else {
System.out.println(students.get(index).getName()

+ " is not in good standing");
}

}

Genericity is a very restrictive relationship that can exist between classes and is not partic-
ularly associated with OOAD. However, it is available in most object-oriented languages
and must be used judiciously to facilitate reuse.

Discussion and Further Reading 75

3.4.1 A generalised notion of conformance

Most high-level languages perform some kind of type-checking when an assignment is
done. This checking is used to ascertain that the type of entity returned by the expression
on the left-hand side (LHS) of the assignment can indeed be stored in the type of entity
referenced on the RHS. In other words, we say that the type of entity returned by the
expression on the left-hand side (LHS) of the assignment conforms to the type of entity
referenced on the RHS. If conformance is not there, some kind of casting is required, but
the results of the casts cannot be guaranteed by a compiler since they depend on run-time
behaviour.

In the context of inheritance, we have seen that a subclass conforms to the type of the
superclass. When we add genericity to the mix, and the expression on the LHS evaluates to
an instance of a generically defined entity; the corresponding generic parameters of the LHS
and RHS must also be in conformance. This check would have to be performed recursively
since the parameters could themselves be generically derived [30]. Given the following
definitions,

public class Polygon {
// code for Polygon

}

public class Triangle extends Polygon {
// code for Triangle

}

public class Square extends Polygon {
// code for Square

}

the generic types Stack<Square> and Stack<Triangle> conform
to Stack<Polygon>. However, an assignment of the kind shown below is flagged by
a Java compiler.

Stack<Square> ssq = new Stack<Square>();
Stack<Polygon> sp = ssq; // Compiler Error!

The reason for this appears to be that generics being a later introduction to Java, interoper-
ability with legacy code was required. This was achieved by a mechanism called erasure,
which resulted in all generic type information being erased at compile time. This implies
that if the above statement was not flagged as an error, there is no way that the system could
prevent the pushing of a triangle on a stack of squares.

Stack<Square> ssq = new Stack<Square>();
Stack<Polygon> sp = ssq;
sp.push(new Triangle()); // no way to detect this

76 Relationships between Classes

Some languages allow for dynamic casts which is one way that this situation can be han-
dled. In C++, for instance, the following code would compile, but generate a run-time error
[3].

Stack<Triangle> * TStack = new Stack<Triangle>();
Stack <Polygon> * PStack;
PStack = dynamic_cast<Stack <Polygon> *> (TStack); // valid, types conform
Square * s1 = new Square();
Polygon * p1 = dynamic_cast<Polygon*>(s1);
PStack->push(*p1); // run-time error

The system keeps track of the fact that PStack is a pointer to a Stack<Triangle> and
that *p1 is in fact a Square.

Projects

1. Implement the interface Extendable in Programming Project 3 in Chapter 2 with
a class named AbstractBuffer. This class stores an array of chars whose initial
capacity is passed via a constructor.

The class must have two fields, both protected; one stores the char array and
the other stores the number of elements actually filled in the array.

Do not implement either of the interface methods. So the class is declared
abstract.

This class must also implement the toString() method to correctly bring back a
String representation of the char array.

Next, implement SimpleBuffer so that it extends AbstractBuffer and actu-
ally implements the interface methods correctly. As before, it has a constructor that
accepts the size of the array.

2. Consider the interface Shape given below.

public interface Shape {
public double getArea();
public double getPerimeter();
public void draw();

}

Design and code two classes, Rectangle and Circle, that implement Shape.
Put as many common attributes and methods as possible in an abstract class from
which Rectangle and Circle inherit. Ensure that your code is modular. For
drawing a shape, simply print the shape type and other information associated with
the object.

Discussion and Further Reading 77

Next, implement the following interface using any strategy you like. The interface
maintains a collection of shapes. The draw method draws every shape in the collec-
tion.

public interface Shapes {
public void add(Shape shape);
public void draw();

}

Then, test your implementation by writing a driver that creates some Shape objects,
puts them in the collection and draws them.

Finally, draw the UML diagram for the classes and interfaces you developed for this
exercise.

3. The following interface specifies a data source which consists of a number of x-
values and the corresponding set of y-values. The method getNumberOfPoints
returns the number of x-values for which there is a corresponding y-value.
getX (getY) returns the x-value (y-value) for a specific index (0 ≤ index <
getNumberOfPoints).

public interface DataSource {
public int getNumberOfPoints();
public int getX(int index);
public int getY(int index);

}

The next interface is for a chart that can be used to display a specific data source.

public interface Chart {
public void setDataSource(DataSource sourse);
public void display();

}

A user will create a DataSource object, put some values in it, create a Chart
object, use the former as the data source for the latter and then call display to
display the data.

Here is a possible use. Note that MyDataSource and LineChart are imple-
mentations of DataSource and Chart respectively.

DataSource source = new MyDataSource();
Char chart = new LineChart();
chart.setDataSource(source);
chart.display();

78 Relationships between Classes

Implement the interface DataSource in a class MyDataSource. Have methods
in it to store x and y values.

Provide two implementations of Chart: LineChart and BarChart. For display-
ing the chart, simply print out the x and y values and the type of chart being printed.
If needed, put the common functionality in an abstract superclass.

Draw the UML diagram for your design.

4. Implement three classes:
BinaryTreeNode, BinaryTree and BinarySearchTree.
The first class implements the functionality of a node in a binary tree, the second is
an abstract class that has methods for visiting the tree, computing its height, etc., and
the third class extends the second to implement the functionality of a binary search
tree.

Exercises

1. Trace the following code and write that the program prints

public class A {
protected int i;
public void modify(int x) {

i = x + 8;
System.out.println("A: i is " + i);

}
public int getI() {

System.out.println("A: i is " + i);
return i;

}
}
public class B extends A {

protected int j;
public void modify(int x) {

System.out.println("B: x is " + x);
super.modify(x);
j = x + 2;
System.out.println("B: j is " + j);

}
public int getI() {

System.out.println("B: j is " + j);
return super.getI() + j;

}
}

Discussion and Further Reading 79

public class UseB {
public static void main(String[] s) {

A a1 = new A();
a1.modify(4);
System.out.println(a1.getI());
B b1 = new B();
b1.modify(5);
System.out.println(b1.getI());
a1 = b1;
a1.modify(6);
System.out.println(a1.getI());

}
}

2. Consider the class Rectangle in Programming Exercise 2. Extend it to implement
a square.

3. A manager at a small zoo instructs the zoo-keeper to ‘feed the animals’. Explain how
a proper completion of this task by the zoo-keeper implies that the zoo operations
are implicitly employing the concepts of inheritance, polymorphism and dynamic
binding. (Hint: defining a class Animal with method feed could prove helpful.)

4

Language Features for Object-Oriented
Implementation

Many modern programming language features can be divided into two parts: basic fea-
tures that are essential to use the programming paradigm and supporting concepts

that are needed to facilitate the construction of more complex systems. So far, we have
covered core language issues for the object-oriented paradigm, such as classes, inheritance,
interfaces, and so on.

In this chapter we will study several concepts that fall in the supporting category. We
begin in Section 4.1 with a study of how to organise source files (and class files) in a Java
application. Following this, in Section 4.2, we look at an important type of class called
collection class.

In Section 4.3 we study exceptions, which are situations in which the system re-
ports an error and abandons the current operation. Dynamic binding in object-oriented
languages leads to situations where a type of an object has to be determined explic-
itly by the program at runtime; this necessitates the need for run time type identifica-
tion (RTTI), which is introduced in Section 4.4. In Section 4.5 we study how to build
graphical user interface (GUI) programs. The problem of providing long-term storage of
objects is discussed in Section 4.6.

While these concepts are not directly related to each other, they are all widely regarded
as being essential for software system design today, and the reader must gain a reasonable
grasp of these topics before undertaking the analysis and design of object-oriented systems
(which we start in Chapter 6).

4.1 Organising the Classes
In any complex system, it is essential that the components be located in a manner that
facilitates easy access. Classes and interfaces are modules that make up our software system
and our first order of business is to have a system for organising these.

80

82 Language Features for Object-Oriented Implementation

This is fine if the code is using only a few classes from a package. To import all of the
members of a package, code as below.

import java.util.*;

There is no serious drawback to doing the above. In some cases, class/interface names from
two packages may conflict, which then has to be resolved by prefixing the class name with
the package name in the code itself.

Also, note that importing all members of a package does not import sub-packages. For
example, although there are packages java.awt and java.awt.image, the statement

import java.awt.*;

does not import the class java.awt.image.ColorModel. We need to write

import java.awt.image.*;

as a separate statement.
Users can put classes they create in their own package by writing

package <package-name>;

This must appear as the first statement in the file.
After compilation, the class file must be copied into a sub-directory with the same name

as the package name. This sub-directory must appear within a directory that is listed in
the environment variable CLASSPATH, the setting of which is dependent on the operating
system.

4.1.3 Protected access and package access

We have seen the use of protected access specifier in Chapter 3. Suppose we have a
field x defined as protected in a class C. Then, the field can also be accessed in classes
that reside in the same package as C. For example, the following code is legal.

package mypackage;
public class C {

protected int x;
}

package mypackage;
import mypackage.C;
public class D {

public void f(C c) {
c.x = 1;

}
}

Collection Classes 83

If we omit any explicit access specifier in the definition of a method or field, the access is
said to be a package access, which means that only the code residing in a class within the
same package can access the method or field.

4.2 Collection Classes

The java.util package contains a number of useful interfaces and classes that we will
use in our examples. The interface java.util.Collection, for instance, contains
methods for manipulating a collection. Some of the methods in this interface are:

1. boolean add(Object object): adds the supplied object to the collection.

2. boolean addAll(Collection collection): adds all objects in the supplied collec-
tion to this collection.

3. void clear(): removes all of the elements from this collection.

4. boolean contains(Object object): returns true if and only if this collection con-
tains the supplied object.

5. int size(): returns the number of elements in this collection.

6. Methods for removing objects, checking if the collection is empty, etc.

The List interface extends Collection. A list is a collection of objects where the
objects are put in a sequence. Thus, it has all the methods that pertain to a collection and
the ones that are specific to lists such as void add(int index, Object object)
which inserts the given object at the position specified by the index in this list.

There are two major implementations of List: LinkedList and ArrayList. The
names of the classes indicate how they are implemented.

Using the above classes, it is easy to create and use lists. The following simple class
creates a sequence of String objects, stores them in a list, and prints the list.

import java.util.*;
public class ListUseExample {

public static void main(String[] s) {
List list = new ArrayList();
for (int count = 1; count <= 10; count++) {

list.add(new String("String " + count));
}
for (int count = 0; count <= 9; count++) {

System.out.println(list.get(count));
}

}
}

84 Language Features for Object-Oriented Implementation

Since ArrayList implements the List interface, the following code is legal:

List list = new ArrayList();

Into this list we are adding 10 Strings, ‘"String1" through "String10". The add
method adds at the end of the list. Lists are indexed from 0, so "String1" is at index
0 and "String10" is at index 9. The get method returns the element at the specified
index. The second for loop prints the String objects at positions 0 through 9.

4.3 Exceptions

We saw in Chapter 3 that casting an object to a type to which it does not conform causes an
error. More specifically, the system throws an exception, which results in a crash. This is
a rather loose description of what happens, and the following discussion is more accurate
and complete.

Recall the Chapter 3 example of the three classes, Student, UndergraduateS-
tudent, and GraduateStudent, where the last two classes inherit from the first. The
following code has a problem because we are casting an UndergraduateStudent ob-
ject as a GraduateStudent object. We are asking the system to do something that it
cannot.

Student student = new UndergraduateStudent();
GraduateStudent graduateStudent = (GraduateStudent) student;

To be more precise, when the code reaches the second line and the cast is attempted, the
system abandons the operation, generates an object that represents this abnormal operation,
and throws the object. This and similar problematic situations always cause a Throwable
object to be generated and thrown and the offending operation to be abandoned. The spe-
cific type of the object depends on the type of operation. Here are some examples.

1. An attempt is made to access an array with an invalid index. The object generated is
of type ArrayIndexOutOfBoundsException.

2. A null reference is used to access a field or method of an object. In this case, the
object generated is of type NullPointerException.

3. An error occurs while an input or output operation occurs. The object in this case is
of type IOException.

4. An attempt to cast an object fails as in the student example. The exception type is
called ClassCastException.

If we want to avoid a crash because of a bad cast or any other erroneous piece of code, we
have to put the offending code within a try block and catch the exception object.

Exceptions 85

try {
Student student = new UndergraduateStudent();
GraduateStudent graduateStudent = (GraduateStudent) student;
// process the object

} catch (ClassCastException cce) {
// Object is not of type graduate student.
// do some operation to recover from the error

}

An application may choose to catch exceptions that its code may throw; for this, these
statements have to be enclosed in a try block. The block begins with the keyword try
followed by the left-curly bracket {, a sequence of statements (that may have any statements
including more try blocks) ending with a }. This should be followed by at least one catch
block.

A catch block begins with the keyword catch followed by a pair of parentheses with
an exception name (which is a class name) and a reference to refer to the exception object.
The catch block typically contains code to rectify the problem.

When a statement in a try block throws an exception, the system throws an object of
a certain exception type and the try block is abandoned. The system then checks to see if
there is a catch block for that exception type associated with this try block. If so, that
catch block is entered and the code in it is executed. Once the catch block is entered,
the exception is caught and this instance of the exception cannot crash the program.

Let us trace the above code for the case. When the class cast is performed, Java throws an
object of type ClassCastException. The rest of the code, including the assignment
in the try block is abandoned. Java searches to see if there is a catch block for the
type of the exception raised, which is ClassCastException. Since there is one, the
corresponding catch block is entered and the code in it is executed. The parameter cce
refers to the object thrown.

We can put multiple catch blocks for a single try block. Here is a piece of code that
handles three different types of exceptions:

try {
if (myObject.getField1().equals(someObject)) {

int index = myObject.getIndex();
int value = Integer.parseInt(JOptionPane.showInputDialog(null,

"Enter a number"));
myArray[index] = value;

} catch (NullPointerException npe) {
System.out.println("Null pointer " + npe);
System.exit(0);

} catch (ArrayIndexOutOfBoundsException aiofbe) {
System.out.println("Array index out of range " + aiofbe);
return;

} catch (NumberFormatException nfe) {

86 Language Features for Object-Oriented Implementation

System.out.println("Invalid entry; exception " + nfe);
return;

}
}

NumberFormatException occurs when we try to convert a string that does not have a
numeric value in it to a number.

Although the above pieces of code are technically correct, we should not, in general, use
try and catch blocks to handle exceptions such as
ArrayIndexOutOfBoundsException and NullPointerException because
they can be avoided by properly debugging the program. On the other hand, there is a
class of exceptions called checked exceptions that can occur even in correct programs.
The try and catch blocks are appropriate for processing such checked exceptions. One
of the characteristics of a well-designed software system is that it appropriately uses excep-
tions to handle unexpected situations.

4.4 Run-Time Type Identification

Although polymorphism and dynamic binding are powerful tools, they are not sufficient to
take care of all the issues that arise when dealing with an inheritance hierarchy. Consider,
for example, a Shape class with two subclasses, Square and Circle. Let ShapeList
be a collection of Shape. If we access an item from this collection, we know that it will
be of type Shape, but we do not know whether it will be a Square or a Circle.

Say, we have an application that needs to know the number of Circle objects in a
ShapeList collection. This could be implemented as a public method in ShapeList

public int circleCount()

or as a client method that takes a reference to a ShapeList.

int circleCount(Shapelist shapeList)

In either case, the method will iterate through all the items in the collection, check which
ones are of type Circle, etc. We therefore need some mechanism to detect whether a
given Shape object is a Circle. Applying polymorphism and dynamic binding would
suggest that we have a method in the Shape class (named isCircle, say,) that returns
true when a Shape object is a Circle, but having such a method defeats the purpose
of having dynamic binding in the first place! Also, such a solution would be inelegant if we
had a large hierarchy.

A more subtle problem arises with client methods. Consider a class Investment with

Organising the Classes 81

4.1.1 Creating the files

There are some general rules and conventions related to file organisation. Typical prac-
tice is to put at most one class or interface in a single file. The file must be named
<class/interface name>.java. Java requires that with more than one class or
interface in a file, only one of the outer classes/interfaces can be public; if there is a public
class/interface in a file, the name of that class/interface must be used for naming the file.

4.1.2 Packages

One major theme in object-oriented paradigm is reuse. This decreases development time,
reduces code size, and increases reliability. The Java language comes with a large number
of classes (numbering in the thousands) that can be used for a variety of uses: networking,
GUI, database management, and so on.

We will use some classes from Java quite extensively so that we can focus more on the
design issues. This is also consistent with the theme of reuse.

The Java classes are spread over what are called packages, which we briefly discuss
here.

A package is a collection of classes. It is usually named as a sequence of lower-case let-
ters and periods. Some of the major packages are java.lang, java.util, java.awt,
javax.swing, java.io, and java.lang.reflect.

The package java.lang contains classes and interfaces that are fundamental to
the language. These include String, Thread, Runnable, Integer, Dou-
ble, etc. The package java.util contains interfaces and classes for storing lists and
sets, among others. Graphical programs can make use of members in java.awt and/or
javax.swing. To perform input and output, one may use the packagejava.io. Classes
and interfaces can be interrogated using java.lang.reflect, which is said to be a
sub-package of java.lang.

Java automatically makes the classes and interfaces in the java.lang package avail-
able. Programs that use classes from other packages must, however, import them from the
appropriate package. For instance, to use the class Vector which resides in java.util,
the code must resort to one of the several approaches.

One way is to prefix the class name with the name of the package.

java.util.Vector myVector = new java.util.Vector();

The above can be cumbersome and few programmers resort to it.

A second approach is to import that class. Write

import java.util.Vector;

Run-Time Type Identification 87

two subclasses Deposit and Stock. A deposit would accrue interest, whereas stocks pay
dividend. A client method that computes taxes would look something like this:

double computeTax(Investment investment) {
// find the total amount of income from the investment
// and take appropriate action

}

In case of Stock objects,computeTax would invoke a method getDividend whereas
for Deposit objects, the method getInterest would be invoked. In this case, we have
a situation where methods needed for one subclass do not make sense for sibling classes.

Although such scenarios are not very common, we need a mechanism that can handle
these. All object-oriented languages provide some form of run-time type identification
(RTTI) that can take care of these situations cleanly. In the first example, we need a mech-
anism to test whether a given Shape object is a Circle, whereas in the second, we want
to be sure that we downcast the Investment object correctly and apply the right method.

RTTI in Java can be done in one of three ways. In the rest of this section, we elaborate
the approaches.

4.4.1 Reflection: Using the Class object

Java supports the notion of reflection which is based on the notion of a special class known
as Class. Associated with each class is a Class object, a reference to which can be ob-
tained using the getClass method. The Class object, which is automatically created
at run time, belongs to the class Class. This class has several methods that can be in-
voked to find out various properties of the class, such as the name, the list of fields and
methods, etc. In particular, the method getName returns a String object holding the
name of the class. To check if a given Shape object is a Circle using these methods, we
do the following:

Shape shape;
// code to create a Shape object
// and store its reference in shape
if (shape.getClass().getName().equals("Circle")) {

// take appropriate action
}

The method getClass() is defined by Java for the Object class, and is therefore au-
tomatically available for any user-defined class. In our example, getClass returns an
object that stores information about the Circle class, and the method getName on that
object returns the string "Circle". While this serves our purpose, it suffers from one
drawback: the compiler cannot check for typographical errors in the string against which
we are checking the name. The following code, for instance, would compile correctly.

88 Language Features for Object-Oriented Implementation

Shape shape;
// code to create s Shape object
// and store its reference in shape
if (shape.getClass().getName().equals("circle")) {

// take appropriate action
}

Typing “circle” instead of “Circle” gives us an incorrect answer because the error in code
cannot be caught by the compiler.

4.4.2 Using the instanceof operator

This problem that we talked about above can be resolved if we use the instanceof
operator to query the type of an object. Our code would the look like this:

Shape shape;
// code to create s Shape object
// and store its reference in shape
if (shape instanceof Circle) {

// take appropriate action
}

The operator returns true if the object shape is an instance of the class Circle. In this
case, the compiler ensures that Circle is a known class and flags an error otherwise. In
case of the computeTax method, we create a similar solution.

double computeTax(Investment investment) {
double amount;
if (investment instanceof Deposit) {

amount = (Deposit) investment.getInterest();
// code for computing tax on amount

} else if (investment instanceof Stock) {
amount = (Stock) investment.getDividend();
// code for computing tax amount

}
// return tax

}

The example above seems to suggest that using the instanceof operator is always a
better alternative to using getClass().getName(), but that is not the case. In some
situationsinstanceof does not give us sufficient information since it would return true
for all ancestors. An example of a situation where instanceof cannot be used is given
in Chapter 5.

Run-Time Type Identification 89

4.4.3 Downcasting

As we know from Chapter 3, we can cast a superclass reference to a subclass. For example,
we could code

double computeTax(Investment investment) {
double amount;
Deposit deposit = (Deposit) investment;
amount = deposit.getInterest();
// code for computing tax on amount
// rest of the method not shown

}

The downcast could, of course, fail, in which case the system throws an instance of
ClassCastException. Although ClassCastException is a RuntimeExcep-
tion and should not normally be caught, this could be considered an appropriate situation
where it should be handled. We can rewrite the method as below.

double computeTax(Investment investment) {
double amount;
try {

Deposit deposit = (Deposit) investment;
amount = deposit.getInterest();
// code for computing tax on amount

} catch(ClassCastException cce) {
try {

Stock stock = (Stock) investment;
amount = stock.getInterest();
// code for computing tax on amount

} catch(ClassCastException cce) {
cce.printStackTrace();

}
}
// return tax

}

The example above seems to suggest that downcasting and the instanceof operator
can be used interchangeably. Although they are functionally equivalent, there is a stylistic
difference in that exceptions, ideally, should not be thrown unless an exceptional situation
occurs. In Chapter 10 we find a situation where downcasting is a natural solution to the
problem at hand, and in Chapter 11 we have an example of a situation where the in-
stanceof operator provides an elegant solution.

90 Language Features for Object-Oriented Implementation

4.5 Graphical User Interfaces: Programming Support

In this section we discuss the basics of creating graphical user interfaces (GUI) in Java.
We would like to emphasise the word ‘basics’. The goal is to help the reader create simple
GUIs and provide him/her with enough knowledge to explore and understand the extensive
functionality provided by Java in this area.

Java GUI programs can take two forms: applets and applications. Applets are programs
that need a web browser to live in; in other words, the applet occupies part of a web page.
When a page containing an applet is downloaded, the applet comes along with the web page
and gets executed by the browser. This helps provide more functionality than is otherwise
possible using just text and graphics. We do not cover applets in this book.

GUI applications are standalone programs that can be executed like any other program
but providing a graphical interface. They are only slightly more complicated to program
than applets. With a knowledge of GUI applications, the reader should have little difficulty
in learning to create applets.

4.5.1 The basics

As a first step in grasping the fundamentals of GUI creation, let us take a simple GUI
application and understand it. For this, consider the user interface given in Figure 4.1.

Let us break the shown interface into several parts.

1. An outer window with the title ‘Example of a Frame’, the minimise, maximise, and
close buttons.

2. A white box, in which, although not obvious from the picture, the user can enter some
text.

3. A button labelled ‘O.K’.

Figure 4.1 A sample GUI screen

Next, we will see the major steps in creating the interface from a programmer’s perspective.

1. Create the window: The system will do most of the hard work. The programmer
essentially says that a window is needed; the title for the window also can be supplied.

Graphical User Interfaces: Programming Support 91

The system draws the outline, the title bar, and supplies the three buttons: close,
minimise, and maximise.

A common class used for creating the window is JFrame. A possible code for
creating the window is

new JFrame("Example of a Frame");

2. Create the two widgets, the text box and the button. The text box is created using the
Java class JTextField, and the button is created using the class JButton. The
system, once again, will perform the operations necessary to draw the two widgets.

The first line in the following code fragment creates the button. Notice that we pass
the label for the button while constructing it. The second line obviously constructs
the text field. The parameter for the text field contains the length in characters for this
widget. (We would like to note that the resulting text field’s size may not precisely fit
the number of characters specified as parameter.)

JButton button1 = new JButton("O.K.");
JTextField textField1 = new JTextField(20);

3. Next, we put the widgets in the frame. The frame has several panes. The widgets are
stored in what is termed the content pane. While adding, we need to specify where
the widgets should be added. By default, the content pane of a frame is divided into
five parts as shown in Figure 4.2.

Figure 4.2 Border layout

The five areas of the pane are referred to by the constantsBorderLayout.SOUTH,
BorderLayout.NORTH, BorderLayout.WEST, BorderLayout.EAST,
and BorderLayout.CENTER. A widget is added by issuing the method
add on the content pane object, which is obtained by issuing the method
getContentPane on the frame. The add method requires the widget reference

92 Language Features for Object-Oriented Implementation

and the area of the pane; If no area is specified, the widget is stored in the centre area.
Thus, in the code below, the text field is stored in the centre, whereas the button is
stored in the south.

frame.getContentPane().add(textField1);
frame.getContentPane().add(button1, BorderLayout.SOUTH);

4. Until this time, the frame is not visible. The last step in this example is to display it.
This is done by first issuing the pack method on the frame so that it is sized to fit
the preferred size of the widgets based on the current layout.

frame.pack();
frame.setVisible(true);

The complete code for the example is given below.

import javax.swing.*;
import java.awt.*;
public class FrameDemo {

public static void main(String[] s) {
JFrame frame = new JFrame("Example of a Frame");
JButton button1 = new JButton("O.K.");
JTextField textField1 = new JTextField(20);
frame.getContentPane().add(textField1);
frame.getContentPane().add(button1, BorderLayout.SOUTH);
frame.pack();
frame.setVisible(true);

}
}

The classes JFrame, JTextField, and JButton are in the package javax.swing,
whereas BorderLayout resides in java.awt.

Another way of getting the same result is to make FrameDemo a subclass of JFrame
and have the button and text field as fields. The code is given below.

import javax.swing.*;
import java.awt.*;
public class FrameDemo2 extends JFrame {

private JButton button1;
private JTextField textField1;
public FrameDemo2(String title) {

super(title);
button1 = new JButton("O.K.");
textField1 = new JTextField(20);
getContentPane().add(textField1);
getContentPane().add(button1, BorderLayout.SOUTH);

Graphical User Interfaces: Programming Support 93

pack();
setVisible(true);

}
public static void main(String[] s) {

new FrameDemo2("Example of a Frame");
}

}

4.5.2 Event handling

The program we developed in the previous section does not really do anything useful. The
three buttons, minimise, maximise, and close, work, but that functionality is provided by
the system itself.

To make a Java GUI application do anything useful when users interact with it, we need
to handle events. Whenever the user does something on the widgets, for example clicking a
button or hitting the enter key while the cursor is in a text field, the system generates what
are known as events. The default action for events is to do nothing. The programmer must
decide what should happen when events occur.

Event handling is best explained via an example. Taking a button click as an exam-
ple, we first note that such an event generates an action event, represented by the class
ActionEvent in the package java.awt.event. However, that event does not result
in any meaningful action unless some object listens to it and takes some action in response.

To process action events, therefore, two things must happen.

1. An object must become a listener to an action event by implementing the interface
ActionListener (in the package java.awt.event). An example is given be-
low.

public class SomeClass implements ActionListener {

Java then knows that objects of type SomeClass are capable of handling
action events. The interface itself is implemented by coding the method
actionPerformed, which is the only method in ActionListener. This
method has just one parameter, which is of type ActionEvent and represents the
event.

public class SomeClass implements ActionListener {
// fields and other methods
public void actionPerformed(ActionEvent event) {

// code to process the event
}

}

94 Language Features for Object-Oriented Implementation

2. It is not enough for a class (and thus objects of the class) to have the ability to process
events; it must also request that it be told of those events. Suppose that button1 is
of type JButton. Then the following code in SomeClass requests that objects of
type SomeClass be notified when action events occur on that button.

button1.addActionListener(this);

Let us now modify the GUI program, FrameDemo2, so that whenever the button is clicked,
the program displays some message. We will make it a little more interesting by actually
displaying how many times the button was clicked.

For this, we need to remember the number of times the button was clicked; this is done
by introducing a field in FrameDemo2. The code for actionPerformed is then

public void actionPerformed(ActionEvent event) {
textField1.setText("You clicked " + ++count + " times so far.");

}

A shortcoming of the program is that when the close button is clicked, the frame disappears,
but the process itself remains. What really happens is that the GUI part of the application
has exited but the non-GUI part is still alive. Clicking on the close button is a type of
event called window event. As you might expect, there is a class called WindowEvent,
and, you guessed it right, an interface called WindowListener, again in the package
java.awt.event.

However, there are seven methods in this interface. They correspond to actions on
the window such as making it an icon, activating it, closing it, etc. Only one of these
actions is relevant, which is handled by putting some code within the method called
windowClosing as shown next.

public void windowClosing(WindowEvent event) {
System.exit(0);

}

The complete code for the new version is given below.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class FrameDemo2 extends JFrame implements

ActionListener, WindowListener {
private JButton button1;
private JTextField textField1;
private int count;
public FrameDemo2(String title) {

super(title);

Graphical User Interfaces: Programming Support 95

button1 = new JButton("O.K.");
textField1 = new JTextField(20);
getContentPane().add(textField1);
getContentPane().add(button1, BorderLayout.SOUTH);
button1.addActionListener(this);
addWindowListener(this);
pack();
setVisible(true);

}
public void windowOpened(WindowEvent event) {
}
public void windowIconified(WindowEvent event) {
}
public void windowDeiconified(WindowEvent event) {
}
public void windowClosed(WindowEvent event) {
}
public void windowActivated(WindowEvent event) {
}
public void windowDeactivated(WindowEvent event) {
}
public void windowClosing(WindowEvent event) {

System.exit(0);
}
public void actionPerformed(ActionEvent event) {

textField1.setText("You clicked " + ++count + " times so far.");
}
public static void main(String[] s) {

new FrameDemo2("Example of a Frame");
}

}

Another type of widget that we will use in this book is a label, which displays a piece of
text or an image. It cannot be used by the user to enter information.

Here is how to create a label.

JLabel nameLabel = new JLabel("Name:");

The usual method of adding widgets applies to labels as well.

4.5.3 More on widgets and layouts

Let us now extend the program to have two buttons side by side in the ‘southern’ part of
the frame. Our goal here is to display different messages when the two buttons are pressed.

The problem presents two difficulties:

1. We can put only one widget directly in BorderLayout.SOUTH.

96 Language Features for Object-Oriented Implementation

2. We need to know which button is clicked.

To handle the first situation, we introduce a new container called a panel, available via the
class JPanel. Suppose that button1 and button2 are JButton objects. Then, we
create a JPanel object and put the buttons in it, and then put the panel itself in the content
pane as shown below.

JPanel panel = new JPanel();
panel.add(button1);
panel.add(button2);
getContentPane().add(panel, BorderLayout.SOUTH);

Notice that we issue the add method on the panel object itself because it has a much
simpler organisation than JFrame. Panels add the widgets from left to right.

To handle clicks, we need to listen to their occurrences on both buttons. The method
actionPerformed must be modified to determine which action event—click on
button1 or button2—has occurred. The identity of the button is established by asking
the event object itself. Every event supports a method called getSource that returns a
reference to the object that generated the event. The code is thus

if (event.getSource() == button1) {
textField1.setText("Hello");

} else if (event.getSource() == button2) {
textField1.setText("Hi");

}

The complete program is

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
public class FrameDemo3 extends JFrame implements

ActionListener, WindowListener {
private JButton button1;
private JButton button2;
private JTextField textField1;
public FrameDemo3(String title) {

super(title);
button1 = new JButton("Print Hello");
button2 = new JButton("Print Hi");
JPanel panel = new JPanel();
panel.add(button1);
panel.add(button2);
textField1 = new JTextField(20);
getContentPane().add(textField1);
getContentPane().add(panel, BorderLayout.SOUTH);

Graphical User Interfaces: Programming Support 97

button1.addActionListener(this);
button2.addActionListener(this);
addWindowListener(this);
pack();
setVisible(true);

}
public void windowOpened(WindowEvent event) {
}
public void windowIconified(WindowEvent event) {
}
public void windowDeiconified(WindowEvent event) {
}
public void windowClosed(WindowEvent event) {
}
public void windowActivated(WindowEvent event) {
}
public void windowDeactivated(WindowEvent event) {
}
public void windowClosing(WindowEvent event) {

System.exit(0);
}
public void actionPerformed(ActionEvent event) {

if (event.getSource() == button1) {
textField1.setText("Hello");

} else if (event.getSource() == button2) {
textField1.setText("Hi");

}
}
public static void main(String[] s) {

new FrameDemo3("Example of a Frame");
}

}

4.5.4 Drawing shapes

Suppose we want to draw shapes such as squares and circles in a window. This can be ac-
complished by first creating a JFrame and then storing a JPanel object within it. When-
ever Java thinks the window should be refreshed (examples: the program is de-iconified;
the window becomes uncovered) or when the application code makes an explicit request
that the window be refreshed, a method called paintComponent within the frame is
executed, which calls the paintComponent method in the JPanel class. The method
returns nothing(void) and has a single parameter of type Graphics. Here is an example:

public void paintComponent(Graphics g) {
g.drawRect(30, 75, 100, 50);
g.drawOval(30, 40, 50, 50);

}

98 Language Features for Object-Oriented Implementation

The first statement in the method draws a rectangle 100 pixels wide and 50 pixels high. The
left edge of the rectangle is 30 pixels from the left edge of the frame and the top edge is 75
pixels from the top of the frame. Within a graphics window, the coordinate values increase
as we move from left to right and from top to bottom.

The second statement draws a circle using a method that can draw an oval. The third and
fourth coordinates are the width and height of the oval, both of which are the same, so we
end up with a circle. The circle fits within a rectangle whose left edge is 30 pixels from the
left edge of the frame and top edge is 40 pixels from the top of the frame.

The code for the panel that is stored in the frame is given below.

private class DrawingPanel extends JPanel {
public void paintComponent(Graphics g) {

g.drawRect(30, 75, 100, 50);
g.drawOval(30, 40, 50, 50);

}
}

The following code instantiates the panel and adds it to the frame.

getContentPane().add(new DrawingPanel());

4.5.5 Displaying a piece of text

To display a piece of text, the drawString method can be used. Suppose we wish to
display the text OOAD on the screen. In addition to the text, we need to specify the x and
y coordinates of the starting point as parameters to the drawString method, which is
invoked on the Graphics object.

g.drawString("Java", 100, 200);

The above line causes Java to be displayed starting at the point whose x coordinate is 100
and y coordinate is 200. The display uses the graphics object’s current settings of font and
colour. The reader may wish to consult the Java documentation to get more details.

4.6 Long-Term Storage of Objects

Most, if not all, business systems need to maintain data for long periods of time. Since main
memory is volatile and the amount of data that needs to be maintained is large compared to
the amount of main memory, many application systems store most of the data on secondary
storage and retrieve it as needed.

Files on disk are represented as objects in an object-oriented program. Suppose that we
have a file named f1 on disk, which we would like to read in an object-oriented program.

Long-Term Storage of Objects 99

Figure 4.3 Representation of a file as an object

For this, we create an object that gets associated with the file. When the object is manip-
ulated, the file gets manipulated accordingly. The idea is shown in Figure 4.3. Here object
o1 represents the file f1, which resides on disk. The file can be read, written, etc. by
manipulating the object.

To put this idea into practice, we need to find a class that can be instantiated to
get objects such as o1. Usually, such classes are part of the application program-
ming interface supported by the language. For example, in Java there is a class called
ObjectInputStream, using which we can read files containing objects.

As we will see later, we run into some difficulties when we read and write objects. To
ease the process, we first show how to store and retrieve contents of primitive variables
(like int and char).

The first step is to establish a connection with the disk file. An examination of the pack-
age java.io shows several possible classes that will let us create such objects. One of
these is FileOutputStream. The documentation says that this class ‘is meant for writ-
ing streams of raw bytes such as image data’, which implies that we will need the support
of other classes as well.

In any case, the code

FileOutputStream file = new FileOutputStream("someData");

will create a file named someData in the current directory.
An examination of the class reveals no useful methods for writing primitive variables.

For that, there is a class called ObjectOutputStream, which can be constructed as
below.

ObjectOutputStream output = new ObjectOutputStream(file);

100 Language Features for Object-Oriented Implementation

OutputStream

FileOutputStream

Figure 4.4 FileOutputStream and OutputStream

One of the constructors for ObjectOutputStream accepts an OutputStream ob-
ject as a parameter, and as shown in Figure 4.4, FileOutputStream is a subclass of
OutputStream.

We are using the constructor ObjectOutputStream(OutputStream out).
We now proceed to write several types of variables into this file.

int i = 7;
char c = ’q’;
boolean b = true;
double d = 3.14;
output.writeInt(i);
output.writeChar(c);
output.writeBoolean(b);
output.writeDouble(d);
output.close();

To read back what we wrote, we need to create an object of type ObjectInputStream.
The object can be constructed by first creating a FileInputStream object and passing
that object to the constructor of ObjectInputStream.

FileInputStream file = new FileInputStream("someData");
ObjectInputStream input = new ObjectInputStream(file);

Next, we read the variables using the object input.

int i = input.readInt();
char c = input.readChar();
boolean b = input.readBoolean();
double d = input.readDouble();

4.6.1 Storing and retrieving objects

In this section we address the difficulties that we run into when we try to store objects on
disk.

Long-Term Storage of Objects 101

Let us revisit the code we wrote in the previous section and compare the nature of primi-
tive types and objects. The Java API has methods such as writeInt() and readInt()
because int is a primitive type in the language. In contrast, user-defined classes such as
Television or Account are not known to the language designer, so there no methods
such as writeAccount or readTelevision in the Java API. The set of application
classes is infinite, so it is impossible to support a separate method for reading and writing
instances of all these classes!

What is more realistic in a language is to have methods that write any object. So what
we can do in the language is write code such below.

Television television = new Television();
Account account = new Account();
FileOutputStream file = new FileOutputStream("objectData");
ObjectOutputStream output = new ObjectOutputStream(file);
output.writeObject(television);
output.writeObject(account);

In the above, we write a Television object and a Account object using the same
method writeObject. When we read, we should expect to retrieve these two objects
back as in the code below.

Television television;
Account account;
FileInputStream file = new FileInputStream("objectData");
ObjectInputStream input = new ObjectInputStream(file);
television = input.readObject();
account = input.readObject();

4.6.2 Issues in storing and retrieving objects

To gain a basic understanding of how to store and retrieve objects, we need to consider
several issues.

Reconstruction
How is the system to reconstruct the object? To see the problem, it is instructive to look at
the process of storing and retrieving a variable of a primitive type, say, an int. Assume that
an int variable is represented using the 32 bit, 2’s-complement notation. The bit pattern
can be written to disk exactly as it appears in main memory. The result is that secondary
storage will now contain 32 bits representing an integer. Suppose that the int variable
contains the value 7. The value in disk will contain the following bit pattern:

0000 0000 0000 0000 0000 0000 0000 0111

102 Language Features for Object-Oriented Implementation

When code such as int a = input.readInt() is executed to retrieve the value from
the file, the system knows that it must look for a 32-bit sequence of data and interpret it as
an integer. So, it reads that many bits from disk and stores them in the variable a.

On the other hand, not all objects have the same length and format. So, when an object
is to be read back, information about how much to read and what the bits mean should be
available.

Complexity
Consider the following class definitions.

public class StaffMember {
private String name;
private String phone;
private Department department;
// constructors and methods

}

public class Department {
private String departmentName;
private StaffMember manager;
private List employees;
// constructors and methods

}

Figure 4.5 A situation for storing objects

Even with these relatively simple classes, we can get into tricky situations as shown in
the object diagram in Figure 4.5. There are two staff members, denoted by the two ob-
jects staffmember1 and staffmember2. They correspond to employees ‘Tom’ and

Long-Term Storage of Objects 103

v2

v1

v3

Figure 4.6 Modelling the object structure using a directed graph

‘Harry’ with phone numbers 1234567 and 1234568 respectively. Both staff members be-
long to the same department, Business Office. The business office’s manager is Tom and it
currently has just two members: Tom and Harry.

The structure is represented using a directed graph in Figure 4.6, with the objects rep-
resented by vertices and references represented by links. Vertices v1 and v2 correspond to
the two staff members and vertex v3 represents the business office. The arrows represent
references maintained in the objects: for example, the arrow from v1 to v3 indicates that
the object for Tom maintains a reference to the object corresponding to the business office.

A little thought reveals some difficulties in storing structures such as the above.

1. The structure is recursive. When we store v1, we need to copy v3 as well, but stor-
ing v3 requires that we copy v1. This cyclic nature of the relationship needs to be
addressed so that we do not get into an infinite loop.

2. A single object may be referred to from more than one object. For example, v3 is
referred to from both v1 and v2. When we write out v1 in Figure 4.6, for example,
we store an instance of v3. When we copy v2 to disk, a naive approach will store
v3 once again, as in Figure 4.7. (The figure does not show all the arcs.) Apart from
wasting resources, storing multiple copies of an object means that while reading the
data back, these multiple copies will be retrieved, and the resulting configuration after
retrieval will be inconsistent with what existed in memory prior to the save. After the
data in Figure 4.7 is read back from disk, we end up with the configuration in Figure
4.8, which is incorrect.

Clearly, a great deal of sophistication is demanded of the application programs to store
objects on disk. Typically, we would like to avoid introducing such intricate code into our
programs. Since many applications require such a functionality, it is better if such a facility
were supported by the language itself. To handle this common problem, the Java designers
have come up with a facility known as serialization.

104 Language Features for Object-Oriented Implementation

v1 v3 v2 v3

Figure 4.7 Incorrect storage of the objects shown in Figure 4.6

v2 v3 v3

v1

Figure 4.8 Reconstructed relationships based on data retrieved from disk (see Figure 4.7).

4.6.3 The Java serialization mechanism

The problems we have discussed can be handled by using the Java serialization mecha-
nism.1 The major steps in storing a disk avoiding the problems we have discussed are given
below. We omit some of the subtle issues involved in the process, deferring these aspects
to Chapter 7.

1. Make every class whose objects need to be serialized implement the interface
Serialisable in the package java.io.

2. Open a disk file using the classes ObjectOutputStream and
FileOutputStream.

3. Use the method writeObject(Object) in ObjectOutputStream to store
objects.

1The serialization mechanism is a little more general than simply writing objects to disk. It can be thought
of as a mechanism to construct a linear representation of a set of objects which can be used for a multitude of
purposes.

Long-Term Storage of Objects 105

The process of writing out objects using the above approach is called serialization.
The reverse process, whereby data written through serialization is read back to memory

is called deserialization; this is effected as below.

1. Open a disk file using the classes ObjectInputStream and
FileInputStream.

2. Use the method readObject in ObjectInputStream to read objects. The ob-
jects are assigned to variables of the appropriate type. (It is necessary to cast each
object before assignment.)

3. Objects must be read back in the order in which they were written.

The Serializable interface contains no methods, so it is just a ‘marker’ to inform
the system that the corresponding class is Serializable. Objects of type Department and
StaffMember can be serialized by simply declaring them to be Serializable. This
is because they contain instance fields, each of which is defined to be Serializable.
We do this as below.

import java.io.Serializable;
public class StaffMember implements Serializable {

// fields and methods of StaffMember
}

import java.io.Serializable;
public class Department implements Serializable {

// fields and methods of Department
}

The two StaffMember objects and the Department object can be serialized as below.

FileOutputStream file = new FileOutputStream("objectData");
ObjectOutputStream output = new ObjectOutputStream(file);
// Create the StaffMember and Department objects
output.writeObject(departmentObject);

Since departmentObject contains references to the two staff members, storing it re-
sults in the serialization of the staff members as well.

Deserialization can be done as follows:

FileInputStream file = new FileInputStream("objectData");
ObjectInputStream input = new ObjectInputStream(file);
Department aDepartment = (Department) input.readObject();
Staffmember member1 = (StaffMember) aDepartment.employees(0);
Staffmember member2 = (StaffMember) aDepartment.employees(1);

106 Language Features for Object-Oriented Implementation

Although the above code looks simple enough, things do not always work out as easily as
might be implied. A major point is that it may not make sense to serialise certain objects.
Fields defined as static are not automatically serialized by the Java serialization mech-
anism although application code may explicitly serialise them via its own code. There are
also many Java library classes that are not serializable. An example would be the abstract
class java.awt.Graphics discused in the last section. Instances of concrete subclasses
of Graphics such as Graphics2D are created by the system and supplied to application
programs for drawing on the screen. A Graphics object can be thought of as a collection
of the brush (or pen), colour palette, font, etc. Every time the program needs to redraw the
screen, the system supplies it with a new Graphics object. Once the program completes
the drawing operation, the object is no longer applicable, and a new one will be supplied
for a subsequent rendering.

These and some subtle issues related to serialization will be discussed in Chapter 7.

4.7 Discussion and Further Reading

While many of the topics discussed in this chapter may seem very specific to the Java lan-
guage, we would like to state that they are really Java implementations of well-established
concepts in the literature. A sound understanding of the concepts presented here would
help the reader learn equivalent technologies in other languages and systems such as C#
and .net. It seems that many object-oriented languages such as Java and C# tend to bor-
row ideas from each other. So studying a popular object-oriented language well usually
helps in understanding the features of another.

Like most other features in the Java language, the sheer size of the GUI library (packages
and associated classes) can be intimidating to someone new to this style of programming.
The best strategy to understanding the system is to master the basic principles: creation
of a window, adding widgets, techniques of using the layout managers, processing events
and so on. There are just too many classes and the reader will probably learn quickly that
attempts to memorise the methods and their signatures are usually futile.

The members of packages such as java.awt, javax.swing, etc., is a collection of
abstract and concrete classes that collaborate to provide the ability to produce a window on
the screen. The window has no specific application-related capability because it is some-
thing to be determined, designed and implemented by users and application software de-
signers and implementers. The idea is that the JDK classes themselves form a reusable de-
sign that the application development community may adapt as it deems fit. Such a reusable
collection of classes is called a framework.

In the same vein, we would also like to emphasise the importance of being productive:
in the software engineering arena, this translates to being able to gain a good understanding
of the problem to be solved and provide speedy solutions. Since technology changes fairly

Discussion and Further Reading 107

quickly, it is important to understand the general principles behind specific features avail-
able in a language and, at the same time, be an effective toolsmith, which means the ability
to use available tools to craft solutions rather than ‘reinvent the wheel’.

As alluded to in the footnotes, the technique of serialization can be applied for purposes
other than storing objects on the disk. Notice that in serialization we write objects to an
ObjectOutputStream object, producing in effect a sequence of bits that represent one
or more objects. We stored the serialized version of the objects on disk by directing the
stream (ObjectOutputStream object) to a FileOutputStream object. Instead, we
could transfer these bits to any Java Virtual Machine (JVM), perhaps even over a network to
a JVM running on a geographically distant site. This technique is employed for implement-
ing distributed object-oriented systems and the corresponding technology is called Remote
Method Invocation (RMI). We will discuss RMI in Chapter 12.

Projects

1. Consider the following interface:

import java.util.*;
public interface Deque {

public boolean addAtTail(Object value);
public Object removeElementAtTail();
public Object getElementAtTail();
public boolean addAtHead(Object value);
public Object removeElementAtHead();
public Object getElementAtHead();
public int size();
public void clear();
public Iterator iterator();

}

The interface represents a double-ended queue in which members can be added and
removed at either end. The method names should convey the semantics of the opera-
tions. Implement the interface using the class java.util.LinkedList.

2. This project requires you to explore the Java GUI framework on your own, deter-
mine the appropriate classes to use, and write two Java classes that create a GUI
program. The first class CourseProcessor is the GUI interface, and the second
class Course stores information about a single course.

The program accepts and stores information about courses offered in six departments:
Computer Science, Mathematics, Chemistry, Physics, Botany, and Zoology.

The user can do the following.

108 Language Features for Object-Oriented Implementation

(a) Enter information about a course by selecting a department name from a combo
box, typing in the course number, name, number of credits and then pressing the
enter button. The interface checks that the entries are non-empty (display error
message otherwise) and then creates a Course object using the information
and then stores the object in a java.util.Vector object.

(b) Ask to list all courses by clicking on a button labelled display (all). All the
objects in the Vector object are displayed. There is a scrollbar that allows
viewing records that cannot be displayed in the given space. Also, note the
department codes such as CS and MATH inserted by the program.

(c) Ask to list courses of a given department by clicking on a button labelled dis-
play(dept.). Courses for the selected department (via the combo box) in the
Vector object are displayed.

(d) Quit instantly by clicking on the window’s ‘close’ button, or close (after a con-
firm dialog) via an ‘exit’ button within the frame.

Department codes Store the codes associated with departments in static ar-
rays in the class Course. This mapping should not be duplicated and should
be used consistently and reliably within your code. The codes are given below.
Computer Science CS
Physics PHY
Chemistry CHEM
Mathematics MATH
Botany BOT
Zoology ZOO

3. Write a program that draws shapes that look like houses. A house is made up of
a rectangle, on top of which is placed a triangle. You need to write two classes:
one that represents a single house and another that creates and draws the houses. It
should be possible to specify the size of the house. You may make assumptions on
the relationships between the length and height of a house.

4. Write a Java program that accepts the names of a set of files while it is started from
the command line and processes these files as specified below.

(a) The user must supply at least two file names. Thus, the following are among the
infinite number of valid commands.

java Processor infile outfile
java Processor infile1 infile2 outfile
java Processor infilea infileb infilec myoutfile

Discussion and Further Reading 109

The following are invalid.

java Processor
java Processor fileName

For invalid commands, the program prints an error message and terminates.

(b) The very last parameter is the name of an output file. All the other file names
are input files. All are pure text files (no binary data) and you may assume that
the output file is also not specified as an input file. Thus, you do not have to
worry about situations such as

java Processor infilea infileb infilec infileb

(c) Each of the input files is read and copied to the output. The files are opened and
read in the specified order.

(d) If one of the input files is missing, it is skipped and the next input file, if any, is
processed.

(e) If there is a problem opening the output file, the program displays an error
message and exits.

(f) Each line of each input file is read and copied to the output file. Just prior to
copying a line to the output, the name of the input file, the line number in the
input file and the line number in the output file are all given as output.

Exercises

1. Take a look at the package java.util.* and the documentation for the
classes Vector, LinkedList and ArrayList. Compare them for their
features, the interfaces they implement and the class hierarchy that leads to
each of them.

2. The following code attempts to write an instance of C1 followed by an instance
of C2 onto disk and recreate the objects by reading the data from disk. However,
there are errors in the code. Correct them.

import java.io.Serializable;
public class C1 implements Serializable {
}

import java.io.Serializable;
public class C2 {
}

110 Language Features for Object-Oriented Implementation

import java.io.*;
public class C3 {
public static void main(String[] s) {

FileOutputStream fos = new FileOutputStream("f1");
ObjectOutputStream oos = new ObjectOutputStream(fos);
C1 c1 = new C1();
C2 c2 = new C2();
oos.writeObject(c1);
oos.writeObject(c2);
FileInputStream fis = new FileInputStream("f1");
ObjectInputStream ois = new ObjectInputStream(fis);
C2 anotherC2 = (C2) ois.readObject();
C1 anotherC1 = (C1) ois.readObject();

}
}

3. The Java compiler flags an error if a checked exception is not caught. Study
Java documentation to see how Java determines whether a certain exception is
a checked exception or not.

4. An example of an unchecked exception is NumberFormatException.
Come up with an example where it is advisable to catch exceptions of this type.

Introduction to Object-Oriented Analysis,
Design, Implementation and Refactoring

5

Elementary Design Patterns

As one may expect, a software engineer who has had experience developing a number of
application systems is able to utilise the expertise gained in future projects. Although

two applications may not be alike and may exhibit relatively little similarity at the outset,
delving deeper into the design may reveal a number of similar issues. Working on a variety
of projects, a software engineer gets exposure to problems that are common to multiple
scenarios, which hones his/her ability to identify repeated instances of problems and spell
out solutions for them fairly quickly. From an object-oriented perspective, what it means is
that two different applications may provide design issues that are alike; the solutions may
involve the development of a set of classes with similar functionalities and relationships.
Thus the class structures for the two subproblems may end up being the same although
there may be differences in details.

An example from the imperative paradigm may help the reader better understand the
above discussion. Consider two applications, one a university course registration system
and the other a human resource (HR) system for some organisation. In the first example we
may wish to provide screens which allow a student to register for classes that can be selected
from a list. Let us say that we will list courses sorted according to the departments in the
university and that within the department, the courses will be listed in ascending order of
course identifiers—this information is to be retrieved from disk before it can be displayed.
In the second application, let us assume that we want to retrieve employee-related informa-
tion from disk and print the information in the sorted order of departments, and within each
department in the ascending order of employee names. Although the applications are quite
different, the scenarios have similarity: both involve reading information which is data re-
lated to some application from disk and then sorting the data based on some fields in it.
An efficient sorting mechanism should be used in both cases. We could envisage similar
processing in many other applications as well. A professional who has some experience
in application design and is conversant with such scenarios should be able to identify the
proper approach to be taken for solving the problem and employ it effectively.

113

114 Elementary Design Patterns

In object-oriented systems, we break up the system into objects and develop classes
that serve as blueprints for creating objects. Therefore, unlike the imperative world where
we need to recognise the appropriate algorithms for solving a problem, the task in object-
oriented systems is to recognise the necessary classes, interfaces and relationships between
them for solving a specific design problem. Such an approach, which can then be tailored
to solve similar design problems that recur in a multitude of applications, is called a design
pattern.

Here are some quotes from the literature:

Design patterns are partial solutions to common problems such as separating
an interface from a number of alternate implementations, wrapping around a
set of legacy classes, protecting a caller from changes associated with specific
problems. A design pattern is composed of a small number of classes that,
through delegation and inheritance, provide a robust and modifiable solution.
These classes can be adapted and refined for the specific system under con-
struction[5].

A pattern is a way of doing something, or a way of pursuing an intent[20].

A number of design patterns are known, and as one may expect, they vary in the level of
difficulty of comprehending and employing them. In this chapter we study three design pat-
terns. Although the patterns we treat here are relatively simple, they also are quite popular
and useful. So the reader is likely to find them being utilised in applications and may use
them often in his/her own code.

In Section 5.2, we study the Iterator pattern which helps us traverse a collection with no
regard to the way the collection is organised. The second pattern, Singleton, is discussed
in Section 5.3. This pattern is used when it is known that we should have exactly one
instance of a certain class. The main utility of this pattern is thus in its ability to support
data integrity. Finally, we study the Adapter pattern which helps us develop new classes
that satisfy an interface by exploiting the functionality of the existing classes.

5.1 Iterator

In many applications we need to maintain collections which are objects that store other
objects. For example, a telephone company system could have a collection object that stores
an object for each of its customers; an airline system is likely to maintain information about
each of its flights and the references to them may be stored in a collection object. Depending
on the type of application, the actual data structure employed may differ. In Chapters 3 we
talked about collections in general, and in Chapter 4 we discussed collection classes such
as java.util.LinkedList.

Iterator 115

Popular data structures that implement collections include linked lists, queues, stacks,
double-ended queues, binary search trees, B-Trees and hash tables.

Let us imagine a collection implemented as a list that stores instances of type Object.
The list provides several methods for accessing the elements including the following:

1. size(), which returns the number of elements in the list.

2. get(int index), which returns the element at a specific position given by
index.

Consider a client that maintains a list of Objects as below:

private ListImplementation1 elements;

If the client needs to process all of the objects in the collection, it needs to set up a loop to
access every element.

for (int index = 0; index < elements.size(); index++) {
Object object = elements.get(index);
// process object

}

Assume that after the system development we determine that an alternate implementation
of the collection is warranted. The client code is modified so that the elements are a list of
type ListImplementation2:

private ListImplementation2 elements;

Suppose that ListImplementation2 does not support either of the above two meth-
ods, size() and get(int index). Instead, the supported operations include:.

1. reset(): makes the collection ready to return elements.

2. next(): returns an element from the collection in no specific order. Every element
is returned exactly once. The method returns null if there are no more elements.

Obviously, the client code that iterated using size and get(int index) need to be
rewritten. One way to iterate would be:

Object object;
for (elements.reset(), object = elements.next(); object != null;

object = elements.next()) {
// process object

}

This requires modification of code within the client, which is not very desirable. Although
changes are inevitable in most systems, alterations in implementation of a subsystem should

116 Elementary Design Patterns

not necessitate modifications of other subsystems. In other words, the system should be
loosely coupled. Otherwise, the cost of maintenance can be high.

In fact, the above cost can be completely avoided if we ensure that interfaces sup-
ported by classes never change. In the example we have been discussing, this means that
ListImplementation1 and ListImplementation2 both support a common set
of methods.

Another way to ensure less coupling between the client and the collection class would
be to require that collection traversal be implemented by employing a special type of object
which provides a standard way of iterating over the elements, independent of the internal
organisation of the collection. Every collection is then required to return an iterator object,
which provides these standard methods to traverse the collection.

For example, if myCollection refers to an object of type Collection, the expres-
sion

myCollection.iterator()

returns an iterator object.
The iterator supports a method called next(), which returns an element from the col-

lection each time it is called. No element is returned more than once and if enough calls are
made, all elements will be returned. The caller may check whether all elements have been
returned by using the method hasNext(), which returns true if not all elements have
been returned.

Thus, in our scheme, we have the following classes and interfaces as shown in Figure
5.1.

Figure 5.1 Iterator structure

Iterator 117

1. Collection, an interface that allows the usual operations to add and delete objects,
plus the method iterator() that returns an iterator object.

2. Iterator, an interface that supports the operations hasNext() and next()
described earlier.

3. Implementation of the Collection interface: obviously, every implementation
must implement the iterator method by creating an Iterator object and re-
turning it.

4. Implementation of the Iterator interface: this class must cooperate with the code
in (3) above to properly access and return the elements of the collection.

5. Client code that uses the collection.

Let us look at the class LinkedList in Java, which implements Collection and sup-
ports the iterator method.

Collection collection = new LinkedList();
collection.add("Element 1");
collection.add(new Integer(2));
for (Iterator iterator = collection.iterator(); iterator.hasNext();) {

System.out.println(iterator.next());
}

The first line creates a LinkedList object whose reference is stored in the variable
collection. We add two elements to the collection, a String object and an Integer
object. Every object of type Collection supports the iterator method, and this
method is invoked in the initialisation of the for loop. The returned object iterator
is of the type Iterator. Before entering the loop the first time or in any succeeding
iteration, we make sure that we have not processed all the elements. The method call
iterator.hasNext() returns true if there is at least one element in the collection
not yet retrieved since the iterator was created. Such a collection element is retrieved
in the body of the loop by the call iterator.next(). In this code, we simply print the
elements. Thus, we will end up printing Element 1 and 2 in successive lines.

Changes are inevitable in almost all applications, so we must ensure that these changes
do not have widespread ramifications. If every collection class implements the iterator
method that returns an object of type Iterator, clients can use the iterator object to
traverse the collection making the process independent of the collection implementation.
This insulates the client code from changes in the collection class.

One natural question that may arise in this context is the following:why is it necessary to
return an iterator?One could argue that it is enough to ensure that every collection supports
the methods hasNext and next. This argument has some validity, but the drawback of

118 Elementary Design Patterns

this approach is that the design and implementation of the collection class itself becomes
more complicated. In addition to managing the elements in the collection, the collection
class will have to keep track of every client that navigates the elements. This results in the
design being less cohesive. As we shall see in the implementation below, the iterator pattern
provides a clean solution to this by separating each traversal process from the collection
itself.

5.1.1 Iterator implementation

In this section we describe how to implement an iterator in Java. Suppose we have the
interface Queue, which allows adding and removing of objects using the queue discipline
(FIFO).

public interface Queue {
public boolean add(Object value);
public Object remove();

}

We implement the above interface in LinkedQueue. The inner class Node stores an
object and the reference to the next element in the linked list. The head and tail of the
Queue are stored in the variables head and tail respectively.

import java.util.*;
public class LinkedQueue implements Queue {

private Node head;
private Node tail;
private int numberOfElements;
private class Node {

private Object data;
private Node next;
private Node(Object object, Node next) {

this.data = object;
this.next = next;

}
public Object getData() {

return data;
}
public void setNext(Node next) {

this.next = next;
}
public Node getNext() {

return next;
}

}
// Queue methods

}

Iterator 119

The add method creates an instance of Node and inserts it at the tail of the list. The code
is straightforward.

public boolean add(Object value) {
Node node = new Node(value, null);
if (tail == null) {

tail = head = node;
}
else {

tail.setNext(node);
tail = node;

}
numberOfElements++;
return true;

}

The remove method also employs the standard approach to deleting from a queue. Before
changing the value of head, we retrieve the contents of the first node in the queue so we
can return the deleted element.

public Object remove() {
if (head == null) {

return null;
}
Object value = head.getData();
head = head.getNext();
if (head == null) {

tail = null;
}
numberOfElements--;
return value;

}
// The iterator method returns a new Iterator.

public Iterator iterator() {
return new QueueIterator();

}

The iterator is implemented as an inner class. In the interface java.util.Iterator,
there are three methods: hasNext, next, and remove, the last operation being optional.
The Iterator object must maintain the list of elements in the queue that are not yet
returned to the client. For this we take advantage of the fact that the LinkedQueue class
itself has a linked list and that list is accessible from the code within QueueIterator.
However, the iterator class must not modify the field head in LinkedQueue; for this,
we maintain a field called cursor within QueueIterator. This field is initialised to
head when the iterator object is created.

120 Elementary Design Patterns

private class QueueIterator implements Iterator {
private Node cursor;
public QueueIterator() {

cursor = head;
}
// hasNext, next, and remove

}

Our plan is to return the elements as they appear in the queue. Therefore, the code for
hasNext is quite simple: we just need to make sure that cursor is not null. Hence, we
have

public boolean hasNext() {
return cursor != null;

}

To retrieve the next element, we must first make sure that there is at least one element not
supplied to the client. That is, hasNext() does not return a null value. Then, we just
move one element forward by setting cursor to cursor.getNext().

public Object next() {
if (!hasNext()) {

return null;
}
Object object = cursor.getData();
cursor = cursor.getNext();
return object;

}

Finally, the implementation of the remove method is the simplest of all because we de-
cided not to support this functionality! As a result, the method body is empty.

public void remove() {
}

The above implementation shows the clean separation between the collection and the iter-
ator. Another advantage of this approach is that we incur no additional complexity if there
are multiple iterators being employed simultaneously, as the following code illustrates.

Collection collection = new LinkedList();
collection.add(new Integer(1));
collection.add(new Integer(2));
for (Iterator iterator1 = collection.iterator(); iterator1.hasNext();) {

Integer int1 = (Integer) iterator1.next();
int count = 0;
for (Iterator iterator2 = collection.iterator(); iterator2.hasNext();) {

Singleton 121

Integer int2 = (Integer) iterator2.next();
if (int1.equals(int2)) {

count++;
}

}
System.out.println(int1 + count);

}

5.2 Singleton

As a second example of a scenario that repeats across applications, we note that in many
situations we want to ensure that there is just one object of a certain class. For example,
although a computer system may have many printers, there is usually only one spooler. A
company has only one president. A single-processor system obviously can have only one
CPU.

To create a class that can only be instantiated once, we note that the constructor cannot
have the public access specifier. Instead, we provide a method called instance() that
returns the only instance of the class.

public class B {
private static B singleton;
private B() {
}
public static B instance() {

if (singleton == null) {
singleton = new B();

}
return singleton;

}
// application code

}

The major observation to be made here is that to get the only instance of class B, a client
invokes the static method instance. This is because the constructor is private, so the code
from outside the class cannot instantiate B. When the class is loaded, the field singleton
will be set to null. In the very first call to instance, an instance of B is created and the
reference stored in singleton. Further calls to instance result in no new allocations,
and the value in singleton is returned.

Notice some of the other major features of the implementation:

1. Clients need not maintain a variable to keep track of the instance. Simply by invoking
the static method instance, the instance can be retrieved.

2. The class can be subclassed. The subclasses themselves may be singletons.

122 Elementary Design Patterns

3. Instead of using a singleton, one may have a class with static methods. But since
static methods are not virtual, subclassing will not be able to override these methods.

5.2.1 Subclassing singletons

In some applications it is necessary to develop subclasses of a singleton class where the
subclasses themselves are singletons. For an example of such a system, consider a dis-
tributed system with one or more server machines and many client sites. A server machine
runs several server processes. In our example, we have exactly four processes.

1. A general-purpose server that provides many services including time, directory, file,
replication and name services. However, some of these services are somewhat prim-
itive in nature.

2. A directory server that provides sophisticated directory service.

3. A file server that allows reading and updating of data.

4. A file server that allows only reading; only new files can be written.

Since the general-purpose server already provides the basic support for directory and file
management, it seems reasonable to assume that the specialised classes for instantiating the
directory and file servers are subclasses of the class for the general-purpose server. All the
classes are singletons.

For a second example, consider a large corporation with offices all around the world.
The corporate headquarters is located in, say, New York. Every country in which the cor-
poration operates has its own separate national headquarters to control operations within
that country. For instance, the company may operate in France and have its headquarters in
Paris. A sample hierarchy is given in Figure 5.2.

Let us further assume that the functionality of each of the national headquarters is quite
similar to the functionality of the corporate headquarters. However, there are differences

Corporate HeadQuarters

French Headquarters British Headquarters German Headquarters

Figure 5.2 Singleton hierarchy

Singleton 123

between the corporate headquarters and individual national headquarters (in matters such
as labour and other laws, currency, etc.).

Thus, we implement the above system using a singleton class for the corporate head-
quarters and a separate singleton subclass for each of the national headquarters.

In general, the problem of interest in this context boils down to the following: We need
to implement two classes, B and D where B is the superclass of D, and both classes are
singletons.

Consider the implementation of B as we had it in Section 5.2. Suppose we attempt to
implement D as below.

public class D extends B {
private static D singleton;
private D() {
}
public static D instance() {

if (singleton == null) {
singleton = new D();

}
return singleton;

}
// application code

}

This code has a problem: since B has a private constructor, it is impossible for D to be in-
stantiated. The constructor of D makes an implicit call to the no-argument constructor of the
superclass, B, and the compiler blocks this because the superclass’s constructor is private.

The solution developed below recognises the fact that the instantiation of B has to be
done differently when we have a singleton hierarchy.

1. B is instantiated through the instance method. The class does not have any public
constructors.

2. For D to be instantiated, it is necessary that some constructor of B be accessible
from the code within D. Since this constructor cannot be public, it follows that the
constructor be protected. Therefore, we have

public class B {
private static B singleton;
protected B() {
}
public static B instance() {

if (singleton == null) {
singleton = new B();

}
return singleton;

}

124 Elementary Design Patterns

// more application code
}
public class D extends B {

private static D singleton;
protected D() {
}
public static D instance() {

if (singleton == null) {
singleton = new D();

}
return singleton;

}
// more application code

}

3. The code has the flaw that the code within class D can instantiate multiple instances
of B, violating the fundamental property of a singleton class.

Therefore, we must control the behavior when B’s constructor is invoked from D.
This can achieved by using the Java reflection mechanism, which, as we saw earlier,
allows Java code to discover the properties and behaviour of an object at the execution
time. In particular, this mechanism allows, at runtime, the discovery of the name of
the class to which an object belongs, the names of the supported interfaces, field
names, methods and constructors. Let C be a class and p a reference created as
below.

C p = new C();

Since the expression p.getClass().getName() returns ‘C’, we can modify
the class B as below.

import java.lang.reflect.*;
public class B {

private static B singleton;
protected B() {

if (getClass().getName().equals("B")) {
throw new Exception();

}
}
public static B instance() {

if (singleton == null) {
singleton = new B();

}
return singleton;

}
// more application code

}

Adapter 125

Any attempt to instantiate B directly will now fail because the invocation will have to
go through the protected method, which throws an exception whenever B is instan-
tiated. Our solution requires that the constructor knows what kind of object is being
created at the execution time by calling for RTTI , which, in this case, is obtained
through reflection. In this situation, the instanceof operator does not suffice; ev-
ery instance of D is an instance of B and the resulting constructor would not allow the
creation of any object whatsoever.

4. The above modification introduces the problem that instances of B cannot be created
at all! (When the instance() method of B invokes the constructor, an exception
is thrown.) This is corrected by introducing a private constructor. Since constructors
must have differing signatures, we introduce an artificial parameter to this construc-
tor. This step thus yields

import java.lang.reflect.*;
public class B {

private static B singleton;
protected B() throws Exception {

if (getClass().getName().equals("B")) {
throw new Exception();

}
}
private B(int i) {
}
public static B instance() {

if (singleton == null) {
singleton = new B(1);

}
return singleton;

}
// more application code

}

The descendants of B use the protected constructor, but only to create instances of B that are
embedded in instances of the descendants, which cannot be independently accessed. Only
one explicitly constructed instance of B exists, which is done using the private constructor.

5.3 Adapter

Suppose that during the design stage of a piece of software we formalise an interface, i.e.,
come up with a set of methods that we want implemented. Assume that we have available
to us a class whose application programming interface (API)—the set of methods available
to clients—is similar to the demands we have identified, but still does not quite match
the interface we arrived at. Rather than implement the interface completely from scratch,

126 Elementary Design Patterns

which may entail considerable expenditure in terms of time and money, we may be better
off by tweaking the existing class. However, modifying the class directly to arrive at the
new functionality is also not the best approach for two fairly obvious reasons:

1. We need to understand the details of the implementation of the given class, which
may be expensive.

2. Future changes to the original class to fix bugs, enhance functionality, etc., will not
be available in the interface’s implementation.

Therefore, we need a better strategy for this problem.
Before discussing a better solution, let us specify the problem a little more formally.

We have a class C that supports a set, say, MC , of methods. We assume that we need to
implement interface I that contains a set, MI , of methods. By some measure, let us say that
MI resembles MC , but the methods in the two sets are not quite the same. The problem is
to figure out the best way to arrive at an implementation for the interface I given the fact
that there are similarities between the methods in MI and MC .

This is a problem that frequently occurs in practice. As toolsmiths, it is important for us
not to start from scratch nor delve into other’s ventures that require an inordinate investment
of time and money, if at all possible. The strategy that we have in mind is to develop a class
A that implements I , whereby each method in MI is realised by a combination of calls to
a subset of the methods in MC .

The approach outlined above is known as the adapter pattern. Its main function is to
adapt an existing module to implement a given application interface. For obvious reasons,
it promotes code reuse.

The structure of the pattern is shown in Figure 5.3. The interface ClientInterface
corresponds to the interface I in the above discussion, and the client wants to invoke meth-
ods in this interface. For this purpose, the client maintains a reference to an Adapter
instance, which implements the methods in ClientInterface. Notice that method1
and method2 form the set MI in our earlier discussion. The class Adaptee is an exist-
ing class (C in our discussion) and the set of methods formed by adapteeMethod1 and
adapteeMethod2 corresponds to the set MC .

In our strategy, the adapter creates and maintains a reference to an adaptee instance.
Now, suppose the client wants to invoke method method1 in ClientInterface. The
adapter satisfies the request by using the methods of the adaptee.

As an example, suppose we are given the interface Deque. A Deque instance is a
collection of objects in which elements can be added and deleted at either end. More-
over, the interface also supports methods to peek at the head and tail of the collection
(getElementAtHead and getElementAtTail), determine the size (size), delete
all elements (clear), and return an iterator (iterator).

Adapter 127

Figure 5.3 Object adapter structure

import java.util.*;
public interface Deque {

public boolean addAtTail(Object value);
public Object removeElementAtTail();
public Object getElementAtTail();
public boolean addAtHead(Object value);
public Object removeElementAtHead();
public Object getElementAtHead();
public int size();
public void clear();
public Iterator iterator();

}

In Java, we have the class LinkedList in which elements can be added, deleted,
or peeked at any position: (add(int index, E element), remove(int in-
dex), and get(int index)); the size can be determined (size), all elements can
be deleted(clear) and, an iterator on the collection can be retrieved (iterator). How-
ever, there are two disadvantages to using the LinkedList class in place of a Deque
implementation.

1. In some cases, the method names are different from the ones in the Deque interface.

2. The class is more general than the demands of the Deque interface. For instance, the
remove(int index) method can be used to delete an element at any position,
not just at the head or tail. This violates the Deque discipline.

Nonetheless, a subset of the LinkedList class methods have enough similarity with the
methods of Deque that we can use the former in the interface’s implementation. Let us
assume that Deque is implemented in a class named DequeImpl.

128 Elementary Design Patterns

The adapter pattern comes in handy for the purpose. There are two forms of the pattern;
object adapters and class adapters. In this example, we use an object adapter. An object
adapter creates an adapter class that implements a given interface using an instance of an
existing class, which is the adaptee. In the scenario we just described above, the interface is
Deque, the adaptee is an instance of LinkedList, and the adapter is DequeImpl. The
adapter creates and maintains a reference to an adaptee object and, of course, implements
all of the methods the interface. Methods of the interface are implemented by delegating
the work to the adaptee object.

Thus, the class DequeImpl would be structured as below.

import java.util.*;
public class DequeImpl implements Deque {

private List list = new LinkedList();
// methods as dictated by Deque

}

The idea is that the object list will be used to store the deque.
Let us now look at some of the methods. When a request to add at the tail comes in, we
simply insert it at the tail of the List object. This is done by invoking the add method in
List. Thus, the code for addAtTail is

public boolean addAtTail(Object value) {
return list.add(value);

}

Similarly, removing from the tail is accomplished by invoking the remove method in
List as below.

public Object removeElementAtTail() {
if (list.size() > 0) {

return list.remove(list.size() - 1);
}
return null;

}

Notice that we need to protect the code; so, we must ensure that the list contains at least
one element before invoking the remove operation.

The code for accessing the tail element is

public Object getElementAtTail() {
if (list.size() > 0) {

return list.get(list.size() - 1);
}
return null;

}

Adapter 129

The methods for processing the head element are similar.
Methods for getting the size, iterator and clearing the Deque object are quite simple.

public int size() {
return list.size();

}
public void clear() {

list.clear();
}
public Iterator iterator() {

return list.iterator();
}

The equals method can be implemented by comparing the Deque object with another
object, element by element.

public boolean equals(Object object) {
Deque other = (Deque) object;
if (other.size() != this.size()) {

return false;
}
Iterator thisIterator = this.iterator();
Iterator otherIterator = other.iterator();
while (thisIterator.hasNext() && otherIterator.hasNext()) {

if (!(thisIterator.next().equals(otherIterator.next()))) {
return false;

}
}
return true;

}

Note that in the above example we keep a reference to the List object within Deque
rather than extend an implementation of List. We are thus adapting the List object, and
hence the pattern is called an object adapter. The methods of List are unavailable to the
user of DequeImpl.

In contrast, we could have extended LinkedList and called the methods of the su-
perclass to carry out the actions of the Deque interface. Such an adapter is called a class
adapter. This is not as flexible as the object-based approach because we are extending a
specific class and that decision is made at compile time. The object adapter has the advan-
tage that the choice of the adaptee class can be postponed until execution time. Moreover,
in the case of the class adapter, all of the public methods of the extended class are exposed
to the client. The downside to an object adapter is that it introduces one more object into
the system.

130 Elementary Design Patterns

5.4 Discussion and Further Reading

A major goal of employing design patterns is to cater to the changes that may become nec-
essary during the lifetime of a system. Changes are inevitable in any application system and
systems must be designed so that they can handle changes in specifications with minimum
fuss: any specification change should result in the modification of a small number of classes
with no wide ramifications within the system. An implementation based on a design that
cannot accommodate changes very well is likely to have a short life or will be too expensive
to maintain.

Using design patterns can also help in the understanding of designs more quickly be-
cause they are well-understood solutions to frequently occurring problems. For instance, if
we say that a certain part of the system is built using the adapter pattern, we can immedi-
ately understand how classes and interfaces in that part of the system are organised.

Although several design patterns are quite easy to understand, there are some that are
quite difficult. Regardless of the difficulty, most design patterns use a combination of some
of the following approaches.

1. Program to a type. If at all possible, commit to a class as late as possible. This allows
us to use the appropriate implementation at execution time. Since implementations
can change during a system’s lifetime, this strategy helps to ensure that we are adapt-
ing to changes as they occur. For example, in the following code we define mySet
as of type Set rather than as HashSet or TreeSet, which are implementations.

Set mySet;
// code
mySet = new HashSet();

2. To make the above point feasible, ensure that the specifications are spelled out using
interfaces.

3. Use composition and inheritance appropriately. When it is required that we inherit
the type and implementation of a specific class, use inheritance. In many situations,
however, we can get around this requirement and use composition.

4. Isolate what can vary and encapsulate it. Define a suitable interface for the varying
entity. The code in the rest of the system can then use the idea in (1) above to refer
to the actual object that implements the interface. If changes require creating a new
class for the interface, the code that references the old object can easily switch to an
instance of the new class.

The reader should look for the above principles while studying design patterns.

Discussion and Further Reading 131

Understanding design patterns is a relatively easy task compared to identifying situations
where these patterns are applicable. A first step toward meeting this challenging task can be
taken by a thorough understanding of the patterns (study good examples) and convincing
oneself of the fact that the ideas used are indeed useful. After that a little bit of experience
in using the patterns in a few situations should make the process simpler. Once again, it
appears that patterns that are simpler to understand are also easier to apply.

The best source of reference for design patterns is the classic catalog of the patterns
by Gamma, Helm, Johnson, and Vlissides (aka Gang of Four, abbreviated GoF) Design
Patterns: Elements of Reusable Object-Oriented Software [18].This was the first book that
talked about the fundamental patterns (23 of them). A number of other books [29, 34,
17] that explain the patterns are also available in the market, but the GoF book remains
unmatched for its elegance and precision.

Projects

1. The following interface DateInterface contains a subset of the methods in the
class java.util.Date. We have indicated what the methods do mostly by quot-
ing from the documentation in Sun’s JDK. (For more details of what the methods do,
please see the JDK documentation.)

public interface DateInterface {
// Returns the year minus 1900
public int getYear();
// Sets the year
public void setYear(int year);
/* Returns the month represented by this date. The value is

between 0 and 11. */
public int getMonth();
// sets the month
public void setMonth(int month);
// returns the day of the month
public int getDate();
// sets the day of the month
public void setDate(int date);
// Returns the day of the week
public int getDay();
// Returns the hour between 0 and 23
public int getHours();
// Sets the hour
public void setHours(int hours);
// Returns the number of minutes past the hour
public int getMinutes();
// Sets the minutes of this Date object

132 Elementary Design Patterns

public void setMinutes(int minutes);
// Returns the number of seconds past the minute
public int getSeconds();
// Sets the seconds of this Date object
public void setSeconds(int seconds);
/* Returns the number of milliseconds since January 1, 1970,

00:00:00 GMT */
// represented by this Date object.
public long getTime();
// Sets this Date object to represent a point in time that is time
// milliseconds after January 1, 1970 00:00:00 GMT.
public void setTime(long time);

}

Your task is to implement the above interface using the adapter pattern. For this,
locate a class other than java.util.Date to be used as the adaptee. Implement
some suitable constructors as well.

2. Study the class java.util.StringTokenizer. Implement the following in-
terface, PushbackTokenizer, as a class adaptor with StringTokenizer as
the adaptee.

public interface PushbackTokenizer {
// Returns the next token

public String nextToken();
// Returns true if and only if there are more tokens

public boolean hasMoreTokens();
/* The token read is pushed back, so it can be read again
using nextToken.*/

public void pushback();
}

Exercises

1. The interface java.util.Iterator contains an additional method remove().
Study what this method does and explain any difficulties that you forsee if this is
implemented.

2. Implement a list class that implements the following interface:

// add at the tail
public void add(Object object);
// add at the given position

Discussion and Further Reading 133

public void add(Object object, int index);
// delete and return the element at the given position;
// return null if no such element exists
public Object delete(int index);
// return the number of elements in the list.
public int size();
// return an object of type java.util.ListIterator
public ListIterator listIterator();

3. Look up Java documentation for details on the clone method. Suppose that a sin-
gleton class implements the clone() method. How does it affect the integrity of
the system? Discuss how you may circumvent these difficulties.

4. We have already noted that the singleton pattern can be realised by having a class that
contains nothing but a set of static methods. Find a real-life example of a singleton
class and show that this observation is true. Next, identify a pair of classes in which
one is a subclass of the other and both are singletons. Attempt to use the ‘static
methods approach’ to make them singletons and convince yourself of the difficulties.

5. Identify singleton classes in a university that maintains several separate collections
including the following for storing the list of faculty members, the list of students, the
list of staff members, and one that maintains a list of these collections themselves.

6. Compare and contrast the interfaces Enumeration and Iterator in
java.util.

7. Suppose that we would like to implement a Java interface using the class adapter pat-
tern. However, exposing some methods of the adaptee could result in loss of integrity.
Suggest a way to hide such methods.

8. What are the proper methods for a Stack object? With this background, examine
the design of the java.util.Stack class and see if it the design is sound.

6

Analysing a System

In Chapters 6 through 8, we examine the essential steps in object-oriented software develop-
ment: analysis, design, and implementation. To illustrate the process, we study a relatively
simple example—a piece of software to manage a small library—whose function is limited
to that of lending books to its members, receiving them back, doing the associated opera-
tions such as querying, registering members, etc., and keeping track of these transactions.
In the course of these chapters, we go through the entire process of analysing, designing
and implementing this system.

The software construction process begins with an analysis that determines the require-
ments of the system, which is what we introduce in this chapter. At this stage the focus
is on determining what the system must perform without regard to the methodology to be
employed. This process is carried out by a team of analysts, perhaps familiar with the spe-
cific type of application. The requirements are spelled out in a document known variously
as the ‘Requirements Specification’, ‘System Requirements’, etc. Using these, the system
analyst creates a model of the system, enabling the identification of some of the compo-
nents of the system and the relationships between them. The end product of this phase is a
conceptual model for the system which describes the functionality of the system, identifies
its conceptual entities and records the nature of the associations between these entities.

Once the analysis has been satisfactorily completed, we move on to the design phase,
which is addressed in the first part of Chapter 7. The design starts with a detailed breakdown
of how the system will emulate the behaviour outlined in the model. In the course of this
breakdown, all the parts of the system and their responsibilities are clearly identified. This
step is followed by determining the software and hardware structures needed to implement
the functionality discovered in the analysis stage. In the object-oriented world, this would
mean deciding on the language or languages to be used, the packages, the platform, etc.
The second part of Chapter 7 looks at implementation, wherein we discuss the lower-level
issues, language features employed, etc.

A question that a conscientious beginner often ponders is: Did I do a good job of the

134

Overview of the Analysis Phase 135

design? or Is my design really object-oriented? Indeed, in the real world, it is often the
case that designs conform to object-oriented principles to varying degrees. Fortunately, in
addition to the broad guidelines for what constitutes a good object-oriented design, there
are some more specific rules that can be applied to look for common mistakes and correct
them. These rules, known as refactoring rules, are more commonly presented as a means
for improving the design of the existing code. They are, however, just as useful to check the
design of a system before it is fully implemented. In Chapter 8, we introduce the concept
of refactoring and apply these rules to our small system.

As our main focus in this book is the elaboration of the process of analysis, design,
and implementation, we will bypass many software engineering and project manage-
ment issues. We will not dwell on conceptual frameworks such as agile software de-
velopment for managing the software development life cycle. We use UML notations
in an appropriate manner that is sufficient to describe our design, but do not cover
these exhaustively. For a detailed exposition on these topics, the reader is referred to the
works cited at the end of each chapter.

6.1 Overview of the Analysis Phase

To put it in a simple sentence, the major goal of this phase is to address this basic question:
what should the system do? A typical computer science student writes a number of pro-
grams by the time he/she graduates. Typically, the program requirements are written up by
the instructor: the student does some design, writes the code, and submits the program for
grading. To some extent, the process of understanding the requirements, doing the design,
and implementing that design is relatively informal. Requirements are often simple and any
clarifications can be had via questions in the classroom, e-mail messages, etc.

The above simple-minded approach does not quite suffice for ‘real-life’ projects for a
number of reasons. For one reason, such systems are typically much bigger in scope and
size. They also have complex and ambiguously-expressed requirements. Third, there is
usually a large amount of money involved, which makes matters quite serious. For a fourth
reason, hard as it may be for a student to appreciate it, project deadlines for these ‘real-life’
projects are more critical. (Users are fussier than instructors!)

However, as in the case of the classroom assignment, there are still two parties: the user
community, which needs some system to be built and the development people, who are
assigned to do the work. The process could be split into three activities:

1. Gather the requirements: this involves interviews of the user community, reading of
any available documentation, etc.

2. Precisely document the functionality required of the system.
3. Develop a conceptual model of the system, listing the conceptual classes and their

relationships.

136 Analysing a System

It is not always the case that these activities occur in the order listed. In fact, as the an-
alysts gather the requirements, they will analyse and document what they have collected.
This may point to holes in the information, which may necessitate further requirements
collection.

6.2 Stage 1: Gathering the Requirements

The purpose of requirements analysis is to define what the new system should do. The
importance of doing this correctly cannot be overemphasized. Since the system will be
built based on the information garnered in this step, any errors made in this stage will result
in the implementation of a wrong system. Once the system is implemented, it is expensive
to modify it to overcome the mistakes introduced in the analysis stage.

Imagine the scenario when you are asked to construct software for an application. The
client may not always be clear in his/her mind as to what should be constructed. One reason
for this is that it is difficult to imagine the workings of a system that is not yet built. Only
when we actually use a specific application such as a word processor do we start realising
the power and limitations of that system. Before actually dealing with it, one may have
some general notions of what one would like to see, but may find it difficult to provide
many details.

Incompleteness and errors in specifications can also occur because the client does not
have the technical skills to fully realise what technology can and cannot deliver. Once
again, the general concepts can be stated, but specifics are harder. A third reason for omis-
sions is that it is all too common to have a client who knows the system very well and
consequently either assumes a lot of knowledge on the part of the analyst or simply skips
over the ‘obvious details.’

Requirements for a new system are determined by a team of analysts by interacting with
teams from the company paying for the development (clients) and the user community,
who ultimately uses the system on a day-to-day basis. This interaction can be in the form
of interviews, surveys, observations, study of existing manuals, etc.

Broadly speaking, the requirements can be classified into two categories:

• Functional requirements These describe the interaction between the system and its
users, and between the system and any other systems, which may interact with the
system by supplying or receiving data.

• Non-functional requirements Any requirement that does not fall in the above cat-
egory is a non-functional requirement. Such requirements include response time, us-
ability and accuracy. Sometimes, there may be considerations that place restrictions
on system development; these may include the use of specific hardware and software
and budget and time constraints.

Stage 1: Gathering the Requirements 137

It should be mentioned that initiating the development cycle for a software system is usually
preceded by a phase that includes the initial conception and planning.A developer would be
approached by a client who wishes to have a certain product developed for his/her business.
There would be a domain associated with the business, which would have its own jargon.
Before approaching the developer, one would assume that the client has determined that a
need for a product exists. Once all these issues are sorted out, the developer(s) would meet
with the client and, perhaps several would-be end-users, to determine what is expected of
the system. Such a process would result in a list of requirements of the system.

As mentioned at the beginning of this chapter, we study the development process by
analysing, designing, and implementing a simple library system; this is introduced next.

6.2.1 Case study introduction

Let us proceed under the assumption that developers of our library system have available
to them a document that describes how the business is conducted. This functionality is
described as a list of what are commonly called business processes.

The business processes of the library system are listed below.

• Register new members The library receives applications from people who want
to become library members, whom we alternatively refer to as users. While applying
for membership, a person supplies his/her name, phone number and address to the
library. The library assigns each member a unique identifier (ID), which is needed
for transactions such as issuing books.

• Add books to the collection We will make the assumption that the collection in-
cludes just books. For each book the library stores the title, the author’s name, and
a unique ID. (For simplicity, let us assume that there is only one author per book. If
there are multiple authors, let us say that the names will have to be concatenated to
get a pretty huge name such as ‘Brahma Dathan and Sarnath Ramnath.’ As a result,
to the system, it appears that there is just one author.)

When it is added to the collection, a book is given a unique identifier by the clerk.
This ID is based on some standard system of classification.

• Issue a book to a member(or user) To check out books, a user (or member) must
identify himself to a clerk and hand over the books. The library remembers that the
books have been checked out to the member. Any number of books may be checked
out in a single transaction.

• Record the return of a book To return a book, the member gives the book to
a clerk, who submits the information to the system, which marks the book as ‘not

138 Analysing a System

checked out’. If there is a hold on the book, the system should remind the clerk to set
the book aside so that the hold can be processed.

• Remove books from the collection From time to time, the library may remove
books from its collection. This could be because the books are worn-out, are no
longer of interest to the users, or other sundry reasons.

• Print out a user’s transactions Print out the interactions (book checkouts, re-
turns, etc.) between a specific user and the library on a certain date.

• Place/remove a hold on a book When a user wants to put a hold, he/she supplies
the clerk with the book’s ID, the user’s ID, and the number of days after which the
book is not needed. The clerk then adds the user to a list of users who wish to borrow
the book. If the book is not checked out, a hold cannot be placed. To remove a hold,
the user provides the book’s ID and the user’s ID.

• Renew books issued to a member Customers may walk in and request that sev-
eral of the books they have checked out be renewed (re-issued). The system must
display the relevant books, allow the user to make a selection, and inform the user of
the result.

• Notify member of book’s availability Customers who had placed a hold on a
book are notified when the book is returned. This process is done once at the end of
each day. The clerk enters the ID for each book that was set aside, and the system
returns the name and phone number of the user who is next in line to get the book.

In addition, the system must support three other requirements that are not directly related
to the workings of a library, but, nonetheless, are essential.

• A command to save the data on a long-term basis.

• A command to load data from a long-term storage device.

• A command to quit the application. At this time, the system must ask the user if data
is to be saved before termination.

To keep the process simple, we restrict our attention for the time being to the above oper-
ations. A real library would have to perform additional operations like generating reports
of various kinds, impose fines for late returns, etc. Many libraries also allow users to check
out books themselves without approaching a clerk. Whatever the case may be, the analysts
need to learn the existing system and the requirements. As mentioned earlier, they achieve
this through interviews, surveys, and study.

Functional Requirements Specification 139

Our goal here is to present the reader with the big picture of the entire process so that
the beginner is not overwhelmed by the complexity or bogged down in minutiae. Keeping
this in mind, we will be designing a system that the reader may find somewhat simplistic,
particularly if one compares this with the kinds of features that a ‘real’ system in today’s
market can provide. While there is some truth to this observation, it should be noted that
the simplification of the system has been done with a view to reducing unnecessary de-
tail so that we can focus instead on the development process, elaborate on the use of tools
described previously, and explain through an example how good design principles are ap-
plied. In the course of applying the above, we come with a somewhat simplified sample
development process that may be used as a template by someone who is getting started on
this subject.

Assuming that we have a good grasp of the requirements, we need to document the
functional requirements of the application and determine the system’s major entities and
their relationships. As mentioned earlier, the steps may be, and are often, carried out as an
iterative, overlapping process; for pedagogical reasons, we discuss them as a sequence of
distinct activities.

6.3 Functional Requirements Specification

It is important that the requirements be precisely documented. The requirements specifica-
tion document serves as a contract between the users and the developers. When it is time
to deliver the system, there should be no confusion as to what the expectations are. Equally
or perhaps even more important, it also tells the designers the expected functionality of the
system. Moreover, as we attempt to create a precise documentation of the requirements, we
will discover errors and omissions.

An accepted way of accomplishing this task is the use case analysis, which we study now.

6.3.1 Use case analysis

Use case analysis is a case-based way of describing the uses of the system with the goal of
defining and documenting the system requirements. It is essentially a narrative describing
the sequence of events (actions) of an external agent (actor) using the system to complete
a process. It is a powerful technique that describes the kind of functionality that a user
expects from the system. Use cases have two or more parties: agents who interact with
the system and the system itself. In our simple library system, the members do not use the
system directly. Instead, they get services via the library staff.

To initiate this process, we need to get a feel for how the system will interact with the
end-user. We assume that some kind of a user-interface is required, so that when the system
is started, it provides a menu with the following choices:

140 Analysing a System

1. Add a member
2. Add books
3. Issue books
4. Return books
5. Remove books
6. Place a hold on a book
7. Remove a hold on a book
8. Process Holds: Find the first member who has a hold on a book
9. Renew books

10. Print out a member’s transactions
11. Store data on disk
12. Retrieve data from disk
13. Exit

The above menu gives us the list of ways in which the system is going to be used. There are
some implicit requirements associated with these operations. For instance, when a book is
checked out, the system must output a due-date so that the clerk can stamp the book. This
and other such details will be spelled out when we elaborate on the use cases.

Add Member

Add Book

Issue Books

Return Books

Print Transactions

Remove Books

Place Hold

Remove Hold

Process Holds

Renew Books

Save Data

Retrieve Data

Exit

Figure 6.1 Use case diagram for the library system

Functional Requirements Specification 141

The actors in our system are members of the library staff who manage the daily opera-
tions. This idea is depicted in the use case diagram in Figure 6.1, which gives an overview
of the system’s usage requirements. Notice that even in the case of issuing books, the func-
tionality is invoked by a library staff member, who performs the actions on behalf of a
member.

We are about to take up the task of specifying the individual use cases. In order to keep
the discussion within manageable size and not lose focus, we make the following assump-
tion: While the use cases will state the need for the system to display different messages
prompting the user for data and informing the results of operations, the user community is
not fussy about the minute details of what the messages should be; any meaningful mes-
sage is acceptable. For example, we may specify in a use case that the system ‘informs
the clerk if the member was added’. The actual message could be any one of a number of
possibilities such as ‘Member added’, or ‘Member registered’, etc.

Use case for registering a user Our first use case is for registering a new user and is given
in Table 6.1. Recall from our discussion in Chapter 2 that use cases are specified in a two-
column format, where the left-column states the actions of the actor and the right-column
shows what the system does.

The above example illustrates several aspects of use cases.

1. Every use case has to be identified by a name. We have given the name Register New
Member to this use case.

2. It should represent a reasonably-sized activity in the organisation. It is important
to note that not all actions and operations should be identified as use cases. As an
extreme example, stamping a due-date on the book should not be a use case. A use
case is a relatively large end-to-end process description that captures some business
process that a client purchasing the software needs to perform. In some instances, a
business process may be decomposed into more than one use case, particularly when
there is some intervening real-world event(s) for which the agent has to wait for an
unspecified length of time. An example of such a situation is presented later in this
chapter.

3. The first step of the use case specifies a ‘real-world’ action that triggers the exchange
described in the use case. This is provided mainly for the sake of completeness and
does not have much bearing on the actual design of the system. It does, however,
serve a useful purpose: by looking at the first steps of all the use cases, we can verify
that all external events that the system needs to respond to have been taken care of.

4. The use case does not specify how the functionality is to be implemented. For exam-
ple, the details of how the clerk enters the required information into the system are
left unspecified. Although we assume that the user interacts with the system through

142 Analysing a System

Table 6.1 Use case Register New Member

Actions performed by the actor Responses from the system
1. The customer fills out an application
form containing the customer’s name, ad-
dress, and phone number and gives this to
the clerk.
2. The clerk issues a request to add a new
member.

3. The system asks for data about the new
member.

4. The clerk enters the data into the sys-
tem.

5. Reads in data, and if the member can be
added, generates an identification number
(which is not necessarily a number in the
literal sense just as social security num-
bers and phone numbers are not actually
numbers) for the member and remem-
bers information about the member. In-
forms the clerk if the member was added
and outputs the member’s name, address,
phone and id.

6. The clerk gives the user his identifica-
tion number.

the menu, which was briefly described earlier, we do not specify the details of this
mechanism. The use case also does not state how the system accomplishes the task
of registering a user: what software components form the system, how they may in-
teract, etc.

5. The use case is not expected to cover all possible situations. While we would expect
that the sequence of events that are specified in the above use case is what would
actually happen in a library when a person wants to be registered, the use case does
not specify what the system should do if there are errors. In other words, the use case
explains only the most commonly-occurring scenario, which is referred to as the main
flow. Deviations from the main flow due to occurrences of errors and exceptions are
not detailed in the above use case.

Use case for adding books Next, we look at the use case for adding new books in Table
6.2. Notice that we add more than one book in this use case, which involves a repetitive

Functional Requirements Specification 143

process captured by a go-to statement in the last step. Notice that details of how the iden-
tifier is generated are not specified. From the point of view of the system analyst, this is
something that the actor is expected to take care of independently.

Table 6.2 Use case Adding New Books

Actions performed by the actor Responses from the system

1.Library receives a shipment of books
from the publisher.
2. The clerk issues a request to add a new
book.

3. The system asks for the identifier, title,
and author name of the book.

4. The clerk generates the unique identi-
fier, enters the identifier, title, and author
name of a book.

5. The system attempts to enter the infor-
mation in the catalog and echoes to the
clerk the title, author name, and id of the
book. It then asks if the clerk wants to en-
ter information about another book.

6. The clerk answers in the affirmative or
in the negative.

7. If the answer is in the affirmative, the
system goes to Step 3. Otherwise, it exits.

Use case for issuing books Consider the use case where a member comes to the check-
out counter to issue a book. The user identifies himself/herself to a clerk, who checks out
the books for the user. It proceeds as in Table 6.3.

There are some drawbacks to the way this use case is written. One is that it does not
specify how due-dates are computed. We may have a simple rule (example: due-dates are
one month from the date of issue) or something quite complicated (example: due-date is
dependent on the member’s history, how many books have been checked out, etc.). Putting
all these details in the use case would make the use case quite messy and harder to under-
stand. Rules such as these are better expressed as Business Rules. A business rule may be
applicable to one or more use cases.

The business rule for due-date generation is simple in our case. It is Rule 1 given in Table
6.12 along with all other rules for the system.

144 Analysing a System

Table 6.3 Use case Book Checkout

Actions performed by the actor Responses from the system
1. The member arrives at the check-out
counter with a set of books and supplies
the clerk with his/her identification num-
ber.
2. The clerk issues a request to check out
books.

3. The system asks for the user id.
4. The clerk inputs the user ID to the sys-
tem.

5. The system asks for the ID of the book.
6. The clerk inputs the ID of a book that
the user wants to check out.

7. The system records the book as having
been issued to the member; it also records
the member as having possession of the
book. It generates a due-date. The system
displays the book title and due-date and
asks if there are any more books.

8. The clerk stamps the due-date on the
book and replies in the affirmative or neg-
ative.

9. If there are more books, the system
moves to Step 5; otherwise it exits.

10. The customer collects the books and
leaves the counter.

A second problem with the use case is that as written above, it does not state what to do
in case things go wrong. For instance,

1. The person may not be a member at all. How should the use case handle this situa-
tion? We could abandon the whole show or ask the person to register.

2. The clerk may have entered an invalid book id.

To take care of these additional situations, we modify the use case as given in Table 6.4.
We have resolved these issues in Step 7 by having the system check whether the book is
issuable, which can be expressed as a business rule. This could check one (or more) of
several conditions: Is the member in good standing with the library? Is there some reason
the book should not be checked out? Has the member checked out more books than permitted

Functional Requirements Specification 145

(if such limits were to be imposed)? The message displayed by the system in Step 7 informs
the clerk about the result of the transaction. In a real-life situation, the client will probably
want specific details of what went wrong; if they are important to the client, these details
should be expressed in the use case. Since our goal is to cover the basics of requirements
analysis, we sidestep the issue.

Let us proceed to write more use cases. For the most part, these are quite elementary,
and the reader may well choose to skip the details or try them out as an exercise.

Use case for returning books Users return books by leaving them on a library clerk’s
desk; the clerk enters the book ids one by one to return them. Table 6.5 gives the details
of the use case. Here, as in the use case for issuing books, the clerk may enter incorrect
information into the system, which the use case handles. Notice that if there is a hold on
the book, that information is printed for use by the clerk at a later time.

Use cases for removing (deleting) books, printing member transactions, placing a
hold, and removing a hold The next four use cases deal with the scenarios for removing
books (Table 6.6), printing out member transactions (Table 6.7), placing a hold (Table 6.8),
and removing a hold (Table 6.9). In the second of these, the system does not actually print
out the transactions, but only displays them on the interface. We are assuming that the
necessary facilities to print will be a part of the underlying platform.

In Step 5 in Table 6.6, we allow for the possibility that the deletionmay fail. In this event,
we assume that there will be some meaningful error message so that the clerk can take
corrective action. We shall revisit this issue when we discuss the design and implementation
in the next chapter.

There may be some variations in the way these scenarios are played out. When plac-
ing or removing a hold, the library staff may actually want to see a message that the
operation was successfully completed. These requirements would modify the manner in
which the system responds in these use cases. While such information should be gleaned
from the client as part of the requirements analysis, it is often necessary to go back
to the client after the use cases are written, to ensure that the system interacts in the
desired manner with the operator.

Use case for processing holds Given in Table 6.10, this use case deals with processing
the holds at the end of each day. In this case, once the contact information for the member
has been printed out, we assume that the library will contact the member. The member may
not come to collect the book within the specified time, at which point the library will try to
contact the next member in line. All this is not included in the use case. If we were to do so,
the system would, in essence, be waiting on the user’s response for a long period of time.
We therefore leave out these steps and when the next user has to be contacted, we simply
process holds on the book once again.

146 Analysing a System

How do business rules relate to use cases?

Business rules can be broadly defined as the details through which a business imple-
ments its strategy. Business analysts perform the task of gathering business rules, and
these belong to one of four categories:

• Definitional rules, which explain what is meant when a certain word is used
in the context of the business operations. These may include special technical
terms, or common words that have a particular significance for the business.
For instance the term Book in the context of the library refers to a book owned
by the library.

• Factual rules, which explain basic things about the business’s operations; they
tell how the terms connect to each other. A library, for instance, would have
rules such as ‘Books are issued to Members,’ and ‘Members can place holds
on Books.’

• Constraints, which are specific conditions that govern the manner in which
terms can be connected to each other. For instance, we have a constraint that
says ‘Holds can be placed only on Books that are currently checked out.’

• Derivations, which are knowledge that can be derived from the facts and con-
straints. For instance, a bank may have the constraint, “The balance in an ac-
count cannot be less than zero,” from which we can derive that if an amount
requested for withdrawal is more than the balance, then the operation is not
successful.

When writing use cases, we are mainly concerned with constraints and derivations.
Typically, such business rules are in-lined with the logic of the use-case. The use-case
may explicitly state the test that is being performed and cite the appropriate rule, or
may simply mention that the system will respond in accordance with a specific rule.

In addition to the kinds of rules we have presented for this case study, there are
always implicit rules that permeate the entire system. A common example of this is
validation of input data; a zip code, for instance, can be validated against a database
of zip-codes. Note that this rule does not deal with how entities are connected to one
another, but specifies the required properties of a data element. Such constraints do
not belong in use cases, but could be placed in classes that store the corresponding
data elements.

Functional Requirements Specification 147

Table 6.4 Use case Book Checkout revised

Actions performed by the actor Responses from the system
1. The member arrives at the check-out
counter with a set of books and supplies
the clerk with his/her identification num-
ber.
2. Clerk issues a request to check out
books.

3. The system asks for the user id.
4. Clerk inputs the user ID to the system.

5. If the ID is valid, the system asks for the
ID of the book; otherwise it prints an ap-
propriate message and exits the use case.

6. The clerk inputs the identifier of a book
that the user wants to check out.

7. If the ID is valid and the book is is-
suable to the member, the system records
the book as having been issued to the
member; It records the member as hav-
ing possession of the book and generates a
due-date as in Rule 1. It then displays the
book’s title and due-date. If the book is
not issuable as per Rule 2, the system dis-
plays a suitable error message. The sys-
tem asks if there are more books.

8. The clerk stamps the due-date, prints
out the transaction (if needed) and replies
positively or negatively.

9. If there are more books for checking
out, the system goes back to Step 5; oth-
erwise it exits.

10. The clerk stamps the due date and
gives the user the books checked out. The
customer leaves the counter.

Use case for renewing books This use case (see Table 6.11) deals with situations where
a user has several books checked out and would like to renew some of these. The user
may not remember the details of all of them and would perhaps like the system to prompt
him/her. We shall assume that users only know the titles of the books to be renewed (they

148 Analysing a System

do not bring the books or even the book ids to the library) and that most users would have
borrowed only a small number of books. In this situation, it is entirely appropriate for the
system to display the title of each book borrowed by the user and ask if that book should
be renewed.

It may be the case that a library has additional rules for renewability: if a book has a hold
or a member has renewed a book twice, it might not be renewable. In the above interac-
tion, the system displays all the books and determines the renewability only if the member
wishes to renew the book. A different situation could arise if we require that the system
display only the renewable books. (The system would have to have a way for checking
renewability without actually renewing the book, which places additional requirements on
the system’s functionality.) For our simple library, we go with the scenario described in the
above table.

Table 6.5 Use case Return Book

Actions performed by the actor Responses from the system
1. The member arrives at the return
counter with a set of books and leaves
them on the clerk’s desk.
2. The clerk issues a request to return
books.

3.The system asks for the identifier of the
book.

4. The clerk enters the book identifier.
5. If the identifier is valid, the system
marks that the book has been returned and
informs the clerk if there is a hold placed
on the book; otherwise it notifies the clerk
that the identifier is not valid. It then asks
if the clerk wants to process the return of
another book.

6. The clerk answers in the affirmative or
in the negative and sets the book aside in
case there is a hold on the book. (See Rule
5.)

7. If the answer is in the affirmative, the
system goes to Step 3. Otherwise, it exits.

.

Functional Requirements Specification 149

Table 6.6 Use case Removing Books

Actions performed by the actor Responses from the system
1. Librarian identifies the books to be
deleted.
2. The clerk issues a request to delete
books.

3. The system asks for the identifier of the
book.

4. The clerk enters the ID for the book.
5. The system checks if the book can be
removed using Rule 3. If the book can be
removed, the system marks the book as no
longer in the library’s catalog. The system
informs the clerk about the success of the
deletion operation. It then asks if the clerk
wants to delete another book.

6. The clerk answers in the affirmative or
in the negative.

7. If the answer is in the affirmative, the
system goes to Step 3. Otherwise, it exits.

Table 6.7 Use case Member Transactions

Actions performed by the actor Responses from the system
1. The clerk issues a request to get mem-
ber transactions.

2. The system asks for the user ID of the
member and the date for which the trans-
actions are needed.

3. The clerk enters the identity of the user
and the date.

4. If the ID is valid, the system outputs
information about all transactions com-
pleted by the user on the given date.
For each transaction, it shows the type
of transaction (book borrowed, book re-
turned or hold placed) and the title of the
book.

5. Clerk prints out the transactions and
hands them to the user.

150 Analysing a System

Table 6.8 Use case Place a Hold

Actions performed by the actor Responses from the system
1. The clerk issues a request to place a
hold.

2. The system asks for the book’s ID, the
ID of the member, and the duration of the
hold.

3. The clerk enters the identity of the user,
the identity of the book and the duration.

4. The system checks that the user and
book identifiers are valid and that Rule 6
is satisfied. If yes, it records that the user
has a hold on the book and displays that;
otherwise, it outputs an appropriate error
message.

Table 6.9 Use case Remove a Hold

Actions performed by the actor Responses from the system
1. The clerk issues a request to remove a
hold.

2. The system asks for the book’s ID and
the ID of the member.

3. The clerk enters the identity of the user
and the identity of the book.

4. The system removes the hold that the
user has on the book (if any such hold ex-
ists), prints a confirmation and exits.

6.4 Defining Conceptual Classes and Relationships

As we discussed earlier, the last major step in the analysis phase involves the determination
of the conceptual classes and the establishment of their relationships. For example, in the
library system, some of the major conceptual classes include members and books. Members
borrow books, which establishes a relationship between them.

We could justify the usefulness of this step in at several ways:

1. Design facilitation Via use case analysis, we determined the functionality re-
quired of the system. Obviously, the design stage must determine how to implement
the functionality. For this, the designers should be in a position to determine the

Defining Conceptual Classes and Relationships 151

Table 6.10 Use case Process Holds

Actions performed by the actor Responses from the system
1. The clerk issues a request to process
holds (so that Rule 5 can be satisfied).

2. The system asks for the book’s ID.
3. The clerk enters the ID of the book.

4. The system returns the name and phone
number of the first member with an unex-
pired hold on the book. If all holds have
expired, the system responds that there is
no hold. The system then asks if there are
any more books to be processed.

5. If there is no hold, the book is then
shelved back to its designated location in
the library. Otherwise, the clerk prints out
the information, places it in the book and
replies in the affirmative or negative.

6. If the answer is yes, the system goes to
Step 2; otherwise it exits.

classes that need to be defined, the objects to be created, and how the objects interact.
This is better facilitated if the analysis phase classifies the entities in the application
and determines their relationships.

2. Added knowledge The use cases do not completely specify the system. Some of
these missing details can be filled in by the class diagram.

3. Error reduction In carrying out this step, the analysts are forced to look at the
system more carefully. The result can be shown to the client who can verify its
correctness.

4. Useful documentation The classes and relationships provide a quick introduction
to the system for someone who wants to learn it. Such people include personnel who
join the project to carry out the design or implementation or subsequent maintenance
of the system.

In practice, an analyst will probably use multiple methods to come up with the conceptual
classes and their relationships. In this case study, however, we use a simple approach: we
examine the use cases and pick out all the nouns in the description of the requirements. For
example, from the text of the use case for registering new users, we can pick out the nouns.

152 Analysing a System

Table 6.11 Use case Renew Books

Actions performed by the actor Responses from the system

1. Member makes a request to renew sev-
eral of the books that he/she has currently
checked out.

2. Clerk issues a request to renew books.
3. System asks for the member’s ID.

4. The clerk enters the ID into the system.
5. System checks the member’s record
to find out which books the member has
checked out. If there are none, the system
prints an appropriate message and exits;
otherwise it moves to Step 6.
6. The system displays the title of the next
book checked out to the member and asks
whether the book should be renewed.

7. The clerk replies yes or no.
8. The system attempts to renew the book
using Rule 4 and reports the result. If
the system has displayed all checked-out
books, it reports that and exits; otherwise
the system goes to Step 6.

Table 6.12 Rules for the Library System

Rule Number Rule
Rule 1 Due-date for a book is one month from the date of issue.
Rule 2 All books are issuable.
Rule 3 A book is removable if it is not checked out and if it has no holds.
Rule 4 A book is renewable if it has no holds on it.
Rule 5 When a book with a hold is returned, the appropriate member will

be notified.
Rule 6 Holds can be placed only on books that are currently checked out.

Defining Conceptual Classes and Relationships 153

Guidelines to remember when writing use cases

• A use case must provide something of value to an actor or to the business:
when the scenario described in the use case has played out, the actor has ac-
complished some task. The system may have other functions that do not provide
value; these will be just steps within a use case. This also implies that each use
case has at least one actor.

• Use cases should be functionally cohesive, i.e., they encapsulate a single service
that the system provides.

• Use cases should be temporally cohesive. This notion applies to the time frame
over which the use case occurs. For instance, when a book with a hold is re-
turned, the member who has the hold needs to be notified. The notification is
done after some delay; due to this delay, we do not combine the two operations
into one use case. Another example could be a university registration system -
when a student registers for a class, he or she should be billed. Since the billing
operation is not temporally cohesive with the registration, the two constitute
separate use cases.

• If a system has multiple actors, each actor must be involved in at least one, and
typically several use cases. If our library allowed members to check out books
by themselves, “member” is another possible actor.

• The model that we construct is a set of use cases, i.e., there is no relationship
between individual use cases.

• Exceptional exit conditions are not handled in use cases. For instance, if a sys-
tem should crash in the middle of a use case, we do not describe what the
system is supposed to do. It is assumed that some reasonable outcome will
occur.

• Use cases are written from the point of view of the actor in the active voice.

• A use case describes a scenario, i.e., tells us what the visible outcome is and
does not give details of any other requirements that are being imposed on the
system.

• Use cases change over the course of system analysis. We are trying to con-
struct a model and consequently the model is in a state of evolution during this
process. Use cases may be merged, added or deleted from the model at any
time.

154 Analysing a System

Here is the text of that use case, once again, with all nouns bold-faced:

1) The customer fills out an application form containing the customer’s name, ad-
dress, and phone number and gives this to the clerk. 2) The clerk issues a request to
add a new member. 3) The system asks for data about the new member. 4) The clerk
enters the data into the system. 5) Reads in data, and if the member can be added, gen-
erates an identification number for the member and remembers information about
the member. Informs the clerk if the member was added and outputs the member’s
name, address, phone, and id. 6) The clerk gives the user his identification number.

Let us examine the nouns. First, let us eliminate duplicates to get the following list: cus-
tomer, application form, customer’s name, address, phone number, clerk, request,
system, data, identification number, member, user, member information, and mem-
ber’s name. Some of the nouns such as member are composite entities that qualify to be
classes.

While using this approach, we must remember that natural languages are imprecise and
that synonyms may be found. We can eliminate the others as follows:

1. customer: becomes a member, so it is effectively a synonym for member.

2. user: the library refers to members alternatively as users, so this is also a synonym.

3. application form and request: application form is an external construct for gather-
ing information, and request is just a menu item, so neither actually becomes part of
the data structures.

4. customer’s name, address, and phone number: They are attributes of a customer,
so the Member class will have them as fields.

5. clerk: is just an agent for facilitating the functioning of the library, so it has no soft-
ware representation.

6. identification number: will become part of a member.

7. data: gets stored as a member.

8. information: same as data related to a member.

9. system: refers to the collection of all classes and software.

The noun system implies a conceptual class that represents all of the software; we call this
class Library. Although we do not have as yet any specifics of this class, we note its
existence and represent it in UML without any attributes and methods (Figure 6.2). (Recall
from Chapter 2 that a class is represented by a rectangle.)

A member is described by the attributes name, address, and phone number. Moreover,
the system generates an identifier for each user, so that also serves as an attribute. The UML
convention is to write the class name at the top with a line below it and the attributes listed
just below that line. The UML diagram is shown in Figure 6.3.

Defining Conceptual Classes and Relationships 155

Library

Figure 6.2 UML diagram for the class Library

Member

id

name

address

phone

Figure 6.3 UML diagram for the class Member

Recall the notion of association between classes, which we know from Chapters 2 and
3 as a relationship between two or more classes. We note several examples of association
in our case study. The use case Register New Member (Table 6.1) says that the system
‘remembers information about the member’. This implies an association between the con-
ceptual classes Library and Member. This idea is shown in Figure 6.4; note the line be-
tween the two classes and the labels 1, *, and ‘maintains a collection of’ just above it. They
mean that one instance of the Library maintains a collection of zero or more members.

Obviously, members and books are the most central entities in our system: the sole rea-
son for the library’s existence is to provide service to its members and that is effected by
letting them borrow books. Just as we reasoned for the existence of a conceptual class
named Member, we can argue for the need of a conceptual class called Book to repre-
sent a book. It has attributes id, title, and author. A UML description of the class is
shown in Figure 6.5. It should come as no surprise that an association between the classes
Library and Book, shown in Figure 6.6, is also needed. We show that a library has zero
or more books. (Normally, you would expect a library to have at least one book and at least
one member; But our design takes no chances!)

Figure 6.4 UML diagram showing the association of Library and Member

156 Analysing a System

BOOK

id

title

author

Figure 6.5 UML diagram for the class Book

Some associations are static, i.e., permanent, whereas others are dynamic. Dynamic as-
sociations are those that change as a result of the transactions being recorded by the system.
Such associations are typically associated with verbs.

As an example of a dynamic association, consider members borrowing books. This is
an association between Member and Book, shown in Figure 6.7. At any instant in time, a
book can be borrowed by one member and a member may have borrowed any number of
books. We say that the relationship Borrows is a one-to-many relationship between the
conceptual classes Member and Book and indicate it by writing 1 by the side of the box
that represents a user and the * near the box that stands for a book.

Figure 6.6 UML diagram showing the association of Library and Book

Figure 6.7 UML diagram showing the association Borrows between Member and Book

This diagram actually tells us more than what the Issue Book use case does. That use
case does not say some of the considerations that come into play when a user borrows
a book: for example, how many books a user may borrow. We might have forgotten to
ask that question when we learned about the use case. But now that we are looking at the
association and are forced to put labels at the two ends, we may end up capturing missing

Defining Conceptual Classes and Relationships 157

Figure 6.8 UML diagram showing the association Holds between Member and Book

information. In the diagram of Figure 6.7, we state that there is no limit. It also states that
two users may not borrow the same book at the same time. Recollect from Chapter 3 that
an association does not imply that the objects of the classes are always linked together; we
may therefore have a situation where no book in the library has been checked out.

Another action that a member can undertake is to place a hold on a book. Several users
can have holds placed on a book, and a user may place holds on an arbitrary number of
books. In other words, this relationship is many-to-many between users and books. We rep-
resent this in Figure 6.8 by putting a * at both ends of the line representing the association.

We capture all of the conceptual classes and their associations into a single diagram in
Figure 6.9. To reduce complexity, we have omitted the attributes of Library, Member,
and Book. As seen before, a relationship formed between two entities is sometimes ac-
companied by additional information. This additional information is relevant only in the
context of the relationship. There are two such examples in the inter-class relationships we
have seen so far: when a user borrows a book and when a user places a hold on a book. Bor-
rowing a book introduces new information into the system, viz., the date on which the book
is due to be returned. Likewise, placing a hold introduces some information, viz., the date
after which the book is not needed. The lines representing the association are augmented to
represent the information that must be stored as part of the association. For the association
Borrows and the line connectingMember and Book, we come up with a conceptual class
named Borrows having an attribute named dueDate. Similarly, we create a conceptual
class named Holds with the attribute called date to store the information related to the
association Holds. Both these conceptual classes are attached to the line representing the
corresponding associations.

It is important to note that the above conceptual classes or their representation do not, in
any way, tell us how the information is going to be stored or accessed. Those decisions will
be deferred to the design and implementation phase. For instance, there may be additional
classes to support the operations of the Library class. We may discover that while some
of the conceptual classes have corresponding physical realisations, some may disappear and
the necessary information may be stored as fields distributed over multiple classes. We may
discover that while some of the conceptual classes have correspondingphysical realisations,
some may disappear and the necessary information may be stored as fields distributed over

158 Analysing a System

Figure 6.9 Conceptual classes and their associations

multiple classes. We may choose to move fields that belong to an association elsewhere. For
instance, the field dueDate may be stored as a field of the book or as a separate object,
which holds a reference to the book object and the user object involved. Upon making that
choice, the designer decides how the conceptual relationship between User and Book is
going to be physically realised. The conceptual class diagram is simply that: conceptual.

6.5 Using the Knowledge of the Domain

Domain analysis is the process of analysing related application systems in a domain so
as to discover what features are common between them and what parts are variable. In
other words, we identify and analyse common requirements from a specific application
domain. In contrast to looking at a certain problem completely from scratch, we apply the
knowledge we already have from our study of similar systems to speed up the creation of
specifications, design, and code. Thus, one of the goals of this approach is reuse.

Any area in which we develop software systems qualifies to be a a domain. Examples
include library systems, hotel reservation systems, university registration systems, etc. We
can sometimes divide a domain into several interrelated domains. For example, we could
say that the domain of university applications includes the domain of course management,
the domain of student admissions, the domain of payroll applications, and so on. Such a
domain can be quite complex because of the interactions of the smaller domains that make
up the bigger one.

Before we analyse and construct a specific system, we first need to perform an exhaustive
analysis of the class of applications in that domain. In the domain of libraries, for example,
there are things we need to know including the following.

1. The environment, including customers and users. Libraries have loanable items such
as books, CDs, periodicals, etc. A library’s customers are members. Libraries buy
books from publishers.

Using the Knowledge of the Domain 159

2. Terminology that is unique to the domain. For example, the Dewey decimal classifi-
cation (DDC) system for books.

3. Tasks and procedures currently performed. In a library system, for example:

(a) Members may check out loanable items.

(b) Some items are available only for reference; they cannot be checked out.

(c) Members may put holds on loanable items.

(d) Members will pay a fine if they return items after the due date.Finding the right classes

In general, finding the right classes is non-trivial. It must be remembered that this process
is iterative, i.e., we start with a set of classes and complete a conceptual design. In the
process of walking through the use case implementations, we may find that some classes
have to be dropped and some others have to be added. Familiarity with Design Patterns
also helps in recognizing the classes. The following thumb rules and caveats come in
handy:

• In general, do not build classes around functions. There are exceptions to this rule
as we will see in Chapter 9. Write a class description. If it reads ‘This class per-
forms...’ we most likely have a problem. If class name is imperative, e.g., print,
parse, etc., it is likely that either the class is wrong or the name is wrong.

• Remember that a class usually has more than one method; otherwise it is probably
a method that should be attached to some other class.

• Do not form an inheritance hierarchy too soon unless we have a pre-existing taxon-
omy. (Inheritance is supposed to be a relationship among well-understood abstrac-
tions.)

• Be wary of classes that have no methods, (or only query methods) because they are
not frequent. Some situations in which they occur are:

(i) representing objects from outside world, (ii) encapsulating facilities, constants
or shared variables, (iii) applicative classes used to describe non-modifiable ob-
jects, e.g., integer class in Java generates new integers, but does not allow modifi-
cation of integers.

• Check for the following properties of the ideal class: (i) a clearly associated ab-
straction, which should be a data abstraction (as opposed to a process abstraction),
(ii) a descriptive noun/adjective for the class name, (iii) a non-empty set of runtime
objects, (iv) queries and commands, (v) abstract properties that can be described as
pre/post conditions and invariants.

160 Analysing a System

Figure 6.10 Domain analysis

One of the major activities of this analysis is discovering the business rules, the rules that
any properly-functioning system in that domain must conform to.

Where does the knowledge of a specific domain come from? It could be from sources
such as surveys, existing applications, technical reports, user manuals, and so on. As shown
in Figure 6.10, a domain analyst analyses this knowledge to come up with specifications,
designs, and code that can be reused in multiple projects.

Clearly, a significant amount of effort has to be expended to domain analysis before
undertaking the specific problem. The benefit is that after the initial investment of resources,
the products (such as specifications, designs, code, test data, etc.) can be reused for the
development of any number of applications in that domain. This reduces development time
and cost.

6.6 Discussion and Further Reading

A detailed treatment of object-oriented analysis methods can be found in [26]. The rules
for finding the right classes are condensed from [30].

Obtaining the requirements specification is typically part of a larger ‘plan and elaborate
phase’ that would be an essential component of any large project. In addition to specifi-
cation of requirements, this phase includes such activities as the initial conception, investi-
gation of alternatives, planning, budgeting etc. The end product of this phase will include
such documents as the Plan showing a schedule, resources, budget etc., a preliminary in-
vestigation report that lists the motivation, alternatives, and business needs, requirements
specification, a glossary as an aid to understanding the vocabulary of the domain, and, per-
haps, a rough conceptual model. Larger systems typically require more details before the
analysis can proceed.

Use case modeling is one of the main techniques of a more general field of study called
usage modeling. Usage modeling employs the following techniques: essential use cases,
system use cases, UML use case diagrams, user stories and features[1]. What we have
discussed here are essential use cases, which deal only with the fundamental business task
without bringing technological issues into account. These are used to explore usage-based
requirements.

Discussion and Further Reading 161

Making sure that our use cases have covered all the business processes is in itself a
non-trivial task. This area of study, called business process modeling, employs tools such as
data flow diagrams, flowcharts, and UML Activity Diagrams[1] and is used to create process
models for the business.

There are several UML tools available for analysis, and new variants are being constantly
developed. What a practitioner chooses often depends on the development package being
employed. A good, compact reference to the entire language can be found in [16]. The
use case table and the class diagram with associations exemplify the very basic tools of
object-oriented analysis.

There is no prescribed analysis or design technique that software designer must follow
at all costs. There are several methodologies in vogue, and these ideas continue to evolve
over time. In [12] it has been pointed out that while some researchers and developers are
of the opinion that object-oriented methodologies are a revolutionary change from the con-
ventional techniques, others have argued that object-oriented techniques are nothing but
an elaboration of structured design. A comparative study of various object-oriented and
conventional methodologies is also presented in that article.

Projects

1. A database for a warehouse A large warehousing corporation operates as follows:

(a) The warehouse stocks several products, and there are several manufacturers for
each product.

(b) The warehouse has a large number of registered clients. The clients place or-
ders with the warehouse, which then ships the goods to the client. This process
is as follows: the warehouse clerk examines the client’s order and creates an
invoice, depending on availability of the product. The invoice is then sent to the
shop floor where the product is packed and shipped along with the invoice. The
unfilled part of the order is placed in a waiting list queue.

(c) When the stock of any product runs low, the warehouse orders that product from
one of the manufacturers, based on the price and terms of delivery.

(d) When a product shipment is received from a manufacturer, the orders in the
waiting list are filled in first. The remainder is added to the inventory.

The business processes: The warehouse has three main operational business pro-
cesses, namely,

(a) receiving and processing an order from a client,

162 Analysing a System

(b) placing an order with the manufacturer,

(c) receiving a shipment,

(d) receiving payment from a client.

Let us examine the first of these. When an order is received from a client, the follow-
ing steps are involved:

(a) Clerk receives the order and enters the order into the system.

(b) The system generates an invoice based on the availability of the product(s).

(c) The clerk prints the invoice and sends it over to the storage area.

(d) A worker on the floor picks up the invoice, retrieves the product(s) from the
shelves and packs them, and ships the goods and the invoice to the client.

(e) The worker requests the system to mark the order as having been shipped.

(f) The system updates itself by recording the information.

This is an interesting business process because of the fact that steps of printing the
invoice and retrieving the product from the shelves are performed by different actors.
This introduces an indefinite delay into the process. If we were to translate this into a
single end-to-end use case, we have a situation where the system will be waiting for
a long time to get a response from an actor. It is therefore appropriate to break this
up into two use cases as follows:

1. Use case create-invoice.

2. Use case fill-invoice.

In addition to these operational business processes, the warehouse will have several
other querying and accounting processes such as:

(a) Registering a new client.

(b) Adding a new manufacturer for a certain product.

(c) Adding a new product.

(d) Printing a list of clients who have defaulted on payments.

(e) Printing a list of manufacturers who are owed money by the warehouse, etc.

Write the use cases, and determine the conceptual classes and their relationships.

2. Managing a university registration system
A small university would like to create a registration system for its students. The
students will use this system to obtain information about courses, when and where
the classes meet, register for classes, print transcripts, drop classes, etc. The faculty

Discussion and Further Reading 163

will be using this system to find out what classes they are assigned to teach, when and
where these classes meet, get a list of students registered for each class, and assign
grades to students in their classes. The university administrative staff will be using
this database to add new faculty and students, remove faculty and students who have
left, put in and update information about each course the university ofers, enter the
schedules for classes that are being offered in each term, and any other housekeeping
tasks that need to be performed.

Your task is to analyse this system, extract and list the details of the various busi-
ness processes, develop the use cases, and find the conceptual classes and their rela-
tionships.

In finding the classes for this system, one of the issues that comes up is that of
distinguishing a course from an offering of the course. For instance ‘CS 430: Princi-
ples of Object-Oriented Software Construction’ is a course listed in the university’s
course bulletin. The course is offered once during the fall term and once during the
spring term. Each offering may be taught at a different time and place, and in all
likelihood will have a different set of students. Therefore, all offerings have some
information in common and some information that is unique to that offering. How
will you choose a set of classes that models all these interactions?

3. Creating an airline reservation and staff scheduling database
An airline has a weekly flight schedule. Associated with each flight is an aircraft, a
list of crew, and a list of passengers. The airline would like to create and maintain a
database that can perform the following functions:

For passengers: Add a passenger to the database, reserve a seat on a flight, print out
an itinerary, request seating and meal preferences, and update frequent flier records.

For crew: Assign crew members to each flight, allow crew members to view their
schedule, keep track of what kinds of aircraft the crew member has been trained to
operate.

For flights Keep track of crew list, passenger list, and aircraft to be used for that
flight.

For aircraft: Maintain all records about the aircraft and a schedule of operation.

Make an exhaustive list of queries that this system may be required to answer. Carry
out a requirements analysis for the system and model it as a collection of use cases.
Find the conceptual classes and their relationships.

Exercises

1. In the use case Issue Book, the system displays the transaction details with each

164 Analysing a System

book. Modify this so that there is only one display of transactions at the very end of
the process.

2. (Discussion) In a real library, there would be several other kinds of query operations
that would be performed. Carry out a brainstorming exercise to come up with a more
complete list of use cases for a real library system.

3. A hotel reservation system supports the following functionality:

(a) Room reservation
(b) Changing the properties of a room (for example, from non-smoking to smoking)
(c) Customer check-in
(d) Customer check-out

Come up with system use cases for the above functionality.

4. We are building a system to track personal finances. We plan an initial version with
minimal functionality: tracking the expenditures. (Each expenditure has a descrip-
tion, date and amount.) We show below the use case for creating a new expenditure
item and a new income item.

Actor System
1) Inputs a request to create a
new expenditure item

2) Asks for description, date,
and amount

3) Supplies the data
4) Creates an expenditure item
and notifies the user

Actor System
1) Inputs a request to create a
new income item

2) Asks for description, date,
and amount

3) Supplies the data
4) Creates an income item and
notifies the user

(a) The use cases are quite weakly specified. In what ways? (Hint: Compare with
the addition of a new member or book in the library system.)

(b) What are the alternate flows in the use cases? Modify the two use cases to
handle the alternate flows.

Discussion and Further Reading 165

(c) Identify the conceptual classes.

5. Consider the policies maintained by an automobile insurance company. A policy has
a primary policy holder, a set of autos insured, and a list of people who are covered
by the insurance. From your knowledge of insurance, come up with system use cases
for

(a) creating a new policy

(b) adding a new person to a policy

(c) adding a new automobile to a policy

(d) recording a claim.

6. Consider an information system to be created for handling the business of a super-
market. For each of the following, state if it is a possible class. If not, explain why not.
Otherwise, why would you consider it to be a class? What is its role in the system?

(a) Customer

(b) Vegetable

(c) Milk

(d) Stock

(e) Canned food

(f) Quantity on hand for a product

7. A company has several projects, and each employee works in a single project. The
human resource system evaluates the personnel needs of each project and matches
them against the personnel file to find the best possible employees to be assigned to
the project. Come up with the conceptual classes by conducting use case analysis.

8. Explain why mistakes made in the requirements analysis stage are the costliest to
correct.

9. Among the following requirements, which are functional and which are non-
functional?

(a) Paychecks should be printed every two weeks.

(b) Database recovery should not take more than one hour.

(c) The system should be implemented using the C++ language.

(d) It should be possible to selectively print employee checks.

(e) Employee list should be displayed in lists of size 10.

166 Analysing a System

10. Suppose the library system has to be augmented so that it can support inter-library
loans. That is, a customer can ask the clerk if a certain book, which is not locally
available, is available in some other library. What changes are needed (classes and
use cases) to incorporate this new functionality?

11. In Problem 6, assume that a customer may pay with cash, check, or credit/debit cards.
Should this aspect be taken into consideration while developing the use case for pur-
chasing grocery? Justify your answer.

12. Again, in Problem 6, suppose that a user may check out by interacting with a sales
clerk or independently in an automated checkout counter. Should there be two ver-
sions of the grocery purchase use case? Explain.

13. What are the advantages of ignoring implementation-related aspects while perform-
ing analysis?

7

Design and Implementation

Having done an analysis of the requirements, we proceed to the design stage. In this step,
we use the class structure produced by the analysis to design a system that behaves in the
manner specified by the model. The main UML tool that we employ here is the sequence
diagram. In a sequence diagram, the designer specifies the details of how the behaviour
specified in the model will be realised. This process requires the system’s actions to be
broken down into specific tasks, and the responsibility for these tasks to be assigned to the
various players in the system. In the course of assigning these responsibilities,we determine
the public methods of each class, and also describe the function performed by each method.
Since the stage after design is implementation, which is coding, testing, and debugging, it
is imperative that we have a full understanding of how the required functionality will be
realised through code. The designer thus breaks down the system into smaller units and
provides enough information so that a programmer can code and test each unit separately.

After the design is complete, we proceed to the implementation stage. As the coding is
being done, the programmer should follow good coding and testing practices. We do not
emphasise these principles here, since these are concepts common to any software design
methodology. Our implementation will be done in Java. Any new language concepts that
need elaboration are dealt with in the context where we employ them.

7.1 Design

During the design process, a number of questions need to be answered:

1. On what platform(s) (hardware and software) will the system run? For example, will
the system be developed for just one platform, say, Windows running on 386-type
processors? Or will we be developing for other platforms such as Unix?

2. What languages and programming paradigms will be used for implementation? Of-

167

168 Design and Implementation

ten, the choice of the language will be dictated by the expertise the company has. But
sometimes the functionality will also heavily influence the choice of the language.
For example, a business application may be developed using an object-oriented lan-
guage such as Java or C++, but an artificial intelligence application may be pro-
grammed in LISP or Prolog. (In this chapter, we are assuming an object-oriented
system.)

3. What user interfaces will the system provide? These include GUI screens, printouts,
and other devices (for example, library cards).

4. What classes and interfaces need to be coded? What are their responsibilities?

5. How is data stored on a permanent basis? What medium will be used? What model
will be used for data storage?

6. What happens if there is a failure? Ideally, we would like to prevent data loss and
corruption. What mechanisms are needed for realising this?

7. Will the system use multiple computers? If so, what are the issues related to data and
code distribution?

8. What kind of protection mechanisms will the system use?

Since our focus in this book is on software design and development using the object-
oriented paradigm using the Java programming language, we will not be distracted by con-
siderations of the exact platform on which the system will run. Our major focus throughout
the book is the identification of the software structure: the classes and interfaces that make
up the system. Althoughwe discussUser Interface (UI) design and long-term storage issues,
we do not address protection and recovery mechanisms since the development of these is
largely orthogonal to the issues that we are attempting to address. In general, systems typ-
ically employ some combination of application software, firewalls, database management
system support, manual procedures, etc., to provide the necessary mechanisms for protec-
tion, concurrency control and recovery. The choices made when designing solutions for
these issues should have little or no impact on the design of the application software itself.

7.1.1 Major subsystems

The first step in our design process is to identify the major subsystems. We can view the
library system as composed of two major subsystems:

1. Business logic This part deals with input data processing, data creation, queries,
and data updates. This module will also be responsible for interacting with external
storage, storing and retrieving data.

2. User interface This subsystem interacts with the user, accepting and outputting
information.

Design 169

It is important to design the system such that the above parts are separated from each
other so that they can be varied independently. That way, we get good cohesion within
each module. Our focus in this chapter is mainly on the design and implementation of
the business logic. At the end of the chapter, we put together a rudimentary UI. We also
implement a mechanism for storing and retrieving data by interacting with external storage
devices. While the UI and external storage management modules are adequate to carry out
functional testing of our system, a more sophisticated design (and implementation) would
be in order for a full-blown system.

7.1.2 Creating the software classes

The next step is to create the software classes. During the analysis, after defining the use
case model, we came up with a set of conceptual classes and a conceptual class diagram
for the entire system. As mentioned earlier, these come from a conceptual or essential per-
spective. The software classes are more ‘concrete’ in that they correspond to the software
components that make up the system. In this phase there are two major activities.

1. Come up with a set of classes.

2. Assign responsibilities to the classes and determine the necessary data structures and
methods.

In general, it is unlikely that we can come up with a design simply by doing these activities
exactly once. Several iterations may be needed and classes may need to be added, split,
combined, or eliminated.

As we are having just a rudimentary text-based interface, the UI subsystem will consist
of a single class, aptly named UserInterface. The classes for the business logicmodule
will be the ones instrumental in implementing the system requirements described in the use
case model. In our analysis, we came up with a set of conceptual classes and relationships.
It is, therefore, reasonable that as a ‘first guess’ for the required software classes for the
business logic, we pick these conceptual classes. A closer scrutiny of these is now in order.

1. Member and Book These are central concepts. Each Member object comprises sev-
eral attributes such as name and address, stays in the system for a long period of time and
performs a number of useful functions. Books stay part of the library over a long time
and we can do a number of useful actions on them. We need to instantiate books and
members quite often. Clearly, both are classes that require representation in software.

2. Library Do we really need to make a class for this? To answer the question, let us ask
what the real library—not a possible object—has. It keeps track of books and members.
When a member thinks of a library, he/she thinks of borrowing and returning books,
placing and removing holds, i.e., the functionality provided by the library. To model a

170 Design and Implementation

library with software, we need to mimic this functionality, which we did by creating a
use case model. The use case behaviour is what is exhibited by the UI, and to meet the
required specifications, the UI must perform some other computations that involve the
module that implements the business logic. One of the important principles of object-
oriented design is that every computation must be represented as an application of a
method on a given object, which is then treated as the current object for the computation.
All the computation required of the business logic module must be executed on some
current object; that object is a Library. This requires that Library be a class in its
own right, and the operations required of the business logic module correspond to the
methods of this class.

Although details of its functionality remain to be determined by examining the use
cases, with some thought we can come up with two important aspects of the Library
class. As we have seen in Chapter 6, the Library instance must keep track of the
members of the library as well as the books, which obviously imply maintenance of two
collection objects. The functionality of these two collections is again to be determined,
but it is likely that we need two different classes, MemberList and Catalog, which
may be alike in certain respects1. These two collections last as long as the library itself,
and we make modifications to them very frequently. The actions that we perform are
not supported by programming languages although there may be some support in the
associated packages such as the list classes in the Java Development Kit. All these would
suggest that they be classes. However, we create them just once. As we know from
Chapter 5, a class that has just one instance is called a singleton. Both MemberList
and Catalog are singletons.

3. Borrows This class represents the one-to-many relationship between members and
books. In typical one-to-many relationships, the association class can be efficiently im-
plemented as a part of the two classes at the two ends. To verify this for our situation,
for every pair of member m and book b such that m has borrowed b, the corresponding
objects simply need to maintain a reference to each other. Since a member may borrow
multiple books, this arrangement entails the maintenance of a list of Book objects in
Member, but since there is only a single borrower for a book, each Book object needs
to store a reference to only one instance of Member. Further examining the role played
by the information in Borrows, we see that when a book is checked out, the due date
can be stored in Book. In general, this means that all attributes that are unique to the
relationship may be captured by storing information at the ‘many’ end of the relation-
ship. When the book is returned, the references between the corresponding Member and
Book objects as well as the due date stored in Book can be ‘erased.’

This arrangement efficiently supports queries arising in almost any situation: a user
wanting to find out when her books are due, a staff member wanting to know the list

1Although we use the name MemberList, we do not imply that this class has to be organised as a list.

Design 171

of books borrowed by a member, or an anxious user asking the librarian when he can
expect the book on which he placed a hold. In all these situations we have operations
related to some Member and Book objects.

4. Holds Unlike Borrows, this class denotes a many-to-many relationship between the
Member and Book classes. In typical many-to-many relationships, implementation of
the association without using an additional class is unlikely to be clean and efficient.
To attempt to do this without an additional class in the case of holds, we would need to
maintain within each Member object references to all Book instances for which there
is a hold, and keep ‘reverse’ references from the Book objects to the Member objects.
This is, however, incomplete because we also need to maintain for each hold the number
of days for which it is valid.But there is no satisfactory way of associating this attribute
with the references. We could have queries like a user wanting a list of all of his holds
that expire within 30 days. The reader can verify that implementations without involving
an additional class will be messy and inefficient.

It is, therefore, appropriate that we have a class for this relationship and make the
Hold object accessible to the instances of Member and Book.

As we look at ways to implement the use cases, it often happens that we eliminate some
of these classes, discover more, and determine the attributes and methods for all of the
concrete classes.

7.1.3 Assigning responsibilities to the classes

Having decided on an adequate set of software classes, our next task is to assign responsi-
bilities to these. Since the ultimate purpose of these classes is to enable the system to meet
the responsibilities specified in the use case, we shall work with these system responsibil-
ities to find the class responsibilities. The next step is, therefore, to spell out the details of
how the system meets its responsibilities by devolving these down to the software classes,
and the UML tool that we employ to describe this devolution is the sequence diagram.

It should be noted that the sequence diagram is only a concise, visual way of representing
the devolution, and we need to make our design choices before we start drawing our arrows.
For each system response listed in the right-hand column of the use case tables, we need to
specify the following:

• The sequence in which the operations will occur.

• How each operation will be carried out.

For the first item above, we need a complete algorithm; the second item describes which
classes will be involved in each step of the algorithm and how the classes will be engaged.

172 Design and Implementation

In specifying the second item, we spell out detailed definitions of the classes: the methods
that need to be invoked and the parameters that should be passed to these methods. The first
item specifies what is done in each step; since each step is a method call, we are specifying
what each method is supposed to accomplish. In the course of figuring out how the method
computes what is needed, we make other design choices. In the end, all of these things
come together to give us a complete system.

Register member
The sequence diagram for the use case for registering a member is shown in Figure 7.1.
The clerk issues a request to the system to add a new member. The system responds by
asking for the data about the new member. This interaction occurs between the library staff
member and the UserInterface instance. The clerk enters the requested data, which
the UserInterface accepts.

Figure 7.1 Sequence diagram for adding a new member

Obviously, at this stage the system has all the data it needs to create a new Member
object. The role of the UI is to interact with the user and not to perform business logic.
So if the UI were to assume all responsibility for creating a Member object and adding
that object to the Library instance, the consequence will be unnecessary and unwanted
coupling between the business logic module and the UI class. We would like to retain the
ability to develop the UI knowing as little as possible about the application classes. For this
purpose, it is ideal to have a method, viz., addMember, within Library to perform the
task of creating a Member and storing it in MemberList. All that UserInterface
needs to do is pass the three pieces of information—name, address, and phone number of
the applicant—as parameters to the addMember method, which then assumes full respon-
sibility for creating and adding the new member.

Design 173

Let us see details of the addMember method. The algorithm here consists of three steps:

1. Create a Member object.

2. Add the Member object to the list of members.

3. Return the result of the operation.

To carry out the first two steps, we have two options:

Option 1 Invoke the Member constructor from within the addMember method of Li-
brary. The constructor returns a reference to the Member object and an operation, in-
sertMember, is invoked on MemberList to add the new member.

Option 2 Invoke an addNewMember method on MemberList and pass as parameters
all the data about the new member. MemberList creates the Member object and adds it
to the collection.

Let us examine what the purpose of the MemberList class is: to serve as a container
for storing a large number of members, adding new ones, removing existing ones, and
performing search operations. The container should not, therefore, concern itself with
details of a member, especially, its attributes. If we choose Option 2, addNewMember
must take in as parameters the details of a member (name, address, and phone) so that it
can call the constructor of the Member class. This introduces unnecessary coupling be-
tween MemberList and Member. As a result, if changes are later made to the Member
constructor, these will also affect MemberList, even though the intended functions of
MemberList do not warrant these changes.

Therefore, we prefer Option 1 to implement the addMember method.
The last step is to return the result so that UserInterface can adequately inform the

actor about the success of the operation. The requirements for this are spelled out in Step
5 in Table 6.1, which reads: ‘(The system) informs the clerk if the member was added and
outputs the member’s name, address, phone, and id.’ This can be achieved if Library
returns a reference to the Member object that was created. If the reference is null, the UI
informs the actor that the operation was unsuccessful; otherwise, the necessary information
is accessed from the Member object and reported.

Add books
The next sequence diagram that we show is for the Add Books use case. This use case
allows the insertion of an arbitrary number of books into the system. In this case, when the
request is made by the actor, the system enters a loop. Since the loop involves interacting
repeatedly with the actor, the loop control mechanism is in the UI itself. The first operation
is to get the data about the book to be added. The algorithm here consists of the following

174 Design and Implementation

steps: (i) create a Book object, (ii) add the Book object to the catalog and (iii) return the
result of the operation. This is handled in a manner similar to the previous use case.

The UI returns the result and continues until the actor indicates an exit. This repetition is
shown diagrammatically by a special rectangle that is marked loop. All activities within
the rectangle are repeated until the clerk indicates that there are no more books to be entered
(Figure 7.2).

Figure 7.2 Sequence diagram for adding books

In the last two sequence diagrams, note that Library, MemberList and Catalog
are in the top row. Placing the entity in the top row indicates that it is in existence at the
beginning of the process. This contrasts with the entities corresponding to Member and
Book, which do not exist at the start, but are created by invoking constructors. This is
indicated by placing the boxes labelled ‘Member’ and ‘Book’ respectively at the end of the
arrow representing the call to the constructor. This box is at a lower level, to signify the
later point in time when the entity comes into existence.

Issue books
The sequence diagram for the Issue Books use case is given next (Figure 7.3). When a
book is to be checked out, the clerk interacts with the UI to input the user’s ID. The system
has to first check the validity of the user. This is accomplished by invoking the method
searchMembership on the Library.

Two options suggest themselves for implementing the search:

• Option 1 Get an enumeration of all Member objects from MemberList, get the ID
from each and compare with the target ID.

Design 175

Figure 7.3 Sequence diagram for issuing books

• Option 2 Delegate the entire responsibility to MemberList.

Option 1 places too much detail of the implementation in Library, which is undesirable.
Option 2 is more attractive because search is a natural operation that is performed on a
container. The flip-side with the second option is that in a naive implementation, Mem-
berList will now become aware of implementation details of Member (that memberID
is a unique identifier, etc) causing some unwanted coupling between (Member) and the
container class (MemberList). This coupling is not a serious concern because it can be
removed using generics as we shall see in the next chapter.

UserInterface receives a reference to the Member object from Library and then
queries the actor for the ID of the book. In Library, we are providing a method that
issues a single book to a user. UserInterface invokes this method repeatedly in order
to issue several books to the user, each time passing the member’s ID and the book’s ID
as parameters. Once again, searching for the Book object is delegated to Catalog. Next,
the Book and Member objects are updated to indicate that the book is checked out to the
member (and that the member is in possession of the book). Notice that the Library
class orchestrates the whole show and also acts as a go-between for all operations that the
UserInterface requests from the business logic module.

It may be tempting for a beginner to directly access the Member object from User-
Interface, pass the book’s ID as a parameter and thereby initiate the issuing process.
To understand why this is a bad idea, imagine that at later time, the business logic asso-
ciated with issuing a book changes. This change could potentially force changes in the
UserInterface class, i.e., classes outside the core library subsystem are affected. As a

176 Design and Implementation

general rule, we avoid exposing details of business logic implementation to the UI. Like-
wise, one may be tempted to send bookID to Member and handle all the details within
Member; this would mean that Member searches Catalog, creating a dependency be-
tween these classes. These other approaches, therefore, expose system details to the UI and
create tight coupling between the classes, thus hurting reuse.

Another question we need to address is this: Where should the responsibility for generat-
ing the due-date lie? In our simple system, the due-date is simply one month from the date
of issue, and it is not determined by other factors such as member privileges. Consequently
computing the due-date is a simple operation that can be done in any of the objects, but
since we are storing the due-date as a field in Book, we will assign this responsibility to
Book.

As before, we must decide the return type of the method issueBook. The use case
requires of the system that it generates a due-date. The system displays the book title and
due-date and asks if there are any more books. This can be easily done by returning a refer-
ence to the Book object. The operation is reported as unsuccessful if the reference is null.

Return books
The Return Book use case is implemented in Figure 7.4 as a sequence diagram. For each
book returned, the returnBook method of the Library class obtains the correspond-
ing Book object from Catalog. The returnBook method is invoked using this Book
object, and this method returns the Member object corresponding to the member who had
borrowed the book. The returnBook method of the Member object is now called to
record that the book has been returned. This operation has three possible outcomes that the
use case requires the system to distinguish (Step 5 in Table 6.5):

Figure 7.4 Sequence diagram for returning books

Design 177

1. The book’s ID was invalid, which would result in the operation being unsuccessful;
2. the operation was successful;
3. The operation was successful and there is a hold on the book. The value returned by

returnBook must enable UserInterface to make the distinction between these.
This is done by having Library return a result code, which could simply be one of
three suitably named integer constants.

Remove books
The diagram in Figure 7.5 shows the sequence diagram for removing books from the col-
lection. Here, as discussed in the use case, we remove only those books that are not checked
out and do not have a hold. This logic for deciding whether the book is removable is in the
removeBook method in Library. This method checks each property of the book in
question and if all properties are satisfied, the remove method in Catalog is invoked,
which then removes the book. The square brackets before the invocation of remove con-
tain the condition ‘can delete book’, indicating that the book is deleted only if this condition
is met. Library returns a specific code for each possible outcome, which UserInter-
face translates into an appropriate message.

Figure 7.5 Sequence diagram for removing books

Member transactions
Following the earlier examples, it is no surprise that the end-user (clerk) interacts with
the Library class to print out the transactions of a given member. From the descriptions
given so far, the reader should have gained enough skill to interpret most of the sequence
diagram in Figure 7.6.

178 Design and Implementation

Figure 7.6 Sequence diagram for printing a member’s transactions

The Member class stores the necessary information about the transactions, but the UI
would be the one to decide the format. It would, therefore, be desirable to provide the
information to the UI as a collection of objects, each object containing the information
about a particular transaction. This can be done by defining a class Transaction that
stores the type of transaction (issue, return, place, or remove hold), the date, and the title of
the book involved. Member stores a list of transactions, and the method getTransac-
tions returns an enumeration (Iterator) of the Transaction objects whose date
matches the one specified. Library returns this to the UI, which extracts and displays the
needed information.

Place hold
As discussed earlier, we create a separate Hold class for representing the holds placed by
members. Each Hold object stores references to a Member object and a Book object, and
the date when the hold expires (see Figure 7.7).

When a clerk issues request to the library to place a hold on behalf of a member for a
certain book, the Library object itself creates an instance of Hold and makes both the
Book and Member instances involved to store references to it. The UI is informed of the
outcome by a result code.

It is instructive to consider what alternate implementations may be used for storing the
holds. One possibility is that both Book and Member create their own individualisedHold
objects, with a BookHold class storing the date and a reference to Member and Member-
Hold storing the date and a reference to Book. Such a solution is less preferable because
it creates additional classes, and if not carefully implemented, could also lead to inconsis-
tency due to multiple copies of the date.

.

Design 179

Cohesion and coupling

In deciding the issues of how specific details of the implementation are carried out, we
have to keep in mind the twin issues of cohesion and coupling. We must have good
cohesion among all the entities that are grouped together or placed within a subsystem.
Simultaneously, entities within the group must be loosely coupled.

In our example, when issuing a book, we have chosen to implement the system so that
the Library calls the issue methods of Book and Member. Contrast this with a situation
where Book calls the issue method of Member; in such a situation, the code in Book
depends on the method names of Member, which causes tight coupling between these
two classes. Instead, we have chosen a solution where each of these classes is somewhat
tightly coupled with Library, but there is very loose coupling between any other pair
of classes. This means that when the system has to adapt to changes in any class, this can
be done by modifying Library only. Library, therefore, serves as ‘glue’ that holds
the system together and simultaneously acts an interlocutor between the entities in the
library system.

We have also consciously chosen to separate the design of the business module from
the UI through which the actors will interact with the system. This is to ensure good
cohesion within the system’s ‘back-end’.

A related question that we face at a lower level is that of how responsibilities are
being assigned. We ask this question when a class is being designed. Responsibilities
are assigned to classes based on the fields that the class has. These responsibilities turn
into the methods of the class. The principle that we are following here can be tersely
summarised in an Italian saying (attributed to Bertrand Meyer), ‘The shoemaker must not
look past the sandal’. In other words, the only responsibilities assigned to an object/class
should be the ones that are relevant to the data abstraction that the class represents. This,
in turn, ensures that we avoid unnecessary coupling between classes.

Process holds
The input here is only the ID for the book, from which we get the next hold that has not ex-
pired. In this process, the book would quite likely find some holds that are not valid. These
holds should obviously be removed from the system and the responsibility for this clean up
is assigned to the getNextHold() method in Book. The Library gets a reference to the
Member object from Hold (see Figure 7.8) and returns this to the UI.

Remove hold
The sequence diagram is given in Figure 7.9. A request is issued to Library via the
method removeHold. Library retrieves the correspondingMember and Book objects

180 Design and Implementation

using MemberList and Catalog and then invokes the removeHold method on these
objects to delete their references to the Hold object.

Figure 7.7 Sequence diagram for placing a hold

Figure 7.8 Sequence diagram for processing holds

Renew books
Figure 7.10 details the implementation for renewing books. This process involves inter-
actively updating the information on several members of a collection. We can accomplish
this by allowing UserInterface to get an enumeration (Iterator) of the items in the
collection, getting responses on each from the user and invoking the methods on the library
to update the information.

Design 181

The Library class thus provides a set of methods for the UI and serves as a single
point of entry to and exit from the business logic module. This is a useful approach in many
situations, so it is given a special name: Facade. All updates are done by invoking methods
on the facade and not by directly manipulating the objects in the enumeration. Such direct
manipulation would place some of the business logic in the UI and also hurt reuse as we
have observed earlier.

Figure 7.9 Sequence diagram for removing a hold

Figure 7.10 Sequence diagram for renewing books

182 Design and Implementation

7.1.4 Class diagrams

Hopefully, at this stage, we have come up with all the software classes. To review:

1. Library
2. MemberList
3. Catalog
4. Member
5. Book
6. Hold
7. Transaction

The relationships between these classes is shown in Figure 7.11. Note that Hold is not
shown as an association class, but an independent class that connects Member and Book.
The new class Transaction is added to record transactions; this has a dependency on
Book since it stores the title of the book.

Figure 7.11 Relationships between the software classes

By inspecting the sequence diagrams, we can collect the methods of each of these classes,
and draw a class diagram for each. In specifying the types of attributes, we have to make
language-specific choices; in the process of doing this we transition from the software
classes to the implementation classes.

We first examine the methods and then arrive at the attributes by examining the methods.

Design 183

Figure 7.12 Class diagram for Library

Class diagram for Library The methods are simply a collection of methods with their
parameters as given in the sequence diagrams. However, we have specified their return
types, which were not clearly specified in the sequence diagrams. Whenever something is
added to the system such as a member or a book or a hold, some information about the
added object is returned, so that the clerk can verify that the data was correctly recorded.

We have already seen that the class must maintain references to Catalog and
MemberList. See Figure 7.12 for the class diagram.

Class diagram for Member
Once again, we get our methods and attributes by examining the sequence diagrams. In
our design, we make the Member class generate the member ID. We need a mechanism to
ensure that no two members get the same ID, i.e., there has to be some central place where
we keep track of how ids are generated. It would be tempting to do this in the Library
class, but the right solution would be to make it a static method in the Member class.
This gives us decentralised control and places responsibilities close to the data. The class
diagram is given in Figure 7.13.

Class diagram for Book
The approach to developing the class diagram for Book parallels that of the approach for
the Member class. As in the other cases, we now add the attributes. However, there are no
setters for the Book class because we don’t expect to change anything in a Book object
(see 7.14).

184 Design and Implementation

Figure 7.13 Class diagram for Member

Class diagram for Catalog
Typical operations on a list would be add, remove, and search for objects. Proceeding as in
the case for the Library class, we obtain the methods shown in Figure 7.15.

The only attribute that we come up with is a List object that stores Book objects. The
reader will also notice the method getBooks, whose return type is Iterator. This en-
ables the Library to get an enumeration of all the books so that any specialised operations
that have to be applied to the collection are facilitated.

Class diagram for MemberList
The derivation of this is fairly straightforward after developing the Catalog class and
is shown in Figure 7.16. Since we never asked for the functionality of removing a mem-
ber, there is no such method in the class. We need an attribute of type List to store the
members.

Class diagram for Hold
Besides the accessors, getMember, getBook, and getDate, the class diagram for
Hold (Figure 7.17) shows the isValid method, which checks whether a certain hold is
still valid.

Design 185

Exporting and importing objects

The classes that we have implemented for the business logic form an object-oriented
system, which can be accessed and modified through the methods of Library.
When dealing with object-oriented systems, one must keep in mind that there are
often several references to one object, stored in multiple locations. For instance, a
reference to every Member object is stored in MemberList, but when the member
checks out a book, the Book object also holds a reference. In a lot of situations it is
convenient to have a query return a reference to an object. This multiplicity of ref-
erences means that we need to observe some caveats to ensure that data integrity is
not compromised. In the context of importing and exporting references through the
facade, the following deserve mention.

• Do not export references to mutable objects. All the objects that we are creat-
ing in the library system are mutable, i.e., the values stored in their fields can
be changed. Within the system, objects store references to each other (Book and
Member in our case study) and this is unavoidable. Our worries start with situa-
tions like the implementation we have for Issue Books, in which a reference to
a Member object is being returned to UserInterface. Here a reference to a
mutable object is being exported from the library subsystem, and in general we do
not have any control over how this reference could be (mis)used. In a system that
has to be deployed for widespread use, this is a serious matter, and some mecha-
nism must be employed to make sure that the security and integrity of the system
are not compromised. Several mechanisms have been proposed and we can create
simple ones by defining additional classes (see exercises).

• The system must not import a reference to an internal object. Objects of type
Book and Member belong to the system and their methods are invoked to perform
various operations. To ensure integrity, it is essential that these methods behave
exactly in the expected manner, i.e., the objects involved belong to the classes
we have defined and not any malicious descendants. This means that our library
system cannot accept as a parameter a reference to a Book object. This can be
seen in the sequence diagram for Renew Books. The UI has the references to the
Book and Member objects, but the Library does not accept these as parameters for
renewBook. Working with the ID may mean an additional overhead to search for
the object reference using the ID, but it certifies that when the renew methods
are invoked, these are on objects that belong to the system.

186 Design and Implementation

Figure 7.14 Class diagram for the Book class

Figure 7.15 Class diagram for the Catalog class

Class diagram for Transaction
The class diagram is shown in Figure 7.18. Note that we have to store the date for each
transaction, i.e., we need to choose an appropriate type for this attribute. Java’s util pack-
age has a class Calendar that provides the needed functionality.

Design 187

Figure 7.16 Class diagram for the MemberList class

Figure 7.17 Class diagram for Hold

Figure 7.18 Class diagram for Transaction

Implementing Our Design 189

7.2 Implementing Our Design

In this phase, we code, test, and debug the classes that implement the business logic (Li-
brary, Book, etc.) and UserInterface. An important issue in the implementation is
the communication via the return values between the different classes: in particular between
Library and UserInterface; Library has several methods that return int values,
and these values must be interpreted by the UI2. A separate named constant is declared for
each of these outcomes as shown below.

public static final int BOOK_NOT_FOUND = 1;
public static final int BOOK_NOT_ISSUED = 2;
// etc.

These are declared in Library.

7.2.1 Setting up the interface

We are now ready to complete our development by writing the code. The main program
resides in the class UserInterface. When the main program is executed, an instance
of the UserInterface is created (a singleton).

public static void main(String[] s) {
UserInterface.instance().process();

}

public static UserInterface instance() {
if (userInterface == null) {

return userInterface = new UserInterface();
} else {

return userInterface;
}

}

The private constructor checks whether a serialized version of the Library object exists.
(We assume that it is stored in a file called ‘LibraryData’.) The File class in Java is a
convenient mechanism to check the existence of files. The user is given an option to retrieve
any serialized version of the Library object. (We will explain later how the problem of
safely combining serialization and singletons is tackled.) In any case, UserInterface
gets an instance of Library.

private UserInterface() {

2The implementation has additional methods to aid testing: methods to display books, members, etc. We
do not discuss these methods here.

190 Design and Implementation

File file = new File("LibraryData");
if (file.exists() && file.canRead()) {

if (yesOrNo("Saved data exists. Use it?")) {
retrieve();

}
}
library = Library.instance();

}

Following this, the process method of UserInterface is executed, which initialises
a loop that provides the user with a list of options. This code snippet is given below.

public void process() {
int command;
help();
while ((command = getCommand()) != EXIT) {

switch (command) {
case ADD_MEMBER: addMember();

break;
case ADD_BOOKS: addBooks();

break;
case ISSUE_BOOKS: issueBooks();

break;
// several lines of code not shown
case HELP: help();

break;
}

}
}

The help method displays all the options with the corresponding numeric choices. In ad-
dition to the methods for each of the menu items, UserInterface also has methods
getToken, getNumber, getDate, and getCommand for reading the user input. An
examination of the sequence diagrams shows the need to query the user in multiple sit-
uations for a ‘Yes’ or ‘No’ answer to different questions. For this, we have also coded a
method yesOrNo with a String parameter to prompt the user. We can now follow our
sequence diagrams to implement the methods. Some of these are explained below.

7.2.2 Adding new books

The addBooks method in UserInterface is shown below:

public void addBooks() {
Book result;
do {

String title = getToken("Enter book title");

Implementing Our Design 191

String author = getToken("Enter author");
String bookID = getToken("Enter id");
result = library.addBook(title, author, bookID);
if (result != null) {

System.out.println(result);
} else {

System.out.println("Book could not be added");
}
if (!yesOrNo("Add more books?")) {

break;
}

} while (true);
}

The loop is set up in UserInterface, all the input is collected, and the addBook
method in Library is invoked. Following the sequence diagram, this method is imple-
mented in Library as follows:

public Book addBook(String title, String author, String id) {
Book book = new Book(title, author, id);
if (catalog.insertBook(book)) {

return (book);
}
return null;

}

In the above code, the constructor for Book is invoked and the new book is added to the
catalog. The Catalog (which is also a singleton) is an adapter for the LinkedList
class, so all it does is to invoke the add method in Java’s LinkedList class, as shown
below.

public class Catalog {
private List books = new LinkedList();
// some code not shown
public boolean insertBook(Book book) {

return books.add(book);
}

}

7.2.3 Issuing books

Once again, UserInterface gets the member’s ID and sets up the loop. Here, User-
Interface remembers the member’s ID throughout the process. The issueBook
method of Library is repeatedly invoked and the response to the actor is generated based
on the value returned by each invocation.

192 Design and Implementation

public void issueBooks() {
Book result;
String memberID = getToken("Enter member id");
if (library.searchMembership(memberID) == null) {

System.out.println("No such member");
return;

}
do {

String bookID = getToken("Enter book id");
result = library.issueBook(memberID, bookID);
if (result != null){

System.out.println(result.getTitle()+ " " + result.getDueDate());
} else {

System.out.println("Book could not be issued");
}
if (!yesOrNo("Issue more books?")) {

break;
}

} while (true);
}

The issueBook method in Library does the necessary processing and returns a refer-
ence to the issued book.

public Book issueBook(String memberId, String bookId) {
Book book = catalog.search(bookId);
if (book == null) {

return(null);
}
if (book.getBorrower() != null) {

return(null);
}
Member member = memberList.search(memberId);
if (member == null) {

return(null);
}
if (!(book.issue(member) && member.issue(book))) {

return null;
}
return(book);

}

The issue methods in Book and Member record the fact that the book is being issued.
The method in Book generates a due date for our simple library by adding one month to
the date of issue.

public boolean issue(Member member) {
borrowedBy = member;

Implementing Our Design 193

dueDate = new GregorianCalendar();
dueDate.setTimeInMillis(System.currentTimeMillis());
dueDate.add(Calendar.MONTH, 1);
return true;

}

Member is also keeping track of all the transactions (issues and returns) that the member
has completed. This is done by defining the class Transaction.

import java.util.*;
import java.io.*;
public class Transaction implements Serializable {

private String type;
private String title;
private Calendar date;
public Transaction (String type, String title) {

this.type = type;
this.title = title;
date = new GregorianCalendar();
date.setTimeInMillis(System.currentTimeMillis());

}
public boolean onDate(Calendar date) {

return ((date.get(Calendar.YEAR) == this.date.get(Calendar.YEAR)) &&
(date.get(Calendar.MONTH) == this.date.get(Calendar.MONTH)) &&
(date.get(Calendar.DATE) == this.date.get(Calendar.DATE)));

}
public String getType() {

return type;
}
public String getTitle() {

return title;
}
public String getDate() {

return date.get(Calendar.MONTH) + "/" + date.get(Calendar.DATE) + "/"
+ date.get(Calendar.YEAR);

}
public String toString(){

return (type + " " + title);
}

}

With each book issued, a record is created and added to the list of transactions, as shown in
the following code snippet from Member.

private List booksBorrowed = new LinkedList();
private List booksOnHold = new LinkedList();
private List transactions = new LinkedList();

194 Design and Implementation

public boolean issue(Book book) {
if (booksBorrowed.add(book)){

transactions.add(new Transaction ("Book issued ", book.getTitle()));
return true;

}
return false;

}

7.2.4 Printing transactions

Library provides a query that returns an Iterator of all the transactions of a member
on a given date, and this is implemented by passing the query to the appropriate Member
object. The method getTransactions in Member filters the transactions based on the
date and returns an Iterator of the filtered collection.

public Iterator getTransactions(Calendar date) {
List result = new LinkedList();
for (Iterator iterator = transactions.iterator(); iterator.hasNext();) {

Transaction transaction = (Transaction) iterator.next();
if (transaction.onDate(date)) {

result.add(transaction);
}

}
return (result.iterator());

}

Library returns null when the member is not in MemberList; otherwise an iterator
to the filtered collection is returned. The UI extracts the necessary information and displays
it in the preferred format.

public void getTransactions() {
Iterator result;
String memberID = getToken("Enter member id");
Calendar date = getDate("Please enter the date for which you want " +

"records as mm/dd/yy");
result = library.getTransactions(memberID,date);
if (result == null) {

System.out.println("Invalid Member ID");
} else {

while(result.hasNext()) {
Transaction transaction = (Transaction) result.next();
System.out.println(transaction.getType() + " " +

transaction.getTitle() + "\n");
}
System.out.println("\n There are no more transactions \n");

}
}

Implementing Our Design 195

7.2.5 Placing and processing holds

When placing a hold, the information about the hold is passed to Library, which checks
the validity of the information and creates a Hold object. In our implementation, the Mem-
ber and Book objects store the reference to the Hold object. The placeHold method
in both Book and Member simply appends the new hold to the list. (The code for Book is
shown below.)

private List holds = new LinkedList();
public void placeHold(Hold hold) {

holds.add(hold);
}

One problem with this simple solution is that unwanted holds can stay in the system forever.
To prevent this, we may want to delete all invalid holds periodically, perhaps just before the
system is saved to disk. This is left as an exercise.

The list booksOnHold in Member keeps a collection of all the active holds the mem-
ber has placed. In the Member class we also generate a transaction whenever a hold is
placed.

public void placeHold(Hold hold) {
transactions.add(new Transaction ("Hold Placed", hold.getBook().getTitle()));
booksOnHold.add(hold);

}

To process a hold, Library invokes the getNextHold method in Book, which returns
the first valid hold.

public Hold getNextHold() {
for (ListIterator iterator = holds.listIterator(); iterator.hasNext();) {

Hold hold = (Hold) iterator.next();
iterator.remove();
if (hold.isValid()) {

return hold;
}

}
return null;

}

The Hold class is shown below. There are no modifiers for the attributes, since a hold
cannot be changed once it has been placed. The method isValid() checks if the hold is
still valid.

public class Hold implements Serializable {
private Book book;

188 Design and Implementation

7.1.5 User interface

As discussed earlier, our UI provides a menu with the following options:

1 Add a member

2 Add books

3 Issue books

4 Return books

5 Renew books

6 Remove books

7 Place a hold on a book

8 Remove a hold on a book

9 Process holds

10 Print a member’s transactions on a given date

11 Save data for long-term storage

12 Retrieve data from storage

0 Exit

13 Help

Initially, the system will display a menu. The user can enter a number from 0 through 13
indicating the operation. (The options 0 and 13 will be used to exit the system and display
the help screen respectively.) Parameters required for the operation will be prompted. The
result of the operation is then displayed.

All input/output will be via simple text interface.

7.1.6 Data storage

Ultimately, most applications will need to store data on a long-term basis. In a full-blown
system, data is usually stored in a database, and this data is managed by a database man-
agement system. To avoid digressing, however, we will adopt a simple approach to store
data on a long-term basis. Recall that we had decided to include the following commands
in our UI.

1. A command to save the data on a long-term basis.

2. A command to load data from a long-term storage device.

When the first command is executed, we will copy all of the data onto secondary storage.
Similarly, when the second command is executed, the data stored on the storage device is
copied to recreate the object.

196 Design and Implementation

private Member member;
private Calendar date;
public Hold(Member member, Book book, int duration) {

this.book = book;
this.member = member;
date = new GregorianCalendar();
date.setTimeInMillis(System.currentTimeMillis());
date.add(Calendar.DATE, duration);

}
public Member getMember() {

return member;
}
public Book getBook() {

return book;
}
public Calendar getDate() {

return date;
}
public boolean isValid() {

return (System.currentTimeMillis() < date.getTimeInMillis());
}

}

Once the reference to the Hold object has been found in the Book, the hold is removed
from the book and from the corresponding member as well. The book’s ID is passed to the
removeHold method in Member, which is shown below.

public boolean removeHold(String bookId) {
boolean removed = false;
for (ListIterator iterator = booksOnHold.listIterator();

iterator.hasNext();) {
Hold hold = (Hold) iterator.next();
String id = hold.getBook().getId();
if (id.equals(bookId)) {

transactions.add(new Transaction ("Hold Removed ",
hold.getBook().getTitle()));

removed = true;
iterator.remove();

}
}
return removed;

}

As is evident from the pieces of code shown above, the translation from sequence diagrams
to code is a fairly straightforward task. This is what one should expect. In fact, the sequence
diagrams in software design perform a role analogous to blueprint in engineering design.
Once the sequence diagrams are complete, there is very little left to explain or discuss. If it
were otherwise, that would reflect poorly on the process being followed.

Implementing Our Design 197

Memory Management in Object-Oriented Systems
Proliferation of objects contributes in large part to the degradation of performance in
object-oriented systems, which means that objects must be removed from the system
in an expedient manner as soon as they have served their purpose. Objects are typ-
ically allocated in the process memory space known as the heap. In Java, memory
allocated to an object in the heap is not reclaimed until all references to the object
are set to null. Some languages such as C++ allow and require the user to employ
a specific operator in order to free up the space allocated to an object.

The availability of automatic reclamation of storage in Java is often touted as a
boon, and it indeed is: it ensures that there are no dangling references or memory
leaks in the traditional sense of these two terms. But it does not absolve the program-
mer from his/her responsibilities to ensure proper memory management. The reader
must be aware that memory shortage and data integrity issues, which are respectively
the consequences of memory leaks and dangling pointers, may manifest themselves
because of design and coding errors.

The problem of memory shortage may still arise in a Java program because we
may forget to set to null every reference to an object that should be deleted: the
language’s garbage collection mechanism must be given a chance to kick in, and that
will not happen without some cooperation from the application code. Removing ob-
jects can be a tricky exercise and to ensure reliable performance, a systematic process
is needed for removing the unwanted ones. As systems become more complex, we
have more intricate relationships between objects, which, in turn, make the unwanted
objects harder to detect. In our example, Book and Member objects are relatively
stable and introduced into the system in a fairly controlled manner. Hold objects,
on the other hand, are more ephemeral and can be easily added and removed,which
means that there is a potential for their numbers to explode. In the library system, we
suggest that this be fixed by removing invalid holds periodically.

Dangling pointers, which imply invalid object references, could ultimately lead to
illegal data access and failure. Careless design and development may result in the
very same fate in a Java program. While deleting the reference to an object from one
part of the system, we must be careful to ensure that any remaining references to the
object from other parts of the system will not lead to inconsistencies. When deleting
an object from a collection, we typically obtain a reference to the object by searching
the container. If there are references to a deleted object stored in other active objects,
we may up with mutual inconsistency. For instance, assume that we remove a book
b from the catalog by deleting the reference to the appropriate Book object from
Catalog. Furthermore, suppose that b has a hold h on it.

198 Design and Implementation

This could lead to the situation where we obtain the reference to the Book object
(corresponding to b) from the Hold object (corresponding to h) and use b’s ID at
a later point to search the catalog; obviously, this search will lead to an unexpected
failure! There are two possible solutions to overcome this problem: (i) delete the
corresponding Hold object while removing the book from the catalog or (ii) remove
the reference from Catalog only if there are no holds and the book is not currently
checked out. In our implementation, we have chosen the second solution.

7.2.6 Storing and retrieving the library object

Java serialization
Our approach to long-term storage of the library data uses the Java serialization mechanism.
In Chapter 4 we saw that the methods readObject()and writeObject(Object) in
ObjectInputStream and ObjectOutputStream respectively can be used to read
and write objects and that this can be easily done for simple cases by having the corre-
sponding class implement the Serializable interface.

In our current example, Book and Hold can be serialized by simply declaring them to
be Serializable. This is because they contain instance fields each of which is defined
to be Serializable. (The reader can verify this by examining the documentation of the
Java classes we use, such as GregorianCalendar and LinkedList and the definition
of Book and Hold.) Member, MemberList, Catalog, and Library need more work
because they all have static fields in them. The default serialization mechanism in Java
does not store static fields.

Storing the data
What shouldwe do to store the entire data? To answer this question, observe that Library
has references to both the Catalog and MemberList objects, which, in turn, have ref-
erences to the Book and Member objects respectively; the Hold objects are referred to by
the Book objects and the Member objects. Thus, if we simply store the Library object,
all of the data will be stored. As in our earlier use cases, we would like to keep these details
out of the UI, and so UserInterface has a save method that simply invokes a save
method on the Library object.

private void save() {
if (library.save()) {

System.out.println("The library has been successfully saved");
} else {

System.out.println("There has been an error in saving \n");
}

}

Implementing Our Design 199

The save method in Library could simply write the Library object to a file named
‘LibraryData’ and return true if nothing goes wrong, as shown below.

FileOutputStream file = new FileOutputStream("LibraryData");
ObjectOutputStream output = new ObjectOutputStream(file);
output.writeObject(library);
return true;

Likewise, we could read the stored data with a method that reverses the above process by
opening LibraryData and reading the contents into library. This simple approach
may well suffice for a small ‘in-house’ system, which is used and maintained by a dedicated
programmer, but to have a system that is more suitable for wider usage, some issues need
attention.

Maintaining the singleton property
The process of retrieving the data has some subtle complications associated with it. The
Library, MemberList and Catalog objects are singletons: they cannot have more
than one instance. Using the serialization mechanism, it is now possible to serialize an
object and then deserialize it to get a second instance. For example, see the following
pseudocode.

Library library = Library.instance();
Serialize library onto a disk file "library1";
Library library2 = Deserialized version of "library1";
Update library (add a member);
Update library2 (delete a book);

The first three lines of the pseudo-code are shown pictorially in Figure 7.19. What has
happened is that some user of the Library object initially obtained an instance of the
Library object: essential and valid. In the second line, the user makes a copy of the
object on disk: this is also perfectly legal and necessary. What follows in the third step is
the problem. The user is now able to deserialize the object and obtain a second copy. The
two copies can then diverge via independent updates as in the last two lines.

To understand what the essential problem is, recall that the intent of the singleton pattern
is to ensure that a class has only one instance and provide a global point of access to it.
We now have two mechanisms that can create instances of a class: (i) constructors and
(ii) deserialization. The first mechanism was controlled by making constructors private and
requiring all instantiations to got through the instance method. We now need a way of
restricting the creation mechanism of deserialization.

Fortunately, due to the manner in which the reading of objects takes place in Java, this
is not a complicated task. The default readObject method can be overridden to ignore
retrieval if a copy already exists in memory. This way, no other class such as UserIn-
terface will be able to do direct deserialization.

200 Design and Implementation

Figure 7.19 A pitfall in using serialization with a singleton

private void readObject(java.io.ObjectInputStream input) {
try {

input.defaultReadObject();
if (library == null) {

library = (Library) input.readObject();
} else {

input.readObject();
}

} catch(IOException ioe) {
ioe.printStackTrace();

} catch(Exception e) {
e.printStackTrace();

}
}

If there is no memory-resident copy of the Library object, the retrieve method reads
the disk copy; otherwise, it returns the copy in memory. In case of an unexpected error, it
returns null.

public static Library retrieve() {
try {

FileInputStream file = new FileInputStream("LibraryData");
ObjectInputStream input = new ObjectInputStream(file);
input.readObject();

Implementing Our Design 201

return library;
} catch(IOException ioe) {

ioe.printStackTrace();
return null;

} catch(ClassNotFoundException cnfe) {
cnfe.printStackTrace();
return null;

}
}

As discussed earlier, when we read (or write) a Library object, the Catalog and Mem-
berList objects are automatically read (or written). However, since these are singletons,
we will need to implement readObject for these classes in an analogous manner.

Dealing with static fields in non-singletons
The above modifications take care of preserving the singleton classes, but the static fields
in non-singletons pose a different challenge. Since the static field idCounter in Member
stores the value that is used to generate the ID for each new member, this value must be
saved along with the library. Since static fields are not serialized, this value will have to be
explicitly written in the writeObject method of Member. The flip-side to this is that
we will store a separate copy with each object, and as a result whenever a Member object
is read, we are assigning a new value to idCounter, which makes our implementation
very unstable. One simple solution to this is to circumvent the problem by encapsulating
the static field as a separate class. The singleton MemberIdServer, shown below, holds
the idCounter and also increments it each time getId is invoked.

class MemberIdServer implements Serializable {
private int idCounter;
private static MemberIdServer server;
private MemberIdServer() {

idCounter = 1;
}
public static MemberIdServer instance() {

if (server == null) {
return (server = new MemberIdServer());

} else {
return server;

}
}
public int getId() {

return idCounter++;
}
// other code not shown

}

The methods for readObject and writeObject are defined as before to throw

202 Design and Implementation

exceptions if the instance exists. Note that unlike the other objects which can all be reached
directly or indirectly from references stored in Library, the instance of MemberId-
Server does not have a stored reference in any other object. This raises the issue how this
object will be serialized. The approach we adopt is to (de)serialize it in the file along with
the the library object. The UI invokes the save method, which writes the instances of
Library and MemberIdServer to the file LibraryData.

public static boolean save() {
try {

FileOutputStream file = new FileOutputStream("LibraryData");
ObjectOutputStream output = new ObjectOutputStream(file);
output.writeObject(library);
output.writeObject(MemberIdServer.instance());
return true;

} catch(IOException ioe) {
ioe.printStackTrace();
return false;

}
}

The retrieve method reads the instance of Library and then invokes the retrieve
method of MemberIdServer. These are defined as static methods since no instance
of the singleton can exist if it has to be retrieved. The method in Library is shown below;
the method in MemberIdServer invokes readObject on the input stream after the
library has been deserialized.

public static Library retrieve() {
try {

FileInputStream file = new FileInputStream("LibraryData");
ObjectInputStream input = new ObjectInputStream(file);
input.readObject();
MemberIdServer.retrieve(input);
return library;

} catch(IOException ioe) {
ioe.printStackTrace();
return null;

} catch(ClassNotFoundException cnfe) {
cnfe.printStackTrace();
return null;

}
}

7.3 Discussion and Further Reading

Converting the model into a working design is by far the most complex part of the software
design process. Although there are only a few principles of good object-oriented design

Discussion and Further Reading 203

that the designer should be aware of, the manner in which these should be applied in a
given situation can be quite challenging to a beginner. Indeed, the only way these can be
mastered is through repeated application and critical examination of the designs produced.
It is also extremely useful to study peer-reviewed designs of software systems that have
been published in sources of repute, and discussing design issues with more experienced
colleagues. In this chapter we have attempted to capture some of this complexity through
an example, and also tried to raise and deal with the questions that trouble the typical
beginner.

The sequence of topics so far suggests that the design would progress linearly from anal-
ysis to design to implementation. In reality, what usually happens is more like an iterative
process. In the analysis phase, some classes and methods may get left out; worse yet, we
may not even have spelled out all the functional requirements. These shortcomings could
show up at various points along the way, and we may have to loop through this process
(or a part of this process) more than once until we have an acceptable design. It is also
instructive to remember that we are not by any means prescribing a definitive method that
is to be used at all times, or even coming up with the perfect design for our simple library
system. As stated before, our goal is to provide a condensed, but complete, overview of the
object-oriented design process through an example. At the end of the previous chapter three
student projects were presented. To maximise benefit, the reader is encouraged to apply the
concepts to one or more of these projects as he/she reads through the material. From our
experience, we have seen that students find this practice very beneficial.

7.3.1 Conceptual, software and implementation classes

Finding the classes is a critical step in the object-oriented methodology. In the course of the
analysis–design–implementation process, the idea of what constitutes a class goes through
some subtle shifts.

In the analysis phase, we found the conceptual classes. These correspond to real-world
concepts or things, and present us with a conceptual or essential perspective. These are
derived from and used to satisfy the system requirements at a conceptual level. At this
level, for instance, we can identify a piece of information that needs to be recognised as
an entity and make it a class; we can talk of an association between classes without any
thought to how this will be realised.

As we go further into the design process and construct the sequence diagrams, we need to
deal with the issue of these conceptual classes will be manifested in the software, i.e., we are
now dealing with software classes. These can be implemented with typical programming
languages, and we need to identify methods and parameters that will be involved. We have
to finalise which entities will be individual classes, which ones will be merged, and how
associations will be captured.

204 Design and Implementation

The last step is the implementation class, which is a class created using a specific pro-
gramming language such as Java or C++. This step nails down all the remaining details:
identification and implementation of helper methods, the nitty-gritty of using software li-
braries, names of fields and variables, etc.

The process of going from conceptual to implementation classes is a progression from
an abstract system to a concrete one and, as we have seen, classes may be added or removed
at each step. For instance, Transaction and MemberIdServer were added as soft-
ware and implementation class respectively, whereas the conceptual class Borrows was
dropped.

7.3.2 Building a commercially acceptable system

The reader having familiarity with software systems may be left with the feeling that our
example is too much of a ‘toy’ system, and our assumptions are too simplistic. This crit-
icism is not unjustified, but should be tempered by the fact that our objective has been to
present an example that can give the learner a ‘big-picture’ of the entire design process,
without letting the complexity overwhelm the beginner.

Non-functional requirements
A realistic system would have several non-functional requirements. Giving a fair treat-
ment to these is beyond the scope of the book. Some issues like portability are automat-
ically resolved since Java is interpreted and is thus platform independent. Response time
(run-time performance) is a sticking point for object-oriented applications. We can examine
this in a context where design choice affects performance; this is addressed briefly in a later
case-study.

Functional requirements
It can be argued that for a system to be accepted commercially, it must provide a sufficiently
large set of services, and if our design methodologies are not adequate to handle that com-
plexity, then they are of questionable value. We would like to point out the following:

• Additional features can be easily added: Some of these will be added in the next chap-
ter. Our decision to exclude several such features has been made based on pedagogical
considerations.

• Allowing for variability among kinds of books/members: This variability is typically
incorporated by using inheritance. To explain the basic design process, inheritance is
not essential. However using inheritance in design requires an understanding of several
related issues, and we shall in fact present these issues and extend our library system in
Chapter 9.

Discussion and Further Reading 205

• Having a more sophisticated interface: Once again, we might want a system that allows
members to login and perform operations through a GUI. This would only involve the
interface and not the business logic. In Chapter 10, we shall see how a GUI can be
modeled as a multi-panel interactive system, and how such features can be incorporated.

• Allowing remote access: Now-a-days, most systems of this kind allow remote access
to the server. Chapter 12 looks how such features can be introduced through the use of
distributed objects.

It should be noted that in practice several of the non-functional requirements would actually
be provided by a database. What we have done with the use case model, the sequence
diagrams and the class diagrams is in fact an object-oriented schema, which can be used
to create an application that runs on an object-oriented database system. Such a system
would not only address issues of performance and portability but also take care of issues
like persistence, which can be done more efficiently using relations rather than reading and
writing the objects. Details of this are beyond the scope of this text.

7.3.3 The facade pattern

Earlier on, we discussed our preference for keeping the interface away from the complexity
of the business logic implementation. This was done by having a Library class that
provided a set of methods for the interface and thus served as a single point of entry to and
exit from the business logic module. In the language of design patterns, what we created is
known as a facade.

The structure of the facade is shown in Figure 7.20. The primary motivation behind
using a facade is to reduce the complexity by minimising communication and dependen-
cies between a subsystem and its clients. The facade not only shields the client from the
complexity but also enables loose coupling between the subsystem and its clients. Facades
are not typically designed to prevent the client from accessing the components within the
subsystem.

Perhaps the most ubiquitous example of the use of facade is in designing the interface
to an operating system. The system provides various menus through which users may in-
voke the standard operations of the operating system, thus shielding the user from its com-
plexity. The interface does not prevent users from writing a script to customise operations,
which gives them access to the components of the system. Common software packages also
employ facades; a compiler is a good example. While the user may have direct access to
components like the lexical analyser and the parser, the complexity of the system can be
avoided by directly invoking the commands to compile a file.

206 Design and Implementation

Using a Facade

Where do we employ this? A situation in which we have:

1. A system with several individual classes, each with its own set of public methods.

2. An external entity interacting with the system requires knowledge of the public meth-
ods of several classes.

What problem are we facing? A lot of the details of the system have to be revealed to the
external entity, which hurts modularity and abstraction. Coupling becomes tight, since a
change to any one class in the system requires changes to all entities that interact with
the system.

How have we solved it? Facade acts as a single class that:

1. Provides a single point of entry through which external entities can interact with the
system without hurting abstraction.

2. Adapts to changes in individual classes in a manner such that external entities are
unaffected, as long as the functionality of the system remains unchanged.

How have we employed it? The Library class acts as a facade through which the user
interface communicates with the system. Library is aware of all the other classes and the
methods that they provide. The methods in Library employ the functionality provided
by the other classes to complete the tasks required of the system.

Figure 7.20 Structure diagram for facade

Discussion and Further Reading 207

Figure 7.21 Interactions with a subsystem without a facade

A facade enables the subsystem to have private/protected components. Such components
are available only to the subsystem and its descendants, which prevents clients from access-
ing these just to get around the facade. When operations that involve private components
have to be invoked, the client is forced to go through the facade. One apparent downside is
that a facade is a largely ‘custom-written’ class that cannot be reused. However, the actual
coding is quite simple, and the advantage gained by simplifying the interactions between
other entities is worth this effort.

7.3.4 Implementing singletons

Implementing a singleton correctly is not a trivial matter. In Chapter 5 we overcame the dif-
ficulties with creating a singleton hierarchy. In this chapter we have dealt with the issue of
serialization. These solutions are very language specific and a careful study of the language
features is needed when moving from the software classes to the implementation classes.

There do not appear to be any ‘standard mechanisms’ in the literature for handling im-
plementation issues. Most languages provide a general collection of features that can be
adapted for a variety of purposes. We have used the implementation of readObject and
writeObject in Java to ensure that our purpose is served. Java also provides other meth-
ods like readResolve and writeReplace to override the effects of serialization and
deserialization. The Externalisable interface can be employed when the serialization
has to be fully customised.

7.3.5 Further reading

The book by Meyer [30] devotes an entire chapter to the problem of class design and makes
valuable reading. As we discussed earlier in the book, the notion of design patterns captures
the idea that many design situations are similar in nature and a knowledge of the solution

208 Design and Implementation

to these problems can make a designer more productive. The reader is encouraged to read
the book by Gamma et al. [18] to get an exposure to the common design patterns. There
are hundreds of other lesser patterns and a catalog of these can be found in [32, 39].

For a sophisticated introduction to the Unified Modeling Language, refer to [16]. The
more enthusiastic reader is referred to the Object Management Group’s UML Specification
available online via www.omg.org.

To understand how an object-oriented schema fits in with a database, we refer the reader
to [8].

Projects

1. Complete the designs for the case-study exercises from the previous chapter.

Exercises

1. Consider a situation where a library wants to add a feature that enables the librarian
to print out a list of all the books that have been checked out at a given point in time.
Construct a sequence diagram for this use case.

2. Explain the rationale for separating the user interface from the business logic.

3. Suppose the due-date for a book depends not only on the date the book is issued but also
on factors such as member type (assume that there are multiple types of membership),
number of books already issued to the member and any fines owed by the member.
Which class should then be assigned the responsibility to compute the due date and
why?

4. (Discussion) There is fairly tight coupling in our system between the Book, Member
and Hold classes. Code in Book could inadvertently modify the fields of a Member
object. One way to handle this is to replace the Member reference with just the member’s
ID. What changes would we have to make in the rest of the classes to accommodate this?
What are the pros and cons of such an approach?

5. Continuing with the previous question, the Hold object stores references to the Book
and Member objects. This may not be necessary. What specific information does Book
(Member) require from Hold? Define an interface that contains the relevant methods to
retrieve this information. What are the pros and cons of an implementation where Hold
implements these interfaces over the design presented in this chapter?

6. (Keeping mutables safe) Suggest a simple scheme for creating a new class SafeMem-
ber that would allow us to export a reference to a Member. The classes outside the

Discussion and Further Reading 209

system should be unaware of this additional class, and access the reference like a refer-
ence to a Member object. However, the reference would not allow the integrity of the
data to be compromised.

7. Withoutmodifying any of the classes other than Library, write a method in Library
that deletes all invalid holds for all members.

8

How ‘Object-Oriented’ is Our Design?

8.1 Introduction

In the course of the last two chapters, we have seen that the design process involves mak-
ing several choices. This is quite typical of any engineering design, and should come as
no surprise. For instance, when a bridge is designed, an engineer is starting with an archi-
tect’s plan and is making choices about the kind of materials needed. While doing this, the
engineer is typically guided by well-formulated design rules.

Given the multitude of choices that we face during the object-oriented design process, it
is only natural to ask if there is a set of rules that can help us make the correct decisions.
More specifically, we would like some way of answering two questions a designer often
grapples with:

1. Have I made the right decision in assigning responsibilities?
and

2. In case I make a mistake, how can I detect it early and correct it?
In this chapter we demonstrate via examples how an awareness of a concept known as
refactoring can help answer the above questions. Refactoring is defined simply as the pro-
cess of improving the internal structure (design and code) of a piece of software without
altering the module’s external behavior. The process may be applied to a system in produc-
tion, or we can use this process just as effectively during development. Practitioners have
developed a set of rules that can be used systematically to refactor code. Some of these
rules serve as means for detecting where modifications are needed, and it is not surprising
that they can often be turned into guidelines for good software practice. The rules are rela-
tively simple and the changes we make are usually small, so it is usually the case that not
much goes wrong while refactoring. Familiarity with these rules can help a beginner make
decisions about how to assign responsibilities, when to introduce inheritance, etc.

210

A First Example of Refactoring 211

It should be noted that there is a vast amount of knowledge on the subject of refactoring,
and our treatment of it in this book merely scratches the surface. Nonetheless, it is useful
to see this as an integral part of the object-oriented design process.

8.2 A First Example of Refactoring

Our first example illustrates how the two refactoring rules, EXTRACT METHOD and MOVE

METHOD, are applied during system development. To serve as the platform for using these
rules, we impose some new requirements to the library system we designed and imple-
mented in Chapter 7. After constructing an initial design and implementing the code, we
refine the solution using refactoring rules.

In Section 8.2.1 we describe the new requirements and come up with an implementation.
Refactoring is done in Section 8.2.2.

8.2.1 A library that charges fines: Initial solution

Consider the situation where the library decides to cut down on truancy by imposing fines.
When an overdue book is returned, the librarian would like to know the amount of fine and
send out a notice to the user regarding the fine payable. The system should therefore com-
pute the fines and display the relevant information. The resulting changes in the business
process are captured in the use case in Table 8.1.

This use case for Book Return with Fines is similar to what we had earlier, with one
addition — the amount of fine owed is computed whenever a book is returned. Obviously,
the Member class needs to be changed to track the amount of fine owed. Also, notice
that the use case does not say anything about actually collecting fines from a member and
updating the correspondingMember object after the fine is paid. These are left as exercises.

We have the following formula for computing the fine:

Rule 5 New books (less than a year old) are charged $0.25 for the first day and
$0.10 for every subsequent day. Older books are charged $0.15 cents for the first
day and $0.05 for every subsequent day. If a book has a hold on it, the amount of
fine is doubled.

Before we construct the modified sequence diagram, we have to decide where the amount
of fine owed will be computed. There are three possible options: Library, Book, and
Member. We can make a case for each option: Book would be appropriate since it is the
return of the book that incurs a fine; Member is where the fine is stored and is therefore the
place it could be computed; since both Book and Member are involved in this, Library
is perhaps the best place to do the computation. We decide (somewhat arbitrarily) that
Library is the place where the fine is computed. The new sequence diagram for returning
books is shown in Figure 8.1.

212 How ‘Object-Oriented’ is Our Design?

Table 8.1 Use-case Book Return with Fines

Actions performed by the actor Responses from the system
1. The member arrives at the return counter
with a set of books and gives the clerk the
books.
2. The clerk issues a request to return books.

3. The system asks for the identifier of the
book.

4. The clerk enters the book identifier.
5. If the identifier is valid, the system marks
that the book has been returned and informs
the clerk if there is a hold placed on the book;
otherwise (that is, in case of an invalid id),
it notifies the clerk that the identifier is not
valid.
If there is a fine involved, the system computes
the amount of fine using Rule 5 and adds it to
the user’s account and information about the
member is displayed. It then asks if the clerk
wants to process the return of another book.

6. If there is a hold on the book, the clerk
sets it aside. He/she then informs the system
if there are more books to be returned.

7. If the answer is in the affirmative, the sys-
tem goes to Step 3. Otherwise, it exits.

The returnBook method in Library must now check if a fine is involved: if so, it com-
putes the fine and updates the corresponding Member object by calling the Member’s
addFine method, so that the fine is accumulated. The books title is also passed so that a
transaction can be created to keep a record of the fine.

The returnBook method returns a code that indicates if a fine was involved, so that the
interface can alert the library clerk. For this purpose, two new return codes are introduced:

• BOOK HAS FINE, which is returned when the book has a fine, but no holds.
• BOOK HAS HOLD FINE, which is returned when the book has both a fine and at least

one hold.

The assumption is that the code in the user interface will take appropriate action to notify
the clerk in the above circumstances.

A somewhat knotty problem concerns the display of member information, as required in
Step 5 of the use case, when there is a fine involved. Since the returnBook method in

A First Example of Refactoring 213

Figure 8.1 Returning a book and checking for fines

Library simply returns an integer value to UserInterface, the latter does not have
the necessary information to display. We have a couple of options:

• Option 1 Modify the returnBook method to return more information. The infor-
mation could be sent as an object with multiple fields, or simply as a string with all the
data concatenated.

• Option 2 Allow the user interface to manage the output by providing additional query
operations. These operations would require adding more methods to the Library class.

Implementing the first option requires that we either create a new class to send the result
or assemble a string that will have to be parsed in the interface. Neither of these is a good
idea since both result in additional coupling between the UI and the back end. On the other
hand, adding another query is a very natural thing to do, since our back end is in fact a
database. In our situation, we need a new method that returns the borrower of a given book.
This query can be invoked by UserInterface at the start of the process, so that it has
all the necessary information. This is truly a natural extension of the code development
process since the query could conceivably be used in multiple situations, not just when a
book is returned. For instance, the library may want to know who the borrower of a book is
because its due date has been well past.

We have to make some other changes to our implementation. Book now has an acqui-
sitionDate field and an associated accessor. The private methods yearApart (which
checks if two given dates are at least one year apart) and daysElapsedSince are added
to Library.

The resulting code is given below.

214 How ‘Object-Oriented’ is Our Design?

public int returnBook(String bookId) {
// search for book and its borrower
Book book = catalog.search(bookId);
if (book == null) {

return(BOOK_NOT_FOUND);
}
Member member = null;
if ((member = book.getBorrower()) == null) {

return(BOOK_NOT_ISSUED);
}
//compute fines
double fine = 0.0;
Calendar dueDate = book.getDueDate();
if (System.currentTimeMillis() > dueDate.getTimeInMillis()) {

Calendar acquisitionDate = book.getAcquisitionDate();
if (yearApart(acquisitionDate, dueDate)) {

fine = 0.15 + 0.05 * daysElapsedSince(dueDate);
} else {

fine = 0.25 + 0.1 * daysElapsedSince(dueDate);
}
if (book.hasHold()) {

fine *= 2;
}

}
// final steps
if (!(member.returnBook(book))) {

return(OPERATION_FAILED);
}
if (fine > 0.0) {

member.addFine(fine, book.getTitle());
if (book.hasHold()) {

return(BOOK_HAS_HOLD_FINE);
} else {

return(BOOK_HAS_FINE);
}

}
if (book.hasHold()) {

return(BOOK_HAS_HOLD);
}
return(OPERATION_COMPLETED);

}
private boolean yearApart(Calendar date1, Calendar date2) {

return ((date2.getTimeInMillis() - date1.getTimeInMillis())
/ 86400000) > 365;

}
private int daysElapsedSince(Calendar date) {

return (int) ((System.currentTimeMillis() - date.getTimeInMillis())
/ 86400000);

}

A First Example of Refactoring 215

From the formula for computing fines, we see that we need to compare the
due date and the current date and a fine is imposed if the latter is later than
the former. To see how to determine which of these two dates is larger, notice
the two lines after the comment // compute fines. The static method Sys-
tem.currentTimeMillis() gives the number of milliseconds elapsed since January
1, 1970 and dueDate.getTimeInMillis() is the number of milliseconds elapsed
since January 1, 1970 for the book’s due date. A simple comparison then affords the result.

The method yearApart() is used to check if the book’s due date is a year or more
than its acquisition date. Invoking the method getTimeInMillis on the two dates does
the trick.

After the fine is computed, the corresponding Member object is updated by calling the
addFine method, so the fine is accumulated. The book’s title is also passed, so a transac-
tion can be created to keep a record of the fine.

8.2.2 Refactoring the solution

Having come up with an initial design and its implementation, we must carefully consider
the two questions we said we must ask of the solution: whether the responsibilities have
been properly assigned and if mistakes have been made, how to detect and correct them.

We begin with making some observations about the new method:

• It is bigger than before.

• It has more detail.

The second observation is particularly alarming. One of the broad goals we have in object-
oriented design is to make each method simple so that unit testing is facilitated. Sometimes
longer methods are unavoidable; but excessive amount of detail is usually a more serious
indicator that we are making a mistake. Let us first revisit the whole algorithm for returning
a book. Here are the steps:

1. Get the reference to the book.
2. Get the reference to the member.
3. Get the due date.
4. Get the acquisition date.
5. Compute fines.
6. Record that the member has returned the book.
7. Add fines to member.
8. Check if there is a hold.
9. Return a result. (If there is a hold, fine, etc.)

216 How ‘Object-Oriented’ is Our Design?

Each of these steps except 5 is an application of a single method, which is computed on
some object, viz., catalog, book, or member. In the code corresponding to Step 5, we
see that we are dealing with a lot of detail about how the fine is being computed. Modular
design principles suggest that such details be abstracted out.

The above observation leads us to our first refactoring rule, Extract Method. Considera-
tions involved in applying this rule and the steps for carrying it out are detailed in Figure
8.2.

EXTRACT METHOD RULE

If you have a code fragment that can be grouped together, turn the fragment into a
method and assign it a name that explains the purpose of the method.

It is easy to recognise these fragments from the comments added by the programmer.
These comments, which typically take the form of a verb phrase, also suggest how
the extracted method should be named. If a code fragment does not appear to have a
simple name, it is often unlikely to be a good candidate for extraction into a method.
Another indicator is the number of local variables that are modified; if the code frag-
ment modifies only one variable, this strengthens the case for extraction. If a large
number of variables are modified, the code fragment should probably be left in place.

The steps involved in applying this rule are as follows.

• Identify a code fragment and copy it into a method named for the intention of that
code fragment.

• In the extracted code, locate the references to variables local to the original method
and pass these as parameters to the new method.

• For all temporary variables that are used in the fragment, declare corresponding
variables in the new method.

• Determine the local variable that is modified by the extracted code and set its type
as the return type of the new method.

• Replace the code fragment in the original code with a call to the new method and
store the value returned in the local variable identified in the previous step.

Figure 8.2 Extract method

Note that the fragment that we want extracted is preceded by the comment ‘compute fines’.
This suggests how the extracted method should be named. We now have the following
version of the method.

public int returnBook(String bookId) {
// search for book and its borrower (not shown)

A First Example of Refactoring 217

fine = computeFine(book);

// final steps not shown
}

public double computeFine(Book book) {
double fine = 0.0;
Calendar dueDate = book.getDueDate();
if (System.currentTimeMillis() > dueDate.getTimeInMillis()) {

Calendar acquisitionDate = book.getAcquisitionDate();
if (yearApart(acquisitionDate, dueDate)) {

fine = 0.15 + 0.05 * (daysElapsedSince(dueDate) - 1);
} else {
fine = 0.25 + 0.1 * (daysElapsedSince(dueDate) -1);

}
if (book.hasHold()) {

fine *= 2;
}

}
return fine;

}

The method returnBook looks much cleaner now. All it is doing is getting the relevant
information by applying appropriate methods and then compiling all the results.

Let us take a closer look at the method that we have extracted. The logic employed by
computeFine involves examining the fields of Book and making decisions based on
the values stored in these fields. To get these values, the method repeatedly invokes the
accessor methods of book. One of the rules of good object-oriented design is called the
Law of Inversion, which says that

‘If your routines exchange too many data, put your routines in your data’.

What this means is that our focus should be more on the data and less on the process. In
a process-oriented design, we do not think adversely about importing all the data elements
into the function that implements the process. In a data-centered approach, the parts of the
process that are close to one data element are encapsulated as methods and placed into the
class corresponding to that data element. The computation for the encapsulated part of the
process is then carried out by calling the method on the data element.

The above design principle leads us to the next refactoring rule, MOVE METHOD. The
computeFine method is moved from Library to Book using the principles set forth
in Figure 8.3.

218 How ‘Object-Oriented’ is Our Design?

MOVE METHOD RULE

If we have a method that is using more features of another class than the class on
which it is defined, then the method needs to be moved to the class whose features it
is using the most.

This rule is a manifestation of the process of assigning responsibilities to the ap-
propriate class and is perhaps the most frequently applied rule in refactoring. When a
method uses too many features of another class, we have a situationwhere the classes
are either collaborating too much or are too tightly coupled. It is not always the case
that such a problem will be resolved by moving a method. Sometimes, other patterns
may have to be applied that allows objects to communicate without getting too en-
tangled in each other’s methods. The simplest and most obvious situation is when a
method accesses several fields of another class and almost all its computation is done
on these fields.

The steps involved in applying this rule are as follows:

• Make a list of all features used by the method in question.

• Identify the target class for the move, i.e, the class whose features are most fre-
quently employed in the computation.

• Examine other features that are not in the most frequently used class and decide if
those features need to be moved to the target class as well.

• It could happen that the features from the source that are being moved to the target
are being used by other methods in the source. The possibility that these methods
also need to be moved should be taken into consideration. It is sometimes easier
to move a set of methods and fields instead of a single method.

• Declare the method(s) and field(s) in the target class, and move the code to the
new method. Make the necessary adjustments so that the code works in the target
class. This would involve changing the names of the features being used.

• Change the code in the source class to reflect the movement of the fields and meth-
ods.

As is evident from this description, moving a collection of methods and fields can
affect several methods of the source class. Care must be taken to ensure that the new
code reflects the changes. When this rule is applied in the presence of inheritance, we
have to exercise an additional caveat: If super-classes and sub-classes of the source
class have also declared the method, then the method cannot be moved unless the
polymorphism can also be expressed in the target class.

Figure 8.3 Move method

A Second Look at RemoveBooks 219

After applying the MOVE METHOD rule, have the following code:

public int returnBook(String bookId) {
// search for book and its borrower (not shown)

fine = book.computeFine();

// final steps not shown
}

The computeFine method in Book is as follows:

public double computeFine() {
double fine = 0.0;
if (System.currentTimeMillis() > dueDate.getTimeInMillis()) {

if (yearApart(acquisitionDate, dueDate)) {
fine = 0.15 + 0.05 * (daysElapsedSince(dueDate) - 1);

} else {
fine = 0.25 + 0.1 * (daysElapsedSince(dueDate) -1);

}
if (hasHold()) {

fine *= 2;
}

}
return fine;

}
private boolean yearApart(Calendar date1, Calendar date2) {

return ((date2.getTimeInMillis() - date1.getTimeInMillis()) / 86400000)
> 365;

}
private int daysElapsedSince(Calendar date) {

return (int) ((System.currentTimeMillis()
- date.getTimeInMillis()) / 86400000);

}

Note that we have moved the methods yearApart and daysElapsedSince as well
to Book. This process has helped resolve our dilemma about where the fine should be
computed. In the initial stages of design, we need not go through the entire process of
refactoring to correct our errors. Nonetheless, beginners may often find themselves in a
quandary as to where the responsibilities for a certain task should be placed. The exercise
of refactoring code helps to formalise some of the basic principles of object-oriented design
so that such errors can be caught early in the design process and suitably corrected.

8.3 A Second Look at RemoveBooks

Now that we have an idea of the kinds of issues that we have to watch out for, let us take a
second look at the code that we have written to find suitable candidates for refactoring. The

220 How ‘Object-Oriented’ is Our Design?

sequence diagram for Remove Books looks interesting, since it bears some resemblance to
Return Books. Once again, we begin by describing the overall algorithm being followed.

1. Get the reference to the book object from Catalog.

2. Check if the book can be removed. We cannot remove a book if it has holds or if it is
checked out.

3. If the book is not removable, return the appropriate error code.

4. If the book is removable, remove the reference to the book from Catalog and return
the appropriate code.

5. We reach this step only if there was a problem removing the book from the catalog. In
this case, return an error code.

The second step is the one that is not being carried out by a single method call and, there-
fore, is our focus for further investigation. Here is the code, with some comments inserted.

public int removeBook(String bookId) {
// Step 1: Get reference to book.
Book book = catalog.search(bookId);
if (book == null) {

return(BOOK_NOT_FOUND);
}

// Step 2: Check if book is removable
if (book.hasHold()) {

return(BOOK_HAS_HOLD);
}
if (book.getBorrower() != null) {

return(BOOK_ISSUED);
}

// Step 3: Attempt the actual removal.
if (catalog.removeBook(bookId)) {

return (OPERATION_COMPLETED);
}

// Step 4: This error should not happen.
return (OPERATION_FAILED);

}

In Step 2, we have a situation similar to the previous example in that the information stored
in Book is being used to make a decision in Library, with the difference that in this case,
we see very little computation being carried out. Our decision, however, should not be based
on this fact alone (in a more complicated example, we could have several other reasons for
not deleting a book, viz., we may have some ‘rare books’ that should not be removed,

A Second Look at RemoveBooks 221

etc.), but should consider where the responsibility for this computation is best assigned.
The repeated access to the fields of book suggests that this computation be moved out. As
before, we can apply the EXTRACT METHOD and MOVE METHOD rules in succession.
We have the following situation after applying EXTRACT METHOD:

public int removeBook(String bookId) {
// Step 1: Same as before
// Step 2: Check if book is removable

int returnCode = checkRemovability(book);
if (returnCode != OPERATION_COMPLETED) {

return returnCode;
}

// Remaining steps same as before
}
private int checkRemovability(Book book) {

if (book.hasHold()) {
return (BOOK_HAS_HOLD);

}
if (book.getBorrower() != null) {

return (BOOK_ISSUED);
}
return OPERATION_COMPLETED;

}

Since checkRemovability uses attributes of Book, it appears that we must apply the
MOVE METHOD rule. After moving thismethod to Book we get the following end product.

public int removeBook(String bookId) {
// Step 1: Same as before

// Step 2: Check if book is removable
int returnCode = book.checkRemovability();
if (returnCode != OPERATION_COMPLETED) {

return returnCode;
}

// Remaining steps same as before
}

In Book we have to add the new method, taking care to change "book" to "this." The
constants belong to Library, so they need to be qualified.

public int checkRemovability() {
if (hasHold()) {

return (Library.BOOK_HAS_HOLD);

222 How ‘Object-Oriented’ is Our Design?

}
if (borrowedBy != null) {

return (Library.BOOK_ISSUED);
}
return Library.OPERATION_COMPLETED;

}

Let us now pause and take stock of what we have accomplished. We started with one
method in Library with two conditional statements that invoked methods from Book.
We now have a new version that uses named constants that are defined in Library.
This increases the coupling between Book and Library. The benefit provided by these
changes is questionable, and on the flip-side, we have added to the complexity of our code.
In such a situation it is perhaps better not to modify the original code.

It is important to note here that the control flow in the extracted code for Return Book has
a single point of entry and a single point of exit, which makes it well-suited for applying the
refactoring rules. The multiple exit points in the extracted code of Remove Book prevent
us from reaping significant gains by refactoring.

8.4 Using Generics to Refactor Duplicated Code

As a means to reduce system complexity and development and maintenance effort, it is
important to look for opportunities where the number of classes in a system is kept as
small as possible, subject, of course, to good object-oriented design principles. Prospects
for merging two or more classes arise if they have similar functionality, although they may
differ in relatively minor aspects. In the library system, for instance, MemberList and
Catalog are strikingly similar in what they do; of course, there are some differences:
one stores books and the other is a collection of members, and Catalog has a method to
remove books, but no such functionality exists in MemberList.

In this section, we show how generics may be used in situations such as the above to
factor out some of the commonalities in a manner that most of the complexity is located
in one module. As an example of the use of generics, we develop a generic class called
ItemList, which can be used to store books or members.

8.4.1 A closer look at the collection classes

We somehow need to tell the system that ItemList should be capable of storing either
books or members. For this, the type of element to be stored in the ItemList object is
passed as a parameter to the class name itself as given in the following class declaration.

public class ItemList<T> implements Serializable {
// generic code
}

Using Generics to Refactor Duplicated Code 223

The reader may recall from Chapter 3 that the idea is that T, a parameter to the
class name, stands for an arbitrary type and objects of that type will be stored in the
collection.

To implement the methods of this generic collection class, we utilise the logic used in
corresponding methods of Catalog. (As we noted before, Catalog is slightly more
general than MemberList because the former contains a method to remove items from
the collection.)

We need to modify the places where references to specific types occur with generic type
names. Specifically, we need to replace the data definition such as

private List books = new LinkedList();

with

private List<T> elements = new LinkedList<T>();

Next, we focus on search. Here is the code from Catalog:

public Book search(String bookId) {
for (Iterator iterator = books.iterator();iterator.hasNext();) {

Book book = (Book) iterator.next();
if (book.getId().equals(bookId)) {

return book;
}

}
return null;

}

There are two problems with the code.

1. In each iteration, the id value of an object in the catalog is checked against the given book
id. This constitutes fairly tight coupling between Book and Catalog; the parameter to
search is of type String, so we build into Catalog the information that id is of
type String. The iterator’s return type is cast as a Book. It also assumes the existence
of a method called getId(). If we want to use generics and factor out the common
code, this coupling has to be eliminated.

2. In the code, note that two books are considered equal (i.e., identical) if their id fields
are equal. If the coupling between Catalog and Book is to be removed, the deci-
sion as to which field(s) should be used in the comparison should be made by Book,
and not left for the collection class. This suggests that the code for deciding how to
match the incoming object against the Book object must be extracted and moved to
Book.

224 How ‘Object-Oriented’ is Our Design?

A caveat on using the equals method

We have seen that the responsibility for checking whether a specific book’s id is equal to
that of some given id should be delegated to the Book class itself. At first sight it would
appear that we can use the equals method to carry out this task. However, a careful look
at the definition of this method as described in the Java documentation reveals that this
method is unsuitable for use in the present context. Carefully read the following, which is
taken from the Java online documentation.

The equals method implements an equivalence relation on
non-null object references:

• It is reflexive: for any non-null reference value x,
x.equals(x) should return true.

• It is symmetric: for any non-null reference values x
and y, x.equals(y) should return true if and only if
y.equals(x) returns true.

Suppose that we write the equals method in Book as below.

public boolean equals(Object object) {
String id = (String) object;
return (this.id.equals(id));

}

As we demonstrate below, the relation implemented by the method is asymmetric. Clearly,
there is an implication that the equals method expects a String object. The equals
method of the String class, however, will not produce the same result when a Book
object is passed as its parameter. Trace the following piece of code:

String id = "id1";
Book book1 = new Book("title1", "author1", id);
System.out.println(book1.equals(id)); // call 1
System.out.println(id.equals(book1)); // call 2

Although invocation of the equals method on book1 (commented as call 1) results
in a true output, calling the method on the corresponding String object (commented as
call 2) returns value false.

In other words, the equals method as implemented above will not result in an equiva-
lence relation. We should, therefore, refrain ourselves from using that method as the vehicle
for comparison. Failure to do so could ultimately result in subtle bugs that are likely to be
quite difficult to catch: imagine the plight of a programmer who trusts that the above im-
plementation of equals follows the requirements set forth in the Java documentation and
codes as in call 2 above!

Using Generics to Refactor Duplicated Code 225

A different approach

To rectify the situation, we implement a method called matches in Book, which does
not impose the equivalence relation requirement. To start with, we implement the code as
shown next:

public boolean matches(String bookId) {
return this.id.equals(bookId);

}

The search method in Catalog is modified as follows:

public Book search(String value) {
for (Book element: elements) {

if (element.matches(value)) {
return element;

}
}
return null;

}

Next, we eliminate type dependence. For this, we replace the type name Book with the
generic type T. (Recall that T is the parameter to the class.)

public T search(String value) {
for (T element: elements) {

if (element.matches(value)) {
return element;

}
}
return null;

}

This change begs the question: What if id were to be of a type other than String? This
additional type dependence is eliminated by introducing a second generic parameter. The
class ItemList is now defined as:

public class ItemList<T, K> implements Serializable {
// generic code

}

K represents the type of key on which the container matches items. The search is now
written as:

public T search(K value) {
for (T element: elements) {

226 How ‘Object-Oriented’ is Our Design?

if (element.matches(value)) {
return element;

}
}
return null;

}

Similar modifications can be made to the other methods. The changes are fairly straightfor-
ward.

public boolean removeItem(K value) {
T element = search(value);
if (element == null) {

return false;
} else {

return elements.remove(element);
}

}
public boolean insertItem(T item) {

elements.add(item);
return true;

}
public Iterator<T> getItems() {

return elements.iterator();
}

While this solution is satisfactory for our limited case, in a more general situation one
may wish to use ItemList to create other collection classes. If we were to replace T by
some user-defined class C, the code would fail to compile if the method matches was not
defined for class C. In other words, to create instantiations of ItemList, we require that
T satisfy a specific property, i.e., have a method named matches. This property is named
Matchable and is extracted as an interface that T must implement.

public interface Matchable<K> {
public boolean matches(K other);

}

The Book and Member classes are modified as below.

public class Member implements Serializable, Matchable<String> {
// fields and other methods
public boolean matches(String id) {

return this.id.equals(id);
}

}

public class Book implements Serializable, Matchable<String> {

Using Generics to Refactor Duplicated Code 227

// fields and other methods
public boolean matches(String id) {

return this.id.equals(id);
}

}

Finally, ItemList is defined as:

public class ItemList<T extends Matchable<K>, K> implements Serializable {
// generic code

}

8.4.2 Instantiating Catalog and MemberList

With the code developed so far, we can create a new catalog as below.

ItemList<Book, String> catalog = new ItemList<Book, String>();

A similar code can be used to create a collection for members.
However, from the viewpoint of robustness, this approach is unsatisfactory. There can be
multiple catalogs and member lists because the constructor can be invoked from the outside.
In other words, the class is not a singleton.

Ideally, we would like to put within ItemList<T, K> a static method that returns
an ItemList<T, K> object with the correct parameter. The code should look like the
following.

private static ItemList<T, K> itemList;
private ItemList() {
}
public static ItemList<T,K> instance() {

if (itemList == null) {
itemList = new ItemList<T,K>();

}
return itemList;;

}

Unfortunately, the above code is not legal. Because of the way Java implements generics,
the type name T is erased from the class definition at compilation time and is not available
during execution. Therefore, there can be no useful checks against the type name T. (It
would appear that the implementation details are driving the rules of the language, and not
vice-versa!)
Catalog is now declared as an extension of ItemList<Book, String>.

public class Catalog extends ItemList<Book, String> {
}

228 How ‘Object-Oriented’ is Our Design?

Now, every public and protected method of ItemList<T extends Match-
able<K>, K> is inherited by Catalog.

MemberList is coded in a similar fashion.

We now have two choices for naming the methods of Catalog and MemberList:

1. We could create methods such as removeBook and insertBook inside Catalog
and similarly-named methods in MemberList. Thus, instead of having methods with
names such as removeItem and insertItem, we end up with the old method
names: removeBook, insertBook, etc.

public boolean removeBook(String value) {
return super.removeItem(value);

}
public boolean insertBook(Book item) {

return super.insertItem(item);
}
public Iterator<Book> getItems() {

return super.getItems();
}

This means that Catalog is a class adapter, i.e., it is a subclass of ItemList<T ex-
tends Matchable<K>, K> and implements a different interface by suitably call-
ing the methods of the superclass.

2. We simply live with the new names insertItem and removeItem, and then modify
the Library class to adjust to these changes.

While refactoring a module or a set of modules within a system, it is clearly preferable to
ensure that the changes do not require modifications in the rest of the system. In our case,
if we choose Option 2, Library needs to be updated, which would mean that we should
choose Option 1. The number of places in Library that refers to these methods is small,
so a case could be made for Option 2. In general that is not advisable, however, because
there could be many modules with numerous locations that could be affected.

Making Catalog a singleton is not hard. See the following code.

private static Catalog catalog;
private Catalog() throws Exception {
}
public static Catalog instance() {

try {
if (catalog == null) {

return catalog = new Catalog();
}

Discussion and Further Reading 229

} catch(Exception e) {
return null;

}
return catalog;

}

8.5 Discussion and Further Reading

In this chapter our main focus was to show the importance of being aware of the refactoring
rules and how these can in fact lead us to making good choices in the way we assign
responsibilities. In practice, being faithful to the refactoring process also results in software
that is easier to maintain and understand.

The book by Fowler [15] is the reference for much of the material in this chapter. Among
other things, the book emphasises the importance of the role that refactoring can play in
keeping a system from falling into decay. While the benefits of refactoring are many, there
are also a few caveats one should follow to avoid going overboard, and there are also sit-
uations and systems whose characteristics make refactoring difficult. The reader would be
well advised to engage in a deeper study of this process before attempting a wider applica-
tion.

Fowler points out that refactoring, when added to the design process, has the capacity
to present us with an alternative to the conventional ‘up-front’ design which views the
development of the design as a blueprint and considers coding to be just a process of going
through the mechanics of implementation. While this up-front approach is certainly the one
recommended by most textbooks, the process can be tempered by refactoring. Instead of
getting the design down to the last detail and then coding it, we work with a loosely defined
design, start the coding and ‘firm-up’ (and correct) the design with some refactoring as
we go through the implementation process. This process may be better description of what
happens in practice and has the added advantage of giving the designers some flexibility in
the choices that they make.

Exercises

1. Critically examine the design decisions that you have made in the three student projects
at the end of Chapter 7 in the light of the information and ideas contained in this chapter.
What changes would you like to make?

2. What changes do you need to make to the Member class to track the amount of fine
owed?

230 How ‘Object-Oriented’ is Our Design?

3. Try to implement ItemList<T extends Matchable<K>, K> as a singleton.
What are the difficulties you encounter?

4. Suppose that we do not specify Matchable as a generic interface. What changes will
you make? What drawbacks do you foresee?

5. Compile the source files for the classes given for the generic implementation. Make
modifications so that all compiler warning messages disappear.

6. In Chapter 7, we pointed out that using ‘magic numbers’ is poor programming practice,
and we replaced them with named constants. This is listed in the literature as a standard
refactoring rule [15], Replace magic number with symbolic constant, which involves the
following steps:

(a) Declare a constant and set it to the value of the magic number.

(b) Find all occurrences of the magic number.

(c) See if magic number matches the usage of the constant; if yes, replace the magic
number by the constant.

(d) Compile and test; code should work exactly as before.

It has been noted that using named constants does not solve all problems since these
can still be interpreted as numbers. A much safer approach in Java is to use the enum
construct.

Develop a refactoring process to replace named constants with enums and apply this
to refactor the code developed for the Library so that the result codes returned by Li-
brary are all contained in a single enum named LibraryResults. (Hint: this will
involve finding references to these named constants in all situations, which include vari-
able declarations and return types of methods.)

7. Modify the library system so that it actually collects the fine owed by a user at the time
he/she checks out books.

Advanced Concepts in
Object-Oriented Design

9

Exploring Inheritance

9.1 Introduction

In this chapter we look more deeply at the topic of inheritance, the basic concepts of which
were covered in Chapter 3. Inheritance can be done in two ways: by subclassing existing
classes and by implementing interfaces. The major goal of inheritance is reuse, but the two
approaches achieve this goal in different ways.

We begin this chapter by exploring the idea of subclassing. Using inheritance effectively
is not always a straightforward exercise. We show several examples that illustrate distinct
circumstances where this approach can be taken.

Like most tools, subclassing must be done with care, or we may end up with an unstable
system. In Section 9.3 we present some of the considerations while subclassing and an
alternative to this approach. An elegant test for deciding whether subclassing is appropriate
in a given context is enunciated in the Liskov substitution principle (LSP), which we study
in this context.

Section 9.4 discusses the technique of implementing interfaces, with particular reference
to Java. While many cases that use this approach are straightforward enough, one does
encounter some tricky situations.

Section 9.5 revisits the case-study for the library system and enhances it to include multi-
ple kinds of items. A ‘process-oriented’ enhancement is presented and critiqued in Section
9.6 before presenting an object-oriented solution incorporating inheritance.

Introducing inheritance and replacing a single class with a hierarchy could compli-
cate some issues such as exception handling and functionality enhancement. These are
addressed in Section 9.7.

Some object-oriented languages permit a class to subclass multiple classes. While this
can be useful in some situations, the technique is also quite complicated. The approach and
its pros and cons are covered in Section 9.8, followed by discussion and suggestions for
further reading.

233

234 Exploring Inheritance

9.2 Applications of Inheritance

This section presents varied applications of inheritance illustrating the different circum-
stances in which this powerful technique can be used. Although the programming language
rules concerning inheritance are not overly complicated as long as multiple inheritance is
not involved, the design process can sometimes be tricky. A great deal of insight into how
the system would evolve is essential for clean and effective use of inheritance.

9.2.1 Restricting behaviours and properties

One circumstance in which inheritance can be applied is when a class has characteristics
that are a restriction of the characteristics of some other class. Suppose we have two classes,
Rectangle and Square, to represent rectangles and squares. Every square is a rectan-
gle in which length is equal to breadth, i.e., the property that length be equal to breadth
restricts the number of rectangles that qualify to be classified as squares. Thus, Square
is obtained from Rectangle by restricting a property; note that we are not attaching any
more functionality to squares than rectangles.

As a second example, suppose that we create a graphical user interface with many types
of widgets, including labels. Suppose we have the requirement that the text in all labels be
coloured blue. In this case, it is convenient to have a subclass that simply sets the colour to
blue. The subclass of JLabel is given below.

import java.awt.colour;
import javax.swing.JLabel;
public class SpecialLabel extends JLabel {

public SpecialLabel(String text) {
super(text);
setForeground(colour.blue);

}
}

In this case, the behaviour of SpecialLabel is restricted in that it always displays a blue
foreground.

Although the above examples make perfect sense from an abstract view point, the reader
should note that a well-established principle of inheritance shows that inheritance might
not be justified. Please see Sections 9.3.4 and 9.9 and Exercise 6.

9.2.2 Abstract superclass

Sometimes the only purpose of having a superclass is to extract the common attributes and
methods of potential subclasses, thus maximising reuse. No objects of the superclass itself
are allowed, thus necessitating that the superclass be abstract. In such cases we have a set
of subclasses that partition the universe of objects in the superclass.

Applications of Inheritance 235

Account

CheckingAccount SavingsAccount

Figure 9.1 Partitioning a set of objects

As an example, consider accounts in a bank. An account is a general concept, and, per-
haps, in some bank, all accounts are checking accounts or savings accounts. The bank al-
lows only opening of checking or savings accounts. Therefore, Account is a class that helps
us build software more quickly by providing some of the functionality that is common to
all types of accounts. The partitioning is indicated in the Venn diagram in Figure 9.1, which
shows that the set of all accounts is partitioned into savings and checking accounts.

9.2.3 Adding features

In Section 9.2.1, we have seen that sometimes classes are extended to restrict the behaviour
of the superclass. Somewhat quite opposite to this, we may extend an ancestor class, by
adding new features, to get the descendant. Consider a class named DataStream that
serves as a reader of data. Imagine a situation where we need a class that has the added
property of ‘reReadability,’ i.e., reading some input again. To achieve this, we add new
functionality, viz., the ability of ‘unreading’ so that a character read from the stream can
be pushed back. This is shown in Figure 9.2. Another example of this would be a class for
‘Moving Vehicle’ that can be defined by extending an existing ‘Vehicle’ and adding the
attribute ‘speed.’

DataStream

reReadableDataStream

Figure 9.2 Adding more features

236 Exploring Inheritance

9.2.4 Hiding features of the superclass

Sometimes we want to restrict behaviour by suppressing some functionality of the super-
class. Such a kind of restriction is discussed in the following example, where some of the
features are eliminated in the subclass.

Let List be a class that allows the creation of a list in which objects can be added
anywhere: in the front, at the tail, or at any position in-between. It is easy to get a class
Queue that allows adding only at the tail and removing from the front. All other add
and remove methods, which allow adding at or removing from other positions, should be
disallowed. This can be accomplished in C++ via private1 inheritance, as shown below:

#include <iostream.h>
#include <stdlib.h>

class List {
private:

// data structures
public:

List() {
// initialize data structures

}
bool add(int index, int value) {
// code to add at the specified position and return true or false
}
bool add(int value) {
// code to add at the end and return true or false
}
int remove(int index) {
// code to delete the object at the specified position and
// return true or false
}
int remove() {
// code to delete the object at the front and return true or false
}

};
class Queue: private List {

public:
int dequeue() {

return List::remove();
}
bool enqueue(int value) {

return List::add(value);
}

};

1In private inheritance, all the non-private superclass attributes become private attributes of the subclass.

Inheritance: Some Limitations and Caveats 237

Such an application has also been referred to in the literature as Structural Inheritance
because the features inherited from the superclass (List) provide the structure needed for
implementing the subclass (Queue). This kind of an application does have its critics due to
the fact that the ‘is-a’ relationship between the ancestor and the descendant is not preserved.

9.2.5 Combining structural and type inheritance

We can also have situationswhere two kinds of inheritance are applied to define a class that
suits our application. The most common of such situation is one where one superclass pro-
vides the necessary structure and another one, usually an interface, defines the function.
A binary search tree, for instance, can be seen as a class that extends binary tree (structure
inheritance) and implements the OrderedList interface (which defines the function of
the binary search tree). The OrderedList operations are implemented using the meth-
ods provided by the class representing the binary tree, giving the name implementation
inheritance to this usage.

9.3 Inheritance: Some Limitations and Caveats

Although it facilitates reuse, inheritance by subclassing is not always the best strategy to
construct new classes even if there is justification for doing so on the surface. Among the
reasons:

1. Subclassing could result in deep hierarchies, which usually makes it quite difficult to
understand the code.

2. In systems that do not support multiple inheritance, subclassing is not always feasible.

3. It may be necessary to hide selected features of the superclass. For example, if we ex-
tend the class java.util.LinkedList to implement a queue, all of the methods of
the superclass will be exposed, which may compromise integrity. Facilities such as the
renames clause in the language Eiffel facilitate this. Explicitly hiding a superclass’s
field/method is also possible in C++.

4. Combining inheritance with genericity may result in complications due to implemen-
tation issues with a particular language. As we saw in Chapter 8, the erasure property
employed by Java results in some inconsistencies when inheritance and genericity are
combined.

5. The derived class’s type may not be a true subtype of the superclass’s type.

We elaborate on each of the above aspects in the following subsections.

238 Exploring Inheritance

9.3.1 Deep hierarchies

When subclassing, we obviously add one more to the length of the hierarchy. The
fields and methods available for use in the derived class include all of the inher-
ited fields and methods and the ones added to the class itself. For example, the class
JFormattedTextField in the package javax.swing has a hierarchy of depth 7,
assuming that java.lang.Object is at depth 1. Table in Figure 9.3 shows how the
number of fields and methods increase for this specific hierarchy.

It is a challenging task to remember the interactions between the methods. Clearly, it is
advisable to keep the hierarchy to a reasonable depth.

Class name Number of Fields Number of Methods
java.awt.Component 186 291
java.awt.Container 230 417
javax.swing.JComponent 376 594
javax.swing.text.JTextComponent 440 698
javax.swing.JTextField 479 729
javax.swing.JFormattedTextField 513 757

Figure 9.3 Complexity increase with hierarchy depth

9.3.2 Lack of multiple inheritance

In certain situations, it may be desirable to create a subclass from multiple classes. How-
ever, some languages such as Java allow subclassing of at most one class. In such circum-
stances, we cannot limit ourselves to subclassing, but adopt other approaches in conjunction
with it, or abandon subclassing altogether. We discuss this issue in Section 9.4.

9.3.3 Changes in the superclass

While it is not desirable to change the set of methods supported by a class, such
changes are sometimes inevitable. (As an example, in the Java class system the class
java.awt.Component added the public method setEnabled(boolean) in JDK
1.1.) Imagine an application system A1, some classes of which extend a set of classes from
some other system A2. Suppose that A2 is modified to include a number of useful features.
To exploit these enhancements, assume that the corresponding subclasses of A1 use the
new versions.

Although A1 can now exploit all of the new functionality incorporated into the classes
of A2, there are potential problems as well. To see one possible problem, consider the two
classes B and D given below, where D extends B.

Inheritance: Some Limitations and Caveats 239

public class B {
public void m1() {
}

}

public class D extends B {
public void m2() {
}

}

Suppose that the following method is now added to B.

public int m2() {
return 1;

}

Now class D is illegal because method m2’s return type is inconsistent with that of the
correspondingly-named method in B.

9.3.4 Typing issues: The Liskov substitution principle

One of the rules that is implicit in the use of inheritance is the Liskov substitution principle
(LSP) which is stated as follows:

Subclasses should be substitutable for their baseclasses.

The concept seems rather obvious, and at first glance, one wonders what the fuss is all
about. After all, this is the essence of the is-a relationship of inheritance. To see its signifi-
cance, let us first quote Liskov.

If for each object O1 of type S there is an object O2 of type T such that for all
programs P defined in terms of T , the behaviour of P is unchanged when O1 is
substituted for O2 then S is a subtype of T .

The subtleties involved in the definition can be brought out through the following example.
A package provides a class SolidRectangle that creates a solid (i.e., all the pixels

in the rectangle are filled), axis-parallel (or isothetic) rectangle. Each SolidRectangle
object is defined by two points, which are the ends of one of the diagonals.

Let us define an upper triangle of a solid rectangle as the triangle formed by the end-
points of one of the diagonals and the corner of the rectangle ‘above’ the diagonal. See
Figure 9.4, where the upper triangle is shown shaded. The two rectangles on the left have
the diagonal connect the top-left and bottom-right corners of the rectangle. Therefore, the
upper triangle comprises the top-left, bottom-right and top-right corners of the rectangle.
Similarly, in other two cases, the top-left, bottom-left, and top-right corners constitute the

240 Exploring Inheritance

corner1

corner1 corner1

corner1

corner2 corner2

corner2 corner2

Figure 9.4 Upper triangle (shaded) of a SolidRectangle

upper triangle. The reader can verify that when corner1.y > corner2.y (see the top
row of Figure 9.4), the third point is formed using corner2.x and corner1.y; otherwise, the
third point is formed using corner1.x and corner2.y.

Partial code for the class is shown below. The getUpperTriangle method returns
the Triangle object corresponding to the upper triangle formed using the diagonal con-
necting corner1 and corner2.

class SolidRectangle {
private Point corner1;
private Point corner2;
public SolidRectangle(Point point1, Point point2) {

corner1 = point1;
corner2 = point2;

}
public void setCorner1(Point point) {

corner1 = point;
}
public void setCorner2(Point point) {

corner2 = point;
}
public Triangle getUpperTriangle() {

Point point;
if ((corner1.x == corner2.x) || (corner1.y == corner2.y)) {

return null; // degenerate case
} else {

if (corner1.y > corner2.y) {

Inheritance: Some Limitations and Caveats 241

point = new Point(corner2.x, corner1.y);
} else {

point = new Point(corner1.x, corner2.y);
return (new Triangle(corner1, corner2, point));

}
}

}
}

In some situations, it could conceivably be convenient to have a separate class for dealing
with an individual pixel, which is just a 1×1 rectangle. This suggests that we could simply
extend SolidRectangle to accommodate this.

class Pixel extends SolidRectangle {
public Pixel(Point point) {

super(point, point);
}

}

Note that the set of Pixel objects is just a subset of the SolidRectangle object with
the restriction corner1 = corner2. Accordingly, the methods for setting these cor-
ners should be redefined in the subclass so that this invariant property is preserved.

public void setCorner1(Point point) {
super.setCorner1(point);
super.setCorner2(point);

}
public void setCorner2(Point point) {

super.setCorner1(point);
super.setCorner2(point);

}

The getUpperTriangle method does not pose any problem for our Pixel class, since
it will always return null. Our troubles start with existing client classes, whose methods
have been using the methods of SolidRectangle. Consider the following method in a
client class that takes as its input parameter a SolidRectangle object.

public void clientMethod(SolidRectangle rectangle, Point point) {
Triangle triangle1;
//... some code
rectangle.setCorner1(new point(1, 1));
rectangle.setCorner2(new point(4, 4));
triangle1 = rectangle.getUpperTriangle();
if (triangle1.contains(p)) {

//... some code
}

}

242 Exploring Inheritance

This code was written by a client using SolidRectangle, but unaware of Pixel. Since
the two corners are set to two distinct points, triangle1 will not be null, and things will
be fine. Now if this method is invoked and a reference to a Pixel object is passed as the
actual parameter, both the corners will end up being assigned the same point, triangle1
will be null, and we end up with a NullPointerException. Note that there is no
simple fix; we may just have to find such code in all the methods of the client classes, and
either check for null pointers or check the type of the objects stored in the SolidRect-
angle references at runtime.

At every step of the this process our choices seemed logical, but we ended up with an
undesirable state of affairs. So it is natural to ask: what went wrong? The answer lies in
a precise definition the is-a relationship: A pixel object ’is-a’ SolidRectangle object if and
only if the behaviour of Pixel objects conforms to the behaviour of SolidRectangle objects
in all situations. The above example shows that the behaviour of getUpperTriangle
does not exhibit such conformance when invoked in conjunction with the setCorner
methods. One could argue, perhaps, that the method getUpperTriangle is itself poorly
designed, but that is really not a choice that we can make now. It is important to keep in
mind that we are inheriting from the existing class SolidRectangle and we must accept
all its methods. To cast this in terms of the formal statement of the LSP, when we substitute
Pixel for SolidRectangle the behaviour of any program should remain unchanged.
What we have shown here is that for the program clientMethod, the behaviour changes
when such a substitution is made.

The caveat here for the programmer extending a class is therefore that one must check
all behaviours of the class being extended, even in situations where a subset relationship
exists between the corresponding ‘real-world’ entities.

9.3.5 Addressing the limitations

The object-oriented approaches to circumvent these limitations are founded on two thumb
rules:

• Inherit from abstract types rather than concrete classes.

• Favour composition over inheritance.

In most situations where we have to use inheritance effectively, some combination of these
two thumb rules comes in handy. A simple illustrative example is described below.

Consider a situation where a concrete class C1 exists and we want to create a descendant
C2. We could do this by having C2 extend C1, but such a solution would suffer from the
problems listed earlier. A better approach would be to define an abstract type C which is
implemented by C1. Now C2 can be defined as another concrete class that extends C. In
order to reuse the earlier implementation, we have two strategies available. One strategy is

Type Inheritance 243

to define C as an abstract class, factor out the parts of the implementation that are likely
to be used and place these in C. Each of C1 and C2 then put in the details specific to their
types. A second strategy would be to define C2 as a class that implements C and adapts the
implementation provided by C1.

9.4 Type Inheritance

So far, we have discussed cases where a class subclassed another to inherit its properties and
behaviours. But reuse need not be realised simply via subclassing. It can also be achieved
by inheriting behaviour.

To see how this can be achieved, assume that we have a class C that performs some
useful function f on all objects of type T . Then, a class D that wishes to utilise this func-
tionality can do so by acquiring the type T . In Java parlance, for example, T might be an
interface that class D implements.

9.4.1 A simple example

To make these ideas more concrete, let us look at an example. In the java.util package,
there is a class called sort that as the name implies, sorts objects of type Comparable.
Here is the essential declaration of that method.

static T sort(List<T> list)

where T must be of type Comparable.
Comparable is an interface with just one method compareTo, which has the following
signature.

int compareTo(T object)

Instances of any class that implements the above interface acquire the ability to be sorted
using the sort method of Collections.

Suppose that we have a class City that stores the name, state, and population of
cities. To make objects of type City comparable, we need to have it implement the
Comparable interface. Each City object maintains a reference to the corresponding
State. So the compareTo method of the former employs the compareTo method of
the latter to complete its work. Here is the code.

public class City implements Comparable {
private String name;
private State state;
private int population;

244 Exploring Inheritance

public City(String name, State state, int population) {
this.name = name;
this.state = state;
this.population = population;

}
public int compareTo(Object object) {

City city = (City) object;
int result = 0;
if ((result = name.compareTo(city.name)) == 0) {

return state.compareTo(city.state);
}
return result;

}
public boolean equals(City city) {

return compareTo(city) == 0;
}

}

The class State must also be Comparable as shown below.

public class State implements Comparable {
private String name;
public int compareTo(Object other) {

State state = (State) other;
return name.compareTo(state.name);

}
// other fields and methods

}

Inheriting a property is not always as simple as the above example suggests, and Java has
two other interfaces, viz., Cloneable and Runnable, which exemplify some of the
subtleties.

9.4.2 The cloneable interface

The property of self-replication comes in handy when we are dealing with objects. Due
to the complex interconnections, sending out a reference to the original copy of just one
object can result in compromising the integrity of the entire system. As we have seen in
our case-study with the library system, a Member object can store references to several
Book objects, each of which could have several references to Hold objects. Since each
Hold object has a reference to a member, one could potentially access (or modify) the
information about all the members through a single reference. This problem can be avoided
by not sending a reference to the original object, but a reference to a carefully constructed
clone.

Implementing such a solution is somewhat more complicated than it appears at first. A
naive implementation strategy would be to simply do a bit-wise copy (sometimes called

Type Inheritance 245

a ‘shallow’ copy) of all the fields of the user object. If we were to attempt this, consider
the problem of making a copy of the holds placed by the user. The Member object has
a field booksOnHold that holds a reference to the collection of holds.A bit-wise copy
would simply create another reference to this collection. As a result, the method accessing
the clone now has a reference to the original Hold objects. Creating a copy therefore
requires some knowledge about the object being copied, and this knowledge is available
only within the object being copied. As an example, the class Member must decide how
members are copied. Since Member includes a collection of Hold objects, that collection
must be cloned when its Member object is cloned. The rule is that every object should
decide for itself how it will be cloned, so that the collection should be able to clone itself
and provide the rule for its own cloning.

To add to the difficulty, in general, any given object that holds references to other objects
has to rely on those objects to create clones of themselves. If some of those objects cannot
be cloned, then the given object must have the ability to decide how the situation is to be
handled. Accordingly, the mechanism provided by the language to impart the cloneability
property to a class must be versatile enough to accommodate all the desirable possibilities.

The Object class comes with a protected clone method that does the simple bit-wise
copy that we describe above. The Cloneable interface in Java imparts the property of
cloneability to a class. This interface is empty, and a class may choose not to implement this
interface, but may nonetheless have to override the clone method in Object to ensure
that things are done correctly. Finally, we have a CloneNotSupportedException,
which is thrown to signal that a class’s clone method should not be invoked. The clone
method in Object is declared to throw this exception, thus allowing all subclasses to
throw the exception as well.

Any given class can have one of four possible attitudes toward cloning:

1. Support clone In this case the class implements the Cloneable interface and declares
its clone method to throw no exceptions. The author of such a class must ensure that
all its contents are cloneable.

2. Conditionally support clone This situation arises when a class implements Clone-
able, but cannot guarantee that its contents can be cloned. In this case the clone
method will throw the CloneNotSupportedException if some of its contents are
not Cloneable.

3. Not publicly support clone, but allow subclasses to support clone Such a class does
not implement Cloneable, but may override the default implementation of clone
to ensure that it works correctly. This would enable its subclasses to invoke su-
per.clone() if the subclasses choose to support clone.

4. Forbid clone In this case, the class does not implement Cloneable and provides a
clone method that always throws the CloneNotSupportedException.

246 Exploring Inheritance

As a first example, let us see how to implement the Cloneable interface for the City
and State classes given earlier. The clone in City requires the following header.

public class City implements Comparable, Cloneable {

The clone method itself is given below. One thing to note is that the immutable classes
do not need to be cloned if our only purpose is to protect the original copy. Any attempt
to change an immutable object by modifying the clone will not change the original, even
though we have a shallow copy. For instance, if an object is simply a collection of String
objects, a bit-wise copywill create another object that holds references to the same String
objects as the original. Attempting to modify a String creates a new String object and
therefore the original object is always preserved.

After calling the clone method of the superclass, the state field is cloned by calling
the clone method of the State class.

public Object clone() {
City copy = null;
try {

super.clone();
copy.state = (State) state.clone();

} catch(CloneNotSupportedException cnse) {
return null;

}
return copy;

}

The clone method of the State object is straightforward and we omit giving its code.
The reader will notice that shallow cloning works just fine.

As a second example, consider cloning a Member object in the library system. To clone
a user, the following changes are made to the code:

class Member implements Cloneable {
// other fields and methods
public Object clone() throws CloneNotSupportedException {

Member member = (Member) super.clone();
member.booksBorrowed = new LinkedList();
member.booksOnHold = new LinkedList();
member.transactions = new LinkedList();
for (ListIterator iterator = booksBorrowed.listIterator();

iterator.hasNext();) {
member.booksBorrowed.add((Book)((Book) iterator.next()).clone());

}
for (ListIterator iterator = booksOnHold.listIterator();

iterator.hasNext();) {
member.booksOnHold.add((Hold)((Hold) iterator.next()).clone());

}

Type Inheritance 247

for (ListIterator iterator = transactions.listIterator();
iterator.hasNext();) {

member.transactions.add((Transaction)
((Transaction)iterator.next()).clone());

}
return member;

}
}

Since the clone method for the class LinkedList provides only a shallow copy, it is
necessary that we create new instances of LinkedList for booksBorrowed, book-
sOnHold and transactions, clone each item in the original versions of these lists and
insert them into the clone.

Member is now conditionally supporting clone. The classes Book, Hold and
Transaction will also have to support clone if we have to successfully clone Member.
Although this code appears correct (and does in fact do the cloning correctly) it contains a
serious flaw: invoking the clone method could result in infinite recursion. This is because
the Hold object stores a reference to the member who placed the hold! The size of the
cloned object also poses a problem: since the Hold object also stores a reference to Book,
which in turn stores a reference to the borrower, we could potentially clone all the informa-
tion in the library. A simple resolution to these problems could be that the clone methods
in Book and Hold do not clone the Member fields and also set the Member references on
cloned copies to null.

class Hold implements Cloneable {
// other fields and methods
public Object clone() throws cloneNotSupportedException {

Hold hold = (Hold) super.clone();
hold.member = null;
hold.book = (Book) book.clone();
hold.date = (Calendar) date.clone();
return hold;

}
}

In this situation we see that cloning is serving a purpose beyond that of preserving the
original copy. In general, cloning is a non-trivial exercise and we need to be aware of all
the possible complications that can arise when properties like cloneability are inherited by
a class.

For an approach that prevents infinite recursion, we could proceed as discussed in the
following example. Our approach employs a list of all objects that we have started cloning
and the corresponding clone’s reference. As we start the cloning process, the list is empty.
Suppose we have the situation where member M1 has borrowed a single book B1 and
we begin the cloning process with M1 (see Figure 9.5.) It is easy to verify that with no

248 Exploring Inheritance

safeguards in place, the cloning will result in infinite recursion. Before cloning the fields
of M1, we add an entry corresponding to M1 into the list and store the clone’s reference.
In the process of cloning M1, we encounter the reference to B1. Before we clone B1, we
create an entry for it and store the reference to B1’s clone. While cloning the fields of B1,
we encounter M1 and observe from the list that that we have already started cloning M1,
which means that it should not be cloned again (to prevent infinite recursion). We obtain
M1’s clone’s reference from the list and store it in B1’s clone.

M1 B1

Figure 9.5 Cloning in the general case: an example

9.4.3 The runnable interface

Software systems often have to employ runtime structures called concurrent sequential pro-
cesses (CSPs). A simple example of a CSP can be found in the implementation of a bank
account. The customer (owner of the account) could be using an ATM to withdraw cash
at the same time when a transaction for depositing a check is being processed. Both these
actions represent concurrent processes which are accessing a piece of shared data (the ac-
count information). In this situation it is vital to ensure that both processes do not try to
simultaneously modify the balance field in the account; in such a simultaneous access,
depending on the order in which the methods for deposit and withdrawal are executed, we
could end up with an error.

Java provides a class called Thread that can be used for implementing CSPs. In our
example, we would have a separate thread for every process that accesses the account ob-
ject; that is, if a withdrawal and deposit were to be simultaneously carried out, there would
be a thread for the withdrawal process and another thread for the deposit. We can then
employ Mutual Exclusion on the account object, which will ensure that the account is not
simultaneously accessed by the two processes. Threads also enable the programmer to im-
plement other operations like suspending a process, making a process sleep for a specified
amount of time, prioritise processes, and enable sharing of resources.

Since Thread is a class, we can create a new class that has all the features of Thread
through inheritance. However, since Java does not support multiple inheritance, this ap-
proach does not allow the user to create a class that extends an existing class and also has

Type Inheritance 249

all the properties of Thread. This restriction is overcome by providing the Runnable
interface as a part of the language. This interface allows the programmer to create a class
that has all the properties of Thread. The following example illustrates the use of this
interface to create a simple ‘clock’ that prints ‘tic’ and ‘toc’ at regular intervals.

public class Clock implements Runnable {
Thread thread = new Thread(this);
String sound = "tic";
public void run() {

try {
while (true) {

System.out.println(sound);
sound = "toc";
Thread.sleep(1000);
System.out.println(sound);
sound = "tic";
Thread.sleep(1000);

}
} catch (InterruptedException ie){
}

}
public Clock() {

thread.start();
}
public static void main (String[] args) {

new Clock();
}

}

The run method contains an infinite loop that alternately prints the words ‘tic’ and ‘toc’
with a 1000 millisecond delay between consecutive words. This process continues until
interrupted by the user.

The Runnable interface requires that Clock implement the run method. Inside
Clock we create a Thread, storing this reference in thread. A reference to the Clock
object is passed to thread. (The parameter being supplied here is required to be of type
Runnable.) The start method of Thread is invoked in the Clock constructor, and
this method in turn invokes the run method of the Clock object. In this interface, a
Thread object is encapsulated along with the class to provide ‘thread-like’ properties to
objects of the class. In essence, what we have done here is to achieve the benefits of inher-
itance using object composition.

Object Composition and Inheritance are the two most common mechanisms for reuse in
object-oriented design. In both these mechanisms, the implementation of the new class is
defined in terms of the functionality of the existing classes. In case of inheritance, since
the internal details of the ancestor class are often visible to the descendant, the resulting
scenario is referred to as ‘white-box reuse’. On the other hand, object composition requires

250 Exploring Inheritance

that the component classes have well-defined interfaces so that they can be used as ‘black-
boxes’.

Object composition has the obvious advantage of keeping the inheritance hierarchies
small, thus reducing the complexity of the system. Also, properties that are not naturally
tied to one another are kept separate, so that each class is kept encapsulated and focused
on one task. A less obvious advantage is that composition allows us to define the object
dynamically at run-time. In the above example, Clock has been defined statically, since
Thread will always hold a reference to a Thread object. The following example shows
how composition can be used to define an object dynamically.

public class Catalog {
private List catalogList;
public Catalog (List list) {

catalogList = list;
//other constructor code

}
// other fields and methods

}

In this case, any object belonging to any class that satisfies the List interface can be sent
in as a parameter to the constructor. For instance, we could do the following:

catalog = new Catalog(new ArrayList());

This would create a catalog that uses an ArrayList to store the collection of books. Note
that such a dynamic definition is possible because Catalog is defined by composition; if
it had been defined as an extension of, say, LinkedList, this would not be possible.

9.5 Making Enhancements to the Library Class

We are now ready to move ahead with the process of employing inheritance and creating
hierarchies in our design. Consider a more sophisticated version of the Library system
that we created in the last chapter. With the advent of technology, our clients now wish to
expand their collection to include non-print media. Thus we now have books on tape, CDs,
and DVDs in addition to printed books. Also, the library wants to include some periodicals,
which are to be handled differently from the other books. For instance, recent periodicals
cannot be checked out. For books on tape, CDs and DVDs, we wish to keep track of the
duration.

9.5.1 A first attempt

As a first step in developing our new design, let us ask ourselves the question: How do
these new requirements change the design of our system? or in more concrete terms, What

Making Enhancements to the Library Class 251

new classes/methods need to be added? and How do the interactions between the existing
classes change? To answer these, let us examine how the requirements have changed the
way in which the business processes are carried out. Consider the use case for issuing a
book. The operations needed are the same: viz., check issuability, compute a due-date and
record the transaction. We could handle these simply by making changes in the methods
of the existing Book class.

To simplify the discussion, we restrict ourselves to two types of items that the library
lends: books and periodicals. Even with this simplification, we need a mechanism to find
out what item (i.e., a book or a periodical) we are dealing with when we process these trans-
actions. One approach could be to add a field bookType to the class Book, which would
tell us what kind of a book it is. We would make changes in the method that computes the
due-date by switching on the field bookType. Periodicals that are less than three months
old are not issuable; otherwise, they can be borrowed for a week. Another difference is that
periodicals have no authors.

Let us re-write Book with these enhancements. New fields are added to hold the book-
Type and dateAcquired and we also declare constants to designate the type of the
book.

private String title;
private String author;
private String id;
private Member borrowedBy;
private List holds = new LinkedList();
private Calendar dueDate;
private int bookType;
private Calendar dateAcquired;
public static final int BOOK = 1;
public static final int PERIODICAL = 2;

Since periodicals and books store different values, we need two constructors. To create a pe-
riodical, we use the constructor with two parameters because periodicals have no author
parameter.

public Book(String title, String author, String id) {
this.title = title;
this.author = author;
this.id = id;
this.type = BOOK;

}
public Book(String title, String id) {

this.title = title;
this.id = id;
this.type = PERIODICAL;
this.dateAcquired = new GregorianCalendar();

252 Exploring Inheritance

this.dateAcquired.setTimeInMillis(System.currentTimeMillis());
}

The user interface should allow the user to specify what kind of item is being added to the
library. This will require a conditional that will not ask for an author if the item being added
is a periodical.

public void addBooks() {
Book result;
do {

String title = getToken("Enter title");
String bookID = getToken("Enter id");
if (yesOrNo("Is this a book?")) {

String author = getToken("Enter author");
result = library.addBook(title, author, bookID);

} else {
result = library.addPeriodical(title, bookID);

}
if (result != null) {

System.out.println(result);
} else {

System.out.println("Book could not be added");
}
if (!yesOrNo("Add more books?")) {

break;
}

} while (true);
}

The method in the UI invokes a different method of Library in each case. Accordingly,
Library provides two methods, one to add periodicals and one to add books.

public Book addBook(String title, String author, String id) {
Book book = new Book(title, author, id);
if (catalog.insertBook(book)) {

return (book);
}
return null;

}

//new method added for periodical
public Book addPeriodical(String title, String id) {

Book book = new Book(title, id);
if (catalog.insertBook(book)) {

return (book);
}
return null;

}

Making Enhancements to the Library Class 253

Let us examine some other methods in Book. The process of issuing a book is different
from that of a periodical, and that is reflected in the new issue method. The cutoff-
Date is computed and compared against dateAcquired to decide if the periodical can
be issued.

public boolean issue(Member member) {
borrowedBy = member;
dueDate = new GregorianCalendar();
dueDate.setTimeInMillis(System.currentTimeMillis());
switch (bookType) {

case PERIODICAL:
Calendar cutoffDate = new GregorianCalendar();
cutoffDate.setTimeInMillis(System.currentTimeMillis());
cutoffDate.add(Calendar.MONTH, -3);
if (cutoffDate.after(dateAcquired)) {

dueDate.add(Calendar.WEEK_OF_MONTH, 1);
} else {

return false;
}
break;

default:
dueDate.add(Calendar.MONTH, 1);
break;

}
return true;

}

The getAuthor and toString methods also differ because of the absence of a specific
author for periodicals.

public String getAuthor() {
if (bookType == PERIODICAL) {

return "";
}
return author;

}

public String toString() {
if (bookType == BOOK) {

return "title " + title + " author " + author + " id " + id
+ " borrowed by " + borrowedBy;

} else {
return "title " + title + " id " + id + " borrowed by " +

borrowedBy + " Acquired on " + dateAcquired.getTime().toString();
}

}

Likewise, all methods that have different behaviour for books and periodicals will be mod-
ified, and this behaviour will be decided based on the value stored in bookType. The

254 Exploring Inheritance

above enhancement is exactly how a procedural design would be modified. The process
varies slightly for each type of data, and this variation is accounted for within the same
procedural unit by switching on the kind of data.

9.5.2 Drawbacks of the above approach

Before embarking on a critique of such an implementation, it is useful to keep in mind the
perspective from which we are approaching the issue. We have two fundamental goals:

• The system should be easy to build and test.

• The system should be adaptable.

It is clear from what we are doing that such an approach involves storing more of the
complexity of the system in one class (i.e., Book) and its methods. This makes the system
difficult to build and test. From the point of view of building, the programmer has to deal
with increased complexity of the processes. Examples of this can be seen in the methods
like issue and getAuthor, where the programmer has to be aware of two cases and
two possible outcomes that are predicated on the properties of the two kinds of items.
Testing adds another dimension of complexity. If we have two categories of objects, each
of whose methods handle five different cases, we have a total of ten outcomes to test when
we combine them into a single class. As we pack more requirements into a single class,
we increase the probability of human error. Another kind of problem is the combinatorial
explosion that happens when program segments use a lot of branch statements. Consider,
for instance a method with two switch statements, one following the other, each of which
has five possible cases. We now have a total of twenty-five possible computational paths
when this method executes. This complexity deters the programmer from putting in the
assertions needed to catch all exceptional behaviours. As the science of software reliability
progresses, it is becoming increasingly clear to researchers that, at least in critical systems,
some form of formal verification will be needed. Our focus should therefore be to produce
simpler methods.

A second set of problems arise when we apply the adaptability requirement. Changes to
business processes, as we well know, are inevitable. In our system these changes can take
two forms: (i) the procedures for performing library operations may change and (ii) we may
add new categories of items to the library. The kind of structure that we have above hurts our
ability to modify the code in both these situations. When a procedure changes, say we have
some new rules for issuing books, we want to ensure that in re-writing the issue method
we are not messing up the procedure for the periodicals. This also means that when testing
the system after the changes, we have to test the system for both books and periodicals. A
similar situation develops when we add new categories of items. The existing methods are

Improving the Design 255

changed to accommodate one more case, and once again we need the assurance of system
behaviour for the new items added as well as the ones that were already in place.

An important (some would argue the most important) guiding tenet of object-oriented
design can be summed up in what is referred to as the open-closed principle (OCP):

A module must be open for extension but closed for implementation.

Extension is the process by which new features are added to existing software, and im-
plementation is the process that converts an abstract design into concrete code. What this
statement implies is that our classes and modules must be written in such a manner that
they can be extended, i.e., new features can be added without re-opening the completed
implementation, i.e., without the need for modification of the existing code.

It is obvious that OCP is highly desirable, but a deeper understanding is needed when
we apply it. Adding new features to software often requires changes to an existing class.
Consider, for example, the feature for charging fines that we added in Chapter 8: changes to
Book and Member were inevitable. In such a situation, we want to ensure that classes not
directly involved in this (Catalog, for instance) are not affected. Exactly which classes
will be affected depends on how the responsibilitieswere assigned for each step of the pro-
cedures involved (viz., Return Book). This assignment is a non-trivial task, but the propaga-
tion of the effects of change can be contained by proper encapsulation. Sometimes, changes
can mostly be handled by defining a separate class that incorporates the new features and
have only a minimal effect on other classes. This new class, however, needs to be related
in some way with the existing classes, without changing their implementation. In a world
without inheritance, such a feat is impossible to accomplish; inheritance allows us to extend
an existing class so that more features can be added to the descendants, even though the
ancestor class remains closed. However, merely applying inheritance will not satisfy OCP;
as we shall see next, a thorough understanding of how the implementation will be reused is
essential.

9.6 Improving the Design

In keeping with the above arguments, we once again examine the process that we used to
add the new kinds of items. Since this is a chapter on inheritance, it is pretty obvious that
we shall employ it in some way, but before we plunge in, a couple of issues deserve our
attention.

As we discussed above, some extensions necessarily affect other classes, and so we ask:
What classes must change to accommodate the new kinds of items? To properly answer this,
we must go back to the analysis. The system is allowing users to add new kinds of items to
the library, so it is safe to assume that the users are aware of their existence and also expect
the system to reciprocate this awareness. All business is transacted through the UI, which

256 Exploring Inheritance

is therefore required to know about the new items. It is not immediate from the analysis
that any of the other classes need to be aware of this, and we shall therefore postpone this
decision to a later point.

In our example, we are introducing new kinds of items to the library and would like to
encapsulate the resulting changes to the system using separate classes. In this context, it is
useful to ask: Is there a set of guiding principles that can be employed when we introduce
inheritance to incorporate the new items? Such principles can then be used to guide the
design of our inheritance hierarchy. In practice, software designers are often confronted
with situations where changes not anticipated during design need to be incorporated. A
closely related question, therefore, would be: Is there a systematic procedure that we can
employ when introducing inheritance?We shall now discuss answers to the above questions
as we revisit the process of adding periodicals to the library.

9.6.1 Designing the hierarchy

As discussed above, we now have two classes, Book and Periodical. The original
design did not have the Periodical class and therefore we need to decide how it will be
related to Book. Two obvious choices present themselves (see Figure 9.6):

• Option 1: Both classes share a common ancestor. In this hierarchy we have an ancestor
class LoanableItem with two descendants, Book and Periodical. The common
ancestor is an abstract class that contains the shared attributes. Catalog is defined as a
collection of LoanableItem and the other classes in the system (Library, Member,
etc.) will be redefined to deal with LoanableItem (instead of Book).

• Option 2: One class inherits from the other. Since a Book class is already present,
Periodical simply extends Book and overrides the necessary attributes. None of the
other classes need to be changed.

Book
LoanableItem

Periodical Book Periodical

Figure 9.6 Two hierarchies for library items

Improving the Design 257

When designing a new system, the level of complexity appears to be the same in both op-
tions. Option 1 requires an additional class, but has the advantage of treating all the items
in a uniform manner. On the other hand, when we are adding features to an existing system
like the one we have, Option 1 appears to have several disadvantages. The process of creat-
ing the new class LoanableItem and modifying all the existing classes can be extremely
tedious, whereas the ‘quick and dirty’ approach of Option 2 has the advantage of speed.
Over a long period of time, however, such an approach can be very detrimental to a system.

Any system that needs to be up and running for a long time needs stability. Simply put,
stability of a system is the amount of work that needs to be put in to disturb the existing
equilibrium. If left undisturbed, an unstable system may remain stable for a long time, but
with very little effort the equilibrium can be disturbed. Extending the notion to a situation
where we have several subsystems within a system, consider something like a house, which
has several components: a foundation, a wall structure, a roof, and a dish antenna. The roof
depends upon the wall structure, which in turn depends on the foundation. The dish antenna
is clearly the least stable of all the parts, and therefore it is very undesirable to depend on it
(which may be another reason not to become a TV addict!). On the other hand we want the
foundation to be very stable, since all the other components are dependent on it. Since the
roof depends on the wall structure, we want to ensure that the wall structure is at least as
stable as the roof. To summarise, we want to depend in the direction of stability. This rule
is often referred to as the stable dependencies principle (SDP). In our case study with
the Library, we want to ensure that LoanableItem is very stable, since the hierarchy
depends on it.

In the realm of software, this has some interesting consequences. A ‘procedural design’
tends to follow a top-down approach: the structure starts at the top with high-level choices
and points down to lower level details. This suggests that the high-level modules depend
on the implementation in the lower level modules. A problem with this approach is that
implementations are inherently unstable, and thus we are at odds with the SDP. The object-
oriented approach, therefore turns this dependency around so that the design only specifies
the abstraction, and the actual implementation (‘concretion’) satisfies the abstraction. In
general, implementations are concrete and therefore inherently unstable. Abstractions do
not specify details and thus remain flexible, which makes them more stable when changes
have to be incorporated. Thus we can state the following simple thumb rule:

Depend upon abstractions; avoid depending upon concrete implementations.

The design choice that we shall make is therefore to have an abstract class Loan-
ableItem on which all the concrete implementations depend. The inheritance structure
is translated into code as follows:

public abstract class LoanableItem implements Matchable<String> {
// code common to all types of items that the library lends

258 Exploring Inheritance

}
public class Book extends LoanableItem {

// code specific to books
}
public class Periodical extends LoanableItem {

// code specific to periodicals
}

In the process of filling in the details for these classes, we will decide how these items are
created and added to the collection, what attributes are placed in each class, and how the
common code is factored out.

Changes to other classes
The main purpose of creating such a hierarchy is to protect all the client classes from
changes that occur within the hierarchy. The client classes would now depend on the sta-
ble abstraction provided by LoanableItem and be completely unaware of the structure
below it. All the code in Library will now invoke methods through references of type
LoanableItem and Catalog is defined as a collection of LoanableItem. It fol-
lows then that the abstract class must also implement the Matchable interface, as shown
in the code above.

9.6.2 Invoking the constructors

Let us examine the process for adding new items to the library collection. Since the UI
knows about the different kinds of items, the method for adding items can query the user
about the kind of item, collect the necessary parameters and invoke the method in Li-
brary. In our earlier implementation we had separate methods for books and periodi-
cals; this makes the implementation unstable since adding new kinds of items requires
adding methods to Library. Let us say we can do this with a single method, addLoan-
ableItem. The code in the UI would be something like this:

private static final int BOOK = 1; // declaring the constants
private static final int PERIODICAL = 2;
public void addLoanableItems() {

LoanableItem result;
do {

String typeString = getToken("Enter type: "
+ BOOK + " for books\n"
+ PERIODICAL + " for periodicals\n");

int type = Integer.parseInt(typeString);
String title = getToken("Enter title");
String author = null;
if (type == BOOK) {

author = getToken("Enter author");

Improving the Design 259

}
String id = getToken("Enter id");
result = library.addLoanableItem(type, title, author, id);
if (result != null) {

System.out.println(result);
} else {

System.out.println("Item could not be added");
}
if (!yesOrNo("Add more Items?")) {

break;
}

} while (true);
}

The method in Library must now decide what kind of item to create. This would imply
that we have a conditional in addLoanableItem that switches on type. We no longer
have to add methods to Library if new kinds of items are desired, but we still need to
edit our method to add more clauses to the conditional, which means we cannot reuse the
Library class directly.

Before proposing solutions, let us take another look at why an inheritance hierarchy is
a good idea. We wanted to avoid too much complexity in one class and its methods, so
we tried to get rid of conditionals that switched on the type of item by creating a separate
subclass for each type, with a common abstract superclass. When invoking the methods
on items from this hierarchy, we only refer to the type of the abstract superclass and let
dynamic binding take care of the rest. Effectively, we have moved the complexity of the
conditional out of the application code and into the interpreter. Dynamic binding works
because the system keeps track of the actual concrete subclass of the object even though
the reference is stored in a variable declared to have the type of the superclass. When we are
invoking constructors, we are yet to create the object; so we cannot rely on dynamic binding
to make the choice for us. What this implies is that the conditionals in the constructor
invocation cannot be eliminated. In other words, conditionals that switch on the input cannot
be eliminated using dynamic binding, unlike conditionals that switch on stored values. (In
a sense, creating new objects is like getting new input, and conditionals on the input are
essential for any non-trivial program.) The consequence of all this for our design is that the
class that chooses the appropriate constructor will undergo a change. Our goal is to protect
Library from these changes, and some brainstorming gives us three possibilities:

• Option 1 One possibility is to extend Library and redefine addLoanableItem
whenever new types of items are added.

• Option 2 A second option is to move the constructor logic into the abstract superclass
LoanableItem.

• Option 3 Third, we could develop a new class that takes care of creating the items.

260 Exploring Inheritance

Things to remember when creating an inheritance hierarchy

Do not rush in too soon Remember that inheritance is a relationship between
well-understood abstractions and the hierarchy usually emerges ‘naturally’ in our
process. This takes time, except in situationswhere our data has a pre-existing taxon-
omy. This implies that we have a clear data abstraction in mind before constructing
the hierarchy.
Allow for future expansion Keep in mind that we cannot guess how our system
might be used; the best way to plan for that is to be generous when allowing for
variations. The rules for this are

• Define methods to be as general as possible at each level of an inheritance hierar-
chy. When writing methods, avoid details that are too specifically tailored for the
current set of subclasses; the methods should abstract out common functionality
so that subclasses can invoke the superclass method to perform some of the task.

• Be generous in defining data types and storage to avoid difficult changes later on.
For example, you might consider using a variable of type double even though
your current data may only require a float variable.

Make sure the construction is secure Since we do not know how our system
will be used, it is imperative that we do not allow any legal usage to compromise its
integrity.

• Choose the right access modifiers for your attributes Applying the optimal access
levels to members of a class hierarchy makes the hierarchy easier to maintain by
allowing you to control how such members will be used. Declare class members
with access modifiers that provide the least amount of access feasible.

• Only expose items that are needed by derived classes Keeping fields private
helps descendants and clients by reducing naming conflicts and protects them from
using items that may need to be changed at a later stage. Members that are only
needed by descendants should be marked as protected. This ensures that only
the derived classes are dependent on these members, which makes it easier to
update these members during development.

• The functionality provided by the methods of the base class should not depend on
features that can be overridden Make sure that base class methods do not depend
on features that can be changed by inheriting classes.

Improving the Design 261

The first choice is easily dismissed; when we extend Library, all the classes that depend
on it must change. Library is a facade and we can therefore expect several other modules
to depend on it, which implies that the stability of this module is critical. The other two
options share a common underlying principle of designing for change:

To protect the stability of a module, move the aspects that are likely to change to a
different module.

Option 2 suggests that we move this to the class LoanableItem. This might seem like
a logical assignment of responsibilities, since the constructor invocation is in some way
related to the inheritance hierarchy. A closer scrutiny reveals, however, that this would es-
sentially defeat the purpose of introducing inheritance. The abstract superclass is designed
to be a stable abstraction, that protects the client classes from changes in the hierarchy.
It follows that LoanableItem should be designed to be unaware of the structure of the
hierarchy that lies under it. This leaves us with Option 3, requiring that we create a new
module to encapsulate the changes that occur to the logic for invoking constructors. Not
surprisingly, this is in fact the standard approach for dealing with this commonly occurring
problem.

Implementing a simple factory

A Factory is typically employed when we want to make a system independent of how its
products are created, composed, and represented. In this case, we would like to make the
Library independent of the process of creating the items. The factory provides a method
that can be invoked for creating a new object and thus encapsulates the logic for invocation
of constructors. The code for LoanableItemFactory is shown below.

public class LoanableItemFactory {
private static final int BOOK = 1;
private static final int PERIODICAL = 2;
private static LoanableItemFactory lFactory;
private LoanableItemFactory() {
}
public static LoanableItemFactory instance() {

if (lFactory == null) {
return (lFactory = new LoanableItemFactory());

} else {
return lFactory;

}
}
public LoanableItem createLoanableItem(int type, String title,

String author, String id) {
switch (type) {

case BOOK:

262 Exploring Inheritance

return new Book(title, author, id);
case PERIODICAL:

return new Periodical(title, id);
default:

return null;
}

}
}

The above code defines LoanableItemFactory as a singleton that creates objects of
type LoanableItem. The method addLoanableItem in Library is modified as
follows:

public LoanableItem addLoanableItem(int type, String title,
String author, String id) {

LoanableItemFactory factory = LoanableItemFactory.instance();
LoanableItem item = factory.createLoanableItem(type, title,

author, id);
if (item != null) {

if (catalog.insertLoanableItem(item)) {
return item;

}
}
return null;

}

9.6.3 Distributing the responsibilities

Next we turn to the task of distributing the attributes and the responsibilities across the
hierarchy. This is perhaps the most difficult part of designing the hierarchy and requires
considerable experience on part of the software designers. It is useful to keep in mind that
we are implementing in a manner that allows the classes in the business logic subsystem
to be unaware of the structure of the hierarchy itself. This means that any method that is
invoked by code in these classes must be a method of LoanableItem. We may also have
to store the fields and assign access modifiers based on these considerations. With all this
in mind, we start with the following minimum set of attributes for our abstract class.

public abstract class LoanableItem implements Serializable,
Matchable<String> {

private String title;
private String id;
protected Member borrowedBy;
protected Calendar dueDate;
public boolean matches(String other) {

return (this.id.equals(id));
}

Improving the Design 263

public String getTitle() {
return title;

}
public String getId() {

return id;
}
public Member getBorrower() {

return borrowedBy;
}
public String getDueDate() {

return (dueDate.getTime().toString());
}
// other fields and methods

}

The fields title and id are to be immutable and are therefore defined as private.
The other fields have been declared protected so that they may be accessed by the
descendants.

Consider a method like getAuthor. Periodicals do not have an author, which suggests
that the method can be treated as a specialisation for Book and left out of the abstract class.
However, it is conceivable that a class may wish to invoke the getAuthor on some item
without knowing its type. In a situation where we are refactoring to replace Book with
LoanableItem, we may have a client class with a method that has a parameter of type
Book. We would like this code to behave correctly after refactoring, and so it is desirable
that the method be included in LoanableItem. On the other hand, it is important that a
client class does not assign an author for a periodical. In our case this is easily solved since
we do not have a method for setting the author field; otherwise, we would have to define
a default empty method, setAuthor, in the abstract class.

We expect that the methods for processing holds will be similar for all items; these are
therefore fully implemented in the abstract class to facilitate reuse. We would like to allow
descendants to override them as necessary, which means that the list holds has to be a
protected attribute. All these additions to LoanableItem are shown below.

protected List holds = new LinkedList();
protected String author;
public String getAuthor() {

return "";
}
public Iterator getHolds() {

return holds.iterator();
}
public void placeHold(Hold hold) {

holds.add(hold);
}
public void removeHold(String memberId) {

264 Exploring Inheritance

for (ListIterator iterator = holds.listIterator();
iterator.hasNext();) {

Hold hold = (Hold) iterator.next();
String id = hold.getMember().getId();
if (id.equals(memberId)) {

iterator.remove();
}

}
}
public Hold getNextHold() {

for (ListIterator iterator = holds.listIterator();
iterator.hasNext();) {

Hold hold = (Hold) iterator.next();
iterator.remove();
if (hold.isValid()) {

return hold;
}

}
return null;

}
public boolean hasHold(){

ListIterator iterator = holds.listIterator();
if (iterator.hasNext()) {

return true;
}
return false;

}

9.6.4 Factoring responsibilities across the hierarchy

The attributes listed above are the ones we selected for the common ancestor. As noted
earlier, descendants can override these as needed. Next we examine the responsibilities
that are handled in a shared manner between the ancestor and the descendants. Typically,
these methods have some common code that can be factored out and placed in the common
ancestor and other code specific to each type that is implemented in the descendants.

The first one we examine is the constructor. This is relatively simple in Java, since a
constructor for any subclass must first invoke the superclass constructor. The constructor
for LoanableItem is protected and stores the values of the common fields title
and id.

protected LoanableItem(String title, String id) {
this.title = title;
this.id = id;

}

The constructor for Book has to set the value for author.

Improving the Design 265

public Book(String title, String author, String id) {
super(title, id);
this.author = author;

}

The constructor for Periodical needs to store the date of acquisition, and a private field
is defined for that. The date itself can be generated using the system clock.

private Calendar dateAcquired;
public Periodical(String title, String id) {

super(title, id);
this.dateAcquired = new GregorianCalendar();
dateAcquired.setTimeInMillis(System.currentTimeMillis());

}

Next we consider methods liketoString. Part of this responsibility can be handled by the
superclass methods, and the subclass methods simply append the additional information.
In the code shown below, the method LoanableItem concatenates the fields title,
id, and borrowedBy.

public String toString() {
return " title " + title + " id " + id + " borrowed by " + borrowedBy;

}

Both subclasses append their types to the string returned by the superclass method. In ad-
dition, Book appends the author field, and Periodical appends dateAcquired.

public String toString() {
return "Book " + " author " + author + super.toString();

}

public String toString() {
return "Periodical " + super.toString() + "\n Acquired On "

+ dateAcquired.getTime().toString();
}

Some methods can have more involved cooperation across the hierarchy. Let us examine
the method for issuing an item, which involves checking issuability, assigning the item to a
Member object, and generating and storing the due date. Both checking of issuability and
generation of due date involve rules specific to the items. The only common activity is that
of assigning the item to a Member, which can be factored out. In Java, the process of due
date generation can be simplified if we assign the current date as due date (Step 1) and then
add the period of loan (Step 2). Step 1 can also be factored out, giving us the following
issue method for LoanableItem.

266 Exploring Inheritance

public boolean issue(Member member){
if (borrowedBy != null) {

return false;
}
dueDate = new GregorianCalendar();
dueDate.setTimeInMillis(System.currentTimeMillis());
borrowedBy = member;
return true;

}

Book does not have any additional rules for issuability, so it simply invokes the superclass
method and adds the loan period, i.e., one month, if the superclass method returns true.

public boolean issue(Member member) {
if (super.issue(member)) {

dueDate.add(Calendar.MONTH, 1); //add loan period
return true;

} else {
return false;

}
}

The method in Periodical must first ensure that the periodical is at least three months
old before it invokes the superclass method. The loan period of one week is added if every-
thing checks out.

public boolean issue(Member member) {
Calendar cutoffDate = new GregorianCalendar();
cutoffDate.setTimeInMillis(System.currentTimeMillis());
cutoffDate.add(Calendar.MONTH, -3);
if (cutoffDate.after(dateAcquired)) {

if (super.issue(member)){
dueDate.add(Calendar.WEEK_OF_MONTH, 1);
return true;

}
}
return false;

}

9.7 Consequences of Introducing Inheritance

From our discussion so far, it should be fairly clear that inheritance provides a lot of benefits
to the software development process. In an earlier section, we have discussed some caveats
to be followed. In addition to these, inheritance introduces some other problems because
of our attempt to ensure that changes that occur within the hierarchy do not affect classes

Consequences of Introducing Inheritance 267

outside the hierarchy. One example of this that we have encountered is the problem of
invoking constructors, which we solved with the use of a factory. The other solutions follow
a similar pattern, in that they create some external structure that in some way parallels the
structure in the hierarchy. A couple of such situations are dealt with here.

Introducing an inheritance hierarchy through refactoring

We sometimes encounter situations in legacy systems where an inheritance hierarchy
has to be introduced in order to clean up the existing code. One has to be especially
careful when attempting such an exercise since the dependencies involved can be
quite complex. A well-designed, systematic procedure can significantly reduce the
chances of errors. The following steps can serve as a guide.

Replace conditional with polymorphism
If you have a conditional that chooses different behaviour depending on some feature
of the object, move each leg of the conditional to an overriding method in a (possibly
newly defined) subclass and make the original method abstract.

The steps involved in applying this rule are as follows:

• Identify a conditional statement in a method that changes its behaviour based on
the value stored in a particular field. In a large class, it is quite likely that there will
be several methods where variation in behaviour is obtained by switching on the
same field.

• If the conditional statement is part of a larger method, the conditional may have to
be extracted using the EXTRACT METHOD rule (Chapter 8). If such extraction is
not easily done, the class may have to be re-examined more closely.

• Define an inheritance hierarchy where the subclasses reflect the variations in the
field on which we are switching.

• Create a subclass method that overrides the conditional statement method. Copy
one leg of the conditional into each of the subclass methods. and adjust the code
so that it fits.

• Remove the conditional from the superclass method and make it abstract. If ap-
propriate, remove the field on which the switching was done.

Note that once the switching is removed, we may no longer need the field to track the
variation in the type of the object.

268 Exploring Inheritance

9.7.1 Exception handling

The following is the standard rule for throwing exceptions when we employ inheritance:

A subclass method that overrides a method of a superclass may not throw an ex-
ception that is not thrown by the superclass method.

This may seem puzzling at first glance—after all a subclass can add new features—but
a closer look reveals that this rule is really a consequence of the LSP (see exercises). Of
course, such a violation could never be achieved in Java since it can be detected statically
at compile time.

There are several situations, however, where we would like to create a subclass and
obtain more specific information in the case of exceptional behaviour. As an example, con-
sider a class that processes a stream of data.

public class StreamProcessor {
// fields and constructors not shown
public void processStream() throws IOException {
// code not shown
}
// other methods not shown

}

The method processStream() opens a stream and does some elementary processing
of the data and creates an outputfile. In the course of writing the data, exceptions may arise,
which cause the method to throw IOException. A subclass is expected to override this
method.

Now consider a subclass of the above, FileProcessor, which uses data from a file.
Since a file is a specific kind of data stream, this would be a valid use of inheritance. An
exceptional situation arises when the file does not exist, and it is advantageous for users of
the subclass to clearly know the reason for the exception.

The subclass with the overriding method is given below.

public class FileProcessor {
String fileName;
// other fields and constructors not shown
public void process() throws NoSuchFileException, IOException {

BufferedReader reader = new BufferedReader(new FileReader(fileName));
// process the file

}
// other methods not shown

}

For reasons described earlier, the above code will not compile. The way to get around this
is to create an exception hierarchy.

Consequences of Introducing Inheritance 269

class NoSuchFileException extends IOException {
// fields and methods as needed

}

Now our client class can be written to deal with the NoSuchFileException as needed
and can also ignore the classification by writing a handler for just the IOException.

9.7.2 Adding new functionality to a hierarchy

Replacing a class with a hierarchy can pose additional problems when new functionality
has to be added. Consider a situation where a client (end user) wants a list of books in
the library printed in a certain format. The client chooses the format, and therefore it may
have considerable variation. Since the system output is not fully specified at the beginning,
this would have to be handled differently from the other features like adding members or
checking out books. Such a feature is typically provided by asking the user to encapsulate
the format as an object or a process, which can then be invoked from within Library.
In a situation where we have only one Book class, Library may accomplish this with a
method like the one shown below.

public void bookReport(BookFormat format) {
for (ListIterator iterator = catalog.listIterator(); iterator.hasNext();) {

Book book = (Book) iterator.next();
format.print(book);

}
}

Essentially, the print method in BookFormat specifies a printing strategy. BookFor-
mat itself is defined as an interface.

public interface BookFormat {
public void print(Book book);

}

Each client that wishes to use this feature must first define a class that implements Book-
Format. The class can be configured with several other attributes that decide the output
stream and the print method can print the details of the book in the required format. The
method in Library invokes the print method once for each book.
A solution like the one above suffers from two drawbacks:

1. The structure is tailored too specifically for one kind of operation. In our case, this is for
printing the books. A client may instead want an operation that checks which books are
issued on a particular day. The method bookReport suggests that it can only be used
for generating reports.

270 Exploring Inheritance

2. The structure is tailored only for one class and cannot accommodate a hierarchy like
LoanableItem. In case of a hierarchy, we would like to specify different operations
for each subclass. In the solution above, the type of parameter to print is fixed as
Book. We could change that to LoanableItem, but the method to be called will not
be determined dynamically, which would cause the system to treat books and periodicals
identically and is therefore not satisfactory.

The standard solution for dealing with this is to use the visitor pattern. The intent of this
pattern is to represent an operation to be performed on the elements of an object structure,
and is employed to define a new operation without changing the classes of the elements on
which it operates.

In the situation above, we have a new print operation to be performed on the items in
the Catalog object, which are all of type LoanableItem; we would like Library to
provide a functionality that allows the user to apply the print operation to all the items
in the catalog without exposing Library to the details of the hierarchy. Note that if
we had separate catalogs for each kind of item, this discussion would be moot. However, if
we defined Library to have separate collections for each kind of item, we have a design
where the facade is not protected from changes to the specifications. This would result in
the kind of instability that we are trying to avoid.

The solution for this once again follows the principle of encapsulating change. We create
a separate structure that accommodates the changes and shields the classes that must be kept
stable. This is similar to what we did with LoanableItemFactory, but we have an
additional complication here. Our solution will require Library to provide some method
like bookReport, which must invoke the correct print method without knowing what
kind of item we are dealing with. In the method presented earlier, we knew that all items
were of type Book and we could safely perform the cast. With the hierarchy, all we know
is that the object returned by the iterator is of type LoanableItem. We therefore need
some additional machinery to ensure that the correct method is invoked. This differs from
the situation where we were invoking constructors, since in that case the kind of item to be
created was explicitly specified in type.

The solution we develop with the visitor pattern has three components:

• A visitor interface that encapsulates the variability in the object structure. In our ex-
ample the variability in the kinds of items stored in Catalog is exactly the variability
in the LoanableItem hierarchy. Our interface, aptly named LoanableItemVis-
itor, therefore parallels the hierarchy by defining a method for each for kind of item.

• An accept method in each visitee. In our example, the visitees are the concrete classes
in the hierarchy. Each of these must have a method with the signature
public void accept(LoanableItemVisitor)

• A concrete client class for the required functionality that implements the visitor interface.

Consequences of Introducing Inheritance 271

In our example with print, BookFormat would be replaced with this concrete client
that implements LoanableItemVisitor.

The code for the interface is shown below. Note that we provide a method with a parameter
of type LoanableItem even though no such concrete item can be created. This is to
ensure that we have a ‘catch-all’ that will take care of extreme situations where we have
added new items to the hierarchy but not updated the visitor interface.

public interface LoanableItemVisitor {
public void visit(LoanableItem loanableItem);
public void visit(Book book);
public void visit(Periodical periodical);

}

Every concrete class has an accept method as shown below.

public void accept(LoanableItemVisitor visitor) {
visitor.visit(this);

}

The concrete class ItemFormat takes the place of BookFormat and looks something
like this.

class ItemFormat implements LoanableItemVisitor {
public void visit (Book book) {

// code to print a book
}
public void visit (Periodical periodical) {

// code to print a periodical
}
public void visit (LoanableItem item){

System.out.println("Unspecified item");
}

}

The UI provides some method that will allow the user to incorporate this functionality. In
our case, we want to provide the functionality to print items, and the client is required to
specify the details in ItemFormat, as shown above. The method in UI simply invokes
the method in Library, as shown below:

public void printItems() {
library.processItems(new ItemFormat());

}

The advantage of having an interface is that we can write a single method in Library
which takes care of all such visitors that perform some operation on the items in the catalog.
As shown below, we can define any number of operations to be done on the items in the
catalog by invoking the processItems method.

272 Exploring Inheritance

public void processItems(LoanableItemVisitor visitor) {
for (Iterator iterator = catalog.getLoanableItems();

iterator.hasNext();) {
LoanableItem item = (LoanableItem) iterator.next();
item.accept(visitor);

}
}

The method processItems invokes the accept on each item in the Catalog ob-
ject, passing as a parameter the concrete object that implements LoanableItemVisi-
tor, viz., the instance of ItemFormat that was created in user interface. As we have
seen above, the accept method invokes the visit method on the visitor passing it-
self as a parameter. The most appropriate signature is matched to decide which method
is to be invoked, i.e., when we invoke visit from Book, the system will invoke the
method visit(Book) in the ItemFormat object. The two step process (called ‘double-
dispatch’) thus obviates the need to know the class of each catalog item in proces-
sItems. These details are illustrated in Figure 9.7.

Figure 9.7 Control flow for the visitor pattern

Multiple Inheritance 273

To ensure that this approach provides the correct response for each item in the hierarchy,
note that the LoanableItemVisitor interface must be updated whenever a new kind
of item is added. However, we would like to ensure that the system does not crash in the
event that this update is overlooked or if we choose to retain the old interface. Consider
for example, that another kind of item, say DVD, has been added and we have a new class
VideoItem that extends LoanableItem; we could be in a situation where the cat-
alog contains instances of VideoItem, but LoanableItemVisitor has not been
updated. In this case, the method visit(LoanableItem) gets invoked. This may re-
sult in a less than ideal system response, since a VideoItem object would be treated as
a LoanableItem, but the system will continue to run and other harmful consequences
(such as loss of data in case of a crash) will be avoided. If the visit method with the
LoanableItem parameter did not exist, we would get a run-time error.

9.8 Multiple Inheritance

So far, we have seen situations where a class inherits from only one other class. The term
Multiple Inheritance is used to describe the ability of a class to subclass multiple classes.
Let us consider two examples.

1. A mobile home serves as a home, but could also be driven from location to location.
Therefore, it has properties of both a home (it will have bedrooms, kitchen, etc.) and a
car (the unit has an engine and can be driven like a car). If we have classes Car and
Home, then the class MobileHome can be constructed by utilising the implementations
of both of these existing classes.

2. An amphibious vehicle can run on both land and water. It will, therefore, have properties
of both an automobile and a boat. With classes Automobile and Boat available, we
can create a class that subclasses both.

Figure 9.8, illustrates these examples using UML diagrams.
In all these examples, the descendant inherits properties from both the ancestors. A

Mobilehome inherits features such as maximumSpeed and gasMileage from Car
and features like totalLivingArea and numberOfBedrooms from House. Pro-
gramming languages typically allow for multiple inheritance by allowing a class to extend
more than one class. This ability does pose some new challenges as we shall see later in
this section.

Since the class AmphibiousVehicle extends Automobile and Boat, an instance
of an AmphibiousVehicle can be viewed as containing both an instance of Boat and
an instance of Automobile (Figure 9.8).

274 Exploring Inheritance

Figure 9.8 Examples of multiple inheritance

Figure 9.9 Conceptual view of an amphibiousvehicle

Consider the following code2:

public class Boat {
private String registration;
public Boat(String registration) {

this.registration = registration;
}
public void setRegistration(String registration) {

this.registration = registration;
}
public String getRegistration() {

2Since Java does not support multiple inheritance in this form, this code does not conform to Java syntax.

Multiple Inheritance 275

return registration;
}

}

public class Automobile {
private String regnNumber;
public Boat(String registration) {

this.regnNumber = registration;
}
public void setRegnNumber(String registration) {

this.regnNumber = registration;
}
public String getRegnNumber() {

return regnNumber;
}

}

public class AmphibiousVehicle extends Boat, Automobile {
public AmphibiousVehicle(String registration) {

Boat(registration);
Automobile(registration);

}
}

Both Automobile and Boat have a field to store the registration number and Amphibi-
ousVehicle inherits the field from both these classes, as shown in Figure 9.9. Since these
different names essentially capture the same attribute, we have some ambiguity. Consider
the following situation:

Automobile automobile;
Boat boat;
AmphibiousVehicle vehicle;

An AmphibiousVehicle object can be stored in an Automobile reference or a Boat
reference.

vehicle = new AmphibiousVehicle("001");
automobile = vehicle;
boat = vehicle;

There appear to be several ways in which the registration number of this object
can be accessed: vehicle.registration, vehicle.regnNumber, automo-
bile.regnNumber or boat.registration. This multiplicity of field names can
make the code hard to read. In addition, we now have a possible polymorphic assignment
of the kind:

boat = (AmphibiousVehicle) automobile;

276 Exploring Inheritance

This would not be possible under single inheritance, since Car and Boat belong to differ-
ent hierarchies.

In creating such a hierarchy, it is therefore important to keep the semantics of the at-
tributes in mind. The public methods present a more serious problem. Consider the code

vehicle.setRegistration("xyz");
// some code
vehicle.setRegnNumber("abc");

This results in the situation shown in Figure 9.10.

Figure 9.10 AmphibiousVehicle showing assignments

The entitiesvehicle.registration and vehicle.regnNumber will now con-
tain different values, causing inconsistencies.

9.8.1 Mechanisms for resolving conflicts

Any language that provides a mechanism for multiple inheritance must also provide means
for resolving these conflicts. For the example above, let us assume that the designer chooses
to store the registration of the AmphibiousVehicle in the Automobile object, but
would like to use the method names setRegistration and getRegistration.
The methods setRegnNumber and getRegnNumber inherited from automobile
must now be ‘un-inherited’ so that there is no ambiguity. One option is to declare the
unwanted methods and fields as abstract in the descendant class. The class Amphibi-
ousVehicle would now be something like this3:

public class AmphibiousVehicle extends Boat, Automobile {
public AmphibiousVehicle(String string) {

Automobile(string);

3We would like to remind the reader that the Java-like code we have given below is not valid in the Java
language.

Multiple Inheritance 277

}
public abstract setRegnNumber(String string);
public abstract getRegnNumber(String string);
public void setRegistration(String string) {

Automobile.setRegnNumber(string);
}
public String getRegistration() {

return Automobile.getRegnNumber();
}

}

Note that we are not explicitly invoking the constructor for Boat. The default constructor
is invoked and consequently, there is no copy of the registration being stored in the Boat
object. The methods setRegistration and getRegistration have been suitably
redefined to access the fields of the Automobile object.

9.8.2 Repeated inheritance

Since multiple inheritance could generate a hierarchy that is not a simple tree, we can end
up with a situation where a descendant can be reached from an ancestor by following two
different paths, giving rise to what is referred to as the ‘diamond of repeated inheritance.’
(Figure 9.11). Such a structure results when we have a class Vehicle which serves as an
ancestor for both Automobile and Boat.

Figure 9.11 Diamond of repeated inheritance

public class Vehicle {
private String registration;
public Vehicle(String string) {

registration = string;
}
public void setRegistration(String string) {

registration = string;

278 Exploring Inheritance

}
public string getRegistration() {

return registration;
}

}

public class Automobile extends Vehicle {
private int maximumSpeed;
public Automobile(String string, int speed) {

Vehicle(string);
maximumSpeed = speed;

}
}

public class Boat extends Vehicle {
private int maximumKnots;
public Boat(String string, int knots) {

Vehicle(string);
maximumKnots = knots;

}
}

class AmphibiousVehicle extends Boat, Automobile {
public AmphibiousVehicle(String string, int speed, int knots) {

Boat(string, knots);
Automobile(string, speed);

}
}

This is a more serious problem than what we faced when a field was duplicated. The con-
structor for AmphibiousVehicle must invoke constructors Automobile and Boat,
both of which invoke the constructor for Vehicle. As a result, we have a situation where
there are two copies of registration. Note that the registration information is actu-
ally being stored in a private field of Vehicle and the only way to access it is through the
methods of Vehicle. If the accessor or modifier of AmphibiousVehicle is invoked,
it is not clear which copy is being modified. The author of AmphibiousVehicle has to
be aware of these issues and should override these methods to ensure that both copies are
updated.

When we are dealing with large hierarchies, it is not always possible for the author of
the subclass (such as AmphibiousVehicle) to detect the problem. In such a situation,
the programming language must ensure that the repeated ancestor is not created twice.
C++, for instance, uses the following solution: The inheritance relationship between Ve-
hicle and its immediate descendants should be declared as virtual (or ‘shareable’). This
means that the space occupied by the two Vehicle objects must be shared and as a re-
sult the compiler flags an error when the constructor is invoked twice. The constructor in

Multiple Inheritance 279

AmphibiousVehicle is then required to explicitly invoke all three constructors. In our
‘java-like’ syntax, the constructor for AmphibiousVehicle is as follows:

public AmphibiousVehicle(String string, int speed, int knots) {
Vehicle(string);
Boat(string, knots);
Automobile(string, speed);

}

When the Vehicle constructor is invoked, a Vehicle object is created, and the same
space is shared by the Automobile and Boat objects. Since only one copy of the Ve-
hicle attributes is maintained, we have no inconsistency.

When the calls to constructors propagate up the hierarchy, calls to ‘virtual ancestors’ are
ignored. In our example, when the constructor for Boat (or Automobile) is invoked, the
call to the Vehicle constructor is ignored because Boat (or Automobile) is defined a
virtual descendant of Vehicle and the Vehicle object has already been created. Since
the inheritance hierarchy is statically determined, such an approach is feasible.

The above code suffers from two problems:

1. It requires that AmphibiousVehicle be cognizant of the entire hierarchy. If that
class’s constructor misses any one of the superclass constructor calls and the correspond-
ing class does not have a default constructor, the compiler flags an error.

On the other hand, if any default constructors exist, the code may end up being buggy.
For instance, the code

public AmphibiousVehicle(String string, int speed, int knots) {
Boat(string, knots);
Automobile(string, speed);

}

would not generate any compiler errors if Vehicle had a default constructor. In this
situation, the registration field in Vehicle will be initialised to the default value
instead of the specified parameter, string.

2. This approach is not general enough since it cannot work in situations where there is an
existing hierarchy and the inheritances are not virtual.

In the example with the AmphibiousVehicle we saw that repeated inheritance can
cause a constructor to be invoked twice. We were able to resolve the consistency problem
by redefining the methods and attributes. However in situations where invoking the con-
structor has a more ‘visible’ effect, this could pose a more serious problem. Consider the
following example where Window has two descendants—MenuWindow, which is a win-
dow with a menu, and BorderWindow, which is a windowwith a border. The fourth class,

280 Exploring Inheritance

MenuAndBorderWindow, completes the diamond by inheriting from both MenuWin-
dow and BorderWindow.

Consider a situationwhere we have a method display for displaying the Window. The
display method in BorderWindow first invokes the ancestor’s display method (which
displays the window) and then invokes its own method that displays the border. Likewise,
the display method in MenuWindow first invokes the ancestor’s display method (which
displays the window) and then invokes its own method that displays the menu. How should
we deal with the display method of MenuAndBorderWindow? If we invoke the dis-
play methods of both the immediate superclasses, we end up in a situation where the win-
dow will be displayed twice.

public class MenuAndBorderWindow extends MenuWindow, BorderWindow {
// fields and other methods not shown

public void display() {
MenuWindow.display();
BorderWindow.display();

}
}

public class MenuWindow extends Window {
// fields and other methods not shown

public void display() {
Window.display();
// code for displaying menu goes here

}
}

public class BorderWindow extends Window {
// fields and other methods not shown

public void display() {
Window.display();
// code for displaying border goes here

}
}

In general, there is no simple solution to such problems. The software designer has
to be aware of these issues and exercise the necessary caution. The above problem,
for instance, could be resolved by having MenuAndBorderWindow inherit from all
three superclasses. Its display would then first invoke the method in Window and
then invoke methods from MenuWindow and BorderWindow that display the menu
and the border respectively. (We are assuming here that we can invoke the methods
for displaying these; this would be another example of a situation where the protected
access mode would come in handy.)

public class MenuAndBorderWindow extends MenuWindow, BorderWindow, Window {

Multiple Inheritance 281

// fields and other methods not shown
public void display() {

Window.display();
BorderWindow.showBorder();
MenuWindow.showMenu();

}
}

public class MenuWindow extends Window {
// fields and other methods not shown
public void display() {

Window.display();
this.showMenu();

}
protected void showMenu() {

// code for displaying the menu
}

}

public class BorderWindow extends Window {
// fields and other methods not shown
public void display() {

Window.display();
this.showBorder();

}
protected void showBorder() {

// code for displaying the border
}

}

9.8.3 Multiple inheritance in Java

Java does not support real multiple inheritance in the sense that a class can inherit an imple-
mentation from one other class only. To deal with the situation where a class has to inherit
attributes from more than one class, the only option is to create the class as a subclass of
one of the classes and implement the rest. For example, assume that we would like to create
a class C that ideally extends classes C1 and C2 which implement interfaces I1 and I2
respectively. Then, the code for C would be

public class C extends C1 implements I1, I2 {
// code

}

Since an interface can be viewed as a type, a class that extends another class and implements
an interface can be viewed as a sub-type of both the ancestor class and the interface. This
gives the flavour of multiple inheritance to the language. In the above example, objects of
type C are also of type I2.

282 Exploring Inheritance

9.9 Discussion and Further Reading

This chapter has explored the uses of inheritance, how to introduce it, and what are some
of the consequences of inheritance. Software systems are usually complex, and it is always
a difficult task to characterise them completely. Inheritance poses an added challenge since
it allows an existing system to change. Attempts have been made by researchers to define
taxonomies to understand both the nature of inheritance and to identify changes in the
object-oriented systems [19,31].

The question of when and how to introduce inheritance can be a tricky question. Be-
ginners often tend to follow the lead of textbook examples and introduce inheritance upon
finding common fields between classes. This is not only wasteful, but can also lead to prob-
lems. Inheritance is a relationship between well-understood abstractions, and should be
introduced only when a need for it can be clearly justified based on the principles of object-
oriented design. Exceptions are made to this rule only when the classes are being used to
model categories of objects in the natural world and there already exists a well-defined
taxonomy of these categories.

The open-closed principle is perhaps the most applicable design rule to justify intro-
ducing inheritance. Note that there is no inherent contradiction in this principle, since the
words ‘open’ and ‘closed’ apply to different objectives. The modules should be open for
further extension, and closed for clients that are depending on it. The client modules are
thus assured that any changes introduced into the system later will not necessitate any mod-
ifications. It is important to remember here that a class should not be closed too soon. A
class must represent a coherent data abstraction, i.e., provide a coherent set of services to
potential clients. Closing a class too soon and then frequently extending it because the data
abstraction was incompletely defined should be construed as an abuse of inheritance.

Our case-study with the library system can also be viewed as an exercise in designing a
schema for an object-oriented database. Use of inheritance can be tricky when we create a
database. We need to ensure, for instance, that inheritance conflicts (which can arise with
multiple inheritance and overriding) are avoided. In addition to these correctness issues,
compactness of the schema is also a consideration [13,14]. Object-oriented databases are
commonly mapped to relational databases for efficient storage, and mapping objects to
relations can be tricky when inheritance is involved [2].

The Liskov substitution principle is a compact reminder of the most basic invariant an
inheritance relationship must satisfy. Barbara Liskov’s original article appeared as a joint
paper with J. Wing in 1994, but the principle was re-formulated more succinctly [28] as
follows:

Let q(x) be a property provable about objects x of type T. Then q(y) should be true for
objects y of type S, where S is a subtype of T.

Discussion and Further Reading 283

Thus, Liskov and Wing’s notion of ‘subtype’ is based on the notion of substitutability;
that is, if S is a subtype of T, then objects of type T in a program may be replaced with
objects of type S without altering any of the desirable properties of that program (e.g.,
correctness).

In most situations where the LSP is violated, we find that an ad-hoc relationship has
been introduced to use existing code. In our example in this chapter, the fact the relation-
ship between SolidRectangle and Pixel was an ad-hoc one and not a well-designed
inheritance structure is underscored by the fact that the only way to fix the problem is to
modify clientMethod. This means that the originalmodules (i.e., SolidRectangle)
that were considered closed have been in some way re-opened by introducing inheritance.
Thus we have indirectly violated OCP.

As an example of another, perhaps more surprising, example of LSP violation, the reader
should look at Exercise 6.

To fix the bugs created by LSP violations, the only option we have is to check every
piece of client code and put in conditionals that employ run-time type identification or
use exception handlers. This is clearly not feasible. LSP violations are effective reminders
of two of the design principles introduced in this chapter, viz., favour composition over
inheritance and depend upon abstractions. If the class Pixel had been implemented by
adapting SolidRectangle, we would not face any problem with client methods. Our
implementation also violates the dependency rule, since SolidRectangle is a concrete
implementation.

9.9.1 Design patterns that facilitate inheritance

In this chapter we have introduced two patterns: factory and visitor. Factories are creational
patterns that are generally employed for creating objects without specifying the exact class
of object. There are some variations on this, and what we have discussed here is perhaps
the simplest form in which it can be used. The factory method pattern is employed in
situations where we have two independent hierarchies, and the concrete classes in the first
hierarchy create objects belonging to classes in the second hierarchy. However, the exact
kind of object of the second hierarchy to be created is determined using the input provided
at run-time. In such a situation, the logic for invocation of the constructor is encapsulated
in a separate method in the abstract superclass of the first hierarchy. The abstract factory
pattern is used in situations where we have several parallel concrete hierarchies, and the
system has to be configurable with any one of them. For instance, we could have a hierar-
chy of paint objects for generating paint objects of several colours. The same colours are
used for several situations, viz., interior, exterior, furniture, etc. However, the paint object
that must be used has a different implementation for each situation. In such a case, we
would have an AbstractcolourFactory that would have descendants like Inte-

284 Exploring Inheritance

riorcolourFactory, ExteriorcolourFactory, etc. The Abstractcolour-
Factory would specify the methods (e.g., makeRedPaint()) for creating abstract
paint objects, and the concrete descendants would implement these methods to provide
concrete paint objects for the given situation (the makeRedPaint method in Exteri-
orcolourFactory would create ExteriorRedPaint). The client class could then
be adapted for any painting situation (interior, furniture, etc.) by configuring it with the
appropriate concrete factory. The methods in the chosen factory would then be used to
generate the concrete paint objects needed for the situation.

The visitor pattern can be used for any general collection of objects, not necessarily
constituting a hierarchy. All that we need is that there should be a matching signature for
the class of every object in the collection. The Object class can be used as a ‘catch-
all’ to prevent run-time errors. Using this pattern increases the cost of execution due to
the additional method call. That can be prevented if the language provided the feature of
‘double dispatch,’ i.e., the parameter type and the concrete class are both matched when
invoking dynamic binding. This feature was provided in smalltalk, but has not found favour
with other language designers due to the high cost of method calls.

9.9.2 Performance of object-oriented systems

An issue that is often raised with object-oriented systems is that of poor run-time per-
formance. There are several reasons for this and solutions have been proposed; it would
be beyond the scope of this text to go into these in any detail. In the context of inheri-
tance, however, we shall look into one of these issues: the overhead caused by dynamic
binding.

When we subclass the conditional behaviour by introducing an inheritance hierarchy,
we rely on dynamic binding to ensure that the correct version of the method is called.
This decision has to be made at run-time, as opposed to method calls whose target can be
statically determined during compilation. Normally, with every variable in the system, some
sort of type information will be stored. In an object-oriented system, due to polymorphism,
the actual type of the object whose reference we store in the given variable can change
dynamically. The standard way to implement dynamic binding is to have a table of method
addresses for each class. Whenever a method is invoked on a variable, the type of object
the variable refers to is looked up. The actual type of the reference is used to select the
appropriate table, and the method name is used to index the table to determine the address
of the method to be invoked. Thus, dynamic binding introduces some additional overhead
for every method invocation.

Discussion and Further Reading 285

Projects

1. Implement the classes Account, CheckingAccount and SavingsAccount we
outlined in Section 9.2.2.

2. Consider the classes DataStream and ReReadableDataStream in Section 9.2.3.
Show how to implement the two classes. Remember that ReReadableDataStream
must work regardless of the source from which DataStream reads.

3. Implement the Cloneable interface for the Book, Member, and Hold classes with-
out having to set any fields to the null value.

Exercises

1. Extend the LoanableItem hierarchy to create new classes for CDs, DVDs and books
on tape. CDs and DVDs have several common characteristics. Would it be appropriate
for these two classes to inherit from a common superclass? Why?

2. As mentioned in the chapter, a subclass method that overrides a method of a superclass
may throw subclasses of exceptions that are thrown by the superclass method, but it
cannot throw exceptions that are not thrown by the overridden method. Why?

3. A university registration system has a class Student that tracks student information.
When a student’s GPA falls below a certain level, he/she is placed on academic proba-
tion. Would you model this by creating a subclass WeakStudent that extends Stu-
dent?

4. Keeping in mind that a circle is a special kind of ellipse in which the two foci coin-
cide, create a scenario in which an LSP violation can occur when a class Ellipse is
extended to define Circle.

5. In Chapter 7, we defined some methods of Library to return error codes, whereas
others return references to objects. In a more sophisticated system, it is often necessary
to return an object that contains both the result code and other information that the UI
can display upon request. Define a class Result and a hierarchy of subclasses that will
take care of this for all the methods in Library.

6. Consider the following classes and explain whether LSP is violated in the main method.

class Rectangle {
private int width;
private int height;
public Rectangle(int width, int height) {

this.width = width;
this.height = height;

286 Exploring Inheritance

}
public void setHeight(int height) {

this.height = height;
}
public void setWidth(int width) {

this.width = width;
}
public int getHeight() {

return height;
}
public int getWidth() {

return width;
}

}
public class Square extends Rectangle {

public Square(int side) {
super(side, side);

}
public void setWidth(int side) {

super.setWidth(side);
super.setHeight(side);

}
public void setHeight(int side) {

super.setWidth(side);
super.setHeight(side);

}
public static void main(String[] s) {

Rectangle r = new Rectangle(10, 10);
r.setWidth(5);
r.setHeight(6);
if (r.getWidth() * r.getHeight() != 30) {

System.out.println("Error");
}

}
}

7. (Case-studies) Examine the projects presented at the end of Chapter 6 and identify pos-
sible situations where we could get variability in the behaviour of an object. Which vari-
abilitieswill you model using inheritance? Defend your choices based on object-oriented
design principles.

10

Modelling with Finite State Machines

10.1 Introduction

Our discussion thus far of the object-oriented software construction process has focused
on the use case model. While this is a comprehensive technique that finds widespread ap-
plication, it is inadequate for handling situations where the operations cannot be modeled
by end-to-end use cases. This is typically the case with dynamic systems that respond to
external input in real-time.

In this chapter, we present two case-studies of systems where the use case model does not
suffice. The first of these is a controller for a microwave. (This analysis could be extended to
most devices that interact with external entities.) The behavior of the microwave in response
to a user’s action depends on what state the microwave is in. For instance, if a cook/start
button is pressed, the microwave does not always fire up. The case study starts by presenting
a model for dealing with this kind of conditional behavior, and then goes on to discuss
issues arising in the design and implementation of such systems.

Another commonly occurring situation is the creation of Graphical User Interfaces
(GUI), which are used by applications to interact with a user. The program that imple-
ments the GUI typically presents different screens at different stages of the interaction.
What screen gets displayed depends on the kind of input the application is requesting at
that instant. While the underlying application itself may be designed using the use case
model, the GUI is modeled as a system that changes its ‘appearance’ in response to the
interaction. It turns out that a similar model is useful for analysing such systems.

10.2 A Simple Example

The use of software to control the behaviour of systems is well known. Such systems
can comprise several hardware components, each of which may be turned on or off using

287

288 Modelling with Finite State Machines

embedded software. The system as a whole has to behave in a prescribed manner, turning
components on or off depending on the input and the other environmental variables. The
following is a simple example of such a system.

Problem Consider a simple microwave oven whose behaviour is governed by the follow-
ing rules:

• The microwave has a door, a light, a power-tube, a button, a timer, and a display.

• When the oven is not in use and the door is closed, the light and the power-tube are
turned off and the display is blank.

• When the door is open, the light stays on.

• If the button is pushed when the door is closed and the oven is not operating, then the
oven is activated for one minute. When the oven is activated, the light and the power-tube
are turned on.

• If the button is pushed when the oven is operating, one minute is added to the timer.

• When the oven is operating, the display shows the number of seconds of cooking time
remaining.

• If the door is opened when the oven is operating, the power-tube is turned off.

• When the cooking time is completed, the power-tube and light are turned off.

• Pushing the button when the door is open has no effect.

If we attempt to model this system with use cases, we run into some difficulties. Consider
the following set of scenarios:

Scenario 1
open door → place food in oven → close door → push button → wait for cooking to finish
→ open door → remove food → close door

Scenario 2
open door → place food in oven → close door → push button → wait for cooking to finish
→ open door → remove food and stir → place food in oven → close door → push button
→ wait for cooking to finish → open door → remove food → close door

Scenario 3
open door → place food in oven → close door → push button → wait for 30 seconds →
open door → remove food and stir → place food in oven → close door → push button →
wait for 45 seconds → open door → remove food → close door → stir food → open door
→ place food in oven → push button → wait for cooking to finish → open door → remove
food → close door

Finite State Modelling 289

Clearly, there is no set of standard ‘business processes’ that can characterise the manner
in which an actor interacts with system. What we observe instead is that we are dealing
with a continual sequence of events and the manner in which these events are processed
depends on the state in which system is. The system may also change state in response to
these events. What this suggests is that in order to model the system behaviour accurately,
we should treat this as a finite state machine (FSM).

10.3 Finite State Modelling

Formally, an FSM is defined by a set of states, a set of input symbols and a set of transitions.
Each transition is defined by a 4-tuple (si, sf , I, O), where si is the initial state, sf is the
final state, I is the input that triggers the transition, and O is the associated output, if any.
Two different formulations for FSMs can be found in the literature on automata theory.
These are the Mealy machine and the Moore machine. In a Mealy machine, the output
depends on the event and the current state; a Moore machine is a simplification in which the
output depends only on the state. The two are equivalent as far as their power is concerned,
i.e., any system that can be defined in one kind of machine can also be defined in the
other, but the number of states and the transitions vary. We shall use a Mealy machine for
modelling our FSM.

Returning to our microwave oven, we now try to identify the states in the FSM that would
model the behaviour of the microwave oven. An initial examination yields the following
possible states:

1. Microwave is idle and the door is closed.

2. Microwave is idle and the door is open.

3. Microwave is in operation.

4. Microwave is interrupted by the door being opened.

5. Microwave has completed cooking.

These states are found by looking at the process of cooking, and viewing each step of the
cooking process as a separate state. We have the following events that cause the microwave
to change state:

• door is opened

• door is closed

• button is pushed

• clock ticks

• timer runs out

290 Modelling with Finite State Machines

The first three are external events that are the result of the actions of an external user. The
last two are internal events triggered by the operation of the microwave.

We can now construct the table in Figure 10.3, which describes all the actions that cor-
respond to each (state, event) pair. The rows in the first column list the possible states of
the microwave, while the columns in the first row show the possible external events. An
example will make clear how to use this table. With the microwave in the Cooking state
(see row 4, column 1) if the door is opened (row 1, column 2), the cell formed by row 4 and
column 2 shows that the microwave enters the Interrupted state.

Open door Close door Press cook Clock ticks Timer runs out

Idle; Door closed

Idle; Door closed

Idle; Door closed

Idle; Door closed

Idle; Door closed

Idle; Door closed Idle; Door closed

Idle; Door open

Idle; Door open Idle; Door open

Idle; Door open Idle; Door open Idle; Door open Idle; Door open

Idle; Door open

Idle; Door open Idle; Door open Idle; Door open

Idle; Door closed Cooking

Cooking Cooking Cooking

Cooking

Cooking

Idle; Door closed Idle; Door closed

Interrupted

Interrupted

Completed

Figure 10.1 Transition table for the microwave

Figure 10.2 State transition diagram for the microwave oven

A First Solution to the Microwave Problem 291

The information in Figure 10.3 is given using the UML state transition diagram in Figure
10.3. Each rectangle with rounded corners corresponds to a microwave state. The directed
arcs tell what the new microwave state will be when a certain event occurs in a given state.
For instance, if the microwave is in the Idle; DoorClosed state (the rectangle at the top-left
part of the diagram), one of the arcs leading from the rectangle shows that if the cook button
is pressed, the microwave enters the Cooking state.

One observation we make here is that the behaviour of our finite state machine is identi-
cal in the states Idle; Door Closed and Completed. This tells that we do not need separate
states to distinguish the behaviour of the system when it is idle with door closed from
the behaviour when it has completed cooking. Likewise, states Idle; Door Open and In-
terrupted are indistinguishable; we can therefore combine these two states into a single
state Door Open, and merge states Idle; Door Closed and Completed into a single state,
Door Closed. In effect, we have simply dropped states Interrupted and Completed from our
model. The reduced FSM is described by Figure 10.3.

Open door Close door Press cook Clock ticks Timer runs out

Door closed

Door closed

Door closed

Door open

Door open Door open

Door open

Door open Door open Door open

Door closed Cooking

Cooking Cooking Cooking Cooking

Door closed Door closed

Figure 10.3 Minimised transition table for the microwave oven

In general, it is important to find an FSM with a small number of states and there are
exact algorithms for state minimisation1. Usually, fewer states imply a simpler system that
is easier to maintain, but in some situations, it may be helpful to add a few redundant states
to improve the readability of the design as a whole.

10.4 A First Solution to the Microwave Problem

10.4.1 Completing the analysis

Having created a model, the next step in our analysis is to identify the conceptual classes.
As we did in Chapters 6 and 7, we start by constructing the list of nouns: Microwave,
Powertube, Light, Display, Door, CookButton, etc. The Display and CookButton will be
part of the user interface (GUI). Since this is only a ‘software simulation’, we cannot have a
real Powertube or Light, and so we simply have to model these by displaying some message

1The reader is referred to any text on digital logic design or automata theory.

292 Modelling with Finite State Machines

Use-case modelling vs Finite state modelling
One question that we need to address is: under what conditions should we use FSMs,
and under what conditions do we employ use cases?

To help answer this question, let us examine how the library system designed in
the previous chapters changes with each transaction. At the start of each use case (i.e.,
transaction), some pre-conditions hold. The final output of the transaction depends on
the pre-conditions that were true at the start of the transaction. The state of the sys-
tem defines (and is defined by) which pre-conditions are true. These pre-conditions,
in turn, are determined by the values held by all of the objects in the system. When-
ever a transaction is completed, as when a book is issued, the state changes because
several objects, including the Book and the Member object, get updated. (Note that
this notion of state is somewhat different from the states of the FSM.) Each trans-
action has one ‘most-common’ outcome (which we call the main flow) and other
secondary outcomes, and the set of pre-conditions that hold decides the outcome of
the transaction. If one were to model such a system by listing all the states and how
we can switch between them via transactions, we would have a very complex struc-
ture with an unmanageable and possibly unbounded set of states because one could
imagine books and members being added and deleted and updated throughout the life
of the library system. On the other hand, the set of interactions that an actor can have
with the library system is bounded. This indicates that we should prefer the simple
functional specification provided by a use case model.

Contrast this situation with the microwave example. Here we have a possibly un-
bounded number of ways in which the actor can interact with the system. However,
from the specifications it is clear that we are only interested in how the system reacts
to a given input (sometimes referred to as ‘reactive’ systems). The nature of the re-
action depends on the state the system is in (the word ‘state’ being used to describe a
behavioural response). Also, we typically have only a small set of states in which the
system could be at any point, and a clear set of transitions between them which are
triggered by events. This indicates that use case modelling is inappropriate and that
using an FSM to model the system behaviour would be the best choice.

on the GUI. (To make it more realistic, one could imagine that a system has software
drivers to manipulate these devices, and these drivers are being invoked from the controller.)
Likewise, the opening and closing of the door is simulated by some GUI component(s).
This leaves us with a class for the Microwave, and one for the GUI. The noun ‘timer’
suggests that we need some mechanism to monitor the passage of time. The microwave can
keep track of the time remaining with a field, but will have to be informed about the events
that mark each unit of time. This can be done by a Clock that generates ticks at regular
(viz., one second) intervals.

A First Solution to the Microwave Problem 293

1. Microwave This has the responsibility of keeping track of what state the oven is in,
and for turning the power-tube and light on/off. The oven must listen to the following
events: Opening/closing of the door, pushing of the button, and the timer running out.

2. GUI display As described above, the GUI has components for user input, and will
display some information to simulate operation. This suggests the following four dis-
plays:

(a) One of the displays tells us whether the unit is cooking or not cooking.

(b) A second display informs us whether the door is open or closed.

(c) The third display shows the time remaining for cooking. If the microwave is idle,
the display shows 0.

(d) The fourth display gives the status of the light: whether it is on or off.

3. Clock This is a class that generates a clock tick event at regular intervals.

10.4.2 Designing the system

The first step in the design is to identify the software classes. This is an easy task here
since the conceptual classes themselves seem to serve our purpose well. The next step is
to figure out how the software classes will distribute the responsibilities to achieve the
behaviour specified in the model. In our case, this amounts to specifying how the events
will be processed. We have two kinds of events:

• User inputs: these are recognised by the GUI.

• Clock Ticks: these originate in Clock.

To describe the manner in which the entities of the system handle these, we shall use se-
quence diagrams. Figure 10.4 shows how the system handles the user input corresponding
to the opening of the door. The diagram suggests that we have a separate method in the Mi-
crowave class for each kind of event that occurs in the GUI. When the display is updated,
we shall assume that the actor can see the result of the action.

The sequence diagram for the other inputs from the user look similar. In each case,
Microwave does some processing and updates the display. There are several methods to
update the different aspects of the display and the appropriate ones will be invoked with the
necessary parameters.

Figure 10.5 describes how the system handles a clock tick. Note that unlike the sequence
diagrams we have seen earlier, this interaction is not initiated by the actor.

The sequence diagrams for the other events are similar and give us enough information
to specify the responsibilities of individual classes. Microwave is a singleton class with

294 Modelling with Finite State Machines

Figure 10.4 Sequence diagram for door opening

MicrowaveClock GUI

ClockTicked()

Process

Clock-tick()

updateDisplay()

Microwave

–timeRemaining: int

–currentstate: State

–microwave: Microwave

–display: MicrowaveDisplay

+instance(): Microwave

+processDooropen(): void

+processDoorClose(): void

+processCookRequest():void

+clockTicked():void

Figure 10.5 Sequence diagram for processing a clock tick Figure 10.6 Microwave class diagram

methods to process the external events (door opening, clock tick, etc.) To mimic the FSM,
we keep a variable currentState that keeps track of the state the microwave is in. We
also need a variable that keeps track of the time remaining for cooking. The class diagram
is shown in Figure 10.6.

Although a text-based interface is impractical, any number of graphical interfaces are
possible. As shown in the sequence diagram for opening the door, the display class must
provide methods of two kinds:

• Methods that process the input provided by the user.

• Methods that can be invoked by Microwave to display output. The sequence diagram
simply shows a method updateDisplay, but a little thought would show that it is
better to have a set of methods to independently set the several displays such as the
status of the light, powertube, etc.

A First Solution to the Microwave Problem 295

Methods of the first kind are largely defined by the kind of look and feel desired for the user
interface. Methods of the second kind represent the functionality required by Microwave.
When the door is opened, for instance, Microwave requests the display to indicate that
the light is on. One way we could do this is to have Microwave get a reference to the
appropriate object within the UI and set it; such an approach results in Microwave being
tied to one kind of look and feel and any attempt to change the look and feel will require
changes to Microwave. To avoid such tight coupling between the GUI and Microwave,
the essential functionality is abstracted out in the interface MicrowaveDisplay shown
in Figure 10.7. The method setMicrowave configures the display with an instance of
Microwave. All the other methods are provided to display to the user the current status
of the system.

The class GUIDisplay implements this interface.

<< >>interface

MicrowaveDisplay

+setMicrowave(microwave:Microwave):void

+turnLightOn(): void

+turnLightOff(): void

+doorClosed(): void

+doorOpened(): void

+timeRemaining(): void

+startCooking():void

+notCooking():void

<< >>interface

Runnable

+ run() : void

+ run() : void

Clock

Figure 10.7 Microwave display interface Figure 10.8 Clock

The Clock class has to initiate an event at regular intervals, so we model it as a thread.
As shown in Figure 10.8, it implements the Runnable interface.

10.4.3 The implementation classes

We are now ready to work out the implementation details. The Clock class is the simplest
and is therefore a good place to start. In its constructor, the Clock object gets hold of the
reference to the Microwave, which is a singleton. The run method is an infinite loop
waking up every second and invokes the clockTicked method on Microwave. The
code is given below.

public class Clock implements Runnable {
private static Microwave microwave;
public Clock() {

microwave = Microwave.instance();
new Thread(this).start();

296 Modelling with Finite State Machines

}
public void run() {

try {
while (true) {

Thread.sleep(1000);
microwave.clockTicked();

}
} catch(InterruptedException ie) {
}

}
}

The display class
GUIDisplay is the concrete class that implements MicrowaveDisplay. To handle
user input, it creates a JFrame with a JButton for each kind of operation: open door,
close door, and cook.

When run, the program displays the interface given in Figure 10.9. It has JLabel fields
for displaying the status.

Figure 10.9 Microwave interface

public class GUIDisplay extends JFrame
implements ActionListener, MicrowaveDisplay {

private Microwave microwave;
private JButton doorCloser = new JButton("close door");
private JButton doorOpener = new JButton("open door");
private JButton cookButton = new JButton("cook");
private JLabel doorStatus = new JLabel("Door Closed");
private JLabel timerValue = new JLabel(" ");
private JLabel lightStatus = new JLabel("Light Off");
private JLabel cookingStatus = new JLabel("Not cooking");
// other fields and methods

}

A First Solution to the Microwave Problem 297

The constructor lays out all the widgets and sets the GUIDisplay object to be the Ac-
tionListener for all the JButton objects.

public GUIDisplay() {
super("Microwave");
addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent event) {
System.exit(0);

}
});
getContentPane().setLayout(new FlowLayout());
getContentPane().add(doorStatus);
getContentPane().add(lightStatus);
getContentPane().add(timerValue);
getContentPane().add(cookingStatus);
getContentPane().add(doorCloser);
getContentPane().add(doorOpener);
getContentPane().add(cookButton);
doorCloser.addActionListener(this);
doorOpener.addActionListener(this);
cookButton.addActionListener(this);
pack();
setVisible(true);

}

The actionPerformed method checks the source of the ActionEvent and invokes
the appropriate method of Microwave.

public void actionPerformed(ActionEvent event) {
if (event.getSource().equals(doorCloser)) {

microwave.processDoorClose();
} else if (event.getSource().equals(doorOpener)) {

microwave.processDoorOpen();
} else if (event.getSource().equals(cookButton)) {

microwave.processCookRequest();
}

}

It is tempting to make Microwave the listener for the button clicks, and skip the above
step. Note that this would make Microwave tightly coupled to the GUIDisplay and is
therefore undesirable. Finally, we need methods to update the values in the JLabel objects
that display the system status. This is accomplished by implementing the methods in the
MicrowaveDisplay interface. As an example, the code for turnLightOn is shown
below.

public void turnLightOn() {
lightStatus.setText("Light On");

}

298 Modelling with Finite State Machines

The microwave class
Now we discuss the more involved class, Microwave. The class maintains the variables
for keeping track of the remaining cooking time and the current state. A concrete class that
implements MicrowaveDisplay, viz. GUIDisplay, is instantiated and a reference to
it is stored.

public enum States {DOOR_CLOSED_STATE, DOOR_OPENED_STATE, COOKING_STATE};
private int timeRemaining;
private States currentState;
private static Microwave instance;
private MicrowaveDisplay display;

private Microwave() {
currentState = States.DOOR_CLOSED_STATE;
timeRemaining = 0;
display = new GUIDisplay();
display.setMicrowave(this);
display.timeRemaining(timeRemaining);
display.turnLightOff(); display.doorClosed();
display.notCooking();

}

public static Microwave instance() {
if (instance == null) {

return instance = new Microwave();
}
return instance;

}

Next we look at the code for processing each of the events. When the clock ticks, Mi-
crowave needs to take action only if it is in the COOKING STATE; this action involves
decrementing the remaining time, updating the display, and if the timer has run out, switch-
ing to the DOOR CLOSED STATE. In case of this switch, the display needs to be updated
once again. This code is shown below.

public void clockTicked(){
if (currentState == States.COOKING_STATE){

timeRemaining--;
display.timeRemaining(timeRemaining);
if (timeRemaining == 0) {

currentState = States.DOOR_CLOSED_STATE;
display.notCooking();
display.turnLightOff();

}
}

}

A First Solution to the Microwave Problem 299

The methods for processing the other events follow a similar pattern. In each case, Mi-
crowave checks the current state and takes the appropriate action. If the action results
in a change of state, some transitional work also needs to be done. As a second example,
consider the processCookRequest method. The cooking request is processed only if
the system is in the COOKING STATE or the DOOR CLOSED STATE. In case of the latter,
currentState is first changed to COOKING STATE and the necessary transitional op-
erations are performed. In case of the former, 60 seconds are added to the time remaining
and the display is updated.

public void processCookRequest() {
if (currentState == States.DOOR_CLOSED_STATE) {

currentState = States.COOKING_STATE;
display.startCooking();
display.turnLightOn();
timeRemaining = 60;
display.timeRemaining(timeRemaining);

} else if (currentState == States.COOKING_STATE) {
timeRemaining += 60;
display.timeRemaining(timeRemaining);

}
}

The methods for processing the opening and closing of the door are similar and we leave
those as an exercise. The Microwave class also has the main method that gets the show
going; this is done by instantiating Clock.

public static void main(String[] args) {
new Clock();

}

10.4.4 A critique of the above design

The above solution is our first attempt at solving this problem. We have correctly analysed
the problem and proposed an ‘object-oriented’ solution. Our next task is to critically ex-
amine our solution to see how well it conforms to the principles of good object-oriented
design. With this end in mind, we present two flaws in the above design. As it turns out,
these flaws can be corrected by recognising and applying appropriate design patterns.

Extreme complexity in Microwave

Microwave has been designed as a large class that takes care of handling all states and
events. Although the methods in our class do not seem too complex, it is easy to see that
in a larger system, things could easily get out of hand. In previous chapters we have seen
that complexity is caused by having a large number of conditionals in our methods. In Mi-
crowave, each method that processes an event has conditionals that switch on the value

300 Modelling with Finite State Machines

stored in currentState. In the previous chapter, we created an inheritance hierarchy to
subclass the variant behaviour, and succeeded in reducing the complexity of the individual
methods and also in facilitating reuse. The question that arises therefore is: Can we avoid the
conditionals that switch on currentState by subclassing? The answer is not quite obvi-
ous here, since we are dealing with a dynamic situation, i.e., the value of currentState
changes with time, unlike the field bookType in the previous chapter which was finalised
in the constructor. As it turns out, such a subclassing is indeed possible, but some additional
machinery is needed to manage the changes in the value of currentState. All of this is
handled by using the state pattern.

Communication between objects
In our design, objects are communicating in two contexts:

1. Events specific to the operation of the microwave, for example, the clicking of the Close
Door button.

2. Events of a more general nature that could find relevance in any application. The only
such event is the ticking of the clock; this is clearly something that would be relevant in
any time-dependent operation.

In both these cases the Microwave object is the interested listener. The application spe-
cific events are being caught in the GUI and sent to Microwave by invoking the appropri-
ate method. There is some coupling involved here, but since the GUI has been developed
specifically for this application, this is not a serious concern. The bigger concern is with
the fact that this hurts reuse. As the system operates, one should expect that changes will
be needed and these will require new kinds of events to be added. In our current solution,
this will require adding new methods to Microwave.

Consider now the more general events, which, in our example, are limited to clock ticks.
We have written a class, Clock, that is specifically tailored for Microwave. Since the
clock serves the same purpose in any application, we would like to have a general Clock
class that can be instantiated wherever it is needed.

In both these cases above, what we see is that our system employs a form of communi-
cation where the entire responsibility for the communication rests with the sender, which
is not desirable. In the first case, it appears to be less harmful, but as we shall see, reuse
is facilitated when the responsibility is moved to the listener. In the second case, moving
the responsibility to the listener helps us to define a class that can be used across several
applications. In general, designs like the one we have make it the responsibility of the event
generator to get hold of all the listeners and explicitly maintain a reference to each one of
them. When the event occurs, every listener must be notified. This is a poor assignment of
responsibilities for three reasons.

Using the State Pattern 301

1. The event generator has to keep track of all the different classes of objects that are
interested in listening, and the various ways in which they have to be notified. This
makes the sender vulnerable to changes in the listener classes. Instead, we should have
one standard format that all listeners must adhere to.

2. Responsibility for registering interest rests with the sender. This implies that when in-
terested listeners are joining the system, the sender must somehow detect them and add
them. Instead, if the listeners had this responsibility, they could simply invoke the ap-
propriate method on the sender.

3. The set of listeners cannot change dynamically. We would like to have the flexibility
that a listener object can shut off all incoming messages from a particular sender. (This
would be preferable to a situation where the listener hears all messages but does not act
on those from some sources.) Such a change in listener preference cannot be detected by
the sender alone. If the listeners could register and de-register themselves, this would be
easily accomplished.

The above drawbacks point to the fact that in a situation where the responsibility rests with
the sender, we have tightly coupled communication. There are two standard solution
frameworks for loosely coupled communication: the observer pattern and event-driven
communications. We shall explore both of these in the context of our system; the observer
pattern will be used for listening to clock ticks, and events will be used to transmit external
events in the GUI.

10.5 Using the State Pattern

Using the state pattern is closely connected to the idea of modelling with FSMs. All these
situations therefore have the following characteristic elements:

1. A collection of states, with each state being defined by distinct behaviour.

2. A set of external inputs to which the system must respond.

3. A context in which the FSM operates.

The necessity of the first two is obvious. The third one must exist simply because the states
are ephemeral and we need some ‘temporal glue’ that provides continuity to the system.
In addition, the context also serves as a facade for the entire system. In our example, the
context does not serve any purpose beyond that; in general the context may be a class that
plays a much broader role and the FSM may be used to model only a small portion of the
system responsibilities. The context must therefore have the following attributes:

1. A field to track the current state of the FSM.

302 Modelling with Finite State Machines

2. Provide a mechanism to record the change of state.

These two attributes are essential. In addition, the context may provide other attributes de-
pending on the particular details of our implementation. These include, but are not limited
to, the following:

1. Provide a mechanism to effect state transitions.

2. Provide methods for entities outside the system to communicate with the FSM.

3. Keep track of external entities that may need to be notified in response to internal
changes.

10.5.1 Creating the state hierarchy

In the solution given in Section 10.4, the Microwave class had a variable cur-
rentState on which the behaviour was conditionally executed. This is reminiscent of
the use of bookType in the library system in Chapter 9. Since the design in that case
was improved by replacing conditionalswith subclasses, we should expect to do something
similar here as well with an abstract superclass subclassed by several concrete ones. The
natural thing here would be to have an abstract superclass that denotes the microwave state
and one concrete subclass for each of the possible actual states.

There is, however, an important difference. The library system would have numerous
LoanableItem objects, each of which would assume the type of one of the subclasses.
In the microwave, however, there is just a single microwave and rather than belong to one
of the state subclasses, the microwave actually moves from state to state. As a consequence,
it is more appropriate to divide the Microwave class into two:

1. A part that deals with state information. This forms a hierarchy formed with an abstract
superclass to denote the general idea of a microwave state and one subclass for each of
the actual states. This structure is shown in Figure 10.10.

Figure 10.10 MicrowaveState hierarchy

2. A second part, which deals with the contextual information. We could view the original
Microwave class now as simply holding the contextual information required for the
operation of the FSM. It is therefore aptly renamed MicrowaveContext.

Using the State Pattern 303

Transitioning between states Transitioning to a new state is an operation that involves
the knowledge of the other states. Before we decide how to implement this, it is important
that we examine how the information about the states and transitions is stored. We have
seen that the FSM can be represented either by a transition table or in a pictorial fashion
with boxes showing the states and arrows showing the transition between them. These two
representations correspond roughly to the two standard methods for storing directed graphs:
adjacency matrices and adjacency lists. In an adjacency matrix, we have a centralised
storage structure. Each vertex has an associated index, and we use these indices to access
the vertices and determine the connectivity between vertices. In an adjacency list, we have a
more distributed storage: each vertex contains a list of the vertices which are its immediate
neighbours. These two representations lead to two possible implementations for handling
transitions between states.

Using the matrix representation
In this approach we first associate an index with each state. It is a common convention to
use the index 0 for the initial state, so we assign the index 0 to the closed door state, index
1 to the open door state and 2 to the cooking state. To keep track of this mapping, we create
an array; thus the context has an array of MicrowaveState named state such that
state[0] would store a reference to the Door Closed state, state[1] would store a
reference to the Door Open state, and so on. Some applicationsmay designate an error state
to handle unexpected conditions; in our case we might use the index 3 if we wished to do
that.

Next, we work on the transitions. We know from the state transition table (Figure 10.3)
that transitions may occur only when one of the events occurs. We may assign numeric
values 0, 1, 2, 3, and 4 to Open Door, Close Door, Press Cook, Clock Ticks, and Timer
Runs Out respectively. Thus, the transition table can be represented as below.

1 0 2 0 0
1 0 1 1 1
1 2 2 2 0

The table is interpreted as follows. The rows correspond to transitions from a given
state and the columns represent transitions when a certain input event occurs. For example,
entries in the first row (indexed 0) correspond to transitions from the Door Closed state.
Similarly, entries in the first column (indexed 0) show the transitions when the Open Door
event occurs. We can interpret the other rows and columns in a similar way. For example,
the entry at (2,4) holds the index of the state that system transitions to when the Timer Runs
Out event occurs in the Cooking state.

The Java code for setting up the table would be

304 Modelling with Finite State Machines

int[][] transitions = {{1, 0 , 2 , 0 , 0},
{1, 0 , 1 , 1 , 1},
{1 , 2 , 2 , 2 , 0}};

The variable currentState now stores an int, which is the index of the current
state. When a state wants to relinquish control, it invokes the changeCurrentState
method on the context, passing the index of the needed transition. The code for change-
CurrentState would be something like this:

public void changeCurrentState(int next) {
currentState = transitions[currentState][next];
state[currentState].run();

}

The parameter next would be a number that represents one of the five events and hence
would be between 0 and 4.

The method determines the index of the next state by looking up the transition table. The
reference to the actual state object is determined by indexing into the array state and the
run method is invoked on the new state.

Note that we are dealing with both external and internal events. The events Open Door,
Close Door, Press Cook and Clock Ticks are external to the FSM, and correspond to
real-world events that occur in other subsystems, viz., the GUI and the Clock. The event
Timer Runs Out occurs when timeRemaining drops to zero; since timeRemaining
is tracked only inside the FSM, this event is detected internally. This does not pose any
difficulty as far as our implementation is concerned. All that is needed is that the state that
detects the internal event (Cooking state, in our case) generates the appropriate index (4, in
our case) and uses this index as the argument when invoking changeCurrentState.

Using the list representation
In this representation, each state directly provides a reference to the next state when it has to
relinquish control. Each concrete state is implemented as a singleton, and therefore the in-
stance method can be used for that purpose. The context, of course needs to be informed
of the change of state, and this is done once again using the changeCurrentState
method.

public void changeCurrentState(MicrowaveState state) {
currentState = state;
currentState.run();

}

The context stores a reference to the current state and invokes the run method as before.
Both approaches have been referred to in the literature and have their pros and cons.

In the matrix approach, each state can be written independently of the others. The run

Using the State Pattern 305

method sets up the state with the help of the context, and we have methods for processing
all the necessary events. This coding occurs in the driver routine, and is used to populate
the transition table. This has the advantage that the code for a state does not have to be
modified unless we want to change its behaviour. The transitions can be changed and new
states can be linked to existing ones in the driver routine itself. This allows a kind of reuse
where we can create a library of states for a particular application domain and use these
repeatedly for several applications.

In the list approach, each state is aware of all the other states and therefore the author
of each state is required to be aware of how it connects to the FSM. This approach has the
advantage of simplicity in that the additional work of decoding all the exit conditions and
‘assembling’ the FSM is not required. In situations where an FSM is being used to model
something specific like, say, an algorithm for a communication protocol, it is unlikely that a
library of states can be reused across the domain. In that case it may be beneficial to use the
list approach and embed the transition information within each state. We shall implement
the transitions for our case-study using the list approach.

State classes We now elaborate on the state classes. The abstract class, MicrowaveS-
tate, contains methods to handle the various events; its class diagram is shown in Figure
10.11. The meanings of most of the methods should be obvious. When the microwave
changes state, some variables may need to be initialised and the output may have to be
changed. It is convenient to have all of these actions executed in a method, which we term
run.

Figure 10.11 Class diagram for MicrowaveState

Next, we develop the class diagrams for the individual states. While in the DoorOpen state,
the microwave does not respond to anything other than the door closing. Therefore, in the
class diagram for DoorOpenState (Figure 10.12), we show the methods process-
DoorClose and run. Similar interpretations can be made for DoorClosedState and
CookingState, which are respectively shown in Figures 10.13 and 10.14.

Microwave context In the design of the MicrowaveContext class, we must address
the question of how the concrete state classes perform the necessary computations. Some

306 Modelling with Finite State Machines

of the actions may be purely local to the state, and these can be handled in an obvious way.
There are two kinds of actions that have an effect outside the state: (i) actions that require a
change of state, and (ii) actions that require making changes to an entity outside the FSM.

DoorOpenState

+processDoorClose(): void

+run() : void

Figure 10.12 Class diagram for DoorOpenState

DoorClosedState

+processDoorOpen(): void

+processCookRequest(): void

+run(): void

CookingState

+processDoorOpen(): void

+processCookRequest(): void

+processClockTick():void

+run(): void

Figure 10.13 Class diagram for Figure 10.14 Class diagram for CookingState
DoorClosedState

Changing the state is handled using one of the mechanisms described previously. (We
chose the adjacency list approach.)

In a typical FSM, each state has some impact on the environment in which it is operating.
In our case, these are actions that change the display. For instance, when the cook button is
pressed while in the cooking state, the number of second remaining should be increased by
60. The question here is how to implement the communication from the cooking state to
the display object. It should be no surprise that we have more than one option for handling
these.

• Option 1 All communication goes through the context.

• Option 2 Each state communicates independently with the external entities.

If we choose the first option, we have a context that truly behaves like a facade, i.e., all
communication into and out of the system goes through the context. This is appropriate in
situations where we want the entire FSM subsystem to be a unit that can inter-operate with
several environments. For instance, we may decide that we are no longer having a simple
display to show what is going on, but want to manipulate device drivers that actually turn
the light and powertube on and off. Such a change could be accomplished by changing
just the context; if we had chosen the second option, every state would have to be changed
to communicate with the new external environment. Note that Option 1 requires that the
context provide methods for communication that can be invoked by the states. This would

Using the State Pattern 307

result in an additional overhead of a method call, but such a call can be easily inlined to
reduce the runtime cost.

In the second option, each state must keep track of the concrete entities that it wishes
to communicate with and has to be tailored to that interface. This clearly makes the state
dependent on these interfaces and thus introduces some additional coupling. This seems to
suggest that Option 1 is always preferable, which would not be correct for the following
reason. Consider a situation where each state has some distinct kinds of external entities
which it communicates with; if all the communication went through the context, the context
would have to provide methods for each kind of entity, making it a very unwieldy class.
In such a situation it is preferable that each state communicate directly with its external
clients. The coupling that may result can be significantly reduced if all the external entities
were to be implementations of stable abstractions.

The above discussion leads to a natural question: Can incoming communication go di-
rectly to the current state? This is clearly a tricky question, since the external entity does
not know what the current state is, and revealing such information would clearly lead to a
lot of unwanted coupling. As it turns out, these questions are related and we shall examine
all of this in Section 10.6 when we deal with the issue of communication. For now, we
shall make the choice that all communication goes through the context. What this implies is
that the context has methods for updating the display, which are invoked from the concrete
states.

The class diagram for MicrowaveContext is shown in Figure 10.15. In our de-
sign all communication between the states and the UI goes through the context. It is
convenient to have in the context a method getDisplay to provide the reference to
the display object, which can be used by the the MicrowaveState objects as needed
to update the interface. The current state can be changed by executing the method
changeCurrentState.

10.5.2 Implementation

MicrowaveState has default methods for processing each of the events, and the con-
crete state classes are supposed to override these to specify the processing required.

public abstract class MicrowaveState {
protected static MicrowaveContext context;
protected static MicrowaveDisplay display;
protected MicrowaveState() {

context = MicrowaveContext.instance();
display = context.getDisplay();

}
public abstract void run();
public void processDoorClose() {
}

308 Modelling with Finite State Machines

MicrowaveContext

– timeRemaining: int

– currentState: State

– microwaveContext: MicrowaveContext

– display: MicrowaveDisplay

+ instance() : MicrowaveContext

+ processDoorOpen() : void

+ processDoorClose() :void

+ processCookRequest(): void

+ processCookTick() : void

+ processClockTick() : void

+ changeCurrentState (nextState: MicrowaveState): void

+ setTimeRemaining (timeRemaining: int) :void

+ getTimeRemaining() : int

+ getDisplay() : MicrowaveDisplay

Figure 10.15 Class diagram for MicrowaveContext

public void processDoorOpen() {
}
public void processCookRequest() {
}
public void processClockTick() {
}

}

The run method is abstract and is invoked on a state whenever control has to be transferred
to that state. Each state must therefore define the run method in an appropriate manner.
For instance, when the cooking state is entered, the housekeeping needed is that the light
must be turned on, the timer set to 60, and powertube turned on. These details are shown
below.

public void run() {
display.turnLightOn();
context.setTimeRemaining(60);
display.startCooking();
display.displayTimeRemaining(context.getTimeRemaining());

}

The default methods are overridden as needed. The method processClockTick in
CookingState, for instance, would look something like this:

Using the State Pattern 309

public void processClockTick() {
context.setTimeRemaining(context.getTimeRemaining() - 1);
display.displayTimeRemaining(context.getTimeRemaining());
if (context.getTimeRemaining() == 0) {

display.notCooking();
display.turnLightOff();
context.changeCurrentState(DoorClosedState.instance());

}
}

The MicrowaveContext class holds a reference to the current state and processes the
events by simply passing on the request to the current state. The code for the method pro-
cessCookRequest now looks like this:

public void processCookRequest() {
currentState.processCookRequest();

}

The variable currentState is of type MicrowaveState and dynamic binding en-
sures that correct method is invoked. Note that we no longer have a conditional to check
what kind of state we are in. Note that some states (e.g., Door Open) are required to ignore
this event; for this reason the default method in the abstract class is implemented to do
nothing.

Implementing the concrete states Each of these extends MicrowaveState and is a
singleton. Here are the first two lines of the code for the CookingState class.

public class CookingState extends MicrowaveState {
private static CookingState instance;

Each state class overrides only a subset of the methods of MicrowaveState. The code
for handling the external events is essentially the same as what we had in the corresponding
methods of Microwave in the previous version: the conditional on currentState is
now absent. Clock ticks are handled in CookingState as shown below:

public void processClockTick() {
context.setTimeRemaining(context.getTimeRemaining() - 1);
display.displayTimeRemaining(context.getTimeRemaining());
if (context.getTimeRemaining() == 0) {

context.changeCurrentState(DoorClosedState.instance());
}

}

In this version, we shall leave the Clock class largely unchanged. The minor, obvious
change is that rather than send signals to the Microwave object, Clock has to notify the
instance of MicrowaveContext.

310 Modelling with Finite State Machines

10.6 Improving Communication between Objects

As we discussed earlier, we have two problems with communication in our earlier design.
The first of these involves external entities like Clock. In our example, this was tightly
coupled to the implementation for Microwave, and we shall investigate loosening this
coupling using the Observer pattern. Next we look at how our system can be made more
flexible by taking an event-based approach to processing user input.

10.6.1 Loosely coupled communication

Loosely coupled communication must have three properties:

1. The listener is responsible for registering interest.

2. All interested listeners share some common interface so that the sender need not distin-
guish between listeners.

3. The sender has a mechanism for maintaining a collection of the interested listeners.

The observer pattern gives us a mechanism that makes this possible. There are two cate-
gories of players in the observer pattern:

1. The observable, which is usually a single object, and

2. The observers, of which there may be several. It is the responsibility of the observable
to provide a method by which the observer can register interest. Once this interest has
been registered, it is the responsibility of the observable to notify all observers of any
changes/events that occur. In order to accomplish this without causing tight coupling,
every observer must have a method with a signature that has been agreed upon. Java
provides such a mechanism as a part of the language.

Every Observable object maintains a list of ‘interested observers.’ The class Observ-
able has the following categories of methods:

1. In the first category, we have methods for maintaining the list of observers. The method
addObserver(Observer observer) adds the given observer to this list. There
are two ways of deleting observers. A single observer can be deleted by using the
method deleteObserver(Observer observer), and all of the observers can
be deleted by calling the method deleteObservers().

2. The second set of methods support the notification of the observers of ‘note-
worthy’ events occurring within the Observable object. Every Observable
object maintains a flag, ‘object changed’, to remember whether the object has

Improving Communication between Objects 311

changed since the last notification to the observers. To notify observers, it is nec-
essary to first call the method setChanged() to indicate that a change has oc-
curred. This sets the ‘object changed’ flag to true. After setting the flag, the
Observable can notify all of the observers in one of two ways: by calling
notifyObservers() or calling notifyObservers(Object arg). In the lat-
ter version of the notifyObservers method, arg is the object that contains the mes-
sage to be delivered. Every time notifyObservers is invoked, the ‘object changed’
flag is cleared; that is why we need to call the setChanged method whenever a
‘noteworthy’ change/event occurs. (Repeated invocations of the notifyObservers
method will not have any effect until the ‘object changed’ flag is set again.)

3. The third group comprises miscellaneous methods such as countObservers() that
gets the number of observers of the Observable object.

Every class that wishes to be an observer implements the Observer interface. The
Observer interface has the method update with the following signature:

public abstract void update(Observable object, Object arg);

When notifyObservers is invoked in the Observable object, the update method
is invoked once for each item in the list of ‘interested observers’. The update method
allows the Observable object to send a reference to itself along with a message to the
observer.

The interaction between and Observable and two Observer objects is depicted
in the sequence diagram in Figure 10.16. The picture shows an event occurring in the
Observable, which calls the setChanged and the notifyObservers methods.
In response to the notifyObservers method call, the Observable object calls the
update methods of the two observers supplying them with its identity and information
about the event(arg).

While utilising the observer pattern in Java, the programmer should be aware of two
aspects.

1. In general, a single observer should not be registered more than once with the same
Observable object. The Observable object will call the update method of the
observer as many times as the number of registrations. The problem could creep into
applications where observers are supposed to be deleted and then put back in.

2. The update method of the observer is executed by the Observable thread. This
means that the processing of the update method in the observers occurs sequentially.
If one of these methods ends up waiting, say for a message, the Observable object
will be stuck! Also, the designer must ensure that no matter in what order the update
methods get executed, the system will function correctly.

.

312 Modelling with Finite State Machines

Figure 10.16 Sequence diagram in a system with one observable and two observers

10.7 Redesign Using the Observer Pattern

We now re-implement the microwave system to have the Clock extend Observable and
MicrowaveContext implement Observer. Since the Clock object does not maintain
a reference to the context anymore, MicrowaveContext need not be a singleton. On the
other hand, Clock is implemented as a singleton because it can serve as a general class
for a variety of applications. This allows the listener (observer) to get hold of the event
generator (observable) and register its interest. The modified Clock class is as follows:

public class Clock extends Observable implements Runnable {
private Thread thread = new Thread(this);
private static Clock instance;
public enum Events {CLOCK_TICKED_EVENT};
private Clock(){

thread.start();
}
public static Clock instance() {

if (instance == null) {
instance = new Clock();

}
return instance;

}
public void run(){

try{
while (true) {

Thread.sleep(1000);
setChanged();

Redesign Using the Observer Pattern 313

notifyObservers(Events.CLOCK_TICKED_EVENT);
}

} catch (InterruptedException ie) {
}

}
}

MicrowaveContext implements the Observer interface and the method Clock-
Ticked is replaced by the method update.

public class MicrowaveContext implements Observer {
public void update(Observable source, Object event) {

// code to process clock tick
}
// other attributes as before

}

10.7.1 Communication with the user

As we discussed earlier, implementing the communication mechanism requires us to make
a decision about the path of the messages. We had decided that all communication would
go through the context. We shall now proceed with that assumption and try to improve the
reusability of our system.

As it stands, we have provided a separate method in MicrowaveContext for each
kind of event. We have a situation where adding new kinds of events would require chang-
ing the implementation of the context. The simplest way of avoiding this is to have a single
method, say processEvent, and pass the event as a parameter. This means that all the
events should belong to a common type, which can be created using the enum Event, as
shown below:

public class MicrowaveSupport {
public static enum Events {DOOR_CLOSED_EVENT, DOOR_OPENED_EVENT,

COOKING_REQUESTED_EVENT};
}

The class MicrowaveSupport is defined to hold all the events. Note that what we have
done is to encapsulate the variability in a separate class so that new events can be added
without changing the context. The processEvent method in the context simply passes
the event on to the current state.

public void handleEvent(Object arg) {
currentState.handle(arg);

}

314 Modelling with Finite State Machines

The observer pattern

Where do we employ this? An abstraction has several parts, which have to be encap-
sulated separately, but there is a need to maintain communication between them.
What problem are we facing? Communicating with an object essentially requires that
some method of the object be invoked. This implies that the object initiating the
communication has to know which method of the recipient(s) is to be invoked. If the
sender must keep track of the methods of all recipients, we get tight coupling between
the various parts of the abstraction.

How have we solved it? We place the responsibility for communication on the receiver
instead of the sender. The sender (also known as the Subject or the Observable) has
a method that allows recipients (Observers) to register their interest with the sender.
All the recipients of the message implement a common method (or an interface) for
receiving messages. When there is a need for communication, the sender invokes the
common method on all the receivers that have registered their interest with the sender.

Note that the context does not distinguish between the events anymore. Accordingly, the
abstract class MicrowaveState has just a single abstract method handle which must
be overridden by each concrete state. The code for the class CookingState is shown
below. (It assumes that MicrowaveContext is still a singleton.)

public void handle(Object event) {
if (event.equals(MicrowaveSupport.Events.COOKING_REQUESTED_EVENT)) {

processCookRequest();
} else if (event.equals(MicrowaveSupport.Events.DOOR_OPENED_EVENT)) {

processDoorOpen();
} else if (event.equals(Clock.Events.CLOCK_TICKED_EVENT)) {

processClockTick();
}

}

Note that we now have conditionals to distinguish between the events. This is because
all the events are travelling along the same path and we have no means of distinguishing
them. A similar situation occurs when we have a class that acts as an observer for several
observable classes. The advantage to using the enum is the simplicity of implementation
when compared with the other options; the disadvantage is that we combine the complexity
of several methods into one, requiring switching on the type of event. This complexity is not
a big concern when we have a simple system and each state handles only a small number of
events, but can be a problem when there are several events to be handled and these originate
from divers entities. As one would expect, we have alternate solutions for this that involve
creating a separate event hierarchy. We shall examine these options later in this chapter.

Eliminating the Conditionals 315

10.7.2 The improved design

Before proceeding further, let us summarise the changes we have made to the earlier design
by examining each class.

The GUIDisplay This class has remained largely unchanged. The only difference is that
instead of invoking different methods for processing each event, we now invoke the same
method processEvent with different parameters. This code is shown below:

public void actionPerformed(ActionEvent event) {
if (event.getSource().equals(frame.doorCloser)) {

MicrowaveContext.instance().handleEvent(
MicrowaveSupport.Events.DOOR_CLOSED_EVENT);

} else if (event.getSource().equals(frame.doorOpener)) {
MicrowaveContext.instance().handleEvent(

MicrowaveSupport.Events.DOOR_OPENED_EVENT);
} else if (event.getSource().equals(frame.cookButton)) {

MicrowaveContext.instance().handleEvent(
MicrowaveSupport.Events.COOKING_REQUESTED_EVENT);

}
}

Clock This class now extends Observable and is not tailored for this particular appli-
cation, i.e., when a clock tick happens, it simply notifies all the observers.

MicrowaveContext The class was set up as an Observer of Clock. The variability in
the events was encapsulated, and a single method, processEvent, was defined in Mi-
crowaveContext to receive all events. A separate hierarchy, viz., MicrowaveState,
was created and all the details of processing of events in the different states was delegated
to this hierarchy. A class diagram showing all these details is presented in Figure 10.17

The manner in which events are handled changes in conformance with the new imple-
mentation. The sequence diagram for handling a cooking request event when the microwave
is in the DoorClosedState is shown in Figure 10.18.

10.8 Eliminating the Conditionals

In the design presented above, the handle method in each state handles the events. This
conditional switches on the kind of event, which in turn is decided by external input. To
eliminate these conditionals from the states, it is obvious that our implementation should
ensure that each event is delivered to the states in a unique way. Since the events are passed
on through method invocations, this would mean having a unique method invocation for

316 Modelling with Finite State Machines

Figure 10.17 Class diagram for the microwave oven

each event. However, the context cannot distinguish between these events for reasons dis-
cussed earlier, and this implies that we can no longer insist that all communication go
through the context. The problem we are faced with is that of ensuring that only the current
(i.e., active) state processes the event. We have two broad approaches for ensuring this.

1. Take the context out of the picture completely i.e, each state takes full responsibility for
performing exactly as the system requires. This approach would use something like the
event handling system provided by Java, which behaves very much like a customised ob-
server pattern. We have an event source and an event listener interface which correspond
respectively to the observable and the observer. The listener classes must implement the
event listener interface and register themselves with the source object; when the event
occurs, the method in the event listener interface is invoked on all the registered listeners.
If we use this approach for our microwave oven, we will have a different event listener
method for each event. For the reasons mentioned earlier, these cannot be implemented
by the context. Each state therefore implements the needed event listener interfaces and
also takes responsibility for registering and de-registering itself with the event sources.

2. Use the context as a ‘switchboard’ that connects the event with the current state. This
would clearly have to be done without knowing the type of the concrete event or the

Eliminating the Conditionals 317

concrete state, thus requiring some form of double dispatch. We create a hierarchy of
events and a parallel hierarchy of listener interfaces. Each state implements the neces-
sary interfaces as before. Since the concrete MicrowaveState object that is currently
active changes constantly,we need to use a two-step process in which the source commu-
nicates the event to the context, which then invokes a method on the event object passing
the current state as a parameter. The method in the event then invokes the method in the
listener interface.

Figure 10.18 Sequence diagram for cooking request event

10.8.1 Using the Java event mechanism

In this approach, the current state object receives notifications directly from the source of
the event, without going through the context. For each type of event, there is a separate
‘manager’ object that takes on the responsibility of delivering the events to the appropriate
state. For example, consider a click on the door close button. The display object informs
the DoorCloseManager object, which notifies all the listeners.

The Java event mechanism involves creating classes for the events and their sources and
interfaces that the listeners will implement. Let us go through each of this, making the
necessary modifications to our microwave system.

The event classes
We create a class for each event, by extending EventObject. The code for the Door-
CloseEvent is shown below.

public class DoorCloseEvent extends EventObject {
public DoorCloseEvent(Object source) {

318 Modelling with Finite State Machines

super(source);
}

}

The only work here is to define the constructor. The source of the event is stored in the
superclass object.

Concrete vs. abstract entities in design patterns

Often in design patterns, we find both an abstract and a concrete version of an entity.
Sometimes the abstract entity is present just as a type (interface) and at other times,
it is an abstract class. In the Visitor pattern, we encountered the use of interfaces.
Interfaces suffice in situations where all the required properties of the entity can be
expressed without any implementation.

In the State pattern, the abstract state class allows us to capture the default be-
haviour and also store references to other entities. In our microwave implementation
we do not have an abstract context. However, in an implementation where the state
transitions are stored as a table, an abstract context helps with reuse.

In the observer pattern, the observable is an abstract class. The mechanism used
to enforce the pattern requires that observable store references to the observers, and
notify them as needed. If no implementation is provided, we may end up in a situation
where the correctness of the pattern is compromised. Since the observer entity on the
other hand needs just the update method with no restrictions on its behaviour, it is
left as an interface.

Another important benefit of the abstract entities is that they enable some form
of type checking. The abstract observer class maintains a polymorphic container to
keep track of all observers and the abstract entity helps ensure that all these objects
have implemented the update method. In the absence of this, observable would be
storing a collection of objects and strong typing would not be possible.

The event source
In our system, the events will be generated in response to button clicks. We can desig-
nate GUIDisplay as the source. It is customary that responsibilities of the source include
providing mechanisms for registering and de-registering listeners and also notifying them
when an event occurs. Doing this for all the microwave events in the GUI, however, causes
unnecessary entanglement of responsibilities. Instead, we create a separate class Door-
CloseManager, which handles all the other responsibilities. This class is created by
extending JComponent so that we can inherit some of the functionality for managing the
events.

Eliminating the Conditionals 319

public class DoorCloseManager extends JComponent {
private EventListenerList listenerList;
private static DoorCloseManager instance;
private DoorCloseManager() {

listenerList = new EventListenerList();
}
public static DoorCloseManager instance() {

if (instance == null) {
return instance = new DoorCloseManager();

}
return instance;

}
public void addDoorCloseListener(DoorCloseListener listener) {

listenerList.add(DoorCloseListener.class, listener);
}
public void removeDoorCloseListener(DoorCloseListener listener) {

listenerList.remove(DoorCloseListener.class, listener);
}
public void processEvent(DoorCloseEvent event) {

EventListener[] listeners
= listenerList.getListeners(DoorCloseListener.class);

for (int index = 0; index < listeners.length; index++) {
((DoorCloseListener) listeners[i]).doorClosed(event);

}
}

}

This class is defined as a singleton, so that the concrete states can access it and register
themselves. The event constructors are invoked when the button clicks are detected in the
GUI, as shown below.

public void actionPerformed(ActionEvent event) {
if (event.getSource().equals(doorCloser)) {

DoorCloseManager.instance().processEvent(new DoorCloseEvent(this));
}
// code for handling other events

}

The GUIDisplay object is stored as the source, which enables us to track the actual
source, if needed for an exception. The code above invokes the processEvent method
of the DoorCloseManager which then notifies all the listeners.

The event listeners
All event listeners must implement the corresponding listener interface. All these interfaces
are defined to extend EventListener so that the methods in JComponent can be
reused.

320 Modelling with Finite State Machines

public interface DoorCloseListener extends EventListener {
public void doorClosed(DoorCloseEvent event);

}

Each concrete state implements the required listeners and does the necessary housekeeping.
Note that this includes registering as a listener within the run method, and de-registering
before the changeCurrentState method is invoked.

public class DoorOpenState extends MicrowaveState
implements DoorCloseListener {

// other fields and methods
public void run() {

display.stopCooking();
display.openDoor();
display.turnLightOn();
display.displayTimeRemaining(context.getTimeRemaining());
DoorCloseManager.instance().addDoorCloseListener(this);

}
public void doorClosed(DoorCloseEvent event){

DoorCloseManager.instance().removeDoorCloseListener(this);
context.changeCurrentState(DoorClosedState.instance());

}
}

10.8.2 Using the context as a ‘switchboard’

Sometimes, we may have to deal with situations where the communication has to go
through a facade. In such an FSM, we cannot use the Java event structure unless the context
participates in the process and is aware of all kinds of events in the system, which may not
be desirable. As it turns out, we can construct a solution where the context has a single
handleEvent method and each individual state takes care of implementing the listener
methods it is interested in. This can be accomplished by adding some machinery to the
event classes and paying the price of an additional method call. Such a system consists of
the following elements.

1. An event hierarchy We have an abstract class MicrowaveEvent, which is ex-
tended by the concrete event classes DoorOpenEvent, DoorCloseEvent, etc. This
is shown in Figure 10.19.

2. A listener interface hierarchy The hierarchy parallels the event hierarchy and is shown
in Figure 10.20. We have a general interface for MicrowaveEventListener which
corresponds to the abstract event, extended by specific interfaces for each concrete event.
We need the general interface, since the abstract class MicrowaveState has to be a
listener but cannot implement any of the specific interfaces.

Eliminating the Conditionals 321

Figure 10.19 Event hierarchy for the microwave oven

Figure 10.20 Listener hierarchy for the microwave oven

Figure 10.21 MicrowaveEvent class diagram

3. A method for the event to accept the listener The abstract event has an abstract
method connectToListener (Figure 10.21), which the concrete events must imple-
ment. This method will be invoked by the context (or any ‘switchboard’) when it receives
an event, and passes as a parameter the object that should be notified of the event.

322 Modelling with Finite State Machines

4. A method to send the listener to the event This method resides in the ‘switchboard’.

5. The concrete listeners Finally, we have the concrete classes that implement the spe-
cific listener interfaces, which in our example are the concrete states.

To demonstrate how the classes and interfaces will be used to eliminate conditionals, we
examine the sequence diagram in Figure 10.22, which shows what happens when we press
the ‘Cook’ button while the current state is DoorClosedState. The sequence of actions is as
follows:

1. The user clicks the ‘Cook’ button. This generates an instance of ActionEvent and
control goes to the actionPerformed method of GUIDisplay.

2. The actionPerformed method notes that the event is a cook request, so it creates
an instance of CookRequestEvent. It then sends the event as parameter to the han-
dleEvent method of MicrowaveContext.

3. In the handleEvent method of MicrowaveContext, the parameter is used to call
connectToListener. This is another polymorphic call. This ends up calling the
connectToListener method of CookRequestEvent.

4. The connectToListener receives the current state as parameter, which it uses to
call the processEvent method of DoorClosedState (which is the current state)
with CookRequestEvent as parameter.

5. The processEvent method changes the current state, which in turn modifies the dis-
play.

10.8.3 Implementation

The MicrowaveEvent class is abstract and extends java.util.EventObject. The
connectToListener method is critical for making the switchboard function correctly.

import java.util.*;
public abstract class MicrowaveEvent extends EventObject {

public MicrowaveEvent(Object object) {
super(object);

}
public abstract void connectToListener(MicrowaveEventListener listener);

}

Each concrete event implements connectToListener and must invoke the appropri-
ate method in the listener interface. However, the parameter is explicitly known to im-
plement only the general interface; we therefore cast the object to the specific listener

Eliminating the Conditionals 323

Figure 10.22 Sequence diagram for cook request while in the DoorClosed state

interface and then invoke the method. Since this cast may fail, the method is declared
to throw the ClasscastException. The implementation of connectToListener
for CookRequestEvent is shown below. Since not all states need to handle the event, we
might want to suppress message displays if a ClassCastException object is thrown.

Note that the connectToListener method needs to verify during execution that
listener belongs to the class CookRequestListener. This verification is automat-
ically done through downcasting and is therefore an application of RTTI.

public class CookRequestEvent extends MicrowaveEvent {
public CookRequestEvent(MicrowaveDisplay display) {

super(display);
}
public void connectToListener(MicrowaveEventListener listener) {

try {
((CookRequestListener) listener).processEvent(this);

} catch (ClassCastException cce) {
// message
}

}
}

The code for MicrowaveEventListener and one of its subinterfaces, CookRe-
questListener, are shown below.

324 Modelling with Finite State Machines

public interface MicrowaveEventListener {
public void processEvent(MicrowaveEvent event);

}
public interface CookRequestListener extends MicrowaveEventListener {

public void processEvent(CookRequestEvent event);
}

The handleEvent method in the context casts currentState as a listener before it
is passed; since the declared type of this variable is the abstract class MicrowaveState,
such a cast would not be possible if we did not have the general listener interface.

The code has to reside in a try block for obvious reasons; to facilitate debugging, we
add the logException method to the state classes.

public void handleEvent(MicrowaveEvent event) {
try {

event.connectToListener((MicrowaveEventListener) currentState);
} catch (ClassCastException cce) {

currentState.logException(cce);
}

}

Partial code for the CookingState is shown below. Note that we no longer need to
register or de-register and need to implement methods only for the events that this state is
interested in.

import java.util.*;
public class CookingState extends MicrowaveState implements

DoorOpenListener, CookRequestListener, ClockTickListener {
// code for making the class a singleton
public void run(){

context.setTimeRemaining(60);
display.displayTimeRemaining(context.getTimeRemaining());
display.turnLightOn();
display.startCooking();

}
public void processEvent(DoorOpenEvent event) {

context.changeCurrentState(DoorOpenState.instance());
}
public void processEvent(CookRequestEvent event) {

context.setTimeRemaining(context.getTimeRemaining() + 60);
display.displayTimeRemaining(context.getTimeRemaining());

}
// other methods

}

Before closing the subject, we should see some alternatives to downcasting when imple-
menting the connectToListener method in the event classes. We could use the in-
stanceof method to ensure that the listener indeed implements the appropriate interface.

Eliminating the Conditionals 325

This approach is likely to execute faster since the overhead associated with the exception is
avoided, but does not report situationswhere unexpected state–event combinations show up
at runtime. Another alternative would be to have all states implement all listener interfaces,
making methods to handle events that are not of interest to it no-ops; this would, however,
mean that all states would have to be changed when new events are added, thus hurting
reuse.

Eliminating conditionals in GUIDisplay

As it stands, we still have conditionals in the GUIDisplay class. While a general ap-
proach to eliminating conditionals in the user interface might be tedious if not impossible,
it turns out that we can eliminate them completely in GUIDisplay. The approach could
be used to reduce the number of conditionals in user interface classes in general.The idea
involves creating a separate class for each type of button. All such button classes extend
some common functionality given in the class GUIButton.

import javax.swing.*;
public abstract class GUIButton extends JButton {

public GUIButton(String string) {
super(string);

}
public abstract void inform(MicrowaveContext context,

MicrowaveDisplay display);
}

The button for issuing the cook request is an instance of CookButton coded as below.

public class CookButton extends GUIButton {
public CookButton(String string) {

super(string);
}
public void inform(MicrowaveContext context, MicrowaveDisplay source) {

context.handleEvent(new CookRequestEvent(source));
}

}

Finally, the code in GUIDisplay simply calls the inform method on the source of the
event.

public void actionPerformed(ActionEvent event) {
((GUIButton) event.getSource()).inform(MicrowaveContext.instance(),
this);

}

326 Modelling with Finite State Machines

10.9 Designing GUI Programs Using the State Pattern

Let us consider the execution of a typical GUI program. Initially, the program displays a
window and waits for an input from the user such as a click on a button or selection of an
item in a list box. The program processes this request and displays another screen, waiting,
once again, for an input from the user.

When the program has displayed a window, we can view that as the current ‘state’ of the
program. The event caused by user’s actions such as button clicks and list selections, is the
input to the state. Based on the state and the current input, the program takes some actions
and makes a transition to another state, which displays yet another window.

Of course, a GUI program may not always wait for a user input when it displays a
window. As an example, assume that the program presents a snapshot of a file system. The
user may invoke a command to copy a set of files perhaps by dragging some icons or by
doing a ‘copy and paste’. The program may choose to display a simple window (a message
box) with some message like ‘copying in progress’. This window may not have any widgets
for human use. The window disappears when copying is finished.

In the above case, the display of the message box represents the copying state of the
program. The state’s input is a notification from some copying code that copying has been
completed.

10.9.1 Design of a GUI system for the library

We briefly describe our approach to GUI design by building a GUI for the library sys-
tem. The interface is more or less equivalent to the text-based interface we developed in
Chapter 7.

Obviously, we need one screen for displaying the main menu, a screen for allowing the
addition of books, yet another one for adding a member, and so on. Each of these screens
corresponds to a state of the program.

Since there are too many states to be conveniently presented in a single diagram, we
present our design in smaller parts.

The main menu and add books We have a state, MainMenu, for displaying the main
menu. This has a number of buttons, each of which selects an operation on the library.
When the ‘Add Book’ button is clicked, the system goes to the AddBook state. Since we
anticipate that we will get a number of books to be added, we will provide two buttons
here: one to add a book and the other to signal that the screen can be dismissed. The state
transition diagram is shown in Figure 10.23.

Add member When we click the ‘Add Member’ button on the main menu, the sys-
tem goes to AddMember, displaying a window to let the user input member details. After

Designing GUI Programs Using the State Pattern 327

entering, the user may click the ‘OK’ button to enter the data into the library. The system
displays the result in a new window (a new state), ShowResult, from which control goes to
MainMenu when the user clicks the ‘OK’ button.

Figure 10.23 Main menu and add books

In AddMember, the user may also choose the ‘Cancel’ option to abandon the operation.
The details are shown in Figure 10.24.

Figure 10.24 Main menu and add member

Issue books The state transition diagram is given in Figure 10.25. As the reader may
expect, the system goes to IssueBooks when the user clicks ‘Issue Books’ on the main
menu. In this state, the user may enter the member id and click ‘OK’ or click ‘Cancel’ to
return to the main menu. If a valid member id is entered, the system moves to the GetBookId
state, which lets the user enter a book id. After entering each id, the user may click the ‘OK’
button to enter one more book id. Clicking ‘Done’ takes the system back to the MainMenu
state.

Return books and remove books The state transition diagrams for both cases are similar.
After the appropriate choice (‘Return Books’ and ‘Remove Books’) is made from the main
menu, the state is changed to either ReturnBooks or RemoveBooks. In each of these states,
the user can enter a book id and click ‘OK’ or press ‘Done’ to return to the main menu. The
state transition diagram is shown in Figure 10.26.

328 Modelling with Finite State Machines

Figure 10.25 Main menu and issue books

Figure 10.26 Remove books and return books

Figure 10.27 Place hold

Place hold and remove hold These two also have similar state transition diagrams and
are shown in Figure 10.27 and Figure 10.28. We assume that explanations for the previous
cases should provide enough clues to understand these cases.

Designing GUI Programs Using the State Pattern 329

Figure 10.28 Remove hold

Print transactions The flow of control is depicted in Figure 10.29. Since a member may
have had many transactions on a given date, the result is shown in a state called ShowLon-
gResult.

Figure 10.29 Print transactions

Process holds The state transition is similar to ‘Add Books’ and is given in Figure 10.30.

Figure 10.30 Process holds

We leave the implementation of Renew Books as an exercise.

330 Modelling with Finite State Machines

10.9.2 The context

The system needs to transfer information between some pairs of states. For example, the
member id entered in IssueBooks is to be used in GetBookId, and the transactions from
GetTransactions must be given to ShowLongResult. This is achieved by means of a context,
a singleton. The class diagram is shown in Figure 10.31.

In the IssueBooks state, the user enters the member id clicks ‘OK’. The state stores the
member id in the context, retrieved by GetBookId. Similar transfers occur between some
other pairs of states.

Figure 10.31 The context

Implementation All states implement the interface UIState, which is given below.

public interface UIState {
public void handle(Object event);
public void run();

}

MainMenu is implemented as a JFrame and all other states are extensions of the Java
class JDialog. Every dialog is modal, which ensures that main menu cannot be accessed
until it is dismissed.

10.10 Discussion and Further Reading

10.10.1 Implementing the state pattern

The state pattern can be implemented in different ways, and the particular implementation
that we choose depends on the role played by the context and the kind of relationship we

Discussion and Further Reading 331

have between the states. At one end of the spectrum we have an implementation where
the context is nothing but a repository for shared information. This is the approach rec-
ommended in [18]. When a state has completed all of its actions, it passes control to the
next state along with a reference to the context object. We have two choices as to how this
can be realised. One approach is to create a new instance of a state whenever a state ter-
minates. Another approach is where each state is a singleton and the current state invokes
instance to obtain a reference to the next state. In such an implementation, there is some
coupling between the individual states and requires that each state be fully responsible for
listening and responding to external events.

At the other end of the spectrum, we have a situation where each state is completely un-
aware of the existence of other states. This is accomplished by the current state terminating
with a call to the context, which looks up a transition table to decide what the next state
should be [7]. The context in this implementation provides methods to add states and tran-
sitions, which populate the transition table. These methods are accessed through a driver
routine, thus allowing the context to be reused in other applications. Such an approach is
particularly suitable for designing multi-panel interactive systems, such as the GUI for the
library [30]. The approach that we have taken in the design of the microwave system lies
somewhere in the middle of this range. The context stores the current state and also serves
as a facade, but has nothing to do with the transition table.

10.10.2 Features of the state pattern

The examples in the chapter should be illustrative enough that the following salient aspects
of the state pattern can be appreciated.

1. An application can be in one of many states, and its behaviour depends on the state it is
in. In our example, the microwave object can be in one of three possible states: Cooking,
Door Open, and Door Closed.

2. We create one class per state. We may choose to put their common functionality in an
abstract superclass or make all of these states implement a common interface, so that
they all conform to some common type.

3. One instance of each state class is created. In the case of the microwave oven, the three
classes corresponding to the three states are all singletons. This way, unnecessary object
creation and deletion are avoided.

4. There is a context that orchestrates the whole show. This object remembers the current
state and any shared data.

5. Exactly one state is active at any given time. The context delegates the input event to the
state that is currently active and therefore only the active state responds to events.

332 Modelling with Finite State Machines

6. When an event that requires a change of state occurs, we determine the next state,
which then becomes active. For example, this transfer of control occurs for the mi-
crowave application by having each state determine the next state and then calling the
changeCurrentState method of the context.

The mechanism for deciding the next state can be done in one of two ways.

(a) One approach would be to have a centralised controller that uses the matrix (see
Section 10.5.1) to decide what the next state is. In this technique, after responding
to an event, the state can return the input event to the controller, which can use the
current state and the input event to determine the next state.

(b) The second approach is to have the current state determine the next state. We used
this approach in our Microwave example.

The advantages of using the pattern are:

1. There is no longer a need to switch on the state in order to decide what action needs to
be taken. Instead, we polymorphically choose a method to be executed.

2. New states can be added and old states reused without changing the implementation.
For example, in the microwave example, we can resume cooking after an interruption by
simply having a new version of the class CookingState. (The reader is encouraged
to make this modification.)

3. The code is more cohesive. Each state contains code relevant to it and nothing else. Only
events that are of interest in this state are processed.

10.10.3 Consequences of observer

The simplicity of the observer pattern belies the power it conceals. In essence, we have al-
lowed an arbitrary object to be registered as a listener, and the observable invokes a method
(viz. update) provided by the observer. Likewise, an object can become a listener to an
arbitrary number of classes. As one should expect, such power brings along a lot of caveats
and consequences.

For a start, we have the problem of memory leaks. In a system that provides automatic
garbage collection, objects for which no references are maintained can be cleaned up during
garbage collection. If an observable stores a reference to an object, it is tricky to decide
when the object is no longer needed and some explicit mechanism may be needed to signal
the end of an object’s lifetime. Next we have the problem of the order in which observers
are notified. The pattern itself does not specify any order and if any temporal ordering is
desired, explicit mechanisms such as introduction of intermediaries may be needed [38].

Discussion and Further Reading 333

Since any arbitrary object can become a listener, we may end up in situations where an
update method invoked by the observable has unsafe code, say for instance, an unhandled
exception or a delay. The standard approach to avoid this is for the observable to have every
observer on a separate thread. This solution in turn leads to other caveats for programmers,
such as not registering listeners from within constructors and not adding new listenerswhen
existing ones are being notified [20].

A class that listens to several observables can end up with an update method that is
quite complex. The order in which an observer deals with notifications from observables
can change the result of the computation. Two such problems, viz., cyclic dependencies and
update causality are discussed in [23].

Computation involving threads has its own share of pitfalls, and these have to be under-
stood in the context of the observer pattern. Several questions arise, such as, How do you
handle simultaneous notifications on multiple threads? What about modifying the listener
list from one thread while notifications are in progress on another? and What happens when
the notification is sent from one thread to an object that is being used by a second thread?
These and other issues are discussed in [24].

10.10.4 Recognising and processing external events

The entire process for receiving and processing input involves the following steps: (i) pro-
viding a mechanism for input on the UI; (ii) listening to user actions on the input mechanism;
(iii) generating appropriate internal events; (iv) processing the events.

In our implementation, steps (i) through (iii) are performed in the UI and (iv) in the back-
end. It is tempting to carry out (ii) through (iv) in the back-end, since it appears to make
the process more efficient. However, from the point of view of reuse, that approach makes
for a poor system and efficiency issues can be handled in other ways. Generally speaking,
the UI is responsible for the ‘look and feel’ and the back-end handles the processing. Reuse
is most benefited if the back-end is ‘UI-agnostic’, and that would be impossible if step (ii)
is to be done in the back-end. A UI may provide a user with multiple mechanisms for the
same operation (using a menu, a key sequence, etc.) and the back-end should be able to
handle all these uniformly. It is therefore desirable that steps (i) to (iii) be completed in
the UI. The secondary question then arises as to which object in the UI should implement
actionListener. This is addressed in one of the exercises.

Next we deal with the issue of communicating the event to the back-end. At first glance,
the observer pattern seems suitable for this, but a closer examination tells us that this may
lead to a situation where the observer must use a conditional to distinguish between several
observables. It is therefore preferable to use one of other mechanisms discussed in the
chapter.

334 Modelling with Finite State Machines

10.10.5 Handling the events

We have discussed three mechanisms for dealing with events in this chapter. Creating an
enum is the simplest, but does not allow us pass on any information along with the event
and requires the use of conditionals. The standard event handling mechanism provided
by Java requires that we have an event source that can register listeners that implement a
custom interface and notify them when the event occurs. This requires the listener object to
take full responsibility for ensuring that the connection is made. A third approach is to use
a form of double dispatch where the source is aware of a switchboard that can connect the
event to the listener. This approach can be generalised to other situations by having the event
classes extend EventObject and the listener interfaces extend EventListener. The
trade-off here is that we have an additional method call, but the listener does not have to do
any extra housekeeping.

Events can be classified as low-level events, which represent window-system occur-
rences or low-level input, and semantic events which include all other events. A button
click is a semantic event which is defined to occur when the mouse is pressed and released
over the button’s display. We could therefore achieve the same functionality by tracking
the mouse movement and mouse clicks, which are low-level events. In general, it is prefer-
able to listen for semantic events since there may be alternative mechanisms (such as key
sequences) that can activate a button.

In addition to the features presented in the chapter, Java provides some other features
for custom events. Notable among these is the facility for directly manipulating the sys-
tem event queue. This can be useful in situations where events have to be added, removed,
or bypassed, and also in situations where update of graphical components is involved. Al-
though it is not particularly useful for the kind of systems we have presented here, we shall
go through the basic steps of this process using our microwave as an example.

To be placed in the queue, the event must extent AWTEvent instead of EventObject
as we did earlier. To define a subclass of AWTEvent, we need to give an unused event ID
number to the superclass. These details are shown for the CookRequestEvent below.
(The choice of 1111 is arbitrary.)

class CookRequestEvent extends AWTEvent {
public CookRequestEvent(CookRequestManager manager) {

super(manager, COOK_REQUEST_EVENT);
}
public static final int COOK_REQUEST_EVENT =

AWTEvent.RESERVED_ID_MAX + 1111;
}

Next, we need a way to actually post the event on the event queue. This is done in the ac-
tionPerformed method. Note that the source is cited as the CookRequestManager
instance. This is because the system automatically calls the processEvent method of

Discussion and Further Reading 335

the source to dispatch the events, unlike the earlier case where processEvent was ex-
plicitly called from actionPerformed.

public void actionPerformed(ActionEvent event) {
EventQueue queue = Toolkit.getDefaultToolkit().getSystemEventQueue();
if (event.getSource().equals(cookButton)) {

queue.postEvent(new CookRequestEvent
(CookRequestManager.instance()));

}
// code to process other events

}

Finally, we have the code for dispatching the events. The method processEvent must
ensure that it has the right kind of event before it notifies the listeners.

public class CookRequestManager extends JComponent {
// other fields and attributes
public void processEvent(AWTEvent event) {

if (event instanceof CookRequestEvent) {
CookRequestEvent cookRequestEvent = (CookRequestEvent) event;
EventListener[] listeners

= listenerList.getListeners(CookRequestListener.class);
for (int index = 0; index < listeners.length; index++) {

((CookRequestListener)listeners[index]).cookingRequested
(cookRequestEvent);

}
} else {

super.processEvent(event);
}

}
}

Projects

1. Creating a controller for a digital camera A digital camera has several possible
modes of operation. Each mode has its own interface, and the user can switch between
modes. One mode, for instance, is the Viewing mode, in which stored pictures can be
viewed, deleted, etc. In the Setting mode other parameters such as the kind of pictures
to be taken, can be modified.

• Study models of digital cameras on the market and define a set of requirements for
the UI.

• Design a software controller that meets these specifications.

336 Modelling with Finite State Machines

Note that in such a system, both the view and the behaviour will change when the state
changes. Also, in a typical camera, the control buttons remain the same regardless of the
mode of operation, but the effect of activating them changes. How will you model such
functionality?

2. A user interface for a warehouse management system In Chapter 6, a case-study for
a warehouse database was presented. Create a complete GUI for such a system.

• The UI has an initial login panel that allows the user to log in. The user could be
a client, a salesclerk or a manager. Each type of user has a different set of access
privileges. This will involve having some kind of password protection and can be
accomplished using a separate subsystem that tracks the registered users and their
passwords. The GUI will directly communicate with this system.

• When a user logs in, the appropriate menu is revealed. A salesclerk, for instance,
performs operations like processing purchase orders from clients, receiving ship-
ments, etc. However, a salesclerk can become a particular client and do those op-
erations too. The salesclerk menu should provide an option like ‘become a client’.
Likewise, a manager can become a salesclerk.

• The GUI should have a ‘back’ button to go back to a previous state.

• Each menu panel should have a ‘logout’ option.

When a salesclerk becomes a client, this will require that we go through a panel that
collects the particular client’s ID. When the logout option is chosen, the state should go
back to the salesclerk menu, whereas if the user was a client, the user will be logged
out. Can this state be shared by the client and the salesclerk? How will you accomplish
this? If the final choice of next state depends on stored information, where should this
information be stored and in which class should the next state be computed? How is this
impacted by the manner in which we are implementing the state pattern?

3. Implement a simple CD player. The player has the following buttons:

(a) Insert/Eject: If a CD is inside the player, pressing this button causes the CD to be
stopped and ejected. Otherwise, a CD is inserted and played.

(b) Play: causes the player to resume playing a CD (if a CD is inside) from the position
it was paused or from the beginning. If there is no CD, pressing this button has no
effect.

(c) Stop: causes the player to pause playing/fast-forwarding/rewinding, so pressing
the Play button later causes the player to resume from this position. If this button
is pressed when the player is paused, the CD is stopped, so a further push of the
Play button plays the CD from the start. If there is no CD, pressing this button has
no effect.

Discussion and Further Reading 337

(d) Fast Forward: If a CD is inside, the player plays the CD forward at double speed.
Pressing this button while fast forwarding causes the player to resume playing
again. If there is no CD, pressing this button has no effect.

(e) Rewind: If a CD is inside, the player plays the CD backward at double speed.
Pressing this button while rewinding causes the player to resume playing again. If
there is no CD, pressing this button has no effect.

All CDs play for exactly one hour. When the player reaches the end of the CD while
playing or fast-forwarding, it stops (so it reverts to the start).

The user interface must be a GUI with the above five buttons and two displays: one
showing the number of minutes and seconds elapsed if playing a CD and the other show-
ing the state: like ‘playing’, ‘paused’, etc.

4. A room has the following options for climate-control: blow a fan, use an air-conditioner,
employ a heater, or do nothing. A temperature regulator for the room operates can be
set in one of four different modes to choose the desired option. (Imagine a slider control
that can be set to one of the four positions.)

(a) Do nothing: None of the three devices (fan, air-conditioner, and heater) is active.

(b) Fan: The fan blows for ten minutes and then stays inactive for another ten minutes;
the cycle repeats.

(c) Air-conditioner: The air-conditioner immediately turns on. If the room temperature
is too high, it operates the air-conditioner until the room temperature hits the set
temperature.

(d) Heater: The heater immediately turns on. If the room is too cold, it operates the
heater until the room temperature hits the set temperature.

Apart from the four manual controls, assume that the regulator gets three other signals:
room is too hot, room is too cold, and the temperature is just right.

Develop the state transition table and diagram. Implement the system.

Exercises

1. Modify the microwave implementation so that each button is an actionListener
and performs the necessary actions when the button is clicked. How does this impact the
overall complexity of the system?

2. Modify the implementation of the microwave controller so that individual states register
with event sources. What changes will have to be made to the state classes? How will
the states access the object with which they have to register/de-register themselves?

338 Modelling with Finite State Machines

3. Modify the UI for the microwave so that the buttons OpenDoor and CloseDoor are
replaced by a single JSlider. Discuss the simplicity/difficulty of effecting such a
change for all the event processing options discussed in the chapter.

4. In the implementation of the state pattern for the microwave, the context keeps track of
the current state, but the next state is decided by the current state. Suggest at least two
other implementations of the state pattern for the microwave. Compare and contrast all
three implementations in the context of performance, simplicity of design and ease of
reuse.

5. Draw sequence diagrams to document the flow of control for the microwave system for
each of the following cases:

(a) When the Java event framework is used.

(b) When the context is used as a switchboard.

6. Modify the design of the microwave system to add each of the following requirements:

(a) An ‘extend cooking’ button is added to the display; if this button is pressed when
cooking is in progress, 30 seconds are added to the cooking time.

(b) The system has a ‘clear’ button that sets the remaining cooking time to zero. The
system also stores the remaining time if the cooking is interrupted by the opening of
the door. When the system enters the cooking state again, this stored value is used
as the cooking time; however, if the clear button has been pressed in the meantime,
it runs for 60 seconds.

(c) The system displays an ‘error’ message if an inappropriate action is performed. For
instance, if the cook button is pressed when the door is open, the message ‘Please
close the door’ is displayed.

7. In the GUI implementation of the library system, draw the state transition diagram for
renewing books and write the corresponding code.

8. Rewrite the code for the connectToListener method using the alternative ap-
proaches discussed in the text.

11

Interactive Systems and the MVC Architecture

11.1 Introduction

So far we have seen examples and case-studies involving relatively simple software sys-
tems. This simplicity enabled us to use a fairly general step-by-step approach, viz., spec-
ify the requirements, model the behaviour, find the classes, assign responsibilities, capture
class interactions, and so on. In larger systems, such an approach may not lead to an effi-
cient design and it would be wise to rely on the experience of software designers who have
worked on the problem and devised strategies to tackle the problem. This is somewhat akin
to planning our strategy for a game of chess. A chess game has three stages - an opening, a
middle game and an endgame. While we are opening, the field is undisturbed and there are
an immense number of possibilities; toward the end there are few pieces and fewer options.
If we are in an endgame situation, we can solve the problem using a fairly direct approach
using first principles; to decide how to open is a much more complicated operation and
requires knowledge of ‘standard openings’. These standard openings have been developed
and have evolved along with the game, and provide a framework for the player. Likewise,
when we have a complex problem, we need a framework or structure within which to oper-
ate. For the problem of creating software systems, such a structure is provided by choosing
a software architecture.

In this chapter, we start by describing a well-known software architecture (sometimes
referred to as an architectural pattern) called the Model–View–Controller or MVC
pattern. Next we design a small interactive system using such an architecture, look at some
problems that arise in this context and explore solutions for these problems using design
patterns. Finally, we discuss pattern-based solutions in software development and some
other frequently employed architectural patterns.

.

339

340 Interactive Systems and the MVC Architecture

11.2 The MVC Architectural Pattern

The model view controller is a relatively old pattern that was originally introduced in the
Smalltalk programming language. As one might suspect, the pattern divides the applica-
tion into three subsystems: model, view, and controller. The architecture is shown in Figure
11.1. The pattern separates the application object or the data, which is termed the Model,
from the manner in which it is rendered to the end-user (View) and from the way in which
the end-user manipulates it (Controller). In contrast to a system where all of these three
functionalities are lumped together (resulting in a low degree of cohesion), the MVC pat-
tern helps produce highly cohesive modules with a low degree of coupling. This facilitates
greater flexibility and reuse. MVC also provides a powerful way to organise systems that
support multiple presentations of the same information.

Figure 11.1 The model–view–controller architecture

The model, which is a relatively passive object, stores the data. Any object can play the
role of model. The view renders the model into a specified format, typically something that
is suitable for interaction with the end user. For instance, if the model stores information
about bank accounts, a certain view may display only the number of accounts and the
total of the account balances. The controller captures user input and when necessary, issues
method calls on the model to modify the stored data. When the model changes, the view
responds by appropriately modifying the display.

In a typical application, the model changes only when user input causes the controller
to inform the model of the changes. The view must be notified when the model changes.
Instance variables in the controller refer to the model and the view. Moreover, the view
must communicate with the model, so it has an instance variable that points to the model
object. Both the controller and the view communicate with the user through the UI. This
means that some components of the UI are used by the controller to receive input; others
are used by the view to appropriately display the model and some can serve both purposes
(e.g., a panel can display a figure and also accept points as input through mouseclicks). It is

The MVC Architectural Pattern 341

Figure 11.2 An alternate view of the the MVC architecture

important to distinguish the UI from the rest of the system: beginners often mistake the UI
for the view. This is easy error to make for two reasons. In most systems, due to the nature of
the desired look and feel and the technologies available, there is a single window in which
the entire application is housed. This means that there has to be a common subsystem that
provides the functionality needed both for the view and the user interface. The other source
of potential confusion is that the UI presents to the user an image of how the system looks,
and this can be mistakenly construed as the view. This interface must include components
that are in fact part of the controller (e.g., buttons for giving commands). When we talk of
MVC in the abstract sense, we are dealing with the architecture of the system that lies be-
hind the UI; both the view and the controller are subsystems at the same level of abstraction
that employ components of the UI to accomplish their tasks. From a practical standpoint,
however, we have a situation where the view and the UI are contained in a common sub-
system. For the purpose of designing our system, we shall refer to this common subsystem
as the view. The view subsystem is therefore responsible for all the look and feel issues,
whether they arise from a human–computer interaction perspective (e.g., kinds of buttons
being used) or from issues relating to how we render the model. Figure 11.2 shows how we
might present the MVC architecture while accounting for these practical considerations.

User-generated events may cause a controller to change the model, or view, or both. For
example, suppose that the model stored the text that is being edited by the end-user. When
the user deletes or adds text, the controller captures the changes and notifies the model. The
view, which observes the model, then refreshes its display, with the result that the end-user
sees the changes he/she made to the data. In this case, user-input caused a change to both
the model and the view.

On the other hand, consider a user scrolling the data. Since no changes are made to the
data itself, the model does not change and need not be notified. But the view now needs to
display previously-hidden data, which makes it necessary for the view to contact the model
and retrieve information.

342 Interactive Systems and the MVC Architecture

More than one view–controller pair may be associated with a model. Whenever user
input causes one of the controllers to notify changes to the model, all associated views are
automatically updated.

It could also be the case that the model is changed not via one of the controllers, but
through some other mechanism. In this case, the model must notify all associated views of
the changes.

The view–model relationship is that of a subject–observer. The model, as the subject,
maintains references to all of the views that are interested in observing it. Whenever an
action that changes the model occurs, the model automatically notifies all of these views.
The views then refresh their displays. The guiding principle here is that each view is a
faithful rendering of the model.

11.2.1 Examples

Suppose that in the library system we have a GUI screen using which users can place
holds on books. Another GUI screen allows a library staff member to add copies of books.
Suppose that a user views the number of copies, number of holds on a book and is about to
place a hold on the book. At the same time, a library staff member views the book record
and adds a copy. Information from the same model (book) is now displayed in different
formats in the two screens.

A second example is that of a mail sever. A user logs into the server and looks at the
messages in the mailbox. In a second window, the user logs in again to the same mail
server and composes a message. The two screens form two separate views of the same
model.

Suppose that we have a graph-plot of pairs of (x, y) values. The collection of data points
constitutes the model. The graph-viewing software provides the user with several output
formats — bar graphs, line graphs, pie charts, etc. When the user changes formats, the
view changes without any change to the model.

11.2.2 Implementation

As with any software architecture, the designer needs to have a clear idea about how the
responsibilities are to be shared between the subsystems. This task can be simplified if the
role of each subsystem is clearly defined.

• The view is responsible for all the presentation issues.

• The model holds the application object

• The controller takes care of the response strategy

The definition for the model will be as follows:

The MVC Architectural Pattern 343

public class Model extends Observable {
// code
public void changeData() {

// code to update data
setChanged();
notifyObservers(changeInfo);

}
}

Each of the views is an Observer and implements the update method.

public class View implements Observer {
// code
public void update(Observable model, Object data) {

// refresh view using data
}

}

If a view is no longer interested in the model, it can be deleted from the list of observers.
Since the controllers react to user input, they may send messages directly to the views

asking them to refresh their displays.
For each feature, we start with a detailed list of specifications, stated clearly enough so

that they can be classified as belonging to one of the three categories. In general, there is
always an initiation step for each operation; the manner in which the user is to be shown
the feature and the manner in which it is invoked are part of the presentation. What the
system should do when the request is made is a part of the response strategy, and the
controller manages this part of the show. This strategy may involve interacting with the
user in tandem with making changes to the application object. What is needed from the
user is part of the response strategy, but how the system communicates with the user is a
presentation issue. Changes to the application object are made by invoking the methods of
model. As the application object is modified, the display needs to be modified to reflect the
changes. Modifying the display is again a matter for presentation.

Clearly, there is a lot of entanglement here between the three parts, and it is a challenge
to keep everything separate. The controller invokes the methods provided by the model so
that the separation is relatively easy to implement. There can be confusion around drawing a
line between the responsibilities of the view and the controller for reasons explained earlier.
Likewise, keeping the business logic away from the display (or model–view separation)
can be tricky in situations where there is a close relationship between the stored data and
the methods for rendering it. As we design and implement a case-study in the following
pages, we make decisions as various situations arise. Although the philosophy behind this
architecture is easily stated, the details are best explained by example.

This means that it is not always possible to have a clean division of the components
such that some components are designated for data input and the rest are for data display.

344 Interactive Systems and the MVC Architecture

Therefore, it is quite difficult to decide which components belong to the controller and
which ones are part of the view. Surely, the view has to display data and, in general, some
of its components end up as mechanisms for user input.

The approach we use to resolve this is to create a UI with functionality to serve the
purpose of both the view and the controller. Display components will be available to the
view, which invokes the appropriate display commands. Components which capture events
generated by user inputs are configured to pass on the message to the appropriate subsys-
tem; note that events for some operations (like scrolling) are handled by the view, whereas
others (like add, delete) are sent to the controller.

11.2.3 Benefits of the MVC pattern

1. Cohesive modules: Instead of putting unrelated code (display and data) in the same mod-
ule, we separate the functionality so that each module is cohesive.

2. Flexibility: The model is unaware of the exact nature of the view or controller it is
working with. It is simply an observable. This adds flexibility.

3. Low coupling: Modularity of the design improves the chances that components can be
swapped in and out as the user or programmer desires. This also promotes parallel de-
velopment, easier debugging, and maintenance.

4. Adaptable modules: Components can be changed with less interference to the rest of the
system.

5. Distributed systems: Since the modules are separated, it is possible that the three sub-
systems are geographically separated.

11.3 Analysing a Simple Drawing Program

We now apply the MVC architectural pattern to the process of designing a simple program
that allows us to create and label figures. The purpose behind this exercise is twofold:

• To demonstrate how to design with an architecture in mind: Designing with an archi-
tecture in mind requires that we start with a high-level decomposition of responsibilities
across the subsystems. The subsystems are specified by the architecture. The designer
gets to decide which classes to create for each subsystem, but the the responsibilities
associated with these classes must be consistent with the purpose of the subsystem.

• To understand how the MVC architecture is employed: We shall follow the architecture
somewhat strictly, i.e., we will try to have three clearly delineated subsystems for Model,
View, and Controller. Later on, we will explore and discuss variations on this theme.

As always, our design begins with the process of collecting requirements.

Analysing a Simple Drawing Program 345

11.3.1 Specifying the requirements

Our initial wish-list calls for software that can do the following.

1. Draw lines and circles.

2. Place labels at various points on the figure; the labels are strings. A separate command
allows the user to select the font and font size.

3. Save the completed figure to a file. We can open a file containing a figure and edit it.

4. Backtrack our drawing process by undoing recent operations.

Compared to the kinds of drawing programs we have on the market, this looks too trivial!
Nonetheless, it is sufficient to show how the responsibilities can be divided so that the MVC
pattern can be applied. What we shall also see, later on, is how new features can be added
without disrupting the existing classes.

In order to attain this functionality, the software will interact with the user. We need to
specify exactly how this interaction will take place. It should, of course, be user-friendly,
fast, etc., but as in earlier examples, these non-functional requirements will not be the focus
of our attention. Without more ado, let us adopt the following ‘look and feel:’

• The software will have a simple frame with a display panel on which the figure will be
displayed, and a command panel containing the buttons. There will be buttons for each
operation, which are labeled like Draw Line, Draw Circle, Add Label, etc. The system
will listen to mouse-clicks which will be employed by the user to specify points on the
display panel.

• The display panel will have a cross-hair cursor for specifying points and a (underscore)
for showing the character insertion point for labels. The default cursor will be an arrow.

• The cursor changes when an operation is selected from the command menu. When an
operation is completed, the cursor goes back to the default state.

• To draw a line, the user will specify the end points of the line with mouse-clicks. To
draw a circle, the user will specify two diametrically opposite points on the perimeter.
For convenient reference, the center of each circle will be marked with a black square.
To create a label, the starting point will be specified by a mouse-click.

11.3.2 Defining the use cases

We can now write the detailed use cases for each operation. The first one, for drawing a
line, is shown in Table 11.1.

346 Interactive Systems and the MVC Architecture

Table 11.1 Use-case table for Drawing a line

Actions performed by the actor Responses from the system
1. The user clicks on the Draw Line button

in the command panel.
2. The system changes the cursor

to a cross-hair
3. The user clicks first on one end point

and then on the other end point of the
line to be drawn.

4. The system adds a line segment
with the two specified end points
to the figure being created. The
cursor changes to the default.

The use case for drawing a circle can be done analogously.
To give the system better usability, we allow for multiple labels to be added with the

same command. To start the process of adding labels, the user clicks on the command
button. This is followed by a mouse-click on the drawing panel, following which the user
types in the desired label. After typing in a label, a user can either click on another point to
create another label, or type a carriage return, which returns the system to the default state.
These details are spelled out in the use case in Table 11.2.

The system will ignore almost all non-printable characters. The exceptions are the Enter
(terminate the operation) and Backspace (delete the most-recently entered character) keys.
A label may contain zero or more characters.

We also have use cases for operations that do not change the displayed object. An exam-
ple of this would be when the user changes the font, shown in Table 11.3.

The requirements call for the ability to save the drawing and open and edit the saved
drawings. The use cases for saving, closing and opening files are left as exercises. In order
to allow for editing we need at least the following two basic operations: selection and
deletion. The use case Select an Item is detailed in Table 11.4.

There are some details here that need to be fleshed out in later stages. We have not
specified how the system would indicate the change to the selection mode. We could do this
by changing the cursor or altering the display in some other way. This use case requires that
the display should indicate which items have been selected. This can be done by drawing
these items in a different colour.

It is possible that the user’s click does not fall on any item; in that case, the system simply
ignores the mouseclick and returns to the default mode.

Analysing a Simple Drawing Program 347

Table 11.2 Use-case table for Adding a Label

Actions performed by the actor Responses from the system
1. The user clicks on the Add Label but-
ton in the command panel.

2. The system changes the cursor to a cross-
hair cursor

3. The user clicks at the left end point
of the intended label.

4. The system places a at the clicked loca-
tion.

5. The user types a character or clicks
the mouse at another location.

6. If the character is not a carriage return the
system displays the typed character followed
by a , and the user continues with Step 5;
in case of a mouse-click, it goes to Step 4;
otherwise it goes to the default state.

Table 11.3 Use-case table for Change Font

Actions performed by the actor Responses from the system
1. The user clicks on the Change Font
button in the command panel.

2. The system displays a list of all the fonts
available.

3. The user clicks on the desired font.
4. The system changes to the specified font
and displays a message to that effect.

Deletion will be done by having a button in the GUI that the user can click; whenever
this button is clicked, all the selected items are deleted. The use case for this is left as an
exercise.

The reader would note that this system is restrictive in many ways. This has been done
for simplicity and will not in any way detract from the design experience. In fact, it will
highlight the extendability of the design when we extend the functionality with very little
disturbance to the existing code.

348 Interactive Systems and the MVC Architecture

Table 11.4 Use-case table for Select an Item

Actions performed by the actor Responses from the system
1. The user clicks on the Select button
in the command panel.

2. The system changes the display to the se-
lection mode

3. The user clicks the mouse on the
drawing.

4. If the click falls on an item, the system adds
the item to its collection of selected items
and updates the display to reflect the addition.
The system returns the display to the default
mode.

11.4 Designing the System
The process of designing this system is somewhat different from our earlier case studies
owing to the fact that we have selected an architecture. Our architecture specifies three
principal subsystems, viz., the Model, the View and the Controller. We have a broad idea
of what roles each of these play, and our first step is to define these roles in the context
of our problem. As we do this, we look at the individual use cases and decide how the
responsibilities are divided across the three subsystems. Once this is taken care of, we look
into the details of designing each of the subsystems.

11.4.1 Defining the model
Our next step is to define what kind of an object we are creating. This is relatively simple for
our problem; we keep a collection of line, circle, and label objects. Each line is represented
by the end points, and each circle is represented by the X-coordinates of the leftmost and
rightmost points and the Y -coordinates of the top and bottom points on the perimeter (see
Figure 11.3).

Figure 11.3 Representing a circle and a label

Designing the System 349

For a label, the model stores the coordinate’s starting position, the text, and the style and
size of the characters in the string. The collection is accessed by the view when the figure
is to be rendered on the screen. The model also provides mechanisms to access and modify
its collection objects. These would be methods like addItem(Item), getItems(),
etc.

11.4.2 Defining the controller

The controller is the subsystem that orchestrates the whole show and the definition of its
role is thus critical. When the user attempts to execute an operation, the input is received
by the view. The view then communicates this to the controller. This communication can
be effected by invoking the public methods of the controller. Let us examine in detail the
various implementation steps for the processes described in the use cases.

Drawing a line
1. The user starts by clicking the Draw line button, and in response, the system changes

the cursor. Clearly, changing the cursor should be a responsibility of the view, since that
is where we define the look and feel. This would imply that the view system (or some
part thereof) listen to the button click. The click indicates that the user has initiated an
operation that would change the model. Since such operations have to be orchestrated
through the controller, it is appropriate that the controller be informed. The controller
creates a line object (with both endpoints unspecified).

2. The user clicks on the display panel to indicate the first end point of the line. We now
need to designate a listener for the mouse clicks. This listener will extract the coordi-
nates from the event and take the necessary action. Both the view and the controller
are aware of the fact that a line drawing operation has been initiated. The question then
is, which of these subsystems should be responding to the mouse-click? Having the
controller listen directly to the mouse-clicks seems to be more efficient, since that will
reduce the number of method invocations. However there are several reasons why this is
not a good choice. First, the methods/interfaces (e.g., MouseListener in Java) to be
implemented depend on the manner in which the view is being implemented. This means
that the controller is not independent of the view, thus hurting reuse. A second reason
is that we can have multiple ways to input the points. For instance, when trying to draw
a precise figure, a user may prefer to specify the points as coordinates through some
kind of dialog, instead of clicking the mouse. These accommodations are part of the look
and feel, and do not belong in the controller. Finally, we have the problem of reading
and interpreting the input. In our particular situation, this manifests itself as the process
of mapping device coordinates to the image coordinates. Most of the graphical display
tools available nowadays use a coordinate system where the origin corresponds to the

350 Interactive Systems and the MVC Architecture

top-left corner of the display rectangle, with X coordinates increasing from left to right
and Y coordinates increasing from top to bottom (also known as device coordinates).
Programs that generate and use graphics often prefer the standard Cartesian coordinate
system. Thus we might have a situation where the model is being created with Cartesian
coordinates, whereas mouse clicks and graphical output must use device coordinates and
points have to be mapped from one system to the other. The conversion of Cartesian co-
ordinates to device coordinates is best done in the view since it knows and is responsible
for the nature and format of the output (points specified as device coordinates). The re-
verse operation of converting device coordinates of input points to Cartesian coordinates
must also, therefore, be done by the view, which means that the view must capture the
input. Therefore, although a performance penalty is incurred, we favour the implementa-
tion where the mouse-click is listened to in the view. The view then communicates these
coordinates to the controller, after performing any transformation or mapping that may
be needed.

At this point we need to decide how the system would behave during the period be-
tween the clicks. For instance, should the point for the first click be highlighted in any
way? Since the use case does not specify anything, we can ignore this issue for the time
being, i.e., no change happens until both end points are clicked.

3. The user clicks on the second point. Once again, the view listens to the click and com-
municates this to the controller. On receiving these coordinates, the controller recognises
that the line drawing is complete and updates the line object.

4. Finally, the model notifies the view that it has changed. The view then redraws the dis-
play panel to show the modified figure.

This sequence of operations across the three subsystems can be captured by a high-level
sequence diagram as shown in Figure 11.4. Note that unlike the sequence diagrams in
earlier chapters, this does not spell out all the classes involved or the names of the methods
invoked.

Drawing a circle
The actions for drawing a circle are similar. However, we now have some additional pro-
cessing to be done, i.e., the given points on the diameter must be converted to the the four
integer values, as explained in Figure 11.3. Note that this requires a mapping to convert
the input to the form required by the model. This can be performed in the controller, since
these representations are equivalent.

Designing the System 351

View
Actor

DrawLine

Change View

Acknowledgement

Controller Model

First end point

Process Input

Process Input

Second end point

Render Items

Refresh View

Notify

Send Point

Send Point
Add Line

Notify
items = (Enumeration) get Items

Figure 11.4 Sequence of operations for drawing a line

Adding a label
This operation is somewhat different due to the fact that the amount of data is not fixed.
The steps are as follows:

1. The user starts by clicking the Add Label button. In response, the system changes the
mouse-cursor, which, as before is the responsibility of the view.

2. The user clicks the mouse, and the system acknowledges the receipt of the mouse click
by placing a at the location. This would result in changing what the drawing looks like.
As decided earlier, we will maintain the property that the view is a faithful rendering of
the model. The view therefore notifies the controller that the operation has been initi-
ated, and the controller modifies the model. One issue that we have to resolve is that of
assigning the appropriate size and style to the characters in the label. To implement this,
we have to address the following:

• Which subsystem ‘remembers’ the current style and size? Since the user cannot be
expected to specify the size and style with each character, these have to be stored
somewhere. For our situation, we shall assume that these are stored in the view and
passed on to the controller when the label construction operation is initiated.

• When do the changes to size and style take effect? To simplify our system, we
assume that these will take effect for the next label that is created. What this means

352 Interactive Systems and the MVC Architecture

is that the style and size have to be uniform for any given label, and if a change is
made to any of these while we are in the process of creating a label, these changes
will not take immediate effect.

3. The user types in a character. Once again, the view listens to and gets the input from the
keyboard, which is communicated to the controller. Once again the controller changes
the model, which notifies the view.

4. The user clicks the mouse or enters a carriage-return. This is appropriately interpreted
by the view. In both cases, the view informs the controller that the addition of the label
is complete. In case of a mouse click, the controller is also notified that a new operation
for adding a label has been initiated.

This sequence of steps is explained in Figure 11.5. Note that the view interprets the
keystrokes: as per our specifications ordinary text is passed on directly to the controller,
control characters are ignored, carriage-return is translated into a command, etc. All this
is part of the way in which the system interacts with the user, and therefore belongs to the
view.

Dealing with the environmental variables

Most interactive systems need to remember the values of certain parameters to make
the system user-friendly. For instance, a word-processing system remembers the size
and font of the characters so that the user does not have to specify these with every
operation. We refer to these parameters as environmental variables. In our example,
for creating a label, we choose to store these in the view, and this has some conse-
quences for the behaviour of the system.

Consider a document creation system that has Times-Roman as the default font.
When the system starts up, the font parameter stores the value ‘Times-Roman’.
If the user selects a different font, say Helvetica, then this parameter is changed and
any following text input is displayed in Helvetica. The font parameter could be stored
in the model or in the view. If we store this in the model, then the font information
does not have to be sent by the view to the controller, along with the text. In addition,
this would result in storing the font parameter when the figure is saved to a file.

Now consider what happens when the file is retrieved at some later time. The font
parameter would be set to Helvetica, and this font would apply to all the text input.
On the other hand, if the font type is stored in the view, storing and retrieving would
set the font back to Times-Roman (the default). Clearly, this is a choice that has to be
made when the behaviour of the system is being decided.

Designing the System 353

Figure 11.5 Sequence of operations for adding a label

Sharing responsibilities between the view and the controller

When we employ the MVC architecture, there is often a gray area between the re-
sponsibilities of the controller and those of the view, particularly for the kind of soft-
ware discussed in this case-study. Issues that fall in this area can be confusing to the
beginner, particularly since widely varying opinions have been expressed. Some of
these issues have come up in this section and need clarification.

354 Interactive Systems and the MVC Architecture

Accepting user input In our approach above, all user input is received by the view.
Indeed, the view is the only mechanism through which the user can interact and the
view parses all the input that comes in. The idea here is that the system as a whole be
‘UI agnostic’, i.e., the design of the system does not depend on how the UI has been
implemented.

Consider the situation where the user gives a command. This is done by a button
click. It is tempting to let the controller, or one of its components, listen to the click
and take action. However, this creates problems if the UI is changed so that the same
commands can instead be given by keystrokes. In such a situation, a change in the
UI, or even in the look and feel, can force changes in the controller. In addition, there
could be situations where the same operation can be initiated in multiple ways. If the
controller has to accommodate all of these, it adds to the complexity of the controller
and causes tight coupling.

Once an operation has been initiated, we have the issue of accepting the data. Once
again, while some designers have argued that the data be received in the controller,
this approach is fraught with problems. The data could be in one of several formats.
For instance, a UI designer mightwant to accommodate for users to type in coordinate
locations instead of clicking with the mouse. (This could be important for drawing
precise geometric figures.) Having the controller deal with multiple formats is not
desirable. A second, more serious issue is that when the data needs some ‘correction’
to adjust for the display. For instance, consider a situation where the figure is being
drawn with Cartesian coordinates due to the nature of the application. The mouse-
click specifies the value in coordinates with reference to the object that is being used
for the display (in Java, this would be the JPanel, or a JScrollPane), which
will have to be mapped to the Cartesian values. Doing this mapping in the controller
would mean exposing the controller to all the details of the components used by
the view. The important thing to keep in mind is that the view is providing the user
with several input mechanisms, and therefore should be responsible for receiving and
interpreting the data. The task of accepting and standardising user input is therefore
the responsibility of the view.

Processing and Storing the input Once the standardised data is available, it is
incorporated into the model. All data is received in conjunction with some operation,
and hence the details of how the data is to be used to change the model are part of
the operation. This activity is independent of the UI, implying that this would be the
responsibility of the controller.

Designing the System 355

11.4.3 Selection and deletion

The software allows us to delete lines, circles, or labels by selecting the item and then
invoking the delete operation. These shall be treated as independent operations since
selection can also serve other purposes. Also, we can invoke selection repeatedly so that
multiple items can be selected at any given time.

When an item is selected, it is displayed in red, as opposed to black. The selection is
done by clicking with the arrow (default) cursor. Lines are selected by clicking on one end
point, circles are selected by clicking on the center, and labels are selected by clicking on
the label.

The steps involved in implementing this are as follows:

1. The user gives the command through a button click. This is followed by a mouse click
to specify the item. Both of these are detected in the view and communicated to the
controller.

2. In order to decide what action the controller must take, we need to figure out how the
system will keep track of the selected items. Since the view is responsible for how these
will be displayed (in red, for instance) the view must be able to recognise these as se-
lected when updating the display. Since the view gets the items from the model, it would
seem appropriate that the model have a mechanism to flag the selected items. This can
be done by having a tag field for each item, or simply by moving the selected items to a
separate container. We shall use the latter.

3. The next step is to iterate through the (unselected) items in the model to find the item (if
any) that contains the point. Since the model is to be used strictly as a repository for the
data, the task of iterating through the items is done in the controller, which then invokes
the methods of the model to mark the item as selected.

4. Model notifies view, which renders the unselected items in the default colour (black) and
the selected items in red. View gets an enumeration of the two lists separately and uses
the appropriate colour for each. Note that model only stores a separate list of the selected
items. It is the view that decides how the two lists are to be rendered.

Deletion is a simpler operation. The button click is heard in the view and passed on to the
controller, which simply requests the model to delete all selected items.

11.4.4 Saving and retrieving the drawing

The use cases for the processes of saving and retrieving are simply described: the user
requests a save/retrieve operation, the system asks for a file name which the user provides
and the system completes the task. This activity can be partitioned between our subsystems
as follows:

356 Interactive Systems and the MVC Architecture

1. The view receives the initial request from the user and then prompts the user to input a
file name.

2. The view then invokes the appropriate method of the controller, passing the file name as
a parameter.

3. The controller first takes care of any clean-up operation that may be required. For in-
stance, if our specifications require that all items be unselected before the drawing is
saved, or some default values of environment variables be restored, this must be done at
the stage. The controller then invokes the appropriate method in the model, passing the
file name as a parameter.

4. The model serializes the relevant objects to the specified file.

This completes the first step of distributing the responsibilities across the three subsystems.
Note that unlike the earlier case studies, we did not look for classes and methods and
try to create a class interaction diagram right away. This would be fairly typical when
we are designing a larger software system with some advance notice about the kind of
architecture being employed. As we progress through the details, we might also realise
that our partitioning of responsibilities across the subsystems may have to shift a little
due to other considerations. This is not unusual, since the architecture only gives us broad
guidelines, and not a detailed design.

11.5 Design of the Subsystems

The next step of the process is to design the individual subsystems. In this stage, the classes
and their responsibilities are identified and we get a more detailed picture of how the re-
quired functionality is to be achieved. Since the model should remain independent of the
‘look-and-feel’ of the system and should remain stable, it is appropriate that we design it
first.

11.5.1 Design of the model subsystem

Consider the basic structure of the model and the items stored therein. From Section 11.3,
we know that the model should have methods for supporting the following operations:

1. Adding an item

2. Removing an item

3. Marking an item as selected

4. Unselecting an item

5. Getting an enumeration of selected items

Design of the Subsystems 357

6. Getting an enumeration of unselected items

7. Deleting selected items

8. Saving the drawing

9. Retrieving the drawing

Based on the above list, it is straightforward to identify the methods. The class diagram is
shown in Figure 11.6. The class Item represents a shape such as line or label and enables
uniform treatment of all shapes within a drawing.

Since the methods, getItems() and getSelectedItems() return an enumera-
tion of a set of items, we need polymorphic containers in the model. The view uses these
methods to get the objects from the model as an enumeration of the items stored and draws
each one on the display panel. The model must also keep track of the view, so it needs a
field for that purpose.

The method updateView is used by the controller to alert the model that the display
must be refreshed. It is also invoked by methods within the model whenever the model
realises that its data has changed. This method invokes a method in the view to refresh the
display.

Figure 11.6 Class diagram for model

358 Interactive Systems and the MVC Architecture

11.5.2 Design of item and its subclasses

Clearly, Item will have several subclasses, one for each shape. Each subclass will store
attributes that are relevant to the corresponding shape.

Rendering the items A tricky issue regarding the design is how the items should be
rendered. Rendering is the process by which the data stored in the model is displayed by
the view. Regardless of how we implement this, the actual details of how the drawing is
done are dependent on the following two parameters:

• The technology and tools that are used in creating the UI For instance, we are using
the Java’s Swing package, which means that our drawing panel is a JPanel and the
drawing methods will have to be invoked on the associated Graphics object.

• The item that is stored If a line is stored by its equation, the code for drawing it would
be very different from the line that is stored as two end points.

The technology and tools are known to the author of the view, whereas the structure of the
item is known to the author of the items. Since the needed information is in two different
classes, we need to decide which class will have the responsibility for implementing the
rendering. We have the following options:

Option 1 Let us say that the view is responsible for rendering, i.e., there is code in the
view that accesses the fields of each item and then draws them. Since the model is storing
these items in a polymorphic container, the view would have to query the type of each item
returned by the enumeration in order to choose the appropriate method(s).

Option 2 If the item were responsible, each item would have a render method that
accesses the fields and draws the item. The problem with this is that the way an object is to
be rendered often depends on the tools that we have at our disposal. For instance, consider
the problem of rendering a circle: a circle is almost always drawn as a sequence of short
line segments. If the only method given in the toolkit is that for drawing lines, the circle
will have to be decomposed into straight lines. In addition to the set of tools, there are other
specific features that the technology has. Using the Swing package in Java, for instance,
implies that all the drawing is done by invoking the methods on the Graphics object
associated with the drawing panel.

At this point it appears that we are stuck between two bad choices! However, a closer
look at the first option reveals a fairly serious problem: we are querying each object in the
collection to apply the right methods. This is very much at odds with the object-oriented
philosophy, i.e., the methods should be packed with the data that is being queried. This
really means that the render method for each item should be stored in the item itself,

Design of the Subsystems 359

which is in fact the approach of the second option. This simplifies our task somewhat, so
we can focus on the task of fixing the shortcomings of the second option.

The structure of the abstract Item class and its subclasses are shown in Figure 11.7.

<<abstract>>

Item

+render() : void

Line

+render() :void

Circle

+render() : void

Label

+render() : void

Figure 11.7 The item class and its subclasses

Catering to multiple UI technologies
Swing is just one package for drawing. Before it was developed, there was (and still is)
the AWT (Abstract Windowing Toolkit) package available to Java programmers, and it
is conceivable that there may appear some other drawing toolkits. Let us assume that we
have available two new toolkits, which are called, for want of better names, HardUI and
EasyUI. Essentially, what we want is that each item has to be customised for each kind of
UI, which boils down to the task of having a different render method for each UI. One
way to accomplish this is to use inheritance.

To adapt the design to take care of the new situation, we have the Circle class imple-
ment most of the functionality for circle, except those that depend on the UI technology.
We extend Circle to implement the SwingCircle class. Similar extensions are now
needed for handling the new technologies, HardUI and EasyUI. Each of the three classes
has code to draw a circle using the appropriate UI technology. The idea is shown in Figure
11.8.

In each case, the render method will decompose the circle into smaller components as
needed, and invoke the methods available in the UI to render each component. In addition,
each method would have to get any other contextual information. For instance, with the
Swing package, the render method would get the graphics object from the view and
invoke the drawOval method. The code for this could look something like this:

public class SwingCircle extends Circle {
// circle class for SwingUI
public void render() {

Graphics g = (View.getInstance()).getGraphics();

360 Interactive Systems and the MVC Architecture

g.drawOval(/* parameters */);
}

}

Figure 11.8 Catering to multiple UI technologies

The actual parameters for drawOval would depend on any mapping needed, but would
be computed using quantities stored in the Circle object. In addition to the Graphics
object, we may need several other pieces of information from the context, such as the size
of the drawing area, etc. The model could potentially employ several types of items, each
of which has a corresponding abstract class.

Clearly, we need abstract classes for implementing the technology-independent parts of
lines (Line) and labels (Label). They are extended by classes such as SwingLabel,
SwingLine, EasyLabel, etc. This extension adds another six classes. Each abstract
class ends up with as many subclasses as the number of UIs that we have to accommodate.

This solution has some drawbacks. The number of classes needed to accommodate such
a solution is given by:

Number of types of items × Number of UI packages

As is evident from the pictorial view of the resulting hierarchy (see Figure 11.9), this causes
an unacceptable explosion in the number of classes.

This causes an unacceptable explosion in the number of classes.

Design of the Subsystems 361

362 Interactive Systems and the MVC Architecture

Next, consider the situation where items are being created in the controller. Some kind
of conditional will be needed to decide which concrete class should be instantiated, and
this requires the code in the controller to be aware of the UI package that we are using.

A third and more subtle point is that of software upgrades. Suppose we create a version
of our drawing program that supports the HardUI package and we use that to create a figure.
All the items created in the model will belong to the HardUI subclasses, and can be used
only with a system where the HardUI package is available. If a later version of the software
does not support HardUI (or we move the files to a system that does not support it), we
cannot access the old files anymore. If the objects created in the model were independent
of the type of UI, this problem could be avoided.

Can all these problems be circumvented? What we have here are two subsystems viz.,
the model and the view, each of which has its own classification viz., the types of items and
the types of UIs. We are creating objects that account for both of these variations. Since the
Item subclasses are being created in the model, the types of items are an internal variation.
On the other hand, the subclasses of Circle, Line, and Label (such as HardCircle)
are an external variation. The standard approach for this is to factor out the external vari-
ations and keep them as a separate hierarchy, and then set up a bridge between the two
hierarchies. This standard approach is therefore called the bridge pattern.

We already have the hierarchy that captures the variation in the items. We need a sec-
ond hierarchy to capture the variation in the drawing methods, due to the variation in the
UIs. The hierarchy of the UIs has an interface UIContext and as many concrete imple-
mentations as the number of different UIs we need. Figure 11.10 describes the interaction
diagram between the classes and visually represents the bridge between the two hierarchies.

Since the only variation introduced in the items due to the different UIs is the manner
in which the items were drawn, this behaviour is captured in the UIContext interface as
shown in Figure 11.11.

Figure 11.10 Interaction diagram for the Bridge Pattern

Design of the Subsystems 363

Using the Bridge Pattern
The intent of the bridge pattern is as follows: Decouple an abstraction from its imple-
mentation so that two can vary independently. In our example, the abstraction is the
abstract class Item. The render method of this abstraction has different implementa-
tions for different UIs. Using inheritance to allow for the different implementations has
the following drawbacks:

• The abstractions and implementations cannot be modified and reused independently.
• If the variations in the implementation are introduced from two independent sources,

keeping them in the same hierarchy could have a multiplicative effect on the number
of concrete classes.

The bridge pattern takes care of these problems avoiding a permanent binding between
the two. This gives our design the following desirable properties:

• Both abstraction and implementation are independently extensible (UIContext and
Items change independently).

• Changes in the implementation do not affect the clients (if the SwingUI is changed,
no other class is affected).

• Allows the implementation to be completely hidden from clients (in our case-study,
the controller does not know anything about how the variations in the rendering come
into play).

• Reduces the number of classes.
• Multiple classes can share the same representation. (Recall our discussion of how

going to a new versions can make old documents unusable.)

One of the guiding principles of object-oriented designa states:

Favour object composition over class inheritance.
This principle is usually applied in the context that object composition allows us to
achieve reuse by assembling existing components and get the needed functionality. The
effectiveness of the bridge pattern can also be related back to this idea. If several aspects
of the implementation (each of which is represented by some abstract method) of an
abstraction have to be varied independently, the abstraction itself can be viewed as a
composition of all the aspects of the implementation. The bridge pattern says that in
such a case, having the abstract class as a composition of hierarchies that represent each
of these aspects of the implementation is a definite improvement over relying entirely on
inheritance. The flip side of this pattern, as often happens with applying object oriented
principles, is that we lose some performance due to the indirection.

aGoF, pg 127

364 Interactive Systems and the MVC Architecture

<<interface>>

UIContext

+draw(line:Line) : void

+draw(circle : Circle): void

+draw(label:Label): void

+draw(item:Item): void

Figure 11.11 UIContext interface

Note that the total number of classes is now reduced to

Number of types of items + Number of UI packages

Since we have only one concrete class for each item, the creation process is simple. Finally,
by factoring out the render method, we are no longer concerned with what kind of UI
is being used to create the figure, or what UI will be used to edit it at a later stage. Our
software for the model is thus ‘completely’ reusable.

As is often the case in the object-oriented design, one price we pay is through a loss of
performance. In this case, this is seen in the increased number of method calls. Every time
we invoke the render method, we have to get the model and the UIContext, in addition
to invoking the drawing method.

Reflecting on the design The UIContext interface has a separate method for drawing
each of the shapes, thereby establishing a one-to-one mapping with the shapes (circle, line,
label). In general, such a one-to-one mapping is neither necessary nor realistic. Assume
that we want to start supporting a new shape, say Triangle, with the obvious semantics,
in our drawing program. This is clearly an example of a change that one should expect in
a drawing program and, within reason, it should impact as few interfaces and classes as
possible. The class Triangle can then be written as below.

public class Triangle extends Item {
private Line line1;
private Line line2;
private Line line3;
// Fields, constructor, and other methods
public void render() {

uiContext.draw(line1);
uiContext.draw(line2);
uiContext.draw(line3);

}
}

Similarly, we could support arbitrary polygons.

Design of the Subsystems 365

This demonstrates a couple of things. For one, it justifies the use of the bridge pattern
in our design. We are varying the Item hierarchy while requiring no changes at all to the
UIContext hierarchy. In addition, it shows that the methods of UIContext can be quite
‘general purpose’ and not tied exclusively to one specific shape.

Suppose we restrict UIContext to the following:

public interface UIContext {
public void draw(Point point1, Point point2); // for Line
public void draw(String string, RenderInformation information);

// for Label
}

As the reader might guess, draw with the two Point parameters renders a line connecting
the given points. The other draw method draws a sequence of characters with information
such as the font and font size specified in an as yet unimplemented class named Ren-
derInformation. Clearly, the Line class’s render method can call the first draw
method of UIContext and the label can be drawn by calling the second draw method.
We do not require any additional functionality, since any shape can be drawn by decompos-
ing it into a large number of lines1. Since there is no method to draw a circle, the Circle
class must repeatedly invoke the first draw method to render the circle.

Employing option 1 Assume that rather than assigning the responsibility of draw-
ing an Item object to the object itself, we have the view draw all the items. This could
be accomplished by having methods such as draw(Line line) and draw(Circle
circle) in the view subsystem. Every view will potentially have a different implementa-
tion of these methods. To render the items, a reference to the current view is obtained and
the appropriate draw method is then called on that object.

While the methods that result from employingOption 1 are essentially the same as we get
using the bridge pattern, there is a difference in that the bridge pattern employs a different
class for each UI technology whereas Option 1 employs a set of draw methods for each
view.

11.5.3 Design of the controller subsystem

Unlike the view, which by definition could be implemented in multiple ways, we structure
the controller so that it is not tied to a specific view and is unique to the drawing program.

The view receives details of a shape (type, location, content, etc.) via mouse clicks and
key strokes. As it receives the input, the view communicates that to the controller through
method calls. This is accomplished by having the fields for the following purposes.

1This is in fact exactly how most curve drawing algorithms are implemented.

366 Interactive Systems and the MVC Architecture

1. For remembering the model;

2. To store the current line, label, or circle being created. Since we have three shapes, this
would mean having three fields2.

When the view receives a button click to create a line, it calls the controller method
makeLine. To reduce coupling between the controller and the view, we should allow
the view to invoke this method at any time: before receiving any points, after receiving
the first point, or after receiving both points. For this, the controller has three versions
of the makeLine method and keeps track of the number of points independently of the
view.

The execution of makeLine causes the line to be part of the model. The view can set
the endpoints of the line via the setLinePoint method.

The approach to add a label is similar to the one for adding a line. For a label, remember
that by pressing the backspace the user can delete a character, so we provide a method
removeCharacter for this purpose.

The controller also supplies a method (selectItem) that the view can call when it
receives the command to select an item. The controller searches through the entire list of
unselected items and determines if one of them is selected, and if so, it moves the item from
the list of unselected items to the list of selected items.

The rest of the methods are for deleting selected items and for storing and
retrieving the drawing and are fairly obvious. The class diagram is shown in
Figure 11.12.

To implement the saving and retrieval of files, the only objects to be serialized are the
list(s) of the Item objects, which is a straightforward process. However, one of our stated
goals is that of allowing a file to be retrievable even if the software has been modified so
that we have a different version of the view, or if new features are added. This means that
in the new version of the software the concrete UIContext may be different from the one
that was used to create the items in the serialized list. One solution to this could be to set
uiContext to null in all the objects being stored to disk and then reset these when the
objects are read from disc. This solution is inelegant and some what worrisome in that the
objects are being modified when saved and retrieved.

This is a reason why we have made Item an abstract class (instead of an interface).
This enables us to store UIContext as a static field in this class, along with the
static method setUIContext to modify it. The UIContext object is thus not a part
of the object that is saved. This is consistent with the basic idea of the Bridge pat-
tern, which calls for separation between the items and the manner in which they are
rendered.

2We leave the circle implementation as an exercise, so we end up having only two fields in our design.

Design of the Subsystems 367

Figure 11.12 Controller class diagram

11.5.4 Design of the view subsystem

The separation of concerns inherent in the MVC pattern makes the view largely indepen-
dent of the other subsystems. Nonetheless, its design is affected by the controller and the
model in two important ways:

1. Whenever the model changes, the view must refresh the display, for which the view must
provide a mechanism.

2. The view employs a specific technology for constructing the UI. The corresponding
implementation of UIContext must be made available to Item.

The first requirement is easily met by making the view implement the Observer interface;
the update method in the View class, shown in the class diagram in Figure 11.13, can be
invoked for this purpose.

The issue regarding UIContext needs more consideration. The view consists of a
drawing panel, which extends JPanel and needs to be updated using the appropriate in-
stance of UIContext. A major question that arises is as to how and when this variable is

368 Interactive Systems and the MVC Architecture

Figure 11.13 Basic structure of the view class

to be set in Item. This can be achieved by having a public method, say setUIContext,
in the model that in turn invokes the setUIContext on Item.

However, the time when we have to ensure that we are using the right instance of
UIContext is just before a drawing is rendered by the view. Also, it is the view that
knows which specific instance of UIContext is to be used in conjunction with itself. A
logical way of doing this, therefore, would be to keep track of the appropriate UIContext
in the view and invoke the setUIContext method in the model just before refreshing
the panel that displays the drawing. In the Swing package, repainting is effected in the
paintComponent method.

With multiple views, invoking the setUIContext method is problematic. Consider:
more than one view might have scheduled repainting the screen, which would cause all of
them to be executing paintComponent (or similar drawing method). If one of the views
updates the UIContext field in the model while another is in the middle of painting
the screen, chaos would result. This can be overcome by viewing the repainting code as a
critical section. For details, please see Section 11.11.5.

Accepting input We have already decided that the user will issue commands by click-
ing on buttons. In the current implementation, we will assume that coordinate information
(endpoints of lines, starting point of labels, etc.) will be specified by clicking on the panel.
To catch these clicks, we need a class that acts as a mouse listener, which in Java demands
the implementation of the MouseListener3 interface.

3The reader is asked to study the documentation on this and other related interfaces and classes.

Design of the Subsystems 369

Commands to create labels, circles, and lines all require mouse listeners. Since the be-
haviour of the mouse listener is dependent on the command, we know from previous exam-
ples in the book that a truly object-oriented design warrants a separate class for capturing
the mouse clicks for each command. Since there is a one-to-one correspondence between
the mouse listeners and the drawing commands, we have the following structure:

1. For each drawing command, we create a separate class that extends JButton. For cre-
ating labels, for instance, we have a class called LabelButton. Every button is its own
listener.

2. For each class in (1) above, we create a mouse listener. These listeners invoke methods
in the controller to initiate operations.

3. Each mouse listener (in (2) above) is declared as an inner class of the corresponding
button class. This is because the different mouse listeners are independent and need not
be known to each other.

The idea is captured in Figure 11.14. The class MouseHandler extends the Java class
MouseAdapter and is responsible for keeping track of mouse movements and clicks and
invoking the appropriate controller methods to set up the label. In addition to capturing
mouse clicks, the addition of labels requires the capturing of keystrokes. The class Key-
Handler accomplishes this task by extending KeyAdapter.

<<interface>>

Jbutton
MouseAdapter

LabelButton MouseHandler

KeyAdapter

KeyHandler1

1 1

1

Figure 11.14 Organisation of the classes to add labels

In another implementation, the view may choose to have other listeners that keep track
of events like resising the window, zooming-in, etc. These do not affect the model and can
be handled by redrawing the figure.

370 Interactive Systems and the MVC Architecture

If the user abandons a particular drawing operation, we could be in a tricky situation
where there is more than one MouseHandler object receiving mouse clicks and per-
forming conflicting operations such as one object attempting to create a line and another
trying to add a label. To prevent this, we have two mechanisms in place.

1. The KeyAdapter class also implements FocusListener to know when key strokes
cease to be directed to this class.

2. The drawing panel ensures that there is at most one listener listening to mouse clicks,
key strokes, etc. This is accomplished by overriding methods such as addMouseLis-
tener and addKeyListener.

11.6 Getting into the Implementation

11.6.1 Item and its subclasses

This class Item is abstract and its implementation is as follows:

import java.io.*;
import java.awt.*;
public abstract class Item implements Serializable {

protected static UIContext uiContext;
public static void setUIContext(UIContext uiContext) {

Item.uiContext = uiContext;
}
public abstract boolean includes(Point point);

protected double distance(Point point1, Point point2) {
double xDifference = point1.getX() - point2.getX();
double yDifference = point1.getY() - point2.getY();
return ((double) (Math.sqrt(xDifference * xDifference +

yDifference * yDifference)));
}
public void render() {

uiContext.draw(this);
}

}

The UIContext and its significance were discussed earlier in the context of using the
bridge pattern. The includes method is used to check if a given point selects the item.
The Line class looks something like this:

public class Line extends Item {
private Point point1;
private Point point2;

Getting into the Implementation 371

public Line(Point point1, Point point2) {
this.point1 = point1;
this.point2 = point2;

}
public Line(Point point1) {

this.point1 = point1;
}
public Line() {
}
public boolean includes(Point point) {

return ((distance(point, point1) < 10.0) || (distance(point, point2)
< 10.0));

}
public void render() {

uiContext.draw(this);
}
// setters and getters for the two points

}

The class provides three constructors. A client may thus construct a Line object without
knowing either endpoint, or by specifying one point, or after gathering both endpoints.

Unlike HardUI and EasyUI, which are ‘imaginary’ UI technologies, we can readily
construct an implementation of UIContext for the Java Swing technology.

public class SwingUI implements UIContext {
private Graphics g;
// Any other fields to hold context variables
public void setGraphics(Graphics graphics) {

g = graphics;
}
// any other methods to set context variables
public void draw(Circle circle) {

g.drawOval(/* parameters */);
}
public void draw(Line line) {

g.drawLine(/* parameters */);
}
public void draw(Label label){

g.drawString(/* parameters */);
}
public void draw(Item item) {

// error message
}

}

As was the case earlier, draw needs information from both the UI and the item. The UI in-
formation is obtained within the context object and the item is passed in as a reference. The

372 Interactive Systems and the MVC Architecture

only difference is that instead of doing all this in the render method of Item, we invoke
the appropriate draw method on the UI object with which the view has been configured.

11.6.2 Implementation of the model class

The class maintains itemList and selectedList, which respectively store the items
created but not selected, and the items selected. The constructor initialises these containers.

public class Model extends Observable {
private Vector itemList;
private Vector selectedList;
public Model() {

itemList = new Vector();
selectedList = new Vector();

}
// other methods

}

The setUIContext method in the model in turn invokes the setUIContext on
Item.

public static void setUIContext(UIContext uiContext) {
Model.uiContext = uiContext;
Item.setUIContext(uiContext);

}

As an Observable, the model notifies all of the views when it needs to inform them of
changes. We have seen that this approach allows us to change UIContext dynamically,
and also supports the displayingof multiple views simultaneously,where each view is using
a different UIContext.

At the moment, we handle the drawing of items (including a possibly ‘incomplete’ one),
especially labels, by having a method updateView in the model, which is called by the
controller at appropriate moments, for example after each character is read in from the
keyboard. The method simply asks that the view be refreshed.

public void updateView() {
setChanged();
notifyObservers(null);

}

The addItem method is simple: it just stores the item in itemList and redraws the
screen.

public void addItem(Item item) {
itemList.add(item);
updateView();

}

Getting into the Implementation 373

The class also provides a method to delete an item.

public void removeItem(Item item) {
itemList.remove(item);
updateView();

}

When an item is selected by the user, the model marks it as selected by transferring the
item from itemList to selectedList as below.

public void markSelected(Item item) {
if (itemList.contains(item)) {

itemList.remove(item);
selectedList.add(item);
updateView();

}
}

Selected items are deleted using the deleteSelectedItems.

public void deleteSelectedItems() {
selectedList.removeAllElements();
updateView();

}

The getItems method is used by the controller to determine which item is selected. The
view uses the same method to render the items.

public Enumeration getItems() {
return itemList.elements();

}

11.6.3 Implementation of the controller class

The class must keep track of the current shape being created, and this is accomplished by
having the following fields within the class.

private Line line;
private Label label;

When the view receives a button click to create a line, it calls one of the following controller
methods. The controller supplies three versions of the makeLine method and keeps track
of the number of points independently of the view.

374 Interactive Systems and the MVC Architecture

public void makeLine() {
makeLine(null, null);
pointCount = 0;

}
public void makeLine(Point point) {

makeLine(point, null);
pointCount = 1;

}
public void makeLine(Point point1, Point point2) {

line = new Line(point1, point2);
pointCount = 2;
model.addItem(line);

}

The variables pointCount and model are both fields within the Controller class
that respectively keep track of the number of points received and the instance of the Model
class.

The execution of makeLine causes the line to be part of the model. The view can set
the endpoints of the line via the following method.

public void setLinePoint(Point point) {
if (++pointCount == 1) {

line.setPoint1(point);
} else if (pointCount == 2) {

pointCount = 0;
line.setPoint2(point);

}
model.updateView();

}

After it receives each end-point, the controller calls the model’s updateView method to
inform it that the view should be updated.

The approaches to draw a circle and add a label are similar. For a label, remember that
by pressing the backspace the user can delete a character. So we provide a method re-
moveCharacter for this purpose.

The following method is called by the view when it receives the command to select an
item. The controller searches through the entire list of unselected items and determines if
one of them is selected, and if so, it moves the item from the list of unselected items to the
list of selected items.

public void selectItem(Point point) {
Enumeration enumeration = model.getItems();
while (enumeration.hasMoreElements()) {

Item item = (Item)(enumeration.nextElement());
if (item.includes(point)) {

model.markSelected(item);

Getting into the Implementation 375

break;
}

}
}

11.6.4 Implementation of the view class

The view maintains two panels: one for the buttons and the other for drawing the items.

public class View extends JFrame implements Observer {
private JPanel drawingPanel;
private JPanel buttonPanel;
// JButton references for buttons such as draw line, delete, etc.
private class DrawingPanel extends JPanel {

// code to redraw the drawing and manage the listeners
}
public View() {

// code to create the buttons and panels and put them in the JFrame
}
public void update(Observable model, Object dummy) {

drawingPanel.repaint();
}

}

The code to set up the panels and buttons is quite straightforward, so we do not dwell upon
that.

The DrawingPanel class overrides the paintComponent method, which is called
by the system whenever the screen is to be updated. The method displays all unselected
items by first obtaining an enumeration of unselected items from the model and calling the
render method on each. Then it changes the colour to red and draws the selected items.

public void paintComponent(Graphics g) {
model.setUI(NewSwingUI.getInstance());
super.paintComponent(g);
(NewSwingUI.getInstance()).setGraphics(g);
g.setColor(Color.BLUE);
Enumeration enumeration = model.getItems();
while (enumeration.hasMoreElements()) {

((Item) enumeration.nextElement()).render();
}
g.setColor(Color.RED);
enumeration = model.getSelectedItems();
while (enumeration.hasMoreElements()) {

((Item) enumeration.nextElement()).render();
}

}

376 Interactive Systems and the MVC Architecture

The DrawingPanel class also overrides the addMouseListener, addKeyLis-
tener, and addFocusListener methods. This is to ensure that there is at most one
listener for each type of event on the drawing panel.

private MouseListener currentMouseListener;
public void addMouseListener(MouseListener newListener) {

removeMouseListener(currentMouseListener);
currentMouseListener = newListener;
super.addMouseListener(newListener);

}

Similarly, we ensure that there is just one listener for events related to the keyboard.
Although the various button classes are alike in many respects, some are more compli-

cated than others. One of the more complicated ones is LabelButton, which is responsi-
ble for handling label creation requests. Constructors of most button classes get a reference
to the view, and the ones that need to access the drawing panel also get a reference to the
panel.

public class LabelButton extends JButton implements ActionListener {
protected JPanel drawingPanel;
protected View view;
private KeyHandler keyHandler;
private MouseHandler mouseHandler;
private Controller controller;
public LabelButton(Controller controller, View jFrame, JPanel jPanel) {

super("Label");
this.controller = controller;
keyHandler = new KeyHandler();
addActionListener(this);
view = jFrame;
drawingPanel = jPanel;

}
public void actionPerformed(ActionEvent event) {

drawingPanel.addMouseListener(mouseHandler = new MouseHandler());
}
private class MouseHandler extends MouseAdapter {

// details not shown
}
private class KeyHandler extends KeyAdapter implements FocusListener {

// details not shown
}

}

When this button is clicked, an instance of MouseHandler is created, and it becomes the
sole listener of mouse clicks. MouseHandler overrides the mouseClicked method to
determine the starting point of the label. Besides asking the controller to set up a Label

Getting into the Implementation 377

object with the given starting point, the code makes the drawing panel receive further button
clicks and keyboard events. Also note that the KeyHandler is a FocusListener as
well, which lets it know when it longer receives keyboard input.

public void mouseClicked(MouseEvent event) {
view.setCursor(new Cursor(Cursor.TEXT_CURSOR));
Controller.instance().makeLabel(event.getPoint());
drawingPanel.requestFocusInWindow();
drawingPanel.addKeyListener(keyHandler);
drawingPanel.addFocusListener(keyHandler);

}

In its keyTyped method, KeyHandler transmits all printable characters to the Label
object via the controller. The keyPressed method distinguishes between the enter and
backspace keys. For the former, it stops listening to mouse clicks and keyboard events. If
the backspace is pressed, the label is made to delete the last typed character.

public void keyTyped(KeyEvent event) {
char character = event.getKeyChar();
if (character >= 32 && character <= 126) {

Controller.instance().addCharacter(event.getKeyChar());
}

}
public void keyPressed(KeyEvent event) {

if (event.getKeyCode() == KeyEvent.VK_ENTER) {
view.setCursor(new Cursor(Cursor.DEFAULT_CURSOR));
drawingPanel.removeMouseListener(mouseHandler);
drawingPanel.removeKeyListener(keyHandler);
drawingPanel.repaint();

} else if (event.getKeyCode() == KeyEvent.VK_BACK_SPACE) {
Controller.instance().removeCharacter();

}
}

If the user terminates label creation by clicking on a button, as opposed to hitting the Enter
key, the system executes the focusLost method of KeyHandler, which properly ends
the command.

public void focusLost(FocusEvent event) {
view.setCursor(new Cursor(Cursor.DEFAULT_CURSOR));
drawingPanel.removeMouseListener(mouseHandler);
drawingPanel.removeKeyListener(keyHandler);
drawingPanel.repaint();

}

Finally, just before it refreshes the screen, the view sets up UIContext within the model
appropriately:

378 Interactive Systems and the MVC Architecture

public void paintComponent(Graphics g) {
model.setUI(NewSwingUI.getInstance());
// rest of the code not shown

}

11.6.5 The driver program

The driver program sets up the model. In our implementation the controller is independent
of the UI technology, so it can work with any view. The view itself uses the Swing package
and is an observer of the model.

public class DrawingProgram {
public static void main(String[] args){

Model model = new Model();
Controller.setModel(model);
Controller controller = new Controller();
View.setController(controller);
View.setModel(model);
View view = new View();
model.addObserver(view);
view.show();

}
}

11.6.6 A critique of our design

The partial design of the view and the model are quite robust. We have examined some
of the issues to be taken care of earlier on, and the implementation takes them into con-
sideration. The controller appears to be quite straightforward, and we simply need to add
methods to handle all the operations.

Let us see how the design stands up to the task of adding a new operation, say, to draw a
polygon.

1. We need to provide a new button which informs the user that the new operation is avail-
able. We also should create a mouse handler to handle mouse clicks, etc. These changes
are relatively obvious and clearly unavoidable. Even then, note that most of the classes
in the view are left unchanged.

2. The model is not affected by adding new types of items, operations or new UIs.

3. The UIContext interface does not have to be necessarily extended when new kinds of
items are added. We refer the reader to the discussion in Section 11.5.2.

4. The controller should have new methods such as makePolygon and addPoint-
ToPolygon. It is not clear that this change is not a consequence of some basic flaw

Implementing the Undo Operation 379

in our design. For instance, it might be possible to replace the methods makeLine,
makeCircle, etc. by a single method, say makeShape.

Thus one drawback to our approach is that we need to change the controller class every
time new operations are added or even if we change the way things are implemented. In
addition, the controller has all the implementation in one class, which makes things com-
plicated.

A more tricky problem is that of implementing undo. Clearly some kind of a stack
would be needed to remember the operations that have been completed. When an undo
is requested, an element from the top of the stack is popped, and this element has to be ‘de-
coded’ to find out what the last operation was. This would require some kind of conditional,
and the complexity of this method would increase with the number of different kinds of op-
erations that we implement. In earlier chapters we have seen how such complexity can be
reduced by replacing conditional logic with polymorphism. In the next section we examine
a pattern that can help us improve the design of the controller.

11.7 Implementing the Undo Operation

In the context of implementing the undo operation, a few issues need to be highlighted.

• Single-level undo vs multiple-level undo A simple form of undo is when only one
operation (i.e., the most recent one) can be undone. This is relatively easy, since we can
afford to simply clone the model before each operation and restore the clone to undo.

• Undo and redo are unlike the other operations If an undo operation is treated the
same as any other operation, then two successive undo operations cancel each other out,
since the second undo reverses the effect of the first undo and is thus a redo. The undo
(and redo) operations must therefore have a special status as meta-operations if several
operations must be undone.

• Not all things are undoable. This can happen for two reasons. Some operations like ‘print
file’ are irreversible, and hence undoable. Other operations like ‘ save to disk’ may not
be worth the trouble to undo, due to the overheads involved.

• Blocking further undo/redo operations. It is easy to see that uncontrolled undo and redo
can result in meaningless requests. In general, it is safer to block redo whenever a new
command is executed. Consider a situation where we have the sequence: Select(a), undo,
Select(a), redo. The redo tries to mark a as selected, and this could result in an exception
depending on how things are implemented. A more severe problem arises with Create
Rectangle(r), Colour Rectangle(r, blue), undo, Delete(r), redo. Here, the redo will attempt
to colour a rectangle that does not exist any more.

380 Interactive Systems and the MVC Architecture

• Solution should be efficient. This constraint rules out naive solutions like saving the
model to disk after each operation.

Keeping these issues in mind, a simple scheme for implementing undo could be something
like this:

1. Create a stack for storing the history of the operations.

2. For each operation, define a data class that will store the information necessary to undo
the operation.

3. Implement code so that whenever any operation is carried out, the relevant information
is packed into the associated data object and pushed onto the stack.

4. Implement an undo method in the controller that simply pops the stack, decodes the
popped data object and invokes the appropriate method to extract the information and
perform the task of undoing the operation.

One obvious approach for implementing this is to define a class StackObject that stores
each object with an identifying String.

public class StackObject {
private String name;
private Object object;
public StackObject(String string, Object object) {

name = string;
this.object = object;

}
public String getName() {

return name;
}
public Object getObject() {

return object;
}

}

Each command has an associated object that stores the data needed to undo it. The class
corresponding to the operation of adding a line is shown below.

public class LineObject {
private Line line;
public Line getLine() {

return line;
}
public LineObject(Line line) {

this.line = line;
}

}

Implementing the Undo Operation 381

When the operation for adding a line is completed, the appropriate StackObject in-
stance is created and pushed onto the stack.

public class Controller {
private Stack history;
public void makeLine(Point point1, Point point2) {

Line line = new Line(point1, point2);
model.addItem(line);
history.push(new StackObject("line", new LineObject(line)));

}
// other fields and methods

}

Decoding is simply a matter of popping the stack reading the String.

public void undo() {
StackObject undoObject = history.pop();
String name = undoObject.getName();
Object obj = undoObject.getObject();
if (name.equals("line")) {

undoLine((LineObject)obj);
} else if (name.equals("delete")) {

undoDelete((DeleteObject)obj);
} else if (name.equals("select")) {

undoSelect((SelectObject)obj);
}
// one else if for each command

}

Finally, undoing is simply a matter of retrieving the reference to and removing the line form
the model.

public class Controller {
public void undoLine(LineObject object){

Line line = object.getLine();
model.removeItem(line);

}
}

There are two obvious drawbacks with this approach:

1. The long conditional statement in the undo method of the controller.

2. The need to rewrite the controller whenever we make changes such as adding or modifying
the implementation of an operation.

382 Interactive Systems and the MVC Architecture

The object-oriented approach for dealing with the first drawback is to subclass the be-
haviour by creating an inheritance hierarchy and replace conditional logic with polymor-
phism. (Recollect that this is accomplished by making the original method abstract and
moving each leg of the conditional to an overriding method in the corresponding subclass.)

Let us refactor the code to accomplish this. Before replacing the conditional, however,
we see that undo in the controller is mostly working off the data stored in StackObject
and our first order of business is to extract and move this method.

public class Controller {
private Stack history;
public void undo() {

StackObject undoObject = history.pop();
undoObject.undo(this);

}
// other fields and methods

}

public class StackObject {
public void undo(Controller controller) {

String name = getName();
Object object = getObject();
if (name.equals("line")) {

controller.undoLine((LineObject)object);
} else if (name.equals("delete")) {

controller.undoDelete((DeleteObject)object);
} else if (name.equals("select")) {

controller.undoSelect((SelectObject)object);
}

}
// other fields and methods

}

Now our conditional is in StackObject and we are ready to subclass this behaviour.
Since each kind of data object is associated with an operation, our hierarchy will have a
subclass corresponding to each operation. For example, to represent the drawing of a line,
we have the class LineObject as a subclass of StackObject (Figure 11.15).

This is a lot simpler and cleaner, although we have paid a price by increasing the number
of method calls. Note that we no longer ‘decode’ the stored objects and therefore the name
field is not required. The makeLine method is simplified, so it just creates a LineOb-
ject and pushes it onto the stack.

public void makeLine(Point point1, Point point2) {
Line line = new Line(point1, point2);
model.addItem(line);
history.push(new LineObject(line));

}

Implementing the Undo Operation 383

LineObject

–line : Line

+LineObject ()

+undo (controller : Controller) : void

+getLine () : Line

<<abstract>>

StackObject

+undo (controller : Controller) : void

controller, undoLine (this)

Figure 11.15 Representing the drawing of a line

In the next subsection, we look into creating a fully reusable controller.

11.7.1 Employing the command pattern

The reader may have noticed a familiar pattern in the above code. In its undo method,
the controller passes itself as a reference to the undo method of the StackObject. In
turn, each subclass of the StackObject (e.g., LineObject) passes itself as reference
when invoking the appropriate undo method of the controller. This is an implementation of
double dispatch that we used when employing the visitor pattern and was wholly appropriate
when introducing new functionality into an existing hierarchy. In this context, however,
we find that this results in unnecessarily moving a lot of data around. One of the lasting
lessons of the object-oriented experience is the supremacy of data over process (The Law
of Inversion), which we discussed in Chapter 8, which we can utilise in this problem by
using the command pattern.

The intent of the command pattern is as follows 4:

Encapsulate a request as an object, thereby letting you parametrise clients with differ-
ent requests, queue or log requests, and support undoable operations.

We have partially satisfied this intent in our scenario by associating an object with each
operation. For instance, whenever we execute an operation to create a line, a LineObject
is created and pushed onto the stack. What we have failed to recognise so far is that this

4GoF, pg 127

384 Interactive Systems and the MVC Architecture

<< a b s t r a c t >>

Command

+undo() : boolean

+redo() : boolean

+execute(): void

Figure 11.16 The command class

object need not merely be a repository of associated data but can also encapsulate the
routines that need access to this data.

The command pattern provides us with a template to address this. The abstract Command
class has abstract methods to execute, undo and redo. See Figure 11.16.

The default undo and redo methods in Command return false, and these need to be
overridden as needed by the concrete command classes.

The mechanism is best explained via an example, for which we develop a somewhat
simplified sequence diagram for the command to add a line (Figure 11.17)5.

Figure 11.17 Sequence diagram for adding a line

5The sequence diagram abstracts out the complexity of the multiple classes associated with the UI into a
single class called View.

Implementing the Undo Operation 385

Adding a line Since every command is represented by a Command object, the first
order of task when the Draw Line command is issued is to instantiate a LineCommand
object. We assume that we do this after the user clicks the first endpoint although there
is no reason why it could not have been created immediately after receiving the com-
mand. In its constructor, LineCommand creates a Line object with one of its endpoints
specified.

The central idea behind the command pattern is to employ two stacks: one for storing the
commands that can be undone (history stack) and the other for maintaining the commands
that may be redone (redo stack). The class UndoManager maintains these stacks. (We
refer to the corresponding object by the term undo manager.) The undo manager plays
the role of the controller, but we have given it a new name to highlight its main function.
We take the approach that as soon after the command object is created, the view informs
the undo manager, which is then expected to initiate its bookkeeping operations. Similarly,
when the view has received all of the data needed to complete the command, it notifies the
UndoManager once more. The two methods beginCommand and endCommand are
for these two purposes.

In the course of execution of the beginCommand method, the undo manager ensures
the the Line object gets added to the model. This way, should the view be refreshed, the
partial line will be shown on the screen.

When the command is completed and the endCommand method is executed, the undo
manager pushes the command onto the history stack. This way the latest command is al-
ways at the top of this stack. To prevent inconsistencies of the kind we described at the very
beginning of this section, we clear the redo stack whenever a new command is issued.

Assume that the user issues the sequence of commands:

Add Label (Label 1)

Draw Circle (Circle 1)

Add Label (Label 2)

Draw Line (Line 1)

At this time, there are four Command objects, one for each of the above commands, and
they are on the history stack as in Figure 11.18. The redo stack is empty: since no commands
have been undone, there is nothing to redo. The picture also shows the collection object in
the model storing the two Label objects, the Circle object, and the Line object.

Undoing an operation Continuing with the above example, we now look at the sequence
of actions when the undo request is issued immediately after the line (Line 1) has been com-
pletely drawn in the above sequence of commands. Obviously, the user views the command
as undone if the line disappears from the screen: for this, the Line object must be removed
from the collection. To be consistent with this action and to allow redoing the operation,

386 Interactive Systems and the MVC Architecture

Figure 11.18 Status of the stacks and the collection in the model

the LineCommand object must be popped from the history stack and pushed onto the redo
stack. The resulting configuration is shown in Figure 11.19

Not every command is undoable. So the general rule is that when the undo operation is
requested, if the top of the undo stack is a command that can be undone, the command is
undone and transferred to the redo stack.

The redo operation is simple enough: if the redo stack is not empty, the command must
be re-executed, and the top object in the redo stack must be transferred to the history stack.
The redo involves updating the model: the redo method of the Command object calls the
execute method to do the necessary actions. For the LineCommand object, this involves
adding the line back to the model’s collection object.

As we noted earlier, not every command may be undoable, or, at least, is not worth the
trouble. If an undoable operation is on the undo stack, the undo cannot proceed beyond that
operation although there might be undoable operations underneath it in the stack. To get
around this problem, we might choose to not push undoable commands onto the stack. This
can be accomplished by making the command itself assume the responsibility for pushing
onto the history stack. This can conveniently be done in the class’s constructor.

A related issue concerns unfinished commands. We use the term incomplete command

Implementing the Undo Operation 387

Figure 11.19 Status of the stacks and the collection in the model after undo

to refer to a command that has not yet been properly terminated. An incomplete item is an
item, such as a line or a label, that might not have proper values for every field. We use the
term complete item to refer to an item for which the user has supplied (or the system has
invented) all the input necessary for completely specifying the item. For example, suppose
a user clicks the ‘Create Line’ button and clicks one point. Before clicking a second time to
specify the second point, suppose the user clicks the ‘Add Label’ button. The Create Line
command is incomplete. Moreover, the line is also incomplete at this stage, and it is already
stored in the model, which now ends up containing incomplete data. One could argue that it
was the user’s fault, but the program must tolerate such errors and it would be nice if there
was a way to fix this problem.

How should this be handled? We can suggest at least two ways:

1. We could prevent the possibility of users aborting commands in the middle. A popular
approach is to disable all command buttons when a new command is finished and leave
them disabled until the command is completed. When the command is completed, all of
the buttons are enabled.

2. A second possibility is to handle thiswith an additionalmethod in both the undomanager
and the command class.

388 Interactive Systems and the MVC Architecture

The difficulty with the first approach is that the UI is responsible for ensuring data consis-
tency. The responsibility for ensuring that items are complete must rest with the command
classes and not with the user interface.

We proceed with the second choice, for which we will have the undo manager keep the
current command away from the history stack until the command itself ‘certifies’ that it is
complete. For this purpose, every command class has an additional method, end, which
checks whether the item is complete and attempts to fill the missing values if necessary. If
there is not enough data to make the item complete, the method returns a false value and
the undo manager does not put the command on the stack.

The pseudo-code for the end method is as follows:

public boolean end() {
if item is incomplete

attempt to complete using data already received;
if cannot be completed

return false;
end if

end if
return true

}

The undo manager does not push a new command onto the stack until it is clear that the
item is complete.

We now explain the implementation of the above concepts.

11.7.2 Implementation

Subclasses of Command The concrete command classes (such as LineCommand) store
the associated data needed to undo and redo these operations. Just as the makeLine
method in the previous implementation had three versions, the LineCommand class has
three constructors, allowing some flexibility in the design of the view.

The implementation of methods specific to the Command class are shown below. The
execute method simply adds the command to the model so the line will be drawn. To
undo the command, the Line object is removed from the model’s collection. Finally, redo
calls execute.

public void execute() {
model.addItem(line);

}
public boolean undo() {

model.removeItem(line);
return true;

}

Implementing the Undo Operation 389

public boolean redo() {
execute();
return true;

}

As explained earlier, the class has a method called end, which attempts to complete an
unfinished command. The situation is considered hopeless if both endpoints are missing,
so the object removes the line from the model (undoes the command) and returns a false
value. Otherwise, if the line is incomplete (has at least one endpoint unspecified), the start
and end points are considered the same. The implementation is:

public boolean end() {
if (line.getPoint1() == null) {

undo();
return false;

}
if (line.getPoint2() == null) {

line.setPoint2(line.getPoint1());
}
return true;

}

UndoManager It declares two stacks for keeping track of the undo and redo operations:
(history) and (redoStack). The current command is stored in a field aptly named
currentCommand.

public class UndoManager {
private Stack history;
private Stack redoStack;
private Command currentCommand;

}

If the command was not properly terminated, we arrange matters such that currentCom-
mand will not be null when a new command is issued. Recall that when a new command
is issued, the beginCommand method of the undo manager is called. If currentCom-
mand is not null at this time, the undo manager attempts to complete it by calling the
command’s end method. The beginCommand method is implemented as below.

public void beginCommand(Command command) {
if (currentCommand != null) {

if (currentCommand.end()) {
history.push(currentCommand);

}
}
currentCommand = command;

390 Interactive Systems and the MVC Architecture

redoStack.clear();
command.execute();

}

The undo and redo are straightforward operations.

public void undo() {
if (!(history.empty())) {

Command command = (Command) (history.peek());
if (command.undo()) {

history.pop();
redoStack.push(command);

}
}

}

public void redo() {
if (!(redoStack.empty())) {

Command command = (Command)(redoStack.peek());
if (command.redo()) {

redoStack.pop();
history.push(command);

}
}

}

When a command is complete, the view calls the endCommand method of the undo man-
ager, which pushes currentCommand onto the history stack and sets currentCom-
mand to null.

public void endCommand(Command command) {
command.end();
history.push(command);
currentCommand = null;
model.updateView();

}

Handling the input The view declares one button class for each command (add label,
draw line, etc.). The class for handling line drawing is implemented as below.

public class LineButton extends JButton implements ActionListener {
// fields for view, drawing panel, handlers, etc.
public LineButton(UndoManager undoManager, View jFrame, JPanel jPanel) {

// store the parameters and create the mouse listener
}
public void actionPerformed(ActionEvent event) {

// change the cursor

Drawing Incomplete Items 391

drawingPanel.addMouseListener(mouseHandler);
}
private class MouseHandler extends MouseAdapter {

public void mouseClicked(MouseEvent event) {
if (first point) {

lineCommand = new LineCommand(event.getPoint());
UndoManager.instance().beginCommand(lineCommand);

} else if (second point) {
lineCommand.setLinePoint(event.getPoint());
drawingPanel.removeMouseListener(this);
view.setCursor(new Cursor(Cursor.DEFAULT_CURSOR));
UndoManager.instance().endCommand(lineCommand);

}
}

}
}

The above class thus directly creates the appropriate command object when a request comes
from a user.

11.8 Drawing Incomplete Items

Recall the terms incomplete item and complete item we introduced in the previous section.
There are a couple of reasons why in the drawing program we might wish to distinguish
between these two types of items.

1. Incomplete items might be rendered differently from complete items. For instance, for a
line, after the first click, the UI could track the mouse movement and draw a line between
the first click point and the current mouse location; this line keeps shifting as the user
moves the mouse. Likewise, if we were to extend the program to include triangles, which
need three clicks, one side may be displayed after two clicks. Labels in constructionmust
show the insertion point for the next character.

2. Some fields in an incomplete item might not have ‘proper’ values. Consequently, ren-
dering an incomplete item could be more tricky. An incomplete line, for instance, might
have one of the endpoints null. In such cases, it is inefficient to use the same render
method for both incomplete items and complete items because that method will need to
check whether the fields are valid and take appropriate actions to handle these special
cases. Since we ensure that there is at most one incomplete item, this is not a sound
approach.

We can easily distinguish between incomplete items and complete items by having a field
that identifies the type. The render method will behave differently based on this field. The
approach would be along the following lines.

392 Interactive Systems and the MVC Architecture

public class Line {
private boolean incomplete = true;
public boolean isIncomplete() {

return incomplete;
}
// other fields and methods

}

public class NewSwingUI implements UIContext {
// fields and methods
public void draw(Line line) {

if (line.isIncomplete()) {
draw incomplete line;

} else {
draw complete line;

}
}

}

In circumstances such as the above, where we have variant behaviour based on field values,
the object-oriented philosophy dictates subclassing, i.e., we treat the incomplete item as a
different class of object with its own rendering method. We create classes for incomplete
items (such as IncompleteLabel) that are subclasses of items (such as Label). Since
the class IncompleteLabel is a subclass of Label, the model is unaware of its exis-
tence. Once the object is created, the incomplete object can be removed from the model.
The details are as follows.

import java.awt.*;
public class IncompleteLabel extends Label {

public IncompleteLabel(Point point) {
super(point);

}
public void render() {

// code for rendering IncompleteLabel
}
public boolean includes(Point point) {

return false;
}

}

One problem we face with the above approach is that UIContext must include the
method(s) for drawing the incomplete items (draw(IncompleteLabel label),
in our example). This suggests that UIContext needs to be modified. However, the
manner in which incomplete items are rendered is an issue that largely relates to the
look and feel of the system. For instance, UIContext might not have a method

Drawing Incomplete Items 393

draw(IncompleteLine line) and creator of some view (NewSwingUI, for in-
stance) might wish to include that. In general, we would like a solution that allows for
a customised presentation which may require subclassing the behaviour of some concrete
items. This can be accomplished through RTTI. In particular, the situation where the
NewSwingUI wants its own method for drawing an incomplete line is implemented as
follows:

public class NewSwingUI implements UIContext {
// fields and methods
public void draw(Line line) {

if (line instanceof IncompleteLine) {
this.draw((IncompleteLine) line);

} else {
//code to draw Line

}
}

}

Where should we employ RTTI?

The use of RTTI can be puzzling to a beginner. On the one hand its application is
actively discouraged; this attitude is fully justified since a novice developer can feel
tempted to employ RTTI and resolve problems that really need a more thoughtful ap-
proach and a carefully designed hierarchy with appropriate design patterns. On the
other hand, there are situations where it is necessary to check the type of an object at
run time, as we have seen in Chapters 5 and 10 and also in the case of the incomplete
items in this chapter. In the examples in the earlier chapters, the development of the so-
lution naturally led to the use of RTTI. In Chapter 5, the only way to know the exact type
of the class that invoked the constructor was to invoke getClass().getName().
In Chapter 10, we had a situation where the expected behaviour was that the right kind
of listener would be passed as a parameter. If the expectation was met, the downcast
would succeed; if not, throwing the exception was the right thing to do. In some situa-
tions, as with incomplete items in this chapter, it may not be so clear. A simple thumb
rule for resolving this conundrum is to examine all the options that are available.

Consider what other choices we have for incorporating incomplete items. One ap-
proach would be to define UIContext to contain draw methods for all the incomplete
items as well. This means that all concrete contexts must implement (dummy, perhaps)
draw methods for incomplete items. Apart from the tedium of this and the fact that we
are doubling the number of classes in the basic system, we have a solution that does
not really allow for flexibility for the view to define the look and feel. We could con-
ceivably have a system with different kinds of incomplete labels, each associated with
different processes for label creation. With RTTI, we have a solution that allows for
variability in a manner that does not affect other parts of the implementation.

394 Interactive Systems and the MVC Architecture

The LineCommand object creates an IncompleteLine and adds this to the model.
This new class is thus known only to the controller and NewSwingUI. When the label cre-
ation is complete, the IncompleteLine object is removed from the model and replaced
with a Line object. This implementation therefore gives a solution where variability is
contained.

Finally, we examine item creation in this new context. Assume that the user clicks on the
‘Add Label’ button. On the creation of the LabelCommand object, an Incomplete-
Label object is created and stored within the command object. When label is completed,
the end method of the command object is called, and in this method, a Label object is
created and data from the incomplete version is copied to it. The IncompleteLabel
object is deleted from the model and the Label object takes its place. The relevant code
from LabelCommand is shown below.

public void end() {
model.removeItem(label);
String text = label.getText();
label = new Label(label.getStartingPoint());
for (int index = 0; index < text.length(); index++) {

label.addCharacter(text.charAt(index));
}
execute();

}

This completes the basic implementation of our simple graphical system. Note that if any
new operation has to be added, all we have to do is create new classes that extend Command
and Item, and modify the view to allow the user to invoke the new operation. Modifying
the view is simply a matter of defining a new class that extends JButton and adding
an instance of this class to the button panel. The model, the view and the controller are
essentially repositories for the items, buttons, and commands respectively, and thus provide
a framework for creating the specified system.

11.9 Adding a New Feature

Most interactive systems that are used to create graphical objects, allow users to define new
kinds of objects on the fly. A system for writing sheet music may allow a user to define
a sequence of notes as a group. This would enable the user to manipulate these notes as a
group, making copies of these as needed. In a system for drawing electrical circuits, a set of
components interconnected in a particular way could be clustered together as a ‘sub-circuit’
that can then be treated as a single unit. In a drawing program like the one we have created,
a complex figure may be created as a collection of lines and circles, which may have to be

Adding a New Feature 395

moved around a single unit. In all these cases, the user-friendliness of the system would be
considerably improved if a feature is provided to enable such operations.

Let us examine how our system needs to be modified to accommodate this. The process
for creating such a ‘compound’ object would be as follows: The user would select the items
that have to be combined by clicking on them. The system would then highlight the selected
items. The user then requests the operation of combing the selected items into a compound
object, and the system combines them into one.

Which subsystem ‘owns’ a class?

In our original approach to designing this system using the MVC architecture, we
were partitioning the responsibilities between the three subsystems. As we looked
into the finer details of the implementation, we encountered some problems and found
some suitable patterns that could improve our design. The use of these patterns, how-
ever apparently ‘blurs’ some of the clear boundaries.

Consider for instance the bridge pattern. We created the UIContext interface
within the model to house the draw methods of all the items. The model does not
have the information, however, to create a concrete instance of UIContext and this
task is left to the View class. UIContext and its implementing classes belong to
the view subsystem.

The original controller was replaced by a collection of classes including Undo-
Manager and the various subclasses of Command, so they could be considered be-
longing to the controller subsystem. The undo manager defines the interface for the
command but does not have any information on how each individual command should
receive and process input.

The reader should realise that the subsystems are only providing a context within
which the details can be fleshed out. The controller is providing a format for the
creation of commands and also a system that manages these commands. When a
command has to be added, a class is defined and the view is modified to allow for
its invocation. Likewise the model provides a template for rendering all the kinds of
items, but a complete knowledge of the view is needed to provide a concrete imple-
mentation.

From a more practical view, it does not matter much whether we can label a class
as belonging to any specific subsystem. What we need to worry about are properties
such as modularity, proper assignment of responsibilities, cohesive classes, low cou-
pling between classes, ease of meeting changing requirements, performance, and so
on. The MVC paradigm provides the guidelines, and it is up to the designer to make
decisions that ensure these properties.

396 Interactive Systems and the MVC Architecture

Once a compound object has been created, it can be treated as a any other object. This
process can be iterated, i.e., a compound object can be combined with other objects (which
could themselves be compound or simple objects) to create another compound object. The
system also allows the user to ‘breakdown’ a compound item into its constituent items by
first selecting the item(s) to be broken down and then choosing the ‘decompose’ operation.
Note that if a compound item is created by combining two compound items, then decom-
posing it will give us back the two original compound items. Finally, the system must have
the ability to undo and redo these operations.

Since we have to store a collection of items, an obvious approach to implementing this
would be to create a new kind of item that maintains a collection of the constituent items.
This would be a concrete class and would look like this:

public class CompoundItem {
List items;
public CompoundItem(/* parameters */) {

//instantiate lists
}
public Enumeration getItems() {

//returns an enumeration of the objects in Items
}
// other fields and methods

}

Since items consists of both simple items and compound items, it seems logical that all
entities stored in items are designated as belonging to the class Object. The model
would also have to be modified so that the container classes would hold collections of type
Object.

Consider now any class that examines at the collection of items in the model (i.e., a
‘client’ class). One of these would be the SelectCommand. When a SelectCommand
object gets the coordinates of the mouse click, it iterates through the collection in the model
to determine the selected item. If the object is a simple item, it wouldbe cast as an Item and
the includes method would be invoked; if the object is a compound item, it would be cast
as a CompoundItem and the getItems method would be invoked to get an enumeration
of the objects that make up the compound item. Clearly, this is not the most desirable
state of affairs since the client method is querying the type of the object (which is akin to
switching on the fields of the object) to determine what operation is to be performed. Our
standard approach in such situations is to create an inheritance hierarchy and use dynamic
binding. The dilemma here is that we have a two fundamentally different kinds of entities:
a simple item is a single item, whereas a compound item is a collection of items. The
composite pattern gives us an elegant solution to this problem.

Adding a New Feature 397

Line

Line Compound

Item

Label
Label

Line

Circle Circle

Compound

Item

Compound

Item

Compound

Item

Figure 11.20 Tree structure formed by compound items

The intent of the composite pattern is as follows6:

Compose objects into tree structures to represent part-whole hierarchies. Composite
lets clients treat individual objects and compositions of objects uniformly.

A compound item is clearly a composition of simple items. Since each compound item
could itself consist of other compound items, we have the requisite tree structure (see Figure
11.20).

The class interaction diagram for the composite pattern is shown in Figure 11.21. Note
that the definition of the compound item is recursive and may remind readers of the recur-
sive definition of a tree. Following this diagram, the class CompoundItem is redefined as
follows:

public class CompoundItem extends Item {
List items;

6GoF, pg 127

398 Interactive Systems and the MVC Architecture

Figure 11.21 Composite structure of the item hierarchy

public CompoundItem(/* parameters */){
//instantiate lists

}
public void render(){

// iterates through items and renders each one.
}
public boolean includes(Point point) {

/* iterates through items and invokes includes on each item.
Returns true if any of the items returns true and false otherwise. */

}
public void addItem(Item item) {

// Adds item to items
}

// other fields and methods
}

Modifying the system to allow for creating compound objects is just like any of the opera-
tions discussed earlier. The system already has an operation for selecting items. Once that
is complete, user chooses the ‘create composite’ operation. This would require that a new
class be defined (extending JButton) and that the view be modified to add this button to
the button panel. A new class, CompositeCommand (extending Command) is defined.
The execute method of this class removes all the selected items from the Model and adds
them to a new CompoundItem object, which is then added to the Model. The view ren-
ders a CompoundItem exactly in the same way as it renders any other instance of Item.
Note also that the select operation invokes the includes method on CompoundItem
exactly as it would on simple items.

Pattern-Based Solutions 399

11.10 Pattern-Based Solutions

As explained earlier a pattern is a solution template that addresses a recurring problem
in specific situations. In a general sense, these could apply to any domain. (A standard
opening in chess, for instance, can be looked at as a ‘chess pattern’.) In the context of
creating software, three kinds of patterns have been identified. At the highest level, we
have the architectural patterns. These typically partition a system into subsystems and
broadly define the role that each subsystem plays and how they all fit together. Architectural
patterns have the following characteristics:

• They have evolved over time In the early years of software development, it was not
very clear to the designers how systems should be laid out. Over time, some kind of
categorisation emerged, of the kinds software systems that are needed. In due course,
it became clearer as to how these systems and the demands on them change over their
lifetime. This enabled practitioners to figure out what kind of layout could alleviate some
of the commonly encountered problems.

• A given pattern is usually applicable for a certain class of software system The MVC
pattern for instance, is well-suited for interactive systems, but might be a poor fit for
designing a payroll program that prints paychecks.

• The need for these is not obvious to the untrained eye When a designer first encounters
a new class of software, it is not very obvious what the architecture should be. One
reason for this is that the designer is not aware of how the requirements might change
over time, or what kind of modifications are likely to be needed. It is therefore prudent to
follow the dictates of the wisdom of past practitioners. This is somewhat different from
design patterns, which we are able to ‘derive’ by applying some of the well-established
‘axioms’ of object-oriented analysis and design. (In case of our MVC example, we did
justify the choice of the architecture, but this was done by demonstrating that it would be
easier to add new operations to the system. Such an understanding is usually something
that is acquired over the lifetime of a system.)

At the next level, we have the design patterns. These solve problems that could appear in
many kinds of software systems. Once the principles of object-oriented analysis and design
have been established it is easier to derive these. Examples of these can be found throughout
this text.

At the lowest level we have the patterns that are called idioms. Idioms are the patterns of
programming and are usually associated with specific languages. They typically refer to the
use of certain syntactic elements of the language. As programmers, we often find ourselves
using the same code snippet every time we have to accomplish a certain task. Sometimes,
we may save these as ‘macros’ to be copied and pasted as needed thus enabling us to be
more productive in terms of code-generation. Idioms are something like these, but they are

400 Interactive Systems and the MVC Architecture

usually carefully designed to take the language features (and quirks!) into account to make
sure that the code is safe and efficient. The following code, for instance, is commonly used
to swap:

temp = a;
a = b;
b = temp;

In Perl7, the list assignment syntax allows us to employ a more succinct expression:

($a, $b) = ($b, $a);

This would be an example of an idiom for Perl. In addition to safety and efficiency, the
familiarity of the code snippet makes the code more readable and reduces the need for
comments. Typical Perl programmers might be more comfortable with the second whereas
a Java programmer would prefer the first.

Not all idioms are without conflict. There are two possible idioms for an infinite loop:

for (;;) {
// some code
}

while (true) {
// some code
}

It has been argued that the first one should be preferred for efficiency, since no expression
evaluation is involved at the end of each iteration. However, with the availability of optimis-
ing compilers and increasing hardware capacity nowadays, some programmers are making
a case for the second one based on readability and elegance.

Familiarity with and acceptance of established patterns is clearly a must for success in
any domain of activity. Most of our focus in our case studies has therefore been to convince
the student of their usefulness by showing how they provide elegant solutions to naturally
arising design problems. However, as mentioned earlier, it is much more difficult for a
beginner to grasp the significance of architectural patterns in this manner.

11.10.1 Examples of architectural patterns

The repository
This architecture is characterised by the presence of a single data structure called the central
repository. Subsystems access and modify the data stored in this. An example of such a

7A commonly used scripting language

Pattern-Based Solutions 401

system could be software used for managing an airline. The subsystems in this case could
be the ones for managing reservations, scheduling staff, and scheduling aircraft. All of
these would access a central data repository that holds information about aircraft, staff, and
passengers. These would be inter-related, since a choice of an aircraft could likely influence
the choice of staff and be influenced by the volume of passenger traffic. In such systems,
the control flow can be dictated by the central repository (changes in the data characteristics
could trigger some operations), or from one of the subsystems. Another application of such
a system could be for managing a large bank. The account information would have to be
centrally located and could be accessed and modified from several peripheral locations.
A software development system or a compiler could also employ such an architecture by
having a centralised parse-tree or symbol table.

The client-server
In such a layout, there is a central subsystem known as a server and several smaller subsys-
tems known as clients which are typically quite similar. There is a fair amount of indepen-
dence in the control flow, and each subsystem may be using a different thread. Synchroni-
sation techniques are often employed to manage requests and transmit results.

The world-wide-web is probably the best example of such an architecture. The browsers
running on PCs are like clients and the sites they access play the role of servers. The server
could also be housing a database and the clients could be processes that are querying
and updating the database. A variant/generalisation of this is the peer-to-peer architec-
ture where the client/server role of the subsystems are interchangeable. These variants are
typically hard to design due to the possibility of deadlocks and a myriad of other problems
that can complicate the flow of control.

The pipe and filter
The system in this case is made up of filters, i.e., subsystems that process data, and pipes,
which can be used to interconnect the filters. The filters are completely mutually indepen-
dent and are aware only of the input data that comes through a pipe, i.e., the filter knows
the form and content of the data that came in, not how it was generated. This kind of ar-
chitecture produces a system that is very flexible and can be dynamically reconfigured. In
their simplest form, the pipes could all be identical, and each filter could be performing
a fixed task on data input stream. An example of this would be that of processing incom-
ing/outgoing data packets over a computer network. Each ‘layer’ would be like a filter that
adds to, subtracts from or modifies the packet and sends it forward.

The Unix operating system is a more sophisticated version of such an architecture, and
allows the user to create more complex operations by linking together simpler ones. In its
most general form, one could have pipes that ‘reformat’ the data, so that any sequence of
filters could be used.

402 Interactive Systems and the MVC Architecture

11.11 Discussion and Further Reading

Software architectures and design patterns bear some similarity in that they both present
efficient solutions to commonly occurring problems. The process of learning how to apply
these are however very different. It is possible (and perhaps pedagogically preferable) to
‘discover’ design patterns by critically examining our designs and refactoring them. Such
a process does not lend itself well to the task of learning about architectures due to the
complexity of the problem we are encountering. The software designer’s best bet is to learn
about commonly used architectures in the given problem domain and adapt them to the
current needs [6].

In this chapter and the previous one, we introduced design patterns by coming up some
‘reasonable’ design and then critically examining it using our knowledge of the principles
of object-oriented analysis and design. This process is not very different from that of refac-
toring to introduce patterns into existing code. The process for refactoring to introduce
patterns has been well-studied and cataloged [15,16].

11.11.1 Separating the view and the controller

When studying the MVC architecture, we often hear the phrase ‘model–view separation’,
which refers to the idea that we keep the reality and representation distinct from each other.
In our case-study, we have done this by having the model manage a list of items, and leaving
all other responsibilities to other subsystems.

The separation between view and controller is less clear. In our implementation, we
have chosen to make the knowledge of concrete command classes available to the classes
that receive the user request. This makes for a clean implementation, since the request is
immediately packed into an object that can be managed by the controller. The literature
does mention other of ways of implementing the command pattern, which are based on the
notion that the command object must be created in the controller subsystem. One approach
that has been suggested is to allow the requests for operations to be received in a class
in the controller. This has the drawback that the controller must implement methods (like
ActionListener) that are really dependent on the view implementation, thus causing
tight coupling. Another approach is to capture the request as a string (see [21]), which
is then parsed in a command factory to generate the command object. This results in an
unnecessary loss of performance.

All of this underscores the fact that the view and controller are not easily and clearly
separable in every context. One obvious question that arises is:Why not move the controller
operations into the view? This has led to a variant of the MVC, called the ‘document-view’
architecture, where the document holds the Model and the view handles the functions of
the controller as well.

Discussion and Further Reading 403

11.11.2 The space overhead for the command pattern

One of the drawbacks of the command pattern is that it places a large demand on the
memory resources, which in turn has a serious effect on runtime. Some systems restrict the
number of levels of undo and redo to some manageable number to avoid this problem, but
this solution may not always be acceptable.

Another approach that has been proposed is that each command be a singleton that keeps
its own history and redoStack objects. No instances of command are created at the
time of invocation, but the controller pushes a reference to the singleton command object
into its own history stack. The invoked command creates the data object necessary to undo
the operation and pushes it into its own history stack. This approach is particularly
beneficial if we go with a Document–View architecture.

11.11.3 How to store the items

The manner in which items are stored in the model can affect the time it takes to render
the items and thus affect performance. Consider the problem of rendering a curve that is
specified by user as a collection of ‘control points’. If the constructor decomposed the curve
into a collection of line segments, then the process of rendering would be to simply draw
each line segment. On the other hand, if the model stored only the control points, rendering
(i.e., the correspondingdraw method in the concrete UIContext) would have to compute
all the line segments and then draw them. In the first case we are creating a large number
of objects and storing these in the model. The rendering could be slowed down because
of the large number of objects that have to be accessed. In the second, rendering may be
delayed by the amount of computation. In general, memory access involves a much greater
overhead than computation, and therefore one would expect the second approach to give
better runtime performance.

11.11.4 Exercising caution when allowing undo

Implementing the undo operation can be quite tricky. The process of executing a command
could involve the methods of several classes and care must be taken to ensure that these
are correctly reversible. A full treatment of this is beyond the scope of this text, but we can
highlight a few of these issues.

What should be saved to undo an operation?
We must keep in mind that what we are undoing is the consequences of the operation on the
entire system. Consider the process of undoing the creation of a line. The only input to the
operation are the two end points, and elementary mathematics tells us that we do not need

404 Interactive Systems and the MVC Architecture

any other information to define a line. However, this information is not sufficient for us to
undo the effects of this operation. The consequence to the system is that the a line object
is added to the model, and what we need to store is a reference to this object. The model
also must allow for a specified item to be removed; if this were not possible, the operation
of removing a line would not be undoable.

Designing and implementing with undo in mind
The manner in which responsibilities are divided between the model and the controller and
the public methods that are implemented can affect the ease of undo operations. Since our
Line object is created in the controller, it is easy to store this in the command object and
then use the reference to remove the object when undoing. If the model took the end points
and invoked the constructor, we would need some additionalmachinery to implement undo.
Likewise, our model has a method to remove a specified item, which is effectively an ‘undo’
of the operation that adds an item. If the methods invoked by the command object on other
subsystems cannot be easily reversed, it may not be feasible to undo the operation.

11.11.5 Synchronising updates

We have already alluded to the problem that could occur when multiple views concurrently
update the UIContext field in the model. This is a well known problem in operating
systems and the reader is referred to standard texts in the field [35] for a detailed description.

One possible solution is to use binary semaphores. For this, we first create the following
class.

public class Synchroniser {
private boolean drawing;
public synchronised void beginDrawing() {

try {
while (drawing) {

wait();
}

} catch (InterruptedException ie) {
}
drawing = true;

}
public synchronised void endDrawing() {

drawing = false;
notifyAll();

}
}

Assume that the class is made a singleton. When the view is ready to start drawing, which
would be at the very beginning of the paintComponent method in our example code,

Discussion and Further Reading 405

it invokes the beginDrawing method. After completing the drawing, that is, just before
leaving the paintComponent method in our case, the view invokes endDrawing. The
beginDrawing and endDrawing methods together ensures several desirable proper-
ties, including the following: at most one view is painting at any given time and every view
gets a chance to paint, eventually.

Another solution employs monitors. Please see Silberschatz [35] for a description.

Projects

1. Creating a simple spreadsheet. The sheet will display a simple grid and allow for data
and formulae to be entered into the boxes. The following features will be available:

• Allow for a column to be widened. This will be done by user selecting a column
and activating the operation from the menu.

• Automatic evaluation and re-evaluation of formulae

• Drawing a graph using data from two columns

2. Implement the drawing program described in this chapter using the Document–View
architecture. Implement each command as a singleton that keeps its own stack. What
pros and cons do you see for this approach?

3. Create a simple graphical toy that consists of a circle, triangles and rectangles. All these
shapes will be filled, and represent a 2-dimensional ball and 2-dimensional triangular
and rectangular blocks. A menu will allow the user to create new blocks, change the
colour of an existing shape, move the shapes, increase the size of the ball, rotate the
blocks or drop the ball. When the ball is dropped, it will fall vertically and thereafter
behave in accordance with the idealised laws of physics, with a coefficient of restitution
of 0.5 (half the kinetic energy is lost whenever the ball collides with a block or a
boundary). The blocks do not move when hit by the ball. There will be a designated
threshold so that when the ball’s velocity drops below this threshold, it will be assumed
to have stopped.

Exercises

1. Modify the drawing program so that whenever a delete operation is invoked, a confir-
mation request is made by the system.

2. During the rendering process, the view invokes the render() method on the item,
which then invokes the draw method on the UIContext. Since the concrete UICon-
text is decided by the view, can we modify the implementation to have the view directly

406 Interactive Systems and the MVC Architecture

invoke draw? What changes would be needed to do this? What are the pros and cons
of this approach?

3. Modify the line drawing operation so that multiple lines can be created with one re-
quest.

4. Some drawing systems allow for lines of varying thickness. How would such a feature
be implemented?

5. Write a formal use case for the decompose operation and implement it.

6. Modify the circle drawing operation so that the first click specifies the centre. After
that, a ‘circle of variable radius’ is drawn such that centre is on the first click and the
current cursor position lies on the boundary. When the second point is clicked, a circle
is drawn with first mouse click as centre and second mouse click on the circle boundary.

7. A line can be specified by two points or by an equation. Consider a system where an
‘origin’ can be specified by a mouse click. After this is done, a line is specified by an
equation of the form ax + by + c = 0 (the input would specify a, b and c). The line
specified by this equation is drawn with reference to the current location of the origin.
Note that this line would span the entire drawing panel. How would you implement
such an operation?

8. Modify the line drawing operation so that the user has an option to cancel the command
at any time before it is completed. This would involve adding a ‘cancel’ operation to
our button panel.

9. Add an operation for drawing a triangle that allows for undoing individual mouse
clicks. The triangle will be specified by mouse clicks on the three vertices.

10. (Drawing a closed cubic curve.) The B-spline is a popular cubic curve, since it makes it
very easy to draw a smooth curve consisting of many segments. Implement this feature
as follows: (i) the user clicks on a succession of points, terminating by clicking on the
first point again; (ii) after 4 clicks, the first piece of the curve appears; (iii) an additional
piece is rendered at each subsequent click. The curve is drawn using the mouse click
locations as ‘control points’. Four control points are used to generate each section of
the curve, with the first four generating the first section, clicks 2, 3, 4 and 5 generating
the next section and so on. For any four control points, P0, P1, P2 and P3, the curve
can be generated by the parametric equation:

B(t) =
1
6
(−P0 + 3P1 − 3P2 + P3)t3 +

1
2
(P0 − 2P1 + P2)t2

+
1
2
(−P0 + P2)t +

1
6
(P0 + 4P1 + P2) (11.1)

Discussion and Further Reading 407

The parameter t varies between 0 and 1, and is incremented in small steps, with one
intermediate curve point being generated at each step. The curve itself is drawn as a
series of line segments, each segment connecting the curve points generated by succes-
sive increments.

11. Implement the command that allows the user to select the font and font size; the code
should also let the user boldface, underline, and italicise labels.

12. Re-implement the view subsystem using the state pattern.

13. Implement the following functionality in the drawing program: the user should be able
to select a single figure by clicking the mouse on the figure or select multiple figures by
holding the control key while clicking; it should then be possible to move the selected
item(s). The operation should be undoable.

14. Implement the ability to draw polygons in the drawing program.

15. In the drawing program, implement the functionality to create rectangles and load im-
ages into these rectangles. The command should be undoable.

12

Designing with Distributed Objects

As businesses grow, they often set up operations over large geographic areas that may span
multiple states or even countries and often find it desirable to process data at their point of
origin or create results at the location where they are needed. As a consequence, businesses
usually install multiple computer systems that are interconnected by communication links,
and applications run across a network of computers rather than on a single machine. Such
systems are called distributed systems.

Distributedprocessing offers a number of advantages. It is more economical and efficient
to process data at the point of origin. Distributed systems make it easier for users to access
and share resources. They also offer higher reliability and availability: failure of a single
computer does not cripple the system as a whole. It is also more cost effective to add more
computing power.

Distributed computing is not without its share of drawbacks. First, the software for im-
plementing them is complex. Although a distributed system is made up of multiple com-
puters, its design must somehow ensure that users, for the most part, are able to view it
as a centralised system; it must coordinate actions between a number of possibly heteroge-
neous computer systems; if data is replicated, the copies must be made mutually consistent.
Second, data access may be slow because information may have to be transferred across
communication links. Third, securing the data is a challenge. As data is distributed over
multiple systems and transported over communication links, care must be taken to guaran-
tee that it is not lost, corrupted, or stolen.

As the final, major topic of the book, we address the process of designing and imple-
menting a distributed, object-oriented application system. We present two approaches to
building a such systems. The first mechanism uses Java Remote Method Invocation (Java
RMI), which is a piece of software, generally called middleware, that helps mask hetero-
geneity. The second approach uses the world-wide web itself to access data processed at
remote sites.

408

Client/Server Systems 409

12.1 Client/Server Systems

Distributed systems can be classified into peer-to-peer systems and client-server systems.
In the former, every computer system (or node) in the distributed system runs the same
set of algorithms; they are all equals, in some sense. The latter, the client/server approach,
is more popular in the commercial world. In client/server systems, there are two types of
nodes: clients and servers. A client machine sends requests to one or more servers, which
process the requests, and return the results to the client. Many applications can use this
model and these days the software at many clients are web browsers.

In this chapter, we look at the implementation of object-oriented systems that use the
client/server paradigm. We look at the architecture itself in Section 12.1.1.

12.1.1 Basic architecture of client/server systems

To keep matters simple, we assume that although the client/server systems we build may
have multiple clients, they will have just one server. It is not difficult to extend the tech-
niques to multiple servers, so this is not a serious restriction. Figure 12.1 shows a system
with one server and three clients. Each client runs a program that provides a user interface,
which may or not be a GUI. The server hosts an object-oriented system. Like any other
client/server system, clients send requests to the server, these requests are processed by the
object-oriented system at the server, and the results are returned. The results are then shown
to end-users via the user interface at the clients.

Figure 12.1 Client/Server systems

410 Designing with Distributed Objects

There is a basic difficulty in accessing objects running in a different Java Virtual Machine
(JVM). Let us consider two JVMs hosting objects as in Figure 12.2. A single JVM has
an address space part of which is allocated to objects living in it. For example, objects
object 1 and object 2 are created in JVM 1 and are allocated at addresses A1 and
A2 respectively. Similarly, objects object 3 and object 4 live in JVM 2 and are
respectively allocated addresses A3 and A4. Code within Object 2 can access fields
and methods in object 1 using address A1 (subject, of course, to access specifiers).
However, addresses A3 and A4 that give the addresses of objects object 3 and object
4 in JVM 2 are meaningless within JVM 1. To see this, suppose A1 and A3 are equal. Then,
accessing fields using address given by A3 from code within JVM 1 will end up accessing
memory locations within object 1.

Figure 12.2 Difficulty in accessing objects in a different JVM

This difficulty can be handled in one of two ways:

1. By using object-oriented support software: The software solves the problem by the
use of proxies that receive method calls on ‘remote’ objects, ship these calls, and then
collect and return the results to the object that invoked the call. The client could have a
custom-built piece of software that interacts with the server software. This approach is
the basis of Java Remote Method Invocation and is covered in Section 12.2.

2. By avoiding direct use of remote objects by using the Hyper Text Transfer Protocol
(HTTP). The system sends requests and collects responses via encoded text messages.
The object(s) to be used to accomplish the task, the parameters, etc., are all transmitted
via these messages. This approach has the client employ an Internet browser, which is,
of course, a piece of general purpose software for accessing documents on the world-
wide web. In this case, the client software is ignorant of the application structure and
communicates to the server via text messages that include HTML code and data. This
is the technique used for hosting a system on the Web; it is definitely more popular and
we cover it in Section 12.3.

Java Remote Method Invocation 411

12.2 Java Remote Method Invocation

The goal of Java RMI is to support the building of Client/Server systems where the server
hosts an object-oriented system that the client can access programmatically. The objects at
the server maintained for access by the client are termed remote objects. A client accesses
a remote object by getting what is called a remote reference to the remote object. After
that the client may invoke methods of the object.

The basic idea behind RMI is to employ the proxy design pattern. This pattern is used
when it is inefficient or inconvenient (even impossible, perhaps) to use the actual object.
(Please refer to Figure 12.3 for a description of the proxy pattern.) In the current context,
the object is only available at a remote site. If the same object is to be available at multiple
client sites, one option is to download a copy of the object to all client sites, but such
replication of objects introduces synchronisation issues when the object is to be updated.
Instead, the proxy pattern creates a proxy object at each client site that accesses the remote
object. The proxy object implements all of the remote object’s operations that the remote
object wants to be available to the client. The set up is shown in Figure 12.4. When the
client calls a remote method, the corresponding method of the proxy object is invoked. The
proxy object then assembles a message that contains the remote object’s identity, method
name, and parameters. This assembly is called marshalling. In this process, the method
call must be represented with enough information so that the remote site knows the object
to be used, the method to be invoked, and the parameters to be supplied. When the message
is received by it, the server performs demarshalling, whereby the process is reversed. The
actual call on the remote method of the remote object is made, and any return value is
returned to the client via a message shipped from the server to the proxy object.

The system maintains a separate proxy for remote object. When an object asks for a
reference to a remote object, it is handed a reference to the object’s proxy instead. Setting
up remote object access in RMI, even for a small application, involves a number of steps.
In fact, as we shall see, once we learn to set up a simple application system, we will have
learned the tools and techniques for creating almost any client/server system using this
technology.As we discuss each major concept, we will illustrate it using a running example.

Setting up a remote object system is accomplished by the following steps:

1. Define the functionality that must be made available to clients. This is accomplished
by creating remote interfaces.

2. Implement the remote interfaces via remote classes.
3. Create a server that serves the remote objects.
4. Set up the client.

These are elaborated in the following sections.

412 Designing with Distributed Objects

Using a proxy
Where do we employ this? This pattern is used when it is inefficient or in-
convenient (even impossible, perhaps) to create/use an actual object. Perhaps
creating an object may be too time consuming, in which case the use of this
pattern lets postponement of this creation until the actual object is needed.

Examples of its use include distributed systems in which we need to access
objects remotely. Another example would be opening a document that embeds
graphical objects that are too time consuming to create.

How have we solved it? In the distributed systems case, the use of a proxy
allows us to access the remote object by reference. That way, updates from
multiple clients are made directly to the object. In contrast, we may choose
to copy the object to the point of use; however, replication always introduces
consistency issues that need the employment of expensive protocols.

In the example of documents referring to graphical objects, the proxy cre-
ates the actual image object only when so asked by the document object itself.
After the image is created, all requests sent to the proxy are directed to the
actual image itself.

In both examples, notice that the client always maintains a reference to the
proxy, which delegates the responsibility of carrying out the operations to the
actual object.

How have we employed it? Java RMI employs proxies to stand in for remote
objects. All operations exported to remote sites (remote operations) are imple-
mented by the proxy. Proxies are termed stubs in Java RMI. These stubs are
created by the RMI compiler.

Figure 12.3 Using a proxy

Client

+request()

+request()

Proxy

Subject

+request()

RealSubject

Figure 12.4 Client/Server systems

Java Remote Method Invocation 413

12.2.1 Remote interfaces

The first step in implementing a remote object system is to define the system function-
ality that will be exported to clients, which implies the creation of a Java interface. In
the case of RMI, the functionality exported of a remote object is defined via what is
called a remote interface. A remote interface is a Java interface that extends the interface
java.rmi.Remote, which contains no methods and hence simply serves as a marker.
Clients are restricted to accessing methods defined in the remote interface. We call such
method calls remote method invocations.

Remote method invocations can fail due to a number of reasons: the remote object may
have crashed, the server may have failed, or the communication link between the client and
the server may not be operational, etc. Java RMI encapsulates such failures in the form of
an object of type java.rmi.RemoteException; as a result, all remote methods must
be declared to throw this exception.

In summary, a remote interface must extend java.rmi.Remote and every method in
it must declare to throw java.rmi.RemoteException. These concepts are shown in
the following example.

import java.rmi.*;
public interface BookInterface extends Remote {

public String getAuthor() throws RemoteException;
public String getTitle() throws RemoteException;
public String getId() throws RemoteException;

}

Remote objects implement remote interfaces. They may implement more methods, but
clients are restricted to accessing methods declared in the remote interfaces.

12.2.2 Implementing a remote interface

After the remote interfaces are defined, the next step is to implement them via remote
classes. Parameters to and return values from a remote method may be of primitive type,
of remote type, or of a local type. All arguments to a remote object and all return val-
ues from a remote object must be serializable. Thus, in addition to the requirement that
remote classes implement remote interfaces, we require that they also implement the
java.io.Serializable interface. Parameters of non-remote types are passed by
copy; they are serialized using the object serialization mechanism, so they too must im-
plement the Serializable interface.

Intuitively, remote objects must somehow be capable of being transmitted
over networks. A convenient way to accomplish this is to extend the class
java.rmi.server.UnicastRemoteObject.

414 Designing with Distributed Objects

Thus, the implementation of BookInterface is as below.

import java.io.*;
import java.rmi.*;
import java.rmi.server.*;
public class Book extends UnicastRemoteObject implements

BookInterface, Serializable {
private String title;
private String author;
private String id;
public Book(String title1, String author1, String id1)

throws RemoteException {
title = title1;
author = author1;
id = id1;

}
public String getAuthor() throws RemoteException {

return author;
}
public String getTitle() throws RemoteException {

return title;
}
public String getId() throws RemoteException {

return id;
}

}

Since it is a remote class, Book must be compiled using the RMI compiler by invoking the
command rmic as below.

rmic Book

The compiler produces a file named Book_Stub.class, which acts as a proxy for calls
to the methods of BookInterface. When the constructor for the remote class (Book
in the above case) is invoked, the constructor for UnicastRemoteObject exports the
remote object. When an exported remote object is passed as a parameter or returned from
a remote method call, the stub for that remote object is passed instead of the object itself.
The stub itself contains a reference to the serialized object and implements all of the remote
interfaces that the remote object implements. All calls to the remote interface go through
the stub to the remote object.

Remote objects are thus passed by reference. This is depicted in Figure 12.5, where we
have a single remote object that is being accessed from two clients. Both clients maintain a
reference to a stub object that points to the remote object that has a field named a. Suppose
now that Client 1 invokes the method setA with parameter 5. As we have seen earlier,
the call goes through the stub to the remote object and gets executed changing the field a

Java Remote Method Invocation 415

to 5. The scheme has the consequence that any changes made to the state of the object by
remote method invocations are reflected in the original remote object. If the second client
now invokes the method getA, the updated value 5 is returned to it.

In contrast, parameters or return values that are not remote objects are passed by value.
Thus, any changes to the object’s state by the client are reflected only in the client’s copy,
not in the server’s instance. Similarly, if the server updates its instance, the changes are not
reflected in the client’s copy.

Figure 12.5 Passing of remote objects as references

12.2.3 Creating the server

Before a remote object can be accessed, it must be instantiated and stored in an object
registry, so that clients can obtain its reference. Such a registry is provided in the form of
the class java.rmi.Naming. The method bind is used to register an object and has the
following signature:

public static void bind(String nameInURL, Remote object)
throws AlreadyBoundException, MalformedURLException, RemoteException

The first argument takes the form //host:port/name and is the URL of the object to
be registered; host refers to the machine (remote or local) where the registry is located,
port is the port number on which the registry accepts calls, and name is a simple string
for distinguishing the object from the other objects in the registry. Both host and port

416 Designing with Distributed Objects

may be omitted in which case they default to the local host and the port number of 1099,
respectively.
The process of creating and binding the name is given below.

try {
<interface-name> object = new <class-name>(parameters);
Naming.rebind("//localhost:1099/SomeName", object);

} catch (Exception e) {
System.out.println("Exception " + e);

}

The complete code for activating and storing the Book object is shown below.

import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.Registry;
import java.rmi.registry.LocateRegistry;
import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;
public class BookServer {

public static void main(String[] s) {
String name = "//localhost:1099/" + s[0];
try {

BookInterface book = new Book("t1", "a1", "id1");
Naming.rebind(name, book);

} catch (Exception e) {
System.out.println("Exception " + e);

}
}

}

In the above code, we assume that when the server code is executed, it is provided with the
name that should be associated with the Book object.

12.2.4 The client

A client may get a reference to the remote object it wants to access in one of two ways:

1. It can obtain a reference from the Naming class using the method lookup.

2. It can get a reference as a return value from another method call.

Let us see how the first of these approaches can be accomplished. In the following we
assume that an object of type SomeInterface has been entered into the local registry
under the name SomeName.

Java Remote Method Invocation 417

SomeInterface object = (SomeInterface) Naming.lookup
("//localhost:1099/SomeName");

After the above step, the client can invoke remote methods on the object. In the following
code, the getters of the BookInterface object are called and displayed.

import java.util.*;
import java.rmi.*;
import java.net.*;
import java.text.*;
import java.io.*;
public class BookUser {

public static void main(String[] s) {
try {

String name = "//localhost/" + s[0];
BookInterface book = (BookInterface) Naming.lookup(name);
System.out.println(book.getTitle() + " " + book.getAuthor()

+ " " + book.getId());
} catch (Exception e) {

System.out.println("Book RMI exception: " + e.getMessage());
e.printStackTrace();

}
}

}

Just as in the case of the server, the client needs to know the name that is bound to the
object, so it must be started with that name as the parameter.

12.2.5 Setting up the system

To run the system, create two directories, say server and client, and copy the files
BookInterface.java, Book.java, and BookServer.java into server and
the file BookUser.java into client. Then compile the three Java files in server
and then invoke the command

rmic Book

while in the server directory. This command creates the stub file Book_Stub.class.
Copy the client program into client and compile it.

Run RMI registry and the server program using the following commands (on Windows).

start rmiregistry
java -Djava.rmi.server.codebase=file:C:\Server\BookServer BookServer MyBook

418 Designing with Distributed Objects

The first command starts the registry and the second causes the Book instance to be created
and registered with the name MyBook.

Finally, run the client as below from the client directory.

java -Djava.rmi.server.codebase=file:C:\Client\BookUser BookUser MyBook

The client code starts, looks up the object with the name MyBook, calls the object’s getter
methods, and displays the values.

12.3 Implementing an Object-Oriented System on the Web

Without doubt, the world-wide web is the most popular medium for hosting distributed
applications. Increasingly, people are using the web to book airline tickets, purchase a host
of consumer goods, make hotel reservations, and so on. The browser acts as a general
purpose client that can interact with any application that talks to it using the Hyper Text
Transfer Protocol (HTTP).

One major characteristic of a web-based application system is that the client (the
browser), being a general-purpose program, typically does no application-related computa-
tion at all. Of course, it is possible to ship a Java applet with a web page and have the applet
do some computation, but this is not hugely popular. All business logic and data process-
ing take place at the server. Typically, the browser receives web pages from the server in
HTML and displays the contents according to the format, a number of tags and values for
the tags, specified in it. In this sense, the browser simply acts as a ‘dumb’ program display-
ing whatever it gets from the application and transmitting user data from the client site to
the server.

The HTML program shipped from a server to a client often needs to be customised:
the code has to suit the context. For example, when we make a reservation on a flight, we
expect the system to display the details of the flight on which we made the reservation. This
requires that HTML code for the screen be dynamically constructed. This is done by code
at the server.

For server-side processing, there are competing technologies such as Java Server Pages
and Java Servlets, Active Server Pages (ASP), and PHP. In this book we study Java Servlets.

12.3.1 HTML and Java servlets

As we have stated earlier, any system that ultimately displays web pages via a browser has
to create HTML code. HTML code displays text, graphics such as images, links that users
can click to move to other web pages, and forms for the user to enter data. We will now
describe the essential code for doing these.

Implementing an Object-Oriented System on the Web 419

An HTML program can be thought of as containing a header, a body, and a trailer. The
header contains code like the following:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>

<meta content="text/html; charset=ISO-8859-1" http-equiv="content-type">
<title>A Web Page</title>

</head>

The first four lines are usually written as given for any HTML file. We do not elaborate
on these, but observe words such as html and head that are enclosed between angled
brackets (< and >). They are called tags. HTML tags usually occur in pairs: start tag that
begins an entry and end tag that signals the entry’s end. For example, the tag <head>
begins the header and is ended by </head>. The text between the start and end tags is the
element content.

In the fifth line we see the tag title, which defines the string that is displayed in the
title bar. The idea is that the string A Web Page will be displayed in the title bar of the
browser when this page is displayed.

As a sample body, let us consider the following.

<body>
<h1>

An Application

</h1>
</body>

The body contains code that determines what gets displayed in the browser’swindow. Some
tags may have attributes, which provide additional information. For example, see the line

where the tag span has its attribute style modified, so that the text will be in blue colour:
the reader may have guessed that rgb stands for the amount of red, green, and blue in the
color, whose the values can range from 0 to 255. As the examples suggest, attributes always
come in name/value pairs of the form name="value". They are always specified in the
start tag of an HTML element.

420 Designing with Distributed Objects

The body contains code to display the string An Application in the font Lucida
bright, bolded, italicised, and in blue color.

The last line of the file is

</html>

Obviously, it ends the HTML file.

Entering and processing data
The reader is probably familiar with web pages that allow the user to enter information that
the system processes. For example, a search engine provides a field in which we type in
some search terms. When an accompanying button is clicked, the system transfers control
to the search engine that displays results of the search.

This is accomplished by using what is called a form tag in HTML. The complete code
that allows us to enter some piece of text in the web page is given below.

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta content="text/html; charset=ISO-8859-1"
http-equiv="content-type">
<title>Sample Form</title>

</head>
<body>

<form action="/servlet/apackage.ProcessInput" method="post">
<table>

<tr>
<td align="right">Enter Data:</td>
<td><input type="text" name="userInput"></td>

</tr>
<tr>

<td><input type="submit" value="Process"></td>
</tr>

</table>
</form>

</body>
</html>

Let us get a general understanding of the above piece of code. Consider the code that begins
with the line

<form action="/servlet/apackage.ProcessInput" method="post">

The tag form begins the specification of a set of elements that allow the user to enter
information. The action attribute specifies that the information entered by the user is

Implementing an Object-Oriented System on the Web 421

to be processed by a Java class called ProcessInput.class, which resides in the
package apackage.

There are two primary ways in which form data is encoded by the browser: one is GET
and the other is POST. GET means that form data is to be encoded into a URL while
POST makes data appear within the message itself. See Figure 12.6 for the considerations
in deciding which of these methods should be used.

The tag <table> begins the creation of a table. Each row of the table is described using
the tag <tr>, and the tag <td> defines a cell in the table. The line

<td><input type="text" name="userInput"></td>

thus creates a cell, which is actually an input field where the user can enter data. This is
indicated by the <input> tag two attributes of which, type and name, are modified in
this example. One attribute is type, which specifies what the type of input is: here we
have "text", which means plain text. (Some other possibilities such as "password",
which makes the entry unreadable on the screen, will be covered later in the chapter.) The
second attribute, name, must be given a unique value: the value names the input element,
somewhat like an identifier.

Next, look at the line

<td><input type="submit" value="Process"></td>

This line creates a button of type "submit", which when clicked causes the form data to
be sent to the server. The button has the label Process.

The server-side code ProcessInput is an example of a servlet, which uses the
request-response paradigm. Servlets can process data sent using the HTTP protocol via
a form. They can handle multiple requests concurrently. We create a servlet by extending
the class HttpServlet as below.

public class ProcessInput extends HttpServlet {

Since we transmitted form data using the POST method, we need to override a method
called doPost. This method has two parameters, request and response that respec-
tively encapsulate the data sent by the client and the response to the client.

The header of the doPost method is given below.

public void doPost(HttpServletRequest request,
HttpServletResponse response) throws IOException,
ServletException {

Data sent by the client through the form is retrieved using the request object as below.

String input = request.getParameter("userInput");

422 Designing with Distributed Objects

Note that userInput corresponds to the name of the field in the form.

After the data is captured and processed, the servlet creates an HTML page using the re-
sponse object as below.

response.setContentType("text/html");
response.getWriter().println("<!DOCTYPE html PUBLIC \"-//W3C//DTD " +

"HTML 4.01 Transitional//EN\">");

The first line states that the data is HTML and the second line begins the HTML code. The
complete code for the servlet is given below.

package apackage;
import javax.servlet.*;
import javax.servlet.http.*;
import java.awt.event.*;
import java.util.*;
import java.io.*;
public class ProcessInput extends HttpServlet {

public void doPost(HttpServletRequest request,
HttpServletResponse response) throws IOException,
ServletException {

String input = request.getParameter("userInput");
response.setContentType("text/html");
response.getWriter().println("<!DOCTYPE html PUBLIC \"-//W3C//DTD " +

"HTML 4.01 Transitional//EN\">");
response.getWriter().println("<html>");
response.getWriter().println("<head>");
response.getWriter().println("<meta content=\"text/html;" +

" charset=ISO-8859-1\"" +
"http-equiv=\"content-type\">");

response.getWriter().println("<title>Response to Input</title>");
response.getWriter().println("</head>");
response.getWriter().println("<body>");
response.getWriter().println("You entered " + input);
response.getWriter().println("</body>");
response.getWriter().println("</html>");

}
public void doGet(HttpServletRequest request,

HttpServletResponse response) throws IOException,
ServletException {

doPost(request, response);
}

}

Although we do not use the GET method, we have overridden it, so that in case the form is
changed to use the GET method, the system will continue to work.

Implementing an Object-Oriented System on the Web 423

GET or POST?

While considering the question of which of the two methods, GET or POST, should be
employed to transmit form data, it is helpful to remember that GET inserts the data in the
URL itself whereas POST includes the data as part of the message. As a consequence,
the URLs created for the POST and GET methods differ in that the latter completely
identifies the server resource. This implies that the resource from the URL of the GET
method can be used from other web pages to access the same resource, a capability that
is not possible with the URL of POST.

A section in the HTTP/1.1 specifications talks about a kind of client/server interac-
tions called safe interactions. In a safe interaction, users are not responsible for the
result of the interaction, and GET is the appropriate method to use in such situations.
To understand the concept of safe interactions, consider a web page (call it page 1) that
asks the user to agree to some conditions by checking a box before allowing him/her to
download a piece of software from a second page (say, page 2). Suppose that the form
data, which includes the checkbox, from page 1 is transmitted using GET. Clearly, the
URL completely identifies page 2. This URL can then be used to provide a link, called
a deep link, to Page 2 from an unrelated web page (say, page 3), and any use of this link
from page 3 is an unsecure way of accessing the resource.

It should be noted, however, that trying to hide the resource location is not a foolproof
mechanism: one could look at the source file of the web page to craft a link to the
resource.

One of the HTTP usage recommendations is that the GET method should be used only
when the form processing is idempotent, that is, the result is the same whether the form
is processed once or multiple times. This definition, however, should not be taken too
literally. Generally speaking, if resubmitting a form does not change the application data
stored at the server (even if it changes other entities such as log files), it is appropriate
to use GET. In other circumstances, the POST method should be used to transmit form
data.

Generally speaking, results from the GET method are cached, but data obtained from
POST are not. As a consequence, GET method may execute faster than POST.

Figure 12.6 Get and post: a brief comparison

The architecture for serving web pages is depicted in Figure 12.7. Assume that an HTML
page is displayed on the client’s browser. The page includes, among other things, a form
that allows the user to enter some data. The client makes some entries in the form’s fields
and submits them, say, by clicking a button. The data in the form is then transmitted to the
server and given to a Java servlet, which processes the data and generates HTML code that
is then transmitted to the client’s browser, which displays the page.

424 Designing with Distributed Objects

Figure 12.7 How servlets and HTML cooperate to serve web pages

12.3.2 Deploying the library system on the world-wide web

We now undertake the task of designing and developing a web-based version of the library
system. Of course, we cannot do everything exactly as in a real library: in particular, we do
not have machines that scan bar codes on books, but we will do as close a job as possible
as a real system.

Developing user requirements
As in any system, the first task is to determine the system requirements. We will, as has
been the case throughout the book, restrict the functionality so that the system’s size is
manageable.

1. The user must be able to type in a URL in the browser and connect to the library system.

2. Users are classified into two categories: superusers and ordinary members. Superusers
are essentially designated library employees, and ordinary members are the general
public who borrow library books. The major difference between the two groups of
users is that superusers can execute any command when logged in from a terminal in
the library, whereas ordinary members cannot access some ‘privileged commands’. In
particular, the division is as follows:

(a) Only superusers can issue the following commands: add a member, add a book,
return a book, remove a book, process holds, save data to disk, and retrieve data
from disk.

(b) Ordinary members and superusers may invoke the following commands: issue
and renew books, place and remove holds, and print transactions.

(c) Every user eventually issues the exit command to terminate his/her session.

Implementing an Object-Oriented System on the Web 425

3. Some commands can be issued from the library only. These include all of the com-
mands that only the superuser has access to and the command to issue books.

4. A superuser cannot issue any commands from outside of the library. They can log in,
but the only command choice will be to exit the system.

5. Superusers have special user ids and corresponding password. For regular members,
their library member id will be their user id and their phone number will be the pass-
word.

Interface requirements It turns out that due to the nature of the graphical user interface,
an arbitrarily large number of sequences of interactions are possible between the user and
the interface. Employing the use-case model alone to determine the requirements would
necessitate the use of too many conditionals, and the resulting sequence diagrams are not
easily understood. Suppose that for their convenience, users be able to abandon most op-
erations in the middle; for example, the user may decide to place a hold on a book, but
when the screen to enter the book id and duration of the hold pops up, the user may change
her mind and decide not to place a hold. For a second example, a book may be self issued
or the member may ask a library staff member to check out the book. In the latter case,
the member id needs to be input, whereas in the former case, that information is already
available to the system.

We thus depict the requirements mostly through state transition diagrams. (A little later,
we will depict the flow using a sequence diagram as well.) However, a single transition
diagram is too large and unwieldy. Therefore, we split the state transition diagram into a
number of smaller ones.

Logging in and the Initial Menu
In Figure 12.8, we show the process of logging in to the system. When the user types in the
URL to access the library system, the log in screen that asks for the user id and password
is displayed on the browser. If a valid combination is typed in, an appropriate menu is
displayed. What is in the menu depends on whether the user is an ordinary member or a
superuser and whether the terminal is in the library or is outside.

1. The Issue Book command is available only if the user logs in from a terminal in the
library.

2. Commands to place a hold, remove a hold, print transactions, and renew books are
available to members of the library (not superusers) from anywhere.

3. Certain commands are available only to superusers who log in from a library terminal:
these are for returning or deleting books, adding members and books, processing holds,
and saving data to and retrieving data from disk.

426 Designing with Distributed Objects

Figure 12.8 State transition diagram for logging in

A superuser has to be logged in from a terminal in the library, or the menu will simply
contain the command to exit the system. It may seem somewhat strange that a superuser
has no access to the library system from outside of the library whereas an ordinary member
has several commands at her disposal. But note that it makes not much sense to allow a
superuser to issue most of the commands from outside the library: a superuser cannot deal
with a library member from the outside, so commands to add members, issue, return, and
renew books, place and remove holds and print transactions are not applicable. Also, a
superuser cannot be reasonably expected to add or remove books from the outside. One
could make a case that a superuser be allowed to process holds and save and retrieve data
from the outside, but it is hard to see why a superuser would work from the outside just for
issuing these commands.

When the user types in the URL for the library, the system presents a log-in screen for
entering the user id and password. If the user types in a bad user id/password combination,
the system presents the log in screen again with an error message.

On successful validation, the system displays a menu that contains clickable options.
The Command State in Figure 12.8 denotes the general flow of a command. When a certain
command is chosen, we enter a state that represents the command. How the transitions take
place within a command obviously depends on what the command is. All screens allow an
option to cancel and go back to the main menu. If this option is chosen, the system goes on
to display the main menu awaiting the next command.

When the exit command is chosen, the system logs the user out and presents the log in
screen again.

Add Book
The flow is shown in Figure 12.9. When the command to add a book is chosen, the system
constructs the initial screen to add a book, which should contain three fields for entering
the title, author, and id of the book, and then display it and enter the Add Book state. By

Implementing an Object-Oriented System on the Web 427

Main menu

Add book Command completed

Add

book
Cancel

Add book

Data

Menu

Figure 12.9 State transition diagram for add book

clicking on a button, it should be possible for the user to submit these values to system.
The system must then call the appropriate method in the Library class to create a Book
object and enter it into the catalog. The result of the operation is displayed in the Command
Completed state.

From the Command Completed state, the system must allow the user to add another
book or go back to the menu. In the Add Book state, the user has the option to cancel the
operation and go back to the main menu.

Add Member, Return Book, Remove Book
The requirements are similar to the ones for adding books. We need to accept some input
(member details or book id) from the user, access the Library object to invoke one of
its methods, and display the result. So we do not describe them here nor do we give the
corresponding state transition diagrams.

Save Data
When the data is to be written to disk, no further input is required from the user. The
system should carry out the task and print a message about the outcome. The state transition
diagram is given in Figure 12.10.

Retrieve Data
The requirements are similar to those for saving data.

Issue Book
This is one of the more complicated commands. As shown in the state transition diagram in
Figure 12.11, a book may be checked out in two different ways: First, a member is allowed
to check it out himself/herself. Second, he/she may give the book to a library staff member,
who checks out the book for the member. In the first case, the system already has the user’s
member id, so that should not be asked again. In the second case, the library staff member
needs to input the member id to the system followed by the book id.

428 Designing with Distributed Objects

Figure 12.10 State transition diagram for saving data

After receiving a book id, the system must attempt to check out the book. Whether the
operation is successful or not, the system enters the Book Id Processed state.

A second reason for the complexity arises from the fact that any number of books may
be checked out. Thus, after each book is checked out, the system must ask if more books
need to be issued or not. The system must either go to the Get Book Id state for one more
book id or to the Main Menu state.

As usual, it should be possible to cancel the operation at any time.

Place Hold, Remove Hold, Print Transactions
The requirements for these are similar to those for issuing a book, so we omit their descrip-
tion.

Figure 12.11 State transition diagram for issuing books

Implementing an Object-Oriented System on the Web 429

Renew Books
The system must list the title and due date of all the books loaned to the member. For
each book, the system must also present a choice to the user to renew the book. After
making the choices, the member clicks a button to send any renew requests to the system.
For every book renewal request, the system must display the title, the due date (possibly
changed because of renewal), and a message that indicates whether the renewal request was
honoured. After viewing the results, the member uses a link on the page to navigate to the
main menu.

The state transition diagram is given in Figure 12.12.

Figure 12.12 State transition diagram for renewing books

Design and implementation
To deploy the system on the web, we need the following:

1. Classes associated with the library, which we developed in Chapter 7; you will recall
that this includes classes such as Library, Member, Book, Catalog, and so on.

2. Permanent data (created by the save command) that stores information about the mem-
bers, books, who borrowed what, holds, etc.

3. HTML files that support a GUI for displaying information on a browser and collecting
data entered by the user. For example, when a book is to be returned, a screen that
asks for the book id should pop up on the browser. This screen will have a prompt to

430 Designing with Distributed Objects

enter the book id, a space for typing in the same, and a button to submit the data to the
system.

4. A set of files that interface between the GUI ((3) above) and the objects that actually
do the processing ((1) above). Servlets will be used to accomplish this task.

Structuring the files HTML code for delivery to the browser can be generated in one of
two ways:

1. Embed the HTML code in the servlets. This has the disadvantage of making the servlets
hard to read, but more dynamic code can be produced.

2. Read the HTML files from disk as a string and send the string to the browser. This is
less flexible because the code remains static.

We attempt to combine the two approaches so as to utilise the advantages of both ap-
proaches without sacrificing either flexibility or cleanliness of code. Almost all HTML
code is generated by reading files from disk; where needed, simple changes are applied to
these files, so the desired functionality is achieved.

Having made the decision that most of the HTML code will be stored in files, the next
question is how to set them up.

1. Create a separate HTML file for every type of page that needs to be displayed. For
example, create a file for entering the id of the book to be returned, a second file for
displaying the result of returning the book, a third file for inputting the id of the book
to be removed, a fourth one for displaying the result of removing the book, etc.

2. Exploit the commonalities between between the commands and create a number of
HTML code fragments, a subset of which can be assembled to form an HTML file
suitable for a specific context.

The first option has the advantage of simplicity. However, the reader can probably guess
that the number of HTML files could be a problem. A rough calculation shows that at least
28 files are needed even without considering the intricacies associated with some of the
commands such as Issue Book and Renew Book.

Although the second option is more involved because of the need to assemble a big file
from several fragments, we find that it presents some advantages over the first. First, it re-
duces the number of files somewhat. More importantly, however, there is a great deal of
duplication in the files in the first approach; duplication brings with it the problem of in-
consistency. For example, to change the way the library’s name is displayed in the screens,
every one of the HTML files will need to be updated!

We thus opt for the second choice.

Implementing an Object-Oriented System on the Web 431

Examples of HTML file fragments To show how this approach works in practice, con-
sider the two commands, one for returning and the other for removing books. In both, the
user must be presented with a web page that asks him/her to enter a book id. We have just
one file that displays this page. However, the servlet that needs to be invoked will change
depending on the context. Therefore, we code the servlet name as below.

<form action="GOTO_WITH_BOOKID" method="post">

By simply changing the string GOTO_WITH_BOOKID in the servlet, we can use the same
HTML file in multiple situations.

A similar approach is taken for accepting member ids.
For every web page, the header should display a title that depends on the context. We

maintain just one file for the header. This file has a string TITLE that stands for the title
of the web page. Depending on which page is being displayed, TITLE is replaced by an
appropriate string, which gets displayed in the title bar.

When a command is completed, we need to display a web page. For most commands,
the data to be displayed is small enough that it can be thought of as a simple string. We,
therefore, employ just one file, comamndCompleted.html, to carry out this task. This
file is adapted, however, in two different ways.

1. The result to be displayed will vary on the command as well as whether the operation
was successful. To take care of this, the file has a string called RESULT.

<h3> RESULT
</h3>

This may be replaced by strings such as Book not found and Member added.
Once the file is read into a string, the RESULT string is replaced by the appropriate
result of executing the command. The following pseudocode gives the idea.

String result;
Member member;
String htmlFile = getFile("commandCompleted.html"):
if ((member = library.addMember(name, address, phone)) == null) {

htmlFile = htmlFile.replace("TITLE", "Member not Added");
result = "Member could not be added";

} else {
htmlFile = htmlFile.replace("TITLE", "Member Added");
result = member.getName() + " ID: " + member.getId() + " added";

}
htmlFile = htmlFile.replace("RESULT", result);

2. To reduce the number of mouse clicks, the user may be given the option to repeat
the command whose result is displayed by the commandCompleted.html file. For

432 Designing with Distributed Objects

example, after completing the Add Book command, we need to give an option to issue
the command once again so that the user can add another book. Since the code where
control should go to depends on the command that was just executed, some adaptation
is in order. This is facilitated by having the line

REPLACE_COMMAND

in the HTML file.

In the case of Add Member, we substitute REPLACE_COMMAND by
Add Book, which provides a link that the user can click, and REPLACE_JS by
addmemberinitialization, which locates the Java class that is given the con-
trol when the link is clicked.

htmlFile = htmlFile.replace("REPLACE_J,S", "addmemberinitialization");
htmlFile = htmlFile.replace("REPLACE_COMMAND", "Add Member");

How to remember a user Servlets typically deal with multiple users. When a servlet
receives data from a browser, it must somehow figure out which user sent the message,
what the user’s privileges are, etc. Each request from the browser to the server starts a
new connection, and once the request is served, the connection is torn down. However,
typical web transactions involve multiple request–response pairs. This makes the process
of remembering the user associated with a connection somewhat difficult without extra
support from the system.

The system provides the necessary support by means of what are known as sessions,
which are of type HttpSession. When it receives a request from a browser, the servlet
may call the method getSession() on the HttpServletRequest object to create a
session object, or if a session is already associated with the request, to get a reference to it.
To check if a session is associated with the request and to optionally create one, a variant
of this method getSession(boolean create) may be used. If the value false is
passed to this method and the request has no valid HttpSession, this method returns
null.

When a user logs in, the system creates a session object as below.

HttpSession session = request.getSession();

When the user logs out, the session is removed as below.

session.invalidate();

Requests other than log in requires the user to be logged in. The following code evaluates
to true if the user does not have a session: that is, the user has not logged in.

Implementing an Object-Oriented System on the Web 433

request.getSession(false) == null

A session object can be used to store information about the session. In the library system,
we would like to store the user id, the type of terminal from which the user has logged in,
and some additional information related to the user. The methods for this are

1. void setAttribute(String name, Object value)

This command binds value, the object given in the second parameter, to the attribute
specified in name. By setting the second parameter to null, the attribute can be re-
moved.

2. Object getAttribute(String name)

The attribute value associated with name is returned.

3. void removeAttribute(String name)

This method deletes the specified attribute from this session.

Configuration The server runs with the support of Apache Tomcat, which is a servlet
container. A servlet container is a program that supports servlet execution. The servlets
themselves are registered with the servlet container. URL requests made by a user are con-
verted to specific servlet requests by the servlet container. The servlet container is respon-
sible for initialising the servlets and delivering requests made by the client browser to the
appropriate servlet.

The directory structure is as in Figure 12.13. We store the HTML files in a directory
named Library, which is a subdirectory of webapps, which, in turn, is a subdirectory
of the home directory of Tomcat. The servlets are in the package library, which is stored
in Library/WEB-INF/classes. The implementation of the backend classes such as
Member, Catalog, etc. is in the package basicImplementation.

Our implementation requires that the user create an environment variable named
LIBRARY-HOME that has as value the absolute path name of the directory that houses
the HTML files.

The deployment descriptor elements are defined in a file called web.xml. While this
file permits a large number of tags, our use of them is limited to mapping the URLs
to servlets. To understand how this is done, first examine the following lines of XML
code.

<servlet-mapping>
<servlet-name>LoginServlet</servlet-name>
<url-pattern>/login</url-pattern>

</servlet-mapping>

434 Designing with Distributed Objects

Figure 12.13 Directory structure for the servlets

Thus when we write code such as

URL=login

in the HTML file, the string login is mapped to the servlet name LoginServlet.
But the servlet name given by the tag <servlet-name> is just a name that is mapped

to the fully-qualified class name of the servlet as below.

<servlet>
<servlet-name>LoginServlet</servlet-name>
<servlet-class>library.Login</servlet-class>

</servlet>

In the web.xml file for our application, a servlet such as library. IssueBookIni-
tialization (<servlet-class>) is mapped from the <servlet-name> of Is-
sueBookInitializationServlet, which, in turn, is mapped from the URL pattern
of issuebookinitialization, that is, the name of the original servlet in lower-case.

The list of superusers and their passwords is stored in a file named
PrivilegedUsers. The IP addresses of all client machines located in the library are
listed in a file named IPAddresses. Both files are to be stored in the same directory that
has the HTML files.

To run the system, first Tomcat needs to be started and then the library system needs to
be accessed from a browser by typing in the URL of the Tomcat home concatenated with
/Library. The file index.html in the library directory is then accessed; this file
directs the request to the servlet Login.

Implementing an Object-Oriented System on the Web 435

Figure 12.14 Class diagram for Library servlet

Structure of servlets in the web-based library system A servlet receives data from
a browser through a HttpServletRequest object. This involves parameter names
and their values, IP address of the user, and so on. For example, when the form to add
book is filled and the Add button is clicked, the servlet’s doPost method is invoked.
As we have seen earlier, this method has two parameters: a request parameter of type
HttpServletRequest and a response parameter of type HttpServletResponse.

Each command is organised as a combination of one to three servlets. They need a
number of common utility functions during the course of processing. These methods and
doPost and doGet are collected into a class named LibraryServlet. This class has
the structure shown in Figure 12.14.

Most of the methods of LibraryServlet fall into one of five categories:

1. One group contains methods that store information about the user. This infor-
mation includes the user id, the type of terminal from which the user has
logged in, etc. and are stored in attributes associated with the session ob-
ject. The methods are addAttribute, setAttribute, getAttribute, and
deleteAllAttributes.

2. Methods to validate users and help assess access rights. The validateSuperUser
method checks whether the user is a superuser and validateOrdinaryMember

436 Designing with Distributed Objects

does the same job for ordinary members. The method libraryInvocation returns
true if and only if the user has logged in from a terminal located within the library.

3. The getFile method reads an HTML file and returns its contents as a String ob-
ject.

4. The fourth group of methods are used for handling users who may have invoked a com-
mand without actually logging in. The method notLoggedIn returns true if and
only if the user has not currently logged in. The method noLoginErrorMessage
returns HTML code that displays an error message when a person who has not logged
in attempts to execute a command.

5. The final group of commands deal with processing the request and responding to it. The
doGet message calls doPost, which does some minimal processing needed for all
commands and then calls the abstract run method, which individual servlets override.

In our design, all servlets inherit from LibraryServlet and will override the run
method. Some of these are simple while others are more involved. Except for a couple
of servlets that deal with log in, the structure of the run method is as below.

if the user has not logged in
return an html page that displays "Not logged in"

else
return an html page that is the result of processing the request

Execution flow Processing a request sometimes involves simply generating an HTML
page, which is quite straightforward. This is best understood by following a sample com-
mand. We choose as example, the command to remove a book. A somewhat simplified
sequence of what takes place in the course of the execution of this command is shown in
Figure 12.15.

As in the case of any command, the command is issued from the main menu. The URL
associated with the text is as below:

Remove book

The URL for the servlet is removebookinitialization; recall that this corresponds
to the class RemoveBookInitialization, so when the link is clicked, the doPost
method of that servlet is invoked. The code for this method is in LibraryServlet and
is as follows:

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException {

response.setContentType("text/html");

Implementing an Object-Oriented System on the Web 437

String page = run(request, response);
if (!notLoggedIn(request)) {

setAttribute(request, "page", page);
}
response.getWriter().println(page);

}

Figure 12.15 Simplified sequence diagram for Removing Books

The first line in the method specifies the type of the file for the response object: whatever
is written to the response object is treated as HTML. The run method is invoked, which is
implemented within the subclass. This method returns HTML code as a String object and
is saved in the attribute named page of the session. This helps in the following way. The
system always remembers the last page displayed. If the user tries to log in from a different
window of the browser, that page is redisplayed. It also helps when the user overwrites
the current page by visiting some other site and wants to come back to the library system.
Finally, the page is written out and gets displayed in the browser.

The check for whether the user has logged in was discussed before and is repeated for
convenience.

public boolean notLoggedIn(HttpServletRequest request) {
return request.getSession(false) == null;

}

The code for removing a book begins with the servlet RemoveBookInitialization,
whose run method is given below.

package library;

438 Designing with Distributed Objects

import javax.servlet.*;
import javax.servlet.http.*;
public class RemoveBookInitialization extends LibraryServlet {

public String run(HttpServletRequest request,
HttpServletResponse response) {

if (notLoggedIn(request)) {
return noLoginErrorMessage();

}
String htmlFile = getFile(HEADER);
htmlFile = htmlFile.replace("TITLE", "Remove Book");
htmlFile += getFile(GET_BOOK_ID);
htmlFile = htmlFile.replace("GOTO_WITH_BOOKID", "removebook");
htmlFile += getFile(CANCEL);
htmlFile += getFile(END_PAGE);
return htmlFile;

}
}

The first three lines in the run method check if the user has actually logged in and is not
here via some other means. This can actually occur if the user has two windows connected
to the library and the exit command is issued from one of the two. If that is indeed the
case, the method noLoginErrorMessage() is called. This method simply generates
an HTML page that displays ‘Not logged in’ and supplies a link to the log in screen.

In the case that the user is actually logged in, the HTML page is assembled. It includes
reading four files: one to begin the HTML page and the other to end it. In between, a form
to enter the book id and a link to cancel the command are inserted. As a consequence, the
browser at the client displays a page that either requires the user to enter the id of a book
that should be removed or click on a link to cancel the command and return to the main
menu.

The process of ensuring that the user had logged in and using the header file to begin
assembling the HTML file is common to all servlets, so we will not explain these actions in
further discussion.

The HTML code for entering the book id is given below.

<form action="GOTO_WITH_BOOKID" method="post">
<table>
<tr>

<td align="right">Id:</td>
<td><input type="text" name="bookId"></td>

</tr>
<td>
<input type="submit" value="Enter Book Id"></td>
</tr>
</table>
</form>

Implementing an Object-Oriented System on the Web 439

In the normal course of action, the user would enter a book id and click the button labelled
Enter Book Id. Notice the lines

<form action="GOTO_WITH_BOOKID" method="post">

in the HTML file and the line

htmlFile = htmlFile.replace("GOTO_WITH_BOOKID", "removebook");

in the servlet. The place holder GOTO_WITH_BOOKID is replaced by the URL
removebook. Therefore, when the user submits the form, the RemoveBook servlet is
initiated. The code for this class is given below.

package library;
import javax.servlet.*;
import javax.servlet.http.*;
public class RemoveBook extends LibraryServlet {

public String run(HttpServletRequest request,
HttpServletResponse response) {

if (notLoggedIn(request)) {
return noLoginErrorMessage();

}
String id = request.getParameter("bookId");
String htmlFile = getFile(HEADER);
htmlFile += getFile(COMMAND_COMPLETED);
htmlFile += getFile(END_PAGE);
String result;
if ((result = library.removeBook(id)) == null) {

htmlFile = htmlFile.replace("TITLE", "Book not Removed");
result = "Book could not be removed";

} else {
htmlFile = htmlFile.replace("TITLE", "Book Removed");

}
htmlFile = htmlFile.replace("RESULT", result);
htmlFile = htmlFile.replace("REPLACE_JS", "removebookinitialization");
htmlFile = htmlFile.replace("REPLACE_COMMAND", "Remove Book");
return htmlFile;

}
}

The path to the run method is once again via the doPost method in LibraryServlet.
The id of the book to be removed is retrieved by invoking the command getParameter
on the request object. We then start assembling the HTML page to respond to the request.
The removeBook method in the Library class is invoked and the result of the command
is used to replace the place holder RESULT. The servlet provides two choices at this stage:

440 Designing with Distributed Objects

the user may remove another book or go back to the main menu. The option to go back
to the main menu is common to all commands, so it is hard-coded in the HTML file for
command completion. However, the command to be repeated depends on what command
we are in, so the place holders REPLACE_JS and REPLACE_COMMAND are replaced by
the URL of the servlet and an appropriate piece of text that the user can click on.

The code for some other commands (returning a book, adding a book, adding a member,
and processing holds) are quite similar and warrants no further explanation. The code for
saving and retrieving data are simpler. The implementation for the other commands, issuing
a book, placing a hold, removing a hold, and printing transactions are more complicated,
but they are all similar. So we next explain the implementation for issuing a book.

Issuing books Issuing books is complicated by the fact that an ordinary member may
self-issue a book or may ask a library staff member, a superuser, to issue the book for
himself/herself. (See the state transition diagram in Figure 12.11.) In the former case, we
need to skip asking the member’s id and in the latter case, the system must present a screen
for entering the member id.

Like all other commands, the user clicks on a link to issue books; the HTML file contains
the lines

<td valign="top" width="160">
Issue book

</td>

The click on Issue book causes the servlet IssueBookInitialization to exe-
cute. This servlet checks if the user is a superuser, and if so, a screen to accept the member
id is displayed; otherwise, the member to whom the book should be issued is known and a
screen to accept a book id is displayed. The code is given below.

public class IssueBookInitialization extends LibraryServlet {
public String run(HttpServletRequest request, HttpServletResponse response) {

if (notLoggedIn(request)) {
return noLoginErrorMessage();

}
boolean privileged = getAttribute(request, "userType").equals("Privileged");
String memberId = getAttribute(request, "currentUserId");
String htmlFile = getFile(HEADER);
htmlFile = htmlFile.replace("TITLE", "Issue Book");
if (privileged) {

htmlFile += getFile(GET_MEMBER_ID);
htmlFile = htmlFile.replace("GOTO_WITH_MEMBERID", "issuebookgetmemberid");

} else {
htmlFile += getFile(GET_BOOK_ID);
htmlFile = htmlFile.replace("GOTO_WITH_BOOKID", "issuebookgetbookid");

}

Implementing an Object-Oriented System on the Web 441

htmlFile += getFile(CANCEL);
htmlFile += getFile(END_PAGE);
return htmlFile;

}
}

We now discuss how we remember the member for whom the book is to be issued. Recall
that the session object can store attributes and that commands such as issuing a book and
placing a hold are always carried out for a specific member. That member’s id is stored in
the attribute currentUserId. If the session was for an ordinary member, the value for
this attribute is the member’s id itself. Otherwise, when a superuser is logged in, the value
changes depending on the member for whom the command is being carried out; when the
command does not involve a member (for example, the superuser is adding books), the
value of this attribute is the empty string ("").

From the above discussion, clearly,

String memberId = getAttribute(request, "currentUserId");

would be the empty string if the user is a superuser and the logged-in-member’s id other-
wise.

The servlet IssueBookGetMemberId retrieves the id of the member to whom books
should be issued:

String memberId = request.getParameter("memberId");

If the member id is invalid, the HTML file consists of an error message and a form to accept
the member id. In this case, note that control will come back to the same servlet.

if (!library.searchMembership(memberId)) {
htmlFile += getFile(COMMAND_COMPLETED);
htmlFile = htmlFile.replace("RESULT", "Could not locate member");
htmlFile += getFile(GET_MEMBER_ID);
htmlFile = htmlFile.replace("GOTO_WITH_MEMBERID", "issuebookgetmemberid");
htmlFile = htmlFile.replace("REPLACE_JS", "");
htmlFile = htmlFile.replace("REPLACE_COMMAND", "");

}

If the member id is valid, it is remembered in the attribute currentUserId and a form
for capturing the book id is created.

setAttribute(request, "currentUserId", memberId);
htmlFile += getFile(GET_BOOK_ID);
htmlFile = htmlFile.replace("GOTO_WITH_BOOKID", "issuebookgetbookid");
htmlFile += getFile(CANCEL);

442 Designing with Distributed Objects

The IssueBookGetBookId servlet gets the book id from the form, retrieves the value
of the attribute currentUserId to get the member id and calls the issueBook method
of Library. The result is then used to replace the string RESULT in the commandCom-
pleted HTML file.

String bookId = request.getParameter("bookId");
String memberId = getAttribute(request, "currentUserId");
Book book;
String result;
if ((book = library.issueBook(memberId, bookId)) == null) {

result = "Book could not be issued";
} else {

result = book.getTitle() + " issued.";
}
htmlFile = htmlFile.replace("RESULT", result);
htmlFile += getFile(GET_BOOK_ID);
htmlFile = htmlFile.replace("GOTO_WITH_BOOKID", "issuebookgetbookid");

The result of invoking issueBook is stored in the string RESULT as has been the case
for other commands. (This part of the HTML code also has the option to return to the main
menu.) We then concatenate the HTML file that contains the form to enter a book id, so the
user has the option to enter another book id. The system continues executing this servlet
until the user decides to go back to the main menu.

Renewing books Book renewal begins in the same manner as book issuing: the member
id needs to be accepted if the user is a superuser; otherwise, that step can be bypassed.

To allow renewal, the title and due date all of the books checked out to the user must
be displayed. Also, for each book a checkbox needs to be shown, so the user can check
it if he/she wants the book to be renewed. The HTML code, stored in the file renew-
Book.html, for this part of the process is given below.

<tr>
<td> TITLE </td>
<td> DUE_DATE </td>
<td> <input type="checkbox" name="RENEW" /> </td>

</tr>

The type checkbox denotes a checkbox control, which the user can click to indicate
that a book should be renewed. The three strings, TITLE, DUE DATE, and RENEW are
placeholders for the book title, book id, and the name of the checkbox control. The idea is
that the above five lines of code will be replicated as many times as the number of books
checked out. The names of the possibly multiple checkboxes need to be different, which is
the task of the servlets.

Implementing an Object-Oriented System on the Web 443

The list of books must be assembled from two servlets: RenewBooksInitializa-
tion if the user is an ordinary member and RenewBooksGetMemberId if the user is
a superuser. Since the code to perform this task is a bit lengthy, it is extracted into Li-
braryServlet.

The code, given below, first gets an iterator for the books checked out. The HTML file
is built up from the file renewBook.html we described earlier. The strings TITLE and
DUE DATE are respectively replaced by the book’s title and due date. A unique name for
the checkbox is generated by replacing the string RENEW by the concatenation of renew
and a counter that is incremented once per loop iteration.

Now, for some slightly more complicated task. The RenewBooks servlet must some-
how discover the book id and other details of the books that are to be renewed. Also, we list
the title and due date (possibly changed) of each book to be renewed and a status message
that says whether the book was renewed or not. This demands that we remember the details
of all the books in the order we displayed them. These are stored in the attributes bookId,
title, and dueDate, each concatenated with the value of the counter. Also, the number
of books displayed is also stored in the attribute numberOfBooks.

protected String assembleBooks(HttpServletRequest request, String memberId) {
int counter = 0;
String htmlFile = "";
for (Iterator issuedBooks = library.getBooks(memberId);

issuedBooks.hasNext(); counter++) {
Book book = (Book) (issuedBooks.next());
htmlFile += getFile(RENEW_BOOKS);
htmlFile = htmlFile.replace("TITLE", book.getTitle());
htmlFile = htmlFile.replace("DUE_DATE", book.getDueDate());
setAttribute(request, "bookId" + counter, book.getId());
setAttribute(request, "title" + counter, book.getTitle());
setAttribute(request, "dueDate" + counter, book.getDueDate());
htmlFile = htmlFile.replace("RENEW", "renew" + counter);

}
setAttribute(request, "numberOfBooks", counter + "");
return htmlFile;

}

As we mentioned above, when the user responds, the servlet RenewBooks comes into
play. The servlet enters a loop iterating as many times as there are number of books checked
out. If the checkbox is clicked, the condition request.getParameter("renew" +
counter) != null evaluates to true. The servlet retrieves the book’s title from the
attribute bookTitle and replaces the TITLE in the HTML file renewedBook.html.
An attempt is made to renew the book using the member id and book id obtained
from stored attributes. If the renewal is successful, the string DUE DATE in renewed-
Book.html is replaced by the new due date. Otherwise, the old due date replaces the
string.

444 Designing with Distributed Objects

Notice also that we delete all of the attributes created for the renewal process.

String memberId = getAttribute(request, "currentUserId");
int numberOfBooks = Integer.parseInt(getAttribute(request, "numberOfBooks"));
for (int counter = 0; counter < numberOfBooks; counter++) {

if (request.getParameter("renew" + counter) != null) {
htmlFile += getFile(RENEWED_BOOKS);
String bookId = getAttribute(request, "bookId" + counter);
String title = getAttribute(request, "title" + counter);
String dueDate = getAttribute(request, "dueDate" + counter);
htmlFile = htmlFile.replace("TITLE", title);
Book book = library.renewBook(bookId, memberId);
if (book != null) {

htmlFile = htmlFile.replace("RENEWED", "renewed");
htmlFile = htmlFile.replace("DUE_DATE", book.getDueDate());

} else {
htmlFile = htmlFile.replace("RENEWED", "book not renewable");
htmlFile = htmlFile.replace("DUE_DATE", dueDate);

}
request.getSession(false).removeAttribute("bookId" + counter);
request.getSession(false).removeAttribute("title" + counter);
request.getSession(false).removeAttribute("dueDate" + counter);

}
}
request.getSession(false).removeAttribute("numberOfBooks");

Logging in and logging out When the class LibraryServlet is loaded, it reads
the files PrivilegedUsers and IPAddresses and copies the information to main
memory. When a user logs in, we have seen that control goes to the Login servlet. It
assembles the log in screen for display by the browser.

Assume now that the user types in a user id and password and sends them to the server.
The Index servlet reads in the user id and password and calls a method named getMenu
in the class MenuBuilder. This class is responsible for checking the validity of the user
and returning the appropriate menu. The class MenuBuilder itself is not a servlet, so to
utilise the methods of LibraryServlet, it needs the reference to the Index servlet. To
call some of these methods, MenuBuilder also needs the request object. For uniformity,
we also pass the response object, although it is not currently used. The method thus has
5 parameters: a reference to the Index servlet, the request and response objects, and the
user-id and password.

First, the code checks if the user is a superuser by calling the method val-
idateSuperUser of LibraryServlet, and if so, the attribute userType
is given the value Privileged. Otherwise, the LibraryServlet class’s
validateOrdinaryMember method is called to see if the user is a member of the
library; in that case, the userType attribute is set as Ordinary. Also, note the use of

Implementing an Object-Oriented System on the Web 445

the boolean variables privileged and validated. In the event of an invalid user-id–
password combination, a null value is returned to the Index servlet, which redisplays
the log-in screen with an error message.

if (servlet.validateSuperUser(userId, password)) {
servlet.setAttribute(request, "userType", "Privileged");
validated = true;

} else if (servlet.validateOrdinaryMember(userId, password)) {
servlet.setAttribute(request, "userType", "Ordinary");
privileged = false;
validated = true;

}
if (!validated) {

return null;
}

With a successful log-in, the method checks whether the terminal used is within the
library premises or outside. The attribute location reflects this assessment. The
currentUserId is set to the user’s id for ordinary users and to the empty string ("")
for privileged users. (We have already seen how this attribute is used to handle commands
such as Issue Book.)

if (servlet.libraryInvocation(request)) {
servlet.setAttribute(request, "location", "Library");
location = LIBRARY;

} else {
servlet.setAttribute(request, "location", "Outside");

}
servlet.setAttribute(request, "userId", userId);
if (!privileged) {

servlet.setAttribute(request, "currentUserId", userId);
} else {

servlet.setAttribute(request, "currentUserId", "");
}
return getMenu(servlet, privileged, location);

The final step is to return the appropriate menu. This is done by the method getMenu that
has three parameters. The code assembles the HTML page by reading from four different
files in addition to the files for beginning and ending the page. These meet the requirements
we set forth under ‘Developing User Requirements’. If the user has logged in from the li-
brary, the Issue Book command is inserted into the menu. For privileged users, commands
such as Add and Remove Book are inserted. Ordinary members always get to issue com-
mands such as placing a hold and removing a hold. These commands are also available to
superusers who log in from a library terminal. Finally, the exit command is available to all
users from anywhere.

446 Designing with Distributed Objects

private String getMenu(LibraryServlet servlet, boolean privileged,
boolean location) {

boolean OUTSIDE = false;
boolean LIBRARY = true;
String html = servlet.getFile(LibraryServlet.HEADER);
if (location == LIBRARY) {

html += servlet.getFile(LibraryServlet.LIBRARY_COMMANDS);
}
if (privileged && location == LIBRARY) {

html += servlet.getFile(LibraryServlet.PRIVILEGED_COMMANDS);
}
if (!privileged || location == LIBRARY) {

html += servlet.getFile(LibraryServlet.GLOBAL_COMMANDS);
}
html += servlet.getFile(LibraryServlet.EXIT_COMMAND);
html += servlet.getFile(LibraryServlet.END_PAGE);
return html;

}

There is a third version of the getMenu method, which gets invokedwhen a user goes back
to main menu from the middle or at the end of a command. In this case, the user id and
password are already known; so the attributes are read from the session object to determine
what the menu should be. The menu itself is created using the 3-parameter getMenu
method (the second version) we just discussed. This third version also sets the attribute
currentUserid to the empty string ("") for privileged users. The critical part of the
code is given below.

if (!servlet.getAttribute(request, "userType").equals("Privileged")) {
privileged = false;
} else {
servlet.setAttribute(request, "currentUserId", "");
}
if (servlet.getAttribute(request, "location").equals("Library")) {
location = LIBRARY;
}
return getMenu(servlet, privileged, location);

12.4 Discussion and Further Reading

RMI provides a level of abstraction much higher than the traditional communication mech-
anism in networks, viz. sockets. A socket is an endpoint of a communication channel to
or from which data is transmitted in the network. Sockets are analogous to phones and a
socket allocated on a machine is uniquely associated with a process running on it. The type
of socket associated with a process depends on the transport layer in use (TCP or UDP, for
example). A socket can have an associated port number using which processes may send

Discussion and Further Reading 447

messages to it. Socket programming is possible in many modern programming languages
including C and Java. The book by Stevens [36] is an excellent reference for programming
in C in the Unix environment.

The difficulty with the socket model of programming is that it is very different from the
imperative paradigm of programming, which involves procedure calls. Remote Procedure
Call (RPC) [4] provides an improved model that allows programs to issue a call to a proce-
dure in another address space, which could actually be in a remote computer on a network.
For the most part, this can be done without worrying about the underlying network. The
code that runs on a centralised machine would run without too much modification on a
network as well. RPC is a popular way of implementing distributed systems using the C
programming language. Businesses that have made use of RPC include Xerox, Sun, and
Microsoft. RMI is essentially RPC extended to the world of object-oriented systems. For a
description of RPC, see RFC 707.

The Common Object Request Broker Architecture (CORBA), standardised by the Ob-
ject Management Group (OMG), is another approach to distributed object-based comput-
ing. It allows a distributed, heterogeneous collection of objects to interoperate, and auto-
mates many common network programming tasks such as object registration, location, and
activation, error-handling, parameter marshalling and demarshalling, security control and
concurrency control.

Like RMI, the services that a CORBA object provides are defined by its interface. Again,
as in RMI, object references are really of interface types. The Object Request Broker (ORB)
is responsible for delivering requests from a client to a remote object and to return the
results.

The ORB does a little more than just send requests and receive replies. Unlike RMI,
CORBA is language independent (it is also platform independent), and the ORB plays a
crucial role in this. The client may issue the request in a programming language different
from that of the CORBA object to which it issues the request. The ORB does the necessary
translation between programming languages. Language bindings are defined for all popular
programming languages. For a quick overview of CORBA, refer to [22].

As mentioned in the chapter, the Java Servlet technology is just one of the tools available
for creating web-based systems. PHP is a scripting language that usually runs on the server
side. It can have HTML code embedded into it and outputs web pages. ASP.NET is another
competing scripting technology from Microsoft for building web-based applications. JSP
is similar to PHP and ASP, the difference being that we intersperse Java code with HTML
code to create dynamic web pages. Other technologies such as Ruby on Rails (RoR) are
also available.

The World Wide Web Consortium develops technologies for the utilisation of the web.
This includes specifications for HTML and HTTP. The reader is encouraged to take a look

448 Designing with Distributed Objects

at their site at http://www.w3.org/ to get an overview of the work provided by that
group.

Exercises

1. Consider the implementation of the library system using Java RMI with a single server
that runs classes such as Library, Catalog, Book, etc., multiple clients, each run-
ning an instance of UserInterface. Which classes do you need to modify? What
other modifications do you need to make? Examine the parameters and return values
for the remote method calls and verify that they all conform to RMI requirements.

2. Modify the distributed library system so that a command to list the catalog is available.

3. Consider the solution to Question 2. Incorporate a mechanism by which a user can
place holds on books by selecting one or more books from the catalog listing.

4. Learn another technology for implementing web-based systems. A relatively easy exer-
cise would be to learn Java Server Pages (JSP). Re-implement the library system using
JSP. What are the advantages of JSP compared to Java servlets?

5. Suppose that instead of allowing no commands (other than exit) to be issued by a supe-
ruser from terminals outside the library, we want them to be able to do some telecom-
muting from outside. Make changes to the web-based system so that the commands to
save and retrieve data and the command to process holds can be done by a superuser
from anywhere.

Appendix

Java Essentials

A.1 Language Basics

Although Java is an object-oriented language, one could broadly divide its features into two
parts:

• The non-object-oriented features.

• The object-oriented features.

However, object-orientedness is built into the language such that it is quite difficult to com-
pletely avoid the term ‘object’ while discussing even simple programs. However, such dis-
cussion can be kept to a minimum.

We do not plan to cover every aspect of the Java language—just the features needed
to cover the discussions in the book are covered. We also do not propose to do a formal
presentation of the syntax.

A.2 A Simple Java Program

Here is the standard example of a Hello World program.

public class HelloWorld {
public static void main(String[] args) {

System.out.println("Hello, World!");
}

}

Compilation and execution You can types this up in any text editor. The program must
be stored in a file named HelloWorld.java. It is compiled by typing

449

450 Java Essentials

javac HelloWorld.java

As you might have guessed, javac is the Java compiler. The compiler reads
HelloWorld.java and creates a file called HelloWorld.class.

The HelloWorld.class file contains what are called ”byte codes.” Normally, com-
pilers convert a high level language program into a machine language program suitable for
execution by the native hardware. In the case of Java, though, the byte codes in the com-
piler output are instructions for the Java Virtual Machine (JVM), not for the hardware. Java
programs run on JVM and not directly on the hardware.

To execute the program, type

java HelloWorld

The program prints the single line

Hello, World!

Anatomy of the program It is not hard to guess that the message Hello, World! is
printed by the line

System.out.println("Hello, World!");

in the program.
It is virtually impossible to write any interesting Java program without using classes and

objects. So we need a basic understanding of what they are.
Objects are structures that usually relate to some real-life entity. Examples of objects in

a program could be a library book, a room in a hotel, or an airline reservation. Objects are
created using classes. Thus, we could have classes such as the following:

1. A class, say, Book, that can be used to create instances of books.

2. A class called Room using which we can create all of the rooms in a certain hotel.

3. A class for representing the reservation held by a passenger in a certain flight.

Java has an extensive collection of constructs for defining classes. We cover most of those
issues in the main part of the book.
The first line

public class HelloWorld {

Appendix 451

declares a class called HelloWorld. Class names, like other identifiers, can begin with
letters, the currency symbol, or the underscore. Succeeding characters can be any of these
or digits.

The word public means that the class is accessible from anywhere in the file system.
We will discuss this aspect elsewhere in the book. The left curly bracket essentially begins
the description of the class.

Every Java program will contain at least one class. Typically, you will put the code for
each class in a separate file. Java requires that the file be named <class_name>.java. If
you put more than one class in the same file, at most one of these classes can be designated
public, and the file must be named using that class. If no class is public, pick any one
of the class names for naming your file.

Let us proceed to examine the other lines.

Consider the second line

public static void main(String[] args) {

This defines a method named main, which begins the execution of any Java application.
Java requires that this method be preceded by the words public, static, and void.
The word void indicates that the method returns nothing. static means that the method
can be invoked without any objects.

Methods can accept parameters just as functions and procedures do. main accepts any
number of String arguments when the program is invoked. These are collected into an
array of String objects and passed to the program: String is a class supported by the
Java language itself and one that we will use throughout the book.

In our example, the program does not expect any parameters.

The left-curly bracket begins the details of the method, which has just one statement:

System.out.println("Hello, World!");

Let us examine each part of this statement.

System is a class known to the Java language. Among other things, the System class
captures and supplies an assorted set of features for performing standard input and standard
output, and querying system properties and environment variables. out is an object that
represents the standard output (console). System.out is the syntax for accessing the
out object that is kept track of by the System class.

println is another example of a method. In object-oriented languages, methods are
usually associated with objects. In this case, println is a method that can be executed by
the object System.out.

The method println accepts one parameter, which should be a String: that is, some-
thing between double quotes. The method causes that string to be printed on the standard
output.

452 Java Essentials

Finally, the semi-colon terminates the statement.
The first right-curly bracket ends the method and the last right-curly bracket ends the

class.

Comments There are three types of comments in Java programs. Two forward slashes
(//) make everything till the end of line comments. /* begins a comment that ends with a
*/; such comments may span multiple lines. Multiple line comments may also begin with
/** and end with */; Files containing such comments may be processed using the javadoc
utility to produce HTML documentation.

A.3 Primitive Data Types

Java supports eight primitive data types using which we can define variables to denote num-
bers, characters, and logical values. These types are: int, long, float, double, char, boolean,
short, and byte. Among these byte, short, int, and long are numeric types supporting nega-
tive and non-negative integers. Float and long are used for floating point numbers.
The length of the corresponding variables are given in the following table.

Type Size
byte 1
short 2
int 4
long 8
float 4
double 8

Variables are defined by first specifying the type and then a list of variable names. The
definition must be terminated by a semi-colon. Although more than one variable may be
defined in single declaration, the usual style is to define only one.

Variable names may begin with the currency symbol, an alphabetic character, or the
underscore. These and digits may appear in succeeding positions.

We now show examples of defining variables and assigning values.

int numberOfClasses;
numberOfClasses = 4;
System.out.println("I am taking " + numberOfClasses

+ " classes");

In the above, ”+” concatenates the arguments after converting them to string objects.

Variables may be initialised as they are defined:

Appendix 453

double balance = 750.00;
double deposit = 200.00;
double $cost = 8.5;
System.out.print("Initial balance " + balance + " Deposit "

+ deposit);

Character constants begin and end with single-quotes.

char stop = ’s’;
char _delimiter = ’:’;

Like many other languages, Java uses the operators +, -, *, and / with their usual meanings.
The operator % is used for finding the remainder after division. As in most other languages,
multiplication and division have precedence over addition and subtraction.

The mod operator has the same precedence as multiplication and division.

double balance = balance + deposit;
System.out.println(" New balance " + balance);

double income;
double taxRate;
double tax;
double netIncome;

income = 30000.00;
taxRate = 0.15;
tax = (income - 15000.0) * taxRate;
netIncome = income - tax;

int numberOfCookies = 36;
int numberOfChildren = 8;
int cookiesPerChild;
int cookiesLeftover;
cookiesPerChild = numberOfCookies / numberOfChildren;
cookiesLeftover = numberOfCookies % numberOfChildren;

Booleans are used for logical operations. These variables can take one of two values: true
or false.

boolean succeeded = true;

A.4 Relational Operators

Java uses the following operators for comparing variables of primitive types. (Only equality
and inequality testing is applicable to boolean variables.)

454 Java Essentials

== equals
!= not equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to

Strings We create a String object by writing code like the following.

String errorMessage = "could not find the file";

In the above, errorMessage is a variable that refers to a String object, which contains
the character sequence enclosed between double quotes.

Objects respond to methods, which are like functions and procedures in other languages.
For example, the above String object can be used as below to print the number of char-
acters stored in it.

System.out.println(errorMessage.length());

We are invoking the method length() on the object errorMessage. It should return
23.

In general, a method is invoked as below.

<object_reference>.method_name(parameters);

Incidentally, objects of type String respond to a large collection of methods including
the following:

indexof(char c) - returns the first location of the character
c in a string

charAt(int index) - what is the character at the given
(0-relative) index?

A.5 A Note on Input and Output

Inputting numeric values through the keyboard has been a problem in Java. We need
to read a string and extract a number from it. One way of inputting data is through
a graphical user interface (GUI). A class called JOptionPane has a method named
showInputDialog, which can be used for accepting a String. The String can then
be parsed to retrieve the proper value.

Appendix 455

String response;
response = JOptionPane.showInputDialog("Enter a number");
int num = Integer.parseInt(response);

The code opens up a dialog box for entering a string. After inputting the data, the user can
click ”O.K.” The string is stored in response, which is parsed by the code

Integer.parseInt(response);

It returns the integer value stored in the string. (If the string does not have an integer in it,
it would cause an ”exception.”)

Messages can also be displayed in a window using the method showMessageDialog in
JOptionPane. The format is

JOptionPane.showMessageDialog(null, message-as-a-string);

A.6 Selection Statements

Java supports if else statements and switch statements. Both allow nesting. The syntax of
the if else statement is

if <condition>
<statement>

[else
<statement>]

The else part is optional.

Here is a program that accepts the age of a person and prints out whether the person is
eligible to vote.

import javax.swing.*;
public class VoteEligibility {

public static void main(String[] s) {
int age;
age = Integer.parseInt(JOptionPane.showInputDialog(

"Please enter your age"));
if (age >= 18) {

JOptionPane.showMessageDialog(null, "you are eligible to
vote");

} else {
JOptionPane.showMessageDialog(null, "wait " + (18 - age)

+ " years!");
}
System.exit(0);

456 Java Essentials

}
}

The next example selects people younger than 20 and all females over 30.

selected = false;
if (age < 20) {

selected = true;
} else if (age > 30) {

gender = JOptionPane.showInputDialog("Enter gender: ")
.charAt(0);

if (gender == ’f’ || gender == ’F’) {
selected = true;

}
}

Logical operators are

&& logical and
|| logical or
! logical not

The switch statement allows us to handle the situationwhen there are numerous cases. Here
is an example.

int month = Integer.parseInt(JOptionPane.showInputDialog(null,
"Enter month 1-12"));

switch (month) {
case 1: JOptionPane.showMessageDialog(null, "January");

break;
case 2: JOptionPane.showMessageDialog(null, "February");

break;
case 3: JOptionPane.showMessageDialog(null, "March");

break;
case 4: JOptionPane.showMessageDialog(null, "April");

break;
case 5: JOptionPane.showMessageDialog(null, "May");

break;
case 6: JOptionPane.showMessageDialog(null, "June");

break;
case 7: JOptionPane.showMessageDialog(null, "July");

break;
case 8: JOptionPane.showMessageDialog(null, "August");

break;
case 9: JOptionPane.showMessageDialog(null, "September");

break;

Appendix 457

case 10: JOptionPane.showMessageDialog(null, "October");
break;

case 11: JOptionPane.showMessageDialog(null, "November");
break;

case 12: JOptionPane.showMessageDialog(null, "December");
break;

}

A.7 Loops

Java, like C and C++, allows three types of loops: for, while, and do.

while The while loop has a simple syntax.

while (condition)
statement;

The statement is executed as long as the condition is true. Before each iteration, the con-
dition is checked. If it is true, the loop is executed once and the condition is checked once
again and the process repeats until the condition is false.
Here are some examples of the use of while loop.

int number = 10;
while (number <= 25) {

System.out.println(number);
number++;

}

The second example is a program that reads in a string and counts the number of vowels
in a String and prints each occurrence. The charAt method returns the character at
the given position (zero-relative) in the string. The method indexOf checks whether a
given character appears in a String.

import javax.swing.*;
public class CountVowelsWhile {

public static void main(String[] s) {
String vowels = "aeiou";
String string = JOptionPane.showInputDialog("Enter a string");
int counter = 0;
int position = 0;
while (position < string.length()) {

if (vowels.indexOf(string.charAt(position)) >= 0) {
counter++;
System.out.println(string.charAt(position));

458 Java Essentials

}
position++;

}
System.out.println("There are " + counter +

" occurrences of vowels in " + string);
System.exit(0);

}
}
}

for The for loop has the following syntax.

for (expression1; condition; expression2)
statement;

The code works as follows:

1. Evaluate expression1.
2. Evaluate condition.
3. If the evaluation in (2) returns true, enter the loop and execute the statement, which can

be a block. Otherwise, exit the loop.
4. Evaluate expression2.
5. Go to (2) above.

Here are examples of the use of for loops.
We solve the problems given for while using the for loop. The first example prints all

integers from 10 to 25. The code first creates an int variable number and initializes it to
10. It then checks whether number is less than or equal to 25. Since it is not, it enters the
loop and prints the current value of number, which is 10. It then increments number by
1 and checks again whether number is less than or equal to 25. The loop continues this
way until number is 26 at which time the loop is exited.

for (int number = 10; number <= 25; number++) {
System.out.println(number);

}

The program that reads in a string and counts the number of vowels in a String and prints
each occurrence is given below using the for loop.

import javax.swing.*;
public class CountVowels {

public static void main(String[] s) {
String vowels = "aeiou";
String string = JOptionPane.showInputDialog("Enter a string");
int counter = 0;

Appendix 459

for (int position = 0; position < string.length(); position++) {
if (vowels.indexOf(string.charAt(position)) >= 0) {

counter++;
System.out.println(string.charAt(position));

}
}
System.out.println("There are " + counter +

" occurrences of vowels in " + string);
System.exit(0);

}
}

A program that uses both while and for loops to examine a sequence of strings to see if they
are palindromes is given below.

import javax.swing.*;
public class Palindrome {

public static void main(String[] s) {
String input;
boolean endOfInput = false;
while (!endOfInput) {

input = JOptionPane.showInputDialog(null, "Enter a string");
if (input.length() == 0) {

endOfInput = true;
} else {

boolean isAPalindrome = true;
for (int left = 0, right = input.length() - 1; left < right;

left++, right--) {
if (input.charAt(left) != input.charAt(right)) {

isAPalindrome = false;
}

}
if (isAPalindrome) {

JOptionPane.showMessageDialog(null, input
+ " is a palindrome");

} else {
JOptionPane.showMessageDialog(null, input

+ " is not a palindrome");
}

}
}
System.exit(0);

}
}

do The do loop executes at least once. At the end of the first and succeeding iterations, a
condition is checked. If the condition is true, the next iteration is performed. The syntax is

460 Java Essentials

do
statement

while (condition);

The following example makes the user enter ”Yes”, ”No”, or ”cancel” (case-insensitive).

String response;
do {

response = JOptionPane.showInputDialog
("Enter yes, no, or cancel");

} while (! response.equalsIgnoreCase("yes")
&& ! response.equalsIgnoreCase("no")
&& ! response.equalsIgnoreCase("cancel"));

A.8 Methods

Method are like functions in C. They are always enclosed within a class declaration. A
method must return void or a known type. Methods may accept any number of parameters.
Each formal argument must be written with the type name followed by the parameter name.
Parameters must be separated by a comma.

Parameters are passed by value. Changes to the parameters in the callee do not affect the
original. In the following example, although the values of c and d are swapped, the values
in the actual parameters are unchanged.

void swap(int c, int d) {
int temp = c;
c = d;
d = temp;

}
...
int a = 1;
int b = 2;
swap(a, b);

A.9 Arrays
Java supports the creation of arrays of any number of dimensions. The process of creating
an array can be thought of as consisting of two steps:

1. Declare a variable that refers to the array. This is not the array itself, but eventually
contains the address of the array, which has to be dynamically allocated.

2. Allocate the array itself and make the variable declared in (1) above to point to this
array.

Appendix 461

The following code creates a variable that can serve as a reference to an array of integers.

int[] a;

An array of five integers is created during execution by the following code.

new int[5];

The new operator returns the address of the array; this is termed the reference in Java. We
make a hold the reference to the array by writing

a = new int[5];

The first cell of the array is indexed by 0. If the array has n elements, the last cell is indexed
n − 1.

Array cells are referred by the notation a[index].

The following code stores 1 in a[0], 2 in a[1], etc. and then prints these values.

for (int index = 0; index < 5; index++) {
a[index] = index + 1;

}
for (int index = 0; index < 5; index++) {

System.out.println(a[index]);
}

The following program reads in a sequence of numbers and prints them in reverse. The
number of numbers is the first number read in. An array large enough to hold the sequence
is then allocated.

import javax.swing.*;
public class PrintInReverse {

public static void main(String[] s) {
int[] numbers;
int numberOfNumbers = Integer.parseInt(

JOptionPane.showInputDialog
("Enter max. number of numbers"));

numbers = new int[numberOfNumbers];
boolean lookForAnotherNumber = true;
int count = 0;
while (lookForAnotherNumber) {

if (count >= numbers.length) {
lookForAnotherNumber = false;

} else {
String string = JOptionPane.showInputDialog

("Enter a number");

462 Java Essentials

if (string.length() == 0) {
lookForAnotherNumber = false;

} else {
int number = Integer.parseInt(string);
numbers[count++] = number;

}
}

}
for (int index = count - 1; index >= 0; index--) {

System.out.println(numbers[index]);
}
System.exit(0);

}
}

Multi-dimensional arrays

Let us look at an example of creating multi-dimensional arrays, which will suggest how to
allocate arrays of higher dimension.

double [][] prices;
prices = new double[5][10];
prices[2][4] = 76.5;

Bibliography

1. S. Ambler. The Object Primer: Agile Model-Driven Development with UML 2.0. Cam-
bridge University Press, 2004.

2. S. W. Ambler. Building Object Applications That Work. Cambridge University Press,
September 1998.

3. P. Anderson and G. Anderson. Navigating C++ and Object-Oriented Design. Prentice
Hall, 1998.

4. A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM Trans. Com-
put. Syst., 2(1):3959, 1984.

5. B. Bruegge and A. H. Dutoit. Object-Oriented Software Engineering. Prentice Hall,
2000.

6. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad and M. Stal. Pattern-Oriented
Software Architecture: A System of Patterns, Volume 1. Wiley, 2001.

7. T. Cargill. C++ Programming Style. Addison-Wesley Professional, 1992.

8. A. Chaudhri and R. Zicari. Succeeding with Object Databases: A Practical Look at
Today's Implementations with Java and XML. John Wiley, 2000.

9. P. Cooper. Beginning Ruby: From Novice to Professional (Beginning from Novice to
Professional). Apress, 2007.

10. B. Eckel. Thinking in C++ Volume 1 (2nd Edition). Prentice Hall, 2000.

11. B. Eckel. Thinking in Java (4th Edition). Prentice Hall, 2006.

12. R. Fichman and C. Kemerer. Object-Oriented and Conventional Analysis and Design
Methodologies. IEEE Computer Society Press, 1995.

463

464 Bibliography

13. A. Formica, H. D. Gröger and M. Missikoff. Object-oriented database schema anal-
ysis and inheritance processing: a graph-theoretic approach. Data Knowl. Eng.,
24(2):157181, 1997.

14. A. Formica, H. D. Gröger and M. Missikoff. An efficient method for checking objecto-
riented database schema correctness. ACM Trans. Database Syst., 23(3):334369, 1998.

15. M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.

16. M. Fowler and K. Scott. UML Distilled. Addison-Wesley Longman, 1997.

17. E. Freeman, E. Robson, B. Bates and K. Sierra. Head First Design Patterns (Head
First). O’Reilly, 2004.

18. E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

19. X. Girod. Conception par objects - MECANO: une methode et un environnement de con-
struction d'application par objects. PhD thesis, University of Joseph Fourier Grenoble
I, Grenoble, June 1991.

20. B. Goetz. Java theory and practice: Be a good (event) listener. guidelines for writing
and supporting event listeners. http://www.ibm.com/developerworks/, July 2005.

21. M. Grand. Patterns in Java: Catalogue of Reusable Design Patterns Illustrated with
UML vol. 1. John Wiley and Sons, 2002.

22. O. M. Group. Corba basics. http://www.omg.org/gettingstarted/corbafaq.htm.

23. D. Gruntz. Java design: On the observer pattern. Technical report, University of Applied
Sciences, Aargau, 2004.

24. A. Holub. Programming java threads in the real world, part 6:the observer pattern
and mysteries of the awteventmulticaster. http://www.javaworld.com/javaworld/jw-03-
1999/jw-03-toolbox.html, March 1999.

25. C. S. Horstmann and G. Cornell. Core Java(TM), Volume I{Fundamentals (8th Edition).
Sun Microsystems, 2007.

26. C. Larman. Applying UML and Patterns. Prentice Hall PTR, 1998.

27. Y. D. Liang. Introduction to Java Programming, Comprehensive Version. Pearson Pren-
tice Hall, 2007.

Bibliography 465

28. B. H. Liskov and J. M. Wing. Behavioural subtypingusing invariants and constraints. In
Formal Methods for Distributed Processing: A Survey of Object-Oriented Approaches,
H. Brown and J. Derick (eds.) Cambridge University press, pages 254-280, 2001.

29. S. J. Metsker. Design Patterns Java Workbook. Addison-Wesley, 2002.

30. B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.

31. B. M. P Clarke and P. Gibson. Using a taxonomy tool to identify changes in object-
oriented software. In 7th European Conference on Software Maintenance and Reengi-
neering, Benevento, Italy, March 26-28, 2003.

32. L. Rising. The Pattern Almanac. Addison-Wesley, 2000.

33. R. W. Sebesta. Concepts of Programming Languages. Addison-Wesley, 2007.

34. A. Shalloway and J. R. Trott. Design Patterns Explained A New Perspective on Object-
Oriented Design. Addison-Wesley, 2004.

35. A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts. John Wiley
& Sons, Inc., 2006.

36. R. Stevens. UNIX Network Programming, Volume 1. Prentice Hall, 1998.

37. B. Stroustrup. The Design and Evolution of C++. Addison-Wesley, 1994.

38. Unknown. The observer pattern. Core Java technologies. Technical tips.
http://java.sun.com/developer/JDCTechTips/, January 2006.

39. J. M. Vlissides, J. O. Coplien and N. L. Kerth. Pattern Languages of Program Design
2 (Software Patterns Series). Addison-Wesley, 1999.

Index

abstract class, 6, 36
abstract factory pattern, 283
access specifiers

package, 82
private, 18
protected, 69, 82
public, 18

activity diagrams, 40
adapter pattern, 125, 228
analysis, 134

business processes, 137
business rules, 143
conceptual classes and relationships,

150
domain analysis, 158
functional Requirements, 136
functional requirements, 139
non-functional requirements, 136
requirements gathering, 136
use case, 141
use case analysis, 139

architectural patterns
client-server, 401
document-view pattern, 402
MVC, 339
pipe and filter, 401
repository, 400

architecture, 339
association, 46, 53

aggregation, 55
arity, 54
association class, 55

composition, 55
attribute, 13

baseclass, 56
behaviour diagrams, 39
bridge pattern, 362
business processes, 137

checked exceptions, 86
class, 6

abstract, 36
association, 53
baseclass, 56
constructor, 19
dependency, 73
derived class, 56
field, 16
implementation class, 182
inheritance, 56
inner, 31
relationships, 52
software class, 169

class diagrams, 39, 42
class explosion, 362
client-server pattern, 401
client/server systems, 409

architecture, 409
cohesion, 7, 179
collection classes, 83
collections, 114
command pattern, 383
communication diagrams, 42

466

Index 467

comparing objects, 33, 37
component diagrams, 39
composite pattern, 396
composite structure diagrams, 39
composition, 249
conceptual classes and relationships, 150
conceptual model, 134
conformance, 64, 75
constructor, 19

default, 21
superclass, 61

coupling, 7, 179

default constructor, 21
deployment diagrams, 40
derived class, 56
design, 167

activities, 169
issues, 167
subsystems, 168

design patterns, 6, 114
abstract entities, 318
abstract factory, 283
adapter, 125, 228
bridge, 362
composite, 396
facade, 205
factory, 261
factory method, 283
iterator, 114
observer, 310
proxy, 412
singleton, 121, 227
state, 301
visitor, 270

document-view pattern, 402
domain analysis, 158
dynamic binding, 62, 65, 69

overhead, 284

enacapsulation, 7
equals, 224
event

handling, 317
low-level event, 334
semantic event, 334

event handling, 93
exception, 84, 86

facade pattern, 205
factory method pattern, 283
factory pattern, 261
field, 16

instance, 23
static, 23

finite state machine, 289
finite state modelling, 289
framework, 106
FSM

GUI programs, 326
state minimisation, 291

functional requirements, 136, 139

genericity, 71
generics, 222

erasure, 227
graphical user interface programming, 90
GUI design, 326

HTML, see web-based applications

idioms, 399
implementation class, 182
implementing undo, 379, 403
Inheritance

restriction, 234
inheritance, 56, 233

applications of, 234
consequences, 266
extension, 235
from interfaces, 62

468 Object-Oriented Analysis, Design and Implementation: An Integrated Approach

function, 237
implementation, 237
limitations of, 237
private, 236
structure, 237
type, 237

inner class, 31
instance

field, 23
instantiation, 14
interaction diagrams, 39
interaction overview diagrams, 42
interface, 6, 28, 47, 62

cloneable, 244
runnable, 248

iterator pattern, 114

Java
ActionEvent, 93
ActionListener, 93
BorderLayout, 91
JButton, 91
JFrame, 91
JPanel, 96
JTextField, 91
WindowEvent, 94
WindowListener, 94
instanceof, 88
java.util.ArrayList, 83
java.util.Collection, 83
java.util.LinkedList, 83
java.util.List, 83
paintComponent(), 97
readResolve, 207
writeReplace, 207
catch block, 84
checked exceptions, 86
class, 87, 124
collection classes, 83
equals, 33, 37, 224

event handling, 93
exceptions, 84
externalisable, 207
genericity, 71
GUI basics, 90
inner class, 31
object, 71
package access, 82
packages, 81
protected access, 82
reflection, 87
RMI, see Java RMI
serialization, 103, 104
this, 27, 34
try block, 84

Java event handling, 317
custom events, 317
system event queue, 334

Java remote method invocation, see Java
RMI

Java RMI, 410, 411
demarshalling, 411
marshalling, 411
registering objects, 415
registry, 415
remote class, 411
remote interface, 411
remote interface implementation,

413
remote method invocation, 413
remote object, 411
remote reference, 411
RMI compiler, 414

Java servlets, see web-based applications
Java virtual machine, 410
JVM, see Java virtual machine

law of inversion, 217, 383
Liskov substitution principle, 239
long-term storage, 98

Index 469

memory management, 197
method, 16

static, 23
method invocation, 16
method overriding, 67
model–view–controller, 339

controller, 349
model–view separation, 342
view, 340

modifiability, 8
modularity, 7
multiple inheritance, 273

diamond of, 277
Java, 281
repeated inheritance, 277
resolving conflicts, 276

mutable object, 185
MVC pattern, see model–view–controller

non-functional requirements, 136

object, 5
attribute, 13
instantiation, 14
long-term storage, 98
method, 16
printing, 22
reference, 14, 15

object diagrams, 40, 102
object reference, 27
observer pattern, 310
open–closed principle, 255

package access, 82
package diagrams, 40
packages, 81
pipe and filter pattern, 401
polymorphism, 62, 64
printing an object, 22
private, 18

protected, 69, 82
proxy pattern, 412
public, 18

refactoring, 8, 210
extract method, 211, 216
inheritance, 267
move method, 211, 218

reference, 15
reflection, 87, 124

class, 87, 124
remote object, 411
remote reference, 411
repository pattern, 400
requirements analysis, see analysis
requirements gathering, 136
RTTI, see run-time type identification
run-time type identification, 86, 125, 323,

393
downcasting, 89
instanceof, 88
reflection, 87

sequence diagrams, 42, 44, 171
serialization, 103, 104, 198

static fields, 201
sesign patterns

command, 383
singleton

serialization, 199
singleton pattern, 121, 227
software architecture, 339
software class, 169
stable dependencies principle, 257
state machine diagrams, 41
state pattern, 301

state transition, 303
static

field, 23
method, 23

470 Object-Oriented Analysis, Design and Implementation: An Integrated Approach

structure diagrams, 39
subclass, see derived class
superclass, see base class

testability, 8
thread, 248
timing diagrams, 42
type

conformance, 64
type inheritance, 243

UML, 39
activity diagrams, 40
association, 46, 155
behaviour diagrams, 39
class diagrams, 39, 42
communication diagrams, 42
component diagrams, 39
composite structure diagrams, 39
deployment diagrams, 40
inheritance, 56
interaction diagrams, 39
interaction overview diagrams, 42
interface, 47
object diagrams, 40, 102
package diagrams, 40

sequence diagrams, 42, 44, 171
state machine diagrams, 41
structure diagrams, 39
timing diagrams, 42
use case, 43
use case diagrams, 41, 43, 141

unified modelling language, 6, see UML
use case, 43, 141
use case analysis, 139
use case diagrams, 41, 43, 141

visitor pattern, 270

web-based applications
form, 420
GET and POST methods, 423
HTML, 418
HTML tag, 419
safe interaction, 423
servlet container, 433
servlets, 418
session, 432
session object, 432
Tomcat configuration, 433

white-box reuse, 249

	Cover
	Object-Oriented Analysis and Design
	ISBN 9781849965217
	Contents
	Preface
	Who will find this book useful?
	How to use this as computer science text
	Acknowledgments

	Part 1: Basic Object-Oriented Concepts
	1: Introduction
	1.1 What is Object-Oriented Development?
	1.2 Key Concepts of Object-Oriented Design
	The central role of objects
	The notion of a class
	Abstract specification of functionality
	A language to define the system
	Standard solutions
	An analysis process to model a system
	The notions of extendability and adaptability

	1.3 Other Related Concepts
	1.3.1 Modular design and encapsulation
	1.3.2 Cohesion and coupling
	1.3.3 Modifiability and testability

	1.4 Benefits and Drawbacks of the Paradigm
	1.5 History
	1.6 Discussion and Further Reading
	Exercises

	2: Basics of Object-Oriented Programming
	2.1 The Basics
	2.2 Implementing Classes
	2.2.1 Constructors
	2.2.2 Printing an object
	2.2.3 Static members

	2.3 Programming with Multiple Classes
	2.4 Interfaces
	2.4.1 Implementation of StudentLinkedList
	2.4.2 Array implementation of lists

	2.5 Abstract Classes
	2.6 Comparing Objects for Equality
	2.7 A Notation for Describing Object-Oriented Systems
	2.7.1 Class diagrams
	2.7.2 Use cases and use case diagrams
	2.7.3 Sequence diagrams

	2.8 Discussion and Further Reading
	Exercises

	3: Relationships between Classes
	3.1 Association
	3.1.1 Characteristics of associations

	3.2 Inheritance
	3.2.2 Inheriting from an interface
	3.2.1 An example of a hierarchy
	3.2.3 Polymorphism and dynamic binding
	3.2.4 Protected fields and methods
	3.2.5 The object class

	3.3 Genericity
	3.4 Discussion and Further Reading
	3.4.1 A generalised notion of conformance

	Exercises

	4: Language Features for Object-OrientedImplementation
	4.1 Organising the Classes
	4.1.1 Creating the files
	4.1.2 Packages
	4.1.3 Protected access and package access

	4.2 Collection Classes
	4.3 Exceptions
	4.4 Run-Time Type Identification
	4.4.1 Reflection: Using the Class object
	4.4.2 Using the instanceof operator
	4.4.3 Downcasting

	4.5 Graphical User Interfaces: Programming Support
	4.5.1 The basics
	4.5.2 Event handling
	4.5.3 More on widgets and layouts
	4.5.4 Drawing shapes
	4.5.5 Displaying a piece of text

	4.6 Long-Term Storage of Objects
	4.6.1 Storing and retrieving objects
	4.6.2 Issues in storing and retrieving objects
	4.6.3 The Java serialization mechanism

	4.7 Discussion and Further Reading
	Exercises

	Part 2: Introduction to Object-Oriented Analysis,Design, Implementation and Refactoring
	5: Elementary Design Patterns
	5.1 Iterator
	5.1.1 Iterator implementation

	5.2 Singleton
	5.2.1 Subclassing singletons

	5.3 Adapter
	5.4 Discussion and Further Reading
	Exercises

	6: Analysing a System
	6.1 Overview of the Analysis Phase
	6.2 Stage 1: Gathering the Requirements
	6.2.1 Case study introduction

	6.3 Functional Requirements Specification
	6.3.1 Use case analysis

	6.4 Defining Conceptual Classes and Relationships
	6.5 Using the Knowledge of the Domain
	6.6 Discussion and Further Reading
	Exercises

	7: Design and Implementation
	7.1 Design
	7.1.1 Major subsystems
	7.1.2 Creating the software classes
	7.1.3 Assigning responsibilities to the classes
	7.1.4 Class diagrams
	7.1.5 User interface
	7.1.6 Data storage

	7.2 Implementing Our Design
	7.2.1 Setting up the interface
	7.2.2 Adding new books
	7.2.3 Issuing books
	7.2.4 Printing transactions
	7.2.5 Placing and processing holds
	7.2.6 Storing and retrieving the library object

	7.3 Discussion and Further Reading
	7.3.1 Conceptual, software and implementation classes
	7.3.2 Building a commercially acceptable system
	7.3.3 The facade pattern
	7.3.4 Implementing singletons
	7.3.5 Further reading

	Exercises

	8: How ‘Object-Oriented’ is Our Design?
	8.1 Introduction
	8.2 A First Example of Refactoring
	8.2.1 A library that charges fines: Initial solution
	8.2.2 Refactoring the solution

	8.3 A Second Look at RemoveBooks
	8.4 Using Generics to Refactor Duplicated Code
	8.4.1 A closer look at the collection classes
	8.4.2 Instantiating Catalog and MemberList

	8.5 Discussion and Further Reading
	Exercises

	Part 3: Advanced Concepts inObject-Oriented Design
	9: Exploring Inheritance
	9.1 Introduction
	9.2 Applications of Inheritance
	9.2.1 Restricting behaviours and properties
	9.2.2 Abstract superclass
	9.2.3 Adding features
	9.2.4 Hiding features of the superclass
	9.2.5 Combining structural and type inheritance

	9.3 Inheritance: Some Limitations and Caveats
	9.3.1 Deep hierarchies
	9.3.2 Lack of multiple inheritance
	9.3.3 Changes in the superclass
	9.3.4 Typing issues: The Liskov substitution principle
	9.3.5 Addressing the limitations

	9.4 Type Inheritance
	9.4.1 A simple example
	9.4.2 The cloneable interface
	9.4.3 The runnable interface

	9.5 Making Enhancements to the Library Class
	9.5.1 A first attempt
	9.5.2 Drawbacks of the above approach

	9.6 Improving the Design
	9.6.1 Designing the hierarchy
	9.6.2 Invoking the constructors
	9.6.3 Distributing the responsibilities
	9.6.4 Factoring responsibilities across the hierarchy

	9.7 Consequences of Introducing Inheritance
	9.7.1 Exception handling
	9.7.2 Adding new functionality to a hierarchy

	9.8 Multiple Inheritance
	9.8.1 Mechanisms for resolving conflicts
	9.8.2 Repeated inheritance
	9.8.3 Multiple inheritance in Java

	9.9 Discussion and Further Reading
	9.9.1 Design patterns that facilitate inheritance
	9.9.2 Performance of object-oriented systems

	Exercises

	10: Modelling with Finite State Machines
	10.1 Introduction
	10.2 A Simple Example
	10.3 Finite State Modelling
	10.4 A First Solution to the Microwave Problem
	10.4.1 Completing the analysis
	10.4.2 Designing the system
	10.4.3 The implementation classes
	10.4.4 A critique of the above design

	10.5 Using the State Pattern
	10.5.1 Creating the state hierarchy
	10.5.2 Implementation

	10.6 Improving Communication between Objects
	10.6.1 Loosely coupled communication

	10.7 Redesign Using the Observer Pattern
	10.7.1 Communication with the user
	10.7.2 The improved design

	10.8 Eliminating the Conditionals
	10.8.1 Using the Java event mechanism
	10.8.2 Using the context as a ‘switchboard’
	10.8.3 Implementation

	10.9 Designing GUI Programs Using the State Pattern
	10.9.1 Design of a GUI system for the library
	10.9.2 The context

	10.10 Discussion and Further Reading
	10.10.1 Implementing the state pattern
	10.10.2 Features of the state pattern
	10.10.3 Consequences of observer
	10.10.4 Recognising and processing external events
	10.10.5 Handling the events

	Exercises

	11: Interactive Systems and the MVC Architecture
	11.1 Introduction
	11.2 The MVC Architectural Pattern
	11.2.1 Examples
	11.2.2 Implementation
	11.2.3 Benefits of the MVC pattern

	11.3 Analysing a Simple Drawing Program
	11.3.1 Specifying the requirements
	11.3.2 Defining the use cases

	11.4 Designing the System
	11.4.1 Defining the model
	11.4.2 Defining the controller
	11.4.3 Selection and deletion
	11.4.4 Saving and retrieving the drawing

	11.5 Design of the Subsystems
	11.5.1 Design of the model subsystem
	11.5.2 Design of item and its subclasses
	11.5.3 Design of the controller subsystem
	11.5.4 Design of the view subsystem

	11.6 Getting into the Implementation
	11.6.1 Item and its subclasses
	11.6.2 Implementation of the model class
	11.6.3 Implementation of the controller class
	11.6.4 Implementation of the view class
	11.6.5 The driver program
	11.6.6 A critique of our design

	11.7 Implementing the Undo Operation
	11.7.1 Employing the command pattern
	11.7.2 Implementation

	11.8 Drawing Incomplete Items
	11.9 Adding a New Feature
	11.10 Pattern-Based Solutions
	11.10.1 Examples of architectural patterns

	11.11 Discussion and Further Reading
	11.11.1 Separating the view and the controller

	12: Designing with Distributed Objects
	12.1 Client/Server Systems
	12.1.1 Basic architecture of client/server systems

	12.1 Client/Server Systems
	12.1.1 Basic architecture of client/server systems

	12.2 Java Remote Method Invocation
	12.2.1 Remote interfaces
	12.2.2 Implementing a remote interface
	12.2.3 Creating the server
	12.2.4 The client
	12.2.5 Setting up the system

	12.3 Implementing an Object-Oriented System on the Web
	12.3.1 HTML and Java servlets
	12.3.2 Deploying the library system on the world-wide web

	12.4 Discussion and Further Reading

	Appendix
	Java Essentials
	A.1 Language Basics
	A.2 A Simple Java Program
	A.3 Primitive Data Types
	A.4 Relational Operators
	A.5 A Note on Input and Output
	A.6 Selection Statements
	A.7 Loops
	A.8 Methods
	A.9 Arrays

	Bibliography
	Index

